METHODS AND COMPOSITIONS FOR MODULATING A GENOME

Information

  • Patent Application
  • 20200109398
  • Publication Number
    20200109398
  • Date Filed
    December 06, 2019
    5 years ago
  • Date Published
    April 09, 2020
    4 years ago
Abstract
Methods and compositions for modulating a target genome are disclosed.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Aug. 28, 2019, is named V2065-7000WO_SL.txt and is 4,004,548 bytes in size.


BACKGROUND

Integration of a nucleic acid of interest into a genome occurs at low frequency and with little site specificity, in the absence of a specialized protein to promote the insertion event. Some existing approaches, like CRISPR/Cas9, are more suited for small edits and are less effective at integrating longer sequences. Other existing approaches, like Cre/loxP, require a first step of inserting a loxP site into the genome and then a second step of inserting a sequence of interest into the loxP site. There is a need in the art for improved proteins for inserting sequences of interest into a genome.


SUMMARY OF THE INVENTION

This disclosure relates to novel compositions, systems and methods for altering a genome at one or more locations in a host cell, tissue or subject, in vivo or in vitro. In particular, the invention features compositions, systems and methods for the introduction of exogenous genetic elements into a host genome.


Features of the compositions or methods can include one or more of the following enumerated embodiments.


1. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence that encodes a therapeutic polypeptide or that encodes a mammalian (e.g., human) polypeptide, or a fragment or variant


thereof.


2. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence, wherein one or more of:

    • i. the heterologous object sequence encodes a protein, e.g. an enzyme (e.g., a lysosomal enzyme) or a blood factor (e.g., Factor I, II, V, VII, X, XI, XII or XIII);
    • ii. the heterologous object sequence comprises a tissue specific promoter or enhancer;
    • iii. the heterologous object sequence encodes a polypeptide of greater than 250, 300, 400, 500, or 1,000 amino acids, and optionally up to 7,500 amino acids;
    • iv. the heterologous object sequence encodes a fragment of a mammalian gene but does not encode the full mammalian gene, e.g., encodes one or more exons but does not encode a full-length protein;
    • v. the heterologous object sequence encodes one or more introns;
    • vi. the heterologous object sequence is other than a GFP, e.g., is other than a fluorescent protein or is other than a reporter protein.
    • vii. the heterologous object sequence is other than a T cell chimeric antigen receptor


      3. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.


4. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a target DNA binding domain, (ii) a reverse transcriptase domain and (iii) an endonuclease domain; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.


5. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain, wherein one or both of (i) or (ii) are derived from an avian retrotransposase, e.g., have a sequence of Table 2 or 3 or at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.


6. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain, wherein the polypeptide has an activity at 37° C. that is no less than 70%, 75%, 80%, 85%, 90%, or 95% of its activity at 25° C. under otherwise similar conditions; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.


7. The system of embodiment 6, wherein the polypeptide is derived from an avian retrotransposase, e.g., an avian retrotransposase of column 8 of Table 3, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.


8. The system of embodiment 6, wherein the avian retrotransposase is a retrotransposase from Taeniopygia guttata, Geospiza fortis, Zonotrichia albicollis, or Tinamus guttatus, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.


9. The system of embodiment 6, wherein the polypeptide is derived from a retrotransposase of column 8 of Table 3, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.


10. The system of any of the preceding embodiments, wherein the template RNA comprises a sequence of Table 3 (e.g., one or both of a 5′ untranslated region of column 6 of Table 3 and a 3′ untranslated region of column 7 of Table 3), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.


11. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence, wherein one or more of:

    • i. the nucleic acid encoding the polypeptide and the template RNA or a nucleic acid encoding the template RNA are separate nucleic acids;
    • ii. the template RNA does not encode an active reverse transcriptase, e.g., comprises an inactivated mutant reverse transcriptase, e.g., as described in Examples 1-2, or does not comprise a reverse transcriptase sequence; or
    • iii. the template RNA does not encode an active endonuclease, e.g., comprises an inactivated endonuclease or does not comprise an endonuclease; or
    • iv. the template RNA comprises one or more chemical modifications.


      12. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a 5′ untranslated sequence that binds the polypeptide, (ii) a 3′ untranslated sequence that binds the polypeptide, (iii) a heterologous object sequence, and (iv) a promoter operably linked to the heterologous object sequence,


wherein the promoter is disposed between the 5′ untranslated sequence that binds the polypeptide and the heterologous sequence, or


wherein the promoter is disposed between the 3′ untranslated sequence that binds the polypeptide and the heterologous sequence.


13. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a 5′ untranslated sequence that binds the polypeptide, (ii) a 3′ untranslated sequence that binds the polypeptide, and (iii) a heterologous object sequence, and


wherein the heterologous object sequence comprises an open reading frame (or the reverse complement thereof) in a 5′ to 3′ orientation on the template RNA; or


wherein the heterologous object sequence comprises an open reading frame (or the reverse complement thereof) in a 3′ to 5′ orientation on the template RNA.


14. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain, wherein at least one of (i) or (ii) is heterologous, and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.


15. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a target DNA binding domain, (i) a reverse transcriptase domain and (iii) an endonuclease domain, wherein at least one of (i), (ii) or (iii) is heterologous, and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.


16. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a sequence at least 80% identical (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identical) to a reverse transcriptase domain of a purinic/apyrimidinic endonuclease (APE)-type non-LTR retrotransposon and (ii) a sequence at least 80% identical (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identical) to an endonuclease domain of an APE-type non-LTR retrotransposon; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.


17. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a sequence at least 80% identical (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identical) to a reverse transcriptase domain of a restriction enzyme-like endonuclease (RLE)-type non-LTR retrotransposon, (ii) a sequence at least 80% identical (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identical) to an endonuclease domain of a RLE-type non-LTR retrotransposon, and (iii) a heterologous target DNA binding domain (e.g., a heterologous zinc-finger DNA binding domain); and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.


18. The system of any of the preceding embodiments, wherein the template RNA comprises (iii) a promoter operably linked to the heterologous object sequence.


19. The system of any of the preceding embodiments, wherein the polypeptide further comprises (iii) a DNA-binding domain.


20. The system of embodiment 17, wherein the polypeptide comprises a sequence at least 80% identical (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identical) to the sequence of SEQ ID NO: 1016.


21. The system of any of the preceding embodiments, wherein the polypeptide comprises a sequence at least 80% identical (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identical) to a sequence in column 8 of Table 3.


22. The system of any of the preceding embodiments, wherein the nucleic acid encoding the polypeptide and the template RNA or the nucleic acid encoding the template RNA are covalently linked, e.g., are part of a fusion nucleic acid.


23. The system of embodiment 22, wherein the fusion nucleic acid comprises RNA.


24. The system of embodiment 22, wherein the fusion nucleic acid comprises DNA.


25. The system of any of the preceding embodiments, wherein (b) comprises template RNA.


26. The system of embodiment 25, wherein the template RNA further comprises a nuclear localization signal.


27. The system of any of the preceding embodiments, wherein (a) comprises RNA encoding the polypeptide.


28. The system of embodiment 27, wherein the RNA of (a) and the RNA of (b) are separate RNA molecules.


29. The system of embodiment 28, wherein the RNA of (a) and the RNA of (b) are present at a ratio of between 10:1 and 5:1, 5:1 and 2:1, 2:1 and 1:1, 1:1 and 1:2, 1:2 and 1:5, or 1:5 and 1:10.


30. The system of embodiment 28, wherein the RNA of (a) does not comprise a nuclear localization signal.


31. The system of any of the preceding embodiments, wherein the polypeptide further comprises a nuclear localization signal and/or a nucleolar localization signal.


32. The system of any of the preceding embodiments, wherein (a) comprises an RNA that encodes: (i) the polypeptide and (ii) a nuclear localization signal and/or a nucleolar localization signal.


33. The system of any of the preceding embodiments, wherein the RNA comprises a pseudoknot sequence, e.g., 5′ of the heterologous object sequence.


34. The system of embodiment 33, wherein the RNA comprises a stem-loop sequence or a helix, 5′ of the pseudoknot sequence.


35. The system of embodiment 33 or 34, wherein the RNA comprises one or more (e.g., 2, 3, or more) stem-loop sequences or helices 3′ of the pseudoknot sequence, e.g. 3′ of the pseudoknot sequence and 5′ of the heterologous object sequence.


36. The system of any of embodiments 33-35, wherein the template RNA comprising the pseudoknot has catalytic activity, e.g., RNA-cleaving activity, e.g, cis-RNA-cleaving activity.


37. The system of any of the preceding embodiments, wherein the RNA comprises at least one stem-loop sequence or helix, e.g., 3′ of the heterologous object sequence, e.g. 1, 2, 3, 4, 5 or more stem-loop sequences, hairpins or helices sequences.


38. Any above-numbered system, wherein the polypeptide comprises a sequence of at least 50 amino acids (e.g., at least 100, 150, 200, 300, 500 amino acids) having at least 80% identity (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identity) to a sequence of a polypeptide listed in Table 1, or a reverse transcriptase domain or endonuclease domain thereof.


39. Any above-numbered system, wherein the polypeptide comprises a sequence of at least 50 amino acids (e.g., at least 100, 150, 200, 300, 500 amino acids) having at least 80% identity (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identity) to a sequence of a polypeptide listed in any of Tables 2-3 or a reverse transcriptase domain, endonuclease domain, or DNA binding domain thereof.


40. Any above-numbered system, wherein the polypeptide comprises a sequence of at least 50 amino acids (e.g., at least 100, 150, 200, 300, 500 amino acids) having at least 80% identity (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identity) to the amino acid sequence of column 8 of Table 3, or a reverse transcriptase domain, endonuclease domain, or DNA binding domain thereof.


41. Any above-numbered system, wherein the template RNA comprises a sequence of Table 3 (e.g., one or both of a 5′ untranslated region of column 6 of Table 3 and a 3′ untranslated region of column 7 of Table 3), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.


42. The system of embodiment 41, wherein the template RNA comprises a sequence of about 100-125 bp from a 3′ untranslated region of column 7 of Table 3, e.g., wherein the sequence comprises nucleotides 1-100, 101-200, or 201-325 of the 3′ untranslated region of column 7 of Table 3, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.


43. Any above-numbered system, wherein (a) comprises RNA and (b) comprises RNA.


44. Any above-numbered system, which comprises only RNA, or which comprises more RNA than DNA by an RNA:DNA ratio of at least 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, or 100:1.


45. Any above-numbered system, which does not comprise DNA, or which does not comprise more than 10%, 5%, 4%, 3%, 2%, or 1% DNA by mass or by molar amount.


46. Any above-numbered system, which is capable of modifying DNA by insertion of the heterologous object sequence without an intervening DNA-dependent RNA polymerization of (b).


47. Any above-numbered system, which is capable of modifying DNA by insertion of a heterologous object sequence in the presence of an inhibitor of a DNA repair pathway (e.g., SCR7, a PARP inhibitor), or in a cell line deficient for a DNA repair pathway (e.g., a cell line deficient for the nucleotide excision repair pathway or the homology-directed repair pathway).


48. Any above-numbered system, which does not cause formation of a detectable level of double stranded breaks in a target cell.


49. Any above-numbered system, which is capable of modifying DNA using reverse transcriptase activity, and optionally in the absence of homologous recombination activity.


50. Any above-numbered system, wherein the template RNA has been treated to reduce secondary structure, e.g., was heated, e.g., to a temperature that reduces secondary structure, e.g., to at least 70, 75, 80, 85, 90, or 95 C.


51. The system of embodiment 50, wherein the template RNA was subsequently cooled, e.g., to a temperature that allows for secondary structure, e.g, to less than or equal to 30, 25, or 20 C


52. A system for modifying DNA comprising:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide, (ii) a heterologous object sequence, (iii) a first homology domain having at least 10 bases of 100% identity to a target DNA strand, at the 5′ end of the template RNA, and (iv) a second homology domain having at least 10 bases of 100% identity to a target DNA strand, 5′ end of the template RNA.


53. The system of any of the preceding embodiments, wherein (a) and (b) are part of the same nucleic acid.


54. The system of any of embodiments 1-52, wherein (a) and (b) are separate nucleic acids.


55. The system of any of the preceding embodiments, wherein the template RNA comprises at least 10 bases of 100% identity to a target DNA strand (e.g., wherein the target DNA strand is a human DNA sequence), at the 5′ end of the template RNA.


56. The system of any of the preceding embodiments, wherein the template RNA comprises at least 10 bases of 100% identity to a target DNA strand (e.g., wherein the target DNA strand is a human DNA sequence), at the 3′ end of the template RNA.


57. A host cell (e.g., a mammalian cell, e.g., a human cell) comprising any preceding numbered system.


58. A method of modifying a target DNA strand in a cell, tissue or subject, comprising administering any preceding numbered system to the cell, tissue or subject, wherein the system reverse transcribes the template RNA sequence into the target DNA strand, thereby modifying the target DNA strand.


59. The method of embodiment 58, wherein the cell, tissue or subject is a mammalian (e.g., human) cell, tissue or subject.


60. The method of any of the preceding embodiments, wherein the cell is a fibroblast.


61. The method of any of the preceding embodiments, wherein the cell is a primary cell.


62. The method of any of the preceeding embodiments, where in the cell is not immortalized.


63. A method of modifying the genome of a mammalian cell, comprising contacting the cell with:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain, (ii) an endonuclease domain, and optionally (iii) a DNA-binding domain; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.


64. The method of embodiment 63, wherein the polypeptide does not comprise a target DNA binding domain.


65. The method of embodiment 63, wherein the polypeptide is derived from an APE-type transposon reverse transcriptase.


66. The method of embodiment 63, wherein the (i) a reverse transcriptase domain (ii) an endonuclease domain, or both of (i) and (ii), have a sequence of Table 1 or a sequence having at least 80%, 85%, 90%, 95%, 97%, 98%, 99%, 100% identity thereto.


67. The method of embodiment 63, wherein the polypeptide further comprises a target DNA binding domain.


68. A method of modifying the genome of a mammalian cell, comprising contacting the cell with:


(a) an RNA encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain, (ii) an endonuclease domain, and optionally (iii) a DNA-binding domain; and


(b) a template RNA comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence,


wherein the method does not comprise contacting the mammalian cell with DNA, or wherein the compositions of (a) and (b) do not comprise more than 1%, 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, or 0.01% DNA by mass or by molar amount of nucleic acid.


69. The method of embodiment 68, which results in the addition of at least 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000, or 5,000 base pairs of exogenous DNA sequence to the genome of the mammalian cell.


70. The method of embodiment 68 or 69, which results in the addition of a protein coding sequence to the genome of the mammalian cell.


71. A method of inserting DNA into the genome of a mammalian cell, comprising contacting the cell with an RNA composition, wherein the RNA composition comprises:


(a) a first RNA that directs insertion of a template RNA into the genome, and


(b) a template RNA comprising a heterologous sequence, wherein the method does not comprise contacting the mammalian cell with DNA, or


wherein the compositions of (a) and (b) do not comprise more than 1%, 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, or 0.01% DNA by mass or by molar amount of nucleic acid,


wherein the method results in the addition of at least 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000, or 5,000 base pairs of DNA (e.g., exogenous DNA) sequence to the genome of the mammalian cell.


72. The method of embodiment 71, wherein the first RNA encodes a polypeptide (e.g., a polypeptide of any of Tables 1, 2, or 3 herein), wherein the polypeptide directs insertion of the template RNA into the genome.


73. The method of embodiments 72, wherein the template RNA further comprises a sequence that binds the polypeptide.


74. A method of adding at least 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 500, 1000 bp of exogenous DNA to the genome of a mammalian cell, without delivery of DNA to the cell.


75. A method of adding at least 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 500, 1000 bp of exogenous DNA to the genome of a mammalian cell, wherein the method does not comprise contacting the mammalian cell with DNA, or wherein the method comprises contacting the mammalian cell with a composition comprising less than 1%, 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, or 0.01% DNA by mass or by molar amount of nucleic acid.


76. A method of adding at least 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 500, 1000 bp of exogenous DNA to the genome of a mammalian cell, comprising delivering only RNA to the mammalian cell.


77. A method of adding at least 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 500, 1000 bp of exogenous DNA to the genome of a mammalian cell, comprising delivering RNA and protein to the mammalian cell.


78. The method of any one of embodiments 68-77, wherein the template RNA serves as the template for insertion of the exogenous DNA.


79. The method of any one of embodiments 68-78, which does not comprise DNA-dependent RNA polymerization of exogenous DNA.


80. The method of any of embodiments 58-79, which results in the addition of at least 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000, or 5,000 base pairs of DNA to the genome of the mammalian cell.


81. The methods of any of embodiments 68-80, wherein the RNA of (a) and the RNA of (b) are covalently linked, e.g., are part of the same transcript.


82. The methods of any of embodiments 68-80, wherein the RNA of (a) and the RNA of (b) are separate RNAs.


83. The method of any of embodiments 58-82, which does not comprise contacting the mammalian cell with a template DNA.


84. A method of modifying the genome of a human cell, comprising contacting the cell with:


(a) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain, (ii) an endonuclease domain, and optionally (iii) a DNA-binding domain; and


(b) a template RNA (or DNA encoding the template RNA) comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence,


wherein the method results in insertion of the heterologous object sequence into the human cell's genome,


wherein the human cell does not show upregulation of any DNA repair genes and/or tumor suppressor genes, or wherein no DNA repair gene and/or tumor suppressor gene is upregulated by more than 10%, 5%, 2%, or 1%, e.g., wherein upregulation is measured by RNA-seq, e.g., as described in Example 14.


85. A method of adding an exogenous coding region to the genome of a cell (e.g., a mammalian cell), comprising contacting the cell with an RNA comprising the non-coding strand of the exogenous coding region, wherein optionally the RNA does not comprise a coding strand of the exogenous coding region, wherein optionally the delivery comprises non-viral delivery.


86. A method of expressing a polypeptide in a cell (e.g., a mammalian cell), comprising comprising contacting the cell with an RNA, wherein the RNA comprises a non-coding strand that is the reverse complement of a sequence that would encoding the polypeptide, wherein optionally the RNA does not comprise a coding strand encoding the polypeptide, wherein optionally the delivery comprises non-viral delivery.


87. The method of any of embodiments 58-86, wherein the sequence that is inserted into the mammalian genome is a sequence that is exogenous to the mammalian genome.


88. The method of any of embodiments 58-87, which operates independently of a DNA template.


89. The method of any of embodiments 58-88, wherein the cell is part of a tissue.


90. The method of any of embodiments 58-89, wherein the mammalian cell is euploid, is not immortalized, is part of an organism, is a primary cell, is non-dividing, is a hepatocyte, or is from a subject having a genetic disease.


91. The method of any of embodiments 58-90, wherein the contacting comprises contacting the cell with a plasmid, virus, viral-like particle, virosome, liposome, vesicle, exosome, or lipid nanoparticle.


92. The method of any of embodiments 58-91, wherein the contacting comprises using non-viral delivery.


93. The method of any of embodiments 58-92, which comprises comprising contacting the cell with the template RNA (or DNA encoding the template RNA), wherein the template RNA comprises the non-coding strand of an exogenous coding region, wherein optionally the template RNA does not comprise a coding strand of the exogenous coding region, wherein optionally the delivery comprises non-viral delivery, thereby adding the exogenous coding region to the genome of the cell.


94. The method of any of embodiments 58-93, which comprises contacting the cell with the template RNA (or DNA encoding the template RNA), wherein the template RNA comprises a non-coding strand that is the reverse complement of a sequence that would encoding the polypeptide, wherein optionally the template RNA does not comprise a coding strand encoding the polypeptide, wherein optionally the delivery comprises non-viral delivery, thereby expressing the polypeptide in the cell.


95. The method of any of embodiments 63-94, wherein the contacting comprises administering (a) and (b) to a subject, e.g., intravenously.


96. The method of any of embodiments 63-95, wherein the contacting comprises administering a dose of (a) and (b) to a subject at least twice.


97. The method of any of embodiments 63-96, wherein the polypeptide reverse transcribes the template RNA sequence into the target DNA strand, thereby modifying the target DNA strand.


98. The method of any embodiments 63-97, wherein (a) and (b) are administered separately.


99. The method of any of embodiments 63-97, wherein (a) and (b) are administered together.


100. The method of any of embodiments 63-99, wherein the nucleic acid of (a) is not integrated into the genome of the host cell.


101. Any preceding numbered method, wherein the sequence that binds the polypeptide has one or more of the following characteristics:


(a) is at the 3′ end of the template RNA;


(b) is at the 5′ end of the template RNA;


(b) is a non-coding sequence;


(c) is a structured RNA; or


(d) forms at least 1 hairpin loop structures.


102. Any preceding numbered method, wherein the template RNA further comprises a sequence comprising at least 20 nucleotides of at least 80% identity (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identity) to a target DNA strand.


103. Any preceding numbered method, wherein the template RNA further comprises a sequence comprising at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 nucleotides of at least 80% identity (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identity) to a target DNA strand.


104. Any preceding numbered method, wherein the sequence comprising at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 nucleotides, or about: 2-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100, 10-100, or 2-100 nucleotides, of at least 80% identity to a target DNA strand is at the 3′ end of the template RNA.


105. Any preceding numbered method, wherein the template RNA further comprises a sequence comprising at least 100 nucleotides of at least 80% identity (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identity) to a target DNA strand, e.g., at the 3′ end of the template RNA.


106. The method of embodiment 104 or 105, wherein the site in the target DNA strand to which the sequence comprises at least 80% identity is proximal to (e.g., within about: 0-10, 10-20, 20-30, 30-50, or 50-100 nucleotides of) a target site on the target DNA strand that is recognized (e.g., bound and/or cleaved) by the polypeptide comprising the endonuclease.


107. Any preceding numbered method, wherein the sequence comprising at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 nucleotides, or about: 2-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100, 10-100, or 2-100 nucleotides, of at least 80% identity to a target DNA strand is at the 3′ end of the template RNA;


optionally wherein the site in the target DNA strand to which the sequence comprises at least 80% identity is proximal to (e.g., within about: 0-10, 10-20, or 20-30 nucleotides of) a target site on the target DNA strand that is recognized (e.g., bound and/or cleaved) by the polypeptide comprising the endonuclease.


108. The method of embodiment 107, wherein the target site is the site in the human genome that has the closest identity to a native target site of the polypeptide comprising the endonuclease, e.g., wherein the target site in the human genome has at least about: 16, 17, 18, 19, or 20 nucleotides identical to the native target site.


109. Any preceding numbered method, wherein the template RNA has at least 3, 4, 5, 6, 7, 8, 9, or 10 bases of 100% identity to the target DNA strand.


110. Any preceding numbered method, wherein the at least 3, 4, 5, 6, 7, 8, 9, or 10 bases of 100% identity to the target DNA strand are at the 3′ end of the template RNA.


111. Any preceding numbered method, wherein the at least 3, 4, 5, 6, 7, 8, 9, or 10 bases of 100% identity to the target DNA strand are at the 5′ end of the template RNA.


112. Any preceding numbered method, wherein the template RNA comprises at least 3, 4, 5, 6, 7, 8, 9, or 10 bases of 100% identity to the target DNA strand at the 5′ end of the template RNA and at least 3, 4, 5, 6, 7, 8, 9, or 10 bases of 100% identity to the target DNA strand at the 3′ end of the template RNA.


113. Any preceding numbered method, wherein the heterologous object sequence is between 50-50,000 base pairs (e.g., between 50-40,000 bp, between 500-30,000 bp between 500-20,000 bp, between 100-15,000 bp, between 500-10,000 bp, between 50-10,000 bp, between 50-5,000 bp).


114. Any preceding numbered method, wherein the heterologous object sequence is at least 10, 25, 50, 100, 150, 200, 250, 300, 400, 500, 600, or 700 bp.


115. Any preceding numbered method, wherein the heterologous object sequence is at least 715, 750, 800, 950, 1,000, 2,000, 3,000, or 4,000 bp.


116. Any preceding numbered method, wherein the heterologous object sequence is less than 5,000, 10,000, 15,000, 20,000, 30,000, or 40,000 bp.


117. Any preceding numbered method, wherein the heterologous object sequence is less than 700, 600, 500, 400, 300, 200, 150, or 100 bp.


118. Any preceding numbered method, wherein the heterologous object sequence comprises:


(a) an open reading frame, e.g., a sequence encoding a polypeptide, e.g., an enzyme (e.g., a lysosomal enzyme), a membrane protein, a blood factor, an exon, an intracellular protein (e.g., a cytoplasmic protein, a nuclear protein, an organellar protein such as a mitochondrial protein or lysosomal protein), an extracellular protein, a structural protein, a signaling protein, a regulatory protein, a transport protein, a sensory protein, a motor protein, a defense protein, or a storage protein;


(b) a non-coding and/or regulatory sequence, e.g., a sequence that binds a transcriptional modulator, e.g., a promoter, an enhancer, an insulator;


(c) a splice acceptor site;


(d) a polyA site;


(e) an epigenetic modification site; or


(f) a gene expression unit.


119. Any preceding numbered method, wherein the target DNA is a genomic safe harbor (GSH) site.


120. Any preceding numbered method, wherein the target DNA is a genomic Natural Harbor™ site.


121. Any preceding numbered method, which results in insertion of the heterologous object sequence into the a target site in the genome at an average copy number of at least 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, or 5 copies per genome.


122. Any preceding numbered method, which results in about 25-100%, 50-100%, 60-100%, 70-100%, 75-95%, 80%-90%, of integrants into a target site in the genome being non-truncated, as measured by an assay described herein, e.g., an assay of Example 6.


123. Any preceding numbered method, which results in insertion of the heterologous object sequence only at one target site in the genome of the cell.


124. Any preceding numbered method, which results in insertion of the heterologous object sequence into a target site in a cell, wherein the inserted heterologous sequence comprises less than 10%, 5%, 2%, 1%, 0.5%, 0.2%, or 0.1% mutations (e.g., SNPs or one or more deletions, e.g., truncations or internal deletions) relative to the heterologous sequence prior to insertion, e.g., as measured by an assay of Example 12.


125. Any preceding numbered method, which results in insertion of the heterologous object sequence into a target site in a plurality of cells, wherein less than 10%, 5%, 2%, or 1% of copies of the inserted heterologous sequence comprise a mutation (e.g., a SNP or a deletion, e.g., a truncation or an internal deletion), e.g., as measured by an assay of Example 12.


126. Any preceding numbered method, which results in insertion of the heterologous object sequence into a target cell genome, and wherein the target cell does not show upregulation of p53, or shows upregulation of p53 by less than 10%, 5%, 2%, or 1%, e.g., wherein upregulation of p53 is measured by p53 protein level, e.g., according to the method described in Example 30, or by the level of p53 phosphorylated at Ser15 and Ser20.


127. Any preceding numbered method, which results in insertion of the heterologous object sequence into a target cell genome, and wherein the target cell does not show upregulation of any DNA repair genes and/or tumor suppressor genes, or wherein no DNA repair gene and/or tumor suppressor gene is upregulated by more than 10%, 5%, 2%, or 1%, e.g., wherein upregulation is measured by RNA-seq, e.g., as described in Example 14.


128. Any preceding numbered method, which results in insertion of the heterologous object sequence into the target site (e.g., at a copy number of 1 insertion or more than one insertion) in about 1-80% of cells in a population of cells contacted with the system, e.g., about: 1-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, or 70-80% of cells, e.g., as measured using single cell ddPCR, e.g., as described in Example 17.


129. Any preceding numbered method, which results in insertion of the heterologous object sequence into the target site at a copy number of 1 insertion in about 1-80% of cells in a population of cells contacted with the system, e.g., about: 1-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, or 70-80% of cells, e.g., as measured using colony isolation and ddPCR, e.g., as described in Example 18.


130. Any preceding numbered method, which results in insertion of the heterologous object sequence into the target site (on-target insertions) at a higher rate that insertion into a non-target site (off-target insertions) in a population of cells, wherein the ratio of on-target insertions to off-target insertions is greater than 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1. 90:1, 100:1, 200:1, 500:1, or 1,000:1, e.g., using an assay of Example 11.


131. Any above-numbered method, results in insertion of a heterologous object sequence in the presence of an inhibitor of a DNA repair pathway (e.g., SCR7, a PARP inhibitor), or in a cell line deficient for a DNA repair pathway (e.g., a cell line deficient for the nucleotide excision repair pathway or the homology-directed repair pathway).


132. Any preceding numbered system, formulated as a pharmaceutical composition.


133. Any preceding numbered system, disposed in a pharmaceutically acceptable carrier (e.g., a vesicle, a liposome, a natural or synthetic lipid bilayer, a lipid nanoparticle, an exosome).


134. A method of making a system for modifying the genome of a mammalian cell, comprising:


a) providing a template RNA as described in any of the preceding embodiments, e.g., wherein the template RNA comprises (i) a sequence that binds a polypeptide comprising a reverse transcriptase domain and an endonuclease domain, and (ii) a heterologous object sequence; and


b) treating the template RNA to reduce secondary structure, e.g., heating the template RNA, e.g., to at least 70, 75, 80, 85, 90, or 95 C, and


c) subsequently cooling the template RNA, e.g., to a temperature that allows for secondary structure, e.g, to less than or equal to 30, 25, or 20 C.


135. The method of embodiment 134, which further comprises contacting the template RNA with a polypeptide that comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain, or with a nucleic acid (e.g., RNA) encoding the polypeptide.


136. The method of embodiment 134 or 135, which further comprises contacting the template RNA with a cell.


137. The system or method of any of the preceding embodiments, wherein the heterologous object sequence encodes a therapeutic polypeptide.


138. The system or method of any of the preceding embodiments, wherein the heterologous object sequence encodes a mammalian (e.g., human) polypeptide, or a fragment or variant thereof.


139. The system or method of any of the preceding embodiments, wherein the heterologous object sequence encodes an enzyme (e.g., a lysosomal enzyme), a blood factor (e.g., Factor I, II, V, VII, X, XI, XII or XIII), a membrane protein, an exon, an intracellular protein (e.g., a cytoplasmic protein, a nuclear protein, an organellar protein such as a mitochondrial protein or lysosomal protein), an extracellular protein, a structural protein, a signaling protein, a regulatory protein, a transport protein, a sensory protein, a motor protein, a defense protein, or a storage protein.


140. The system or method of any of the preceding embodiments, wherein the heterologous object sequence comprises a tissue specific promoter or enhancer.


141. The system or method of any of the preceding embodiments, wherein the heterologous object sequence encodes a polypeptide of greater than 250, 300, 400, 500, or 1,000 amino acids, and optionally up to 1300 amino acids.


142. The system or method of any of the preceding embodiments, wherein the heterologous object sequence encodes a fragment of a mammalian gene but does not encode the full mammalian gene, e.g., encodes one or more exons but does not encode a full-length protein.


143. The system or method of any of the preceding embodiments, wherein the heterologous object sequence encodes one or more introns.


144. The system or method of any of the preceding embodiments, wherein the heterologous object sequence is other than a GFP, e.g., is other than a fluorescent protein or is other than a reporter protein.


145. The system or method of any of the preceding embodiments, wherein the polypeptide comprises (i) a reverse transcriptase domain and (ii) an endonuclease domain, wherein one or both of (i) or (ii) are derived from an avian retrotransposase, e.g., have a sequence of Table 2 or 3 or at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.


146. The system or method of any of the preceding embodiments, wherein the polypeptide has an activity at 37° C. that is no less than 70%, 75%, 80%, 85%, 90%, or 95% of its activity at 25° C. under otherwise similar conditions.


147. The system or method of any of the preceding embodiments, wherein the nucleic acid encoding the polypeptide and the template RNA or a nucleic acid encoding the template RNA are separate nucleic acids.


148. The system or method of any of the preceding embodiments, wherein the template RNA does not encode an active reverse transcriptase, e.g., comprises an inactivated mutant reverse transcriptase, e.g., as described in Example 1 or 2, or does not comprise a reverse transcriptase sequence.


149. The system or method of any of the preceding embodiments, wherein the template RNA comprises one or more chemical modifications.


150. The system or method of any of the preceding embodiments, wherein the heterologous object sequence is disposed between the promoter and the sequence that binds the polypeptide.


151. The system or method of any of the preceding embodiments, wherein the promoter is disposed between the heterologous object sequence and the sequence that binds the polypeptide.


152. The system or method of any of the preceding embodiments, wherein the heterologous object sequence comprises an open reading frame (or the reverse complement thereof) in a 5′ to 3′ orientation on the template RNA.


153. The system or method of any of the preceding embodiments, wherein the heterologous object sequence comprises an open reading frame (or the reverse complement thereof) in a 3′ to 5′ orientation on the template RNA.


154. The system or method of any of the preceding embodiments, wherein the polypeptide comprises (a) a reverse transcriptase domain and (b) an endonuclease domain, wherein at least one of (a) or (b) is heterologous.


155. The system or method of any of the preceding embodiments, wherein the polypeptide comprises (a) a target DNA binding domain, (b) a reverse transcriptase domain and (c) an endonuclease domain, wherein at least one of (a), (b) or (c) is heterologous.


156. A substantially pure polypeptide comprising (a) a reverse transcriptase domain and (b) a heterologous endonuclease domain.


157. A substantially pure polypeptide comprising (a) a target DNA binding domain, (b) a reverse transcriptase domain and (c) an endonuclease domain, wherein at least one of (a), (b) or (c) is heterologous.


158. A substantially pure polypeptide comprising (a) a reverse transcriptase domain, (b) an endonuclease domain, and (c) a heterologous target DNA binding domain.


159. A polypeptide or a nucleic acid encoding the polypeptide, wherein the polypeptide comprises (a) a reverse transcriptase domain and (b) an endonuclease domain, wherein at least one of (a) or (b) is heterologous to the other.


160. A polypeptide or a nucleic acid encoding the polypeptide, wherein the polypeptide comprises (a) a target DNA binding domain, (b) a reverse transcriptase domain and (c) an endonuclease domain, wherein at least one of (a), (b) or (c) is heterologous to the other.


161. Any polypeptide of numbered embodiments 156-160, wherein the reverse transcriptase domain has at least 80% identity (e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identity) to a reverse transcriptase domain of an APE-type or RLE-type non-LTR retrotransposon listed in any of Tables 1-3.


162. Any polypeptide of numbered embodiments 156-161, wherein the endonuclease domain has at least 80% identity e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identity, to a endonuclease domain of an APE-type or RLE-type non-LTR retrotransposon listed in any of Tables 1-3.


163. Any polypeptide of numbered embodiments 156-162 or any preceding numbered method, wherein the DNA binding domain has at least 80% identity e.g., at least 85%, 90%, 95%, 97%, 98%, 99%, 100% identity, to a DNA binding domain of a sequence listed in Table 1, 2, or 3.


164. A nucleic acid encoding the polypeptide of any preceding numbered embodiment.


165. A vector comprising the nucleic acid of numbered embodiment 164.


166. A host cell comprising the nucleic acid of numbered embodiment 164.


167. A host cell comprising the polypeptide of any preceding numbered embodiment.


168. A host cell comprising the vector of numbered embodiment 165.


169. A host cell (e.g., a human cell) comprising: (i) a heterologous object sequence (e.g., a sequence encoding a therapeutic polypeptide) at a target site in a chromosome, and (ii) one or both of an untranslated region (e.g., a retrotransposon untranslated sequence, e.g., a sequence of column 6 of Table 3) on one side (e.g., upstream) of the heterologous object sequence, and an untranslated region (e.g., a retrotransposon untranslated sequence, e.g., a sequence of column 7 of Table 3) on the other side (e.g., downstream) of the heterologous object sequence.


170. A host cell (e.g., a human cell) comprising: (i) a heterologous object sequence (e.g., a sequence encoding a therapeutic polypeptide) at a target site in a chromosome, wherein the target locus is a Natural Harbor™ site, e.g., a site of Table 4 herein.


171. The host cell of embodiment 170, which further comprises (ii) one or both of an untranslated region 5′ of the heterologous object sequence, and an untranslated region 3′ of the heterologous object sequence.


172. The host cell of embodiment 170, which further comprises (ii) one or both of an untranslated region (e.g., a retrotransposon untranslated sequence, e.g., a sequence of column 6 of Table 3) on one side (e.g., upstream) of the heterologous object sequence, and an untranslated region (e.g., a retrotransposon untranslated sequence, e.g., a sequence of column 7 of Table 3) on the other side (e.g., downstream) of the heterologous object sequence.


173. The host cell of any of embodiments 169-173, which comprises heterologous object sequence at only the target site.


174. A pharmaceutical composition, comprising any preceding numbered system, nucleic acid, polypeptide, or vector; and a pharmaceutically acceptable excipient or carrier.


175. The pharmaceutical composition of embodiment 174, wherein the pharmaceutically acceptable excipient or carrier is selected from a vector (e.g., a viral or plasmid vector), a vesicle (e.g., a liposome, an exosome, a natural or synthetic lipid bilayer), a lipid nanoparticle.


176. A polypeptide of any of the preceding embodiments, wherein the polypeptide further comprises a nuclear localization sequence.


177. A method of modifying a target DNA strand in a cell, tissue or subject, comprising administering any preceding numbered system to the cell, tissue or subject, thereby modifying the target DNA strand.


178. Any preceding numbered embodiment, wherein the polypeptide comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to an amino acid sequence listed in Table 5 (e.g., any one of SEQ ID NOs: 1017-1022), or a functional fragment thereof.


179. Any preceding numbered embodiment, wherein the reverse transcriptase domain comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the reverse transcriptase domain of an amino acid sequence listed in Table 5 (e.g., any one of SEQ ID NOs: 1017-1022), or a functional fragment thereof.


180. Any preceding numbered embodiment, wherein the retrotransposase comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to an amino acid sequence listed in Table 5 (e.g., any one of SEQ ID NOs: 1017-1022), or a functional fragment thereof.


181. Any preceding numbered embodiment, wherein the polypeptide comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 1023) or GGGS (SEQ ID NO: 1024).


182. Any preceding numbered embodiment, wherein the reverse transcriptase domain comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 1023) or GGGS (SEQ ID NO: 1024).


183. Any preceding numbered embodiment, wherein the retrotransposase comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 1023) or GGGS (SEQ ID NO: 1024).


184. Any preceding numbered embodiment, wherein the polypeptide, reverse transcriptase domain, or retrotransposase comprises a linker comprising an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 1023) or GGGS (SEQ ID NO: 1024).


185. Any preceding numbered embodiment, wherein the polypeptide comprises a DNA binding domain covalently attached to the remainder of the polypeptide by a linker, e.g., a linker comprising at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 200, 300, 400, or 500 amino acids.


186. Numbered embodiment 185, wherein the linker is attached to the remainder of the polypeptide at a position in the DNA binding domain, RNA binding domain, reverse transcriptase domain, or endonuclease domain (e.g., as shown in any of FIGS. 17A-17F).


187. Numbered embodiment 185 or 186, wherein the linker is attached to the remainder of the polypeptide at a position in the N-terminal side of an alpha helical region of the polypeptide, e.g., at a position corresponding to version v1 as described in Example 26.


188. Numbered embodiment 185 or 186, wherein the linker is attached to the remainder of the polypeptide at a position in the C-terminal side of an alpha helical region of the polypeptide, e.g., preceding an RNA binding motif (e.g., a −1 RNA binding motif), e.g., at a position corresponding to version v2 as described in Example 26.


189. Numbered embodiment 185 or 186, wherein the linker is attached to the remainder of the polypeptide at a position in the C-terminal side of a random coil region of the polypeptide, e.g., N-terminal relative to a DNA binding motif (e.g., a c-myb DNA binding motif), e.g., at a position corresponding to version v3 as described in Example 26.


190. Any one of numbered embodiments 185-189, wherein the linker comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 1023) or GGGS (SEQ ID NO: 1024).


191. Any preceding numbered embodiment, wherein a polynucleotide sequence comprising at least about 500, 1000, 2000, 3000, 3500, 3600, 3700, 3800, 3900, or 4000 contiguous nucleotides from the 5′ end of the template RNA sequence are integrated into a target cell genome.


192. Any preceding numbered embodiment, wherein a polynucleotide sequence comprising at least about 500, 1000, 2000, 2500, 2600, 2700, 2800, 2900, or 3000 contiguous nucleotides from the 3′ end of the template RNA sequence are integrated into a target cell genome.


193. Any preceding numbered embodiment, wherein the nucleic acid sequence of the template RNA, or a portion thereof (e.g., a portion comprising at least about 100, 200, 300, 400, 500, 1000, 2000, 2500, 3000, 3500, or 4000 nucleotides) integrates into the genomes of a population of target cells at a copy number of at least about 0.21, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 integrants/genome.


194. Any preceding numbered embodiment, wherein the nucleic acid sequence of the template RNA, or a portion thereof (e.g., a portion comprising at least about 100, 200, 300, 400, 500, 1000, 2000, 2500, 3000, 3500, or 4000 nucleotides) integrates into the genomes of a population of target cells at a copy number of at least about 0.085, 0.09, 0.1, 0.15, or 0.2 integrants/genome.


195. Any preceding numbered embodiment, wherein the nucleic acid sequence of the template RNA, or a portion thereof (e.g., a portion comprising at least about 100, 200, 300, 400, 500, 1000, 2000, 2500, 3000, 3500, or 4000 nucleotides) integrates into the genomes of a population of target cells at a copy number of at least about 0.036, 0.04, 0.05, 0.06, 0.07, or 0.08 integrants/genome.


196. Any preceding numbered embodiment, wherein the polypeptide comprises a functional endonuclease domain (e.g., wherein the endonuclease domain does not comprise a mutation that abolishes endonuclease activity, e.g., as described herein).


197. Any preceding numbered embodiment, wherein the polypeptide comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the R2 polypeptide from a medium ground finch, e.g., Geospiza fortis (e.g., as described herein, e.g., R2-1_GFo), or a functional fragment thereof.


198. Any preceding numbered embodiment, wherein the reverse transcriptase domain comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the R2 polypeptide from a medium ground finch, e.g., Geospiza fortis (e.g., as described herein, e.g., R2-1_GFo), or a functional fragment thereof.


