METHODS AND COMPOSITIONS COMPRISING TUMOR SUPPRESSOR GENE THERAPY FOR THE INHIBITION OF PATHOGENS

Information

  • Patent Application
  • 20240042061
  • Publication Number
    20240042061
  • Date Filed
    December 21, 2021
    3 years ago
  • Date Published
    February 08, 2024
    11 months ago
Abstract
Provided herein are methods and compositions for suppressing or preventing an infection in a subject infected by a pathogen or decreasing organ or tumor tissue fibrosis that involve administering to the subject a composition that includes a therapeutically effective amount of a p53 therapy. Also disclosed are methods of suppressing tumor stroma by contacting the tumor stroma with the p53 therapy, wherein the p53 suppresses tumor stroma activities.
Description
BACKGROUND
1. Field

The present invention relates generally to the fields of biology and medicine. More particularly, it concerns methods of suppressing or preventing a pathogenic infection by administering a p53 therapy. Further aspects pertain to the treatment of the stroma of an organ or a tumor to reverse the deleterious effects of fibrosis on organ function, tumor progression and treatment resistance.


2. Description of Related Art

Infections by pathogens are a major cause of morbidity and mortality in the U.S., and throughout the world. Successful vaccination programs against smallpox and polio, between 1950 and 1970, led to a general view by public health authorities, particularly in the West, that the war against infectious diseases was effectively over and some countries scaled-back health measures. However, the emergence of HIV, Ebola, multi-drug resistant organisms and the recent coronavirus pandemic have shown that constant vigilance is needed where pathogens are concerned.


In light of the recent coronavirus pandemic, many infectious disease experts have expressed their belief that the prospect of future pandemics involving COVID-19 and other pathogens for which there are ineffective treatments are likely. In this regard, highly infectious pathogens that are initially asymptomatic may be widely spread through the population and be associated with substantial morbidity and mortality. The pandemics could result in long- and short-term health consequences and possibly death for large numbers of the world's population. Thus, in addition to the continuing need for the possibility of mass treatment of pathogens, there is an urgent need to develop strategies to prevent the morbidity and mortality associated with pandemics and possible bioterrorist attacks wherein the public is exposed to deadly pathogens.


While effective anti-pathogen therapies and prophylactic vaccines have been developed for multiple viral, fungal, protozoan and bacterial infections, these agents often result in efficacy for only a limited number of pathogens. In addition to mortality, many untreatable infections result in short- and long-term morbidities for which existing therapies are inadequate. Acute respiratory distress syndrome (ARDS) is an example of post infection morbidity for which effective treatments are lacking. There is a clear need for novel, broadly effective agents to prevent and treat infectious pathogens and their sequalae.


SUMMARY

In some embodiments, the present disclosure provides methods and compositions for inhibiting a pathogen in a subject comprising administering an effective amount of a p53 therapy.


In one embodiment, the present disclosure provides methods of treating (e.g., suppressing or preventing) a pathogenic infection in a subject comprising administering to the subject an effective amount of a p53 gene therapy. In particular aspects, the subject is a human.


In some aspects, the p53 gene therapy comprises administering a nucleic acid encoding a p53 polypeptide. In particular aspects, the p53 gene therapy comprises restoration and/or amplification of p53 function by gene editing. For example, gene editing comprises using Zinc Finger Nucleases (ZFN), Transcription Activator Like Effector Nucleases (TALEN), or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to express p53. In certain aspects, the p53 gene therapy composition is a pharmaceutically acceptable composition.


In certain aspects, the pathogen is a virus, bacteria, or fungus. In specific aspects, the pathogen is a virus. For example, the virus is an endoplasmic reticulum-tropic virus, human papilloma virus (HPV), herpes simplex virus (HSV-1), Hepatitis C virus, a flavivirus species, HHV6, rubella, LCMV, human immunodeficiency virus (HIV), or Hepatitis B virus. In some aspects, the virus is influenza A, influenza B, influenza C, parainfluenza, paramyxoviruses, Newcastle disease virus, respiratory syncytial virus, measles, mumps, adenoviruses, adeno-associated viruses, parvoviruses, Epstein-Barr virus, rhinoviruses coxsackieviruses echoviruses, reoviruses, rhabdoviruses, coronavirus, polioviruses, herpes simplex, cytomegaloviruses, papillomaviruses, virus B, varicella-zoster, poxviruses, rabies, picornaviruses, rotavirus, dengue, or Kaposi associated herpes virus. In specific aspects, the coronavirus is severe acute respiratory syndrome coronavirus (SARS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), or Middle-east respiratory syndrome coronavirus (MERS-CoV).


In some aspects, the nucleic acid encoding p53 is provided in an expression cassette under the control of a promoter active in said subject. In particular aspects, the promoter is cytomegalovirus (CMV), SV40, or PGK. In some aspects, the expression cassette is in a viral vector. For example, the viral vector is an adenoviral vector, a retroviral vector, a vaccinia viral vector, an adeno-associated viral vector, a herpes viral vector, a vesicular stomatitis viral vector, a polyoma viral vector. In specific aspects, the viral vector is an adenoviral vector. In other aspects, the nucleic acid encoding p53 is administered by a non-viral approach. In particular aspects, the non-viral vector comprises a nanoparticle or lipoplex. For example, the lipoplex comprises DOTAP and at least one cholesterol, cholesterol derivative, or cholesterol mixture.


In certain aspects, the p53 gene therapy is administered to the subject intravenously, intraarterially, intravascularly, intrapleuraly, intraperitoneally, intratracheally, intratumorally, intrathecally, intramuscularly, endoscopically, intralesionally, percutaneously, subcutaneously, regionally, stereotactically, or by direct injection or perfusion.


In additional aspects, the method further comprises administering at least one additional agent to treat or prevent the infection in the subject. In some aspects, the at least one additional agent is an anti-viral agent, an anti-fungal agent, an anti-bacterial agent, or an anti-protozoan agent.


A further embodiment provides a method of treating or preventing a viral infection in a cell comprising contacting the cell with an effective amount of a p53 therapy, such as a p53 gene therapy. In some aspects, the cell is a mammalian cell, such as a human cell. In particular aspects, the cell is a cancer cell.


In some aspects, the p53 gene therapy comprises a nucleic acid encoding p53. In certain aspects, the p53 gene therapy comprises Zinc Finger Nucleases (ZFN), Transcription Activator Like Effector Nucleases (TALEN), or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to express p53.


In certain aspects, the viral infection is caused by an oncogenic virus. In some aspects, the viral infection is caused by an endoplasmic reticulum-tropic virus, human papilloma virus (HPV), herpes simplex virus (HSV-1), Hepatitis C virus, a flavivirus species, HHV6, rubella, LCMV, human immunodeficiency virus (HIV), or Hepatitis B virus. In certain aspects, the viral infection is caused by influenza A, influenza B, influenza C, parainfluenza, paramyxoviruses, Newcastle disease virus, respiratory syncytial virus, measles, mumps, adenoviruses, adeno-associated viruses, parvoviruses, Epstein-Barr virus, rhinoviruses coxsackieviruses echoviruses, reoviruses, rhabdoviruses, coronavirus, polio viruses, herpes simplex, cytomegaloviruses, papillomaviruses, virus B, varicella-zoster, poxviruses, rabies, picornaviruses, rotavirus, or Kaposi associated herpes virus.


In some aspects, the nucleic acid encoding p53 is provided in an expression cassette under the control of a promoter active in said subject. In certain aspects, the promoter is cytomegalovirus (CMV), SV40, or PGK. In some aspects, the expression cassette is in a viral vector. In particular aspects, the viral vector is an adenoviral vector, a retroviral vector, a vaccinia viral vector, an adeno-associated viral vector, a herpes viral vector, a vesicular stomatitis viral vector, a polyoma viral vector. In specific aspects, the viral vector is an adenoviral vector. In other aspects, the nucleic acid encoding p53 is administered by a non-viral approach. In some aspects, the non-viral vector comprises a nanoparticle or lipoplex. For example, the lipoplex comprises DOTAP and at least one cholesterol, cholesterol derivative, or cholesterol mixture.


In certain aspects, the method further comprises administering at least one anti-viral agent to treat or prevent the viral infection in the cell.


Another embodiment provides a method of preventing or reducing pathological stroma and/or fibrosis in a subject comprising administering an effective amount of a p53 therapy (e.g., a p53 tumor suppressor therapy) to the pathological stroma of said subject.


In some aspects, the p53 tumor suppressor therapy is a nucleic acid encoding p53, an MDM2 or MDM4 inhibitor, a p53 gene editing therapy, a small molecule drug that restores mutant p53 to normal p53 tumor suppressor protein functions or a stabilized p53 tumor suppressor peptide. In certain aspects, the p53 tumor suppressor therapy comprises administering a nucleic acid encoding a p53 polypeptide. In particular aspects, the p53 tumor suppressor therapy comprises using Zinc Finger Nucleases (ZFN), Transcription Activator Like Effector Nucleases (TALEN), or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to express p53.


In certain aspects, the subject has liver cirrhosis, pulmonary fibrosis, or acute respiratory distress syndrome (ARDS). In some aspects, the subject does not have cancer. In particular aspects, the subject has cancer and the stroma is tumor stroma.


In additional aspects, the method further comprises administering an integrin inhibitor. In some aspects, the integrin inhibitor is a pan av integrin inhibitor. In certain aspects, the integrin inhibitor is abituzumab, intetumumab, abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab.


In some aspects, the method further comprises administering at least one CD122/CD132 agonist to the subject.


In some aspects, the nucleic acid encoding p53 is provided in an expression cassette under the control of a promoter active in said subject. In certain aspects, the promoter is cytomegalovirus (CMV), SV40, or PGK. In some aspects, the expression cassette is in a viral vector. In particular aspects, the viral vector is an adenoviral vector, a retroviral vector, a vaccinia viral vector, an adeno-associated viral vector, a herpes viral vector, a vesicular stomatitis viral vector, a polyoma viral vector. In specific aspects, the viral vector is an adenoviral vector. In other aspects, the nucleic acid encoding p53 is administered by a non-viral approach. In some aspects, the non-viral vector comprises a nanoparticle or lipoplex. For example, the lipoplex comprises DOTAP and at least one cholesterol, cholesterol derivative, or cholesterol mixture.


In certain aspects, the p53 tumor suppressor therapy is administered to the subject intravenously, intraarterially, intravascularly, intrapleuraly, intraperitoneally, intratracheally, intratumorally, intrathecally, intramuscularly, endoscopically, intralesionally, percutaneously, subcutaneously, regionally, stereotactically, or by direct injection or perfusion. In particular aspects, the p53 tumor suppressor therapy is administered to the subject intratumorally. In some aspects, the subject is administered the p53 tumor suppressor therapy more than once. In particular aspects, administering comprises a local or regional injection. In some aspects, the subject is a human.


In certain aspects, the cancer is melanoma, non-small cell lung, small-cell lung, lung, hepatocarcinoma, retinoblastoma, astrocytoma, glioblastoma, leukemia, neuroblastoma, head, neck, breast, pancreatic, prostate, renal, bone, testicular, ovarian, mesothelioma, cervical, gastrointestinal, urogenital, respiratory tract, hematopoietic, musculoskeletal, neuroendocrine, carcinoma, sarcoma, central nervous system, peripheral nervous system, lymphoma, brain, colon or bladder cancer.


In further aspects, the method further comprises administering at least one additional anticancer treatment. In some aspects, the at least one additional anticancer treatment is surgical therapy, chemotherapy, radiation therapy, hormonal therapy, immunotherapy, small molecule therapy, receptor kinase inhibitor therapy, anti-angiogenic therapy, cytokine therapy, cryotherapy or a biological therapy. In certain aspects, the at least one additional anticancer treatment is an immune checkpoint inhibitor. In some aspects, the at least one checkpoint inhibitor is selected from an inhibitor of CTLA-4, PD-1, PD-L1, PD-L2, LAG3, BTLA, B7H3, B7H4, TIM3, KIR, or A2aR. In particular aspects, the at least one checkpoint inhibitor is an anti-PD-1 antibody, anti-PD-L1 antibody, anti-PD-L2 antibody, anti-CTLA4 antibody, and/or anti-KIR antibody. In some aspects, the anti-PD-1 antibody is nivolumab, pembrolizumab, pidilizumab, AMP-514, REGN2810, CT-011, BMS 936559, MPDL328OA or AMP-224. In certain aspects, the anti-PD-L1 antibody is durvalumab, atezolizumab, or avelumab. In some aspects, the anti-PD-L2 antibody rHIgM12B7. In particular aspects, more than one checkpoint inhibitor is administered. In some aspects, the immune checkpoint inhibitor is administered systemically.


Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.



FIG. 1: Maximally Up and Down Regulated Genes Following p53 Treatment Concurrently Activate Anti-Pathogen Immune Responses and Anti-Fibrosis Effects. Pre and post treatment tissues were compared for the expression levels of 770 genes using the Nanostring IO 360 gene expression panel (Nanostring Technologies Seattle, WA). The Nanostring IO 360 dataset was analyzed for genes maximally up- or down-regulated as result of p53 treatment defined by a greater than or less than 10-fold change from baseline respectively. A total of 23 strongly-modulated genes out of the 770 gene set met these criteria. Unexpectedly, the vast majority of these genes (91%-21/23) were found to be involved in immune response activation and anti-fibrosis functions which would be useful in treating infections and their fibrotic/sclerosing sequellae that are induced by immune inflammation. Surprisingly, these 21 immune/anti-pathogen—anti-fibrosis genes represented a highly, statistically significant subset of genes most substantially effected by p53 treatment (p-value<0.00001 by two-sided Fisher's Exact Test comparing the immune/anti-pathogen—anti-fibrosis gene group vs. all other genes with a greater than or less than 10-fold change from baseline). The 21 Ad-p53 strongly regulated genes which are implicated in either antiviral/immune or anti-fibrotic functions are shown. Unexpectedly, concurrently modulated genes involved genes associated with immune pathogen eradication (up regulated genes) and anti-fibrosis effects (down-regulated genes). Thus, analysis of the JO 360 770-gene panel for genetic pathways and specific genes known to be important in antiviral defense showed coordinated changes in gene expression after p53 treatment which correlated with positive regulation of many anti-pathogen genes, activation of antiviral immunity and inhibition of anti-inflammatory genes associated with fibrosis as summarized more fully in Table 1.



FIG. 2: Concomitant Up Regulation of Immune Activating/Anti-Pathogen and Down Regulation of Immune Suppressive/Anti-Fibrosis Gene Pathways. In addition to the individual genes in the Nanostring IO 360 dataset, the pre- and post-treatment biopsies data were also analyzed for grouped gene profiles associated with therapeutic efficacy for anti-pathogen/immune and other pathological conditions. Both activation of anti-pathogen immune defense pathways coupled with the down regulation of immune suppressive and pro-fibrosis pathways were observed as shown in (FIG. 2). Immune activating CD8+ T-cell profiles, Cytotoxicity and iNOS (inducible nitric oxide synthase, NOS2) profiles were increased, consistent with activation of anti-pathogen immune responses, whereas immunosuppressive pathways as exemplified by IL-10 and TGF-beta were down regulated. The post-treatment profiles reflected strong up-regulation of genetic pathways involved in IFN-gamma activation, CD8+ T cells, immuno-proteosome and antigen presentation whereas pathways reflecting immunosuppressive programs such as IL10 and TGF-beta signatures were decreased. Analysis of cell phenotypic markers showed substantial increases in gene expression from CD8+ T cells and increased cytotoxic T cells. Cell types associated with inhibition of CTL responses, such as macrophages, mast cells and neutrophils were all decreased in post-treatment samples. Killer T cell abundance as reflected by CD8A expression was up-regulated. Infiltration of T cells and natural killer cells activate the production of IFN-γ, which has direct and indirect antiviral properties. Concomitantly, the down regulation of IL10 and TGF-beta signatures enhance anti-viral and anti-pathogen immunity associated with clearing pathogen infections (Couper et al., 2008).



FIG. 3: p53 Treatment Down Modulates ARDS/Lung Fibrosis-related gene profiles. Among the most devastating sequalae of infections are fibrosis reactions that lead to serious and frequently lethal organ damage. The induced gene profiles that lead to fibrotic reactions are well known and secondary to the induced inflammatory response necessary for pathogen eradication. Surprisingly, in addition to inducing the immune mediators required for pathogen clearance (described above and as shown in FIG. 1 and FIG. 2, p53 therapy downregulated multiple gene pathways implicated in organ fibrosis and ARDS (acute respiratory distress syndrome) as shown in FIG. 3. The stroma-related gene pathway (which comprises>50 gene products encompassing extracellular matrix remodeling, cell adhesion, myeloid cells, collagens, angiogenesis and metastasis was strongly down-regulated by p53 treatment (Table 3). Similarly, the anti-inflammatory pathways involved in IL-10 and TGF-beta were down-regulated as were endothelium and mast cell pathways. These findings indicate that p53 treatment reduces expression of the genes that cause pathogen induced lung pathology.



FIG. 4: p53 Treatment of Tumor Stroma Results in Clinical Response. There was dramatic tumor response following p53 treatment of the tumor stroma following intra-tumoral administration. The response of the injected lesion exceeded the 30% reduction in tumor size by Response Evaluation Criteria for Solid Tumors (RECIST). Unexpectedly, the p53 stromal treatment resulted in anti-stromal and anti-IL10 gene expression effects shown in Table 2 and FIG. 2 and FIG. 3 which had not been previously known as p53 related functions. These findings support novel applications of p53 therapy for pathological conditions where anti-stromal and anti-IL10 effects are beneficial.





DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Tumor protein p53 (TP53 or p53) is a tumor suppressor. Numerous studies have documented the growth suppression effected by elevated expression of p53 protein in various types of cancer cells (Sobol et al., 2012). The inventors have discovered that p53 genetic therapy functions in a manner that involves certain pathways in mammalian cells that would suppress pathogen infection and replication and their sequalae. However, p53 has never been contemplated for use as a therapeutic agent against infections by viruses and other pathogens. In certain embodiments, the present methods exploit these properties of p53 genetic therapy, to the suppression and prevention of infections by viruses and other pathogens and their pathological sequalae.


The present studies also discovered that p53 genetic therapy unexpectedly decreases interleukin 10 expression and decreases gene expression pathways that lead to fibrosis and stroma formation. Thus, in some embodiments, the present methods also exploit these properties of p53 genetic therapy and p53 restoration therapies to treat infections and disorders where decreased IL-10 activity and fibrosis/stroma formation have medical benefits.


Recent advances in molecular biology have increased the understanding of disease pathology and have identified relationships between immune response inflammation and the development of organ fibrosis (Valkenburg et al., 2018; Zhao et al., 2015; and Couper et al., 2008). This relationship contributes to the dangerous sequelae of numerous pathogen infections that result in organ sclerosis following respiratory, liver and other organ infections (Couper et al., 2008). Similarly, in tumors, chronic inflammation leads to tumor stromal formation that promotes tumor growth and fibrotic barriers that impede host anti-tumor immune responses and therapeutic interventions (Valkenburg et al., 2018). An ideal therapeutic agent for these circumstances would increase immune responses while concurrently decreasing fibrotic and stromal activities. Unfortunately, currently available therapies work at cross purposes regarding these factors. Agents that enhance immune responses increase inflammation and worsen fibrotic/sclerotic effects while anti-inflammatory agents that decrease sclerosis/fibrosis result in the inability to clear infections and exacerbate tumor growth (Valkenburg et al., 2018; Zhao et al., 2015; and Couper et al., 2008). Unrecognized functions of p53 were discovered that surprisingly increase immune responses while decreasing stroma/fibrosis concurrently providing methods for suppressing or preventing an infection by a pathogen or its sequelae in a subject or a cell using a p53 nucleic acid encoding an p53 polypeptide or other methods to induce p53 function. Further methods pertain to the treatment of the stroma of an organ or a tumor to reverse the deleterious effects of fibrosis on organ function, tumor progression and treatment resistance.


A pathogen as referred to herein can include any living microorganism that can cause disease or dysfunction in a cell or subject. The methods of the present disclosure contemplate any type of pathogen. For example, the pathogen may be a bacterium, virus, fungus, protozoan, or helminth. One of ordinary skill in the art would be familiar with the variety of pathogens that are known to exist. Any bacterium is contemplated for inclusion as a pathogen. For example, the pathogen may be a gram-negative bacterium, a gram-positive bacterium, or a bacterium for which gram staining is not applicable.


In certain embodiments of the present disclosure, the bacterium is a Pneumococcus species, Streptococcus species, Enterococcus species, Staphylococcus species, Hemophilus species, Pseudomonas species, Brucella species, Bordetella pertussis, Neisseria species, Moraxella catarrhalis, Corynebacterium species, Listeria monocytogenes, Nocardia asteroides, Bacteroides species, Leptospira species, Klebsiella pneumoniae, Escherichia coli, Proteus species, Serratia species, Acinetobacter species, Yersinia pestis, Francisella tula-rensis, Enterobacter species, Helicobacter species, Legionella species, Shigella species, Mycobacterium species, Bacillus species, or Yersinia species.


The species of Streptococcus may, for example, be S. pyogenes, S. agalactiae, S. equi, S. canis, S. bovis, S. equinus, S. anginosus, S. sanguis, S. salivarius, S. mitis, S. mutans, viri-dans streptococci, or peptostreptococci. The species of Enterococcus may be Enterococcus faecalis or Enterococcus faecium. The species of Staphylococcus may be, for example, Staphylococcus epidermidis or Staphylococcus aureus. The species of Pseudomonas may be Pseudomonas aeruginosa, Pseudomonas pseudomallei, or Pseudomonas mallei. The species of Brucella may be Brucella melitensis, Brucella suis, or Brucella abortus. The species of Neisseria may be Corynebacterium diphtherias, Corynebacterium ulcerans, Corynebacterium pseudotuberculosis, Corynebacterium pseudodiphtheriticum, Corynebacterium urealyticum, Corynebacterium hemolyticum, or Corynebacterium equi. The species of Mycobacterium may be M tuberculosis, M bovis, M avium complex, M marinum, M. fortuitum, or M kansaii. The species of Bacillus may be B. cereus, B. thuringiensis, or B. anthracis. The species of Yersinia may be Y. pestis, Y. enterocolitica, or Y. pseudotuberculosis.


Any type of virus is encompassed herein. The viral infection may be caused by any type of virus. For example, the viral infection may be caused by an oncogenic virus or an endoplasmic reticulum-tropic virus. For example, the endoplasmic reticulum tropic virus may be Hepatitis C virus, a flavivirus species, HHV6, rubella, LCMV, HIV, or Hepatitis B virus. In other embodiments, for example, the virus is influenza A, influenza B, influenza C, parainfluenza, paramyxoviruses, Newcastle disease virus, respiratory syncytial virus, measles, mumps, adenoviruses, adeno-associated viruses, parvoviruses, Epstein-Barr virus, rhinoviruses, coxsackieviruses, echoviruses, reoviruses, rhabdoviruses, coronavirus, polioviruses, herpes simplex virus, cytomegaloviruses, papillomaviruses, virus B, varicella-zoster, poxviruses, rabies, picomaviruses, rotavirus, or Kaposi associated herpesvirus.


The pathogen may be a fungus. Any fungus is contemplated for inclusion in the definition of pathogen, as long as it meets the definition of being a pathogen. For example, in some embodiments, the fungus is a Absidia species, Actinomadura madurae, Actinomyces species, Allescheria boydii, Alternaria species, Anthopsis deltoidea, Apophy-somyces elegans, Arnium leoporinum, Aspergillus species, Aureobasidium pullulans, Basidiobolus ranarum, Bipolaris species, Blastomyces dermatitidis, Candida species, Cephalosporium species, Chaetoconidium species, Chaetomium species, Cladosporium species, Coccidioides immitis, Con-idiobolus species, Corynebacterium tenuis, Cryptococcus species, Cunninghamella bertholletiae, Curvularia species, Dactylaria species, Epidermophyton species, Epidermophyton jloccosum, Exserophilum species, Exophiala species, Fonsecaea species, Fusarium species, Geotrichum species, Helminthosporium species, Histoplasma species, Lecytho-phora species, Madurella species, Malassezia furfur, Microsporum species, Mucor species, Mycocentrospora aceso rina, Nocardia species, Paracoccidioides brasiliensis, Penicillium species, Phaeosclera dematioides, Phaeoannellomy-ces species, Phialemonium obovatum, Phialophora species, Phoma species, Piedraia hortai, Pneumocystis carinii, Pythium insidiosum, Rhinocladiella aquaspersa, Rhizomucar pusillus, Rhizopus species, Saksenaea vasiformis, Sarci-nomyces phaeomuriformis, Sporothrix schenckii, Synceph-alastrum racemosum, Taeniolella boppii, Torulopsosis species, Trichophyton species, Trichosporon species, Ulocla-dium chartarum, Wangiella dermatitidis, Xylohypha species, Zygomyetes species, Thermomucor indicae-seudaticae, or a Radiomyces species.


Pathogens may also include protozoans or helminths, such as Cryptosporidium, Entamoeba, Plasmodium, Giardia, Leishmania, Trypanasoma, Trichomonas, Naegleria, Isospara belli, Toxoplasma gondii, Trichomonas vaginalis, Wunchereria, Ascaris, Schistosoma species, Cyclospora species, or Chlamydia species.


Any cell is contemplated for inclusion in the methods of the present disclosure. For example, in certain embodiments, the cell is a mammalian cell, such as a human cell. In other embodiments, the cell is a cancer cell. As with the methods discussed above, the p53 polypeptide or nucleic acid encoding the p53 polypeptide may include an expression cassette comprising a promoter, active in the cell, operably linked to a polynucleotide encoding an p53 polypeptide. The parameters pertaining to expression cassettes discussed above also apply to these methods. For example, the expression cassette may be carried in a viral vector. Viral vectors are discussed further in the specification below.


The viral vector may, for example, be an adenoviral vector, a retroviral vector, a vaccinia viral vector, an adeno-associated viral vector, or a poxviral vector. In other embodiments, the expression cassette is carried in a nonviral vector. For example, the nonviral vector may include a lipid, such as a liposome or in a nanoparticle.


In other embodiments, the methods of the present disclosure may further include administering at least one additional agent to prevent or suppress the viral infection in the cell. One of ordinary skill in the art would be familiar with the numerous agents that are available to prevent or suppress viral infection in a cell. Examples of such agents are discussed further in the specification below.


Additional agents that could be administered to enhance antiviral effects and reduce pathologic sequelae include virus vaccines, anti-virals including remdesivir, viral antisera and monoclonal antibodies directed against viral proteins. In addition, conventional treatments for idiopathic pulmonary fibrosis (IPF) (the recently approved anti-fibrotic drugs pirfenidone and nintedanib) or ARDS (corticosteroids, surfactants, N-acetylcysteine, statins, beta-agonists or mechanical ventilation) may be combined with the current invention to ameliorate symptoms and reduce disease pathology.


Treatment with chimeric antigen receptor-modified T cells (CAR T), a type of adoptive immunotherapy, has shown promising prospects for the therapy of B-cell malignancies (Brudno et al., 2018) and viral infections. In this regard, HIV-specific CAR T cells have been designed for the treatment of HIV/AIDS (Qi et al., 2020). The first generation of HIV-specific CD4 receptor-based CAR was developed more than 20 years ago but was aborted because the resultant CAR T cell was susceptible to HIV infection and had negligible efficacy (Zhen et al., 2017). With the discovery of numerous potent anti-HIV broadly neutralizing antibodies (bNAbs) in recent years, bNAb-based CAR T therapy has been viewed as a potential strategy to cure HIV infection and similar concepts may be applied to other viruses also.


Chimeric antigen receptor (CAR) contains three domains: an extracellular domain to specifically bind antigens, a transmembrane portion to anchor the receptor, and an endo-domain to transfer signals. The extracellular domain is a single-chain fragment variant (scFv) derived from the variable domain of antibodies or receptors. The endo-domain being used is CD3, a signal-transduction component of the T-cell antigen receptor. With these characteristics, researchers can design CAR to recognize specific antigens and activate CAR-expressed effector-cells. In practice, researchers could generate and expand CAR T cells from patients' blood, followed by reinfusion of CAR T cells into the patients (Zhang et al., 2017). Besides CD8+ T cells, researchers have also investigated other immune cell types for alternative CAR therapy. For example, NK cells are considered to be promising candidates, because they do not require prior sensitization, they are not MHC-independent in nature, and they have shown less severe adverse effects since they are tightly controlled by inhibitory receptors (Qi et al., 2020).


Specifically, T cells or NK cells can be redirected to target the coronavirus responsible for SARS. The potential of CAR/TCR T cell immunotherapy for controlling the COVID-19-causing virus, SARS-CoV-2, and protecting patients from its symptomatic effects is being explored.


Any pharmaceutically acceptable preparation suitable for delivery to the subject is contemplated for inclusion in the present disclosure. One of ordinary skill in the art would be familiar with the many types of preparations that can be formulated. Examples are discussed further in the specification below. For example, in some embodiments, the composition is formulated for oral administration, topical administration, inhalation, intralesional injection, intravenous administration, intra-thecal administration, intra-arterial administration, intra-peritoneal administration, rectal administration.


In some aspects, the restoration of p53 function is by the administration of a nucleic acid encoding p53 delivered by viral and/or non-viral methods. In certain aspects, the nucleic acid encoding p53 is delivered in an expression cassette, such as in a viral vector. In some aspects, p53 is under the control of a single promoter, such as cytomegalovirus (CMV), SV40, or PGK. In certain aspects, the viral vector is an adenoviral vector (e.g., adenoviral vector overexpressing ADP), a retroviral vector, a vaccinia viral vector (e.g., NIL-deleted vaccinia viral vector), an adeno-associated viral vector, a herpes viral vector, a vesicular stomatitis viral vector, a polyoma viral vector. In some aspects, the nucleic acid encoding p53 is delivered by gene editing methods, such as Zinc Finger Nucleases (ZFN), Transcription Activator Like Effector Nucleases (TALEN), or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), such as to restore or amplify expression of tumor suppressor genes. Combinations of viral and non-viral gene delivery and expression and/or gene editing methods are considered in the present disclosure. In certain aspects, the adenoviral p53 (Ad-p53) injection dose (mL) results in each tumor lesion receiving an Ad-p53 dose of at least 1×1011 viral particles (vp)/cm3 of tumor volume. In some aspects, the nucleic acid encoding p53 is administered to the subject in a lipoplex. In some aspects, the lipoplex comprises DOTAP and at least one cholesterol, cholesterol derivative, or cholesterol mixture. In other aspects, p53 treatment of the stroma of an organ or a tumor is applied to reverse the deleterious effects of fibrosis on organ function, tumor progression and treatment resistance. In the tumor applications, p53 function is also restored by drugs that alter the conformation of mutated p53 proteins or inhibit MDM2/MDM4/MDMX which are the negative regulators of p53. Examples of such p53 restoration drugs are those being developed by Aprea Therapeutics (eprenetapopt APR-246; APR-548), Cotinga Pharmaceuticals (COTI-2), Innovation Pharmaceuticals (Kevetrin), PMV Pharmaceuticals (PC14586) and Aileron (ALRN-6924). In some aspects, the p53 tumor suppressor therapy is a small molecule. For example, the small molecule targets the p53 Y220C mutation, such as PC14586, PK083, or PK5174, or the p53 R175H mutant, such as NSC319726. Other exemplary small molecules include PRIMA-1 and its analog APR-246 that target a wider range of mutant p53 proteins.


