Methods and Compositions for Reducing Immunosupression by Tumor Cells

Abstract
The present disclosure provides, in part, methods of discovering immunotherapy targets in vivo, therapeutic compositions (e.g., shRNA, immunoresponsive cells expressing shRNA and/or a chimeric antigen receptors (CAR)), and methods of use thereof.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. The ASCII copy, created on Dec. 9, 2015, is named 14293-469sequence listing ST25.txt and is approximately 351 KB in size.


TECHNICAL FIELD

This invention relates to methods of discovering immunotherapy targets in vivo, therapeutic compositions that modulate immunotherapy targets (e.g., shRNA, immunoresponsive cells expressing shRNA and, in some cases a receptor targeting a cancer cell, e.g., a chimeric antigen receptors (CAR)), and related methods of use.


BACKGROUND

Cytotoxic T cells play a central role in immune-mediated control of cancers1-3, and monoclonal antibodies that target inhibitory receptors on T cells can induce significant clinical benefit in patients with advanced disease4-6. For survival, tumors have developed numerous immunosuppressive mechanisms to promote their own growth and to successfully evade the host immune system, effectively blocking the activity of T cells in the tumor microenvironment. This is a central issue in oncology because strong infiltration by CD8 T cells, which have cytotoxic function against tumor cells, is associated with a favorable prognosis in multiple types of human cancer1,3,8. This natural defense mechanism is severely blunted in the majority of patients by multiple inhibitory signals emanating from the tumor, its stroma, regulatory T cells and myeloid cell populations.9-11 Various molecular and cellular immunosuppressive mechanisms responsible for tumor evasion have been identified. Certain of these mechanisms target immune antitumor effector cells. However, many of the regulatory mechanisms that result in loss of T cell function within immunosuppressive tumors remain unknown. Improving on the limited success of cancer immunotherapy requires new approaches to inhibit immunosuppressive pathways initiated by tumor cells to evade the host immune system.


SUMMARY

The present disclosure provides targets for inhibiting immunosuppressive pathways used by tumor cells to inactivate and/or suppress immune cells.


The disclosure also provides compositions and methods related to shRNA with therapeutic potential.


The disclosure also provides immunoresponsive cells, including T cells (e.g., cells targeting a tumor antigen) expressing at least one shRNA or other nucleic acid molecule capable of silencing genes that inhibit T cell function.


The disclosure also provides immunoresponsive cells, including T cells, harboring at least one vector expressing a shRNA and at least one chimeric antigen receptor directed to a tumor antigen.


In some embodiments, the disclosure provides immunoresponsive cells having tumor specificity comprising a vector encoding a shRNA capable of silencing genes that inhibit T cell function. In some aspects, the shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 or Ppp3cc. In another aspect, the shRNA comprises 15 contiguous nucleotides complementary to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678. In some aspects, the immunoresponsive cell further comprises a vector encoding a tumor-specific T-cell receptor. In some aspects, the immunoresponsive cell is selected from the group consisting of a tumor-infiltrating lymphocyte (TIL), a Natural Killer T cell (NKT), a cytotoxic T lymphocyte (CTL), and a CD4 T cell.


In some embodiments, the immunoresponsive cell comprises a vector encoding a CAR, wherein the CAR comprises an antigen binding domain, a transmembrane domain, and a stimulatory domain. In some aspects, the antigen binding domain binds a tumor antigen or pathogen antigen. Exemplary tumor antigens include, for example, prostate-specific membrane antigen (PSMA), Carcinoembryonic Antigen (CEA), CD19, CD20, CD22, ROR1, mesothelin, CD333/IL3Ra, c-Met, Glycolipid F77, EGFRvIII, GD-2, NY-ESO-1 TCR, ERBB2, BIRC5, CEACAM5, WDR46, BAGE, CSAG2, DCT, MAGED4, GAGE1, GAGE2, GAGE3, GAGE4, GAGE5, GAGE6, GAGE7, GAGE5, IL13RA2, MAGEA1, MAGEA2, MAGEA3, MAGEA4, MAGEA6, MAGEA9, MAGEA10, MAGEA12, MAGEB1, MAGEB2, MAGEC2, TP53, TYR, TYRP1, SAGE1, SYCP1, SSX2, SSX4, KRAS, PRAME, NRAS, ACTN4, CTNNB1, CASP8, CDC27, CDK4, EEF2, FN1, HSPA1B, LPGAT1, ME1, HHAT, TRAPPC1, MUM3, MYO1B, PAPOLG, OS9, PTPRK, TPI1, ADFP, AFP, AIM2, ANXA2, ART4, CLCA2, CPSF1, PPIB, EPHA2, EPHA3, FGF5, CA9, TERT, MGAT5, CEL, F4.2, CAN, ETV6, BIRC7, CSF1, OGT, MUC1, MUC2, MUM1, CTAG1A, CTAG2, CTAG, MRPL28, FOLH1, RAGE, SFMBT1, KAAG1, SART1, TSPYL1, SART3, SOX10, TRG, WT1, TACSTD1, SILV, SCGB2A2, MC1R, MLANA, GPR143, OCA2, KLK3, SUPT7L, ARTC1, BRAF, CASP5, CDKN2A, UBXD5, EFTUD2, GPNMB, NFYC, PRDX5, ZUBR1, SIRT2, SNRPD1, HERV-K-MEL, CXorf61, CCDC110, VENTXP1, SPA17, KLK4, ANKRD30A, RAB38, CCND1, CYP1B1, MDM2, MMP2, ZNF395, RNF43, SCRN1, STEAP1, 707-AP, TGFBR2, PXDNL, AKAP13, PRTN3, PSCA, RHAMM, ACPP, ACRBP, LCK, RCVRN, RPS2, RPL10A, SLC45A3, BCL2L1, DKK1, ENAH, CSPG4, RGS5, BCR, BCR-ABL, ABL-BCR, DEK, DEK-CAN, ETV6-AML1, LDLR-FUT, NPM1-ALK1, PML-RARA, SYT-SSX1, SYT-SSX2, FLT3, ABL1, AML1, LDLR, FUT1, NPM1, ALK, PML1, RARA, SYT, SSX1, MSLN, UBE2V1, HNRPL, WHSC2, EIF4EBP1, WNK2, OAS3, BCL-2, MCL1, CTSH, ABCC3, BST2, MFGE8, TPBG, FMOD, XAGE1, RPSA, COTL1, CALR3, PA2G4, EZH2, FMNL1, HPSE, APC, UBE2A, BCAP31, TOP2A, TOP2B, ITGB8, RPA1, ABI2, CCNI, CDC2, SEPT2, STAT1, LRP1, ADAM17, JUP, DDR1, ITPR2, HMOX1, TPM4, BAAT, DNAJC8, TAPBP, LGALS3BP, PAGE4, PAK2, CDKN1A, PTHLH, SOX2, SOX11, TRPM8, TYMS, ATIC, PGK1, SOX4, TOR3A, TRGC2, BTBD2, SLBP, EGFR, IER3, TTK, LY6K, IGF2BP3, GPC3, SLC35A4, HSMD, H3F3A, ALDH1A1, MFI2, MMP14, SDCBP, PARP12, MET, CCNB1, PAX3-FKHR, PAX3, FOXO1, XBP1, SYND1, ETV5, HSPA1A, HMHA1, TRIM68, and any combination thereof. In some aspects, the antigen binding domain is an antigen-binding fragment of an antibody (e.g., Fab or a scFv). The intracellular domains of such CARs contain cytoplasmic signaling domains derived from the T cell receptor and costimulatory molecules.


In some embodiments, the vector is a plasmid, retroviral vector, or lentiviral vector.


In some embodiments, the disclosure provides isolated nucleic acid molecules encoding a shRNA sequence. In another embodiment, the disclosure provides isolated nucleic acid molecules encoding a CAR. In yet another embodiment, the disclosure provides isolated nucleic acid molecules encoding a CAR and a shRNA sequence. In some aspects, the isolated nucleic acid encodes a shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, or Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 or Ppp3cc. In another aspect, the isolated nucleic acid encodes a shRNA comprising 15 contiguous nucleotides complementary a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678.


In some embodiments, the isolated nucleic acid encodes a CAR comprising an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain. In some embodiments, the antigen binding domain is an antigen-binding fragment of an antibody (e.g., Fab or a scFv). In some embodiments, the antigen binding domain is a cytoplasmic signaling domain derived from the T cell receptor and costimulatory molecules.


In some embodiments, the antigen-binding domain binds tumor antigen (e.g., a tumor antigen associated with a solid tumor, lymphoid tumor, melanoma, carcinoma, sarcomas, adenocarcinoma, lymphoma, leukemia, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer).


In some embodiments the disclosure provides vectors comprising an isolated nucleic acid encoding a shRNA sequence, an isolated nucleic acid encoding a CAR, or an isolated nucleic acid encoding a CAR and a shRNA sequence. In some aspects, the vector is a plasmid, lentiviral vector, retroviral vector, adenoviral vector, adeno-associated viral vector. The shRNA can be operably linked to RNA polymerase II promoter or an RNA polymerase III promoter.


In yet other embodiments, the invention provides compositions comprising immunoresponsive cells according to the invention, and a pharmaceutically acceptable carrier.


In some embodiments, the disclosure provides immunoresponsive cells transfected with a first vector encoding a CAR and a second vector encoding a shRNA sequence. In some aspects, the shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Map3k3, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 or Ppp3cc. In another aspect, the shRNA comprise 15 contiguous nucleotides complementary a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678. In some aspects, the immunoresponsive cell further comprises a vector encoding a tumor-specific T-cell receptor. In some aspects, the immunoresponsive cell is selected from the group consisting of a tumor-infiltrating lymphocyte (TIL), a Natural Killer T cell (NKT), a cytotoxic T lymphocyte (CTL), and a CD4 T cell.


In some embodiments, the disclosure provides methods for treating cancer in a subject, the method comprising administering to the subject an autologous T cell modified to express a tumor-specific T-cell receptor or CAR and an shRNA, wherein the shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Map3k3, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 or Ppp3cc. In some aspects, the shRNA sequence comprises 15 contiguous nucleotides complementary a nucleic acid sequence selected from the group consisting of: SEQ ID NOs: 604-620 and 653-678; and wherein the CAR comprises an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain. In some aspects, the CAR comprises an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain.


In some embodiments, the disclosure provides methods for treating cancer in a subject, the method comprising administering to the subject an autologous T cell modified to express a tumor-specific T-cell receptor or CAR and an shRNA of the invention. In yet another embodiment, the disclosure provides methods for treating cancer in a subject in need thereof by silencing genes that inhibit T cell function comprising administering to the subject an immunoresponsive cell comprising a vector, the vector encoding a tumor-specific T-cell receptor or a CAR and a shRNA sequence of the invention.


In some embodiments, the disclosure provides methods for identifying a gene that inhibits the function of an immunoresponsive T cell, the method comprising providing a population of immunoresponsive T cells harboring vectors expressing a shRNA, contacting the population of immunoresponsive T cells with an immunosuppressive tumor, determining whether a shRNA restores T cell function within the immunosuppressive tumor, and identifying a gene associated with a shRNA that restores T cell function within the tumor as a gene that inhibits the function of tumor-infiltrating T cells.


In some embodiments, the disclosure provides methods for increasing the immune response in a subject in need thereof, the method comprising administering a therapeutic agent that modulates the activity of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 and Ppp3cc.


In some cases the sequence encoding an shRNA comprises a first sequence comprising 15-25 (15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25) nucleotides complementary to any of SEQ ID NOs: 604-620 or SEQ ID NOs: 653-678 and a second sequence that is the reverse complement of the first sequence with one or no mismatches (i.e., is perfectly complementary to the first sequence), and a third sequence of 5-9 nucleotides positioned between the first and second sequences.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.


Other features and advantages of the invention will be apparent from the following detailed description and figures, and from the claims.





DESCRIPTION OF DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1 is a schematic diagram demonstrating an exemplary approach for in vivo discovery of shRNAs that enhance T cell infiltration and accumulation within the tumor microenvironment.



FIG. 2 is a set of graphs showing representative flow cytometry plots of CD8+ T cells from Rag1−/−/OT-I TCR transgenic mice following infection with an shRNA vector. Transduction efficiency was determined based on expression of the Thy1.1 reporter encoded by the lentiviral vector. Cytokine-cultured T cells expressing the LacZ control shRNA were then stained with a panel of activation markers (black lines; isotype control, shaded). The majority of infected T cells exhibited a central memory phenotype (CD62L+CD44+).



FIG. 3 is a set of graphs showing representative flow cytometry plots of OT-I T cells sorted from tumors and secondary lymphoid organs for deep sequencing analysis (dLN, tumor-draining lymph node; irLN, irrelevant lymph node). CD8+Vα2+Vβ5+Thy1.1+ cells were sorted and genomic DNA was extracted for PCR amplification of the shRNA cassette.



FIG. 4 is a set of graphs showing deep sequencing data from in vivo shRNA pool screen. Upper row, sequence reads for all genes in a pool in tumor, irrelevant (irLN) and draining lymph node (dLN); lower row, three individual genes (LacZ, negative control) are plotted in comparison to spleen for tumors, irrelevant lymph nodes (irLN) and tumor-draining lymph nodes (dLN). Sequence reads are plotted for these tissues versus spleen. Dashed lines indicate a deviation by log 2 from diagonal.



FIG. 5 is a set of graphs showing deep sequencing data from T cell dysfunction screen. shRNA sequencing reads for genes positive in secondary screen are plotted in comparison to spleen for tumors (red), irrelevant lymph nodes (irLN, blue) and tumor-draining lymph nodes (dLN, green), with dashed lines indicating a deviation of log 2 from the diagonal. Data show enrichment of particular shRNAs representing these genes in tumors compared to spleens or lymph nodes.



FIG. 6 is a graph showing flow cytometry based quantification of OT-I CD8+ T cell enrichment in tumors relative to spleen. The percentage of shRNA-expressing OT-I T cells was determined by flow cytometry in tumors/spleens by gating on reporter proteins in CD8+Vα2+Vβ5+ T cells. Statistical significance was determined for each experimental shRNA against LacZ shRNA (fold enrichment tumor/spleen) (n=3; * p<0.05, ** p<0.01, Student's t-test).



FIG. 7 is a set of graphs showing representative flow cytometry plots of cell enrichment in tumor transduced with shRNA vectors (LacZ, Akap8I, Smad2, Rbks, Dgkz). The percentage of shRNA-expressing OT-I T cells was determined by flow cytometry in tumors/spleens by gating on reporter proteins in CD8+Vα2+Vβ5+ T cells.



FIG. 8 is a set of graphs showing flow cytometry-based quantification of CD4+ and CD8+ T cell enrichment in tumors. shRNA-expressing T cells were identified in tumors and spleens using Thy1.1 reporter (% Thy1.1+ CD8 T cells or CD4+ T cells, top and bottom panels). Total numbers of LacZ or Ppp2r2d shRNA-expressing T cells were determined in tumors and spleens 7 days following transfer of 2×106 shRNA-expressing cells (right panels). Fold-enrichment of Ppp2r2d versus LacZ shRNA-expressing T cells in tumors is indicated.



FIG. 9 is a graph showing reversal of Ppp2r2d shRNA-mediated T cell expansion in tumors by Ppp2r2d cDNA with a mutated shRNA binding site but preserved protein sequence. The three cell populations were identified based on co-expressed reporters; fold-enrichment was calculated based on percentage of reporter-positive cells in tumors versus spleens.



FIG. 10a describes the generation of mutant Ppp2r2d cDNA with preserved protein sequence but disrupted shRNA binding site. EL4 cells were transduced with mutant or wild type Ppp2r2d cDNA on a vector also containing GFP. GFP-positive cells were sorted to purity and transduced with LacZ or Ppp2r2d shRNA vectors expressing a Thy1.1 reporter. shRNA-transduced (Thy1.1) cells were analyzed by flow cytometry for GFP expression. The Ppp2r2d shRNA reduced GFP levels when wild-type Ppp2r2d, but not when mutant Ppp2r2d was expressed. (SEQ ID NOS: 679-681 shown.)



FIG. 10b demonstrates that expression of Ppp2r2d mutant cDNA prevents phenotype induced by Ppp2r2d shRNA. OT-I T cells were transduced with a vector encoding LacZ shRNA, Ppp2r2d shRNA or Ppp2r2d shRNA plus mutant Ppp2r2d cDNA. The different cell populations were normalized for transduction efficiency and co-injected into B16-Ova tumor bearing mice. The percentage of each T cell population in tumors and spleens was quantified by gating on CD8+Vα2+Vβ5+ T cells; transduced cells were detected based on expression of Thy1.1 or Ametrine/GFP fluorescent reporters (representative data from 2 independent experiments, n=3 mice per experiment).



FIG. 10c is a graph demonstrating real-time PCR analysis for Ppp2r2d expression in OT-I T cells transduced with LacZ shRNA, Ppp2r2d shRNA, and Ppp2r2d shRNA plus Ppp2r2d mutant cDNA. Data represent biological replicates (n=3), each value represents mean+/−s.d.



FIG. 11 is a graph demonstrating real-time qPCR analysis for Ppp2r2d mRNA levels in OT-I T cells transduced with LacZ shRNA or one of three Ppp2r2d shRNAs identified in the screen.



FIG. 12a is a table demonstrating enrichment of particular shRNAs in tumor versus spleen which was calculated based on deep sequencing results from the secondary screen.



FIG. 12b demonstrates clustering of mean expression levels for mRNAs found to be significantly regulated by T cells in or tumors expressing the LacZ control shRNA or one of five experimental shRNAs. Significant expression differences were defined as an Anova p value<0.01 between T cells expressing LacZ control shRNA or one of five experimental shRNAs (Alk, Arhgap5, Egr2, Ptpn2 or Ppp2r2d) (JMP-Genomics 6.0, SAS Institute Inc.). mRNAs significantly regulated in one or more treatment groups are shown after clustering (Fast Ward).



FIG. 12c is a Venn diagram showing overlaps between expression signatures by tumor-infiltrating T cells transduced with one of the five experimental shRNAs (signatures defined as an Anova p<0.01 as described above). Indicated are the numbers of overlapping probe IDs for any combination of the 5 signatures, as indicated by the overlapping ovals. The significance of the overlaps versus that expected by random chance (Fishers Exact Test) is shown in the accompanying table.



FIG. 13a is a set of graphs showing representative flow cytometry plots of demonstrating the frequency of Ppp2r2d or LacZ shRNA-transduced CD8 T cells in tumors on day 1.



FIG. 13b are a pair of graphs demonstrating the degree of proliferation (based on CFSE dilution) by Ppp2r2d shRNA-transduced CD8 T cells compared to LacZ shRNA-transduced T cells in tumors on days 1, 3, 5, and 7.



FIG. 13c is a set of graphs demonstrating that Ppp2r2d-silencing inhibits T cell apoptosis upon encounter of tumor cells. CFSE-labeled OT-I T cells were co-cultured with B16-Ova tumor cells for 72 hours. Cells were stained with CD8 and annexin V.



FIG. 13d is a set of graphs demonstrating intracellular staining for anti-apoptotic proteins. OT-I T cells expressing LacZ or Ppp2r2d shRNA were co-cultured with B16-Ova tumor cells for 48 hours and then stained with isotype control (grey) and phospho-AKT (Ser473), phospho-Bad (Ser 112) or Bcl-2 antibodies.



FIG. 13e is a graph demonstrating increased IFN-γ secretion by Ppp2r2d-silenced T cells. OT-I T cells isolated from B16-Ova tumor-bearing mice were assayed for IFN-γ expression by intracellular staining.



FIG. 13f is a set of graphs demonstrating Ppp2r2d-silenced T cells expand in tumors even without presentation of tumor antigens by professional antigen presenting cells. LacZ or Ppp2r2d shRNA-expressing OT-I T cells were transferred into day 14 B16-Ova tumor-bearing C57BL/6 or b2m−/− mice. shRNA-expressing T cells were identified based on expression of teal fluorescent protein (TFP) or Thy1.1 (fold enrichment in tumors compared to spleens).



FIG. 13g is a graph demonstrating that Ppp2r2d-silencing inhibits T cell apoptosis upon encounter of tumor cells. CFSE-labeled OT-I T cells were co-cultured with B16-Ova tumor cells for 72 hours (activated caspase-3).



FIG. 14 is a set of graphs demonstrating OT-I T cells expressing LacZ or Ppp2r2d shRNAs labeled with CFSE and stimulated with CD3 antibody for 72 h. Cells were then stained with CD8 and annexin V and analyzed by flow cytometry.



FIG. 15 is a set of graphs demonstrating accumulation of Ppp2r2d shRNA-expressing T cells in tumors and tumor-draining lymph nodes, but not other secondary lymphoid organs. OT-I T cells expressing Ppp2r2d or LacZ shRNAs were labeled with CF SE and injected into B16-Ova tumor-bearing mice. T cells were isolated from the indicated organs on days 1, 3, 5 and 7 to examine the extent of T cell accumulation based on dilution of the CSFE dye.



FIGS. 16a-c are a set of graphs demonstrating that the silencing of Ppp2r2d enhances anti-tumor activity of CD4 and CD8 T cells. T cells were activated with anti-CD3/CD28 beads, infected with lentiviruses driving LacZ or Ppp2r2d shRNA expression and injected into B16-Ova (a,b) or B16 (c) tumor-bearing mice. Tumor size was measured every three days following T cell transfer using calipers on the two longest axes. a,b CD4+ TRP-1 and/or CD8+ OT-I T cells (2×106) were transferred (day 12 and 17) into mice bearing day 12 B16-Ova tumors. Tumor burden (a) and survival (b) were assessed. c, CD4+ TRP-1 and CD8+ pmel-1 T cells (3×106 CD4+ TRP-1 plus 3×106 CD8+ pmel-1) were transferred (day 10 and 15) into mice with day 10 B16 tumors. Log-rank (Mantel-Cox) test was performed using GraphPad Prism version 6 comparing survival of mice treated with LacZ versus Ppp2r2d shRNA-expressing T cells.



FIG. 17 is a set of graphs demonstrating FACS analysis of T cell enrichment in tumors compared to spleen for cells expressing a panel of Ppp2r2d or Cblb shRNAs (upper panels). Ppp2r2d and Cblb mRNA levels were measured by qPCR prior to T cell transfer (lower panels). Data represent biological replicates (n=3), each value represents mean+/−s.d.



FIG. 18 is a set of graphs demonstrating Ppp2r2d protein quantification by mass spectrometry with labeled synthetic peptides (AQUA, ratio of endogenous to AQUA peptides). Representative data from two independent experiments (a-d); Two-sided student's t-test, * P<0.05, ** P<0.01; mean+/−s.d.



FIG. 19 is a graph demonstrating qPCR analysis for Ppp2r2d mRNA in tumor-infiltrating OT-I T cells (day 7).



FIG. 20a are graphs showing representative flow cytometry plots demonstrating proliferation of Ppp2r2d shRNA-expressing T cells in tumors and tumor-draining lymph nodes. OTI T cells expressing Ppp2r2d or LacZ shRNAs were labeled with CFSE and injected into B16-Ova tumor-bearing mice. T cells were isolated from the indicated organs on days 1, 3, 5 and 7 to examine the extent of T cell proliferation based on CFSE dilution. T cells that had not diluted CFSE (nondividing cells) were quantified (right).



FIG. 20b are graphs showing representative flow cytometry plots demonstrating viability of tumor-infiltrating T cells. OT-I T cells expressing Pp2r2d or LacZ shRNAs were injected into B16-Ova tumor-bearing mice. T cells were isolated on day 7 and apoptosis was assessed by intracellular staining with an antibody specific for activated caspase-3 (some T cell death may have been caused by the isolation procedure from tumors).



FIG. 20c are graphs showing representative flow cytometry plots demonstrating intracellularcytokine staining for IFNγ by LacZ and Ppp2r2d shRNA-expressing T cells harvested from B16-Ova tumors; T cells were labeled with CFSE prior to injection. Data for all experiments are representative of two independent trials. Statistical analysis was performed on biological replicates (n=3); * P<0.05, ** P<0.01, two-sided Student's t-test. Each value represents mean+/−s.d.



FIGS. 21a-c are a series of graphs demonstrating ex vivo analysis of cytokine production by tumor-infiltrating OT-I T cells at a single-cell level using a nanowell device (84,672 wells of picoliter volume). a, Representative single cells in nanowells and corresponding patterns of cytokine secretion. b, Percentage of T cells secreting indicated cytokines. c, Cytokine secretion rates calculated from standard curves (mean+/−s.d., Mann Whitney test * P<0.05).



FIG. 22a is a set of graphs showing representative flow cytometry plots demonstrating that the majority of adoptively transferred OT-I cells have a memory phenotype in lymph nodes but an effector phenotype in tumors. Cytokine pre-treated cells expressing Ppp2r2d or LacZ shRNAs were injected into mice bearing day 14 B16-Ova tumors. On day 7 following transfer, T cells were harvested from the indicated organs and stained with CD62L and CD44 antibodies. FACS analysis of shRNA-expressing OT-I cells was performed by gating on CD8/Thy1.1 double-positive cells.



FIG. 22b is a set of graphs showing representative flow cytometry plots demonstrating analysis of exhaustion markers. OT-I cells were harvested from draining lymph nodes and tumors of mice and stained with antibodies specific for TIM-3, LAG-3, PD-1 and CD25. For all experiments (n=3 biological replicates; * P<0.05, ** P<0.01, Two-sided Student's t-test); each value represents mean+/−s.d.



FIG. 23a is a set of graphs showing demonstrating intracellular staining for granzyme B by OT-I T cells in tumor-draining lymph nodes and tumors.



FIG. 23b is a pair of images and a graph demonstrating infiltration of shRNA-expressing T cells into tumors. OT-I T cells were transduced with LacZ or Ppp2r2d shRNA vectors encoding a GFP reporter and injected into B16-Ova tumor-bearing mice. After 7 days, tumors were excised and frozen sections stained with anti-GFP and DAPI to enumerate shRNAexpressing OT-I T cells in tumors.



FIG. 23c is a pair of images and a graph demonstrating TUNEL immunohistochemistry performed on tissue sections and apoptotic cells were quantified.



FIG. 23d is a set of graphs demonstrating MHC class I expression by tumor cells. Tumors were digested with collagenase and stained with CD45.2 and H-2Kb antibodies. FACS analysis for H-2Kb expression was performed by gating on CD45.2-negative melanoma cells. Datarepresent biological replicates (n=3), each value represents mean+/−s.d.