199. Any preceding numbered embodiment, wherein the retrotransposase comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the R2 polypeptide from a medium ground finch, e.g., Geospiza fortis (e.g., as described herein, e.g., R2-1_GFo), or a functional fragment thereof.


200. Any one of numbered embodiments 197-199, wherein the nucleic acid sequence of the template RNA, or a portion thereof (e.g., a portion comprising at least about 100, 200, 300, 400, 500, 1000, 2000, 2500, 3000, 3500, or 4000 nucleotides) integrates into the genomes of a population of target cells at a copy number of at least about 0.21 integrants/genome.


201. Any preceding numbered embodiment, wherein the polypeptide comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the R4 polypeptide from a large roundworm, e.g., Ascaris lumbricoides (e.g., as described herein, e.g., R4_AL), or a functional fragment thereof.


202. Any preceding numbered embodiment, wherein the reverse transcriptase domain comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the R4 polypeptide from a large roundworm, e.g., Ascaris lumbricoides (e.g., as described herein, e.g., R4_AL), or a functional fragment thereof.


203. Any preceding numbered embodiment, wherein the retrotransposase comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the R4 polypeptide from a large roundworm, e.g., Ascaris lumbricoides (e.g., as described herein, e.g., R4_AL), or a functional fragment thereof.


204. Any one of numbered embodiments 201-203, wherein the nucleic acid sequence of the template RNA, or a portion thereof (e.g., a portion comprising at least about 100, 200, 300, 400, 500, 1000, 2000, 2500, 3000, 3500, or 4000 nucleotides) integrates into the genomes of a population of target cells at a copy number of at least about 0.085 integrants/genome.


205. Any preceding numbered embodiment, wherein introduction of the system into a target cell does not result in alteration (e.g., upregulation) of p53 and/or p21 protein levels, H2AX phosphorylation (e.g., gamma H2AX), ATM phosphorylation, ATR phosphorylation, Chk1 phosphorylation, Chk2 phosphorylation, and/or p53 phosphorylation.


206. Any preceding numbered embodiment, wherein introduction of the system into a target cell results in upregulation of p53 protein level in the target cell to a level that is less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 70%, 80%, or 90% of the p53 protein level induced by introducing a site-specific nuclease, e.g., Cas9, that targets the same genomic site as said system.


207. Numbered embodiment 205 or 206, wherein the p53 protein level is determined according to the method described in Example 30.


208. Any preceding numbered embodiment, wherein introduction of the system into a target cell results in upregulation of p53 phosphorylation level in the target cell to a level that is less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 70%, 80%, or 90% of the p53 phosphorylation level induced by introducing a site-specific nuclease, e.g., Cas9, that targets the same genomic site as said system.


209. Any preceding numbered embodiment, wherein introduction of the system into a target cell results in upregulation of p21 protein level in the target cell to a level that is less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 70%, 80%, or 90% of the p53 protein level induced by introducing a site-specific nuclease, e.g., Cas9, that targets the same genomic site as said system.


210. Numbered embodiment 205 or 209, wherein the p21 protein level is determined according to the method described in Example 30.


211. Any preceding numbered embodiment, wherein introduction of the system into a target cell results in upregulation of H2AX phosphorylation level in the target cell to a level that is less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 70%, 80%, or 90% of the H2AX phosphorylation level induced by introducing a site-specific nuclease, e.g., Cas9, that targets the same genomic site as said system.


212. Any preceding numbered embodiment, wherein introduction of the system into a target cell results in upregulation of ATM phosphorylation level in the target cell to a level that is less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 70%, 80%, or 90% of the ATM phosphorylation level induced by introducing a site-specific nuclease, e.g., Cas9, that targets the same genomic site as said system.


213. Any preceding numbered embodiment, wherein introduction of the system into a target cell results in upregulation of ATR phosphorylation level in the target cell to a level that is less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 70%, 80%, or 90% of the ATR phosphorylation level induced by introducing a site-specific nuclease, e.g., Cas9, that targets the same genomic site as said system.


214. Any preceding numbered embodiment, wherein introduction of the system into a target cell results in upregulation of Chk1 phosphorylation level in the target cell to a level that is less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 70%, 80%, or 90% of the Chk1 phosphorylation level induced by introducing a site-specific nuclease, e.g., Cas9, that targets the same genomic site as said system.


215. Any preceding numbered embodiment, wherein introduction of the system into a target cell results in upregulation of Chk2 phosphorylation level in the target cell to a level that is less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 70%, 80%, or 90% of the Chk2 phosphorylation level induced by introducing a site-specific nuclease, e.g., Cas9, that targets the same genomic site as said system.


Definitions

Domain: The term “domain” as used herein refers to a structure of a biomolecule that contributes to a specified function of the biomolecule. A domain may comprise a contiguous region (e.g., a contiguous sequence) or distinct, non-contiguous regions (e.g., non-contiguous sequences) of a biomolecule. Examples of protein domains include, but are not limited to, an endonuclease domain, a DNA binding domain, a reverse transcription domain; an example of a domain of a nucleic acid is a regulatory domain, such as a transcription factor binding domain.


Exogenous: As used herein, the term exogenous, when used with reference to a biomolecule (such as a nucleic acid sequence or polypeptide) means that the biomolecule was introduced into a host genome, cell or organism by the hand of man. For example, a nucleic acid that is as added into an existing genome, cell, tissue or subject using recombinant DNA techniques or other methods is exogenous to the existing nucleic acid sequence, cell, tissue or subject.


Genomic safe harbor site (GSH site): A genomic safe harbor site is a site in a host genome that is able to accommodate the integration of new genetic material, e.g., such that the inserted genetic element does not cause significant alterations of the host genome posing a risk to the host cell or organism. A GSH site generally meets 1, 2, 3, 4, 5, 6, 7, 8 or 9 of the following criteria: (i) is located >300 kb from a cancer-related gene; (ii) is >300 kb from a miRNA/other functional small RNA; (iii) is >50 kb from a 5′ gene end; (iv) is >50 kb from a replication origin; (v) is >50 kb away from any ultraconservered element; (vi) has low transcriptional activity (i.e. no mRNA+/−25 kb); (vii) is not in copy number variable region; (viii) is in open chromatin; and/or (ix) is unique, with 1 copy in the human genome. Examples of GSH sites in the human genome that meet some or all of these criteria include (i) the adeno-associated virus site 1 (AAVS1), a naturally occurring site of integration of AAV virus on chromosome 19; (ii) the chemokine (C-C motif) receptor 5 (CCR5) gene, a chemokine receptor gene known as an HIV-1 coreceptor; (iii) the human ortholog of the mouse Rosa26 locus; (iv) the rDNA locus. Additional GSH sites are known and described, e.g., in Pellenz et al. epub Aug. 20, 2018 (https://doi.org/10.1101/396390).


Heterologous: The term heterologous, when used to describe a first element in reference to a second element means that the first element and second element do not exist in nature disposed as described. For example, a heterologous polypeptide, nucleic acid molecule, construct or sequence refers to (a) a polypeptide, nucleic acid molecule or portion of a polypeptide or nucleic acid molecule sequence that is not native to a cell in which it is expressed, (b) a polypeptide or nucleic acid molecule or portion of a polypeptide or nucleic acid molecule that has been altered or mutated relative to its native state, or (c) a polypeptide or nucleic acid molecule with an altered expression as compared to the native expression levels under similar conditions. For example, a heterologous regulatory sequence (e.g., promoter, enhancer) may be used to regulate expression of a gene or a nucleic acid molecule in a way that is different than the gene or a nucleic acid molecule is normally expressed in nature. In another example, a heterologous domain of a polypeptide or nucleic acid sequence (e.g., a DNA binding domain of a polypeptide or nucleic acid encoding a DNA binding domain of a polypeptide) may be disposed relative to other domains or may be a different sequence or from a different source, relative to other domains or portions of a polypeptide or its encoding nucleic acid. In certain embodiments, a heterologous nucleic acid molecule may exist in a native host cell genome, but may have an altered expression level or have a different sequence or both. In other embodiments, heterologous nucleic acid molecules may not be endogenous to a host cell or host genome but instead may have been introduced into a host cell by transformation (e.g., transfection, electroporation), wherein the added molecule may integrate into the host genome or can exist as extra-chromosomal genetic material either transiently (e.g., mRNA) or semi-stably for more than one generation (e.g., episomal viral vector, plasmid or other self-replicating vector).


Mutation or Mutated: The term “mutated” when applied to nucleic acid sequences means that nucleotides in a nucleic acid sequence may be inserted, deleted or changed compared to a reference (e.g., native) nucleic acid sequence. A single alteration may be made at a locus (a point mutation) or multiple nucleotides may be inserted, deleted or changed at a single locus. In addition, one or more alterations may be made at any number of loci within a nucleic acid sequence. A nucleic acid sequence may be mutated by any method known in the art.


Nucleic acid molecule: Nucleic acid molecule refers to both RNA and DNA molecules including, without limitation, cDNA, genomic DNA and mRNA, and also includes synthetic nucleic acid molecules, such as those that are chemically synthesized or recombinantly produced, such as RNA templates, as described herein. The nucleic acid molecule can be double-stranded or single-stranded, circular or linear. If single-stranded, the nucleic acid molecule can be the sense strand or the antisense strand. Unless otherwise indicated, and as an example for all sequences described herein under the general format “SEQ. ID NO:,” “nucleic acid comprising SEQ. ID NO:1” refers to a nucleic acid, at least a portion which has either (i) the sequence of SEQ. ID NO:1, or (ii) a sequence complimentary to SEQ. ID NO:1. The choice between the two is dictated by the context in which SEQ. ID NO:1 is used. For instance, if the nucleic acid is used as a probe, the choice between the two is dictated by the requirement that the probe be complimentary to the desired target. Nucleic acid sequences of the present disclosure may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more naturally occurring nucleotides with an analog, inter-nucleotide modifications such as uncharged linkages (for example, methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (for example, phosphorothioates, phosphorodithioates, etc.), pendant moieties, (for example, polypeptides), intercalators (for example, acridine, psoralen, etc.), chelators, alkylators, and modified linkages (for example, alpha anomeric nucleic acids, etc.). Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of a molecule. Other modifications can include, for example, analogs in which the ribose ring contains a bridging moiety or other structure such as modifications found in “locked” nucleic acids.


Gene expression unit: a gene expression unit is a nucleic acid sequence comprising at least one regulatory nucleic acid sequence operably linked to at least one effector sequence. A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if the promoter or enhancer affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be contiguous or non-contiguous. Where necessary to join two protein-coding regions, operably linked sequences may be in the same reading frame.


Host: The terms host genome or host cell, as used herein, refer to a cell and/or its genome into which protein and/or genetic material has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell and/or genome, but to the progeny of such a cell and/or the genome of the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein. A host genome or host cell may be an isolated cell or cell line grown in culture, or genomic material isolated from such a cell or cell line, or may be a host cell or host genome which composing living tissue or an organism. In some instances, a host cell may be an animal cell or a plant cell, e.g., as described herein. In certain instances, a host cell may be a bovine cell, horse cell, pig cell, goat cell, sheep cell, chicken cell, or turkey cell. In certain instances, a host cell may be a corn cell, soy cell, wheat cell, or rice cell.


Pseudoknot: A “pseudoknot sequence” sequence, as used herein, refers to a nucleic acid (e.g., RNA) having a sequence with suitable self-complementarity to form a pseudoknot structure, e.g., having: a first segment, a second segment between the first segment and a third segment, wherein the third segment is complementary to the first segment, and a fourth segment, wherein the fourth segment is complementary to the second segment. The pseudoknot may optionally have additional secondary structure, e.g., a stem loop disposed in the second segment, a stem-loop disposed between the second segment and third segment, sequence before the first segment, or sequence after the fourth segment. The pseudoknot may have additional sequence between the first and second segments, between the second and third segments, or between the third and fourth segments. In some embodiments, the segments are arranged, from 5′ to 3′: first, second, third, and fourth. In some embodiments, the first and third segments comprise five base pairs of perfect complementarity. In some embodiments, the second and fourth segments comprise 10 base pairs, optionally with one or more (e.g., two) bulges. In some embodiments, the second segment comprises one or more unpaired nucleotides, e.g., forming a loop. In some embodiments, the third segment comprises one or more unpaired nucleotides, e.g., forming a loop.


Stem-loop sequence: As used herein, a “stem-loop sequence” refers to a nucleic acid sequence (e.g., RNA sequence) with sufficient self-complementarity to form a stem-loop, e.g., having a stem comprising at least two (e.g., 3, 4, 5, 6, 7, 8, 9, or 10) base pairs, and a loop with at least three (e.g., four) base pairs. The stem may comprise mismatches or bulges.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of the Gene Writing genome editing system.



FIG. 2 is a schematic of the structure of the Gene Writer genome editor polypeptide.



FIG. 3 is a schematic of a Gene Writer genome editor polypeptide comprising a heterologous DNA binding domain designed to target different sites of the genome.



FIG. 4 is a schematic of the structure of Gene Writer genome editor template RNA.



FIG. 5 is a schematic showing the Gene Writing genome editing system to add a gene expression unit into a safe harbor site in the genome.



FIG. 6 is a schematic showing Gene Writing genome editing to add a new exon into an specific intron in the genome and replace downstream exons.



FIG. 7 illustrates a schematic of Miseq library construction. Nested PCR was performed across the R2Tg-rDNA junction using (1) outer forward primer and tailed inner reverse primer followed by (2) tailed inner forward primer and tail reverse primer. The inner reverse primer contains a 1-4 base stagger, an 8-nucleotide randomized UMI, and a multiplexing barcode. The UMI allows for counting of individual amplification events to eliminate PCR bias.



FIGS. 8A-8B: Results of Miseq and Matlab analysis of DNA-mediated R2Tg integration into Hek293T cells. Each graph shows analysis of (FIG. 8A) the experimental R2Tg (FIG. 8B) and 1 bp deletion negative control. The y-axis indicates aligned counts of unique sequences determined via unique UMIs found via Matlab. The X-axis indicates the sequence position of sequence coverage. The vertical gray line at the left of the graph indicates the position of the forward primer, while the vertical gray line at the right of the graph indicates the expected Tg-rDNA junction site. Bars at the right end of the graph indicate insertion without a truncation, and bars at the left end of the graph indicate truncation. FIG. 8A shows that most sequences show high alignment to the expected integration product.



FIG. 9 shows a ddPCR evaluation of copy number variation of the R2Tg-rDNA junction in human cells across transfection conditions. Forward primer and probe were expected to bind to the 3′ UTR of the R2Tg, while reverse primer was targeted to the human rDNA. The resulting ddPCR signal was normalized to that of reference assay RPP30 to determine copy number. Significantly higher average copies per genome were found with the wildtype (WT, left set of bars) R2Tg as compared to genetic control altering translation with a 1-bp deletion (Frameshift mutant control, right set of bars).



FIG. 10 illustrates the sequence alignment and coverage of TOPO cloning the nested PCR product from Example 7. The gray line at the right edge of the graph indicates the expected transgene-rDNA junction. Most sequences showed high alignment to the expected integrated product.



FIG. 11 is a schematic of an exemplary template RNA. It comprises a payload domain in the center (e.g., a heterologous object sequence, e.g., comprising a promoter and a protein-coding sequence). The payload domain is flanked by 5′ and 3′ protein interaction domains, e.g., sequences capable of binding the Gene Writer polypeptide, e.g., 5′ and 3′ UTR sequences shown in Table 3. Flanking the protein interaction domains are 5′ and 3′ homology domains, which have homology to the desired insertion region in the genome.



FIG. 12 is a graph showing retrotransposition efficiency measured by ddPCR (digital droplet PCR) using different transfection conditions. Bars A-C represent samples that were transfected using 0.15 μl Lipofectamine™ RNAiMAX with 100 ng, 250 ng, or 500 ng respectively. Bars D-F represent samples that were transfected using 0.3 μl Lipofectamine™ RNAiMAX with 100 ng, 250 ng, or 500 ng respectively. Bars G-I represent samples that were transfected using 10 TransIT®-mRNA transfection kit with 100 ng, 250 ng, or 500 ng respectively.



FIG. 13. Schematic of trans-transgene delivery machinery. This schematic illustrates a driver plasmid (left) with a pCEP4 backbone, which encodes the reverse transcriptase R2Tg, with a promoter and Kozak sequence upstream, and a polyadenylation signal downstream. The driver plasmid can drive expression of the GeneWriter protein. The transgene plasmid (right), with a pCDNA backbone, comprises (in order) a CMV promoter, an rDNA homology sequence, a 5′ UTR, an antisense-orientation insert, a 3′ UTR, a second rDNA homology sequence, a second polyadenylation signal, and a TK promoter driving a mKate2 marker. The antisense-orientation insert comprises an EF1α promoter, a coding region for EGFP that comprises an intron, and a polyadenylation signal. Use of the CMV promoter in the transgene plasmid drives expression of a template RNA comprising the rDNA homology regions, the UTRs, and the antisense-orientation insert.



FIG. 14 shows ddPCR evaluation of copy number variation of the transgene-rDNA junction in human cells across transfection conditions. Forward primer and probe were designed to bind to the 3′ UTR of the R2Tg, while reverse primer was targeted to the human rDNA. The resulting ddPCR signal was normalized to that of reference assay RPP30 to determine copy number. Significantly higher average copies per genome were found with the wildtype (WT) R2Tg as compared to backbone construct with no R2Tg sequence involved. Condition 1 denotes a driver plasmid: transgene plasmid molar ratio of 9:1; condition 2 denotes the ratio is 4:1, condition 3 denotes the ratio is 1:1, condition 4 denotes the ratio is 1:4, and condition 5 denotes the ratio is 1:9.



FIGS. 15A and 15B. FIG. 15A: Hybrid capture of R2Tg identified on-target integrations in the human genome. The read coverage as aligned to the expected target integration in the R2 ribosomal site is indicated on the y-axis. The 5′ junction between rDNA and R2Tg is indicated by the left vertical line, while the 3′ junction is indicated by the right vertical line. Next-generation sequencing identifies reads spanning the expected junctions. FIG. 15B shows the number of reads from this experiment categorized as on-target integration or off-target integration at the 5′ end and 3′ end of the integrated sequence.



FIG. 16. Sanger sequencing result of the 3′ junction nested PCR. Lowercase nucleotides represent the designed SNP. Shaded uppercase nucleotides represent WT sequence. FIG. 16 discloses SEQ ID NO: 1538.



FIGS. 17A-17F are schematic diagrams depicting various covalently dimerized Gene Writer protein configurations. The proteins depicted are: FIG. 17A: a wild-type full length enzyme. FIG. 17B, two full-length enzymes (each comprising a DNA-binding domain, an RNA-binding domain, a reverse transcriptase domain, and an endonuclease domain) connected by a linker. FIG. 17C, a DNA binding domain and an RNA binding domain connected by a linker to a full-length enzyme. FIG. 17D, a DNA-binding domain and an RNA-binding domain connected by a linker to an RNA-binding domain, a reverse transcriptase domain, and an endonuclease domain. FIG. 17E, a DNA-binding domain connected by a first linker to an RNA-binding domain, which is connected by a second linker to a second RNA-binding domain, a reverse transcriptase domain, and an endonuclease domain. FIG. 17F, a DNA-binding domain connected by a first linker to an RNA-binding domain, which is connected by a second linker to a plurality of RNA-binding domains (in this figure, the molecule comprises three RNA-binding domains), which are connected by a linker to a reverse transcriptase domain and an endonuclease domain. In some embodiments, each R2 binds UTRs in the template RNA. In some embodiments, at least one module comprises a reverse transcriptase domain and an endonuclease domain. In some embodiments, the protein comprises a plurality of RNA-binding domains. In some embodiments, the modular system is split and is only active when it binds on DNA where the system uses two different DNA binding modules, e.g., a first protein comprising a first DNA binding module that is fused to an RNA binding module that recruits the RNA template for target primed reverse transcription, and second protein that comprises a second DNA binding module that binds at the site of intergration and is fused to the reverse transcription and endonuclease modules. In some embodiments, the nucleic acid encoding the GeneWriter comprises an intein such that the GeneWriter protein is expressed from two separate genes and is fused by protein splicing after being translated. In some embodiments, the GeneWriter is derived from a non-LTR protein, e.g., an R2 protein.



FIGS. 18A-18F are a schematic diagram showing different modular components of a GeneWriter protein. The proteins depicted are: FIG. 18A: a wild-type full length enzyme. FIG. 18B: the DNA-binding domain of a GeneWriter may comprise zinc fingers, Cas9, or a transcription factor, or a fragment or variant of any of the forgoing. FIG. 18C: the reverse transcriptase domain and RNA-binding domain together may comprise a reverse transcriptase domain (e.g., from an R2 protein) that is heterologous to one or more other domains of the protein, and may optionally further comprise one or more additional RNA binding domains, or a fragment or variant of any of the foregoing. FIG. 18D: the RNA binding domain may comprise, e.g., a B-box protein, an MS2 coat protein, a dCas protein, or a UTR binding protein, or a fragment or variant of any of the foregoing. FIG. 18E: the reverse transcriptase domain may comprise, e.g., a truncated reverse transcriptase domain, e.g., from an R2 protein; a reverse transcriptase domain from a virus (e.g., HIV), or a reverse transcriptase domain from AMV (avian myeloblastosis virus), or a fragment or variant of any of the foregoing. FIG. 18F: the endonuclease domain can comprise, e.g., a Cas9 nickase, a Cas ortholog, Fok I, or a restriction enzyme, or a fragment or variant of any of the foregoing. In some embodiments, a separate DNA binding domain can be attached to a polypeptide described herein (e.g., a DNA binding domain having stronger affinity for the target DNA sequence than an existing or prior DNA binding domain of the polypeptide, or a DNA binding sequence that binds to a different target DNA sequence than the existing or prior DNA binding domain of the polypeptide). In some embodiments, DNA binding domain mutants can be generated, e.g., having increased affinity to the target DNA sequence. In embodiments, the DNA binding domain comprises a zinc finger. In embodiments, the DNA binding domain is attached to the polypeptide (e.g., at the N-terminal or C-terminal ends) via a linker, e.g., as described herein. In embodiments, a zinc finger is attached to a DNA binding domain mutant (e.g., as described herein), such that the polypeptide exhibits increased binding to the target DNA sequence (e.g., as dictated by the zinc finger) without competition with the rDNA.



FIG. 19 is a graph showing linker mutant integration into the genome of HEK293T cells, assessed by a ddPCR assay evaluating copy number of R2Tg integration per genome. In v1 mutants, an insertion is located at the N-terminal side of an alpha helical region of R2Tg that preceded the predicted −1 RNA binding motif; in v2 mutants, an insertion is located at the C-terminal side of an alpha helical region of R2Tg that preceded the predicted −1 RNA binding motif; and in v3 mutants, an insertion is located C-terminal to a random coil region that came after the predicted c-myb DNA binding motif of R2Tg.



FIGS. 20A-20B are a series of graphs showing long-read sequencing confirming fidelity of R2Tg cis integration. Unique sequence coverage, as determined by UMI, is graphed across the expected reference sequence. The left vertical bar indicates expected 5′ junction of the rDNA and R2Tg, while the right vertical bar indicates the 3′ junction. Two separate amplicons spanning the 5′ junction and 3′ junction are shown.



FIGS. 21A-21B are a series of graphs showing long-read sequencing confirming fidelity of R2Tg cis integration. Unique sequence deletions (>3 bp) as determined by UMI is graphed across the expected reference sequence. The left vertical bar indicates expected 5′ junction of the rDNA and R2Tg, while the right vertical bar indicates the 3′ junction. Two separate amplicons spanning the 5′ junction and 3′ junction are shown.



FIG. 22 is a diagram showing exemplary plasmid map PLV033 for cis integration of R2Gfo.



FIG. 23 is a graph showing integration of R2Gfo, R4A1, and R2Tg in cis in HEK293T cells. The mean of four replicates is shown; error bars indicate standard deviation.



FIG. 24 is a graph showing that R2Tg integrates into human fibroblasts in cis. Integration efficiency of the wild-type (WT) and endonuclease (EN) control R2Tg were plotted over four replicate experiments as measured via ddPCR at the 3′ junction of R2Tg and the rDNA target.



FIG. 25 is a diagram showing Western Blot analysis for p53, p21, Actin, and Vinculin. U2OS cells were tested with the indicated compound or plasmid: GFP, R2Tg-WT (wild-type), or R2Tg-EN (endonuclease domain mutant). Plasmid transfections were performed with either lipofectamine 3000 (Lipo) or Fugene HD (Fug). Cells were analyzed 24 hours after treatment or transfection.





DETAILED DESCRIPTION

This disclosure relates to compositions, systems and methods for targeting, editing, modifying or manipulating a DNA sequence (e.g., inserting a heterologous object DNA sequence into a target site of a mammalian genome) at one or more locations in a DNA sequence in a cell, tissue or subject, e.g., in vivo or in vitro. The object DNA sequence may include, e.g., a coding sequence, a regulatory sequence, a gene expression unit.


More specifically, the disclosure provides retrotransposon-based systems for inserting a sequence of interest into the genome. This disclosure is based, in part, on a bioinformatic analysis to identify retrotransposase sequences and the associated 5′ UTR and 3′ UTR from a variety of organisms (see Table 3). While not wishing to be bound by theory, in some embodiments, retrotransposases identified in homeothermic (warm blooded) species, like birds, may have improved thermostability relative to some other enzymes that evolved at lower temperatures, and the thermostable retrotransposases may therefore be better suited for use in human cells. The disclosure also provides experimental evidence that several retrotransposases from different species, e.g., different species of animal and/or different species and clade of retrotransposon (e.g., as grouped by reverse transcriptase phylogeny, e.g., as described in Su et al. (2019) RNA; incorporated herein by reference in its entirety), can be used to catalyze DNA insertion into a target site in human cells (see Examples 7 and Example 28).


In some embodiments, systems described herein can have a number of advantages relative to various earlier systems. For instance, the disclosure describes retrotransposases capable of inserting long sequences (e.g., over 3000 nucleotides) of heterologous nucleic acid into a genome (see, e.g., FIG. 20A). In addition, retrotransposases described herein can insert heterologous nucleic acid in an endogenous site in the genome, such as the rDNA locus (see, e.g., Example 7). This is in contrast to Cre/loxP systems which require a first step of inserting an exogenous loxP site before a second step of inserting a sequence of interest into the loxP site.


Gene-Writer™ Genome Editors

Non-long terminal repeat (LTR) retrotransposons are a type of mobile genetic elements that are widespread in eukaryotic genomes. They include two classes: the apurinic/apyrimidinic endonuclease (APE)-type and the restriction enzyme-like endonuclease (RLE)-type. The APE class retrotransposons are comprised of two functional domains: an endonuclease/DNA binding domain, and a reverse transcriptase domain. The RLE class are comprised of three functional domains: a DNA binding domain, a reverse transcription domain, and an endonuclease domain. The reverse transcriptase domain of non-LTR retrotransposon functions by binding an RNA sequence template and reverse transcribing it into the host genome's target DNA. The RNA sequence template has a 3′ untranslated region which is specifically bound to the transposase, and a variable 5′ region generally having Open Reading Frame(s) (“ORF”) encoding transposase proteins. The RNA sequence template may also comprise a 5′ untranslated region which specifically binds the retrotransposase.


The inventors have found that, surprisingly, the elements of such non-LTR retrotransposons can be functionally modularized and/or modified to target, edit, modify or manipulate a target DNA sequence, e.g., to insert an object (e.g., heterologous) nucleic acid sequence into a target genome, e.g., a mammalian genome, by reverse transcription. Such modularized and modified nucleic acids, polypeptide compositions and systems are described herein and are referred to as Gene Writer™ gene editors. A Gene Writer™ gene editor system comprises: (A) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a reverse transcriptase domain, and either (x) an endonuclease domain that contains DNA binding functionality or (y) an endonuclease domain and separate DNA binding domain; and (B) a template RNA comprising (i) a sequence that binds the polypeptide and (ii) a heterologous insert sequence. For example, the Gene Writer genome editor protein may comprise a DNA-binding domain, a reverse transcriptase domain, and an endonuclease domain. In other embodiments, the Gene Writer genome editor protein may comprise a reverse transcriptase domain and an endonuclease domain. In certain embodiments, the elements of the Gene Writer™ gene editor polypeptide can be derived from sequences of non-LTR retrotransposons, e.g., APE-type or RLE-type retrotransposons or portions or domains thereof. In some embodiments the RLE-type non-LTR retrotransposon is from the R2, NeSL, HERO, R4, or CRE clade. In some embodiments the Gene Writer genome editor is derived from R4 element X4_Line, which is found in the human genome. In some embodiments the APE-type non-LTR retrotransposon is from the R1, or Tx1 clade. In some embodiments the Gene Writer genome editor is derived from Tx1 element Mare6, which is found in the human genome. The RNA template element of a Gene Writer™ gene editor system is typically heterologous to the polypeptide element and provides an object sequence to be inserted (reverse transcribed) into the host genome. In some embodiments the Gene Writer genome editor protein is capable of target primed reverse transcription.


In some embodiments the Gene Writer genome editor is combined with a second polypeptide. In some embodiments the second polypeptide is derived from an APE-type non-LTR retrotransposon. In some embodiments the second polypeptide has a zinc knuckle-like motif. In some embodiments the second polypeptide is a homolog of Gag proteins.


Polypeptide Component of Gene Writer Gene Editor System

RT Domain:


In certain aspects of the present invention, the reverse transcriptase domain of the Gene Writer system is based on a reverse transcriptase domain of an APE-type or RLE-type non-LTR retrotransposon. A wild-type reverse transcriptase domain of an APE-type or RLE-type non-LTR retrotransposon can be used in a Gene Writer system or can be modified (e.g., by insertion, deletion, or substitution of one or more residues) to alter the reverse transcriptase activity for target DNA sequences. In some embodiments the reverse transcriptase is altered from its natural sequence to have altered codon usage, e.g. improved for human cells. In some embodiments the reverse transcriptase domain is a heterologous reverse transcriptase from a different retrovirus, LTR-retrotransposon, or non-LTR retrotransposon. In certain embodiments, a Gene Writer system includes a polypeptide that comprises a reverse transcriptase domain of an RLE-type non-LTR retrotransposon from the R2, NeSL, HERO, R4, or CRE clade, or of an APE-type non-LTR retrotransposon from the R1, or Tx1 clade. In certain embodiments, a Gene Writer system includes a polypeptide that comprises a reverse transcriptase domain of a retrotransposon listed in Table 1, Table 2, or Table 3. In embodiments, the amino acid sequence of the reverse transcriptase domain of a Gene Writer system is at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identical to the amino acid sequence of a reverse transcriptase domain of a retrotransposon whose DNA sequence is referenced in Table 1, Table 2, or Table 3. A person having ordinary skill in the art is capable of identifying reverse transcription domains based upon homology to other known reverse transcription domains using routine tools as Basic Local Alignment Search Tool (BLAST). In some embodiments, reverse transcriptase domains are modified, for example by site-specific mutation. In embodiments, the reverse transcriptase domain is engineered to bind a heterologous template RNA.


Endonuclease Domain:


In certain embodiments, the endonuclease/DNA binding domain of an APE-type retrotransposon or the endonuclease domain of an RLE-type retrotransposon can be used or can be modified (e.g., by insertion, deletion, or substitution of one or more residues) in a Gene Writer system described herein. In some embodiments the endonuclease domain or endonuclease/DNA binding domain is altered from its natural sequence to have altered codon usage, e.g. improved for human cells. In some embodiments the endonuclease element is a heterologous endonuclease element, such as Fok1 nuclease, a type-II restriction 1-like endonuclease (RLE-type nuclease), or another RLE-type endonuclease (also known as REL). In some embodiments the heterologous endonuclease activity has nickase activity and does not form double stranded breaks. The amino acid sequence of an endonuclease domain of a Gene Writer system described herein may be at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identical to the amino acid sequence of an endonuclease domain of a retrotransposon whose DNA sequence is referenced in Table 1, 2, or 3. A person having ordinary skill in the art is capable of identifying endonuclease domains based upon homology to other known endonuclease domains using tools as Basic Local Alignment Search Tool (BLAST). In certain embodiments, the heterologous endonuclease is Fok1 or a functional fragment thereof. In certain embodiments, the heterologous endonuclease is a Holliday junction resolvase or homolog thereof, such as the Holliday junction resolving enzyme from Sulfolobus solfataricus—Ssol Hje (Govindaraju et al., Nucleic Acids Research 44:7, 2016). In certain embodiments, the heterologous endonuclease is the endonuclease of the large fragment of a spliceosomal protein, such as Prp8 (Mahbub et al., Mobile DNA 8:16, 2017). For example, a Gene Writer polypeptide described herein may comprise a reverse transcriptase domain from an APE- or RLE-type retrotransposon and an endonuclease domain that comprises Fok1 or a functional fragment thereof. In still other embodiments, homologous endonuclease domains are modified, for example by site-specific mutation, to alter DNA endonuclease activity. In still other embodiments, endonuclease domains are modified to remove any latent DNA-sequence specificity.


DNA Binding Domain:


In certain aspects, the DNA-binding domain of a Gene Writer polypeptide described herein is selected, designed, or constructed for binding to a desired host DNA target sequence. In certain embodiments, the DNA-binding domain of the engineered RLE is a heterologous DNA-binding protein or domain relative to a native retrotransposon sequence. In some embodiments the heterologous DNA binding element is a zinc-finger element or a TAL effector element, e.g., a zinc-finger or TAL polypeptide or functional fragment thereof. In some embodiments the heterologous DNA binding element is a sequence-guided DNA binding element, such as Cas9, Cpf1, or other CRISPR-related protein that has been altered to have no endonuclease activity. In some embodiments the heterologous DNA binding element retains endonuclease activity. In some embodiments the heterologous DNA binding element replaces the endonuclease element of the polypeptide. In specific embodiments, the heterologous DNA-binding domain can be any one or more of Cas9, TAL domain, ZF domain, Myb domain, combinations thereof, or multiples thereof. In certain embodiments, the heterologous DNA-binding domain is a DNA binding domain of a retrotransposon described in Table 1, Table 2, or Table 3. A person having ordinary skill in the art is capable of identifying DNA binding domains based upon homology to other known DNA binding domains using tools as Basic Local Alignment Search Tool (BLAST). In still other embodiments, DNA-binding domains are modified, for example by site-specific mutation, increasing or decreasing DNA-binding elements (for example, number and/or specificity of zinc fingers), etc., to alter DNA-binding specificity and affinity. In some embodiments the DNA binding domain is altered from its natural sequence to have altered codon usage, e.g. improved for human cells


In certain aspects of the present invention, the host DNA-binding site integrated into by the Gene Writer system can be in a gene, in an intron, in an exon, an ORF, outside of a coding region of any gene, in a regulatory region of a gene, or outside of a regulatory region of a gene. In other aspects, the engineered RLE may bind to one or more than one host DNA sequence.


In certain embodiments, a Gene Writer™ gene editor system RNA further comprises an intracellular localization sequence, e.g., a nuclear localization sequence. The nuclear localization sequence may be an RNA sequence that promotes the import of the RNA into the nucleus. In certain embodiments the nuclear localization signal is located on the template RNA. In certain embodiments, the retrotransposase polypeptide is encoded on a first RNA, and the template RNA is a second, separate, RNA, and the nuclear localization signal is located on the template RNA and not on an RNA encoding the retrotransposase polypeptide. While not wishing to be bound by theory, in some embodiments, the RNA encoding the retrotransposase is targeted primarily to the cytoplasm to promote its translation, while the template RNA is targeted primarily to the nucleus to promote its retrotransposition into the genome. In some embodiments the nuclear localization signal is at the 3′ end, 5′ end, or in an internal region of the template RNA. In some embodiments the nuclear localization signal is 3′ of the heterologous sequence (e.g., is directly 3′ of the heterologous sequence) or is 5′ of the heterologous sequence (e.g., is directly 5′ of the heterologous sequence). In some embodiments the nuclear localization signal is placed outside of the 5′ UTR or outside of the 3′ UTR of the template RNA. In some embodiments the nuclear localization signal is placed between the 5′ UTR and the 3′ UTR, wherein optionally the nuclear localization signal is not transcribed with the transgene (e.g., the nuclear localization signal is an anti-sense orientation or is downstream of a transcriptional termination signal or polyadenylation signal). In some embodiments the nuclear localization sequence is situated inside of an intron. In some embodiments a plurality of the same or different nuclear localization signals are in the RNA, e.g., in the template RNA. In some embodiments the nuclear localization signal is less than 5, 10, 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900 or 1000 bp in length. Various RNA nuclear localization sequences can be used. For example, Lubelsky and Ulitsky, Nature 555 (107-111), 2018 describe RNA sequences which drive RNA localization into the nucleus. In some embodiments, the nuclear localization signal is a SINE-derived nuclear RNA localization (SIRLOIN) signal. In some embodiments the nuclear localization signal binds a nuclear-enriched protein. In some embodiments the nuclear localization signal binds the HNRNPK protein. In some embodiments the nuclear localization signal is rich in pyrimidines, e.g., is a C/T rich, C/U rich, C rich, T rich, or U rich region. In some embodiments the nuclear localization signal is derived from a long non-coding RNA. In some embodiments the nuclear localization signal is derived from MALAT1 long non-coding RNA or is the 600 nucleotide M region of MALAT1 (described in Miyagawa et al., RNA 18, (738-751), 2012). In some embodiments the nuclear localization signal is derived from BORG long non-coding RNA or is a AGCCC motif (described in Zhang et al., Molecular and Cellular Biology 34, 2318-2329 (2014). In some embodiments the nuclear localization sequence is described in Shukla et al., The EMBO Journal e98452 (2018). In some embodiments the nuclear localization signal is derived from a non-LTR retrotransposon, an LTR retrotransposon, retrovirus, or an endogenous retrovirus.


In certain embodiments, a Gene Writer™ gene editor system polypeptide further comprises an intracellular localization sequence, e.g., a nuclear localization sequence and/or a nucleolar localization sequence. The nuclear localization sequence and/or nucleolar localization sequence may be amino acid sequences that promote the import of the protein into the nucleus and/or nucleolus, where it can promote integration of heterologous sequence into the genome. In certain embodiments, a Gene Writer gene editor system polypeptide (e.g., a retrotransposase, e.g., a polypeptide according to any of Tables 1, 2, or 3 herein) further comprises a nucleolar localization sequence. In certain embodiments, the retrotransposase polypeptide is encoded on a first RNA, and the template RNA is a second, separate, RNA, and the nucleolar localization signal is encoded on the RNA encoding the retrotransposase polypeptide and not on the template RNA. In some embodiments, the nucleolar localization signal is located at the N-terminus, C-terminus, or in an internal region of the polypeptide. In some embodiments, a plurality of the same or different nucleolar localization signals are used. In some embodiments, the nuclear localization signal is less than 5, 10, 25, 50, 75, or 100 amino acids in length. Various polypeptide nucleolar localization signals can be used. For example, Yang et al., Journal of Biomedical Science 22, 33 (2015), describe a nuclear localization signal that also functions as a nucleolar localization signal. In some embodiments, the nucleolar localization signal may also be a nuclear localization signal. In some embodiments, the nucleolar localization signal may overlap with a nuclear localization signal. In some embodiments, the nucleolar localization signal may comprise a stretch of basic residues. In some embodiments, the nucleolar localization signal may be rich in arginine and lysine residues. In some embodiments, the nucleolar localization signal may be derived from a protein that is enriched in the nucleolus. In some embodiments, the nucleolar localization signal may be derived from a protein enriched at ribosomal RNA loci. In some embodiments, the nucleolar localization signal may be derived from a protein that binds rRNA. In some embodiments, the nucleolar localization signal may be derived from MSP58. In some embodiments, the nucleolar localization signal may be a monopartite motif. In some embodiments, the nucleolar localization signal may be a bipartite motif. In some embodiments, the nucleolar localization signal may consist of a multiple monopartite or bipartite motifs. In some embodiments, the nucleolar localization signal may consist of a mix of monopartite and bipartite motifs. In some embodiments, the nucleolar localization signal may be a dual bipartite motif. In some embodiments, the nucleolar localization motif may be a KRASSQALGTIPKRRSSSRFIKRKK (SEQ ID NO: 1530). In some embodiments, the nucleolar localization signal may be derived from nuclear factor-KB-inducing kinase. In some embodiments, the nucleolar localization signal may be an RKKRKKK motif (SEQ ID NO: 1531) (described in Birbach et al., Journal of Cell Science, 117 (3615-3624), 2004).


In some embodiments, a nucleic acid described herein (e.g., an RNA encoding a GeneWriter polypeptide, or a DNA encoding the RNA) comprises a microRNA binding site. In some embodiments, the microRNA binding site is used to increase the target-cell specificity of a GeneWriter system. For instance, the microRNA binding site can be chosen on the basis that is is recognized by a miRNA that is present in a non-target cell type, but that is not present (or is present at a reduced level relative to the non-target cell) in a target cell type. Thus, when the RNA encoding the GeneWriter polypeptide is present in a non-target cell, it would be bound by the miRNA, and when the RNA encoding the GeneWriter polypeptide is present in a target cell, it would not be bound by the miRNA (or bound but at reduced levels relative to the non-target cell). While not wishing to be bound by theory, binding of the miRNA to the RNA encoding the GeneWriter polypeptide may reduce production of the GeneWriter polypeptide, e.g., by degrading the mRNA encoding the polypeptide or by interfering with translation. Accordingly, the heterologous object sequence would be inserted into the genome of target cells more efficiently than into the genome of non-target cells. A system having a microRNA binding site in the RNA encoding the GeneWriter polypeptide (or encoded in the DNA encoding the RNA) may also be used in combination with a template RNA that is regulated by a second microRNA binding site, e.g., as described herein in the section entitled “Template RNA component of Gene Writer™ gene editor system.”









