A. Aldovini et al, “Synthesis of the Complete Trans-Activation Gene Product of Human T-Lymphotropic Virus Type III in Escherichia coli: Demonstration of Immunogenicity in vivo and Expression in vitro”, Proc. Natl. Acad. Sci. USA, 83:6672-6676 (Sep. 1986). |
C. Baumberger et al, “High Levels of Circulating RNA in Patients with Symptomatic HIV-1 Infection”, AIDS, 7(Suppl. 2):S59-S64 (Nov. 1993). |
D. Brake et al, “Characterization of Murine Monoclonal Antibodies to the tat Protein from Human Immunodeficiency Virus Type 1”, J. Virol., 64(2):962-965 (Feb. 1990). |
M. Clerici et al, “T-cell Proliferation to Subinfectious SIV Correlates with Lack of Infection after Challenge of Macaques”, AIDS, 8(10):1391-1395 (Oct. 1994). |
R. Coombs et al, “Association of Plasma Human Immunodeficiency Virus Type 1 RNA Level with Risk of Clinical Progression in Patients with Advanced Infection”, J. Infect. Dis., 174:704-712 (Oct. 1996). |
M. Daniel et al, “Protective Effects of a Live Attenuated SIV Vaccine with a Deletion in the nef Gene”, Science, 258:1938-1941 (Dec. 18, 1992). |
S. Fawell et al, “Tat-Mediated Delivery of Heterologous Proteins into Cells”, Proc. Natl. Acad. Sci. USA, 91:664-668 (Jan. 1994). |
A. Frankel et al, “Activity of Synthetic Peptides from the Tat Protein of Human Immunodeficiency Virus Type 1”, Proc. Natl. Acad. Sci. USA, 86:7397-7401 (Oct. 1989). |
G. Goldstein, “HIV-1 Tat Protein as a Potential AIDS Vaccine”, Nature Medicine, 2(9):960-964 (Sep. 1996). |
B. Haynes, “Scientific and Social Issues of Human Immunodefiency Virus Vaccine Development”, Science, 260:1279-1286 (May 28, 1993). |
W. Krone et al, “Natural Antibodies to HIV-tat Epitopes and Expression of HIV-1 Genes in Vivo”, J. Med. Virol., 26:261-270 (Nov. 1988). |
K. Kusumi et al, “Human Immunodeficiency Virus Type 1 Envelope Gene Structure and Diversity in vivo and After Cocultivation in vitro”, J. Virol., 66(2):875-885 (Feb. 1992). |
B. Larder et al, “HIV with Reduced Sensitivity to Zidovudine (AZT) Isolated During Prolonged Therapy”, Science, 243:1731-1733 (Mar. 31, 1989). |
T.-H. Lee et al, “Circulating HIV-1-Infected Cell Burden from Seroconversion to AIDS: Importance of Postseroconversion Viral Load on Disease Course”, J. Acq. Imm. Def. Synd., 7(4):381-388 (Apr. 1994). |
N. Letvin, “Vaccines Against Human Immunodeficiency Virus—Progress and Prospects”, N. Engl. J. Med., 329(19):1400-1405 (Nov. 4, 1993). |
D. Mann et al, “Endocytosis and Targeting of Exogenous HIV-1 Tat Protein”, EMBO J., 10(7):1733-1739 (Jul. 1991). |
J. Mellors et al, “Prognosis in HIV-1 Infection Predicted by the Quantity of Virus in Plasma”, Science, 272:1167-1170 (May 24, 1996). |
A. Meyerhans et al, “Temporal Fluctuations in HIV Quasispecies in vivo are not Reflected by Sequential HIV Isolations”, Cell, 58:901-910 (Sep. 8, 1989). |
J. Osborn, “The Rocky Road to an AIDS Vaccine”, J. Acq. Imm. Def. Syndr. Hum. Retrovirol., 9(1):26-29 (May 1995). |
W. Paul, “Can the Immune Response Control HIV Infection?”, Cell, 82:177-182 (Jul. 28, 1995). |