DETAILED DESCRIPTION

The present disclosure is based, in part, on the observation that the regulatory mechanisms that result in loss of T cell function within immunosuppressive tumors can be systematically discovered in vivo using a pooled small hairpin RNA (shRNA) screening approach aimed at identifying genes that block the function of tumor infiltrating T-cells. As described in the background section above, tumor associated immunosuppressive mechanisms actively block the activity of T cells in the tumor microenvironment. The methods described herein identify shRNAs that enable robust T cell infiltration and accumulation in tumors, despite the multiple inhibitory signals. As described below, the methods identify shRNA that silence expression of genes responsible for immunosuppression by tumors, allowing for enhanced T cell infiltration and accumulation in tumors and resistance to apoptosis.


In some instances, the disclosure provides methods for specifically identifying regulatory mechanisms that result in the loss of T cell function within the tumor microenvironment. These methods can include: providing a population of T cells harboring vectors expressing a shRNA; contacting the population of T cells with an immunosuppressive tumor; determining whether a shRNA restores T cell function (e.g., restores ability of T cell to infiltrate and proliferate within the tumor microenvironment) within the immunosuppressive tumor; identifying a gene associated with a shRNA that restores T cell function within the tumor as a gene that inhibits T cell function within the tumor microenvironment.


The disclosure provides target genes for reducing the immunosuppressive effect of tumors. The expression of the target genes can be reduced in immune cells, e.g., T cells that recognize tumor associated antigens, and the reduction in expression of the target genes can increase the ability of the cells to evade tumor associated immunosuppressive mechanisms.


The disclosure provides shRNAs that reduce (e.g., silence, eliminate, knock down, knock out, or decrease) expression of genes that impair the function of tumor infiltrating T-cells. These shRNA were identified from the transfer of shRNA transduced T cells into tumors, followed by deep sequencing to quantify the representation of all shRNAs in the tumor and lymphoid organs. Representative shRNA disclosed herein include shRNA that reduce the activity of genes including, for example, Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 and Ppp3cc.


In some instances, the disclosure provides therapeutic compositions (e.g., including isolated nucleic acid molecules, vectors expressing nucleic acid molecules encoding the shRNA) related to the shRNAs that silence expression of genes that block the function of tumor infiltrating T-cells. In other aspects, the disclosure provides modified immunoresponsive cells (e.g., T cells, including Natural Killer T cells (NKT), a cytotoxic T lymphocytes (CTL), and a regulatory T cells) that harbor vectors capable of expressing the shRNA described herein. In another aspect, the modified immunoresponsive cells further harbor a vector capable of expressing a CAR having an antigen binding domain that targets a tumor specific antigen.


RNA Interference

One of the most important recent discoveries in biomedical research is the RNA interference (RNAi) pathway, which is used by cells to regulate the activity of many genes. The principles of RNAi have opened many new possibilities for the identification of therapeutic targets. RNA interference (RNAi) is an effective tool for genome-scale, high throughput analysis of gene function. The term “RNA interference” (RNAi), also called post transcriptional gene silencing (PTGS), refers to the biological process in which RNA molecules inhibit gene expression. An “RNA interfering agent” as used herein, is defined as any agent that interferes with or inhibits expression of a target gene, e.g., a target gene of the invention, by RNA interference (RNAi). Such RNA interfering agents include, but are not limited to, nucleic acid molecules including RNA molecules which are homologous to the target gene, e.g., a target gene of the invention, or a fragment thereof, short interfering RNA (siRNA), short hairpin RNA (shRNA), and small molecules which interfere with or inhibit expression of a target gene by RNA interference (RNAi).


“RNA interference (RNAi)” is a process whereby the expression or introduction of RNA of a sequence that is identical or highly similar to a target gene results in the sequence specific degradation or PTGS of messenger RNA (mRNA) transcribed from that targeted gene, thereby inhibiting expression of the target gene. This process has been described in plants, invertebrates, and mammalian cells. RNAi can also be initiated by introducing nucleic acid molecules, e.g., synthetic siRNAs or RNA interfering agents, to inhibit or silence the expression of target genes. As used herein, “inhibition of target gene expression” or “inhibition of marker gene expression” includes any decrease in expression or protein activity or level of the target gene (e.g., a marker gene of the invention) or protein encoded by the target gene, e.g., a marker protein of the invention. The decrease may be of at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% or more as compared to the expression of a target gene or the activity or level of the protein encoded by a target gene which has not been targeted by an RNA interfering agent.


“Short interfering RNA” (siRNA), also referred to herein as “small interfering RNA” is defined as an agent which functions to inhibit expression of a target gene. These are the effector molecules for inducing RNAi, leading to posttranscriptional gene silencing with RNA-induced silencing complex (RISC). In addition to siRNA, which can be chemically synthesized, various other systems in the form of potential effector molecules for posttranscriptional gene silencing are available, including short hairpin RNAs (shRNAs), long dsRNAs, short temporal RNAs, and micro RNAs (miRNAs). These effector molecules either are processed into siRNA, such as in the case of shRNA, or directly aid gene silencing, as in the case of miRNA. The present invention thus encompasses the use of shRNA as well as any other suitable form of RNA to effect posttranscriptional gene silencing by RNAi. Use of shRNA has the advantage over use of chemically synthesized siRNA in that the suppression of the target gene is typically long-term and stable. An siRNA may be chemically synthesized, may be produced by in vitro by transcription, or may be produced within a host cell from expressed shRNA.


In one embodiment, a siRNA is a small hairpin (also called stem loop) RNA (shRNA). These shRNAs are composed of a short (e.g., 19-25 nucleotides) antisense strand, followed by a 5-9 nucleotide loop, and the complementary sense strand. Alternatively, the sense strand may precede the nucleotide loop structure and the antisense strand may follow. These shRNAs may be contained in plasmids, retroviruses, and lentiviruses.


As used herein, “gene silencing” induced by RNA interference refers to a decrease in the mRNA level in a cell for a target gene by at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 99%, about 100% of the mRNA level found in the cell without introduction of RNA interference. In one preferred embodiment, the mRNA levels are decreased by at least about 70%, about 80%, about 90%, about 95%, about 99%, about 100%.


The term “reduced” or “reduce” as used herein generally means a decrease by at least 10% as compared to a reference level, for example a decrease by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% decrease, or any integer decrease between 10-100% as compared to a reference level.


The term “increased” or “increase” as used herein generally means an increase of at least 10% as compared to a reference level, for example an increase of at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% increase or any integer increase between 10-100% as compared to a reference level, or about a 2-fold, or about a 3-fold, or about a 4-fold, or about a 5-fold or about a 10-fold increase, or any increase between 2-fold and 10-fold or greater as compared to a reference level.


Immunoresponsive Cells

In some embodiments, the disclosure provides immunoresponsive cells, including T cells, cytotoxic T cells, tumor-infiltrating lymphocytes (TIL), regulatory (CD4) T cells, and Natural Killer (NKT) cells, expressing at least one of an antigen-recognizing receptor. In any aspect, the immunoresponsive cells express at least one tumor specific antigen-recognizing receptor. In some aspects, tumor cell antigen specific T cells, NKT cells, TIL, CTL cells or other immunoresponsive cells are used. Non-limiting examples of immunoresponsive cells include T cells, such as, for example, αβ-TCR+ T cells (e.g., CD8+ T cells or CD4+ T cells) γδ-TCR+ T cells, tumor-infiltrating lymphocytes (TIL), Natural Killer T cells (NKT), a cytotoxic T lymphocytes (CTL), and a CD4 T cells.


Nucleic Acid Compositions

In some embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences comprising a sequence at least 12, 15, 20 or 25 contiguous nucleotides complementary to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678. The shRNA also includes the reverse complement of the contiguous nucleotide sequence and a short sequence located between the two sequences so that the two sequences form a stem loop shRNA that can be processed within a cell provide an siRNA that inhibits the expression of the protein encoded by one of SEQ ID NOs: 604-620 and 653-678, and compositions thereof.


Table 1 provides a list of genes identified here as being involved with tumor immunosuppression of T cells.












TABLE 1







Human Sequence
Murine Sequence


Gene
Human Gene Sequence
Accession No.
Accession No.







Ppp2r2d
gtgtccggccaagcggcgccctgaaggcgtgtccggccgcagcttaggctctccgggagtccccggagagtaggggcggccggcggc
NM_018461
NM_026391



gctagtcttctggggagcgccgggtgcacaccggaccactgcgggaggcctagggccgagggccgaggagctggcctgcgcccggc



gaccccggcttccctccgcagtcgcccaggcgtcccttcccccctacagccgagcggcgccgggcgcaggcgcattgggcgcccccg



gcagcccccgcggcccgccccgtccgctgcccgtccgaggaggcggagggcgatgacgtcatcgagcggggcgacgggcattgggc



gccattttgaaaagggaaaaaaatccctccccggcggcggcggcggcggcggcggcgccggcggtggtggcggccccggggctgag



cgctcggctgcagcggcgcggaggccgtctccctggtctgccgcggtccccgcccgtcccgccgccggctgccatggcaggagccgg



aggcggcggctgccccgcgggcggcaacgacttccagtggtgcttctcgcaggtcaagggggccatcgacgaggacgtggccgaagc



ggacatcatttccaccgttgagtttaattactctggagatcttcttgcaacaggagacaagggcggcagagttgttatttttcagcgtgaacaag



agaataaaagccgccctcattctaggggagaatataatgtttacagcacctttcaaagtcatgaaccggagtttgactatttgaaaagtctaga



aattgaggaaaaaattaataaaattaggtggttaccacaacagaatgctgctcattttctactgtctacaaatgataaaactataaaattatggaa



aataagtgaacgggataaaagagcagaaggttataacctgaaagacgaagatggaagacttcgagacccatttaggatcacggcgctacg



ggtcccaatattgaagcccatggatcttatggtagaagcgagtccacggcgaatttttgcaaatgctcacacatatcatataaattccatttcag



taaatagtgatcatgaaacatatctttctgcagatgacctgagaattaatttatggcacttagaaatcacagatagaagctttaacatcgtggaca



tcaagcctgctaacatggaggagctgaccgaagtcatcactgcagccgagttccacccgcaccagtgcaacgtgttcgtctacagcagtag



caaagggaccatccgcctgtgtgacatgcgctcctcggccctgtgcgacagacactccaagttttttgaagagcctgaagatcccagcagt



aggtccttcttctcagaaataatttcatccatatccgatgtaaaattcagtcatagtgggcggtacatgatgaccagagactacctgtcggtgaa



ggtgtgggacctcaacatggagagcaggccggtggagacccaccaggtccacgagtacctgcgcagcaagctctgctctctctatgaga



acgactgcatctttgacaagtttgagtgttgctggaacggttcggatagcgccatcatgaccgggtcctataacaacttcttcaggatgtttgat



agagacacgcggagggatgtgaccctggaggcctcgagagagagcagcaaaccgcgcgccagcctcaaaccccggaaggtgtgtac



ggggggtaagcggaggaaagacgagatcagtgtggacagtctggacttcaacaagaagatcctgcacacagcctggcaccccgtggac



aatgtcattgccgtggctgccaccaataacttgtacatattccaggacaaaatcaactagagacgcgaacgtgaggaccaagtcttgtcttgc



atagttaagccggacatttttctgtcagagaaaaggcatcattgtccgctccattaagaacagtgacgcacctgctacttcccttcacagacac



aggagaaagccgcctccgctggaggcccggtgtggttccgcctcggcgaggcgcgagacaggcgctgctgctcacgtggagacgctct



cgaagcagagttgacggacactgctcccaaaaggtcattactcagaataaatgtatttatttcagtccgagccttcctttccaatttatagacca



aaaaattaacatccaagagaaaagttattgtcagataccgctctttctccaactttccctctttctctgccatcacacttgggccttcactgcagcg



tggtgtggccaccgtccgtgtcctctcggccttcctccgagtccaggtggactctgtggatgtgtggatgtggcccgagcaggctcaggcg



gccccactcacccacagcatccgccgccaccccttcgggtgtgagcgctcaataaaaacaacacactataaagtgtttttaaatccaaaaaa



aaaaaaaaa (SEQ ID NO: 604)





Eif2ak3
ggaaagtccaccttccccaacaaggccagcctgggaacatggagtggcagcggccgcagccaatgagagagcaaacgcgcggaaagt
NM_004836.5
NM_010121.2



ttgctcaatgggcgatgtccgagataggctgtcactcaggtggcagcggcagaggccgggctgagacgtggccaggggaacacggctg



gctgtccaggccgtcggggcggcagtagggtccctagcacgtccttgccttcttgggagctccaagcggcgggagaggcaggcgtcagt



ggctgcgcctccatgcctgcgcgcggggcgggacgctgatggagcgcgccatcagcccggggctgctggtacgggcgctgctgctgct



gctgctgctgctggggctcgcggcaaggacggtggccgcggggcgcgcccgtggcctcccagcgccgacggcggaggcggcgttcg



gcctcggggcggccgctgctcccacctcagcgacgcgagtaccggcggcgggcgccgtggctgcggccgaggtgactgtggaggac



gctgaggcgctgccggcagccgcgggagagcaggagcctcggggtccggaaccagacgatgagacagagttgcgaccgcgcggca



ggtcattagtaattatcagcactttagatgggagaattgctgccttggatcctgaaaatcatggtaaaaagcagtgggatttggatgtgggatc



cggttccttggtgtcatccagccttagcaaaccagaggtatttgggaataagatgatcattccttccctggatggagccctcttccagtgggac



caagaccgtgaaagcatggaaacagttcctttcacagttgaatcacttcttgaatcttcttataaatttggagatgatgttgttttggttggaggaa



aatctctgactacatatggactcagtgcatatagtggaaaggtgaggtatatctgttcagctctgggttgtcgccaatgggatagtgacgaaat



ggaacaagaggaagacatcctgcttctacagcgtacccaaaaaactgttagagctgtcggacctcgcagtggcaatgagaagtggaatttc



agtgttggccactttgaacttcggtatattccagacatggaaacgagagccggatttattgaaagcacctttaagcccaatgagaacacagaa



gagtctaaaattatttcagatgtggaagaacaggaagctgccataatggacatagtgataaaggtttcggttgctgactggaaagttatggcat



tcagtaagaagggaggacatctggaatgggagtaccagttttgtactccaattgcatctgcctggttacttaaggatgggaaagtcattcccat



cagtctttttgatgatacaagttatacatctaatgatgatgttttagaagatgaagaagacattgtagaagctgccagaggagccacagaaaac



agtgtttacttgggaatgtatagaggccagctgtatctgcagtcatcagtcagaatttcagaaaagtttccttcaagtcccaaggctttggaatct



gtcactaatgaaaacgcaattattcctttaccaacaatcaaatggaaacccttaattcattctccttccagaactcctgtcttggtaggatctgatg



aatttgacaaatgtctcagtaatgataagttttctcatgaagaatatagtaatggtgcactttcaatcttgcagtatccatatgataatggttattatc



taccatactacaagagggagaggaacaaacgaagcacacagattacagtcagattcctcgacaacccacattacaacaagaatatccgca



aaaaggatcctgttcttcttttacactggtggaaagaaatagttgcaacgattttgttttgtatcatagcaacaacgtttattgtgcgcaggcttttc



catcctcatcctcacaggcaaaggaaggagtctgaaactcagtgtcaaactgaaaataaatatgattctgtaagtggtgaagccaatgacagt



agctggaatgacataaaaaactctggatatatatcacgatatctaactgattttgagccaattcaatgcctgggacgtggtggctttggagttgtt



tttgaagctaaaaacaaagtagatgactgcaattatgctatcaagaggatccgtctccccaatagggaattggctcgggaaaaggtaatgcg



agaagttaaagccttagccaagcttgaacacccgggcattgttagatatttcaatgcctggctcgaagcaccaccagagaagtggcaagaa



aagatggatgaaatttggctgaaagatgaaagcacagactggccactcagctctcctagcccaatggatgcaccatcagttaaaatacgca



gaatggatcctttcgctacaaaagaacatattgaaatcatagctccttcaccacaaagaagcaggtctttttcagtagggatttcctgtgaccag



acaagttcatctgagagccagttctcaccactggaattctcaggaatggaccatgaggacatcagtgagtcagtggatgcagcatacaacct



ccaggacagttgccttacagactgtgatgtggaagatgggactatggatggcaatgatgaggggcactcctttgaactttgtccttctgaagc



ttctccttatgtaaggtcaagggagagaacctcctcttcaatagtatttgaagattctggctgtgataatgcttccagtaaagaagagccgaaaa



ctaatcgattgcatattggcaaccattgtgctaataaactaactgctttcaagcccaccagtagcaaatcttcttctgaagctacattgtctatttct



cctccaagaccaaccactttaagtttagatctcactaaaaacaccacagaaaaactccagcccagttcaccaaaggtgtatctttacattcaaa



tgcagctgtgcagaaaagaaaacctcaaagactggatgaatggacgatgtaccatagaggagagagagaggagcgtgtgtctgcacatct



tcctgcagatcgcagaggcagtggagtttcttcacagtaaaggactgatgcacagggacctcaagccatccaacatattctttacaatggatg



atgtggtcaaggttggagactttgggttagtgactgcaatggaccaggatgaggaagagcagacggttctgaccccaatgccagcttatgc



cagacacacaggacaagtagggaccaaactgtatatgagcccagagcagattcatggaaacagctattctcataaagtggacatcttttcttt



aggcctgattctatttgaattgctgtatccattcagcactcagatggagagagtcaggaccttaactgatgtaagaaatctcaaatttccaccatt



atttactcagaaatatccttgtgagtacgtgatggttcaagacatgctctctccatcccccatggaacgacctgaagctataaacatcattgaaa



atgctgtatttgaggacttggactttccaggaaaaacagtgctcagacagaggtctcgctccttgagttcatcgggaacaaaacattcaagac



agtccaacaactcccatagccctttgccaagcaattagccttaagttgtgctagcaaccctaataggtgatgcagataatagcctacttcttaga



atatgcctgtccaaaattgcagacttgaaaagtttgttcttcgctcaatttttttgtggactactttttttatatcaaatttaagctggatttgggggcat



aacctaatttgagccaactcctgagttttgctatacttaaggaaagggctatctttgttctttgttagtctcttgaaactggctgctggccaagcttt



atagccctcaccatttgcctaaggaggtagcagcaatccctaatatatatatatagtgagaactaaaatggatatatttttataatgcagaagaa



ggaaagtccccctgtgtggtaactgtattgttctagaaatatgctttctagagatatgatgattttgaaactgatttctagaaaaagctgactccat



ttttgtccctggcgggtaaattaggaatctgcactattttggaggacaagtagcacaaactgtataacggtttatgtccgtagttttatagtcctatt



tgtagcattcaatagctttattccttagatggttctagggtgggtttacagctttttgtacttttacctccaataaagggaaaatgaagctttttatgta



aattggttgaaaggtctagttttgggaggaaaaaagccgtagtaagaaatggatcatatatattacaactaacttcttcaactatggactttttaa



gcctaatgaaatcttaagtgtcttatatgtaatcctgtaggttggtacttcccccaaactgattataggtaacagtttaatcatctcacttgctaaca



tgtttttatttttcactgtaaatatgttttgttttatttataaaaattctgaaatcaatccatttgggttggtggtgtacagaacacacttaagtgtgtta



acttgtgacttctttcaagtctaaatgatttaataaaactttttttaaattaaaaaaaaaaaaaaaaaaa (SEQ ID NO: 605)





Arhgap5
ctcggtgagcgcgccgaggaagagaggcgagcggagagtggaggaggaggcggcggcggcgggagcggtccccaggaatgtcgc
NM_001030055.1
NM_009706.2



tgccgccgccaccgccggggccgctgccgttgaggaggagacggaggagaccgacgttgttaggaagatgatccctatgatcttgaaga



tgtttctgcacagaaatgagggaaatacaaagaaccaaatacagttctgaaatttgggatctgtattttgagatgattttattttcagaatgagaa



gcatatctggttacctttatgaatgtagagacatgagaagagagttatgatggcaaaaaacaaagagcctcgtcccccatcctataccatcag



tatagttggactctctgggactgaaaaagacaaaggtaactgtggagttggaaagtcttgtttgtgcaatagatttgtacgctcaaaagcagat



gaatattatccagagcatacttctgtgcttagcaccattgactttggaggacgagtagtaaacaatgatcactttttgtactggggtgacataata



caaaatagtgaagatggagtagaatgcaaaattcatgtcattgaacaaacagagttcattgatgaccagactttcttgcctcatcggagtacga



atttgcaaccatatataaaacgtgcagctgcatctaaattgcagtcagcagaaaaactaatgtacatttgcactgatcagctaggcttagaaca



agactttgaacagaagcaaatgcctgaagggaagctcaacgtagatggatttttattatgcattgatgtaagtcaaggatgcaataggaagttt



gatgatcaacttaaatttgtgaataacctttttgtccagttatcaaaatcaaaaaaacctgtaataatagcagcaactaaatgtgatgaatgcgtg



gatcattatcttagagaagttcaggcatttgcttcaaataaaaagaaccttcttgtagtggaaacatcagcacgatttaatgtcaacattgaaaca



tgttttactgcactggtacaaatgttggataaaactcgtagcaagcctaaaattattccctatttggatgcttataaaacacagagacaacttgttg



tcacagcaacagataagtttgaaaaacttgtgcagactgtgagagattatcatgcaacttggaaaactgttagtaataaattaaaaaatcatcct



gattatgaagaatacatcaacttagagggaacaagaaaggccagaaatacattctcaaaacatatagaacaacttaaacaggaacatataag



aaaaaggagagaagagtatataaatactttaccaagagcttttaacactcttttgccaaatctagaagagattgaacatttgaattggtcagaag



ctttgaagttaatggaaaagagagcagatttccagttatgttttgtggtgctagaaaaaactccttgggatgaaactgaccatatagacaaaatt



aatgataggcggattccatttgacctcctgagcactttagaagctgaaaaagtctatcagaaccatgtacagcatctgatatccgagaagagg



agggtggaaatgaaggaaaaattcaaaaagactttggaaaaaattcaattcatttcaccagggcagccatgggaggaagttatgtgctttgtt



atggaggatgaagcctacaaatatatcactgaggctgatagcaaagaggtatatggtaggcatcagcgagaaatagttgaaaaagccaaa



gaagagtttcaagaaatgctttttgagcattctgaacttttttatgatttagatcttaatgcaacacctagttcagataaaatgagtgaaattcatac



agttctgagtgaagaacctagatataaagctttacagaaacttgcacctgatagggaatcccttctacttaagcatataggatttgtttatcatcc



cactaaagaaacatgtcttagtggccaaaattgtacagacattaaagtggagcagttacttgctagtagtcttttacagttggatcatggccgct



taagattatatcacgatagtaccaatatagataaagttaacctttttattttagggaaggatggccttgcccaagaactagcaaatgagataagg



acacaatccactgatgatgagtatgccttagatggaaaaatttatgaacttgatcttcggccggttgatgccaaatcgccttactttttgagtcag



ttatggactgccgcctttaaaccacatgggtgcttctgtgtatttaattccattgagtcattgagttttattggggaatttattgggaaaataagaac



tgaagcttctcagatcagaaaagataaatacatggctaatcttccatttacattaattctggctaatcagagagattccattagtaagaatctacc



aattctcaggcaccaagggcagcagttggcaaacaagttgcaatgtccttttgtagatgtacctgctggtacatatcctcgtaaatttaatgaaa



cccaaataaagcaagctctcagaggagtattggaatcagttaaacacaatttggatgtggtgagcccaattcctgccaataaggacttatcag



aagctgacttgagaattgtcatgtgcgccatgtgtggagatccatttagtgtggatcttattctttcacccttccttgattctcattcttgcagtgctg



ctcaagctggacagaataattccctaatgcttgataaaatcattggtgaaaaaaggaggcgaatacagatcacaatattatcataccactcttc



aattggagtaagaaaagatgaactagttcatgggtatatattagtttactctgcaaaacggaaagcttcgatgggaatgcttcgagcatttctat



cagaagttcaagacaccattcctgtacagctggtggcagttactgacagccaagcagatttttttgaaaatgaggctatcaaagagttaatgac



tgaaggagaacacattgcaactgagatcactgctaaatttacagcactgtattctttatctcagtatcatcggcaaactgaggtctttactctgttt



tttagtgatgttctagagaaaaaaaatatgatagaaaattcttatttgtctgataatacaagggaatcaacccatcaaagtgaagatgtttttctac



catctcccagagactgttttccctataataactaccctgattcagatgatgacacagaagcaccacctccttatagtccaattggggatgatgta



cagttgcttccaacacctagtgaccgttccagatatagattagatttggaaggaaatgagtatcctattcatagtaccccaaactgtcatgacca



tgaacgcaaccataaagtgcctccacctattaaacctaaaccagttgtacctaagacaaatgtgaaaaaactcgatccaaaccttttaaaaaca



attgaagctggtattggtaaaaatccaagaaagcagacttcccgggtgcctttggcacatcctgaagatatggatccttcagataactatgcg



gaacccattgatacaattttcaaacagaagggctattctgatgagatttatgttgtcccagatgatagtcaaaatcgtattaaaattcgaaactca



tttgtaaataacacccaaggagatgaagaaaatgggttttctgatagaacctcaaaaagtcatggggaacggaggccttcaaaatacaaatat



aaatctaaaaccttgtttagtaaagccaagtcatactatagaagaacacattcagatgccagtgatgatgaggctttcaccacttctaaaacaaa



aagaaaaggaagacatcgtggaagtgaagaagatccacttctttctcctgttgaaacttggaaaggtggtattgataatcctgcaatcacttct



gaccaggagttagatgataagaagatgaagaagaaaacccacaaagtgaaagaagataaaaagcagaaaaagaaaactaagaacttcaa



tccaccaacacgtagaaattgggaaagtaattactttgggatgcccctccaggatctggttacagctgagaagcccataccactatttgttgag



aaatgtgtggaatttattgaagatacagggttatgtaccgaaggactctaccgtgtcagcgggaataaaactgaccaagacaatattcaaaag



cagtttgatcaagatcataatatcaatctagtgtcaatggaagtaacagtaaatgctgtagctggagcccttaaagctttctttgcagatctgcca



gatcctttaattccatattctcttcatccagaactattggaagcagcaaaaatcccggataaaacagaacgtcttcatgccttgaaagaaattgtt



aagaaatttcatcctgtaaactatgatgtattcagatacgtgataacacatctaaacagggttagtcagcaacataaaatcaacctaatgacagc



agacaacttatccatctgtttttggccaaccttgatgagacctgattttgaaaatcgagagtttctgtctactactaagattcatcaatctgttgttga



aacattcattcagcagtgtcagtttttcttttacaatggagaaattgtagaaacgacaaacattgtggctcctccaccaccttcaaacccaggac



agttggtggaaccaatggtgccacttcagttgccgccaccattgcaacctcagctgatacaaccacaattacaaacggatcctcttggtattat



