Medical images are routinely acquired in the screening, diagnosis, and treatment of many diseases. A variety of imaging techniques exist, including, for example, magnetic resonance imaging (MRI), X-ray, computed tomography (CT), ultrasonic imaging, and nuclear medicine. In particular, MRI, X-ray, and CT produce images of anatomical structures, such as pathological lesions.
One limitation of current imaging techniques is that few methods exist to objectively characterize the structure (in the case of pathological lesions) imaged without the need for human interpretation. One attempted method for objective image analysis is the 2-dimensional (2-D) autocorrelation function. However, for a variety of reasons, the 2-D autocorrelation function is practically meaningless in the context of a 3-dimensional (3-D) image.
A system and method are needed for using a morphometric index-a measure of the morphology of certain medical images—that objectively characterizes the images. Thus, a system and method are provided herein for using the 3-D autocorrelation function to objectively characterize medical images.
In one embodiment, a method for characterizing a pathological lesion in a patient is provided, the method comprising: introducing into the patient a contrast enhancing agent; subjecting the patient to MRI to obtain an image; and applying a 3-D autocorrelation function to a subdomain of interest of the image to obtain at least one 3-D autocorrelation spectrum. The method may further comprise comparing the at least one 3-D autocorrelation spectrum to a pre-existing 3-D autocorrelation spectrum that is characteristic for the pathological lesion.
In another embodiment, a method for detecting amyloid plaque deposition on a patient's brain is provided, the method comprising: introducing into the patient a nanoparticle contrast enhancing agent; subjecting the patient to MRI to obtain an image; and applying a 3-D autocorrelation function to a subdomain of interest of the image to obtain at least one 3-D autocorrelation spectrum. The method may further comprise comparing the at least one 3-D autocorrelation spectrum to a pre-existing 3-D autocorrelation spectrum that is characteristic for amyloid plaque deposition on a brain.
In another embodiment, a method for diagnosing Alzheimer's Disease in a patient is provided, the method comprising: introducing into the patient a nanoparticle contrast enhancing agent, the nanoparticle contrast enhancing agent comprising: liposomes, the liposomes comprising: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), Gd-DTPA bis(stearylamide) (Gd-DTPA-BSA), cholesterol, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(-poly(ethylene glycol))-2000] (mPEG2000-DSPE); subjecting the patient to MRI to obtain an image; and applying a 3-D autocorrelation function to a subdomain of interest of the image to obtain at least one 3-D autocorrelation spectrum. The method may further comprise comparing the at least one 3-D autocorrelation spectrum to a pre-existing 3-D autocorrelation spectrum that is characteristic for Alzheimer's Disease.
In the accompanying figures, experimental data are given that, together with the detailed description provided below, describe example embodiments of the claimed invention.
Methods and compositions for objectively characterizing pathological lesion(s) in a patient are provided. In one embodiment, the method comprises introducing into the patient a contrast enhancing agent; subjecting the patient to MRI to obtain an image; and applying a 3-D autocorrelation function to a subdomain of interest of the image to obtain at least one 3-D autocorrelation spectrum. The method may further comprise comparing the at least one 3-D autocorrelation spectrum to a pre-existing 3-D autocorrelation spectrum that is characteristic for the pathological lesion(s).
Autocorrelation in higher dimensions is defined as:
This quantity is a direct measure of the value of a function S at any location in the domain with respect to its value at some distance τ away. From its origins as a method of analyzing time, τ, the spatial displacement, is also called the “delay” coordinate. This formally definitive expression, however, is numerically very intensive, with the number of operations per function evaluation scaling as η2, where η is the number of delay intervals to be used. Thus, 1-D data is relatively straightforward to compute, but 2-D data scales as η4, and 3-D data as η6, leading to onerous computational demands. For higher order autocorrelation functions, the Wiener-Khinchin theorem becomes necessary, which shows that the autocorrelation is equal to the Fourier transform of the power spectrum of the original function. Using the Fast Fourier Transform algorithm, the computational load scales as 2η log η, a much more practicable situation.
