Methods and compositions for cannabis characterization

Information

  • Patent Grant
  • 11312988
  • Patent Number
    11,312,988
  • Date Filed
    Monday, June 13, 2016
    8 years ago
  • Date Issued
    Tuesday, April 26, 2022
    2 years ago
  • Inventors
  • Original Assignees
    • ANANDIA LABORATORIES INC.
  • Examiners
    • Zeman; Mary K
    Agents
    • Bereskin & Parr LLP
    • De Luca; Carmela
Abstract
Provided are methods for determining if a cannabis sample comprises hemp or marijuana, or Cannabis sativa and/or Cannabis indica as well as primers and kits for use in the methods.
Description
INCORPORATION OF SEQUENCE LISTING

A computer readable form of the Sequence Listing “P48554US01_SequenceListing” (161,208 bytes), submitted via EFS-WEB and created on Dec. 12, 2017, is herein incorporated by reference.


FIELD

The present disclosure provides methods, compositions and kits for characterizing cannabis samples. The present disclosure also provides method, compositions and kits for distinguishing Cannabis sativa from Cannabis indica, and marijuana from hemp as well as measuring contribution of Cannabis sativa and Cannabis indica in marijuana.


BACKGROUND


Cannabis is one of humanity's oldest crops, with records of use dating to 6000 years before present. It is used as a source of high-quality bast fibre, nutritious and oil-rich seeds and for the production of cannabinoid compounds including delta-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). The evolutionary history and taxonomy of Cannabis remains poorly understood. Hillig (2005) proposed that the genus Cannabis consists of three species (C. sativa, C. indica, and C. ruderalis) [1], whereas an alternative viewpoint is that Cannabis is monotypic and that observable subpopulations represent subspecies of C. sativa: C. sativa subspecies sativa, C. sativa subspecies indica and C. sativa subspecies ruderalis [2]. The putative ruderalis type may represent feral populations of the other types or those adapted to northern regions. The classification of Cannabis populations is confounded by many cultural factors, and tracing the history of a plant that has seen wide geographic dispersal and artificial selection by humans over thousands of years has proven difficult. Many hemp types have varietal names while marijuana types lack an organized horticultural registration system and are referred to as strains. The draft genome and transcriptome of C. sativa were published in 2011 [3]. As both public opinion and legislation in many countries shifts towards recognizing Cannabis as a plant of medical and agricultural value [4], the genetic characterization of marijuana and hemp becomes increasingly important for both clinical research and crop improvement efforts.


Differences between Cannabis sativa and Cannabis indica have been reported.


Although the taxonomy of the genus Cannabis remains unclear, many breeders, growers and users (patients) consuming cannabis for its psychoactive and/or medicinal properties differentiate Sativa-type from Indica-type plants.


Hillig & Mahlberg (2004) [20] have reported that mean THC levels and the frequency of the THCA synthase gene (BT allele) were significantly higher in C. indica than C. sativa. Plants with relatively high levels of tetrahydrocannabivarin (THCV) and/or cannabidivarin (CBDV) were common only in C. indica.


Hazekamp & Fischedick (2011) [10] summarized differences between typical Sativa and Indica effects upon smoking. As a result of limited understanding and support from the medical community, they indicate that medicinal users of cannabis generally adopt the terminology derived from recreational users to describe the therapeutic effects they experience.


They report that the psychoactive effects (the “high”) from Sativa-type plants are often characterized as uplifting and energetic. The effects are mostly cerebral (head-high), and are also described as spacey or hallucinogenic. Sativa is considered as providing pain relief for certain symptoms. In contrast, the high from Indica-type plants is most often described as a pleasant body buzz (body-high or body stone). Indicas are primarily enjoyed for relaxation, stress relief, and for an overall sense of calm and serenity and are supposedly effective for overall body pain relief and in the treatment of insomnia.


They reported that the most common way currently used to classify cannabis cultivars is through plant morphology (phenotype) with Indica-type plants smaller in height with broader leaves, while Sativa-type plants taller with long, narrow leaves. Indica-type plants typically mature faster than Sativa-type plants under similar conditions, and the types tend to have a different smell, perhaps reflecting a different profile of terpenoids.


There remains a need for more accurate classification of cannabis for medicinal and other commercial purposes.


SUMMARY

Using 14,031 single-nucleotide polymorphisms (SNPs) genotyped in 81 marijuana and 43 hemp samples, marijuana and hemp are found to be significantly differentiated at a genome-wide level, demonstrating that the distinction between these populations is not limited to genes underlying THC production.


In addition, using additional SNPs including a second set of 9123 SNPs genotyped in 37 reported Cannabis indica and 63 reported Cannabis sativa samples, ancestry determinations could be made which can be used for example for selecting breeding partners.


Other features and advantages of the present disclosure will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the disclosure are given by way of illustration only, since various changes and modifications within the spirit and scope of the disclosure will become apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the present disclosure will now be described in relation to the drawings in which:



FIG. 1. Genetic structure of marijuana and hemp. (a) Principal Components Analysis (PCA) plot of 42 hemp and 80 marijuana samples using 14,031 SNPs. Hemp samples are closed circles and marijuana samples are open circles. The proportion of the variance explained by each Principal Component (PC) is shown in parentheses along each axis. The two samples labeled with their IDs are discussed in the text. (b) Boxplots showing significantly lower heterozygosity in marijuana than in hemp. (c) Population structure of hemp and marijuana estimated using the fastSTRUCTURE admixture model at K=2. Each sample is represented by a thin vertical line, which is partitioned into two colored segments that represent the sample's estimated membership in each of the two inferred clusters. Hemp and marijuana samples are labeled below the plot.



FIG. 2. Genetic structure of marijuana. (a) PCA plot of 81 marijuana samples using 9,776 SNPs. Samples are shaded according to their reported C. sativa ancestry. The proportion of the variance explained by each PC is shown in parentheses along each axis. (b) Population structure of marijuana calculated using the fastSTRUCTURE admixture model at K=2. Each sample is represented by a horizontal bar, which is partitioned into two segments that represent the sample's estimated membership in each of the two inferred clusters. Adjacent to each bar is the sample's name and reported % C. sativa ancestry. (c) The correlation between the principal axis of genetic structure (PC1) in marijuana and reported C. sativa ancestry.



FIG. 3. Distribution of FST between marijuana and hemp samples across 14,031 SNPs. (a) FST distribution for all SNPs genotyped. (b) Distribution of SNPs with FST greater than 0.5. Average FST is weighted by allele frequency and was calculated according to equation 10 in Weir and Cockerham (1984) [19].



FIG. 4. Mean pairwise Identity by State (IBS) between each marijuana sample and all hemp samples versus reported C. sativa ancestry.



FIG. 5. Example PCA of 81 marijuana strains using 9776 SNPs.



FIG. 6. Example distribution of per-SNP FST values between 9 presumed C. indica and 9 presumed C. sativa strains.



FIG. 7. Example evaluation of panels of ancestry informative markers (AIMS). Accuracy is defined here as the correlation between the positions of non-ancestral samples along PC1 calculated using 9766 SNPs and the positions calculated using a given subset of AIMs.



FIG. 8. Example PCA of 100 marijuana strains using 9123 SNPs.





DETAILED DESCRIPTION OF THE DISCLOSURE

The term “cannabis reference” as used herein means a cannabis strain, species (e.g. sativa or indica) (also referred to as subspecies (e.g. sativa or indica)) or type (marijuana or hemp) with at least some known genotype profile information which is used as a reference comparison to a test sample, optionally wherein the genotype and/or allele frequency of at least 10 SNPs in Table 4, 5 and/or 8 are known, optionally all of the SNPs in any one of Tables 4, 5 and/or 8. The cannabis reference can be a Cannabis sativa reference, Cannabis indica reference, marijuana reference or hemp reference or a reference profile of any of the foregoing.


The term “Cannabis sativa reference” and “Cannabis indica reference” as used herein mean respectively, a selected Cannabis sativa strain or Cannabis indica strain which is used as a reference for comparison and/or genotype information of such a strain or genotype information associated with the particular Cannabis sativa or Cannabis indica reference strain e.g. a reference profile for a particular strain or a reference profile associated with the species. The reference profile comprises at least 10 known SNPs (e.g. genotype and optionally frequency) in Table 4 and/or Table 8, optionally all of the SNPs in Table 4 and/or 8 found in the particular Cannabis sativa or Cannabis indica strain respectively or a composite of strains of the particular species. The Cannabis sativa reference or Cannabis indica reference can include in addition to the predominant allele in the species or a particular strain of the species the frequency of the SNP allele in the population.


The term “cannabis reference profile” as used herein means genotype information of one (e.g. a particular strain) or plurality of cannabis strains and/or species, including Cannabis sativa and/or Cannabis indica strains or marijuana and/or hemp strains, and includes the genotype of at least 10 SNPs in Table 4, 5 and/or 8, optionally all of the SNPs in Table 4, 5 and/or 8. A Cannabis sativa reference profile as used herein means genotype information of a plurality of cannabis strains and includes genotype sequence (and optionally including frequency information) associated with Cannabis sativa strains and a Cannabis indica reference profile as used herein means genotype information of a plurality of cannabis strains and includes genotype sequence (and optionally including frequency information) associated with Cannabis indica strains.


The term “marijuana” as used herein denotes cannabis plants and plant parts that are cultivated and consumed as a drug or medicine. Marijuana often contains high amounts of psychoactive cannabinoids such as tetrahydrocannabinolic acid (THCA) and delta-9 tetrahydrocannabinol (THC) but it may also contain cannabidiolic acid (CBDA) and cannabidiol (CBD). For example, marijuana can be defined as cannabis plants and plant parts wherein the leaves and flowering heads of contain more than 0.3% w/w, 0.4% w/w or 0.5% w/w of delta-9-tetrahydrocannabinol (THC) (dry weight). The term “hemp” as used herein denotes cannabis plants that are cultivated and used for the production of fibre or seeds rather than as drug or medicine. Often hemp plants often contain high amounts of CBDA and CBD, and low amounts of THCA and THC. For example, hemp can be defined as cannabis plants and plant parts wherein the leaves and flowering heads of which do not contain more than 0.3% w/w, 0.4% w/w or 0.5% w/w of delta-9-tetrahydrocannabinol (THC) (dry weight).


The term “polynucleotide”, “nucleic acid”, “nucleic acid molecule” and/or “oligonucleotide” as used herein refers to a sequence of nucleotide or nucleoside monomers consisting of naturally occurring and/or modified bases, sugars, and intersugar (backbone) linkages, and is intended to include DNA and RNA which can be either double stranded or single stranded, representing the sense or antisense strand.


As used herein, the term “isolated nucleic acid molecule” refers to a nucleic acid substantially free of cellular material or culture medium when produced by recombinant DNA techniques, or chemical precursors, or other chemicals when chemically synthesized. The term “nucleic acid” is intended to include DNA and RNA and can be either double stranded or single stranded.


The term “primer” as used herein refers to a nucleic acid molecule, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of synthesis of when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand is induced (e.g. in the presence of nucleotides and an inducing agent such as DNA polymerase and at a suitable temperature and pH). The primer must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon factors, including temperature, sequences of the primer and the methods used. A primer typically contains 15-25 or more nucleotides, although it can contain less, for example 10 nucleotides. The factors involved in determining the appropriate length of primer are readily known to one of ordinary skill in the art.


As used herein, the term “upstream primer” as used herein refers to a primer that can hybridize to a DNA sequence and act as a point of synthesis upstream, or at a 5′, of a target polynucleotide sequence e.g. SNP, to produce a polynucleotide complementary to the target polynucleotide anti-sense strand. The term “downstream primer” as used herein refers to a primer that can hybridize to a polynucleotide sequence and act as a point of synthesis downstream, or at a 3′ end, of a target polynucleotide sequence, to produce a polynucleotide complementary to the target polynucleotide sense strand.


The term “probe” as used herein refers to a polynucleotide (interchangeably used with nucleic acid) that comprises a sequence of nucleotides that will hybridize specifically to a target nucleic acid sequence. For example the probe comprises at least 18 or more bases or nucleotides that are complementary and hybridize to contiguous bases and/or nucleotides in the target nucleic acid sequence. The length of probe depends on the hybridization conditions and the sequences of the probe and nucleic acid target sequence and can for example be 10-20, 21-70, 71-100 or more bases or nucleotides in length. The probes can optionally be fixed to a solid support such as an array chip or a microarray chip. For example, the PCR product produced with the primers could be used as a probe. The PCR product can be for example be subcloned into a vector and optionally digested and used as a probe.


The term “reverse complement” or “reverse complementary”, when referring to a polynucleotide, as used herein refers to a polynucleotide comprising a sequence that is complementary to a DNA in terms of base-pairing and which is reversed so oriented from the 5′ to 3′ direction.


As used herein, the term “kit” refers to a collection of products that are used to perform a reaction, procedure, or synthesis, such as, for example, a genotyping assay etc., which are typically shipped together, usually within a common packaging, to an end user.


The term “target allele” as used herein means an allele for a SNP listed in Table 4, 5 or 8.


The term “major allele” as used herein is the allele most commonly present in a population. The major allele listed in Tables 4, 5 and 8 is the allele most commonly present in Cannabis sativa and Cannabis indica strains (Tables 4 and 8) and marijuana and hemp strains (Table 5) respectively.


The term “minor allele” as used herein is the allele least commonly present in a population (e.g. C. sativa and C. indica or marijuana and hemp). The minor allele listed in Tables 4, 5 and 8 is present in the frequency indicated therein.


A single-stranded nucleic acid molecule is “complementary” to another single-stranded nucleic acid molecule when it can base-pair (hybridize) with all or a portion of the other nucleic acid molecule to form a double helix (double-stranded nucleic acid molecule), based on the ability of guanine (G) to base pair with cytosine (C) and adenine (A) to base pair with thymine (T) or uridine (U).


The term “hybridize” as used herein refers to the sequence specific non-covalent binding interaction with a complementary nucleic acid.


The term “selectively hybridize” as used herein refers to hybridization under moderately stringent or highly stringent physiological conditions, which can distinguish related nucleotide sequences from unrelated nucleotide sequences. In nucleic acid hybridization reactions, the conditions used to achieve a particular level of stringency are known to vary, depending on the nature of the nucleic acids being hybridized, including, for example, the length, degree of complementarity, nucleotide sequence composition (e.g., relative GC:AT content), and nucleic acid type, i.e., whether the oligonucleotide or the target nucleic acid sequence is DNA or RNA. An additional consideration is whether one of the nucleic acids is immobilized, for example, on a filter, bead, chip, or other solid matrix. Appropriate stringency conditions which promote hybridization are known to those skilled in the art, or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1 6.3.6 and/or Current Protocols in Nucleic Acid Chemistry available at http://onlinelibrary.wiley.com/browse/publications?type=lab protocols.


As used in this application, the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “include” and “includes”) or “containing” (and any form of containing, such as “contain” and “contains”), are inclusive or open-ended and do not exclude additional, unrecited elements or process steps.


As used in this application and claim(s), the word “consisting” and its derivatives, are intended to be close ended terms that specify the presence of stated features, elements, components, groups, integers, and/or steps, and also exclude the presence of other unstated features, elements, components, groups, integers and/or steps.


The term “consisting essentially of”, as used herein, is intended to specify the presence of the stated features, elements, components, groups, integers, and/or steps as well as those that do not materially affect the basic and novel characteristic(s) of these features, elements, components, groups, integers, and/or steps.


The terms “about”, “substantially” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. These terms of degree should be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies.


As used in this application, the singular forms “a”, “an” and “the” include plural references unless the content clearly dictates otherwise. For example, an embodiment including “a compound” should be understood to present certain aspects with one compound or two or more additional compounds.


Further, the definitions and embodiments described in particular sections are intended to be applicable to other embodiments herein described for which they are suitable as would be understood by a person skilled in the art. For example, in the following passages, different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.


III. Methods and Products


The present disclosure identifies for example a plurality of single nucleotide polymorphisms (SNPs) ancestry informative markers (AIMs) that can be used to characterize cannabis samples. Cannabis samples can be characterized for example according to their ancestral relatedness and/or whether the sample is likely marijuana or hemp. Accordingly, the present disclosure provides methods, nucleic acids, primers and kits useful for detecting whether a sample is Cannabis sativa dominant or Cannabis indica dominant, for assessing the relatedness of a test sample to Cannabis sativa and/or Cannabis indica reference samples as well as methods, nucleic acids, primers and kits for distinguishing marijuana from hemp. Also provided are a computer implemented method, a computer program embodied on a computer readable medium, a system, apparatus and/or processor for carrying out a method or part thereof described herein.


Embodiments of the methods and systems described herein may be implemented in hardware or software, or a combination of both. These embodiments may be implemented in computer programs executing on programmable computers, each computer including at least one processor, a data storage system (including volatile memory or non-volatile memory or other data storage elements or a combination thereof), and at least one communication interface. For example, and without limitation, the various programmable computers may be a server, network appliance, set-top box, embedded device, computer expansion module, personal computer, laptop, mobile telephone, smartphone or any other computing device capable of being configured to carry out the methods described herein.


The data storage system may comprise a database, such as on a data storage element, in order to provide a database of Cannabis reference strains, and/or reference profiles. Furthermore, computer instructions may be stored for configuring the processor to execute any of the steps and algorithms described herein as a computer program.


Each program may be implemented in a high level procedural or object oriented programming or scripting language, or both, to communicate with a computer system. However, alternatively the programs may be implemented in assembly or machine language, if desired. The language may be a compiled or interpreted language. Each such computer program may be stored on a non-transitory computer readable storage medium (e.g. read-only memory, magnetic disk, optical disc). The storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.


An aspect of the present method for detecting the presence or absence of each of a set of target alleles in a cannabis sample, the method comprising:


I) obtaining a test sample comprising genomic DNA, and


II) either

    • i) genotyping the test sample for a set of single nucleotide polymorphisms (SNPs), the set comprising at least 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96, 100 or any number between and including 10-200 of the SNPs in Table 4 and/or 8, wherein each SNP comprises a major allele and a minor allele as provided in Table 4 and 8; and
    • ii) detecting for each SNP of the set the presence or absence of the major allele and/or the minor allele in the test sample;
    • or
    • a) genotyping the test sample for a set of SNPs, the set at least 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96 or 100 of the comprising the SNPS in Table 5, wherein each SNP comprises a major allele and a minor allele as provided in Table 5; and
    • b) detecting for each SNP of the set the presence or absence of the major allele and/or the minor allele in the test sample.


In an embodiment, the SNPS in Table 4 and/or 8 can be used to determine the ancestral contribution of Cannabis sativa and/or Cannabis indica in a marijuana strain.


The step of obtaining a test sample comprising genomic DNA can be accomplished, for example by taking the cannabis sample or an aliquot thereof for example if the cannabis sample is isolated genomic DNA, or can comprise preparing an isolated genomic DNA from the cannabis sample or a portion thereof.


The cannabis sample or the test sample (e.g. comprising at least a portion of the cannabis sample) is any cannabis sample comprising genomic DNA. The sample can be isolated genomic DNA or a portion of a plant and/or seed comprising genomic DNA and optionally from which genomic DNA can be isolated. For example, the test sample can be a plant sample, a seed sample, a leaf sample, a flower sample, a trichome sample, a pollen sample a sample of dried plant material including leaf, flower, pollen and/or trichomes, or a sample produced through in vitro tissue or cell culture. Genomic DNA can be isolated using a number of techniques such as NaOH extraction, phenol/chloroform extraction, DNA extraction systems such as Qiagen Direct PCR DNA Extraction System (Cedarlane, Burlington ON). In some embodiments, genomic DNA is not purified prior to genotyping. For example, with the Phire Plant Direct PCR Kit the DNA target can be used to detect SNP alleles without prior DNA extraction (Life Technologies, Burlington ON).


In an embodiment, the set of target alleles which are detected are a plurality of SNPs in Tables 4, 5 and/or 8. Tables 4 and 8 each list 100 SNPs, including a major allele and a minor allele and the minor allele frequency in Cannabis sativa strains and Cannabis indica strains. Table 5 lists 100 SNPs including a major allele and a minor allele and the minor allele frequency in marijuana and hemp. Also described in these Tables is the SNP position in the canSat3 C. sativa reference genome assembly which is described in van Bakel et al [3], identified as the SNP name. The genome build assembly is identified by the number 3 for SNPs defined by SEQ ID NOs:1-400 (CanSat3) and the number 5 for SNPs defined by SEQ ID Nos: 401-600 (CanSat5). Tables 6, 7 and 9 also identify the upstream+SNP and downstream sequences associated with each SNP. A person skilled in the art would understand that genomic DNA is double stranded and that the complementary nucleotide on the reverse strand can also be detected based on the complementary base pairing rules.


Genotyping the cannabis sample at the loci listed for example in Tables 4, 5 and 8 can be accomplished by various methods and platforms.


In an embodiment, the step of genotyping comprises sequencing genomic DNA for example using a genotyping by sequencing (GBS) method. GBS is typically a multiplexed approach involving tagging randomly sheared DNA from different samples with DNA barcodes and pooling the samples in a sequencing reaction. Target enrichment and/or reduction of genome complexity for example using restriction enzymes.


In another embodiment, the step of genotyping comprises sequencing pooled amplicons, including captured amplicons. In an embodiment, the amplicons are produced using primers flanking the SNPs, for example within 100 nucleotides upstream and/or within 100 nucleotides downstream of the SNP location and amplifying targeted region. The resulting amplification products are then sequenced. Forward primers and reverse primers that amplify for example 25 or more nucleotides surrounding and including the SNP can be used in such genotyping methods.


A variety of sequencing methods can be employed including electrophoresis-based sequencing technology (e.g. chain termination methods, dye-terminator sequencing), by hybridization, mass spectrometry based sequencing, sequence-specific detection of single-stranded DNA using engineered nanopores and sequencing by ligation. For example, amplified fragments can be purified and sequenced directly or after gel electrophoresis and extraction from the gel.


Other PCR based genotyping methods can also be used optionally comprising DNA amplification using forward and reverse primers and/or primer extension.


For example the iPLEX Gold Assay by Sequenom® provides a SNP genotyping assay where PCR primers are designed in a region of approximately 100 base pairs around the SNP of interest and an extension primer is designed adjacent to the SNP. The method involves PCR amplification followed by the addition of Shrimp alkaline phosphatase (SAP) to inactivate remaining nucleotides in the reaction. The primer extension mixture is then added and the mixture is deposited on a chip for data analysis by a TM MALDI-TOF mass spectrometer (Protocol Guide 2008).


In another embodiment, the genotyping method comprises using an allele specific primer. An example is the KASP™ genotyping system is a fluorescent genotyping technology which uses two different allele specific competing forward primers with unique tail sequences and one reverse primer. Each unique tail binds a unique fluorescent labelled oligo generating a signal upon PCR amplification of the unique tail.


In an embodiment, allele specific probes are utilized. For example, an allele specific probe includes the complementary residue for the target allele of interest and under specified conditions preferentially binds the target allele. The probe can comprise a DNA or RNA polynucleotide and the genotyping step can comprise contacting the test sample with a plurality of probes each of the probes specific for a SNP allele of the set of SNPs under conditions suitable for detecting for example the minor SNP alleles.


In an embodiment, the genotyping method comprises using an array. The array can be a fixed or flexible array comprising for example allele specific probes. The array can be a bead array for example as is the Infinium HD Assay by Illumina. In an embodiment, the array comprises primers and/or probes using sequences or parts thereof described in SEQ ID Nos: 1-600. The array format can comprise primers or probes for genotyping for example at least 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96 or 100 or more SNPs, for example any number between and including 1 and 300, optionally 10 and 300 or 10 and 200 or 10 and 100. In an embodiment, the array format comprises one or more primers or probes for each SNP. In an embodiment, the array comprises 96 reactions.


Upstream sequence, the SNP as well as downstream sequence for the SNPs in Tables 4, 5 and 8 are provided in Tables 6, 7 and 9.


As demonstrated in FIG. 7, a level of accuracy can be achieved using the 10 SNPs with the highest Fst values. Accordingly in one embodiment, the set of SNPs comprises the first listed 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96 or 100 SNPs or any number or combination of SNPs between and including 10 and 300, optionally 10 and 100 in Table 4, 5 or 8, optionally any combination of SNPs in Tables 4 and/or 8. In an embodiment, the set of SNPs comprises a plurality or all of the SNPs in Table 4 and/or 8 with a Fst of greater than 0.712 or 06277. In another embodiment, the set of SNPs comprises a plurality or all of the SNPs in Table 5 with a Fst of greater than 0.679. In an embodiment, the set of SNPs includes at least 2 wherein the allele frequency is 0.


In an embodiment, any number of SNPS listed in Tables 4 and/or 8, or Table 5 is genotyped.


In an embodiment, a plurality of SNPs listed in Tables 4 and/or 8 and 5 are detected. In such methods, both ancestry contribution and marijuana versus hemp assessments can be conducted in one assay.


In an embodiment, the step of detecting the SNP comprises receiving, reviewing and/or extracting from a file, document, reaction, array or database, the genotype for each of the SNPs of the set.


In certain embodiments, the method further comprises displaying and/or providing a document displaying one or more features of the major and/or minor alleles. For example, the one or more features can comprise the position of the SNP, the nucleotide identity of the SNP or the nucleotide identity if a minor allele is detected, the number of reads or reaction, the number of minor alleles, confidence intervals etc. The document can be an electronic document that is provided to a third party. In an embodiment, the one or more features displayed is selected from the allele nucleotide identity and the number of minor alleles in common with Cannabis sativa, Cannabis indica, marijuana or hemp.


As demonstrated herein, the SNP allele information can be used to characterize the cannabis sample. Accordingly, in an embodiment, the method further comprises determining ancestry contribution of the test sample.


The ancestry contribution is optionally an ancestry contribution estimate or identification of ancestry dominance. For example, the ancestry dominance of the test sample can be Cannabis sativa dominant or Cannabis indica dominant according to the set of target alleles detected in step II) ii). If the target alleles in combination when compared to a database of cannabis reference strains and/or the reference profiles provided in Table 4 and 8 are most similar to alleles more commonly found in Cannabis sativa, for example if greater than 50% of the cannabis sample's SNPs are alleles more commonly present in Cannabis sativa, the cannabis sample is identified as Cannabis sativa dominant. Conversely, if the target alleles in combination are most similar to alleles more commonly found in Cannabis indica, for example if greater than 50% of the cannabis sample's SNPs are alleles more commonly present in Cannabis indica, the cannabis sample is identified as Cannabis indica dominant.


An ancestry contribution estimate is calculated in one embodiment, according to a method described in the Examples. Other calculations for determining admixture can also be applied as further described herein.


Other nucleotides may be detected at the SNP positions described or a particular reaction may fail. In an embodiment, if an allele other than an allele reported in Tables 4, 5 and 8 is detected or if the nucleotide at the position is unknown, the allele is not considered in the methods described.


An ancestry contribution estimate can identify a population structure that is associated or is most likely given the nucleotide occurrences of the SNPs in the cannabis sample.


In an embodiment, the method further comprises identifying the test sample as marijuana or hemp, according to the set of target alleles detected in step II) b). A cannabis sample is identified as hemp for example if the target alleles in combination when compared to a database of cannabis reference strains and/or the reference profiles provided in Table 5 are most similar to alleles more commonly found in hemp, the cannabis sample is identified as hemp. Conversely, if the target alleles in combination are most similar to alleles more commonly found in marijuana, the cannabis sample is identified as marijuana.


An aspect accordingly includes a method of determining ancestry contribution of a cannabis sample, optionally to determine if a sample comprises nabis sativa and/or Cannabis indica, the method comprising:


I) obtaining a test sample comprising genomic DNA,


II) i) genotyping the test sample for a set of single nucleotide polymorphisms (SNPs), the set comprising at least 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96 or 100 or more of the SNPs in Table 4 and/or 8, wherein each SNP comprises a major allele and a minor allele as provided in Table 4 and 8; and

    • ii) detecting for each SNP of the set the presence or absence of the major allele and/or the minor allele in the test sample; and


III) determining ancestry contribution of the test sample according to the set of target alleles detected in step II) ii and providing an estimate of the ancestry contribution or the identifying the test sample as Cannabis sativa dominant or Cannabis indica dominant.


As mentioned above, dominance is assigned as Cannabis sativa dominant or Cannabis indica dominant according to the similarity of the detected alleles. If the set of detected alleles, when compared to a database of cannabis reference strains and/or the reference profiles provided in Table 4 and/or 8 are most similar to alleles more commonly found in Cannabis sativa as indicated in Table 4 and 8, the cannabis sample is assigned as Cannabis sativa dominant. Similarly, if the set of detected alleles are most similar to alleles more commonly found in Cannabis indica as indicated in Table 4 and 8, the cannabis sample is assigned as Cannabis indica dominant.


In an embodiment, the method further comprises selecting a breeding partner.


The ancestry estimates can be used for example to identify Sativa- or Indica-type breeding individuals when classification is unknown or unsure. As an example, the SNPs described herein can be used to breed an offspring with a desired or defined contribution, for example about equal contribution, of Cannabis indica and Cannabis sativa genetic material. The SNPs in Table 4, 5 and 8 can be used to select for marijuana and hemp, or Indica- and Sativa-type strains with the desired ancestry contribution for use as parents.


For example, these markers can be used in marker-assisted selection (MAS) to breed cannabis plants that contain defined levels of Indica-type or Sativa-type ancestry.


As another example SNPs as described herein can be used in ancestry selection breeding and used to speed the recovery of the cultivated genetic background (as described in [22]). For example in a cross between a cultivated line and a wild line, the F1 offspring generated from such a cross necessarily derive 50% of its ancestry from each parent. On backcrossing to the cultivated line, each offspring will differ in the proportion of its ancestry from the wild and cultivated sources. Genetic markers distributed across the genome can be used to provide an estimate of the ancestry proportions, and the breeder can then select the offspring with the highest proportion of cultivated ancestry. Such methods can for example be performed with marker assisted selection (which uses trait associated markers), to select a small number of offspring in each generation that carry both the desired trait from the wild and the most cultivate ancestry.


In an embodiment, the method is for assessing if the cannabis sample is marijuana. For example, the marijuana can be for medical use.


Also provided is a set of SNPs that can be used to determine if a sample comprises hemp or marijuana. Accordingly another aspect includes a method for determining if a sample likely comprises hemp and/or marijuana, the method comprising:


I) obtaining a test sample comprising genomic DNA,


II) a) genotyping the test sample for a set of single nucleotide polymorphisms (SNPs), the set comprising at least 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96 or 100 of the SNPs in Table 5, wherein each SNP comprises a major allele and a minor allele as provided in Table 5; and

    • b) detecting for each SNP of the set the presence or absence of the major allele and/or the minor allele in the test sample; and


III) identifying whether the sample likely comprises hemp or marijuana according to the set of target alleles detected in step II) b).


In an embodiment, the method is for differentiating medicinal/drug/pharmaceutical and non-medicinal/non-drug/non-pharmaceutical cannabis.


The identifying step comprises for example comparing to a database of reference alleles and/or comparing to the reference profiles in Table 5. The comparing step is further described below.


A further aspect includes a method for measuring genetic relatedness of a cannabis sample to a Cannabis sativa reference and/or a Cannabis indica reference, the method comprising:


I) obtaining a test sample comprising genomic DNA,


II) i) genotyping the test sample for a set of single nucleotide polymorphisms (SNPs), the set comprising at least 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96, 100 or any number between 10 and 200 of the SNPs in Table 4 and/or 8, wherein each SNP comprises a major allele and a minor allele as provided in Table 4 and 8; and

    • ii) detecting for each SNP of the set the presence or absence of the major allele and/or the minor allele in the test sample;


III) comparing the test sample SNP to the Cannabis sativa reference and/or Cannabis indica reference according to the set of target alleles detected in step II) and


IV) displaying and/or providing a document displaying the calculated genetic relatedness of the test sample.


In an embodiment, the detecting, identifying and/or comparing step comprises calculating the genetic relatedness of the test sample to the cannabis reference, optionally a Cannabis sativa reference and/or Cannabis indica reference according to the set of target alleles detected in step II). The comparing step in an embodiment is carried out using a computer, for example a computer comprising a database for storing reference profiles for one or more strains or for the particular Cannabis sativa reference and/or Cannabis indica reference.


In an embodiment, the Cannabis sativa reference and/or the Cannabis indica reference is a reference profile or plurality of reference profiles stored in a database. The reference profile can for example include the SNP allele identities (e.g. minor allele) in Table 4 and/or 8 and its frequency for the species (e.g. a master reference profile) or the SNP allele identities of a particular strain.


In some embodiments, the reference is a reference sample and the method can comprise genotyping one or more reference samples and the test sample and comparing the detected alleles to identify the number of matches.


A further aspect includes a method for measuring a genetic relatedness of a Cannabis sativa sample to a reference marijuana or reference hemp sample, the method comprising:


I) obtaining a test sample comprising genomic DNA,


II) a) genotyping the test sample for a set of single nucleotide polymorphisms (SNPs), the set comprising at least 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96 or 100 of the SNPs in Table 5, wherein each SNP comprises a major allele and a minor allele as provided in Table 5; and

    • b) detecting for each SNP of the set the presence or absence of the major allele and/or the minor allele in the test sample;


III) calculating the genetic relatedness of the test sample to the marijuana reference and/or the hemp reference according to the set of target alleles detected in step II) b; and


IV) displaying and/or providing a document displaying the calculated genetic relatedness of the test sample.