atgagtaggaagtgattgcaaacaggctggatttggacaaaaagcaaatctagacatgcatgtttcagggttcagtagtatacttcatgtttcat



acagataattcacattcaaaattacattttctctttgaactagatggtattccttattcacttacattacaaatctaagaccatgtgataagcatgact



ggagaggtttaatttttataaacaaaaatagctataaagtacaaagctgctgctgcatgcaaccttattgcaatcagtatatcattcctgtggcaa



tttctgtcaccttatattgtgaataaaatttttctatagaaattaaatgatttaaaaactcacctatatgaaacatttaatgcttttcagcctgctttctgg



ctgattttgttatttgatgtgctaatttgggcaacttaatttacattctggcagtcggtgtagataactaaaagcccagttaagtattttataatttcag



gctactgaggccatgcttgggatgttgtttgaaagaaagaaaaaatacacttgacatatttcacatttctgtaccttcatctttacttccaagtaaa



cccgtggatgatttgatgagggataaatgaacctatttcttttacacacataccaaggacatgcttgtggctaaagtgagttgataatgttgtgca



aaggatagttgtcaccaactcatttctttatggtccataatgaaataaaaattttgtatactgttaattctgtaaacagatgcatgttcaaaagatcta



tgatggtcttgtaatcttaatctaatatattttagatattttaattttttccctcttggggaacacatttagtatagtgtagaaaatacttccatgacatttt



catataaggttatataacttttcatacataaacatgaaatttgttgtagaaaattctttaaaccaaacatttaaatctaggacttcaatttaatttgttcc



ttgaatctatttttatgtggcccttaaaaaatatccaaaaaacccattgctaatatagcaataaaaatactttgggtactgacagactctttggagt



gtttatattacaaatttgtattcatattcttttctgtgatgtgttgtactaaaatccaaaatggcttttgcaccatttttaagccaattttttcctttgatgtt



ggtaccagaattactataagtgactgctgcttttgggggtaaacattttgttagtgaagataaaaccagaacactaaattatggataaaattttca



gaataggtggcacaggtaaatttcactaggttatattttgtgtagtaaagaaaaaaattatttggtcaatgttatcttaattcatactacaatttaaga



ttatcttatgtgtattatagtaaatagatgattttcagattcaaggctcctaagagtttgatttgctctgttttttcctaaaataaatattgtctctcccaa



ctgttaagttctaggtattgtacttccaattttaacttcagaaccaagatgttggcatgaaccaggctgctgttgaagtacatgtatattataaatta



tcttatttgtgttatactcttacatgttatcttttctaagaaaacaaagtccctattattcctattgcaaagcacacaggaattaagaaagtacagtaa



tttttaaaaaaaaatccggtaaatgtagtattcttaacctgttctatattacttatacctattgtctatatagctttaatttatagttgtcagtttaactatt



ggcatgtctggcaaagaaaattaaactttaagagttttataaactgtttctaggttgctaaagaatttatttttctactatatatggtatagacaaagc



atcaaactatgtacaggaaaaaagcctgactatttctatttggaagtaggctgaaaagagaattttcaaaactgttcgtgtcttcagttcattctgt



cataactttgctattgtaatatgtgaataccagtttatttaagctgttctcttttatactgtattaatttaatgttcatctgcgtttagtaccatttttgttatt



aaaactggcatttaccgtttttcacattaacccaccttgcaccttcccccaaacttatctccacttttctatgcattctatcattgatttgacacacttc



atagtgagtcatttaaatactctacgtttggttcaattaaccagtaggttacagttattgaaaattaaagtacagtttaaagctcagtctgttacact



gaattgattgtgtttgtttttgccaagggtttagatatgcttttaaatattagaaacatctaagaacagaataacataattaaacttttttctggtaagt



tactggaaggtttcactgtttagggacctatcatatgagacttcttaaaggattaaaagaataggatagtctcataattgtgagtaaacatcaag



gcattatattttacaatactgaataaaatttcatctacacacatgttgccattgtttcatttaaggttcagtgcttatagttaactacaatattggacct



aacaggatctagattagcaatataaagaagcatagtggtactctgtttcacactttcagtagatttattagaagtcaaattctattcaacagacact



tattaggatatacaactaatttaagaataaaattccaggcacaatatattttttttaaatggtatttgttagtagtgcttcttccccttaacatttacagt



gtaaatactgcaggtaaccgcaatctaagttagccaaaaagcagctttttttcccatactgtatgtaaataatgtagacctgggtttttttgtttattt



gggtttgtttttttttttgaggtactggaatctaattaatatctcttaggtatcaacaaaagggaacaattggaatgagaatttaggccttagcttcc



atggtgatttttagttttttatacagtaataattgtgatgctatttgtcaactggatataaatacacatataattttaaaaagtcaaaagtgcttttgtttc



tttgtttaatgtaatttttgtgcttcacctacaggatgctgcagtaaattaaatatcagtgaagcttctgatgtataaagaatgctatgaataaaacat



taagaagctgtgtaattttaagttatagttgcctctatttttaccatttcattggtaaaaattagctaatttttttcaagtgaaatgaaaaataaaaatat



aaatttatcaatatgatggaaatcttattaaggagatgtattattgaattttcactgtacctgaaaaggagattcaaaattttttctggggatgtatat



aggtgaaaatttgattttttaaattatcaggaaaacaagataatgcacagatttctaagactaagatcttacctggatgtgatttttgagctgtggc



tagacattctttagagccactggaaatattttgaaaactattctagttatagcagagctgctaatattaacgaatatatttgtgtcttcatggtttgtg



actattaggccaaattttgtggtatatgttgtcagtctggatctggtgaggtctgttcaacatgaatctttgtgttatcttgaatttagtagtttcaagg



tacttaaattcttaacagtttctaatttgtttcaatacatatgggacatggttgatttttttactgtattagaactcttggaagttcttagccttttcaggtt



atgaaatacctgaaagtaaaattttctaagatttaataagggaagatactattcaaatcattttcttaggatagcatctttacatacaatgagagga



ttgtacaagcattaatctcatattccaacatccagttacttgatgtgatccaagtaccctggtctttttgaagcagttaaaatctaattaattaacttt



gggagtcttcactattcaattgatcctcatcattgtcctatttgcatgactccattttttcctccactatatgagttttctttgtcagggggagaggag



tgggaagagtcacagaatctcatattcacatcttaattaaattgtgtgaaattagtcttttgtggaaattctgtaggcagtatgattttgaaaagcta



accaatgataattagcattttagttaatactaaatgcataaaattataacccttgaaattaatttggtgctggcagttctggtttagtcatttttaccag



tagttagtagtattaagacctgcagtatatgcactttttgagtagctgtcaaataattgtagttgagaaacaacttgtttattctcacaattcagatttt



ctattcagttttgtctcaaatagtaagttattgtgaacaatttaataacggccctcctgttctagtttgcctaatattttagttaagctttagtgttttaac



ctatttttttaagtttattttttgtattagattttatttgaataagttatgtgggtttagtaattgacctatttattcattgcttcactaattcatccagcttagt



tttaagtgtgtatatgtatttgctcaccagatcattttcttgggaccttgaactgtgaatgttttgtcctaaccatttaatattttctaggtacttgctgc



aagttcttgaactattttaccagctttaactttggggctcttagtttcttttctccagattcttgttattttattttatccaaataaatatttaggtgttctaa



gaa (SEQ ID NO: 606)





Smad2
cggccgggaggcggggcgggccgtaggcaaagggaggtggggaggcggtggccggcgactccccgcgccccgctcgccccccgg
NM_001003652
NM_001252481



cccttcccgcggtgctcggcctcgttcctttcctcctccgctccctccgtcttccatacccgccccgcgcggctttcggccggcgtgcctcgc



gccctaacgggcggctggaggcgccaatcagcgggcggcagggtgccagccccggggctgcgccggcgaatcggcggggcccgcg



gcccagggtggcaggcgggtctacccgcgcggccgcggcggcggagaagcagctcgccagccagcagcccgccagccgccggga



ggttcgatacaagaggctgttttcctagcgtggcttgctgcctttggtaagaacatgtcgtccatcttgccattcacgccgccagttgtgaaga



gactgctgggatggaagaagtcagctggtgggtctggaggagcaggcggaggagagcagaatgggcaggaagaaaagtggtgtgaga



aagcagtgaaaagtctggtgaagaagctaaagaaaacaggacgattagatgagcttgagaaagccatcaccactcaaaactgtaatactaa



atgtgttaccataccaagcacttgctctgaaatttggggactgagtacaccaaatacgatagatcagtgggatacaacaggcctttacagcttc



tctgaacaaaccaggtctcttgatggtcgtctccaggtatcccatcgaaaaggattgccacatgttatatattgccgattatggcgctggcctga



tcttcacagtcatcatgaactcaaggcaattgaaaactgcgaatatgcttttaatcttaaaaaggatgaagtatgtgtaaacccttaccactatca



gagagttgagacaccagttttgcctccagtattagtgccccgacacaccgagatcctaacagaacttccgcctctggatgactatactcactc



cattccagaaaacactaacttcccagcaggaattgagccacagagtaattatattccagaaacgccacctcctggatatatcagtgaagatgg



agaaacaagtgaccaacagttgaatcaaagtatggacacaggctctccagcagaactatctcctactactctttcccctgttaatcatagcttg



gatttacagccagttacttactcagaacctgcattttggtgttcgatagcatattatgaattaaatcagagggttggagaaaccttccatgcatca



cagccctcactcactgtagatggctttacagacccatcaaattcagagaggttctgcttaggtttactctccaatgttaaccgaaatgccacggt



agaaatgacaagaaggcatataggaagaggagtgcgcttatactacataggtggggaagtttttgctgagtgcctaagtgatagtgcaatctt



tgtgcagagccccaattgtaatcagagatatggctggcaccctgcaacagtgtgtaaaattccaccaggctgtaatctgaagatcttcaacaa



ccaggaatttgctgctcttctggctcagtctgttaatcagggttttgaagccgtctatcagctaactagaatgtgcaccataagaatgagttttgt



gaaagggtggggagcagaataccgaaggcagacggtaacaagtactccttgctggattgaacttcatctgaatggacctctacagtggttg



gacaaagtattaactcagatgggatccccttcagtgcgttgctcaagcatgtcataaagcttcaccaatcaagtcccatgaaaagacttaatgt



aacaactcttctgtcatagcattgtgtgtggtccctatggactgtttactatccaaaagttcaagagagaaaacagcacttgaggtctcatcaatt



aaagcaccttgtggaatctgtttcctatatttgaatattagatgggaaaattagtgtctagaaatactctcccattaaagaggaagagaagatttt



aaagacttaatgatgtcttattgggcataaaactgagtgtcccaaaggtttattaataacagtagtagttatgtgtacaggtaatgtatcatgatcc



agtatcacagtattgtgctgtttatatacatttttagtttgcatagatgaggtgtgtgtgtgcgctgcttcttgatctaggcaaacctttataaagttg



cagtacctaatctgttattcccacttctctgttatttttgtgtgtcttttttaatatataatatatatcaagcttttcaaattatttagaagcagcttttcctgt



agaaaaactaatttttctgccttttaccaaaaataaactcttgggggaagaaaagtggattaacttttgaaatccttgaccttaatgtgttcagtgg



ggcttaaacagtcattctttttgtggttttttgtttttttttgtttttttttttaactgctaaatcttattataaggaaaccatactgaaaacctttccaagcct



cttttttccattcccatttttgtcctcataatcaaaacagcataacatgacatcatcaccagtaatagttgcattgatactgctggcaccagttaattc



tgggatacagtaagaattcatatggagaaagtccctttgtcttatgcccaaatttcaacaggaataattggcttgtataatctagcagtctgttgat



ttatccttccacctcataaaaaatgcataggtggcagtataattattttcagggatatgctagaattacttccacatatttatccctttttaaaaaagc



taatctataaataccgtttttccaaaggtattttacaatatttcaacagcagaccttctgctcttcgagtagtttgatttggtttagtaaccagattgca



ttatgaaatgggccttttgtaaatgtaattgtttctgcaaaatacctagaaaagtgatgctgaggtaggatcagcagatatgggccatctgttttta



aagtatgttgtattcagtttataaattgattgttattctacacataattatgaattcagaattttaaaaattgggggaaaagccatttatttagcaagttt



tttagcttataagttacctgcagtctgagctgttcttaactgatcctggttttgtgattgacaatatttcatgctctgtagtgagaggagatttccgaa



actctgttgctagttcattctgcagcaaataattattatgtctgatgttgactcattgcagtttaaacatttcttcttgtttgcatcttagtagaaatgga



aaataaccactcctggtcgtcttttcataaattttcatatttttgaagctgtctttggtacttgttctttgaaatcatatccacctgtctctataggtatca



ttttcaatactttcaacatttggtggttttctattgggtactccccattttcctatatttgtgtgtatatgtatgtgttcatgtaaatttggtatagtaattttt



tattcattcaacaaatatttattgttcacctgtttgtaccaggaacttttcttagtctttgggtaaaggtgaacaagacaactacagttcctgcctttg



ctgagacagcagttacactaacccttaattatcttacttgtctatgaaggagataaacagggtactgtactggagaataacagatgggatgctt



caggtaggacatcaaggaaagcctctaaggaaaggatgcatgagctaacacctgacattaaagaagcaagccaagtgaggagccaggg



gagataagcattcctggcaaagagaatagcatcaaatgcaaaaaggttcacactaaaggaaactcctgattaggtattaatgctttatacaga



aacctctatacaaatccaaacttgaagatcagaatggttctacagttcataacattttgaaggtggccttattttgtgatagtctgcttcatgtgatt



ctcactaacatatctccttcctcaacctttgctgtaaaaatttcatttgcaccacatcagtactacttaatttaacaagcttttgttgtgtaagctctca



ctgttttagtgccctgctgcttgcttccagactttgtgctgtccagtaattatgtcttccactacccatcttgtgagcagagtaaatgtcctaggtaa



taccactatcaggcctgtaggagatactcagtggagcctctgcccttctttttcttacttgagaacttgtaatggtgttagggaacagttgtaggg



gcagaaaacaactctgaaagtggtagaaggtcctgatcttggtggttactcttgcattactgtgttaggtcaagcagtgcctactatgctgtttc



agtagtggagcgcatctctacagttctgatgcgatttttctgtacagtatgaaattgggactcaactctttgaaaacacctattgagcagttatac



ctgttgagcagtttacttcctggttgtaattacatttgtgtgaatgtgtttgatgctttttaacgagatgatgttttttgtattttatctactgtggcctgat



tttttttttgttttctgcccctccccccatttataggtgtggttttcatttttctaagtgatagaatcccctctttgttgaatttttgtctttatttaaattagca



acattacttaggatttattcttcacaatactgttaattttctaggaatgatgacctgagaaccgaatggccatgctttctatcacatttctaagatga



gtaatattttttccagtaggttccacagagacaccttgggggctggcttaggggaggctgttggagttctcactgacttagtggcatatttattct



gtactgaagaactgcatggggtttcttttggaaagagtttcattgctttaaaaagaagctcagaaagtctttataaccactggtcaacgattaga



aaaatataactggatttaggcctaccttctggaataccgctgattgtgctctttttatcctactttaaagaagctttcatgattagatttgagctatat



cagttataccgattataccttataatacacattcagttagtaaacatttattgatgcctgttgtttgcccagccactgtgatggatattgaataataa



aaagatgactaggacggggccctgacccttgagctgtgcttggtcttgtagaggttgtgttttttttcctcaggacctgtcactttggcagaagg



aaatctgcctaatttttcttgaaagctaaattttctttgtaagtttttacaaattgtttaatacctagttgtattttttaccttaagccacattgagttttgct



tgatttgtctgtcttttaaacactgtcaaatgctttcccttttgttaaaattattttaatttcactttttttgtgcccttgtcaatttaagactaagactttga



aggtaaaacaaacaaacaaacatcagtcttagtctcttgctagttgaaatcaaataaaagaaaatatatacccagttggtttctctacctcttaaa



agcttcccatatatacctttaagatccttctcttttttctttaactactaaataggttcagcatttattcagtgttagataccctcttcgtctgagggtgg



cgtaggtttatgttgggatataaagtaacacaagacaatcttcactgtacataaaatatgtcttcatgtacagtctttactttaaaagctgaacattc



caatttgcgccttccctcccaagcccctgcccaccaagtatctctttagatatctagtctgtggacatgaacaatgaatacttttttcttactctgat



cgaaggcattgatacttagacatatcaaacatttcttcctttcatatgctttactttgctaaatctattatattcattgcctgaattttattcttcctttcta



cctgacaacacacatccaggtggtacttgctggttatcctctttcttgttagccttgttttttgttttttttttttttttttgagagggagtctcgctctgtt



gcccaacctggagtgcagtggtgcgatcttggttcactgcaagctccgcctcccgggttcacgccatgcttctgcctcagcctcccaagtag



ctgggactacaggcgcccaccaccacactcggctaattttttgtatttttagtagagacggggtttcaccgtgttggccaggatggtctcgatct



cctgacctcgtgatctgtccacctcggcttcccaaagtgctgggattacaggcatgagccaccgcgcccagcctagccatatttttatctgcat



atatcagaatgtttctctcctttgaacttattaacaaaaaaggaacatgcttttcatacctagagtcctaatttcttcatcatgaaggttgctattcaa



attgatcaatcattttaattttacaaatggctcaaaaattctgttcagtaaatgtctttgtgactggcaaatggcataaattatgtttaagattatgaac



ttttctgacagttgcagccaatgttttccctacgataccagatttccatcttggggcatattggattgttgtatttaagacagtcagaataatgatag



tgtgtggtctccagaggtagtcagaatcctgctattgagttctttttatatcttccttttcaattttttattaccattttgtttgtttagactacactttgtag



ggattgaggggcaaattatctcttggagtggaattcctgtgttttgagccttacaaccaggaaatatgagctatactagatagcctcatgatagc



atttacgataagaacttatctcgtgtgttcatgtaattttttgagtaggaactgttttatcttgaatattgtagctaactatatatagcagaactgcctc



agtctttttaagaaggaaataaataatatatgtgtatgaatttatatatacatatacactcatagacaaacttaacagttggggtcattctaacagtt



aaaacaattgttccattgtttaaatctcagatcctggtaaaatgttcttaatttgtctgtgtacattttcctttcatggacagaccattggagtacatta



attttcttaatctgccatttggcagttcatttaatataccattttttggcaacttggtaactaagaatcacagccaaaatttgttaacatcaaagaaag



ctctgccatataccccgttactaaattattatacatccagcagattctgggatgtactaacttagggttaactttgttgttgttgataatactagattg



ctccctctttaattcttcttctggtgcaaggttgctgcttaagttaccctgggaaatactactacaaggtcaaattttctagtatcttacagcctgatt



gaaggtgattcagatctttgctcaatataaatggattttccaagattctctgggccatccttgacccacaggtgatctcgctggagtatattaactt



aacttcagtgccagttggtttggtgccatgagatccataatgaatccagaacttcaccattgcttagatataagagtcccttggaagaataatgc



cactgatgatgggggtcagaaggtgtattaactcaacatagagggcttttagatttttcttcaaaaaaatttcgagaaaagtattcttttaccctcc



aaacagttaacagctcttagtttctccaaatatgctctttgatttacttatttttaattaaagatggtaatttattgaacaatgaaatccgtaatatattg



atttaaggacaaaagtgaagttttagaattataaaagtacttaaatattatatattttccatttcataattgttttcctttctctgtggctttaaagtttttg



actattttacaatgttaatcactaggtaacttgccatatttctggttctatattaagttctatcctttataatgctgttattataaagctggtttttagcattt



gtctgtagcaatagaaattttactaagtctctgttctcccagtaagttttttcttttctcagtaagtccctaagaaaacatttgtttgccactcttactat



tcccaatcttggattgttcgagctgaaaaaaaatttgatgagaaacaggaggatccttttctggtgaatataggttcctgctttaagaatgtggaa



atccattgctttatataactaatatacacacagattaattaaaattgtgagaaataattcacacatgacaagtaggtaacatgcatgagttttgaatt



tttttaaaaacccaactgtttgacaaaatatagaacccaaattggtactttcttagaccagtgtaacctcacacctcagttttgcttttccaaccctg



acttgaaaggcatatttgtatctttttattagtgatagtgaagctgtgacactaaccttttatacaaaagagtaaagaaagaaaaactacagcgat



taagatgagaacagttctgcagttgttgaactagatcacagcattgtaggcagaataaaaaatgttcatatctgagaatattcctttcgccatcttt



tcccaaggccagacctcctggtggagcacagttaaaagtaacattctgggcctttgtaatcggagggctgtgtctccagctggcagcctttgt



tttaatatataatgcaggactgtggaaaacagttggcatagaatattttcacctaaaaaagaaagaaaagacatacaaaactggattaattgca



aaaagagaatacagtaaaataccatataactggacaaagctagaagaacctttagaagatttgtctgaaaacagatttcaagagtgagctttta



tacactgctcactaatttgcttgattactaccaactcttcttaaagttaacacgtttaaggtatttctggacttcctagccttttagcaagcttagagg



aactagccattagctagtgatgtaaaaatattttggggactgatgcccttaaaggttatgcccttgaaagttcttaccttttctctagtgatattaag



gaacgagtgggtagtgttctcagggtgaccagctgccctaaagtgcctgggattgagggtttccctggatgcgggactttccctggatacaa



aacttttagcagagttttgtatatatgtggatttttctgataagtagcacatcagaggccttaaccactgcccaaaagcgattctccattgagagt



acatatcttgaacttaagaaattcatttgctctgatttttaatcttgtaaagtttttgctaaactcaaaacaagtcccaggcacaccagaaggagct



gaccaccttaggtgttcttgtgatttatccttacttccctatgttgtcatagttgcttctaaactcagctgcactatggctgtcaacatttctgatactt



attgggatatgtgccatccagtcatttagtactttgaatggaacatgagatttataacacaggtaatagctgaaggtaccagtatggtggtgaga



ctcacacttagtgatccagctaaggtaactgatgttataatggaacagagaagaggccaactagatagctaagttcttctgaacctatgtgtat



atgtaagtacaaatcatgcgtccttatggggttaaacttaatctgaaatttacatttttcatagtaaaaggaaaccaattgttgcagatttcttttctt



gtgaggaaatacatggcctttgatgctctggcgtctactgcatttcccagtctgttctgctcgagaagccagaatgtgttgttaacatttttccgtg



aatgttgtgttaaaatgattaaatgcatcagccaatggcaagtgaaggaattgggtgtcctgatgcagactgagcagtttctctcaattgtagcc



tcatactcataaggtgcttaccagctagaacattgagcacgtgaggtgagattttttttctctgatggcattaactttgtaatgcaatatgatggat



gcagaccctgttcttgtttccctctggaagtccttagtggctgcatccttggtgcactgtgatggagatattaaatgtgttctttgtgagctttcgtt



ctatgattgtcaaaagtacgatgtggttccttttttatttttattaaacaatgagctgaggctttattacagctggttttcaagttaaaattgttgaatac



tgatgtctttctcccacctacaccaaatattttagtctatttaaagtacaaaaaaagttctgcttaagaaaacattgcttacatgtcctgtgatttctg



gtcaatttttatatatatttgtgtgcatcatctgtatgtgctttcactttttaccttgtttgctcttacctgtgttaacagccctgtcaccgttgaaaggtg



gacagttttcctagcattaaaagaaagccatttgagttgtttaccatgttaaaaaaaaaaaaaaaa (SEQ ID NO: 607)





Akap81
gtgtgtggaggggaccctgtggttagcagcagctatcgcagcgtcggatgttcagagcagcagaagccggcgtcgtcggatgttgtgttgc
NM_014371
NM_017476



ccgccaccatgagctacacaggctttgtccagggatctgaaaccactttgcagtcgacatactcggataccagcgctcagcccacctgtgat



tatggatatggaacttggaactctgggacaaatagaggctacgagggctatggctatggctatggctatggccaggataacaccaccaact



atgggtatggtatggccacttcacactcttgggaaatgcctagctctgacacaaatgcaaacactagtgcctcgggtagcgccagtgccgat



tccgttttatccagaattaaccagcgcttagatatggtgccgcatttggagacagacatgatgcaaggaggcgtgtacggctcaggtggaga



aaggtatgactcttatgagtcctgcgactcgagggccgtcctgagtgagcgcgacctgtaccggtcaggctatgactacagcgagcttgac



cctgagatggaaatggcctatgagggccaatacgatgcctaccgcgaccagttccgcatgcgtggcaacgacaccttcggtcccagggca



cagggctgggcccgggatgcccggagcggccggccaatggcctcaggctatgggcgcatgtgggaagaccccatgggggcccgggg



ccagtgcatgtctggtgcctctcggctgccctccctcttctcccagaacatcatccccgagtacggcatgttccagggcatgcgaggtgggg



gcgccttcccgggcggctcccgctttggtttcgggtttggcaatggcatgaagcagatgaggcggacctggaagacctggaccacagccg



acttccgaaccaagaagaagaagagaaagcagggcggcagtcctgatgagccagatagcaaagccacccgcacggactgctcggaca



acagcgactcagacaatgatgagggcaccgagggggaagccacagagggccttgaaggcaccgaggctgtggagaagggctccaga



gtggacggagaggatgaggagggaaaagaggatgggagagaagaaggcaaagaggatccagagaagggggccctaaccacccag



gatgaaaatggccagaccaagcgcaagttgcaggcaggcaagaagagtcaggacaagcagaaaaagcggcagcgagaccgcatggt



ggaaaggatccagtttgtgtgttctctgtgcaaataccggaccttctatgaggacgagatggccagccatcttgacagcaagttccacaagg



aacactttaagtacgtaggcaccaagctccctaagcagacggctgactttctgcaggagtacgtcactaacaagaccaagaagacagagg



agctccgaaaaaccgtggaggaccttgatggcctcatccaccaaatctacagagaccaggatctgacccaggaaattgccatggagcattt



tgtgaagaaggtggaggcagcccattgtgcagcctgcgacctcttcattcccatgcagtttgggatcatccagaagcatctgaagaccatgg



atcacaaccggaaccgcaggctcatgatggagcagtccaagaagtcctccctcatggtggcccgcagtattctcaacaacaagctcatcag



caagaagctggagcgctacctgaagggcgagaaccctttcaccgacagccccgaggaggagaaggagcaggaggaggctgagggcg



gtgccctggacgagggggcgcagggcgaagcggcagggatctcggagggcgcagagggcgtgccggcgcagcctcccgtgccccc



agagccagcccccggggccgtgtcgccgccaccgccgccgcccccagaggaggaggaggagggcgccgtgcccttgctgggaggg



gcgctgcaacgccagatccgcggcatcccgggcctcgacgtggaggacgacgaggagggcggcgggggcgccccgtgacccgagc



tcggggcgggcggagcccgcgtggccgaagctggaaaccaaacctaataaagttttcccatcccaccaaaaaaaaaaaaaaaaaaaaaa