The physical interpretation of the autocorrelation function is straightforward. It essentially measures the behavior of a function at a certain distance from any starting point in the domain. Thus, at a zero delay coordinate, the autocorrelation is always 1, since the function at any point is equal to itself. Purely random functions display {A:Aτ=0=1; Aτ≠0=0}. Inherent decays and periodicities in functions are amplified in the autocorrelation, and automatically scale to a range of {0,1}.
In one exemplary embodiment of the method, amyloid plaque deposition on a patient's brain may be detected. Thus, a nanoparticle contrast enhancing agent is introduced to the patient; and the patient is subjected to MRI to obtain an image.
If the imaging technique of choice is MRI, the contrast enhancing agent may comprise an MR-effective nanoparticle contrast enhancing agent such as a gadolinium complex having long circulating properties, such as, for example, the dual gadolinium liposomal agent described in Ghaghada, K. B. et al., “New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging.” PloS One, 4(10), e7628. Doi:10.1371/journal.pone.0007628, which is incorporated by reference herein in its entirety. In one embodiment, the dual gadolinium liposomal agent is less than about 200 nm in average diameter. In one embodiment, the dual gadolinium liposomal agent is less than about 175 nm in average diameter. In one embodiment, the dual gadolinium liposomal agent is less than about 150 nm in average diameter. In one embodiment, the dual gadolinium liposomal agent is about 100 nm in average diameter. Another suitable MR-effective agent may include ABLAVAR® (gadofosveset trisodium) (Lantheus Medical Imaging, Inc. N. Billerica, Mass.), a stable gadolinium diethylenetriaminepentaacetic acid (GdDTPA) chelate derivative with a diphenylcyclohexylphosphate group. Another suitable MR-effective agent may include an agent comprising liposomes, the liposomes comprising: a phospholipid (e.g., DPPC); a phospholipid that is derivatized with a polymer (e.g., a PEGylated phospholipid such as mPEG2000-DSPE); and cholesterol, wherein the liposomes encapsulate, chelate, or encapsulate and chelate gadolinium in various forms.
Once an image is obtained, a 3-D autocorrelation function may be applied to a subdomain of interest of the image to obtain at least one 3-D autocorrelation spectrum. In other words, in one embodiment, the 3-D autocorrelation function may be applied in a local sense, to a carefully selected subdomain, and the computation so restricted, rather than calculating the autocorrelation function over the totality of the image.
The method may further comprise comparing the at least one 3-D autocorrelation spectrum to a pre-existing 3-D autocorrelation spectrum that is characteristic for amyloid plaque deposition on a brain.
Amyloid plaque deposits are a major neuropathological hallmark of Alzheimer's Disease, and manifest long before clinical symptoms are discernible. Thus, in one embodiment, the method may be useful for diagnosing Alzheimer's Disease in living patients.
In one embodiment, nanoparticle contrast enhancing agent may be administered to a patient with subsequent MRI and 3-D autocorrelation in order to establish a baseline spectrum of a patient's normal image and spectrum. In one embodiment, the patient is healthy when the baseline spectrum is established. Thus, subsequent administration may be used then, for example, to determine deviations from the baseline spectrum indicative of a disease state. In another embodiment, the patient may already have been diagnosed with a disease known or suspected to alter the patient's spectrum. In that case, subsequent administration may be used, for example, to gauge disease progression or to determine the effectiveness of treatment. In yet another embodiment, the baseline spectrum may reflect a sampling of healthy or diseased patients other than the patient under study. Thus, administration to the patient may be used, for example, to determine deviations from, or similarities to, the baseline spectrum or spectra indicative of a disease state or the absence of a disease state.
Certain embodiments are described below in the form of examples. It is impossible to depict every potential application of the invention. Thus, while the embodiments are described in considerable detail, it is not the intention to restrict or in any way limit the scope of the appended claims to such detail, or to any particular embodiment.