The method of determining ancestry contribution and/or the comparison for identifying the sample can involve use of a specifically programmed computer using for an example an algorithm to 1) compare the identity of the allele e.g whether the major and/or minor allele is detected, for each of the set of SNPs genotyped in the test sample to one or more cannabis references optionally compared to a database comprising a cannabis reference profile such as a master cannabis profile or a plurality of reference profiles, wherein each cannabis reference profile comprises genotype information for the set of SNPs detected; and 2) assign or calculate the ancestry contribution of the cannabis sample. Any algorithm for admixture analyses can be used. Computer implemented clustering and assignment protocols can also be used. The comparing step can also comprise comparing the relative frequency differences.


For example as demonstrated herein, the algorithm can direct a principle components analysis or a fastStructure analysis. For example, as demonstrated herein, principal component axes can be established using a plurality of cannabis reference strains and/or reference profiles. A cannabis sample genotype can be projected onto the two PCs. The ancestry contribution of Cannabis sativa for example can then be calculated using the formula:

% Cannabis sativa+b/(a+b)′,


wherein the a and b are the chord distances along the first principal component from the centroids of the Cannabis sativa strains and the Cannabis indica strains respectively.


In an embodiment, the algorithm is an algorithm described in the Examples.


Both the major allele and the minor allele can be detected in a test sample which can be used in determining the ancestry and/or assessing marijuana and/or hemp relatedness.


Also described herein are isolated nucleic acids, for example as primers or probes to detect the SNPs described herein. Accordingly another aspect includes an isolated nucleic acid comprising at least 9, 12, 15 or at least 18 contiguous nucleotides of any one of SEQ ID Nos 1-600 or the complement thereof.


In an embodiment, the isolated nucleic acid is a probe and comprises at least 12 or at least 18 nucleotides of contiguous sequence including the minor or major allele nucleotide; optionally including upstream sequence and/or downstream sequence contiguous with the minor or major allele.


In an embodiment, the nucleic acid is a primer comprising an isolated nucleic acid described herein.


In an embodiment, the primer is a forward PCR primer that hybridizes with a contiguous set of residues within 1-100 of any one of odd numbered SEQ ID Nos 1-600 or the, complement or reverse complement of residues 1-100 of any one of odd numbered SEQ ID Nos 1-600. In another embodiment, the primer is a reverse PCR primer (downstream primer) that hybridizes with residues 1 to 100 of any one of even numbered SEQ ID Nos 1-600 or the complement or the reverse complement with residues 1 to 100 of any one of even numbered SEQ ID Nos 1-600.


In another embodiment, the primer is an allele specific primer for a major allele and/or a minor allele in Table 4, 5 or 8 and binds to residue 101 of any one of odd numbered SEQ ID Nos 1-600. The odd numbered SEQ ID NOs comprise upstream sequence (for example 10 or more nucleotides) and the SNP allele at position 101 (e.g. 90-101). The even numbered SEQ ID NOs provide downstream sequence as indicated Tables 6, 7 and 9. For example SEQ ID NO:1 provides upstream sequence for SNP scaffold14566:24841 at nucleotides 1-100 and the SNP at nucleotide 101. SEQ ID NO:2 provides downstream sequence for this SNP.


In another embodiment, the primer is a primer extension primer and binds to residue 101 of any one of any one of odd numbered SEQ ID Nos 1-600.


Another aspect includes a plurality of primers for detecting a SNP allele in Table 4, 5 and/or 8, wherein the plurality comprises as least 2 different primers selected from primers described herein.


In an embodiment, the plurality is a plurality of primer pairs.


A further aspect is a probe that is specific for an allele.


In yet another embodiment, the primer or probe further comprises a covalently bound tag, optionally a sequence specific nucleotide tail or label. The primer or probe nucleotide sequence tag can comprise or can be coupled to a fluoresecent, radioactive, metal or other detectable label.


The primer or probe can also comprise a linker.


Yet a further aspect includes an array, optionally a species specific array comprising a plurality of nucleic acid probes attached to a support surface, each isolated nucleic acid probe comprising a sequence of about 9 to about 100 nucleotides, for example about 9 to about 50 nucleotides or about 18 to about 30 nucleotides, wherein the sequence is at least 9, 12, 15 or at least 18 contiguous nucleotides of any one of SEQ ID NOs: 1-600.


The probe can comprise a sequence that is just upstream of the SNP nucleotide, for example nucleotides 83-100 of any odd numbered SEQ ID NO: 1-600. In an embodiment, the array comprises allele specific probes (nucleic acids optionally labeled), for example wherein the probe comprises upstream sequence and the SNP.


In an embodiment, the array further comprises one or more negative control probes and/or one or more positive control probes.


A further aspect includes a kit comprising an isolated nucleic acid, primer, or plurality of primers and/or array described herein.


The kit can comprise various other reagents for amplifying DNA and/or using an array to detect a SNP such as dNTPs, polymerase, reaction buffer, wash buffers and the like. Accordingly in an embodiment, the kit comprises at least one reagent for an amplifying DNA reaction.


In an embodiment, the kit further comprises at least one reagent for a primer extension reaction.


In an embodiment, the set for any of the methods, sets, pluralities, kits, nucleic acids or arrays comprises at least 10, 20, 30, 40 of the SNPS in Table 4, 5 and/or 8.


The above disclosure generally describes the present application. A more complete understanding can be obtained by reference to the following specific examples. These examples are described solely for the purpose of illustration and are not intended to limit the scope of the application. Changes in form and substitution of equivalents are contemplated as circumstances might suggest or render expedient. Although specific terms have been employed herein, such terms are intended in a descriptive sense and not for purposes of limitation.


The following non-limiting examples are illustrative of the present disclosure:


EXAMPLES
Example 1

Despite its cultivation as a source of food, fibre and medicine, and its global status as the most used illicit drug, the genus Cannabis has an inconclusive taxonomic organization and evolutionary history. Drug types of Cannabis (marijuana), which contain high amounts of the psychoactive cannabinoid delta-9 tetrahydrocannabinol (THC), are used for medicinal purposes and as a recreational drug. Hemp types are grown for the production of seed and fibre, and contain low amounts of THC. Two species or gene pools (C. sativa and C. indica) are widely used in describing the pedigree or appearance of cultivated cannabis plants. Using 14,031 single-nucleotide polymorphisms (SNPs) genotyped in 81 marijuana and 43 hemp samples, marijuana and hemp are found to be significantly differentiated at a genome-wide level, demonstrating that the distinction between these populations is not limited to genes underlying THC production. There is a moderate correlation between the genetic structure of marijuana strains and their reported C. sativa and C. indica ancestry.


To evaluate the genetic structure of commonly cultivated Cannabis, 81 marijuana and 43 hemp samples were genotyped using genotyping-by-sequencing (GBS) [5]. The marijuana samples represent a broad cross section of modern commercial strains and landraces, while the hemp samples include diverse European and Asian accessions and modern varieties. In total, 14,031 SNPs were identified after applying quality and missingness filters. Principal components analysis (PCA) of both marijuana and hemp (FIG. 1a) revealed clear genetic structure separating marijuana and hemp along the first principal component (PC1). This distinction was further supported using the fastSTRUCTURE algorithm [6] assuming K=2 ancestral populations (FIG. 1c). PCA and fastSTRUCTURE produced highly similar results: a sample's position along PC1 was strongly correlated with its group membership according to fastSTRUCTURE at K=2 (r2=0.964; p-value=3.55×10−90).


A putative C. indica marijuana strain from Pakistan that is genetically more similar to hemp than it is to other marijuana strains was identified (FIG. 1a). Similarly, hemp sample CAN 37/97 clusters more closely with marijuana strains (FIG. 1a). These outliers may be due to sample mix-up or their classification as hemp or marijuana may be incorrect.


These results significantly expand our understanding of the evolution of marijuana and hemp lineages in Cannabis. Previous analyses have shown that marijuana and hemp differ in their capacity for cannabinoid biosynthesis, with marijuana possessing the BT allele coding for tetrahydrocannabinolic acid synthase and hemp typically possessing the BD allele for cannabidiolic acid synthase [7]. As well, transcriptome analysis of female flowers showed that cannabinoid pathway genes are significantly upregulated in marijuana compared to hemp, as expected from the very high THC levels in the former compared to the latter [3]. The present results indicate that the genetic differences between the two are distributed across the genome and are not restricted to loci involved in cannabinoid production. In addition, levels of heterozygosity are higher in hemp than in marijuana (FIG. 1b, Mann-Whitney U-test, p-value=8.64×10−14), which suggests that hemp cultivars are derived from a broader genetic base than that of marijuana strains and/or that breeding among close relatives is more common in marijuana than in hemp.


The difference between marijuana and hemp plants has considerable legal implications in many countries, and to date forensic applications have largely focused on determining whether a plant should be classified as drug or non-drug [8]. EU and Canadian regulations only permit hemp cultivars containing less than 0.3% THC to be grown. While hemp and marijuana appear relatively well separated along PC1 (FIG. 1a), no SNPs with fixed differences were found between these two groups: the highest FST value between hemp and marijuana among all 14,031 SNPs was 0.87 for a SNP with an allele frequency of 0.82 in hemp and 0 in marijuana (Table 1).


The average FST between hemp and marijuana is 0.156 (FIG. 3), which is similar to the degree of genetic differentiation in humans between Europeans and East Asians [9]. Thus, while cannabis breeding has resulted in a clear genetic differentiation according to use, hemp and marijuana still largely share a common pool of genetic variation.


Although the taxonomic separation of the putative taxa C. sativa and C. indica remains controversial, a vernacular taxonomy that distinguishes between “Sativa” and “Indica” strains is widespread in the marijuana community. Sativa-type plants tall with narrow leaves, are widely believed to produce marijuana with a stimulating, cerebral psychoactive effect while Indica-type plants, short with wide leaves, are reported to produce marijuana that is sedative and relaxing. The genetic structure of marijuana is in partial agreement with strain-specific ancestry estimates obtained from various online sources (FIG. 2, Table 2). A moderate correlation between the positions of marijuana strains along the first principal component (PC1) of FIG. 2a and reported estimates of C. sativa ancestry (FIG. 2c)(r2=0.22; p-value=9×10−6) was observed. This relationship is also observed for the second principal component (PC2) of FIG. 1a (r2=0.23; p-value=6.71×10−6). This observation suggests that C. sativa and C. indica may represent distinguishable pools of genetic diversity [1] but that breeding has resulted in considerable admixture between the two. While there appears to be a genetic basis for the reported ancestry of many marijuana strains, in some cases the assignment of ancestry strongly disagrees with our genotype data. For example Jamaican Lambs Bread (100% reported C. sativa) was nearly identical (IBS=0.98) to a reported 100% C. indica strain from Afghanistan. Sample mix-up cannot be excluded as a potential reason for these discrepancies, but a similar level of misclassification was found in strains obtained from Dutch coffee shops based on chemical composition [10]. The inaccuracy of reported ancestry in marijuana likely stems from the predominantly clandestine nature of Cannabis growing and breeding over the past century. Recognizing this, marijuana strains sold for medical use are often referred to as Sativa or Indica “dominant” to describe their morphological characteristics and therapeutic effects [10]. The results suggest that the reported ancestry of some of the most common marijuana strains only partially captures their true ancestry.


Materials and Methods


Genetic material and genotyping. The marijuana strains genotyped were grown by Health Canada authorized producers and represent germplasm grown and used for breeding in the medical and recreational marijuana industries (Table 2). Hemp strains were obtained from a Health Canada hemp cultivation licensee, and represent modern seed and fibre cultivars grown in Canada as well as diverse European and Asian germplasm (Table 3). DNA was extracted from leaf tissue using standard protocols, and library preparation and sequencing were performed using the GBS protocol published by Sonah et al [15]. SNPs were called using the GBS pipeline developed by Gardner et al. [16], aligning to the canSat3 C. sativa reference genome assembly [3]. Quality filtering of genetic markers was performed in PLINK [17] by removing SNPs with (i) greater than 20% missingness by locus (ii) a minor allele frequency less than 1% and (iii) excess heterozygosity (a Hardy-Weinberg equilibrium p-value less than 0.0001). After filtering, 14,031 SNPs remained for analysis.


Collection of reported marijuana ancestry. Reported ancestry proportions (% C. sativa and % C. indica) were manually obtained from online strain databases, cannabis seed retailers, and licensed producers of medical marijuana (Table 2). Ancestry estimates for 26 strains for which no online information was available were assigned.


Analysis of population structure and heterozygosity. Principal components analysis (PCA) was performed using the adegenet v1.4-2 package [18] in R v3.1.1 using default parameters. fastSTRUCTURE [6] was run at K=2 and K=3 using default parameters for hemp and marijuana samples combined (14,031 SNPs) (FIG. 1a,c), and marijuana samples alone (10,651 SNPs) (FIG. 2a,b). Heterozygosity by individual was calculated in R by dividing the number of heterozygous sites by the number of non-missing genotypes for each sample.


Identity by state (IBS) Analysis. Pairwise proportion IBS between all pairs of samples was calculated using PLINK. One outlier was excluded from this analysis, C. indica (Pakistan), because of its significantly higher IBS to hemp than all other marijuana strains (Labeled marijuana sample in FIG. 1a).


To determine if the hemp population shared greater allelic similarity to C. sativa or C. indica marijuana, the mean pairwise IBS was calculated between each marijuana strain and all hemp strains. This analysis was performed at various minor allele frequency thresholds and the result remained unchanged.


Example 2

Selection of Cannabis Informative Markers


Nine reported C. indica and 9 reported C. sativa individuals were selected to form ancestral populations for the selection of genetic markers that are able to differentiate the two groups. Individuals were selected manually on the basis of both their position along the first principal component in FIG. 5 (actual genetic structure observed using 9776 SNPs), as well as their reported C. sativa or C. indica ancestry.


Selection of Ancestry Informative Markers (AIMs)


The top 100 highest FST SNPs were extracted and evaluated for their use in estimating genetic structure, which in the present case is being used as a proxy for C. sativa/C. indica ancestry given the unavailability of true pure C. sativa and C. indica populations. The same was performed between hemp cultivars and marijuana strains of Cannabis (FIG. 1a).


Example Evaluation of AIMs for Estimating Population Structure


Assuming the first principal component of FIG. 5 is representative of population structure between C. indica and C. sativa type marijuana strains, a strain's position along the X axis (PC1) represents genetic similarity to each population. In the case of admixed individuals, the position could be representative of genomic contribution from the C. indica and C. sativa gene pools. For the purposes of this analysis, an individual's position along PC1 using 9776 SNPs (FIG. 5), is considered to be an individual's true ancestry. By projecting samples on to principal components computed using only the ancestral populations, additional samples can be added to the analysis without changing the relative positions of our ancestral strains in PC space and the centroids of the clusters can be used as anchors along PC1 for estimating ancestry. Because not every SNP will contribute equally to an individual's position along PC1, a subset of markers that will capture nearly all the variance accounted for by that component is selected.


First, the 2 highest FST SNPs are selected, and used to perform PCA using only the ancestral C. sativa and C. indica populations. The rest of the samples are then projected (n=63) onto those components, and their positions along PC1 stored. To determine the accuracy of this 2 marker panel, the Pearson's product moment correlation coefficient (Y axis, FIG. 6) was calculated between these positions and the positions calculated using the full set of 9766 SNPs. The next highest FST SNP was added to the panel and this process was repeated for all 100 highest FST markers. Accuracy is not improved within this dataset for marker panels of more than approximately 40 of the highest FST SNPs within this population (FIG. 7). Additional ancestry informative SNPs may provide greater accuracy in novel samples and can provide redundancy in the event of failed genotyping reactions.


Example 3

Weighting of SNPs:


To rank SNPs according to their ancestry informativeness, the fixation index (FST) according to Weir and Cockerham (1984) was calculated for each marker. This estimate ranges between 0 and 1, where a SNP with FST=1 has an allele found at 100% frequency in one population, and 0% frequency in another.


Willing, Dreyer, and van Oosterhout (2012) [21] describe the calculation as follows:


“At a single locus k, FSTW&C is defined as








F
^

ST

[
k
]


=



N
^


[
k
]




D
^


[
k
]








where







N
^


[
k
]


=


s
2

-


1


2

n

-
1




[



p
_



(

1
-

p
_


)


-



r
-
1

r



s
2


-


h
_

4


]











D
^


[
k
]


=



p
_



(

1
-

p
_


)


+


s
2

r






Here, s2 is the observed variance of allele frequencies, n is the number of individuals per population, p is the mean allele frequency over all populations, r is the number of sampled populations and h is the mean observed heterozygosity.”


Example 4

Population Assignment


Population assignment can be performed if the novel sample has been genotyped for ancestry informative markers for which the alleles and allele frequencies are already known in the ancestral populations.


A test sample of a cannabis sample to be characterized is obtained. The test sample is genomic DNA and the genomic DNA is subjected to genotyping of at least 10 of the markers in Table 4 or Table 5 depending on whether it is desired that the ancestral contribution be determined or the sample be identified as marijuana or hemp.


An assignment test developed by Paetkau et al (23) and described in Hansen, Kenchington and Nielsen (2001) (24) can be used.


For each cannabis sample being assigned, the log-likelihood of it being derived from a specific population is calculated as:









log


(






l
=
1

n








p
ij
2






for





i


=
j

,


and





2


p
i



p
j






for





i


j


)





Equation





1








where n denotes the number of loci, I and j denote the two alleles at the custom characterh locus, and pi and pj denote the frequency of the ith and jth allele of the custom characterh locus in the population being considered.


Calculations are made for each population using the loci and frequencies provided in Table 4 or 5, and the cannabis sample is assigned to the population in which it has the highest likelihood of belonging.


Example 5

Ancestry Estimation


Calculation of a novel sample's hybridization index (e.g. ancestry contribution) can be performed if the novel sample has been genotyped for ancestry informative markers for which the alleles and allele frequencies are already known in the ancestral populations.


Ancestry analysis can determine if the cannabis sample is a ‘pure’ descendant of a reference sample or reference profile or if it is the result of interbreeding between individuals from two different populations, i.e. an admixed individual or ‘intraspecific hybrid’.


Campton and Utter (1985) developed a “hybrid index” (25). The hybrid index can be regarded as a way of visualizing the relative assignment probabilities in an assignment test involving two parental populations. The hybrid index, IH, requires three samples (or a sample and two reference profiles), i.e. a sample or reference profile of each of the two possible parental populations and a sample of the group of suspected ‘hybrids’.


IH is calculated as:










I
H

=

1
-


log


(

p
x

)




log


(

p
x

)


+

log


(

p
y

)









Equation





2








where px denotes the likelihood of the multilocus genotype of an individual in population x and py similarly denotes the likelihood in population y, calculated as in equation 1.”


Example 6

SNP Discovery


Genetic material and genotyping. The marijuana strains genotyped were grown by Health Canada authorized producers and represent germplasm grown and used for breeding in the medical and recreational marijuana industries (Table 10). DNA was extracted from leaf tissue using standard protocols, and library preparation and sequencing were performed using the GBS protocol published by Poland et al [26] SNPs were called using the GBS pipeline developed by Melo et al. [27], aligning to the canSat5 C. sativa reference genome assembly (unpublished). Quality filtering of genetic markers was performed in PLINK [17] by removing SNPs with (i) greater than 20% missingness by locus (ii) a minor allele frequency less than 1% and (iii) excess heterozygosity (a Hardy-Weinberg equilibrium p-value less than 0.0001). After filtering, 9,123 SNPs remained for analysis.


Table 8 identifies the major and minor alleles identified in Cannabis sativa and Cannabis indica and Table 9 provides upstream and downstream sequence for each SNP. Table 10 provides reference information on the reported ancestry. FIG. 8 shows a PCA analysis based on whether the strain is reported as C indica or C sativa.









TABLE 1







Positions and allele frequencies of the top 50 SNPs by FST between marijuana and


hemp calculated according to equation 10 in Weir and Cockerham (1984) [19].














SNP
FST Between


Non-Reference
Non-Reference



Position on
Hemp and
Reference
Non-Reference
Allele Frequency
Allele Frequency


Scaffold
Scaffold
Marijuana
Allele
Allele
in Marijuana
in Hemp
















scaffold13038
51303
0.865332249
C
A
0
0.8158


scaffold25092
11841
0.85295301
A
G
0.08333
0.9583


scaffold23837
26190
0.81783437
C
T
0.04938
0.8605


scaffold152474
1505
0.813648101
C
A
0.01282
0.7857


scaffold152474
1465
0.810651442
G
A
0.03205
0.8214


scaffold13038
51162
0.805163299
C
T
0
0.7436


scaffold5841
136325
0.782037623
A
T
0.006329
0.7059


scaffold5876
22669
0.779767209
A
T
0.175
1


scaffold764
75880
0.770853139
C
A
0
0.7024


scaffold32076
9119
0.767411438
C
A
0.01316
0.7143


scaffold7992
917
0.763602811
T
A
0.006329
0.7073


scaffold118405
2916
0.761994625
C
T
0.03125
0.7564


scaffold2418
77480
0.758065142
G
T
0
0.6618


scaffold34829
1873
0.746880355
T
C
0.1645
0.9535


scaffold38125
4641
0.743833337
G
T
0.03704
0.7558


scaffold37469
74270
0.740257391
G
A
0.1013
0.8611


C32100775
1618
0.736074476
T
C
0.01316
0.6613


scaffold5190
41424
0.734073333
C
G
0.109
0.869


scaffold5190
41454
0.734073333
G
A
0.109
0.869


scaffold49917
1105
0.726261988
A
G
0.08642
0.8256


scaffold4775
75747
0.719005761
T
A
0
0.625


scaffold26152
15432
0.712320041
G
A
0.05921
0.7571


scaffold5841
135056
0.712144097
G
A
0
0.6429


scaffold5876
106401
0.711616024
A
G
0
0.6395


scaffold5113
138895
0.711038199
A
G
0
0.6111


scaffold5113
239777
0.710611128
G
A
0
0.631


scaffold5841
135067
0.70853417
G
A
0
0.6429


scaffold25099
7321
0.702374753
A
G
0.05556
0.7439


scaffold14172
40875
0.702287484
A
C
0.01282
0.5682


scaffold158332
502
0.702084439
A
G
0.006173
0.6395


scaffold16869
149709
0.700892589
T
G
0.1562
0.9024


scaffold114539
1119
0.695979272
C
T
0
0.6111


scaffold3842
272682
0.69126068
T
G
0.01266
0.6


scaffold60331
8510
0.690556532
G
C
0.03425
0.6892


scaffold2360
22109
0.689941474
G
A
0.07143
0.7639


scaffold72613
1728
0.689632536
G
A
0.04321
0.7093


C32052717
309
0.688864374
A
T
0.142
0.8721


scaffold71943
13435
0.685008651
C
T
0.01852
0.6512


scaffold71943
13471
0.685008651
T
C
0.01852
0.6512


scaffold128544
170
0.679301025
G
T
0.01875
0.6316


scaffold98263
1069
0.677597364
T
C
0.07407
0.7558


C32058675
292
0.673619414
A
G
0.01852
0.6395


scaffold823
11824
0.673537258
C
T
0.01299
0.6111


scaffold75287
5899
0.673496392
G
T
0.04321
0.6905


scaffold16869
149730
0.671387324
C
T
0.1562
0.875


scaffold3842
543149
0.670719701
C
T
0.02469
0.6212


C32058613
508
0.67046277
T
C
0
0.5588


C32058613
563
0.67046277
C
T
0
0.5588


scaffold7146
70340
0.669199626
C
T
0.1667
0.8889


scaffold23125
41276
0.669066022
G
A
0.03846
0.675
















TABLE 2







Sample names and reported C. sativa and C. indica ancestry of genotyped marijuana strains.













Reported
Reported





Proportion
Proportion


Sample ID
Sample Name

C. Sativa


C. indica

Reference for Reported Ancestry














P2_A01_M_0001

C. indica

0
100
Author D H



(Afghanistan)


P2_A02_M_0002
Ata Tundra
0
100
http://www.gorilla-cannabis-seeds.co.uk/seedsman/regular/ata-tundra.html


P2_A03_M_0003
Big Bang
20
80
http://www.kindgreenbuds.com/marijuana-strains/big-bang/


P2_A04_M_0004
Big Bang
10
80
http://azarius.net/seedshop/greenhouseseeds/big_bang_autoflowering_greenhouse/



(Autoflowering)


P2_A05_M_0005
Dr. Grinspoon
100
0
http://www.leafly.com/sativa/dr-grinspoon


P2_A06_M_0006
Hash Passion
0
100
http://www.seedsman.com/en/hash-passion-seeds


P2_A07_M_0007
Indian Haze
100
0
http://en.seedfinder.eu/strain-info/Indian_Haze/Seedsman/



(Haze Mist)


P2_A09_M_0009
King Kush
30
70
http://grow-marijuana.com/strain-reviews/king-kush


P2_A10_M_0010
Master Kush
5
95
http://sensiseeds.com/en/cannabis-seeds/whitelabel/master-kush


P2_A11_M_0011
Master Kush
5
95
http://sensiseeds.com/en/cannabis-seeds/whitelabel/master-kush


P2_A12_M_0012
Master Kush
5
95
http://sensiseeds.com/en/cannabis-seeds/whitelabel/master-kush


P2_B01_M_0013
Master Kush
5
95
http://sensiseeds.com/en/cannabis-seeds/whitelabel/master-kush


P2_B03_M_0015
Neville's Haze
75
25
http://www.leafly.com/hybrid/nevilles-haze


P2_B04_M_0016

C. indica

0
100
Author D H



(Pakistan)


P2_B05_M_0017

C. sativa

100
0
Author D H



(South Africa)


P2_B07_M_0019
White Rhino
10
90
http://www.kindgreenbuds.com/marijuana-strains/white-rhino/


P2_B08_M_0020
White Widow
50
50
http://www.royalqueenseeds.com/122-white-widow.html


P2_B09_M_0021
Chemdawg
50
50
http://www.tweed.com/collections/all-strains/products/donegal-chem-dawg


P2_B10_M_0022
Vanilla Haze
20
80
https://www.barneysfarmshop.com/seeds/vanilla-kush.html


P2_B12_M_0024
Sunshine
90
10
Author D H


P2_C01_M_0025
NL5 Haze Mist
50
50
http://www.popularseeds.com/green-house-seeds/nl5-haze-mist


P2_C03_M_0027
El Nino
40
60
http://www.kindgreenbuds.com/marijuana-strains/el-nino/


P2_C04_M_0028
Shark
25
75
http://www.weedyard.com/Strains/SharkShock.html


P2_C05_M_0029
King Kush
30
70
http://www.wikileaf.com/strain/kings-kush/


P2_C06_M_0030
Dr. Grinspoon
100
0
http://www.leafly.com/sativa/dr-grinspoon


P2_C07_M_0031
Exodus Cheese
40
60
http://www.gorilla-cannabis-seeds.co.uk/greenhouseseeds/feminized/exodus-






cheese-feminized.html


P2_C08_M_0032
Jenni
75
25
Author D H


P2_C09_M_0033
Hawaiian Snow
90
10
http://www.kindgreenbuds.com/marijuana-strains/hawaiian-snow/


P2_C10_M_0034
GH Cheese
40
60
http://azarius.net/seedshop/greenhouseseeds/cheese_greenhouse_feminised/


P2_C11_M_0035
Kalishnikova
20
80
http://azarius.net/seedshop/greenhouseseeds/kalashnikova_greenhouse_feminized/


P2_D01_M_0037
Great White
25
75
http://www.kindgreenbuds.com/marijuana-strains/white-shark/



Shark


P2_D02_M_0038
Strawberry
70
30
http://www.kindgreenbuds.com/marijuana-strains/arjans-strawberry-haze/



Haze


P2_D03_M_0039
Himalayan
0
100
http://www.kindgreenbuds.com/marijuana-strains/himalaya-gold/



Gold


P2_D04_M_0040
Ortega BC
0
100
http://www.leafly.com/indica/ortega


P2_D05_M_0041
Atomic Haze
80
20
http://www.cannaseur.com/index.php/online-store/female-seeds/atomic-






haze-female-detail


P2_D06_M_0042
Domina Haze
85
15
Author D H


P2_D07_M_0043
Rio
25
75
Author D H


P2_D08_M_0044
Damn Sour
60
40
http://www.cannabissearch.com/strains/damn-sour/


P2_D09_M_0045
Nina
75
25
http://www.kindgreenbuds.com/marijuana-strains/la-nina/


P2_D10_M_0046
White Widow
50
50
http://www.royalqueenseeds.com/122-white-widow.html


P2_E01_M_0049
Purple Sativa
70
30
Author D H


P2_E02_M_0050
Bubba Kush
10
90
http://www.tweed.com/collections/all-strains/products/norfolk-bubba-kush


P2_E03_M_0051
Delahaze
70
30
https://www.paradise-seeds.com/en/delahaze.html


P2_E05_M_0053
Super Silver
75
25
http://www.tweed.com/collections/all-strains/products/leonidas-super-silver-haze



Haze


P2_E06_M_0054
Jack Herer
70
30
http://www.tweed.com/collections/all-strains/products/birds-eye-jack-herer


P2_E07_M_0055
Pennywise
40
60
http://www.tweed.com/collections/all-strains/products/nova-pennywise


P2_E08_M_0056
White Berry
25
75
http://www.harborsidehealthcenter.com/learn/white-berry-medical-cannabis.html


P2_E09_M_0057
Skunk Haze
55
45
http://www.kindgreenbuds.com/marijuana-strains/skunk-haze/


P2_E10_M_0058
Durban Poison
100
0
http://www.leafly.com/sativa/durban-poison


P2_E12_M_0060
Happy Face
25
75
Author D H


P2_F01_M_0061
White Rhino
10
90
http://www.kindgreenbuds.com/marijuana-strains/white-rhino/


P2_F03_M_0063
Ice Cream
40
60
http://www.kindgreenbuds.com/marijuana-strains/ice-cream/


P2_F04_M_0064

C. sativa

100
0
Author D H



(Thailand/Laos)


P2_F05_M_0065
Diamond Girl
40
60
Author D H



(Silver Pearl)


P2_F06_M_0066
AMS
30
70
http://www.kindgreenbuds.com/marijuana-strains/ams/


P2_F07_M_0067
Lemon Skunk
60
40
http://www.kindgreenbuds.com/marijuana-strains/lemon-skunk/


P2_F08_M_0068
Arjans Haze #2
90
10
http://www.kindgreenbuds.com/marijuana-strains/arjans-haze-2/


P2_F10_M_0070
White Domina
0
100
http://www.headsite.com/white-domina-feminised-seeds-kannabia-446-p.asp


P2_F11_M_0071
Blue Hell
20
80
http://www.cannabis-seeds.co.uk/medicalseeds/bluehell.html


P2_F12_M_0072
Neville's White
80
20
Author D H



Widow


P2_G01_M_0073
Alaskan Ice
70
30
http://www.kindgreenbuds.com/marijuana-strains/alaskan-ice/


P2_G03_M_0075
Arjans Ultra
80
20
http://www.cannabissearch.com/strains/arjans-ultra-haze/



Haze #1


P2_G04_M_0076
Ken's Sweet
20
80
https://www.barneysfarmshop.com/seeds/barneys-farm-sweet-tooth.html



Tooth


P2_G05_M_0077
Neville's Haze
75
25
http://www.kindgreenbuds.com/marijuana-strains/nevilles-haze/


P2_G06_M_0078
Arjans Haze #3
80
20
http://www.kindgreenbuds.com/marijuana-strains/arjans-haze-3/


P2_G07_M_0079
Cupid
50
50
Author D H


P2_G08_M_0080
Super Critical
25
75
http://www.wikileaf.com/strain/super-critical/


P2_G09_M_0081
Super Bud
35
65
http://www.kindgreenbuds.com/marijuana-strains/ed-rosenthal-super-bud/


P2_G10_M_0082
LadyBurn 1974
50
50
http://www.cannabissearch.com/strains/ladyburn-1974/


P2_G11_M_0083
Trainwreck
90
10
http://www.wikileaf.com/strain/trainwreck/


P2_G12_M_0084

C. indica

0
100
Author D H



(Afghanistan)


P2_H01_M_0085
Almighty
50
50
Author D H



Whitey


P2_H02_M_0086

C. sativa

100
0
http://www.seedsman.com/en/guatemala-regular-seeds



(Guatemala)


P2_H03_M_0087

C. sativa

100
0
Author D H



(Laos)


P2_H04_M_0088
La Riena de
100
0
http://www.seedsman.com/en/la-reina-de-africa-feminised-seeds



Africa


P2_H05_M_0089
Raspberry
70
30
http://www.kindgreenbuds.com/marijuana-strains/raspberry-cough/



Cough


P2_H06_M_0090
Super Lemon
80
20
http://www.wikileaf.com/strain/super-lemon-haze/



Haze


P2_H08_M_0092
Jocelyn
60
40
Author D H


P2_H09_M_0093
Big Bang
20
80
http://www.kindgreenbuds.com/marijuana-strains/big-bang/


P2_H10_M_0094

C. indica

0
100
Author D H



(Afghanistan)


P2_H11_M_0095
Jamaican
100
0
http://www.leafly.com/sativa/lamb-s-bread



Lambs Bread
















TABLE 3







Sample names of genotyped hemp varieties.