In some aspects, the nucleic acid encoding p53 is administered to the subject intravenously, intraarterially, intravascularly, intrapleuraly, intraperitoneally, intratracheally, intratumorally, intrathecally, intramuscularly, endoscopically, intralesionally, percutaneously, subcutaneously, regionally, stereotactically, topically, by aerosolization, or by direct injection or perfusion. In particular aspects, the nucleic acid encoding p53 and/or the nucleic acid encoding MDA-7 is administered to the subject intratumorally. administering comprises a local or regional injection. In some aspects, administering is via continuous infusion, intratumoral injection, or intravenous injection. In some aspects, the subject is administered the nucleic acid encoding p53 or the p53 restoring drug more than once.


It is generally appreciated that pathogen and tumor growth promotion, immune suppression, treatment resistance and harmful sequalae result from increased stromal factors and interleukin 10 expression which also inhibit the bioavailability of therapeutic interventions (See Valkenburg et al., 2018; Zhao et al., 2015; and Couper et al., 2008). In certain aspects, p53 treatment resulted in substantially decreased stromal and IL10 gene pathway effects.


In certain aspects of cancer anti-stroma and anti-IL10 treatment, the cancer is melanoma, non-small cell lung, small-cell lung, lung, hepatocarcinoma, retinoblastoma, astrocytoma, glioblastoma, leukemia, neuroblastoma, head, neck, breast, pancreatic, prostate, renal, bone, testicular, ovarian, mesothelioma, cervical, gastrointestinal, urogenital, respiratory tract, hematopoietic, musculoskeletal, neuroendocrine, carcinoma, sarcoma, central nervous system, peripheral nervous system, lymphoma, brain, colon or bladder cancer. In particular aspects, the cancer is metastatic.


In some aspects, the method further comprises administering at least one additional anticancer treatment. In certain aspects, the at least one additional anticancer treatment is surgical therapy, chemotherapy, radiation therapy, hormonal therapy, immunotherapy, small molecule therapy, receptor kinase inhibitor therapy, anti-angiogenic therapy, cytokine therapy, cryotherapy or a biological therapy. In some aspects, the biological therapy is a monoclonal antibody, siRNA, miRNA, antisense oligonucleotide, ribozyme or gene therapy.


In some aspects, the at least one additional anticancer treatment is an immune checkpoint inhibitor. In some embodiments, the additional anticancer treatment is an inhibitor of integrins such as pan alpha v integrins exemplified by abituzumab or intetumumab. In particular aspects, the integrin inhibitor is targeted to other types of integrins such as ITGB8, ITGA2 and others described by (Mair et al., 2018; Worthington et al., 2015) and (Raab-Westphal et al., 2017) to further enhance anti-tumor immune responses.


In certain aspects the immune checkpoint inhibitor is of CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, BTLA, B7H3, B7H4, TIM3, KIR, or A2aR. In some aspects, the at least one immune checkpoint inhibitor is an anti-CTLA-4 antibody. In some aspects, the anti-CTLA-4 antibody is tremelimumab or ipilimumab. In certain aspects, the at least one immune checkpoint inhibitor is an anti-killer-cell immunoglobulin-like receptor (KIR) antibody. In some embodiments, the anti-KIR antibody is lirilumab. In some aspects, the inhibitor of PD-L1 is durvalumab, atezolizumab, or avelumab. In some aspects, the inhibitor of PD-L2 is rHIgM12B7. In some aspects, the LAG3 inhibitor is IMP321, or BMS-986016. In some aspects, the inhibitor of A2aR is PBF-509. In some aspects, the at least one immune checkpoint inhibitor is a human programmed cell death 1 (PD-1) axis binding antagonist. In certain aspects, the PD-1 axis binding antagonist is selected from the group consisting of a PD-1 binding antagonist, a PDL1 binding antagonist and a PDL2 binding antagonist. In some aspects, the PD-1 axis binding antagonist is a PD-1 binding antagonist. In certain aspects, the PD-1 binding antagonist inhibits the binding of PD-1 to PDL1 and/or PDL2. In particular, the PD-1 binding antagonist is a monoclonal antibody or antigen binding fragment thereof. In some embodiments, the PD-1 binding antagonist is nivolumab, pembrolizumab, pidilizumab, AMP-514, REGN2810, CT-011, BMS 936559, MPDL328OA or AMP-224.


In some aspects, the at least one additional therapy is a histone deacetylase (HDAC) inhibitor. In certain aspects, the HDAC inhibitor is tractinostat (CHR-3996 or VRx-3996). In certain aspects, the method further comprises providing an extracellular matrix-degrading protein, such as relaxin, hyaluronidase or decorin.


In some aspects, the at least one additional anticancer treatment is an oncolytic virus. In some aspects, the oncolytic virus is engineered to express p53, MDA-7, IL-12, TGF-β inhibitor, and/or IL-10 inhibitor. In certain aspects, the oncolytic virus is a single- or double-stranded DNA virus, RNA virus, adenovirus, adeno-associated virus, retrovirus, lentivirus, herpes virus, pox virus, vaccinia virus, vesicular stomatitis virus, polio virus, Newcastle's Disease virus, Epstein-Barr virus, influenza virus, reoviruses, myxoma virus, maraba virus, rhabdovirus, enadenotucirev or coxsackie virus. In some aspects, the oncolytic virus is engineered to express a cytokine, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) or IL-12. In some aspects, the oncolytic virus is further defined as talimogene laherparepvec (T-VEC). In some aspects, the oncolytic adenoviral vector is derived from an E1b deleted adenovirus, and adenovirus where the Ad Ela gene is driven by the alpha-fetoprotein (AFP) promoter, a modified TERT Promoter Oncolytic Adenovirus, the HRE-E2F-TERT Hybrid Promoter Oncolytic Adenovirus, and/or an adenovirus with a modified E1a regulatory sequence wherein at least one Pea3 binding site, or a functional portion thereof, is deleted with an E1b-19K clone insertion site, which may all be modified to express therapeutic genes.


In certain aspects, the at least one additional anticancer treatment is a protein kinase or growth factor signaling pathways inhibitor. In certain aspects, the protein kinase or growth factor signaling pathways inhibitor is Afatinib, Axitinib, Bevacizumab, Bosutinib, Cetuximab, Crizotinib, Dasatinib, Erlotinib, Fostamatinib, Gefitinib, Imatinib, Lapatinib, Lenvatinib, Mubritinib, Nilotinib, Panitumumab, Pazopanib, Pegaptanib, Ranibizumab, Ruxolitinib, Saracatinib, Sorafenib, Sunitinib, Trastuzumab, Vandetanib, AP23451, Vemurafenib, CAL101, PX-866, LY294002, rapamycin, temsirolimus, everolimus, ridaforolimus, Alvocidib, Genistein, Selumetinib, AZD-6244, Vatalanib, P1446A-05, AG-024322, ZD1839, P276-00 or GW572016. In some aspects, the protein kinase inhibitor is a PI3K inhibitor, such as a PI3K delta inhibitor.


In some aspects, the immunotherapy comprises a cytokine, such as GM-CSF, an interleukin (e.g., IL-2) and/or an interferon (e.g., IFNα). In certain aspects, the immunotherapy comprises a co-stimulatory receptor agonist, a stimulator of innate immune cells, or an activator of innate immunity. In certain aspects, the co-stimulatory receptor agonist is an anti-OX40 antibody, anti-GITR antibody, anti-CD137 antibody, anti-CD40 antibody, or an anti-CD27 antibody. In some aspects, the stimulator of immune cells is an inhibitor of a cytotoxicity-inhibiting receptor or an agonist of immune stimulating toll like receptors (TLR). In some aspects, the cytotoxicity-inhibiting receptor is an inhibitor of NKG2A/CD94 or CD96 TACTILE. In some aspects, the TLR agonist is a TLR7 agonist, TLR8 agonist, or TLR9 agonist. In some aspects, the immunotherapy comprises a combination of a PD-L1 inhibitor, a 4-1BB agonist, and an OX40 agonist. In certain aspects, the immunotherapy comprises a stimulator of interferon genes (STING) agonist. In some aspects, the activator of innate immunity is an IDO inhibitor, TGFβ inhibitor, or IL-10 inhibitor. In some aspects, the chemotherapy comprises a DNA damaging agent, such as gamma-irradiation, X-rays, UV-irradiation, microwaves, electronic emissions, adriamycin, 5-fluorouracil (5FU), capecitabine, etoposide (VP-16), camptothecin, actinomycin-D, mitomycin C, cisplatin (CDDP), or hydrogen peroxide.


In another embodiment, there is provided a method of treating cancer in a subject comprising administering an effective amount of at least one oncolytic virus and at least one CD122/CD132 agonist to the subject. In some aspects, the least one oncolytic virus is engineered to express p53, MDA-7, a cytokine, and/or immune stimulatory gene. In particular aspects, the cytokine is GM-CSF or IL-12. In some aspects, the immune stimulatory gene is an inhibitor of TGFβ or IL-10.


In some aspects, the at least one oncolytic virus is selected from the group consisting of a single- or double-stranded DNA virus, RNA virus, adenovirus, adeno-associated virus, retrovirus, lentivirus, herpes virus, pox virus, vaccinia virus, vesicular stomatitis virus, polio virus, Newcastle's Disease virus, Epstein-Barr virus, influenza virus, reoviruses, myxoma virus, maraba virus, rhabdovirus, enadenotucirev, and coxsackie virus.


In some aspects, the viruses employed in the above embodiments comprise replication competent and/or replication defective viruses. In certain aspects, the replication competent or replication incompetent virus is a single or double stranded DNA virus, RNA virus, adenovirus, adeno-associated virus, retrovirus, lentivirus, herpes virus, pox virus, vaccinia virus, vesicular stomatitis virus, polio virus, Newcastle's Disease virus, myxoma virus, Epstein-Barr virus, influenza virus, reovirus, maraba virus, rhabdovirus, enadenotucirev or coxsackie virus. In certain aspects, one or more viruses are utilized. In certain aspects, the virus composition comprises a combination of replication competent and replication incompetent viruses.


In further aspects, the replication competent viruses in the above embodiments may be one or more oncolytic viruses. These oncolytic viruses may be engineered to express p53 and/or IL24 and/or to express a gene other than p53 and/or IL24, such as a cytokine (e.g. IL12) and/or another immune stimulatory gene (e.g., TGF-beta inhibitors or IL10 inhibitors or heat shock proteins). In certain aspects, the oncolytic virus may be used in lieu of or in addition to p53 and/or IL24 tumor suppressor therapy. Examples of oncolytic viruses include single or double stranded DNA viruses, RNA viruses, adenoviruses, adeno-associated viruses, retroviruses, lentiviruses, herpes viruses, pox viruses, vaccinia viruses, vesicular stomatitis viruses, polio viruses, Newcastle's Disease viruses, Epstein-Barr viruses, influenza viruses and reoviruses, myxoma viruses, maraba viruses, rhabdoviruses, enadenotucirev or coxsackie viruses. Exemplary oncolytic viruses include, but are not limited to, Ad5-yCD/mutTKSR39rep-hIL12, Cavatak™, CG0070, DNX-2401, G207, HF10, IMLYGIC™, JX-594, MG1-MA3, MV-NIS, OBP-301, Reolysin®, Toca 511, Oncorine (H101), Onyx-015, H102, H103, RIGVIR, an adenovirus overexpressing the adenoviral death protein (ADP), such as VirRx007, an N1L deleted vaccinia virus expressing IL12.


In some aspects, the viral and non-viral nucleic acid and gene editing compositions induce local and/or systemic effects. In some aspects, these compositions induce local and systemic effects.


In particular aspects, the treated subject is a mammal or human. In certain aspects, the treatment is provided to prevent or treat a pre-malignant or a malignant hyperproliferative condition. In certain aspects of prevention, the subject is a healthy subject. In other aspects of prevention, the subject comprises a pre-malignant lesion, such as, for example, a leukoplakia or a dysplastic lesion. In other aspects of prevention, the subject is at risk of developing cancer, such as, for example, by being a smoker or having a family history of cancer. In certain aspects, the treatment is for initial or recurrent hyperproliferative conditions. In some aspects, the treatment is administered to augment or reverse resistance to another therapy. In certain aspects, the resistance to treatment is known historically for a particular population of hyperproliferative condition patients. In certain aspects, the resistance to treatment is observed in individual hyperproliferative condition patients.


In certain aspects of the above embodiments, the method further comprises providing an extracellular matrix-degrading protein. In some aspects, this comprises administering an expression cassette encoding the extracellular matrix-degrading protein. In some embodiments, the extracellular matrix-degrading protein is relaxin, hyaluronidase or decorin. In particular aspects, the extracellular matrix-degrading protein is relaxin. In some aspects, the expression cassette is in a viral vector. In certain aspects, the viral vector is an adenoviral vector, a retroviral vector, a vaccinia viral vector, an adeno-associated viral vector, a herpes viral vector, a vesicular stomatitis viral vector, or a polyoma viral vector or another type of viral or non-viral gene therapy vector. In some aspects, the expression cassette encoding the extracellular matrix-degrading protein is administered intratumorally, intraarterially, intravenously, intravascularly, intrapleuraly, intraperitoneally, intratracheally, intrathecally, intramuscularly, endoscopically, intralesionally, percutaneously, subcutaneously, regionally, stereotactically, or by direct injection or perfusion.


In certain aspects, the subject is administered the nucleic acid encoding p53 or the p53 restoring drug in combination with at least one CD122/CD132 agonist. In certain aspects, the subject is administered the nucleic acid encoding p53 before the at least one CD122/CD132 agonist. In certain aspects, the subject is administered the nucleic acid encoding p53 simultaneously with the at least one CD122/CD132 agonist. In particular aspects, the adenoviral vector is administered to the subject intratumorally. In some aspects, the nucleic acid encoding p53 and at least one CD122/CD132 agonist induce abscopal (systemic) effects on distant tumors that are not injected with the nucleic acid encoding p53. In certain aspects, the subject is administered the nucleic acid encoding p53 or the p53 restoring drug in combination with at least one CD122/CD132 agonist and at least one immune checkpoint inhibitor.


In certain aspects, the cancer is melanoma, non-small cell lung, small-cell lung, lung, hepatocarcinoma, retinoblastoma, astrocytoma, glioblastoma, leukemia, neuroblastoma, head, neck, breast, pancreatic, prostate, renal, bone, testicular, ovarian, mesothelioma, cervical, gastrointestinal, urogenital, respiratory tract, hematopoietic, musculoskeletal, neuroendocrine, carcinoma, sarcoma, central nervous system, peripheral nervous system, lymphoma, brain, colon or bladder cancer. In some aspects, the cancer is metastatic.


In some aspects, the nucleic acid encoding p53 and/or the nucleic acid encoding MDA-7 is in an expression cassette. In certain aspects, the expression cassette is in a viral vector. In some embodiments, the viral vector is an adenoviral vector, a retroviral vector, a vaccinia viral vector, an adeno-associated viral vector, a herpes viral vector, a vesicular stomatitis viral vector, or a polyoma viral vector. In particular aspects, the viral vector is an adenoviral vector.


In certain aspects, the viral vector is administered at between about 103 and about 1013 viral particles. In some aspects, the viral vector, non-viral vector or p53 therapy is administered to the subject intravenously, intraarterially, intravascularly, intrapleuraly, intraperitoneally, intratracheally, intratumorally, intrathecally, intramuscularly, endoscopically, intralesionally, percutaneously, subcutaneously, regionally, stereotactically, or by direct injection or perfusion. In certain aspects, the subject is administered the p53 therapy more than once. Multiple methods for inhaled or aerosolized treatment may be utilized which include viral and non-viral delivery methods, DNA or RNA based treatments as described by Zaragouldis et al., 2012; Patel et al., 2019; and Laube 2015.


In some aspects, the subject is administered the nucleic acid encoding p53. In other aspects, the subject is administered the nucleic acid encoding MDA-7. In certain aspects, the subject is administered the nucleic acid encoding p53 and the nucleic acid encoding MDA-7. In some aspects, p53 and MDA-7 are under the control of a single promoter. In some embodiments, the promoter is a cytomegalovirus (CMV), SV40, or PGK.


In some aspects, the nucleic acid is administered to the subject in a lipoplex. In certain aspects, the lipoplex comprises DOTAP and at least one cholesterol, cholesterol derivative, or cholesterol mixture. In some aspects the nucleic acid is administered in a nanoparticle.


In certain aspects, administering comprises a local or regional injection. In other aspects, administering is via continuous infusion, intratumoral injection, or intravenous injection.


In some aspects, the method further comprises administering at least one additional anticancer treatment. In certain aspects, the at least one additional anticancer treatment is surgical therapy, chemotherapy (e.g., administration of a protein kinase inhibitor or a EGFR-targeted therapy), embolization therapy, chemoembolization therapy, radiation therapy, cryotherapy, hyperthermia treatment, phototherapy, radioablation therapy, hormonal therapy, immunotherapy, small molecule therapy, receptor kinase inhibitor therapy, anti-angiogenic therapy, cytokine therapy or a biological therapies such as monoclonal antibodies, siRNA, miRNA, antisense oligonucleotides, ribozymes or gene therapy.


In some aspects, the immunotherapy comprises a cytokine. In particular aspects, the cytokine is granulocyte macrophage colony-stimulating factor (GM-CSF), an interleukin such as IL-2, and/or an interferon such as IFN-alpha. Additional approaches to boost tumor-targeted immune responses include additional immune checkpoint inhibition. In some aspects, the immune checkpoint inhibition includes anti-CTLA4, anti-PD-1, anti-PD-L1, anti-PD-L2, anti-TIM-3, anti-LAG-3, anti-A2aR, or anti-KIR antibodies. In some aspects, the immunotherapy comprises co-stimulatory receptor agonists such as anti-OX40 antibody, anti-GITR antibody, anti-CD137 antibody, anti-CD40 antibody, and anti-CD27 antibody. In certain aspects, the immunotherapy comprises suppression of T regulatory cells (Tregs), myeloid derived suppressor cells (MDSCs) and cancer associated fibroblasts (CAFs). In further aspects, the immunotherapy comprises stimulation of innate immune cells, such as natural killer (NK) cells, macrophages, and dendritic cells. Additional immune stimulatory treatments may include IDO inhibitors, TGF-beta inhibitors, IL-10 inhibitors, stimulator of interferon genes (STING) agonists, toll like receptor (TLR) agonists (e.g., TLR7, TLR8, or TLR9), tumor vaccines (e.g., whole tumor cell vaccines, peptides, and recombinant tumor associated antigen vaccines), and adoptive cellular therapies(ACT) (e.g., T cells, natural killer cells, TILs, and LAK cells). In certain aspects, combinations of these agents may be used such as combining immune checkpoint inhibitors, checkpoint inhibition plus agonism of T-cell costimulatory receptors, and checkpoint inhibition plus TIL ACT. In certain aspects, additional anti-cancer treatment includes a combination of anti-PD-L1 immune checkpoint inhibitor (e.g., Avelumab), a 4-1BB (CD-137) agonist (e.g. Utomilumab), and an OX40 (TNFRS4) agonist.


In some aspects, the chemotherapy comprises a DNA damaging agent. In some embodiments, the DNA damaging agent is gamma-irradiation, X-rays, UV-irradiation, microwaves, electronic emissions, adriamycin, 5-fluorouracil (5FU), capecitabine, etoposide (VP-16). camptothecin. actinomycin-D, mitomycin C, cisplatin (CDDP), or hydrogen peroxide. In particular aspects, the DNA damaging agent is 5FU or capecitabine. In some aspects, the chemotherapy comprises a cisplatin (CDDP), carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, dactinomycin, daunorubicin, doxombicin, bleomycin, plicomycin, mitomycin, etoposide (VP16), tamoxifen, taxotere, taxol, transplatinum, 5-fluorouracil, vincristin, vinblastin, methotrexate, an HDAC inhibitor or any analog or derivative variant thereof.


In some aspects, the at least one additional cancer treatment is a protein kinase inhibitor or a monoclonal antibody that inhibits receptors involved in protein kinase or growth factor signaling pathways. For example, the protein kinase or receptor inhibitor can be an EGFR, VEGFR, AKT, Erb 1, Erb2, ErbB, Syk, Bcr-Abl, JAK, Src, GSK-3, PI3K, Ras, Raf, MAPK, MAPKK, mTOR, c-Kit, eph receptor or BRAF inhibitor. In particular aspects, the protein kinase inhibitor is a PI3K inhibitor. In some embodiments, the PI3K inhibitor is a PI3K delta inhibitor. For example, the protein kinase or receptor inhibitor can be Afatinib, Axitinib, Bevacizumab, Bosutinib, Cetuximab, Crizotinib, Dasatinib, Erlotinib, Fostamatinib, Gefitinib, Imatinib, Lapatinib, Lenvatinib, Mubritinib, Nilotinib, Panitumumab, Pazopanib, Pegaptanib, Ranibizumab, Ruxolitinib, Saracatinib, Sorafenib, Sunitinib, Trastuzumab, Vandetanib, AP23451, Vemurafenib, CAL101, PX-866, LY294002, rapamycin, temsirolimus, everolimus, ridaforolimus, Alvocidib, Genistein, Selumetinib, AZD-6244, Vatalanib, P1446A-05, AG-024322, ZD1839, P276-00, GW572016, or a mixture thereof. In certain aspects, the protein kinase inhibitor is an AKT inhibitor (e.g., MK-2206, GSK690693, A-443654, VQD-002, Miltefosine or Perifosine). In certain aspects, EGFR-targeted therapies for use in accordance with the embodiments include, but are not limited to, inhibitors of EGFR/ErbB 1/HER, ErbB2/Neu/HER2, ErbB3/HER3, and/or ErbB4/HER4. A wide range of such inhibitors are known and include, without limitation, tyrosine kinase inhibitors active against the receptor(s) and EGFR-binding antibodies or aptamers. For instance, the EGFR inhibitor can be gefitinib, erlotinib, cetuximab, matuzumab, panitumumab, AEE788; CI-1033, HKI-272, HKI-357, or EKB-569. The protein kinase inhibitor may be a BRAF inhibitor such as dabrafenib, or a MEK inhibitor such as trametinib.


I. Definitions

As used herein the specification, “a” or “an” may mean one or more. As used herein in the claim(s), when used in conjunction with the word “comprising,” the words “a” or “an” may mean one or more than one.


The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” As used herein “another” may mean at least a second or more.


The term “essentially” is to be understood that methods or compositions include only the specified steps or materials and those that do not materially affect the basic and novel characteristics of those methods and compositions.


As used herein, “essentially free,” in terms of a specified component, is used herein to mean that none of the specified component has been purposefully formulated into a composition and/or is present only as a contaminant or in trace amounts. The total amount of the specified component resulting from any unintended contamination of a composition is therefore well below 0.05%, preferably below 0.01%. Most preferred is a composition in which no amount of the specified component can be detected with standard analytical methods.


The term “substantially free of” is used to 98% of the listed components and less than 2% of the components to which composition or particle is substantially free of.


The terms “substantially” or “approximately” as used herein may be applied to modify any quantitative comparison, value, measurement, or other representation that could permissibly vary without resulting in a change in the basic function to which it is related.


The term “about” means, in general, within a standard deviation of the stated value as determined using a standard analytical technique for measuring the stated value. The terms can also be used by referring to plus or minus 5% of the stated value.


As used herein “wild-type” refers to the naturally occurring sequence of a nucleic acid at a genetic locus in the genome of an organism, and sequences transcribed or translated from such a nucleic acid. Thus, the term “wild-type” also may refer to the amino acid sequence encoded by the nucleic acid. As a genetic locus may have more than one sequence or alleles in a population of individuals, the term “wild-type” encompasses all such naturally occurring alleles. As used herein the term “polymorphic” means that variation exists (i.e., two or more alleles exist) at a genetic locus in the individuals of a population. As used herein, “mutant” refers to a change in the sequence of a nucleic acid or its encoded protein, polypeptide, or peptide that is the result of recombinant DNA technology.


The term “exogenous,” when used in relation to a protein, gene, nucleic acid, or polynucleotide in a cell or organism refers to a protein, gene, nucleic acid, or polynucleotide that has been introduced into the cell or organism by artificial or natural means; or in relation to a cell, the term refers to a cell that was isolated and subsequently introduced to other cells or to an organism by artificial or natural means. An exogenous nucleic acid may be from a different organism or cell, or it may be one or more additional copies of a nucleic acid that occurs naturally within the organism or cell. An exogenous cell may be from a different organism, or it may be from the same organism. By way of a non-limiting example, an exogenous nucleic acid is one that is in a chromosomal location different from where it would be in natural cells, or is otherwise flanked by a different nucleic acid sequence than that found in nature.


By “expression construct” or “expression cassette” is meant a nucleic acid molecule that is capable of directing transcription. An expression construct includes, at a minimum, one or more transcriptional control elements (such as promoters, enhancers or a structure functionally equivalent thereof) that direct gene expression in one or more desired cell types, tissues or organs. Additional elements, such as a transcription termination signal, may also be included.


A “vector” or “construct” (sometimes referred to as a gene delivery system or gene transfer “vehicle”) refers to a macromolecule or complex of molecules comprising a polynucleotide to be delivered to a host cell, either in vitro or in vivo.


A “plasmid,” a common type of a vector, is an extra-chromosomal DNA molecule separate from the chromosomal DNA that is capable of replicating independently of the chromosomal DNA. In certain cases, it is circular and double-stranded.


An “origin of replication” (“ori”) or “replication origin” is a DNA sequence, e.g., in a lymphotrophic herpes virus, that when present in a plasmid in a cell is capable of maintaining linked sequences in the plasmid and/or a site at or near where DNA synthesis initiates. As an example, an ori for EBV includes FR sequences (20 imperfect copies of a 30 bp repeat), and preferably DS sequences; however, other sites in EBV bind EBNA-1, e.g., Rep* sequences can substitute for DS as an origin of replication (Kirshmaier and Sugden, 1998). Thus, a replication origin of EBV includes FR, DS or Rep* sequences or any functionally equivalent sequences through nucleic acid modifications or synthetic combination derived therefrom. For example, the present invention may also use genetically engineered replication origin of EBV, such as by insertion or mutation of individual elements, as specifically described in Lindner, et. al., 2008.


A “gene,” “polynucleotide,” “coding region,” “sequence,” “segment,” “fragment,” or “transgene” that “encodes” a particular protein, is a nucleic acid molecule that is transcribed and optionally also translated into a gene product, e.g., a polypeptide, in vitro or in vivo when placed under the control of appropriate regulatory sequences. The coding region may be present in either a cDNA, genomic DNA, or RNA form. When present in a DNA form, the nucleic acid molecule may be single-stranded (i.e., the sense strand) or double-stranded. The boundaries of a coding region are determined by a start codon at the 5′ (amino) terminus and a translation stop codon at the 3′ (carboxy) terminus. A gene can include, but is not limited to, cDNA from prokaryotic or eukaryotic mRNA, genomic DNA sequences from prokaryotic or eukaryotic DNA, and synthetic DNA sequences. A transcription termination sequence will usually be located 3′ to the gene sequence.


The term “control elements” refers collectively to promoter regions, polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, internal ribosome entry sites (IRES), enhancers, splice junctions, and the like, which collectively provide for the replication, transcription, post-transcriptional processing, and translation of a coding sequence in a recipient cell. Not all of these control elements need be present so long as the selected coding sequence is capable of being replicated, transcribed, and translated in an appropriate host cell.


The term “promoter” is used herein in its ordinary sense to refer to a nucleotide region comprising a DNA regulatory sequence, wherein the regulatory sequence is derived from a gene that is capable of binding RNA polymerase and initiating transcription of a downstream (3′ direction) coding sequence. It may contain genetic elements at which regulatory proteins and molecules may bind, such as RNA polymerase and other transcription factors, to initiate the specific transcription of a nucleic acid sequence. The phrases “operatively positioned,” “operatively linked,” “under control,” and “under transcriptional control” mean that a promoter is in a correct functional location and/or orientation in relation to a nucleic acid sequence to control transcriptional initiation and/or expression of that sequence.


By “enhancer” is meant a nucleic acid sequence that, when positioned proximate to a promoter, confers increased transcription activity relative to the transcription activity resulting from the promoter in the absence of the enhancer domain.


By “operably linked” or co-expressed” with reference to nucleic acid molecules is meant that two or more nucleic acid molecules (e.g., a nucleic acid molecule to be transcribed, a promoter, and an enhancer element) are connected in such a way as to permit transcription of the nucleic acid molecule. “Operably linked” or “co-expressed” with reference to peptide and/or polypeptide molecules means that two or more peptide and/or polypeptide molecules are connected in such a way as to yield a single polypeptide chain, i.e., a fusion polypeptide, having at least one property of each peptide and/or polypeptide component of the fusion. The fusion polypeptide is preferably chimeric, i.e., composed of heterologous molecules.


“Homology” refers to the percent of identity between two polynucleotides or two polypeptides. The correspondence between one sequence and another can be determined by techniques known in the art. For example, homology can be determined by a direct comparison of the sequence information between two polypeptide molecules by aligning the sequence information and using readily available computer programs. Alternatively, homology can be determined by hybridization of polynucleotides under conditions that promote the formation of stable duplexes between homologous regions, followed by digestion with single strand-specific nuclease(s), and size determination of the digested fragments. Two DNA, or two polypeptide, sequences are “substantially homologous” to each other when at least about 80%, preferably at least about 90%, and most preferably at least about 95% of the nucleotides, or amino acids, respectively match over a defined length of the molecules, as determined using the methods above.


The term “nucleic acid” will generally refer to at least one molecule or strand of DNA, RNA or a derivative or mimic thereof, comprising at least one nucleobase, such as, for example, a naturally occurring purine or pyrimidine base found in DNA (e.g., adenine “A,” guanine “G,” thymine “T,” and cytosine “C”) or RNA (e.g. A, G, uracil “U,” and C). The term “nucleic acid” encompasses the terms “oligonucleotide” and “polynucleotide.” The term “oligonucleotide” refers to at least one molecule of between about 3 and about 100 nucleobases in length. The term “polynucleotide” refers to at least one molecule of greater than about 100 nucleobases in length. These definitions generally refer to at least one single-stranded molecule, but in specific embodiments will also encompass at least one additional strand that is partially, substantially or fully complementary to the at least one single-stranded molecule. Thus, a nucleic acid may encompass at least one double-stranded molecule or at least one triple-stranded molecule that comprises one or more complementary strand(s) or “complement(s)” of a particular sequence comprising a strand of the molecule.