A lipid mixture comprising DPPC, Gd-DTPA-BSA, cholesterol, and mPEG2000-DSPE in the molar ratio 30:25:40:5 was dissolved in a chloroform:methanol (1:1 v/v) mixture. The solvent mixture was evaporated to dryness under vacuum and the lipid contents were hydrated with a solution of gadobenate dimeglumine (MULTIHANCE®, Gd-BOPTA, 500 mM Gd, Bracco Diagnostics Inc., Monroe Township, N.J.) to achieve a lipid concentration of 40 mM. The solution was stirred for 90 min at 60° C. and then sequentially extruded with five passes through a 400 nm NUCLEPORE™ membrane (Sigma-Aldrich, St. Louis, Mo.), seven passes through a 200 nm NUCLEPORE™ membrane, and ten passes through a 100 nm NUCLEPORE™ membrane. The resulting solution was diafiltered using a MICROKROS® module (Spectrum Laboratories, Rancho Dominguez, Calif.) of 500 kDa molecular weight cut-off to remove unencapsulated and unchelated Gd-chelate molecules. Size analysis of the liposomes indicated particles of approximately 100 nm in diameter. The low polydispersity index for various formulations indicated narrow size distributions. More than 95% of the liposomes were below 150 nm in diameter.
Cerebral angiograms were acquired in C57BL/6 mice using the dual Gd liposomes of Example 1 at a dose of 200 mg lipid/kg, injected intravenously. Imaging was conducted using FSPGR (Fast Spoilt Gradient) studies using a 5123 image matrix, and the following parameters: repetition time (TR)=20.0 ms; echo time (TE)=3 ms; flip angle (FA)=30°; field of view (FOV)=30 mm×30 mm×30 mm; and images were generated with anisotropic voxel size of 60μ.
To test the sensitivity of three morphometric techniques (multi-fractality, lacunarity, and 2-D autocorrelation), algorithms were implemented for each, in MATLAB (MathWorks, Natick, Mass.). A 2-D section of the mouse brain vasculature from
The results are shown in
Cerebral vascular images from seven different mice were chosen. Three of the mice were APP/PSEN1 mice ranging from 14 to 21 months of age, and exhibiting significant cognitive deficit and signs of dementia. Two of the mice were non-transgenic siblings in the same general age range. Two of the mice were normal C57BL/6 mice that were approximately ten months old. MR cerebral angiograms of each of these mice were acquired using the blood pool contrast agent of Example 1. Acquisition sequences were as described in Example 2.
A volume was selected that was representative of the cortex and hippocampus as shown in
The characteristic structure of the amyloid positive mice is evident, with a marked fissure in the autocorrelation function, with C2 rotational symmetry. In contrast, the normal and negative control mice exhibit a characteristic uniform structure, with also exhibiting C2 symmetry. Thus, differentiating the two classes of structures is trivial; yet, the vascular structures themselves are visually unremarkable.
The correlation function is an indication of the extent of correlation between any two points in the domain, with a spacing equal to the argument of the correlation function. Thus, a perfect correlation (always obtained at zero displacement) is 1, while an uncorrelated event exhibits a correlation of zero. Therefore, the origin in each of the images in
The characteristic fissure in the correlation function of the amyloid positive mice corresponds to a precipitous drop in the correlation function in that narrow region of the fissure. The fissures are rotationally symmetric (C2), suggesting that there is anisotropic point symmetry (D2n) in the vascular domain. Specific directions parallel to the fissures where there is no such drop off suggests that there are certain directions in the vascular domain where correlation is preserved.
F, also a normal mouse, shows somewhat different behavior, with small localized drops in correlation. The localized drops suggest very specific directional losses in correlation, but are clearly distinguishable from the drastic fissure structure of the amyloid positive cases.
To determine the implications of the fissure structure on the correlation function in the vascular domain, fissures were simulated, starting with a normal vascular map (similar to the procedure described in Example 3). Anisotropic point symmetry (D2n) would be consistent with blood vessels on which plaque-like dense objects were overlaid. Thus, in the axial direction of the vessels, there would be no drop in intensity, while at other angles there would be point symmetry about the reference center. On the other hand, if the plaques were not overlaid on the vessels, this symmetry would be destroyed.
Two cases were simulated. First, synthetic plaques were randomly distributed in the volume, interrupting blood vessels where overlap occurred. Second, synthetic plaques were distributed preferentially along the blood vessels. In both cases, plaques were assumed to exhibit a loss of intensity in the MR image, and appear similar to normal tissue.