Sample ID
Sample Name







P1_A02_H_0001_2
Felina



P1_A04_H_0002_2
Ferimon



P1_A06_H_0003_2
Kompolti



P1_A08_H_0004_2
Uniko B



P1_A10_H_0005_2
Fedora 19



P1_A11_H_0006_1
Futura 77



P1_B01_H_0007_1
Fedrina



P1_B04_H_0008_2
Suditalien or Sudi



P1_B05_H_0009_1
LKSD or LKCSD



P1_B09_H_0011_1
Bialobrzeskie



P1_B12_H_0012_2
VIR 541



P1_C01_H_0013_1
VIR 569



P1_C04_H_0014_2
VIR 575



P1_C05_H_0015_1
Silesia



P1_C08_H_0016_2
VIR 577



P1_C10_H_0017_2
Carmagnola



P1_D02_H_0019_2
Zolotonsha 15



P1_D03_H_0020_1
Fedora 17



P1_D05_H_0021_1
K110



P1_D07_H_0022_1
Novosadska



P1_D09_H_0023_1
Jus 8



P1_E01_H_0025_1
Delores



P1_E03_H_0026_1
Petera



P1_E05_H_0027_1
CAN 29/94



P1_E07_H_0028_1
CAN 37/97



P1_E10_H_0029_2
CAN 40/99



P1_F03_H_0032_1
CAN 39/98



P1_F06_H_0033_2
CAN 100/01



P1_F07_H_0034_1
CAN 18/95



P1_F09_H_0035_1
CAN 20/02



P1_F11_H_0036_1
CAN 24/89



P1_G01_H_0037_1
CAN 23/99



P1_G04_H_0038_2
CAN 17/95



P1_G05_H_0039_1
CAN 19/87



P1_G07_H_0040_1
CAN 22/88



P1_G10_H_0041_2
CAN 26/93



P1_G11_H_0042_1
CAN 16/94



P1_H02_H_0044_1
CAN 28/01



P1_H04_H_0045_1
Chameleon



P1_H07_H_0046_2
Tygra



P1_H09_H_0047_2
Carmen



P1_H10_H_0048_1
Alyssa



P2_H12_H_0096
Finola

















TABLE 4







Positions and allele frequencies of the top 100 SNPs by FST


between Cannabis Sativa and Cannabis Indica calculated


according to equation 10 in Weir and Cockerham (1984) [19]




















Minor Allele
Minor Allele



SEQ
SEQ
Minor
Major

Frequency
Frequency


SNP Name
ID
ID
Allele
Allele
FST
(Indica)
(Sativa)

















scaffold14566:24841
1
2
C
T
1
0
1


scaffold2257:59436
3
4
A
C
0.941
0
0.9444


scaffold123303:7086
5
6
A
C
0.938
0
0.9444


scaffold21832:18317
7
8
C
T
0.937
0
0.9375


scaffold10653:22776
9
10
C
T
0.937
0
0.9375


scaffold34968:5203
11
12
C
A
0.933
0
0.9375


scaffold41828:12391
13
14
T
C
0.883
0
0.8889


C32084869:1171
15
16
A
T
0.876
0.9444
0.05556


scaffold1342:67015
17
18
C
T
0.876
0.05556
0.9444


scaffold5876:136612
19
20
C
T
0.876
0.05556
0.9444


scaffold10653:22755
21
22
G
A
0.868
0.05556
0.9375


scaffold65043:4386
23
24
C
A
0.866
0
0.875


scaffold39548:5676
25
26
T
C
0.866
0
0.875


scaffold39548:5703
27
28
A
G
0.866
0
0.875


scaffold17605:9224
29
30
G
A
0.866
0
0.875


scaffold94301:10558
31
32
C
T
0.858
0.0625
0.9375


scaffold52608:15151
33
34
G
A
0.857
0
0.8571


scaffold9110:12755
35
36
G
A
0.845
0.8571
0


C32099389:1875
37
38
G
A
0.835
0.0625
0.9167


C32076905:769
39
40
G
T
0.825
0
0.8333


scaffold50412:1217
41
42
T
C
0.825
0.8333
0


scaffold73281:3231
43
44
T
C
0.825
0
0.8333


scaffold60591:9229
45
46
T
C
0.825
0
0.8333


scaffold60591:9364
47
48
G
T
0.825
0
0.8333


scaffold27976:11462
49
50
T
A
0.825
0.8333
0


scaffold4591:18700
51
52
A
G
0.825
0.8333
0


scaffold96873:16326
53
54
A
G
0.817
0
0.8333


scaffold6777:12771
55
56
C
T
0.816
0
0.8333


C31894837:130
57
58
A
G
0.812
0
0.8125


scaffold1342:66883
59
60
C
T
0.812
0.8125
0


C32035477:264
61
62
G
A
0.811
0.8889
0.05556


scaffold6360:1717
63
64
T
C
0.811
0.05556
0.8889


scaffold132623:4144
65
66
T
C
0.811
0.8889
0.05556


scaffold72006:11851
67
68
T
A
0.809
0
0.8


scaffold6742:34122
69
70
C
T
0.807
0
0.8333


scaffold3108:8782
71
72
G
A
0.806
0
0.8333


scaffold11225:9528
73
74
A
G
0.806
0
0.75


scaffold11225:9539
75
76
T
A
0.806
0
0.75


scaffold2579:59858
77
78
A
G
0.803
0.8889
0.05556


scaffold5876:136559
79
80
T
C
0.803
0.8889
0.05556


scaffold5876:136606
81
82
T
C
0.803
0.8889
0.05556


scaffold23386:12397
83
84
A
G
0.803
0
0.8125


scaffold93032:4944
85
86
A
G
0.791
0
0.8125


scaffold94004:13663
87
88
A
G
0.791
0.8125
0


scaffold26621:73038
89
90
C
A
0.791
0
0.8125


scaffold26621:73058
91
92
G
A
0.791
0
0.8125


scaffold62259:15201
93
94
C
A
0.781
0
0.75


scaffold38801:13810
95
96
A
G
0.768
0
0.7778


scaffold6550:117010
97
98
C
T
0.768
0
0.7778


scaffold94863:28465
99
100
T
C
0.767
0.1667
1


scaffold130551:553
101
102
T
A
0.759
0
0.7778


scaffold21832:579
103
104
C
A
0.759
0
0.7778


C32090201:1470
105
106
C
T
0.759
0
0.7778


scaffold117639:1939
107
108
C
A
0.759
0
0.7778


scaffold73281:2531
109
110
A
G
0.759
0
0.7778


scaffold95390:2586
111
112
T
C
0.759
0
0.7778


scaffold109105:3417
113
114
C
T
0.759
0.7778
0


scaffold9670:13701
115
116
T
C
0.759
0
0.7778


scaffold45478:20587
117
118
C
T
0.759
0
0.7778


scaffold23700:29096
119
120
C
A
0.759
0.7778
0


scaffold10732:30120
121
122
A
G
0.759
0
0.7778


scaffold16969:31933
123
124
T
C
0.759
0.7778
0


scaffold3884:40695
125
126
A
G
0.759
0
0.7778


scaffold829:52127
127
128
A
G
0.759
0
0.7778


scaffold6550:117004
129
130
G
A
0.759
0.7778
0


scaffold27604:1398
131
132
A
G
0.757
0
0.6667


scaffold125644:4761
133
134
G
A
0.757
0.7778
0


scaffold16027:10666
135
136
C
T
0.757
0
0.7778


scaffold2502:17437
137
138
G
A
0.757
0
0.7778


scaffold2502:17515
139
140
C
G
0.757
0
0.7778


scaffold70502:1951
141
142
C
T
0.754
0.8571
0.0625


scaffold40620:28184
143
144
T
C
0.751
0
0.75


scaffold40620:28194
145
146
G
A
0.751
0
0.75


scaffold40620:28201
147
148
A
T
0.751
0
0.75


scaffold118158:666
149
150
C
G
0.74
0.1111
0.8889


scaffold41951:881
151
152
T
A
0.74
0.1111
0.8889


scaffold95666:9974
153
154
T
C
0.74
0.8889
0.1111


scaffold12645:86648
155
156
C
T
0.74
0.1111
0.8889


scaffold6627:26364
157
158
T
C
0.738
0.05556
0.8333


C32050599:443
159
160
T
C
0.738
0.75
0


scaffold20861:14886
161
162
A
G
0.737
0.7778
0


scaffold30119:28969
163
164
T
A
0.732
0.8333
0.0625


scaffold2257:75397
165
166
T
C
0.731
0
0.7778


scaffold46867:905
167
168
T
C
0.73
0.7143
0


scaffold65132:21260
169
170
A
T
0.729
0
0.75


scaffold94863:28441
171
172
C
T
0.729
0.1667
1


scaffold94004:13590
173
174
T
C
0.726
0.75
0


scaffold94004:13632
175
176
T
A
0.726
0.75
0


scaffold39420:9067
177
178
T
C
0.723
0.1111
0.875


scaffold42291:6484
179
180
C
T
0.717
0.7143
0


scaffold23828:34435
181
182
G
T
0.714
0.9286
0.1667


scaffold15017:4539
183
184
C
T
0.714
0.07143
0.8333


scaffold16607:2589
185
186
T
C
0.713
0.875
0.1111


scaffold27758:4907
187
188
G
A
0.713
0.875
0.1111


scaffold20809:7695
189
190
G
C
0.713
0.875
0.1111


scaffold36583:13571
191
192
T
C
0.713
0.875
0.1111


scaffold36500:1728
193
194
T
C
0.712
0
0.7222


scaffold36500:1740
195
196
C
T
0.712
0
0.7222


scaffold36500:1749
197
198
T
C
0.712
0
0.7222


scaffold153198:2269
199
200
A
T
0.712
0
0.7222
















TABLE 5







Positions and allele frequencies of the top 100 SNPs by FST between marijuana


and hemp calculated according to equation 10 in Weir and Cockerham (1984) [19]




















Minor Allele
Minor Allele



SEQ
SEQ
Minor
Major

Frequency
Frequency


SNP Name
ID
ID
Allele
Allele
FST
(Marijuana)
(Hemp)

