The term “therapeutic benefit” used throughout this application refers to anything that promotes or enhances the well-being of the patient with respect to the medical treatment of his cancer. A list of nonexhaustive examples of this includes extension of the patient's life by any period of time; decrease or delay in the neoplastic development of the disease; decrease in hyperproliferation; reduction in tumor growth; delay of metastases; reduction in the proliferation rate of a cancer cell or tumor cell; induction of apoptosis in any treated cell or in any cell affected by a treated cell; and a decrease in pain to the patient that can be attributed to the patient's condition.


An “effective amount” is at least the minimum amount required to effect a measurable improvement or prevention of a particular disorder. An effective amount herein may vary according to factors such as the disease state, age, sex, and weight of the patient, and the ability of the antibody to elicit a desired response in the individual. An effective amount is also one in which any toxic or detrimental effects of the treatment are outweighed by the therapeutically beneficial effects. For prophylactic use, beneficial or desired results include results such as eliminating or reducing the risk, lessening the severity, or delaying the onset of the disease, including biochemical, histological and/or behavioral symptoms of the disease, its complications and intermediate pathological phenotypes presenting during development of the disease. For therapeutic use, beneficial or desired results include clinical results such as decreasing one or more symptoms resulting from the disease, increasing the quality of life of those suffering from the disease, decreasing the dose of other medications required to treat the disease, enhancing effect of another medication such as via targeting, delaying the progression of the disease, and/or prolonging survival. In the case of cancer or tumor, an effective amount of the drug may have the effect in reducing the number of cancer cells; reducing the tumor size; inhibiting (i.e., slow to some extent or desirably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and desirably stop) tumor metastasis; inhibiting to some extent tumor growth; and/or relieving to some extent one or more of the symptoms associated with the disorder. An effective amount can be administered in one or more administrations. For purposes of this invention, an effective amount of drug, compound, or pharmaceutical composition is an amount sufficient to accomplish prophylactic or therapeutic treatment either directly or indirectly. As is understood in the clinical context, an effective amount of a drug, compound, or pharmaceutical composition may or may not be achieved in conjunction with another drug, compound, or pharmaceutical composition. Thus, an “effective amount” may be considered in the context of administering one or more therapeutic agents, and a single agent may be considered to be given in an effective amount if, in conjunction with one or more other agents, a desirable result may be or is achieved.


As used herein, “carrier” includes any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.


The term “pharmaceutical formulation” refers to a preparation which is in such form as to permit the biological activity of the active ingredient to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the formulation would be administered. Such formulations are sterile. “Pharmaceutically acceptable” excipients (vehicles, additives) are those which can reasonably be administered to a subject mammal to provide an effective dose of the active ingredient employed.


As used herein, the term “treatment” refers to clinical intervention designed to alter the natural course of the individual or cell being treated during the course of clinical pathology. Desirable effects of treatment include decreasing the rate of disease progression, ameliorating or palliating the disease state, and remission or improved prognosis. For example, an individual is successfully “treated” if one or more symptoms associated with cancer are mitigated or eliminated, including, but are not limited to, reducing the proliferation of (or destroying) cancerous cells, decreasing symptoms resulting from the disease, increasing the quality of life of those suffering from the disease, decreasing the dose of other medications required to treat the disease, and/or prolonging survival of individuals.


An “anti-cancer” agent is capable of negatively affecting a cancer cell/tumor in a subject, for example, by promoting killing of cancer cells, inducing apoptosis in cancer cells, reducing the growth rate of cancer cells, reducing the incidence or number of metastases, reducing tumor size, inhibiting tumor growth, reducing the blood supply to a tumor or cancer cells, promoting an immune response against cancer cells or a tumor, preventing or inhibiting the progression of cancer, or increasing the lifespan of a subject with cancer.


The term “antibody” herein is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments (e.g., Fab, Fab′, F(ab′)2, scFv, Fv, dsFv diabody, and Fd fragments) so long as they exhibit the desired biological activity.


The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, e.g., the individual antibodies comprising the population are identical except for possible mutations, e.g., naturally occurring mutations, that may be present in minor amounts. Thus, the modifier “monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies. In certain embodiments, such a monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target-binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences. For example, the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones, or recombinant DNA clones. It should be understood that a selected target binding sequence can be further altered, for example, to improve affinity for the target, to humanize the target binding sequence, to improve its production in cell culture, to reduce its immunogenicity in vivo, to create a multispecific antibody, etc., and that an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention. In contrast to polyclonal antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen. In addition to their specificity, monoclonal antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins.


The term “CD122/CD132 agonist” or “preferential CD122/CD132 agonist” refers to an agent that preferentially binds to the CD122/CD132 receptor complex and has lower affinity binding for the IL-2α receptor (CD25) or the IL-15α receptor. Known preferential CD122/CD132 agonists comprise an IL2/anti-IL2 monoclonal antibody immunocomplex (see, for example, U.S. Patent Publication No. US20170183403A1; incorporated herein by reference in its entirety); a genetically engineered IL-2 mutein that has a modified amino acid sequence compared to wild type IL-2 (see, for example, U.S. Patent Publication No. US 2017/0044229 A1; incorporated herein by reference in its entirety); a genetically engineered IL-2 mutein that has a modified amino acid sequence compared to wild type IL-2 combined with an anti-IL2 monoclonal antibody immunocomplex (see, for example, International Patent Publication No. WO2014100014A1; incorporated herein by reference in its entirety); a PEGylated form of IL-2, such as NKTR-214 (see, for example, Charych et al., 2016; incorporated herein by reference in its entirety), an IL-15/anti-IL-15 monoclonal antibody immunocomplex; an IL15/IL15 Receptor α-IgG1-Fc (IL15/IL15Rα-IgG1-Fc) immunocomplex (see, for example, U.S. Patent Publication No. US20060257361A1, EP2724728A1 and Dubois et al., 2008; all incorporated herein by reference); a genetically engineered IL-15 mutein that has a modified amino acid sequence compared to wild type IL-15 combined with an IL15Rα-IgG1-Fc immunocomplex (see, for example, U.S. Patent Publication No. US20070160578; incorporated herein by reference in its entirety); or a PEGylated form of IL-15 with preferential binding to CD122/CD132.


The term “immune checkpoint” refers to a molecule such as a protein in the immune system which provides inhibitory signals to its components in order to balance immune reactions. Known immune checkpoint proteins comprise CTLA-4, PD-1 and its ligands PD-L1 and PD-L2 and in addition LAG-3, BTLA, B7H3, B7H4, TIM3, KIR. The pathways involving LAG3, BTLA, B7H3, B7H4, TIM3, and KIR are recognized in the art to constitute immune checkpoint pathways similar to the CTLA-4 and PD-1 dependent pathways (see e.g. Pardoll, 2012. Nature Rev Cancer 12:252-264; Mellman et al., 2011. Nature 480:480-489).


The term “PD-1 axis binding antagonist” refers to a molecule that inhibits the interaction of a PD-1 axis binding partner with either one or more of its binding partners, so as to remove T-cell dysfunction resulting from signaling on the PD-1 signaling axis—with a result being to restore or enhance T-cell function (e.g., proliferation, cytokine production, target cell killing). As used herein, a PD-1 axis binding antagonist includes a PD-1 binding antagonist, a PD-L1 binding antagonist and a PD-L2 binding antagonist.


The term “PD-1 binding antagonist” refers to a molecule that decreases, blocks, inhibits, abrogates or interferes with signal transduction resulting from the interaction of PD-1 with one or more of its binding partners, such as PD-L1 and/or PD-L2. In some embodiments, the PD-1 binding antagonist is a molecule that inhibits the binding of PD-1 to one or more of its binding partners. In a specific aspect, the PD-1 binding antagonist inhibits the binding of PD-1 to PD-L1 and/or PD-L2. For example, PD-1 binding antagonists include anti-PD-1 antibodies, antigen binding fragments thereof, immunoadhesins, fusion proteins, oligopeptides and other molecules that decrease, block, inhibit, abrogate or interfere with signal transduction resulting from the interaction of PD-1 with PD-L1 and/or PD-L2. In one embodiment, a PD-1 binding antagonist reduces the negative co-stimulatory signal mediated by or through cell surface proteins expressed on T lymphocytes mediated signaling through PD-1 so as render a dysfunctional T-cell less dysfunctional (e.g., enhancing effector responses to antigen recognition). In some embodiments, the PD-1 binding antagonist is an anti-PD-1 antibody. In a specific aspect, a PD-1 binding antagonist is MDX-1106 (nivolumab). In another specific aspect, a PD-1 binding antagonist is MK-3475 (pembrolizumab). In another specific aspect, a PD-1 binding antagonist is CT-011 (pidilizumab). In another specific aspect, a PD-1 binding antagonist is AMP-224.


The term “PD-L1 binding antagonist” refers to a molecule that decreases, blocks, inhibits, abrogates or interferes with signal transduction resulting from the interaction of PD-L1 with either one or more of its binding partners, such as PD-1 or B7-1. In some embodiments, a PD-L1 binding antagonist is a molecule that inhibits the binding of PD-L1 to its binding partners. In a specific aspect, the PD-L1 binding antagonist inhibits binding of PD-L1 to PD-1 and/or B7-1. In some embodiments, the PD-L1 binding antagonists include anti-PD-L1 antibodies, antigen binding fragments thereof, immunoadhesins, fusion proteins, oligopeptides and other molecules that decrease, block, inhibit, abrogate or interfere with signal transduction resulting from the interaction of PD-L1 with one or more of its binding partners, such as PD-1 or B7-1. In one embodiment, a PD-L1 binding antagonist reduces the negative co-stimulatory signal mediated by or through cell surface proteins expressed on T lymphocytes mediated signaling through PD-L1 so as to render a dysfunctional T-cell less dysfunctional (e.g., enhancing effector responses to antigen recognition). In some embodiments, a PD-L1 binding antagonist is an anti-PD-L1 antibody. In a specific aspect, an anti-PD-L1 antibody is YW243.55.S70. In another specific aspect, an anti-PD-L1 antibody is MDX-1105. In still another specific aspect, an anti-PD-L1 antibody is MPDL3280A. In still another specific aspect, an anti-PD-L1 antibody is MEDI4736.


The term “PD-L2 binding antagonist” refers to a molecule that decreases, blocks, inhibits, abrogates or interferes with signal transduction resulting from the interaction of PD-L2 with either one or more of its binding partners, such as PD-1. In some embodiments, a PD-L2 binding antagonist is a molecule that inhibits the binding of PD-L2 to one or more of its binding partners. In a specific aspect, the PD-L2 binding antagonist inhibits binding of PD-L2 to PD-1. In some embodiments, the PD-L2 antagonists include anti-PD-L2 antibodies, antigen binding fragments thereof, immunoadhesins, fusion proteins, oligopeptides and other molecules that decrease, block, inhibit, abrogate or interfere with signal transduction resulting from the interaction of PD-L2 with either one or more of its binding partners, such as PD-1. In one embodiment, a PD-L2 binding antagonist reduces the negative co-stimulatory signal mediated by or through cell surface proteins expressed on T lymphocytes mediated signaling through PD-L2 so as render a dysfunctional T-cell less dysfunctional (e.g., enhancing effector responses to antigen recognition). In some embodiments, a PD-L2 binding antagonist is an immunoadhesin.


An “immune checkpoint inhibitor” refers to any compound inhibiting the function of an immune checkpoint protein. Inhibition includes reduction of function and full blockade. In particular the immune checkpoint protein is a human immune checkpoint protein. Thus the immune checkpoint protein inhibitor in particular is an inhibitor of a human immune checkpoint protein.


An “extracellular matrix degradative protein” or “extracellular matrix degrading protein” refers any protein which acts on the integrity of the cell matrix, in particular exerting a total or partial degrading or destabilizing action on at least one of the constituents of the said matrix or on the bonds which unite these various constituents.


An “abscopal effect” is referred to herein as a shrinking of tumors outside the scope of the localized treatment of a tumor. For example, localized treatment with the p53 and/or IL-24 in combination with systemic treatment with an immune checkpoint therapy can result in an abscopal effect at distant untreated tumors.


II. P53 Gene Therapy

In some embodiments, a subject is administered a tumor suppressor therapy, such as a p53 gene therapy. For example, nucleic acids encoding p53 may be provided in various methods known in the art. In some aspects, the p53 tumor suppressor gene therapies incorporate nucleic acid variants to increase their activities. In certain aspects, the variant tumor suppressor nucleic acids are negative regulation-resistant p53 variants (Yun et al., 2012; incorporated herein by reference in its entirety). In other aspects, the gene therapy may comprise sequence-specific or targeted nucleases, including DNA-binding targeted nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), and RNA-guided nucleases such as a CRISPR-associated nuclease (Cas), specifically designed to be targeted to the sequence of the gene or a portion thereof.


In certain embodiments, the present disclosure provides therapies for the treatment or prevention of an infection or pathogenic stroma/fibrosis. Some of the therapies provided herein include p53 gene therapy comprising administering a wild-type p53 gene to the subject. Wild-type p53 is recognized as an important growth regulator in many cell types. The p53 gene encodes a 375-amino-acid phosphoprotein that can form complexes with host proteins such as large-T antigen and E1B. The protein is found in normal tissues and cells, but at concentrations which are minute by comparison with transformed cells or tumor tissue.


Missense mutations are common for the p53 gene and are essential for the transforming ability of the oncogene. A single genetic change prompted by point mutations can create carcinogenic p53. Unlike other oncogenes, however, p53 point mutations are known to occur in at least 30 distinct codons, often creating dominant alleles that produce shifts in cell phenotype without a reduction to homozygosity. Additionally, many of these dominant negative alleles appear to be tolerated in the organism and passed on in the germ line. Various mutant alleles appear to range from minimally dysfunctional to strongly penetrant, dominant negative alleles (Weinberg, 1991). High levels of mutant p53 have been found in many cells transformed by chemical carcinogenesis, ultraviolet radiation, and several viruses.


In some aspects, a p53 biomarker is employed to select patients for p53 treatment. In particular aspects, a favorable tumor p53 biomarker profile is defined by either wild-type p53 gene configuration or <20% p53-positive cells by immunohistochemistry (US Patent U.S. Pat. No. 9,746,471B2 and Nemunaitis et al., 2009; (Nemunaitis J., Clayman G., and Agarwala S. S. et al 2009, Biomarkers Predict p53 Gene Therapy Efficacy in Recurrent Squamous Cell Carcinoma of the Head and Neck, Clin Cancer Res, 15(24): 7719-25) both incorporated by reference in their entirety).


III. Extracellular Matrix Degradation

Methods of enhancing the therapeutic effect of the tumor suppressor gene therapy and/or an immune checkpoint inhibitor are also provided herein. In one aspect, the delivery of the gene therapy (e.g., viral distribution) are enhanced by a protein or agent which degrades the tumor cell extracellular matrix (ECM) or component thereof.


The extracellular matrix (ECM) is a collection of extracellular molecules secreted by cells that provides structural and biochemical support to the surrounding cells. Because multicellularity evolved independently in different multicellular lineages, the composition of ECM varies between multicellular structures; however, cell adhesion, cell-to-cell communication and differentiation are common functions of the ECM. Components of the ECM that may be targeted by the extracellular matrix degradative protein include collagen, elastin, hyaluronic acid, fibronectin and laminin.


A. Relaxin


One extracellular matrix degrading protein that can be used in the methods provided herein is relaxin. Relaxin is a 6 kDa peptide hormone that is structurally related to insulin and insulin-like growth factors. It is predominantly produced in the corpus luteum and endometrium and its serum level greatly increases during pregnancy (Sherwood et al., 1984). Relaxin is a potent inhibitor of collagen expression when collagen is overexpressed, but it does not markedly alter basal levels of collagen expression, in contrast to other collagen. It promotes the expression of various MMPs such as MMP2, MMP3, and MMP9 to degrade collagen, so that connective tissues and basal membranes are degraded to lead to the disruption of extracellular matrix of birth canal. In addition to this, the promotion of MMP 1 and MMP 3 expressions by relaxin is also observed in lung, heart, skin, intestines, mammary gland, blood vessel and spermiduct where relaxin plays a role as an inhibitor to prevent overexpression of collagen (Qin, X., et al., 1997a; Qin, X., et al., 1997b).


Administration of the relaxin protein or nucleic acid encoding the relaxin protein can induce the degradation of collagen, a major component of the extracellular matrix surrounding tumor cells, to disrupt connective tissue and basal membrane, thereby resulting in the degradation of extracellular matrix. In particular, when administered to tumor tissues enclosed tightly by connective tissue, the administration of the tumor suppressor gene therapy in combination with relaxin exhibits improved anti-tumor efficacy.


The relaxin protein can be full length relaxin or a portion of the relaxin molecule that retains biological activity as described in U.S. Pat. No. 5,023,321. Particularly, the relaxin is recombinant human relaxin (H2) or other active agents with relaxin-like activity, such as agents that competitively displace bound relaxin from a receptor. Relaxin can be made by any method known to those skilled in the art, preferably as described in U.S. Pat. No. 4,835,251. Relaxin analogs or derivatives thereof are described in U.S. Pat. No. 5,811,395 and peptide synthesis is described in U.S. Patent Publication No. US20110039778.


An exemplary adenoviral relaxin that may be used in the methods provided herein is described by Kim et al. (2006). Briefly, a relaxin-expressing, replication-competent (Ad-ΔE1B-RLX) adenovirus is generated by inserting a relaxin gene into the E3 adenoviral region.


B. Hyaluronidase


In some embodiments, any substance which is able to hydrolyze the polysaccharides which are generally present in extracellular matrices such as hyaluronic acid can be administered. Particularly, the extracellular matrix degrading protein used in the present invention can be hyaluronidase. Hyaluronan (or hyaluronic acid) is a ubiquitous constituent of the vertebrate extracellular matrix. This linear polysaccharide, which is based on glucuronic acid and glucosamine [D-glucuronic acid 1-β-3)N-acetyl-D-glucosamine(1-b-4)], is able to exert an influence on the physicochemical characteristics of the matrices by means of its property of forming very viscous solutions. Hyaluronic acid also interacts with various receptors and binding proteins which are located on the surface of the cells. It is involved in a large number of biological processes such as fertilization, embryonic development, cell migration and differentiation, wound-healing, inflammation, tumor growth and the formation of metastases.


Hyaluronic acid is hydrolyzed by hyaluronidase and its hydrolysis leads to disorganization of the extracellular matrix. Thus, it is contemplated that any substance possessing hyaluronidase activity is suitable for use in the present methods such as hyaluronidases as described in Kreil (Protein Sci., 1995, 4:1666-1669). The hyaluronidase can be a hyaluronidase which is derived from a mammalian, reptilian or hymenopteran hyaluronate glycanohydrolase, from a hyaluronate glycanohydrolase from the salivary gland of the leech, or from a bacterial, in particular streptococcal, pneumococcal and clostridial hyaluronate lyase. The enzymatic activity of the hyaluronidase can be assessed by conventional techniques such as those described in Hynes and Ferretti (Methods Enzymol., 1994, 235: 606-616) or Bailey and Levine (J. Pharm. Biomed. Anal., 1993, 11: 285-292).


C. Decorin


Decorin, a small leucine-rich proteoglycan, is a ubiquitous component of the extracellular matrix and is preferentially found in association with collagen fibrils. Decorin binds to collagen fibrils and delays the lateral assembly of individual triple helical collagen molecules, resulting in the decreased diameter of the fibrils. In addition, decorin can modulate the interactions of extracellular matrix components, such as fibronectin and thrombospondin, with cells. Furthermore, decorin is capable of affecting extracellular matrix remodeling by induction of the matrix metalloproteinase collagenase. These observations suggest that decorin regulates the production and assembly of the extracellular matrix at several levels, and hence has a prominent role in remodeling connective tissues as described by Choi et al. (Gene Therapy, 17: 190-201, 2010) and by Xu et al. (Gene Therapy, 22(3): 31-40, 2015).


An exemplary adenoviral decorin that may be used in the methods provided herein is described by Choi et al. (Gene Therapy, 17: 190-201, 2010). Briefly, a decorin-expressing, replication-competent (Ad-ΔE1B-DCNG) adenovirus is generated by inserting a decorin gene into the E3 adenoviral region. Another exemplary adenoviral decorin that may be used in the methods provided herein is described by Xu et al. (Gene Therapy, 22(3): 31-40, 2015). Similarly, a decorin-expressing, replication-competent (Ad.dcn) adenovirus is generated by inserting a decorin gene into the E3 adenoviral region.


IV. Nucleic Acids

A nucleic acid may be made by any technique known to one of ordinary skill in the art. Non-limiting examples of a synthetic nucleic acid, particularly a synthetic oligonucleotide, include a nucleic acid made by in vitro chemical synthesis using phosphotriester, phosphite or phosphoramidite chemistry and solid phase techniques such as described in EP 266,032, or via deoxynucleoside H-phosphonate intermediates as described by Froehler et al., 1986, and U.S. Pat. No. 5,705,629. A non-limiting example of enzymatically produced nucleic acid includes one produced by enzymes in amplification reactions such as PCR™ (see for example, U.S. Pat. Nos. 4,683,202 and 4,682,195), or the synthesis of oligonucleotides described in U.S. Pat. No. 5,645,897. A non-limiting example of a biologically produced nucleic acid includes recombinant nucleic acid production in living cells, such as recombinant DNA vector production in bacteria (see for example, Sambrook et al. 1989).


The nucleic acid(s), regardless of the length of the sequence itself, may be combined with other nucleic acid sequences, including but not limited to, promoters, enhancers, polyadenylation signals, restriction enzyme sites, multiple cloning sites, coding segments, and the like, to create one or more nucleic acid construct(s). The overall length may vary considerably between nucleic acid constructs. Thus, a nucleic acid segment of almost any length may be employed, with the total length preferably being limited by the ease of preparation or use in the intended recombinant nucleic acid protocol.


A. Nucleic Acid Delivery by Expression Vector


Vectors provided herein are designed, primarily, to express a therapeutic tumor suppressor gene (e.g., p53) and/or extracellular matrix degradative gene (e.g., relaxin) under the control of regulated eukaryotic promoters (i.e., constitutive, inducible, repressable, tissue-specific). In another aspect, the p53 may be co-expressed with an extracellular matrix degradative gene. Also, the vectors may contain a selectable marker if, for no other reason, to facilitate their manipulation in vitro.


One of skill in the art would be well-equipped to construct a vector through standard recombinant techniques (see, for example, Sambrook et al., 2001 and Ausubel et al., 1996, both incorporated herein by reference). Vectors include but are not limited to, plasmids, cosmids, viruses (bacteriophage, animal viruses, and plant viruses), and artificial chromosomes (e.g., YACs), such as retroviral vectors (e.g. derived from Moloney murine leukemia virus vectors (MoMLV), MSCV, SFFV, MPSV, SNV etc), lentiviral vectors (e.g. derived from HIV-1, HIV-2, SIV, BIV, FIV etc.), adenoviral (Ad) vectors including replication competent, replication deficient and gutless forms thereof, adeno-associated viral (AAV) vectors, simian virus 40 (SV-40) vectors, bovine papilloma virus vectors, Epstein-Barr virus vectors, herpes virus vectors, vaccinia virus vectors, Harvey murine sarcoma virus vectors, murine mammary tumor virus vectors, Rous sarcoma virus vectors.


1. Viral Vectors


Viral vectors encoding the tumor suppressor and/or extracellular matrix degradative gene may be provided in certain aspects of the present invention. In generating recombinant viral vectors, non-essential genes are typically replaced with a gene or coding sequence for a heterologous (or non-native) protein. A viral vector is a kind of expression construct that utilizes viral sequences to introduce nucleic acid and possibly proteins into a cell. The ability of certain viruses to infect cells or enter cells via receptor-mediated endocytosis, and to integrate into host cell genomes and express viral genes stably and efficiently have made them attractive candidates for the transfer of foreign nucleic acids into cells (e.g., mammalian cells). Non-limiting examples of virus vectors that may be used to deliver a nucleic acid of certain aspects of the present invention are described below.


Lentiviruses are complex retroviruses, which, in addition to the common retroviral genes gag, pol, and env, contain other genes with regulatory or structural function. Lentiviral vectors are well known in the art (see, for example, Naldini et al., 1996; Zufferey et al., 1997; Blomer et al., 1997; U.S. Pat. Nos. 6,013,516 and 5,994,136).


Recombinant lentiviral vectors are capable of infecting non-dividing cells and can be used for both in vivo and ex vivo gene transfer and expression of nucleic acid sequences. For example, recombinant lentivirus capable of infecting a non-dividing cell— wherein a suitable host cell is transfected with two or more vectors carrying the packaging functions, namely gag, pol and env, as well as rev and tat—is described in U.S. Pat. No. 5,994,136, incorporated herein by reference.


a. Adenoviral Vector


One method for delivery of the tumor suppressor and/or extracellular matrix degradative gene involves the use of an adenovirus expression vector. Although adenovirus vectors are known to have a low capacity for integration into genomic DNA, this feature is counterbalanced by the high efficiency of gene transfer afforded by these vectors. Adenovirus expression vectors include constructs containing adenovirus sequences sufficient to (a) support packaging of the construct and (b) to ultimately express a recombinant gene construct that has been cloned therein.


Adenovirus growth and manipulation is known to those of skill in the art, and exhibits broad host range in vitro and in vivo. This group of viruses can be obtained in high titers, e.g., 109-1011 plaque-forming units per ml, and they are highly infective. The life cycle of adenovirus does not require integration into the host cell genome. The foreign genes delivered by adenovirus vectors are episomal and, therefore, have low genotoxicity to host cells. No side effects have been reported in studies of vaccination with wild-type adenovirus (Couch et al., 1963; Top et al., 1971), demonstrating their safety and therapeutic potential as in vivo gene transfer vectors.


Knowledge of the genetic organization of adenovirus, a 36 kb, linear, double-stranded DNA virus, allows substitution of large pieces of adenoviral DNA with foreign sequences up to 7 kb (Grunhaus and Horwitz, 1992). In contrast to retrovirus, the adenoviral infection of host cells does not result in chromosomal integration because adenoviral DNA can replicate in an episomal manner without potential genotoxicity. Also, adenoviruses are structurally stable, and no genome rearrangement has been detected after extensive amplification.


Adenovirus is particularly suitable for use as a gene transfer vector because of its mid-sized genome, ease of manipulation, high titer, wide target-cell range and high infectivity. Both ends of the viral genome contain 100-200 base pair inverted repeats (ITRs), which are cis elements necessary for viral DNA replication and packaging. The early (E) and late (L) regions of the genome contain different transcription units that are divided by the onset of viral DNA replication. The E1 region (E1A and E1B) encodes proteins responsible for the regulation of transcription of the viral genome and a few cellular genes. The expression of the E2 region (E2A and E2B) results in the synthesis of the proteins for viral DNA replication. These proteins are involved in DNA replication, late gene expression and host cell shut-off (Renan, 1990). The products of the late genes, including the majority of the viral capsid proteins, are expressed only after significant processing of a single primary transcript issued by the major late promoter (MLP). The MLP, (located at 16.8 m.u.) is particularly efficient during the late phase of infection, and all the mRNA's issued from this promoter possess a 5′-tripartite leader (TPL) sequence which makes them particular mRNA's for translation.


A recombinant adenovirus provided herein can be generated from homologous recombination between a shuttle vector and provirus vector. Due to the possible recombination between two proviral vectors, wild-type adenovirus may be generated from this process. Therefore, a single clone of virus is isolated from an individual plaque and its genomic structure is examined.


The adenovirus vector may be replication competent, replication defective, or conditionally defective, the nature of the adenovirus vector is not believed to be crucial to the successful practice of the invention. The adenovirus may be of any of the 42 different known serotypes or subgroups A-F. Adenovirus type 5 of subgroup C is the particular starting material in order to obtain the conditional replication-defective adenovirus vector for use in the present invention. This is because Adenovirus type 5 is a human adenovirus about which a great deal of biochemical and genetic information is known, and it has historically been used for most constructions employing adenovirus as a vector.


Nucleic acids can be introduced to adenoviral vectors as a position from which a coding sequence has been removed. For example, a replication defective adenoviral vector can have the E1-coding sequences removed. The polynucleotide encoding the gene of interest may also be inserted in lieu of the deleted E3 region in E3 replacement vectors as described by Karlsson et al. (1986) or in the E4 region where a helper cell line or helper virus complements the E4 defect.


Generation and propagation of replication deficient adenovirus vectors can be performed with helper cell lines. One unique helper cell line, designated 293, was transformed from human embryonic kidney cells by Ad5 DNA fragments and constitutively expresses E1 proteins (Graham et al., 1977). Since the E3 region is dispensable from the adenovirus genome (Jones and Shenk, 1978), adenovirus vectors, with the help of 293 cells, carry foreign DNA in either the E1, the E3, or both regions (Graham and Prevec, 1991).


Helper cell lines may be derived from human cells such as human embryonic kidney cells, muscle cells, hematopoietic cells or other human embryonic mesenchymal or epithelial cells. Alternatively, the helper cells may be derived from the cells of other mammalian species that are permissive for human adenovirus. Such cells include, e.g., Vero cells or other monkey embryonic mesenchymal or epithelial cells. As stated above, a particular helper cell line is 293.


Methods for producing recombinant adenovirus are known in the art, such as U.S. Pat. No. 6,740,320, incorporated herein by reference. Also, Racher et al. (1995) have disclosed improved methods for culturing 293 cells and propagating adenovirus. In one format, natural cell aggregates are grown by inoculating individual cells into 1 liter siliconized spinner flasks (Techne, Cambridge, UK) containing 100-200 ml of medium. Following stirring at 40 rpm, the cell viability is estimated with trypan blue. In another format, Fibra-Cel microcarriers (Bibby Sterlin, Stone, UK) (5 g/l) are employed as follows. A cell inoculum, resuspended in 5 ml of medium, is added to the carrier (50 ml) in a 250 ml Erlenmeyer flask and left stationary, with occasional agitation, for 1 to 4 hours. The medium is then replaced with 50 ml of fresh medium and shaking initiated. For virus production, cells are allowed to grow to about 80% confluence, after which time the medium is replaced (to 25% of the final volume) and adenovirus added at an MOI of 0.05. Cultures are left stationary overnight, following which the volume is increased to 100% and shaking commenced for another 72 hours.


b. Retroviral Vector


Additionally, the tumor suppressor and/or extracellular matrix degradative gene may be encoded by a retroviral vector. The retroviruses are a group of single-stranded RNA viruses characterized by an ability to convert their RNA to double-stranded DNA in infected cells by a process of reverse-transcription (Coffin, 1990). The resulting DNA then stably integrates into cellular chromosomes as a provirus and directs synthesis of viral proteins. The integration results in the retention of the viral gene sequences in the recipient cell and its descendants. The retroviral genome contains three genes, gag, pol, and env that code for capsid proteins, polymerase enzyme, and envelope components, respectively. A sequence found upstream from the gag gene contains a signal for packaging of the genome into virions. Two long terminal repeat (LTR) sequences are present at the 5′ and 3′ ends of the viral genome. These contain strong promoter and enhancer sequences and are also required for integration in the host cell genome (Coffin, 1990).