On the other hand,
Thus, it may be concluded that: (1) normal mouse brain vasculature shows either a uniform autocorrelation function or, in some cases, due to noise in the vascular signal, an island structure in the correlation function, with local drops; and (2) amyloid mouse vasculature shows a characteristic fissure structure in the autocorrelation function, clearly distinguishable from all other forms.
To the extent that the term “includes” or “including” is used in the specification or the claims, it is intended to be inclusive in a manner similar to the term “comprising” as that term is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term “or” is employed (e.g., A or B) it is intended to mean “A or B or both.” When “only A or B but not both” is intended, then the term “only A or B but not both” will be employed. Thus, use of the term “or” herein is the inclusive, and not the exclusive use. See Bryan A. Garner, A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995). Also, to the extent that the terms “in” or “into” are used in the specification or the claims, it is intended to additionally mean “on” or “onto.” Finally, where the term “about” is used in conjunction with a number, it is intended to include ±10% of the number. For example, “about 10” may mean from 9 to 11.
As stated above, while the present application has been illustrated by the description of embodiments, and while the embodiments have been described in considerable detail, it is not the intention to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the application, in its broader aspects, is not limited to the specific details and illustrative examples shown. Departures may be made from such details and examples without departing from the spirit or scope of the general inventive concept.
This application claims priority from U.S. Provisional Patent Application No. 61/589,165, filed on Jan. 20, 2012, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4893082 | Letcher, III | Jan 1990 | A |
5204085 | Vanderipe | Apr 1993 | A |
5676928 | Klaveness et al. | Oct 1997 | A |
6067465 | Foo | May 2000 | A |
6171614 | Chaikof et al. | Jan 2001 | B1 |
6463315 | Klingberg | Oct 2002 | B1 |
6821504 | Wisniewski et al. | Nov 2004 | B2 |
7138136 | Annapragada et al. | Nov 2006 | B2 |
7208174 | Huwyler et al. | Apr 2007 | B2 |
7713517 | Annapragada et al. | May 2010 | B2 |
7785568 | Annapragada et al. | Aug 2010 | B2 |
8357351 | Karathanasis et al. | Jan 2013 | B2 |
8642013 | Annapragada et al. | Feb 2014 | B2 |
8679531 | Annapragada et al. | Mar 2014 | B2 |
8911708 | Annapragada et al. | Dec 2014 | B2 |
20030147811 | Wisniewski | Aug 2003 | A1 |
20030190284 | Annapragada et al. | Oct 2003 | A1 |
20060099141 | O'Brien et al. | May 2006 | A1 |
20060120580 | Makram-Ebeid | Jun 2006 | A1 |
20070031326 | Shirvan et al. | Feb 2007 | A1 |
20070160658 | Connor et al. | Jul 2007 | A1 |
20070292354 | Port | Dec 2007 | A1 |
20080119718 | Hundley et al. | May 2008 | A1 |
20080131369 | Annapragada et al. | Jun 2008 | A1 |
20080212887 | Gori | Sep 2008 | A1 |
20090123047 | Yfantis | May 2009 | A1 |
20090155181 | Rowe | Jun 2009 | A1 |
20090263326 | Karathanasis et al. | Oct 2009 | A1 |
20090311191 | Annapragada et al. | Dec 2009 | A1 |
20100105608 | Gazit | Apr 2010 | A1 |
20100135544 | Mattiuzzi | Jun 2010 | A1 |
20100190831 | Shi et al. | Jul 2010 | A1 |
20100286067 | Defrees | Oct 2010 | A1 |
20110093960 | Edwards et al. | Apr 2011 | A1 |
20110172538 | Sumi | Jul 2011 | A1 |