scaffold13038:51303
201
202
C
A
0.865332249
0
0.8378


scaffold25092:11841
203
204
A
G
0.85295301
0.08333
0.9571


scaffold23837:26190
205
206
C
T
0.81783437
0.0375
0.881


scaffold152474:1505
207
208
C
A
0.813648101
0
0.8049


scaffold152474:1465
209
210
G
A
0.810651442
0.01948
0.8415


scaffold13038:51162
211
212
C
T
0.805163299
0
0.7632


scaffold5841:136325
213
214
A
T
0.782037623
0.00641
0.7273


scaffold5876:22669
215
216
A
T
0.779767209
0.1646
1


scaffold764:75880
217
218
C
A
0.770853139
0
0.7195


scaffold32076:9119
219
220
C
A
0.767411438
0.01316
0.7353


scaffold7992:917
221
222
T
A
0.763602811
0.00641
0.725


scaffold118405:2916
223
224
C
T
0.761994625
0.03165
0.75


scaffold2418:77480
225
226
G
T
0.758065142
0
0.6818


scaffold34829:1873
227
228
T
C
0.746880355
0.1533
0.9524


scaffold38125:4641
229
230
G
T
0.743833337
0.0375
0.7738


scaffold37469:74270
231
232
G
A
0.740257391
0.1026
0.8611


C32100775:1618
233
234
T
C
0.736074476
0.006667
0.6613


scaffold5190:41424
235
236
C
G
0.734073333
0.1104
0.878


scaffold5190:41454
237
238
G
A
0.734073333
0.1104
0.878


scaffold49917:1105
239
240
A
G
0.726261988
0.075
0.8452


scaffold4775:75747
241
242
T
A
0.719005761
0
0.6429


scaffold26152:15432
243
244
G
A
0.712320041
0.04667
0.7794


scaffold5841:135056
245
246
G
A
0.712144097
0
0.6585


scaffold5876:106401
247
248
A
G
0.711616024
0
0.6548


scaffold5113:138895
249
250
A
G
0.711038199
0
0.6111


scaffold5113:239777
251
252
G
A
0.710611128
0
0.6463


scaffold5841:135067
253
254
G
A
0.70853417
0
0.6585


scaffold25099:7321
255
256
A
G
0.702374753
0.04375
0.7439


scaffold14172:40875
257
258
A
C
0.702287484
0
0.5952


scaffold158332:502
259
260
A
G
0.702084439
0
0.6548


scaffold16869:149709
261
262
T
G
0.700892589
0.1456
0.9


scaffold114539:1119
263
264
C
T
0.695979272
0
0.6111


scaffold3842:272682
265
266
T
G
0.69126068
0
0.6207


scaffold60331:8510
267
268
G
C
0.690556532
0.02083
0.7083


scaffold2360:22109
269
270
G
A
0.689941474
0.05797
0.7857


scaffold72613:1728
271
272
G
A
0.689632536
0.04375
0.7262


C32052717:309
273
274
A
T
0.688864374
0.1437
0.8929


scaffold71943:13435
275
276
C
T
0.685008651
0.01875
0.6667


scaffold71943:13471
277
278
T
C
0.685008651
0.01875
0.6667


scaffold128544:170
279
280
G
T
0.679301025
0.01266
0.6316


scaffold98263:1069
281
282
T
C
0.677597364
0.06875
0.7738


C32058675:292
283
284
A
G
0.673619414
0.00625
0.6548


scaffold823:11824
285
286
C
T
0.673537258
0
0.6286


scaffold75287:5899
287
288
G
T
0.673496392
0.04375
0.7073


scaffold16869:149730
289
290
C
T
0.671387324
0.1456
0.8718


scaffold3842:543149
291
292
C
T
0.670719701
0.025
0.6406


C32058613:508
293
294
T
C
0.67046277
0
0.5758


C32058613:563
295
296
C
T
0.67046277
0
0.5758


scaffold7146:70340
297
298
C
T
0.669199626
0.1688
0.8857


scaffold23125:41276
299
300
G
A
0.669066022
0.02597
0.675


scaffold2418:77508
301
302
A
C
0.66841944
0
0.5758


scaffold12000:86305
303
304
T
G
0.668293303
0.06494
0.75


scaffold24181:60784
305
306
T
G
0.665305819
0.02985
0.7083


scaffold26621:72993
307
308
G
C
0.66089327
0.01493
0.6389


scaffold6391:16360
309
310
T
C
0.658649381
0
0.5952


scaffold88759:12655
311
312
A
T
0.656740474
0.1824
0.9091


scaffold37469:74336
313
314
C
T
0.65627789
0.2062
0.9405


scaffold12000:86310
315
316
T
C
0.655527354
0.06494
0.7375


scaffold6143:103796
317
318
G
A
0.651968566
0.00625
0.5976


scaffold33135:78155
319
320
A
G
0.648604326
0.1
0.7976


C32058675:317
321
322
G
A
0.644770212
0.025
0.6667


scaffold1976:5193
323
324
G
A
0.644158158
0.01333
0.569


C32098343:2061
325
326
T
G
0.643381806
0.225
0.9405


scaffold158089:295
327
328
A
G
0.642783505
0.01316
0.6053


scaffold17267:6243
329
330
T
C
0.641890359
0.7372
0


scaffold491:22100
331
332
A
G
0.640380595
0
0.575


scaffold121522:9070
333
334
C
A
0.634641583
0.1899
0.9167


scaffold24615:2202
335
336
G
C
0.63300106
0.0125
0.5952


C32052323:699
337
338
A
G
0.62920484
0.00625
0.5789


C32052323:711
339
340
C
T
0.62920484
0.00625
0.5789


scaffold14925:8868
341
342
G
T
0.626191251
0
0.5714


scaffold133681:2742
343
344
A
T
0.624116063
0.03125
0.631


scaffold9639:84033
345
346
G
C
0.623460076
0
0.5488


scaffold61482:2893
347
348
T
C
0.623250917
0
0.5714


scaffold30395:12115
349
350
C
T
0.622098398
0.2562
0.95


C32064647:1071
351
352
T
C
0.621516382
0.06757
0.6935


scaffold2452:1249
353
354
C
T
0.62106722
0.1709
0.869


scaffold11436:6161
355
356
G
A
0.619484202
0.02597
0.5833


scaffold4156:16965
357
358
G
A
0.61693912
0
0.5476


scaffold43435:8325
359
360
T
C
0.616228929
0
0.4783


scaffold11297:60144
361
362
T
A
0.615278463
0.7063
0.0125


scaffold51841:4904
363
364
A
C
0.612402044
0.02083
0.5811


scaffold38015:40961
365
366
A
G
0.611084671
0.01899
0.5789


scaffold16206:63417
367
368
A
G
0.607275173
0
0.5366


scaffold13781:319
369
370
T
C
0.603383314
0.02564
0.6143


scaffold27023:20610
371
372
T
C
0.603215502
0.025
0.5952


scaffold4618:83522
373
374
T
C
0.600515019
0.03289
0.6094


scaffold111383:2928
375
376
G
A
0.598738059
0.0443
0.6341


scaffold29335:25795
377
378
C
T
0.598716088
0.1447
0.8


scaffold122455:2010
379
380
C
G
0.597062664
0
0.5238


scaffold13362:101120
381
382
A
C
0.595795194
0
0.5238


scaffold38557:23764
383
384
A
T
0.595178777
0.01923
0.5


scaffold38557:23794
385
386
G
A
0.595178777
0.01923
0.5


scaffold50091:2544
387
388
G
A
0.595100084
0.006494
0.5


scaffold16614:72706
389
390
A
T
0.594825378
0
0.4483


scaffold4877:4542
391
392
A
G
0.593079588
0
0.5


scaffold65894:5390
393
394
A
T
0.590807732
0
0.4857


scaffold90107:10791
395
396
T
C
0.590194744
0
0.5122


scaffold68873:1704
397
398
A
T
0.586079433
0
0.4875


scaffold3842:188176
399
400
C
T
0.584333199
0
0.5161
















TABLE 6







Upstream, Allele and Downstream sequences for SNPs from Table 4














SEQ



SEQ



SNP Name
ID
Upstream Sequence
Minor
Major
ID
Downstream Sequence
















scaffold
1
CAGATCCTAAATATGCTGATATTATTCTTTTA
C
T
2
ATAAGGAGTTATTATTATTTGTTTTGGGTGCATTGCTG


14566:24841

GAGAATTATGCAGCATTTCAGAATAGGTACAT



AGTAGAAGCAGTTTCATGCAGCTTGTATGACCTAGCCA




ATTTCATTCTTTTATTTTTTCTCCTGTATCTT



ATGTTGTGCCTACCCTAGCCAAGT




TCAT









scaffold
3
CAATAAGACTTTCGATCGCTCTTGGTGCTGCA
A
C
4
AATGGGGTATTGAGGTTTGAAGAATTCTTTCATATGAA


2257:59436

CGAGGCAAGATTTCTATATTTGATATTGGCTT



TCTGCAGGATTAACTTATCTTCACACATATGCCGGCTG




GTCCCATTTGACAATTTTCCATTAAAATGGCT



CGTTATACATAGGGATGTGAAATC




GATG









scaffold
5
TCCTCGATTGTTGAAGGAATTGTGGGGAGGCC
A
C
6
AGCAAACTGCAAGTTCTTGACAGTGTACTGAGGCAACA


123303:7086

TGCTTTGCGCTGCTGCTGGGCCCATGATAGTT



CAAAGTGCAATTGTCAATTATGATCTGGAAGAGAAAGG




TTTGCTGTAGTTTCACATTTTCTGGTTCAACT



TTCGCAGCAAAAGACGCAACTAGA




GTGA









scaffold
7
CTGAAGCCAGGACAATGCAGCCAGCCAGTAGT
C
T
8
GGGCAAAGTTTGACGAGCCAGTCTAGCCAATTCGGAAA


21832:18317

GAGTATCATCATCAGTATGTTGTTGCTGTCAA



TAACTCAGATTATAGTCCAAGTTTTTGTAGAGGCTCTC




TGGCATGATGGACCCGAGTCCACGGAAGAGTT



CTACAGCAGCATATGCAATGGAGA




CAAG









scaffold
9
CCATCATGAAATTCCCTTACCCTGGTGCCTTA
C
T
10
GACCGACTTGAGCTCCTCACAATGTGGCGCTTTCTACC


10653:22776

ACTGCTCTGCAGTATTTCACTAGTGCTTTTGG



TGCTGCTGTTATATTCTATCTTTCCCTTTTCACCAATA




GGTCTTCATTTGTGGATGGCTTAAGTTCATTG



GTGAGTTGCTCCTTCATGCCAATG




AGCA









scaffold
11
CCCATGGAAACAAAAGTTCCCTGATATCAAAC
C
A
12
ACAAGTACTGACCTCAGGAGTTCCAAGAACCCAGTCAC


34968:5203

AGTGAAAAACTTTAGCACAACACAGCAGCATA



GGATGTGATCACAAGCAGAGCTGGCAGCAGATAAAGCA




GATATCGATAAGGAAACAGATTAATTGAAAAG



CTTGATAGCTTACGAGCTTTGATA




AAAA









scaffold
13
AACCATTCATCTTCTTATCACTGCTGCCATTT
T
C
14
GTATAGGCCACACAAACCAAAAGATTAGCCTTGTTGTT


41828:12391

CTTGTTTGAATGTCATAAATTTTGGATTGGCA



TTTGGCAGTAGCTTTCATGACTTTCTCAGCAGCAACTC




GGATTCTTGAATAGCATGAACGATCTCATCAC



TCACAGGCTCATTCAACAGTTTCA




ACGA









C32084869:
15
AATGGTTCCTCAATCTTCAAATCATCAGAAGC
A
T
16
CCCAAGGCCAAGTTCCACCTGTTTCATCAGGCCATGCA


1171

TCCTTGTTAGCTCGACTCTTCCTTCCACGAAG



TTATCAACTTCCCAACAAGTTCCAGTGGCAGTTATGGG




CAGCTCCATCAAATGCCTTCTCATTCAGATAA



TCCCAATCACCAGCAGCTGCAGTC




TAGC









scaffold
17
CGTACCGTTCATTGTCTTTAGCTAACGACGCC
C
T
18
AGGCATAGGATTGGCTCATTGGCAGCAATTGGGGGTAA


1342:67015

AATGAAGCAGCAGCATCCGATCGTTCTTCCAA



GCCGAGGTACTCGTCGTCTCGATCGCAGGCAGAGGCAG




TGACCCCGTGTAAAGAATTGCTATCTGTTCCC



AAACCCGAAGGAGCCAAGAGACAT




ATAT









scaffold
19
GCTCCGCTGCTGAAGATGTTTCCAAACCTGCA
C
T
20
TGCTGCTGAGTTTCTTTTTCATTAGTTGAATTAATGTA


5876:136612

CACCAAGGAGTCTCTCGTATCCCCTGATGAGC



TCTACAAACTATTTGTTACTGCTAAAAGCTTATTGTCT




TTGGTCCTTTTCAGGTAAAACTATCTTGCTCA



TTAACTTATTATCACATCTATACT




TCAT









scaffold
21
TCTCTATAATCAACAAATGGGCCATCATGAAA
G
A
22
TGGCTTAAGTTCATTGAGCATGACCGACTTGAGCTCCT


10653:22755

TTCCCTTACCCTGGTGCCTTAACTGCTCTGCA



CACAATGTGGCGCTTTCTACCTGCTGCTGTTATATTCT




GTATTTCACTAGTGCTTTTGGGGTCTTCATTT



ATCTTTCCCTTTTCACCAATAGTG




GTGG









scaffold
23
CGCGAAATAACATTCTCACCTTCTCCTCTCTC
C
A
24
ATCGAACACGGAATTCGCAAATACGGTGATTCGATCAA


65043:4386

GCCACCGCTGCTGCCGCTGTCGCATACGTTTT



TAACGTTTTCGTTCACATTAAGCAAACCGGTGTTGCTG




TCTCTCCTCCGATGATGATCGTGATCATAAGG



CTTCGGTTCTCTGGCAATCGCTTA




CCGC









scaffold
25
AATAAAACATGAGCTTCTTGATATTCTCACTA
T
C
26
GATCGCTCCAGGTAAAGCCTGCCTCTGTATGCAGCCAA


39548:5676

AGTTTGGGTAGTGGCATAGTCTTTGGAGAAGC



GTGAGCATAATAAACTGGGGGAACCAAAGAAACTGGTT




AGCTCGAGAAAGTGAGGAAATAGTACTTTTGG



TAGTACACCTTACGTATGTATAAC




AGTC









scaffold
27
CACTAAGTTTGGGTAGTGGCATAGTCTTTGGA
A
G
28
TATGCAGCCAAGTGAGCATAATAAACTGGGGGAACCAA


39548:5703

GAAGCAGCTCGAGAAAGTGAGGAAATAGTACT



AGAAACTGGTTTAGTACACCTTACGTATGTATAACAAA




TTTGGAGTCCGATCGCTCCAGGTAAAGCCTGC



GATTGTACACCAGTTTCTGTAGTT




CTCT









scaffold
29
TACCATTTTCTTGCCCACAGGTTATTTTGCTG
G
A
30
TTCCAGGATATTCCTTTGTGCCATTTAGTAAAGTGAGT


17605:9224

CTATCCTTGCGTGGTTGTGGCCCACTCTGGCC



CTAAAAGCAATGCTTATCTTTAAATATGGTATCTGGTG




AAATCGGTTATCCTCATCAACAGTGCTGGAAA



CAGCTGCTGACAACTGAAAGCTGT




TGTC









scaffold
31
TCAAGAGTTGGTTAGAAATTTATAACATACCA
C
T
32
GTTGATGAAGTTTTTCGGCTCACATCTTTACCTGGCTG


94301:10558

GAAGCAGCAGAAAATGCTGTACCGCTTCTTTT



AGAGCCAGTTGCAGCATCTGTTCCTCCTTCACGTTTTT




CTCAGCATCATGATGGTCTTTTGTAGTTTTTC



GTCGAGCTTGTTCAGCCATAAGCT




CAGG









scaffold
33
CTAGCAGCTTCAAAATGGGTTTCTTTCTTTGG
G
A
34
CCACCAACCAATTCAGCAGCCATATTGATCAATGACAA


52608:15151

AACAGCTGGGATATGTCCTCCGAGGCCAATCT



AAGTAACAAGTTCTTTGTTGAATCTGTGTAGGGGTTAC




GTCAAACAGAACTTGAAGTGAAGCAGAGAGCA



GGATGAGAATGAAGAAAGAAAGAA




AAGC









scaffold
35
CCCAAAGAGTTTGGTTATTTCCTAGTGTTACG
G
A
36
GTTTGTGAAGTGGGACCACTATTTCCTGCAGATGAAAC


9110:12755

ACTGTTGGAAAGGCCCTGTCTATTGTGGTGGC



AACCGTGATCCCCTTTGATGCTGCATGGAAGGACCCAA




TGCCACAGTTATGAGCCATGGTGCAGTGTTTG



TTGCAATTGTGTCACGCAGATCAA




AAAT









C32099389:
37
TTGATCTACTGTTGCAGAACATGTATGCTCAG
G
A
38
CCACCTCCTATGGGGGGAATGGGAATGCCTCCAATGCC


1875

TTGCTGCCTCTTGCTTTGCCTGCCCCACCTAT



ACCCTATGGCATGCCACCCATGGGGAGCAGCTATTGAG




GCCGGGAATGGGAGGACCAGGAATGGGAGGCT



ATGTATCAGGACTACGAGTTGTGA




ATGC









C32076905:
39
CTGACAATATAGCAATGCTTCATTAAATCTCA
G
T
40
CAAAATTCAAACCACAAGATCACTCTAACAAGTCACAA


769

TTATTACAAATACACTCATAAGCTCATCAATA



CAAACACATAAAAGCATCAACTCTAGCAGCACCACCAC




TAGATAATAGATATAGTAAGATACAAGCTGCA



CACCAAACCAAGGCATCATCCCGA




ATAC









scaffold
41
GACTAAGCCTCAACTGGGTTTGGAAGAATTTT
T
C
42
TTAGGGAACCCAGTGACCTCGAATTCTTCAGACTCTGT


50412:1217

GACCATGAATCTGAACCGTCGGCTGCTCTCAA



TTTCCGGTGAGGGAGTTCGTTCCAGATAGAAATGAAGG




AAAGTAATGTAACTGAGAACGATGGAACCGGC



CTGCAGAGCCGTAAGCGCCAGAAG




ACCG









scaffold
43
ACAAGAAGAATAGAAAGGCTGCTCTTACTATT
T
C
44
ACTTACTGCAAGCTGCTTGATGAGGTGAACAAAGAGAG


73281:3231

TTCTATGCCTTGGCCTTGGCTGAAGCTCTGTT



TGAATTGGGAGGAGCTTCTGGTATGGTTTCAATCAGAA




GTTTCTAATGGAGAAAGCTTATTGGGAATGGA



GGTTCTTCTATGATGCCTATTCGA




AGGT









scaffold
45
CCAATTCCGCCACTGCTCCACTGCTGCTTGCT
T
C
46
GTTTCAGCATCATTACCATTTAATTTATCCTCTGGTAC


60591:9229

AGATTCTTCTCAGATGAGCGCTCAATCTCTTT



TGGGCTGCTGTCTGGACCCCATTCTGATGAGTCTTTAA




TGACAAAGATCCACCAAGCTCAGGCTTATCAT



CATCTGCTTCAACTTCATGCGAGG




CACC









scaffold
47
GTACTGGGCTGCTGTCTGGACCCCATTCTGAT
G
T
48
GTTTCTAAACTAGCTGCAGTAGCATCCATTTGATCCAC


60591:9364

GAGTCTTTAACATCTGCTTCAACTTCATGCGA



AGTTTCCAAGGAAGATCCAGATCTATTTATAATTCCAC




GGTAGATGTAGATACCACAGATTCTGACATAG



CAGTGAGGGGTGCATCCACATCAT




TTTC









scaffold
49
TCCATTGCAAAAACTACCACCATGGCTCTGAT
T
A
50
GATCAGAAGATTTATGAGTTGCTTCTTCAGAAAGTTGG


27976:11462

CAGCAGCAGCAAAAGAGCTAGGCTTCACTTCC



TAACCTTGTTCCGAGTGTTGACTTGAGGTATTTGCTGC




TCCACAAGATCAAACTCTTTCTTCTCTTGCTT



AAATGGAGACTTCTCTCGCTGGCT




GGTT









scaffold
51
AAGCAGCATGGCGGCGATACAGTAAGAAAAAG
A
G
52
CCTAGTTTAGGTGCCACCATTTATGCTTCACGCTTTGC


4591:18700

CTTGAAGAGTCTCTTAGGGAAGAGGAGAATAG



TGCAAACGCACTGCGTGCCATAAGGCGTAATAGTACAC




GTTGCAGGATGCGTTGGCCAAGGCCGGGGCGA



GTAAAACAAGGATGCCCGAAAGAA




GCTC









scaffold
53
AGGAGGCAACGGACTCTTCAACTTAGCAGCAG
A
G
54
AAGATTTCTGCTTCCGCGGATGTCGGATCTTGGCGGTG


96873:16326

CGGAAGGCGAGGGTTTAGGAATCGGAGGCAAG



GTGCTGCTAGGGTTTGGAGATGGCGGAGGTTCCGTCTC




GAGTTTGGATCGGCATAGGGCGGAGCATTCTC



TCTCAAGATGTTATTTCTTGGCTG




CTTG









scaffold
55
ACCATTATGCGGTGTGTGCAAATTCGAATTGC
C
T
56
CTTCTTCATCTTCAGAACTCTCATCATCATCCTTGAAA


6777:12771

TCTCCCCATCTGAGTAGTCTGATATCAAGTGA



ATTGACCCTGGTGTTAATCTTTTGTTTTGTTTTGAGCT




TCTGATGGACTTCTTGTGCTGCTATCTGAACC



GTTCAAGATTTCTCCATTGTACTT




CACC









C31894837:
57
ACTTCGGCTCTAGGCAGCCCTGCGCTTCGCAT
A
G
58
GGGCTGCAAGAGTAGAAGTCTTCAGCGATTCACAGTTA


130

TCCTAGCCTCAAACAACGAAGCCGAGTATGAA



GTGGTCAATCAAGTGTCGGGGGAATACCAAACGCGTGG




GCCCTAATTGCAGGACTAAAGTTATCAAAGGC



AGAAAAAATAGCCGCTTACGTAGC




CGTA









scaffold
59
TGTGTTCAACGCTTTCCGGGTCACGCCCCAGA
C
T
60
GCCACCCCACCTTCCTCAATAATAAGCTTACCGTACCG


1342:66883

CGCCCAATTGCCGTGGCAGCATTCTCCTGACC



TTCATTGTCTTTAGCTAACGACGCCAATGAAGCAGCAG




TTCCATTCGGCCTTCTTTTGCCAATTTCAGAA



CATCCGATCGTTCTTCCAATGACC




GTGG









C32035477:
61
GAGAAGAGAAATTATCATATGCCACCATGAGC
G
A
62
GCAAACAGTGCTTGTTTCTCCCATTCGTTTCGAACATT


264

AAAACCGCAGCCTCCTTTGCGAGGATAGAATT



TAGCATGGTATTATCACTAGCAGCTTTTTTGGAAAAAC




TTCTACCGAGAGAGTTTTGTCGGTCGCTTTCT



TAAGGAAATACTTCAAGATGGCGA




CCAT









scaffold
63
ACTTGGCAATGTTAGCAGCCTGGTCCAGAGAA
T
C
64
TCAAGGTCAATGGACTCCAGAGCAGCCTTAACCATGGC


6360:1717

CTAGAGAGCAAGGGATGGAAGCATATATGGTC



TAGGACTGAGGTTCTCAAGGGGCATGGATCCGAAGATG




CACAATACCAAGCCGGGGATGACTGCCACTGT



GTTGTGGATCCAACTTGGAAACAA




GCAA









scaffold
65
GTAAATGCAGTCCTTGTGATTGTTGTTGTTGT
T
C
66
CGACCAAATTGCTGTAAAAAGAAGTCATGCAACAGAAG


132623:4144

AAATGCCCGTCGTGTTTCAGTTGCTCGTTACC



TTGTTGCTGCCTATTCCCTACTTCTTGTTGTTCATGCC




AAAATGGCGTTGCCCTCGTTGTTCATGTTCGT



CTGATTGCCCCTCTTGCAGATGCA




GTCC









scaffold
67
ATTGCTCTAGGGGCAGCCCGAGGCTTAGCTTA
T
A
68
TGACTTTACACCTAAGGTCTCAGACTTTGGATTGGCCA


72006:11851

TCTACATGAAGACTCCAATCCACGAGTGATTC



GAGCAGCATTAGACGGTAACAGACATATCTCAACACAT




ATCGAGATTTCAAGTCCAGCAACATCCTGTTA



GTTATGGGCACTTTTGGGTAAGGA




GAGC









scaffold
69
AAAAAGTTGCAGCGGCAACAAAAGGTCTGTGT
C
T
70
GGTGGGTTGTTGGAGCCAATTGAGTATATTTCAACGGA


6742:34122

TGGGATTGAGAGGCTTTGAGAGAAGAGACCCT



GGAAGTGTCGGAATCGGAGTCGAAAAAGGCGATGGCTG




CGAGGGAGAAACCCACGAAGACTGAGGAGCTA



CGAACCGGTCCAAGGCCGTGACTG




GGTT









scaffold
71
AGATAAAAGTCGCTCATTCTGAACCTCTTCCT
G
A
72
ATTCTCTCTTAGCTTGTGATGCTTTTACTTCTTCCTCT


3108:8782

CTAACGAAGCTGCTTTTAAGAGCAAGGTGTTG



GCAGCTTTCTTTGATTCAGTAGCAAGAACCATCTTTAT




ACCTCATTTTCAACTACTCTCAATCGAGACTC



TTGCAGCTCCTGCAAATCCATTGC




TGCC









scaffold
73
AAGCAAATTAACAACCTGCTTATCAACCAAAC
A
G
74
AGGCTCCACTAGCAATTGATCTTCTTGCACCCTTCCTC


11225:9528

CCGGATGAGTAGTGACTACATAAGGGTTATTA



ACTAAGTCTTGAGCAGCCCATATACTCCGCCAAATAAA




TCATGGGGCAGCCACGGGTCATTTAGAATGCT



ACTAGGATTATTTCCTAACTCAGC




AACC









scaffold
75
CAACCTGCTTATCAACCAAACCCGGATGAGTA
T
A
76
GCAATTGATCTTCTTGCACCCTTCCTCACTAAGTCTTG


11225:9539

GTGACTACATAAGGGTTATTATCATGGGGCAG



AGCAGCCCATATACTCCGCCAAATAAAACTAGGATTAT




CCACGGGTCATTTAGAATGCTAACCGAGGCTC



TTCCTAACTCAGCATCAAGAAAGG




CACT









scaffold
77
TGCCGGATTTAGTGTGTAATAAAGACGAATCG
A
G
78
TTGAGGCTTAAACTCATCACTGAGCCTGCTGAGACTGC


2579:59858

AGCAGCTTTGGGTTCAAGAATTTGATGGAGAC



TTCGTCGTCTCAGCTTCAAAATATGGCCATTAGAGTTG




TTTCTGGGTTGACGTTCAAGAAGCTGAAGAGA



AATTGAGGAATGGCTGCGTCGGAT




GACC









scaffold
79
GCACTTCCATTTACTTGGCCTCAGGCAAAATA
T
C
80
GTATCCCCTGATGAGCTTGGTCCTTTTCAGGTAAAACT


5876:136559

TACCAGGAAGAGAAACATCTAGCTCCGCTGCT



ATCTTGCTCATCATCTGCTGCTGAGTTTCTTTTTCATT




GAAGATGTTTCCAAACCTGCACACCAAGGAGT



AGTTGAATTAATGTATCTACAAAC




CTCT









scaffold
81
CATCTAGCTCCGCTGCTGAAGATGTTTCCAAA
T
C
82
ATCATCTGCTGCTGAGTTTCTTTTTCATTAGTTGAATT


5876:136606

CCTGCACACCAAGGAGTCTCTCGTATCCCCTG



AATGTATCTACAAACTATTTGTTACTGCTAAAAGCTTA




ATGAGCTTGGTCCTTTTCAGGTAAAACTATCT



TTGTCTTTAACTTATTATCACATC




TGCT









scaffold
83
CTAGTTTTAAGGATGCACAGTGGCTCCTCATC
A
G
84
ATAAATGACTTCAATGAGTACTATCTTAGTGATGGTGT


23386:12397

CAGAAAGCTGAAGAGGAAAAGCTTCTTCAAGT



TAGTAAGTCTGCTCAACTGTGGAATGAGCAGCGAAAGT




GACTATTAAGCTGCCAGAGGAGAAACTAAATA



TGATATTGCAGGATGCTCTTTTTA




AGTT









scaffold
85
TGCAGCCCATTGTTGAGATGAATGAGATGTTA
A
G
86
AAGCAGCAACTTCTGTGATATCCAGTGGGTTTACTAAA


93032:4944

CATGCTTGAAGTTATGTTGATGTCTCATTTCT



ATAGCGCCAGCACCGAGTGAATTTACTGCACCTGCACA




CTTTCCTTAGCTATCATAGTCAAAGCATCACC



CTAAATTTAAATGGAATAAACAAG




AATG









scaffold
87
TGTTAACAGCATCAGCAGCAGCAGCAGTATTA
A
G
88
CCAATATGGTGGAGCTGCAACATGGGGATTAGTCAGAC


94004:13663

TCCCTATTTCGTAAGGAACAAGGACGCCACAT



ATAGCCAATTCCTTAATCCACCTCAATGAAAAAGAAAA




ATATGTTACAGGAGCGATCGGCTTAGAAACTG



GGACAGTAACTAACCATTGCATTA




GTGC









scaffold
89
ACGACGCCTACTACCAATAACCCAAATAGGGC
C
A
90
TACTACTACTACTACTACTACTACTACTGCTGCCTTCT


26621:73038

AGCAAGGATGATGATGATGACCACACAATCCT



TCAGGGGTAGCACCATGGTGGATAAGCTAATCAAGGCC




GCTCCCCAACACTCTCCAGACCACCCAACACA



AGAAGATCATCATCAACAACACCT




TCCA









scaffold
91
CCCAAATAGGGCAGCAAGGATGATGATGATGA
G
A
92
CTACTACTGCTGCCTTCTTCAGGGGTAGCACCATGGTG


26621:73058

CCACACAATCCTGCTCCCCAACACTCTCCAGA



GATAAGCTAATCAAGGCCAGAAGATCATCATCAACAAC




CCACCCAACACATCCAATACTACTACTACTAC



ACCTACCTACATATTATAACACAA




TACT









scaffold
93
ATGATGATTTAAAATGCATTAACTTCACATCC
C
A
94
CTCGGAAAAGGCTGCAAAAATGATAATCATAACTAGCA


62259:15201

CAATATTTCTCACCAACCCATAGACTCATAAC



TAAAATATTGATCTTAATTCATAACTAAACCATATATT




TTTAGCCTTTCCCTCTAAATATTGGATTGCAA



TATAGAATCAAAACTTTTCAAACA




ATTT









scaffold
95
CAAAACCATCGCCGGAGAGAGAGAGGTTGTTT
A
G
96
AGGCAATCATGGAAGAGGAGGCGGAGAGTGGCGGCAGC


38801:13810

TCAGCATCTCGCTCAGCCTTGTTGAAGGCATT



TGTGGTTGGGACCACCGATTGCTTTTCCTGTACAATCT




GGAGGCGATGAGGATGGAGGCGTCGCAGCCTT



GCCGTACGATGTCGGGGAATTTCG




CGAC









scaffold
97
TCGCCTTACAGGCTTTACTTGCACAGTCAAAG
C
T
98
CTGATTGTTGAGAAGTTTTTGTACTCGTGAAATAGAAG


6550:117010

ACCGGTCTCAGCTCTTTGCATCGTGGGCAGAT



GAGAGGCCGCTGTGGCTTTTGCTGCTCTTTCGGGTTAT




TTCGATGTCTATCGTTGGCTGGTCTTTGTAGT



GTTGAAGACACGAAGAGAGTGTTT




AATG









scaffold
99
TTGGGTGGTGGCTATGGCTGCAGGCACTAAGA
T
C
100
TTCTCCAATCTGAACGCCACTCTCTCCGATCTCGGGGC


94863:28465

GCAAGCCCACAAACCAAGCTGTTGAAAGAAGC



TCAGATTCGAGAGGGAGATAAGTGGTTTGCAACGGCGC




ATGCAGCCCGTATAATGCCACAGACTTTGCTG



AGCAGGCACGGGGATCAGACCCTG




ATTT









scaffold
101
GAAAACGAATGCTGCAAATCGATCGGTGAGCC
T
A
102
ATAACAAATCTTGGAGCTGCATTGTGATGATGATGATG


130551:553

TGTTATGCAACTCTTCCTTGTTTATTTGATGA



ATGATGATGATGATTGATAGTCATGGTGTTATGTTTTT




TCTTTTTAGTCTCTTTTCATACATTATTGTAA



CACAATAATAAAAAAAAGAAAGTC




TTGT









scaffold
103
AAAGCCTGCTGCGCTTCCCGGGCTCTTGAGGA
C
A
104
ATAGTTACCATAGATTTTTCTGTCAATACTTTTAAATC


21832:579