TABLE 1







Table 1: APE-type non-LTR retrotransposon elements












Sequence





Family
Accession
Mobile Element
Name
Organism





Dewa
AB097143
ORF2

Danio rerio retrotransposon


Danio rerio






DewaDr1 DNA, complete sequence



HeT-A
KJ081250
non-LTR

Drosophila melanogaster non-LTR


Drosophila





retrotransposon:
retrotransposon HeT-A, partial

melanogaster





HeT-A
sequence



Keno
AB111948
ORF2

Tetraodon nigroviridis


Tetraodon






retrotransposon KenoTn1 DNA,

nigroviridis






partial sequence



KenoDr1;
AB097144
ORF2

Danio rerio retrotransposon KenoDr1


Danio rerio



Keno


DNA, complete sequence



KenoFr1;
AB111947
ORF2

Takifugu rubripes retrotransposon


Takifugu



Keno


KenoFr1 DNA, complete sequence

rubripes



Kibi
AB097139
ORF2

Danio rerio retrotransposon KibiDr2


Danio rerio






DNA, complete sequence



Kibi
AB097138
ORF2

Danio rerio retrotransposon KibiDr1


Danio rerio






DNA, complete sequence



Kibi
AB097137
ORF2

Tetraodon nigroviridis


Tetraodon






retrotransposon KibiTn1 DNA,

nigroviridis






complete sequence



Kibi
AB097136
ORF2

Takifugu rubripes retrotransposon


Takifugu






KibiFr1 DNA, complete sequence

rubripes



KoshiTn1
AB097135
ORF2

Tetraodon nigroviridis


Tetraodon






retrotransposon KoshiTn1 DNA,

nigroviridis






complete sequence



Mutsu
AB097142
ORF2

Danio rerio retrotransposon


Danio rerio






MutsuDr3 DNA, partial sequence



Mutsu
AB097141
ORF2

Danio rerio retrotransposon


Danio rerio






MutsuDr2 DNA, partial sequence



Mutsu
AB097140
ORF2

Danio rerio retrotransposon


Danio rerio






MutsuDr1 DNA, complete sequence



R1
HQ284568
non-LTR

Trilocha sp. GAS-2011 isolate TrilSp.6


Trilocha





retrotransposon:
non-LTR retrotransposon R1-like
sp. GAS-2011




R1-like
reverse transcriptase gene, partial






cds



R1
HQ284534
non-LTR

Scopula ornata isolate ScoOrn.6 non-


Scopula ornata





retrotransposon:
LTR retrotransposon R1-like reverse





R1-like
transcriptase gene, partial cds



R1
HQ284496
non-LTR

Perigonia ilus isolate PerIlus.31 non-


Perigonia ilus





retrotransposon:
LTR retrotransposon R1-like reverse





R1-like
transcriptase gene, partial cds



R1
HQ284489
non-LTR

Oxytenis modestia isolate


Oxytenis





retrotransposon:
OxyMod.2_3_4_7_9 non-LTR

modestia





R1-like
retrotransposon R1-like reverse






transcriptase gene, partial cds



R1
HQ284488
non-LTR

Oxytenis modestia isolate OxyMod.1


Oxytenis





retrotransposon:
non-LTR retrotransposon R1-like

modestia





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284476
non-LTR

Oeneis magna dubia isolate


Oeneis magna





retrotransposon:
OenMag.26 non-LTR retrotransposon

dubia





R1-like
R1-like reverse transcriptase-like






gene, partial sequence



R1
HQ284437
non-LTR

Lymantria dispar isolate LymDis.2


Lymantria





retrotransposon:
non-LTR retrotransposon R1-like

dispar





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284435
non-LTR

Lymantria dispar isolate LymDis.1


Lymantria





retrotransposon:
non-LTR retrotransposon R1-like

dispar





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284432
non-LTR

Janiodes laverna isolate JanLav.911


Janiodes





retrotransposon:
non-LTR retrotransposon R1-like

laverna





R1-like
reverse transcriptase-like gene,






partial sequence



R1
HQ284431
non-LTR

Janiodes laverna isolate JanLav.811


Janiodes





retrotransposon:
non-LTR retrotransposon R1-like

laverna





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284430
non-LTR

Janiodes laverna isolate JanLav.5


Janiodes





retrotransposon:
non-LTR retrotransposon R1-like

laverna





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284428
non-LTR

Janiodes laverna isolate JanLav.411


Janiodes





retrotransposon:
non-LTR retrotransposon R1-like

laverna





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284426
non-LTR

Janiodes laverna isolate JanLav.211


Janiodes





retrotransposon:
non-LTR retrotransposon R1-like

laverna





R1-like
reverse transcriptase-like gene,






partial sequence



R1
HQ284421
non-LTR

Heteropterus morpheus isolate


Heteropterus





retrotransposon:
HetMor.3 non-LTR retrotransposon

morpheus





R1-like
R1-like reverse transcriptase gene,






partial cds



R1
HQ284402
non-LTR

Erinnyis ello isolate EriEllo.22 non-


Erinnyis ello





retrotransposon:
LTR retrotransposon R1-like reverse





R1-like
transcriptase-like gene, partial






sequence



R1
HQ284399
non-LTR

Erebia theano isolate EreThe.29 non-


Erebia theano





retrotransposon:
LTR retrotransposon R1-like reverse





R1-like
transcriptase gene, partial cds



R1
HQ284398
non-LTR

Erebia theano isolate EreThe.28 non-


Erebia theano





retrotransposon:
LTR retrotransposon R1-like reverse





R1-like
transcriptase-like gene, partial






sequence



R1
HQ284397
non-LTR

Erebia theano isolate EreThe.27 non-


Erebia theano





retrotransposon:
LTR retrotransposon R1-like reverse





R1-like
transcriptase-like gene, partial






sequence



R1
HQ284391
non-LTR

Emesis lucinda isolate EmeLuc.23


Emesis lucinda





retrotransposon:
non-LTR retrotransposon R1-like





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284390
non-LTR

Emesis lucinda isolate EmeLuc.2 non-


Emesis lucinda





retrotransposon:
LTR retrotransposon R1-like reverse





R1-like
transcriptase gene, partial cds



R1
HQ284364
non-LTR

Coenonympha glycerion isolate


Coenonympha





retrotransposon:
CoeGly.9 non-LTR retrotransposon

glycerion





R1-like
R1-like reverse transcriptase gene,






partial cds



R1
HQ284363
non-LTR

Coenonympha glycerion isolate


Coenonympha





retrotransposon:
CoeGly.8 non-LTR retrotransposon

glycerion





R1-like
R1-like reverse transcriptase-like






gene, partial sequence



R1
HQ284362
non-LTR

Coenonympha glycerion isolate


Coenonympha





retrotransposon:
CoeGly.7 non-LTR retrotransposon

glycerion





R1-like
R1-like reverse transcriptase gene,






partial cds



R1
HQ284361
non-LTR

Coenonympha glycerion isolate


Coenonympha





retrotransposon:
CoeGly.5 non-LTR retrotransposon

glycerion





R1-like
R1-like reverse transcriptase-like






gene, partial sequence



R1
HQ284357
non-LTR

Coenonympha glycerion isolate


Coenonympha





retrotransposon:
CoeGly.13 non-LTR retrotransposon

glycerion





R1-like
R1-like reverse transcriptase gene,






partial cds



R1
HQ284356
non-LTR

Coenonympha glycerion isolate


Coenonympha





retrotransposon:
CoeGly.11 non-LTR retrotransposon

glycerion





R1-like
R1-like reverse transcriptase-like






gene, partial sequence



R1
HQ284350
non-LTR

Catocyclotis adelina isolate


Catocyclotis





retrotransposon:
CatAde.18 non-LTR retrotransposon

adelina





R1-like
R1-like reverse transcriptase gene,






partial cds



R1
HQ284340
non-LTR

Caria rhacotis isolate CarRha.11 non-


Caria rhacotis





retrotransposon:
LTR retrotransposon R1-like reverse





R1-like
transcriptase gene, partial cds



R1
HQ284339
non-LTR

Caria rhacotis isolate CarRha.1 non-


Caria rhacotis





retrotransposon:
LTR retrotransposon R1-like reverse





R1-like
transcriptase gene, partial cds



R1
HQ284319
non-LTR

Archiearis parthenias isolate BrePar.1


Archiearis





retrotransposon:
non-LTR retrotransposon R1-like

parthenias





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284318
non-LTR

Brangas neora isolate BraNeo.32


Brangas neora





retrotransposon:
non-LTR retrotransposon R1-like





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284292
non-LTR

Araschnia levana isolate AraLev.31


Araschnia levana





retrotransposon:
non-LTR retrotransposon R1-like





R1-like
reverse transcriptase-like gene,






partial sequence



R1
HQ284286
non-LTR

Araschnia levana isolate AraLev.1


Araschnia levana





retrotransposon:
non-LTR retrotransposon R1-like





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284280
non-LTR

Anteros formosus isolate AntForm.34


Anteros





retrotransposon:
non-LTR retrotransposon R1-like

formosus





R1-like
reverse transcriptase gene, partial






cds



R1
HQ284279
non-LTR

Anteros formosus isolate AntForm.32


Anteros





retrotransposon:
non-LTR retrotransposon R1-like

formosus





R1-like
reverse transcriptase-like gene,






partial sequence



R1
HQ284278
non-LTR

Anteros formosus isolate AntForm.31


Anteros





retrotransposon:
non-LTR retrotransposon R1-like

formosus





R1-like
reverse transcriptase-like gene,






partial sequence



R1
HQ284270
non-LTR

Agrotis exclamationis isolate


Agrotis





retrotransposon:
AgrExcl.27 non-LTR retrotransposon

exclamationis





R1-like
R1-like reverse transcriptase gene,






partial cds



R1
HQ284267
non-LTR

Agrius cingulata isolate


Agrius





retrotransposon:
AgrCing.36_39 non-LTR

cingulata





R1-like
retrotransposon R1-like reverse






transcriptase gene, partial cds



R1
HQ284266
non-LTR

Agrius cingulata isolate AgrCing.3


Agrius





retrotransposon:
non-LTR retrotransposon R1-like

cingulata





R1-like
reverse transcriptase-like gene,






partial sequence



R1
HQ284263
non-LTR

Aglia tau isolate AglTau.8 non-LTR


Aglia tau





retrotransposon:
retrotransposon R1-like reverse





R1-like
transcriptase gene, partial cds



R1
HQ284262
non-LTR

Aglia tau isolate AglTau.7 non-LTR


Aglia tau





retrotransposon:
retrotransposon R1-like reverse





R1-like
transcriptase gene, partial cds



R1
DQ836362
MalR1

Maculinea alcon R1-like non-LTR


Phengaris alcon






retrotransposon R1 reverse






transcriptase (RT) pseudogene,






partial sequence



R1
DQ836391
MnaR1

Maculinea nausithous R1-like non-


Phengaris






LTR retrotransposon R1 reverse

nausithous






transcriptase (RT) gene, partial cds



R1
KU543683
non-LTR

Bactrocera tryoni clone Btry_5404


Bactrocera





retrotransposon
non-LTR retrotransposon R1,

tryoni





and non-LTR
complete sequence





retrovirus






reverse






transcriptase;






Region: RT_nLTR




R1
KU543682
non-LTR

Bactrocera tryoni clone Btry_5167


Bactrocera





retrotransposon
non-LTR retrotransposon R1,

tryoni





and non-LTR
complete sequence





retrovirus






reverse






transcriptase;






Region: RT_nLTR




R1
KU543679
non-LTR

Bactrocera tryoni clone Btry_4956


Bactrocera





retrotransposon
non-LTR retrotransposon R1,

tryoni





and non-LTR
complete sequence





retrovirus






reverse






transcriptase;






Region: RT_nLTR




R1
KU543678
non-LTR

Bactrocera tryoni clone Btry_5979


Bactrocera





retrotransposon
non-LTR retrotransposon R1,

tryoni





and non-LTR
complete sequence





retrovirus






reverse






transcriptase;






Region: RT_nLTR




R1
AB078933
ORF1

Papilio xuthus non-LTR


Papilio xuthus






retrotransposon gene for gag-like






protein, partial cds, clone: SARTPx2-2



R1
AB078932
ORF1

Papilio xuthus non-LTR


Papilio xuthus






retrotransposon gene for gag-like






protein, partial cds, clone: SARTPx2-1



R1
AB078936
ORF2

Papilio xuthus non-LTR


Papilio xuthus






retrotransposon genes for gag-like






protein, reverse transcriptase, partial






cds, clone: SARTPx4-N18



R1
AB078935
ORF2

Papilio xuthus non-LTR


Papilio xuthus






retrotransposon genes for gag-like






protein, reverse transcriptase, partial






and complete cds, clone: SARTPx3-N7



R1
AB078934
ORF2

Papilio xuthus non-LTR


Papilio xuthus






retrotransposon genes for gag-like






protein, reverse transcriptase, partial






cds, clone: SARTPx3-N3



R1
AB078931
ORF2

Papilio xuthus non-LTR


Papilio xuthus






retrotransposon genes for gag-like






protein, reverse transcriptase, partial






and complete cds, clone: SARTPx1-N14



R1
AB078930
ORF2

Papilio xuthus non-LTR


Papilio xuthus






retrotransposon genes for gag-like






protein, reverse transcriptase, partial






and complete cds, clone: SARTPx1-N5



R1
AB078929
ORF2

Papilio xuthus non-LTR


Papilio xuthus






retrotransposon genes for gag-like






protein, reverse transcrpitase, partial






and complete cds, clone: SARTPx1-N4



R1
AB078928
ORF2

Papilio xuthus non-LTR


Papilio xuthus






retrotransposon gene for gag-like






protein, reverse transcrpitase,






complete and partial cds, clone:






SARTPx1-3



R1
KP771712
ORF2; contains

Blattella germanica non-LTR


Blattella





endonuclease,
retrotransposon TRAS-like 2,

germanica





reverse
complete sequence





transcriptase






and RNaseH




R1
KP771711
ORF2; contains

Blattella germanica non-LTR


Blattella





endonuclease,
retrotransposon TRAS-like 1,

germanica





reverse
complete sequence





transcriptase






and RNaseH




R1
AF015813
R1 ORF

Dugesiella sp. retrotransposon R1


Aphonopelma






reverse transcriptase gene, partial
sp. WDB-1998





cds



R1
AF015489
R1 ORF

Dugesiella sp. retrotransposon R1


Aphonopelma






reverse transcriptase gene, partial
sp. WDB-1998





cds



R1Bm
AB182560
non-LTR

Bombyx mori genes for non-LTR


Bombyx mori





retrotransposon
retrotransposon R1Bmks ORF1





R1Bmks ORF2
protein, non-LTR retrotransposon






R1Bmks ORF2 protein, complete cds



R6
AB090819
ORF2

Anopheles gambiae retrotransposon


Anopheles






R6Ag3 DNA, complete sequence

gambiae



R6
AB090818
ORF2

Anopheles gambiae retrotransposon


Anopheles






R6Ag2 DNA, complete sequence

gambiae



R6
AB090817
ORF2

Anopheles gambiae retrotransposon


Anopheles






R6Ag1 DNA, complete sequence

gambiae



R6
KJ958615
R2

Bacillus rossius non-LTR


Bacillus






retrotransposon reVIR6, partial

rossius






sequence



R6
KJ958596
R2

Bacillus rossius non-LTR


Bacillus






retrotransposon reBER6, partial

rossius






sequence



R6
AF352480
transposon:

Chironomus circumdatus clone cir6


Chironomus





NLRCth1-
transposon NLRCth1-like non-LTR

circumdatus





like non-LTR
retrotransposon reverse





retrotransposon
transcriptase gene, partial cds



R6
AF373367
transposon:

Clelia rustica clone CR6 non-LTR


Paraphimophis





non-LTR
retrotransposon LINE2 reverse

rusticus





retrotransposon
transcriptase pseudogene, partial





LINE2
sequence



R7
AB090820
ORF2

Anopheles gambiae retrotransposon


Anopheles






R7Ag1 DNA, complete sequence

gambiae



R7
AB090821
ORF2

Anopheles gambiae retrotransposon


Anopheles






R7Ag2 DNA, complete sequence

gambiae



R7
KJ958622
R2

Bacillus rossius non-LTR


Bacillus






retrotransposon trKOR7, partial

rossius






sequence



R7
KJ958616
R2

Bacillus rossius non-LTR


Bacillus






retrotransposon reVIR7, partial

rossius






sequence



R7
KJ958597
R2

Bacillus rossius non-LTR


Bacillus






retrotransposon reBER7, partial

rossius






sequence



R7
AF352514
transposon:

Chironomus circumdatus clone cir7


Chironomus





NLRCth1-like
transposon NLRCth1-like non-LTR

circumdatus





non-LTR
retrotransposon reverse





retrotransposon
transcriptase pseudogene, partial






sequence



Rt2
AY379084
truncated;

Leptocheirus plumulosus


Leptocheirus





similar to
retrotransposon LpRt2, partial

plumulosus





reverse
sequence





transcriptase




Rt2
MSQRT2RET


Anopheles gambiae retrotransposon


Anopheles






RT2, complete sequence

gambiae



RTAg4
AB090813
ORF2

Anopheles gambiae retrotransposon


Anopheles






RTAg4 DNA, complete sequence

gambiae



TRAS1
BMOTRAS1
DNA binding

Bombyx mori gene, complete


Bombyx mori





domain at
sequence of retrotransposon TRAS1





AA1103-1120.




TRAS3
JX875955
similar to

Acyrthosiphon pisum clone LSR1 non-


Acyrthosiphon





reverse
LTR retrotransposon TRAS3,

pisum





transcriptases
complete sequence



Tx1
AJ621359
transposon:

Tetraodon nigroviridis non-LTR


Tetraodon





non-LTR
retrotransposon TX1-1_Tet, complete

nigroviridis





retrotransposon
sequence





TX1-1_Tet




Tx1
AJ621360
transposon:

Tetraodon nigroviridis partial non-


Tetraodon





non-LTR
LTR retrotransposon TX1-2_Tet

nigroviridis





retrotransposon






TX1-2_Tet




Tx1
AJ621361
transposon:

Tetraodon nigroviridis partial non-


Tetraodon





non-LTR
LTR retrotransposon TX1-3_Tet

nigroviridis





retrotransposon






TX1-3_Tet




Tx1
AJ621362
transposon:

Tetraodon nigroviridis partial non-


Tetraodon





non-LTR
LTR retrotransposon TX1-4_Tet

nigroviridis





retrotransposon






TX1-4_Tet




Tx1
DQ118004
transposon:

Acipenser ruthenus clone dg194


Acipenser





Tx1-like
transposon Tx1-like retrotransposon

ruthenus





retrotransposon
Tx1Aru reverse transcriptase-like





Tx1Aru
gene, partial sequence



Tx1
AB097134
ORF2

Takifugu rubripes retrotransposon


Takifugu






KoshiFr1 DNA, complete sequence

rubripes



Tx1
AB090816
ORF2

Anopheles gambiae retrotransposon


Anopheles






MinoAg1 DNA, complete sequence

gambiae



Tx1
AB090812
ORF2

Anopheles gambiae retrotransposon


Anopheles






RTAg3 DNA, complete sequence

gambiae



Waldo
AH009917
non-LTR

Drosophila melanogaster Waldo-A


Drosophila





retrotransposon:
non-LTR retrotransposon, 5′

melanogaster





Waldo-A
sequence



Waldo
AH009916
non-LTR

Drosophila melanogaster clone CBE9


Drosophila





retrotransposon:
Waldo-A non-LTR retrotransposon, 5′

melanogaster





Waldo-A
sequence



Waldo
AH009915
non-LTR

Drosophila melanogaster Waldo-A


Drosophila





retrotransposon:
non-LTR retrotransposon, 5′

melanogaster





Waldo-A
sequence



Waldo
AH009914
non-LTR

Drosophila melanogaster Waldo-A


Drosophila





retrotransposon:
non-LTR retrotransposon

melanogaster





Waldo-A




Waldo
AH009920
non-LTR

Drosophila melanogaster Waldo-B


Drosophila





retrotransposon:
non-LTR retrotransposon, 5′

melanogaster





Waldo-B
sequence



Waldo
AH009919
non-LTR


Drosophila





retrotransposon:


melanogaster





Waldo-B




Waldo
AH009918
non-LTR


Drosophila





retrotransposon:


melanogaster





Waldo-B




Waldo
AB090815
ORF2

Anopheles gambiae retrotransposon


Anopheles






WaldoAg2 DNA, complete sequence

gambiae



Waldo
AB090814
ORF2

Anopheles gambiae retrotransposon


Anopheles






WaldoAg1 DNA, complete sequence

gambiae



Waldo
AB078939
ORF2

Forficula scudderi non-LTR


Forficula






retrotransposon pseudogene for

scudderi






reverse transcriptase, clone:






WaldoFs1-26



Waldo
AB078938
ORF2

Forficula scudderi non-LTR


Forficula






retrotransposon pseudogene for

scudderi






reverse transcriptase, clone:






WaldoFs1-2



Waldo
AB078937
ORF2

Forficula scudderi non-LTR


Forficula






retrotransposon pseudogene for

scudderi






reverse transcriptase, clone:






WaldoFs1-1
















TABLE 2







Table 2: RLE-type non-LTR retrotransposon elements











Family
Accession
Mobile Element
Name/Description
Organism





CRE
EF067892


Colletotrichum cereale


Colletotrichum






clone 9F8-1558 Ccret3 non-LTR

cereale






retrotransposon, partial sequence



CRE
EF067894


Colletotrichum cereale


Colletotrichum






clone 9F8-2137 Ccret3 non-LTR

cereale






retrotransposon, partial sequence



CRE
MG028000
non-LTR

Characidium gomesi voucher


Characidium





retrotransposon:
MNRJ20998 non-LTR

gomesi





Rex3
retrotransposon Rex3, partial






sequence



CRE
KY566213
non-LTR

Characidium gomesi non-LTR


Characidim





retrotransposon:
retrotransposon Rex3, partial

gomesi





Rex3
sequence



CRE
GU949558


Kalotermes flavicollis


Kalotermes






isolate Crete non-LTR

flavicollis






retrotransposon R2, complete






sequence; and R2 protein






gene, complete cds



CRE;
CFU19151
poly dA

Crithidia fasciculata


Crithidia



CRE2

tracts in
retrotransposon CRE2 in mini-

fasciculata





5′ and
exon gene, putative reverse





3′ UTRs
transcriptase gene, complete cds



CZAR
BR000987
pol
TPA_inf: Capsaspora owczarzaki

Capsaspora






DNA, non-LTR retrotransposon

owczarzaki






CoL4, complete sequence,






strain: ATCC 30864



CZAR
BR000986
pol
TPA_inf: Capsaspora owczarzaki

Capsaspora






DNA, non-LTR retrotransposon

owczarzaki






CoL3, complete sequence,






strain: ATCC 30864



CZAR
BR000985
pol
TPA_inf: Capsaspora owczarzaki

Capsaspora






DNA, non-LTR retrotransposon

owczarzaki






CoL2, complete sequence,






strain: ATCC 30864



CZAR
BR000984
pol
TPA_inf: Capsaspora owczarzaki

Capsaspora






DNA, non-LTR retrotransposon

owczarzaki






CoL1, complete sequence,






strain: ATCC 30864



DongAG;
AB097127
rt

Anopheles gambiae


Anopheles



Dong


retrotransposon DongAg DNA,

gambiae






partial sequence



EhRLE2
AB097128
rt

Entamoeba histolytica


Entamoeba






retrotransposon EhRLE2 DNA,

histolytica






complete sequence



EhRLE3
AB097129
rt

Entamoeba histolytica


Entamoeba






retrotransposon EhRLE3 DNA,

histolytica






complete sequence



Genie
AF440196
endonuclease

Giardia intestinalis non-LTR


Giardia






retrotransposon GENIE 1 pol

intestinalis






polyprotein gene, complete cds



Genie
BK000097
endonuclease
TPA_exp: Giardia intestinalis

Giardia






non-LTR retrotransposon Genie

intestinalis






1A gene, partial sequence



Genie
BK000095
endonuclease
TPA_exp: Giardia intestinalis

Giardia






non-LTR retrotransposon Genie

intestinalis






1 gene, partial sequence



Genie
BK000096
insertion site
TPA_exp: Giardia intestinalis

Giardia





for non-LTR
non-LTR retrotransposon Genie

intestinalis





retrotransposon
1 target site sequence





Genie 1




Genie
AY216701
non-

Girardia tigrina GENIE


Girardia





experimental
retrotransposon, complete

tigrina





evidence, no
sequence





additional






details






recorded




Genie
BK000098
similar to
TPA_exp: Giardia intestinalis

Giardia





endonuclease
non-LTR retrotransposon Genie

intestinalis






2 gene, complete sequence



GilD
AF433877
(tca)n (SEQ

Giardia intestinalis inactive


Giardia





ID NO: 1532)
non-LTR retrotransposon GilD,

intestinalis





or (tga)n
consensus sequence





(SEQ ID NO:






1533), n = 2-4




GilM
AF433875
poly(dA)

Giardia intestinalis non-LTR


Giardia





tract
LINE-like retrotransposon

intestinalis






GilM, complete sequence



Hero
AB097132
rt

Danio rerio retrotransposon


Danio rerio






HERODr DNA, complete sequence



Hero
AB097130
rt

Takifugu rubripes


Takifugu rubripes






retrotransposon HEROFr DNA,






complete sequence



HEROTn
AB097131
rt

Tetraodon nigroviridis


Tetraodon






retrotransposon HEROTn DNA,

nigroviridis






complete sequence



NeSL_3_135_68117
FJ905846
non-LTR

Daphnia pulex non-LTR


Daphnia pulex





retrotransposon:
retrotransposon





NeSL_3_135_68117
NeSL_3_135_68117, complete






sequence



NeSL;
DQ099731
target site

Caenorhabditis briggsae


Caenorhabditis



NeSL-1

duplication
transposon NeSl-1-like non-LTR

briggsae






retrotransposon NeSL-1Cb






reverse transcriptase (pol)






gene, complete cds



PERERE-9
BN000800

TPA_exp: Schistosoma mansoni

Schistosoma






Perere-9 non-LTR

mansoni






retrotransposon



R2
AF015814
R2

Limulus polyphemus


Limulus






retrotransposon R2, complete

polyphemus






sequence



R2
AF090145
R2

Nasonia vitripennis R2 non-LTR


Nasonia






retrotransposable element

vitripennis






reverse transcriptase gene,






partial cds



R2
AF015818
R2

Porcellio scaber


Porcellio scaber






retrotransposon R2, complete






sequence



R2
AF015815
R2

Anurida maritima


Anurida maritima






retrotransposon R2, complete






sequence



R2
M16558
R2

Bombyx mori rDNA insertion


Bombyx mori






element R2 (typeII), complete cds



R2
AF015819
R2

Forficula auricularia


Forficula






retrotransposon R2, complete

auricularia






sequence.



R2
EU854578
R2

Triops cancriformis non-LTR


Triops






retrotransposon R2 reverse

cancriformis






transcriptase gene, complete cds



R2
GU949555
R2

Reticulitermes lucifugus


Reticulitermes






non-LTR retrotransposon R2,

lucifugus






complete sequence; and R2






protein gene, complete cds



R2
AB097123
rt

Ciona intestinalis


Ciona intestinalis






retrotransposon R2Ci-C DNA,






partial sequence



R2
AB097124
rt

Ciona intestinalis


Ciona intestinalis






retrotransposon R2Ci-D DNA,






partial sequence



R2
FJ461304
R2

Rhynchosciara americana


Rhynchosciara






non-LTR retrotransposon RaR2

americana






reverse transcriptase gene,






complete cds



R2
AB097121
rt

Ciona intestinalis


Ciona intestinalis






retrotransposon R2Ci-A DNA,






complete sequence



R2
KP657892
R2

Bacillus rossius isolate


Bacillus rossius






roCAP(full).9 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657890
R2

Bacillus rossius isolate


Bacillus rossius






roCAP(full).7 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657888
R2

Bacillus rossius isolate


Bacillus rossius






roCAP(full).5 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657870
R2

Bacillus rossius isolate


Bacillus rossius






roCAP(full).1 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657833
R2

Bacillus rossius isolate


Bacillus rossius






roANZ(full).13 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657832
R2

Bacillus rossius isolate


Bacillus rossius






roANZ(full).12 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657830
R2

Bacillus rossius isolate


Bacillus rossius






roANZ(full).10 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657807
R2

Bacillus rossius isolate


Bacillus rossius






roANZ(−101).8 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657806
R2

Bacillus rossius isolate


Bacillus rossius






roANZ(−101).7 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657805
R2

Bacillus rossius isolate


Bacillus rossius






roANZ(−101).6 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657802
R2

Bacillus rossius isolate


Bacillus rossius






roANZ(−101).3 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657799
R2

Bacillus rossius isolate


Bacillus rossius






roANZ(−101).1 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
FJ461304
R2

Rhynchosciara americana


Rhynchosciara






non-LTR retrotransposon RaR2

americana






reverse transcriptase gene,






complete cds



R2
JQ082370
polyA_signal_sequence

Eyprepocnemis plorans non-LTR


Eyprepocnemis






retrotransposon R2 R2

plorans






protein gene, complete cds



R2
KJ958672
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCUR4_deg,






partial sequence



R2
KJ958671
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCUR3_deg,






partial sequence



R2
KJ958670
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCUR2_deg,






partial sequence



R2
KJ958669
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCUR1_deg,






partial sequence



R2
KJ958668
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCDF6_deg,






partial sequence



R2
KJ958667
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCDF5_deg,






partial sequence



R2
KJ958666
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCDF4_deg,






partial sequence



R2
KJ958665
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCDF3_deg,






partial sequence



R2
KJ958664
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCDF2_deg,






partial sequence



R2
KJ958663
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCDF1_deg,






partial sequence



R2
KJ958662
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCOM10_deg,






partial sequence



R2
KJ958661
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCOM5_deg,






partial sequence



R2
KJ958660
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCOM7_deg,






partial sequence



R2
KJ958659
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCOM3_deg,






partial sequence



R2
KJ958658
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCOM2_deg,






partial sequence



R2
KJ958657
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reMSN6_deg,






partial sequence



R2
KJ958656
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reMSN5_deg,






partial sequence



R2
KJ958655
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reMSN4_deg,






partial sequence



R2
KJ958654
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reMSN3_deg,






partial sequence



R2
KJ958653
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reMSN2_deg,






partial sequence



R2
KJ958652
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reMSN1_deg,






partial sequence



R2
KJ958651
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon rePAT8_deg,






partial sequence



R2
KJ958650
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon rePAT7_deg,






partial sequence



R2
KJ958649
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon rePAT6_deg,






partial sequence



R2
KJ958648
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon rePAT5_deg,






partial sequence



R2
KJ958647
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon rePAT4_deg,






partial sequence



R2
KJ958646
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon rePAT3_deg,






partial sequence



R2
KJ958645
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon rePAT2_deg,






partial sequence



R2
KJ958644
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon rePAT1_deg,






partial sequence



R2
KJ958643
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon rePAT9_deg,






partial sequence



R2
KJ958642
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon trKOR2_deg,






partial sequence



R2
KJ958641
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reGAB9_deg,






partial sequence



R2
KJ958640
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reGAB8_deg,






partial sequence



R2
KJ958639
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reGAB7_deg,






partial sequence



R2
KJ958638
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reGAB6_deg,






partial sequence



R2
KJ958637
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reGAB5_deg,






partial sequence



R2
KJ958636
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reGAB4_deg,






partial sequence



R2
KJ958635
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reGAB3_deg,






partial sequence



R2
KJ958634
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reGAB2_deg,






partial sequence



R2
KJ958633
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reGAB1_deg,






partial sequence



R2
KJ958632
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS1_deg,






partial sequence



R2
KJ958631
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS11_deg,






partial sequence



R2
KJ958629
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCOM8,






partial sequence



R2
KJ958628
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCOM6,






partial sequence



R2
KJ958627
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCOM4,






partial sequence



R2
KJ958626
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCOM1,






partial sequence



R2
KJ958624
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon trKOR10,






partial sequence



R2
KJ958623
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reGAB10,






partial sequence



R2
KJ958619
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon trKOR4,






partial sequence



R2
KJ958618
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon trKOR3,






partial sequence



R2
KJ958617
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon trKOR1,






partial sequence



R2
KJ958613
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reVIR4,






partial sequence



R2
KJ958612
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reVIR3,






partial sequence



R2
KJ958611
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reVIR2,






partial sequence



R2
KJ958610
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reVIR1,






partial sequence



R2
KJ958609
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS17,






partial sequence



R2
KJ958608
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS16,






partial sequence



R2
KJ958607
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS15,






partial sequence



R2
KJ958606
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS14,






partial sequence



R2
KJ958605
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS13,






partial sequence



R2
KJ958604
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS12,






partial sequence



R2
KJ958603
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS7,






partial sequence



R2
KJ958602
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS6,






partial sequence



R2
KJ958601
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS5,






partial sequence



R2
KJ958600
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS4,






partial sequence



R2
KJ958599
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS3,






partial sequence



R2
KJ958598
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reTDS2,






partial sequence



R2
KJ958594
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reBER4,






partial sequence



R2
KJ958593
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reBER2,






partial sequence



R2
KJ958592
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reBER1,






partial sequence



R2
KJ958591
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roFOL7,






partial sequence



R2
KJ958590
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roFOL6,






partial sequence



R2
KJ958589
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roFOL5,






partial sequence



R2
KJ958588
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roFOL4,






partial sequence



R2
KJ958587
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roFOL3,






partial sequence



R2
KJ958586
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roFOL2,






partial sequence



R2
KJ958585
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roFOL1,






partial sequence



R2
KJ958584
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roANZ10,






partial sequence



R2
KJ958583
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roANZ9,






partial sequence



R2
KJ958582
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roANZ8,






partial sequence



R2
KJ958581
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roANZ7,






partial sequence



R2
KJ958580
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roANZ6,






partial sequence



R2
KJ958579
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roANZ5,






partial sequence



R2
KJ958578
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roANZ4,






partial sequence



R2
KJ958577
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roANZ3,






partial sequence



R2
KJ958576
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roANZ2,






partial sequence



R2
KJ958575
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roANZ1,






partial sequence



R2
KJ958574
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roCAP9,






partial sequence



R2
KJ958573
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roCAP8,






partial sequence



R2
KJ958572
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roCAP7,






partial sequence



R2
KJ958571
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roCAP6,






partial sequence



R2
KJ958570
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roCAP5,






partial sequence



R2
KJ958569
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roCAP4,






partial sequence



R2
KJ958568
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roCAP3,






partial sequence



R2
KJ958567
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roCAP2,






partial sequence



R2
KJ958566
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roCAP1,






partial sequence



R2
KJ958565
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon roCAP10,






partial sequence



R2
JN937654
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate lu8a 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937653
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate lu7a 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937652
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate lu2a 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937651
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate b7c7 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937650
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate b6c4 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937649
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate lu5a 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937648
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate lu1a 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937647
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate b6c5 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937646
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate b6c6 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937645
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate lu4a 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937644
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate lu3a 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937643
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate b6c3 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937642
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate lu6a 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






psR2Ll, complete sequence



R2
JN937641
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate LM5h2 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






R2Ll, complete sequence



R2
JN937640
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate LM2h5 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






R2Ll, complete sequence



R2
JN937639
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate LM2h4 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






R2Ll, complete sequence



R2
JN937638
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate LM5h5 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






R2Ll, complete sequence



R2
JN937637
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate LM5h4 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






R2Ll, complete sequence



R2
JN937636
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate LM5h3 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






R2Ll, complete sequence



R2
JN937635
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate LM5h1 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






R2Ll, complete sequence



R2
JN937634
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate LM2h3 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






R2Ll, complete sequence



R2
JN937633
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate LM2h2 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






R2Ll, complete sequence



R2
JN937632
R2

Lepidurus apus lubbocki


Lepidurus apus






isolate LM2h1 28S ribosomal

lubbocki






RNA gene, partial sequence;






and non-LTR retrotransposon






R2Ll, complete sequence



R2
JN937631
R2

Lepidurus arcticus isolate


Lepidurus arcticus






T6 28S ribosomal RNA gene,






partial sequence; and






non-LTR retrotransposon






R2La, complete sequence



R2
JN937630
R2

Lepidurus arcticus isolate


Lepidurus arcticus






T5 28S ribosomal RNA gene,






partial sequence; and






non-LTR retrotransposon






R2La, complete sequence



R2
JN937629
R2

Lepidurus arcticus isolate


Lepidurus arcticus






T4 28S ribosomal RNA gene,






partial sequence; and






non-LTR retrotransposon






R2La, complete sequence



R2
JN937628
R2

Lepidurus arcticus isolate


Lepidurus arcticus






T3 28S ribosomal RNA gene,






partial sequence; and






non-LTR retrotransposon






R2La, complete sequence



R2
JN937627
R2

Lepidurus arcticus isolate


Lepidurus arcticus






T2 28S ribosomal RNA gene,






partial sequence; and






non-LTR retrotransposon






R2La, complete sequence



R2
JN937626
R2

Lepidurus arcticus isolate


Lepidurus arcticus






T1 28S ribosomal RNA gene,






partial sequence; and






non-LTR retrotransposon






R2La, complete sequence



R2
JN937625
R2

Lepidurus arcticus isolate


Lepidurus arcticus






V4 28S ribosomal RNA gene,






partial sequence; and






non-LTR retrotransposon






R2La, complete sequence



R2
JN937624
R2

Lepidurus arcticus isolate


Lepidurus arcticus






V3 28S ribosomal RNA gene,






partial sequence; and






non-LTR retrotransposon






R2La, complete sequence



R2
JN937623
R2

Lepidurus arcticus isolate


Lepidurus arcticus






V2 28S ribosomal RNA gene,






partial sequence; and






non-LTR retrotransposon






R2La, complete sequence



R2
JN937622
R2

Lepidurus arcticus isolate


Lepidurus arcticus






V1 28S ribosomal RNA gene,






partial sequence; and






non-LTR retrotransposon






R2La, complete sequence



R2
JN937615
R2

Lepidurus couesii isolate


Lepidurus couesii






D3a7f 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937614
R2

Lepidurus couesii isolate


Lepidurus couesii






D3a5f 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937613
R2

Lepidurus couesii isolate


Lepidurus couesii






D3a4f 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937612
R2

Lepidurus couesii isolate


Lepidurus couesii






D3a3f 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937611
R2

Lepidurus couesii isolate


Lepidurus couesii






D3a2f 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937610
R2

Lepidurus couesii isolate


Lepidurus couesii






D3_8 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937609
R2

Lepidurus couesii isolate


Lepidurus couesii






D3_7 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937608
R2

Lepidurus couesii isolate


Lepidurus couesii






D3_6 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937607
R2

Lepidurus couesii isolate


Lepidurus couesii






D3_5 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937606
R2

Lepidurus couesii isolate


Lepidurus couesii






D3_4 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937605
R2

Lepidurus couesii isolate


Lepidurus couesii






D3_3 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937604
R2

Lepidurus couesii isolate


Lepidurus couesii






D3_2 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937603
R2

Lepidurus couesii isolate


Lepidurus couesii






D3_1 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcB, complete sequence



R2
JN937602
R2

Lepidurus couesii isolate


Lepidurus couesii






C2_5 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
JN937601
R2

Lepidurus couesii isolate


Lepidurus couesii






LcoC2r1_5 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
JN937600
R2

Lepidurus couesii isolate


Lepidurus couesii






LcoC2r1_6 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
JN937599
R2

Lepidurus couesii isolate


Lepidurus couesii






C2_8 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
JN937598
R2

Lepidurus couesii isolate


Lepidurus couesii






C2_4 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
JN937597
R2

Lepidurus couesii isolate


Lepidurus couesii






C2_9 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
JN937596
R2

Lepidurus couesii isolate


Lepidurus couesii






C2_7 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
JN937595
R2

Lepidurus couesii isolate


Lepidurus couesii






C2_6 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
JN937594
R2

Lepidurus couesii isolate


Lepidurus couesii






C2_3 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
JN937593
R2

Lepidurus couesii isolate


Lepidurus couesii






C2_2 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
JN937592
R2

Lepidurus couesii isolate


Lepidurus couesii






C2_1 28S ribosomal RNA






gene, partial sequence; and






non-LTR retrotransposon






R2LcA, complete sequence



R2
AF015822
R2 ORF

Tenebrio molitor


Tenebrio molitor






retrotransposon R2 reverse






transcriptase gene, partial cds



R2
AF015817
R2 ORF

Tenebrio molitor


Tenebrio molitor






retrotransposon R2 reverse






transcriptase gene, partial cds



R2
AF015816
R2 ORF

Hippodamia convergens


Hippodamia






retrotransposon R2 reverse

convergens






transcriptase gene, partial cds



R2
KP657866
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−714).5 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657865
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−714).4 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657863
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−714).2 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657862
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−714).1 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657861
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1297).9 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657860
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1297).8 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657859
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1297).7 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657858
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1297).6 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657857
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1297).5 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657856
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1297).4 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657855
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1297).3 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657854
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1297).2 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657853
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1297).10 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657852
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1297).1 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657851
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1172).9 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657850
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1172).8 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657849
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1172).7 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657848
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1172).6 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657847
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1172).5 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657846
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1172).4 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657845
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1172).3 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657844
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1172).2 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657843
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1172).10 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657842
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roCAP(−1172).1 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657824
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roANZ(−1062).5 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657823
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roANZ(−1062).4 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657822
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roANZ(−1062).3 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657820
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roANZ(−1062).2 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657816
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roANZ(−1062).16 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657814
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roANZ(−1062).14 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657810
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roANZ(−1062).10 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657809
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
roANZ(−1062).1 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657759
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
rePAT(−1297).8 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657757
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
rePAT(−1297).6 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
KP657751
retrotransposon:

Bacillus rossius isolate


Bacillus rossius





R2Br
rePAT(−1297).1 retrotransposon






R2Br reverse transcriptase






gene, partial cds



R2
AB097125
rt

Ciona savignyi


Ciona savignyi






retrotransposon R2Cs-D DNA,






partial sequence



R2
AB097124
rt

Ciona intestinalis


Ciona intestinalis






retrotransposon R2Ci-D DNA,






partial sequence



R2
AB097123
rt

Ciona intestinalis


Ciona intestinalis






retrotransposon R2Ci-C DNA,






partial sequence



R2
AB097121
rt

Ciona intestinalis


Ciona intestinalis






retrotransposon R2Ci-A DNA,






complete sequence



R2
AB201417
rt

Triops longicaudatus non-LTR


Triops






retrotransposon R2Tl gene

longicaudatus






for reverse transcriptase,






partial cds



R2
AB201416
rt

Procambarus clarkii non-LTR


Procambarus






retrotransposon R2Pc gene for

clarkii






reverse transcriptase,






partial cds



R2
AB201415
rt

Hasarius adansoni non-LTR


Hasarius adansoni






retrotransposon R2Ha gene for






reverse transcriptase,






partial cds



R2
AB201414
rt

Metacrinus rotundus non-LTR


Metacrinus






retrotransposon R2Mr gene for

rotundus






reverse transcriptase,






partial cds



R2
AB201413
rt

Mauremys reevesii non-LTR


Mauremys reevesii






retrotransposon R2Cr-B2 gene






for reverse transcriptase,






partial cds



R2
AB201412
rt

Mauremys reevesii non-LTR


Mauremys reevesii






retrotransposon R2Cr-B1 gene






for reverse transcriptase,






partial cds



R2
AB201411
rt

Mauremys reevesii non-LTR


Mauremys reevesii






retrotransposon R2Cr-A gene






for reverse transcriptase,






partial cds



R2
AB201410
rt

Oryzias latipes non-LTR


Oryzias latipes






retrotransposon R2Ol-A gene






for reverse transcriptase,






partial cds



R2
AB201409
rt

Tanichthys albonubes non-LTR


Tanichthys






retrotransposon R2Ta gene

albonubes






for reverse transcriptase,






partial cds



R2
AB201408
rt

Eptatretus burgeri non-LTR


Eptatretus






retrotransposon R2Eb gene for

burgeri






reverse transcriptase,






partial cds



R2
DQ099732
transposon:

Aedes aegypti transposon R2-


Aedes aegypti





R2-like
like non-LTR retrotransposon





non-LTR
R2Ag reverse transcriptase





retrotransposon
(pol) gene, partial cds





R2Ag




R2
DQ099728
transposon:

Aedes aegypti transposon R2-


Aedes aegypti





R2-like
like non-LTR retrotransposon





non-LTR
R2Ag_B reverse transcriptase





retrotransposon
(pol) gene, partial cds





R2Ag_B




R2
GU949559


Kalotermes flavicollis


Kalotermes






isolate Livorno non-LTR

flavicollis






retrotransposon R2, complete






sequence; and R2 protein






gene, complete cds



R2
GU949557


Reticulitermes balkanensis


Reticulitermes






non-LTR retrotransposon R2,

balkanensis






partial sequence; and R2






protein gene, partial cds



R2
GU949556


Reticulitermes grassei


Reticulitermes






non-LTR retrotransposon R2,

grassei






partial sequence; and R2






protein gene, partial cds



R2
GU949554


Reticulitermes urbis non-LTR


Reticulitermes






retrotransposon R2, complete

urbis






sequence; and R2 protein






gene, complete cds



R2
AF412214


Schistosoma japonicum clone


Schistosoma






S10A non-LTR retrotransposon

japonicum






SjR2-like, partial sequence



R2
AF015685


Drosophila mercatorum R2


Drosophila






retrotransposon reverse

mercatorum






transcriptase domain protein






gene, complete cds



R2
KJ958674


Bacillus rossius


Bacillus rossius






retrotransposon R2Br,






complete sequence



R2
AF015814
R2

Limulus polyphemus


Limulus polyphemus






retrotransposon R2, complete






sequence



R2
M16558
R2

Bombyx mori rDNA insertion


Bombyx mori






element R2 (typeII), complete






cds.