(SEQ ID NO: 608)





Rbks
acctttgagcgatggcggcgtctggggaaccccagaggcagtggcaagaggaggtggcggcggtggtagtggtgggctcctgcatgac
NM_022128
NM_153196



cgacctggtcagtcttacttctcgtttgccaaaaactggagaaaccatccatggacataagttttttattggctttggagggaaaggtgccaacc



agtgtgtccaagctgctcggcttggagcaatgacgtccatggtgtgtaaggttggcaaagattcttttggcaatgattatatagaaaacttaaaa



cagaatgatatttctacagaatttacatatcagactaaagatgctgctacaggaactgcttctataattgtcaataatgaaggccagaatatcatt



gtcatagtggctggagcaaatttacttttgaatacggaggatctgagggcagcagccaatgtcattagcagagccaaagtcatggtctgcca



gctcgaaataactccagcaacttctttggaagccctaacaatggcccgcaggagtggagtgaaaaccttgttcaatccagcccctgccattg



ctgacctggatccccagttctacaccctctcagatgtgttctgctgcaatgaaagtgaggctgagattttaactggcctcacggtgggcagcg



ctgcagatgctggggaggctgcattagtgctcttgaaaaggggctgccaggtggtaatcattaccttaggggctgaaggatgtgtggtgctg



tcacagacagaacctgagccaaagcacattcccacagagaaagtcaaggctgtggataccacgggtgctggtgacagctttgtgggagct



ctggccttctacctggcttactatccaaatctgtccttggaagacatgctcaacagatccaatttcattgcagcagtcagtgtccaggctgcag



gaacacagtcatcttacccttacaaaaaagaccttccgcttactctgttttgattgctattagtcccaaaataaatatacctgggaataaaatgtac



ttgggggtggctgctcctggctaatgcttattagaaaatgtcctcgtcccctttctttgcaaatattagttcttttacgaagtcatcctcaagcttca



atttatttataacgatgattcttttgctttccatgcatttgcacaaaacaaccagaattaaagattccacaacc (SEQ ID NO: 609)





Egr2
aactgagcgaggagcaattgattaatagctcggcgaggggactcactgactgttataataacactacaccagcaactcctggcttcccagca
NM_000399
NM_010118



gccggaacacagacaggagagagtcagtggcaaatagacatttttcttatttcttaaaaaacagcaacttgtttgctacttttatttctgttgatttt



tttttcttggtgtgtgtggtggttgtttttaagtgtggagggcaaaaggagataccatcccaggctcagtccaacccctctccaaaacggcttttc



tgacactccaggtagcgagggagttgggtctccaggttgtgcgaggagcaaatgatgaccgccaaggccgtagacaaaatcccagtaact



ctcagtggttttgtgcaccagctgtctgacaacatctacccggtggaggacctcgccgccacgtcggtgaccatctttcccaatgccgaactg



ggaggcccctttgaccagatgaacggagtggccggagatggcatgatcaacattgacatgactggagagaagaggtcgttggatctccca



tatcccagcagctttgctcccgtctctgcacctagaaaccagaccttcacttacatgggcaagttctccattgaccctcagtaccctggtgcca



gctgctacccagaaggcataatcaatattgtgagtgcaggcatcttgcaaggggtcacttccccagcttcaaccacagcctcatccagcgtc



acctctgcctcccccaacccactggccacaggacccctgggtgtgtgcaccatgtcccagacccagcctgacctggaccacctgtactctc



cgccaccgcctcctcctccttattctggctgtgcaggagacctctaccaggacccttctgcgttcctgtcagcagccaccacctccacctcttc



ctctctggcctacccaccacctccttcctatccatcccccaagccagccacggacccaggtctcttcccaatgatcccagactatcctggattc



tttccatctcagtgccagagagacctacatggtacagctggcccagaccgtaagccctttccctgcccactggacaccctgcgggtgcccc



ctccactcactccactctctacaatccgtaactttaccctggggggccccagtgctggggtgaccggaccaggggccagtggaggcagcg



agggaccccggctgcctggtagcagctcagcagcagcagcagccgccgccgccgccgcctataacccacaccacctgccactgcggc



ccattctgaggcctcgcaagtaccccaacagacccagcaagacgccggtgcacgagaggccctacccgtgcccagcagaaggctgcga



ccggcggttctcccgctctgacgagctgacacggcacatccgaatccacactgggcataagcccttccagtgtcggatctgcatgcgcaac



ttcagccgcagtgaccacctcaccacccatatccgcacccacaccggtgagaagcccttcgcctgtgactactgtggccgaaagtttgccc



ggagtgatgagaggaagcgccacaccaagatccacctgagacagaaagagcggaaaagcagtgccccctctgcatcggtgccagccc



cctctacagcctcctgctctgggggcgtgcagcctgggggtaccctgtgcagcagtaacagcagcagtcttggcggagggccgctcgcc



ccttgctcctctcggacccggacaccttgagatgagactcaggctgatacaccagctcccaaaggtcccggaggccctttgtccactggag



ctgcacaacaaacactaccaccctttcctgtccctctctccctttgttgggcaaagggctttggtggagctagcactgccccctttccacctaga



agcaggttcttcctaaaacttagcccattctagtctctcttaggtgagttgactatcaacccaaggcaaaggggaggctcagaaggaggtggt



gtggggacccctggccaagagggctgaggtctgaccctgctttaaagggttgtttgactaggttttgctaccccacttccccttattttgaccca



tcacaggtttttgaccctggatgtcagagttgatctaagacgttttctacaataggttgggagatgctgatcccttcaagtggggacagcaaaa



agacaagcaaaactgatgtgcactttatggcttgggactgatttgggggacattgtacagtgagtgaagtatagcctttatgccacactctgtg



gccctaaaatggtgaatcagagcatatctagttgtctcaacccttgaagcaatatgtattataaactcagagaacagaagtgcaatgtgatggg



aggaacatagcaatatctgctccttttcgagttgtttgagaaatgtaggctattttttcagtgtatatccactcagattttgtgtatttttgatgtacact



gttctctaaattctgaatctttgggaaaaaatgtaaagcatttatgatctcagaggttaacttatttaagggggatgtacatatattctctgaaacta



ggatgcatgcaattgtgttggaagtgtccttggtgccttgtgtgatgtagacaatgttacaaggtctgcatgtaaatgggttgccttattatggag



aaaaaaatcactccctgagtttagtatggctgtatatttctgcctattaatatttggaattttttttagaaagtatatttttgtatgctttgttttgtgactta



aaagtgttacctttgtagtcaaatttcagataagaatgtacataatgttaccggagctgatttgtttggtcattagctcttaatagttgtgaaaaaat



aaatctattctaacgcaaaaccactaactgaagttcagataatggatggtttgtgactatagtgtaaataaatacttttcaacaataaaaaaaaaa



aaaaa (SEQ ID NO: 610)





Dgka
agttcctgccagtgagtccctaggcctccatctctctcccttgctgtaccaccttcaccaccatccatgcgaccccaagagccttaatgactcta
NM_001345
NM_016811



gaagagactccaggcaggggaagctgaaaggacctttcactccctacttttggccagggccttctgtgccacctgccaagaccagcaggc



ctaccctctgaagaggtccaagcaacggaagtactactacgaagctgcctttctggccatccttgagaaaaatagacagatggccaaggag



aggggcctaataagccccagtgattttgcccagctgcaaaaatacatggaatactccaccaaaaaggtcagtgatgtcctaaagctcttcga



ggatggcgagatggctaaatatgtccaaggagatgccattgggtacgagggattccagcaattcctgaaaatctatctcgaagtggataatg



ttcccagacacctaagcctggcactgtttcaatcctttgagactggtcactgcttaaatgagacaaatgtgacaaaagatgtggtgtgtctcaat



gatgtttcctgctacttttcccttctggagggtggtcggccagaagacaagttagaattcaccttcaagctgtacgacacggacagaaatggg



atcctggacagctcagaagtggacaaaattatcctacagatgatgcgagtggctgaatacctggattgggatgtgtctgagctgaggccgat



tcttcaggagatgatgaaagagattgactatgatggcagtggctctgtctctcaagctgagtgggtccgggctggggccaccaccgtgcca



ctgctagtgctgctgggtctggagatgactctgaaggacgacggacagcacatgtggaggcccaagaggttccccagaccagtctactgc



aatctgtgcgagtcaagcattggtcttggcaaacagggactgagctgtaacctctgtaagtacactgttcacgaccagtgtgccatgaaagc



cctgccttgtgaagtcagcacctatgccaagtctcggaaggacattggtgtccaatcacatgtgtgggtgcgaggaggctgtgagtccggg



cgctgcgaccgctgtcagaaaaagatccggatctaccacagtctgaccgggctgcattgtgtatggtgccacctagagatccacgatgact



gcctgcaagcggtgggccatgagtgtgactgtgggctgctccgggatcacatcctgcctccatcttccatctatcccagtgtcctggcctctg



gaccggatcgtaaaaatagcaaaacaagccagaagaccatggatgatttaaatttgagcacctctgaggctctgcggattgaccctgttcct



aacacccacccacttctcgtctttgtcaatcctaagagtggcgggaagcaggggcaaagggtgctctggaagttccagtatatattaaaccct



cgacaggtgttcaacctcctaaaggatggtcctgagatagggctccgattattcaaggatgttcctgatagccggattttggtgtgtggtggag



acggcacagtaggctggattctagagaccattgacaaagctaacttgccagttttgcctcctgttgctgtgttgcccctgggtactggaaatga



tctggctcgatgcctaagatggggaggaggttatgaaggacagaatctggcaaagatcctcaaggatttagagatgagtaaagtggtacat



atggatcgatggtctgtggaggtgatacctcaacaaactgaagaaaaaagtgacccagtcccctttcaaatcatcaataactacttctctattg



gcgtggatgcctctattgctcatcgattccacatcatgcgagagaaatatccggagaagttcaacagcagaatgaagaacaagctatggtac



ttcgaatttgccacatctgaatccatcttctcaacatgcaaaaagctggaggagtctttgacagttgagatctgtgggaaaccgctggatctga



gcaacctgtccctagaaggcatcgcagtgctaaacatccctagcatgcatggtggctccaacctctggggtgataccaggagaccccatgg



ggatatctatgggatcaaccaggccttaggtgctacagctaaagtcatcaccgaccctgatatcctgaaaacctgtgtaccagacctaagtga



caagagactggaagtggttgggctggagggtgcaattgagatgggccaaatctataccaagctcaagaatgctggacgtcggctggccaa



gtgctctgagatcaccttccacaccacaaaaacccttcccatgcaaattgacggagaaccctggatgcagacgccctgtacaatcaagatca



cccacaagaaccagatgcccatgctcatgggcccacccccccgctccaccaatttctttggcttcttgagctaagggggacacccttggcct



ccaagccagccttgaacccacctccctgtccctggactctactcccgaggctctgtacattgctgccacatactcctgccagcttgggggagt



gttccttcaccctcacagtatttattatcctgcaccacctcactgttccccatgcgcacacacatacacacaccccaaaacacatacattgaaag



tgcctcatctgaataaaatgacttgtgtttcccctttgggatctgctaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa (SEQ ID NO:



611)





Cblb
ctgggtcctgtgtgtgccacaggggtggggtgtccagcgagcggtctcctcctcctgctagtgctgctgcggcgtcccgcggcctccccga
NM_170662
NM_001033238



gtcgggcgggaggggagagcgggtgtggatttgtcttgacggtaattgttgcgtttccacgtctcggaggcctgcgcgctgggttgctcctt



cttcgggagcgagctgttctcagcgatcccactcccagccggggctccccacacacactgggctgcgtgcgtgtggagtgggacccgcg



cacacgcgtgtctctggacagctacggcgccgaaagaactaaaattccagatggcaaactcaatgaatggcagaaaccctggtggtcgag



gaggaaatccccgaaaaggtcgaattttgggtattattgatgctattcaggatgcagttggaccccctaagcaagctgccgcagatcgcagg



accgtggagaagacttggaagctcatggacaaagtggtaagactgtgccaaaatcccaaacttcagttgaaaaatagcccaccatatatact



tgatattttgcctgatacatatcagcatttacgacttatattgagtaaatatgatgacaaccagaaacttgcccaactcagtgagaatgagtacttt



aaaatctacattgatagccttatgaaaaagtcaaaacgggcaataagactctttaaagaaggcaaggagagaatgtatgaagaacagtcaca



ggacagacgaaatctcacaaaactgtcccttatcttcagtcacatgctggcagaaatcaaagcaatctttcccaatggtcaattccagggaga



taactttcgtatcacaaaagcagatgctgctgaattctggagaaagttttttggagacaaaactatcgtaccatggaaagtattcagacagtgc



cttcatgaggtccaccagattagctctggcctggaagcaatggctctaaaatcaacaattgatttaacttgcaatgattacatttcagtttttgaat



ttgatatttttaccaggctgtttcagccttggggctctattttgcggaattggaatttcttagctgtgacacatccaggttacatggcatttctcacat



atgatgaagttaaagcacgactacagaaatatagcaccaaacccggaagctatattttccggttaagttgcactcgattgggacagtgggcc



attggctatgtgactggggatgggaatatcttacagaccatacctcataacaagcccttatttcaagccctgattgatggcagcagggaagga



ttttatctttatcctgatgggaggagttataatcctgatttaactggattatgtgaacctacacctcatgaccatataaaagttacacaggaacaat



atgaattatattgtgaaatgggctccacttttcagctctgtaagatttgtgcagagaatgacaaagatgtcaagattgagccttgtgggcatttga



tgtgcacctcttgccttacggcatggcaggagtcggatggtcagggctgccctttctgtcgttgtgaaataaaaggaactgagcccataatcg



tggacccctttgatccaagagatgaaggctccaggtgttgcagcatcattgacccctttggcatgccgatgctagacttggacgacgatgatg



atcgtgaggagtccttgatgatgaatcggttggcaaacgtccgaaagtgcactgacaggcagaactcaccagtcacatcaccaggatcctc



tccccttgcccagagaagaaagccacagcctgacccactccagatcccacatctaagcctgccacccgtgcctcctcgcctggatctaattc



agaaaggcatagttagatctccctgtggcagcccaacgggttcaccaaagtcttctccttgcatggtgagaaaacaagataaaccactccca



gcaccacctcctcccttaagagatcctcctccaccgccacctgaaagacctccaccaatcccaccagacaatagactgagtagacacatcc



atcatgtggaaagcgtgccttccagagacccgccaatgcctcttgaagcatggtgccctcgggatgtgtttgggactaatcagcttgtgggat



gtcgactcctaggggagggctctccaaaacctggaatcacagcgagttcaaatgtcaatggaaggcacagtagagtgggctctgacccag



tgcttatgcggaaacacagacgccatgatttgcctttagaaggagctaaggtcttttccaatggtcaccttggaagtgaagaatatgatgttcct



ccccggctttctcctcctcctccagttaccaccctcctccctagcataaagtgtactggtccgttagcaaattctctttcagagaaaacaagaga



cccagtagaggaagatgatgatgaatacaagattccttcatcccaccctgtttccctgaattcacaaccatctcattgtcataatgtaaaacctc



ctgttcggtcttgtgataatggtcactgtatgctgaatggaacacatggtccatcttcagagaagaaatcaaacatccctgacttaagcatatatt



taaagggagatgtttttgattcagcctctgatcccgtgccattaccacctgccaggcctccaactcgggacaatccaaagcatggttcttcact



caacaggacgccctctgattatgatcttctcatccctccattaggtgaagatgcttttgatgccctccctccatctctcccacctcccccacctcc



tgcaaggcatagtctcattgaacattcaaaacctcctggctccagtagccggccatcctcaggacaggatctttttcttcttccttcagatccctt



tgttgatctagcaagtggccaagttcctttgcctcctgctagaaggttaccaggtgaaaatgtcaaaactaacagaacatcacaggactatgat



cagcttccttcatgttcagatggttcacaggcaccagccagaccccctaaaccacgaccgcgcaggactgcaccagaaattcaccacaga



aaaccccatgggcctgaggcggcattggaaaatgtcgatgcaaaaattgcaaaactcatgggagagggttatgcctttgaagaggtgaag



agagccttagagatagcccagaataatgtcgaagttgcccggagcatcctccgagaatttgccttccctcctccagtatccccacgtctaaat



ctatagcagccagaactgtagacaccaaaatggaaagcaatcgatgtattccaagagtgtggaaataaagagaactgagatggaattcaag



agagaagtgtctcctcctcgtgtagcagcttgagaagaggcttgggagtgcagcttctcaaaggagaccgatgcttgctcaggatgtcgac



agctgtggcttccttgtttttgctagccatatttttaaatcagggttgaactgacaaaaataatttaaagacgtttacttcccttgaactttgaacctg



tgaaatgctttaccttgtttacagtttggcaaagttgcagtttgttcttgtttttagtttagttttgttttggtgttttgatacctgtactgtgttcttcacag



accctttgtagcgtggtcaggtctgctgtaacatttcccaccaactctcttgctgtccacatcaacagctaaatcatttattcatatggatctctac



catccccatgccttgcccaggtccagttccatttctctcattcacaagatgctttgaaggttctgattttcaactgatcaaactaatgcaaaaaaaa



aaaagtatgtattcttcactactgagtttcttctttggaaaccatcactattgagagatgggaaaaacctgaatgtataaagcatttatttgtcaata



aactgccttttgtaaggggttttcacataacata (SEQ ID NO: 612)





Mdfic
cccaggccggctctggcctcctgacccagacagcgcagggcgcgagggatcgcgcggccgagcccgggtcgcgccgctcccagcat
NM_001166345
NM_175088



cggggccgctagccaagagttcgaggccttcccgatccggatgtgatgaaaaagagcaacagagggagaagtgtttcaggattgtagga



gtggaagaggggaaagagaggcagagagggggaaggccccctcgcaggggagccggctggagtgagctggctggaaagaggggg



cggagtgcgcggagtcagagccgccaccgctgccgcagttgccgccactgcggcgtctgggctgagccggagggaggcgggaggac



gcgcaggggcggccgccgccgtcgtcaggccaccggggcgaaaatgcggccgctgccggaggctcgctaactttccggggcggaag



aggaggaggaggaggaggaaggggcttggagcgactacggggggatgcggagaagcagtcagttccctgcacccagcacctcacag



cccttcctccgtgcgccctgccgggcggcgagctaggcggcagcggcgcggcgcgggctcggcggagcggcccatgtccggcgcgg



gcgaagccctcgctcccgggcccgtggggccgcagcgcgtggccgaggcgggcggcggccagctgggctccacagcccagggaaa



atgtgataaagacaatactgagaaagatataactcaagctaccaatagccacttcacacatggagagatgcaagaccagtccatttggggaa



atccttcggatggtgaactcattagaacccaacctcagcgcttgcctcagcttcagacttcagcccaggtgccaagtggtgaggaaataggc



aagataaagaacggccacacaggtctgagcaatggaaatggaattcaccacggggccaaacacggatccgcagataatcgcaaactttca



gcacctgtttctcaaaaaatgcatagaaaaattcagtccagcttgtctgtaaacagcgatatcagtaagaagagcaaagtaaatgctgtcttttc



ccaaaagacaggctcttcacctgaagattgttgtgtccactgtatcctggcttgcttgttctgcgaattcctgaccctttgcaacattgtcctggg



acaagcgtcatgtggcatctgcacctcagaagcctgctgctgttgctgtggtgacgagatgggggatgattgtaactgcccttgtgatatgga



ctgtggcatcatggatgcctgttgtgaatcatcagactgcttggaaatctgtatggaatgctgtggaatttgttttccttcataaatatttatcttttgt



ttgtgttaaaactggagagtgtttaaaaatttccttttggggggaagaaaagcacattgtaagattctcatgaaacaacatggaatttgcactgtt



aactcattattgtaagtaatctctgaaagcctttttactttaaccaaatctacatggtttaatatgtgaaattttaactactttaactagttttataaatttc



ttaatatgttacaataacttagggacattttgacaccccccttcccaaatgttaaatgccttctcctttttaccgatatttctgtttcttttaaccgttctc



aggagcactttgctccaaatatattatttttcagtgtgtatttaaacgaggcagtttattttgatatgtatctattcatgattgaaaggaagcagtctt



ggccaggcacggtggcttacacctgtaaccctggcattttgggaggccaaggtgggcagattgcctgagctcaggagttcgagaccagcc



agggcaacatggtgaaaccccatctctactaaaatacaaaaagttagctgggcttggcggtgtgcgcctgtagtcccagctactcaggagg



ctgaggcaggagaattgcttgaacccgagaggcggaagttgcagtgagccgagattgtgccactgaactccaacctgcactccagcctgg



gcaacagagcgagactccatctctaaataaataaataaataaataaataaataaataaataaataaacaaaccagtctttattttaaaagaaact



ttaggaaacaaacccacataatagttgggaaccagtgttgatctctctcccttaccttctccacttgttcaacagactctgaatgccgactgtgtg



gactctcttcctcagactgtggggacagatacaattccactcctgtccacaggaacatgagatttagcagactaaggagatctgtaaagaatg



aaccataccacaaggcatactgaagtgaggattataagagaaataaactcaaaatgctgttggaatatgcagagaattgctaccagaatattc



agtaaggtttcagggagaatgtggcatttgaggactctcttagaatgagtgattcacctgctatttaaatgaattatttagatttttgacaaagattt



aggtggacaccctaaactgtgtgtgcctttaaccagttaaaagaacagtgccttcagcatacttttttattagttgtaggaatacagctttttgaaa



aagctataaagtttaaattaactaaaaatatgcattttcttacacataatttaaatgttatcatacttttttgatgaaaacataatgccttagtaaaata



gctctatttaataaagaagattgagtactctgacacatttcatttaaattaggaaatttttaatattaaaatcccagtgttctgagttattgaaaggctt



tcttttattttgagagctttaggtctttttgggatgagaacattttagttgtttagtttgtttcttaagcagtgctattttttgtaaacacagataaatgga



aaccattcttttcaatgcagaagaaatctagatatcccctactgtgaccaaatttctgtattacgattttatgttaaattaaactaatatggcaggtta



taatgatccttaagtgtaaagaaatcagtcaattacaagagtaattgtatagttattgagacctatagtgtgtggcttagatgaaagggagagta



aattttcataccatgctctctcctactcagtttgatctctctaaaattgtagtttggtttgatttaatataattcttagtagaaattttgaaagtatgctttg



ggattaataattatttttaatttttctggctgaatatcaaattgatagtaacaacagaagcataattttaggaaggctttcgcaaacctagccttttaa



gagaggtttttaacctgaagcatgagaatatatcacctgtggtttttcctttgagatgaaacgtagtttctagttatatcattacttaaagggcttaa



aaagaaaaaacttagcaaacttttgaatctttcttttattgctatttacacatacatacacacatacaaaacctttaaattttgggatctgaatataatt



ctggtaaacagctgtcttcatttttctcctctaaagaacttaattcatttgttacataaaatataaggaaatctttatactattttacagtaaccacaat



ctaaatatttacatatacccaaaattaacttatgctcatatattaggatgtgagaatatcatctgtttatggacacatgaaacctcctaatgacctgg



aattgttagaatatttgactttttatatgcaaagtttttcaaccaagtggtttgtctaatatttaaacatgtactggcacaatttgtgatgaaaatattag



cacatttgcaataatgtttctccataacagagaatgttaatggataccagaattttatttttgtatttatgttcatagtacttttcctcttgtctactccag



acagttattccataaagcatttgtataattaaaaggaaaacagaaaaaggaaaagtaggcaaatgtgaaaatagtttcaatatatcttatgatttc



ttaatgtaaaatgttttgttgaagtatatggctatcatgactaagtgctagaatttatagttacaggcggtgtccttttaaatgtggaaaggcttttaa



aatattttaaaactggacctgtattatcctgaatacactattttgaaaatttttaaaaatgacttctttattttgctttaccgtatgtttatatctaattgac



atattgactaatgtttgaaagaattcaaccataagttaaaatctgaaggttatctttatcatgtttcatccctgtctgaagatttcctagtcttcttatgt



aaatcacatgactcatgtccgtaaatgaactatgaaagatatcgatcagtttatgatcattgacatgtgatttcaaaacacagtgttcttttaaaaa



tctataatatgtcaaaatacaagttttttttttttacatcgttttagtaagttaatttcatttatttactttggagctatatttccacttagaaaaactaaggt



aattttacaatatatgctgagattaaaaaccaaggtaaaaatgatcaaacatatatgaaattgagtcttagatttaatgaatttcactcgaaaataa



atgatcagaagaattttcatctaaggcatagagtggcgaaatttttgtaaatgctcgcagttagcatctaactaaaacaatacagtatgactttatt



taggagaaggctttttatttagaaaattattttttcatttttacagtgtatcaactgtatccattttcctcacctggatagtcaatgttatctgagcagtt



caaggagtaaccaaggcaaccttatgtaataactttccattctttatccatacaaactctttcagtgccctagattctaatgttataaacgtcaaac



atcactgcccaacataaataagactcgagacttattaacataaataagtatcttgccttcttgaatgctagttaaatgcttagatttacctaactgc



ctaatgaatcaggttatttgttaataagattatttttcaaattatttaagacctttatgccccttccaattacttgtgatttgtaggcctgtaggattgttg



catctaatctgactggcaacagaaaatgtcatcaaatactataatatccattttgttttcttttgcactaatacaacagaacatatcatttttgttttaa



acaatggttaatatattaatagggtttgttccacacttactatttatagtttttataatcaagcattgggtattaaaagagaatcctttcaacccttcat



cttcgtatgcttatacaataaattgcagtgagtgt (SEQ ID NO: 613)