GATTCTTCACTTACAATTTGCTTAGCTAATTC



GATACCCGGATAGCATTCGCAGCATTCTAAAATCTTTT




TTGTAAGAGATCATGCATCCATATTTTGTCAC



TCACCCGAATTTCGCTCTCTCCCT




CAAC









C32090201:
105
GATTATACCCAGAAACCAAAGCAGCCTTAGGA
C
T
106
CTTAACCAAGCAGCCAGAACAATTTTGGTGTGAACATC


1470

CATTCCAGATTTCGTTTACAACAATCCATAGC



AACAGCATGCTGCCTTGCTGACCGGAGACTCCGCCGGA




CGAAGTACCCAAAAGCTCATCTTCCCTTCTCT



AAAATTTGGGATCCGAGAGTCCCT




CAAA









scaffold
107
GATTCGAGTCATAACTTGGCACAACTAAACTA
C
A
108
GAGTAAACACTTTTCCTCTGTTCATCAGACTGACTCTC


117639:1939

CAGTCCTGACAGTCGGATCCACAATCTGTGAA



CTGCAGCATTAAATTACTCAATTCTGGATGATGCAAAA




AAAAGCAGCAATATCTCGCCCAGATATAAAAA



TCAACTTGAAACAGACTAAGTTAT




ACCG









scaffold
109
AGTCCAGTTACAACAATGTTTGAGCCTCAAAA
A
G
110
AGCACCAGAAAAGAAGCTTACCCTCTTTGCTCTTAGGC


73281:2531

TAGTATAGAGAAAAGGGACAATAGTAGCAATG



TTGCTGTTCTTGAAAAAGCAGCAACTGGCCTTGGAACA




CAAATTCTGGCTCTGCAGCCTTAACAAAAACA



CTTGGTTTTATCTGGGCAACAGTT




GTAA









scaffold
111
GTTTTAGATACCAAAAATAAAAGATGTAGATG
T
C
112
ATCTCTTTTTTGGCTAATGCAGCTATAAAGCATGGGGT


95390:2586

ACCGGAGGAAACAAGCAGCTGGGTCTGCCAAT



TCTCTTCTGGGACAACAGTTATCAGAAAGAGACATTAT




TCAAAACAGTCTCAGTTGCATAATTACTTGTC



TGTGGCGTGCATAGATTACAGGTT




TTAA









scaffold
113
CTAACTCAATATGTTTCATTCTTGCATGATAA
C
T
114
TGTTGTAGAAAGAGCAGCAGCGAACATAAGTTTTAAGT


109105:3417

ACAGAACTTGCAGCTGGTGCACTAGCACTCAT



TCAAGTAATTTGTTAGTCAAATTTCAAAGTGACACTTC




GTTGTCACACCATGTTACTGATGTGCATAATT



CTTTATTGGAAAGGAAAAGGTACA




GTGT









scaffold
115
CCCATGGCTTGGACGAGCTCCGACCTGTGATC
T
C
116
AGGTGCCATTTCCGTCACTCCCTCACTGAGCAGGAGAA


9670:13701

AGACATCCTCGTTACAAGACTGAGATTTGCAG



GTTGATGCTGCCTCATTGATCACCATGGAAGTGAAATT




AATGGTTCTGGCTGGCGATCCCTGCCCTTACG



ATACCCTTTAGCAGGCAGATTAAG




GCCA









scaffold
117
GTTGTATTTGCTGCCACGATAAAATTGCTTGG
C
T
118
GTGGCTCAACCTTTGCTCTATATTCAGTATTTTGGTTA


45478:20587

ACATATCTAAAGTAGACTCTGACTTGCTCCCT



CAGCTGCAGGAATGGTAGTCATATCTCTCAACTGTTCT




GATTTTGTCTCCCGGCCAACTTTGCTTGCAGA



TCCATTGCTGGAGCAGTGAAACTT




AACA









scaffold
119
TCTTTGTCTTTAATCATATCAAAGACTTCTTG
C
A
120
AAGACCAATCTTAATTGCAAAAGCATGGACTTCCAGCC


23700:29096

AGCAGCTTCCAATTGCCCACACTTGGAATACA



CTTTGTTGAGTGATCTTAGAGATGCACAAGCTGAAGCT




TGTCAACAAGTGAATTTCCAACTAAAACATTA



GCACTTGCTATAGTAACTGCATTC




TCTA









scaffold
121
GACATAATGAGTAGACAATGAAGGTATTAAGA
A
G
122
ACTCTCACATAGTGTTGCAATGATGGATTCGTAGCTGC


10732:30120

TGTGGGCCTATTCAATAACAACGGAAGCAAAA



AAGGGAATAGAGATAAAACAAAATTTTTAAAGGAGATT




TGAGTACCTTAGCTTCAGGTTCATCTAAGGTG



TAATAATAATAATAATAATAATAA




TCTA









scaffold
123
AATTACAGGAACAAGGGCTAAAGCCAGATCAC
T
C
124
GAAATTATGAGAAAGGAATTCAATGTAATGCCAGGGCT


16969:31933

ATCACCTTTTTGGGTGTTTTAGCTGCCTGTAC



GCAGCACTATGCTTGCTCGGTAAGTCTGTTAGGTCGCG




TCATGGAGGTCTTGTTGATGAAGGAAGAAAAT



CAGGCTTGCTTGACGAGGCATTGA




ATTT









scaffold
125
TACCCCATCATTATATTGATTTTGATGATGAG
A
G
126
TATCGAAAAGCTTGGCTTTAAGTGCTCCTAGTAAGCCC


3884:40695

GTAGTGGAACAGGGAAGAGTATGGCAGCGGCT



TCTGAGGCTGCAGAGCTAGTAGGAGCACACACTTGCTC




GCGGCAGCCTTGGTGGTGGGCTTGGCATCGCC



GAAACAAAAGGGCTCCAAGTTATT




ATTG









scaffold
127
GGTGGCCTTAATGCCTGGTTCGGGAACAGGCT
A
G
128
CTGCATCCCACCAACATCCCGGTGGTTGTGGAGATGAT


829:52127

GCAGCAATGACAGCCATAGCCACTTGCTCAAC



ACTAGCAGTACTACTAGTCATCGGTGACTGCAGCTACT




GCTTTTAGGCCGATTATTAATGAGTCTCCGGT



ATATATATATATATATATATATAT




GACT









scaffold
129
CCATTTTCGCCTTACAGGCTTTACTTGCACAG
G
A
130
TAATGTCTGATTGTTGAGAAGTTTTTGTACTCGTGAAA


6550:117004

TCAAAGACCGGTCTCAGCTCTTTGCATCGTGG



TAGAAGGAGAGGCCGCTGTGGCTTTTGCTGCTCTTTCG




GCAGATTTCGATGTCTATCGTTGGCTGGTCTT



GGTTATGTTGAAGACACGAAGAGA




TGTA









scaffold
131
TGTAGGCTGGAGTTTCTGAACATGCAAAAGCA
A
G
132
GACACTTCTGGTCCTTCACTTAATATTCTCATCAAACT


27604:1398

TTAGGGCCAAAAGGGTCAGATGCCCACAAAGC



TATGGCAGTTGAGTCTTTGGTCTTTGCTCCATTCTTTG




AGCTGTAATAGGTGACACAATTGGGGATCCCC



CTGCTCATGGGGGCTTAATCTTCA




TTAA









scaffold
133
TCCTCCGTTACTTGGATCAATTCGGTAAGACA
G
A
134
AGGCAGGCATGGGGCAGCCTAGATGCCCTGATAGGGCG


125644:4761

AAAGTCCACACTAATCTCTGTCCCTTTTTCGG



TCTTAGGGCAGCTTTTGAGGAGCATGGGGGAAAACCCG




GCACCCGAATCCCCCAGGTCCATGCCCCTGCC



AGGCGAACCCTTTCGGGGCTCGGG




CGCT









scaffold
135
GGGTTCAAGCTCCATCAAGACTTTGGCTGCTC
C
T
136
CGTTTCCCTTTGCCTTAATTAGCAGCTTCTCGGCTTCA


16027:10666

GTCTTCCCAGCTTTTCGTTCTTATGTACCCTG



TCTAGTAAGCCTGCACGGCCTAAGAGATCAACCATACA




CAACTTCTCAAAAACGAGCTCCACATCATCGT



TGAATAATGTTGTCGATCAGGGCA




GTCT









scaffold
137
GAGAAAATTCTATAGCTCACAGGCTTTAGGGG
G
A
138
ACACAATGGGCTTGGGCTTTAACCCTTTCACCCAACTC


2502:17437

GTCACCAAAATGCTCACAAGAGAGAAAGAGGA



ACTACACCTCGATCTCTTGGAGTCCAGGCCCACTCTCT




GCAGCCAAGAGGTACCACTCTCATAGAATGAT



CGTTCACAAGCCCAATAGCAGAGA




GATG









scaffold
139
CCACTCTCATAGAATGATGATGAACACAATGG
C
G
140
TTCACAAGCCCAATAGCAGAGAAGTAGCGTCCTCTGCT


2502:17515

GCTTGGGCTTTAACCCTTTCACCCAACTCACT



GCTATGGTTGCAAGATTTAGTGATGCTGAAACTGGATT




ACACCTCGATCTCTTGGAGTCCAGGCCCACTC



TGGGTCTGGGTCTGGGCCTGGGCC




TCTC









scaffold
141
AGCTTGTCTCCCCCACGGCAGCCACTAGCCAG
C
T
142
TCCTTCCATCCGCCATTTTCAAATTATTTTGATGCTGC


70502:1951

CTGCCACTTGTCCGCCTCTCGTTCAATCCGAG



CAAGTGTCCCAATGCATGAAAAAGTACTCAAAATGTCA




CTCCAGCAGCCTCCCATGTGCGCCAAGTGTCG



ATTTCAAAAATACATTACAATTTT




TCTC









scaffold
143
CTCACTTTTCGAGGAGATGCTTACCTATCGAA
T
C
144
CGGGCTTTGATACTACTGGCTCTCTTGAAACTCGTACA


40620:28184

ATGATCATCGATGCAAAAGTAATGGCTTCTAC



AGAGAACTAGCTGCGTTCTTTGGCCAAACTTCTCAGGA




ACTTACGACGCCTTCATAACTGCTGCTAGAAT



AACCACAGGAATACATACTGGTTC




TTTT









scaffold
145
GAGGAGATGCTTACCTATCGAAATGATCATCG
G
A
146
TACTACTGGCTCTCTTGAAACTCGTACAAGAGAACTAG


40620:28194

ATGCAAAAGTAATGGCTTCTACACTTACGACG



CTGCGTTCTTTGGCCAAACTTCTCAGGAAACCACAGGA




CCTTCATAACTGCTGCTAGAATTTTTCCGGGC



ATACATACTGGTTCATTTATACAT




TTTG









scaffold
147
TGCTTACCTATCGAAATGATCATCGATGCAAA
A
T
148
GGCTCTCTTGAAACTCGTACAAGAGAACTAGCTGCGTT


40620:28201

AGTAATGGCTTCTACACTTACGACGCCTTCAT



CTTTGGCCAAACTTCTCAGGAAACCACAGGAATACATA




AACTGCTGCTAGAATTTTTCCGGGCTTTGATA



CTGGTTCATTTATACATGAAATGT




CTAC









scaffold
149
CGAGCTCAAGCATTTCATTCTCTCGATTCTCG
C
G
150
TTCATCCACCGACACCGGCGAGGCAAGCCTCCTCATTC


118158:666

ACGACCCGATTGTCAGTCGAGTTTTTGGGGAA



ATTAGGGGCCGCTGCCCACCCATGTTCCTCTGTAATCT




GCCGGATTTAGGAGCTGCGATATCAAGCTAGC



TACTGATTCGGATCCGGGTCTTCG




GATT









scaffold
151
CAACGCTCTTCTTGGCCATGGAGACAACTCCC
T
A
152
AGAGGGTCGGCTGCTGTGAAGCCGAGGCGAGGGAGTGT


41951:881

CTGACCGGAGTCCCACCACCATTGGCGGAGCC



GGTGGGGCGGAGACGGAGGGAAGAGGGTGAGAGTTGAA




GAAAGAGCGGAGCGTGGAGGCGACGGCGTGGG



GGAGAGAAGAACGAGTGCGGGAAG




AGAA









scaffold
153
CCTTTGGGGAAGCGGCCGAACCATGGCTCGGT
T
C
154
GGTGCCTGTTGAGGAGGGGTTGATGAGTTACCAGAGCC


95666:9974

TTCCCTGGTCCATTTTCTTTTTCGGGTGGGGA



CGATGGAGGGAGGAAAACTCCAGTGCCAGGAACAGGCA




AACAGTGTCAGCAGCATGGTTTGTTGTTTCGT



AGCGAGGTGGAGGATGCCTCGGTG




TGCT









scaffold12
155
CATTGACCGCCATGGATCCCCATCAGCTGCTT
C
T
156
GGCGGTTTCGATGATTACGGAGCGTGGTATGGGAATAT


645:86648

TTGGCAGTATCCCCTTTCGGCTCCGCGAACCA



CCAGTACTTGATTAACATTTCGGCGATTGGGGCATTCT




AATCCTCTCTCCTCCTCCGTCATCTGACGATG



TCTGCGTCTTCATATTCGTCTTCT




GAAG









scaffold
157
AAGAAGGAAGAGGTTGCCATCCGGGCATGGCG
T
C
158
CTATCTCTCTTTAGTTCACTGTCGAGTGGAATTTAGTA


6627:26364

AGAAGCGCATTAGCCGGGTTGATTGAAGCCGG



GAAGAAAAAGTTGGCCGACGTACAAAGAGAAAAGAAGA




ATCAATACTCGTCGCTACTAGCAGCGTCACCA



GAAGAGAGTGGAGTCTTATTACAT




TCTC









C32050599:
159
GAAGAGCTATCTTTAGAAAGTAATGACAAAAT
T
C
160
AAAAGCATAAAAAATCAACACATTCCAATACATTTTGC


443

CTCTTCAGCAAGTGAATTTAGGTTCACAGCAG



AACAATTCAATCAAAACAAACACCAAAAGAAAATTTGT




CAGAAAGCCCAAAAAGAACCTGATAATTAAAT



TGTTGCAGCAAAAGACACAATGAA




GATT









scaffold
161
GTCTTACATTTTATATTCTTTTTCAGATATGG
A
G
162
ATCACCATTCATCCAGGAGTAACACTTGGCCCTCTCTT


20861:14886

TATGCAGCTTCAAAAGCTAGAGCTGAGAAAGC



GCAGCCCATTATGAATGACAGTGTCAGTCTCATTATGA




TGGTTGGGAATTTGCAAAAGAGAATGGGATTG



ATCTAACAAATGGTACACATCATG




AATT









scaffold
163
AATGGATCCTTTTGCGGCCTCTGCAAGTGAAA
T
A
164
TGTCACTGGACTCAGCTGAAGCTCGATTACCCTGCTGA


30119:28969

TAACTTTCCCAGCTTTCTTCTTTTTGTTGTTA



GAGGAAGCTGCATTCTTTTTAGCTTCTGTCTGATTACT




TTATTATTACTTTGGTTCCCGTTTTGCATAGC



GGGGGCTGTAACAACTTTTGGTGT




TTTC









scaffold
165
TGCTGCTTCTTAAGAGTTTTTTAACCCCAATC
T
C
166
AACAGCTGATCATCAACATTGCAAATCAAGCAAAGGCT


2257:75397

GCCCCGCCCCTGCTCGACAATTAGAAAACCAC



GCAACGTCTAAAAGGCCATTGTGCCTAAGCAGTGCCTC




ACAAACAACCCTGCAACTCCATTTCACAGCTC



AGGTGAAGGTTCGCGGCCTCGGAA




CATG









scaffold
167
TTAATTTGAATTAGTTATGATTTTTTGAAGTT
T
C
168
GAGCGCCTGTCTGAACCGCTCATCCGCGCGTGGAAATG


46867:905

TCGGAAAAATCAGAATCGTGCAACAGGGCCAC



CTGCAAACTCCTCCCTGCGCCGAGGTTTCTCGGCCAAG




GCGCGAGGACAGCACGCATTCAGAAAAGCTGC



CACTCCCCTTGCGCACGCGGAAAT




TCGA









scaffold
169
GGCTCATGCCACTGTTGCTGCCACTTAAACTA
A
T
170
CGACTAGTGAAATAACTGGTATCTAGTGCACTCTCCGA


65132:21260

TCATCATCGCTAGAATCTTCAAGTTCGCTTGG



CGAGGGAACAAATGCAGCCTGCACAAATAATGAGTCGA




TGGATAACCATGGTCATCTGAAGTATTCCATG



GTTAATGTATAGGAAGCGCAACCA




AATA









scaffold
171
CTTCAAAACTAGTAATAATAATTATTGGGTGG
C
T
172
AATGCCACAGACTTTGCTGATTTCTTCTCCAATCTGAA


94863:28441

TGGCTATGGCTGCAGGCACTAAGAGCAAGCCC



CGCCACTCTCTCCGATCTCGGGGCTCAGATTCGAGAGG




ACAAACCAAGCTGTTGAAAGAAGCATGCAGCC



GAGATAAGTGGTTTGCAACGGCGC




CGTA









scaffold
173
GCATGTATCCAGACCCAAAGCTGGCGAAAACA
T
C
174
ATTATCCCTATTTCGTAAGGAACAAGGACGCCACATAT


94004:13590

AGACCCTAAATCTGTAGTCTCTGGTTTCACAG



ATGTTACAGGAGCGATCGGCTTAGAAACTGGTGCACCA




ATCCTAGACTGTTAACAGCATCAGCAGCAGCA



ATATGGTGGAGCTGCAACATGGGG




GCAG









scaffold
175
TCTGTAGTCTCTGGTTTCACAGATCCTAGACT
T
A
176
TACAGGAGCGATCGGCTTAGAAACTGGTGCACCAATAT


94004:13632

GTTAACAGCATCAGCAGCAGCAGCAGTATTAT



GGTGGAGCTGCAACATGGGGATTAGTCAGACATAGCCA




CCCTATTTCGTAAGGAACAAGGACGCCACATA



ATTCCTTAATCCACCTCAATGAAA




TATG









scaffold
177
TTTTTGATGTTAAGAATTGTACGTTGAGACAT
T
C
178
TGCTTCTTGCTGCCAGTTTCTCAAAGAGGCTCATAATG


39420:9067

GAGAACTAGCAGCGAGTGTTTCTCACCTGCAT



TTATGATAAGCTTTTGCAAACATAGAGAAAAATAGGAT




CATAGTTTTTGAGAAAGTCAGGAGACAAATTA



GAAACAGAGAGTTGTATTAATAAT




TGGT









scaffold
179
TGAGTTTTGCAGGCGCAGCTCGGCCTGATGCA
C
T
180
GACTGCAATTCAGGTGGCTGCAGCCAACCCGAGTCTGT


42291:6484

CCAGAGAACATAAGGTCCATTCTCATCAATCA



TATCGAGCTTTTCATGGAGTCTGAATTCTGTTTGCAGC




GTGCACCTCAGTAGATGATCAAGACTGTCAAT



CACCAGGAGATAGCCCAACTAGAA




TTCT









scaffold
181
GAACTTGATCAATCCCATAACTCAGTCCTCCA
G
T
182
GACATGTTCTTCCGCTGAATGAGGCACCCATAACTCTT


23828:34435

TTGTCATGGAGCCAGCGGCTCTTCTCCCTACC



GCAAGTATAAGGATCCCAAATGATGCTGCTGTCCGGCG




CTGCAAATCAAAAGAGTCTTGGCTGCCATAAA



GGATTGACCAGAGGCTGTCTGGAA




ACCC









scaffold
183
TGCCTAATTTGTTGTTTATTTGTCATTGGTGG
C
T
184
GCTCAGGCTGAGAGACACATCCCCGCATCAACACCCAT


15017:4539

CAGCATGATGCTGCATGCCGTGTGATTGCAAG



TACAGTAAATGCGTCTGCAGTTAGCAATGGAAGAACAG




ACTAAAGAAAGAAAGAGATGAAGCAAGATCAC



GTCCTTTTTGTTTTATATATGCTG




TACT









scaffold
185
GGCCGTTCTTGGGGACGACCTCTCCGTCCGAT
T
C
186
CCAATACAAAATTGGAGAGCCTTGGTGATGAAGATGAA


16607:2589

TCGCCAAACTCAGAGCCTCCTTGTCTCAGTCG



GAGGAGGATGAAGATGATGAGGTTGAGAAGTTGATTAG




CCTGCTGCTTCCATTTCCGGCACTGGTGGCGT



GTGGGCCAAGGACGCTGCTCGCCT




TCGT









scaffold
187
TACATACATACATACACAAATAAATAATTATA
G
A
188
GCGTCTCTGGCACCTGCAACCATTGCAGCTTCGGTCCA


27758:4907

AATAGTAATACCTCCACTAGAGCAGCCTCTTT



CCCCAACTTAAGCTGCACCAACTCATCCCAAACGCTAC




CCTGGGAAGTGACCCAATTATGGCGGGAGACA



AATTAAAAATTCACCCCCAATTTT




CACC









scaffold
189
TTTTAGGTGTTTTGAAACAGTCTCAGAATCAG
G
C
190
AGTAATGGAAAGTTGGTTTCTATCGATGTCTTCGAGTT


20809:7695

CATACGAATTTTGTCTTGCTGAACACTGATGC



TGTTTCTGCTGCTAAGAATTACTGGTCTTCAGAAGTTC




TGCTTGGGCAAGAAATGTAGAGAAAAGATCCG



TCTCTGTTGGTTTTATGGTTCTAC




TTTG









scaffold
191
TATTCCCTTCTTGGGTGCAAATGTGACATTAG
T
C
192
TACCACCTGTGTGCTGCAAATTCTTAAACCTGTCATTC


36583:13571

AATCTTTACCAATTGTGTTAGCATGCTGCCCT



CTCTTTCTATTGATGACTGTAGTCATTAAAAAAAATTA




TTCTCTATGGGTTACGAATCGCTTCTGAGATA



TTAACTTAAACTAAAGTTAGGTTG




TCTT









scaffold
193
TCACTCTCTTCCTAATGGGATTGACCATTAGT
T
C
194
TATGCCTTTGATCGAGCTTTCGAGGGCTCGGTCTCTTC


36500:1728

TGGAATGGTTCTGCTGCAAATGGTCCCATGTT



CTTCGCAGCTCCCTTGGTTGGAATTCTGTCGGAGAAAA




TGCTGAGGTTGTCCCAGCCAAGCACCGGACCA



TGTTCGGGTATGATTCGAAAGGGG




TGAT









scaffold
195
TAATGGGATTGACCATTAGTTGGAATGGTTCT
C
T
196
CGAGCTTTCGAGGGCTCGGTCTCTTCCTTCGCAGCTCC


36500:1740

GCTGCAAATGGTCCCATGTTTGCTGAGGTTGT



CTTGGTTGGAATTCTGTCGGAGAAAATGTTCGGGTATG




CCCAGCCAAGCACCGGACCATGATCTATGCCT



ATTCGAAAGGGGTGGATCCATTGT




TTGA









scaffold
197
TGACCATTAGTTGGAATGGTTCTGCTGCAAAT
T
C
198
GAGGGCTCGGTCTCTTCCTTCGCAGCTCCCTTGGTTGG


36500:1749

GGTCCCATGTTTGCTGAGGTTGTCCCAGCCAA



AATTCTGTCGGAGAAAATGTTCGGGTATGATTCGAAAG




GCACCGGACCATGATCTATGCCTTTGATCGAG



GGGTGGATCCATTGTTGGGGTCTA




CTTT









scaffold
199
CAGAGAAAGAAGAGAAAGGTACTAAAATTGGC
A
T
200
GGGACACGTGTCAAGCATCACTCGGTTGAGAGTGGGGC


153198:2269

ACAGACTAACCGGGCCTCCATGGTGTTGAGTG



CCATCACAGGGTGGACTCGAGGTGGGCCTTTTGCCTGT




GGCCCCCACCCACGAACTGTAACGGGGCCCAT



TTCATGCTGCGTCAGGTAAAACCA




TCAT
















TABLE 7







Upstream, Allele and Downstream sequences for SNPs from Table 5













SEQ



SEQ













SNP Name
ID
Upstream Sequence
Minor
Major
ID
Downstream Sequence





scaffold
201
TCCAGTAGCCAAGGTCATCGGCGGTGCCCTAAACAAG
C
A
202
CGAATGCATAAGGCTGCTGTAAAGAATGTTTACGAG


13038:51303

CTCTCCAAGATTAAGGTTGTGAGGCTTTTAAGTTTGG



AACAAGAGGTTCATTCCACTCGATCTCCATAGGAAG




ATTGCTCGTGTGTTGACGGTGATATC



AAGATCAGGGAGATTTGCAGAAGGCTTA





scaffold
203
TCTTATTCAACCAAATGCCATAACCGGCCATAGCTGC
A
G
204
TGAACACTCGGCCAAAGCTTGCTGCCTAGCCCCTTC


25092:11841

ATAAAAAATATCAGCTATAAACCTCCTGGGCTTTCTG



CCAATGAGATGCATAACTGGCCAAGAGTAAGGACAA




CTATTCATCCAATGTATCCAGTCCTC



GAGAAAAATAAATCAGAATGGCTCCAAA





scaffold
205
ATGACCGCTGTTCCAATGCTGCCAACTTGGTGACTGA
C
T
206
AAGGAAGACAAAGAGAGCGAGCTACAATCTCTGGCA


23837:26190

AACAAAGTTTACTTCATGTTACTAGTGTTCCTCTGCC



GCAGCAGCCTTGGAGAAGGACTACAAACGAAGAGCA




ATTGGGCAGCTCGCAAAAGGTCGGAA



CCTGCAACACTGTCCTTGATTACGACCG





scaffold
207
TAGTAGTGGTAGTGCCACTCTCGGTGGTTTAGCCAAA
C
A
208
AAACCGCTACCGATAAGAGTGTCATAGCGGCCTTGA


152474:1505

ATCGCCCTCCAAGCAGCGGCTTCAAGTGCCAAAAACA



AGGATTGCAGTGATAATTATGATAGCGCCAATGAGG




CCCAAGCCCAGATCACTAGCCTACTC



AACTCGGTGACTCGCTCAAAGCTATTGA





scaffold
209
TGTACAAAGATCTTTGTGAGAAGACACTGCGAGCAGA
G
A
210
AGTGCCAAAAACACCCAAGCCCAGATCACTAGCCTA


152474:1465

CCCTAGTAGTGGTAGTGCCACTCTCGGTGGTTTAGCC



CTCAAAACCGCTACCGATAAGAGTGTCATAGCGGCC




AAAATCGCCCTCCAAGCAGCGGCTTC



TTGAAGGATTGCAGTGATAATTATGATA





scaffold
211
TCCAATTTCAGTGAGAGAGAGAGCTGCTGTATGGAAG
C
T
212
TGAACAAGCTTAGGGATCTCAAGGCTGAGCTCCTTT


13038:51162

CTAAAAAAAAGCAGCAATGACAAGAATCAAGGTTGAC



TCCTTCCAGTAGCCAAGGTCATCGGCGGTGCCCTAA




CAGCTGAGGCAGAAGAACAAGACCTT



ACAAGCTCTCCAAGATTAAGGTTGTGAG





scaffold
213
ACTGCTGGAAATGGTAGTGTTCTTTTCACTATTTCTT
A
T
214
TCCCTAAATCTAACAAACCAACTTTTGCACAGTTTT


5841:136325

AAGTTGCCTCCCAGAGAGGTAGTTTCATCAATGTGCA



CTGCTGACAAAGTAGCATCTTTTTGGACACTATTAT




AGCTGCTGTCTTCATCCATGGTGGTC



CATGCAATGCAGCGACCTCAATACTACA





scaffold
215
CTGTAATAGCTGCTGCTGCTGCTGAAGCTGTTACTCT
A
T
216
CAAAGTACTTCTGTAGTTACTTTAGAAGCTAGTTAT


5876:22669

TGCAAAAGCAGCTGTGAGGGTTGCAAAGGATGCTGCT



TCGGATTTTAAGGGTGTTCATAATATGAAAACTACA




CTGCTAGTGAAAACTTCTGAAAAACA



CAAGCTGCTGTATTAGGAGATTCTGTGG





scaffold
217
TTCTTGGTTGGTGTATATTGCAGCACTTTCACCCTTG
C
A
218
AAGCAGCCCAATCTTGTACTCACTTTGATTTTGTTA


764:75880

AAGATTAGGCTAGGGGGCACTTTACAAGACAAAGTCA



AAAATGGCTCTGAATTATTTAGCTTCTCTCATGGTT




TATACCAGAACGAGAGTGAAAAAACT



GCTTATCTATGTCTCGGTGGGATCAACT





scaffold
219
CATATACATGCTGACTGGGCAGCATGTGTAGGACACA
C
A
220
AACAACACGCAATACCGAGGTCCTCAGCTGAAGCTG


32076:9119

AGAAGGTCCAAAACAGGTTTTTGTGTTTTCCTTGGGA



ATTGTAGGGCTATGTGAAACACTAGTGAATTGGTAT




GATCTTTAGTGTCCTGGAAAAGTAAG



GGCTGCTATCATTACTAAAGGAACTGAA





scaffold
221
GAGGTAGACTTTGTATTTTGAAGCTTTTGGATATTAG
T
A
222
AGCAAGTCATTGAGGGTTAGCTTAGAGAAATCAAAG


7992:917

AGCTATCAGGGTTTTAATGGCTTCCCAGGTGAATAAC



TCCCTAGGGTTAGCTCTACAGAAGACAGGACCTAGA




GATGGCGTTGAGAAATTGTTAGCTGC



TTGGAAGAGATTAACCAACGATTACCTG





scaffold
223
ACACTTTCATTAAATATATGTCCGGTATGTACAGAAC
C
T
224
TGCATCTTTAGACAAATTACACATTGAAGTTGATAC


118405:2916

GCAACATTCATGGCATAATTAACACGTCAGCCAAATA



TTCTAGCTGAGCTAGGCTAGGCCGACTCGCAGCTAA




ACATTCAATCATAATCAATTGCAGCA



TATTTAATCAAATAAAAAGTACCTAAAA





scaffold
225
AGGTGAGATATGAGAAGGGTCGAATGGTAAAATATAC
G
T
226
GATTGAAGGAGGAGCGGACAAGTGTCGCTCATGTGA


2418:77480

AATGTGCAATTTATTGGCTAAGAGAAATAGTAAAAAG



TGGCTGGAGGAGAGGAGCTGCTGGAGAGAGAGGGGA




AGCACATGTATTTGCTGCTGAAACTC



CAGGCGGGTCCCACGCAGCTGGCGCTGG





scaffold
227
GTTGATACTTGACTAATTTCATATGGTGCTGTGGAAA
T
C
228
TGGTTTTATAAACAGTTTGCCGATGGCTAGTACGCT


34829:1873

TGTAACAGGTGGATGTTGTGGATACAGTTGGTTGCGG



GTCAATTGCAAACGCAGTTGGTGCTGCAACTGCTAT




GGATAGTTTTGTAGCTGCTATTGCAT



GGGTTGTGGTGCTGGTAGGAATGTGGCA





scaffold
229
TATAGGTGTGTTCGGCTATGGAGATAAGTGGATTCTT
G
T
230
AGATGGCACGTGCTTGTCACATGCGCATCAGCAGCT


38125:4641

CTTGTGCTTAGTTGGGGCAGCGAGAATAACGCACAGA



GGTGGGCCGGACCCATCCAAAGCCCATTTTCTAGAA




GCTCAAAGGATAGTGTCGATAGCAAC



GCCAATTGCAAGGATGATCAGCAGAGGT





scaffold
231
TTCTTACTCCGATGTGCTGTGCAGATCACTGGTCAGT
G
A
232
TTTTTGCTGCTTGTCTTGATATTCTTTCATTGTGTA


37469:74270

CAGCATTATCATTCAAGGGAAGCCCCTACTGGATGGC



TGATCTTGATTCTATTTCATCCTTCTTCCTGCCTTT




ACCTGAGGTAAAAATCTTATGAAGTT



CTCCCAGGTAATAAAGAATTCAACTGGC





C32100775:
233
ATTTGAGATCCTTAGCCGATAGAATTTGTTGGTTAAG
T
C
234
GCCATGGACGCTCCAATTCTTTGTTCCTCTGCTTCC


1618

TCTCTGAATCTCCTCATCAGCTTGTTTTAGTTCCTTA



AAATGTGCAGCATGTGCAGACTCCAACGACTCCTTC




TCCCAATTAAGAGAATCTTGCTCCCT



GTTGCAATCAGCTCGATAGTGAGTTCCT





scaffold
235
TTGGTTCTTCTATTGGGTTTACTATACTTTGGAACAT
C
G
236
ATGACACTGCTTCCAAAGCAGAGAGTTCCAAAGGTT


5190:41424

GAATAGGCGAGGGTGGATTGAGTATTCTGTGGCTGCC



TGGGGAGTTCCCATGGTTCCATGGCTGCCATCTCTG




TTGATTTGGTCCGTGGGGAATTTGGG



TCTATTGTGGTTAATCTTTTTCTTATTG





scaffold
237
GGAACATGAATAGGCGAGGGTGGATTGAGTATTCTGT
G
A
238
AAGGTTTGGGGAGTTCCCATGGTTCCATGGCTGCCA


5190:41454

GGCTGCCTTGATTTGGTCCGTGGGGAATTTGGGGATG



TCTCTGTCTATTGTGGTTAATCTTTTTCTTATTGGG




ACACTGCTTCCAAAGCAGAGAGTTCC



TCTTTGGGAATGGTGGCCTTCTTCAGGT





scaffold
239
GTATTGGACCTCGATCTCTCAACTTTCGACCGGCTTC
A
G
240
GCGCGTGAGAGGAAGCGTTGTTTGCACGGCGAGCGT


49917:1105

TGGAGGTGAACGCCCGAGGAGTTGCGGCGTGCGTGAA



GGCTGCCTCTGTCGGTTTGAGGACACGGACAGATTA




GCATGCGGCGCGTGCGATGGTGGAGC



CTGCATGTCGAAACACGCGGTGTTGGGG





scaffold
241
GTCACCAAATAAATATTGTTTTTTAATATTTCAGAGG
T
A
242
CTGCATATCATTTTACATTTTCATGTTTCTTTCTGC


4775:75747

AGGTTTTGCAGGGAGTTGCTGCTGGCATCGATCTTTT



TGCTAACTTGGCCAAACTCCGATGATGTAAATGACT




CGACTCTGAGTATGTTTGTCCTTTCT



GTTTTGCAGGTATATTTACCATCTTACA





scaffold
243
AAACTTTGGCTGCACCTCCTGCTGAAGAGAGTGTGCA
G
A
244
TGCATTGTTGGCCGATCAGTTGGTTGTTTCTTGCTG


26152:15432

TTGCGCTGTTGCTGTAGAAGCCAGTTTAGTTGGCAAG



CAAAGCAATGCAAGTTGAAATACCTTCCTAACCGCC




AGACTGCTGAGAACTCGTGTTACTTC



CCGAGATCCTTACATGTAGCTGTGATTT





scaffold
245
CACAAACGTTTTTATCAGCTCTCCATCTTCGCTACAA
G
A
246
GGGAGTGCTGAGAATCAATGTTTCTTAGAGCATCAG


5841:135056

GTTTCATTAGATATTTGACAGCCAGACATGGCATCTA



GCACCAACTCCATAGCTTCATCACTGGAGGTAGCAG




ATATGCATGCATTGGATGCAGTAATC



CGGACACTCCATTTTGATCAACAGGCAA





scaffold
247
CCTTAGCATCTCCTGATTTTTATGATGTGAGTCTTGT
A
G
248
GGATGTGATGGCGACCTCCGGACCAGTTGCCCTAAC


5876:106401

TGACGGTTTCAACTTGCCCATAGTCGTCACACCACTC



GAGCTGGCGGTCAAGAGCAATGGGAAAACGATTGCC




CACGGGCAAGGAAATTGCAGCGTGGC



TGCCGGAGCGCGTGTGACGTGTTCGATA





scaffold
249
CAAGAACTTGCCTTGCTGCTGCATCTGCTGAACTGCA
A
G
250
ATCAAAACTTCCATGCCACGTGCAGCAAACAGTCTC


5113:138895

GACAACATTCATTGCTCCAATCCTTTCTGAATAAAGA



ACCGATGATGCATCAGCATCAAGGCTTCCACTAGCA