R2
GQ398057
R9Av

Adineta vaga copy 1 non-LTR


Adineta vaga






retrotransposon R9, complete






sequence; and disrupted 28S






ribosomal RNA gene, partial






sequence



R2Bm
AB076841
R2

Bombyx mori non-LTR


Bombyx mori






retrotransposon R2Bm gene






for reverse transcriptase,






complete cds and 28S rRNA



R2Ci-B
AB097122
rt

Ciona intestinalis


Ciona intestinalis






retrotransposon R2Ci-B DNA,






complete sequence



R2Dr
AB097126
rt

Danio rerio retrotransposon


Danio rerio






R2Dr DNA, complete sequence



R4
AH003588


Parascaris equorum transposon


Parascaris equorum






non-LTR retrotransposable






element R4 reverse






transcriptase gene, partial cds



R4
ALU29445
R4

Ascaris lumbricoides


Ascaris






site-specific non-LTR

lumbricoides






retrotransposable element






R4 in 26S rDNA, complete






sequence



R4
L08889
R4 Dong

Bombyx mori reverse


Bombyx mori






transcriptase gene, complete cds



R4
DQ836390
MalR4-5

Maculinea alcon R4-like


Phengaris alcon






non-LTR retrotransposon R4-5






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836385
MnaR4-3

Maculinea nausithous R4-like


Phengaris






non-LTR retrotransposon R4-3

nausithous






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836386
MnaR4-4

Maculinea nausithous R4-like


Phengaris






non-LTR retrotransposon R4-4

nausithous






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836387
MnaR4-7

Maculinea nausithous R4-like


Phengaris






non-LTR retrotransposon R4-7

nausithous






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836388
MnaR4-8

Maculinea nausithous R4-like


Phengaris






non-LTR retrotransposon R4-8

nausithous






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836389
MnaR4-9

Maculinea nausithous R4-like


Phengaris






non-LTR retrotransposon R4-9

nausithous






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836379
MteR4-1

Maculinea teleius R4-like


Phengaris teleius






non-LTR retrotransposon R4-1






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836384
MteR4-10

Maculinea teleius R4-like


Phengaris teleius






non-LTR retrotransposon R4-10






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836367
MteR4-2

Maculinea teleius R4-like


Phengaris teleius






non-LTR retrotransposon R4-2






reverse transcriptase (RT)






gene, partial cds



R4
DQ836380
MteR4-3

Maculinea teleius R4-like


Phengaris teleius






non-LTR retrotransposon R4-3






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836381
MteR4-4

Maculinea teleius R4-like


Phengaris teleius






non-LTR retrotransposon R4-4






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836382
MteR4-6

Maculinea teleius R4-like


Phengaris teleius






non-LTR retrotransposon R4-6






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836383
MteR4-8

Maculinea teleius R4-like


Phengaris teleius






non-LTR retrotransposon R4-8






reverse transcriptase (RT)






pseudogene, partial sequence



R4
DQ836374
transposon:

Maculinea alcon R4-like


Phengaris alcon





R4-like
non-LTR retrotransposon R4-1





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-1




R4
DQ836373
transposon:

Maculinea nausithous R4-like


Phengaris





R4-like
non-LTR retrotransposon R4-1

nausithous





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-1




R4
DQ836375
transposon:

Maculinea alcon R4-like


Phengaris alcon





R4-like
non-LTR retrotransposon R4-2





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-2




R4
DQ836376
transposon:

Maculinea alcon R4-like


Phengaris alcon





R4-like
non-LTR retrotransposon R4-3





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-3




R4
DQ836377
transposon:

Maculinea alcon R4-like


Phengaris alcon





R4-like
non-LTR retrotransposon R4-4





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-4




R4
DQ836371
transposon:

Maculinea nausithous R4-like


Phengaris





R4-like
non-LTR retrotransposon R4-5

nausithous





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-5




R4
DQ836368
transposon:

Maculinea teleius R4-like


Phengaris teleius





R4-like
non-LTR retrotransposon R4-5





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-5




R4
DQ836378
transposon:

Maculinea alcon R4-like


Phengaris alcon





R4-like
non-LTR retrotransposon R4-6





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-6




R4
DQ836372
transposon:

Maculinea nausithous R4-like


Phengaris





R4-like
non-LTR retrotransposon R4-6

nausithous





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-6




R4
DQ836369
transposon:

Maculinea teleius R4-like


Phengaris teleius





R4-like
non-LTR retrotransposon R4-7





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-7




R4
DQ836370
transposon:

Maculinea teleius R4-like


Phengaris teleius





R4-like
non-LTR retrotransposon R4-9





non-LTR
reverse transcriptase (RT)





retrotransposon
gene, partial cds





R4-9




R4
AF286191
transposon:

Xiphophorus maculatus


Xiphophorus





retrotransposon
retrotransposon Rex6 reverse

maculatus





Rex6
transcriptase pseudogene,






partial sequence



R5
KJ958673
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reCUR5_deg,






partial sequence



R5
KJ958620
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon trKOR5,






partial sequence



R5
KJ958614
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reVIR5,






partial sequence



R5
KJ958595
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reBER5,






partial sequence



R5
AJ006560
transposon:

Anopheles merus Amer5 non-LTR


Anopheles merus





Amer5
retrotransposon encoding





non-LTR
reverse transcriptase, partial





retrotransposon




R5
AF352479
transposon:

Chironomus circumdatus clone


Chironomus





NLRCth1-like
cir5 transposon NLRCth1-like

circumdatus





non-LTR
non-LTR retrotransposon





retrotransposon
reverse transcriptase gene,






partial cds



R5
AF352454
transposon:

Chironomus alpestris clone


Chironomus





NLRCth1-like
dor50 transposon NLRCth1-like

alpestris





non-LTR
non-LTR retrotransposon





retrotransposon
reverse transcriptase gene,






partial cds



R5
AF352404
transposon:

Chironomus luridus clone lur5


Chironomus luridus





NLRCth1-like
transposon NLRCth1-like





non-LTR
non-LTR retrotransposon





retrotransposon
reverse transcriptase gene,






partial cds



R8
FR852798
poly(A) tail

Beta vulgaris subsp.


Beta vulgaris







vulgaris

subsp. vulgaris





LINE-type retrotransposon






Belline2_3



R8
KJ958630
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon reVIR8_deg,






partial sequence



R8
KJ958621
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon trKOR8,






partial sequence



R8
KP001560
rex3-RT

Iberochondrostoma lusitanicum


Iberochondrostoma





pseudogene_Contig
clone tr8a non-LTR

lusitanicum





ILU_TR8
retrotransposon Rex3,






complete sequence



R8
FR852885
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgaris

subsp. vulgaris





LINE-type retrotransposon






BNR114 (Belline1_114)



R8
FR852856
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






BNR45 (Belline1_45)



R8
FR852844
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






BNR22 (Belline1_22)



R8
FR852836
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






Belline17_6



R8
FR852834
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






Belline17_4



R8
FR852831
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






Belline17_1



R8
FR852829
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






Belline16_2



R8
FR852827
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






Belline15_3



R8
FR852819
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






Belline12_2



R8
FR852813
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






Belline9_5



R8
FR852807
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






Belline8_1



R8
FR852806
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






Belline7_18



R8
FR852799
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






Belline2_4



R8
FR852795
right terminal

Beta vulgaris subsp.


Beta vulgaris





repeat

vulgarius

subsp. vulgaris





LINE-type retrotransposon






BNR19 (Belline1_19)



R8
AF352481
transposon:

Chironomus circumdatus clone


Chironomus





NLRCth1-like
cir8 transposon NLRCth1-like

circumdatus





non-LTR
non-LTR retrotransposon





retrotransposon
reverse transcriptase gene,






partial cds



R8;
FR852861
right terminal

Beta vulgaris subsp.


Beta vulgaris



R5

repeat

vulgaris

subsp. vulgaris





LINE-type retrotransposon






BNR59 (Belline1_59)



R8;
FR852857
right terminal

Beta vulgaris subsp.


Beta vulgaris



R5

repeat

vulgaris

subsp. vulgaris





LINE-type retrotransposon






BNR51 (Belline1_51)



R8;
FR852866
right terminal

Beta vulgaris subsp.


Beta vulgaris



R7

repeat

vulgaris

subsp. vulgaris





LINE-type retrotransposon






BNR76 (Belline1_76)



R8;
FR852838
right terminal

Beta vulgaris subsp.


Beta vulgaris



R7

repeat

vulgaris

subsp. vulgaris





LINE-type retrotransposon






BNR7 (Belline1_7)



R8;
AF352455
transposon:

Chironomus alpestris clone


Chironomus



R7

NLRCth1-like
dor70 note identical sequence

alpestris





non-LTR
found in dor80 transposon





retrotransposon
NLRCth1-like non-LTR






retrotransposon reverse






transcriptase gene, partial cds



R8;
FR852878
right terminal

Beta vulgaris subsp.


Beta vulgaris



R9

repeat

vulgaris

subsp. vulgaris





LINE-type retrotransposon






BNR96 (Belline1_96)



R9
KJ958625
R2

Bacillus rossius non-LTR


Bacillus rossius






retrotransposon trKOR9,






partial sequence



Rex6
AJ293547
en

Oreochromis niloticus Rex6


Oreochromis






retrotransposon partial en

niloticus






pseudogene for endonuclease,






clone rex6-Oni-3



Rex6
AJ293546
en

Oreochromis niloticus Rex6


Oreochromis






retrotransposon partial en

niloticus






pseudogene for endonuclease,






clone rex6-Oni-2



Rex6
AJ293545
en

Oreochromis niloticus Rex6


Oreochromis






retrotransposon partial en

niloticus






pseudogene for endonuclease,






clone rex6-Oni-1



Rex6
AJ293517
en

Xiphophorus maculatus Rex6


Xiphophorus






retrotransposon partial en

maculatus






pseudogene for endonuclease,






clone Rex6-Xma-6



Rex6
AJ293516
en

Xiphophorus maculatus Rex6


Xiphophorus






retrotransposon partial en

maculatus






pseudogene for endonuclease,






clone Rex6-Xma-5



Rex6
AJ293515
en

Xiphophorus maculatus Rex6


Xiphophorus






retrotransposon partial en

maculatus






pseudogene for endonuclease,






clone Rex6-Xma-4



Rex6
AJ293514
en

Xiphophorus maculatus Rex6


Xiphophorus






retrotransposon partial en

maculatus






pseudogene for endonuclease,






clone Rex6-Xma-3



Rex6
AJ293513
en

Xiphophorus maculatus Rex6


Xiphophorus






retrotransposon partial en

maculatus






pseudogene for endonuclease,






clone Rex6-Xma-2



Rex6
AJ293512
en

Xiphophorus maculatus Rex6


Xiphophorus






retrotransposon partial en

maculatus






pseudogene for endonuclease,






clone Rex6-Xma-1



Rex6
AJ293538
en

Poecilia formosa Rex6


Poecilia formosa






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Pfo-6



Rex6
AJ293537
en

Poecilia formosa Rex6


Poecilia formosa






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Pfo-5



Rex6
AJ293536
en

Poecilia formosa Rex6


Poecilia formosa






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Pfo-4



Rex6
AJ293535
en

Poecilia formosa Rex6


Poecilia formosa






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Pfo-3



Rex6
AJ293534
en

Poecilia formosa Rex6


Poecilia formosa






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Pfo-2



Rex6
AJ293533
en

Poecilia formosa Rex6


Poecilia formosa






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Pfo-1



Rex6
AJ293526
en

Poeciliopsis gracilis Rex6


Poeciliopsis






retrotransposon partial en

gracilis






pseudogene for endonuclease,






clone rex6-Pgr-4



Rex6
AJ293525
en

Poeciliopsis gracilis Rex6


Poeciliopsis






retrotransposon partial en

gracilis






pseudogene for endonuclease,






clone rex6-Pgr-3



Rex6
AJ293524
en

Poeciliopsis gracilis Rex6


Poeciliopsis






retrotransposon partial en

gracilis






pseudogene for endonuclease,






clone rex6-Pgr-2



Rex6
AJ293523
en

Poeciliopsis gracilis Rex6


Poeciliopsis






retrotransposon partial en

gracilis






pseudogene for endonuclease,






clone rex6-Pgr-1



Rex6
AJ293522
en

Oryzias latipes Rex6


Oryzias latipes






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Ola-5



Rex6
AJ293521
en

Oryzias latipes Rex6


Oryzias latipes






retrotransposon partial en






pseudogene for endonuclease,






clone Rex6-Ola-4



Rex6
AJ293520
en

Oryzias latipes Rex6


Oryzias latipes






retrotransposon partial en






pseudogene for endonuclease,






clone Rex6-Ola-3



Rex6
AJ293519
en

Oryzias latipes Rex6


Oryzias latipes






retrotransposon partial en






pseudogene for endonuclease,






clone Rex6-Ola-2



Rex6
AJ293518
en

Oryzias latipes Rex6


Oryzias latipes






retrotransposon partial en






pseudogene for endonuclease,






clone Rex6-Ola-1



Rex6
AJ293549
en

Cichlasoma labridens Rex6


Herichthys






retrotransposon partial en

labridens






pseudogene for endonuclease,






clone rex6-Cla-2



Rex6
AJ293548
en

Cichlasoma labridens Rex6


Herichthys






retrotransposon partial en

labridens






pseudogene for endonuclease,






clone rex6-Cla-1



Rex6
AJ293544
en

Heterandria bimaculata Rex6


Pseudoxiphophorus






retrotransposon partial en

bimaculatus






pseudogene for endonuclease,






clone rex6-Hbi-6



Rex6
AJ293543
en

Heterandria bimaculata Rex6


Pseudoxiphophorus






retrotransposon partial en

bimaculatus






pseudogene for endonuclease,






clone rex6-Hbi-5



Rex6
AJ293542
en

Heterandria bimaculata Rex6


Pseudoxiphophorus






retrotransposon partial en

bimaculatus






pseudogene for endonuclease,






clone rex6-Hbi-4



Rex6
AJ293541
en

Heterandria bimaculata Rex6


Pseudoxiphophorus






retrotransposon partial en

bimaculatus






pseudogene for endonuclease,






clone rex6-Hbi-3



Rex6
AJ293540
en

Heterandria bimaculata Rex6


Pseudoxiphophorus






retrotransposon partial en

bimaculatus






pseudogene for endonuclease,






clone rex6-Hbi-2



Rex6
AJ293539
en

Heterandria bimaculata Rex6


Pseudoxiphophorus






retrotransposon partial en

bimaculatus






pseudogene for endonuclease,






clone rex6-Hbi-1



Rex6
AJ293532
en

Gambusia affinis Rex6


Gambusia affinis






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Gaf-5



Rex6
AJ293531
en

Gambusia affinis Rex6


Gambusia affinis






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Gaf-5



Rex6
AJ293530
en

Gambusia affinis Rex6


Gambusia affinis






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Gaf-4



Rex6
AJ293529
en

Gambusia affinis Rex6


Gambusia affinis






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Gaf-3



Rex6
AJ293528
en

Gambusia affinis Rex6


Gambusia affinis






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Gaf-2



Rex6
AJ293527
en

Gambusia affinis Rex6


Gambusia affinis






retrotransposon partial en






pseudogene for endonuclease,






clone rex6-Gaf-1



Rex6
JX576459
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
i non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576458
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
h non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576457
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
g non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576456
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
f non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576455
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
e non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576454
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
d non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576453
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
c non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576452
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
b non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576451
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
a non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576450
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
z8 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576449
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
z7 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576448
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
z6 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576447
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
z5 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576446
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
z4 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576445
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
z3 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576444
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
z2 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576443
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
z1 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576442
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
z non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576441
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
x non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576440
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
v non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576439
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
u non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576438
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
t non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576437
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
s non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576436
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
r non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576435
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
q non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576434
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
p non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576433
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
o non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576432
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
n non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576431
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
m non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576430
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
l non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576429
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
k non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576428
non-LTR

Symphysodon discus isolate


Symphysodon discus





retrotransposon:
j non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576427
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
e non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
JX576426
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
d non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
JX576425
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
c non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
JX576424
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
b non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
JX576423
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
a non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
JX576422
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
g non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576421
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
f non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576420
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
e non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576419
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
d non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576418
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
c non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576417
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
b non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576416
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
a non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576415
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
g non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
JX576414
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
f non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
JX576413
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
e non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
JX576412
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
d non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
JX576411
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
c non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
JX576410
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
b non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
JX576409
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
a non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
JX576408
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
h non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576407
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
g non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576406
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
f non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576405
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
e non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576404
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
d non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576403
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
c non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576402
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
b non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
JX576401
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
a non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131853
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
z7 non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131852
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
z6 non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131851
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
z5 non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131850
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
z4 non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131849
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
z3 non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131848
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
z2 non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131847
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
z1 non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131846
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
z non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131845
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
x non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131844
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
v non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131843
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
u non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131842
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
t non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131841
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
s non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131840
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
r non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131839
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
q non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131838
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
p non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131837
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
n non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131836
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
m non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131835
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
l non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131834
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
k non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131833
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
j non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131832
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
i non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131831
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
h non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131830
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
g non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131829
non-LTR

Pterophyllum scalare clone


Pterophyllum





retrotransposon:
f non-LTR retrotransposon

scalare





Rex6
Rex6, partial sequence



Rex6
KF131828
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
z6 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131827
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
z5 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131826
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
z4 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131825
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
z3 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131824
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
z2 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131823
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
z1 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131822
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
z non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131821
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
x non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131820
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
v non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131819
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
u non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131818
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
t non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131817
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
s non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131816
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
r non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131815
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
q non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131814
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
p non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131813
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
o non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131812
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
n non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131811
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
m non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131810
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
l non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131809
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
k non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131808
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
j non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131807
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
i non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131806
non-LTR

Geophagus proximus clone


Geophagus proximus





retrotransposon:
h non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131805
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z10 non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131804
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z9 non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131803
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z8 non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131802
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z7 non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131801
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z6 non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131800
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z5 non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131799
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z4 non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131798
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z3 non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131797
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z2 non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131796
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z1 non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131795
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
z non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131794
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
x non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131793
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
v non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131792
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
u non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131791
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
t non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131790
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
s non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131789
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
r non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131788
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
q non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131787
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
p non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131786
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
o non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131785
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
n non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131784
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
m non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131783
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
l non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131782
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
k non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131781
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
j non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131780
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
i non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131779
non-LTR

Astronotus ocellatus clone


Astronotus





retrotransposon:
h non-LTR retrotransposon

ocellatus





Rex6
Rex6, partial sequence



Rex6
KF131778
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
z6 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131777
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
z5 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131776
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
z4 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131775
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
z3 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131774
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
z2 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131773
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
z1 non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131772
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
z non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131771
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
x non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131770
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
v non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131769
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
u non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131768
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
t non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131767
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
s non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131766
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
r non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131765
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
q non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131764
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
p non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131763
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
o non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131762
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
n non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131761
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
m non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131760
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
l non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131759
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
k non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131758
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
j non-LTR retrotransposon





Rex6
Rex6, partial sequence



Rex6
KF131757
non-LTR

Cichla monoculus clone


Cichla monoculus





retrotransposon:
i non-LTR retrotransposon





Rex6
Rex6, partial sequence



SLACS
JN608782
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-46 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608781
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-45 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608780
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-41 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608779
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-40 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608778
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-38 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608777
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-37 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608776
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-36 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608775
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-35 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608774
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-34 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608773
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-33 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608772
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-32 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608771
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-30 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608770
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-29 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608769
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-28 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608768
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-27 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608767
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-26 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608766
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-25 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608765
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-24 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608764
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-23 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608763
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-22 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608762
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-20 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608761
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-19 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608760
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-18 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608759
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-17 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608758
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-16 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608757
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-13 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608756
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-12 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608755
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608754
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-10 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608753
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-08 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608752
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-07 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608751
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-06 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608750
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-05 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608749
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-04 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608748
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608747
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
Y-01 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608746
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-83 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608745
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-81 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608744
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-80 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608743
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-79 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608742
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-78 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608741
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-76 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608740
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-75 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608739
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-74 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608738
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-66 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608737
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-65 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608736
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-62 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608735
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-61 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608734
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-60 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608733
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-59 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608732
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-57 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608731
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-49 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608730
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-41 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608729
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-28 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608728
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-27 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608727
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-23 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608726
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-21 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608725
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-14 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608724
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608723
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-07 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608722
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-06 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608721
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-05 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608720
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608719
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
X-01 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608718
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG40 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608717
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG39 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608716
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG38 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608715
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG37 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608714
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG36 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608713
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG35 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608712
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG34 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608711
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG33 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608710
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG32 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608709
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG31 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608708
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG30 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608707
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG29 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608706
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG28 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608705
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG27 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608704
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG26 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608703
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG25 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608702
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG24 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608701
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG23 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608700
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG22 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608699
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG21 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608698
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG20 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608697
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG19 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608696
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG18 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608695
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG17 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608694
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG16 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608693
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG14 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608692
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG13 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608691
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG12 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608690
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608689
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG10 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608688
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG09 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608687
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG08 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608686
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG07 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608685
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG06 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608684
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG05 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608683
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG04 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608682
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608681
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG02 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608680
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mG01 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608679
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG40 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608678
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG39 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608677
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG38 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608676
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG37 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608675
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG36 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608674
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG35 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608673
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG34 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608672
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG33 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608671
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG32 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608670
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG31 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608669
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG30 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608668
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG29 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608667
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG28 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608666
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG27 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608665
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG26 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608664
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG25 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608663
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG24 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608662
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG23 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608661
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG22 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608660
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG21 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608659
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG20 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608658
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG19 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608657
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG18 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608656
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG17 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608655
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG16 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608654
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG15 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608653
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG14 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608652
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG13 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608651
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608650
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG10 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608649
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG09 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608648
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG08 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608647
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG07 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608646
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG06 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608645
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG05 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608644
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608643
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG02 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608642
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fG01 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608641
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-47 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608640
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-46 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608639
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-45 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608638
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-44 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608637
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-42 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608636
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-41 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608635
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-40 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608634
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-37 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608633
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-36 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608632
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-35 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608631
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-34 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608630
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-33 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608629
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-32 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608628
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-31 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608627
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-26 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608626
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-24 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608625
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-23 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608624
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-22 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608623
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-21 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608622
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-20 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608621
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-19 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608620
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-18 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608619
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-17 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608618
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-16 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608617
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-15 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608616
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-14 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608615
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-13 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608614
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-12 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608613
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608612
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-10 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608611
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-09 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608610
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-08 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608609
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-06 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608608
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-05 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608607
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608606
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
A-01 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608236
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR40 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608235
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR39 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608234
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR38 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608233
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR35 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608232
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR32 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608231
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR29 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608230
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR26 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608229
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR25 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608228
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR18 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608227
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR17 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608226
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR14 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608225
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR13 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608224
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR12 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608223
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608222
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR09 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608221
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR08 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608220
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR07 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608219
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR06 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608218
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR05 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608217
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR04 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608216
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608215
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR02 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608214
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mR01 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608213
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL40 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608212
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL39 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608211
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL37 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608210
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL36 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608209
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL35 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608208
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL34 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608207
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL33 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608206
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL32 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608205
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL31 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608204
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL28 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608203
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL27 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608202
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL25 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608201
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL24 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608200
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL23 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608199
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL19 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608198
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL16 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608197
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL13 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608196
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL12 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608195
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608194
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL10 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608193
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL07 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608192
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL04 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608191
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608190
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL02 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608189
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mL01 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608188
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF40 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608187
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF39 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608186
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF38 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608185
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF37 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608184
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF36 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608183
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF35 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608182
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF33 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608181
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF32 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608180
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF31 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608179
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF30 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608178
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF29 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608177
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF28 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608176
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF27 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608175
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF26 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608174
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF25 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608173
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF23 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608172
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF22 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608171
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF21 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608170
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF20 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608169
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF19 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608168
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF18 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608167
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF17 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608166
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF16 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608165
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF15 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608164
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF14 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608163
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF13 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608162
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608161
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF10 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608160
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF09 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608159
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF08 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608158
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF07 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608157
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF06 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608156
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF05 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608155
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF04 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608154
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608153
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF02 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608152
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
mF01 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608151
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR40 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608150
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR39 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608149
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR38 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608148
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR37 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608147
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR36 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608146
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR35 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608145
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR34 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608144
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR33 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608143
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR32 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608142
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR31 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608141
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR30 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608140
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR29 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608139
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR28 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608138
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR27 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608137
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR26 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608136
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR25 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608135
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR24 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608134
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR23 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608133
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR22 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608132
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR21 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608131
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR20 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608130
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR19 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608129
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR18 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608128
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR17 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608127
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR16 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608126
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR15 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608125
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR14 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608124
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR13 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608123
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR12 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608122
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608121
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR09 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608120
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR08 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608119
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR07 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608118
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR05 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608117
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR04 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608116
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608115
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR02 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608114
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fR01 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608113
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL40 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608112
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL39 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608111
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL38 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608110
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL37 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608109
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL36 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608108
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL35 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608107
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL34 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608106
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL33 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608105
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL32 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608104
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL31 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608103
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL30 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608102
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL29 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608101
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL28 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608100
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL27 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608099
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL26 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608098
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL25 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608097
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL24 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608096
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL23 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608095
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL22 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608094
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL20 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608093
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL19 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608092
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL18 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608091
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL17 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608090
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL16 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608089
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL15 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608088
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL14 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608087
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL13 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608086
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL12 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608085
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608084
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL10 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608083
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL09 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608082
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL07 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608081
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL06 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608080
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL05 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608079
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL04 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608078
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608077
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fL01 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608076
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF40 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608075
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF39 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608074
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF38 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608073
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF37 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608072
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF36 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608071
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF35 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608070
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF34 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608069
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF33 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608068
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF32 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608067
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF31 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608066
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF30 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608065
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF29 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608064
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF28 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608063
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF27 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608062
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF26 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608061
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF24 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608060
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF23 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608059
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF21 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608058
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF20 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608057
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF18 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608056
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF17 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608055
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF16 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608054
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF15 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608053
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF14 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608052
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF13 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608051
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF12 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608050
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF11 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608049
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF10 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608048
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF09 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608047
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF08 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608046
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF06 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608045
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF05 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608044
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF04 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608043
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF03 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



SLACS
JN608042
non-LTR

Silene latifolia isolate


Silene latifolia





retrotransposon:
fF02 non-LTR retrotransposon





SLACS-like
SLACS-like, partial sequence



YURECi
AB097133
rt

Ciona intestinalis


Ciona intestinalis






retrotransposon YURECi DNA,






complete sequence



CRE
.
Cnl1

C. neoformans non-LTR


Cryptococcus






retrotransposon - consensus.

neoformans



CRE
.
CRE-1_ACas
CRE non-LTR retrotransposon:

Acanthamoeba






consensus.

castellanii



CRE
.
Cre-1_BM
Cre-1_BM non-LTR

Bombyx mori






retrotransposon - consensus.



CRE
.
CRE-1_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
Cre-1_FCy
Cre-1_FCy non-LTR

Fragilariopsis






retrotransposon - conceptual

cylindrus






consensus.



CRE
.
Cre-1_HM
Cre-1_HM non-LTR

Hydra vulgaris






retrotransposon - consensus.



CRE
.
CRE-1_HRo
Cre-like non-LTR

Helobdella robusta






retrotransposon: consensus






sequence.



CRE
.
CRE-1_LSa
CRE non-LTR retrotransposon:

Lactuca sativa






consensus.



CRE
.
Cre-1_MB
Cre-1_MB non-LTR

Monosiga






retrotransposon - consensus.

brevicollis



CRE
.
Cre-1_NV
Cre-1_NV non-LTR

Nematostella






retrotransposon - consensus.

vectensis



CRE
.
CRE-1_PXu
Non-LTR retrotransposon from

Papilio xuthus







Papilio xuthus: consensus.




CRE
.
CRE-10_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-11_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-12_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-13_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-14_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-15_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-16_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-17_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
Cre-2_BM
Cre-2_BM non-LTR

Bombyx mori






retrotransposon - consensus.



CRE
.
CRE-2_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-2_HMa
CRE non-LTR retrotransposon:

Hydra vulgaris






consensus.



CRE
.
CRE-2_HRo
Cre-like non-LTR

Helobdella robusta






retrotransposon: consensus






sequence.



CRE
.
CRE-2_NV
CRE non-LTR retrotransposon:

Nematostella






consensus.

vectensis



CRE
.
CRE-2_PXu
Non-LTR retrotransposon from

Papilio xuthus







Papilio xuthus: consensus.




CRE
.
CRE-3_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-3_HRo
CRE-like non-LTR

Helobdella robusta






retrotransposon: consensus






sequence.



CRE
.
CRE-3_NV
CRE non-LTR retrotransposon:

Nematostella






consensus.

vectensis



CRE
.
CRE-4_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-4_HRo
CRE-like non-LTR

Helobdella robusta






retrotransposon: consensus






sequence.



CRE
.
CRE-5_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-5_HRo
CRE-like non-LTR

Helobdella robusta






retrotransposon: consensus






sequence.



CRE
.
CRE-6_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-6_HRo
CRE-like non-LTR

Helobdella robusta






retrotransposon: consensus






sequence.



CRE
.
CRE-7_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-8_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
.
CRE-9_CCri
Non-LTR retrotransposon from

Chondrus crispus






the red seaweed: consensus.



CRE
M33009
CRE1

C. fasciculata retrotransposable


Crithidia






element (CRE1).

fasciculata



CRE
U19151
CRE2

C. fasciculata retrotransposable


Crithidia






element (CRE2).

fasciculata



CRE
M62862
CZAR

T. cruzi SL-RNA-associated


Trypanosoma cruzi






non-LTR retrotransposon.



R4
.
Dong

Bombyx mori non-LTR


Bombyx mori






retrotransposable element.



R4
.
DONG_FR2
Non-LTR retrotransposon;

Takifugu rubripes






site-specific LINE; R4/Dong






superfamily; DONG_FR2.



R4
.
Dong-1_AFC
Dong/R4-type non-LTR

Cichlidae






retrotransposon - consensus.



R4
.
Dong-1_HMM
Non-LTR retrotransposon

Heliconius






family from Heliconius

melpomene







melpomene melpomene.


melpomene



R4
.
Dong-1_NVe
A Dong non-LTR

Nematostella






retrotransposon family from

vectensis







Nematostella vectensis.




R4
.
Dong-1_PPo
Non-LTR retrotransposon from

Papilio polytes







Papilio polytes: consensus.




R4
.
Dong-1_PXu
Non-LTR retrotransposon from

Papilio xuthus







Papilio xuthus: consensus.




R4
.
Dong-2_BM
Non-LTR retrotransposon - a

Bombyx mori






consensus.



R4
.
Dong-2_HMM
Non-LTR retrotransposon

Heliconius






family from Heliconius

melpomene







melpomene melpomene.


melpomene



R4
.
Dong-2_Lch
Dong-like non-LTR

Latimeria






retrotransposon - consensus.

chalumnae



R4
.
Dong-2_PPo
Non-LTR retrotransposon from

Papilio polytes







Papilio polytes: consensus.




R4
.
DongAa
A Dong non-LTR

Aedes aegypti






retrotransposon family from







Aedes aegypti.




R4
AB097127
DongAG

Anopheles gambiae non-LTR


Anopheles






retrotransposon DongAg - a

gambiae






partial sequence.



R4
AB097128
EhRLE2

Entamoeba histolytica


Entamoeba






retrotransposon EhRLE2,

histolytica






complete sequence.



R4
AB097129
EhRLE3

Entamoeba histolytica


Entamoeba






retrotransposon EhRLE3,

histolytica






complete sequence.



HERO
.
HERO-1_AFC
Hero-type non-LTR

Cichlidae






retrotransposon - consensus.



HERO
.
HERO-1_BF
Amphioxus HERO-1_BF

Branchiostoma






autonomous non-LTR

floridae






Retrotransposon - consensus.



HERO
.
HERO-1_HR
A family of HERO non-LTR

Helobdella robusta






retrotransposons - a






consensus sequence.



HERO
.
HERO-1_PP
A family of HERO non-LTR

Physarum






retrotransposons - a

polycephalm






consensus sequence.



HERO
AAGJ02121261
HERO-1_SP
Sea urchin HERO-1_SP

Strongylocentrotus






autonomous non-LTR

purpuratus






Retrotransposon - consensus.



HERO
.
HERO-2_BF
Amphioxus HERO-2_BF

Branchiostoma






autonomous non-LTR

floridae






Retrotransposon - consensus.



HERO
.
HERO-2_DR
HERO-2_DR is a family of HERO

Danio rerio






non-LTR retrotransposons - a






consensus.



HERO
.
HERO-2_HR
Non-LTR retrotransposon:

Helobdella robusta






consensus sequence.



HERO
048B05
Hero-2_SPur
HERO-type non-ltr

Strongylocentrotus






retrotransposon from sea urchin.

purpuratus



HERO
.
HERO-3_BF
HERO-3_BF is a family of HERO

Branchiostoma






non-LTR retrotransposons - a

floridae






consensus.



HERO
.
HERO-3_DR
HERO-3_DR is a family of HERO

Danio rerio






non-LTR retrotransposons - a






consensus.



HERO
.
HERO-3_HR
Non-LTR retrotransposon:

Helobdella robusta






consensus sequence.



HERO
.
Hero-3_SPur
HERO-type non-LTR

Strongylocentrotus






retrotransposon from sea urchin.

purpuratus



HERO
.
HERO-4_DR
HERO-4_DR is a family of HERO

Danio rerio






non-LTR retrotransposons - a






consensus.



HERO
.
HERO-4_HR
Non-LTR retrotransposon:

Helobdella robusta






consensus sequence.



HERO
.
HERO-5_HR
Non-LTR retrotransposon:

Helobdella robusta






consensus sequence.



HERO
.
HERO-6_HR
Non-LTR retrotransposon:

Helobdella robusta






consensus sequence.



HERO
.
HERO-7_HR
Non-LTR retrotransposon:

Helobdella robusta






consensus sequence.



HERO
.
HERO-8_HR
Non-LTR retrotransposon:

Helobdella robusta






consensus sequence.



HERO
.
HERO-9_HR
Non-LTR retrotransposon:

Helobdella robusta






consensus sequence.



HERO
.
HERODr
HERODr is a family of HERO

Danio rerio






non-LTR retrotransposons - a






consensus.



HERO
.
HEROFr
A HERO clade non-LTR

Takifugu rubripes






Retrotransposon family -






consensus.



HERO
.
HEROTn
HEROTn or Zebulon non-LTR

Tetraodon






retrotransposon - a consensus

nigroviridis






sequence.



NeSL
.
LIN10B_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN11_SM
Non-LTR retrotransposon:

Schmidtea






consensus.

mediterranea



NeSL
.
LIN13_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN14_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN15_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN2_SM
Non-LTR retrotransposon

Schmidtea






(consensus).

mediterranea



NeSL
.
LIN21_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN23_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN24_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN24B_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN25_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN26_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN3_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN4_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN4b_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN5_SM
Non-LTR retrotransposon from

Schmidtea







Schmidtea mediterranea:


mediterranea






consensus.



NeSL
.
LIN6_SM
Non-LTR retrotransposon from

Schmidtea







Schmidtea mediterranea:


mediterranea






consensus.



NeSL
.
LIN7_SM
Non-LTR retrotransposon from

Schmidtea







Schmidtea mediterranea:


mediterranea






consensus.



NeSL
.
LIN7B_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
LIN9_SM
Non-LTR retrotransposon:

Schmidtea






consensus.

mediterranea



CRE
JQ747487
MoTeR1
Telomere-specific non-LTR

Magnaporthe oryzae






retrotransposon MoTeR1 from







Magnaporthe oryzae.




CRE
JQ747488
MoTeR2
Telomere-specific non-LTR

Magnaporthe oryzae






retrotransposon MoTeR2 from







Magnaporthe oryzae.




NeSL
Z82058
NeSL-1
NeSL-1 is a non-LTR

Caenorhabditis






retrotransposon, complete

elegans






sequence.



NeSL
.
NeSL-1_C11
A family of NeSL non-LTR

Caenorhabditis






retrotransposons.

tropicalis



NeSL
.
NeSL-1_CA
A family of NeSL non-LTR

Caenorhabditis






retrotransposons.

angaria



NeSL
.
NeSL-1_CBre
A family of NeSL non-LTR

Caenorhabditis






retrotransposons - consensus.

brenneri



NeSL
.
NeSL-1_CBri
A family of NeSL non-LTR

Caenorhabditis






retrotransposons.

briggsae



NeSL
.
NeSL-1_CJap
A family of NeSL non-LTR

Caenorhabditis






retrotransposons - consensus.

japonica



NeSL
.
NeSL-1_CRem
A family of NeSL non-LTR

Caenorhabditis






retrotransposons - consensus.

remanei



NeSL
.
NeSL-1_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
NeSL-1_TV
A family of NeSL non-LTR

Trichomonas






retrotransposons - consensus.

vaginalis



NeSL
.
NeSL-2_CBre
A family of NeSL non-LTR

Caenorhabditis






retrotransposons - consensus.

brenneri



NeSL
.
NeSL-2_CRem
A family of NeSL non-LTR

Caenorhabditis






retrotransposons - consensus.

remanei



NeSL
.
NeSL-2_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



NeSL
.
NeSL-3_CBre
A family of NeSL non-LTR

Caenorhabditis






retrotransposons - consensus.

brenneri



NeSL
.
NeSL-3_CRem
A family of NeSL non-LTR

Caenorhabditis






retrotransposons - consensus.

remanei



NeSL
chrUn
NeSL-4_CRem
A family of NeSL non-LTR

Caenorhabditis






retrotransposons.

remanei



NeSL
.
NeSL-4_SM
Non-LTR retrotransposon;

Schmidtea






consensus.

mediterranea



R2
BN000800
PERERE-9

Schistosoma mansoni Perere-9


Schistosoma mansoni






non-LTR retrotransposon (EST).



R4
.
Plat_R4
R4 Non-LTR Retrotransposon

Ornithorhynchus






from Ornithorhynchus.



R2
AF015815
R2_AM

Anurida maritima


Anurida maritima






retrotransposon R2, complete






sequence.



R2
M16558
R2_BM

Bombyx mori rDNA insertion


Bombyx mori






element R2 (type II),






complete cds.



R2
AB097121
R2CI
R2-type LINE.

Ciona intestinalis



R2
.
R2CPB
Non-LTR retrotransposon:

Chrysemyspicta






consensus.

bellii



R2
.
R2_DAn
28S rDNA-specific non-LTR

Drosophila






retrotransposon R2 in

ananassae







Drosophila ananassae.