In order to construct a retroviral vector, a nucleic acid encoding a gene of interest is inserted into the viral genome in the place of certain viral sequences to produce a virus that is replication-defective. In order to produce virions, a packaging cell line containing the gag, pol, and env genes but without the LTR and packaging components is constructed (Mann et al., 1983). When a recombinant plasmid containing a cDNA, together with the retroviral LTR and packaging sequences is introduced into this cell line (by calcium phosphate precipitation for example), the packaging sequence allows the RNA transcript of the recombinant plasmid to be packaged into viral particles, which are then secreted into the culture media (Nicolas and Rubenstein, 1988; Temin, 1986; Mann et al., 1983). The media containing the recombinant retroviruses is then collected, optionally concentrated, and used for gene transfer. Retroviral vectors are able to infect a broad variety of cell types. However, integration and stable expression require the division of host cells (Paskind et al., 1975).


Concern with the use of defective retrovirus vectors is the potential appearance of wild-type replication-competent virus in the packaging cells. This can result from recombination events in which the intact sequence from the recombinant virus inserts upstream from the gag, pol, env sequence integrated in the host cell genome. However, packaging cell lines are available that should greatly decrease the likelihood of recombination (Markowitz et al., 1988; Hersdorffer et al., 1990).


c. Adeno-Associated Viral Vector


Adeno-associated virus (AAV) is an attractive vector system for use in the present disclosure as it has a high frequency of integration and it can infect nondividing cells, thus making it useful for delivery of genes into mammalian cells (Muzyczka, 1992). AAV has a broad host range for infectivity (Tratschin, et al., 1984; Laughlin, et al., 1986; Lebkowski, et al., 1988; McLaughlin, et al., 1988), which means it is applicable for use with the present invention. Details concerning the generation and use of rAAV vectors are described in U.S. Pat. Nos. 5,139,941 and 4,797,368.


AAV is a dependent parvovirus in that it requires coinfection with another virus (either adenovirus or a member of the herpes virus family) to undergo a productive infection in cultured cells (Muzyczka, 1992). In the absence of coinfection with helper virus, the wild-type AAV genome integrates through its ends into human chromosome 19 where it resides in a latent state as a provirus (Kotin et al., 1990; Samulski et al., 1991). rAAV, however, is not restricted to chromosome 19 for integration unless the AAV Rep protein is also expressed (Shelling and Smith, 1994). When a cell carrying an AAV provirus is superinfected with a helper virus, the AAV genome is “rescued” from the chromosome or from a recombinant plasmid, and a normal productive infection is established (Samulski et al., 1989; McLaughlin et al., 1988; Kotin et al., 1990; Muzyczka, 1992).


Typically, recombinant AAV (rAAV) virus is made by cotransfecting a plasmid containing the gene of interest flanked by the two AAV terminal repeats (McLaughlin et al., 1988; Samulski et al., 1989; each incorporated herein by reference) and an expression plasmid containing the wild-type AAV coding sequences without the terminal repeats, for example pIM45 (McCarty et al., 1991). The cells are also infected or transfected with adenovirus or plasmids carrying the adenovirus genes required for AAV helper function. rAAV virus stocks made in such fashion are contaminated with adenovirus which must be physically separated from the rAAV particles (for example, by cesium chloride density centrifugation). Alternatively, adenovirus vectors containing the AAV coding regions or cell lines containing the AAV coding regions and some or all of the adenovirus helper genes could be used (Yang et al., 1994; Clark et al., 1995). Cell lines carrying the rAAV DNA as an integrated provirus can also be used (Flotte et al., 1995).


d. Other Viral Vectors


Other viral vectors may be employed as constructs in the present disclosure. Vectors derived from viruses such as vaccinia virus (Ridgeway, 1988; Baichwal and Sugden, 1986; Coupar et al., 1988) and herpesviruses may be employed. They offer several attractive features for various mammalian cells (Friedmann, 1989; Ridgeway, 1988; Baichwal and Sugden, 1986; Coupar et al., 1988; Horwich et al., 1990).


A molecularly cloned strain of Venezuelan equine encephalitis (VEE) virus has been genetically refined as a replication competent vaccine vector for the expression of heterologous viral proteins (Davis et al., 1996). Studies have demonstrated that VEE infection stimulates potent CTL responses and has been suggested that VEE may be an extremely useful vector for immunizations (Caley et al., 1997).


In further embodiments, the nucleic acid encoding chimeric CD154 is housed within an infective virus that has been engineered to express a specific binding ligand. The virus particle will thus bind specifically to the cognate receptors of the target cell and deliver the contents to the cell. A novel approach designed to allow specific targeting of retrovirus vectors was recently developed based on the chemical modification of a retrovirus by the chemical addition of lactose residues to the viral envelope. This modification can permit the specific infection of hepatocytes via sialoglycoprotein receptors.


For example, targeting of recombinant retroviruses was designed in which biotinylated antibodies against a retroviral envelope protein and against a specific cell receptor were used. The antibodies were coupled via the biotin components by using streptavidin (Roux et al., 1989). Using antibodies against major histocompatibility complex class I and class II antigens, they demonstrated the infection of a variety of human cells that bore those surface antigens with an ecotropic virus in vitro (Roux et al., 1989).


2. Regulatory Elements


Expression cassettes included in vectors useful in the present disclosure in particular contain (in a 5′-to-3′ direction) a eukaryotic transcriptional promoter operably linked to a protein-coding sequence, splice signals including intervening sequences, and a transcriptional termination/polyadenylation sequence. The promoters and enhancers that control the transcription of protein encoding genes in eukaryotic cells are composed of multiple genetic elements. The cellular machinery is able to gather and integrate the regulatory information conveyed by each element, allowing different genes to evolve distinct, often complex patterns of transcriptional regulation. A promoter used in the context of the present invention includes constitutive, inducible, and tissue-specific promoters.


a. Promoter/Enhancers


The expression constructs provided herein comprise a promoter to drive expression of the tumor suppressor and/or extracellular matrix degradative gene. A promoter generally comprises a sequence that functions to position the start site for RNA synthesis. The best known example of this is the TATA box, but in some promoters lacking a TATA box, such as, for example, the promoter for the mammalian terminal deoxynucleotidyl transferase gene and the promoter for the SV40 late genes, a discrete element overlying the start site itself helps to fix the place of initiation. Additional promoter elements regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have been shown to contain functional elements downstream of the start site as well. To bring a coding sequence “under the control of” a promoter, one positions the 5′ end of the transcription initiation site of the transcriptional reading frame “downstream” of (i.e., 3′ of) the chosen promoter. The “upstream” promoter stimulates transcription of the DNA and promotes expression of the encoded RNA.


The spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another. In the tk promoter, the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline. Depending on the promoter, it appears that individual elements can function either cooperatively or independently to activate transcription. A promoter may or may not be used in conjunction with an “enhancer,” which refers to a cis-acting regulatory sequence involved in the transcriptional activation of a nucleic acid sequence.


A promoter may be one naturally associated with a nucleic acid sequence, as may be obtained by isolating the 5′ non-coding sequences located upstream of the coding segment and/or exon. Such a promoter can be referred to as “endogenous.” Similarly, an enhancer may be one naturally associated with a nucleic acid sequence, located either downstream or upstream of that sequence. Alternatively, certain advantages will be gained by positioning the coding nucleic acid segment under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with a nucleic acid sequence in its natural environment. A recombinant or heterologous enhancer refers also to an enhancer not normally associated with a nucleic acid sequence in its natural environment. Such promoters or enhancers may include promoters or enhancers of other genes, and promoters or enhancers isolated from any other virus, or prokaryotic or eukaryotic cell, and promoters or enhancers not “naturally occurring,” i.e., containing different elements of different transcriptional regulatory regions, and/or mutations that alter expression. For example, promoters that are most commonly used in recombinant DNA construction include the β-lactamase (penicillinase), lactose and tryptophan (trp) promoter systems. In addition to producing nucleic acid sequences of promoters and enhancers synthetically, sequences may be produced using recombinant cloning and/or nucleic acid amplification technology, including PCR™, in connection with the compositions disclosed herein (see U.S. Pat. Nos. 4,683,202 and 5,928,906, each incorporated herein by reference). Furthermore, it is contemplated that the control sequences that direct transcription and/or expression of sequences within non-nuclear organelles such as mitochondria, chloroplasts, and the like, can be employed as well.


Naturally, it will be important to employ a promoter and/or enhancer that effectively directs the expression of the DNA segment in the organelle, cell type, tissue, organ, or organism chosen for expression. Those of skill in the art of molecular biology generally know the use of promoters, enhancers, and cell type combinations for protein expression, (see, for example Sambrook et al. 1989, incorporated herein by reference). The promoters employed may be constitutive, tissue-specific, inducible, and/or useful under the appropriate conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins and/or peptides. The promoter may be heterologous or endogenous.


Additionally, any promoter/enhancer combination (as per, for example, the Eukaryotic Promoter Data Base EPDB, through world wide web at epd.isb-sib.ch/) could also be used to drive expression. Use of a T3, T7 or SP6 cytoplasmic expression system is another possible embodiment. Eukaryotic cells can support cytoplasmic transcription from certain bacterial promoters if the appropriate bacterial polymerase is provided, either as part of the delivery complex or as an additional genetic expression construct.


Non-limiting examples of promoters include early or late viral promoters, such as, SV40 early or late promoters, cytomegalovirus (CMV) immediate early promoters, Rous Sarcoma Virus (RSV) early promoters; eukaryotic cell promoters, such as, e. g., beta actin promoter (Ng, 1989; Quitsche et al., 1989), GADPH promoter (Alexander et al., 1988, Ercolani et al., 1988), metallothionein promoter (Karin et al., 1989; Richards et al., 1984); and concatenated response element promoters, such as cyclic AMP response element promoters (cre), serum response element promoter (sre), phorbol ester promoter (TPA) and response element promoters (tre) near a minimal TATA box. It is also possible to use human growth hormone promoter sequences (e.g., the human growth hormone minimal promoter described at Genbank, accession no. X05244, nucleotide 283-341) or a mouse mammary tumor promoter (available from the ATCC, Cat. No. ATCC 45007). In certain embodiments, the promoter is CMV IE, dectin-1, dectin-2, human CD11c, F4/80, SM22, RSV, SV40, Ad MLP, beta-actin, MHC class I or MHC class II promoter, however any other promoter that is useful to drive expression of the p53, MDA-7 and/or the relaxin gene is applicable to the practice of the present invention.


In certain aspects, methods of the disclosure also concern enhancer sequences, i.e., nucleic acid sequences that increase a promoter's activity and that have the potential to act in cis, and regardless of their orientation, even over relatively long distances (up to several kilobases away from the target promoter). However, enhancer function is not necessarily restricted to such long distances as they may also function in close proximity to a given promoter.


b. Initiation Signals and Linked Expression


A specific initiation signal also may be used in the expression constructs provided in the present disclosure for efficient translation of coding sequences. These signals include the ATG initiation codon or adjacent sequences. Exogenous translational control signals, including the ATG initiation codon, may need to be provided. One of ordinary skill in the art would readily be capable of determining this and providing the necessary signals. It is well known that the initiation codon must be “in-frame” with the reading frame of the desired coding sequence to ensure translation of the entire insert. The exogenous translational control signals and initiation codons can be either natural or synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements.


In certain embodiments, the use of internal ribosome entry sites (IRES) elements are used to create multigene, or polycistronic, messages. IRES elements are able to bypass the ribosome scanning model of 5□ methylated Cap dependent translation and begin translation at internal sites (Pelletier and Sonenberg, 1988). IRES elements from two members of the picornavirus family (polio and encephalomyocarditis) have been described (Pelletier and Sonenberg, 1988), as well an IRES from a mammalian message (Macejak and Sarnow, 1991). IRES elements can be linked to heterologous open reading frames. Multiple open reading frames can be transcribed together, each separated by an IRES, creating polycistronic messages. By virtue of the IRES element, each open reading frame is accessible to ribosomes for efficient translation. Multiple genes can be efficiently expressed using a single promoter/enhancer to transcribe a single message (see U.S. Pat. Nos. 5,925,565 and 5,935,819, each herein incorporated by reference).


Additionally, certain 2A sequence elements could be used to create linked- or co-expression of genes in the constructs provided in the present disclosure. For example, cleavage sequences could be used to co-express genes by linking open reading frames to form a single cistron. An exemplary cleavage sequence is the F2A (Foot-and-mouth disease virus 2A) or a “2A-like” sequence (e.g., Thosea asigna virus 2A; T2A) (Minskaia and Ryan, 2013).


c. Origins of Replication


In order to propagate a vector in a host cell, it may contain one or more origins of replication sites (often termed “ori”), for example, a nucleic acid sequence corresponding to oriP of EBV as described above or a genetically engineered oriP with a similar or elevated function in programming, which is a specific nucleic acid sequence at which replication is initiated. Alternatively a replication origin of other extra-chromosomally replicating virus as described above or an autonomously replicating sequence (ARS) can be employed.


3. Selection and Screenable Markers


In some embodiments, cells containing a construct of the present disclosure may be identified in vitro or in vivo by including a marker in the expression vector. Such markers would confer an identifiable change to the cell permitting easy identification of cells containing the expression vector. Generally, a selection marker is one that confers a property that allows for selection. A positive selection marker is one in which the presence of the marker allows for its selection, while a negative selection marker is one in which its presence prevents its selection. An example of a positive selection marker is a drug resistance marker.


Usually the inclusion of a drug selection marker aids in the cloning and identification of transformants, for example, genes that confer resistance to neomycin, puromycin, hygromycin, DHFR, GPT, zeocin and histidinol are useful selection markers. In addition to markers conferring a phenotype that allows for the discrimination of transformants based on the implementation of conditions, other types of markers including screenable markers such as GFP, whose basis is colorimetric analysis, are also contemplated. Alternatively, screenable enzymes as negative selection markers such as herpes simplex virus thymidine kinase (tk) or chloramphenicol acetyltransferase (CAT) may be utilized. One of skill in the art would also know how to employ immunologic markers, possibly in conjunction with FACS analysis. The marker used is not believed to be important, so long as it is capable of being expressed simultaneously with the nucleic acid encoding a gene product. Further examples of selection and screenable markers are well known to one of skill in the art.


B. Other Methods of Nucleic Acid Delivery


In addition to viral delivery of the nucleic acids encoding the tumor suppressor and/or extracellular matrix degradative gene, the following are additional methods of recombinant gene delivery to a given host cell and are thus considered in the present disclosure.


Introduction of a nucleic acid, such as DNA or RNA, may use any suitable methods for nucleic acid delivery for transformation of a cell, as described herein or as would be known to one of ordinary skill in the art. Such methods include, but are not limited to, direct delivery of DNA such as by ex vivo transfection (Wilson et al., 1989, Nabel et al, 1989), by injection (U.S. Pat. Nos. 5,994,624, 5,981,274, 5,945,100, 5,780,448, 5,736,524, 5,702,932, 5,656,610, 5,589,466 and 5,580,859, each incorporated herein by reference), including microinjection (Harland and Weintraub, 1985; U.S. Pat. No. 5,789,215, incorporated herein by reference); by electroporation (U.S. Pat. No. 5,384,253, incorporated herein by reference; Tur-Kaspa et al., 1986; Potter et al., 1984); by calcium phosphate precipitation (Graham and Van Der Eb, 1973; Chen and Okayama, 1987; Rippe et al., 1990); by using DEAE-dextran followed by polyethylene glycol (Gopal, 1985); by direct sonic loading (Fechheimer et al., 1987); by liposome mediated transfection (Nicolau and Sene, 1982; Fraley et al., 1979; Nicolau et al., 1987; Wong et al., 1980; Kaneda et al., 1989; Kato et al., 1991) and receptor-mediated transfection (Wu and Wu, 1987; Wu and Wu, 1988); by microprojectile bombardment (PCT Application Nos. WO 94/09699 and 95/06128; U.S. Pat. Nos. 5,610,042; 5,322,783 5,563,055, 5,550,318, 5,538,877 and 5,538,880, and each incorporated herein by reference); by agitation with silicon carbide fibers (Kaeppler et al., 1990; U.S. Pat. Nos. 5,302,523 and 5,464,765, each incorporated herein by reference); by Agrobacterium-mediated transformation (U.S. Pat. Nos. 5,591,616 and 5,563,055, each incorporated herein by reference); by desiccation/inhibition-mediated DNA uptake (Potrykus et al., 1985), and any combination of such methods. Through the application of techniques such as these, organelle(s), cell(s), tissue(s) or organism(s) may be stably or transiently transformed.


1. Electroporation


In certain embodiments of the present disclosure, the gene construct is introduced into target hyperproliferative cells via electroporation. Electroporation involves the exposure of cells (or tissues) and DNA (or a DNA complex) to a high-voltage electric discharge.


Transfection of eukaryotic cells using electroporation has been quite successful. Mouse pre-B lymphocytes have been transfected with human kappa-immunoglobulin genes (Potter et al., 1984), and rat hepatocytes have been transfected with the chloramphenicol acetyltransferase gene (Tur-Kaspa et al., 1986) in this manner.


It is contemplated that electroporation conditions for hyperproliferative cells from different sources may be optimized. One may particularly wish to optimize such parameters as the voltage, the capacitance, the time and the electroporation media composition. The execution of other routine adjustments will be known to those of skill in the art. See e.g., Hoffman, 1999; Heller et al., 1996.


2. Lipid-Mediated Transformation


In a further embodiment, the tumor suppressor and/or extracellular matrix degradative gene may be entrapped in a liposome or lipid formulation. Liposomes are vesicular structures characterized by a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self-rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh and Bachhawat, 1991). Also contemplated is a gene construct complexed with Lipofectamine (Gibco BRL).


Lipid-mediated nucleic acid delivery and expression of foreign DNA in vitro has been very successful (Nicolau and Sene, 1982; Fraley et al., 1979; Nicolau et al., 1987). Wong et al. (1980) demonstrated the feasibility of lipid-mediated delivery and expression of foreign DNA in cultured chick embryo, HeLa and hepatoma cells.


Lipid based non-viral formulations provide an alternative to adenoviral gene therapies. Although many cell culture studies have documented lipid based non-viral gene transfer, systemic gene delivery via lipid based formulations has been limited. A major limitation of non-viral lipid based gene delivery is the toxicity of the cationic lipids that comprise the non-viral delivery vehicle. The in vivo toxicity of liposomes partially explains the discrepancy between in vitro and in vivo gene transfer results. Another factor contributing to this contradictory data is the difference in lipid vehicle stability in the presence and absence of serum proteins. The interaction between lipid vehicles and serum proteins has a dramatic impact on the stability characteristics of lipid vehicles (Yang and Huang, 1997). Cationic lipids attract and bind negatively charged serum proteins. Lipid vehicles associated with serum proteins are either dissolved or taken up by macrophages leading to their removal from circulation. Current in vivo lipid delivery methods use subcutaneous, intradermal, intratumoral, or intracranial injection to avoid the toxicity and stability problems associated with cationic lipids in the circulation. The interaction of lipid vehicles and plasma proteins is responsible for the disparity between the efficiency of in vitro (Felgner et al., 1987) and in vivo gene transfer (Zhu el al., 1993; Philip et al., 1993; Solodin et al., 1995; Liu et al., 1995; Thierry et al., 1995; Tsukamoto et al., 1995; Aksentijevich et al., 1996).


Advances in lipid formulations have improved the efficiency of gene transfer in vivo (Templeton et al. 1997; WO 98/07408). A novel lipid formulation composed of an equimolar ratio of 1,2-bis(oleoyloxy)-3-(trimethyl ammonio)propane (DOTAP) and cholesterol significantly enhances systemic in vivo gene transfer, approximately 150 fold. The DOTAP: cholesterol lipid formulation forms unique structure termed a “sandwich liposome”. This formulation is reported to “sandwich” DNA between an invaginated bi-layer or ‘vase’ structure. Beneficial characteristics of these lipid structures include a positive p, colloidal stabilization by cholesterol, two-dimensional DNA packing and increased serum stability. Patent Application Nos. 60/135,818 and 60/133,116 discuss formulations that may be used with the present invention.


The production of lipid formulations often is accomplished by sonication or serial extrusion of liposomal mixtures after (I) reverse phase evaporation (II) dehydration-rehydration (III) detergent dialysis and (IV) thin film hydration. Once manufactured, lipid structures can be used to encapsulate compounds that are toxic (chemotherapeutics) or labile (nucleic acids) when in circulation. Lipid encapsulation has resulted in a lower toxicity and a longer serum half-life for such compounds (Gabizon et al., 1990). Numerous disease treatments are using lipid based gene transfer strategies to enhance conventional or establish novel therapies, in particular therapies for treating hyperproliferative diseases.


V. CD123/CD132 Agonists

In certain aspects, the subject is administered at least one CD122/CD132 agonist, such as a CD122/CD132 agonist that preferentially binds to the CD122/CD132 receptor complex and has lower affinity binding for CD25 or the IL15a receptor. The CD122/CD132 may be selected from a genetically engineered IL-22 mutein that has a modified amino acid sequence compared to wild type IL2 (US 2017/0044229; incorporated by reference in its entirety). In certain aspects, the preferential CD122/CD132 agonist is an IL-2 protein/anti-IL-2 monoclonal antibody immune complex (US20170183403A1; incorporated by reference in its entirety), or a genetically engineered IL-2 mutein that has a modified amino acid sequence compared to wild type IL-2 combined with an anti-IL2 monoclonal antibody immune complex (WO2014100014A1; incorporated by reference in its entirety), a PEGylated form of IL2 like NKTR-214 (See Charych et al 2016), an IL15/anti-IL15 monoclonal antibody immune complex, an IL15/IL15 Receptor α-IgG1-Fc (IL15/IL15Rα-IgG1-Fc) immune complex (US20060257361A1, EP2724728A1 and Dubois et al., 2008), a genetically engineered IL-15 mutein that has a modified amino acid sequence compared to wild type IL-15 combined with an IL15Rα-IgG1-Fc immune complex (U520070160578; incorporated herein in its entirety), or a PEGylated form of IL15 with preferential binding to CD122/CD132. In some embodiments, more than one CD122/CD132 agonist are utilized.


VI. Oncolytic Viruses

In some aspects, the present disclosure comprises administration of at least one oncolytic virus. In some aspects, the oncolytic virus is engineered to express p53, MDA-7, IL-12, TGF-β inhibitor, and/or IL-10 inhibitor. In certain aspects, the oncolytic virus is a single- or double-stranded DNA virus, RNA virus, adenovirus, adeno-associated virus, retrovirus, lentivirus, herpes virus, pox virus, vaccinia virus, vesicular stomatitis virus, polio virus, Newcastle's Disease virus, Epstein-Barr virus, influenza virus, reoviruses, myxoma virus, maraba virus, rhabdovirus, enadenotucirev or coxsackie virus. In some aspects, the oncolytic virus is engineered to express a cytokine, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) or IL-12. In some aspects, the oncolytic virus is further defined as talimogene laherparepvec (T-VEC). In some aspects, the oncolytic adenoviral vector is derived from a modified TERT Promoter Oncolytic Adenovirus (U.S. Pat. No. 8,067,567; incorporated herein by reference in its entirety) and/or the HRE-E2F-TERT Hybrid Promoter Oncolytic Adenovirus (PCT/KR2011/004693; incorporated herein by reference in its entirety) and/or an adenovirus with a modified E1a regulatory sequence wherein at least one Pea3 binding site, or a functional portion thereof, is deleted with an E1b-19K clone insertion site (EP2403951A2; incorporated herein by reference in its entirety) which may all be modified to express therapeutic genes. In some aspects, the oncolytic adenoviral vector is derived from E1b deleted oncolytic adenoviruses (see Yu and Fang Current Cancer Drug Targets 2007 7 659-670; Li Phase 1 Clinical Trial Gene Therapy 2009 16 376-382; http://www.sunwaybio.com.cn/en/product.html which are incorporated by reference in their entirety).


Exemplary oncolytic viruses include, but are not limited to, Ad5-yCD/mutTKSR39rep-hIL12, Cavatak™, CG0070, DNX-2401, G207, HF10, IMLYGIC™, JX-594, MG1-MA3, MV-NIS, OBP-301, Reolysin®, Toca 511, E1b deleted oncolytic adenoviruses H101 (Oncorine), Onyx 015 or H103 which expresses the heat shock protein 70 (HSP70) or the oncolytic adenovirus H102 where expression of the Ad E1a gene is driven by the alpha-fetoprotein (AFP) promoter resulting in preferential replication in hepatocellular carcinoma and other AFP overexpressing cancers compared to normal cells, RIGVIR, an adenovirus overexpressing the adenoviral death protein (ADP), such as VirRx007, an N1L deleted vaccinia virus expressing IL12. Other exemplary oncolytic viruses are described, for example, in International Patent Publication Nos. WO2015/027163, WO2014/138314, WO2014/047350, and WO2016/009017; all incorporated herein by reference.


In a particular aspects, the oncolytic viral agent is talimogene laherparepvec (T-VEC) which is an oncolytic herpes simplex virus genetically engineered to express GM-CSF. Talimogene laherparepvec, HSV-1 [strain JS1] ICP34.5-/ICP47-/hGM-CSF, (previously known as OncoVEXGM CSF) is an intratumorally delivered oncolytic immunotherapy comprising an immune-enhanced HSV-1 that selectively replicates in solid tumors. (Lui et al., 2003; U.S. Pat. Nos. 7,223,593 and 7,537,924; incorporated herein by reference). In October 2015, the US FDA approved T-VEC, under the brand name IMLYGIC™, for the treatment of melanoma in patients with inoperable tumors. The characteristics and methods of administration of T-VEC are described in, for example, the IMLYGIC™ package insert (Amgen, 2015) and U.S. Patent Publication No. US2015/0202290; both incorporated herein by reference. For example, talimogene laherparepvec is typically administered by intratumoral injection into injectable cutaneous, subcutaneous, and nodal tumors at a dose of up to 4.0 ml of 10 6 plaque forming unit/mL (PFU/mL) at day 1 of week 1 followed by a dose of up to 4.0 ml of 10 8 PFU/mL at day 1 of week 4, and every 2 weeks (±3 days) thereafter. The recommended volume of talimogene laherparepvec to be injected into the tumor(s) is dependent on the size of the tumor(s) and should be determined according to the injection volume guideline. While T-VEC has demonstrated clinical activity in melanoma patients, many cancer patients either do not respond or cease responding to T-VEC treatment. In one embodiment, the p53 and/or MDA-7 nucleic acids and the at least one CD122/CD132 agonist may be administered after, during or before T-VEC therapy, such as to reverse treatment resistance.


VII. Immune Checkpoint Inhibitors

In certain embodiments, the present disclosure provides methods of combining the blockade of immune checkpoints with tumor suppressor gene therapy, such as p53 gene therapy. Immune checkpoints are molecules in the immune system that either turn up a signal (e.g., co-stimulatory molecules) or turn down a signal. Inhibitory checkpoint molecules that may be targeted by immune checkpoint blockade include adenosine A2A receptor (A2AR), B7-H3 (also known as CD276), B and T lymphocyte attenuator (BTLA), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, also known as CD152), indoleamine 2,3-dioxygenase (IDO), killer-cell immunoglobulin (KIR), lymphocyte activation gene-3 (LAG3), programmed death 1 (PD-1), T-cell immunoglobulin domain and mucin domain 3 (TIM-3) and V-domain Ig suppressor of T cell activation (VISTA). In particular, the immune checkpoint inhibitors target the PD-1 axis and/or CTLA-4.


The immune checkpoint inhibitors may be drugs such as small molecules, recombinant forms of ligand or receptors, or, in particular, are antibodies, such as human antibodies (e.g., International Patent Publication WO2015016718; Pardoll, Nat Rev Cancer, 12(4): 252-64, 2012; both incorporated herein by reference). Known inhibitors of the immune checkpoint proteins or analogs thereof may be used, in particular chimerized, humanized or human forms of antibodies may be used. As the skilled person will know, alternative and/or equivalent names may be in use for certain antibodies mentioned in the present disclosure. Such alternative and/or equivalent names are interchangeable in the context of the present invention. For example it is known that lambrolizumab is also known under the alternative and equivalent names MK-3475 and pembrolizumab.


It is contemplated that any of the immune checkpoint inhibitors that are known in the art to stimulate immune responses may be used. This includes inhibitors that directly or indirectly stimulate or enhance antigen-specific T-lymphocytes. These immune checkpoint inhibitors include, without limitation, agents targeting immune checkpoint proteins and pathways involving PD-L2, LAG3, BTLA, B7H4 and TIM3. For example, LAG3 inhibitors known in the art include soluble LAG3 (IMP321, or LAG3-Ig disclosed in WO2009044273) as well as mouse or humanized antibodies blocking human LAG3 (e.g., IMP701 disclosed in WO2008132601), or fully human antibodies blocking human LAG3 (such as disclosed in EP 2320940). Another example is provided by the use of blocking agents towards BTLA, including without limitation antibodies blocking human BTLA interaction with its ligand (such as 4C7 disclosed in WO2011014438). Yet another example is provided by the use of agents neutralizing B7H4 including without limitation antibodies to human B7H4 (disclosed in WO 2013025779, and in WO2013067492) or soluble recombinant forms of B7H4 (such as disclosed in US20120177645). Yet another example is provided by agents neutralizing B7-H3, including without limitation antibodies neutralizing human B7-H3 (e.g. MGA271 disclosed as BRCA84D and derivatives in US 20120294796). Yet another example is provided by agents targeting TIM3, including without limitation antibodies targeting human TIM3 (e.g. as disclosed in WO 2013006490 A2 or the anti-human TIM3, blocking antibody F38-2E2 disclosed by Jones et al., J Exp Med. 2008; 205(12):2763-79).


In addition, more than one immune checkpoint inhibitor (e.g., anti-PD-1 antibody and anti-CTLA-4 antibody) may be used in combination with the tumor suppressor gene therapy. For example, p53 gene therapy and immune checkpoint inhibitors (e.g., anti-KIR antibody and/or anti-PD-1 antibody) can be administered to enhance innate anti-tumor immunity followed by IL24 gene therapy and immune checkpoint inhibitors (e.g., anti-PD-1 antibody) to induce adaptive anti-tumor immune responses.