B. Preston et al, “Fidelity of HIV-1 Reverse Transcriptase”, Science, 242:1168-1171 (Nov. 25, 1988). |
M. Re et al, “Effect of Antibody to HIV-1 Tat Protein on Viral Replication in Vitro and Progression of HIV-1 Disease in Vivo”, J. Acq. Imm. Def. Synd. Hum. Retrovirol., 10(4):408-416 (Dec. 1, 1995). |
J. Roberts et al, “The Accuracy of Reverse Transcriptase from HIV-1”, Science, 242:1171-1173 (Nov. 25, 1988). |
M. Saag et al, “HIV Viral Load Markers in Clinical Practice”, Nature Medicine, 2(6):625-629 (Jun. 1996) [Saag I]. |
M. Saag et al, “A Short-term Clinical Evaluation of L-697, 661, a Non-Nucleoside Inhibitor of HIV-1 Reverse Transcriptase”, N. Engl. J. Med., 329(15):1065-1072 (Oct. 7, 1993) [Saag II]. |
K. Saksela et al, “Human Immunodeficiency Virus Type 1 mRNA Expression in Peripheral Blood Cells Predicts Disease Progression Independently of the Numbers of CD4+ Lymphocytes”, Proc. Natl. Acad. Sci. USA, 91:1104-1108 (Feb. 1994). |
M. Sande et al, “Antiretroviral Therapy for Adult HIV-Infected Patients”, JAMA, 270(21):2583-2589 (Dec. 1, 1993). |
M. Seligmann et al, “Concorde: MRC/ANRS Randomised Double-Blind Controlled Trial of Immediate and Deferred Zidovudine in Symptom-free HIV Infection”, Lancet, 343:871-881 (Apr. 9, 1994). |
L. Steinaa et al, “Antibody to HIV-1 Tat Protein Inhibits the Replication of Virus in Culture”, Arch. Virol., 139:263-271 (1994). |
K. Suzue et al, “Adjuvant-Free hsp70 Fusion Protein System Elicits Humoral and Cellular Immune Reponses to HIV-1 p24”, J. Immunol., 156:873-879 (Jan. 15, 1996). |
J. Tam, “Synthetic Peptide Vaccine Design: Synthesis and Properties of a High-Density Multiple Antigenic Peptide System”, Proc. Natl. Acad. Sci. USA, 85:5409-5413 (Aug. 1988). |
B. Tindall et al, “Primary HIV Infection: Host Responses and Intervention Strategies”, AIDS, 5(1):1-14 (Jan. 1991). |
S. Welles et al, “Prognostic Value of Plasma Human Immunodeficiency Virus Type 1 (HIV-1) RNA Levels in Patients with Advanced HIV-1 Disease and with Little or No Prior Zidovudine Therapy”, J. Infect Dis., 174:696-703 (Oct. 1996). |
S. Wolinsky et al, “Adaptive Evolution of Human Immunodeficiency Virus-Type 1 During the Natural Course of Infection”, Science, 272:537-542 (Apr. 26, 1996). |
G. Zauli et al, “An Autocrine Loop of HIV Type-1 Tat Protein Responsible for the Improved Survival/Proliferation Capacity of Permanently Tat-Transfected Cells and Required for Optimal HIV-1 LTR Transactivating Activity”, J. Acq. Imm. Def. Synd. Hum. Retrovirol., 10(3):306-316 (Nov. 1, 1995). |
Webster's Ninth New Collegiate Dictionary, p. 602 (1990). |
D. McPhee et al, “Recognition of Envelope and tat Protein Synthetic Peptide Analogs by HIV Positive Sera or Plasma”, FEBS Letters, 233(2):393-396 (Jun. 1988). |
C. Li et al, “Tat Protein Induces Self-Perpetuating Permissivity for Productive HIV-1 Infection”, Proc. Natl. Acad. Sci. USA, 94:8116-8120 (Jul. 1997). |
D. Brake et al, “Characterization of Murine Monoclonal Antibodies to the tat Protein from Human Immunodeficiency Virus Type 1”, J. of Virology, 64:962-965 (Feb. 1990). |