R2
X51967
R2_DM
LINE-like retrotransposable

Drosophila






element R2DM.

melanogaster



R2
.
R2_DPe
28S rDNA-specific non-LTR

Drosophila






retrotransposon R2 in

persimilis







Drosophila persimilis.




R2
.
R2_DPs
28S rDNA-specific non-LTR

Drosophila






retrotransposon R2 in

pseudoobscura







Drosophila pseudoobscura.




R2
.
R2_DSe
28S rDNA-specific non-LTR

Drosophila






retrotransposon R2 in

sechellia







Drosophila sechellia.




R2
.
R2_DSi
28S rDNA-specific non-LTR

Drosophila






retrotransposon R2 in

simulans







Drosophila simulans.




R2
.
R2_DYa
28S rDNA-specific non-LTR

Drosophila yakuba






retrotransposon R2 in







Drosophila yakuba.




R2
AF015819
R2_FA

Forficula auricularia


Forficula






retrotransposon R2, complete

auricularia






sequence.



R2
AF015816
R2_HC

Hippodamia convergens


Hippodamia






retrotransposon R2 reverse

convergens






transcriptase gene, partial cds.



R2
GU949558
R2_KF
28S rDNA-specific non-LTR

Kalotermes






retrotransposon R2 from

flavicollis







Kalotermes flavicollis.




R2
AF015814
R2_LP

Limulus polyphemus


Limulus polyphemus






retrotransposon R2, complete






sequence.



R2
AF015818
R2_PS

Porcellio scaber


Porcellio scaber






retrotransposon R2, complete






sequence.



R2
GU949555
R2_RL
28S rDNA-specific non-LTR

Reticulitermes






retrotransposon R2 from

lucifugus







Reticulitermes lucifugus.




R2
GU949554
R2_RU
28S rDNA-specific non-LTR

Reticulitermes






retrotransposon R2 from

urbis







Reticulitermes urbis.




R2
.
R2-1_AAm
R2 non-LTR retrotransposon

Amblyomma






from lone star tick.

americanum



R2
.
R2-1_ACC
R2 non-LTR retrotransposon

Aquila chrysaetos






from golden eagle.

canadensis



R2
.
R2-1_ACh
R2 non-LTR retrotransposon

Acanthisitta






from rifleman.

chloris



R2
.
R2-1_AFo
R2 non-LTR retrotransposon

Aptenodytes






from emperor penguin.

forsteri



R2
.
R2-1_AMi
R2-type non-LTR retrotransposon.

Alligator








mississippiensis



R2
.
R2-1_AOM
R2 non-LTR retrotransposon

Apteryx spp.






from kiwi.



R2
.
R2-1_ApA
R2 non-LTR retrotransposon

Apteryx australis






from north island brown kiwi.

mantelli



R2
.
R2-1_APi
R2 non-LTR retrotransposon

Acyrthosiphon






from pea aphid.

pisum



R2
.
R2-1_BRG
R2 non-LTR retrotransposon

Balearica






from East African grey

regulorum






crowned crane.

gibbericeps



R2
.
R2-1_BTe
R2 non-LTR retrotransposon

Bombus terrestris






from buff-tailed bumblebee.



R2
.
R2-1_CAnn
R2 non-LTR retrotransposon

Calypte anna






from Anna's hummingbird.



R2
.
R2-1_CAu
R2 non-LTR retrotransposon

Cathartes aura






from turkey vulture.



R2
.
R2-1_CBr
R2 non-LTR retrotransposon

Corvus






from American crow.

brachyrhynchos



R2
.
R2-1_CCa
R2 non-LTR retrotransposon

Antrostomus






from chuck-will's-widow.

carolinensis



R2
.
R2-1_CCan
R2 non-LTR retrotransposon

Cuculus canorus






from common cuckoo.



R2
.
R2-1_CPu
R2 non-LTR retrotransposon

Calidris pugnax






from ruff.



R2
.
R2-1_Crp
Non-LTR retrotransposon.

Crocodylus porosus



R2
.
R2-1_CSt
R2 non-LTR retrotransposon

Colius striatus






from speckled mousebird.



R2
.
R2-1_CU
R2 non-LTR retrotransposon

Chlamydotis






from MacQueen's bustard.

macqueenii



R2
.
R2-1_CVo
R2 non-LTR retrotransposon

Charadrius






from killdeer.

vociferus



R2
.
R2-1_DWi
28S rDNA-specific non-LTR

Drosophila






retrotransposon R2 in

willistoni







Drosophila willistoni.




R2
.
R2-1_EGa
R2 non-LTR retrotransposon

Egretta garzetta






from little egret.



R2
.
R2-1_FAl
R2 non-LTR retrotransposon

Ficedula






from collared flycatcher.

albicollis



R2
.
R2-1_FCh
R2 non-LTR retrotransposon

Falco cherrug






from Saker falcon.



R2
.
R2-1_FPe
R2 non-LTR retrotransposon

Falco peregrinus






from peregrine falcon.



R2
.
R2-1_GA
R2 non-LTR retrotransposon

Gasterosteus






from three-spined stickleback.

aculeatus



R2
.
R2-1_Gav
Non-LTR retrotransposon.

Gavialis








gangeticus



R2
.
R2-1_GFo
R2 non-LTR retrotransposon

Geospiza fortis






from medium ground finch.



R2
.
R2-1_GSt
R2 non-LTR retrotransposon

Gavia stellata






from red-throated loon.



R2
.
R2-1_HAl
R2 non-LTR retrotransposon

Haliaeetus






from white-tailed eagle.

albicilla



R2
.
R2-1_IS
R2 non-LTR retrotransposon

Ixodes scapularis






from deer tick.



R2
.
R2-1_LCh
R2-type non-LTR

Latimeria






retrotransposon - consensus.

chalumnae



R2
.
R2-1_LDi
R2 non-LTR retrotransposon

Leptosomus






from cuckoo roller.

discolor



R2
.
R2-1_LSal
non-LTR retrotransposon,

Lepeophtheirus






consensus.

salmonis



R2
.
R2-1_LV
R2 non-LTR retrotransposon

Lytechinus






from green sea urchin.

variegatus



R2
.
R2-1_MDe
R2 non-LTR retrotransposon

Mayetiola






from Hessian fly.

destructor



R2
.
R2-1_MLe
R2 non-LTR retrotransposon -

Mnemiopsis leidyi






consensus.



R2
.
R2-1_MR
R2 non-LTR retrotransposon

Megachile






from alfalfa leafcutter bee.

rotundata



R2
.
R2-1_MUn
R2 non-LTR retrotransposon

Melopsittacus






fragment from budgerigar.

undulatus



R2
.
R2-1_MUni
R2 non-LTR retrotransposon

Mesitornis






from brown mesite.

unicolor



R2
.
R2-1_MVi
R2 non-LTR retrotransposon

Manacus vitellinus






from golden-collared manakin.



R2
.
R2-1_NNi
R2 non-LTR retrotransposon

Nipponia nippon






from created ibis.



R2
.
R2-1_NV
Starlet sea anemone R2-1_NV

Nematostella






autonomous Non-LTR

vectensis






Retrotransposon - consensus.



R2
.
R2-1_OHo
R2 non-LTR retrotransposon

Opisthocomus






from hoatzin.

hoazin



R2
.
R2-1_PAd
R2 non-LTR retrotransposon

Pygoscelis adeliae






from Adelie penguin.



R2
.
R2-1_PBa
R2 non-LTR retrotransposon

Pogonomyrmex






from red harvester ant.

barbatus



R2
.
R2-1_PCar
R2 non-LTR retrotransposon

Phalacrocorax






from great cormorant.

carbo



R2
.
R2-1_PCau
R2 non-LTR retrotransposon

Priapulus caudatus






sequence.



R2
.
R2-1_PCr
R2 non-LTR retrotransposon

Podiceps cristatus






from great crested grebe.



R2
.
R2-1_PCri
R2 non-LTR retrotransposon

Pelecanus crispus






from Dalmatian pelican.



R2
.
R2-1_PGu
R2 non-LTR retrotransposon

Pterocles






from sandgrouse.

gutturalis



R2
.
R2-1_PLe
R2 non-LTR retrotransposon

Phaethon lepturus






from tropicbird.



R2
.
R2-1_PM
R2-1_PM is a family of R2

Petromyzon marinus






non-LTR retrotransposons -






consensus.



R2
.
R2-1_PPap
R2 non-LTR retrotransposon

Phlebotomus






from sand fly.

papatasi



R2
.
R2-1_PPu
R2 non-LTR retrotransposon

Picoides pubescens






from downy woodpecker.



R2
.
R2-1_PRR
R2 non-LTR retrotransposon

Phoenicopterus






from American flamingo.

ruber ruber



R2
.
R2-1_PSi
R2 non-LTR retrotransposon

Pelodiscus






from Chinese soft-shelled

sinensis






turtle.



R2
.
R2-1_RMi
R2 non-LTR retrotransposon

Rhipicephaus






from brown tick.

microplus



R2
.
R2-1_RPr
R2 non-LTR retrotransposon

Rhodnius prolixus






sequence.



R2
.
R2-1_RPu
R2 non-LTR retrotransposon

Rhipicephalus






cDNA sequence from brown tick.

pulchellus



R2
.
R2-1_SCa
R2 non-LTR retrotransposon

Serinus canaria






from Atlantic canary.



R2
.
R2-1_SK
R2 non-LTR retrotransposon

Saccoglossus






from acorn worm.

kowalevskii



R2
.
R2-1_SM
R2-type retrotransposon from

Schmidtea







Schmidtea mediterranea:


mediterranea






consensus.



R2
.
R2-1_SP
R2 non-LTR retrotransposon

Strongylocentrotus






from purple sea urchin.

purpuratus



R2
AGKD01072455
R2-1_SSa
R2-type non-LTR retrotransposon.

Salmo salar



R2
.
R2-1_StC
R2 non-LTR retrotransposon

Struthiocamelus






from ostrich.

australis



R2
.
R2-1_TAl
R2 non-LTR retrotransposon

Tyto alba






from barn owl.



R2
.
R2-1_TCas
R2 non-LTR retrotransposon

Tribolium






from red flour beetle - consensus

castaneum



R2
.
R2-1_TG
A family of R2 non-LTR

Taeniopygia






retrotransposons - consensus

guttata






sequence.



R2
.
R2-1_TGut
R2 non-LTR retrotransposon

Tinamus guttatus






from white-throated tinamou.



R2
.
R2-1_TSP
A family of R2 non-LTR

Trichinella






retrotransposons in the

spiralis







Trichinella spiralis genome -







a consensus.



R2
scaffold_6
R2-1_TUr
R2 non-LTR retrotransposon

Tetranychus






from twospotted spider mite.

urticae



R2
.
R2-1_XM
R2 non-LTR retrotransposon

Xiphophorus






fragment from Southern

maculatus






platyfish.



R2
.
R2-1_ZA
R2 non-LTR retrotransposon

Zonotrichia






from white-throated sparrow.

albicollis



R2
.
R2-1_ZLM
R2 non-LTR retrotransposon

Zosterops






from silvereye.

lateralis








melanops



R2
.
R2-2_APi
R2 non-LTR retrotransposon

Acyrthosiphon






from pea aphid.

pisum



R2
.
R2-2_CCan
R2 non-LTR retrotransposon

Cuculus canorus






from common cuckoo.



R2
.
R2-2_CMa
R2 non-LTR retrotransposon

Chlamydotis






from Macqueen's bustard.

macqueenii



R2
.
R2-2_DWi
28S rDNA-specific non-LTR

Drosophila






retrotransposon R2 in

willistoni







Drosophila willistoni.




R2
.
R2-2_HAl
R2 non-LTR retrotransposon

Haliaeetus






from white-tailed eagle.

albicilla



R2
.
R2-2_IS
R2 non-LTR retrotransposon

Ixodes scapularis






from deer tick.



R2
.
R2-2_MR
R2 non-LTR retrotransposon

Megachile






from alfalfa leafcutter bee.

rotundata



R2
.
R2-2_MUn
R2 non-LTR retrotransposon

Melopsittacus






fragment from budgerigar.

undulatus



R2
.
R2-2_MUni
R2 non-LTR retrotransposon

Mesitornis






from brown mesite.

unicolor



R2
.
R2-2_NNi
R2 non-LTR retrotransposon

Nipponia nippon






from created ibis.



R2
.
R2-2_NV
Starlet sea anemone R2-2_NV

Nematostella






autonomous Non-LTR

vectensis






Retrotransposon - consensus.



R2
.
R2-2_PBa
R2 non-LTR retrotransposon

Pogonomyrmex






from red harvester ant.

barbatus



R2
.
R2-2_PM
R2-2_PM is a family of R2

Petromyzon marinus






non-LTR retrotransposons - a






consensus.



R2
.
R2-2_RPr
R2 non-LTR retrotransposon

Rhodnius prolixus






sequence.



R2
.
R2-2_SMed
R2 non-LTR retrotransposon

Schmidtea






from Schmidtea mediterranea:

mediterranea






consensus.



R2
.
R2-2_TCas
R2 non-LTR retrotransposon

Tribolium






from red flour beetle.

castaneum



R2
scaffold_37
R2-2_TUr
R2 non-LTR retrotransposon

Tetranychus






from twospotted spider mite.

urticae



R2
ABJB010555169
R2-3_IS
R2 non-LTR retrotransposon

Ixodes scapularis






from deer tick.



R2
.
R2-3_MR
R2 non-LTR retrotransposon

Megachile






from alfalfa leafcutter bee.

rotundata



R2
.
R2-4_MR
R2 non-LTR retrotransposon

Megachile






from alfalfa leafcutter bee.

rotundata



R2
.
R2-5_MR
R2 non-LTR retrotransposon

Megachile






from alfalfa leafcutter bee.

rotundata



R2
.
R2-6_MR
R2 non-LTR retrotransposon

Megachile






from alfalfa leafcutter bee.

rotundata



R2
.
R2-7_MR
R2 non-LTR retrotransposon

Megachile






from alfalfa leafcutter bee.

rotundata



R2
.
R2-8_MR
R2 non-LTR retrotransposon

Megachile






from alfalfa leafcutter bee.

rotundata



R2
.
R2-N1_Gav
Non-LTR retrotransposon.

Gavialis








gangeticus



R2
.
R2-N2_Gav
Non-LTR retrotransposon.

Gavialis








gangeticus



R2
.
R2-N2B_Gav
Non-LTR retrotransposon.

Gavialis








gangeticus



R2
.
R2A_NVi
28S rDNA-specific non-LTR

Nasonia






retrotransposon R2 in

vitripennis







Nasonia vitripennis.




R2
AF015817
R2A_TM

Tenebrio molitor


Tenebrio molitor






retrotransposon R2 reverse






transcriptase gene, partial cds.



R2
.
R2Amel
R2Amel - R2 non-LTR

Apis mellifera






retrotransposon from the






honeybee Apis mellifera.



R2
AF015685
R2B_DM

Drosophila mercatorum R2


Drosophila






retrotransposon reverse

mercatorum






transcriptase domain protein






gene, complete cds.



R2
.
R2B_NVi
28S rDNA-specific non-LTR

Nasonia






retrotransposon R2 in

vitripennis







Nasonia vitripennis.




R2
AF015822
R2B_TM

Tenebrio molitor


Tenebrio molitor






retrotransposon R2 reverse






transcriptase gene, partial cds.



R2
.
R2C_NGi
28S rDNA-specific non-LTR

Nasonia giraulti






retrotransposon R2 in







Nasonia giraulti.




R2
AB097122
R2Ci-B

Ciona intestinalis


Ciona intestinalis






retrotransposon R2Ci-B,






complete sequence.



R2
.
R2Ci-D

Ciona intestinalis


Ciona intestinalis






retrotransposon R2CiD,






complete sequence.



R2
AB097121
R2CIA_CI

Ciona intestinalis


Ciona intestinalis






retrotransposon R2Ci-A,






complete sequence.



R2
AB097125
R2Cs-D

Ciona intestinalis


Ciona savignyi






retrotransposon R2CsD,






partial sequence.



R2
.
R2D_NGi
28S rDNA-specific non-LTR

Nasonia giraulti






retrotransposon R2 in







Nasonia giraulti.




R2
NM_001030097
R2Dr
R2 non-LTR retrotransposon in

Danio rerio






the Danio rerio






genome - a single copy.



R2
.
R2E_NLo
28S rDNA-specific non-LTR

Nasonia






retrotransposon R2 in

longicornis







Nasonia longicornisi.




R2
AB201408
R2Eb
R2 non-LTR retrotransposon

Eptatretus burgeri






from Eptatretus burgeri.



R2
AB201415
R2Ha
R2 non-LTR retrotransposon

Hasarius adansoni






from Hasarius adansoni.



R2
JN937617
R2La
R2-type non-LTR retrotransposon.

Lepidurus arcticus



R2
.
R2LcA
R2-type non-LTR retrotransposon.

Lepidurus couesii



R2
JN937619
R2LcB
R2-type non-LTR retrotransposon.

Lepidurus couesii



R2
.
R2LcC
R2-type non-LTR retrotransposon.

Lepidurus couesii



R2
JN937616
R2Ll
R2-type non-LTR retrotransposon.

Lepidurus apus








lubbocki



R2
AB201414
R2Mr
R2 non-LTR retrotransposon

Metacrinus






from Metacrinus rotundus.

rotundus



R2
.
R2NS-1_CGi
R2-type retrotransposon from

Crassostrea gigas







Crassostrea gigas.




R2
.
R2NS-1_CSi
R2-type retrotransposon from

Clonorchis







Clonorchis sinensis: consensus.


sinensis



R2
.
R2NS-1_PMi
R2-like non-LTR

Patiria miniata






retrotransposon from bat star.



R2
.
R2NS-1_SMed
R2-type retrotransposon from

Schmidtea







Schmidtea mediterranea:


mediterranea






consensus.



R2
.
R2Nvec-A
R2Nvec-A - R2 non-LTR

Nematostella






retrotransposon from the

vectensis






starlet sea anemone







Nematostella vectensis.




R2
.
R2Ol-A
R2 non-LTR retrotransposon

Oryzias latipes






from the medaka







Oryzias latipes - consensus.




R2
AB201416
R2Pc
R2 non-LTR retrotransposon

Procambarus






from Procambarus clarkii.

clarkii



R2
.
R2Sm-A
R2Sm-A - R2 non-LTR

Schistosoma






retrotransposon from the

mansoni






bloodfluke Schistosoma







mansoni.




R2
AB201409
R2Ta
R2 non-LTR retrotransposon

Tanichthys






from Tanichthys albonubes.

albonubes



R2
EU854578
R2Tc
R2-type non-LTR retrotransposon.

Triops








cancriformis



R2
JN937621
R2Tc_it
R2-type non-LTR retrotransposon.

Triops








cancriformis



R2
AB201417
R2Tl
R2 non-LTR retrotransposon

Triops






from Triops longicaudatus.

longicaudatus



R4
U29445
R4_AL

Ascaris lumbricoides


Ascaris






site-specific non-LTR

lumbricoides






retrotransposable element R4






in 26S rDNA, complete sequence.



R4
U29590
R4_HC

Haemonchus contortus non-LTR


Haemonchus






retrotransposon specific to

contortus






the large subunit rRNA genes






of nematodes.



R4
.
R4_Hmel
a R4 element from Heliconius

Heliconius







melpomene.


melpomene



R4
.
R4-1_AC
A family of R4 non-LTR

Anolis






retrotransposons - consensus

carolinensis






sequence.



R4
.
R4-1_ADi
R4-type retrotransposon:

Acropora






consensus.

digitifera



R4
.
R4-1_BM
Non-LTR retrotransposon - a

Bombyx mori






consensus.



R4
CADV01008175
R4-1_BX
An R4 non-LTR retrotransposon

Bursaphelenchus






family from Bursaphelenchus

xylophilus







xylophilus.




R4
ABLE03011482
R4-1_CJap
An R4 non-LTR retrotransposon

Caenorhabditis






family from Caenorhabditis

japonica







japonica.




R4
.
R4-1_CM
Non-LTR retrotransposon from

Callorhinchus






the elephant shark - consensus.

milii



R4
.
R4-1_CPB
Non-LTR retrotransposon:

Chrysemyspicta






consensus.

bellii



R4
.
R4-1_ED
Autonomous non-LTR

Entamoeba dispar






retrotransposon from the R4






clade - a consensus sequence.



R4
.
R4-1_HG
An R4 non-LTR retrotransposon

Heterodera






family from

glycines







Heterodera glycines.




R4
.
R4-1_HMe
Non-LTR retrotransposon family from

Heliconius







Heliconius melpomene melpomene.


melpomene








melpomene



R4
CABB01003843
R4-1_MI
An R4 non-LTR retrotransposon

Meloidogyne






family from Meloidogyne

incognita







incognita.




R4
.
R4-1_PH
Non-LTR Retrotransposon,

Parhyale






consensus.

hawaiensis



R4
CACX01002001
R4-1_SRa
An R4 non-LTR retrotransposon

Strongyloides






family from Strongyloides ratti.

ratti



R4
.
R4-1_TCa
R4-type retrotransposon:

Tribolium






consensus.

castaneum



R4
.
R4-1B_AC
Dong-type non-LTR

Anolis






retrotransposons - a consensus

carolinensis






sequence.



R4
.
R4-2_AS
An R4 non-LTR retrotransposon

Ascaris suum






family from Ascaris suum.



R4
CADV01009048
R4-2_BX
An R4 non-LTR retrotransposon

Bursaphelenchus






family from Bursaphelenchus

xylophilus







xylophilus.




R4
ABLA01000389
R4-2_HG
An R4 non-LTR retrotransposon

Heterodera






family from Heterodera

glycines







glycines.




R4
CACX01002006
R4-2_SRa
An R4 non-LTR retrotransposon

Strongyloides






family from Strongyloides ratti.

ratti



R4
CADV01008832
R4-3_BX
An R4 non-LTR retrotransposon

Bursaphelenchus






family from Bursaphelenchus

xylophilus







xylophilus.




R4
.
R4-3_SRa
An R4 non-LTR retrotransposon

Strongyloides






family from Strongyloides ratti.

ratti



R4
.
R4-4_BX
An R4 non-LTR retrotransposon

Bursaphelenchus






family from Bursaphelenchus

xylophilus







xylophilus.




R4
.
R4-4_SRa
An R4 non-LTR retrotransposon

Strongyloides






family from Strongyloides

ratti







ratti.




R4
.
R4-5_BX
An R4 non-LTR retrotransposon

Bursaphelenchus






family from Bursaphelenchus

xylophilus







xylophilus.




NeSL
AY216701
R5

Girardia tigrina R5


Girardia tigrina






retrotransposon, complete






sequence.



NeSL
.
R5-1_SM
A family of planarian NeSL

Schmidtea






non-LTR retrotransposons -

mediterranea






consensus.



NeSL
.
R5-2_SM
A family of planarian NeSL

Schmidtea






non-LTR retrotransposons -

mediterranea






consensus.



R2
.
R8Hm-A
R8Hm-A - 18S rDNA-specific

Hydra vulgaris






non-LTR retrotransposon from







Hydra magnipapillata.




R2
.
R8Hm-B
R8Hm-B - 18S rDNA-specific

Hydra vulgaris






non-LTR retrotransposon from







Hydra magnipapillata.




R2
.
R9Av
R9Av, an rDNA-specific non-LTR

Adineta vaga






retrotransposon family from






rotifer.



R2
FJ461304
RaR2
28S rDNA-specific non-LTR

Rhynchosciara






retrotransposon R2 from

americana







Rhynchosciara americana.




R4
.
Rex6
Non-LTR retrotransposon;

Takifugu rubripes






site-specific LINE; R4/Dong






superfamily; REX6; DONG_FR.



R4
.
Rex6-1_OL
A Rex6 non-LTR retrotransposon

Oryzias latipes






family from Olyzias latipes.



CRE
X17078
SLACS

Trypanosoma brucei DNA for


Trypanosoma brucei






retrotransposable element SLACS.



NeSL
.
Utopia-1_ACa
Utopia-1_ACa is a protozoan

Acanthamoeba






Utopia non-LTR retrotransposon -

castellanii






a complete sequence.



NeSL
scaffold_474
Utopia-1_ACar
A family of NeSL non-LTR

Anolis






retrotransposons.

carolinensis



NeSL
.
Utopia-1_AEc
A family of Utopia non-LTR

Acromyrmex






retrotransposons - consensus.

echinatior



NeSL
.
Utopia-1_AMi
A family of NeSL non-LTR

Alligator






retrotransposons - consensus.

mississippiensis



NeSL
.
Utopia-1_APi
A family of Utopia non-LTR

Acyrthosiphon






retrotransposons - consensus.

pisum



NeSL
.
Utopia-1_APl
A family of Utopia non-LTR

Agrilus






retrotransposons.

planipennis



NeSL
.
Utopia-1_CFl
A family of Utopia non-LTR

Camponotus






retrotransposons - consensus.

floridanus



NeSL
.
Utopia-1_CMy
A family of Utopia non-LTR

Chelonia mydas






retrotransposons - consensus.



NeSL
.
Utopia-1_CPB
A family of Utopia non-LTR

Chrysemyspicta






retrotransposons - consensus.

bellii



NeSL
.
Utopia-1_Crp
Non-LTR retrotransposon.

Crocodylus porosus



NeSL
.
Utopia-1_DPo
A family of Utopia non-LTR

Dendroctonus ponderosae






retrotransposons.



NeSL
.
Utopia-1_DPu
A family of Utopia non-LTR

Daphnia pulex






retrotransposons - consensus.



NeSL
.
Utopia-1_DYak
A family of Utopia non-LTR

Drosophila yakuba






retrotransposons - consensus.



NeSL
.
Utopia-1_EBr
A family of Utopia non-LTR

Eimeria brunetti






retrotransposons - consensus.



NeSL
.
Utopia-1_EMi
A family of Utopia non-LTR

Eimeria mitis






retrotransposons - consensus.



NeSL
.
Utopia-1_ENe
A family of Utopia non-LTR

Eimeria necatrix






retrotransposons - consensus.



NeSL
.
Utopia-1_Gav
Non-LTR retrotransposon.

Gavialis








gangeticus



NeSL
.
Utopia-1_GG1
A family of Utopia non-LTR

Ganaspis






retrotransposons.



NeSL
.
Utopia-1_HAra
A family of Utopia non-LTR

Hyaloperonospora






retrotransposons.

arabidopsidis



NeSL
.
Utopia-1_HG
A family of Utopia non-LTR

Heterodera






retrotransposons.

glycines



NeSL
.
Utopia-1_HMM
A family of Utopia non-LTR

Heliconius






retrotransposons.

melpomene








melpomene



NeSL
.
Utopia-1_HSal
A family of Utopia non-LTR

Harpegnathos






retrotransposons - consensus.

saltator



NeSL
.
Utopia-1_IS
A family of Utopia non-LTR

Ixodes scapularis






retrotransposons - consensus.



NeSL
.
Utopia-1_LAl
A family of Utopia non-LTR

Lasioglossum






retrotransposons.

albipes



NeSL
.
Utopia-1_LFu
A family of Utopia non-LTR

Ladona fulva






retrotransposons.



NeSL
AGCV01358106
Utopia-1_LV
A family of Utopia non-LTR

Lytechinus






retrotransposons.

variegatus



NeSL
.
Utopia-1_MRo
A family of Utopia non-LTR

Megachile






retrotransposons - consensus.

rotundata



NeSL
.
Utopia-1_NVit
A family of Utopia non-LTR

Nasonia






retrotransposons - consensus.

vitripennis



NeSL
.
Utopia-1_PAlni
NeSL non-LTR retrotransposon

Phytophthora alni






from Phytophthora alni.



NeSL
.
Utopia-1_PArrh
NeSL non-LTR retrotransposon

Pythium






from Pythium arrhenomanes.

arrhenomanes



NeSL
.
Utopia-1_PBa
A family of Utopia non-LTR

Pogonomyrmex






retrotransposons - consensus.

barbatus



NeSL
.
Utopia-1_PCa
A family of Utopia non-LTR

Phytophthora






retrotransposons - consensus.

capsici



NeSL
.
Utopia-1_PCinn
NeSL non-LTR retrotransposon

Phytophthora






from Phytophthora cinnamomi.

cinnamomi



NeSL
AHJF01004292
Utopia-1_PCu
A family of Utopia non-LTR

Pseudoperonospora






retrotransposons - consensus.

cubensis



NeSL
.
Utopia-1_PI
A family of NeSL non-LTR

Phytophthora






retrotransposons - consensus.

infestans



NeSL
.
Utopia-1_PInsi
NeSL non-LTR retrotransposon

Pythium insidiosum






from Pythium insidiosum.



NeSL
.
Utopia-1_PKern
NeSL non-LTR retrotransposon

Phytophthora






from Phytophthora kernoviae.

kernoviae



NeSL
.
Utopia-1_PLate
NeSL non-LTR retrotransposon

Phytophthora






from Phytophthora lateralis.

lateralis



NeSL
.
Utopia-1_PMi
A family of Utopia non-LTR

Patiria miniata






retrotransposons.



NeSL
.
Utopia-1_PPac
A family of Utopia non-LTR

Pristionchus






retrotransposons.

pacificus



NeSL
.
Utopia-1_PPini
NeSL non-LTR retrotransposon

Phytophthora






from

pinifolia







Phytophthora pinifolia.




NeSL
.
Utopia-1_PR
A family of Utopia non-LTR

Phytophthora






retrotransposons - consensus.

ramorum



NeSL
.
Utopia-1_PRe
A family of Utopia non-LTR

Panagrellus






retrotransposons - consensus.

redivivus



NeSL
.
Utopia-1_PS
A family of Utopia non-LTR

Phytophthora sojae






retrotransposons - consensus.



NeSL
.
Utopia-1_PSi
A family of Utopia non-LTR

Pelodiscus






retrotransposons - consensus.

sinensis



NeSL
.
Utopia-1_PT
A family of Utopia non-LTR

Parasteatoda






retrotransposons.

tepidariorum



NeSL
ADOS01001321
Utopia-1_PU
A family of Utopia non-LTR

Pythium ultimum






retrotransposons.



NeSL
.
Utopia-1_PVexa
NeSL non-LTR retrotransposon

Phytopythium






from Phytopythium vexans.
aff. vexans


NeSL
.
Utopia-1_SaPa
A family of Utopia non-LTR

Saprolegnia






retrotransposons.

parasitica



NeSL
.
Utopia-1_SDicl
NeSL non-LTR retrotransposon

Saprolegnia






from Saprolegnia diclina.

diclina



NeSL
.
Utopia-1_SM
A family of Utopia non-LTR

Strigamia maritima






retrotransposons.



NeSL
AAGJ02140537
Utopia-1_SP
A family of Utopia non-LTR

Strongylocentrotus






retrotransposons.

purpuratus



NeSL
.
Utopia-1_TSP
A family of Utopia non-LTR

Trichinella






retrotransposons.

spiralis



NeSL
.
Utopia-1B_CPB
A family of Utopia non-LTR

Chrysemys picta






retrotransposons - consensus.

bellii



NeSL
.
Utopia-2_APi
A family of Utopia non-LTR

Acyrthosiphon






retrotransposons.

pisum



NeSL
.
Utopia-2_CMy
A family of Utopia non-LTR

Chelonia mydas






retrotransposons - consensus.



NeSL
.
Utopia-2_CPB
A family of Utopia non-LTR

Chrysemys picta






retrotransposons - consensus.

bellii



NeSL
.
Utopia-2_DPu
A family of Utopia non-LTR

Daphnia pulex






retrotransposons.



NeSL
.
Utopia-2_LFu
A family of Utopia non-LTR

Ladona fulva






retrotransposons.



NeSL
.
Utopia-2_PCa
A family of Utopia non-LTR

Phytophthora






retrotransposons - consensus.

capsici



NeSL
.
Utopia-2_PI
A family of NeSL non-LTR

Phytophthora






retrotransposons - consensus.

infestans



NeSL
.
Utopia-2_PR
A family of Utopia non-LTR

Phytophthora






retrotransposons - consensus.

ramorum



NeSL
.
Utopia-2_PS
A family of Utopia non-LTR

Phytophthora sojae






retrotransposons - consensus.



NeSL
.
Utopia-2_PU
A family of Utopia non-LTR

Pythium ultimum






retrotransposons.



NeSL
.
Utopia-3_CPB
A family of Utopia non-LTR

Chrysemys picta






retrotransposons - consensus.

bellii



NeSL
.
Utopia-3_DPu
A family of Utopia non-LTR

Daphnia pulex






retrotransposons.



NeSL
.
Utopia-3_LFu
A family of Utopia non-LTR

Ladona fulva






retrotransposons.



NeSL
.
Utopia-3_PCa
A family of Utopia non-LTR

Phytophthora






retrotransposons - consensus.

capsici



NeSL
.
Utopia-3_PI
A family of NeSL non-LTR

Phytophthora






retrotransposons - consensus.

infestans



NeSL
.
Utopia-3_PR
A family of Utopia non-LTR

Phytophthora






retrotransposons - consensus.

ramorum



NeSL
.
Utopia-4_LFu
A family of Utopia non-LTR

Ladona fulva






retrotransposons.



NeSL
AATU01001281.1
Utopia-4_PI
A family of NeSL non-LTR

Phytophthora






retrotransposons - a copy.

infestans



NeSL
.
Utopia-4_PR
A family of Utopia non-LTR

Phytophthora






retrotransposons - consensus.

ramorum



NeSL
.
Utopia-5_LFu
A family of Utopia non-LTR

Ladona fulva






retrotransposons.



NeSL
.
Utopia-5_PI
A family of Utopia non-LTR

Phytophthora






retrotransposons - consensus.

infestans



NeSL
.
Utopia-5_PR
A family of Utopia non-LTR

Phytophthora






retrotransposons - consensus.

ramorum



NeSL
.
Utopia-6_LFu
A family of Utopia non-LTR

Ladona fulva






retrotransposons.



R4
.
X4_LINE
Conserved LINE element

Vertebrata






reconstructed from the human






genome - consensus.



NeSL
.
YURE_CSa
A NeSL non-LTR retrotransposon

Ciona savignyi






from Ciona savignyi.



R2
.
YURE-2_Cis
YURE non-LTR retrotransposon

Ciona savignyi






from Ciona savignyi.



NeSL
.
YURECi

Ciona intestinalis


Ciona intestinalis






retrotransposon YURECi.









A skilled artisan can, based on the Accession numbers provided in Tables 1-3 determine the nucleic acid and corresponding polypeptide sequences of each retrotransposon and domains thereof, e.g., by using routine sequence analysis tools as Basic Local Alignment Search Tool (BLAST) or CD-Search for conserved domain analysis. Other sequence analysis tools are known and can be found, e.g., at https://molbiol-tools.ca, for example, at https://molbiol-tools.ca/Motifs.htm. SEQ ID NOs 1-112 align with each row in Table 1, and SEQ ID NOs 113-1015 align with the first 903 rows of Table 2.


Tables 1-3 herein provide the sequences of exemplary transposons, including the amino acid sequence of the retrotransposase, and sequences of 5′ and 3′ untranslated regions to allow the retrotransposase to bind the template RNA, and the full transposon nucleic acid sequence. In some embodiments, a 5′ UTR of any of Tables 1-3 allows the retrotransposase to bind the template RNA. In some embodiments, a 3′ UTR of any of Tables 1-3 allows the retrotransposase to bind the template RNA. Thus, in some embodiments, a polypeptide for use in any of the systems described herein can be a polypeptide of any of Tables 1-3 herein, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto. In some embodiments, the system further comprises one or both of a 5′ or 3′ untranslated region of any of Tables 1-3 herein (or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto), e.g., from the same transposon as the polypeptide referred to in the preceding sentence, as indicated in the same row of the same table. In some embodiments, the system comprises one or both of a 5′ or 3′ untranslated region of any of Tables 1-3 herein, e.g., a segment of the full transposon sequence that encodes an RNA that is capable of binding a retrotransposase, and/or the sub-sequence provided in the column entitled Predicted 5′ UTR or Predicted 3′ UTR.


In some embodiments, a polypeptide for use in any of the systems described herein can be a molecular reconstruction or ancestral reconstruction based upon the aligned polypeptide sequence of multiple retrotransposons. In some embodiments, a 5′ or 3′ untranslated region for use in any of the systems described herein can be a molecular reconstruction based upon the aligned 5′ or 3′ untranslated region of multiple retrotransposons. A skilled artisan can, based on the Accession numbers provided herein, align polypeptides or nucleic acid sequences, e.g., by using routine sequence analysis tools as Basic Local Alignment Search Tool (BLAST) or CD-Search for conserved domain analysis. Molecular reconstructions can be created based upon sequence consensus, e.g. using approaches described in Ivies et al., Cell 1997, 501-510; Wagstaff et al., Molecular Biology and Evolution 2013, 88-99. In some embodiments, the retrotransposon from which the 5′ or 3′ untranslated region or polypeptide is derived is a young or a recently active mobile element, as assessed via phylogenetic methods such as those described in Boissinot et al., Molecular Biology and Evolution 2000, 915-928.


Table 3 (below) shows exemplary Gene Writer proteins and associated sequences from a variety of retrotransposases, identified using data mining. Column 1 indicates the family to which the retrotransposon belongs. Column 2 lists the element name. Column 3 indicates an accession number, if any. Column 4 lists an organism in which the retrotransposase is found. Column 5 lists the DNA sequence of the retrotransposon. Column 6 lists the predicted 5′ untranslated region, and column 7 lists the predicted 3′ untranslated region; both are segments of the sequence of column 5 that are predicted to allow the template RNA to bind the retrotransposase of column 8. (It is understood that columns 5-7 show the DNA sequence, and that an RNA sequence according to any of columns 5-7 would typically include uracil rather than thymidine.) Column 8 lists the predicted retrotransposase sequence encoded in the retrotransposon of column 5.










Lengthy table referenced here




US20200109398A1-20200409-T00001


Please refer to the end of the specification for access instructions.






Gene Writers, e.g. Thermostable Gene Writers


While not wishing to be bound by theory, in some embodiments, retrotransposases that evolved in cold environments may not function as well at human body temperature. This application provides a number of thermostable Gene Writers, including proteins derived from avian retrotransposases. Exemplary avian transposase sequences in Table 3 include those of Taeniopygia guttata (zebra finch; transposon name R2-1_TG), Geospiza fortis (medium ground finch; transposon name R2-1_Gfo), Zonotrichia albicollis (white-throated sparrow; transposon name R2-1_ZA), and Tinamus guttatus (white-throated tinamou; transposon name R2-1_TGut).


Thermostability may be measured, e.g., by testing the ability of a Gene Writer to polymerize DNA in vitro at a high temperature (e.g., 37° C.) and a low temperature (e.g., 25° C.). Suitable conditions for assaying in vitro DNA polymerization activity (e.g., processivity) are described, e.g., in Bibillo and Eickbush, “High Processivity of the Reverse Transcriptase from a Non-long Terminal Repeat Retrotransposon” (2002) JBC 277, 34836-34845. In some embodiments, the thermostable Gene Writer polypeptide has an activity, e.g., a DNA polymerization activity, at 37° C. that is no less than 70%, 75%, 80%, 85%, 90%, or 95% of its activity at 25° C. under otherwise similar conditions.


In some embodiments, a GeneWriter polypeptide (e.g., a sequence of Table 1, 2, or 3 or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto) is stable in a subject chosen from a mammal (e.g., human) or a bird. In some embodiments, a GeneWriter polypeptide described herein is functional at 37° C. In some embodiments, a GeneWriter polypeptide described herein has greater activity at 37° C. than it does at a lower temperature, e.g., at 30° C., 25° C., or 20° C. In some embodiments, a GeneWriter polypeptide described herein has greater activity in a human cell than in a zebrafish cell.


In some embodiments, a GeneWriter polypeptide is active in a human cell cultured at 37° C., e.g., using an assay of Example 6 or Example 7 herein.


In some embodiments, the assay comprises steps of: (1) introducing HEK293T cells into one or more wells of 6.4 mm diameter, at 10,000 cells/well, (2) incubating the cells at 37° C. for 24 hr, (3) providing a transfection mixture comprising 0.5 μl if FuGENE® HD transfection reagent and 80 ng DNA (wherein the DNA is a plasmid comprising, in order, (a) CMV promoter, (b) 100 bp of sequence homologous to the 100 bp upstream of the target site, (c) sequence encoding a 5′ untranslated region that binds the GeneWriter protein, (d) sequence encoding the GeneWriter protein, (e) sequence encoding a 3′ untranslated region that binds the GeneWriter protein (f) 100 bp of sequence homologous to the 100 bp downstream of the target site, and (g) BGH polyadenylation sequence) and 10 μl Opti-MEM and incubating for 15 min at room temperature, (4) adding the transfection mixture to the cells, (5) incubating the cells for 3 days, and (6) assaying integration of the exogenous sequence into a target locus (e.g., rDNA) in the cell genome, e.g., wherein one or more of the preceding steps are performed as described in Example 6 herein.


In some embodiments, the GeneWriter polypeptide results in insertion of the heterologous object sequence (e.g., the GFP gene) into the target locus (e.g., rDNA) at an average copy number of at least 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, or 5 copies per genome. In some embodiments, a cell described herein (e.g., a cell comprising a heterologous sequence at a target insertion site) comprises the heterologous object sequence at an average copy number of at least 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, or 5 copies per genome.