Entpdl
agggaagaagggagaaagagagagagatttgaatatacattgcttcaaggatgcaaaaaattacaacctggaaaaggcttcgagtaacttt
NM_001776
NM_009848



aggaaaatgagctgctggactcctcagtcaatctgtcctttctagtcaatgaaaaagacagggtttgaggttccttccgaaacggggccggct



aatttagcccctcccacgagcccaagggtctgttatatctctgtttccttgaggacctctctcacggagacggaccacagcaagcagaggct



gggggggggaaagacgaggaaagaggaggaaaacaaaagctgctacttatggaagatacaaaggagtctaacgtgaagacattttgctc



caagaatatcctagccatccttggcttctcctctatcatagctgtgatagctttgcttgctgtggggttgacccagaacaaagcattgccagaaa



acgttaagtatgggattgtgctggatgcgggttcttctcacacaagtttatacatctataagtggccagcagaaaaggagaatgacacaggcg



tggtgcatcaagtagaagaatgcagggttaaaggtcctggaatctcaaaatttgttcagaaagtaaatgaaataggcatttacctgactgattg



catggaaagagctagggaagtgattccaaggtcccagcaccaagagacacccgtttacctgggagccacggcaggcatgcggttgctca



ggatggaaagtgaagagttggcagacagggttctggatgtggtggagaggagcctcagcaactacccctttgacttccagggtgccagga



tcattactggccaagaggaaggtgcctatggctggattactatcaactatctgctgggcaaattcagtcagaaaacaaggtggttcagcatag



tcccatatgaaaccaataatcaggaaacctttggagctttggaccttgggggagcctctacacaagtcacttttgtaccccaaaaccagactat



cgagtccccagataatgctctgcaatttcgcctctatggcaaggactacaatgtctacacacatagcttcttgtgctatgggaaggatcaggca



ctctggcagaaactggccaaggacattcaggttgcaagtaatgaaattctcagggacccatgctttcatcctggatataagaaggtagtgaac



gtaagtgacctttacaagaccccctgcaccaagagatttgagatgactcttccattccagcagtttgaaatccagggtattggaaactatcaac



aatgccatcaaagcatcctggagctcttcaacaccagttactgcccttactcccagtgtgccttcaatgggattttcttgccaccactccaggg



ggattttggggcattttcagctttttactttgtgatgaagtttttaaacttgacatcgagaaagtctctcaggaaaaggtgactgagatgatgaaaa



agttctgtgctcagccttgggaggagataaaaacatcttacgctggagtaaaggagaagtacctgagtgaatactgcttttctggtacctacat



tctctccctccttctgcaaggctatcatttcacagctgattcctgggagcacatccatttcattggcaagatccagggcagcgacgccggctg



gactttgggctacatgctgaacctgaccaacatgatcccagctgagcaaccattgtccacacctctctcccactccacctatgtcttcctcatg



gttctattctccctggtccttttcacagtggccatcataggcttgcttatctttcacaagccttcatatttctggaaagatatggtatagcaaaagca



gctgaaatatgctggctggagtgaggaaaaaaatcgtccagggagcattttcctccatcgcagtgttcaaggccatccttccctgtctgccag



ggccagtcttgacgagtgtgaagcttccttggcttttactgaagcctttcttttggaggtattcaatatcctttgcctcaaggacttcggcagatac



tgtctctttcatgagtttttcccagctacacctttctcctttgtactttgtgcttgtataggttttaaagacctgacacctttcataatctttgctttataaa



agaacaatattgactttgtctagaagaactgagagtcttgagtcctgtgataggaggctgagctggctgaaagaagaatctcaggaactggtt



cagttgtactctttaagaacccctttctctctcctgtttgccatccattaagaaagccatatgatgcctttggagaaggcagacacacattccattc



ccagcctgctctgtgggtaggagaattttctacagtaggcaaatatgtgctaaagccaaagagttttataaggaaatatatgtgctcatgcagt



caatacagttctcaatcccacccaaagcaggtatgtcaataaatcacatattcctaggtgatacccaaatgctacagagtggaacactcagac



ctgagatttgcaaaaagcagatgtaaatatatgcattcaaacatcagggcttactatgaggtaggtggtatatacatgtcacaaataaaaatac



agttacaactcagggtcacaaaaaatgcatcttccaatgcatatttttattatggtaaaatatacataaatataattcaccattttaacatttaattcat



attaaatacgtacaaatcagtgacatttagtacattcacagtgttgtgccaccatcaccactatttagttccagaacatttgcatcatcaatacatt



gtctagagacaagactatcctgggtaggcagaaaccatagatcttttgtgtttacagctatggaaaccaactgtaccataaagatagttcactg



agttttaaagccaagccacatcttatttttccaaggtttaatttagtgagagggcagcattagtgtggagtggcatgcttttgccctatcgtggaat



ttacacatcagaatgtgcaggatccaagtctgaaagtgttgccacccgtcacacaacatgggctttgtttgcttattccatgaagcagcagcta



tagaccttaccatggaaacatgaagagaccctgcacccctttccttaaggattgctgcaagagttacctgttgagcaggattgactggtgatgt



ttcattctgaccttgtcccaagctctccatctctagatctggggactgactgttgagctgatggggaaagaaaagctctcacacaaaccggaa



gccaaatgtcccctatctcttgaatgatcaagtcacttttgacaacatccaggtgaatataaaaacttaataaagctgtggaaaggaactcttaat



cttcttttctgctacttaggttaaattcactagatcttgattaggaatcaaaattcgaattgggacatgttcaaattctttcttgtggtagttgcctata



ctgtcatcgctgctgttggttgagcatttgtggtgtaccacgctgtgtgctcaagggtattacattcatcttctcatttaatcctcacaacaatctga



agaaggtaggtattacaattcccacttcatagaaacagaaactgaggttcagagaggttaagtcatttgcccaaatggctgagccaaagcct



accatgtacctaacctttattttctttcccgaacataccaggctgtctcctcataacttccaagcatgcacttaaaactccacatgaatacaaggtt



catgggacttggtattcatagaaagggaggcagaaagctggtctgttcctgataggcttgtaatttaatatcattctgttcatgtgctttggatgg



aagcacatctggcatatgatgctaatcagtggttcccatacccctggcttcctaattttaatgtttgctcacagcatagtagattgacatcaaata



gtggccgatgatgatgaaaataaaggtcaaataagttgagccaataacagccgcttttttccttctgtctgcgtatacaaagcactgtcatgca



cacaatctattctgaccctcacaacaacccataagggtgtaaatagtatttccattttacaaatgaggatcacacaaactactacatggcagag



cagatactccaactcatgtcttctggttgaagcctattgctttttcttttctaaacactttccctcagcaagttggaattagacttcacaagtctcctt



cagagaacacaaatcttttcttattccattcctgtttggttgcctacgtccaatctccccctccccagagatgccaaaaaaaaaatcctttaaggt



atttgggagccaaactcaacttgttaaaatctcaaattatggagacaatcagcagacacaacctaaccccaattattttggcaggaaggttggt



ttagaggcagatccagcaatctgctttgggccactctgggtggggtaggtgaaataagattggtcactgttaactaattttaatattggattggc



cattggttatcactgattaccattctcccctggattttcacccaggactcaaaacttggttctgctaaccctgttcctttatgaggaaccttttaaag



attcctttataaggtgggagttttttttctatgaacctataggggagaaaaaagatcagcagaagtcattacttttttttttttttttttttttttttgagag



agagtctcactccattgcccaggctggagtgcagtggtgctatctcggctcactgcaacctccgcctcctgggttcaagcaattctcctgcct



cagcctcccgagtagctgggattgcaggtgcccaccaccacacccggctaatttttgtatttttagtaaagacagggtttcaccatgttggcca



ggctggtctccaactcccaatctcaggtgatcctattgcctcgggctcccaaagtgctgggattacaggagtgagccaccatgcctggccag



aagtggttacttctgtagacaaaagaataatgctacttaatcaggctttctgtgtgacaagaaagagaaagaaaataaagaagtttcaattcatc



caattcttaataagaaatatgtaaataaaattttttaaaattacacttcattttaatgttgtatcagtcaaggtccctgcaagagatggatggtatggt



acactcaaactgggtaacacaggagagttttcagaaagcaactaaatccaaaatactatcaaggaatcaatataaaaattgttaatatttttctca



tactaaattttcaaaatattttgtgtctattacatttacagcacatcttaattaggactagctgtgtgttcacctcacatgtggcttgtagctaccatac



tggacagcacatgtccaaaaaaatacacgtaaagttaaagtttaaaagacacaggaactaagccctcattgtctttcccttgggaggtagttta



aagagctatagatgctgtaacattcttgctattatttattatatatgacattattcctaaaaaagcttttgagatcctaggttgtattcctcaggttttgt



tgccttcccatgaagatgtgaaggcagggatgcctgttattcagtccaagatgcatgacaagagaccttgggaaagtttcatctggatttaaa



gattaattcttgatgcttacattccatactcaaaatgtaaatttgaatattaaaataaagatgattttttttttggagctagtcttgctctgttgcccagg



ctggaatgcagtggcatgatcatggctcactgcagcctcgacctcccaagctcaagcaaggctacaggtgtgcacctaagtagctaggact



acaggtgtgcaccaccatgtctagctatttttttttctgtagagacagggttttcctatgttgtccaggctggtctcgaactcctgccctcaagcaa



tcctcctgccttggcctcccaaagtgttgagattacaggcgtaagccactgcacctggccaagatgaatattttaatagctcacagaacaaag



tttgccacataatgataaaattactatgaaaatatattccctttattgtcagtttaaaagatgaactgagtttcacccaaactggtctggcccctctc



tgattcaaataccaatagttgctctgattcaaattccaactgttagaacatgacagctgctcataactagctttgcttactaaccatgtttctttccat



ttgtattaggtcctttactttttataacagcctcaaagtttcatgaattgctgcagtaaacattgattttcatgtttgtgagtctgcaagccagctggg



cagctctacttcaggtggtaagggtggatcagacctattccatatacctcttgttctccttgtccagtggtttctagggatatgttctcatgatgaa



ccccgcagaggctcgtgaaagtgagaggaaactaggatgcctcttaaggtcttggtcaggatggggtctcctgtcacttctgtcacaggcta



ttgtaagtcatatgagcaagctcaataaaatataaacaagtcagataaacagtgggaggaatggcaaagtcatatggccaaggccatgagt



gattaattttaacacaggaaaaaagtaaagcattaaatgcgattatttaatatacaatgtcttattaactgaaatataaaatgtgtttactgtaaaat



ataatctgtttatctcaccaaagaaatattatctttaaaaaatgtcattacttctaagacatcatcagtctgcaacttctttccatagccttaatcagg



atgctgtggcagctcccacattagcctcgcattctaaactggtagatgtcctaggaaaccatacatctatgtatttttcttattttatacgtttagga



caatgtatagctaattacccaactttttatttgcatacaaatctaatacaactgaacacaatcagttttatcacaggtataatggatttttcaatagtg



aggaggtgcctccatgagccttctctttagaaaagtggcattcaagactcttcatttgaagtgaagattgctatgtcttttgcattgctctattttac



ataaattaagttataaattgacactataatcaactgacaccatgatcagtgatgatgatcaccctcatcagcactagagttgacttgtttttataac



ccctttgcatgtatgttgaatagcaaagttcatcagagaacatgtattagtcaatggtaagtaagatactctcatctaagaaataacatcacctctt



ctaatgaagttctaagaagagagggaagaaaaagtcttgggagctagtcagggaatagtgtgtatttgcaattacctaaactgaactctacca



ttactcctaacccagttcctcctcctgtgttttacatgattaatgccacccctgcctcaatgaaccaagatcagctccatcactgggacctcccca



ttctgcctgtgcaatatttttcttttttatttctccttctaatattactgttattgctccagtaaagagctgtaatatattttacctggactgataccagga



atggtggtgttgcttccaatctgttgctgctagattaatctttgcaaagcacaggcttaatttcattgctgctcaactaaaaccactggtggctttc



cattgcctacaaaataaagtcaacctccccatcagacattcaaggctttcaatgatccatggccgccagctctctccaggctcatatcccactc



cactcctctgatgtttcctacactacactacactatactacactacagccaggtagaatgactgttcacccaacaccactcaggttgtcttctcaa



cttggaatactcttgcaccttcaaagctcatttcaaatgccccttcatttgtgaagccttctccaaatttccaagtcagaatgtctcttccttgtgcta



ccacaaccctttaactgagcctccattagtgcactgagaccattctgttcagtgtctgggtgaagcttcctggtgaaaaatatgttacctatttctt



tctgaaaagttggattcagggatattatcacggacctaaggtaatagttctagccaacctccctgtccactgccaggccgactacaaacccttc



tgttgctggcgagctggtccgcaccactagttctgcttcactctatttatctcttgatgtaaccatcttctttctccaggttttaagaaccagcccaa



ctcctggttccctgatgaagcttttattcccctagccacatggaacttttcctttttggaacatgcctttagtttctgtgtagtttgccatgcagcactt



cattgtacacattattaaaacagaattttaaggattagaatgaaccttaaaagatcatgcatctcaaaatttaatgtacatacaaattacccaggg



attttgttgaaataaaaattatttaattttaattaatataaataattcagtaggtctggggtgaggcctgaggttttacatttccaacaagctgccag



gtaaagccaatacatctgtccaggaatcacactttgcgtatcaaaggtctagatgacattatcattccaaagagtttcttttacaggctctcagat



cagtgttcatccactacctgactactgtcattcacaggcattctgttccacagcaggccagctaacgtggtatttacaaagctcactcctcttata



caacaatccaagtgtttcttttgtcagttgtctgtgccccaggagatccctctctgccttgccttgccctctgcctttggagaccagcacctcata



ctcagtgaaggcctggagtgcttaagagggatttcttccagctctcttgccctggtcttcagtgtattagatgtattacctccatgctctcagtag



aggcccataggaaagagtaggtaggttatgccagctcacacgcatcctttaaaaatggtttagaagtttagctggtttcttattactcctgtctat



ggatgtttccttctgtcactctactagggatgaaacagctaatcatgttcaatagttacatttagattggtttttaaaaactatgattgtattagttcgt



ttccatgctgctgataaagacatatctgagactggaaacaaaaagggtttaattggacttacagttccacatggctggggaggcctcaaaatc



aggtgggaggcaaaaggtacttcttacgtggtggcatcaagagcaaaatgaggaagaagcaaaagcagaaactcttcataaacccaccag



atcttgtgggacttattatcacgagaatagcacagaaaagactggcctccatgattcaattacctcccactgcgtccctcccacaacatgtggg



aattctgggagatacaattcaagttgagatttgggtggggacacagccaaaccatatcattcctccctgggctcctccaaatttcataatcctca



catttcaaaaccaatcattccttcccaacagttccccaaagtcttaactcatttcagcattaacccaaaagtccacagtccaaagtctcatctgag



acaaggcaagtcccttccacttacaagcctgtaaaagcaagctagttacctcctagatacaatggggggtacaggtattgggtaaatacagc



tgttccaaatgagagaaattggccaaaacaaaggggttacagggtccatgcaagtctgaaatccagtggggcagtcaaattttaaagctcca



taatgatctcctttgactccatgtctcacattcaggtcatgctgatgcaagagataggttcccatggtcttgtgcagctccgcccctgtggctttg



cagagtacagcctccctcctggctgctttctcaggctgatgttgagtgtctgtagcttttccaggcacaagatgcaagttggtggttgatctacc



attctggggtctaccattctggggtctaccgttctgggactgtggccttcttctcacagctccactaggcagtgccccaacagggactctgtgt



gggggctctgccccacatttcccttccacactgccctaggagaggttccccatgagggctctgcccctgcagcaaacttttgcctggacatc



caggtgtttccatatatattctgaaatctaggcagaggttcccaaatctcaattcttgacatctctgcacccacaggctcaacatcacatggaag



ctgccaatgcttggggcctctaccctctgaagccacagcccaagctctatgttggctcctttcagccatggctggagcagctgggacacagg



gcaccaagtccctaggctgcacacagcacagagaccctgggcccagcccacaaaaccactttttcctcctgggcctctgggcctgtgatgg



gaggggctgccatgaaggtctctgacatgacctggagacattttccccatggtcttggggattaacattaggctccttgctgcttatgcaaattt



ctgcagccagcttgaatttctccttaaaaaaaatgggtttttcttttctactgcatcatcaggctgcagattttccacatttatgctcttgtttccctttt



aaaacagaatgtttttaacagcacccaagtcaccttttgaatgctttgctgcttagaaatttattccaccagataccctaagtcatctctctcaagc



tctaagttccacaaatctctagggcaagggtgaaatgctgccagtctccttgctaaaacataacaagggtcacctttacttcagttcccaacaa



ggtcttcatctccatctgagaccacctcagcctggaccttattgttcatatcactatcagtatttttgtcaatgccattcacagtctctaggaggttc



caaactttcctacattttcctatcttcttctgagccctccagattatttcaacacccagttccaaagttgcttccacattttcgggtatcttttcagcaa



tgccccactctactggtactattagtccattttcatgctgctgataaagacatacctgagactgggaacaaaaagaggtttaattggacttatagt



tccacctggctggggaggcctcagaatcatggcaggaggtgaaaggcatttcttacacggcagcagcaagagaaaaatgaagaagcagc



aaaagcagaaacccctgataaaaccatcagatctcgtgagacttattcactatcacaagaatagcatgggaaagaccagcccccttgattca



attacctccccctgggtcctgtgggaattctggaaggtacaattcaagttgagatttgggtggggacacagccaaaccatatcaatgattttgt



actttaaccagctgaatggaagtacaatctcttgctatatgacacaataattatttgcaaaatgagtaaacatatcataaggaaattatttttacaa



ggtttgaaacctgaaatgcagtctattatcatacataactaaaaatagagcctcaataaacagattcccagttttgaaaatgcaacatttgtactc



cacattgtcagttttcttaggtatatttataaatactcctataaaaatgtaaagaaacacataatgtagattgctaattttataataacacaagttgatt



ttgacatccaacttattaattatgaaatgacttttggcctagtaacaatgaaaatgggggcaaatacagataaatggtaattcttagaatgaacta



ctcagcaccaattctaagtttttcttgatggtaaatcataatgttccctttctcctcggttctgcaatctataggcataccataattgtaatcaatagc



ttaaaaatatgtctctctgtcctattctgtatctgtatctcttggatttttacctttgcaatagtcaactgaaccatcttcttggagtactcatgaagatg



gaagtctacatggagaatacaggatgaatccactctgtctcctgcagtgaagtctgtttgaaggatgtatttggctgtcttctggacaggccatt



ctaataacagaaacaaacaagttattttaaaacttattggaatattcaaatattaaccaaagtagaaaaatataatacacatccatgtgcccatca



cagaacttcactgattatcatcatttagccagtcttgaagaagcaagtgctaattacaatcacaaatgaaacaagattcagacttcatgaagag



cactgcgctataataaaagaagaaatgagcacatacattcttttactgacagtcaaatggtgaaggtgggcagaatcattatgtgatgcaacat



ggcaaaagtatacagacagtgcatccagaggaaggcaccttgctgaatgactagaatggaagtaggagacattttgcaggcccccttcatc



ctgcagggagaaccagaaccacagcagctctatttgcctattcctctttaaattacaaagttaaaatttgggagtagtagaaaatcaattggtta



tcttatagagtctcctagaatatttcattggcattgagaaggtggaaaatgcaaattatatactttaaaatgtaatttttgcttttcacatatgcttaaa



gcctaaaacctcttaataaacttcttctgaaatata (SEQ ID NO: 614)





Dgkz
ggagagtgtctctaaggtgacactcgggtgcgcggcagcagcggcggttgcaggagctcgctctccgcccgggctccggctccgctcca
NM_201532
NM_138306



gccgtccggggggcgccgcggcgcgcagagcgcagcaccccgactccagccaggagcccccgcccccccggagcgcaggaggac



cccggcccgcctctcccaggcgcagcgcccagcatctcgctgctcctgtcgtctaagcgtcggcgtcgctagggacctgcggaacccgg



cgctcccctccctccccgcctcgcgtccccggcccgggcggactggagactcgaacttgagcgggtgcccgaaaggccgcaggagcc



gcgggcggaaggcggccgcacgatggccgaggggcagggcggcggagggcagcgctgggactgggctggcggcggccgggcag



ccgaggaggaggtggtgcggcggcgatgccggcgcggggaggaggcccaggtcgcgcagccctggcccgagggttcccggggcac



ggccgctgggcccccggtggaggagcgtttccgccagctgcacctacgaaagcaggtgtcttacaggaaagccatcaccaagtcgggc



ctccagcacctggccccccctccgcccacccctggggccccgtgcagcgagtcagagcggcagatccggagtacagtggactggagc



gagtcagcgacatatggggagcacatctggttcgagaccaacgtgtccggggacttctgctacgttggggagcagtactgtgtagccagg



atgctgaagtcagtgtctcgaagaaagtgcgcagcctgcaagattgtggtgcacacgccctgcatcgagcagctggagaagataaatttcc



gctgtaagccgtccttccgtgaatcaggctccaggaatgtccgcgagccaacctttgtacggcaccactgggtacacagacgacgccagg



acggcaagtgtcggcactgtgggaagggattccagcagaagttcaccttccacagcaaggagattgtggccatcagctgctcgtggtgca



agcaggcataccacagcaaggtgtcctgcttcatgctgcagcagatcgaggagccgtgctcgctgggggtccacgcagccgtggtcatcc



cgcccacctggatcctccgcgcccggaggccccagaatactctgaaagcaagcaagaagaagaagagggcatccttcaagaggaagtc



cagcaagaaagggcctgaggagggccgctggagacccttcatcatcaggcccaccccctccccgctcatgaagcccctgctggtgtttgt



gaaccccaagagtgggggcaaccagggtgcaaagatcatccagtctttcctctggtatctcaatccccgacaagtcttcgacctgagccag



ggagggcccaaggaggcgctggagatgtaccgcaaagtgcacaacctgcggatcctggcgtgcgggggcgacggcacggtgggctg



gatcctctccaccctggaccagctacgcctgaagccgccaccccctgttgccatcctgcccctgggtactggcaacgacttggcccgaacc



ctcaactggggtgggggctacacagatgagcctgtgtccaagatcctctcccacgtggaggaggggaacgtggtacagctggaccgctg



ggacctccacgctgagcccaaccccgaggcagggcctgaggaccgagatgaaggcgccaccgaccggttgcccctggatgtcttcaac



aactacttcagcctgggctttgacgcccacgtcaccctggagttccacgagtctcgagaggccaacccagagaaattcaacagccgctttc



ggaataagatgttctacgccgggacagctttctctgacttcctgatgggcagctccaaggacctggccaagcacatccgagtggtgtgtgat



ggaatggacttgactcccaagatccaggacctgaaaccccagtgtgttgttttcctgaacatccccaggtactgtgcgggcaccatgccctg



gggccaccctggggagcaccacgactttgagccccagcggcatgacgacggctacctcgaggtcattggcttcaccatgacgtcgttggc



cgcgctgcaggtgggcggacacggcgagcggctgacgcagtgtcgcgaggtggtgctcaccacatccaaggccatcccggtgcaggt



ggatggcgagccctgcaagcttgcagcctcacgcatccgcatcgccctgcgcaaccaggccaccatggtgcagaaggccaagcggcg



gagcgccgcccccctgcacagcgaccagcagccggtgccagagcagttgcgcatccaggtgagtcgcgtcagcatgcacgactatgag



gccctgcactacgacaaggagcagctcaaggaggcctctgtgccgctgggcactgtggtggtcccaggagacagtgacctagagctctg



ccgtgcccacattgagagactccagcaggagcccgatggtgctggagccaagtccccgacatgccagaaactgtcccccaagtggtgctt



cctggacgccaccactgccagccgcttctacaggatcgaccgagcccaggagcacctcaactatgtgactgagatcgcacaggatgagat



ttatatcctggaccctgagctgctgggggcatcggcccggcctgacctcccaacccccacttcccctctccccacctcaccctgctcaccca



cgccccggtcactgcaaggggatgctgcaccccctcaaggtgaagagctgattgaggctgccaagaggaacgacttctgtaagctccag



gagctgcaccgagctgggggcgacctcatgcaccgagacgagcagagtcgcacgctcctgcaccacgcagtcagcactggcagcaag



gatgtggtccgctacctgctggaccacgcccccccagagatccttgatgcggtggaggaaaacggggagacctgtttgcaccaagcagc



ggccctgggccagcgcaccatctgccactacatcgtggaggccggggcctcgctcatgaagacagaccagcagggcgacactccccg



gcagcgggctgagaaggctcaggacaccgagctggccgcctacctggagaaccggcagcactaccagatgatccagcgggaggacc



aggagacggctgtgtagcgggccgcccacgggcagcaggagggacaatgcggccaggggacgagcgccttccttgcccacctcactg



ccacattccagtgggacggccacggggggacctaggccccagggaaagagccccatgccgccccctaaggagccgcccagacctag



ggctggactcaggagctgggggggcctcacctgttcccctgaggaccccgccggacccggaggctcacagggaacaagacacggctg



ggttggatatgcctttgccggggttctggggcagggcgctccctggccgcagcagatgccctcccaggagtggaggggctggagaggg



ggaggccttcgggaagaggcttcctgggccccctggtcttcggccgggtccccagcccccgctcctgccccaccccacctcctccgggct



tcctcccggaaactcagcgcctgctgcacttgcctgccctgccttgcttggcacccgctccggcgaccctccccgctcccctgtcatttcatc



gcggactgtgcggcctgggggtggggggcgggactctcacggtgacatgtttacagctgggtgtgactcagtaaagtggatttttttttcttta



aaaaaaa (SEQ ID NO: 615)