CCCAAATTTTTACTGTAAGACTGAGC



AATCCCTTTAAAGAAAAATAAAATAATA





scaffold
251
TATACAACAGAGACTTCACTGCCAAACTTAATCTCTC
G
A
252
TCATCATCATCATACAACCAGAGAAAAAAAAAAACA


5113:239777

TGTTTAAGCAGCACCACCAGTCCACCACCAAACACAT



GTGATGCATTTTACAGAGAAAGAAAAAAGCTGCAAT




TTGAGCAAACACTACTAGTTCTCATC



GATTTCTAAGCAGCCTTTTTTTAAACAA





scaffold
253
TTATCAGCTCTCCATCTTCGCTACAAGTTTCATTAGA
G
A
254
GAATCAATGTTTCTTAGAGCATCAGGCACCAACTCC


5841:135067

TATTTGACAGCCAGACATGGCATCTAATATGCATGCA



ATAGCTTCATCACTGGAGGTAGCAGCGGACACTCCA




TTGGATGCAGTAATCAGGGAGTGCTG



TTTTGATCAACAGGCAAAGAGAGATCAT





scaffold
255
ATACTTCATATTCCATTTCTCTATCTCCACTCTGCCT
A
G
256
GTTAAATCTTCCACCTTCCGCTGCAAAAGAGGAACA


25099:7321

CTGGCATGAAGTAGTCCTTCAGGTGGTTTTTGCAGCA



TTTATAAATCAATGTACAATATCAGAACTAGGGGTG




GAAAGATCTACGGCCTGAAAACTCGC



TGCATAAATCGATTAAATCCATTAACAA





scaffold
257
GCTAATGGCTCTTATTGGTCAGTCGTTGAAGTGGCAG
A
C
258
TCTTTAAAGTAACAATTTGTTCTCCCATTCCAGGGT


14172:40875

CAACACCAAGGTATATATACAATCTTATTGTGCATTG



TACTTCCTCCAGGCACACAATTTGACTTATTTAGAG




ACAAGAGAACCATATTATCTTGCAAT



GAACAGCTGCTATGAAACAAGATGTAGA





scaffold
259
AAAGGGCATTCAATCCTTACGGTTCAGCTGCTTACAA
A
G
260
AAACCCCTTCACGTTTACGGAAGCCCAACTTACGAG


158332:502

CTTCATCACCATGGGAACTTACAGAGGAGGACTTAAC



TGTCAATGGCTGCAGAATTCTTCTCCCTCCTCCGTT




ACCTTCGCCATTGTTGCAATAGCTTC



ATCTCAACTGTTGGGTACAAGATCCTTC





scaffold
261
CTACAAAGGTTGCGTTTGGACCGAGCTCCTTAGCCGT
T
G
262
GTGGCTGTTGCTTTGCCTATTCCGCTTGCTGCTCCT


16869:149709

GGCTAGGCCGAGATTGTGTTGGATGTCTGCTATGACT



GTTATTAGTGCCACCTTCCCATCAAGCCTGTTATTT




ACTTTGGCACCATTGTTGATGAATTT



TCAATGAGTGAAGAAATTGTCTGAGTAG





scaffold
263
AATTGGCAGAGGAGAGTTCATATGCCAAAGGTTTAGC
C
T
264
GAGAGACTAGCAGCTGATCTAGCCGCATCCAAGAAC


114539:1119

TTCAGCTGCTGCTGTTGAACTGAAGGCATTATCTGAA



TCCCCCACTCAGCGCAAAAGTGGCAGTATGGTCAAG




GAAGTTGCCAAACTGATGAACCATAA



AATGGGCGAAGAGAGAGCATGAACAAGC





scaffold
265
TTCACCCAAGAAAGAAAAATGTGATTGTCACATATGT
T
G
266
TTATTGTTATGAAATCTATGGTTGTTCAGTCTAGTG


3842:272682

TTGCTGCATGTGCATGGACCATTGGGTTTAATCTTGC



CATTTCACCACAAAAAAAATGTGATTGTCGTATATG




ATCATGCTGTTTCTATATTATGATCT



CGTGCTGCATGCATGGGCCATTGGGTTT





scaffold
267
CACCAGCCCGCCTCATGTCATGAAAGGTTTGAATAGC
G
C
268
ATGCTCAATGGAGTTGCAAAGAATATATCCCTTGCT


60331:8510

AGCAAAGCCATCATTGTTATGAGAGCAACAAGTGATC



AACTTAAGACTCCCAGCAGCAGAGTAGGCAGCAATC




ATGGCATTGTAGAAAACAGTATCTCT



ATTGTCGTTCTCGAAACAATATCTGGTT





scaffold
269
TTCACGGAATTTTAAATATTTTTACGATTTTTTTGAT
G
A
270
GGAGAGAGTTAGAGCAAAGACGATGGTATGGAAGAA


2360:22109

TTAAAATGAAATACCTTCAAATCCTCCGACTGGTGTA



GTGGCTAAGTGCTCTGCTGCAGTAGTACAAGTAGTA




AATAGCTGCAATGGTTGGACAGAGAG



TATATATGGAAGGGTATAATGGGAAATC





scaffold
271
GCAATTTAAACAACCTCTCCTTCACTGAACTCACAGA
G
A
272
TCGGCATAGTACACTGGCGGTACCAAGGAGACAGGT


72613:1728

AGACGATGACAAAGATCTCTCCATCTCTGCCTCATGA



TTGGTGCAGCGAGCCATGGTAAAACACATGCTATAT




TACAGTCTCCCTCTATAGGCAGCAAG



ATGAGCTTCTGCAATTGGTCAGAAGTAA





C32052717:
273
TGGTCATGACGTTGTACTCAACTGAATGTGCGCTGCA
A
T
274
CGGTCAAACATGATGACACGGTCGTTGTTGAGAAGC


309

GTCTTTGGCCCCAGCAGGGCATTTCCCAGGCGCCAAT



TGCATGTGCATGGCCGAAATGCCAATGCTTGGTGTC




GATATGTTAGAGGTGCCGAAGTCAGT



AAGAATTTCCACCGGCCACCGGCTGCAT





scaffold
275
TTTCGCCCAAAAATTTGATGCTACCGAAACCGTGTCG
C
T
276
TCTTGGATTCGTGGCTCGGTGTAGTAATCAGAGCGC


71943:13435

TCCAACAACAAAGTCCTTGACACGGCAGCAGAATCCT



CTGAGCTTTGGCATTTGAGCCTCAATATCTGCACCG




GGTTCGGCCCTTTCCTTGGCAGCAAG



TGCTCGTACACAATAGCAGCCTCACCAG





scaffold
277
GTCCAACAACAAAGTCCTTGACACGGCAGCAGAATCC
T
C
278
CTGAGCTTTGGCATTTGAGCCTCAATATCTGCACCG


71943:13471

TGGTTCGGCCCTTTCCTTGGCAGCAAGTTCTTGGATT



TGCTCGTACACAATAGCAGCCTCACCAGCTCTGTGC




CGTGGCTCGGTGTAGTAATCAGAGCG



CCGCTAAGGGTCTTATAAGAATCCCCCT





scaffold
279
CCTGTTGTTCCCGAACCTTGGAAGCCACTACATACAC
G
T
280
GTAAGGGATGTTCATGGGCATGTGACTACTGCTTAC


128544:170

TGCCGCCTCTTCTTTCAGGTCTTGAAATGAATGTTGA



TCGAAGGCACATTCAAATCACATGAGATGAAGTTAT




TGCAGCAATCAGTATTTCTACTCGAT



GACACTTTTTCATAGCCTTCTTTGGGCA





scaffold
281
TAAGAGTGAGAATTTTATTATGAAGATTGAGGCGATT
T
C
282
TGAGTTTGCTGTTGCTGCTGTTGTTGTTGGGAGCGT


98263:1069

ACCAGTGAGTACAGAAACGTGTTCTGGGAGTTTAGGG



CGAAGAGAGGAGAGAGGTGGTTCGATACGGAGGCGG




GCATTGGGGTTTTGGGTTTTTTGTGG



CGCTTCCTGCGACGGCGCTCAGCTGCAG





C32058675:
283
TTTTTGTATGATTAATTTATTATAATATACAGATAAT
A
G
284
AATGGGCCTAGGACTGGGCCTAGAATATCAGCAGCT


292

AACGAATGGGAGATTCAAGAGCGTGGAGCATAGAGTG



TGCTTTTTTTATCCAAGCATTCCCAATATTGCGAAA




TTGGCAGCTGGGGGAGGTGGGCCTGA



CCTTACGGCCCAATTAAAGAGCTTCTCT





scaffold
285
ACCTGAAGATGCCTAATTAAAGGCATTCCATTCTTCT
C
T
286
GAGCTCTTCTATTTCATCTGATGTCAACAGGTCCCG


823:11824

TCCTTTTCAGCTGCCAATGCTCGTAAATGACTTTAAT



CTGTTGAGAATATGCAGCCTTCTCAAACATGTCCAT




TACATCCATGGGCCCAACTCCAGCAG



AATTTTCTCAAACATCTCTTCAGATATC





scaffold
287
GGTTGGGGCTACAATAGCTATGGTCAGGCAGCCAATG
G
T
288
TAGCTTTATCCTTAACACTGCTTTTTCGTTTTCTAT


75287:5899

AGAAATCTACCTATGCTTGGTTTCCATCACCAGTTGA



GTTCATGGAGCTCCCTTTGCAGGTGCGTTGGCGAGG




TTGGTATGGCAAAATTATATCGTTCA



TGCGAAAACTGGCAGCTGGTGGTGGCCA





scaffold
289
CGAGCTCCTTAGCCGTGGCTAGGCCGAGATTGTGTTG
C
T
290
CCGCTTGCTGCTCCTGTTATTAGTGCCACCTTCCCA


16869:149730

GATGTCTGCTATGACTACTTTGGCACCATTGTTGATG



TCAAGCCTGTTATTTTCAATGAGTGAAGAAATTGTC




AATTTGGTGGCTGTTGCTTTGCCTAT



TGAGTAGAAAGAAGGTAAAGAAAGCAAT





scaffold
291
TTATTCATGTGGAAGTAGCTCTATAAAACTGTCTCTA
C
T
292
ACATATCTGTTGTACCTCTTTCCTGGAACAGCTTCA


3842:543149

ACATGGTATTTAAAGTGTTTGCATTGGAAAAATGTTC



TGTAGCTGAACTAAAACCCACAGAGTATAAAGCTGC




TTACCAAATGCAGCTTGAGCCAGTTC



CAACAGTAGGCTATGGTCAAAGAAAGTA





C32058613:
293
TTGACATTACTAACAATTACTGAAGCCCCCATTACAC
T
C
294
AGAAGCAAGCACCTATTTTTTGCTCTTCGAACTCTT


508

TAATTTGGGGCCAATAAGCTTGACTCCTCGCTTTCCA



CCTCTTCCTTATCCATTTTATAAGCTGCTAAATCAT




AACGTGTTATATTGTTGCTGCCATAA



GAACACTTAAGTCTTCTAGTTCAGCCAA





C32058613:
295
CTTGACTCCTCGCTTTCCAAACGTGTTATATTGTTGC
C
T
296
ATAAGCTGCTAAATCATGAACACTTAAGTCTTCTAG


563

TGCCATAACAGAAGCAAGCACCTATTTTTTGCTCTTC



TTCAGCCAAATTTTGAGCACTTCTATACGTATTCTG




GAACTCTTCCTCTTCCTTATCCATTT



TTGCTAGGACAGAAAAAGAAAAGGTGTT





scaffold
297
CGGTGGTGGCTGTGGTTGGGGTATGCACGTTGTCGTT
C
T
298
TGGGCTTATTTCGACCGTGACTTCTCTCGCTGGATC


7146:70340

TAAGAAAATAGTGGGAACATACTTGGTGGGAGTAGTG



CACCCAGTTACCGCTGATGAAAGGGCCTCTCATGCT




GGCCTTGCCGGGGTGTTTTGCCCAGA



GCTTCTCACAGATCTGGACTACCAAGGC





scaffold
299
TGCAATCCTGTGGTGCACTAGAAACCGCCGCCGCATC
G
A
300
CCGTGTGGCTTCTCGTTCTGTTCTCGCAAGATTTGC


23125:41276

AGCATCTGTCTCCTTCCCACTGAAAAGCTCCAGTTGC



AGCCTTACAGTTTGGGAGCTCAGATTAGTAGATGGG




AAACTAGACAAAGCCTCTTGCGTAAG



GAACGGTCAGTTGATAAACTTGTAGAGT





scaffold
301
AAAATATACAATGTGCAATTTATTGGCTAAGAGAAAT
A
C
302
TCATGTGATGGCTGGAGGAGAGGAGCTGCTGGAGAG


2418:77508

AGTAAAAAGAGCACATGTATTTGCTGCTGAAACTCTG



AGAGGGGACAGGCGGGTCCCACGCAGCTGGCGCTGG




ATTGAAGGAGGAGCGGACAAGTGTCG



CAGGCTGGGCAGGAGGAGACAGGCGCTT





scaffold
303
CCAGCTCTGCCGGATTCCAATCCGTACCGACCTCGCC
T
G
304
CCGGCGAGTCATCTTCAACGGCAGCAGATTCTGATT


12000:86305

TTGGCGGAGCCTCTCTCCGTAACCGGAACCCTCCGCT



TCGATGCGAAAGTGTTCCGTAAGAACTTGGTCCGAA




GCCGGAAACCTTTCGTCATCCGATGC



GCAAGAACTACAATCGGAAAGGTTTTGG





scaffold
305
GTTGCTTTATTTGAATTTTTGAGCTTCATGATCTGGC
T
G
306
GGGGTCTGTTCTGCACACAATAAAAGAACATTTTTA


24181:60784

AATGGAGTTAATACTACACAGCTCACTAATAAACGAC



GGTATATACCAAGATAGGCTGCTCTGGACATCATTT




AAAAGTTTGTTGTCGTTTTTTGTTTC



AGCAAGGGTCACCATCTTCTAGCAAAAC





scaffold
307
ACAGTACCAGTACATCAGGAAAGAGCAAGAGCAAGAG
G
C
308
ACAATCCTGCTCCCCAACACTCTCCAGACCACCCAA


26621:72993

CAAGAGCAACGACGCCTACTACCAATAACCCAAATAG



CACATCCAATACTACTACTACTACTACTACTACTAC




GGCAGCAAGGATGATGATGATGACCA



TGCTGCCTTCTTCAGGGGTAGCACCATG





scaffold
309
ACGCCACTGTGTTGACGTAATTTCTACATGTAGCAGC
T
C
310
GCCGACGCTACTGTGTTGACGTGACTTCTACATGTA


6391:16360

GTAATGACAGTATTCTATTGCTGGAACGCTATTTGCT



GCATTGTAATGCCAGTATTCTATTGCTGCAATGTTA




GAAATGTTATTTCTTCATTTTTGTGT



TTTCTTCATTTTTATGTCGCCAATGCTA





scaffold
311
GAAACCTCTGTGCCTTGGAATTCTTGCTCTTAATTAG
A
T
312
ATTGCACAAGGTGTGTAAGAACCAAAAGCACTCTCT


88759:12655

CCATATTCGATACACACCTAGGCCCAAAAGAACCAAA



ACTATCTTTCCCCAAACCCCATAAGCTGCAGGCTTA




TGAGAAGTAGAAATGACTAAAGACTC



CAATACCAACTTAGTAGCTCAAACCTCA





scaffold
313
TGGATGGCACCTGAGGTAAAAATCTTATGAAGTTATT
C
T
314
GCCTTTCTCCCAGGTAATAAAGAATTCAACTGGCTG


37469:74336

TTTGCTGCTTGTCTTGATATTCTTTCATTGTGTATGA



CAACCTTGCTGTGGATATTTGGAGCCTTGGATGCAC




TCTTGATTCTATTTCATCCTTCTTCC



TGTTTTGGAAATGGCTACTACAAAACCA





scaffold
315
TCTGCCGGATTCCAATCCGTACCGACCTCGCCTTGGC
T
C
316
GAGTCATCTTCAACGGCAGCAGATTCTGATTTCGAT


12000:86310

GGAGCCTCTCTCCGTAACCGGAACCCTCCGCTGCCGG



GCGAAAGTGTTCCGTAAGAACTTGGTCCGAAGCAAG




AAACCTTTCGTCATCCGATGCGCCGG



AACTACAATCGGAAAGGTTTTGGCCATA





scaffold
317
GCTTGACACAATCATAAATCCAATCAGAGGTAATTGT
G
A
318
GTGACCTTATTTGTCAATCTCTCTACTAATTTGGTT


6143:103796

ATGTATCCCCCATTTACAAGCAGCCTCATACTTTGGT



CCAAGAACAAAGCATAAATTTCTCAAAAGCAGCCGA




CCACTTGCAAACTTGCAAATGAGATG



TCTTTCTCTTCATATTGTGAAACACAAA





scaffold
319
GGACTCAATCACCAATGCTGACCCCAAAGCTGCATTC
A
G
320
ATGCCATATTTGTTTTCGCTACAAAATGTGGCATTG


33135:78155

ATTAACTCAAAGTAAGAAATCTAGTCCTCTTCCAATG



CGAGCTAGCTGCTGGGAAATTAGAATTGGATCACAA




CTTAATTGGCCAACCCGAGCTCTCGC



ACACAGCAAATTTATTTGAAATCCCTAC





C32058675:
321
TATACAGATAATAACGAATGGGAGATTCAAGAGCGTG
G
A
322
TATCAGCAGCTTGCTTTTTTTATCCAAGCATTCCCA


317

GAGCATAGAGTGTTGGCAGCTGGGGGAGGTGGGCCTG



ATATTGCGAAACCTTACGGCCCAATTAAAGAGCTTC




AGAATGGGCCTAGGACTGGGCCTAGA



TCTCTCACACCAACCCACCACTCTACAA





scaffold
323
TTTCCAACCATCCTTGGATGGCTTCCCTTTCATAAGT
G
A
324
TGTGAGCCAAGTTAAAGAACAAGTTTGAACCTTACA


1976:5193

GAATCCATCAGCAGCCACCTGAGGGTCATGCATTATT



CCCAAATTTCGGGAAAGCTTGAGCTTGTTTAGAGTT




TCCTGAAAGTAAACCAGAACATTAGG



GGGGTTTGATTGAAAGACATGAGAAGCA





C32098343:
325
AAAGCTTCAGACAGTTTAGAGGCAAGCTGTTCCAGAG
T
G
326
CCGCCATACATCAACATTATTCTCACAAACCATGCA


2061

GCCTCAAGCCTACAGCTATCACTCTTTTGTACGTTTC



GAGATCAAGGTATGCAAGATACTGAAGAAGAGACCT




ACCACTTTCCTCGAAAAAGGCAGCCC



CGGGCTGCTCTCTTCTAGTGCTGCAAGG





scaffold
327
AAATTCTAAACCATGATAAAGAAAAAAGGTTAGAGGA
A
G
328
GGCAATTATTACCAGCTTGCAGTTTGTTAAGGGAAC


158089:295

AAATCAATCATGAAAATCTCTTTAATAACTTCTGCAG



TCTTCTGAGCAGGGCAAAGCTGGGCAAGAAGAGAAC




CATTACTGCTATTTTGTAGCAAAGTA



CCACTGCAGCCGCATTTTGAATCGCAGG





scaffold
329
TTGACCCTTTTAATGTGGCAGCCCTTCGTTGCGCGGC
T
C
330
ATGAACCAAGTTGTACTGCAGAGTTGGGATGACACA


17267:6243

TGAGTTTCTCGAAATGACTGAAGAATACTGTCATGGA



CTAATAGTCCTCCAAAAGTGCCAAACTCTGCTTCCC




AACCTCTGTGAACGCTTTGATCTCTA



TGGTCTGAGGAGCTTCTGATTGTGAGCC





scaffold
331
CCTAAGCTAAATTCTAGCTAATTGTAAGCCGAATAAA
A
G
332
AACAGTCCATAATCCTTTTGGTTTCGTCGCAGAATG


491:22100

AAAAAACCCTACAAACTGCTGCCCCTTAAGTTTAGAT



CAAGCAGCCAAAAAAGGAATAACTAGAAATGCTAAT




CGATGAGAGGCAGATGAATCATGAAC



CAAATTTACATGGAATTTCCTTTCACCC





scaffold
333
CCAGTGAATGGCGACTATTGCAGCGTACGGTGGACAT
C
A
334
TCATTTCCACTGTACTTGTTCCCAAGTTGGTCTTGA


121522:9070

TATTATTATGTCCTCTTCCCCACCTTGGAAGCCGTCG



ATTGCAACCACTTGAGCAGCATATGGAGACACAATA




ACTGTCTTCACCTTTACTTGGAAGCC



CCAATACTGAGCTCACATTTCGACTTAA





scaffold
335
GGGCCAAAGCAGCAAGATGGTCAGGCCCTGATAAAGT
G
C
336
CCCCCAACTGCTGCAGCAGCAGCAGGGGCACCTGTC


24615:2202

GTGCAAGCAACCAGCAAAGAAACCAGTCCATGCACTA



TTAGCTGCAGTTTGAAAAGTTGCAAAAGCTGCAGGT




CTTAGCAGTTCAGTCCGAATCAGTGT



GCGAAAATTGGTTGAATTAAGATCATAA





C32052323:
337
ATCATGGTTCTTGAGAAGGTTGGTACTTTGCTTAGTG
A
G
338
AGCGATTTTCATTTGCTGCTGTGTCATAATATAAAT


699

TTTGAGTTGCAAAAGTTGATGGGAATTTGGAAAGGAA



AAATAAGCATAAATAGGAGGAATAATAAAAGGTTAG




GGGAGTGTGGGTCTTGCTCTTTTCTA



AAATGGGATTTTTGAGCTGCTTATGGTG





C32052323:
339
GAGAAGGTTGGTACTTTGCTTAGTGTTTGAGTTGCAA
C
T
340
TTGCTGCTGTGTCATAATATAAATAAATAAGCATAA


711

AAGTTGATGGGAATTTGGAAAGGAAGGGAGTGTGGGT



ATAGGAGGAATAATAAAAGGTTAGAAATGGGATTTT




CTTGCTCTTTTCTAGAGCGATTTTCA



TGAGCTGCTTATGGTGGTCTAGTAGTAA





scaffold
341
AATGACTTCTGCACTTCAGCTCCTTTTGATCTAGGGT
G
T
342
TACTGGTAATGGACATTCAACTGGTGTAAGACCTCT


14925:8868

AGTGTGCAGCAATAGAGCCAGGTTTCAAGGAAAATCG



AATTGCAGCCTCGTATATCTAGAATAAGTTTTCAAG




ATCCCTTGGATCCGGAATAGGAAATT



TTAGCCCACTAAAATAATTAGATGGAAA





scaffold
343
GCTTCGTAGCAAGATGCAATTAGCATAAGCAGCCAGA
A
T
344
GTAGAGGTCTAAAGCAGACGGAAAAGACATTGGTGA


133681:2742

ATAATTTTTCTGTAGAGTATTGCTGCCTTCAGTAATG



GTATTATAAAACATAGCTAAAACGGGGTCGCTTTGT




CAGTGAGGTTGTTTTCTGGTGGACTT



TGTGTGGCTGCAAGGCCACATGGATCTC





scaffold
345
TTCATCACCATCACCATCACCACAAGTATTTCAACCA
G
C
346
GAATCTTCGAGCGAAGATCTTAATCTTTACGGATCC


9639:84033

CGGCGCCCCTCAGATTATTCAGCCGATGAATGTTGCT



ACCGCCGAGGCTGCTGCTGCTGCAGCGGCGGCACCG




TTCGGTGGTGGCGGAGCAGCAGGTAC



CCTCCTTTCGGGTCAAAGAAGCGGTTCA





scaffold
347
CAGCAGTCAACCCAGCAGGACCAGCTCCTATGACAAT
T
C
348
GCAGCTTGAATAGGGGATGACTCTTTTTCTACATCC


61482:2893

AATTTTCTTTCCAACGTTTGTATGACACCGTGGATAA



AGAGTCACAATAGGGACTTTACCAACTTCCAATGTT




AGATTCTCCTTGGCATCATCATTAAA



TCACATGATATTTCTGTACTTCCAACAT





scaffold
349
AGAGGTCAACCCTCGCATTCTTCGCGGGGAGTATGCA
C
T
350
GGTAAGTTACCTAGGAAGAAGGGCAACAAAGTATAT


30395:12115

CGGCTATGTTCGGCCAATTCTGCTGCAGCATTGGGAA



GTCAACTACATGAAGAGCAGCAAGTATTGCATTTGT




AATAAAGACCCCGACATGAAAATTTT



GCAAAAGGGTATGAAGTCAATAGTCCTA





C32064647:
351
GAGCTAATTTCTGGAAGAAACCCTGTTGATTATAGTC
T
C
352
AATTATAGGCTGAAAGTGAATCTATATTTGCAGGTG


1071

GACAACAAGGAGAGGTTAGTCTTGATTATGATTTGTT



AATATGGTTGAATGGTTAAAAACTTTGGTTGGGAAT




AAACCTGTAGTTTGCTTTCCTGCTGC



CGGAAATCTGAGCAAGTAATTGATCCCA





scaffold
353
GTGAAGCAACCTGTGAAAGCAGAGGTGCTTGGCTTCT
C
T
354
GTCATGTCTTCTTCATCGCGCTGCAAATGAAGAGAA


2452:1249

CTTGGCTGCTTGCATTTGAATGTAATACTCTTTAAAC



TTATTAGACAAACTCTTAGTATTTGAACTTGGTTGA




TCAACCGGGCAATTCCTAACTAGTTC



GAATTGTACTAAAACTATAACTATTCCT





scaffold
355
AAGCAGTCACACAACAAGAACCTCCACGAAAATCTTG
G
A
356
CCATCCTTGCTCACTAATTCAGCCAATACGTTCTTT


11436:6161

TTTAAGAAAGTCTGAATCTGTGTTCAGGTAACCATGC



TCCAAGTTATCAGCTGCAAATGCTGCAGCTTTTGAG




TTAACTGCCTCCTCAATGTGGTCATC



CCTCCATGTCCATCAAATACACCAAAGA





scaffold
357
CCTTCTCCTGCAACTGCAATCAATGAGTCTCCAAAAG
G
A
358
AGAAACACCATCAATCCCAACTCTCAAACCCCAAAC


4156:16965

AAACACCATCTAAACCATCTGTAAAACCTCCAACACC



ATCTTCTACTCCAAGTCCCAAATTTAAAACACCATC




ATCTGGTGCAGCCACTAAGTCACCTA



TCGTGCAGCCACTGAATCTCCAAAAGTA





scaffold
359
CCTTCTGCCATCCCATTGTCAAGTCTGGCTGAGGCAG
T
C
360
TGCTGCTGAATCATTTGTTGTTTCTTGATGTAACTG


43435:8325

GAAATCTATTGGATGGTGGAGACTGATCGCTGGTAGC



TGAAGATGAATGCTTATTCCTACGGCGTCCAGCACC




ATTATTGCTGTCTTCTTGTGTAACTA



CACAGGTACATTTCTAATTGTTCCCCCG





scaffold
361
ATTTGCAGGGAAATGAGCCGCTGGAACTGCAACTTCT
T
A
362
CAGATTCAGTGAATTTAAACATACAGAGTACAAATA


11297:60144

GCTGCTTCTGGAATACCCTGAAGAGAAAACATCAATA



GTCGACTGCGCGTTCTGGATTGTTATATGCTGCTCG




GTTAAAACAAGATAAAACAGGTGTCA



AAGTGCACGAGTAACAGTTTCTCTGTCC





scaffold
363
GCAGAGGTCCAACTGTTCGTGCCGTAACGATAGATGG
A
C
364
ACTCTCGTATCTCTTCCTAACATGAGTAAGGAACAA


51841:4904

CAGCAACTCAAGCATGGTCAGTTTTGTGGTTGAGCAG



TGGCAAACCATTGCTGCCATGTTTGATAACGTTCAA




CCCACTTCATCTACCACTTCTTCAAA



TATTCTAGCAATCGTTTGCACAATGAGT





scaffold
365
TTGAAGTGTGCTCGATAGAAGTAGATGTGGCCCGAGC
A
G
366
GTGACCACGAATGAAGCTGAAGCTTGGGAAGCAGCC


38015:40961

TTCGTTGATTCTTTCAGTGGGAATTTCAACAAGGTAT



AAGAAAGCTTCAGGAGGTTTGCATTTCCTTGCCATT




GTGTATGCAACTTACAAGAAAAACCC



CAAGAAGACTTGGATTCAGATGACTGTG





scaffold
367
CATATTATTATTATTATTATTATTATTATTTCTATTT
A
G
368
GCTTGTTTGATGATGATCTTCCTCCTCCTCCTCCTC


16206:63417

AACTGCTGCCCTTTATTATTTCTCCATTTCGATAGCC



CTCCTGCTGCTTCGTTGGTAATGGCGGTTGCAGAGA




CGAAAAGCGAAAAAGACTTGTTGCCC



CATCTTTGCTCTGTTTTTGATGCTCCAT





scaffold
369
CCTTCCACCTCTACGCTCCTAAGTCCTTCTCTACTCG
T
C
370
TCCTCTGCCACAACCGCCGAGGCTCCGCAGCCTAAA


13781:319

CTTCCCCAACCCCTTCACCGCTTCACGCCGCTCCACT



TCCTCTCTTCTTACTTTCCAGCAAGCCATTCAACGT




GCAACTCCACTATCTGCAATTACTAC



CTCCAGGTTTGTTTCCAATGTCTAATTG





scaffold
371
TCAGAGACTAAGAAACATGCCACTATAAAAATACGCC
T
C
372
GAAATCCCAGTCATATTTAAAGATTAACTCAAACTG


27023:20610

ATCTTGTTAATACTAAGAAATGTCACCTCACCGCAGC



TTGCTGCAAATCTTCAAGTGTAGCAGAAATGTTCTC




AGGCACATCTTCTTCCAGGAAGTTAT



CTGCAGGTCCATAAACTGTTCAGGGAAT





scaffold
373
TATATTTATATAAGAAAAAGATGAGAGAAGAGAGGAA
T
C
374
TCTCTATACATGTGAACCGTAGCCATTAGCCCCATT


4618:83522

GATTTAGAAAGCAGCAAAGGACCCATATCCTCCTCCA



TCCATTAGCACCATAAGGGACCTTGTTCTCTGTTTT




TTAAGGCAACTAAACCCAACTAACTA



CTTCTTCTTCAGTACGTAAAACCATGTA





scaffold
375
GCAGCCTAGCAGCACTGCTTGCTCCACGGCCACGGCC
G
A
376
GGAAGAATTTGCAGCCTTGGATTCTGCTCGGTGCCT


111383:2928

ACCAGATGGTGATTTTGAACCGAACTTCGTATATCTG



GAGTTTTCAGCTGCCAACTGATAGCTTTTGACCAGC




GAAGAACTCTTCCTAGTTAATCTTAC



TCAAGCTGTCGCGCAATTATTTCCGAGC





scaffold
377
GGTCATTCATTAATGTATGGTTAGTTATTGGCTGCTG
C
T
378
GATTTTTATTCAAGAACTGAATTCTTTTATGCAGGC


35:25795

GCACTTGTCTGTTATGCATGAAATACTTATTGTTATA



TGCTTACAGCTACAGTTGCCTGGCCTTTCCCAGCCA


293

TGGTGAGTTTTCAAAAAACATTTGCA



TTATTTACATTGGAATTATTCTTTCGAC





scaffold
379
TGATATAGTACAGTGCGTCCATGGCGTCATCGTAGGC
C
G
380
GCGGCTAAGTTGAATGTGAAATTATGAGTCACAGTT


122455:2010

TGCAGGCAGACGGTGCTCCGGAGCCAGACGATACTCC



GAGGCTGCACTGAATAGGATGAATCCACCGCCATGG




ACAGAAACTACAATGGCAAAGATTTC



AAGTAGACTATAAGAGGCAATCGTAGCT





scaffold
381
TAAATTGGTCGTTTATATTAATGTTATAAAGAACGCC
A
C
382
TCTTCTATCTTCTAGGGTTTGGTAGTTCCCTTGGAC


13362:101120

CTAGCTTTAGCTAGAGCAGCTAGAGCGTGAACCCGGA



GAAATCGTGGCTGCTTTACTGTTTTTTGGGTTTCAT




CTAGTTTTTTTTTACTTCTTGCTCGT



GGAAGATTTTTATGAGAATCGAAGCAAT





scaffold
383
CCAGAGACCATATCTATGCGTAATACATGTAAAGGCT
A
T
384
GTGAAATCGAAACCATTTCCGTTTGCATCAGTTCCA


38557:23764

ATTTGAAGCAGCACAGGCAAGTGAGTTTTCGGTTGGA



GAGGTATCCGCACCTTTGTGGATAAACAAGTCAGTT




TGCCAAGCAAGATGGAGCAACTTTGT



AAGAGACAAAATGGGATGAAAATTAAAA





scaffold
385
AAAGGCTATTTGAAGCAGCACAGGCAAGTGAGTTTTC
G
A
386
GTTCCAGAGGTATCCGCACCTTTGTGGATAAACAAG


38557:23794

GGTTGGATGCCAAGCAAGATGGAGCAACTTTGTTGTG



TCAGTTAAGAGACAAAATGGGATGAAAATTAAAAGT




AAATCGAAACCATTTCCGTTTGCATC



TAGCTAAAAAGTGGGCAAGACATACCTC





scaffold
387
GAAGGCGAATGACTTGGCGTTGGAGGACTGAGATAGC
G
A
388
GCGTCCTCTCTCTGGTGAGGGAGGACCTCGTTCAGG


50091:2544

GCCTACGCAGCCGTAGACAGGATCTTTCATCCTGGCC



AGCTTGCTCACATTGCTCGCCCCAAATATTTTGTGG




TCGGCTTCGTAGGCCAGAGAATTAAC



ACGTTTGCGAATTTCTGTGGCTCTTCAG





scaffold
389
GTGATCTTCCAACATCTGTTGATTGGAGGAAGAAAGG
A
T
390
GCAGTTGAAGGTGTCAACCAAATCGAAACAAAGGAG


16614:72706

AGCAGTCACTGGAGTCAAAAACCAAGGCAACTGTGGT



CTGGTATCTTTGTCTGAACAAGAATTGGTTGATTGC




AGCTGTTGGGCATTCTCAGCTGTAGC



AGCTCGAAAAACCATGGTTGTGAAGGGG





scaffold
391
AGCCATCAAAGAATGCGAAATCAACAGGGAAATTGGG
A
G
392
AACTTAACGATGGCCACCATGAGATCTTTTATGTCT


4877:4542

ATCGTTGTGGAGGCTGATAAAAGGATAGATGTTTACA



GTTCTGAAGTCACCGTCGGAAGGTTTCTCACTCGAG




GTAAAGGAACCTCCATTGTCGCTTAA



CTGCCATATACATCAGCGTTTAAAGGGA





scaffold
393
TAGCAAAGATCGAAGCCTCACATCAACACTCACAGAT
A
T
394
GCACAACACTCGCAGATCGAAGAAAGGATGCCCACG


65894:5390

CGAAGCTGCCTCACATCAAAACTCACAGATCAAAACT



TCTCACAATTTCGGTTCCAACTTTGCAGCTTTTCCT




GCACAACAACACTCGCAGATCGAAGC



CCCAGCTTCACCTCATTGCTGACAAGTT





scaffold
395
CATCCGAAGTAGGATCATGTGCGCGGTTGCGGCGATG
T
C
396
CTCCCTCTTTCTTTATACTTCTACACAGCAGCAACT


90107:10791

GGCCCCACTTCACTGTCCTTTTCTCACAACACTCAGG



ACTTAACTTAGCCTCATCAAAATTCAGCCAGGAAGG




ACCCACATACACATAACATAACCCCT



ACCAGATGAGATGACCTTGCTTCTTCCT





scaffold
397
CAATGAAGATTCAAGACCAACATGTCAATGCCCAAGA
A
T
398
GCGCTGAAGACGAGCTTACTCCCGACATAGAAGATC


68873:1704

AAGTACTCTTTTATTGATCCCAATGACGAATATGGAA



TCTATGATGTTGAGGAGCTGCGCAATGTAGATTGGC




GCTGCAAACCCGATTTCATACAAGGC



CCTTATCAGATTATGTTGCACTGAAGCC





scaffold
399
AGGTTGAGACTGCAAGGATTTACAATGTTGATGATCT
C
T
400
ATTGCTGATGAATCAAAACAATTTGAAGCATGGAGG


3842:188176

GAAAGAGGTTGTAGCTGCTAATAAAGAAGATCGTCTC



GACTCACTGGAGACTGTTCCGACCATCAAGAAACTG




CGCAAAGCAATGGAGGCTCAGGCAAT



AGAGCTTATGCTGAAAGAATAAGGGCTG























TABLE 8











Minor Allele
Minor Allele



SEQ
SEQ
Minor
Major

Frequency
Frequency


SNP Name
ID
ID
Allele
Allele
FST
(Indica)
(Sativa)






