In some embodiments, a GeneWriter causes integration of a sequence in a target RNA with relatively few truncation events at the terminus. For instance, in some embodiments, a Gene Writer protein (e.g., of SEQ ID NO: 1016) results in about 25-100%, 50-100%, 60-100%, 70-100%, 75-95%, 80%-90%, or 86.17% of integrants into the target site being non-truncated, as measured by an assay described herein, e.g., an assay of Example 6 and FIG. 8. In some embodiments, a Gene Writer protein (e.g., of SEQ ID NO: 1016) results in at least about 30%, 40%, 50%, 60%, 70%, 80%, or 90% of integrants into the target site being non-truncated, as measured by an assay described herein. In some embodiments, an integrant is classified as truncated versus non-truncated using an assay comprising amplification with a forward primer situated 565 bp from the end of the element (e.g., a wild-type transposon sequence, e.g., of Taeniopygia guttata) and a reverse primer situated in the genomic DNA of the target insertion site, e.g., rDNA. In some embodiments, the number of full-length integrants in the target insertion site is greater than the number of integrants truncated by 300-565 nucleotides in the target insertion site, e.g., the number of full-length integrants is at least 1.1×, 1.2×, 1.5×, 2×, 3×, 4×, 5×, 6×, 7×, 8×, 9×, or 10× the number of the truncated integrants, or the number of full-length integrants is at least 1.1×-10×, 2×-10×, 3×-10×, or 5×-10× the number of the truncated integrants.


In some embodiments, a system or method described herein results in insertion of the heterologous object sequence only at one target site in the genome of the target cell. Insertion can be measured, e.g., using a threshold of above 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, e.g., as described in Example 8. In some embodiments, a system or method described herein results in insertion of the heterologous object sequence wherein less than 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 10%, 20%, 30%, 40%, or 50% of insertions are at a site other than the target site, e.g., using an assay described herein, e.g., an assay of Example 8.


In some embodiments, a system or method described herein results in “scarless” insertion of the heterologous object sequence, while in some embodiments, the target site can show deletions or duplications of endogenous DNA as a result of insertion of the heterologous sequence. The mechanisms of different retrotransposons could result in different patterns of duplications or deletions in the host genome occurring during retrotransposition at the target site. In some embodiments, the system results in a scarless insertion, with no duplications or deletions in the surrounding genomic DNA. In some embodiments, the system results in a deletion of less than 1, 2, 3, 4, 5, 10, 50, or 100 bp of genomic DNA upstream of the insertion. In some embodiments, the system results in a deletion of less than 1, 2, 3, 4, 5, 10, 50, or 100 bp of genomic DNA downstream of the insertion. In some embodiments, the system results in a duplication of less than 1, 2, 3, 4, 5, 10, 50, or 100 bp of genomic DNA upstream of the insertion. In some embodiments, the system results in a duplication of less than 1, 2, 3, 4, 5, 10, 50, or 100 bp of genomic DNA downstream of the insertion.


In some embodiments, a GeneWriter described herein, or a DNA-binding domain thereof, binds to its target site specifically, e.g., as measured using an assay of Example 21. In some embodiments, the GeneWriter or DNA-binding domain thereof binds to its target site more strongly than to any other binding site in the human genome. For example, in some embodiments, in an assay of Example 21, the target site represents more than 50%, 60%, 70%, 80%, 90%, or 95% of binding events of the GeneWriter or DNA-binding domain thereof to human genomic DNA.


Genetically Engineered, e.g., Dimerized GeneWriters


Some non-LTR retrotransposons utilize two subunits to complete retrotransposition (Christensen et al PNAS 2006). In some embodiments, a retrotransposase described herein comprises two connected subunits as a single polypeptide. For instance, two wild-type retrotransposases could be joined with a linker to form a covalently “dimerized” protein (see FIG. 17). In some embodiments, the nucleic acid coding for the retrotransposase codes for two retrotransposase subunits to be expressed as a single polypeptide. In some embodiments, the subunits are connected by a peptide linker, such as has been described herein in the section entitled “Linker” and, e.g., in Chen et al Adv Drug Deliv Rev 2013. In some embodiments, the two subunits in the polypeptide are connected by a rigid linker. In some embodiments, the rigid linker consists of the motif (EAAAK)n (SEQ ID NO: 1534). In other embodiments, the two subunits in the polypeptide are connected by a flexible linker. In some embodiments, the flexible linker consists of the motif (Gly)n. In some embodiments, the flexible linker consists of the motif (GGGGS)n (SEQ ID NO: 1535). In some embodiments, the rigid or flexible linker consists of 1, 2, 3, 4, 5, 10, 15, or more amino acids in length to enable retrotransposition. In some embodiments, the linker consists of a combination of rigid and flexible linker motifs.


Based on mechanism, not all functions are required from both retrotransposase subunits. In some embodiments, the fusion protein may consist of a fully functional subunit and a second subunit lacking one or more functional domains. In some embodiments, one subunit may lack reverse transcriptase functionality. In some embodiments, one subunit may lack the reverse transcriptase domain. In some embodiments, one subunit may possess only endonuclease activity. In some embodiments, one subunit may possess only an endonuclease domain. In some embodiments, the two subunits comprising the single polypeptide may provide complimentary functions.


In some embodiments, one subunit may lack endonuclease functionality. In some embodiments, one subunit may lack the endonuclease domain. In some embodiments, one subunit may possess only reverse transcriptase activity. In some embodiments, one subunit may possess only a reverse transcriptase domain. In some embodiments, one subunit may possess only DNA-dependent DNA synthesis functionality.


Linkers:


In some embodiments, domains of the compositions and systems described herein (e.g., the endonuclease and reverse transcriptase domains of a polypeptide or the DNA binding domain and reverse transcriptase domains of a polypeptide) may be joined by a linker. A composition described herein comprising a linker element has the general form 1-L-S2, wherein S1 and S2 may be the same or different and represent two domain moieties (e.g., each a polypeptide or nucleic acid domain) associated with one another by the linker. In some embodiments, a linker may connect two polypeptides. In some embodiments, a linker may connect two nucleic acid molecules. In some embodiments, a linker may connect a polypeptide and a nucleic acid molecule. A linker may be a chemical bond, e.g., one or more covalent bonds or non-covalent bonds. A linker may be flexible, rigid, and/or cleavable. In some embodiments, the linker is a peptide linker. Generally, a peptide linker is at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acids in length, e.g., 2-50 amino acids in length, 2-30 amino acids in length.


The most commonly used flexible linkers have sequences consisting primarily of stretches of Gly and Ser residues (“GS” linker). Flexible linkers may be useful for joining domains that require a certain degree of movement or interaction and may include small, non-polar (e.g. Gly) or polar (e.g. Ser or Thr) amino acids. Incorporation of Ser or Thr can also maintain the stability of the linker in aqueous solutions by forming hydrogen bonds with the water molecules, and therefore reduce unfavorable interactions between the linker and the other moieties. Examples of such linkers include those having the structure [GGS]≥1 or [GGGS]≥1 (SEQ ID NO: 1536). Rigid linkers are useful to keep a fixed distance between domains and to maintain their independent functions. Rigid linkers may also be useful when a spatial separation of the domains is critical to preserve the stability or bioactivity of one or more components in the agent. Rigid linkers may have an alpha helix-structure or Pro-rich sequence, (XP)n, with X designating any amino acid, preferably Ala, Lys, or Glu. Cleavable linkers may release free functional domains in vivo. In some embodiments, linkers may be cleaved under specific conditions, such as the presence of reducing reagents or proteases. In vivo cleavable linkers may utilize the reversible nature of a disulfide bond. One example includes a thrombin-sensitive sequence (e.g., PRS) between the two Cys residues. In vitro thrombin treatment of CPRSC (SEQ ID NO: 1537) results in the cleavage of the thrombin-sensitive sequence, while the reversible disulfide linkage remains intact. Such linkers are known and described, e.g., in Chen et al. 2013. Fusion Protein Linkers: Property, Design and Functionality. Adv Drug Deliv Rev. 65(10): 1357-1369. In vivo cleavage of linkers in compositions described herein may also be carried out by proteases that are expressed in vivo under pathological conditions (e.g. cancer or inflammation), in specific cells or tissues, or constrained within certain cellular compartments. The specificity of many proteases offers slower cleavage of the linker in constrained compartments.


In some embodiments the amino acid linkers are (or are homologous to) the endogenous amino acids that exist between such domains in a native polypeptide. In some embodiments the endogenous amino acids that exist between such domains are substituted but the length is unchanged from the natural length. In some embodiments, additional amino acid residues are added to the naturally existing amino acid residues between domains.


In some embodiments, the amino acid linkers are designed computationally or screened to maximize protein function (Anad et al., FEBS Letters, 587:19, 2013).


Template RNA Component of Gene Writer™ Gene Editor System

The Gene Writer systems described herein can transcribe an RNA sequence template into host target DNA sites by target-primed reverse transcription. By writing DNA sequence(s) via reverse transcription of the RNA sequence template directly into the host genome, the Gene Writer system can insert an object sequence into a target genome without the need for exogenous DNA sequences to be introduced into the host cell (unlike, for example, CRISPR systems), as well as eliminate an exogenous DNA insertion step. Therefore, the Gene Writer system provides a platform for the use of customized RNA sequence templates containing object sequences, e.g., sequences comprising heterologous gene coding and/or function information.


In some embodiments the template RNA encodes a Gene Writer protein in cis with a heterologous object sequence. Various cis constructs were described, for example, in Kuroki-Kami et al (2019) Mobile DNA 10:23 (incorporated by reference herein in its entirety), and can be used in combination with any of the embodiments described herein. For instance, in some embodiments, the template RNA comprises a heterologous object sequence, a sequence encoding a Gene Writer protein (e.g., a protein comprising (i) a reverse transcriptase domain and (ii) an endonuclease domain, e.g., as described herein), a 5′ untranslated region, and a 3′ untranslated region. The components may be included in various orders. In some embodiments, the Gene Writer protein and heterologous object sequence are encoded in different directions (sense vs. anti-sense), e.g., using an arrangement shown in FIG. 3A of Kuroki-Kami et al, Id. In some embodiments the Gene Writer protein and heterologous object sequence are encoded in the same direction. In some embodiments, the nucleic acid encoding the polypeptide and the template RNA or the nucleic acid encoding the template RNA are covalently linked, e.g., are part of a fusion nucleic acid and/or are part of the same transcript. In some embodiments, the fusion nucleic acid comprises RNA or DNA.


The nucleic acid encoding the Gene Writer polypeptide may, in some instances, be 5′ of the heterologous object sequence. For example, in some embodiments, the template RNA comprises, from 5′ to 3′, a 5′ untranslated region, a sense-encoded Gene Writer polypeptide, a sense-encoded heterologous object sequence, and 3′ untranslated region. In some embodiments, the template RNA comprises, from 5′ to 3′, a 5′ untranslated region, a sense-encoded Gene Writer polypeptide, anti-sense-encoded heterologous object sequence, and 3′ untranslated region.


In some embodiments, the RNA further comprises homology to the DNA target site.


It is understood that, when a template RNA is described as comprising an open reading frame or the reverse complement thereof, in some embodiments the template RNA must be converted into double stranded DNA (e.g., through reverse transcription) before the open reading frame can be transcribed and translated.


In certain embodiments, customized RNA sequence template can be identified, designed, engineered and constructed to contain sequences altering or specifying host genome function, for example by introducing a heterologous coding region into a genome; affecting or causing exon structure/alternative splicing; causing disruption of an endogenous gene; causing transcriptional activation of an endogenous gene; causing epigenetic regulation of an endogenous DNA; causing up- or down-regulation of operably liked genes, etc. In certain embodiments, a customized RNA sequence template can be engineered to contain sequences coding for exons and/or transgenes, provide for binding sites to transcription factor activators, repressors, enhancers, etc., and combinations of thereof. In other embodiments, the coding sequence can be further customized with splice acceptor sites, poly-A tails. In certain embodiments the RNA sequence can contain sequences coding for an RNA sequence template homologous to the RLE transposase, be engineered to contain heterologous coding sequences, or combinations thereof.


The template RNA may have some homology to the target DNA. In some embodiments the template RNA has at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 175, 200 or more bases of exact homology to the target DNA at the 3′ end of the RNA. In some embodiments the template RNA has at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 175, 180, or 200 or more bases of at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% homology to the target DNA, e.g., at the 5′ end of the template RNA. In some embodiments the template RNA has a 3′ untranslated region derived from a non-LTR retrotransposon, e.g. a non-LTR retrotransposons described herein. In some embodiments the template RNA has a 3′ region of at least 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200 or more bases of at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% homology to the 3′ sequence of a non-LTR retrotransposon, e.g., a non-LTR retrotransposon described herein, e.g. a non-LTR retrotransposon in Table 1, 2, or 3. In some embodiments the template RNA has a 5′ untranslated region derived from a non-LTR retrotransposon, e.g. a non-LTR retrotransposons described herein. In some embodiments the template RNA has a 5′ region of at least 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, or 200 or more bases of at least 40%, 50%, 60%, 70%, 80%, 90%, 95% or greater homology to the 5′ sequence of a non-LTR retrotransposon, e.g., a non-LTR retrotransposon described herein, e.g. a non-LTR retrotransposon described in Table 2 or 3.


The template RNA component of a Gene Writer genome editing system described herein typically is able to bind the Gene Writer genome editing protein of the system. In some embodiments the template RNA has a 3′ region that is capable of binding a Gene Writer genome editing protein. The binding region, e.g., 3′ region, may be a structured RNA region, e.g., having at least 1, 2 or 3 hairpin loops, capable of binding the Gene Writer genome editing protein of the system.


The template RNA component of a Gene Writer genome editing system described herein typically is able to bind the Gene Writer genome editing protein of the system. In some embodiments the template RNA has a 5′ region that is capable of binding a Gene Writer genome editing protein. The binding region, e.g., 5′ region, may be a structured RNA region, e.g., having at least 1, 2 or 3 hairpin loops, capable of binding the Gene Writer genome editing protein of the system. In some embodiments, the 5′ untranslated region comprises a pseudoknot, e.g., a pseudoknot that is capable of binding to the Gene Writer protein.


In some embodiments, the template RNA (e.g., an untranslated region of the hairpin RNA, e.g., a 5′ untranslated region) comprises a stem-loop sequence. In some embodiments, the template RNA (e.g., an untranslated region of the hairpin RNA, e.g., a 5′ untranslated region) comprises a hairpin. In some embodiments, the template RNA (e.g., an untranslated region of the hairpin RNA, e.g., a 5′ untranslated region) comprises a helix. In some embodiments, the template RNA (e.g., an untranslated region of the hairpin RNA, e.g., a 5′ untranslated region) comprises a psuedoknot. In some embodiments the template RNA comprises a ribozyme. In some embodiments the ribozyme is similar to an hepatitis delta virus (HDV) ribozyme, e.g., has a secondary structure like that of the HDV ribozyme and/or has one or more activities of the HDV ribozyme, e.g., a self-cleavage activity. See, e.g., Eickbush et al., Molecular and Cellular Biology, 2010, 3142-3150.


In some embodiments, the template RNA (e.g., an untranslated region of the hairpin RNA, e.g., a 3′ untranslated region) comprises one or more stem-loops or helices. Exemplary structures of R2 3′ UTRs are shown, for example, in Ruschak et al. “Secondary structure models of the 3′ untranslated regions of diverse R2 RNAs” RNA. 2004 June; 10(6): 978-987, e.g., at FIG. 3, therein, and in Eikbush and Eikbush, “R2 and R2/R1 hybrid non-autonomous retrotransposons derived by internal deletions of full-length elements” Mobile DNA (2012) 3:10; e.g., at FIG. 3 therein, which articles are hereby incorporated by reference in their entirety.


In some embodiments, a template RNA described herein comprises a sequence that is capable of binding to a GeneWriter protein described herein. For instance, in some embodiments, the template RNA comprises an MS2 RNA sequence capable of binding to an MS2 coat protein sequence in the GeneWriter protein. In some embodiments, the template RNA comprises an RNA sequence capable of binding to a B-box sequence. In some embodiments, the template RNA comprises an RNA sequence (e.g., a crRNA sequence and/or tracrRNA sequence) capable of binding to a dCas sequence in the GeneWriter protein. In some embodiments, in addition to or in place of a UTR, the template RNA is linked (e.g., covalently) to a non-RNA UTR, e.g., a protein or small molecule.


In some embodiments the template RNA has a poly-A tail at the 3′ end. In some embodiments the template RNA does not have a poly-A tail at the 3′ end.


In some embodiments the template RNA has a 5′ region of at least 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200 or more bases of at least 40%, 50%, 60%, 70%, 80%, 90%, 95% or greater homology to the 5′ sequence of a non-LTR retrotransposon, e.g., a non-LTR retrotransposon described herein.


The template RNA of the system typically comprises an object sequence for insertion into a target DNA. The object sequence may be coding or non-coding.


In some embodiments a system or method described herein comprises a single template RNA. In some embodiments a system or method described herein comprises a plurality of template RNAs.


In some embodiments, the object sequence may contain an open reading frame. In some embodiments the template RNA has a Kozak sequence. In some embodiments the template RNA has an internal ribosome entry site. In some embodiments the template RNA has a self-cleaving peptide such as a T2A or P2A site. In some embodiments the template RNA has a start codon. In some embodiments the template RNA has a splice acceptor site. In some embodiments the template RNA has a splice donor site. In some embodiments the template RNA has a microRNA binding site downstream of the stop codon. In some embodiments the template RNA has a polyA tail downstream of the stop codon of an open reading frame. In some embodiments the template RNA comprises one or more exons. In some embodiments the template RNA comprises one or more introns. In some embodiments the template RNA comprises a eukaryotic transcriptional terminator. In some embodiments the template RNA comprises an enhanced translation element or a translation enhancing element. In some embodiments the RNA comprises the human T-cell leukemia virus (HTLV-1) R region. In some embodiments the RNA comprises a posttranscriptional regulatory element that enhances nuclear export, such as that of Hepatitis B Virus (HPRE) or Woodchuck Hepatitis Virus (WPRE). In some embodiments, in the template RNA, the heterologous object sequence encodes a polypeptide and is coded in an antisense direction with respect to the 5′ and 3′ UTR. In some embodiments, in the template RNA, the heterologous object sequence encodes a polypeptide and is coded in a sense direction with respect to the 5′ and 3′ UTR.


In some embodiments, a nucleic acid described herein (e.g., a template RNA or a DNA encoding a template RNA) comprises a microRNA binding site. In some embodiments, the microRNA binding site is used to increase the target-cell specificity of a GeneWriter system. For instance, the microRNA binding site can be chosen on the basis that is is recognized by a miRNA that is present in a non-target cell type, but that is not present (or is present at a reduced level relative to the non-target cell) in a target cell type. Thus, when the template RNA is present in a non-target cell, it would be bound by the miRNA, and when the template RNA is present in a target cell, it would not be bound by the miRNA (or bound but at reduced levels relative to the non-target cell). While not wishing to be bound by theory, binding of the miRNA to the template RNA may interfere with insertion of the heterologous object sequence into the genome. Accordingly, the heterologous object sequence would be inserted into the genome of target cells more efficiently than into the genome of non-target cells. A system having a microRNA binding site in the template RNA (or DNA encoding it) may also be used in combination with a nucleic acid encoding a GeneWriter polypeptide, wherein expression of the GeneWriter polypeptide is regulated by a second microRNA binding site, e.g., as described herein, e.g., in the section entitled “Polypeptide component of Gene Writer gene editor system”.


In some embodiments, the object sequence may contain a non-coding sequence. For example, the template RNA may comprise a promoter or enhancer sequence. In some embodiments the template RNA comprises a tissue specific promoter or enhancer, each of which may be unidirectional or bidirectional. In some embodiments the promoter is an RNA polymerase I promoter, RNA polymerase II promoter, or RNA polymerase III promoter. In some embodiments the promoter comprises a TATA element. In some embodiments the promoter comprises a B recognition element. In some embodiments the promoter has one or more binding sites for transcription factors. In some embodiments the non-coding sequence is transcribed in an antisense-direction with respect to the 5′ and 3′ UTR. In some the non-coding sequence is transcribed in a sense direction with respect to the 5′ and 3′ UTR.


In some embodiments, a nucleic acid described herein (e.g., a template RNA or a DNA encoding a template RNA) comprises a promoter sequence, e.g., a tissue specific promoter sequence. In some embodiments, the tissue-specific promoter is used to increase the target-cell specificity of a GeneWriter system. For instance, the promoter can be chosen on the basis that it is active in a target cell type but not active in (or active at a lower level in) a non-target cell type. Thus, even if the promoter integrated into the genome of a non-target cell, it would not drive expression (or only drive low level expression) of an integrated gene. A system having a tissue-specific promoter sequence in the template RNA may also be used in combination with a microRNA binding site, e.g., in the template RNA or a nucleic acid encoding a GeneWriter protein, e.g., as described herein. A system having a tissue-specific promoter sequence in the template RNA may also be used in combination with a DNA encoding a GeneWriter polypeptide, driven by a tissue-specific promoter, e.g., to achieve higher levels of GeneWriter protein in target cells than in non-target cells.


In some embodiments the template RNA comprises a microRNA sequence, a siRNA sequence, a guide RNA sequence, a piwi RNA sequence.


In some embodiments the template RNA comprises a site that coordinates epigenetic modification. In some embodiments the template RNA comprises an element that inhibits, e.g., prevents, epigenetic silencing. In some embodiments the template RNA comprises a chromatin insulator. For example, the template RNA comprises a CTCF site or a site targeted for DNA methylation.


In order to promote higher level or more stable gene expression, the template RNA may include features that prevent or inhibit gene silencing. In some embodiments, these features prevent or inhibit DNA methylation. In some embodiments, these features promote DNA demethylation. In some embodiments, these features prevent or inhibit histone deacetylation. In some embodiments, these features prevent or inhibit histone methylation. In some embodiments, these features promote histone acetylation. In some embodiments, these features promote histone demethylation. In some embodiments, multiple features may be incorporated into the template RNA to promote one or more of these modifications. CpG dinculeotides are subject to methylation by host methyl transferases. In some embodiments, the template RNA is depleted of CpG dinucleotides, e.g., does not comprise CpG nucleotides or comprises a reduced number of CpG dinucleotides compared to a corresponding unaltered sequence. In some embodiments, the promoter driving transgene expression from integrated DNA is depleted of CpG dinucleotides.


In some embodiments the template RNA comprises a gene expression unit composed of at least one regulatory region operably linked to an effector sequence. The effector sequence may be a sequence that is transcribed into RNA (e.g., a coding sequence or a non-coding sequence such as a sequence encoding a micro RNA).


In some embodiments the object sequence of the template RNA is inserted into a target genome in an endogenous intron. In some embodiments the object sequence of the template RNA is inserted into a target genome and thereby acts as a new exon. In some embodiments the insertion of the object sequence into the target genome results in replacement of a natural exon or the skipping of a natural exon.


In some embodiments the object sequence of the template RNA is inserted into the target genome in a genomic safe harbor site, such as AAVS1, CCR5, or ROSA26. In some embodiment the object sequence of the template RNA is added to the genome in an intergenic or intragenic region. In some embodiments the object sequence of the template RNA is added to the genome 5′ or 3′ within 0.1 kb, 0.25 kb, 0.5 kb, 0.75, kb, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 7.5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 50, 75 kb, or 100 kb of an endogenous active gene. In some embodiments the object sequence of the template RNA is added to the genome 5′ or 3′ within 0.1 kb, 0.25 kb, 0.5 kb, 0.75, kb, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 7.5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 50, 75 kb, or 100 kb of an endogenous promoter or enhancer. In some embodiments the object sequence of the template RNA can be, e.g., 50-50,000 base pairs (e.g., between 50-40,000 bp, between 500-30,000 bp between 500-20,000 bp, between 100-15,000 bp, between 500-10,000 bp, between 50-10,000 bp, between 50-5,000 bp. In some embodiments, the heterologous object sequence is less than 1,000, 1,300, 1500, 2,000, 3,000, 4,000, 5,000, or 7,500 nucleotides in length.


In some embodiments the genomic safe harbor site is a Natural Harbor™ site. In some embodiments the Natural Harbor™ site is ribosomal DNA (rDNA). In some embodiments the Natural Harbor™ site is 5S rDNA, 18S rDNA, 5.8S rDNA, or 28S rDNA. In some embodiments the Natural Harbor™ site is the Mutsu site in 5S rDNA. In some embodiments the Natural Harbor™ site is the R2 site, the R5 site, the R6 site, the R4 site, the R1 site, the R9 site, or the RT site in 28S rDNA. In some embodiments the Natural Harbor™ site is the R8 site or the R7 site in 18S rDNA. In some embodiments the Natural Harbor™ site is DNA encoding transfer RNA (tRNA). In some embodiments the Natural Harbor™ site is DNA encoding tRNA-Asp or tRNA-Glu. In some embodiments the Natural Harbor™ site is DNA encoding spliceosomal RNA. In some embodiments the Natural Harbor™ site is DNA encoding small nuclear RNA (snRNA) such as U2 snRNA.


Thus, in some aspects, the present disclosure provides a method of inserting a heterologous object sequence into a Natural Harbor™ site. In some embodiments, the method comprises using a GeneWriter system described herein, e.g., using a polypeptide of any of Tables 1-3 or a polypeptide having sequence similarity thereto, e.g., at least 80%, 85%, 90%, or 95% identity thereto. In some embodiments, the method comprises using an enzyme, e.g., a retrotransposase, to insert the heterologous object sequence into the Natural Harbor™ site. In some aspects, the present disclosure provides a host human cell comprising a heterologous object sequence (e.g., a sequence encoding a therapeutic polypeptide) situated at a Natural Harbor™ site in the genome of the cell. In some embodiments, the Natural Harbor™ site is a site described in Table 4 below. In some embodiments, the heterologous object sequence is inserted within 20, 50, 100, 150, 200, 250, 500, or 1000 base pairs of a sequence shown in Table 4. In some embodiments, the heterologous object sequence is inserted within 0.1 kb, 0.25 kb, 0.5 kb, 0.75, kb, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 7.5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 50, 75 kb, or 100 kb of a sequence shown in Table 4. In some embodiments, the heterologous object sequence is inserted into a site having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to a sequence shown in Table 4. In some embodiments, the heterologous object sequence is inserted within 20, 50, 100, 150, 200, 250, 500, or 1000 base pairs, or within 0.1 kb, 0.25 kb, 0.5 kb, 0.75, kb, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 7.5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 50, 75 kb, or 100 kb, of a site having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to a sequence shown in Table 4. In some embodiments, the heterologous object sequence is inserted within a gene indicated in Column 5 of Table 4, or within 20, 50, 100, 150, 200, 250, 500, or 1000 base pairs, or within 0.1 kb, 0.25 kb, 0.5 kb, 0.75, kb, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 7.5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 50, 75 kb, or 100 kb, of the gene.









TABLE 4







Natural Harbor ™ sites. Column 1 indicates a retrotransposon


that inserts into the Natural Harbor ™ site. Column 2


indicates the gene at the Natural Harbor ™ site. Columns 3


and 4 show exemplary human genome sequence 5′ and 3′ of the


insertion site (for example, 250 bp). Columns 5 and 6 list


the example gene symbol and corresponding Gene ID.
















Example



Target
Target


Gene
Example


Site
Gene
5′ flanking sequence
3′ flanking sequence
Symbol
Gene ID





R2
28S rDNA
CCGGTCCCCCCCGCCGGGTCC
GTAGCCAAATGCCTCGTCATC
RNA28SN1
106632264




GCCCCCGGGGCCGCGGTTCC
TAATTAGTGACGCGCATGAAT






GCGCGGCGCCTCGCCTCGGC
GGATGAACGAGATTCCCACT






CGGCGCCTAGCAGCCGACTT
GTCCCTACCTACTATCCAGCG






AGAACTGGTGCGGACCAGGG
AAACCACAGCCAAGGGAACG






GAATCCGACTGTTTAATTAAA
GGCTTGGCGGAATCAGCGGG






ACAAAGCATCGCGAAGGCCC
GAAAGAAGACCCTGTTGAGC






GCGGCGGGTGTTGACGCGAT
TTGACTCTAGTCTGGCACGGT






GTGATTTCTGCCCAGTGCTCT
GAAGAGACATGAGAGGTGTA






GAATGTCAAAGTGAAGAAAT
GAATAAGTGGGAGGCCCCCG






TCAATGAAGCGCGGGTAAAC
GCGCCCCCCCGGTGTCCCCGC






GGCGGGAGTAACTATGACTC
GAGGGGCCCGGGGCGGGGT






TCTTAAG (SEQ ID NO: 1508)
CCGCCG (SEQ ID NO: 1513)







R4
28S rDNA
GCGGTTCCGCGCGGCGCCTC
CGCATGAATGGATGAACGAG
RNA28SN1
106632264




GCCTCGGCCGGCGCCTAGCA
ATTCCCACTGTCCCTACCTACT






GCCGACTTAGAACTGGTGCG
ATCCAGCGAAACCACAGCCA






GACCAGGGGAATCCGACTGT
AGGGAACGGGCTTGGCGGA






TTAATTAAAACAAAGCATCGC
ATCAGCGGGGAAAGAAGACC






GAAGGCCCGCGGCGGGTGTT
CTGTTGAGCTTGACTCTAGTC






GACGCGATGTGATTTCTGCCC
TGGCACGGTGAAGAGACATG






AGTGCTCTGAATGTCAAAGT
AGAGGTGTAGAATAAGTGGG






GAAGAAATTCAATGAAGCGC
AGGCCCCCGGCGCCCCCCCG






GGGTAAACGGCGGGAGTAAC
GTGTCCCCGCGAGGGGCCCG






TATGACTCTCTTAAGGTAGCC
GGGCGGGGTCCGCCGGCCCT






AAATGCCTCGTCATCTAATTA
GCGGGCCGCCGGTGAAATAC






GTGACG (SEQ ID NO: 1509)
CACTACTC (SEQ ID NO:







1514)







R5
28S rDNA
TCCCCCCCGCCGGGTCCGCCC
CCAAATGCCTCGTCATCTAAT
RNA28SN1
106632264




CCGGGGCCGCGGTTCCGCGC
TAGTGACGCGCATGAATGGA






GGCGCCTCGCCTCGGCCGGC
TGAACGAGATTCCCACTGTCC






GCCTAGCAGCCGACTTAGAA
CTACCTACTATCCAGCGAAAC






CTGGTGCGGACCAGGGGAAT
CACAGCCAAGGGAACGGGCT






CCGACTGTTTAATTAAAACAA
TGGCGGAATCAGCGGGGAAA






AGCATCGCGAAGGCCCGCGG
GAAGACCCTGTTGAGCTTGA






CGGGTGTTGACGCGATGTGA
CTCTAGTCTGGCACGGTGAA






TTTCTGCCCAGTGCTCTGAAT
GAGACATGAGAGGTGTAGAA






GTCAAAGTGAAGAAATTCAA
TAAGTGGGAGGCCCCCGGCG






TGAAGCGCGGGTAAACGGCG
CCCCCCCGGTGTCCCCGCGAG






GGAGTAACTATGACTCTCTTA
GGGCCCGGGGCGGGGTCCG






AGGTAG (SEQ ID NO: 1510)
CCGGCCC (SEQ ID NO: 1515)







R9
28S rDNA
CGGCGCGCTCGCCGGCCGAG
TAGCTGGTTCCCTCCGAAGTT
RNA28SN1
106632264




GTGGGATCCCGAGGCCTCTC
TCCCTCAGGATAGCTGGCGCT






CAGTCCGCCGAGGGCGCACC
CTCGCAGACCCGACGCACCCC






ACCGGCCCGTCTCGCCCGCCG
CGCCACGCAGTTTTATCCGGT






CGCCGGGGAGGTGGAGCAC
AAAGCGAATGATTAGAGGTC






GAGCGCACGTGTTAGGACCC
TTGGGGCCGAAACGATCTCA






GAAAGATGGTGAACTATGCC
ACCTATTCTCAAACTTTAAAT






TGGGCAGGGCGAAGCCAGA
GGGTAAGAAGCCCGGCTCGC






GGAAACTCTGGTGGAGGTCC
TGGCGTGGAGCCGGGCGTGG






GTAGCGGTCCTGACGTGCAA
AATGCGAGTGCCTAGTGGGC






ATCGGTCGTCCGACCTGGGT
CACTTTTGGTAAGCAGAACTG






ATAGGGGCGAAAGACTAATC
GCGCTGCGGGATGAACCGAA






GAACCATCTAG (SEQ ID NO:
CGCC (SEQ ID NO: 1516)






1511)








R8
18S rDNA
GCATTCGTATTGCGCCGCTAG
TGAAACTTAAAGGAATTGAC
RNA18SN1
106631781




AGGTGAAATTCTTGGACCGG
GGAAGGGCACCACCAGGAGT






CGCAAGACGGACCAGAGCGA
GGAGCCTGCGGCTTAATTTG






AAGCATTTGCCAAGAATGTTT
ACTCAACACGGGAAACCTCA






TCATTAATCAAGAACGAAAGT
CCCGGCCCGGACACGGACAG






CGGAGGTTCGAAGACGATCA
GATTGACAGATTGATAGCTCT






GATACCGTCGTAGTTCCGACC
TTCTCGATTCCGTGGGTGGTG






ATAAACGATGCCGACCGGCG
GTGCATGGCCGTTCTTAGTTG






ATGCGGCGGCGTTATTCCCAT
GTGGAGCGATTTGTCTGGTT






GACCCGCCGGGCAGCTTCCG
AATTCCGATAACGAACGAGA






GGAAACCAAAGTCTTTGGGT
CTCTGGCATGCTAACTAGTTA






TCCGGGGGGAGTATGGTTGC
CGCGACCCCCGAGCGGTCGG






AAAGC (SEQ ID NO: 1512)
CGTCCC (SEQ ID NO: 1517)







R4-2_SRa
tRNA-Asp


TRD-GTC1-1
100189207





LIN25_SM
tRNA-Glu


TRE-CTC1-1
100189384





R1
28S rDNA
TAGCAGCCGACTTAGAACTG
ACCTACTATCCAGCGAAACCA
RNA28SN1
106632264




GTGCGGACCAGGGGAATCCG
CAGCCAAGGGAACGGGCTTG






ACTGTTTAATTAAAACAAAGC
GCGGAATCAGCGGGGAAAG






ATCGCGAAGGCCCGCGGCGG
AAGACCCTGTTGAGCTTGACT






GTGTTGACGCGATGTGATTTC
CTAGTCTGGCACGGTGAAGA






TGCCCAGTGCTCTGAATGTCA
GACATGAGAGGTGTAGAATA






AAGTGAAGAAATTCAATGAA
AGTGGGAGGCCCCCGGCGCC






GCGCGGGTAAACGGCGGGA
CCCCCGGTGTCCCCGCGAGG






GTAACTATGACTCTCTTAAGG
GGCCCGGGGCGGGGTCCGCC






TAGCCAAATGCCTCGTCATCT
GGCCCTGCGGGCCGCCGGTG






AATTAGTGACGCGCATGAAT
AAATACCACTACTCTGATCGT






GGATGAACGAGATTCCCACT
TTTTTCACTGACCCGGTGAGG






GTCCCT (SEQ ID NO: 1518)
CGGGGGG (SEQ ID NO:







1524)







R6
28S rDNA
CCCCCCGCCGGGTCCGCCCCC
AAATGCCTCGTCATCTAATTA
RNA28SN1
106632264




GGGGCCGCGGTTCCGCGCGG
GTGACGCGCATGAATGGATG






CGCCTCGCCTCGGCCGGCGC
AACGAGATTCCCACTGTCCCT






CTAGCAGCCGACTTAGAACT
ACCTACTATCCAGCGAAACCA






GGTGCGGACCAGGGGAATCC
CAGCCAAGGGAACGGGCTTG






GACTGTTTAATTAAAACAAAG
GCGGAATCAGCGGGGAAAG






CATCGCGAAGGCCCGCGGCG
AAGACCCTGTTGAGCTTGACT






GGTGTTGACGCGATGTGATT
CTAGTCTGGCACGGTGAAGA






TCTGCCCAGTGCTCTGAATGT
GACATGAGAGGTGTAGAATA






CAAAGTGAAGAAATTCAATG
AGTGGGAGGCCCCCGGCGCC






AAGCGCGGGTAAACGGCGG
CCCCCGGTGTCCCCGCGAGG






GAGTAACTATGACTCTCTTAA
GGCCCGGGGCGGGGTCCGCC






GGTAGCC (SEQ ID NO: 1519)
GGCCCTG (SEQ ID NO: 1525)







R7
18S rDNA
GCGCAAGACGGACCAGAGCG
GGAGCCTGCGGCTTAATTTG
RNA18SN1
106631781




AAAGCATTTGCCAAGAATGTT
ACTCAACACGGGAAACCTCA






TTCATTAATCAAGAACGAAAG
CCCGGCCCGGACACGGACAG






TCGGAGGTTCGAAGACGATC
GATTGACAGATTGATAGCTCT






AGATACCGTCGTAGTTCCGAC
TTCTCGATTCCGTGGGTGGTG






CATAAACGATGCCGACCGGC
GTGCATGGCCGTTCTTAGTTG






GATGCGGCGGCGTTATTCCC
GTGGAGCGATTTGTCTGGTT






ATGACCCGCCGGGCAGCTTC
AATTCCGATAACGAACGAGA






CGGGAAACCAAAGTCTTTGG
CTCTGGCATGCTAACTAGTTA






GTTCCGGGGGGAGTATGGTT
CGCGACCCCCGAGCGGTCGG






GCAAAGCTGAAACTTAAAGG
CGTCCCCCAACTTCTTAGAGG






AATTGACGGAAGGGCACCAC
GACAAGTGGCGTTCAGCCAC






CAGGAGT (SEQ ID NO: 1520)
CCGAG (SEQ ID NO: 1526)







RT
28S rDNA
GGCCGGGCGCGACCCGCTCC
AACTGGCTTGTGGCGGCCAA
RNA28SN1
106632264




GGGGACAGTGCCAGGTGGG
GCGTTCATAGCGACGTCGCTT






GAGTTTGACTGGGGCGGTAC
TTTGATCCTTCGATGTCGGCT






ACCTGTCAAACGGTAACGCA
CTTCCTATCATTGTGAAGCAG






GGTGTCCTAAGGCGAGCTCA
AATTCACCAAGCGTTGGATTG






GGGAGGACAGAAACCTCCCG
TTCACCCACTAATAGGGAACG






TGGAGCAGAAGGGCAAAAG
TGAGCTGGGTTTAGACCGTC






CTCGCTTGATCTTGATTTTCA
GTGAGACAGGTTAGTTTTACC






GTACGAATACAGACCGTGAA
CTACTGATGATGTGTTGTTGC






AGCGGGGCCTCACGATCCTTC
CATGGTAATCCTGCTCAGTAC






TGACCTTTTGGGTTTTAAGCA
GAGAGGAACCGCAGGTTCAG






GGAGGTGTCAGAAAAGTTAC
ACATTTGGTGTATGTGCTTGG






CACAGGGAT (SEQ ID NO:
C (SEQ ID NO: 1527)






1521)








Mutsu
5S rDNA
GTCTACGGCCATACCACCC
TGAACGCGCCCGATCTCGTCT
RNA5S1
100169751




(SEQ ID NO: 1522)
GATCTCGGAAGCTAAGCAGG







GTCGGGCCTGGTTAGTACTT







GGATGGGAGACCGCCTGGGA







ATACCGGGTGCTGTAGGCTTT







(SEQ ID NO: 1528)







Utopia/
U2 snRNA
ATCGCTTCTCGGCCTTTTGGC
TCTGTTCTTATCAGTTTAATAT
RNU2-1
     6066


Keno

TAAGATCAAGTGTAGTA (SEQ
CTGATACGTCCTCTATCCGAG






ID NO: 1523)
GACAATATATTAAATGGATTT







TTGGAGCAGGGAGATGGAAT







AGGAGCTTGCTCCGTCCACTC







CACGCATCGACCTGGTATTGC







AGTACCTCCAGGAACGGTGC







ACCC (SEQ ID NO: 1529)









In some embodiments, a system or method described herein results in insertion of a heterologous sequence into a target site in the human genome. In some embodiments, the target site in the human genome has sequence similarity to the corresponding target site of the corresponding wild-type retrotransposase (e.g., the retrotransposase from which the GeneWriter was derived) in the genome of the organism to which it is native. For instance, in some embodiments, the identity between the 40 nucleotides of human genome sequence centered at the insertion site and the 40 nucleotides of native organism genome sequence centered at the insertion site is less than 99.5%, 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, 70%, 60%, or 50%, or is between 50-60%, 60-70%, 70-80%, 80-90%, or 90-100%. In some embodiments, the identity between the 100 nucleotides of human genome sequence centered at the insertion site and the 100 nucleotides of native organism genome sequence centered at the insertion site is less than 99.5%, 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, 70%, 60%, or 50%, or is between 50-60%, 60-70%, 70-80%, 80-90%, or 90-100%. In some embodiments, the identity between the 500 nucleotides of human genome sequence centered at the insertion site and the 500 nucleotides of native organism genome sequence centered at the insertion site is less than 99.5%, 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, 70%, 60%, or 50%, or is between 50-60%, 60-70%, 70-80%, 80-90%, or 90-100%.


Production of Compositions and Systems

As will be appreciated by one of skill, methods of designing and constructing nucleic acid constructs and proteins or polypeptides (such as the systems, constructs and polypeptides described herein) are routine in the art. Generally, recombinant methods may be used. See, in general, Smales & James (Eds.), Therapeutic Proteins: Methods and Protocols (Methods in Molecular Biology), Humana Press (2005); and Crommelin, Sindelar & Meibohm (Eds.), Pharmaceutical Biotechnology: Fundamentals and Applications, Springer (2013). Methods of designing, preparing, evaluating, purifying and manipulating nucleic acid compositions are described in Green and Sambrook (Eds.), Molecular Cloning: A Laboratory Manual (Fourth Edition), Cold Spring Harbor Laboratory Press (2012).


Exemplary methods for producing a therapeutic pharmaceutical protein or polypeptide described herein involve expression in mammalian cells, although recombinant proteins can also be produced using insect cells, yeast, bacteria, or other cells under control of appropriate promoters. Mammalian expression vectors may comprise non-transcribed elements such as an origin of replication, a suitable promoter, and other 5′ or 3′ flanking non-transcribed sequences, and 5′ or 3′ non-translated sequences such as necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, and termination sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, splice, and polyadenylation sites may be used to provide other genetic elements required for expression of a heterologous DNA sequence. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described in Green & Sambrook, Molecular Cloning: A Laboratory Manual (Fourth Edition), Cold Spring Harbor Laboratory Press (2012).