Vamp7
attggaggagcgctcccactcccaagaggccacgcgtagacggggcgcttcatgcggaagtcagcggcgtccggtcccagcctcctctg
NM_005638
NM_011515



ggagcgggcagttggcgaccctgcactgacccgcgtccctccgtcccgagcccgcgcgccctcagagggtgcccggacagactgaag



ccatggcgattctttttgctgttgttgccagggggaccactatccttgccaaacatgcttggtgtggaggaaacttcctggaggtgacagagc



agattctggctaagataccttctgaaaataacaaactaacgtactcacatggcaattatttgtttcattacatctgccaagacaggattgtatatct



ttgtatcactgatgatgattttgaacgttcccgagcctttaattttctgaatgagataaagaagaggttccagactacttacggttcaagagcaca



gacagcacttccatatgccatgaatagcgagttctcaagtgtcttagctgcacagctgaagcatcactctgagaataagggcctagacaaag



tgatggagactcaagcccaagtggatgaactgaaaggaatcatggtcagaaacatagatctggtagctcagcgaggagaaagattggaatt



attgattgacaaaacagaaaatcttgtggattcttctgtcaccttcaaaactaccagcagaaatcttgctcgagccatgtgtatgaagaacctca



agctcactattatcatcatcatcgtatcaattgtgttcatctatatcattgtttcacctctctgtggtggatttacatggccaagctgtgtgaagaaat



aggaaagaagaagttaccattaaccaaggatatgagagaacaaggagttaaaagcaatccatgtgactcaagcctttcacatactgacagat



ggtatctgccagtctcttcaaccctcttctcactttttaaaatcttgttccatgcctccaggtttatctttgtcttatctaccagtttattcctgtgaactt



cagattgaaccattcattgcagcagtagccttaaaaaggcttttgtttatttctttggtttgttaactagtgtcatctatttagagaaacatttttgttttt



aattgctcaaagctgtcgccgctagtcttatgagctatctactaaaactatggagaaactttgtatgtgcacacaaaagtattcaagagacagta



ttgctaacatctcatcttaatgtcttttgttattgagaagttttaggtgcttcaaaacaatataaatggataatagttgttatttggggaattgtaatgat



gttggtgctgcttccttctaagagctcagacaagtaaagtatgaaacattcttatttcagttagatggggaacattttgctagcccattagaagca



cacagaattatccttgtcctcctaatattgactttcaggaataaagttcagtgtgctgatcattcacaatacagtggatagcttgatatcttctgtttt



cccattgcagttgatttgagaagatgaaggtttaaatattgttgaaagttgcagttttttaaatgtgttcctttttcttctgtgaatatttagggcaatc



gtgtcgctaatagaatatgtagtagagggggtggggaggtaaattcctctgacttgccaaagaaaaagaagggaaccacagtggatatgct



agcattttagctgtgcaaagggaggtagtgtgggaaaagtgtttccattctgggaaaagcccaaaccgaatacggtcagcagtcaactcca



gggtttgggcttgattcctgttgaataatagttttgagcattctttgtggttaaataaattcttaaatctgcctagttttgatgaattcttttgtgaaactt



gaaagagaatagacagtatgacatatagaattaatacaaaacagtttaacaaccatttaactgcagtgtaagaaaattggactgtaatcatatc



gctactggcatctgttatctagtatgcatttctggtgtgtatctgaaaggaagacattttctaccctagatccaattgcatttatttatcaataagtgc



cattaaattgaaattatattacattttacactttctcaatgaatgaacaaattagtctgtagaatctagccacctgtttagcctagtcatgtgccttga



acatatatgtgtcccataatctggctcatggtacctgttcttctatccaaacctttcaattcatgctacctgattcatttatttgacatagatcttaggc



ccacttgaactcttttcttgtttatctagcatagcacaaacgtttttccagtcttctttatcaacactaatgcctcttaattgcatcagtatttcctattgg



aaaatacatctgttccagaaaaacatttggcattcctgaataatttccaaatgtttttaatccaaagaaaaaggtttaaagcttatttccctttcttata



cacacctgaataaaattgatgtgcatgttttagggatcaattacctaactgttccttggtctatttatgtataagaatgctttttaaagcacatgtctc



attttaaatgacgcacaaactgaagatgttaataaaatttaagagtaatacaatgaaaaaa (SEQ ID NO: 616)





Hipk1
gcagagtctgcagtgcggagggggcgggaagtccaggccccgcactcgatccacgctggctccctacggaggcccacctactcgagg
NM_198268
NM_010432



cccaccgactcctactgcaatcagtactatgcgatcgtcctagagagtccattcagctgcacttccgcctcagtatggcatcacagctgcaag



tgttttcgcccccatcagtgtcgtcgagtgccttctgcagtgcgaagaaactgaaaatagagccctctggctgggatgtttcaggacagagta



gcaacgacaaatattatacccacagcaaaaccctcccagccacacaagggcaagccaactcctctcaccaggtagcaaatttcaacatccc



tgcttacgaccagggcctcctcctcccagctcctgcagtggagcatattgttgtaacagccgctgatagctcgggcagtgctgctacatcaac



cttccaaagcagccagaccctgactcacagaagcaacgtttctttgcttgagccatatcaaaaatgtggattgaaacgaaaaagtgaggaag



ttgacagcaacggtagtgtgcagatcatagaagaacatccccctctcatgctgcaaaacaggactgtggtgggtgctgctgccacaaccac



cactgtgaccacaaagagtagcagttccagcggagaaggggattaccagctggtccagcatgagatcctttgctctatgaccaatagctatg



aagtcttggagttcctaggccgggggacatttggacaggtggctaagtgctggaagaggagcaccaaggaaattgtggctattaaaatcttg



aagaaccacccctcctatgccagacaaggacagattgaagtgagcatcctttcccgcctaagcagtgaaaatgctgatgagtataattttgtc



cgttcatacgagtgctttcagcataagaatcacacctgccttgtttttgaaatgttggagcagaacttatatgattttctaaagcaaaacaaattta



gcccactgccactcaagtacatcagaccaatcttgcagcaggtggccacagccttgatgaagctcaagagtcttggtctgatccacgctgac



cttaagcctgaaaacatcatgctggttgatccagttcgccagccctaccgagtgaaggtcattgactttggttctgctagtcacgtttccaaagc



tgtgtgctcaacctacttacagtcacgttactacagagctcctgaaattattcttgggttaccattttgtgaagctattgatatgtggtcactgggct



gtgtgatagctgagctgttcctgggatggcctctttatcctggtgcttcagaatatgatcagattcgttatatttcacaaacacaaggcttgccag



ctgaatatcttctcagtgccggaacaaaaacaaccaggtttttcaacagagatcctaatttggggtacccactgtggaggcttaagacacctg



aagaacatgaactggagactggaataaaatcaaaagaagctcggaagtacatttttaattgcttagatgacatggctcaggtgaatatgtctac



agacctggagggaacagacatgttggcagagaaggcagaccgaagagaatacattgatctgttaaagaaaatgctcacaattgatgcaga



taagagaattacccctctaaaaactcttaaccatcagtttgtgacaatgactcaccttttggattttccacatagcaatcatgttaagtcttgttttca



gaacatggagatctgcaagcggagggttcacatgtatgatacagtgagtcagatcaagagtcccttcactacacatgttgccccaaatacaa



gcacaaatctaaccatgagcttcagcaatcagctcaatacagtgcacaatcaggccagtgttctagcttccagttctactgcagcagctgcta



ctctttctctggctaattcagatgtctcactactaaactaccagtcagctttgtacccatcatctgctgcaccagttcctggagttgcccagcagg



gtgtttccttgcagcctggaaccacccagatttgcactcagacagatccattccaacagacatttatagtatgtccacctgcgtttcaaactgga



ctacaagcaacaacaaagcattctggattccctgtgaggatggataatgctgtaccgattgtaccccaggcaccagctgctcagccactaca



gattcagtcaggagttctcacgcagggaagctgtacaccactaatggtagcaactctccaccctcaagtagccaccatcacaccgcagtatg



cggtgccctttactctgagctgcgcagccggccggccggcgctggttgaacagactgccgctgtactgcaggcgtggcctggagggact



cagcaaattctcctgccttcaacttggcaacagttgcctggggtagctctacacaactctgtccagcccacagcaatgattccagaggccatg



gggagtggacagcagctagctgactggaggaatgcccactctcatggcaaccagtacagcactatcatgcagcagccatccttgctgacta



accatgtgacattggccactgctcagcctctgaatgttggtgttgcccatgttgtcagacaacaacaatccagttccctcccttcgaagaagaa



taagcagtcagctccagtctcttccaagtcctctctagatgttctgccttcccaagtctattctctggttgggagcagtcccctccgcaccacatc



ttcttataattccttggtccctgtccaagatcagcatcagcccatcatcattccagatactcccagccctcctgtgagtgtcatcactatccgaag



tgacactgatgaggaagaggacaacaaatacaagcccagtagctctggactgaagccaaggtctaatgtcatcagttatgtcactgtcaatg



attctccagactctgactcttctttgagcagcccttattccactgataccctgagtgctctccgaggcaatagtggatccgttttggaggggcct



ggcagagttgtggcagatggcactggcacccgcactatcattgtgcctccactgaaaactcagcttggtgactgcactgtagcaacccagg



cctcaggtctcctgagcaataagactaagccagtcgcttcagtgagtgggcagtcatctggatgctgtatcacccccacagggtatcgagct



caacgcggggggaccagtgcagcacaaccactcaatcttagccagaaccagcagtcatcggcggctccaacctcacaggagagaagca



gcaacccagccccccgcaggcagcaggcgtttgtggcccctctctcccaagccccctacaccttccagcatggcagcccgctacactcga



cagggcacccacaccttgccccggcccctgctcacctgccaagccaggctcatctgtatacgtatgctgccccgacttctgctgctgcactg



ggctcaaccagctccattgctcatcttttctccccacagggttcctcaaggcatgctgcagcctataccactcaccctagcactttggtgcacc



aggtccctgtcagtgttgggcccagcctcctcacttctgccagcgtggcccctgctcagtaccaacaccagtttgccacccaatcctacattg



ggtcttcccgaggctcaacaatttacactggatacccgctgagtcctaccaagatcagccagtattcctacttatagttggtgagcatgaggg



aggaggaatcatggctaccttctcctggccctgcgttcttaatattgggctatggagagatcctcctttaccctcttgaaatttcttagccagcaa



cttgttctgcaggggcccactgaagcagaaggtttttctctgggggaacctgtctcagtgttgactgcattgttgtagtcttcccaaagtttgccc



tatttttaaattcattatttttgtgacagtaattttggtacttggaagagttcagatgcccatcttctgcagttaccaaggaagagagattgttctgaa



gttaccctctgaaaaatattttgtctctctgacttgatttctataaatgcttttaaaaacaagtgaagcccctctttatttcattttgtgttattgtgattg



ctggtcaggaaaaatgctgatagaaggagttgaaatctgatgacaaaaaaagaaaaattactttttgtttgtttataaactcagacttgcctatttt



attttaaaagcggcttacacaatctcccttttgtttattggacatttaaacttacagagtttcagttttgttttaatgtcatattatacttaatgggcaatt



gttatttttgcaaaactggttacgtattactctgtgttactattgagattctctcaattgctcctgtgtttgttataaagtagtgtttaaaaggcagctca



ccatttgctggtaacttaatgtgagagaatccatatctgcgtgaaaacaccaagtattctttttaaatgaagcaccatgaattcttttttaaattatttt



ttaaaagtctttctctctctgattcagcttaaatttttttatcgaaaaagccattaaggtggttattattacatggtggtggtggttttattatatgcaaa



atctctgtctattatgagatactggcattgatgagctttgcctaaagattagtatgaattttcagtaatacacctctgttttgctcatctctcccttctgt



tttatgtgatttgtttggggagaaagctaaaaaaacctgaaaccagataagaacatttcttgtgtatagcttttatacttcaaagtagcttcctttgt



atgccagcagcaaattgaatgctctcttattaagacttatataataagtgcatgtaggaattgcaaaaaatattttaaaaatttattactgaatttaa



aaatattttagaagttttgtaatggtggtgttttaatattttacataattaaatatgtacatattgattagaaaaatataacaagcaatttttcctgctaa



cccaaaatgttatttgtaatcaaatgtgtagtgattacacttgaattgtgtacttagtgtgtatgtgatcctccagtgttatcccggagatggattga



tgtctccattgtatttaaaccaaaatgaactgatacttgttggaatgtatgtgaactaattgcaattatattagagcatattactgtagtgctgaatg



agcaggggcattgcctgcaaggagaggagacccttggaattgttttgcacaggtgtgtctggtgaggagtttttcagtgtgtgtctcttccttcc



ctttcttcctccttcccttattgtagtgccttatatgataatgtagtggttaatagagtttacagtgagcttgccttaggatggaccagcaagcccc



cgtggaccctaagttgttcaccgggatttatcagaacaggattagtagctgtattgtgtaatgcattgttctcagtttccctgccaacattgaaaa



ataaaaacagcagcttttctcctttaccaccacctctacccctttccattttggattctcggctgagttctcacagaagcattttccccatgtggctc



tctcactgtgcgttgctaccttgcttctgtgagaattcaggaagcaggtgagaggagtcaagccaatattaaatatgcattcttttaaagtatgtg



caatcacttttagaatgaatttttttttccttttcccatgtggcagtccttcctgcacatagttgacattcctagtaaaatatttgcttgttgaaaaaaac



atgttaacagatgtgtttataccaaagagcctgttgtattgcttaccatgtccccatactatgaggagaagttttgtggtgccgctggtgacaag



gaactcacagaaaggtttcttagctggtgaagaatatagagaaggaaccaaagcctgttgagtcattgaggcttttgaggtttcttttttaacag



cttgtatagtcttggggcccttcaagctgtgaaattgtccttgtactctcagctcctgcatggatctgggtcaagtagaaggtactggggatgg



ggacattcctgcccataaaggatttggggaaagaagattaatcctaaaatacaggtgtgttccatctgaattgaaaatgatatatttgagatata



attttaggactggttctgtgtagatagagatggtgtcaaggaggtgcaggatggagatgggagatttcatggagcctggtcagccagctctgt



accaggttgaacaccgaggagctgtcaaagtatttggagtttcttcattgtaaggagtaagggcttccaagatggggcaggtagtccgtaca



gcctaccaggaacatgttgtgttttctttattttttaaaatcattatattgagttgtgttttcagcactatattggtcaagatagccaagcagtttgtata



atttctgtcactagtgtcatacagttttctggtcaacatgtgtgatctttgtgtctcctttttgccaagcacattctgattttcttgttggaacacaggtc



tagtttctaaaggacaaattttttgttccttgtcttttttctgtaagggacaagatttgttgtttttgtaagaaatgagatgcaggaaagaaaaccaaa



tcccattcctgcaccccagtccaataagcagataccacttaagataggagtctaaactccacagaaaaggataataccaagagcttgtattgtt



accttagtcacttgcctagcagtgtgtggctttaaaaactagagatttttcagtcttagtctgcaaactggcatttccgattttccagcataaaaat



ccacctgtgtctgctgaatgtgtatgtatgtgctcactgtggctttagattctgtccctggggttagccctgttggccctgacaggaagggagg



aagcctggtgaatttagtgagcagctggcctgggtcacagtgacctgacctcaaaccagcttaaggctttaagtcctctctcagaacttggca



tttccaacttcttcctttccgggtgagagaagaagcggagaagggttcagtgtagccactctgggctcatagggacacttggtcactccaga



gtttttaatagctcccaggaggtgatattattttcagtgctcagctgaaataccaaccccaggaataagaactccatttcaaacagttctggccat



tctgagcctgcttttgtgattgctcatccattgtcctccactagaggggctaagcttgactgcccttagccaggcaagcacagtaatgtgtgtttt



gttcagcattattatgcaaaaattcactagttgagatggtttgttttaggataggaaatgaaattgcctctcagtgacaggagtggcccgagcct



gcttcctattttgattttttttttttttaactgatagatggtgcagcatgtctacatggttgtttgttgctaaactttatataatgtgtggtttcaattcagct



tgaaaaataatctcactacatgtagcagtacattatatgtacattatatgtaatgttagtatttctgctttgaatccttgatattgcaatggaattccta



ctttattaaatgtatttgatatgctagttattgtgtgcgatttaaactttttttgctttctccctttttttggttgtgcgctttcttttacaacaagcctctaga



aacagatagtttctgagaattactgagctatgtttgtaatgcagatgtacttagggagtatgtaaaataatcattttaacaaaagaaatagatattt



aaaatttaatactaactatgggaaaagggtccattgtgtaaaacatagtttatctttggattcaatgtttgtctttggttttacaaagtagcttgtatttt



cagtattttctacataatatggtaaaatgtagagcaattgcaatgcatcaataaaatgggtaaattttctgacttatgtggctgtttttgacttctgtta



taggatataaaggggatcaataaatgacatctttgaaagtgaaaa (SEQ ID NO: 617)





Nuak2
gtgctttactgcgcgctctggtactgctgtggctccccgtcctggtgcgggacctgtgccccgcgcttcagccctccccgcacagcctactg
NM_030952
NM_001195025



attcccctgccgcccttgctcacctcctgctcgccatggagtcgctggttttcgcgcggcgctccggccccactccctcggccgcagagcta



gcccggccgctggcggaagggctgatcaagtcgcccaagcccctaatgaagaagcaggcggtgaagcggcaccaccacaagcacaac



ctgcggcaccgctacgagttcctggagaccctgggcaaaggcacctacgggaaggtgaagaaggcgcgggagagctcggggcgcctg



gtggccatcaagtcaatccggaaggacaaaatcaaagatgagcaagatctgatgcacatacggagggagattgagatcatgtcatcactca



accaccctcacatcattgccatccatgaagtgtttgagaacagcagcaagatcgtgatcgtcatggagtatgccagccggggcgacctttat



gactacatcagcgagcggcagcagctcagtgagcgcgaagctaggcatttcttccggcagatcgtctctgccgtgcactattgccatcaga



acagagttgtccaccgagatctcaagctggagaacatcctcttggatgccaatgggaatatcaagattgctgacttcggcctctccaacctct



accatcaaggcaagttcctgcagacattctgtgggagccccctctatgcctcgccagagattgtcaatgggaagccctacacaggcccaga



ggtggacagctggtccctgggtgttctcctctacatcctggtgcatggcaccatgccctttgatgggcatgaccataagatcctagtgaaaca



gatcagcaacggggcctaccgggagccacctaaaccctctgatgcctgtggcctgatccggtggctgttgatggtgaaccccacccgccg



ggccaccctggaggatgtggccagtcactggtgggtcaactggggctacgccacccgagtgggagagcaggaggctccgcatgagggt



gggcaccctggcagtgactctgcccgcgcctccatggctgactggctccggcgttcctcccgccccctcctggagaatggggccaaggtg



tgcagcttcttcaagcagcatgcacctggtgggggaagcaccacccctggcctggagcgccagcattcgctcaagaagtcccgcaagga



gaatgacatggcccagtctctccacagtgacacggctgatgacactgcccatcgccctggcaagagcaacctcaagctgccaaagggcat



tctcaagaagaaggtgtcagcctctgcagaaggggtacaggaggaccctccggagctcagcccaatccctgcgagcccagggcaggct



gccccgctgctccccaagaagggcattctcaagaagccccgacagcgcgagtctggctactactcctctcccgagcccagtgaatctggg



gagctcttggacgcaggcgacgtgtttgtgagtggggatcccaaggagcagaagcctccgcaagcttcagggctgctcctccatcgcaaa



ggcatcctcaaactcaatggcaagttctcccagacagccttggagctcgcggcccccaccaccttcggctccctggatgaactcgccccac



ctcgccccctggcccgggccagccgaccctcaggggctgtgagcgaggacagcatcctgtcctctgagtcctttgaccagctggacttgc



ctgaacggctcccagagcccccactgcggggctgtgtgtctgtggacaacctcacggggcttgaggagcccccctcagagggccctgga



agctgcctgaggcgctggcggcaggatcctttgggggacagctgcttttccctgacagactgccaggaggtgacagcgacctaccgaca



ggcactgagggtctgctcaaagctcacctgagtggagtaggcattgccccagcccggtcaggctctcagatgcagctggttgcaccccga



ggggagatgccttctcccccacctcccaggacctgcatcccagctcagaaggctgagagggtttgcagtggagccctgagcagggctgg



atatgggaagtaggcaaatgaaatgcgccaagggttcagtgtctgtcttcagccctgctgaacgaagaggatactaaagagaggggaacg



ggaatgcccgcgacagagtccacattgcctgtttcttgtgtacatgggggggccacagagacctggaaagagaactctcccagggcccat



ctcctgcatcccatgaatactctgtacacatggtgccttctaaggacagctccttccctactcattccctgcccaagtggggccagacctcttta



cacacacattcccgttcctaccaaccaccagaactggatggtggcacccctaatgtgcatgaggcatcctgggaatggtctggagtaacgct



tcgttatttttatttttatttttatttatttatttatttttttgagacggagtttcgctcttggtgcccaggctagagtgcaatggcgcgatctcagctcac



ctcaacctccgcctcccgggttcaagcgattctcctgcctcagcctccctagtagctgggattacaggcgcccgccaccatgcccggctaat



tttgtatttttagtagagacagggtttctccatgttggtcaggctggtctcaaactcccgacctcaggtgatccacccacctcggcctcccaaag



tgctgggattacaggcgtgagccaccgcgccccacctaacccttccttatttagcctaggagtaagagaacacaatctctgtttcttcaatggt



tctcttcccttttccatcctccaaacctggcctgagcctcctgaagttgctgctgtgaatctgaaagacttgaaaagcctccgcctgctgtgtgg



acttcatctcaaggggcccagcctcctctggactccaccttggacctcagtgactcagaacttctgcctctaagctgctctaaagtccagacta



tggatgtgttctctaggccttcaggactctagaatgtccatatttatttttatgttcttggctttgtgttttaggaaaagtgaatcttgctgttttcaata



atgtgaatgctatgttctgggaaaatccactatgacatctaagttttgtgtacagagagatatttttgcaactatttccacctcctcccacaacccc



ccacactccactccacactcttgagtctctttacctaatggtctctacctaatggacctccgtggccaaaaagtaccattaaaaccagaaaggt



gattggaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa (SEQ ID NO: 618)





Alk
agctgcaagtggcgggcgcccaggcagatgcgatccagcggctctgggggcggcagcggtggtagcagctggtacctcccgccgcct
NM_004304
NM_007439



ctgttcggagggtcgcggggcaccgaggtgctttccggccgccctctggtcggccacccaaagccgcgggcgctgatgatgggtgagg



agggggcggcaagatttcgggcgcccctgccctgaacgccctcagctgctgccgccggggccgctccagtgcctgcgaactctgagga



gccgaggcgccggtgagagcaaggacgctgcaaacttgcgcagcgcgggggctgggattcacgcccagaagttcagcaggcagaca



gtccgaagccttcccgcagcggagagatagcttgagggtgcgcaagacggcagcctccgccctcggttcccgcccagaccgggcagaa



gagcttggaggagccaaaaggaacgcaaaaggcggccaggacagcgtgcagcagctgggagccgccgttctcagccttaaaagttgca



gagattggaggctgccccgagaggggacagaccccagctccgactgcggggggcaggagaggacggtacccaactgccacctccctt



caaccatagtagttcctctgtaccgagcgcagcgagctacagacgggggcgcggcactcggcgcggagagcgggaggctcaaggtcc



cagccagtgagcccagtgtgcttgagtgtctctggactcgcccctgagcttccaggtctgtttcatttagactcctgctcgcctccgtgcagttg



ggggaaagcaagagacttgcgcgcacgcacagtcctctggagatcaggtggaaggagccgctgggtaccaaggactgttcagagcctct



tcccatctcggggagagcgaagggtgaggctgggcccggagagcagtgtaaacggcctcctccggcgggatgggagccatcgggctc



ctgtggctcctgccgctgctgctttccacggcagctgtgggctccgggatggggaccggccagcgcgcgggctccccagctgcggggc



cgccgctgcagccccgggagccactcagctactcgcgcctgcagaggaagagtctggcagttgacttcgtggtgccctcgctcttccgtgt



ctacgcccgggacctactgctgccaccatcctcctcggagctgaaggctggcaggcccgaggcccgcggctcgctagctctggactgcg



ccccgctgctcaggttgctggggccggcgccgggggtctcctggaccgccggttcaccagccccggcagaggcccggacgctgtccag



ggtgctgaagggcggctccgtgcgcaagctccggcgtgccaagcagttggtgctggagctgggcgaggaggcgatcttggagggttgc



gtcgggccccccggggaggcggctgtggggctgctccagttcaatctcagcgagctgttcagttggtggattcgccaaggcgaagggcg



actgaggatccgcctgatgcccgagaagaaggcgtcggaagtgggcagagagggaaggctgtccgcggcaattcgcgcctcccagcc



ccgccttctcttccagatcttcgggactggtcatagctccttggaatcaccaacaaacatgccttctccttctcctgattattttacatggaatctc



acctggataatgaaagactccttccctttcctgtctcatcgcagccgatatggtctggagtgcagctttgacttcccctgtgagctggagtattc



ccctccactgcatgacctcaggaaccagagctggtcctggcgccgcatcccctccgaggaggcctcccagatggacttgctggatgggcc



tggggcagagcgttctaaggagatgcccagaggctcctttctccttctcaacacctcagctgactccaagcacaccatcctgagtccgtgga



tgaggagcagcagtgagcactgcacactggccgtctcggtgcacaggcacctgcagccctctggaaggtacattgcccagctgctgccc



cacaacgaggctgcaagagagatcctcctgatgcccactccagggaagcatggttggacagtgctccagggaagaatcgggcgtccaga



caacccatttcgagtggccctggaatacatctccagtggaaaccgcagcttgtctgcagtggacttctttgccctgaagaactgcagtgaag



gaacatccccaggctccaagatggccctgcagagctccttcacttgttggaatgggacagtcctccagcttgggcaggcctgtgacttccac



caggactgtgcccagggagaagatgagagccagatgtgccggaaactgcctgtgggtttttactgcaactttgaagatggcttctgtggctg



gacccaaggcacactgtcaccccacactcctcaatggcaggtcaggaccctaaaggatgcccggttccaggaccaccaagaccatgctct



attgctcagtaccactgatgtccccgcttctgaaagtgctacagtgaccagtgctacgtttcctgcaccgatcaagagctctccatgtgagctc



cgaatgtcctggctcattcgtggagtcttgaggggaaacgtgtccttggtgctagtggagaacaaaaccgggaaggagcaaggcaggatg



gtctggcatgtcgccgcctatgaaggcttgagcctgtggcagtggatggtgttgcctctcctcgatgtgtctgacaggttctggctgcagatg



gtcgcatggtggggacaaggatccagagccatcgtggcttttgacaatatctccatcagcctggactgctacctcaccattagcggagagg



acaagatcctgcagaatacagcacccaaatcaagaaacctgtttgagagaaacccaaacaaggagctgaaacccggggaaaattcacca



agacagacccccatctttgaccctacagttcattggctgttcaccacatgtggggccagcgggccccatggccccacccaggcacagtgca



acaacgcctaccagaactccaacctgagcgtggaggtggggagcgagggccccctgaaaggcatccagatctggaaggtgccagcca



ccgacacctacagcatctcgggctacggagctgctggcgggaaaggcgggaagaacaccatgatgcggtcccacggcgtgtctgtgctg



ggcatcttcaacctggagaaggatgacatgctgtacatcctggttgggcagcagggagaggacgcctgccccagtacaaaccagttaatc



cagaaagtctgcattggagagaacaatgtgatagaagaagaaatccgtgtgaacagaagcgtgcatgagtgggcaggaggcggaggag



gagggggtggagccacctacgtatttaagatgaaggatggagtgccggtgcccctgatcattgcagccggaggtggtggcagggcctac



ggggccaagacagacacgttccacccagagagactggagaataactcctcggttctagggctaaacggcaattccggagccgcaggtgg



tggaggtggctggaatgataacacttccttgctctgggccggaaaatctttgcaggagggtgccaccggaggacattcctgcccccaggcc



atgaagaagtgggggtgggagacaagagggggtttcggagggggtggaggggggtgctcctcaggtggaggaggcggaggatatata



ggcggcaatgcagcctcaaacaatgaccccgaaatggatggggaagatggggtttccttcatcagtccactgggcatcctgtacacccca



gctttaaaagtgatggaaggccacggggaagtgaatattaagcattatctaaactgcagtcactgtgaggtagacgaatgtcacatggaccc



tgaaagccacaaggtcatctgcttctgtgaccacgggacggtgctggctgaggatggcgtctcctgcattgtgtcacccaccccggagcca



cacctgccactctcgctgatcctctctgtggtgacctctgccctcgtggccgccctggtcctggctttctccggcatcatgattgtgtaccgcc



ggaagcaccaggagctgcaagccatgcagatggagctgcagagccctgagtacaagctgagcaagctccgcacctcgaccatcatgac



cgactacaaccccaactactgctttgctggcaagacctcctccatcagtgacctgaaggaggtgccgcggaaaaacatcaccctcattcgg



ggtctgggccatggcgcctttggggaggtgtatgaaggccaggtgtccggaatgcccaacgacccaagccccctgcaagtggctgtgaa



gacgctgcctgaagtgtgctctgaacaggacgaactggatttcctcatggaagccctgatcatcagcaaattcaaccaccagaacattgttc



gctgcattggggtgagcctgcaatccctgccccggttcatcctgctggagctcatggcggggggagacctcaagtccttcctccgagagac



ccgccctcgcccgagccagccctcctccctggccatgctggaccttctgcacgtggctcgggacattgcctgtggctgtcagtatttggagg



aaaaccacttcatccaccgagacattgctgccagaaactgcctcttgacctgtccaggccctggaagagtggccaagattggagacttcgg



gatggcccgagacatctacagggcgagctactatagaaagggaggctgtgccatgctgccagttaagtggatgcccccagaggccttcat



ggaaggaatattcacttctaaaacagacacatggtcctttggagtgctgctatgggaaatcttttctcttggatatatgccataccccagcaaaa



gcaaccaggaagttctggagtttgtcaccagtggaggccggatggacccacccaagaactgccctgggcctgtataccggataatgactc



agtgctggcaacatcagcctgaagacaggcccaactttgccatcattttggagaggattgaatactgcacccaggacccggatgtaatcaac



accgctttgccgatagaatatggtccacttgtggaagaggaagagaaagtgcctgtgaggcccaaggaccctgagggggttcctcctctcc



tggtctctcaacaggcaaaacgggaggaggagcgcagcccagctgccccaccacctctgcctaccacctcctctggcaaggctgcaaag



aaacccacagctgcagagatctctgttcgagtccctagagggccggccgtggaagggggacacgtgaatatggcattctctcagtccaac



cctccttcggagttgcacaaggtccacggatccagaaacaagcccaccagcttgtggaacccaacgtacggctcctggtttacagagaaac



ccaccaaaaagaataatcctatagcaaagaaggagccacacgacaggggtaacctggggctggagggaagctgtactgtcccacctaac



gttgcaactgggagacttccgggggcctcactgctcctagagccctcttcgctgactgccaatatgaaggaggtacctctgttcaggctacgt



cacttcccttgtgggaatgtcaattacggctaccagcaacagggcttgcccttagaagccgctactgcccctggagctggtcattacgagga



taccattctgaaaagcaagaatagcatgaaccagcctgggccctgagctcggtcgcacactcacttctcttccttgggatccctaagaccgtg



gaggagagagaggcaatggctccttcacaaaccagagaccaaatgtcacgttttgttttgtgccaacctattttgaagtaccaccaaaaaagc



tgtattttgaaaatgctttagaaaggttttgagcatgggttcatcctattctttcgaaagaagaaaatatcataaaaatgagtgataaatacaagg



cccagatgtggttgcataaggtttttatgcatgtttgttgtatacttccttatgcttctttcaaattgtgtgtgctctgcttcaatgtagtcagaattagc



tgcttctatgtttcatagttggggtcatagatgtttccttgccttgttgatgtggacatgagccatttgaggggagagggaacggaaataaagga



gttatttgtaatgactaaaa (SEQ ID NO: 619)