20110306845 | Osorio | Dec 2011 | A1 |
20110311457 | Skerrett et al. | Dec 2011 | A1 |
20120003159 | Annapragada et al. | Jan 2012 | A1 |
20120039810 | Gorenstein et al. | Feb 2012 | A1 |
20120258044 | Annapragada et al. | Oct 2012 | A1 |
20130289140 | Mbebi-Liegeois et al. | Oct 2013 | A1 |
20140161875 | Winderickx et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
1982733 | Oct 2008 | EP |
1982733 | Oct 2008 | EP |
2694116 | Feb 2014 | EP |
2002028441 | Apr 2002 | WO |
2002028441 | Jun 2002 | WO |
2005107820 | Nov 2005 | WO |
2009073236 | Jun 2009 | WO |
2009073896 | Jun 2009 | WO |
2010107990 | Sep 2009 | WO |
2009150686 | Dec 2009 | WO |
2010017094 | Feb 2010 | WO |
2010107990 | Sep 2010 | WO |
2011045415 | Apr 2011 | WO |
WO 2011045415 | Apr 2011 | WO |
2011159297 | Dec 2011 | WO |
2012119117 | Sep 2012 | WO |
2012139080 | Oct 2012 | WO |
2013110013 | Aug 2013 | WO |
2014152229 | Sep 2014 | WO |
2016057812 | Apr 2016 | WO |
Entry |
---|
VJ Napadow, Q Chen,V Mai, PTC. So, and RJ. Gilbert, “Quantitative Analysis of Three-Dimensional-Resolved Fiber Architecture in Heterogeneous Skeletal Muscle Tissue Using NMR and Optical Imaging Methods,” 2001, Biophysical Journal, vol. 80, pp. 2968-2975. |
K Sellers, “Why Derivatize? Improve GC Separations with Derivatization”, 2007, http://www.restek.com/pdfs/adv_2007_03_07. |
T van Groen, K Wiesehan, SA. Funke, I Kadish, L Nagel-Steger,and D Willbold, “Reduction of Alzheimer's Disease Amyloid Plaque Load in Transgenic Mice by D3, a d-Enantiomeric Peptide Identified by Mirror Image Phage Display”, 2008, ChemMedChem, vol. 3, pp. 1848-1852. |
T Montez, S-S Poil, BF Jones, I Manshanden, JPA Verbunt, BW van Dijk, AB Brussaard, A van Ooyen, CJ Stam, P Scheltens, and K Linkenkaer-Hansen, “Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease”, 2009, www.pnas.org_cgi_doi_10.1073_pnas.0811699106. |
SL Fossheim, AK Fahlvik, J Klaveness, RN Muller, “Paramagnetic Liposomes as MRI Contrast Agents: Influence of Liposomal Physicochemical Properties on the In Vitro Relaxitivity”, 1999, Magnetic Resonance Imaging, vol. 17, No. 1, pp. 83-89. |
PM Thompson, J Moussai, S Zohoori, A Goldkorn, AA Khan, MS Mega, GW Small, JL Cummings, AW Toga, “Cortical Variability and Assymetry in Normal Aging and Alzheimer's Disease”, 1998, pp. 492-509; http://cercor.oxfordjournals.org/content/8/6/492.long. |
Hsu et al., Scientific Reports | 7: 5035 | DOI:10.1038/s41598-017-05390-1, published Jul. 11, 2017. |
NIH website; accessed Aug. 20, 2017, https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet#diagnose. |
Hardy et al. “Coronary Angiography by Real-Time MRI with Adaptive Averaging.” Magnetic Resonance in Medicine 44: 940-946 (2000). |
Wald Michael et al., “Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging,” Medical Physics, AIP, Melville, NY US, vol. 34, No. 3, Feb. 27, 2007 pp. 1110-1120. |
European Search Report, dated Jul. 29, 2014, related to European Patent Application No. 13738451.7. |
Ding, et al. “Folate Receptor-targeted Fluorescent Paramagnetic Bimodal Liposomes for Tumor Imaging” Int. J. Nanomedicine, 2011, 6, 2513-2520. |
Written opinion and search report from related PCT Application No. PCT/US2012/032649. |
Written opinion and search report from related PCT Application No. PCT/US2013/022336. |
Winter, et al., “Improved Molecular Imaging Contrast Agent for Detection of Human Thrombus” Mag. Res. Med. 2003, 50, 411-416. |