Various mammalian cell culture systems can be employed to express and manufacture recombinant protein. Examples of mammalian expression systems include CHO, COS, HEK293, HeLA, and BHK cell lines. Processes of host cell culture for production of protein therapeutics are described in Zhou and Kantardjieff (Eds.), Mammalian Cell Cultures for Biologics Manufacturing (Advances in Biochemical Engineering/Biotechnology), Springer (2014). Compositions described herein may include a vector, such as a viral vector, e.g., a lentiviral vector, encoding a recombinant protein. In some embodiments, a vector, e.g., a viral vector, may comprise a nucleic acid encoding a recombinant protein.


Purification of protein therapeutics is described in Franks, Protein Biotechnology: Isolation, Characterization, and Stabilization, Humana Press (2013); and in Cutler, Protein Purification Protocols (Methods in Molecular Biology), Humana Press (2010).


Applications

By integrating coding genes into a RNA sequence template, the Gene Writer system can address therapeutic needs, for example, by providing expression of a therapeutic transgene in individuals with loss-of-function mutations, by replacing gain-of-function mutations with normal transgenes, by providing regulatory sequences to eliminate gain-of-function mutation expression, and/or by controlling the expression of operably linked genes, transgenes and systems thereof. In certain embodiments, the RNA sequence template encodes a promotor region specific to the therapeutic needs of the host cell, for example a tissue specific promotor or enhancer. In still other embodiments, a promotor can be operably linked to a coding sequence.


In embodiments, the Gene Writer™ gene editor system can provide therapeutic transgenes expressing, e.g., replacement blood factors or replacement enzymes, e.g., lysosomal enzymes. For example, the compositions, systems and methods described herein are useful to express, in a target human genome, agalsidase alpha or beta for treatment of Fabry Disease; imiglucerase, taliglucerase alfa, velaglucerase alfa, or alglucerase for Gaucher Disease; sebelipase alpha for lysosomal acid lipase deficiency (Wolman disease/CESD); laronidase, idursulfase, elosulfase alpha, or galsulfase for mucopolysaccharidoses; alglucosidase alpha for Pompe disease. For example, the compositions, systems and methods described herein are useful to express, in a target human genome factor I, II, V, VII, X, XI, XII or XIII for blood factor deficiencies.


In some embodiments, the heterologous object sequence encodes an intracellular protein (e.g., a cytoplasmic protein, a nuclear protein, an organellar protein such as a mitochondrial protein or lysosomal protein, or a membrane protein). In some embodiments, the heterologous object sequence encodes a membrane protein, e.g., a membrane protein other than a CAR, and/or an endogenous human membrane protein. In some embodiments, the heterologous object sequence encodes an extracellular protein. In some embodiments, the heterologous object sequence encodes an enzyme, a structural protein, a signaling protein, a regulatory protein, a transport protein, a sensory protein, a motor protein, a defense protein, or a storage protein.


Administration

The composition and systems described herein may be used in vitro or in vivo. In some embodiments the system or components of the system are delivered to cells (e.g., mammalian cells, e.g., human cells), e.g., in vitro or in vivo. In some embodiments, the cells are eukaryotic cells, e.g., cells of a multicellular organism, e.g., an animal, e.g., a mammal (e.g., human, swine, bovine) a bird (e.g., poultry, such as chicken, turkey, or duck), or a fish. In some embodiments, the cells are non-human animal cells (e.g., a laboratory animal, a livestock animal, or a companion animal). In some embodiments, the cell is a stem cell (e.g., a hematopoietic stem cell), a fibroblast, or a T cell. In some embodiments, the cell is a non-dividing cell, e.g., a non-dividing fibroblast or non-dividing T cell. In some embodiments, the cell is an HSC and p53 is not upregulated or is upregulated by less than 10%, 5%, 2%, or 1%, e.g., as determined according to the method described in Example 30. The skilled artisan will understand that the components of the Gene Writer system may be delivered in the form of polypeptide, nucleic acid (e.g., DNA, RNA), and combinations thereof.


For instance, delivery can use any of the following combinations for delivering the retrotransposase (e.g., as DNA encoding the retrotransposase protein, as RNA encoding the retrotransposase protein, or as the protein itself) and the template RNA (e.g., as DNA encoding the RNA, or as RNA):


1. Retrotransposase DNA+template DNA


2. Retrotransposase RNA+template DNA


3. Retrotransposase DNA+template RNA


4. Retrotransposase RNA+template RNA


5. Retrotransposase protein+template DNA


6. Retrotransposase protein+template RNA


7. Retrotransposase virus+template virus


8. Retrotransposase virus+template DNA


9. Retrotransposase virus+template RNA


10. Retrotransposase DNA+template virus


11. Retrotransposase RNA+template virus


12. Retrotransposase protein+template virus


As indicated above, in some embodiments, the DNA or RNA that encodes the retrotransposase protein is delivered using a virus, and in some embodiments, the template RNA (or the DNA encoding the template RNA) is delivered using a virus.


In one embodiments the system and/or components of the system are delivered as nucleic acid. For example, the Gene Writer polypeptide may be delivered in the form of a DNA or RNA encoding the polypeptide, and the template RNA may be delivered in the form of RNA or its complementary DNA to be transcribed into RNA. In some embodiments the system or components of the system are delivered on 1, 2, 3, 4, or more distinct nucleic acid molecules. In some embodiments the system or components of the system are delivered as a combination of DNA and RNA. In some embodiments the system or components of the system are delivered as a combination of DNA and protein. In some embodiments the system or components of the system are delivered as a combination of RNA and protein. In some embodiments the Gene Writer genome editor polypeptide is delivered as a protein.


In some embodiments the system or components of the system are delivered to cells, e.g. mammalian cells or human cells, using a vector. The vector may be, e.g., a plasmid or a virus. In some embodiments delivery is in vivo, in vitro, ex vivo, or in situ. In some embodiments the virus is an adeno associated virus (AAV), a lentivirus, an adenovirus. In some embodiments the system or components of the system are delivered to cells with a viral-like particle or a virosome. In some embodiments the delivery uses more than one virus, viral-like particle or virosome.


In one embodiment, the compositions and systems described herein can be formulated in liposomes or other similar vesicles. Liposomes are spherical vesicle structures composed of a uni- or multilamellar lipid bilayer surrounding internal aqueous compartments and a relatively impermeable outer lipophilic phospholipid bilayer. Liposomes may be anionic, neutral or cationic. Liposomes are biocompatible, nontoxic, can deliver both hydrophilic and lipophilic drug molecules, protect their cargo from degradation by plasma enzymes, and transport their load across biological membranes and the blood brain barrier (BBB) (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review).


Vesicles can be made from several different types of lipids; however, phospholipids are most commonly used to generate liposomes as drug carriers. Methods for preparation of multilamellar vesicle lipids are known in the art (see for example U.S. Pat. No. 6,693,086, the teachings of which relating to multilamellar vesicle lipid preparation are incorporated herein by reference). Although vesicle formation can be spontaneous when a lipid film is mixed with an aqueous solution, it can also be expedited by applying force in the form of shaking by using a homogenizer, sonicator, or an extrusion apparatus (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review). Extruded lipids can be prepared by extruding through filters of decreasing size, as described in Templeton et al., Nature Biotech, 15:647-652, 1997, the teachings of which relating to extruded lipid preparation are incorporated herein by reference.


Lipid nanoparticles are another example of a carrier that provides a biocompatible and biodegradable delivery system for the pharmaceutical compositions described herein. Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid-polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, may also be employed. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core-shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. For a review, see, e.g., Li et al. 2017, Nanomaterials 7, 122; doi:10.3390/nano7060122.


Exosomes can also be used as drug delivery vehicles for the compositions and systems described herein. For a review, see Ha et al. July 2016. Acta Pharmaceutica Sinica B. Volume 6, Issue 4, Pages 287-296; https://doi.org/10.1016/j.apsb.2016.02.001.


A Gene Writer system can be introduced into cells, tissues and multicellular organisms. In some embodiments the system or components of the system are delivered to the cells via mechanical means or physical means.


Formulation of protein therapeutics is described in Meyer (Ed.), Therapeutic Protein Drug Products: Practical Approaches to formulation in the Laboratory, Manufacturing, and the Clinic, Woodhead Publishing Series (2012).


All publications, patent applications, patents, and other publications and references (e.g., sequence database reference numbers) cited herein are incorporated by reference in their entirety. For example, all GenBank, Unigene, and Entrez sequences referred to herein, e.g., in any Table herein, are incorporated by reference. Unless otherwise specified, the sequence accession numbers specified herein, including in any Table herein, refer to the database entries current as of Aug. 27, 2018. When one gene or protein references a plurality of sequence accession numbers, all of the sequence variants are encompassed.


EXAMPLES

The invention is further illustrated by the following examples. The examples are provided for illustrative purposes only and are not to be construed as limiting the scope or content of the invention in any way.


Example 1: Delivery of a Gene Writer™ System to Mammalian Cells

This example describes a Gene Writer™ genome editing system delivered to a mammalian cell for site-specific insertion of exogenous DNA into a mammalian cell genome.


In this example, the polypeptide component of the Gene Writer™ system is the R2Bm protein from Bombyx mori and the template RNA component is RNA for the R2Bm retrotransposase from Bombyx mori containing a mutation in the reverse transcriptase domain that renders the retrotransposase inactive.


HEK293T cells are transfected with the following test agents:


1. Scrambled RNA control


2. RNA coding for the polypeptide described above


3. Template RNA described above


4. Combination of 2 and 3

After transfection, HEK293T cells are cultured for at least 4 days and then assayed for site-specific genome editing. Genomic DNA is isolated from each group of HEK293 cells. PCR is conducted with primers that flank the R2Bm integration site in 28s rRNA genes. The PCR product is run on an agarose gel to measure the length of the amplified DNA.


A PCR product of the expected length, indicative of a successful Gene Writing™ genome editing event that inserts the sequence for the mutated R2Bm retrotransposase into the target genome, is observed only in cells that were transfected with the complete Gene Writer™ system of group 4 above.


Example 2: Site-Specific Targeted Delivery of a Gene Writer™ System into Insect Cells

This example describes a Gene Writer™ genome editing system delivered to an insect cell at a specific target site of the genome.


In this example, the polypeptide component of the Gene Writer™ system is derived from R2Bm of Bombyx mori, which is modified by replacing its DNA binding domain in the amino terminus of the polypeptide with a heterologous zinc-finger DNA binding domain. The zinc finger DNA binding domain is known to bind to DNA in the BmBLOS2 loci of B. mori cells (Takasu et al., insect Biochemistry and Molecular Biology 40(10): 759-765, 2010). The template RNA is RNA for the R2Bm retrotransposase from Bombyx mori containing a mutation in the reverse transcriptase domain that renders the retrotransposase inactive. Furthermore, the template RNA is modified at the 5′ end to have 180 bases of homology to the target DNA site.



B. mori insect cell lines are transfected with the following test agents:


1. Scrambled RNA control


2. RNA coding for polypeptide component described above


3. Template RNA described above


4. Combination of 2 and 3

After transfection, the cells are cultured for at least 4 days and assayed for site-specific Gene Writing™ genome editing. Genomic DNA is isolated from the cells and PCR is conducted with primers that flank the target integration site in the genome. The PCR product is run on an agarose gel to measure the length of DNA. A PCR product of the expected length, indicative of a successful Gene Writing™ genome editing event that inserts the sequence for the mutated R2Bm retrotransposase into the target insect cell genome, is observed only in cells that were transfected with the complete Gene Writer™ system of group 4 above.


Example 3: Site-Specific Targeted Delivery of a Gene Writer™ System into Mammalian Cells

This example describes a Gene Writer™ genome editor system used to insert a heterologous sequence into a specific site of the mammalian genome.


In this example, the polypeptide of the system is the R2Bm protein from Bombyx mori and the template RNA component is RNA coding for the GFP protein and flanked at the 5′ end by the 5′ UTR and at the 3′ end by the 3′ UTR of the R2Bm retrotransposase from Bombyx mori. The GFP gene has an internal ribosomal entry site upstream of its start codon and a polyA tail downstream of its stop codon.


HEK293 cells are transfected with the following test agents:


1. Scrambled RNA control


2. RNA coding for the polypeptide described above


3. Template RNA coding for GFP described above


4. Combination of 2 and 3

After transfection, HEK293 cells are cultured for at least 4 days and then assayed for a site-specific Gene Writing™ genome editing event. Genomic DNA is isolated from the HEK293 cells and PCR is conducted with primers that flank the R2Bm integration site in 28s rRNA genes. The PCR product is run on an agarose gel to measure the length of DNA. A PCR product of the expected length, indicative of a successful Gene Writing™ genome editing event, is detected in cells transfected with the test agent of group 4 (complete Gene Writer™ system). This result demonstrates that a Gene Writing genome editing system can insert a novel transgene into the mammalian cell genome.


The transfected cells are cultured for a further 10 days, and after multiple cell culture passages are assayed for GFP expression via flow cytometry. The percent of cells that are GFP positive from each cell population are calculated. GFP positive cells are detected in the population of HEK293 cells that were transfected with the test agent of group 4 (complete Gene Writer™ system). This result demonstrates that the novel transgene written into the mammalian cell genome is expressed.


Example 4: Targeted Delivery of a Gene Expression Unit into Mammalian Cells Using a Gene Writer™ System

This example describes the making and using of a Gene Writer genome editor to insert a heterologous gene expression unit into the mammalian genome.


In this example, the polypeptide of the Gene Writer system is derived from the R2Bm polypeptide of Bombyx mori as modified by replacing its DNA binding domain in the amino terminus of the polypeptide with a heterologous zinc-finger DNA binding domain. The zinc finger DNA binding domain is known to bind to DNA in the AAVS1 locus of human cells (Hockemeyer et al., Nature Biotechnology 27(9): 851-857, 2009). The template RNA comprises a gene expression unit. A gene expression unit comprises at least one regulatory sequence operably linked to at least one coding sequence. In this example, the regulatory sequences include the CMV promoter and enhancer, an enhanced translation element, and a WPRE. The coding sequence is the GFP open reading frame. The gene expression unit is flanked at the 5′ end by 180 bases of homology to the target DNA site and at the 3′ end by the 3′ UTR of the R2Bm retrotransposase from Bombyx mori.


HEK293 cells are transfected with the following test agents:


1. Scrambled control RNA


2. RNA coding for the polypeptide component described above


3. Template RNA comprising the gene expression unit (as described above)


4. The complete Gene Writer system comprising both (2) and (3)


After transfection, HEK293 cells are cultured for at least 4 days and assayed for site-specific Gene Writing genome editing. Genomic DNA is isolated from the HEK293 cells and PCR is conducted with primers that flank the target integration site in the genome. The PCR product is run on an agarose gel to measure the length of DNA. A PCR product of the expected length, indicative of a successful Gene Writing™ genome editing event, is detected in cells transfected with the test agent of group 4 (complete Gene Writer™ system).


The transfected cells are cultured for a further 10 days, and after multiple cell culture passages are assayed for GFP expression via flow cytometry. The percent of cells that are GFP positive from each cell population are calculated. GFP positive cells are detected in the population of HEK293 cells that were transfected with group 4 test agent, demonstrating that a gene expression unit added into the mammalian cell genome via Gene Writing genome editing is expressed.


Example 5: Targeted Delivery of a Gene Expression Unit into an Intronic Region of Mammalian Cells Using a Gene Writer™ System

This example describes the making and use of a Gene Writing genome editing system to add a heterologous sequence into an intronic region to act as a splice acceptor for an upstream exon.


The target integration site is the first intron of the albumin locus. Splicing into the first intron a new exon containing a splice acceptor site at the 5′ end and a polyA tail at the 3′ end will result in a mature mRNA containing the first natural exon of the albumin locus spliced to the new exon. Because the first exon of albumin is removed upon protein processing, the cell expressing the newly formed gene unit will secrete a mature protein comprising only the new exon.


In this example, the Gene Writer genome editor polypeptide is derived from the R2Bm Gene Writer genome editor of Bombyx mori as modified by replacing the DNA binding domain in the amino terminus of the polypeptide with a heterologous zinc-finger DNA binding domain. The zinc finger DNA binding domain is known to bind tightly to the albumin locus in the first intron as described in Sarma et al., Blood 126, 15: 1777-1784, 2015. The template RNA is RNA coding for EPO with a splice acceptor site immediately 5′ to the first amino acid of mature EPO (the start codon and signal peptide is removed) and a 3′ polyA tail downstream of the stop codon. The EPO RNA is further flanked at the 5′ end by 180 bases of homology to target DNA site and at the 3′ end by the 3′ UTR of the R2Bm retrotransposase from Bombyx mori.


HEK293 cells are transfected with the following test agents:


1. Scrambled control RNA


2. RNA coding for the polypeptide described above


3. Template RNA comprising the EPO splice acceptor described above


4. The complete Gene Writer system comprising both (2) and (3)


After transfection, HEK293 cells are cultured for at least 4 days and assayed for site-specific Gene Writing genome editing and appropriate mRNA processing. Genomic DNA is isolated from the HEK293 cells. Reverse transcription-PCR is conducted to measure the mature mRNA containing the first natural exon of the albumin locus and the new exon. The RT-PCR reaction is conducted with forward primers that bind to the first natural exon of the albumin locus and with reverse primers that bind to EPO. The RT-PCR product is run on an agarose gel to measure the length of DNA. A PCR product of the expected length is detected in cells transfected with the test agent of group 4, indicative of a successful Gene Writing genome editing event and a successful splice event. This result demonstrates that a Gene Writing genome editing system can add a heterologous sequence encoding a gene into an intronic region to act as a splice acceptor for the upstream exon.


The transfected cells are cultured for a further 10 days, and after multiple cell culture passages are assayed for EPO secretion in the cell supernatant. The amount of EPO in the supernatant is measured via an EPO ELISA kit. EPO is detected in HEK293 cells that were transfected with the test agent of group 4, demonstrating that a heterologous sequence can be added into an intronic region via Gene Writing genome editing, to act as a splice acceptor for the upstream exon and is actively expressed.


Example 6: Targeted Delivery of R2Tg Retrotransposon to Mammalian Cells

This example describes targeted integration of the R2Tg retrotransposon element (see first row of Table 3 herein) to mammalian cells via DNA or RNA delivery.


R2Tg is an endogenous retrotransposon from the zebra finch (Taenopygia guttata). Because non-LTR R2 elements are not present in the human genome and are thought to be highly site-specific, the ability of R2Tg to accurately and efficiently integrate itself into the human genome would demonstrate the capability to perform genomic targeted integration and possibly enable human gene therapy.


In the DNA delivery method, plasmid harboring R2Tg (PLV014) was designed and synthesized such that the R2Tg element was codon optimized and flanked by its native un-translated regions (UTRs), with or without further flanking by 100 bp homology to the rDNA target locus. The R2Tg element expression was driven by the mammalian CMV promoter. Further, a 1 bp deletion mutant (678*) having a frameshift in the coding sequence of the retrotransposase was constructed as an inactivated control (“frameshift mutant”). Each plasmid was introduced into HEK393T cells via FuGENE® HD transfection reagent. HEK293T cells were seeded in 96-well plate, 10,000 cells/well 24 hr before transfection. On the transfection day, 0.5 μl transfection reagent and 80 ng DNA was mixed in 100 Opti-MEM and incubated for 15 min at room temperature. Then the transfection mixture was added to the medium of the seeded cells. 3 days after transfection, genomic DNA was extracted for retrotransposition assays.


Next, integration of the R2Tg transposase into the human genome was assessed. Based on homology to the finch genome, a putative integration site in human rDNA was tested. Advanced Miseq and ddPCR assays were used to assess integration.


Bias in Miseq library construction was eliminated by introducing random unique molecular indices (UMIs) into initial PCRs (FIG. 7). Nested PCR was performed by first amplifying the expected 3′ junction of R2Tg and the rDNA locus for 30 cycles. One Miseq adapter, a multiplexing barcode, and an 8 bp UMI were introduced at this step. A second PCR was used to further enrich for expected products and add the second Miseq adapter. Samples were sequenced on the Miseq for 300 cycles. After demultiplexing, the samples were analyzed via Matlab. First, the UMI on each sequence was located by searching for neighboring sequence. A database of UMIs was created and next collapsed by uniqueness. For each unique read, for a search was performed for the sequence of the expected rDNA integration site and isolated sequences of aligned human genomic DNA and exogenous DNA. Exogenous DNA was then aligned to the expected integration sequence. Results of the Miseq analysis pipeline are shown in FIGS. 8A-8B. Extensive unique integrations into the predicted integration site were found in cells treated with the wildtype R2Tg construct flanked by 100 bp homology to the target rDNA locus, but not with the frameshift mutant controls. Most integration events have a complete template RNA sequence integrated in the 565 bp most proximal to the integration site as demonstrated by sequencing reads that align perfectly to the expected sequence. A subset of integration events with the experimental R2Tg have either a ˜300 bp or ˜450 truncation as based upon sequencing reads that align to the expected sequence after a gap directly adjacent to the target site (FIG. 8A). More specifically, 86.17% of integrants observed were non-truncated in the 565 bp most proximal to the integration site. In contrast, FIG. 8B shows no integration events detected. Constructs without flanking rDNA homology showed insignificant integration signals near noise.


ddPCR was next performed to confirm integration and assess integration efficiency. A Taqman probe was designed to the 3′UTR portion of the R2Tg element. A forward primer was synthesized to bind directly upstream of the probe, and a reverse primer was synthesized to bind the rDNA. Therefore, amplification of the expected product across the integration junction degrades the probe and creates a fluorescent signal. ddPCR was performed on several replicate experiments of the above plasmids to determine the average copy number of the R2Tg integration event. The results of ddPCR copy number analysis (in comparison to reference gene RPP30) are shown in FIG. 9. Across several plasmid transfection conditions, average integration of 5 or more copies of R2Tg per genome at the target site when delivered with homology was noted with significant increase above control constructs. In contrast, the average copy number per genome in the frameshift mutant negative control was typically lower than 1. Insignificant signal was seen when constructs without homology were delivered to cells. The experiments collectively suggest efficient integration of the R2Tg retrotransposon into human cells at the target site.


In the RNA delivery method, R2Tg RNA (RNAV019) was designed such that the R2Tg element was codon optimized and flanked by its native untranslated regions (UTRs). More specifically, the construct includes, in order: a T7 promoter, a 5′ 28S target homology region 100 nucleotides in length, a R2Tg wild-type 5′ UTR, the R2Tg codon-optimized coding sequence, a R2Tg wild type 3′ UTR, and a 3′ 28S target homology region 100 nucleotides in length. The 100 bp 28S homology sequences were added outside of the UTRs to enhance the integration. R2Tg RNA was synthesized, and cap and polyA tail were added. The R2Tg element transcription was driven by the T7 promoter. The RNA was introduced into HEK393T cells via Lipofectamine™ RNAiMAX or TransIT®-mRNA transfection reagent with series of RNA dosages. HEK293T cells were seeded in 96-well plate 24 hr before transfection. On the transfection day, transfection reagent and RNA were mixed in 10 μl Opti-MEM, and the transfection mixture was added to the medium of the seeded cells. 3 days after transfection, genomic DNA was extracted to measure retrotransposition efficiency using ddPCR with the same design as the DNA delivery.


The results of ddPCR copy number analysis (normalized to reference gene RPP30) are shown in FIG. 12. Across several transfection conditions, the average integration was measured to be 0.01 of R2Tg copies per genome, significantly above the limit of detection. The results indicate successful integration of the R2Tg retrotransposon into human cells using an RNA delivery method.


Example 7: Targeted Delivery of a Heterologous Object Sequence Using R2Tg Retrotransposon to Mammalian Cells

This example describes the delivery of a transgene to human cells by utilizing the R2Tg retrotransposon system with multiple delivery machineries, including RNA-mediated delivery of a heterologous object sequence to human cells by utilizing the R2Tg retrotransposon system.


R2 proteins recognize their template RNA structure in untranslated regions (UTRs) of each element to form ribonucleoprotein particles, which serve as the intermediates of downstream integration into a host genome. Therefore, the decoupling of UTRs from their native context and the introduction of UTRs into alternate exogenous sequence was engineered to deliver into the genome a desired nucleic acid using R2Tg machinery.


Trans-transgene integration was tested by constructing 1) R2Tg coding sequence and 2) transgene cassette flanked by R2Tg UTR sequences and 100 bp homology to 28S rDNA into separate driver and transgene plasmids, respectively. FIG. 13 illustrates the dual plasmid system. The dual plasmids were introduced into HEK293T cells via FuGENE® HD transfection reagent at multiple driver to transgene molar ratios. In addition to the WT R2Tg driver, backbone plasmid was used as a control. HEK293T cells were seeded in 96-well plates at 10,000 cells/well 24 hr before transfection. On the transfection day, transfection reagent and plasmids were mixed in 10 μl Opti-MEM and incubated for 15 minutes at room temperature, then added to the medium of the seeded cells. 3 days after transfection, genomic DNA was extracted for ddPCR assays to investigate the trans-retrotransposition efficiency. FIG. 14 demonstrates the ddPCR results for conditions with excess of transgene relative to driver.


Similar to the trans-transgene delivery with plasmids, RNA delivery was performed by constructing an amplicon of the coding sequence of R2Tg preceded by the T7 promoter sequence. The constructed amplicons contained the experimental R2Tg element as well as the 1 bp deletion frameshift mutant control. Separately, an amplicon was constructed that contained exogenous sequence coding for GFP and an EGF1-alpha reporter that was flanked regions sufficient to drive integration into the genome by R2Tg. More specifically, the construct included: a T7 promoter driving transcription of the RNA, wherein the RNA comprises, from 5′ to 3′, (a) a 5′ 28S homology region of 10 nt in length, (b) a 5′ untranslated region, (c) an anti-sense TKpA polyA sequence, (d) an anti-sense heterologous object sequence that encodes GFP, (e) an anti-sense Kozak sequence, (f) an anti-sense EF1 alpha promoter, (g) a 3′ untranslated region that binds the GeneWriter protein, and (h) a 3′ 28S homology region of 10 nt in length. Each RNA was transcribed via the New England Biolabs HiScribe T7 ARCA kit and purified via Zymo RNA clean and concentrator.


The resulting heterologous object RNA and R2Tg RNA (either the experiment R2Tg element or frameshift mutant) were introduced into human HEK293T cells via TransIT®-mRNA Transfection Kit at 1:1 molar ratio. HEK293T cells were seeded in 96-well plate, 40,000 cells/well 24 hr before transfection. On the transfection day, 10 transfection reagent and 500 ng total RNA was mixed in 10 μl Opti-MEM and incubated for 5 min at room temperature. Then the transfection mixture was added to the medium of the seeded cells. 3 days after transfection, genomic DNA was extracted for PCR assays.


Nested PCR was performed by with a first 30 rounds of PCR across the 3′ end of the expected transgene-rDNA junction, followed by 20 additional rounds of PCR amplification using an inner primer set. One of three replicates of nested PCR performed on genomic DNA extracted from cells treated with the wild-type transposase reaction produced a PCR product of the expected size (approximately 596 bp). In contrast, no PCR product was observed in genomic DNA extracted from cells treated with the frameshift-inactivated R2Tg mutant control, or no-transfection control. The PCR product was gel-purified via Zero Blunt® TOPO® PCR Cloning Kit, and the resulting colonies were Sanger sequenced. Each individual PCR product sequence was then aligned to the expected integration sequence. The fraction of PCR product sequences that align to the expected integrated heterologous object sequence is shown in FIG. 10. The majority of PCR products had the expected integrant as demonstrated by the sequencing alignment directly adjacent to the expected integration site at the right side of the alignment figure. This demonstrates RNA-mediated integration of the exogenous sequence via R2Tg machinery into human cells.


Example 8: Targeted Delivery of R2Tg Retrotransposon to Mammalian Cells

This example describes targeted integration of the R2Tg retrotransposon element to mammalian cells via DNA delivery.


Plasmid harboring R2Tg (PLV014) and control plasmid were designed and synthesized as described above in Example 6. Each plasmid was introduced into HEK393T cells via FuGENE® HD transfection reagent. HEK293T cells were seeded in 96-well plate, 10,000 cells/well 24 hr before transfection. On the transfection day, 0.5 μl transfection reagent and 80 ng DNA was mixed in 10 μl Opti-MEM and incubated for 15 min at room temperature. Then the transfection mixture was added to the medium of the seeded cells. 3 days after transfection, genomic DNA was extracted for retrotransposition assays or cells were frozen and underwent targeted locus amplification.


Target locus amplification was performed against hg38 reference human genome and the rDNA locus sequence hsu13369 (GenBank: U13369.1). Two independent primer sets were used to perform targeted locus amplification. Analysis with both primer sets showed that the 28S rDNA locus sequence is the only integration site detected above a 1% threshold. Thus, integration of the R2Tg transposon in mammalian cells is specific to this target site.


Example 9: Improved Trans RNA-Templated Integration into Mammalian Cells by RNA Refolding or Ratio of Driver to Template RNA

RNA templates are designed as in previous examples. Two RNAs consisting of a driver and a transgene payload are delivered to mammalian cells. To better promote folding, denaturing the payload RNA by heating to 95 C and cooling to room temperature are performed to encourage proper secondary structure formation. In some embodiments, cooling the RNA to room temperate will increase integration efficiency.


The molar ratio of transgene to driver is also varied to evaluate suitable stoichiometry of components. Integration is analyzed via ddPCR and sequencing. In some embodiments, a higher ratio of driver to transgene is used. In some embodiments, a higher ratio of transgene to driver is used.


Previous examples with cis transgene integration are similarly assayed for stoichiometry of driver to payload. Integration is analyzed via ddPCR and sequencing. In some embodiments, a higher ratio of driver transcription or translation to transgene transcription will result in higher integration efficiency. In some embodiments, a higher ratio of transgene transcription to driver transcription and translation will result in higher integration efficiency.


Example 10: Hybrid Capture Assay

A hybrid capture experiment was performed to obtain an unbiased view of the specificity of retrotransposon integration into a target site. Retrotransposon experiments were performed as in previous examples by integrating R2Tg flanked by its native UTRs and 100 bp of homology to either side of the expected R2 rDNA target. The rDNA target site had two flanking sets of 100 nucleotides identity to the corresponding native target site. The retrotransposon was delivered to human 293T cells via plasmid or mRNA. Genomic DNA was extracted after 72 hours. After extraction, each genomic DNA sample was subjected to hybrid capture according to protocol with a custom probe set (Twist). Biotinylated probes were designed such that ˜120 bp probes spanned both strands of the R2Tg coding sequence and UTRs. First, a next-generation library was created by fragmentation of the genomic DNA and ligation of sequencing adapters according to a protocol from Twist (available on the world wide web at: twistbioscience.com/ngs_protocol_custompanel_hybridcap). Next, probes were hybridized to genomic DNA libraries and the enriched samples were amplified. Final libraries were sequenced on the Miseq using 300 bp paired-end reads. Custom Matlab scripts were used to analyze reads. The resulting analysis is shown in FIGS. 15A and 15B for RNA delivery. Hybrid capture indicated on-target integration of R2Tg to the expected locus. With RNA delivery, 1 possible off-target with a single read was identified at an unexpected 3′ junction in the data, compared to more than 100 reads at the expected locus, indicating a specificity of greater than 100:1. At the 5′ junction, all 50 reads were at the expected locus, indicating a specificity of greater than 50:1. This experiment indicates a high specificity of integration.


Example 11: Long-Read PacBio Analysis

Long-range PCR amplification can be performed to measure integration of the desired full-length sequence into the target site in the human genome and to measure whether mutations are introduced during insertion. Retrotransposon integration experiments are performed as described in previous examples. In one example, PCR amplification is used to generate amplicons by designing one primer targeting the genomic integration site and one primer targeting the integrant sequence. In this example, these primers are designed to maximize the length of the amplified genomic locus fused with the integrant sequence. By pooling amplicons spanning both ends of the integrant and performing long-read next-generation sequencing, the fidelity of each integration is be evaluated.


In another example, hybrid capture is performed as described in a previous example but with a larger target library length during initial library generation. The resulting library is then subjected to long-read next-generation sequencing.


In some embodiments, long-read next generation sequencing will show that there are less than 10%, 5%, 2%, 1%, 0.5%, 0.2%, or 0.1% SNPs in the integrated DNA across samples. In some embodiments, long-read next generation sequencing will show that less than 10%, 5%, 2%, or 1% of integrated DNA has a SNP. In some embodiments, long-read next generation sequencing will show that less than 10%, 5%, 2%, or 1% of integrated DNA has an internal deletion. In some embodiments, long-read next generation sequencing will show that less than 10%, 5%, 2%, 1%, 0.5%, 0.2%, or 0.1% of total integrated DNA across the population is deleted. In some embodiments, long-read next generation sequencing will show that less than 10%, 5%, 2%, or 1% of integrated DNA is truncated.


Example 12: Experiment with Different Homology Lengths and Point Mutations in Homology

In this example, experiments are designed to characterize suitable lengths and starting positions of homology to the target site for efficient retrotransposon integration. Also, the homology is used to support the mechanism of integration being reverse transcription-driven.


A series of SNPs were introduced within the 100 bp downstream homology of R2Tg plasmids by modifying plasmid PLV014. The design of the SNPs is listed in FIG. 16. After the transfection, nested PCR was applied to recover the 3′ integration junction site, producing a PCR product with an expected amplicon size of about 738 bp, and the PCR product was Sanger sequenced to check whether any SNPs were incorporated. In this experiment, a lack of SNP genetic markers being incorporated into the junction sequences indicates that the integration was driven by reverse transcription. The SNP design and the sequencing result are illustrated in FIG. 16. No SNP introduction was observed for the 18 genetic markers designed, consistent with the integration of R2Tg being directed by reverse transcription.


This example also describes the evaluation different homology regions to the target site to identify shorter regions that promote efficient integration into the genome. This example describes two approaches. First, different windows of 100 bp of homology to the target site are tested, starting from bp 1-100 3′ of the target site, then testing 2-101 3′ of the target site, 3-103 3′ of the target site, and so on, through bp 30-131 3′ of the target site. Second, shorter lengths of homology to the target site sufficient for DNA integration are tested, starting with bp 0-100 3′ of the target site, then testing 0-95 3′ of the target site, 0-90 3′ of the target site, etc. through bp 0-10 3′ of the target site. After the transfection of each plasmid into 293T cells, ddPCR is used to measure the retrotransposition efficiency.


In this example, different UTR regions with different lengths are evaluated to identify shorter sequences for efficient integration into the genome. The 3′UTR is tested by dividing this 325 bp sequence into 3 regions, 1-100 bp, 101-200 bp, and 201-325 bp. Constructs of R2Tg containing each truncated 3′UTR are generated to test the integration efficiency respectively.


Example 13: Assess Whether p53 or Other Repair Pathways are Upregulated

This example describes an evaluation of the effect of exogenous R2Tg retrotranspositon on gene expression, especially tumor suppressor and DNA repair genes. An R2Tg expressing plasmid is delivered to multiple cancer cell lines, including 293T, MCF-7, and T47D. After confirmation of integration in each cell line, RNA-seq is conducted to assess the effect on gene expression profile. Gene set enrichment analysis is then applied to evaluate whether any DNA repair pathways are upregulated after retrotransposition. MCF-7 and T47D are breast cancer cell lines with wild type and mutant p53 respectively, which are be used to evaluate the relationship between p53 and retrotranspositon specifically. In some embodiments, p53 is not upregulated when a retrotransposon Gene Writer integrates into the genome. In some embodiments, no DNA repair genes are upregulated when a retrotransposon Gene Writer integrates into the genome. In some embodiments, no tumor suppressor genes are upregulated when a retrotransposon Gene Writer integrates into the genome.


Example 14: Retrotransposition in Presence of DNA Repair Inhibitors

In this example, experiments will test the effect of different DNA repair pathways on R2Tg retrotransposition via the application of DNA repair pathway inhibitors or DNA repair pathway deficient cell lines. When applying DNA repair pathway inhibitors, PrestoBlue cell viability assay is performed first to determine the toxicity of the inhibitors and whether any normalization should be applied for following assays. SCR7 is an inhibitor for NHEJ, which is applied at a series of dilutions during R2Tg delivery. PARP protein is a nuclear enzyme that binds as homodimers to both single- and double-strand breaks. Thus, its inhibitors are be used in the test of relevant DNA repair pathways, including homologous recombination repair pathway and base excision repair pathway. The experiment procedure is the same with that of SCR7. Cell lines with deficient core proteins of nucleotide excision repair (NER) pathway are used to test the effect of NER on R2Tg retrotransposition. After the delivery of R2Tg element into the cell, ddPCR is be used to evaluate the retrotransposition in the context of inhibition of DNA repair pathways. Sequencing analysis is also be performed to evaluate whether certain DNA repair pathway plays a role in the alteration of integration junction. In some embodiments, R2Tg integration into the genome will not be decreased by the knockdown of any DNA repair pathways, suggesting that R2Tg does not rely on the host cell pathways for DNA integration.


Example 15: Retrotransposition in Fibroblasts and in T Cells

In this example, the previously performed R2Tg retrotransposition analysis of 293T cells is repeated in non-dividing cells, including fibroblast and T cells. Compared to 293T cells, non-dividing cells are sometimes more difficult to transfect with lipid reagent. Thus, nucleofection is used for the delivery of R2Tg element. The subsequent retrotransposition assay for integrating efficiency and sequencing analysis will be performed as described herein for 293T cells. In some embodiments, R2Tg integrates into the genome of fibroblasts and T cells.


Example 16: Single Cell ddPCR

In this example, a quantitative assay is used to determine the frequency of targeted genome integration at single cell level, and that information can be compared to the copy number of targeted genome integration per genome quantified from genomic DNA.


Approximately 5000 transfected cells will be collected and mixed with ddPCR reaction mixture before distributing into about 20,000 droplets, with the aim of each droplet containing one cell or no cells. ddPCR assays including 5′UTR and 3′UTR assays will be performed as described above to determine the frequency of R2 or transgene integration at single cell level. A control experiment will be performed in parallel using genomic DNA harvested from the same number of cells to determine the targeted genome integration efficiency per genome. In some embodiments, the frequency of targeted genome integration at the single cell level is calculated to be 1-80%, e.g., 25%, wherein the indicated percentage of cells have one or more copies of the transgene integrated into the desired locus.


Example 17: Single Cell Analysis Via Colony Isolation

In this example, a quantitative assay is used to determine genome integration copy number in cell colonies derived from single cell.


Single cell colonies will be isolated by colony picking up or by limited dilution and cultured in a 96 well format. When the cells reach >80% confluency, half of the cells will be frozen for backup and genomic DNA from the other half of the cells will be harvested for ddPCR. Optimized ddPCR assays including 5′UTR and 3′UTR assays will be performed as described previously to determine the frequency of R2 or transgene integration. At least 96 colonies will be screened for each R2 element with appropriate controls. The total number of colonies to be screened will be determined by single cell ddPCR data if applicable or the first set of single cell colony screen data. In some embodiments, the frequency of targeted genome integration at the single cell level will be calculated to be 1-80%, e.g., 25%, wherein the indicated percentage of cells have a single copy of the transgene integrated into the desired locus. The assay can also be used to determine the percentage of colonies that have more than one copy of the transgene integrated into the desired locus.


Example 18: DNA Binding Affinity and/or Re-Targeting

The DNA targeting module of wild-type R2 is made of a cysteine-histidine zinc finger and c-Myb transcription factor binding motifs. This N-terminal module can be substituted with different DNA binding modules such as DNA binding protein(s) (e.g., transcription factors), zinc finger(s) (e.g., natural or designed motifs), and/or nucleic acid guided, catalytically inactive endonucleases (e.g., Cas9 bound with a guide RNA (e.g., sgRNA) to form a Cas9-RNP). This DNA binding module is swapped for the naturally occurring module and, in some cases placed with a flexible linker attaching it to the RNA binding/RT module. Additionally, in some constructions, this new DNA binding module is placed in tandem with the same and/or different DNA binding modules. Furthermore, some constructions may split the GeneWriter protein where one protein molecule contains the RNA binding module and the other protein contains the RT and endonuclease modules. In some embodiments, swapping of the DNA module increases specificity and/or affinity to a genomic location and in some cases allows for the specific targeting of new genomic locations.


Example 19: Assays to Measure DNA Binding Affinity

DNA binding activity of GeneWriters described herein (and DNA binding domains for the same) can be tested, e.g., as described in this example. DNA binding modules are purified by recombinantly expressing them in cells (e.g., E. coli) or they are expressed in a cell-free reactions of transcription and translation (e.g., T7 RNA polymerase+wheat germ extract). The purified DNA binding module(s) is tested for binding affinity by measuring the Kd in a binding assay (e.g., EMSA, Fluorescence anisotropy, dual-filter binding, FRET, SPR, or thermophoresis (temperature related intensity change). The protein (DNA binding module) is labeled and/or the DNA molecule is labeled with a molecule that is compatible with the above binding assays (e.g., dye, radioisotope (for example, Protein: 35S-methionine, maleimide dye, DNA: 32P end or internal label, DNA with a linked amine reacted with NHS-ester dye). The molecules are measured by changing their concentrations and fitting to a binding curve which calculates the binding affinity. In some assays, the nucleic acid sequence specificity is tested by mutational analysis of the DNA sequence or mutation to the DNA binding module by amino acid changes or alterations to protein-nucleic acid complex (e.g., Cas9-RNP DNA binding module). In some embodiments, increasing the Kd of the DNA binding module will decrease off-target insertions and, in some cases, will increase the activity of on-target sites by increasing the dwell time of the R2-RNA complex at the specific genomic location.


Example 20: Assays to Determine Global Specificity De Novo

The DNA binding module is expressed in cells (e.g., animal cells, e.g., human cells) as the DNA binding module alone, in the context of the full-length retrotransposon R2, or a control without retrotransposase. The expression of the module or retrotransposon is delivered to cells using conventional methods of delivering DNA, RNA, or protein. The complex is crosslinked (e.g., using chemical or UV light) or is not crosslinked. The cells are lysed and treated with DNase I so that only the bound DNA is protected from degradation. DNA is extracted, NGS library preparation of DNA fragments and de novo binding sites are identified, analogous to ChIP-seq or DIG-seq. In some embodiments, potential off-target sites are identified that can be followed-up to remove false-positives. In other embodiments this assay confirms the in vitro assay on the specificity of the DNA binding module to bind at its intended site and not at others.