Pdzklip1
gcccgtcttcgtgtctcctccctccctcgccttcctccttcctagctcctctcctccagggccagactgagcccaggttgatttcaggcggaca
NM_005764
NM_001164557



ccaatagactccacagcagctccaggagcccagacaccggcggccagaagcaaggctaggagctgctgcagccatgtcggccctcagc



ctcctcattctgggcctgctcacggcagtgccacctgccagctgtcagcaaggcctggggaaccttcagccctggatgcagggccttatcg



cggtggccgtgttcctggtcctcgttgcaatcgcctttgcagtcaaccacttctggtgccaggaggagccggagcctgcacacatgatcctg



accgtcggaaacaaggcagatggagtcctggtgggaacagatggaaggtactcttcgatggcggccagtttcaggtccagtgagcatgag



aatgcctatgagaatgtgcccgaggaggaaggcaaggtccgcagcaccccgatgtaaccttctctgtggctccaaccccaagactcccag



gcacatgggatggatgtccagtgctaccacccaagccccctccttctttgtgtggaatctgcaatagtgggctgactccctccagccccatgc



cggccctacccgcccttgaagtatagccagccaaggttggagctcagaccgtgtctaggttggggctcggctgtggccctggggtctcctg



ctcagctcagaagagccttctggagaggacagtcagctgagcacctcccatcctgctcacacgtccttccccataactatggaaatggccct



aatttctgtgaaataaagactttttgtatttctggggctgaggctcagcaacagcccctcaggcttccagtga (SEQ ID NO: 620)





Inpp5b
aaatgtagtcactgtcccggaacctggggcagcggagtcccgtgcgccctgtggtgacagctcaggagggtgtgtgcgctcagcagggg
NM_005540
NM_008385



ccagcatggaccagtctgtggcaatccaggagacgctggctgagggggaatactgcgtcatcgcggtgcaaggtgtgctgtgtgagggg



gacagccggcagagccgcctcctgggactcgtgcgctaccgcctggagcacggcggccaggaacacgctctcttcctctatacgcaccg



gaggatggccattaccggggacgatgtctctctggaccagatagtgccagtctcgcgggattttacgctggaagaagtgtccccagatggt



gaactctacatccttggctcagatgtgaccgtccagctggacacagcagagcttagcctcgtattccaactgccctttggttcacaaaccagg



atgttcctccacgaagttgccagggcctgtccaggcttcgattctgcgacccgggatcctgaattcctgtggctgtctcggtataggtgcgca



gagctggagctggagatgccaacgccgcgcggttgtaactcggccctagttacctggccagggtacgcgacaattggcggaggtggttct



aactttgatggtttgagaccaaatgggaagggagtgcctatggaccaaagctccaggggtcaagataaaccagaaagcttgcaaccaaga



cagaataaatccaagtccgaaattactgacatggttcgctcctccactatcacagtgtcggacaaggctcatattttatccatgcagaagtttgg



actgcgagatacaattgtgaaatcacatctactacagaaagaagaggattacacctatatccagaacttcaggttttttgcgggaacatacaat



gtaaatgggcagtcccccaaagaatgcctccggctgtggctgagcaatggtatccaggccccagatgtctattgtgtagggttccaggagct



tgatctgagtaaggaagcttttttctttcacgataccccaaaggaggaagagtggttcaaagctgtgtcagagggtcttcatccagatgccaaa



tatgcaaaggtgaagcttatccgactggttgggattatgctgctgttatatgtcaaacaggagcatgcagcttatatctcagaagtggaagccg



agactgtggggacaggaatcatggggaggatgggcaacaagggaggcgtggcgatcaggttccagttccacaacaccagcatctgcgtt



gtgaattctcacttggcagcccacattgaagagtatgagaggaggaaccaggactataaggacatttgttctcgaatgcagttttgtcagcct



gacccaagccttccccctctcaccatcagcaaccatgatgtgatcttgtggctgggggacctcaactacaggatagaagagctggatgtgg



aaaaagtgaaaaagctcatcgaagagaaggactttcaaatgctgtatgcatatgatcagctgaaaattcaggtggccgcaaagactgtctttg



aaggcttcacagagggtgagctcacattccagcctacttacaagtatgatacgggctctgacgactgggataccagtgagaagtgccgtgc



tcctgcctggtgtgatcggattctctggaaagggaagaacatcactcagctgagttaccagagccacatggccctgaagaccagtgaccac



aagcctgtcagctcagtgtttgacatcggggtgagggtcgtaaatgacgagctttaccggaagacactggaggaaattgttcgctccctgga



taagatggaaaatgccaacattccttctgtgtccctgtccaagcgagagttctgttttcagaatgtgaagtacatgcaattgaaagtagaatcctt



tacaattcataatggacaagtaccctgtcattttgaattcatcaacaagcctgatgaagagtcttactgtaagcagtggctgaatgccaacccca



gcagaggcttcctcctgccagattctgatgttgagattgacttggagctcttcgtaaataagatgacagctacaaagctcaactcgggtgaag



acaaaattgaggacattctggttctgcacttggacaggggaaaggattactttttgtctgtgtctgggaactacctgcccagctgttttgggtctc



ccattcatacactgtgttacatgagagagccaatcttggacctaccacttgaaaccattagtgagctgactctgatgccagtatggactggaga



tgatgggagccagttggatagccccatggaaatccccaaagagctctggatgatggttgattacctgtaccgaaatgctgtccagcaggaa



gatctgtttcagcaaccaggcctgaggtcagaatttgaacatatcagggactgcttggatactggaatgattgataacctctctgccagcaatc



attctgtagccgaagccctgctgcttttcctggagagccttccagagcctgtcatctgttacagcacctaccataactgcttggagtgttctggc



aactacacagcaagcaaacaggtcatttctactctccccatattccacaaaaatgtcttccactacttgatggcgtttttgcgagaactgctgaa



aaattcagcaaaaaatcatttggatgagaatattctagctagcatatttggcagcttattgcttcgaaacccagctggtcaccaaaagcttgatat



gacagagaagaagaaggctcaagaatttattcaccagttcctctgcaacccactctgagcctctctctcctcctattttacttgaggctgccaat



taccagccccacctgtttcagctcaagagatgccttaagataattatgtgaggccacttggtagcaagaatggcagctatttcctgagcctagt



accccaattaagcccaccattggttagcacactcagcgctgtgagtcgtgaagacacgggagaaaatccaccataataaaactgacattcaa



ttttcaactttagttatttaacacagatttttttattttttatttttttttattttgagacggagttttgctctgtcgcgcagggtggagtgcggtggcacg



atctcggctcactgcaacctctgcctcctgggtgcaagcaattatcctgcctcagcctcccgagtagctgggactgcaggcacacactgcca



cgcccagctaattttttgcattttagtagagacggggtttcaccgtgttgcccaggctgttctaaaactcctgaactcaggtaatctgcctgcctc



ggcctccccaagtgctaggattacagatgtgagccaccacgcccggccttttttttttttttttcttttttgagatggagtttcactcttgttgcccag



gctggagtgcgttggcgtggtcttggctcactgcaacctctgcctccttggttcaagcaattctcctgcctcagcctctcgagtagctgggatt



ataggcgtccgccaccatgcctggctaatttttttgtgtgtttttagtatagacacggtttcaccatgttggccaggctggtctcgaatgcctggc



ctcaggtgatccacctgccttggcctcccaaagtgctgggattacaggcatgaaccaccacgcctggcctaaaatgtttttaaataactgtact



tgtactcactcaccctacctccagggcatagtcagtctgggctgagatccccatgatcagatatttgatggaaagtcctgaaaggccaatgag



ttggatggcaagaatgcaggcagaagctgctggataaaataggctacagccacctcagatgctttcagtgctctgtctgaggatgtgtatatg



catatgcaaactcgacccccgttcctgcccagataatggctcaataactctgaggctggttgctcagcctctgagggcaatacaggcatttaa



aaaattaaaatgaccaggcacagtggctcacgcctgtaatctcggcactttgggagactgaggtgggagcatcacttgagaccaggagttt



gggaccaggctgggcaacacagggagaccccctctctacaaaaacatttttaaaaaattagctgggtgtggtgatgcatgcctgtggtccca



gttacttgggaggctgacgtgggtggctcacttgagcacaggagtttgaggctgcagtgacctatgaccacatcactgtacgccagcccgg



gtgagagagggagaccccgtctctaaaaataaaatgtaaaatcactgaaaaaatgagtgttcggtgaaacaagtgggattttctgggccagc



aagtcttccaaactgtatatgatgcatcctgtctccatgtgtaatatattttaatgataaatgtatttttaacagtgaaaaaaaaaaaaaaa (SEQ



ID NO: 653)





Socs1
ggcagctgcacggctcctggccccggagcatgcgcgagagccgccccggagcgccccggagccccccgccgtcccgcccgcggcgt
NM_003745
NM_001271603



cccgcgccccgccgccagcgcacccccggacgctatggcccacccctccggctggccccttctgtaggatggtagcacacaaccaggt



ggcagccgacaatgcagtctccacagcagcagagccccgacggcggccagaaccttcctcctcttcctcctcctcgcccgcggcccccg



cgcgcccgcggccgtgccccgcggtcccggccccggcccccggcgacacgcacttccgcacattccgttcgcacgccgattaccggcg



catcacgcgcgccagcgcgctcctggacgcctgcggattctactgggggcccctgagcgtgcacggggcgcacgagcggctgcgcgc



cgagcccgtgggcaccttcctggtgcgcgacagccgccagcggaactgctttttcgcccttagcgtgaagatggcctcgggacccacgag



catccgcgtgcactttcaggccggccgctttcacctggatggcagccgcgagagcttcgactgcctcttcgagctgctggagcactacgtg



gcggcgccgcgccgcatgctgggggccccgctgcgccagcgccgcgtgcggccgctgcaggagctgtgccgccagcgcatcgtggc



caccgtgggccgcgagaacctggctcgcatccccctcaaccccgtcctccgcgactacctgagctccttccccttccagatttgaccggca



gcgcccgccgtgcacgcagcattaactgggatgccgtgttattttgttattacttgcctggaaccatgtgggtaccctccccggcctgggttg



gagggagcggatgggtgtaggggcgaggcgcctcccgccctcggctggagacgaggccgcagaccccttctcacctcttgagggggtc



ctccccctcctggtgctccctctgggtccccctggttgttgtagcagcttaactgtatctggagccaggacctgaactcgcacctcctacctctt



catgtttacatatacccagtatctttgcacaaaccaggggttgggggagggtctctggctttatttttctgctgtgcagaatcctattttatatttttta



aagtcagtttaggtaataaactttattatgaaagtttttttttt (SEQ ID NO: 654)





Jun
gacatcatgggctatttttaggggttgactggtagcagataagtgttgagctcgggctggataagggctcagagttgcactgagtgtggctga
NM_002228
NM_010591



agcagcgaggcgggagtggaggtgcgcggagtcaggcagacagacagacacagccagccagccaggtcggcagtatagtccgaact



gcaaatcttattttcttttcaccttctctctaactgcccagagctagcgcctgtggctcccgggctggtgtttcgggagtgtccagagagcctgg



tctccagccgcccccgggaggagagccctgctgcccaggcgctgttgacagcggcggaaagcagcggtacccacgcgcccgccggg



ggaagtcggcgagcggctgcagcagcaaagaactttcccggctgggaggaccggagacaagtggcagagtcccggagcgaacttttgc



aagcctttcctgcgtcttaggcttctccacggcggtaaagaccagaaggcggcggagagccacgcaagagaagaaggacgtgcgctca



gcttcgctcgcaccggttgttgaacttgggcgagcgcgagccgcggctgccgggcgccccctccccctagcagcggaggaggggacaa



gtcgtcggagtccgggcggccaagacccgccgccggccggccactgcagggtccgcactgatccgctccgcggggagagccgctgct



ctgggaagtgagttcgcctgcggactccgaggaaccgctgcgcccgaagagcgctcagtgagtgaccgcgacttttcaaagccgggtag



cgcgcgcgagtcgacaagtaagagtgcgggaggcatcttaattaaccctgcgctccctggagcgagctggtgaggagggcgcagcggg



gacgacagccagcgggtgcgtgcgctcttagagaaactttccctgtcaaaggctccggggggcgcgggtgtcccccgcttgccagagcc



ctgttgcggccccgaaacttgtgcgcgcagcccaaactaacctcacgtgaagtgacggactgttctatgactgcaaagatggaaacgacct



tctatgacgatgccctcaacgcctcgttcctcccgtccgagagcggaccttatggctacagtaaccccaagatcctgaaacagagcatgacc



ctgaacctggccgacccagtgggagcctgaagccgcacctccgcgccaagaactcggacctcctcacctcgcccgacgtggggctgctc



aagctggcgtcgcccgagctggagcgcctgataatccagtccagcaacgggcacatcaccaccacgccgacccccacccagttcctgtg



ccccaagaacgtgacagatgagcaggagggcttcgccgagggcttcgtgcgcgccctggccgaactgcacagccagaacacgctgcc



cagcgtcacgtcggcggcgcagccggtcaacggggcaggcatggtggctcccgcggtagcctcggtggcagggggcagcggcagcg



gcggcttcagcgccagcctgcacagcgagccgccggtctacgcaaacctcagcaacttcaacccaggcgcgctgagcagcggcggcg



gggcgccctcctacggcgcggccggcctggcctttcccgcgcaaccccagcagcagcagcagccgccgcaccacctgccccagcaga



tgcccgtgcagcacccgcggctgcaggccctgaaggaggagcctcagacagtgcccgagatgcccggcgagacaccgcccctgtccc



ccatcgacatggagtcccaggagcggatcaaggcggagaggaagcgcatgaggaaccgcatcgctgcctccaagtgccgaaaaagga



agctggagagaatcgcccggctggaggaaaaagtgaaaaccttgaaagctcagaactcggagctggcgtccacggccaacatgctcag



ggaacaggtggcacagcttaaacagaaagtcatgaaccacgttaacagtgggtgccaactcatgctaacgcagcagttgcaaacattttga



agagagaccgtcgggggctgaggggcaacgaagaaaaaaaataacacagagagacagacttgagaacttgacaagttgcgacggaga



gaaaaaagaagtgtccgagaactaaagccaagggtatccaagttggactgggttgcgtcctgacggcgcccccagtgtgcacgagtggg



aaggacttggcgcgccctcccttggcgtggagccagggagcggccgcctgcgggctgccccgctttgcggacgggctgtccccgcgcg



aacggaacgttggacttttcgttaacattgaccaagaactgcatggacctaacattcgatctcattcagtattaaaggggggagggggaggg



ggttacaaactgcaatagagactgtagattgcttctgtagtactccttaagaacacaaagcggggggagggttggggaggggcggcagga



gggaggtttgtgagagcgaggctgagcctacagatgaactctttctggcctgccttcgttaactgtgtatgtacatatatatattttttaatttgatg



aaagctgattactgtcaataaacagcttcatgcctttgtaagttatttcttgtttgtttgtttgggtatcctgcccagtgttgtttgtaaataagagattt



ggagcactctgagtttaccatttgtaataaagtatataatttttttatgttttgtttctgaaaattccagaaaggatatttaagaaaatacaataaacta



ttggaaagtactcccctaacctcttttctgcatcatctgtagatactagctatctaggtggagttgaaagagttaagaatgtcgattaaaatcactc



tcagtgcttcttactattaagcagtaaaaactgttctctattagactttagaaataaatgtacctgatgtacctgatgctatggtcaggttatactcct



cctcccccagctatctatatggaattgcttaccaaaggatagtgcgatgtttcaggaggctggaggaaggggggttgcagtggagagggac



agcccactgagaagtcaaacatttcaaagtttggattgtatcaagtggcatgtgctgtgaccatttataatgttagtagaaattttacaataggtg



cttattctcaaagcaggaattggtggcagattttacaaaagatgtatccttccaatttggaatcttctctttgacaattcctagataaaaagatggc



ctttgcttatgaatatttataacagcattcttgtcacaataaatgtattcaaataccaaaaaaaaaaaaaaaaa (SEQ ID NO: 655)





Nptxr
cggccgcggcgacagctccagctccggctccggctccggctccggctccggctcccgcgcctgccccgctcggcccagcgcgcccgg
NM_014293
NM_030689



gctccgcgccccgaccccgccgccgcgcctgccgggggcctcgggcgcccccgccgcccgcctcacgctgaagttcctggccgtgct



gctggccgcgggcatgctggcgttcctcggtgccgtcatctgcatcatcgccagcgtgcccctggcggccagcccggcgcgggcgctgc



ccggcggcgccgacaatgcttcggtcgcctcgggcgccgccgcgtccccgggcccgcagcggagcctgagcgcgctgcacggcgcg



ggcggttcagccgggccccccgcgctgcccggggcacccgcggccagcgcgcacccgctgccgcccgggcccctgttcagccgcttc



ctgtgcacgccgctggctgctgcctgcccgtcgggggcccagcagggggacgcggcgggcgctgcgccgggcgagcgcgaagagct



gctgctgctgcagagcacggccgagcagctgcgccagacggcgctgcagcaggaggcgcgcatccgcgccgaccaggacaccatcc



gtgagctcaccggcaagctgggccgctgcgagagcggcctgccgcgcggcctccagggcgccgggccccgccgcgacaccatggcc



gacgggccctgggactcgcctgcgctcattctggagctggaggacgccgtgcgcgccctgcgggaccgcatcgaccgcctggagcag



gagcttccagcccgtgtgaacctctcagctgccccagccccagtctctgctgtgcccaccggcctacactccaagatggaccagctggag



gggcagctgctggcccaggtgctggcactggagaaggagcgtgtggccctcagccacagcagccgccggcagaggcaggaagtgga



aaaggagttggacgtcctgcagggtcgtgtggctgagctggagcacgggtcctcagcctacagtcctccagatgccttcaagatcagcatc



cccatccgtaacaactacatgtacgcccgcgtgcggaaggctctgcccgagctctacgcattcaccgcctgcatgtggctgcggtccaggt



ccagcggcaccggccagggcacccccttctcctactcagtgcccgggcaggccaacgagattgtactgctagaggcgggccatgagcc



catggagctgctgatcaacgacaaggtggcccagctgcccctgagcctgaaggacaatggctggcaccacatctgcatcgcctggacca



caagggatggcctatggtctgcctaccaggacggggagctgcagggctccggtgagaacctggctgcctggcaccccatcaagcctcat



gggatccttatcttgggccaggagcaggataccctgggtggccggtttgatgccacccaggcctttgtcggtgacattgcccagtttaacctg



tgggaccacgccctgacaccagcccaggtcctgggcattgccaactgcactgcgccactgctgggcaacgtccttccctgggaagacaa



gttggtggaggcctttgggggtgcaacaaaggctgccttcgatgtctgcaaggggagggccaaggcatgaggggccacctcatccaggg



cccctcccttgcctgccactttggggacttgaggggggtcatattccctcctcagcctgcccacgcactggccttccctcctgccccactcct



ggctgtgcctcccatttcccctcacctgtacccacacctccagaatgccctgccctgcgagtgtgtcccctgtccccacctgagtggggagg



agcgtctcaagtgaacagtgggagcctgcccacctggcactgcactggagttgtctcttaccccaccctccctgcccatcaactgtatctgat



ttcactaattttgacagcacccccagtagggtaggattgtgtatgagggggaccccactatctcagtggtgggggtggccgcccgccccctt



gtcccccatgcaacaggcccagtggcttccccttcagggccacaacaggctgtagaaggggatgacgaggacatcagaggttagacttac



cctcctccctctttccaccagctgccagtcaagggcagtgggatctcgatggagcctccccccccccccacccatgcctccctcttcctcctc



tttcctcctctctttgtgtgtagcggtttgaatgttggttccatgcctggcccagccccacctcagtctccaggacattcctttcccagctccagc



ctggagggaaggggacaaagaccccaggaggccaaagggctgcagtcaccccttgtgctcacccatagtgatggccactggtatagtca



tcgctctccctccatgccaaggacaggacttggaccgcttcagcctgggctgggagcagccctaaggtagaggcctcatggcccaggag



accccacctctggcagagccacattacctaccctgtgcatggtcctggggcagcaaggaagaagctcagagggtggggagaagcatgaa



gcagtgagcagagcactgggtgagagggagaagaccttggttcctagccagccctgctaatgtgctgtgtggccttctgtaagtccctgcc



ctctctgggcctggccttcctcattcgtgagctgaggccctcgctttggtcatttgctctccagattgggtgtgagcttctctgtgattccaggtg



gatatgtggggaaagctctggtgaccctgggcttcgcaggggtagatcccaggactcggcagtggatgggatgcagccagtcatgggtta



gggtcagcagagactcagagtccagggcaaggttcaaggcagactaacctcatgcatggattgtaaaaaaccagctccctttggatcaacc



cagcctggcacccttgcctgtctgagagtgtctcaaagggctgatggcttcctggtccccttgagtcatcaccagcttccccaagagagtgtc



agaatcttaagagctgagaggccgggcacggtggctcacgcctgtaatcccagcactttgggaggctgagacaggcagatcacttgaggt



caggagttcgaagtcagcctggccaacgtggtgaaaccccatcttcactaaaaatacaaaacttagctggttaggtggtgcatgcctgtagtc



ccagctactcgggaggccgaggcagaagaatctcttgaactgaggaggtggaggttgcagtgagccgagatcacgccattgcactccag



cctgggcaacagagcaagactccatctcaaaaaaataataataatcttaaagatgagaaaagccaccccatctggcaccacagctgcatctt



gcttgtgagaaatggggaagagttcagggaggacacgtgacctgcacaggatcacagagcatggggcagagccaggactagagctcag



ggcatctgactccctcttcagtgttcttccccctccatgttgcctgcccctgaagacctttgagttcagtctacacctaagcaggtagacatccg



cgaggtcagatgctttccaacatgacacctgaacatcttcctttatgcaacacccaaacatcttggcatccccaccccaggaagtgcgggga



ggaggttatgatccctgggcgcttcggcagaatggagagctgaggtgtccctcccctgctagtcacctaccaggtgtctgagcagctgcat



gctccctggctcaagtgggcactgtaccttttgcctgcctttttgttccctatctccactccctgaggccacttagcctgagacatgatgcaaga



gctgcaggccggggggctcagtgccatggaagctactccaagttgcattgcctcccgcgcccagatcctgctttccatttcgagaacataaa



tagattgcccagcccctccagtacaatcccactggaagaaaaggcaatggcgggcttcagccagacctgctgagacctaggttgccacgg



taacagccaaagacatcaacccaagtgctgggtcaagtgtctcatcatactggcactgttgctggggtgacggcagaattcagaacttcaatt



tcagtgacgccaagcttgatgtgtttctgttattgttttgaagaaggtagctcttgtggaggacttgggagaaggatggggtcttaggaaggag



gtgacagcacttgcatggtcacttgagcccacacacacgctcaaccccaagtcctttatgctttgtcacagtgaagatgagacctctgacgtc



caagccttgttcctgtgctgcatcacccactcagccttccaaagggaacaggaacaaatttccccagcaccactgtttgggtcccgcttttcct



atcttctgctgcccctgagcacatccaagcagacagggaaagaggagtcagacatggcccagtcacatcctgagctgctcctggctgataa



ccacgatggagcccgtgtttgtcctgccatctggcactgcactgagtgtggcacaggcaccgtcctgttgatctcacaacacagttctaagtt



aggacgttcttggctccgttagacaggtgaggaaactggggcacagagaggtgatgtcatctgcctggtgtcaatcagctagcaagtgatg



gagcccagatttcaaaccaaagggggttacgtccaggggctgagttcccactcacctgtgtagagtgccatctgggcaccattgctccaga



cgtgttccgacccctttcccagcccacagggcttgaagtgaaggaacagaggcagggggtgggccagccccagggccagggtcccctt



ggtgaagccgtgccagggggctcagctgcttcagggaatgtgtccctcccaccatgggccagagcttcagcccttctttagctcagctaga



gttcacaggagagccaaaaaagaaaaggaagctgagcatctcccgagtcctgggcagggaaggggagggaaattgctgcttctccaact



cttgcttggggccaagccctgcaccagttgcttcccagctgttatctgccagatcttcccatcttgtggcatgtggtgcccccaccaacatccc



aaggggaccaatccccttgccaccactttgcatcacctgggaccacagatttggacaggaagggctctgagaagaggccaaagccctcat



tttacagatgaggaagctgaagcccggggaggggagcgaccctcaaggccacccagctggacacgggagacttgagcccagccttctg



actgcattcagccctctctaggacgcagcagcctctccccagcactgagtcccccctcctttgtgtgtcccagcacccttggcctgagtaaac



ttggaaaggggctccctcccagagaagggactactctcttcacccctttattccagctgcctgccaccccagacccccacctcccaccctga



cccccgacccctgggtggggaaggggctcacatgggcccaggctgagtgtgagtgagcatgtcaagttgtctgacactgtgacattagtg



caccctactgacaacccctccccagccttgcccctttctcctctccctgttttgtacataaattgacatgagctgcaacatgtgtgcgtgtgtgtg



cgtgtgtgtgtgtgtgtatgtgtgtgtgatctgtgtcatggttttgttacctttttgtttttgtaaacttgaatgttcaaaataaacatgctgtttactctg



agaaaaaaaaaaaaaaaa (SEQ ID NO: 656)