Thompson, et al., “Cortical Variability and Asymmetry in Normal Aging and Alzheimer's Disease” Cerebral Cortex 1998, 8, 492-509. |
McNeely, et al. “Decreased Circulation Time Offsets Increased Efficacy of PEGylated Nanocarriers Targeting Folate Receptors of Glioma” Nanotechnology 2007, 18, 1-11. |
Burke, et al., “Imaging of Pulmonary Embolism and t-PA Therapy Effects Using MDCT and Liposomal lohexol Blood Pool Agent: Preliminary Results in a Rabbit Model” Academic Radiol. 2007, 14, 355-362. |
Kao, et al., “Long-Residence-Time Nano-Scale Liposomal lohexol for X-ray-Based Blood Pool Imaging” Acad. Radiol. 2003, 10, 475-483. |
Ding, et al., “Folate Receptor-Targeted Fluorescent Paramagnetic Bimodal Liposomes for Tumor Imaging” Int. J. Nanomed. 2011, 6, 2513-2520. |
European Search Report issued in EP2756459, dated Jul. 29, 2014. |
Skaat, et al., “Synthesis of Fluorescent-Maghemite Nanoparticles as Multimodal Imaging Agents for Amyloid-Beta Fibrils Detection and Removal by a Magnetic Field” Biochem. Biophys. Res. Commun. 2009, 386, 645-649. |
Van Groen, el al., “Reduction of Alzheimer's Disease Amyloid Plaque Load in Transgenic Mice by D3, a D-Enantiomeric Peptide Identified by Mirror IMage Phage Display” Chem. Med. Chem. 2008, 3, 1848-1852. |
Written Opinion and International Search Report from PCT Application No. PCT/US12/032649 dated Jun. 20, 2012. |
Mukundan, et al., “A Liposomal Nanoscale Contrast Agent for Preclinical CT in Mice” AJR Am. J. Roentgenol. 2006, 186, 300-307. |
Karathanasis, et al., “Multifunctional Nanocarriers for Mammographic Quantification of Tumor Dosing and Prognosis of Breast Cancer Therapy” Biomaterials 2008, 29, 4815-4822. |
Karathanasis, et al., “Imaging Nanoprobe for Prediction of Outcome of Nanoparticle Chemotherapy by Using Mammography” Radiology 2009, 250, 398-406. |
Karathanasis, et al., “Tumor Vascular Permeability to a Nanoprobe Correlates to Tumor-Specific Expression Levels of Angiogenic Markers” PLoS One 2009, 4, 5843. |
Samei, et al., “Micro-CT Imaging of Breast Tumors in Rodents Using a Liposomal, Nanoparticle Contrast Agent” Int. J. Nanomedicine 2009, 4, 277-282. |
Klunk, et al., Imaging AB Plaques in Living Transgenic Mice with Multiphoton Microscopy and Methoxy-XO4, a Systemically Administered Congo Red Derivative J. Neuropath. Exp. Neurol. 2002, 61, 797-805. |
European Search Report in EP2694116, dated Apr. 29, 2015. |
Napadow, et al., “Quantitative Analysis of Three-Dimensional-Resolved Fiber Architecture in Heterogeneous Skeletal Muscle Tissue Using NMR and Optical Imaging Methods” Biophys. J. 2001, 80, 2968-2975. |
Fosshein, et al., “Paramagnetic Liposomes as MRI Contrast Agents: Influence of Liposomal Physicochemical Properties on the in Vitro Relaxivity” Mag. Res. Imag. 1999, 17, 83-89. |
Montez, et al., “Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer Disease” Proceed. Nat. Acad. Sci. 2009, 1-6. |
Written Opinion and International Search Report from PCT Application No. PCT/US15/54732 dated Jan. 11, 2016. |
Wald, et al., “Spatial Autocorrelation and Mean Intercept Length Analysis of Trabecular Bone Anisotropy Applied to in vivo Magnetic Resonance Imaging” Med. Phys. 2007, 34, 1110-1120. |
Written Opinion and International Search Report from PCT Application No. PCT/US13/22336 dated Apr. 1, 2013. |
Sellers, “Why Derivatize?”, downloaded from http://www.restek.com/pdfs/adv_2007_03_07. |
Number | Date | Country | |
---|---|---|---|
20130190605 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61589165 | Jan 2012 | US |