A. PD-1 Axis Antagonists


T cell dysfunction or anergy occurs concurrently with an induced and sustained expression of the inhibitory receptor, programmed death 1 polypeptide (PD-1). Thus, therapeutic targeting of PD-1 and other molecules which signal through interactions with PD-1, such as programmed death ligand 1 (PD-L1) and programmed death ligand 2 (PD-L2) is provided herein. PD-L1 is overexpressed in many cancers and is often associated with poor prognosis (Okazaki T et al., Intern. Immun. 2007 19(7):813). Thus, inhibition of the PD-L1/PD-1 interaction in combination with p53 and/or MDA-7 gene therapy is provided herein such as to enhance CD8+ T cell-mediated killing of tumors.


Provided herein is a method for treating or delaying progression of cancer in an individual comprising administering to the individual an effective amount of a PD-1 axis binding antagonist in combination with p53 and/or MDA-7 gene therapy. Also provided herein is a method of enhancing immune function in an individual in need thereof comprising administering to the individual an effective amount of a PD-1 axis binding antagonist and p53 and/or MDA-7 gene therapy.


For example, a PD-1 axis binding antagonist includes a PD-1 binding antagonist, a PDL1 binding antagonist and a PDL2 binding antagonist. Alternative names for “PD-1” include CD279 and SLEB2. Alternative names for “PDL1” include B7-H1, B7-4, CD274, and B7-H. Alternative names for “PDL2” include B7-DC, Btdc, and CD273. In some embodiments, PD-1, PDL1, and PDL2 are human PD-1, PDL1 and PDL2.


In some embodiments, the PD-1 binding antagonist is a molecule that inhibits the binding of PD-1 to its ligand binding partners. In a specific aspect, the PD-1 ligand binding partners are PDL1 and/or PDL2. In another embodiment, a PDL1 binding antagonist is a molecule that inhibits the binding of PDL1 to its binding partners. In a specific aspect, PDL1 binding partners are PD-1 and/or B7-1. In another embodiment, the PDL2 binding antagonist is a molecule that inhibits the binding of PDL2 to its binding partners. In a specific aspect, a PDL2 binding partner is PD-1. The antagonist may be an antibody, an antigen binding fragment thereof, an immunoadhesion, a fusion protein, or oligopeptide. Exemplary antibodies are described in U.S. Pat. Nos. U.S. Pat. Nos. 8,735,553, 8,354,509, and 8,008,449, all incorporated herein by reference. Other PD-1 axis antagonists for use in the methods provided herein are known in the art such as described in U.S. Patent Application No. US20140294898, US2014022021, and US20110008369, all incorporated herein by reference.


In some embodiments, the PD-1 binding antagonist is an anti-PD-1 antibody (e.g., a human antibody, a humanized antibody, or a chimeric antibody). In some embodiments, the anti-PD-1 antibody is selected from the group consisting of nivolumab, pembrolizumab, and CT-011. In some embodiments, the PD-1 binding antagonist is an immunoadhesin (e.g., an immunoadhesin comprising an extracellular or PD-1 binding portion of PDL1 or PDL2 fused to a constant region (e.g., an Fc region of an immunoglobulin sequence). In some embodiments, the PD-1 binding antagonist is AMP-224. Nivolumab, also known as MDX-1106-04, MDX-1106, ONO-4538, BMS-936558, and OPDIVO®, is an anti-PD-1 antibody described in WO2006/121168. Pembrolizumab, also known as MK-3475, Merck 3475, lambrolizumab, KEYTRUDA®, and SCH-900475, is an anti-PD-1 antibody described in WO2009/114335. CT-011, also known as hBAT or hBAT-1, is an anti-PD-1 antibody described in WO2009/101611. AMP-224, also known as B7-DCIg, is a PDL2-Fc fusion soluble receptor described in WO2010/027827 and WO2011/066342. Additional PD-1 binding antagonists include Pidilizumab, also known as CT-011, MEDI0680, also known as AMP-514, and REGN2810.


In some aspects, the immune checkpoint inhibitor is a PD-L1 antagonist such as Durvalumab, also known as MEDI4736, atezolizumab, also known as MPDL3280A, or avelumab, also known as MSB00010118C. In certain aspects, the immune checkpoint inhibitor is a PD-L2 antagonist such as rHIgM12B7. In some aspects, the immune checkpoint inhibitor is a LAG-3 antagonist such as, but not limited to, IMP321, and BMS-986016. The immune checkpoint inhibitor may be an adenosine A2a receptor (A2aR) antagonist such as PBF-509.


In some aspects, the antibody described herein (such as an anti-PD-1 antibody, an anti-PDL1 antibody, or an anti-PDL2 antibody) further comprises a human or murine constant region. In a still further aspect, the human constant region is selected from the group consisting of IgG1, IgG2, IgG2, IgG3, IgG4. In a still further specific aspect, the human constant region is IgG1. In a still further aspect, the murine constant region is selected from the group consisting of IgG1, IgG2A, IgG2B, IgG3. In a still further specific aspect, the antibody has reduced or minimal effector function. In a still further specific aspect, the minimal effector function results from production in prokaryotic cells. In a still further specific aspect the minimal effector function results from an “effector-less Fc mutation” or aglycosylation.


Accordingly, an antibody used herein can be aglycosylated. Glycosylation of antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxy amino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxy lysine may also be used. Removal of glycosylation sites form an antibody is conveniently accomplished by altering the amino acid sequence such that one of the above-described tripeptide sequences (for N-linked glycosylation sites) is removed. The alteration may be made by substitution of an asparagine, serine or threonine residue within the glycosylation site another amino acid residue (e.g., glycine, alanine or a conservative substitution).


The antibody or antigen binding fragment thereof, may be made using methods known in the art, for example, by a process comprising culturing a host cell containing nucleic acid encoding any of the previously described anti-PDL1, anti-PD-1, or anti-PDL2 antibodies or antigen-binding fragment in a form suitable for expression, under conditions suitable to produce such antibody or fragment, and recovering the antibody or fragment.


B. CTLA-4


Another immune checkpoint that can be targeted in the methods provided herein is the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), also known as CD152. The complete cDNA sequence of human CTLA-4 has the Genbank accession number L15006. CTLA-4 is found on the surface of T cells and acts as an “off” switch when bound to CD80 or CD86 on the surface of antigen-presenting cells. CTLA4 is a member of the immunoglobulin superfamily that is expressed on the surface of Helper T cells and transmits an inhibitory signal to T cells. CTLA4 is similar to the T-cell co-stimulatory protein, CD28, and both molecules bind to CD80 and CD86, also called B7-1 and B7-2 respectively, on antigen-presenting cells. CTLA4 transmits an inhibitory signal to T cells, whereas CD28 transmits a stimulatory signal. Intracellular CTLA4 is also found in regulatory T cells and may be important to their function. T cell activation through the T cell receptor and CD28 leads to increased expression of CTLA-4, an inhibitory receptor for B7 molecules.


In some embodiments, the immune checkpoint inhibitor is an anti-CTLA-4 antibody (e.g., a human antibody, a humanized antibody, or a chimeric antibody), an antigen binding fragment thereof, an immunoadhesin, a fusion protein, or oligopeptide.


Anti-human-CTLA-4 antibodies (or VH and/or VL domains derived therefrom) suitable for use in the present methods can be generated using methods well known in the art. Alternatively, art recognized anti-CTLA-4 antibodies can be used. For example, the anti-CTLA-4 antibodies disclosed in: U.S. Pat. No. 8,119,129, WO 01/14424, WO 98/42752; WO 00/37504 (CP675,206, also known as tremelimumab; formerly ticilimumab), U.S. Pat. No. 6,207,156; Hurwitz et al. (1998) Proc Natl Acad Sci USA 95(17): 10067-10071; Camacho et al. (2004) J Clin Oncology 22(145): Abstract No. 2505 (antibody CP-675206); and Mokyr et al. (1998) Cancer Res 58:5301-5304 can be used in the methods disclosed herein. The teachings of each of the aforementioned publications are hereby incorporated by reference. Antibodies that compete with any of these art-recognized antibodies for binding to CTLA-4 also can be used. For example, a humanized CTLA-4 antibody is described in International Patent Application No. WO2001014424, WO2000037504, and U.S. Pat. No. 8,017,114; all incorporated herein by reference.


An exemplary anti-CTLA-4 antibody is ipilimumab (also known as 10D1, MDX-010, MDX-101, and Yervoy®) or antigen binding fragments and variants thereof (see, e.g., WOO 1/14424). In other embodiments, the antibody comprises the heavy and light chain CDRs or VRs of ipilimumab. Accordingly, in one embodiment, the antibody comprises the CDR1, CDR2, and CDR3 domains of the VH region of ipilimumab, and the CDR1, CDR2 and CDR3 domains of the VL region of ipilimumab. In another embodiment, the antibody competes for binding with and/or binds to the same epitope on CTLA-4 as the above-mentioned antibodies. In another embodiment, the antibody has at least about 90% variable region amino acid sequence identity with the above-mentioned antibodies (e.g., at least about 90%, 95%, or 99% variable region identity with ipilimumab).


Other molecules for modulating CTLA-4 include CTLA-4 ligands and receptors such as described in U.S. Pat. Nos. U.S. Pat. Nos. 5,844,905, 5,885,796 and International Patent Application Nos. WO1995001994 and WO1998042752; all incorporated herein by reference, and immunoadhesions such as described in U.S. Pat. No. 8,329,867, incorporated herein by reference.


C. Killer Immunoglobulin-like Receptor (KIR)


Another immune checkpoint inhibitor for use in the present invention is an anti-KIR antibody. Anti-human-KIR antibodies (or VH/VL domains derived therefrom) suitable for use in the invention can be generated using methods well known in the art.


Alternatively, art recognized anti-KIR antibodies can be used. The anti-KIR antibody can be cross-reactive with multiple inhibitory KIR receptors and potentiates the cytotoxicity of NK cells bearing one or more of these receptors. For example, the anti-KIR antibody may bind to each of KIR2D2DL1, KIR2DL2, and KIR2DL3, and potentiate NK cell activity by reducing, neutralizing and/or reversing inhibition of NK cell cytotoxicity mediated by any or all of these KIRs. In some aspects, the anti-KIR antibody does not bind KIR2DS4 and/or KIR2DS3. For example, monoclonal antibodies 1-7F9 (also known as IPH2101), 14F1, 1-6F1 and 1-6F5, described in WO 2006/003179, the teachings of which are hereby incorporated by reference, can be used. Antibodies that compete with any of these art-recognized antibodies for binding to KIR also can be used. Additional art-recognized anti-KIR antibodies which can be used include, for example, those disclosed in WO 2005/003168, WO 2005/009465, WO 2006/072625, WO 2006/072626, WO 2007/042573, WO 2008/084106, WO 2010/065939, WO 2012/071411 and WO/2012/160448.


An exemplary anti-KIR antibody is lirilumab (also referred to as BMS-986015 or IPH2102). In other embodiments, the anti-KIR antibody comprises the heavy and light chain complementarity determining regions (CDRs) or variable regions (VRs) of lirilumab. Accordingly, in one embodiment, the antibody comprises the CDR1, CDR2, and CDR3 domains of the heavy chain variable (VH) region of lirilumab, and the CDR1, CDR2 and CDR3 domains of the light chain variable (VL) region of lirilumab. In another embodiment, the antibody has at least about 90% variable region amino acid sequence identity with lirilumab.


VIII. Methods of Treatment

Provided herein are methods for treating or infection in an individual comprising administering to the individual an effective amount of p53 tumor suppressor gene therapy composition. Combination therapies can include, but are not limited to, one or more anti-microbial agents (for example, antibiotics, anti-viral agents and anti-fungal agents),


In some aspects, the infection is due to a virus, e.g., herpes virus (e.g., human cytomegalomous virus (HCMV), herpes simplex virus I (HSV-1), herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV), Epstein-Barr virus), influenza A virus and Hepatitis C virus (HCV) or a picornavirus such as Coxsackievirus B3 (CVB3). Other viruses may include, but are not limited to, the hepatitis B virus, HIV, poxvirus, hepadavirus, retrovirus, and RNA viruses such as flavivirus, togavirus, coronavirus, Hepatitis D virus, orthomyxovirus, paramyxovirus, rhabdovirus, bunyavirus, filo virus, Adenovirus, Human herpesvirus, type 8, Human papillomavirus, BK virus, JC virus, Smallpox, Hepatitis B virus, Human bocavirus, Parvovirus B 19, Human astrovirus, Norwalk virus, coxsackievirus, hepatitis A virus, poliovirus, rhinovirus, Severe acute respiratory syndrome virus, Hepatitis C virus, yellow fever virus, dengue virus, West Nile virus, Rubella virus, Hepatitis E virus, and Human immunodeficiency virus (HIV).


Infectious agents of interest also include bacteria pathogens, such as Mycobacteria (e.g., M tuberculosis, M bovis, M avium, M leprae, and M africanum), rickettsia, mycoplasma, chlamydia, and legionella. Some examples of bacterial infections include, but are not limited to, infections caused by Gram positive bacillus (e.g., Listeria, Bacillus such as Bacillus anthracis, Erysipelothrix species), Gram negative bacillus (e.g., Bartonella, Brucella, Campylobacter, Enterobacter, Escherichia, Francisella, Hemophilus, Klebsiella, Morganella, Proteus, Providencia, Pseudomonas, Salmonella, Serratia, Shigella, Vibrio and Yersinia species), spirochete bacteria (e.g., Borrelia species including Borrelia burgdorferi that causes Lyme disease), anaerobic bacteria (e.g., Actinomyces and Clostridium species), Gram positive and negative coccal bacteria, Enterococcus species, Streptococcus species, Pneumococcus species, Staphylococcus species, and Neisseria species. Specific examples of infectious bacteria include, but are not limited to: Helicobacter pyloris, Legionella pneumophilia, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansaii, Mycobacterium gordonae, Staphylococcus aureus, Neisseria gonorrhoeae, Neisseria meningitidis, Listeria monocytogenes, Streptococcus pyogenes (Group A Streptococcus), Streptococcus agalactiae (Group B Streptococcus), Streptococcus viridans, Streptococcus faecalis, Streptococcus bovis, Streptococcus pneumoniae, Haemophilus influenzae, Bacillus antracis, Erysipelothrix rhusiopathiae, Clostridium tetani, Enterobacter aerogenes, Klebsiella pneumoniae, Pasteurella multocida, Fusobacterium nucleatum, Streptobacillus moniliformis, Treponema pallidium, Treponema pertenue, Leptospira, Rickettsia, and Actinomyces israelii, Acinetobacter, Bacillus, Bordetella, Borrelia, Brucella, Campylobacter, Chlamydia, Chlamydophila, Clostridium, Corynebacterium, Enterococcus, Haemophilus, Helicobacter, Mycobacterium, Mycoplasma, Stenotrophomonas, Treponema, Vibrio, Yersinia, Acinetobacter baumanii, Bordetella pertussis, Brucella abortus, Brucella canis, Brucella melitensis, Brucella suis, Campylobacter jejuni, Chlamydia pneumoniae, Chlamydia trachomatis, Chlamydophila psittaci, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Corynebacterium diphtherias, Enterobacter sazakii, Enterobacter agglomerans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Francisella tularensis, Helicobacter pylori, Legionella pneumophila, Leptospira interrogans, Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium ulcerans, Mycoplasma pneumoniae, Pseudomonas aeruginosa, Rickettsia rickettsii, Salmonella typhi, Salmonella typhimurium, Salmonella enterica, Shigella sonnei, Staphylococcus epidermidis, Staphylococcus saprophyticus, Stenotrophomonas maltophilia, Vibrio cholerae, Yersinia pestis, and the like (U.S. Patent Publication No. US20170304829, incorporated herein by reference).


In some embodiments, infections by fungi may be treated or prevented including but not limited to Aspergillus, Blastomyces, Coccidioides, Cryptococcus, Histoplasma, Paracoccidioides, Sporothrix, and at least three genera of Zygomycetes. In some embodiments, parasites that may be detected include Plasmodium, Leishmania, Babesia, Treponema, Borrelia, Trypanosoma, Toxoplasma gondii, Plasmodium falciparum, P. vivax, P. ovale, P. malariae, Trypanosoma spp., or Legionella spp.


Therapeutically effective amounts of the compositions can be administered by a number of routes, including parenteral administration, for example, intravenous, intraperitoneal, intramuscular, intrasternal, or intraarticular injection, or infusion. The therapeutically effective amount of the compound is that amount that achieves a desired effect in a subject being treated. For instance, this can be the amount of the compound necessary to inhibit advancement, or to cause regression of viral disease, or which is capable of relieving symptoms caused by viral disease.


The composition can be administered in treatment regimens consistent with the disease, for example a single or a few doses over one to several days to ameliorate a disease state or periodic doses over an extended time to inhibit disease progression and prevent disease recurrence. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. The therapeutically effective amount of the compound will be dependent on the subject being treated, the severity and type of the affliction, and the manner of administration. The exact amount of the compound is readily determined by one of skill in the art based on the age, sex, and physiological condition of the subject. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.


The composition may be administered in combination with one or more other therapeutic agents for the treatment of the viral disease. Combination therapies can include, but are not limited to, antivirals anti-viral agents including, but not limited to, abacavir, acyclovir, adefovir, afovirsen, amantadine, amprenavir, AZT, camptothecins, castanospermine, cidofovir, D4T, ddC, ddI, d4T, delavirdine, didanosine, efavirenz, famciclovir, fialuridine, foscarnet, FTC, ganciclovir, GG167, idoxuridine, indinavir, interferon alpha, lamivudine, lobucavir, loviride, nelfinavir, nevirapine, oseltamivir, penciclovir, pirodavir, ribavirin, rimantadine, ritonavir, saquinavir, sICAM-1, sorivudine, stavudine, trifluridine, 3TC, valacyclovir, vidarabine, zalcitabine, zanamivir, zidovudine, and pharmaceutically acceptable salts, acids or derivatives of any of the above. Other agents that may be used are interferon-alpha, steroids and potential replicase inhibitors. Such additional pharmaceutical agents can be administered before, during, or after administration of the compound, depending on the desired effect. This administration of the compound and the additional agent can be by the same route or by different routes, and either at the same site or at a different site.


In certain embodiments, pharmaceutical compositions may comprise, for example, at least about 0.1% of an active compound. In other embodiments, an active compound may comprise between about 2% to about 75% of the weight of the unit, or between about 25% to about 60%, for example, and any range derivable therein.


The therapeutic compositions of the present embodiments are advantageously administered in the form of injectable compositions either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. These preparations also may be emulsified.


In some embodiments, the treatment results in a sustained response in the individual after cessation of the treatment. The methods described herein may find use in treating conditions where enhanced immunogenicity is desired such as increasing tumor immunogenicity for the treatment of cancer. Also provided herein are methods of enhancing immune function such as in an individual having cancer comprising administering to the individual an effective amount of a CD122/CD132 agonist (e.g., IL-2/anti-IL-2 immune complex, IL-15/anti-IL-15 immune complex, an IL-15/IL-15 Receptor α-IgG1-Fc (IL-15/IL-15Rα-IgG1-Fc) immunocomplex, PEGylated IL-2, PEGylated IL-15, IL-2 muteins and/or IL-15 muteins) and p53 and/or MDA-7 gene therapy. In some embodiments, the individual is a human.


In some aspects, the subject is further administered a tumor suppressor immune gene therapy (see, PCT/US2016/060833, which is incorporated herein by reference in its entirety). In some aspects, the subject is further administered additional viral and non-viral gene therapies.


Examples of cancers contemplated for treatment include lung cancer, head and neck cancer, breast cancer, pancreatic cancer, prostate cancer, renal cancer, bone cancer, testicular cancer, cervical cancer, gastrointestinal cancer, lymphomas, pre-neoplastic lesions in the lung, colon cancer, melanoma, and bladder cancer.


In some embodiments, the individual has cancer that is resistant (has been demonstrated to be resistant) to one or more anti-cancer therapies. In some embodiments, resistance to anti-cancer therapy includes recurrence of cancer or refractory cancer. Recurrence may refer to the reappearance of cancer, in the original site or a new site, after treatment. In some embodiments, resistance to anti-cancer therapy includes progression of the cancer during treatment with the anti-cancer therapy. In some embodiments, the cancer is at early stage or at late stage.


In some embodiments, the subject is also treated with an immune checkpoint inhibitor such as a PD-1 axis binding antagonist and/or an anti-CTLA-4 antibody. The individual may have a cancer that expresses (has been shown to express e.g., in a diagnostic test) PD-L1 biomarker or have a high tumor mutational burden. In some embodiments, the patient's cancer expresses low PD-L1 biomarker. In some embodiments, the patient's cancer expresses high PD-L1 biomarker. The PD-L1 biomarker can be detected in the sample using a method selected from the group consisting of FACS, Western blot, ELISA, immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay, dot blotting, immunodetection methods, HPLC, surface plasmon resonance, optical spectroscopy, mass spectrometery, HPLC, qPCR, RT-qPCR, multiplex qPCR or RT-qPCR, RNA-seq, microarray analysis, SAGE, MassARRAY technique, and FISH, and combinations thereof. Measurement of a high mutational tumor burden may be determined by genomic sequencing (e.g., Foundation One CDx assay).


In some embodiments, the subject is also treated with a histone deacetylase (HDAC) inhibitor (e.g., tractinostat, formerly CHR-3996 or VRx-3996, an orally administered class 1 histone deacetylase selective inhibitor).


The efficacy of any of the methods described herein may be tested in various models known in the art, such as clinical or pre-clinical models. Suitable pre-clinical models are exemplified herein and further may include without limitation ID8 ovarian cancer, GEM models, B16 melanoma, RENCA renal cell cancer, CT26 colorectal cancer, MC38 colorectal cancer, and Cloudman melanoma models of cancer.


In some embodiments of the methods of the present disclosure, the cancer has low levels of T cell infiltration. In some embodiments, the cancer has no detectable T cell infiltrate. In some embodiments, the cancer is a non-immunogenic cancer (e.g., non-immunogenic colorectal cancer and/or ovarian cancer). Without being bound by theory, the combination treatment may increase T cell (e.g., CD4+ T cell, CD8+ T cell, memory T cell) priming, activation and/or proliferation relative to prior to the administration of the combination.


In some embodiments of the methods of the present disclosure, activated CD4 and/or CD8 T cells in the individual are characterized by γ-IFN producing CD4 and/or CD8 T cells and/or enhanced cytolytic activity relative to prior to the administration of the combination. γ-IFN may be measured by any means known in the art, including, e.g., intracellular cytokine staining (ICS) involving cell fixation, permeabilization, and staining with an antibody against γ-IFN. Cytolytic activity may be measured by any means known in the art, e.g., using a cell killing assay with mixed effector and target cells.


The present disclosure is useful for any human cell that participates in an immune reaction either as a target for the immune system or as part of the immune system's response to the foreign target. The methods include ex vivo methods, in vivo methods, and various other methods that involve injection of polynucleotides or vectors into the host cell. The methods also include injection directly into the tumor or tumor bed as well as local or regional to the tumor.


A. Administration


The therapy provided herein comprises administration of a p53 gene therapy. The therapy may be administered in any suitable manner known in the art. For example, a CD122/CD132 agonist (e.g., IL-2/anti-IL-2 immune complex, IL-15/anti-IL-15 immune complex, an IL-15/IL-15 Receptor α-IgG1-Fc (IL-15/IL-15Rα-IgG1-Fc) immunocomplex, PEGylated IL-2, PEGylated IL-15, IL-2 muteins and/or IL-15 muteins), or anti-viral agent and a p53 gene therapy may be administered sequentially (at different times) or concurrently (at the same time). In some embodiments, the one or more CD122/CD132 agonists are in a separate composition as the p53 gene therapy or expression construct thereof. In some embodiments, the CD122/CD132 agonist is in the same composition as the gene therapy. In certain aspects, the subject is administered the nucleic acid encoding p53 before, simultaneously, or after the at least one CD122/CD132 agonist.


The p53 gene therapy and additional therapeutic agents may be administered by the same route of administration or by different routes of administration. In some embodiments, the p53 gene therapy and/or additional therapeutic agent is administered intravenously, intramuscularly, subcutaneously, topically, orally, transdermally, intraperitoneally, intraorbitally, by implantation, by inhalation, intrathecally, intraventricularly, or intranasally. An effective amount of the p53 gene therapy and/or additional therapeutic agent may be administered for prevention or treatment of disease. The appropriate dosage of p53 gene therapy and/or additional therapeutic agent may be determined based on the type of disease to be treated, severity and course of the disease, the clinical condition of the individual, the individual's clinical history and response to the treatment, and the discretion of the attending physician.


For example, the therapeutically effective amount of the CD122/CD132 agonist, such as an IL-2/anti-IL-2 immune complex, IL-15/anti-IL-15 immune complex, an IL-Receptor α-IgG1-Fc (IL-15/IL-15Rα-IgG1-Fc) immunocomplex, PEGylated IL-2, PEGylated IL-15, IL-2 muteins and/or IL-15 muteins) is administered in doses ranging between 5-100 ug/kg given either SQ or IV at intervals ranging from weekly to every 2-4 weeks.


For example, when the therapeutically effective amount of the p53 gene therapy and/or additional therapeutic agent is administered in further combination with an immune checkpoint inhibitor, such as an antibody, will be in the range of about 0.01 to about 50 mg/kg of patient body weight whether by one or more administrations. In some embodiments, the antibody used is about 0.01 to about 45 mg/kg, about 0.01 to about 40 mg/kg, about 0.01 to about 35 mg/kg, about 0.01 to about 30 mg/kg, about 0.01 to about 25 mg/kg, about 0.01 to about 20 mg/kg, about 0.01 to about 15 mg/kg, about 0.01 to about 10 mg/kg, about 0.01 to about 5 mg/kg, or about 0.01 to about 1 mg/kg administered daily, for example. In some embodiments, the antibody is administered at 15 mg/kg. However, other dosage regimens may be useful. In one embodiment, an anti-PD-L1 antibody described herein is administered to a human at a dose of about 100 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 600 mg, about 700 mg, about 800 mg, about 900 mg, about 1000 mg, about 1100 mg, about 1200 mg, about 1300 mg or about 1400 mg on day 1 of 21-day cycles. The dose may be administered as a single dose or as multiple doses (e.g., 2 or 3 doses), such as infusions. The progress of this therapy is easily monitored by conventional techniques.


Intratumoral injection, or injection into the tumor vasculature is specifically contemplated for the p53 gene therapy component of the combined therapy. Local, regional or systemic administration also may be appropriate. For tumors of >4 cm, the volume to be administered will be about 4-10 ml (in particular 10 ml), while for tumors of <4 cm, a volume of about 1-3 ml will be used (in particular 3 ml). Multiple injections delivered as single dose comprise about 0.1 to about 0.5 ml volumes. For example, adenoviral particles may advantageously be contacted by administering multiple injections to the tumor.


Treatment regimens may vary as well, and often depend on tumor type, tumor location, disease progression, and health and age of the patient. Obviously, certain types of tumors will require more aggressive treatment, while at the same time, certain patients cannot tolerate more taxing protocols. The clinician will be best suited to make such decisions based on the known efficacy and toxicity (if any) of the therapeutic formulations.


In certain embodiments, the tumor being treated may not, at least initially, be resectable. The combined treatments may increase the resectability of the tumor due to shrinkage at the margins or by elimination of certain particularly invasive portions. Following the combined treatments, resection is performed. Additional treatments subsequent to resection will serve to eliminate residual disease.


The treatments may include various “unit doses.” Unit dose is defined as containing a predetermined-quantity of the therapeutic composition. The quantity to be administered, and the particular route and formulation, are within the skill of those in the clinical arts. A unit dose need not be administered as a single injection but may comprise continuous infusion over a set period of time. Unit dose of the present invention may conveniently be described in terms of plaque forming units (pfu) for a viral construct. Unit doses range from 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013 pfu and higher. Alternatively, depending on the kind of virus and the titer attainable, one will deliver 1 to 100, 10 to 50, 100-1000, or up to about 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, or 1×1015 or higher infectious viral particles (vp) to the patient or to the patient's cells.


B. Injectable Compositions and Formulations


The pharmaceutical compositions disclosed herein may alternatively be administered intra-tumorally, parenterally, intravenously, intradermally, intra-arterially, intramuscularly, transdermally or even intraperitoneally as described in U.S. Pat. Nos. 5,543,158, 5,641,515 and 5,399,363, all incorporated herein by reference.


Injection of nucleic acid constructs may be delivered by syringe or any other method used for injection of a solution, as long as the expression construct can pass through the particular gauge of needle required for injection. A novel needleless injection system has been described (U.S. Pat. No. 5,846,233) having a nozzle defining an ampule chamber for holding the solution and an energy device for pushing the solution out of the nozzle to the site of delivery. A syringe system has also been described for use in gene therapy that permits multiple injections of predetermined quantities of a solution precisely at any depth (U.S. Pat. No. 5,846,225). Another injection system that may be used is the QuadraFuse device comprising a multipronged needle adjustable to different depths with an attached syringe.


Solutions of the active compounds as free base or pharmacologically acceptable salts may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions (U.S. Pat. No. 5,466,468). In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.


For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous, intratumoral and intraperitoneal administration. In this connection, sterile aqueous media that can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, “Remington's Pharmaceutical Sciences” 22md Edition). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologics standards.


Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


The compositions disclosed herein may be formulated in a neutral or salt form. Pharmaceutically-acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like. Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug release capsules and the like.


C. Additional Anti-Cancer Therapies


In order to increase the effectiveness of the p53 gene therapy, they can be combined with at least one additional agent effective in the treatment of infection, cancer, or fibrosis. More generally, these other compositions would be provided in a combined amount effective to kill or inhibit proliferation of the cell. This process may involve contacting the cells with the expression construct and the agent(s) or multiple factor(s) at the same time. This may be achieved by contacting the cell with a single composition or pharmacological formulation that includes both agents, or by contacting the cell with two distinct compositions or formulations, at the same time, wherein one composition includes the expression construct and the other includes the second agent(s). Alternatively, the expression construct may contact the proliferating cell and the additional therapy may affect other cells of the immune system or the tumor microenvironment to enhance anti-tumor immune responses and therapeutic efficacy. The at least one additional anticancer therapy may be, without limitation, a surgical therapy, chemotherapy (e.g., administration of a protein kinase inhibitor or a EGFR-targeted therapy), radiation therapy, cryotherapy, hyperthermia treatment, phototherapy, radioablation therapy, hormonal therapy, immunotherapy including but not limited to immune checkpoint inhibitors, small molecule therapy, receptor kinase inhibitor therapy, anti-angiogenic therapy, cytokine therapy or a biological therapies such as monoclonal antibodies, siRNA, miRNA, antisense oligonucleotides, ribozymes or gene therapy. Without limitation the biological therapy may be a gene therapy, such as tumor suppressor gene therapy, a cell death protein gene therapy, a cell cycle regulator gene therapy, a cytokine gene therapy, a toxin gene therapy, an immunogene therapy, a suicide gene therapy, a prodrug gene therapy, an anti-cellular proliferation gene therapy, an enzyme gene therapy, or an anti-angiogenic factor gene therapy.