scaffold6803:13242
401
402
A
G
0.733989
0
0.7745


scaffold543:54226
403
404
A
G
0.722743
0
0.7647


scaffold281:231978
405
406
A
T
0.720457
0.9722
0.2049


scaffold729:175391
407
408
G
A
0.708923
0.01389
0.76


scaffold281:232029
409
410
G
A
0.70327
0.8333
0.1048


scaffold2409:27009
411
412
A
T
0.6646
0.8243
0.1228


scaffold25:303031
413
414
A
T
0.650114
0.9306
0.2241


scaffold63:301758
415
416
A
G
0.631811
0.01515
0.7037


scaffold92:214563
417
418
A
G
0.628155
0.8714
0.1875


scaffold3286:29761
419
420
C
T
0.6277
0.04167
0.7188


scaffold823:18400
421
422
A
G
0.61526
0.02703
0.6923


scaffold1697:24776
423
424
C
T
0.592909
0.8333
0.1786


scaffold414:37377
425
426
A
G
0.592212
0.9028
0.2414


scaffold5405:41764
427
428
C
T
0.591134
0.8611
0.2054


scaffold6803:13272
429
430
A
T
0.591045
0.7414
0.1132


scaffold2317:118844
431
432
T
C
0.587962
0.8514
0.1983


scaffold370:274852
433
434
A
G
0.586146
0
0.6364


scaffold1014:55374
435
436
C
T
0.585084
0.7581
0.1273


scaffold3831:62396
437
438
A
T
0.583082
0
0.6275


scaffold2449:58347
439
440
A
T
0.581874
0.6087
0.05833


scaffold1006:18102
441
442
C
T
0.581751
0.03704
0.7


scaffold143:176913
443
444
G
A
0.581249
0.08333
0.7315


scaffold2317:118609
445
446
G
C
0.580874
0.8514
0.2034


scaffold3:20935
447
448
T
A
0.576848
0.6212
0.05556


scaffold543:54256
449
450
A
T
0.576198
0.7308
0.1182


scaffold360:162466
451
452
T
C
0.575327
0.5882
0.03448


scaffold423:66668
453
454
A
T
0.573557
0.01667
0.6604


scaffold1317:10314
455
456
G
A
0.572596
0.8676
0.2255


scaffold1517:10238
457
458
C
G
0.571584
0.01515
0.6471


scaffold1880:146873
459
460
C
A
0.571491
0.7571
0.1339


scaffold1297:57086
461
462
A
G
0.571186
0.7833
0.1552


scaffold682:73395
463
464
C
T
0.570734
0.7344
0.123


scaffold92:214750
465
466
A
T
0.569779
0.08333
0.7212


scaffold143:176964
467
468
T
A
0.567528
0.7778
0.1509


scaffold942:90233
469
470
T
A
0.566759
0
0.6293


scaffold942:89745
471
472
G
A
0.566759
0
0.6293


scaffold24:306989
473
474
T
A
0.565856
0.8143
0.1827


scaffold1281:68808
475
476
C
G
0.564701
0.803
0.1735


scaffold1880:146829
477
478
A
G
0.56444
0.7273
0.1182


scaffold3:20953
479
480
A
G
0.561743
0.5938
0.04918


scaffold580:4170
481
482
C
T
0.559158
0.7429
0.13


scaffold604:135874
483
484
T
C
0.559151
0.8571
0.2241


scaffold1692:85945
485
486
C
G
0.55769
0.06667
0.7037


scaffold1041:93642
487
488
A
G
0.555826
0.1111
0.7407


scaffold1926:69537
489
490
C
G
0.554742
0.9348
0.2845


scaffold4210:100547
491
492
G
A
0.554584
0.9
0.2627


scaffold759:86606
493
494
A
C
0.553393
0.7069
0.1132


scaffold25:425571
495
496
C
T
0.553335
0.8571
0.2308


scaffold692:20843
497
498
G
A
0.552253
0.8281
0.2018


scaffold2515:21370
499
500
T
C
0.551959
0.8065
0.1842


scaffold48:65442
501
502
C
G
0.551514
0.8784
0.25


scaffold48:65391
503
504
T
C
0.551514
0.8784
0.25


scaffold3177:95787
505
506
C
T
0.550219
0.7727
0.161


scaffold3681:699
507
508
T
C
0.550046
0.01389
0.6311


scaffold3570:26136
509
510
C
T
0.548187
0.7241
0.1311


scaffold388:236449
511
512
C
A
0.546671
0.8194
0.2


scaffold763:27574
513
514
C
A
0.546635
0.05556
0.6698


scaffold794:150222
515
516
A
G
0.54559
0.06452
0.6909


scaffold152:25430
517
518
G
T
0.545375
0.8243
0.2059


scaffold108:362803
519
520
G
A
0.545191
0.7222
0.1271


scaffold388:350925
521
522
A
C
0.544283
0.04054
0.6518


scaffold2218:32474
523
524
T
C
0.542777
0.7188
0.1271


scaffold604:135639
525
526
G
C
0.542637
0.8472
0.2281


scaffold2741:33031
527
528
G
A
0.542595
0.8194
0.2034


scaffold4991:44264
529
530
A
C
0.542051
0.01351
0.614


scaffold2483:94844
531
532
G
A
0.541013
0.8125
0.1961


scaffold3871:24039
533
534
T
G
0.540111
0.07143
0.6897


scaffold616:154319
535
536
T
C
0.540002
0.06061
0.681


scaffold1005:75114
537
538
T
A
0.539944
0.01562
0.6293


scaffold4991:44417
539
540
T
C
0.538537
0.01351
0.6121


scaffold38:121620
541
542
G
A
0.537429
0.8611
0.2455


scaffold1005:75091
543
544
A
G
0.536369
0.01562
0.6271


scaffold298:209613
545
546
A
G
0.534826
0.07143
0.6864


scaffold152:25429
547
548
T
C
0.534254
0.8243
0.2143


scaffold1003:70848
549
550
T
C
0.534107
0.02778
0.6333


scaffold839:64955
551
552
A
G
0.533035
0.7419
0.15


scaffold4070:22473
553
554
C
G
0.532019
0.06944
0.6731


scaffold1419:187408
555
556
T
G
0.53116
0.8636
0.25


scaffold3871:24091
557
558
G
A
0.531082
0.07353
0.6864


scaffold3871:23604
559
560
C
A
0.531082
0.07353
0.6864


scaffold3871:23603
561
562
G
A
0.531082
0.07353
0.6864


scaffold3:388526
563
564
C
T
0.530397
0.5625
0.04839


scaffold4:729494
565
566
A
G
0.530117
0.5735
0.05


scaffold2283:29120
567
568
C
G
0.528671
0.7286
0.1404


scaffold4350:64549
569
570
T
C
0.528523
0
0.5784


scaffold2283:29096
571
572
T
A
0.527957
0.8235
0.2155


scaffold3469:17543
573
574
A
C
0.526758
0.6774
0.1091


scaffold1022:170497
575
576
A
T
0.526672
0.6111
0.07143


scaffold964:106240
577
578
C
T
0.526638
0.8824
0.2705


scaffold1419:187788
579
580
T
A
0.525371
0.8429
0.2368


scaffold3386:35408
581
582
T
A
0.524758
0.4848
0.01613


scaffold575:241067
583
584
G
C
0.524744
0
0.5877


scaffold1863:93953
585
586
C
G
0.524401
0.8571
0.25


scaffold575:459449
587
588
G
C
0.524202
0.8333
0.2288


scaffold773:155167
589
590
T
C
0.523913
0.4483
0.008197


scaffold773:155164
591
592
G
A
0.523913
0.4483
0.008197


scaffold107:154377
593
594
C
T
0.522808
0.5862
0.06557


scaffold371:34271
595
596
C
T
0.522699
0.02857
0.625


scaffold78:341641
597
598
A
G
0.522194
0.7571
0.1667


scaffold156:85625
599
600
T
A
0.521494
0.01429
0.5918






















TABLE 9






SEQ



SEQ



SNP Name
ID
Upstream Sequence
Minor
Major
ID
Downstream Sequence







scaffold
401
AAGGAAGAAGTTGGCAGCAAGCTCACCGTG
A
G
402
TTCAACTGATTCTATTTCAATTCATAAATTTTTGTT


6803:13242

GTATCCACTGAGGAGATCATCCTCGAGCGA



TTTGAAAGTTGGATTATAATATTATATAGGTAGCAA




CCTAGGGCTCTCGGTACTTTATTATCATTC



GGGGGAAGAAGCTAAGAATTCCGGGGAT




CACAATGATT









scaffold
403
AAGGAAGAAGTTGGCAGCAAGCTCACCGTG
A
G
404
TTCAACTGATTCTATTTCAATTCATAAATTTTTGTT


543:54226

GTATCCACTGAGGAGATCATCCTCGAGCGA



TTTGAAAGTTGGATTATAATATTATATAGGTAGCAA




CCTAGGGCTCTCGGTACTTTATTATCATTC



GGGGGAAGAAGCTAAGAATTCCGGGGAT




CACAATGATT









scaffold
405
TCATGTTACTGCTGATTATCGTCACCGATA
A
T
406
CTGAGTGATTTAAGAGAACTTGCTTCAGCAGAGAGG


281:231978

ATTGCTTCTAACCTTTCTACATTGTGGTTT



CCTGGATACTTCACGCTCATTTACACAAATATTCTC




TTTTGACCTGGCTGCAGAAAGTTGAAAACA



GAACATCAACCTGACTGCCCGGTAACTT




GAGTAAGAAT









scaffold
407
CCAGCAAAAGTGGCTCGTGCTGATGAGAGT
G
A
408
TCAGATACACCAGTACCATCCACAATAACCCTGTGG


729:175391

CGGGATTGCTTTTCCTGAAACCAGAGATAA



CAGACAAGTTCTCAAGCTAGTAGGAATGAATGTCCT




CTCTCACCCGGGCCAAAGAGGGGTGTTCTG



CCGCAAATTGAAACCACTGTTCGGATCT




AAACATGCAG









scaffold
409
TTGTGGTTTTTTTGACCTGGCTGCAGAAAG
G
A
410
CTCATTTACACAAATATTCTCGAACATCAACCTGAC


281:232029

TTGAAAACAGAGTAAGAATACTGAGTGATT



TGCCCGGTAACTTATCTGATACTACAGAAATTGCAT




TAAGAGAACTTGCTTCAGCAGAGAGGCCTG



TTTGTTCTAAGCATTGCTTTCGGTTTTT




GATACTTCAC









scaffold
411
CGATGTGTGGGTTTTCAGATCTCTTTTAAG
A
T
412
TAAGATTAAAAACATAAACAAATATGATAACACTCA


2409:27009

GCGTAAGAAAATTTTAATAAAGGAATTGAC



TGCAGATTACAAGGAAAATGCACATGGCCACTGCAG




TATATAGGCAGGCAGACAAGAAGATGGTGG



GTAACAATGTTTGACTTTTTGTTAATTA




CTTCACTTTC









scaffold
413
ATGAAGCAGGCCGGAGAAAAGACGTTTTTC
A
T
414
GAAGAGTTGCGAAGAGAACTCGCTTTTTGCACCTTA


25:303031

CTGTTTTAAACAATCACTAAAGTTAGGAGT



ATAATTTAACACTCAGCATTATTTCTTATTCGCAGA




TAGGAGAACTGAAAAACAAGTATGAGATGT



GAAAGAGAGAGAGGCCTCTTCGGATGGA




AATCAAATTA









scaffold
415
TGCGACCCATAGCCTGTGAATCAGAAGATA
A
G
416
GCAAAAGCTACATCTTCCGGGATGTTCTTGTCAAGG


63:301758

TAATGCTGATTGCGCCCATATCATGCAAAA



TGATGGCAGACCATCTGTATGTAGCAAGACGAAAGT




TATCTTCTGCAGCAATTGTTTCTGCCCTTA



GAGAATATTGAACAGCCATAGTGCACCT




TTCTTGATTC









scaffold
417
ATTGTTGGTGCATATGAGGAAGGCCACCTG
A
G
418
GAAGCTCCCCATGACCCTAAATTCCCCCCAGGTTGA


92:214563

CAGGTCCATAATATCCTTGCCAGTACATTG



TACAAAGGCAATGAACCTTGAAAAGTGGACCCAGGA




GCATAGCAAGCCCACCACCATTTGCACTCG



AGTCCCAGTTGTGCTGTATGGGAACCAA




GTGCAGGAGG









scaffold
419
GCCACAACTCCCACCATCTTCCTCAGCCAC
C
T
420
ATATGTGAAAAAAAAAGAACAGAAAATTTTCAAAAT


3286:29761

CCTGCAGCTTCATTTCTTCTAGAAGCTGAG



TGGAAGATTACAAGTACTGGCCATAAACACCAAACA




GAAAAACATAAAAGACACAATTAGGAAACT



CCAAAATTCTCAAGAGTCAGATCCTAAT




AAATTAAATA









scaffold
421
TAGAATGGTTTTGCTATTTGTATATGAATC
A
G
422
TACGCTGATTCATGCAAACAAATCTTCTCAAGCTTC


823:18400

ATGTTCACTTGAGTAGAAGTCTATACTCAG



GTAGGCCAATCTTCTCCGAGAAGCAAAGGGTTCATT




CAAAAGAATCTGAAGCAATCACTTATCTGC



TCCATTACAACCCGGAAATCTATCATGG




TCCCAGTTTT









scaffold
423
CCAAAAACTTTTCATTTAACTGTTCTCATG
C
T
424
AGCTGGTGCCTGGAAGTCAGTACTAACTGATAAGCT


1697:24776

TTAAAACTGTGGAACAAGGAACGAGTAGCT



ATTCTTTTCTTTCCTTCCAGAGTGTCTCTTCTAAAG




GCAGCTGCGAAAGTTTTGCAGGTAAATTTG



TGATGGAACCTTGGAGAATCGGCCGGTC




AGTTTGATAA









scaffold
425
CGCCCTGAGCACCCTTAATGGGAGTGGTTG
A
G
426
TCATGGCATATTTCGCTATGTTTCTTCTGCGTCTGA


414:37377

GAGCAGACCTCTTCTGCTGCAGCGAATGGA



ATTTTCGACAGTCCGTTCCGTGCTGTCCCTTTCCCG




GTTCGTCGATGGTTTGGGCCTTCACCGTTG



GTCCGAAGCTGAACTCGCCGTTAGCGTT




GCGCACTGTC









scaffold
427
CCAATCAATCTGCAGTGACGAACCTCAGCT
C
T
428
GCTTTTGCTTATCACCAACATCAACCACTGTCGTCG


5405:41764

GAGACTGAGAAAACCAAACACAAATGACAG



CAACCATCGTTTATTCAATGCGCACTGACGAAACAA




TATGTTTTCATGTAAGCTCTCCCCAAATCC



GGCCACCGCTTCCTCTCCACTCTCTCAG




CAGCCCCATT









scaffold
429
GTATCCACTGAGGAGATCATCCTCGAGCGA
A
T
430
TTTGTTTTTGAAAGTTGGATTATAATATTATATAGG


6803:13272

CCTAGGGCTCTCGGTACTTTATTATCATTC



TAGCAAGGGGGAAGAAGCTAAGAATTCCGGGGATCC




CACAATGATTGTTCAACTGATTCTATTTCA



ATTGAGTGCGAAAGGCGGTGCTGTTCTC




ATTCATAAAT









scaffold
431
ACCAATGAGAAAAACAAAATTAGTTACACT
T
C
432
TACCTGAAGTTTTATAGGATCAGGATTTGATCCATC


2317:118844

TTTTCGGTTTTAACATCTCTAAACTTTAAA



AATAATGTCAATAGCTCCATTGATCCGGAATTGCTC




CCAATAAACACGTTCCAGCATTATAAGGGT



CCAAGAGTCAGTGAAGTACCAACAAATC




GTTCGTTCAG









scaffold
433
AATATCATTTGCTATCTTGTAAAGCTCTAA
A
G
434
GACACAAAATATAGCTCAATATAACTATACCGAATC


370:274852

AGCTGCAGGTAGATTTTGTGCCTCCTTTCC



AACATACAACAAACACAATCCAACGCACACTACAAA




CATTCCAACTGCTTGAGCACCCTGAAATAA



AGGATTCAAGAATTATGTCTCCGACTAA




GAAACAGACA









scaffold
435
CTATTAGACTGTAGAGCATTGCATGAAAGG
C
T
436
ACATTAGGCAACTCCTGCTGAATGGCAGTGCTTACC


1014:55374

CTTACTTTATTGGTTTAAAAAGTATAGTTC



TGTTCCGGAAATGTATGTGTTCACACAAAATCAGGC




GGGTAGATGGATTCTGCAGATAAAGTTTCA



TCAGTATGACCTTTATAATGTCAATTAG




TCTTTCCCAT









scaffold
437
GAAAAAACACCCCTCCAGCCTGCAACATCA
A
T
438
GTTGAGAAACAAACGAAACATTTAAATCCAAGGAAC


3831:62396

ATTCAGTTGACAGCTTGCAGGACTCGAGCA



ACGCAAGTCACAAATGCCTTGAACCGACACCATTCT




AGTTTCGTACCAGTAACTCTGCAGATCACA



TCCCAAGATAAAAATAACACGATGACAT




GAAAGGTATC









scaffold
439
CGATCATTCGTACCTGCAGTTGAAAGTTGA
A
T
440
ACATGATGTTACTTTTTCAGTAACACTACCCCAACT


2449:58347

ACCTTTTCAAGTTCAAATGTTGATGAATTA



ACTTCCATTTAAGGTTGGTAACCCAATACTTCTACC




ACAATACAAGGAGACATTTGATCTTCATCC



TTCATCACATGTTGATATTTTTCGATTC




ATGTTTGTTG









scaffold
441
TGTAAGACCAACGTGAACAGAGCTAAGGAC
C
T
442
TCCACTAGGATTTTCCATAGCAATGCTTGGCTGCAG


1006:18102

CATAAGAAGTTGAAGGCCGTTGAGGAACCA



AGTGACATGCTTATTCGGAAGTAACCAGCGTGAAAC




GGCGAAACACTTGTCGTAATGAGTGAACGT



CTGGTTAAAATAGATGATAATATGGGTT




CGTCGTTTGG









scaffold
443
CGTAATGCTGTTCTTGCTGTTATGTCTGTT
G
A
444
CAGGATAATTCTAGTAAGCATAATGCTTTTCTTATG


143:176913

TATCGACTTCCTGGTGGTGATCAATTGCTT



CTTTTTACTTGTGATGAAGATCGTGCTGTTAATTAC




GTCGATGCACCGGAGATTATAGAGAAGTTT



CTTTTTACACATGTTGATAGAATTACTG




TATCTTCGGA









scaffold
445
CGCTAGAATTGTCGAGAAAAGTTTCTTTAG
G
C
446
GAAAACCATGATTTCTCTCTTTGCTGCATCATTCAG


2317:118609

TCGGATCTTCATCTATACTTGGAAGACCTG



AAAAGAAAAGACAAATATGTGGAAAATTTAGATAGT




GATTAGGCCCCAAATACTGCAGCCTAGATT



TCAAAGGGAAGTTAAAAGCTGAACTAGC




TAAGAGAACT









scaffold
447
GACTCCTCAACCTTTGATGGAGACGAAGAA
T
A
448
ATCCGGGCATCATTTCAGTGCCTTATTTTATTCTTG


3:20935

GATGAATTGTACCAACACTTAGTTTAAAAC



GTGTAAAGATTAAAGATTAAAAATCAAAAATCAAAA




AAAGCTTTTTACTAGATTTTCTAATCATTA



ATCAAAATTCTTTCAGAAGATTTCAAGC




TTATTTTGTG









scaffold
449
GTATCCACTGAGGAGATCATCCTCGAGCGA
A
T
450
TTTGTTTTTGAAAGTTGGATTATAATATTATATAGG


543:54256

CCTAGGGCTCTCGGTACTTTATTATCATTC



TAGCAAGGGGGAAGAAGCTAAGAATTCCGGGGATCC




CACAATGATTGTTCAACTGATTCTATTTCA



ATTGAGTGCGAAAGGCGGTGCTGTTCTC




ATTCATAAAT









scaffold
451
TGGAAACAGGAATAGATGCCCCACCGGAAC
T
C
452
CGCCGCTTCTTCTCTTCCTTCAATTGTTTCTTCATA


360:162466

TTTCTTCTGTATTTTCACCTAAATCTCTGG



AGAAGCTTTTCCCTATATTCTAACTCATCATAATAG




GCAAATCCTTCACAGCTTCTGCCATTTTCT



GCCTTCTTTTGAGCTTTGGAAAGCTTTG




TCATAATTTT









scaffold
453
GAAAAAACACCCCTCCAGCCTGCAACATCA
A
T
454
GTTGAGAAACAAACGAAACATTTAAATCCAAGGAAC


423:66668

ATTCAGTTGACAGCTTGCAGGACTCGAGCA



ACGCAAGTCACAAATGCCTTGAACCGCACCATTCTT




AGTTTCGTACCAGTAACTCTGCAGATCACA



CCCAAGATAAAAATAACACGATGACATC




GAAAGGTATC









scaffold
455
GGAAGTAAAGCCAAACTAGGCCAAGAGAAA
G
A
456
CAGTGTGCCAAGGTGTGTTCCTGCAGGTATTGAGCT


1317:10314

AGGCGAAGGAGATGGAGCAATGTAGCATCC



TAAGAAGTTGAAAATGTCCAATACACCAGATAGGAC




ATAAAAGATGGAACAACTAGCATTAAAGAG



AATGGACGATCTCCAAAGCTTCCACGTA




CTCTGTGACA









scaffold
457
CACATCATAAAGAGTATCACCAATCTTTAG
C
G
458
ACTTCTTGACAGTGTTCGCAGCCAAAGGTGCCCGTG


1517:10238

CTTGATGGCACCACTTCTGTATACAAGCAT



TGCTTTCGTTTACTGGCTGGCCATCATTGGTAACTA




TTTACCCACCAAGCCTGCAGGTATCTCGTT



ATTGTTTCATCAGAGGCATAGTTGGTGG




CAATGCACAA









scaffold
459
TACTAAAAATCTGGCCCGACAATGACGAAT
C
A
460
GCAGGGTAGGGTAGAGAGCAGCAGCTGTACTATGTT


1880:146873

TCAAATGAGTAATTCATCCCGGAAAAAAGA



TACCCAAATTTGAAGCCACCAGGGGTAGGGTGGGTT




GCAATAAAATAATTTCTTTAACAAAAAAAT



GGCTTGCTCCAAAAGGAAAACCTTGTTG




CCTGATCACA









scaffold
461
GGTGCCATGAACTACCGGGATAGTTCCATA
A
G
462
GCAACCAGATCAAGAATCAGTCAGTCCCATGAACAT


1297:57086

TCTCATCGCATACAATTGATTCAAGCCACA



ATTTCATTATGTTTAAATAGTGAAATAAAGAGTCAC




GGGCTCAAATCTCGAAGGCATCAGCAGTAT



ATCCCAAGTTTTGCGTATCTATAAAATA




ATCACAGCTG









scaffold
463
TTCTACTTTTCCCCTTCACACCTCCCACAC
C
T
464
CGCTCCTCGCCGCTGCAGATTATCTCTCCGATCGGG


682:73395

CCCCACCGAGACTTCACTTTCATCATCAAG



TACACCTCCACGTCTATATCGACCACTTCGCATTCG




GTTCTCGCCTACAACCGCCTCGACTCGCTG



TCAATGGCTCCACTGATGTGGATCGTAT




GCCGCTGCCT









scaffold
465
TGTATGGGAACCAATATCAGTCAAAGGCCC
A
T
466
TTTTTTTAAAGCAAGTCAACATTTATTTACCATTTT


92:214750

AGTAACAGCTGATGGCAAGCTTGAAGATGA



GGAAGATGTATTATCAATAAGTTAAAAAAAACATTC




GGTAACTGGGCGAGTATAGTGAGACTGCAA



CCAATCTCCCATACCTGAATGATAGCCG




CATAGATTCA









scaffold
467
CAATTGCTTGTCGATGCACCGGAGATTATA
T
A
468
GAAGATCGTGCTGTTAATTACCTTTTTACACATGTT


143:176964

GAGAAGTTTTATCTTCGGAACAGGATAATT



GATAGAATTACTGATTGGGTGAACAGCTTCAGATGG




CTAGTAAGCATAATGCTTTTCTTATGCTTT



TTGTGTTAGAATTGATTAAGAAAGTTTG




TTACTTGTGA









scaffold
469
GGAAACGAAAGGCACCACGCCAAACGTGAG
T
A
470
GGCCGAGTAACACGCAGAGCAACCCGGCCACTGTCT


942:90233

CGCTCCAGCTGCTTGAACTGACACAGAGAA



GCACTGCCCAGGAACCCCAAAGTCTCCCTCTCAATT




TCCACACAAGACAACAATGGAGCCCCATAG



TTTCTTTCTATAACTTCTTTGCATTTTT




CGAGTTACCT









scaffold
471
CTTCGATTTCTGAGCTTACTAAGTGAGCCA
G
A
472
AACCATTTGAAACAAATAGGTTCCTGATAGAAAGAA


942:89745

TGCTGTTTGACGTGGCTTATCTGCAGTAAA



GCCATCTCACATATCTTCTGTTGCCTTGGCAGATTT




CGGTCCACTCCACTTTACAAGGTATTTTCT



TCAGAGCAATGTACTTCATCGTTCAATG




TAAAGTTTAC









scaffold
473
TAACGTTTCCATTCTTTATGTCTTGATTTT
T
A
474
TTGTTAGACGATTTTAGCTTCTACGAAAGCCGAGAA


24:306989

TTGCACAGGTTGGATTAAAGCAAGGACTGG



AAGGTCCTCCTAGCCAAAAGAGCCATTAACATCAAG




AAATGTTGAATATATTCAAGAGTTACACAC



CCTGCAGCAACATTGAAGATGGAAACCA




CGAAGACTTC









scaffold
475
ACAGTACTAATGGAATCAACGGAGGAGATG
C
G
476
TGGTACTACTTGCAAGGAAGAAGAGGCAGGTACAGA


1281:68808

ACGGTGTTTGATTCTTCATCAATCGGTGAC



AAACGACACCAATGATGACACAAACGACAACTCGAA




GAGGGGGCTTTGGAGCAAATATTTCAGTAC



AAACTGCAGATTTCTTCCAATCAACAAC




ATGGGAAAGA









scaffold
477
AAATACTTCAATATAACAAATTCCATAGAC
A
G
478
AGAGCAATAAAATAATTTCTTTAACAAAAAAATCCT


1880:146829

GAGCCTATGTGCCATACTAAAAATCTGGCC



GATCACACGCAGGGTAGGGTAGAGAGCAGCAGCTGT




CGACAATGACGAATTCAAATGAGTAATTCA



ACTATGTTTACCCAAATTTGAAGCCACC




TCCCGGAAAA









scaffold
479
GGAGACGAAGAAGATGAATTGTACCAACAC
A
G
480
TGCCTTATTTTATTCTTGGTGTAAAGATTAAAGATT


3:20953

TTAGTTTAAAACAAAGCTTTTTACTAGATT



AAAAATCAAAAATCAAAAATCAAAATTCTTTCAGAA




TTCTAATCATTATTATTTTGTGAATCCGGG



GATTTCAAGCATTGTAGTAAATCTTTAT




CATCATTTCA









scaffold
481
GATCATAATGAGTACTTGATCTAGCTTGAG
C
T
482
TGGTAGTTAGATTCAGAGTGAGAACAAAGGACTCTT


580:4170

CACTGTTCATCCACAAGTTGACAGAAGCTA



TGTTAGATGGCCATAGAGTAGTAAACACAGACTGGT




AAACCTTTTCCTTCAAAAATCAGGCTGCAG



CCAAGAGATTTACAAACCGTATTAATAT




AAGTAGACAA









scaffold
483
ACCAATGAGAAAAACAAAATTAGTTACACT
T
C
484
TACCTGAAGTTTTATAGGATCAGGATTTGATCCATC


604:135874

TTTTCGGTTTTAACATCTCTAAACTTTAAA



AATAATGTCAATAGCTCCATTGATCCGGAATTGCTC




CCAATAAACACGTTCCAGCATTATAAGGGT



CCAAGAGTCAGTGAAGTACCAACAAATC




GTTCGTTCAG









scaffold
485
AAAAATAGTTTTGTTATATTATATCTTCTC
C
G
486
AATGCAGTGATCATTGAGGCAGATGCTTTCAAAGAA


1692:85945

ATGGAAAATAGCTAATAGTATTCATTTGAA



TCAGATGTTATCTACAAAGCCCTTAGCTCTAGAGGC




TTGAAATGTTGAACAGACCATTCTGGGCAG








GAGCTGCAGG









scaffold
487
TATATAATATATATATATAAGATAATTAGA
A
G
488
CACAAAATAGTTACACCCAAAGCAAATGTTGATATG


1041:93642

TAACATAACATGTAATTAAGGATTAAGCAT



ACCAAGCAAGGTAAAAAATATGGAAATCTGTTATTT




GAAATTATTAATTTTAATTTTAACATACCG



CATAATTATAAGGTTAATATGTCATTAA




GCAGCCAATA









scaffold
489
ACAATTGAAAAAGTTGTAATTCATTTATTG
C
G
490
GCCATCTTTTTCACTTTTTTGTTTATTGTATTATAG


1926:69537

AGGGATGGAGATCCCAACATAGAGTGAGCT



TATAGGTACGTCGTAGAAGAAAAATGAGAAGAAGAG




CCTTACCATCTGACCCACCCCTTTGCAGCT



AATTAAGGAATAGGTGATATTATTATAT




GCAGAACATG









scaffold
491
GCTTGAGGAGAGAAGAGAGAGTAAGAAGGG
G
A
492
AGCTCCATGGCCATAGTAGCTAGCTTGATCCGAGTA


4210:100547

GAATGGAGCAACGATCACGTTCTGACATCA



GCCTTATCAGACGGCAAGGCCTCCAAATATGGTATA




CACCCTTGATGGTACGGTTGTAAGCAACTC



TTGAGATCAAAGAAACCCATTCCTACTC




CGGAGTAACC









scaffold
493
GGGGAGATAATTGTACGACATTCGATGTTA
A
C
494
TGTGGTGTTGAATCCGGTGTCGTTTTGGCCCCTGCT


759:86606

TGTCGTTTGGTGCAGTTGGAGATGGTGTGG



GATTATTGTTTTAAATTACTTCTACTATCTTTTCTG




CAGACGACACTGCAGCCTTTAAAGAGGCAT



GACCCTGCAGCCCCGGATTAATGTTCCA




GGAAAGCTGC









scaffold
495
CCAATCAATCTGCAGTGACGAACCTCAGCT
C
T
496
GCTTTTGCTTATCACCAACATCAACCACTGTCGTCG


25:425571

GAGACTGAGAAAACCAAACACAAATGACAG



CAACCATCGTTTATTCAATGCGCACTGACGAAACAA




TATGTTTTCATGTAAGCTCTCCCCAAATCC



GGCCACCGCTTCCTCTCCACTCTCTCAG




CAGCCCCATT









scaffold
497
ATATTTAGCCCAAATGAAAAATTAGGAATT
G
A
498
CTTTTGGGGTGTTATTAGCAAATAATTTTAAGCTGA


692:20843

TTTCCTTTCACCTTTGATTTTGATTTTAAA



ATTTTCTGCAGCTCTTGGCTGAGGACCCATCTTTAA




ATGTTATAACATTATGGCCGGCTAACTTAG



AGCGATTCAAGTCACATAAGCCTAATGT




CTATCGATTT









scaffold
499
AAACGATCTGACGCCCTTCATCTTGATCAA
T
C
500
CCTCGCCCTATTGAGCCAATTGCAATCTCTGCAGCT


2515:21370

TCTCAATTAAACAAGATTTAGCTGAGTCCC



TTTGGAGCTGGAACTTTCAGCGCCATAACTCACCAA




CTTTACAGTATTTGAGCCTTAGATCAATTG



CGCCTGTTCCTTCACCAATCCCAGATCT




AGATGTCGTA









scaffold
501
TTTCTTCACCGTACATGTATAAGGAACAAC
C
G
502
CCAGCGGGCAAGTTTATTCTGAGGAATCTGCAGAGA


48:65442

CGGTCATAGTTTGAGAAGCCACAACCACAG



TAAATTTCATAAATTTGAGGAATAAGTACCCAAAAC




ATGACGCATCATCACAGAATTCAACTGCCA



GAAGAAAATCCATAAATGATCATTGGAA




CAGGATGACC









scaffold
503
CAGGAAGAGGAGGCTTGGTTTGCTGGTTAG
T
C
504
ACAACCACAGATGACGCATCATCACAGAATTCAACT


48:65391

CTCCATCAGAAGATTTGGTCTTTTCTTCAC



GCCACAGGATGACCGCCAGCGGGCAAGTTTATTCTG




CGTACATGTATAAGGAACAACCGGTCATAG



AGGAATCTGCAGAGATAAATTTCATAAA




TTTGAGAAGC









scaffold
505
TACCCCTCCCGGACTTCCTATGATGCGTCT
C
T
506
TTCCCCCTTCCGGCGTATATATCGGACCAGCTCTCC


3177:95787

GCAGCGTGTTTTTCAGGCTCGGAATCGTCG



ATCAGCATCTCTCTCACGCACGCTACGTGTAGATTG




ACCTGGAAAACGAGGACGAAGACGAAGAAG



TACTTCTTGCACTTAGACCGGTAGCTCC




AAGTAATGGC









scaffold
507
AGCCTCATTTGGCTCGATTTGAACAGCAAT
T
C
508
AAGCAATTTGCATTTGTGAGAAATGAGGGTGGAACA


3681:699

CAACTCTCTGGCACTGTCCCCGCCGACTTG



GCCTGCAGGGGAGCCGGAGGACTAGTTGAATTCGAG




CTAACCAGGCTGGCCTAGTGGTTCCCGGTA



GGTGTTCGGCCTGAGAGACTAGAAAACT




TTGTTTCTGG









scaffold
509
TCTACTTTTCCCCTTCACACCTCCCACACC
C
T
510
CGCTCCTCGCCGCTGCAGATTATCTCTCCGATCGGG


3570:26136

CCCACCGAGACTTCACTTTCATCATCAAGG



TACACCTCCACGTCTATATCGACCACTTCGCATTCG




TTCTCGCCTACAACCGCCTCGACTCGCTGG



TCAATGGCTCCTGATGTGGATCGTATGT




CCCGCTGCCT









scaffold
511
TAGAGAAGAGAAACTGTAATGCCTACCTAG
C
A
512
TTCAAACCAAACAAAGAACCGGAACTTTCCTTATCC


388:236449

TTTCACTCAAGTAAGAAGAGTCTGATTTTA



TCATCATCTTCATCAATATCACTGTCTTCTTCACTA




CAGTTGAAGACGCTGCTGAACCCTTGGCAC



AGCAAAGCCCCAATGCCCAACCTTTTTC




TAGCTTCCTT









scaffold
513
TCGGCGAGCAAGTATGTGTAGGTGGATGAT
C
A
514
TGTTTTTAAACACCCTAACTTGGTCGACTTTACCGG


763:27574

TCCTTCTCAAAGAGCTGACGGAAGAGGAGC



ACTCGATAAAATCCTCGAAGAACAATTCAACAAAGC




TTGCCAAAGAGATGAGACGACGTCGTATAA



TGGATTAGATCCAGTAATGGTGAAGACT




GAGCAAGTCG









scaffold
515
GCCACCAAATGGGGGCATTGAGGCCAGGCT
A
G
516
ACGGGATCACAGCCAACTGCGTAGCCCCGGGGCCGA


794:150222

TTGGGCATACGCGCGGGTCAAAGGCTGCAG



TCGCAACAGATATGTTCTATATGGGAAAGACTGAGG




TGGAGTCTATGACGCAGATACTTGCAAAGG



AACAAATTCAGAAAGCGGCGGAGGAAAA




AGTTGAAGGG









scaffold
517
ATATAAAATTCAATGCCAAGTGATTCAAAA
G
T
518
TGTACGGTCATATTTCTTAAAACAAATAAATAAATA


152:25430

CCGGTTTAATCTTCAATAAATCTTTATTAG



AAATCACACAAGCCAATTGGAAAGAGGCTATTCAAC




TAATGGCTTGCATTCTTCAAAAAGAATCAA



TTTATACAATATAGACCTATAATGTACT




CCTTTACAAT









scaffold
519
CAAAGTACCACAGAGCCATTTCCAACATGC
G
A
520
AACCAAAAGAGCCCAAGTAATACAAAAGCAAATGAC


108:362803

CCAGCGTAATCACTAGAGTAATACAGTTCT



ATGAGCCCATAAAATTTCATAAGTGGTGCCATTCTG




GCAGAGGCAGAACTTCTCTCCAAAATCTTG



CCGGTAGATATCCATTTGGGTTTTTCCA




CATACTGTGA









scaffold
521
ATCAGTAACCAGATTCACCCAAAAAGCTGC
A
C
522
GATATCATGTACCTGAAAATTGACAATATGAACAGA


388:350925

ACTGGTATCATACATTCGGTATTCCCAATG



ACTATATAAGTTGCTCAACAATGAGATATTTCATAT




CTGCAGTCAAGAATATGGATATAACCTCTC



AAGAAAGGGTATATATGCAGAACTAAGA




CAACATTTGA









scaffold
523
CTCCTGTGTACAGGCAGTACTTGAAGATGA
T
C
524
ACCTTTCTACCAGGTAATCAAATTGGATACAACAAA


2218:32474

TGGAACCTCATCTTAATTAATTGTTCCAAT



GTAACCAAAACTCACAGGGTTCTCACTTCATGGAAG




CCCACAAAAACTTTATGGAAAAGTTTGATT



AATTCCAAAGACCCTTTACCCGGCCTTT




ACCCTTCCCA









scaffold
525
CCGCTAGAATTGTCGAGAAAAGTTTCTTTA
G
C
526
GAAAACCATGATTTCTCTCTTTGCTGCATCATTCAG


604:135639

GTCGGATCTTCATCTATATTGGAAGACGCT



AAAAGAAAAGACAAATATGTGGAAAATTTAGATAGT




GGATTGGCCCCAAATACTGCAGCCTAGATT



TCAAAGGGAAGTTAAAAGCTGAACTAGC




TAAGAGAACT









scaffold
527
AATTTCGATCAGGTTGCAGCCAACTTTAAA
G
A
528
ATTCCAGTAAAAAAACTTGATATTTATTTTTCAGGG


2741:33031

CAAAATGTCTTTTGAGTTCTTACATCAATT



CCGGGTCACCATTTCTCTGTCGATGGACTACAAGTT




TGTATGAATAGGTTCACCTGGTCAGCAGAA



CTAGATTCTTCATGGAACAACCTTTCAA




GAAGAAATCT









scaffold
529
GCAACATACATATAATTAATGTCAGCCGGT
A
C
530
TCATTTCTAGTTGGAGCAACAAAGATAATATTAGAT


4991:44264

GATAAAAACATTTCTATCAATAAATTTCTA



ATCATCCAAGGAGATAGACACATATGACATTGATAT




ATTAAGAACATCAAACACTTTGACCATTAC



GTGTTATTACGTTTGAAGACCCGAGCAT




AAATAATAAA









scaffold
531
CTTAGGGCTAATCCCTCCAACCTGCATCAA
G
A
532
CTCACTTTAAGTCCGGTCTCCTTTCAAACACAATTG


2483:94844

CAAAACAATGCTAGATTTTAAGAAATCACA



AGAAAGCCTGTCGAATAGACAAGTCTTCGGTGATTT




AACACATTAATAAATTTCTTTGTAGCATCA



CTTGTCTTACTTTATCTGTCTGCATTAT




ATTGCAGTTT









scaffold
533
ATAAATAAAGGCTAAAATGAGTTGAACTCA
T
G
534
TTGATTTATGATGTTCTTTGACATTCTATAAAGATA


3871:24039

ACACCACAAGAGTTTGTGGACACACTACAT



AATCTATTTGTGCTCATATCTATCAAATATCTTCCA




CAAATGGGCCACAACATCTTTTACATTAGG



CCTTACCGGAGATATTAATATGTGAGTA




AAAATTTACA









scaffold
535
TAGATCCACCTCCAATGAGGGGAAGAAAGC
T
C
536
AGAATTGTAGCCTGTTACAAAAATTAGGAAAGATAT


616:154319

TATACTTCTTAGCAAATTCTGCCCACCGGT



TATTGACCAAAAATCACAAATTTGAATACATACGTA




TTAAAAGTCTATCCTCTGTGCCAACCAATG



TCGATCATGAAAAAACAAGTTTATCATG




CAGCAGATTT









scaffold
537
ATATTATTTCCATCCAGATGTTTCCAGATC
T
A
538
AACTGGGCATATAGTAATAACCAACTTTTATCAGTG


1005:75114

CGGGTATTATAAAAATGCAAGTTAAAATCT



GAGCACTGGTCATCATCTCATTCCTGCAGCAGGAAT




TGCTAATATTAGATTGAGAAAAAGATGGCA



TCTGGTTAATATCACATACAATATCTCT




TTGAAAAGGA









scaffold
539
GACACATATGACATTGATATGTGTTATTAC
T
C
540
CAGAAGTATTTGAGTCACACTTCATCAGTTTAGTGT


4991:44417

GTTTGAAGACCCGAGCATAGTTTATTGAAA



AAAAACAAGATCCTTACAGATACTGCAGCAACAGGA




TTAGCCAGCTGATCAGAAAAGTTAGATATG



TAATAAATCCAACACTAACATGCTCCTC




AGAAAACACA









scaffold
541
ACTATGTCTTCTAAGGCGATTTTGTTTCGG
G
A
542
ATGAATCTTTTGTAGGCCTTGGACACCTTTAACACA


38:121620

TTGTTTAGGCGACGCGACCATGGATCTTCT



GCAGTTATATCTCCGGTCTACTATGTTATGTGTTAC




CGTATGTAGTACTATTAGAATGTTTAATCT



GTCGTTCACCATCTCGGAGCTGATCATG




GTTTTACTTG









scaffold
543
ATGTAAGGAAATAAACCTATGTAATATTAT
A
G
544
AAAAAGATGGCATTGAAAAGGAAAACTGGGCATATA


1005:75091

TTCCATCCAGATGTTTCCAGATCCGGGTAT



GTAATAACCAACTTTTATCAGTGGAGCACTGGTCAT




TATAAAAATGCAAGTTAAAATCTTGCTAAT



CATCTCATTCCTGCAGCAGGAATTCTGG




ATTAGATTGA









scaffold
545
CATGATAAACTTGTTTTTTCATGATCGATA
A
G
546
AAATCTGCTGCATTGGTTGGCACAGAGGATAGACTT


298:209613

CGTATGTATTCAAATTTGTGATTTTTGGTC



TTAAACCGGTGGGCAGAATTTGCTAAGAAGTATAGC




AATAATATCTTTCCTAATTTTTGTAACAGG



TTTCTTCCCTCATTGGAGGTGGATCTAC




CTACAATTCT









scaffold
547
AATATAAAATTCAATGCCAAGTGATTCAAA
T
C
548
GTGTACGGTCATATTTCTTAAAACAAATAAATAAAT


152:25429

ACCGGTTTAATCTTCAATAAATCTTTATTA



AAAATCACACAAGCCAATTGGAAAGAGGCTATTCAA




GTAATGGCTTGCATTCTTCAAAAAGAATCA



CTTTATACAATATAGACCTATAATGTAC




ACCTTTACAA









scaffold
549
AGCCTCATTTGCTCGATTTGAACAGCAATC
T
C
550
AAGCAATTTGCATTTGTGAGAAATGAGGGTGGAACA


1003:70848

AACTCTCTGGCACTGTCCCCGCCGAGCTTG



GCCTGCAGGGGCCGGAGGACTAGTTGAATTCGAGGG




CTAACCAGGCTGGCCTAGTGGTTCCCGGTA



TGTTCGGCCTGAGAGACTAGAAAACTCT




TTGTTTCTGG









scaffold
551
CCAGAAGTATTCCATGTTCATTTGCACTAT
A
G
552
TATATTATATTATAAATCTCAAGAGCTGCAGAGATT


839:64955

CGACCTACATCATTGAAATGAACCAGGAAC



GAAAAAAAAAAAGTCATACCCTAATTACCGTAGCAT




AAAAATATCTTGACTTAATTAAAACAATAT



TCTTGCAAGAATCATTATCAATTACAAC




AGATATATAT









scaffold
553
TGTGAAAACCTTTCCGTGGTATCAATCCAA
C
G
554
TTCTCTCACACAAGCATTCTTGGGGATTGCATAAAA


4070:22473

TACTTTGGTTTTTGCTTGCAGTCACCCAAT



ATAATCTTCCTCCTTTGGCCTGTCTGCAATTACTCT




TGCAGTTGAGTTACCGGGGCTAATCAAGTC



GCGTCGACTTGGTTGTCCCATCCTTTTC




ATCGCAACTT









scaffold
555
GTTACACCATGATGGTGAACTCTCCGGAAC
T
G
556
TAACATTTAATATTGTACTAATTCTAATTACACAGA


1419:187408

TTGGCCATTGGACATATTGCACACCTACAA



TACCTTCAAATTTCTGTAAACTGGCTTTGCATACAA




ATCAAACTTTGGAATAAGACAACTATCAAC



ATGATCAATACCAAGAAAGTAACGATCG




AATTACATAT









scaffold
557
CACTACATCAAATGGGCCACAACATCTTTT
G
A
558
TATCTATCAAATATCTTCCACCTTACCGGAGATATT


3871:24091

ACATTAGGAAAATTTACAGTTGATTTATGA



AATATGTGAGTATGCTCAAATAATATGACCAGAAAA




TGTTCTTTGACATTCTATAAAGATAAATCT



TATAACAAAATCAATATTCATCGACTAC




ATTTGTGCTC









scaffold
559
CCAATTGTTTCTTCACAATACCACACACCT
C
A
560
CAAATCATTACCTTTACACAAGGGTTGATAGCAGAA


3871:23604

TCTCCACTGTTTCTTTCTTGGCCTGCAGAA



ACATCAATGATGCTGTGTCATAAGGGCTAAACACAA




GGATGCCATACATAATTAGCTCCAAAATAA



AGTAACGGATGTCAATGGAACAACTACA




AAGTAAAAAA









scaffold
561
GCCAATTGTTTCTTCACAATACCACACACC
G
A
562
ACAAATCATTACCTTTACACAAGGGTTGATAGCAGA


3871:23603

TTCTCCACTGTTTCTTTCTTGGCCTGCAGA



AACATCAATGATGCTGTGTCATAAGGGCTAAACACA




AGGATGCCATACATAATTAGCTCCAAAATA



AAGTAACGGATGTCAATGGAACAACTAC




AAAGTAAAAA









scaffold
563
CGAGACGAGACGCGACCGTGGTTTTGAAAC
C
T
564
TTCTTTTCGCGGAAACCAAACAGGAAATACAATTGA


3:388526

CACAACAACAACAACTAGGGTTCATCCCTA



CCATGTCGAAGAGGAAATTCGGATTCGAAGGCTTTG




CCAAAAACCCCTCTTTACAATTCCTGCAGA



GCATAAACCGCCAAACGACTTACAACTT




TTTACCGCTT









scaffold
565
GATTACCTTACAAACCGCATTCAAAATGGA
A
G
566
GTTAGTTTAGTCTGTTCAAATTTTCCGAATCTGAAG


4:729494

GGAACTGAGGTCGTCGAGGTAAATTTCTTT



TAGTATGACTTTTGGTATCTCACTGAAATGTTCATT




ATTTCTTTTTAGTTTGATGAATGCCTGCAG



TTGGTATCTCAGTAAACCAAGTAATTGC




TTCATTTGGA









scaffold
567
CTGAGCTCCATTATCTATATAAACTCATGA
C
G
568
ATAAGATACCTTGTTTAAAACCAGAAAGATAAAATA


2283:29120

GCACTTCCGGACGACTTCTCAACGATATCC



TAAGTTTTCGTTGTGATGAGTTTTTGGCATTTTCTA




ACGGCTTCAAGGTAACAATAGTTTATCCTT



ATCACTCTATTGGTTATGCTGCAGAGAG




TCCACTGGTC









scaffold
569
CTGGAACCACTAGCGAAGAAGCAGCGAAAG
T
C
570
ACACAACTCCTGGAGACAAAAATGTTCTGATCAGGT


4350:64549

TGACATCATTGCATTCTAATTGTTTGCCCC



TAGAGATGCTCATGTGTCACATATTTATTTCGGGTA




GGATATAGAATTGGGGCCCGATCACCCAAT



GCTGGGTAGCCACTCCTTTTTTCACAGA




TGTATGTAAC









scaffold
571
TTTCTGAGGATGTTACAAGACATCCTGAGC
T
A
572
ATAGTTTATCCTTTCCACTGGTCGATAAGATACCTT


2283:29096

TCCATTATCTATATAAACTCATGAGCACTT



GTTTAAAACCAGAAAGATAAAATATAAGTTTTCGTT