An orthogonal assay to identify DNA binding sites in high-throughput uses the method described by Boyle et al, PNAS 2017 where the DNA binding domain is tested in a cell-free setting to determine specificity along with systematic analysis of sequence mutants related to the new DNA binding module.


Example 21: Modularity of RNA Molecule

The RNA molecule binds to the R2 protein via interactions found in the reverse transcriptase module, designated as a sub-module “RNA binding”. The protein recognizes specific structures in the 5′ and/or 3′ UTRs to interact with the RNA. In some embodiments, swapping of the UTR modules increases protein interactions, changes the protein specificity to bind the UTR, stabilizes against nucleases, and/or improves cellular tolerance (e.g., leads to a reduced innate immune response). In other embodiments, addition and/or swapping of the RNA binding module of the R2 protein is compatible with the use of different sequence or ligands that are linked to the transgene and/or element module of the RNA. In some embodiments, combinations of new ligands in place of the UTRs will have better affinity to the RNA binding domain of R2 and lead to better insertion efficiency. In some embodiments, the changes to the sequence of the UTRs or changes to the base modifications of the UTRs will increase the secondary structure stability that leads to better interaction with the RNA binding module.


Example 22: Assays to Measure RNA Binding Affinity to New Sequences

New UTR modules are tested in a binding assay. In the case of new RNAs, they are synthesized either by cell-free in vitro transcription using a synthetic DNA template or by chemical synthesis of the RNA in full-length or chemical synthesis of pieces that are ligated together to form a single RNA molecule. The binding affinity of the purified UTRs are measured in a binding assay (e.g., EMSA, Fluorescence anisotropy, dual-filter binding, FRET, SPR, or thermophoresis (temperature related intensity change)). The UTR module and/or RNA binding module/RT module is detected with or without a label which is described above for labeling RNAs. Measurement of the molecules at different concentrations is performed to determine a binding affinity. In some embodiments, alterations to/swapping of the 5′ and/or 3′ UTR binding module and/or changes to the RNA binding/RT module will lead to better interactions than the wild-type R2 protein or UTR. In some embodiments, the increased interaction will lead to an increase in the efficiency of retro-transposition and in some cases increases specificity of the R2 protein to interact with the RNA.


Example 23: Alternative UTRs

While not wishing to be bound by theory, in some embodiments the UTRs act as a handle for the R2 protein to interact with the RNA which it uses as a template for RT in concert with it binding a genomic location, nicking the DNA with its endonuclease module, and then using the bound RNA as a template for RT insertion at the cleavage site in the DNA. For the UTR to keep the template in close proximity to the RT module, then the UTR modules can be substituted with different ligands that would bind to a specific RNA binding module engineered into the R2 protein. Thus, in some embodiments, the alternative non-RNA UTR is either a protein, small molecule, or other chemical entity that is attached covalently, through protein-protein interaction, small molecule-protein interaction, or through hybridization. In some embodiments the RNA binding module binds specifically to a ligand that is not RNA that is attached to the transgene module RNA that increases the efficiency, stability, and/or rate of retro-transposition.


Example 24: Assays to Measure the Activity of UTR Constructs

Binding assays to measure affinity of R2 protein with engineered UTRs are performed as described above, e.g., for a protein-nucleic acid interaction. In cases of protein-protein or protein-small molecule interactions the assay uses a label on the RNA transgene module where the UTR module is attached.


Example 25: Targeted Genomic Integration

In this example, Gene Writing technology is delivered to target cells and to non-target cells, and new DNA is integrated into the genome in target cells at a higher frequency than in non-target cells. As described in more detail below, this approach takes advantage of the non-target cell having an endogenous miRNA that the target cell does not have (or has at a lower level). The endogenous miRNA is used to reduce DNA integration in the non-target cell.


The polypeptide used is the R2Tg protein and the template RNA component is RNA coding for the GFP protein and flanked at the 5′ end by the 5′ UTR and at the 3′ end by the 3′ UTR of the R2Tg retrotransposase. The 5′ UTR is flanked by 100 bp of homology to the 5′ of R2Tg 28s rDNA target site and the 3′ UTR is flanked by 100 bp of homology to the 3′ of R2Tg 28s rDNA target site. The GFP gene is facing in the antisense direction with regard to the 5′ and 3′ UTRs and has its own promoter and polyadenylation signal.


The template RNA further comprises a microRNA recognition sequence. This microRNA recognition sequence is bound by microRNAs in the non-target cells, leading to the inhibition (e.g., degradation) of the template RNA prior to genomic integration.


In this example the target cells are hepatocytes and the non-target cells are macrophages from the hematopoietic lineage. The target cells and non-target cells are cultured separately. The template RNA and retrotransposase protein can be delivered to cells as described herein, e.g., as RNA or using viral vectors (e.g. adeno-associated viral vectors), wherein the template RNA is transcribed from viral vector DNA.


Three days after treating the cells, GFP expression and genomic integration are assayed.


GFP expression is assayed via flow cytometry. In some embodiments, GFP expression will be higher in the hepatocyte population than in the macrophage population.


Genomic integration (in terms of copy number per cell normalized to a reference gene) is assayed via droplet digital PCR using methods described herein. In some embodiments, genomic integration will be higher in the hepatocyte population than in the macrophage population.


Example 26: Testing Modularity of the DNA Binding Domain

In this example, a series of experiments were performed to test the activity of various mutant retrotransposases, as well as gaining structural knowledge about these proteins. This experiments tested flexible linkers in different locations and lengths, in order to determine if the DNA binding domain (DBD) was modular. These experiments also provide support for being able to separate the DBD from the rest of R2Tg and replacing it with any DNA targeting protein sequence. This example thus supports an understanding that the transposases described herein can withstand the tested levels of sequence divergence at a plurality of locations (e.g., in the predicted −1 RNA binding motif, in an alpha helix, and in a coil region located C-terminal to the predicted c-myb DNA binding motif, e.g., as described below) identified by structural modeling, while maintaining function.


Briefly, the two linkers (Linker A: SGSETPGTSESATPES (SEQ ID NO: 1023), and Linker B: GGGS (SEQ ID NO: 1024)) were inserted into 3 locations, noted herein as versions v1, v2, and v3. v1 was located at the N-terminal side of an alpha helical region of R2Tg that preceded the predicted −1 RNA binding motif, v2 was located at the C-terminal side of an alpha helical region of R2Tg that preceded the predicted −1 RNA binding motif, and v3 was located C-terminal to a random coil region that came after the predicted c-myb DNA binding motif of R2Tg. For each of v1, v2, and v3, one of linkers A or B were added by PCR to a DNA plasmid that expressed R2Tg, thereby yielding sequences v1A (v1+linker A), v1B (v1+linker B), v1C (v1+linker C), v2A (v2+linker A), v2B (v2+linker B), and v2C (v2+linker C), as shown in Table 5 below. The insertion of the linkers was verified by Sanger sequencing and the DNA plasmids were purified for transfection.









TABLE 5







Amino acid sequences of R2Tg


mutants with linkers in the DNA


binding domain (DBD)









R2Tg

SEQ


Mutant +

ID


Linker
Amino Acid Sequence
NO





R2Tg
MASCPKPGPPVSAGAMSLESGLTTHSVLAIERGPNS
1017


with DBD
LANSGSDFGGGGLGLPLRLLRVSVGTQTSRSDWVDL



Linker
VSWSHPGPTSKSQQVDLVSLFPKHRVDLLSKNDQVD



v1A
LVAQFLPSKFPPNLAENDLALLVNLEFYRSDLHVYE




CVHFAAHWEGLSGLPEVYEQLAPQPCVGETLHSSLP




RDSELFVPEEGSSEKESEDAPKTSPPTPGKHGLEQT




GEEKVMVTVPDKNPPCPCCGTRVNSVLNLIEHLKVS




HGKRGVCFRCAKCGKENSNYHSVVCHFPKCRGPETE




KAPAGEWICEVCNRDFTTKIGLGQHKRLAHPAVRNQ




ERIVASQPKETSNRGAHKRCWTKEEEELLIRLEAQF




EGNKNINKLIAEHITTKTAKQISDKRRLLSRKPAEE




PREEPGTCHHTRRAAASLRTEPEMSHHAQAEDRDNG




PGRRPLPGRAAAGGRTMDEIRRHPDKGNGQQRPTKQ




KSEEQLQAYYKKTLEERLSAGALNTFPRAFKQVMEG




RDIKLVINQTAQDSGSETPGTSESATPESCFGCLES




ISQIRTATRDKKDTVTREKHPKKPFQKWMKDRAIKK




GNYLRFQRLFYLDRGKLAKIILDDIECLSCDIPLSE




IYSVFKTRWETTGSFKSLGDFKTYGKADNTAFRELI




TAKEIEKNVQEMSKGSAPGPDGITLGDVVKMDPEFS




RTMEIFNLWLTTGKIPDMVRGCRTVLIPKSSKPDRL




KDINNWRPITIGSILLRLFSRIVTARLSKACPLNPR




QRGFIRAAGCSENLKLLQTIIWSAKREHRPLGVVFV




DIAKAFDTVSHQHIIHALQQREVDPHIVGLVSNMYE




NISTYITTKRNTHTDKIQIRVGVKQGDPMSPLLFNL




AMDPLLCKLEESGKGYHRGQSSITAMAFADDLVLLS




DSWENMNTNISILETFCNLTGLKTQGQKCHGFYIKP




TKDSYTINDCAAWTINGTPLNMIDPGESEKYLGLQF




DPWIGIARSGLSTKLDFWLQRIDQAPLKPLQKTDIL




KTYTIPRLIYIADHSEVKTALLETLDQKIRTAVKEW




LHLPPCTCDAILYSSTRDGGLGITKLAGLIPSVQAR




RLHRIAQSSDDTMKCFMEKEKMEQLHKKLWIQAGGD




RENIPSIWEAPPSSEPPNNVSTNSEWEAPTQKDKFP




KPCNWRKNEFKKWTKLASQGRGIVNFERDKISNHWI




QYYRRIPHRKLLTALQLRANVYPTREFLARGRQDQY




IKACRHCDADIESCAHIIGNCPVTQDARIKRHNYIC




ELLLEEAKKKDWVVFKEPHIRDSNKELYKPDLIFVK




DARALVVDVTVRYEAAKSSLEEAAAEKVRKYKHLET




EVRHLTNAKDVTFVGFPLGARGKWHQDNFKLLTELG




LSKSRQVKMAETFSTVALFSSVDIVHMFASRARKSM




VM






R2Tg
MASCPKPGPPVSAGAMSLESGLTTHSVLAIERGPNS
1018


with DBD
LANSGSDFGGGGLGLPLRLLRVSVGTQTSRSDWVDL



Linker
VSWSHPGPTSKSQQVDLVSLFPKHRVDLLSKNDQVD



v1B
LVAQFLPSKFPPNLAENDLALLVNLEFYRSDLHVYE




CVHFAAHWEGLSGLPEVYEQLAPQPCVGETLHSSLP




RDSELFVPEEGSSEKESEDAPKTSPPTPGKHGLEQT




GEEKVMVTVPDKNPPCPCCGTRVNSVLNLIEHLKVS




HGKRGVCFRCAKCGKENSNYHSVVCHFPKCRGPETE




KAPAGEWICEVCNRDFTTKIGLGQHKRLAHPAVRNQ




ERIVASQPKETSNRGAHKRCWTKEEEELLIRLEAQF




EGNKNINKLIAEHITTKTAKQISDKRRLLSRKPAEE




PREEPGTCHHTRRAAASLRTEPEMSHHAQAEDRDNG




PGRRPLPGRAAAGGRTMDEIRRHPDKGNGQQRPTKQ




KSEEQLQAYYKKTLEERLSAGALNTFPRAFKQVMEG




RDIKLVINQTAQDGGGSCFGCLESISQIRTATRDKK




DTVTREKHPKKPFQKWMKDRAIKKGNYLRFQRLFYL




DRGKLAKIILDDIECLSCDIPLSEIYSVFKTRWETT




GSFKSLGDFKTYGKADNTAFRELITAKEIEKNVQEM




SKGSAPGPDGITLGDVVKMDPEFSRTMEIFNLWLTT




GKIPDMVRGCRTVLIPKSSKPDRLKDINNWRPITIG




SILLRLFSRIVTARLSKACPLNPRQRGFIRAAGCSE




NLKLLQTIIWSAKREHRPLGVVFVDIAKAFDTVSHQ




HIIHALQQREVDPHIVGLVSNMYENISTYITTKRNT




HTDKIQIRVGVKQGDPMSPLLFNLAMDPLLCKLEES




GKGYHRGQSSITAMAFADDLVLLSDSWENMNTNISI




LETFCNLTGLKTQGQKCHGFYIKPTKDSYTINDCAA




WTINGTPLNMIDPGESEKYLGLQFDPWIGIARSGLS




TKLDFWLQRIDQAPLKPLQKTDILKTYTIPRLIYIA




DHSEVKTALLETLDQKIRTAVKEWLHLPPCTCDAIL




YSSTRDGGLGITKLAGLIPSVQARRLHRIAQSSDDT




MKCFMEKEKMEQLHKKLWIQAGGDRENIPSIWEAPP




SSEPPNNVSTNSEWEAPTQKDKFPKPCNWRKNEFKK




WTKLASQGRGIVNFERDKISNHWIQYYRRIPHRKLL




TALQLRANVYPTREFLARGRQDQYIKACRHCDADIE




SCAHIIGNCPVTQDARIKRHNYICELLLEEAKKKDW




VVFKEPHIRDSNKELYKPDLIFVKDARALVVDVTVR




YEAAKSSLEEAAAEKVRKYKHLETEVRHLTNAKDVT




FVGFPLGARGKWHQDNFKLLTELGLSKSRQVKMAET




FSTVALFSSVDIVHMFASRARKSMVM






R2Tg
MASCPKPGPPVSAGAMSLESGLTTHSVLAIERGPNS
1019


with DBD
LANSGSDFGGGGLGLPLRLLRVSVGTQTSRSDWVDL



Linker
VSWSHPGPTSKSQQVDLVSLFPKHRVDLLSKNDQVD



v2A
LVAQFLPSKFPPNLAENDLALLVNLEFYRSDLHVYE




CVHFAAHWEGLSGLPEVYEQLAPQPCVGETLHSSLP




RDSELFVPEEGSSEKESEDAPKTSPPTPGKHGLEQT




GEEKVMVTVPDKNPPCPCCGTRVNSVLNLIEHLKVS




HGKRGVCFRCAKCGKENSNYHSVVCHFPKCRGPETE




KAPAGEWICEVCNRDFTTKIGLGQHKRLAHPAVRNQ




ERIVASQPKETSNRGAHKRCWTKEEEELLIRLEAQF




EGNKNINKLIAEHITTKTAKQISDKRRLLSRKPAEE




PREEPGTCHHTRRAAASLRTEPEMSHHAQAEDRDNG




PGRRPLPGRAAAGGRTMDEIRRHPDKGNGQQRPTKQ




KSEEQLQAYYKKTLEERLSAGALNTFPRAFKQVMEG




RDIKLVINQTAQDCFGCLESISQIRSGSETPGTSES




ATPESTATRDKKDTVTREKHPKKPFQKWMKDRAIKK




GNYLRFQRLFYLDRGKLAKIILDDIECLSCDIPLSE




IYSVFKTRWETTGSFKSLGDFKTYGKADNTAFRELI




TAKEIEKNVQEMSKGSAPGPDGITLGDVVKMDPEFS




RTMEIFNLWLTTGKIPDMVRGCRTVLIPKSSKPDRL




KDINNWRPITIGSILLRLFSRIVTARLSKACPLNPR




QRGFIRAAGCSENLKLLQTIIWSAKREHRPLGVVFV




DIAKAFDTVSHQHIIHALQQREVDPHIVGLVSNMYE




NISTYITTKRNTHTDKIQIRVGVKQGDPMSPLLFNL




AMDPLLCKLEESGKGYHRGQSSITAMAFADDLVLLS




DSWENMNTNISILETFCNLTGLKTQGQKCHGFYIKP




TKDSYTINDCAAWTINGTPLNMIDPGESEKYLGLQF




DPWIGIARSGLSTKLDFWLQRIDQAPLKPLQKTDIL




KTYTIPRLIYIADHSEVKTALLETLDQKIRTAVKEW




LHLPPCTCDAILYSSTRDGGLGITKLAGLIPSVQAR




RLHRIAQSSDDTMKCFMEKEKMEQLHKKLWIQAGGD




RENIPSIWEAPPSSEPPNNVSTNSEWEAPTQKDKFP




KPCNWRKNEFKKWTKLASQGRGIVNFERDKISNHWI




QYYRRIPHRKLLTALQLRANVYPTREFLARGRQDQY




IKACRHCDADIESCAHIIGNCPVTQDARIKRHNYIC




ELLLEEAKKKDWVVFKEPHIRDSNKELYKPDLIFVK




DARALVVDVTVRYEAAKSSLEEAAAEKVRKYKHLET




EVRHLTNAKDVTFVGFPLGARGKWHQDNFKLLTELG




LSKSRQVKMAETFSTVALFSSVDIVHMFASRARKSM




VM






R2Tg
MASCPKPGPPVSAGAMSLESGLTTHSVLAIERGPNS
1020


with DBD
LANSGSDFGGGGLGLPLRLLRVSVGTQTSRSDWVDL



Linker
VSWSHPGPTSKSQQVDLVSLFPKHRVDLLSKNDQVD



v2B
LVAQFLPSKFPPNLAENDLALLVNLEFYRSDLHVYE




CVHFAAHWEGLSGLPEVYEQLAPQPCVGETLHSSLP




RDSELFVPEEGSSEKESEDAPKTSPPTPGKHGLEQT




GEEKVMVTVPDKNPPCPCCGTRVNSVLNLIEHLKVS




HGKRGVCFRCAKCGKENSNYHSVVCHFPKCRGPETE




KAPAGEWICEVCNRDFTTKIGLGQHKRLAHPAVRNQ




ERIVASQPKETSNRGAHKRCWTKEEEELLIRLEAQF




EGNKNINKLIAEHITTKTAKQISDKRRLLSRKPAEE




PREEPGTCHHTRRAAASLRTEPEMSHHAQAEDRDNG




PGRRPLPGRAAAGGRTMDEIRRHPDKGNGQQRPTKQ




KSEEQLQAYYKKTLEERLSAGALNTFPRAFKQVMEG




RDIKLVINQTAQDCFGCLESISQIRGGGSTATRDKK




DTVTREKHPKKPFQKWMKDRAIKKGNYLRFQRLFYL




DRGKLAKIILDDIECLSCDIPLSEIYSVFKTRWETT




GSFKSLGDFKTYGKADNTAFRELITAKEIEKNVQEM




SKGSAPGPDGITLGDVVKMDPEFSRTMEIFNLWLTT




GKIPDMVRGCRTVLIPKSSKPDRLKDINNWRPITIG




SILLRLFSRIVTARLSKACPLNPRQRGFIRAAGCSE




NLKLLQTIIWSAKREHRPLGVVFVDIAKAFDTVSHQ




HIIHALQQREVDPHIVGLVSNMYENISTYITTKRNT




HTDKIQIRVGVKQGDPMSPLLFNLAMDPLLCKLEES




GKGYHRGQSSITAMAFADDLVLLSDSWENMNTNISI




LETFCNLTGLKTQGQKCHGFYIKPTKDSYTINDCAA




WTINGTPLNMIDPGESEKYLGLQFDPWIGIARSGLS




TKLDFWLQRIDQAPLKPLQKTDILKTYTIPRLIYIA




DHSEVKTALLETLDQKIRTAVKEWLHLPPCTCDAIL




YSSTRDGGLGITKLAGLIPSVQARRLHRIAQSSDDT




MKCFMEKEKMEQLHKKLWIQAGGDRENIPSIWEAPP




SSEPPNNVSTNSEWEAPTQKDKFPKPCNWRKNEFKK




WTKLASQGRGIVNFERDKISNHWIQYYRRIPHRKLL




TALQLRANVYPTREFLARGRQDQYIKACRHCDADIE




SCAHIIGNCPVTQDARIKRHNYICELLLEEAKKKDW




VVFKEPHIRDSNKELYKPDLIFVKDARALVVDVTVR




YEAAKSSLEEAAAEKVRKYKHLETEVRHLTNAKDVT




FVGFPLGARGKWHQDNFKLLTELGLSKSRQVKMAET




FSTVALFSSVDIVHMFASRARKSMVM






R2Tg
MASCPKPGPPVSAGAMSLESGLTTHSVLAIERGPNS
1021


with DBD
LANSGSDFGGGGLGLPLRLLRVSVGTQTSRSDWVDL



Linker
VSWSHPGPTSKSQQVDLVSLFPKHRVDLLSKNDQVD



v3A
LVAQFLPSKFPPNLAENDLALLVNLEFYRSDLHVYE




CVHFAAHWEGLSGLPEVYEQLAPQPCVGETLHSSLP




RDSELFVPEEGSSEKESEDAPKTSPPTPGKHGLEQT




GEEKVMVTVPDKNPPCPCCGTRVNSVLNLIEHLKVS




HGKRGVCFRCAKCGKENSNYHSVVCHFPKCRGPETE




KAPAGEWICEVCNRDFTTKIGLGQHKRLAHPAVRNQ




ERIVASQPKETSNRGAHKRCWTKEEEELLIRLEAQF




EGNKNINKLIAEHITTKTAKQISDKRRLLSRKPAEE




PREEPGTCHHTRRAASGSETPGTSESATPESASLRT




EPEMSHHAQAEDRDNGPGRRPLPGRAAAGGRTMDEI




RRHPDKGNGQQRPTKQKSEEQLQAYYKKTLEERLSA




GALNTFPRAFKQVMEGRDIKLVINQTAQDCFGCLES




ISQIRTATRDKKDTVTREKHPKKPFQKWMKDRAIKK




GNYLRFQRLFYLDRGKLAKIILDDIECLSCDIPLSE




IYSVFKTRWETTGSFKSLGDFKTYGKADNTAFRELI




TAKEIEKNVQEMSKGSAPGPDGITLGDVVKMDPEFS




RTMEIFNLWLTTGKIPDMVRGCRTVLIPKSSKPDRL




KDINNWRPITIGSILLRLFSRIVTARLSKACPLNPR




QRGFIRAAGCSENLKLLQTIIWSAKREHRPLGVVFV




DIAKAFDTVSHQHIIHALQQREVDPHIVGLVSNMYE




NISTYITTKRNTHTDKIQIRVGVKQGDPMSPLLFNL




AMDPLLCKLEESGKGYHRGQSSITAMAFADDLVLLS




DSWENMNTNISILETFCNLTGLKTQGQKCHGFYIKP




TKDSYTINDCAAWTINGTPLNMIDPGESEKYLGLQF




DPWIGIARSGLSTKLDFWLQRIDQAPLKPLQKTDIL




KTYTIPRLIYIADHSEVKTALLETLDQKIRTAVKEW




LHLPPCTCDAILYSSTRDGGLGITKLAGLIPSVQAR




RLHRIAQSSDDTMKCFMEKEKMEQLHKKLWIQAGGD




RENIPSIWEAPPSSEPPNNVSTNSEWEAPTQKDKFP




KPCNWRKNEFKKWTKLASQGRGIVNFERDKISNHWI




QYYRRIPHRKLLTALQLRANVYPTREFLARGRQDQY




IKACRHCDADIESCAHIIGNCPVTQDARIKRHNYIC




ELLLEEAKKKDWVVFKEPHIRDSNKELYKPDLIFVK




DARALVVDVTVRYEAAKSSLEEAAAEKVRKYKHLET




EVRHLTNAKDVTFVGFPLGARGKWHQDNFKLLTELG




LSKSRQVKMAETFSTVALFSSVDIVHMFASRARKSM




VM






R2Tg
MASCPKPGPPVSAGAMSLESGLTTHSVLAIERGPNS
1022


with DBD
LANSGSDFGGGGLGLPLRLLRVSVGTQTSRSDWVDL



Linker
VSWSHPGPTSKSQQVDLVSLFPKHRVDLLSKNDQVD



v3B
LVAQFLPSKFPPNLAENDLALLVNLEFYRSDLHVYE




CVHFAAHWEGLSGLPEVYEQLAPQPCVGETLHSSLP




RDSELFVPEEGSSEKESEDAPKTSPPTPGKHGLEQT




GEEKVMVTVPDKNPPCPCCGTRVNSVLNLIEHLKVS




HGKRGVCFRCAKCGKENSNYHSVVCHFPKCRGPETE




KAPAGEWICEVCNRDFTTKIGLGQHKRLAHPAVRNQ




ERIVASQPKETSNRGAHKRCWTKEEEELLIRLEAQF




EGNKNINKLIAEHITTKTAKQISDKRRLLSRKPAEE




PREEPGTCHHTRRAAGGGSASLRTEPEMSHHAQAED




RDNGPGRRPLPGRAAAGGRTMDEIRRHPDKGNGQQR




PTKQKSEEQLQAYYKKTLEERLSAGALNTFPRAFKQ




VMEGRDIKLVINQTAQDCFGCLESISQIRTATRDKK




DTVTREKHPKKPFQKWMKDRAIKKGNYLRFQRLFYL




DRGKLAKIILDDIECLSCDIPLSEIYSVFKTRWETT




GSFKSLGDFKTYGKADNTAFRELITAKEIEKNVQEM




SKGSAPGPDGITLGDVVKMDPEFSRTMEIFNLWLTT




GKIPDMVRGCRTVLIPKSSKPDRLKDINNWRPITIG




SILLRLFSRIVTARLSKACPLNPRQRGFIRAAGCSE




NLKLLQTIIWSAKREHRPLGVVFVDIAKAFDTVSHQ




HIIHALQQREVDPHIVGLVSNMYENISTYITTKRNT




HTDKIQIRVGVKQGDPMSPLLFNLAMDPLLCKLEES




GKGYHRGQSSITAMAFADDLVLLSDSWENMNTNISI




LETFCNLTGLKTQGQKCHGFYIKPTKDSYTINDCAA




WTINGTPLNMIDPGESEKYLGLQFDPWIGIARSGLS




TKLDFWLQRIDQAPLKPLQKTDILKTYTIPRLIYIA




DHSEVKTALLETLDQKIRTAVKEWLHLPPCTCDAIL




YSSTRDGGLGITKLAGLIPSVQARRLHRIAQSSDDT




MKCFMEKEKMEQLHKKLWIQAGGDRENIPSIWEAPP




SSEPPNNVSTNSEWEAPTQKDKFPKPCNWRKNEFKK




WTKLASQGRGIVNFERDKISNHWIQYYRRIPHRKLL




TALQLRANVYPTREFLARGRQDQYIKACRHCDADIE




SCAHIIGNCPVTQDARIKRHNYICELLLEEAKKKDW




VVFKEPHIRDSNKELYKPDLIFVKDARALVVDVTVR




YEAAKSSLEEAAAEKVRKYKHLETEVRHLTNAKDVT




FVGFPLGARGKWHQDNFKLLTELGLSKSRQVKMAET




FSTVALFSSVDIVHMFASRARKSMVM









HEK293T cells were plated in 96-well plates and grown overnight at 37° C., 5% CO2. The HEK293T cells were transfected with plasmids that expressed R2Tg (wild-type), R2 endonuclease mutant, and linker mutants. The transfection was carried out using the Fugene HD transfection reagent according to the manufacturer recommendations, where each well received 80 ng of plasmid DNA and 0.5 μL of transfection reagent. All transfections were performed in duplicate and the cells were incubated for 72 h prior to genomic DNA extraction.


Activity of the mutants was measured by a ddPCR assay that quantified the copy number of R2Tg integration per genome. The 5′ and 3′ junctions were quantified by generating two different amplicons at each end.


v3 (near the c-myb binding motif in the DBD) decreased integration activity with either linker A or B. v1 (N-terminal to the alpha helix preceding the −1 RNA binding motif) had comparable activity to the wild-type when used with linker A (16 AA) versus the shorter linker B (4 AA). This could be related to amino acid selection, length, or three-dimensional structure. v2 (C-terminal to the alpha helix preceding the −1 RNA binding motif) did not tolerate linker A; however, linker B had activity that was comparable and slightly better than the wild-type. v1 and v2 may therefore be considered preferred locations to add a linker that can separate R2Tg's DNA binding domain and the rest of the protein.


Example 27: Long-Read Sequencing to Determine Integration Fidelity

Retrotransposon integration experiments were performed as described in previous examples. In one example, PCR amplification was used to generate amplicons by designing one primer targeting the genomic integration site and one primer targeting the integrant sequence. In this example, these primers were designed to maximize the length of the amplified genomic locus fused with the integrant sequence. By pooling amplicons spanning both ends of the integrant and performing long-read next-generation sequencing, the fidelity of each integration was evaluated.


A cis construct of R2Tg was integrated into 293T cells via plasmid transfection as described herein. Amplicons spanning each end of the integrations were generated with flanking randomized UMIs to control for PCR bias. These amplicons were sequenced with PacBio next-generation sequencing. The resulting sequences were collapsed to remove reads with identical UMIs. By aligning unique reads, a coverage plot was constructed as shown in FIGS. 20A-20B. Sequence coverage largely shows uniform coverage across amplicons, indicating significant fidelity of integration. An associated reverse-transcriptase deficient mutant control produced no signal. Internal deletions were also analyzed in FIGS. 21A-21B. Internal deletions were generally low relative to overall unique read counts, with some clustering at the 5′ junction of rDNA-R2Tg.


In another example, hybrid capture may be performed as described in a previous example but with a larger target library length during initial library generation. The resulting library can then be subjected to long-read next-generation sequencing.


Example 28: Targeted Delivery of R2Gfo and R4A1 Retrotransposon to Mammalian Cells

This example describes targeted integration of the R2Gfo and R4A1 retrotransposon elements to mammalian cells via DNA delivery.


In one example, we assayed the full R2 element R2-1_GFo (Repbase; Kojima et al PLoS One 11, e0163496 (2015)) from the medium ground finch, Geospiza fortis (“R2GFo”). In another example, we assayed the full R4 element R4_AL (Repbase; Burke et al Nucleic Acids Res. 23, 4628-34 (1995)) from the large roundworm, Ascaris lumbricoides (“R4A1”). Because non-LTR R2 and R4 elements are not present in the human genome and are thought to be highly site-specific, the ability of retrotransposons to accurately and efficiently integrate itself into the human genome would demonstrate the capability to perform genomic targeted integration.


Plasmids harboring R2Gfo (PLV033) or R4A1 (PLV462) were designed for cis integration of the R2Gfo or R4A1 elements as in previous examples. Plasmids were synthesized such that the wildtype element was flanked by its native un-translated regions (UTRs) and 100 bp of homology to its rDNA target (FIG. 22). The element expression was driven by the mammalian CMV promoter. We introduced each plasmid into HEK393T cells using the FuGENE® HD transfection reagent. HEK293T cells were seeded in 96-well plates at 10,000 cells/well 24 hours before transfection. On the transfection day, 0.50 transfection reagent and 80 ng DNA was mixed in 10 μl Opti-MEM and incubated for 15 minutes at room temperature. The transfection mixture was then added to the medium of the seeded cells. Three days after transfection, genomic DNA was extracted for retrotransposition assays. R2Tg was also delivered in parallel in the same format to serve as a comparison.


ddPCR was performed to confirm integration and assess integration efficiency. A Taqman probe was designed to the 3′UTR portion of each element. A forward primer was synthesized to bind directly upstream of the probe, and a reverse primer was synthesized to bind the rDNA. Thus, amplification of the expected product across the integration junction would degrade the probe and create a fluorescent signal. The results of the ddPCR copy number analysis (in comparison to reference gene RPP30) are shown in FIG. 23. R2Gfo integration achieved a mean copy number of 0.21 integrants/genome in this experiment. R4A1 achieved a mean copy number of 0.085 integrants/genome.


Example 29: Integration of Retrotransposons into Human Fibroblasts

This example describes the cis integration of R2Tg into human fibroblasts. Briefly, a plasmid designed to integrate R2Tg in cis was synthesized such that R2Tg was flanked by its native UTRs and homologous sequence to its rDNA target as in previous examples. 0.5 μg PLV014 (wild-type) and PLV072 (EN mutant) plasmids were transfected into 100,000 human dermal fibroblasts isolated from neonatal foreskin (HDFn, C0045C, ThermoFisher Scientific) respectively using the Neon transfection system. Two programs were performed, each in duplicate. The setting for Program 1 was 1700V pulse voltage, 20 ms pulse width, and 1 pulse number. The setting for Program 2 was 1400V pulse voltage, 20 ms pulse width, and 2 pulse number. Both programs achieved 95% transfection efficiency measured using plasmid encoding the EGFP. Three days post transfection, genomic DNA was extracted for the ddPCR assay. ddPCR was performed to confirm integration and assess integration efficiency. A Taqman probe was designed to the 3′ UTR portion of the R2Tg element. A forward primer was synthesized to bind directly upstream of the probe, and a reverse primer was synthesized to bind the rDNA. Thus, amplification of the expected product across the integration junction would degrade the probe and create a fluorescent signal. The results of ddPCR copy number analysis (in comparison to reference gene RPP30) are shown in FIG. 24. Wild-type (WT) R2Tg integration achieved a mean copy number of 0.036 integrants/genome in this experiment, significantly higher than a control R2Tg plasmid with a point mutation abolishing endonuclease activity (EN).


Example 30: Evaluation of DNA Damage Response Upon Retrotransposon Transfection

DNA damage (e.g., resulting from DSB formation or replication fork collapse) leads to the activation of p53, which among many other transcriptional responses, leads to the upregulation of p21, resulting in cell cycle arrest or apoptosis. Genome editing using CRISRP/Cas9 has been shown to activate p53 and p21, which is a potential safety and efficacy problem for CRISPR/based therapeutics. To establish whether R2Tg delivery to the cell leads to activation of p53 and p21, U2OS cells were seeded at a density of 4×104 cells/well and transfected 24 hours later using the Fugene HD and Lipofectamine reagents with either 500 ng of R2Tg-WT plasmid or 500 ng of R2Tg-EN (a variant of R2Tg with a mutation in the endonuclease (EN) domain, rendering R2Tg inactive). To control for transfection efficiency, U2OS cells were also transfected with a plasmid expressing GFP. Lastly, as a positive control for p53 and p21 activation, U2OS cells were treated with one of the DNA damage-inducing agents etoposide (20 μM) or bleomycin (10 μg/ml). The U2OS cells were collected 24 hours after transfection/treatment. Protein lysates were prepared in RIPA buffer and run on an SDS-PAGE gel, followed by transfer to nitrocellulose, followed by probing with antibodies against p53 and p21, as well as Actin and Vinculin. As shown in FIG. 25, no R2Tg-induced upregulation of p53 or p21 above the GFP plasmid control was detected in either transfection condition.










LENGTHY TABLES




The patent application contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).





Claims
  • 1. A system for modifying DNA comprising: a polypeptide or a nucleic acid encoding a polypeptide capable of target primed reverse transcription, wherein the polypeptide comprises (a) a reverse transcriptase domain and (b) an endonuclease domain, wherein at least one of (a) or (b) is heterologous, anda template RNA comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.
  • 2. A system for modifying DNA comprising: a polypeptide or a nucleic acid encoding a polypeptide capable of target primed reverse transcription, wherein the polypeptide comprises (a) a target DNA binding domain, (b) a reverse transcriptase domain and (c) an endonuclease domain, wherein at least one of (a), (b) or (c) is heterologous, anda template RNA comprising (i) a sequence that binds the polypeptide and (ii) a heterologous object sequence.
  • 3. The system of claim 1, wherein the polypeptide comprises a sequence of at least 50 amino acids having at least 80% identity to a reverse transcriptase domain of a sequence of a polypeptide listed in TABLE 1, TABLE 2, or TABLE 3.
  • 4. The system of claim 1, wherein the reverse transcriptase domain is from a retrovirus or a retrotransposon, such as a LTR-retrotransposon, or a non-LTR retrotransposon.
  • 5. The system of claim 4, wherein the reverse transcriptase is from a non-LTR retrotransposon, wherein the non-LTR retrotransposon is: a RLE-type non-LTR retrotransposon from the R2, NeSL, HERO, R4, or CRE clade, or an APE-type non-LTR retrotransposon from the R1, or Tx1 clade.
  • 6. The system of claim 1, wherein the reverse transcriptase domain is from an avian retrotransposase of column 8 of Table 3, or a sequence having at least 70%, identity thereto.
  • 7. The system of claim 1, wherein the endonuclease domain is heterologous to the reverse transcriptase domain, and wherein the endonuclease is a Fok1 nuclease (or a functional fragment thereof), a type-II restriction 1-like endonuclease (RLE-type nuclease), another RLE-type endonuclease, or a Prp8 nuclease.
  • 8. The system of claim 1, wherein the endonuclease domain is heterologous to the reverse transcriptase domain, wherein endonuclease domain contains DNA binding functionality.
  • 9. The system of claim 1, wherein the endonuclease domain is heterologous to the reverse transcriptase domain, and wherein the endonuclease has nickase activity and does not form double stranded breaks.
  • 10. The system of claim 1, wherein the polypeptide comprises a DNA binding domain heterologous to the reverse transcriptase domain, and wherein the DNA binding domain is: a zinc-finger element, or a functional fragment thereof; or a TAL effector element, or a functional fragment thereof; a Myb domain; or a sequence-guided DNA binding element.
  • 11. The system of claim 1, wherein the polypeptide comprises a DNA binding domain heterologous to the reverse transcriptase domain, and wherein the DNA binding element is a sequence-guided DNA binding element, further wherein the sequence-guided DNA binding element is Cas9, Cpf1, or other CRISPR-related protein.
  • 12. The system of claim 11, wherein the sequence-guided DNA binding element has been altered to have no endonuclease activity.
  • 13. The system of claim 11, wherein the sequence-guided DNA binding element replaces the endonuclease element of the polypeptide.
  • 14. The system of any of claim 1, wherein the reverse transcriptase domain does not comprise an RNA binding domain and the polypeptide comprises an RNA binding domain heterologous to the reverse transcriptase domain, wherein the RNA binding domain is a B-box protein, a MS2 coat protein, a dCas protein, or a UTR binding protein, or a fragment or variant of any of the foregoing.
  • 15. The system of claim 1, wherein the polypeptide comprises a DNA binding domain heterologous to the reverse transcriptase domain, and wherein the DNA binding domain is a transcription factor.
  • 16. The system of any of claim 1, which is capable of modifying DNA using reverse transcriptase activity, optionally in the absence of homologous recombination activity.
  • 17. The system of any of the foregoing claims, which is capable of modifying DNA by insertion of the heterologous object sequence without an intervening DNA-dependent RNA polymerization of the template RNA.
  • 18. The system of claim 1, wherein the domains of the polypeptide are joined by a linker; or wherein the domains of the polypeptide are joined by a peptide linker; orwherein the domains of the polypeptide are joined by a peptide linker and the peptide linker is at least 2 amino acids in length; orwherein the DNA binding domain is attached to the reverse transcriptase domain via a synthetic linker; orwherein the endonuclease domain attached to the reverse transcription domain via a synthetic linker.
  • 19. The system of claim 1, wherein the polypeptide further comprises a nuclear localization sequence.
  • 20. The system of any of claim 10, wherein the reverse transcriptase domain, endonuclease domain, or DNA binding domain are modified; or the reverse transcriptase domain is mutated to bind a heterologous template RNA; orthe endonuclease domain is mutated to alter DNA endonuclease activity; orthe DNA binding domain is modified to alter DNA-binding specificity and affinity.
  • 21. The system of any of the preceding claims, wherein the template RNA comprises one or more of a microRNA sequence, a siRNA sequence, a guide RNA sequence, a piwi RNA sequence; or wherein the template RNA comprises a guide RNA sequence.
  • 22. A method of modifying a target DNA strand in a cell, tissue or subject, comprising administering the system of claim 1 to the cell, tissue or subject, wherein the system reverse transcribes the template RNA sequence into the target DNA strand, thereby modifying the target DNA strand.
  • 23. The method of claim 22, wherein the sequence that binds the polypeptide has one or more of the following characteristics: (a) is at the 3′ end of the template RNA;(b) is a non-coding sequence;(c) is a structured RNA;(d) forms at least 1 hairpin loop structures.
  • 24. The method of claim 22, wherein the template RNA: a) further comprises a sequence comprising at least 20 base pairs of at least 80% identity to a target DNA strand;b) further comprises a sequence comprising at least 20 base pairs of at least 80% identity to a target DNA strand is at the 5′ end of the template RNAc) has at least 3 bases of 100% identity to the target DNA strand.
  • 25. The method of claim 22, wherein the insert sequence is between 50-50,000 base pairs.
  • 26. The method of claim 22, wherein the target DNA is a genomic safe harbor (GSH) site.
  • 27. A pharmaceutical composition, comprising the system of any of claim 1 and a pharmaceutically acceptable excipient or carrier, wherein the pharmaceutically acceptable excipient or carrier is selected from a vector, a vesicle, and a lipid nanoparticle.
Parent Case Info

This application is a Continuation of International Application No. PCT/US2019/048607, filed Aug. 28, 2019, which claims priority to U.S. Ser. No. 62/723,886 filed Aug. 28, 2018, U.S. Ser. No. 62/725,778 filed Aug. 31, 2018, U.S. Ser. No. 62/850,883 filed May 21, 2019, and U.S. Ser. No. 62/864,924 filed Jun. 21, 2019, the entire contents of each of which is incorporated herein by reference.

Provisional Applications (4)
Number Date Country
62864924 Jun 2019 US
62850883 May 2019 US
62725778 Aug 2018 US
62723886 Aug 2018 US
Continuations (1)
Number Date Country
Parent PCT/US2019/048607 Aug 2019 US
Child 16706448 US