The gene therapy may precede or follow the other agent treatment by intervals ranging from minutes to weeks. In embodiments where the other agent and expression construct are applied separately to the cell, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the agent and expression construct would still be able to exert an advantageously combined effect on the cell. In such instances, it is contemplated that one may contact the cell with both modalities within about 12-24 hours of each other and, more preferably, within about 6-12 hours of each other. In some situations, it may be desirable to extend the time period for treatment significantly, however, where several days (e.g., 2, 3, 4, 5, 6 or 7) to several weeks (e.g., 1, 2, 3, 4, 5, 6, 7 or 8) lapse between the respective administrations. In certain embodiments, one or more of the therapies may be continued either with or without the others as maintenance therapy.


Various combinations may be employed, gene therapy is “A” and the secondary agent, i.e. an immune checkpoint inhibitor, is “B”:

















A/B/A B/A/B B/B/A A/A/B A/B/B B/A/A A/B/B/B B/A/B/B



B/B/B/A B/B/A/B A/A/B/B A/B/A/B A/B/B/A B/B/A/A



B/A/B/A B/A/A/B A/A/A/B B/A/A/A A/B/A/A A/A/B/A










1. Chemotherapy


Cancer therapies in general also include a variety of combination therapies with both chemical and radiation based treatments. Combination chemotherapies include, for example, cisplatin (CDDP), carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, busulfan, nitrosurea, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP16), tamoxifen, raloxifene, estrogen receptor binding agents, taxol, gemcitabien, navelbine, famesyl-protein transferase inhibitors, transplatinum, 5-fluorouracil, vincristine, vinblastine and methotrexate, Temazolomide (an aqueous form of DTIC), or any analog or derivative variant of the foregoing. The combination of chemotherapy with biological therapy is known as biochemotherapy. The chemotherapy may also be administered at low, continuous doses which is known as metronomic chemotherapy.


Yet further combination chemotherapies include, for example, alkylating agents such as thiotepa and cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimnustine; antibiotics such as the enediyne antibiotics (e.g., calicheamicin, especially calicheamicin gammalI and calicheamicin omegaII; dynemicin, including dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores, aclacinomysins, actinomycin, authrarnycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalarnycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elformithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK polysaccharide complex; razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2′,2″-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; taxoids, e.g., paclitaxel and docetaxel gemcitabine; 6-thioguanine; mercaptopurine; platinum coordination complexes such as cisplatin, oxaliplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine; vinorelbine; novantrone; teniposide; edatrexate; daunomycin; aminopterin; xeloda; ibandronate; irinotecan (e.g., CPT-11); topoisomerase inhibitor RFS 2000; difluorometlhylornithine (DMFO); retinoids such as retinoic acid; capecitabine; carboplatin, procarbazine, plicomycin, gemcitabien, navelbine, farnesyl-protein transferase inhibitors, transplatinum; and pharmaceutically acceptable salts, acids or derivatives of any of the above. In certain embodiments, the compositions provided herein may be used in combination with histone deacetylase inhibitors. In certain embodiments, the compositions provided herein may be used in combination with gefitinib. In other embodiments, the present embodiments may be practiced in combination with Gleevec (e.g., from about 400 to about 800 mg/day of Gleevec may be administered to a patient). In certain embodiments, one or more chemotherapeutic may be used in combination with the compositions provided herein.


2. Radiotherapy


Other factors that cause DNA damage and have been used extensively include what are commonly known as y-rays, X-rays, and/or the directed delivery of radioisotopes to tumor cells. Other forms of DNA damaging factors are also known such as microwaves and UV-irradiation. It is most likely that all of these factors effect a broad range of damage on DNA, on the precursors of DNA, on the replication and repair of DNA, and on the assembly and maintenance of chromosomes. Dosage ranges for X-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 wk), to single doses of 2000 to 6000 roentgens. Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells.


3. Immunotherapy


Immunotherapeutics, generally, rely on the use of immune effector cells and molecules to target and destroy cancer cells. The immune effector may be, for example, an antibody specific for some marker on the surface of a tumor cell. The antibody alone may serve as an effector of therapy or it may recruit other cells to actually effect cell killing. The antibody also may be conjugated to a drug or toxin (chemotherapeutic, radionuclide, ricin A chain, cholera toxin, pertussis toxin, etc.) and serve merely as a targeting agent. Alternatively, the effector may be a lymphocyte carrying a surface molecule that interacts, either directly or indirectly, with a tumor cell target. Various effector cells include cytotoxic T cells and NK cells as well as genetically engineered variants of these cell types modified to express chimeric antigen receptors. Mda-7 gene transfer to tumor cells causes tumor cell death and apoptosis. The apoptotic tumor cells are scavenged by reticuloendothelial cells including dendritic cells and macrophages and presented to the immune system to generate anti-tumor immunity (Rovere et al., 1999; Steinman et al., 1999).


It will be appreciated by those skilled in the art of cancer immunotherapy that other complementary immune therapies may be added to the regimens described above to further enhance their efficacy including but not limited to GM-CSF to increase the number of myeloid derived innate immune system cells, low dose cyclophosphamide or PI3K inhibitors (e.g., PI3K delta inhibitors) to eliminate T regulatory cells that inhibit innate and adaptive immunity and 5FU (e.g., capecitabine), PI3K inhibitors or histone deacetylase inhibitors to remove inhibitory myeloid derived suppressor cells. For example, PI3K inhibitors include, but are not limited to, LY294002, Perifosine, BKM120, Duvelisib, PX-866, BAY 80-6946, BEZ235, SF1126, GDC-0941, XL147, XL765, Palomid 529, GSK1059615, PWT33597, IC87114, TG100-15, CAL263, PI-103, GNE-477, CUDC-907, and AEZS-136. In some aspects, the PI3K inhibitor is a PI3K delta inhibitor such as, but not limited to, Idelalisib, RP6530, TGR1202, and RP6503. Additional PI3K inhibitors are disclosed in U.S. Patent Application Nos. US20150291595, US20110190319, and International Patent Application Nos. WO2012146667, WO2014164942, WO2012062748, and WO2015082376. The immunotherapy may also comprise the administration of an interleukin such as IL-2, or an interferon such as INFα.


Examples of immunotherapies that can be combined with the p53 and/or MDA-7 gene therapy and CD122/CD132 agonists are immune adjuvants (e.g., Mycobacterium bovis, Plasmodium falciparum, dinitrochlorobenzene and aromatic compounds) (U.S. Pat. Nos. 5,801,005; 5,739,169; Hui and Hashimoto, 1998; Christodoulides et al., 1998), cytokine therapy (e.g., interferons α, β and γ; interleukins (IL-1, IL-2), GM-CSF and TNF) (Bukowski et al., 1998; Davidson et al., 1998; Hellstrand et al., 1998) gene therapy (e.g., TNF, IL-1, IL-2, p53) (Qin et al., 1998; Austin-Ward and Villaseca, 1998; U.S. Pat. Nos. 5,830,880 and 5,846,945) and monoclonal antibodies (e.g., anti-ganglioside GM2, anti-HER-2, anti-p185) (Pietras et al., 1998; Hanibuchi et al., 1998; U.S. Pat. No. 5,824,311). Herceptin (trastuzumab) is a chimeric (mouse-human) monoclonal antibody that blocks the HER2-neu receptor. It possesses anti-tumor activity and has been approved for use in the treatment of malignant tumors (Dillman, 1999). Combination therapy of cancer with herceptin and chemotherapy has been shown to be more effective than the individual therapies. Thus, it is contemplated that one or more anti-cancer therapies may be employed with the p53 and/or MDA-7 gene therapy described herein.


Additional immunotherapies that may be combined with the p53 and/or MDA-7 gene therapy and CD122/CD132 agonists include immune checkpoint inhibitors, a co-stimulatory receptor agonist, a stimulator of innate immune cells, or an activator of innate immunity. In certain aspects the immune checkpoint inhibitor is an inhibitor of CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, BTLA, B7H3, B7H4, TIM3, KIR, or A2aR. In some aspects, the at least one immune checkpoint inhibitor is an anti-CTLA-4 antibody. In some aspects, the anti-CTLA-4 antibody is tremelimumab or ipilimumab. In certain aspects, the at least one immune checkpoint inhibitor is an anti-killer-cell immunoglobulin-like receptor (KIR) antibody. In some embodiments, the anti-KIR antibody is lirilumab. In some aspects, the inhibitor of PD-L1 is durvalumab, atezolizumab, or avelumab. In some aspects, the inhibitor of PD-L2 is rHIgM12B7. In some aspects, the LAG3 inhibitor is IMP321, or BMS-986016. In some aspects, the inhibitor of A2aR is PBF-509.


In some aspects, the at least one immune checkpoint inhibitor is a human programmed cell death 1 (PD-1) axis binding antagonist. In certain aspects, the PD-1 axis binding antagonist is selected from the group consisting of a PD-1 binding antagonist, a PDL1 binding antagonist and a PDL2 binding antagonist. In some aspects, the PD-1 axis binding antagonist is a PD-1 binding antagonist. In certain aspects, the PD-1 binding antagonist inhibits the binding of PD-1 to PDL1 and/or PDL2. In particular, the PD-1 binding antagonist is a monoclonal antibody or antigen binding fragment thereof. In some embodiments, the PD-1 binding antagonist is nivolumab, pembrolizumab, pidilizumab, AMP-514, REGN2810, CT-011, BMS 936559, MPDL328OA or AMP-224.


In certain aspects, the at least one checkpoint inhibitor is selected from an inhibitor of CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, BTLA, B7H3, B7H4, TIM3, KIR, or A2aR. In some aspects, the at least one immune checkpoint inhibitor is an anti-CTLA-4 antibody. In some aspects, the anti-CTLA-4 antibody is tremelimumab or ipilimumab. In certain aspects, the at least one immune checkpoint inhibitor is an anti-killer-cell immunoglobulin-like receptor (KIR) antibody. In some embodiments, the anti-KIR antibody is lirilumab. In some aspects, the inhibitor of PD-L1 is durvalumab, atezolizumab, or avelumab. In some aspects, the inhibitor of PD-L2 is rHIgM12B7. In some aspects, the LAG3 inhibitor is IMP321, or BMS-986016. In some aspects, the inhibitor of A2aR is PBF-509.


The co-stimulatory receptor agonist may be an anti-OX40 antibody (e.g., MEDI6469, MEDI6383, MEDI0562, and MOXR0916), anti-GITR antibody (e.g., TRX518, and MK-4166), anti-CD137 antibody (e.g., Urelumab, and PF-05082566), anti-CD40 antibody (e.g., CP-870,893, and Chi Lob 7/4), or an anti-CD27 antibody (e.g., Varlilumab, also known as CDX-1127). The stimulators of innate immune cells include, but are not limited to, a KIR monoclonal antibody (e.g., lirilumab), an inhibitor of a cytotoxicity-inhibiting receptor (e.g., NKG2A, also known as KLRC and as CD94, such as the monoclonal antibody monalizumab, and anti-CD96, also known as TACTILE), and a toll like receptor (TLR) agonist. The TLR agonist may be BCG, a TLR7 agonist (e.g., poly0ICLC, and imiquimod), a TLR8 agonist (e.g., resiquimod), or a TLR9 agonist (e.g., CPG 7909). The activators of innate immune cells, such as natural killer (NK) cells, macrophages, and dendritic cells, include IDO inhibitors, TGFβ inhibitor, IL-10 inhibitor. An exemplary activator of innate immunity is Indoximod. In some aspects, the immunotherapy is a stimulator of interferon genes (STING) agonist (Corrales et al., 2015).


Other immunotherapies contemplated for use in methods of the present disclosure include those described by Tchekmedyian et al., 2015, incorporated herein by reference. The immunotherapy may comprise suppression of T regulatory cells (Tregs), myeloid derived suppressor cells (MDSCs) and cancer associated fibroblasts (CAFs). In some embodiments, the immunotherapy is a tumor vaccine (e.g., whole tumor cell vaccines, dendritic cell vaccines, DNA and/or RNA expression vaccines, peptides, and recombinant tumor associated antigen vaccines), or adoptive cellular therapies (ACT) (e.g., T cells, natural killer cells, TILs, and LAK cells). The T cells and/or natural killer cells may be engineered with chimeric antigen receptors (CARs) or T cell receptors (TCRs) to specific tumor antigens. As used herein, a chimeric antigen receptor (or CAR) may refer to any engineered receptor specific for an antigen of interest that, when expressed in a T cell or natural killer cell, confers the specificity of the CAR onto the T cell or natural killer cell. Once created using standard molecular techniques, a T cell or natural killer cell expressing a chimeric antigen receptor may be introduced into a patient, as with a technique such as adoptive cell transfer. In some aspects, the T cells are activated CD4 and/or CD8 T cells in the individual which are characterized by γ-IFN “producing CD4 and/or CD8 T cells and/or enhanced cytolytic activity relative to prior to the administration of the combination. The CD4 and/or CD8 T cells may exhibit increased release of cytokines selected from the group consisting of IFN-γ, TNF-α and interleukins. The CD4 and/or CD8 T cells can be effector memory T cells. In certain embodiments, the CD4 and/or CD8 effector memory T cells are characterized by having the expression of CD44high CD62Llow.


In certain aspects, two or more immunotherapies may be combined with the p53 and/or MDA-7 gene therapy and CD122/CD132 agonists including additional immune checkpoint inhibitors in combination with agonists of T-cell costimulatory receptors, or in combination with TIL ACT. Other combinations include T-cell checkpoint blockade plus costimulatory receptor agonists, T-cell checkpoint blockade to improve innate immune cell function, checkpoint blockade plus IDO inhibition, or checkpoint blockade plus adoptive T-cell transfer. In certain aspects, immunotherapy includes a combination of an anti-PD-L1 immune checkpoint inhibitor (e.g., Avelumab), a 4-1BB (CD-137) agonist (e.g. Utomilumab), and an OX40 (TNFRS4) agonist. The immunotherapy may be combined with histone deacetylase (HDAC) inhibitors such as 5-azacytidine and entinostat.


The immunotherapy may be a cancer vaccine comprising one or more cancer antigens, in particular a protein or an immunogenic fragment thereof, DNA or RNA encoding said cancer antigen, in particular a protein or an immunogenic fragment thereof, cancer cell lysates, and/or protein preparations from tumor cells. As used herein, a cancer antigen is an antigenic substance present in cancer cells. In principle, any protein produced in a cancer cell that is upregulated in cancer cells compared to normal cells or has an abnormal structure due to mutation can act as a cancer antigen. In principle, cancer antigens can be products of mutated or overexpressed oncogenes and tumor suppressor genes, products of other mutated genes, overexpressed or aberrantly expressed cellular proteins, cancer antigens produced by oncogenic viruses, oncofetal antigens, altered cell surface glycolipids and glycoproteins, or cell type-specific differentiation antigens. Examples of cancer antigens include the abnormal or overexpressed products of ras and p53 genes. Other examples include tissue differentiation antigens, mutant protein antigens, oncogenic viral antigens, cancer-testis antigens and vascular or stromal specific antigens. Tissue differentiation antigens are those that are specific to a certain type of tissue. Mutant protein antigens are likely to be much more specific to cancer cells because normal cells shouldn't contain these proteins. Normal cells will display the normal protein antigen on their MEW molecules, whereas cancer cells will display the mutant version. Some viral proteins are implicated in forming cancer, and some viral antigens are also cancer antigens. Cancer-testis antigens are antigens expressed primarily in the germ cells of the testes, but also in fetal ovaries and the trophoblast. Some cancer cells aberrantly express these proteins and therefore present these antigens, allowing attack by T-cells specific to these antigens. Exemplary antigens of this type are CTAG1B and MAGEA1 as well as Rindopepimut, a 14-mer intradermal injectable peptide vaccine targeted against epidermal growth factor receptor (EGFR) v111 variant. Rindopepimut is particularly suitable for treating glioblastoma when used in combination with an inhibitor of the CD95/CD95L signaling system as described herein. Also, proteins that are normally produced in very low quantities, but whose production is dramatically increased in cancer cells, may trigger an immune response. An example of such a protein is the enzyme tyrosinase, which is required for melanin production. Normally tyrosinase is produced in minute quantities but its levels are very much elevated in melanoma cells. Oncofetal antigens are another important class of cancer antigens. Examples are alphafetoprotein (AFP) and carcinoembryonic antigen (CEA). These proteins are normally produced in the early stages of embryonic development and disappear by the time the immune system is fully developed. Thus self-tolerance does not develop against these antigens. Abnormal proteins are also produced by cells infected with oncoviruses, e.g. EBV and HPV. Cells infected by these viruses contain latent viral DNA which is transcribed and the resulting protein produces an immune response. A cancer vaccine may include a peptide cancer vaccine, which in some embodiments is a personalized peptide vaccine. In some embodiments. the peptide cancer vaccine is a multivalent long peptide vaccine, a multi-peptide vaccine, a peptide cocktail vaccine, a hybrid peptide vaccine, or a peptide-pulsed dendritic cell vaccine


The immunotherapy may be an antibody, such as part of a polyclonal antibody preparation, or may be a monoclonal antibody. The antibody may be a humanized antibody, a chimeric antibody, an antibody fragment, a bispecific antibody or a single chain antibody. An antibody as disclosed herein includes an antibody fragment, such as, but not limited to, Fab, Fab′ and F(ab′)2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdfv) and fragments including either a VL or VH domain. In some aspects, the antibody or fragment thereof specifically binds epidermal growth factor receptor (EGFR1, Erb-B 1), HER2/neu (Erb-B2), CD20, Vascular endothelial growth factor (VEGF), insulin-like growth factor receptor (IGF-1R), TRAIL-receptor, epithelial cell adhesion molecule, carcino-embryonic antigen, Prostate-specific membrane antigen, Mucin-1, CD30, CD33, or CD40.


Examples of monoclonal antibodies that may be used in combination with the compositions provided herein include, without limitation, trastuzumab (anti-HER2/neu antibody); Pertuzumab (anti-HER2 mAb); cetuximab (chimeric monoclonal antibody to epidermal growth factor receptor EGFR); panitumumab (anti-EGFR antibody); nimotuzumab (anti-EGFR antibody); Zalutumumab (anti-EGFR mAb); Necitumumab (anti-EGFR mAb); MDX-210 (humanized anti-HER-2 bispecific antibody); MDX-210 (humanized anti-HER-2 bispecific antibody); MDX-447 (humanized anti-EGF receptor bispecific antibody); Rituximab (chimeric murine/human anti-CD20 mAb); Obinutuzumab (anti-CD20 mAb); Ofatumumab (anti-CD20 mAb); Tositumumab-I131 (anti-CD20 mAb); Ibritumomab tiuxetan (anti-CD20 mAb); Bevacizumab (anti-VEGF mAb); Ramucirumab (anti-VEGFR2 mAb); Ranibizumab (anti-VEGF mAb); Aflibercept (extracellular domains of VEGFR1 and VEGFR2 fused to IgG1 Fc); AMG386 (angiopoietin-1 and -2 binding peptide fused to IgG1 Fc); Dalotuzumab (anti-IGF-1R mAb); Gemtuzumab ozogamicin (anti-CD33 mAb); Alemtuzumab (anti-Campath-1/CD52 mAb); Brentuximab vedotin (anti-CD30 mAb); Catumaxomab (bispecific mAb that targets epithelial cell adhesion molecule and CD3); Naptumomab (anti-5T4 mAb); Girentuximab (anti-Carbonic anhydrase ix); or Farletuzumab (anti-folate receptor). Other examples include antibodies such as Panorex™ (17-1A) (murine monoclonal antibody); Panorex (@ (17-1A) (chimeric murine monoclonal antibody); BEC2 (ami-idiotypic mAb, mimics the GD epitope) (with BCG); Oncolym (Lym-1 monoclonal antibody); SMART M195 Ab, humanized 13′ 1 LYM-1 (Oncolym), Ovarex (B43.13, anti-idiotypic mouse mAb); 3622W94 mAb that binds to EGP40 (17-1A) pancarcinoma antigen on adenocarcinomas; Zenapax (SMART Anti-Tac (IL-2 receptor); SMART M195 Ab, humanized Ab, humanized); NovoMAb-G2 (pancarcinoma specific Ab); TNT (chimeric mAb to histone antigens); TNT (chimeric mAb to histone antigens); Gliomab-H (Monoclonals—Humanized Abs); GNI-250 Mab; EMD-72000 (chimeric-EGF antagonist); LymphoCide (humanized IL.L.2 antibody); and MDX-260 bispecific, targets GD-2, ANA Ab, SMART IDIO Ab, SMART ABL 364 Ab or ImmuRAIT-CEA. Examples of antibodies include those disclosed in U.S. Pat. Nos. 5,736,167, 7,060,808, and U.S. Pat. No.


Further examples of antibodies include Zanulimumab (anti-CD4 mAb), Keliximab (anti-CD4 mAb); Ipilimumab (MDX-101; anti-CTLA-4 mAb); Tremilimumab (anti-CTLA-4 mAb); (Daclizumab (anti-CD25/IL-2R mAb); Basiliximab (anti-CD25/IL-2R mAb); MDX-1106 (anti-PD1 mAb); antibody to GITR; GC1008 (anti-TGF-(3 antibody); metelimumab/CAT-192 (anti-TGF-β antibody); lerdelimumab/CAT-152 (anti-TGF-β antibody); ID11 (anti-TGF-β antibody); Denosumab (anti-RANKL mAb); BMS-663513 (humanized anti-4-1BB mAb); SGN-40 (humanized anti-CD40 mAb); CP870,893 (human anti-CD40 mAb); Infliximab (chimeric anti-TNF mAb; Adalimumab (human anti-TNF mAb); Certolizumab (humanized Fab anti-TNF); Golimumab (anti-TNF); Etanercept (Extracellular domain of TNFR fused to IgG1 Fc); Belatacept (Extracellular domain of CTLA-4 fused to Fc); Abatacept (Extracellular domain of CTLA-4 fused to Fc); Belimumab (anti-B Lymphocyte stimulator); Muromonab-CD3 (anti-CD3 mAb); Otelixizumab (anti-CD3 mAb); Teplizumab (anti-CD3 mAb); Tocilizumab (anti-IL6R mAb); REGN88 (anti-IL6R mAb); Ustekinumab (anti-IL-12/23 mAb); Briakinumab (anti-IL-12/23 mAb); Natalizumab (anti-α4 integrin); Vedolizumab (anti-α4 (37 integrin mAb); T1 h (anti-CD6 mAb); Epratuzumab (anti-CD22 mAb); Efalizumab (anti-CD11a mAb); and Atacicept (extracellular domain of transmembrane activator and calcium-modulating ligand interactor fused with Fc).


a. Passive Immunotherapy


A number of different approaches for passive immunotherapy of cancer exist. They may be broadly categorized into the following: injection of antibodies alone; injection of antibodies coupled to toxins or chemotherapeutic agents; injection of antibodies coupled to radioactive isotopes; injection of anti-idiotype antibodies; and finally, purging of tumor cells in bone marrow.


Preferably, human monoclonal antibodies are employed in passive immunotherapy, as they produce few or no side effects in the patient. Human monoclonal antibodies to ganglioside antigens have been administered intralesionally to patients suffering from cutaneous recurrent melanoma (Irie & Morton, 1986). Regression was observed in six out of ten patients, following, daily or weekly, intralesional injections. In another study, moderate success was achieved from intralesional injections of two human monoclonal antibodies (Irie et al., 1989).


It may be favorable to administer more than one monoclonal antibody directed against two different antigens or even antibodies with multiple antigen specificity. Treatment protocols also may include administration of lymphokines or other immune enhancers as described by Bajorin et al. (1988). The development of human monoclonal antibodies is described in further detail elsewhere in the specification.


b. Active Immunotherapy


In active immunotherapy, an antigenic peptide, polypeptide or protein, or an autologous or allogenic tumor cell composition or “vaccine” is administered, generally with a distinct bacterial adjuvant (Ravindranath & Morton, 1991; Morton & Ravindranath, 1996; Morton et al., 1992; Mitchell et al., 1990; Mitchell et al., 1993). In melanoma immunotherapy, those patients who elicit high IgM response often survive better than those who elicit no or low IgM antibodies (Morton et al., 1992). IgM antibodies are often transient antibodies and the exception to the rule appears to be anti-ganglioside or anticarbohydrate antibodies.


c. Adoptive Immunotherapy


In adoptive immunotherapy, the patient's circulating lymphocytes, or tumor infiltrated lymphocytes, are isolated in vitro, activated by lymphokines such as IL-2 or transduced with genes for tumor necrosis, and readministered (Rosenberg et al., 1988; 1989). To achieve this, one would administer to an animal, or human patient, an immunologically effective amount of activated lymphocytes in combination with an adjuvant-incorporated antigenic peptide composition as described herein. The activated lymphocytes will most preferably be the patient's own cells that were earlier isolated from a blood or tumor sample and activated (or “expanded”) in vitro. This form of immunotherapy has produced several cases of regression of melanoma and renal carcinoma, but the percentage of responders were few compared to those who did not respond. More recently, higher response rates have been observed when such adoptive immune cellular therapies have incorporated genetically engineered T cells that express chimeric antigen receptors (CAR) termed CAR T cell therapy. Similarly, natural killer cells both autologous and allogenic have been isolated, expanded and genetically modified to express receptors or ligands to facilitate their binding and killing of tumor cells.


4. Other Agents


It is contemplated that other agents may be used in combination with the compositions provided herein to improve the therapeutic efficacy of treatment. These additional agents include immunomodulatory agents, agents that affect the upregulation of cell surface receptors and GAP junctions, cytostatic and differentiation agents, inhibitors of cell adhesion, or agents that increase the sensitivity of the hyperproliferative cells to apoptotic inducers. Immunomodulatory agents include tumor necrosis factor; interferon alpha, beta, and gamma; IL-2 and other cytokines; or MIP-1, MIP-1beta, MCP-1, RANTES, and other chemokines. It is further contemplated that the upregulation of cell surface receptors or their ligands such as Fas/Fas ligand, DR4 or DR5/TRAIL would potentiate the apoptotic inducing abilities of the compositions provided herein by establishment of an autocrine or paracrine effect on hyperproliferative cells. Increases intercellular signaling by elevating the number of GAP junctions would increase the anti-hyperproliferative effects on the neighboring hyperproliferative cell population. In other embodiments, cytostatic or differentiation agents can be used in combination with the compositions provided herein to improve the anti-hyerproliferative efficacy of the treatments. Inhibitors of cell adhesion are contemplated to improve the efficacy of the present invention. Examples of cell adhesion inhibitors are focal adhesion kinase (FAKs) inhibitors and Lovastatin. It is further contemplated that other agents that increase the sensitivity of a hyperproliferative cell to apoptosis, such as the antibody c225, could be used in combination with the compositions provided herein to improve the treatment efficacy.


In further embodiments, the other agents may be one or more oncolytic viruses. These oncolytic viruses may be engineered to express p53 and/or IL24 and/or to express a gene other than p53 and/or IL24, such as a cytokine or a heat shock protein. Examples of oncolytic viruses include single or double stranded DNA viruses, RNA viruses, adenoviruses, adeno-associated viruses, retroviruses, lentiviruses, herpes viruses, pox viruses, vaccinia viruses, vesicular stomatitis viruses, polio viruses, Newcastle's Disease viruses, Epstein-Barr viruses, influenza viruses and reoviruses, myxoma viruses, maraba viruses, rhabdoviruses, enadenotucirev or coxsackie viruses. In a particular embodiment, the other agent is talimogene laherparepvec (T-VEC) which is an oncolytic herpes simplex virus genetically engineered to express GM-CSF. Talimogene laherparepvec, HSV-1 [strain JS1] ICP34.5-/ICP47-/hGM-CSF, (previously known as OncoVEXGM CSF) is an intratumorally delivered oncolytic immunotherapy comprising an immune-enhanced HSV-1 that selectively replicates in solid tumors. (Lui et al., Gene Therapy, 10:292-303, 2003; U.S. Pat. Nos. 7,223,593 and 7,537,924; incorporated herein by reference). In October 2015, the US FDA approved T-VEC, under the brand name IMLYGIC™, for the treatment of melanoma in patients with inoperable tumors. The characteristics and methods of administration of T-VEC are described in, for example, the IMLYGIC™ package insert (Amgen, 2015) and U.S. Patent Publication No. US2015/0202290; both incorporated herein by reference. For example, talimogene laherparepvec is typically administered by intratumoral injection into injectable cutaneous, subcutaneous, and nodal tumors at a dose of up to 4.0 ml of 106 plaque forming unit/mL (PFU/mL) at day 1 of week 1 followed by a dose of up to 4.0 ml of 108PFU/mL at day 1 of week 4, and every 2 weeks (±3 days) thereafter. The recommended volume of talimogene laherparepvec to be injected into the tumor(s) is dependent on the size of the tumor(s) and should be determined according to the injection volume guideline. While T-VEC has demonstrated clinical activity in melanoma patients, many cancer patients either do not respond or cease responding to T-VEC treatment. In one embodiment, the p53 and/or MDA-7 nucleic acids and the at least one CD122/CD132 agonist may be administered after, during or before T-VEC therapy, such as to reverse treatment resistance. Exemplary oncolytic viruses include, but are not limited to, Ad5-yCD/mutTKSR39rep-hIL12, Cavatak™, CG0070, DNX-2401, G207, HF10, IMLYGIC™, JX-594, MG1-MA3, MV-NIS, OBP-301, Reolysin®, Toca 511, Oncorine (H101), Onyx-015, H102, H103 and RIGVIR. Other exemplary oncolytic viruses are described, for example, in International Patent Publication Nos. WO2015/027163, WO2014/138314, WO2014/047350, and WO2016/009017; all incorporated herein by reference.


In certain embodiments, hormonal therapy may also be used in conjunction with the present embodiments or in combination with any other cancer therapy previously described. The use of hormones may be employed in the treatment of certain cancers such as breast, prostate, ovarian, or cervical cancer to lower the level or block the effects of certain hormones such as testosterone or estrogen. This treatment is often used in combination with at least one other cancer therapy as a treatment option or to reduce the risk of metastases


In some aspects, the additional anti-cancer agent is a protein kinase inhibitor or a monoclonal antibody that inhibits receptors involved in protein kinase or growth factor signaling pathways such as an EGFR, VEGFR, AKT, Erb 1, Erb2, ErbB, Syk, Bcr-Abl, JAK, Src, GSK-3, PI3K, Ras, Raf, MAPK, MAPKK, mTOR, c-Kit, eph receptor or BRAF inhibitors. Nonlimiting examples of protein kinase or growth factor signaling pathways inhibitors include Afatinib, Axitinib, Bevacizumab, Bosutinib, Cetuximab, Crizotinib, Dasatinib, Erlotinib, Fostamatinib, Gefitinib, Imatinib, Lapatinib, Lenvatinib, Mubritinib, Nilotinib, Panitumumab, Pazopanib, Pegaptanib, Ranibizumab, Ruxolitinib, Saracatinib, Sorafenib, Sunitinib, Trastuzumab, Vandetanib, AP23451, Vemurafenib, MK-2206, GSK690693, A-443654, VQD-002, Miltefosine, Perifosine, CAL101, PX-866, LY294002, rapamycin, temsirolimus, everolimus, ridaforolimus, Alvocidib, Genistein, Selumetinib, AZD-6244, Vatalanib, P1446A-AG-024322, ZD1839, P276-00, GW572016 or a mixture thereof.