CCGGACGACTTCTCAACGATATCCACGGCT



GTGATGAGTTTTTGGCATTTTCTAATCA




TCAAGGTAAC









scaffold
573
AGGGGGATAATTGTACGACATTCGATGTTA
A
C
574
TGTGGTGTTGAATCCGGTGTCGTTTTGGCCCCTGCT


3469:17543

TGTCGTTTGGTGCAGTTGGAGATGGTGTGG



GATTATTGTTTTAAAATTACTTCTACTATCTTTTCT




CAGACGACACTGCAGCCTTTAAAGAGGCAT



GGACCCTGCAGCCCCGGATTAATGTTCC




GGAAAGCTGC









scaffold
575
ACCCGTGATTCTCTGAAATCATTTTATTTT
A
T
576
GTATTTGTATGTTTGTGTAAGATAAATCATAAATTT


1022:170497

CCGTGCCTTATTACATAAGGAAGGAAGAAA



CTAACGAACTCTTTAAACCACAGTTCCATGACCGCC




AGAACTCGTATTTTGGGTTCTTTCCATCTT



ACCACCTTCATCGACCGCCCGGTTATAT




CGTATGTGTT









scaffold
577
GAGTAGGAATGGGTTTCTTTGATCTCAATA
C
T
578
GGTTACTCCGGAGTTGCTTACAACCGTACCATCAAG


964:106240

TACCATATTTGGAGGCCTTGCCGTCTGATA



GGTGTGATGTCAGAACGTGATCGTTGCTCCATTCCC




AGGCTACTCGGATCAAGCTAGCTACTATGG



CTTCTTACTCTCTCTTCTCTCCTCAAGC




CCATGGAGCT









scaffold
579
ATCATAAACTTATTTGGCTTAATCTGAAAA
T
A
580
ACCATGTAAACAGAGGTATCATTTGATGGAAGTGAA


1419:187788

TAGCCAACATAAATGATGAAATAACAGAAG



GAGGCTGCAGGTAACACTTTGAATTTCCAATCAGGA




AAAAGCAAGTAAATTTAAGAATTCAGCGAT



ACGTATAGACCATATAATAACCCCGTGT




GAAATTATCT









scaffold
581
TTTCTAGCATTGGAGATGACATTGATATGG
T
A
582
GGGCTGCAGACTTTATAAGCAGCAATTCTTGCAGAG


3386:35408

TAATGATGTCGACACCATCAGCAATAGCGT



GGAACTCCTCCTCTTGCAATGCCTTCTTTTAGTCCA




CGTCAAAAGCTGCCAACATAGCTTCTGAAT



TAGAAACTGACATTTTTTACATTGTTCC




AGCACCCTGT









scaffold
583
TATAATCTGCTCTTCTTGTTAGTATGTTTG
G
C
584
AGGATTGTGTTTGACATTTTCTTATCTTGGTGGAAA


575:241067

CCTTTTATATTCCGGGTAGATTTGTCTTAT



CATTTTTAAGCAAACACGTGTTGCAGGCTTGACTAA




TTAAAAACCCTTTCTGTGAGAAGACTTTTA



TCTGATTTTCACGTGGAAGATTGAACTT




TATGTATAGT









scaffold
585
AGAATTTATACAGTAGAACCTCACTAATAT
C
G
586
TTGTTTATAAAATTTTAATCATTAAGAAACACAGCA


1863:93953

ATACGAAGAATAACCTCAAAAATTAAATCT



AATAAACCTAACAAGTATTGAAAAATGTCCATTAAA




TGGGCAGTTATAAATAAAAATAATTTTTAA



AGAAACCATCGTTCTTTCCGGTCTTGAA




ATTGTAAAAC









scaffold
587
GACCATAAGACACTGCAGAGCTATGGCTCG
G
C
588
CCCCCCGGATCAGCACCGTGACCATGTTCTCCCGAG


575:459449

AATCACCACCATTTCCATTTTCTGTTGAGT



TTCGAATGTGAACTATTATTCCCTCTGTATCGATTA




TCAAATGCAAATTAGCATTCCCCCTGTACT



GACTATACGAAGCTGAAACACTGTCATT




GATAACTATG









scaffold
589
TCTGTTTAAGGATTTCTGCAGCAATCGGGA
T
C
590
AGTGTCTTTACTATACCGGCATTGATGTTGAATAGG


773:155167

CGGTTGAGTTGACTGGATTACTGATTATGT



TCATCACGAGTCATTCCAGGCTTTCTCGGAACTCCA




GGATAAAGGCATCAGGGCAGTTGTCAGCAA



GCAGGAATGACAACAACATTTACGCCTT




CAGCCTCAAT









scaffold
591
CCTTCTGTTTAAGGATTTCTGCAGCAATCG
G
A
592
ATCAGTGTCTTTACTATACCGGCATTGATGTTGAAT


773:155164

GGACGGTTGAGTTGACTGGATTACTGATTA



AGGTCATCACGAGTCATTCCAGGCTTTCTCGGAACT




TGTGGATAAAGGCATCAGGGCAGTTGTCAG



CCAGCAGGAATGACAACAACATTTACGC




CAACAGCCTC









scaffold
593
TATTTGAATCCACTCAAGTCCACTTCACAA
C
T
594
CAACTCAAGTCCATGTAGTTGGTTGTTGATACTTGT


107:154377

TAAGTGGTTACAAGCTCACGCGGCCGGTGG



GATTTACTTATATAAGAGTAACGATATGTGCACTCA




TGTGAAGCTCACAATGCAACATTTGAGCCT



AATTATGCATCAAAATATTAGATACAAT




TTGTAGGGAT









scaffold
595
GAACACACATCTTTCTCCGGCAACTTTAGT
C
T
596
ACCTTCAACTTCCTAATTGACAATGCATTTGGTAAT


371:34271

ACATTGCCGTTCAGTGCTTGCAGAAGCTTC



GATTTTTTTTTTCTTCAGGTTACCTTGAAATTGTTC




CTTCCAATAGCAGCAAGTACACATATTCGT



ACATTTATAGCAGCATGAATGGTTGAAA




GTGATGGATA









scaffold
597
TAATAGTTCTTCTATTGCTGGTAATCGTCT
A
G
598
TTCTTCGCATCAGGTTCAGTTGCCCTTTATGTATTC


78:341641

GTGCTGAAGTGTCGGTGGTCCTCACCTACA



TTGTACTCTATCAATTACTTGGTGTTTGACCTGCAG




TGCATCTCTGCGTAGAGGATTGGCGGTGGT



AGTTTGAGTGGACCCGTCTCCGCTGTAC




GGTGGAAGGC









scaffold
599
CCTATGTGATCGTCGCGAATGTGTTATCAA
T
A
600
GGGCGTAGTTGGATTGAAGTGCGCGGTAAGGTCCAC


156:85625

GTGCAGGAAGGTGGGAAGAAGTTTCTGAAG



GAGTTCTTAGCCGGCGATCACATACACGAAATGAGG




TGAGGAAGATGATGAAAAACCAGAGGGTGA



GACGATATTTATAAGAAACTAACCGAGT




AGAAGGAAGT



















TABLE 10





Sample
Sample
Sample



ID
Name
Type
Reference for Reported Ancestry


















1
Afghani

indica

http://medicannseeds.com/seed/afghani-regular/



Regular


2
Afghani

indica

http://medicannseeds.com/seed/afghani-regular/



Regular


3
Afghani

indica

http://medicannseeds.com/seed/afghani-regular/



Regular


4
Afghani

indica

http://medicannseeds.com/seed/afghani-regular/



Regular


5
Hindu

indica

https://www.kiwiseeds.com/kiwiseeds/kiwiseeds-hindu-kush-34671.html



Kush


6
Pakistan

indica

https://www.cannabiogen.com/Producto/PAKISTAN%20CHITRAL%20KUSH%20-6.html



Chitral



Kush


7
Pakistan

indica

https://www.cannabiogen.com/Producto/PAKISTAN%20CHITRAL%20KUSH%20-6.html



Chitral



Kush


8
Ketama

indica

http://www.worldofseeds.eu/wos_en/ketama.html


9
Pure

indica

http://dnagenetics.com/seeds/pure-afghan



Afghan


10
Enemy Of

indica

http://superstrains.biz/shop/enemy-of-the-state/



The



State


11
Enemy Of

indica

http://superstrains.biz/shop/enemy-of-the-state/



The



State


12
Enemy Of

indica

http://superstrains.biz/shop/enemy-of-the-state/



The



State


13
Master

indica

http://homegrown-fantaseeds.com/product/masterkush



Kush


14
Master

indica

http://homegrown-fantaseeds.com/product/masterkush



Kush


15
Master

indica

http://whitelabelseeds.com/seeds/wlsc/master-kush



Kush


16
Master

indica

http://whitelabelseeds.com/seeds/wlsc/master-kush



Kush


17
Master

indica

http://whitelabelseeds.com/seeds/wlsc/master-kush



Kush


18
Master

indica

http://whitelabelseeds.com/seeds/wlsc/master-kush



Kush


19
Master

indica

http://whitelabelseeds.com/seeds/wlsc/master-kush



Kush


20
Pakistan

indica

http://www.worldofseeds.eu/wos_es/pakistan-valley.html



Valley


21
Pakistan

indica

http://www.worldofseeds.eu/wos_es/pakistan-valley.html



Valley


22
Afghani

indica

http://homegrown-fantaseeds.com/product/afghani


23
Afghani

indica

http://homegrown-fantaseeds.com/product/afghani


24
Northern

indica

http://www.ministryofcannabis.com/feminized-cannabis-seeds/northern-lights-moc-feminized



Lights


25
Northern

indica

http://www.ministryofcannabis.com/feminized-cannabis-seeds/northern-lights-moc-feminized



Lights


26
Northern

indica

http://www.ministryofcannabis.com/feminized-cannabis-seeds/northern-lights-moc-feminized



Lights


27
Hash

indica

http://www.seedsman.com/en/hash-passion-seeds



Passion


28
Narkush

indica

http://www.seedsman.com/en/narkush-seeds


29
Narkush

indica

http://www.seedsman.com/en/narkush-seeds


30
Narkush

indica

http://www.seedsman.com/en/narkush-seeds


31
Narkush

indica

http://www.seedsman.com/en/narkush-seeds


32
Kush

indica

http://www.ceresseeds.com/online/en/regular-seeds/182-ceres-kush.html


33
Kush

indica

http://www.ceresseeds.com/online/en/regular-seeds/182-ceres-kush.html


34
Kush

indica

http://www.ceresseeds.com/online/en/regular-seeds/182-ceres-kush.html


35
Hindu

indica

https://sensiseeds.com/en/cannabis-seeds/sensi-seeds/hindu-kush



Kush


36
Hindu

indica

https://sensiseeds.com/en/cannabis-seeds/sensi-seeds/hindu-kush



Kush


37
Hindu

indica

https://sensiseeds.com/en/cannabis-seeds/sensi-seeds/hindu-kush



Kush


38
Malawi

sativa

http://www.aceseeds.org/en/malawifem.html


39
Malawi

sativa

http://www.aceseeds.org/en/malawifem.html


40
Guatemala

sativa

http://www.aceseeds.org/en/guatemalastd.html


41
Guatemala

sativa

http://www.aceseeds.org/en/guatemalastd.html


42
Guatemala

sativa

http://www.aceseeds.org/en/guatemalastd.html


43
Malawi

sativa

http://www.seeds-of-africa.com/malawi-gold/



Gold


44
Malawi

sativa

http://www.seeds-of-africa.com/malawi-gold/



Gold


45
Malawi

sativa

http://www.seeds-of-africa.com/malawi-gold/



Gold


46
Malawi

sativa

http://www.seeds-of-africa.com/malawi-gold/



Gold


47
Pondo

sativa

http://www.seeds-of-africa.com/pondo-mystic/



Mystic


48
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold


49
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold


50
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold


51
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold


52
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold


53
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold


54
Durban

sativa

http://www.seeds-of-africa.com/durban-magic/



Magic


55
Mozambica

sativa

http://www.seeds-of-africa.com/mozambica/


56
Mozambica

sativa

http://www.seeds-of-africa.com/mozambica/


57
Mozambica

sativa

http://www.seeds-of-africa.com/mozambica/


58
Mozambica

sativa

http://www.seeds-of-africa.com/mozambica/


59
Transkei

sativa

http://www.seeds-of-africa.com/transkei/


60
Transkei

sativa

http://www.seeds-of-africa.com/transkei/


61
Transkei

sativa

http://www.seeds-of-africa.com/transkei/


62
Transkei

sativa

http://www.seeds-of-africa.com/transkei/


63
Zimbabwe

sativa

http://www.seeds-of-africa.com/zimbabwe/


64
Zimbabwe

sativa

http://www.seeds-of-africa.com/zimbabwe/


65
Zimbabwe

sativa

http://www.seeds-of-africa.com/zimbabwe/


66
Lao

sativa

http://original-ssc.com/laos-luang-prabang-lao-sativa-seeds-ace-seeds.html



Sativa


67
Lao

sativa

http://original-ssc.com/laos-luang-prabang-lao-sativa-seeds-ace-seeds.html



Sativa


68
Purple

sativa

http://en.seedfinder.eu/strain-info/Purple_Haze/ACE_Seeds/



Haze


69
Purple

sativa

http://en.seedfinder.eu/strain-info/Purple_Haze/ACE_Seeds/



Haze


70
Zimbabwe

sativa

http://www.seeds-of-africa.com/zimbabwe/


71
Malawi

sativa

http://www.seeds-of-africa.com/malawi-gold/



Gold


72
Malawi

sativa

http://www.seeds-of-africa.com/malawi-gold/



Gold


73
Durban

sativa

http://www.seeds-of-africa.com/durban-magic/



Magic


74
Durban

sativa

http://www.seeds-of-africa.com/durban-magic/



Magic


75
Durban

sativa

http://www.seeds-of-africa.com/durban-magic/



Magic


76
Durban

sativa

http://www.seeds-of-africa.com/durban-magic/



Magic


77
Durban

sativa

http://www.seeds-of-africa.com/durban-magic/



Magic


78
Pondo

sativa

http://www.seeds-of-africa.com/pondo-mystic/



Mystic


79
Pondo

sativa

http://www.seeds-of-africa.com/pondo-mystic/



Mystic


80
Pondo

sativa

http://www.seeds-of-africa.com/pondo-mystic/



Mystic


81
Pondo

sativa

http://www.seeds-of-africa.com/pondo-mystic/



Mystic


82
Pondo

sativa

http://www.seeds-of-africa.com/pondo-mystic/



Mystic


83
Coffee

sativa

http://www.seeds-of-africa.com/coffee-gold/



Gold


84
Coffee

sativa

http://www.seeds-of-africa.com/coffee-gold/



Gold


85
Coffee

sativa

http://www.seeds-of-africa.com/coffee-gold/



Gold


86
Coffee

sativa

http://www.seeds-of-africa.com/coffee-gold/



Gold


87
Mozambica

sativa

http://www.seeds-of-africa.com/mozambica/


88
Mozambica

sativa

http://www.seeds-of-africa.com/mozambica/


89
Mozambica

sativa

http://www.seeds-of-africa.com/mozambica/


90
Mozambica

sativa

http://www.seeds-of-africa.com/mozambica/


91
Mozambica

sativa

http://www.seeds-of-africa.com/mozambica/


92
Mozambica

sativa

http://www.seeds-of-africa.com/mozambica/


93
Transkei

sativa

http://www.seeds-of-africa.com/transkei/


94
Transkei

sativa

http://www.seeds-of-africa.com/transkei/


95
Transkei

sativa

http://www.seeds-of-africa.com/transkei/


96
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold


97
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold


98
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold


99
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold


100
Swazi

sativa

http://www.seeds-of-africa.com/swazi-gold/



Gold









While the present application has been described with reference to what are presently considered to be the preferred examples, it is to be understood that the application is not limited to the disclosed examples. To the contrary, the application is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.


All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety. Specifically, the sequences associated with each accession numbers provided herein including for example accession numbers and/or biomarker sequences (e.g. protein and/or nucleic acid) provided in the Tables or elsewhere, are incorporated by reference in its entirely.


CITATIONS FOR REFERENCES REFERRED TO IN THE SPECIFICATION



  • 1. Hillig K. Genetic evidence for speciation in Cannabis (Cannabaceae). Genet. Resour. Crop Evol. 2005; 52(2):161-80.

  • 2. de Meijer E P M. The Chemical Phenotypes (Chemotypes) of Cannabis. In: Pertwee R G, editor. Handbook of Cannabis. Handbooks in Psychopharmacology: Oxford University Press; 2014. p. 89-110.

  • 3. van Bakel H, Stout J, Cote A, Tallon C, Sharpe A, Hughes T, et al. The draft genome and transcriptome of Cannabis sativa. Genome Biol. 2011; 12(10):R102.

  • 4. Bostwick J M. Blurred Boundaries: The Therapeutics and Politics of Medical Marijuana. Mayo Clin. Proc. 2012; 87(2):172-86.

  • 5. Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, et al. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE. 2011; 6(5):e19379.

  • 6. Raj A, Stephens M, Pritchard J K. fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Datasets. Genetics. 2014.

  • 7. de Meijer E P M, Bagatta M, Carboni A, Crucitti P, Moliterni V M C, Ranalli P, et al. The Inheritance of Chemical Phenotype in Cannabis sativa L. Genetics. 2003; 163(1):335-46.

  • 8. Piluzza G, Delogu G, Cabras A, Marceddu S, Bullitta S. Differentiation between fiber and drug types of hemp (Cannabis sativa L.) from a collection of wild and domesticated accessions. Genet. Resour. Crop Evol. 2013; 60(8):2331-42.

  • 9. Hinds D A, Stuve L L, Nilsen G B, Halperin E, Eskin E, Ballinger D G, et al. Whole-Genome Patterns of Common DNA Variation in Three Human Populations. Science. 2005; 307(5712):1072-9.

  • 10. Hazekamp A, Fischedick J T. Cannabis—from cultivar to chemovar. Drug Test Anal. 2012; 4(7-8):660-7.

  • 11. Small E, Cronquist A. A Practical and Natural Taxonomy for Cannabis. Taxon. 1976; 25(4):405-35.

  • 12. Salentijn E M J, Zhang Q, Amaducci S, Yang M, Trindade L M. New developments in fiber hemp (Cannabis sativa L.) breeding. Ind Crops Prod. 2014.

  • 13. Franz-Warkentin P. Hemp production sees steady growth in Canada 2013 [cited 2014]. Available from: http://www.agcanada.com/daily/hemp-production-sees-steady-growth-in-canada.

  • 14. Agricultural Act of 2014, Pub. L. No. 113-17 Stat. 128 (Feb. 7, 2014, 2014).

  • 15. Sonah H, Bastien M, Iquira E, Tardivel A, Légeré G, Boyle B, et al. An Improved Genotyping by Sequencing (GBS) Approach Offering Increased Versatility and Efficiency of SNP Discovery and Genotyping. PLoS ONE. 2013; 8(1):e54603.

  • 16. Gardner K M, Brown P, Cooke T F, Cann S, Costa F, Bustamante C, et al. Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing. G3 (Bethesda). 2014; 4(9):1681-7.

  • 17. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J Hum Genet. 2007; 81(3):559-75.

  • 18. Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011; 27(21):3070-1.

  • 19. Weir B S, Cockerham C C. Estimating F-Statistics for the Analysis of Population Structure. Evolution. 1984; 38(6):1358-70.

  • 20. Hilling K W, Mahlberg P G. A Chemotaxonomic Analysis of Cannabinoid Variation in Cannabis (Cannabaceae). American Journal of Botany. 2004, 91(6):966-975

  • 21. Willing E-M, Dreyer C, van Oosterhout C. Estimates of Genetic Differentiation Measured by FST Do Not Necessarily Require Large Sample Sized When Using Many SNP Markers. PLOS ONE. 2012, 7(8):e42649.

  • 22. McClure K A, Sawler J, Gardner K M, Money D, Myles S. Genomics: A Potential Panacea for the Perrenial Problem. Am J Botany 2014 101:1780-90.

  • 23. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, 4, 347-354

  • 24. Hansen M M, Kenchington E, Nielsen E E (2001) Assigning individual fish to populations using microsatellite DNA markers: Methods and applications. Fish and Fisheries, 2, 93-112.

  • 25. Campton D E and Utter F M, 1985. Natural hybridization between steelhead trout (Salmo gairdneri) and coastal cutthroat trout (Salmo clarki clarki) in two Puget Sound streams. Can J Fish Aquat Sci 42:110-119.

  • 26. Poland J A, Brown P J, Sorrells M E, Jannink J L. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. PLoS ONE. 2012; 7(2):e32253.

  • 27. Melo A T, Bartaula R, Hale I. GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. BMC Bioinformatics. 2016; 17:29


Claims
  • 1. A method for testing a sample comprising cannabis to determine if the cannabis is hemp or marijuana, the method comprising: I) obtaining a test sample comprising genomic DNA,II) genotyping the test sample for a set of SNPs, the set comprising at least 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96 or 100 of the SNPs in Table 5, each SNP comprising a major allele and a minor allele as provided in Table 5;III) detecting for each SNP of the set the presence or absence of the major allele and/or the minor allele in the test sample;IV) determining the sample is hemp or marijuana according to the set of SNPs, wherein at least 10, 20, 30, or 40 of the genotyped SNPs of the set have an FST of greater than 0.679 as provided in Table 5, and at least 2 of the genotyped SNPs of the set have a major allele or minor allele with an allele frequency of 0 as provided in Table 5, wherein the test sample is determined to be hemp if the major alleles and/or minor alleles in combination when compared to the reference profiles provided in Table 5 are most similar to major alleles and/or minor alleles more commonly found in hemp, or the test sample is identified as marijuana if the major alleles and/or minor alleles in combination when compared to the reference profiles provided in Table 5 are most similar to major alleles and/or minor alleles more commonly found in marijuana; andV) displaying and/or providing a document displaying one or more features of the major and/or minor allele for each SNP in the set and/or the identity of the test sample as hemp or marijuana, wherein one or more features and/or identity of the test sample is used to select a sample with desired combination of major alleles and/or minor alleles, wherein the test sample is selected from a genomic DNA sample, a plant sample, a seed sample, leaf sample, a flower sample, a trichome sample, a pollen sample, and a sample of dried plant material including flower, pollen and trichomes, and the obtaining the sample comprises isolating genomic DNA, wherein the method further comprises using the presence or absence of the major allele and/or the minor allele for each SNP of the set in marker assisted selection (MAS) to select a cultivated cannabis plant, crossing the cultivated cannabis plant with a wild type cannabis plant, and selecting an offspring cannabis plant with a desired combination of major alleles and/or minor alleles.
  • 2. The method of claim 1, wherein the set of SNPs comprises the SNPs in Table 5 with an Fst of greater than 0.679.
  • 3. The method of claim 1, wherein the genotyping method comprises a PCR based method.
  • 4. A method of cannabis ancestry selection breeding, the method comprising: a) obtaining one or more cannabis plant offspring having a desired trait;b) determining the hemp or marijuana ancestry contribution of the cannabis plant offspring;c) selecting one or more cannabis plant offspring having a desired hemp or marijuana ancestry contribution; andd) crossing the selected cannabis plant offspring with cultivated hemp or marijuana;wherein determining the hemp or marijuana ancestry contribution of the cannabis plant offspring in step b) comprises:I) obtaining a sample comprising genomic DNA from the cannabis plant offspring,II) genotyping the sample for a set of SNPs, the set comprising at least 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96 or 100 of the SNPs in Table 5, each SNP comprising a major allele and a minor allele as provided in Table 5;III) detecting for each SNP of the set the presence or absence of the major allele and/or the minor allele in the sample; andIV) determining the hemp or marijuana ancestry contribution of the cannabis plant offspring according to the set of SNPs based on the reference profiles for marijuana and/or hemp provided in Table 5;wherein at least 10, 20, 30, or 40 of the genotyped SNPs of the set have an FST of greater than 0.679 as provided in Table 5, and wherein at least 2 of the genotyped SNPs of the set have a major allele or minor allele with an allele frequency of 0.
  • 5. The method of claim 4, wherein the cannabis plant offspring is F2 offspring obtained by: crossing an initial cultivated hemp or marijuana strain with a wild cannabis strain having a desired trait to obtain F1 offspring having the desired trait; and backcrossing the F1 offspring having the desired trait to the initial cultivated hemp or marijuana strain to obtain F2 offspring having the desired trait.
  • 6. The method of claim 4, wherein the set of SNPs comprises the SNPs in Table 5 with an Fst of greater than 0.679, and wherein the method further comprises displaying and/or providing a document displaying one or more features of the major and/or minor alleles.
  • 7. The method of claim 4, wherein the test sample is selected from a genomic DNA sample, a plant sample, a seed sample, leaf sample, a flower sample, a trichome sample, a pollen sample, and a sample of dried plant material including flower, pollen and trichomes, and the obtaining the sample comprises isolating genomic DNA.
  • 8. The method of claim 4, wherein the genotyping method comprises a PCR based method.
  • 9. The method of claim 8, wherein the genotyping method comprises DNA amplification using forward and reverse primers and/or primer extension.
  • 10. A method for testing a sample comprising cannabis to determine if the cannabis is hemp or marijuana, the method comprising: I) obtaining a test sample comprising genomic DNA;II) genotyping the test sample for a set of SNPs, the set comprising at least 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96 or 100 of the SNPs in Table 5, each SNP comprising a major allele and a minor allele as provided in Table 5;III) detecting for each SNP of the set the presence or absence of the major allele and/or the minor allele in the test sample;IV) determining the sample is hemp or marijuana according to the set of SNPs, wherein at least 10, 20, 30, or 40 of the genotyped SNPs of the set have an FST of greater than 0.679 as provided in Table 5, and at least 2 of the genotyped SNPs of the set have a major allele or minor allele with an allele frequency of 0 as provided in Table 5, wherein the test sample is determined to be hemp if the major alleles and/or minor alleles in combination when compared to the reference profiles provided in Table 5 are most similar to major alleles and/or minor alleles more commonly found in hemp, or the test sample is identified as marijuana if the major alleles and/or minor alleles in combination when compared to the reference profiles provided in Table 5 are most similar to major alleles and/or minor alleles more commonly found in marijuana; andV) using the presence or absence of the major allele and/or the minor allele for each SNP of the set in marker assisted selection (MAS) to select a cultivated cannabis plant, crossing the cultivated cannabis plant with a wild type cannabis plant, and selecting an offspring cannabis plant with a desired combination of major alleles and/or minor alleles.
  • 11. The method of claim 10, wherein the test sample is selected from a genomic DNA sample, a plant sample, a seed sample, leaf sample, a flower sample, a trichome sample, a pollen sample, and a sample of dried plant material including flower, pollen and trichomes, and the obtaining the sample comprises isolating genomic DNA.
  • 12. The method of claim 10, wherein the genotyping method comprises a PCR based method.
  • 13. The method of claim 12, wherein the genotyping method comprises DNA amplification using forward and reverse primers and/or primer extension.
  • 14. The method of claim 3, wherein the genotyping method comprises DNA amplification using forward and reverse primers and/or primer extension.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national phase entry of PCT/CA2016/050678, filed Jun. 13, 2016, which claims priority from U.S. Provisional patent application Ser. No. 62/175,006 filed Jun. 12, 2015, each of these applications being incorporated herein in their entirety by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/CA2016/050678 6/13/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2016/197258 12/15/2016 WO A
US Referenced Citations (24)
Number Name Date Kind
9095554 Lewis Aug 2015 B2
10653085 Stanley May 2020 B1
10888059 Reel Jan 2021 B1
10888060 Reel Jan 2021 B1
20060035236 Keim Feb 2006 A1
20090094717 Troukhan Apr 2009 A1
20110191912 Alexandrov et al. Aug 2011 A1
20140057251 McKernan Feb 2014 A1
20160132635 Buntjer May 2016 A1
20160177404 McKernan Jun 2016 A1
20180171394 Sawler Jun 2018 A1
20180258439 Boudko Sep 2018 A1
20180295804 Muck Oct 2018 A1
20190185946 McKernan Jun 2019 A1
20190297821 Crawford Oct 2019 A1
20200015440 Crawford Jan 2020 A1
20200015441 Crawford Jan 2020 A1
20200253921 May Aug 2020 A1
20200270623 Pauli Aug 2020 A1
20200288659 Crawford Sep 2020 A1
20200405685 Lewis Dec 2020 A1
20210045311 Lewis Feb 2021 A1
20210112743 Llosa Llacer Apr 2021 A1
20210144947 Fletcher May 2021 A1
Foreign Referenced Citations (1)
Number Date Country
2013173635 Nov 2013 WO
Non-Patent Literature Citations (20)
Entry
Sequence alignments of elected sequences v McKernan, compiled May 20, 2021. (Year: 2021).
Sequence alignments of elected sequences v van Bakel, compiled May 20, 2021. (Year: 2021).
Van Bakel 2011 Genome Biology 12: R102 1-18. cited previously. (Year: 2011).
Sawler, J. et al. The Genetic Structure of Marijuana and Hemp. PLOS ONE, Aug. 26, 2015. vol. 10, No. 8, p. e0133292.
Rotherham D. et al. Differentiation of drug and non-drug Cannabis using a single nucleotide polymorphism (SNP) assay. Forensic Science International, Apr. 15, 2011. vol. 207, No. 1-3, pp. 193-197.
Piluzza G. et al. Differentiation between fiber and drug types of hemp (Cannabis sativa L.) from a collection of wild and domesticated accessions. Getetic Resources and Crop Evolution, Aug. 1, 2013. vol. 60, pp. 2331-2342.
Gilmore, Simon et al. Short tandem repeat (STR) DNA markers are hypervariable and informative in Cannabis sativa: implications for forensic investigations. Forensic Science International, Jan. 9, 2003. vol. 131, No. 1, pp. 65-74.
Van Bakel et al. The draft genome and transcriptome of Cannabis sativa. Genome Biology, Oct. 20, 2011. vol. 12, No. 10, pp. R102.
Bryc, Katarzyna et al. Genome-wide patterns of population structure and admixture in West Africans and African Americans. PNAS, Jan. 12, 2010. vol. 107, No. 2, pp. 786-791.
Hazekamp A. et al. Cannabis—from cultivar to chemovar. Drug Testing and Analysis. Nov. 18, 2011. vol. 4, pp. 660-667.
Hilling, Karl W. et al. A Chemotaxonomic Analysis of Cannabinoid Variation in Cannabis (Cannabaceae). American Journal of Botany. 2004, vol. 91, No. 6, pp. 966-975.
KASP genotyping chemistry user guide and manual. LGC. Jul. 2013.
McVean Gil. A Genealogical Interpretation of Prinicpal Components Analysis. PLOS Genetics. Oct. 2009, vol. 5, Issue 10, pp. 1-10.
Patterson Nick et al. Population Structure and Eigenanalysis. PLOS Genetics, Dec. 2006, vol. 2, Issue 12, pp. 2074-2093.
Sawler, Jason et al. Genomics Assisted Ancestry Deconvolution in Grape. PLOS ONE, Nov. 2013, vol. 8, Issue 11, pp. 1-8.
PLEX Gold Assay for SNP Genotyping. SEQUENOM, Genomics Fine Mapping. Protocol Guide, 2008, p. 37.
Weir, B.S. et al. Estimating F-Statistics for the Analysis of Population Structure. Evolution, Nov. 1984. vol. 38, No. 6, pp. 1358-1370.
Willing, Eva-Maria et al. Estimates of Genetic Differentiation Measured by FST Do Not Necessarily Require Large Sample Sizes When Using Many SNP Markers. PLOS ONE, Aug. 2012. vol. 7, Issue 8, pp. 1-7.
McClure Kendra A., et al. Genomics: A Potential Panacea for the Perennial Problem. American Journal of Botany, 101(10): 1780-1790, 2014.
Myles, Sean. Improving fruit and wine: what does genomics have to offer? Trends in Genetics, Apr. 2013, vol. 29, No. 4.
Related Publications (1)
Number Date Country
20180171394 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
62175006 Jun 2015 US