In some aspects, the PI3K inhibitor is selected from the group of PI3K inhibitors consisting of buparlisib, idelalisib, BYL-719, dactolisib, PF-05212384, pictilisib, copanlisib, copanlisib dihydrochloride, ZSTK-474, GSK-2636771, duvelisib, GS-9820, PF-04691502, SAR-245408, SAR-245409, sonolisib, Archexin, GDC-0032, GDC-0980, apitolisib, pilaralisib, DLBS 1425, PX-866, voxtalisib, AZD-8186, BGT-226, DS-7423, GDC-0084, GSK-2126458, INK-1117, SAR-260301, SF-1 126, AMG-319, BAY-1082439, CH-51 32799, GSK-2269557, P-71 70, PWT-33597, CAL-263, RG-7603, LY-3023414, RP-5264, RV-1729, taselisib, TGR-1 202, GSK-418, INCB-040093, Panulisib, GSK-105961 5, CNX-1351, AMG-51 1, PQR-309, 17beta-Hydroxywortmannin, AEZ S-129, AEZ S-136, HM-5016699, IPI-443, ONC-201, PF-4989216, RP-6503, SF-2626, X-339, XL-499, PQR-401, AEZS-132, CZC-24832, KAR-4141, PQR-31 1, PQR-316, RP-5090, VS-5584, X-480, AEZS-126, AS-604850, BAG-956, CAL-130, CZC-24758, ETP-46321, ETP-471 87, GNE-317, GS-548202, HM-032, KAR-1 139, LY-294002, PF-04979064, PI-620, PKI-402, PWT-143, RP-6530, 3-HOI-BA-01, AEZS-134, AS-041 164, AS-252424, AS-605240, AS-605858, AS-606839, BCCA-621 C, CAY-10505, CH-5033855, CH-51 08134, CUDC-908, CZC-1 9945, D-106669, D-87503, DPT-NX7, ETP-46444, ETP-46992, GE-21, GNE-123, GNE-151, GNE-293, GNE-380, GNE-390, GNE-477, GNE-490, GNE-493, GNE-614, HMPL-51 8, HS-104, HS-1 06, HS-1 16, HS-173, HS-196, IC-486068, INK-055, KAR 1 141, KY-1 2420, Wortmannin, Lin-05, NPT-520-34, PF-04691503, PF-06465603, PGNX-01, PGNX-02, PI 620, PI-103, PI-509, PI-516, PI-540, PIK-75, PWT-458, RO-2492, RP-5152, RP-5237, SB-201 5, SB-2312, SB-2343, SHBM-1009, SN 32976, SR-13179, SRX-2523, SRX-2558, SRX-2626, SRX-3636, SRX-5000, TGR-5237, TGX-221, UCB-5857, WAY-266175, WAY-266176, EI-201, AEZS-131, AQX-MN100, KCC-TGX, OXY-1 11A, PI-708, PX-2000, and WJD-008.


It is contemplated that the additional cancer therapy can comprise an antibody, peptide, polypeptide, small molecule inhibitor, siRNA, miRNA or gene therapy which targets, for example, epidermal growth factor receptor (EGFR, EGFR1, ErbB-1, HERO, ErbB-2 (HER2/neu), ErbB-3/HER3, ErbB-4/HER4, EGFR ligand family; insulin-like growth factor receptor (IGFR) family, IGF-binding proteins (IGFBPs), IGFR ligand family (IGF-1R); platelet derived growth factor receptor (PDGFR) family, PDGFR ligand family; fibroblast growth factor receptor (FGFR) family, FGFR ligand family, vascular endothelial growth factor receptor (VEGFR) family, VEGF family; HGF receptor family: TRK receptor family; ephrin (EPH) receptor family; AXL receptor family; leukocyte tyrosine kinase (LTK) receptor family; TIE receptor family, angiopoietin 1, 2; receptor tyrosine kinase-like orphan receptor (ROR) receptor family; discoidin domain receptor (DDR) family; RET receptor family; KLG receptor family; RYK receptor family; MuSK receptor family; Transforming growth factor alpha (TGF-α), TGF-α receptor; Transforming growth factor-beta (TGF-β), TGF-β receptor; Interleukin 13 receptor alpha2 chain (1L13Ralpha2), Interleukin-6 (IL-6), IL-6 receptor, Interleukin-4, IL-4 receptor, Cytokine receptors, Class I (hematopoietin family) and Class II (interferon/1L-10 family) receptors, tumor necrosis factor (TNF) family, TNF-α, tumor necrosis factor (TNF) receptor superfamily (TNTRSF), death receptor family, TRAIL-receptor; cancer-testis (CT) antigens, lineage-specific antigens, differentiation antigens, alpha-actinin-4, ARTC1, breakpoint cluster region-Abelson (Bcr-abl) fusion products, B-RAF, caspase-5 (CASP-5), caspase-8 (CASP-8), beta-catenin (CTNNB1), cell division cycle 27 (CDC27), cyclin-dependent kinase 4 (CDK4), CDKN2A, COA-1, dek-can fusion protein, EFTUD-2, Elongation factor 2 (ELF2), Ets variant gene 6/a cute myeloid leukemia 1 gene ETS (ETC6-AML1) fusion protein, fibronectin (FN), GPNMB, low density lipid receptor/GDP-L fucose: beta-Dgalactose 2-alpha-Lfucosyltraosferase (LDLR/FUT) fusion protein, HLA-A2, arginine to isoleucine exchange at residue 170 of the alpha-helix of the alpha2-domain in the HLA-A2 gene (HLA-A*201-R170I), MLA-A11, heat shock protein 70-2 mutated (HSP70-2M), KIAA0205, MART2, melanoma ubiquitous mutated 1, 2, 3 (MUM-1, 2, 3), prostatic acid phosphatase (PAP), neo-PAP, Myosin class 1, NFYC, OGT, OS-9, pml-RARalpha fusion protein, PRDXS, PTPRK, K-ras (KRAS2), N-ras (NRAS), HRAS, RBAF600, SIRT2, SNRPD1, SYT-SSX1 or -SSX2 fusion protein, Triosephosphate Isomerase, BAGE, BAGE-1, BAGE-2,3,4,5, GAGE-1,2,3,4,5,6,7,8, GnT-V (aberrant N-acetyl giucosaminyl transferase V, MGATS), HERV-K-MEL, KK-LC, KM-HN-1, LAGE, LAGE-1, CTL-recognixed antigen on melanoma (CAMEL), MAGE-A1 (MAGE-1), MAGE-A2, MAGE-A3, MAGE-A4, MAGE-AS, MAGE-A6, MAGE-A8, MAGE-A9, MAGE-A10, MAGE-Al1, MAGE-A12, MAGE-3, MAGE-B1, MAGE-B2, MAGE-B5, MAGE-B6, MAGE-C1, MAGE-C2, mucin 1 (MUC1), MART-1Nlelan-A (MLANA), gp100, gp100/Pme117 (S1LV), tyrosinase (TYR), TRP-1, HAGE, NA-88, NY-ESO-1, NY-ESO-1/LAGE-2, SAGE, Sp17, SSX-1,2,3,4, TRP2-1NT2, carcino-embryonic antigen (CEA), Kallikfein 4, mammaglobm-A, OA1, prostate specific antigen (PSA), prostate specific membrane antigen, TRP-1/gp75, TRP-2, adipophilin, interferon inducible protein absent in nielanorna 2 (AIM-2), BING-4, CPSF, cyclin D1, epithelial cell adhesion molecule (Ep-CAM), EpbA3, fibroblast growth factor-5 (FGF-5), glycoprotein 250 (gp250intestinal carboxyl esterase (iCE), alpha-feto protein (AFP), M-CSF, mdm-2 (e.g., small molecule inhibitor of HDM2, also known as MDM2, and/or HDM4, such as to reverse its inhibition of p53 activity, such as HDM201, cis-imidazolines (e.g., Nutlins), benzodiazepines (BDPs), spiro-oxindoles), MUCI, p53 (TP53), PBF, FRAME, PSMA, RAGE-1, RNF43, RU2AS, SOX10, STEAP1, survivin (BIRCS), human telomerase reverse transcriptase (hTERT), telomerase, Wilms' tumor gene (WT1), SYCP1, BRDT, SPANX, XAGE, ADAM2, PAGE-5, LIP1, CTAGE-1, CSAGE, MMA1, CAGE, BORIS, HOM-TES-85, AF15q14, HCA66I, LDHC, MORC, SGY-1, SP011, TPX1, NY-SAR-35, FTHLI7, NXF2 TDRD1, TEX 15, FATE, TPTE, immunoglobulin idiotypes, Bence-Jones protein, estrogen receptors (ER), androgen receptors (AR), CD40, CD30, CD20, CD19, CD33, CD4, CD25, CD3, cancer antigen 72-4 (CA 72-4), cancer antigen 15-3 (CA 15-3), cancer antigen 27-29 (CA 27-29), cancer antigen 125 (CA 125), cancer antigen 19-9 (CA 19-9), beta-human chorionic gonadotropin, 1-2 microglobulin, squamous cell carcinoma antigen, neuron-specific enolase, heat shock protein gp96, GM2, sargramostim, CTLA-4, 707 alanine proline (707-AP), adenocarcinoma antigen recognized by T cells 4 (ART-4), carcinoembryogenic antigen peptide-1 (CAP-1), calcium-activated chloride channel-2 (CLCA2), cyclophilin B (Cyp-B), human signet ring tumor-2 (HST-2), Human papilloma virus (HPV) proteins (HPV-E6, HPV-E7, major or minor capsid antigens, others), Epstein-Barr vims (EBV) proteins (EBV latent membrane proteins-L1V11 31, LMP2; others), Hepatitis B or C virus proteins, and HIV proteins.


IX. EXAMPLES

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.


Example 1-Up and Down Regulated Genes Following p53 Treatment Concurrently Activate Anti-Pathogen Immune Responses and Anti-Fibrosis Effects

While numerous studies have been performed to examine the function of p53, few if any, have involved multiplexed, gene expression evaluations in human subjects comparing samples of tissues obtained pre and post treatment to restore p53 activity. Such studies were performed in human papilloma virus (HPV) induced head and neck cancer treated with Ad-p53. Pre and post treatment tissues were compared for the expression levels of 770 genes using the Nanostring IO 360 gene expression panel (Nanostring Technologies Seattle, WA). Viral vectors: Replication-deficient human type 5 adenovirus (Ad5) encoding for expression of the p53 tumor suppressor genes was used for these therapeutic studies. The construction, properties and purification of the vectors have been reported elsewhere for Ad5/CMV p53 vectors (Zhang 1994) as well as its methods of administration (US2019/0038713, US2010/0009203, and WO2020/036635; incorporated herein by references in their entirety).


p53 treatment involved cycles of therapy which consisted of Ad-p53 via intra-tumoral injection on days 1, 2, and 3, at a dose of 1×1011 viral particles/cm3 tumor volume. Cycles were 28 days in length. The methods for restoring p53 function by treatment with Ad-p53 have been described in detail in US2019/0038713, US2010/0009203, and WO2020/036635; incorporated herein by references in their entirety. A post-treatment biopsy was taken approximately one month after the last treatment with Ad-p53 and mRNA was isolated from paraffin-embedded (FFPE) sections from pre-treatment and post-treatment lesions. The pre- and post-treatment RNA samples were compared using Nanostring IO 360 gene expression panel (Nanostring, WA). Clinical responses to p53 treatment were observed. Additional treatment with an immune checkpoint inhibitor was administered to which the tumor did not respond.


The Nanostring IO 360 dataset was analyzed for genes substantially up- or down-regulated as result of p53 treatment defined by a greater than or less than 10-fold change from baseline respectively. A total of 23 strongly-modulated genes out of the 770 gene set met these criteria. Unexpectedly, the vast majority of these genes (91%-21/23) were found to be involved in immune responses and anti-fibrosis functions which would be useful in treating infections and their fibrotic/sclerosing sequellae that are induced by immune inflammation. Surprisingly, these 21 immune/anti-pathogen—anti-fibrosis genes represented a highly, statistically significant subset of genes most substantially effected by p53 treatment (p-value< by two-sided Fisher's Exact Test comparing the immune/anti-pathogen—anti-fibrosis gene group vs. all other genes with a greater than or less than 10-fold change from baseline). The 21 Ad-p53 strongly regulated genes which are implicated in either antiviral/immune or anti-fibrotic functions are shown in FIG. 1 and listed and described in Table 1 below.









TABLE 1







Ad-p53 regulated genes with antiviral/immune or anti-fibrotic


functions.














Antiviral/




Fold

Immune
Anti-


GENE
Regulation
Function
Activation
fibrotic














SOX2
42.3
HNSCC transcription factor
+



S100A8
35.8
Calgranulin-inflammation,
+





toll






like receptor activation




SERPINB5
30.1
Maspin, anti-angiogenic
+



CXCL10
25.5
IP10, anti-angiogenic
+
+


CXCL13
20.7
Lymphocyte infiltration
+



CXCL9
17.4
MIG-1
+



LAMB3
15
Laminin-expressed in
+





HNSCC, invasion




LAMC2
15
Laminin-expressed in
+





HNSCC, invasion




S100A9
14.8
Migration inhibitory
+





factor—inflammation,






toll like receptor






activation




CXCL11
10.9
IP-9/Tac
+
+


ITGB8
10.8
Integrin avb8 T cell
+





homeostasis




CXCL8
10.6
IL-8-proinflammatory
+



IL1RN
10.0
IL-1 receptor antagonist
+
+


PLA2G2A
−90.9
Phospholipase
+
+




A2-inflammation




CCL18
−27.0
Immunosuppressive
+
+


CCL14
−25.6
Activates M2 monocytes
+
+


SFRP1
−24.4
Wnt signaling, Th17
+
+


CD209
−22.2
DC-SIGN
+



MARCO
−18.2
Macrophage receptor-innate
+





immunity




RELN
−17.2
Reelin-negative regulator of
+
+




TGF-beta




PRLR
−10.0
Prolactin receptor
+









More detailed descriptions of immune/anti-pathogen—anti-fibrosis gene functions listed in Table 1 are provided below. The gene showing greatest up-regulation after Ad-p53 treatment was the transcription factor SOX2 (42-fold up regulation post-treatment). SOX2 (SRY-Box Transcription Factor 2) is known as a key differentiation factor involved in the regulation of embryonic development, in the determination of cell fate and plays a critical role in the formation of many different tissues and organs. More recently, SOX2 has been implicated in antiviral responses against diverse viruses. For example, SOX2 has been associated in repressing HPV transcription (Martinez-Ramirez et al., 2017). SOX2 is also important in regulating infection of other viruses, such as Zika virus, where SOX2 targeting significantly attenuated Zika infection (Zhu et al., 2020). Human cytomegalovirus (HCMV) infection inhibits SOX2 expression mediated by CMV immediate early proteins IE1 and IE2 (Wu et al., 2018). In Merkel cell polyomavirus (MCV), the viral large T-antigen is responsible for Sox2 activation (Harold et al., 2019). Therefore, the induction of SOX2 by Ad-p53 is novel and SOX2 has profound antiviral activity.


The myeloid inflammatory proteins S100A8 and S100A9 are up-regulated post-treatment by 35- and 15-fold, respectively. These genes are also referred to as damage associated molecular pattern (DAMPS) molecules or alarmins which are key to initiation of antiviral immune responses. Neutrophils and monocytes, central components of innate immunity, express pattern recognition receptors (PRRs) on their surface that bind evolutionarily conserved structures such as bacterial or viral pathogen-associated molecular patterns (PAMPs) and endogenous danger-associated molecular patterns (DAMPs), leading to cell activation. S100A8/9 proteins can also function as endogenous ligands and activators of toll-like receptor 4 (TLR4) (Brenner and Bruserud, 2018). Many viruses induce an inflammatory response during acute infection through TLR4 activation. Known TLR4-activating viral proteins include the RSV fusion protein (F), the EBOV glycoprotein, the vesicular stomatitis virus glycoprotein (VSV G), and the dengue virus (DENV) nonstructural protein 1 (NS1). Similarly, the TLR3 ligand poly I:C represents a synthetic analog of viral double-stranded RNA (dsRNA). S100A8 and S100A9 are specifically up-regulated in response to polyI:C and are involved in epithelial cell-type specific anti-viral response. (Voss et al., 2012).


The gene encoding Serpin B5 (maspin) was up-regulated by >30-fold and has been implicated as an anti-angiogenic function and as a tumor suppressor. Recent data indicate that maspin expression correlates with the activation and proliferation of CD8+ T-cell subsets and thus can modify the host immune response (Dzinic et al., 2014, 2015). The IFN gamma regulated chemokines CXCL8,9,10,11,13 were all up-regulated by 10->25-fold, reflecting their role in antiviral immune induction, signaling and regulation of leukocyte infiltration. Immune activation is further enhanced by p53 down regulation of the prolactin receptor (PRLR) gene preventing prolactin inducible suppressors of cytokine signaling (SOCS) through this receptor (Tamet al., 2001). Unexpectedly, p53 treatment upregulated integrin ITGB8 (alphavbeta8) expression 10 fold and the related integrin ITGA2 (integrin subunit alpha 2) was upregulated 6 fold which reflect compensatory regulatory T cell homeostatic mechanisms associated with the role of alpha v integrins in regulatory T cell accumulation at sites of inflammation to ameliorate excessive immune responses leading to fibrosis (Mair et al., 2018; Worthington et al., 2015). For cancer therapy, where anti-tumor immune responses should be maximized, p53 combination cancer therapies are administered with integrin inhibitors (Raab-Westphal et al., 2017) to further enhance anti-tumor immune responses.


The gene showing greatest downregulation is PLA2G2A, secreted phospholipase A2 which decreased by >90-fold after treatment. This gene was defined as playing a role in inflammatory processes and eicosanoid generation. Serum levels of PLA2G2A are associated with the progression of HBV-related diseases and PLA2G2A is a novel biomarker for diagnosis of liver disease in chronic HBV infection (Zhu et al., 2017). Note that p53 function is inactivated by HBV (Hussain et al., 2007).


PLA2G2A regulation has shown contrasting behaviors: it was found to be strongly up-regulated by IFN-gamma (Menschikowski et al., 2008, He et al., 2010), although others have shown that PLA2G2A suppresses interferon-induced genes (Fijneman et al., 2009). PLA2G2A has been identified as a direct target for beta-catenin-dependent Wnt signaling (Ganesan et al., 2008) and has been implicated in regulation of Notch, TGF-beta and Hedgehog signaling pathways (Finjeman et al., 2009). The Wnt pathway has been a reported target of a variety of viruses, including human cytomegalovirus (HCMV), hepatitis B virus (HBV), hepatitis C virus (HCV), HIV, Epstein-Barr virus (EBV), Kaposi's sarcoma—associated herpesvirus (KSHV) and Rift Valley Fever virus (RVFV) (Harmon et al., 2016). Activation of the canonical Wnt signaling pathway is a common feature of many viruses and p53 suppresses many elements of the Wnt pathway, which contributes to a broad antiviral defense mechanism.


The principal effector of the Wnt pathway, the CTNNB1 gene encoding beta-catenin was decreased by 3.6-fold, reflecting decreases in multiple components of beta-catenin signaling. The Wnt-beta-catenin and TGF-beta signaling pathways contribute to a lack of T cell infiltration in tumors and both inhibit PD-1 checkpoint blockade therapy (Spranger et al., 2015, Marathiasan et al., 2018); thus, p53-mediated down-regulation of these immunosuppressive pathways enhances efficacy of anti-viral and immunogenic therapies.


Both CD209 and MARCO genes function in regulation of the immune system and can also function as virus receptors. CD209 is down-regulated by >20-fold and MARCO is down-regulated by >18-fold and are novel down regulated targets of p53. CD209, also known as DC-SIGN binds various microorganisms and functions as a receptor for several viruses such as HIV and Hepatitis C to promote infection of T-cells from dendritic cells. Binding to DC-SIGN is an essential process for HIV and Dengue virus infection and DC-SIGN enhances infection mediated of Ebola virus (EBOV) Marburg virus (MARV) and severe acute respiratory syndrome coronavirus (SARS-CoV) by >10-fold. Although ACE2 has been identified as the primary receptor for SARS-CoV, the S1 spike protein (S) also binds to cells expressing DC-SIGN, albeit with reduced efficiency compared to ACE2-positive cells. It appears that DC-SIGN facilitates SARS-CoV S-driven infectious entry, and thereby enhances SARS-CoV infection and viral spread (Yang et al., 2004). Dendritic cells which express high levels of DC-SIGN are not susceptible to SARS-CoV infection but can promote infection of permissive cells in trans (Marzi et al., 2004). DC-SIGN is an independent receptor and synergistically works with ACE2 on the SARS-CoV viral entry. Both ACE2 and DC-SIGN gene expression are elevated in the lungs of smokers, especially former smokers and DC-SIGN expression is increased in people of age>60 years (Cai et al., 2020). This may help to explain why smokers, especially former smokers, and people over 60 have higher risk and are more susceptible to SARS-CoV-2 infection. Thus, Ad-p53 infection down-regulates an important receptor for SARS-CoV-2.


Besides functioning as an adhesion molecule, DC-SIGN can also initiate innate immunity by modulating toll-like receptors signaling. Binding of DC-SIGN by viruses (SARS-CoV, measles, HIV, Dengue etc.) or various pathogens (such as Mycobacterium tuberculosis, M. leprae, Candida albicans etc.) modulates signaling by different TLRs and regulates adaptive immunity by DCs to bacterial, fungal, and viral pathogens (Gringhuis et al., 2007).


MARCO is down-regulated by >18-fold. MARCO is class A scavenger receptor and in addition to the role of this receptor in the innate immune system, MARCO is exploited by multiple viruses to increase infection, such as herpes simplex virus type 1 (HSV-1), vaccina virus (McLeod et al., 2013, 2015) and Adenoviruses (Stitchling et al., 2018). In addition to the loss of MARCO after p53 treatment, the gene showing the greatest downregulation is PLA2G2A, a secreted phospholipase A2 which decreased by >90-fold after treatment. Baas et al. (2006) investigated host response and pathogenesis associated with severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) by monitoring gene expression using formalin-fixed paraffin-embedded (FFPE) pulmonary autopsy tissues. The tissues were obtained from patients diagnosed with various microbial infections, including SARS-CoV, that caused acute respiratory distress syndrome (ARDS). PLA2G2A was shown to be up-regulated by SARS patients with pulmonary damage and, thus, the ability of Ad-p53 to significantly reduce PLA2G2A provides an opportunity to beneficially intervene in SARS-mediated ARDS.


A further study by Seeds et al (2012) showed that sPLA2 enzyme activity in bronchioalveolar lavage (BAL) fluid was markedly elevated in ARDS samples relative to healthy subjects when measured by ex vivo hydrolysis of both phosphatidylglycerol (PG) and phosphatidylcholine (PC). They identified a strong correlation between the BAL sPLA2 activity and PLA2G2A protein. PLA2G2A is induced by inflammatory cytokines induced in the early phase of ARDS such as TNFα and IL-6 and PLA2G2A expression has been reported in airway epithelial cells and in serum during systemic infection or inflammation. They showed that increased levels of PLA2G2A protein and enzymatic activity are an important contributor to lung and surfactant injury in early ARDS.


The IFN gamma regulated chemokines CXCL8,9,10,11,13 were all up-regulated by >10 to >25-fold, reflecting their role in immune induction and signaling (see above), however chemokines implicated in lung fibrosis, microenvironmental immune suppression, angiogenesis and recruitment of immunosuppressive Tregs and M2 macrophages were strongly down-regulated. Treatment with Ad-p53 resulted in a decrease in the chemokine CCL18 by >27-fold. Elevated CCL18 expression has been related to various pulmonary conditions. Of sixteen chemokines investigated using RT-PCR in a comparison of normal lung tissue with that affected by idiopathic pulmonary fibrosis or hypersensitivity pneumonitis, CCL18 was the most remarkably and consistently increased chemokine. The finding that CCL18 stimulated collagen production in lung fibroblasts indicates a role for CCL18 in lung fibrosis (Pardo et al., 2001, Atamas et al., 2003). Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease characterized by progressive loss of lung function and poor prognosis. The so-called acute exacerbation of IPF (AE-IPF) leads to severe hypoxemia requiring mechanical ventilation in the intensive care unit (ICU). AE-IPF shares several pathophysiological features with acute respiratory distress syndrome (ARDS), a very severe condition observed in COVID-19 patients. A study from Prasse et al., 2006 showed markedly increased mRNA expression and protein levels of CCL18 in BAL from patients with diverse pulmonary fibrotic diseases, including IPF, sarcoidosis, and hypersensitivity pneumonitis. The chemokine CCL14 which regulates the infiltration of immune cells was strongly down-regulated by >25-fold after Ad-p53 treatment. Similarly, CXCL12 which has been implicated in the pathogenesis of pulmonary fibrosis was also decreased by 9-fold (Li et al., 2020). Various groups have shown that the levels of ELR-negative chemokines CXCL10 and CXCL11 are decreased, leading to an imbalance that leads to an angiogenic response. The amounts of CXCL10 and CXCL11 in the lung during bleomycin-induced pulmonary fibrosis have been found to be inversely correlated with measures of fibrosis. Administration of the CXCL10 or CXCL11 to these animals during exposure to bleomycin attenuates pulmonary fibrosis reduced angiogenesis (Keane, 2008; Tager et al., 2004). After Ad-p53 treatment, CXCL10 and CXCL11 are increased by 25 and >10-fold, respectively, reflecting the anti-fibrotic activity of Ad-p53.


Another lung fibrosis-related gene is secreted frizzled receptor 1 (sFRP1) which was down-regulated by >24-fold. The role of sFRP in modulation of organ fibrosis has been demonstrated in the kidney in vivo and in vitro and sFRPs have been shown in pulmonary fibrosis (Selman et al., 2008). Another fibrosis-related member of the wnt family is Indian Hedgehog (IHH), which was down-regulated by >9-fold. IHH has been identified as being involved in renal fibrosis (Fabain et al, 2012). In IPF there is increased angiogenic activity in the bronchioalveolar fluid (BALF).


The Reelin gene (RELN) was down-regulated by >17-fold. Reelin is a large secreted extracellular matrix glycoprotein that regulates neuronal migration and positioning in the developing brain by controlling cell—cell interactions and has been implicated in pathogenesis of several brain diseases including schizophrenia, psychotic bipolar disorder, Alzheimer's disease, temporal lobe epilepsy and autism. Genes involved in wnt/hedgehog signaling pathway are also involved in many of these neurodevelopmental disorders. Thus, it was surprising to observe the significant effect of Ad-p53 on this gene. Recently, a central role of the AKT-FOXG1-reelin signaling pathway was identified in focal malformations of cortical development some forms of focal epilepsy, due to neuronal cell migration defect (Baek et al., 2015). Phosphorylation of AKT is closely linked with inflammation and fibrosis (Nie et al., 2019) and therefore the Akt-reelin pathway was modulated by Ad-p53 to inhibit fibrosis. Reelin is involved in liver fibrosis and its expression is increased in a rat fibrosis model. In humans, reelin levels correlate with extent of liver cirrhosis and serve as a marker for progression of hepatic fibrosis in patients infected with hepatitis C virus (Mansy et al., 2014, Khialeeva and Carpenter, 2016).


The IL-1RN (IL-1 receptor antagonist) gene was up-regulated by 10-fold. Korthagen et al., 2012 performed a meta-analysis of IL-1RN genetic variations and risk of IPF. They showed that lower levels of IL-1RN mRNA predispose to IPF and thus Ad-p53 increasing IL-1RN provides anti-fibrotic activity. For SARS-CoV-associated disease in humans, excessive pro-inflammatory responses, illustrated by elevated levels of inflammatory cytokines and chemokines, mediate immune-pathology resulting in acute lung injury (ALI) and ARDS. Inflammatory cytokines, such as IL-1β, play a major role in mediating and amplifying ALI/ARDS and are elevated in SARS-CoV-infected patients and SARS-infected macaques (Smits et al., 2010). Thus, inhibition of IL-1 function by Ad-p53-mediated up-regulation of IL-1RN ameliorates ALI/ARDS. In addition, the CD36 gene was down regulated by 9-fold and is another scavenger receptor gene involved in both antiviral and anti-fibrotic functions.


The remaining 2 genes of the 23 most regulated genes were NGFR and GAS1 which have pleiotropic cell cycling properties and were inhibited by 14.5 to 10-fold respectively following Ad-p53 treatment. Interestingly, NGFR is known to inhibit p53 and NGFR ablation enhances p53 activity (Zhou et al., 2016). Thus, it was found that p53 therapy can induce NGFR down regulation enhancing its own efficacy.


Example 2— Concomitant Upregulation of Immune Activating/Anti-Pathogen and Down Regulation of Immune Suppressive/Anti-Fibrosis Gene Pathways

In addition to the individual genes in the Nanostring IO 360 dataset, the pre- and post-treatment biopsies data were also analyzed for grouped gene profiles associated with therapeutic efficacy for anti-pathogen/immune and other pathological conditions. Both activation of anti-pathogen immune defense pathways coupled with anti-inflammatory/fibrosis pathways were observed as shown in (FIG. 2). Interferon-gamma, CD8+ T-cell profiles, Cytotoxicity and iNOS (inducible nitric oxide synthase, NOS2) profiles were increased consistent with activation of anti-pathogen immune responses, whereas immunosuppressive pathways as exemplified by IL-10 and TGF-beta were inhibited respectively. The post-treatment lesion profiles reflected strong up-regulation of genetic pathways involved in IFN-gamma activation, CD8+ T cells, PDL-1, immuno-proteosome and antigen presentation whereas pathways reflecting stroma, macrophage, endothelium and immunosuppressive genes programs such as IL10 and TGF-beta signatures were decreased. Analysis of cell phenotypic markers showed substantial increases in gene expression from CD8+ T cells and increased cytotoxic T cells. Cell types associated with inhibition of CTL responses, such as macrophages, mast cells and neutrophils were all decreased in post-treatment samples. Killer T cell abundance as reflected by CD8A expression was up-regulated and many IFN gamma pathway genes were increased as described above. Infiltration of T cells and natural killer cells activate the production of IFN-γ, which has direct and indirect antiviral properties. Concomitantly, the down regulation of IL10 and TGF-beta signatures enhance anti-viral and anti-pathogen immunity associated with clearing pathogen infections. Further inspection indicated that antiviral and anti-fibrotic pathways and genes were activated in response to treatment. A number of strongly regulated genes were previously unidentified as being known components the p53 anti-cancer pathways. Thus, a genetic signature was identified that distinguishes antiviral and anti-fibrotic states mediated by Ad-p53 injection.


Example 3— p53 Treatment Down Modulates ARDS/Lung Fibrosis-Related Gene Profiles

Among the most devastating sequellae of infections are fibrosis reactions that lead to serious and frequently lethal organ damage. The induced gene profiles that lead to fibrotic reactions are well known and secondary to the induced inflammatory response necessary for pathogen eradication. Surprisingly, in addition to inducing the immune mediators required for pathogen clearance (described above and as shown in FIG. 1 and FIG. 2, p53 therapy downregulated multiple gene pathways involved in organ fibrosis and ARDS (acute respiratory distress syndrome) as shown in FIG. 3.


The stroma-related gene pathway (which comprises>50 gene products encompassing extracellular matrix remodeling, cell adhesion, myeloid cells, collagens, angiogenesis and metastasis was strongly down-regulated by p53 treatment (see Table 2 below). Similarly, the anti-inflammatory pathways involved in IL-10 and TGF-beta were down-regulated as were endothelium and mast cell pathways. Key immunosuppressive pathways which intersect with ARDS and lung injury showed consistent down-regulation in the post-treatment biopsy. For example, after Ad-p53 treatment, TGF-beta1, TGF-beta 3 and TGF-beta receptor-2 were all down regulated and similarly, IL-10 and IL-10R alpha were decreased. These key immune modulatory pathways are up-regulated in SARS-Cov-2 infection, indicating the ability of Ad-p53 treatment to ameliorate virus-induced lung injury.









TABLE 2





Stromal-related factors from IO360 gene set


Stromal Factor Gene Set




















A2M
COL4A5
ITGA4
KDR
NID2
TGFB2


BMP2
COL5A1
ITGA6
LAMA1
PDGFA
TGFB3


CASP3
COL6A3
ITGAE
LAMB3
PDGFB
THBS1


CD36
COMP
ITGAL
LAMC2
PECAM1
VCAM1


CD44
CTSS
ITGAM
LOXL2
PLOD2
VCAN


CD47
ICAM1
ITGAV
LTBP1
PRKCA



CDH1
ICAM2
ITGAX
MMP1
RELN



COL11A1
ICAM3
ITGB2
MMP7
SERPINH1



COL11A2
ITGA1
ITGB3
MMP9
SPP1



COL17A1
ITGA2
ITGB8
NCAM1
TGFB1









Almost all patients with COVID-19 present with lung involvement, as evidenced by chest radiography, whereas severe complications — such as acute respiratory distress syndrome (ARDS) leading to death — are observed in a subgroup of patients. Patients with SARS-CoV-2 show high levels of interferon-γ (IFNγ), IL-6, IL-12, TNF-α, transforming growth factor-β (TGFβ), CCL2, CXCL10, CXCL9 and IL-8 (Merad and Martin, 2020). After p53 treatment, we observe decreased gene expression in transforming growth factor-β (TGFβ) and CCL2, indicating that p53 reduces expression of the genes that cause pathogen induced lung pathology.


Example 4—Tumor Response Following p53 Stroma Treatment with Unexpected Anti-Stroma and Anti-IL10 Gene Expression Programs

As shown in FIG. 4, there was a dramatic tumor response following p53 treatment of the tumor stroma following intra-tumoral administration. The response of the injected lesion exceeded the 30% reduction in tumor size by Response Evaluation Criteria for Solid Tumors (RECIST). Unexpectedly, the p53 stromal treatment resulted in anti-stromal and anti-IL10 gene expression effects listed in Tables 2 and 3 above which had not been previously known as p53 related functions. These findings support novel applications of p53 therapy for pathological conditions where anti-stromal and anti-IL10 effects are beneficial.


In summary, p53 therapy surprisingly resulted in strong up-regulation of genetic pathways involved in anti-pathogen responses including IFN-gamma activation, CD8+ T cells, immuno-proteosome and antigen presentation. Unexpectedly, p53 therapy concurrently decreased gene expression pathways responsible for deleterious infection sequalae including stroma, macrophage, endothelium TGF-beta and IL10 genes. Analysis of cell phenotypic markers showed substantial increases in gene expression from CD8+ T cells and increased cytotoxic T cells which clear viral infections and tumors. Cell types associated with inhibition of CTL responses, such as macrophages, mast cells and neutrophils were all decreased in post-treatment samples. Killer T cell abundance as reflected by CD8A expression was up-regulated and many IFN gamma pathway genes were increased as described above. Infiltration of T cells and natural killer cells activate the production of IFN-γ, which has direct and indirect anti-pathogen properties. Surprisingly and unexpectedly, p53 treatment substantially reduced fibrotic/stroma gene pathways that are responsible for serious pathogen sequalae such as lung and liver fibrosis. A number of previously unidentified, strongly p53 down regulated genes associated with stromal pathways and IL10 expression identified novel anti-cancer therapeutic applications.


All the methods disclosed and claimed herein can be made and executed without undue experimentation considering the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.


REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

  • Aghi et al., Cancer Res., 59:3861-3865, 1999.
  • Aksentijevich et al. Human Gene Ther. 7:1111, 1996.
  • Baichwal and Sugden, In: Gene Transfer, Kucherlapati R, ed., New York, Plenum Press, pp. 1 17-148, 1986.
  • Bailey and Levine, J. Pharm. Biomed. Anal., 11: 285-292, 1993.
  • Bouvet et al., Cancer Res., 58:2288-2292, 1998.
  • Brudno et al., Nat Rev Clin Oncol. (2018) 15:31-46. doi: 10.1038/nrclinonc.2017.128
  • Buller et al., Cancer Gene Therapy, 9: 553-566, 2002.
  • Camacho et al. J Clin Oncology, 22(145), 2004.
  • Carroll et al., Mol Cancer Therapeutics, 1:49-60, 2001.
  • Caudell et al., J Immunol., 168:6041-6046, 2002.
  • Chada et al., Cancer Gene Ther., 13:490-502, 2006.444-448, 1998.
  • Chase et al., Nat. Biotechnol., 16:
  • Chen and Okayama, Mol. Cell. Biol. 7:2745-2752, 1987.
  • Choi et al. Gene Therapy, 17: 190-201, 2010.
  • Corrales et al., Cell Reports, 11, 1018-1030, 2015.
  • Couch et al, Am. Rev. Resp. Dis., 88:394-403, 1963.
  • Couper et al., J Immunol, 180:5771-5777; 2008.
  • Denhardt DT, ed., Stoneham: Butterworth, pp. 467-492, 1988.
  • Doronin et al., Virology, 305:378-387, 2003.
  • Dubois et al., 2008.
  • Dzinic et al., Bosnian Journal of Basic Medical Sciences, 15(4), 1-6, 2015.
  • Dzinic et al., Oncotarget, 5(22), 11225-11236, 2014.
  • European Patent Application No. EP2403951A2
  • European Patent Application No. EP2724728A1
  • Fijneman et al., Cancer Science, 99(11), 2113-2119, 2008.
  • Fraley et al, Proc. Nat 1 Acad. Sci. 76:3348-3352, 1979.
  • Fujiwara et al., J Natl Cancer Inst, 86: 1458-1462, 1994.
  • Ganesan et al., Cancer Research, 68(11), 4277-4286, 2008.
  • Ghiringhelli et al., Biomed. 1, 38:111-116, 2015.
  • Graham and Van Der Eb, Virology, 52:456-467, 1973.
  • Gurnani et al., Cancer Chemother Pharmacol., 44(2): 143-151, 1999.
  • Harland and Weintraub, J. Cell Biol, 101:1094-1099, 1985.
  • Hartwell et al., Science, 266: 1821-1828, 1994.
  • Hurwitz et al. Proc Natl Acad Sci. 95(17): 10067-10071, 1998.
  • Hynes and Ferretti, Methods Enzymol., 235: 606-616, 1994.
  • Iannello et al., J Experimental Medicine, 210(10):2057-2069.
  • IMLYGIC™ [package insert]. Amgen, Inc., Thousand Oaks, CA; October 2015.
  • Inoue et al., Cancer Letters, 157:105-112, 2000.
  • International Patent Application No. WO1995001994.
  • International Patent Application No. WO1998042752.
  • International Patent Application No. WO2000037504.
  • International Patent Application No. WO2001014424.
  • International Patent Application No. WO2004058801.
  • International Patent Publication No. WO 2005/003168.
  • International Patent Publication No. WO 2005/009465.
  • International Patent Publication No. WO 2006/003179.
  • International Patent Publication No. PCT/KR2011/004693
  • International Patent Publication No. WO 2006/072625.
  • International Patent Publication No. WO 2006/072626.
  • International Patent Publication No. WO 2007/042573.
  • International Patent Publication No. WO 2008/084106.
  • International Patent Publication No. WO 2010/065939.
  • International Patent Publication No. WO 2012/071411.
  • International Patent Publication No. WO 2012/160448.
  • International Patent Publication No. WO 2012009703.
  • International Patent Publication No. WO1995011986.
  • International Patent Publication No. WO2014/047350
  • International Patent Publication No. WO2014/047350.
  • International Patent Publication No. WO2014/138314
  • International Patent Publication No. WO2014/138314.
  • International Patent Publication No. WO2014100014A1
  • International Patent Publication No. WO2015/016718.
  • International Patent Publication No. WO2015/027163
  • International Patent Publication No. WO2015/027163.
  • International Patent Publication No. WO2015/150809.
  • International Patent Publication No. WO2016/009017
  • International Patent Publication No. WO2016/009017.
  • International Patent Publication No. WO2020/036635
  • Jiang et al., Proc. Natl. Acad. Sci., 93:9160-9165.
  • Kawabe et al., Mol Ther. 6(5):637-44, 2002.
  • Kawabe et al., Mol. Ther. 6(5): 637-644, 2002.
  • Keane, In European Respiratory Review, 17 (109), 151-156, 2017.
  • Kim et al. Journal of the National Cancer Institute, 98(20): 1482-1493, 2006.
  • Kotin et al, Proc. Natl. Acad. Sci. USA, 87:221 1-2215, 1990.
  • Kreil, Protein Sci., 4:1666-1669, 1995.
  • Laube Respir Care, 60(6):806-824, 2015.
  • Lichtenstein et al, Int. Rev. Immunol., 23:75-111, 2004.
  • Liu et al 1 Biol. Chem., 270:24864, 1995.
  • Lui et al., Gene Therapy, 10:292-303, 2003.
  • Mair et al., Frontiers in Immunology, 2018.
  • Mann et al, Cell, 33:153-159, 1983.
  • Mariathasan et al., Nature, 554(7693), 544-548, 2018.
  • Markowitz et al., J. Virol., 62: 1 120-1 124, 1988.
  • Martinez-Ramirez et al., Viruses, 9(7), 1-17, 2017.
  • McLaughlin et al, J. Virol., 62:1963-1973, 1988.
  • Mellman et al., Nature 480:480-489, 2011.
  • Mellman et al., Nature, 480:480-489, 2011.
  • Mhashilkar et al., Mol. Medicine 7(4): 271-282, 2001.
  • Miyahara et al., Cancer Gene Therapy, 13:753-761, 2006.
  • Mokyr et al., Cancer Res., 58:5301-5304, 1998.
  • MultiVir Inc., Form S-1 Registration Statement, U.S. Securities and Exchange Commission,
  • Muzyczka, Curr. Top. Microbiol Immunol, 158:97-129, 1992.
  • Nemunaitis J., Clayman G., and Agarwala S. S. et al, Clin Cancer Res, 15(24): 7719-25, 2009.
  • Nicolas and Rubenstein, In: Vectors: A survey of molecular cloning vectors and their uses,
  • Rodriguez and Denhardt (eds.), Stoneham: Butterworth, pp. 493-513, 1988.
  • Nicolau and Sene, Biochim. Biophys. Acta, 721:185-190, 1982.
  • Nicolau et al. Methods Enzymol, 149:157-176, 1987.
  • Nishikawa et al., Mol. Ther 9(8):818-828, 2004b.
  • Nishikawa et al., Oncogene, 23(42): 7125-7131, 2004a.
  • Nishizaki M, et al., Clin. Can. Res., 5: 1015-1023, 1999.
  • Ohashi M, et al., Gut, 44:366-371, 1999.
  • Pardoll, Nat Rev Cancer, 12(4): 252-64, 2012.
  • Pardoll, Nature Rev Cancer, 12:252-264, 2012.
  • Patel et al., Adv. Mater. 31, 1805116, 2019.
  • Philip et al. J. Biol. Chem., 268: 16087, 1993.
  • Prasse et al., American Journal of Respiratory and Critical Care Medicine, 173(7), 781-792, 2006.
  • Qi et al., Front. Immunol., 11:361, 2020 1 https://doi.org/10.3389/fimmu.2020.00361 Qin, X., et al., Biol Reprod., 56:800-11, 1997a.
  • Qin, X., et al., Biol Reprod., 56:812-20, 1997b.
  • Raab-Westphal et al., Cancers, 9(9), 1-28, 2017.
  • Ridgeway, In: Vectors: A survey of molecular cloning vectors and their uses, Rodriguez RL.
  • Rippe et al, Mol. Cell Biol, 10:689-695, 1990.
  • Rosenberg et al., Nat Med., 10(19): 909-15, 2004.
  • Samulski et al, EMBO J. 10:3941-3950, 1991.
  • Samulski et al, J Virol, 63:3822-3828, 1989.
  • Selman et al., In PLoS Medicine, 5(3), 0373-0380, 2008.
  • Sherwood et al., Endocrinology 114:806-13, 1984.
  • Sobol et al., Chapter 11: Tp53 Gene Therapy for Cancer Treatment and Prevention, NY:
  • Springer Science+Business Media, 2013.
  • Solodin et al, Biochemistry, 34: 13537, 1995.
  • Spitz et al., Clin Cancer Research, 2: 1665-1671, 1996.
  • Spranger et al., Nature, 523(7559), 231-235, 2015.
  • Sudheendra et al. Comparison of three different needles for percutaneous injections. Cardiovasc Intervent Radiol. 2007; 30(1):151-152. doi:10.1007/s00270-005-0387-3
  • Swisher et al., Clin Cancer Research, 9:93-101, 2003.
  • Tatebe S, et al., Int. J Oncol., 15: 229-235, 1999.
  • Tchekmedyian et al., Oncology, 29(12):990-1002, 2015.
  • Temin, n: Gene Transfer, Kucherlapati (ed.), New York: Plenum Press, pp. 149-188, 1986.
  • Textor et al., Cancer Res., 71(18):5998-6009, 2011.
  • Thierry et al. Proc. Natl. Acad. Sci., 92(21):9742-6, 1995.
  • Timiryasova et al., Biotechniques. 31:534, 6, 8-40, 2001.
  • Toda et al., Mol. Therapy, 2(4): 324-329, 2000.
  • Tollefson et al., J. Virol., 70: 2296-2306, 1996.
  • Top et al, J Infect. Dis., 124:155-160, 1971.
  • Tsukamoto et al, Nature Genetics, 9:243, 1995.
  • U.S. Patent Application No. US20110008369.
  • U.S. Patent Application No. US2014022021.
  • U.S. Patent Application No. US20140294898.
  • U.S. Pat. No. 4,797,368.
  • U.S. Pat. No. 4,835,251.
  • U.S. Pat. No. 5,023,321.
  • U.S. Pat. No. 5,139,941.
  • U.S. Pat. No. 5,302,523.
  • U.S. Pat. No. 5,384,253.
  • U.S. Pat. No. 5,464,765.
  • U.S. Pat. No. 5,580,859.
  • U.S. Pat. No. 5,589,466.
  • U.S. Pat. No. 5,656,610.
  • U.S. Pat. No. 5,702,932.
  • U.S. Pat. No. 5,736,524.
  • U.S. Pat. No. 5,780,448.
  • U.S. Pat. No. 5,789,215.
  • U.S. Pat. No. 5,811,395.
  • U.S. Pat. No. 5,925,565.
  • U.S. Pat. No. 5,935,819.
  • U.S. Pat. No. 5,945,100.
  • U.S. Pat. No. 5,981,274.
  • U.S. Pat. No. 5,994,136.
  • U.S. Pat. No. 5,994,624.
  • U.S. Pat. No. 6,013,516.
  • U.S. Pat. No. 6,207,156.
  • U.S. Pat. No. 7,223,593
  • U.S. Pat. No. 7,537,924
  • U.S. Pat. No. 8,017,114.
  • U.S. Pat. No. 8,119,129.
  • U.S. Pat. No. 8,329,867.
  • U.S. Pat. No. 8,354,509.
  • U.S. Patent Publication No. US 2017/0044229
  • U.S. Patent Publication No. US20060257361
  • U.S. Patent Publication No. US20070160578
  • U.S. Patent Publication No. US2010/0009203
  • U.S. Patent Publication No. US2011/0039778.
  • U.S. Patent Publication No. US2015/0202290
  • U.S. Patent Publication No. US2015/0202290.
  • U.S. Patent Publication No. US20170183403
  • U.S. Patent Publication No. US2019/0038713
  • U.S. Pat. No. 8,067,567
  • Valkenburg et al., Nat Rev Clin Oncol. 15(6): 366-381, 2018.
  • Vincent et al., Cancer Res., 70(8):3052-3061, 2010.
  • Waku et al., J Immunol., 165:5884-5890, 2000.
  • Worthington et al., Immunity, 42(5), 903-915, 2015.
  • Xu et al. Gene Therapy, 22(3): 31-40, 2015.
  • Xu et al., J Gastroenterol., 48(2):203-13, 2013.
  • Xue et al., Nature, 445(7128):656-660, 2007.
  • Young et al., Cancer Gene Ther., 20(9): 531-537, 2013.
  • Yun et al., Human Gene Therapy 23:609-622, 2012.
  • Zaragouldis et al., Int. J. Mol. Sci., 13, 10828-10862; 2012.
  • Zeimet and Marth, The Lancet Oncology, 7:415-422, 2003.
  • Zhang et al., Biomark Res. (2017) 5:22. doi: 10.1186/s40364-017-0102-y
  • Zhang et al., Cancer Gene Ther, 22:17-22, 2015.
  • Zhang et al., Cancer Gene Ther.,1:5-13, 1994.
  • Zhao et al., PLOS ONE 10(10): e0139598. doi.org/10.1371/journal.pone.0139598, 2015.
  • Zhen et al., PLoS Pathog. (2017) 13:e1006753. doi: 10.1371/journal.ppat.1006753

Claims
  • 1. A method of treating a pathogenic infection in a subject, comprising administering a therapeutically effective amount of a p53 gene therapy to a subject infected or suspected of being infected by a pathogen.
  • 2. The method of claim 1, wherein the p53 gene therapy comprises administering a nucleic acid encoding a p53 polypeptide.
  • 3. The method of claim 1, wherein the p53 gene therapy comprises restoration and/or amplification of p53 function by gene editing.
  • 4. The method of claim 3, wherein gene editing comprises using Zinc Finger Nucleases (ZFN), Transcription Activator Like Effector Nucleases (TALEN), or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to express p53.
  • 5. The method of any of claims 1-4, wherein the p53 gene therapy composition is a pharmaceutically acceptable composition.
  • 6. The method of any of claims 1-5, wherein the pathogen is a virus, bacteria, or fungus.
  • 7. The method of any of claims 1-6, wherein the pathogen is a virus.
  • 8. The method of claim 7, wherein the virus is an endoplasmic reticulum-tropic virus, human papilloma virus (HPV), herpes simplex virus (HSV-1), Hepatitis C virus, a flavivirus species, HHV6, rubella, LCMV, human immunodeficiency virus (HIV), or Hepatitis B virus.
  • 9. The method of claim 8, wherein the virus is influenza A, influenza B, influenza C, parainfluenza, paramyxoviruses, Newcastle disease virus, respiratory syncytial virus, measles, mumps, adenoviruses, adeno-associated viruses, parvoviruses, Epstein-Barr virus, rhinoviruses coxsackieviruses echoviruses, reoviruses, rhabdoviruses, coronavirus, polioviruses, herpes simplex, cytomegaloviruses, papillomaviruses, virus B, varicella-zoster, poxviruses, rabies, picornaviruses, rotavirus, dengue, or Kaposi associated herpes virus.
  • 10. The method of claim 9, wherein the coronavirus is severe acute respiratory syndrome coronavirus (SARS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), or Middle-east respiratory syndrome coronavirus (MERS-CoV).
  • 11. The method of any of claims 1-10, wherein the subject is a mammal.
  • 12. The method of claim 11, wherein the mammal is a human.
  • 13. The method of any of claims 2-12, wherein the nucleic acid encoding p53 is provided in an expression cassette under the control of a promoter active in said subject.
  • 14. The method of claim 13, wherein the promoter is cytomegalovirus (CMV), SV40, or PGK.
  • 15. The method of claim 13 or 14, wherein the expression cassette is in a viral vector.
  • 16. The method of claim 15, wherein the viral vector is an adenoviral vector, a retroviral vector, a vaccinia viral vector, an adeno-associated viral vector, a herpes viral vector, a vesicular stomatitis viral vector, a polyoma viral vector.
  • 17. The method of claim 15, wherein the viral vector is an adenoviral vector.
  • 18. The method of any of claims 2-14, wherein the nucleic acid encoding p53 is administered by a non-viral approach.
  • 19. The method of claim 18, wherein the non-viral vector comprises a nanoparticle or lipoplex.
  • 20. The method of claim 19, wherein the lipoplex comprises DOTAP and at least one cholesterol, cholesterol derivative, or cholesterol mixture.
  • 21. The method of any of claims 1-20, wherein the p53 gene therapy is administered to the subject intravenously, intraarterially, intravascularly, intrapleuraly, intraperitoneally, intratracheally, intratumorally, intrathecally, intramuscularly, endoscopically, intralesionally, percutaneously, subcutaneously, regionally, stereotactically, or by direct injection or perfusion.
  • 22. The method of any of claims 1-21, further comprising administering at least one additional agent to treat or prevent the infection in the subject.
  • 23. The method of claim 22, wherein the at least one additional agent is an anti-viral agent, anti-fungal agent, anti-bacterial agent, or anti-protozoan agent.
  • 24. A method of treating or preventing a viral infection in a cell comprising contacting the cell with an effective amount of a p53 gene therapy.
  • 25. The method of claim 24, wherein the p53 gene therapy comprises a nucleic acid encoding p53.
  • 26. The method of claim 24, wherein the p53 gene therapy comprises Zinc Finger Nucleases (ZFN), Transcription Activator Like Effector Nucleases (TALEN), or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to express p53.
  • 27. The method of claim 24, wherein the viral infection is caused by an oncogenic virus.
  • 28. The method of claim 24, wherein the viral infection is caused by an endoplasmic reticulum-tropic virus, human papilloma virus (HPV), herpes simplex virus (HSV-1), Hepatitis C virus, a flavivirus species, HHV6, rubella, LCMV, human immunodeficiency virus (HIV), or Hepatitis B virus.
  • 29. The method of claim 24, wherein the viral infection is caused by influenza A, influenza B, influenza C, parainfluenza, paramyxoviruses, Newcastle disease virus, respiratory syncytial virus, measles, mumps, adenoviruses, adeno-associated viruses, parvoviruses, Epstein-Barr virus, rhinoviruses coxsackieviruses echoviruses, reoviruses, rhabdoviruses, coronavirus, polio viruses, herpes simplex, cytomegaloviruses, papillomaviruses, virus B, varicella-zoster, poxviruses, rabies, picornaviruses, rotavirus, or Kaposi associated herpes virus.
  • 30. The method of any of claims 24-29, wherein the cell is a mammalian cell.
  • 31. The method of claim 30, wherein the mammalian cell is a cancer cell.
  • 32. The method of any of claims 25-31, wherein the nucleic acid encoding p53 is provided in an expression cassette under the control of a promoter active in said subject.
  • 33. The method of claim 32, wherein the promoter is cytomegalovirus (CMV), SV40, or PGK.
  • 34. The method of claim 32 or 33, wherein the expression cassette is in a viral vector.
  • 35. The method of claim 34, wherein the viral vector is an adenoviral vector, a retroviral vector, a vaccinia viral vector, an adeno-associated viral vector, a herpes viral vector, a vesicular stomatitis viral vector, a polyoma viral vector.
  • 36. The method of claim 34, wherein the viral vector is an adenoviral vector.
  • 37. The method of any of claims 25-36, wherein the nucleic acid encoding p53 is administered by a non-viral approach.
  • 38. The method of claim 37, wherein the non-viral vector comprises a nanoparticle or lipoplex.
  • 39. The method of claim 38, wherein the lipoplex comprises DOTAP and at least one cholesterol, cholesterol derivative, or cholesterol mixture.
  • 40. The method of any of claims 24-39, further comprising administering at least one anti-viral agent to treat or prevent the viral infection in the cell.
  • 41. A method of preventing or reducing pathological stroma and/or fibrosis in a subject comprising administering an effective amount of a p53 tumor suppressor therapy to the pathological stroma of said subject.
  • 42. The method of claim 41, wherein the p53 tumor suppressor therapy is a nucleic acid encoding p53, an MDM2 or MDM4 inhibitor, a p53 gene editing therapy, a small molecule drug that restores mutant p53 to normal p53 tumor suppressor protein functions or a stabilized p53 tumor suppressor peptide.
  • 43. The method of claim 41, wherein the p53 tumor suppressor therapy comprises administering a nucleic acid encoding a p53 polypeptide.
  • 44. The method of claim 41, wherein the p53 tumor suppressor therapy comprises using Zinc Finger Nucleases (ZFN), Transcription Activator Like Effector Nucleases (TALEN), or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to express p53.
  • 45. The method of claim 41, wherein the subject has liver cirrhosis, pulmonary fibrosis, or acute respiratory distress syndrome (ARDS).
  • 46. The method of claim 41, wherein the subject does not have cancer.
  • 47. The method of claim 41, wherein the subject has cancer and the stroma is tumor stroma.
  • 48. The method of any of claims 41-47, further comprising administering an integrin inhibitor.
  • 49. The method of claim 48, wherein the integrin inhibitor is a pan av integrin inhibitor.
  • 50. The method of claim 48, wherein the integrin inhibitor is abituzumab, intetumumab, abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab.
  • 51. The method of any of claims 41-50, further comprising administering at least one CD122/CD132 agonist to the subject.
  • 52. The method of any of claims 43-51, wherein the nucleic acid encoding p53 is in an expression cassette under the control of a promoter active in said subject.
  • 53. The method of claim 52, wherein the promoter is cytomegalovirus (CMV), SV40, or PGK.
  • 54. The method of claim 52 or 53, wherein expression cassette is in a viral vector.
  • 55. The method of any of claims 52-54, wherein the viral vector is an adenoviral vector, a retroviral vector, a vaccinia viral vector, an adeno-associated viral vector, a herpes viral vector, a vesicular stomatitis viral vector, a polyoma viral vector.
  • 56. The method of any of claims 54-55, wherein the viral vector is an adenoviral vector or vaccinia viral vector.
  • 57. The method of any of claims 43-58, wherein the nucleic acid encoding p53 is administered by a non-viral approach.
  • 58. The method of claim 57, wherein the nucleic acid encoding p53 is administered to the subject in a nanoparticle or lipoplex.
  • 59. The method of claim 58, wherein the lipoplex comprises DOTAP and at least one cholesterol, cholesterol derivative, or cholesterol mixture.
  • 60. The method of any of claims 41-57, wherein the p53 tumor suppressor therapy is administered to the subject intravenously, intraarterially, intravascularly, intrapleuraly, intraperitoneally, intratracheally, intratumorally, intrathecally, intramuscularly, endoscopically, intralesionally, percutaneously, subcutaneously, regionally, stereotactically, or by direct injection or perfusion.
  • 61. The method of any of claims 47-60, wherein the p53 tumor suppressor therapy is administered to the subject intratumorally.
  • 62. The method of any of claims 41-61, wherein the subject is administered the p53 tumor suppressor therapy more than once.
  • 63. The method of any of claims 41-64, wherein administering comprises a local or regional injection.
  • 64. The method of any of claims 41-63, wherein the subject is a human.
  • 65. The method of any of claims 47-64, wherein the cancer is melanoma, non-small cell lung, small-cell lung, lung, hepatocarcinoma, retinoblastoma, astrocytoma, glioblastoma, leukemia, neuroblastoma, head, neck, breast, pancreatic, prostate, renal, bone, testicular, ovarian, mesothelioma, cervical, gastrointestinal, urogenital, respiratory tract, hematopoietic, musculoskeletal, neuroendocrine, carcinoma, sarcoma, central nervous system, peripheral nervous system, lymphoma, brain, colon or bladder cancer.
  • 66. The method of any of claims 41-65, further comprising administering at least one additional anticancer treatment.
  • 67. The method of claim 66, wherein the at least one additional anticancer treatment is surgical therapy, chemotherapy, radiation therapy, hormonal therapy, immunotherapy, small molecule therapy, receptor kinase inhibitor therapy, anti-angiogenic therapy, cytokine therapy, cryotherapy or a biological therapy.
  • 68. The method of claim 67, wherein the at least one additional anticancer treatment is an immune checkpoint inhibitor.
  • 69. The method of claim 68, wherein the at least one checkpoint inhibitor is selected from an inhibitor of CTLA-4, PD-1, PD-L1, PD-L2, LAG3, BTLA, B7H3, B7H4, TIM3, KIR, or A2aR.
  • 70. The method of claim 68, wherein the at least one checkpoint inhibitor is an anti-PD-1 antibody, anti-PD-L1 antibody, anti-PD-L2 antibody, anti-CTLA4 antibody, and/or anti-KIR antibody.
  • 71. The method of claim 70, wherein the anti-PD-1 antibody is nivolumab, pembrolizumab, pidilizumab, AMP-514, REGN2810, CT-011, BMS 936559, MPDL328OA or AMP-224
  • 72. The method of claim 70, wherein the anti-PD-L1 antibody is durvalumab, atezolizumab, or avelumab.
  • 73. The method of any of claims 68-72, wherein the anti-PD-L2 antibody rHIgM12B7.
  • 74. The method of any of claims 68-73, wherein more than one checkpoint inhibitor is administered.
  • 75. The method of any of claims 68-74, wherein the immune checkpoint inhibitor is administered systemically.
Parent Case Info

This application claims benefit of priority to U.S. Provisional Application Ser. No. 63/128,294, filed Dec. 21, 2020, the entire contents of which are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US21/73059 12/21/2021 WO
Provisional Applications (1)
Number Date Country
63128294 Dec 2020 US