Socs3
gcggctccgacttggactccctgctccgctgctgccgcttcggccccgcacgcagccagccgccagccgcccgcccggcccagctccc
NM_003955
NM_007707



gccgcggccccttgccgcggtccctctcctggtcccctcccggttggtccgggggtgcgcagggggcagggcgggcgcccaggggaa



gctcgagggacgcgcgcgcgaaggctcctttgtggacttcacggccgccaacatctgggcgcagcgcgggccaccgctggccgtctcg



ccgccgcgtcgccttggggacccgagggggctcagccccaaggacggagacttcgattcgggaccagccccccgggatgcggtagcg



gccgctgtgcggaggccgcgaagcagctgcagccgccgccgcgcagatccacgctggctccgtgcgccatggtcacccacagcaagtt



tcccgccgccgggatgagccgccccctggacaccagcctgcgcctcaagaccttcagctccaagagcgagtaccagctggtggtgaac



gcagtgcgcaagctgcaggagagcggcttctactggagcgcagtgaccggcggcgaggcgaacctgctgctcagtgccgagcccgcc



ggcacctttctgatccgcgacagctcggaccagcgccacttcttcacgctcagcgtcaagacccagtctgggaccaagaacctgcgcatcc



agtgtgaggggggcagcttctctctgcagagcgatccccggagcacgcagcccgtgccccgcttcgactgcgtgctcaagctggtgcac



cactacatgccgccccctggagccccctccttcccctcgccacctactgaaccctcctccgaggtgcccgagcagccgtctgcccagcca



ctccctgggagtccccccagaagagcctattacatctactccgggggcgagaagatccccctggtgttgagccggcccctctcctccaacg



tggccactcttcagcatctctgtcggaagaccgtcaacggccacctggactcctatgagaaagtcacccagctgccggggcccattcggga



gttcctggaccagtacgatgccccgctttaaggggtaaagggcgcaaagggcatgggtcgggagaggggacgcaggcccctctcctcc



gtggcacatggcacaagcacaagaagccaaccaggagagagtcctgtagctctggggggaaagagggcggacaggcccctccctctg



ccctctccctgcagaatgtggcaggcggacctggaatgtgttggagggaagggggagtaccacctgagtctccagcttctccggaggagc



cagctgtcctggtgggacgatagcaaccacaagtggattctccttcaattcctcagcttcccctctgcctccaaacaggggacacttcggga



atgctgaactaatgagaactgccagggaatcttcaaactttccaacggaacttgtttgctctttgatttggtttaaacctgagctggttgtggagc



ctgggaaaggtggaagagagagaggtcctgagggccccagggctgcgggctggcgaaggaaatggtcacaccccccgcccacccca



ggcgaggatcctggtgacatgctcctctccctggctccggggagaagggcttggggtgacctgaagggaaccatcctggtaccccacatc



ctctcctccgggacagtcaccgaaaacacaggttccaaagtctacctggtgcctgagagcccagggcccttcctccgttttaagggggaag



caacatttggaggggatggatgggctggtcagctggtctccttttcctactcatactataccttcctgtacctgggtggatggagcgggaggat



ggaggagacgggacatctttcacctcaggctcctggtagagaagacaggggattctactctgtgcctcctgactatgtctggctaagagatt



cgccttaaatgctccctgtcccatggagagggacccagcataggaaagccacatactcagcctggatgggtggagaggctgagggactc



actggagggcaccaagccagcccacagccagggaagtggggagggggggcggaaacccatgcctcccagctgagcactgggaatgt



cagcccagtaagtattggccagtcaggcgcctcgtggtcagagcagagccaccaggtcccactgccccgagccctgcacagccctccct



cctgcctgggtgggggaggctggaggtcattggagaggctggactgctgccaccccgggtgctcccgctctgccatagcactgatcagtg



acaatttacaggaatgtagcagcgatggaattacctggaacagttttttgtttttgtttttgtttttgtttttgtgggggggggcaactaaacaaaca



caaagtattctgtgtcaggtattgggctggacagggcagttgtgtgttggggtggtttttttctctatttttttgtttgtttcttgttttttaataatgttta



caatctgcctcaatcactctgtcttttataaagattccacctccagtcctctctcctcccccctactcaggcccttgaggctattaggagatgcttg



aagaactcaacaaaatcccaatccaagtcaaactttgcacatatttatatttatattcagaaaagaaacatttcagtaatttataataaagagcact



attttttaatgaaaaac (SEQ ID NO: 657)





F11r
gaggcagctcctgtggggaaaggcgccagtgcgccgaggcggggagtggcggcggggtaacacctggccgaggtgactcgttctgaa
NM_016946
NM_172647



gagcagcggttccttacaccaatcggaacgtgcaggggtggggagctggccaatcaggcgcggagggcggggccgggcggggttcc



acctggcggctggctctcagtcccctcgctgtagtcgcggagctgtgtctgttcccaggagtccttcggcggctgttgtgtcgggagcctgat



cgcgatggggacaaaggcgcaagtcgagaggaaactgttgtgcctcttcatattggcgatcctgttgtgctccctggcattgggcagtgtta



cagtgcactcttctgaacctgaagtcagaattcctgagaataatcctgtgaagttgtcctgtgcctactcgggcttttcttctccccgtgtggagt



ggaagtttgaccaaggagacaccaccagactcgtttgctataataacaagatcacagcttcctatgaggaccgggtgaccttcttgccaact



ggtatcaccttcaagtccgtgacacgggaagacactgggacatacacttgtatggtctctgaggaaggcggcaacagctatggggaggtc



aaggtcaagctcatcgtgcttgtgcctccatccaagcctacagttaacatcccctcctctgccaccattgggaaccgggcagtgctgacatgc



tcagaacaagatggttccccaccttctgaatacacctggttcaaagatgggatagtgatgcctacgaatcccaaaagcacccgtgccttcag



caactcttcctatgtcctgaatcccacaacaggagagctggtctttgatcccctgtcagcctctgatactggagaatacagctgtgaggcacg



gaatgggtatgggacacccatgacttcaaatgctgtgcgcatggaagctgtggagcggaatgtgggggtcatcgtggcagccgtccttgta



accctgattctcctgggaatcttggtttttggcatctggtttgcctatagccgaggccactttgacagaacaaagaaagggacttcgagtaaga



aggtgatttacagccagcctagtgcccgaagtgaaggagaattcaaacagacctcgtcattcctggtgtgagcctggtcggctcaccgccta



tcatctgcatttgccttactcaggtgctaccggactctggcccctgatgtctgtagtttcacaggatgccttatttgtcttctacaccccacaggg



ccccctacttcttcggatgtgtttttaataatgtcagctatgtgccccatcctccttcatgccctccctccctttcctaccactgctgagtggcctgg



aacttgtttaaagtgtttattccccatttctttgagggatcaggaaggaatcctgggtatgccattgacttcccttctaagtagacagcaaaaatg



gcgggggtcgcaggaatctgcactcaactgcccacctggctggcagggatctttgaataggtatcttgagcttggttctgggctctttccttgt



gtactgacgaccagggccagctgttctagagcgggaattagaggctagagcggctgaaatggttgtttggtgatgacactggggtccttcc



atctctggggcccactctcttctgtcttcccatgggaagtgccactgggatccctctgccctgtcctcctgaatacaagctgactgacattgact



gtgtctgtggaaaatgggagctcttgttgtggagagcatagtaaattttcagagaacttgaagccaaaaggatttaaaaccgctgctctaaag



aaaagaaaactggaggctgggcgcagtggctcacgcctataatcccagaggctgaggcaggcggatcacctgaggtcaggagttcaag



atcagcctgaccaacatggagaaaccctactaaaaatacaaagttagccaggcatagtggtgcatgcctgtaatcccagctgctcaggagc



ctggcaacaagagcaaaactccagctcaaaaaaaaaaagaaagaaaagaaagctggagctggtggcttaggccatcacccttcccttggc



tggaactactggacagacccttttgagatgtgcctgtggtgctgtggagatgtgtgtagtggtcttagctctttgttgagcttgtgtgtgtgttgtg



tagtcttagctgtatgctgaaattgggcgtgtgttggagggcttcttagctctttggtgagcttgtatttctatgtgtttgtatcagctgaatgttgct



ggaaataaaaccttggtttgtcaaggctcttttttgtgggaagtaagtaggggaaaaggtctttgagggttcctaggctcctttgtacaacagga



aaatgcctcaaagccttgcttcccagcaacctggggctggttcccagtgcctggtcctgccccttcctggttcttatctcaaggcagagcttct



gaatttcaggccttcattccagagccctcttgtggccaggccttcctttgctggaggaaggtacacagggtgaagctgatgctgtacttgggg



gatctccttggcctgttccaccaagtgagagaaggtacttactcttgtacctcctgttcagccaggtgcattaacagacctccctacagctgta



ggaactactgtcccagagctgaggcaaggggatttctcaggtcatttggagaacaagtgctttagtagtagtttaaagtagtaactgctactgt



atttagtggggtggaattcagaagaaatttgaagaccagatcatgggtggtctgcatgtgaatgaacaggaatgagccggacagcctggct



gtcattgctttcttcctccccatttggacccttctctgcccttacatttttgtttctccatctaccaccatccaccagtctatttattaacttagcaagag



gacaagtaaagggccctcttggcttgattttgcttctttctttctgtggaggatatactaagtgcgactttgccctatcctatttggaaatccctaac



agaattgagttttctattaaggatccaaaaagaaaaacaaaatgctaatgaagccatcagtcaagggtcacatgccaataaacaataaattttc



cagaagaaatgaaatccaactagacaaataaagtagagcttatgaaatggttcagtaaagatgagtttgttgttttttgttttgttttgttttgttttttt



aaagacggagtctcgctctgtcacccaggctggagtgcagtggtatgatcttggctcactgtaacctccgcctcccgggttcaagccattctc



ctgcctcagtctcctgagtagctgggattacgggtgcgtgccaccatgcctggctaatttttgtgtttttagtagagacagggtttcaccatgttg



gtcgggctggtctcaaactcctgacctcttgatccgcctgccttggcctcccaaagtgatgggattacagatgtgagccaccgtgcctagcc



aaggatgagatttttaaagtatgtttcagttctgtgtcatggttggaagacagagtaggaaggatatggaaaaggtcatggggaagcagaggt



gattcatggctctgtgaatttgaggtgaatggttccttattgtctaggccacttgtgaagaatatgagtcagttattgccagccttggaatttacttc



tctagcttacaatggaccttttgaactggaaaacaccttgtctgcattcactttaaaatgtcaaaactaatttttataataaatgtttattttcacattg



agtttgtttaaatcctgaagttcttaccttaagagaattgggactcctagagtgattggacattcaaaatattcctgatagtcttgttaattaagaga



ttaggatatctttccattaccttgataattacgttttaatttagcttttttcattggcctgtgtttaaatgcaaataaccccacaatggacatttcctatgt



taaagtgacatttaggggataaaaaatgagagcagttccatggattttggtgtttcccctgagacatgaactcagcataatctgggataaaatg



attgagtgttaaggatgtgtttgttgttcctgtcgtttttttattttcttcaaagtatacaacatggtttgatatgcacatacatttgtgtaatgcttgcca



tggtcaattaacacatcaccatttttgtgtgtgtgtgtgtgtgtgtgtgtgagggagtcttgctccgttgccaggctggagtgcaatggtacaac



cttggctcactgcaacctccacctcctgggttcaagcaattctcttgcctcagcctcctaagtagctgggactataggcgtgtgccaccatgcc



cagctaatttttgtatttttagtagagacggggtttcaccatgttggccaggatgatctcgatcccttgacctcatgatccgcccacctcggcctc



ccaaagtgctgggattacaggcgtgagtcactgcacccggccacatcacctcccatgttctatcttacgtattcagaacttgttcatcttgtaac



tgaaagcgtgtaccctttgaccaacactgtttttcctgtcttaacaggatctacagatcaaggacaggggaggggatagtggaggaaaacgg



agttagtctgtttctaaatgaggggacagtatgtttcttggggcctgaggacagcttaataaagtagacaaatgaagaaaaacaacaatttgca



ttaaaaaatatccaattcttta (SEQ ID NO: 658)





Fyn
agagcatcagcaagagtagcagcgagcagccgcgctggtggcggcggcgcgtcgttgcagttgcgccatctgtcaggagcggagccg
NM_002037
NM_001122892



gcgaggagggggctgccgcgggcgaggaggaggggtcgccgcgagccgaaggccttcgagacccgcccgccgcccggcggcgag



agtagaggcgaggttgttgtgcgagcggcgcgtcctctcccgcccgggcgcgccgcgcttctcccagcgcaccgaggaccgcccgggc



gcacacaaagccgccgcccgcgccgcaccgcccggcggccgccgcccgcgccagggagggattcggccgccgggccggggacac



cccggcgccgccccctcggtgctctcggaaggcccaccggctcccgggcccgccggggaccccccggagccgcctcggccgcgccg



gaggagggcggggagaggaccatgtgagtgggctccggagcctcagcgccgcgcagtttttttgaagaagcaggatgctgatctaaacg



tggaaaaagaccagtcctgcctctgttgtagaagacatgtggtgtatataaagtttgtgatcgttggcggacattttggaatttagataatgggc



tgtgtgcaatgtaaggataaagaagcaacaaaactgacggaggagagggacggcagcctgaaccagagctctgggtaccgctatggca



cagaccccacccctcagcactaccccagcttcggtgtgacctccatccccaactacaacaacttccacgcagccgggggccaaggactca



ccgtctttggaggtgtgaactcttcgtctcatacggggaccttgcgtacgagaggaggaacaggagtgacactctttgtggccctttatgact



atgaagcacggacagaagatgacctgagttttcacaaaggagaaaaatttcaaatattgaacagctcggaaggagattggtgggaagccc



gctccttgacaactggagagacaggttacattcccagcaattatgtggctccagttgactctatccaggcagaagagtggtactttggaaaac



ttggccgaaaagatgctgagcgacagctattgtcctttggaaacccaagaggtacctttcttatccgcgagagtgaaaccaccaaaggtgcc



tattcactttctatccgtgattgggatgatatgaaaggagaccatgtcaaacattataaaattcgcaaacttgacaatggtggatactacattacc



acccgggcccagtttgaaacacttcagcagcttgtacaacattactcagagagagctgcaggtctctgctgccgcctagtagttccctgtcac



aaagggatgccaaggcttaccgatctgtctgtcaaaaccaaagatgtctgggaaatccctcgagaatccctgcagttgatcaagagactgg



gaaatgggcagtttggggaagtatggatgggtacctggaatggaaacacaaaagtagccataaagactcttaaaccaggcacaatgtccc



ccgaatcattccttgaggaagcgcagatcatgaagaagctgaagcacgacaagctggtccagctctatgcagtggtgtctgaggagcccat



ctacatcgtcaccgagtatatgaacaaaggaagtttactggatttcttaaaagatggagaaggaagagctctgaaattaccaaatcttgtggac



atggcagcacaggtggctgcaggaatggcttacatcgagcgcatgaattatatccatagagatctgcgatcagcaaacattctagtgggga



atggactcatatgcaagattgctgacttcggattggcccgattgatagaagacaatgagtacacagcaagacaaggtgcaaagttccccatc



aagtggacggcccccgaggcagccctgtacgggaggttcacaatcaagtctgacgtgtggtcttttggaatcttactcacagagctggtcac



caaaggaagagtgccatacccaggcatgaacaaccgggaggtgctggagcaggtggagcgaggctacaggatgccctgcccgcagga



ctgccccatctctctgcatgagctcatgatccactgctggaaaaaggaccctgaagaacgccccacttttgagtacttgcagagcttcctgga



agactactttaccgcgacagagccccagtaccaacctggtgaaaacctgtaaggcccgggtctgcggagagaggccttgtcccagaggct



gccccacccctccccattagctttcaattccgtagccagctgctccccagcagcggaaccgcccaggatcagattgcatgtgactctgaagc



tgacgaacttccatggccctcattaatgacacttgtccccaaatccgaacctcctctgtgaagcattcgagacagaaccttgttatttctcagact



ttggaaaatgcattgtatcgatgttatgtaaaaggccaaacctctgttcagtgtaaatagttactccagtgccaacaatcctagtgctttcctttttt



aaaaatgcaaatcctatgtgattttaactctgtcttcacctgattcaactaaaaaaaaaaaagtattattttccaaaagtggcctctttgtctaaaac



aataaaattttttttcatgttttaacaaaaaccaatcaggacaggtgtttgtttttgttttcttttttataaatatgaatatatataatatatatgtccctgta



catatacaatgtgggtgctaatgtggagactgtggccggcctgagccaccaagctgcgggacccagagggaggattttactgcaagtcag



catcaaagcaccggtgttattctgaaaacaccagtggcctcatttttggcttttgcaaagcatgaattttttcatttggattgcactttcctggttcat



gactgtacctgtaggtggttgttactttgactcttttcaggaaccaccccccaagctgaatttacaagttctgttagcactatttgcttcaacttact



gcgatttgttctcaaaacttaaaaataagcaagcaaatggctgatactaccaagagaactggaagatggataccacacaaacttcttgtataaa



aatatgaatgctgaaatgtttcagacatttttaatttaataaacctgtaaccacatttaagtgatctaaaacccatagcattgtagtcatggcaacc



cgctaaactttctcatgcaactaaaatttctgggggaaatgagggtgggggttgtacatttcccattgtaaaataagtgttttaaatgtcctgtact



gctaacgaatgactttctatatgtccaggagttctccagtggaataactatgcactactttacatttcatggggatgcacaaaaacaaaaaagta



ttacatttttagttgctgtttgtaccaaccttaaattacatatgtttaacaacaacaaatcaaaaatcctatttctattgagtttttaatactgactagca



actctgaagtcttaattccttttttgttatgatttatttgtgagtttacatttttaaattgtttaactttcttaatttagtaattaaaaagagagcattttacatt



tgaa (SEQ ID NO: 659)





Ypel2
gccgcggcggtggcggagactgtggctttaagagcgtgccgggagcccgagccccagccgggccgcgcttcgccgctgcgcacccca
NM_001005404
NM_001005341



gcggagccaagccccacgctggccggacagggccgcctgtcgccgggctgctgagaactagccctagacctctgcgtgagggttcttct



gccgaagacatcaccagtgtgtggagcctgccacacccacccgctgccaaaccacggcctttacctgtgtcttccggtgtttcccgtgcgac



ccatcctgtgggagtgcctcgtgggctgccccagagttcaccccacactcagcagcaccaatggtgaagatgacaagatcgaagactttcc



aggcatatctgccctcctgccaccggacctacagctgcattcactgcagagctcacttggccaatcatgatgaactaatttccaagtcattcca



aggaagtcaaggacgagcatacctctttaactcagtagttaatgtgggctgtgggcctgcagaagagcgagtgttgctaacaggactgcat



gcagtcgcagacatttactgtgaaaactgcaaaaccactctgggctggaaatacgaacatgcttttgaaagcagccagaaatataaagaag



gcaaatacatcattgaactagcacacatgatcaaggacaatggctgggactgattggacagcatctacccaacccagtgtccacgtgaacg



ccattcaaccgaacattcttcccaagcgtgagagagtgactgacacttggttccatccatttaggggccttgccatccggggcatcctcccac



cctgacgccatctttctggtgaccggcctctaaatcgctgtctctctgtctctttgctttgtatctgtttgtgagttgatcctggcttctctctctgttct



agttttggctgaaaacaaaacaacaaaaggaacagatccttgaccgcatggcggcagcccaccttggtaagggccccagggcccatgcg



agagctgcctgatggcctcttgtcaggagagcagtggcacgggggcgtgaggaagagggaaaggggaaactctaagggtcctggcgc



ggggaaggggtggaagggtggaggtaggaacaaaattgcgccgctcctggagacctgataacttaggcttgaaataattgacttgtctaaa



aggacaaagagaaaaaaaaaatacctcatgactgcattctctctgactagaagcttctgttcctgacaccaaatgtgccaggttagcaaatga



gcacaagatgtggccctgattctagttggtggggcaagggcctggttctcctgggctgagtgggggagtgtcctggcagcagcgagtgac



ctgggcagtggccaggtgggtgcgatgactctgatgcctcactcagtctctgggcaatcatcatctttgcctctagccaccgtagataaggtg



tgaagggactgctgtttgcaatgggcttaccatccaaatatcccaaaggctttgaccagcaaccaagtaaaatcagtaattgaggagagcag



ggcacaaaggggctgcagtttgggagctcctgaagaaatggctcagatattgagtcagagaaataaaaagtaggatcagttagcaattcta



actgcccttccttctgacccctcataagaggagtgtggtgagggaggggactgggtaggggtcatcccaggaggaggggtttacattgga



accagttcaggttcggtgcatctttcctcttcggttttacagtggcttccgtgggatcgtcaatttcttgttcttagagtttcgggtgtttttctccagt



cttgttactgtagactgtagaaagcacgggccccaggctctgagcttagtaataacctggctggtagattcctcatgcccctaattgtcccactt



aggcctgaatgtcttgcatggagagaaatctcctgtcagtgtggtccagcagcagggaggagttctgcccaaattccgatatcaccccttcc



cccatccaagcatccttcgattagggaagtggagagcacatccctgtaaggcccataagagaaagaggagtttgttacatttaatcaacact



gtgaagtctgttctacagcaattcagccattacacagtatatgactgaaactcatttaactgggttaatttcatttcttagactgaatatattattgtta



agatacgtgtgcgtgttaggtaattctcagcatctcctccaagtaggccgaccttctcggaaaattcaccctaaaagtctcacaaaagaatga



gttcatggggagattctgtaaagtgatgaactgagatgaaagcagccaacagcccaggagcttttcagaatagcgtctgcagcagaaccag



tttccattcagagcgcgtccttggtggaaatgcttttttgtgtgtctccacgcgctgatggtggaatgggagccccaagacgtgtgggcttaga



aatcaacttttgttccccaaggcttcttgtccagatctttccagtgctttcatagccctgggagatcaagttgttctccccactttactgcaaggta



gactgaagttcagaagaaatactgaatttctgctcccagaagaatagtttctctggctcacaggcccaagttctcaatgaaatcgttttttaacttt



cacattcctaagctggcttcccggcacagaagccatggatttcccctctctcccttccccctcctcaaggaaatagtcttcctttatggattttcat



tggactctttcctcagcgattgtcctggctgtttattgatagtccttcccataagaaaatggggttaaacatggggtaggtattttgtctttcaaact



acaaatggaatgtggtgacataaactagacatggggtgccctcaagtttccaaggggaccaatgtgccactgttcttccttggggatgaggc



ctttgactgttggatggatcagagcaggctccagtcagaccctggttctgaatgttttttttttcggtgactatccagtgagccttcagtgggtgc



aaggcgccatacttgctgtgagagagctgagtagagtgttggtttttccataactacagggggaaaaaaagtcattaggctttccctttgtgtc



agtgaaaccaaaagtgcttcttacaacgttcgctctgttcatgggttgtctatctaacattgagcagcattggagaggccacagctgagctatg



gagatgctaaattaactcatggcctcagtcagttcattctttaatttcctcaccaaattattgacttagagcataaccaaagacctcattcattcacc



ccaggtgggttggggtaattggagtttgttggtgaagtttgggggcggggtgttgggagtagagacagggtaaggggacgtgagaaagg



aaaaggcatgaagttctatacctcagccagcagctgccttcgtttggaactgaagtccagccagcagactctctagctccatctcccctgtgc



caccctaggtcatatgaccttggccaccttggagtagacccagacccctcgggacccgggacattagtctcaggctgctgatggattgattt



gacatgaaccaaacacagccaaactcgatacccacaagctgtcagctgaacctgactgagtgttcttcctgagttcacgaggataggctaga



gtgcatttttactggtggatcagtgtgtgcgaaagagatgaccctttataaagagattttcaagtggatatatataaaagaaacagttgcttgtaa



aatatacttttgtaaataatatttaattttttaaataatatatttggtgctgttttctcagatcccctgagagcactttttattttccttttaaattctatggttt



cctttgcatttcttgaagtatattttaagggaaacagtgatcaccaatacatgttttcagttttttttttttttaaggtctctatcactttaatctggatcaa



ggctttgaagcaatgcctctctgcattttttccccagtggaacagactctgcagtacattaatcaggttgagaattgaaatattttcttgcatcagt



attggctagaaaagaaaataaataaaaccaagttaatttagtagtaacaacttacagtgattcttcctgttggaagaatttccaacaaatcagaat



cacgtttttagttgtgcgtgtgcgcgcacacgtgtgtaaaaagcactttcgcttgtgcctcctgttttctcgagtggggacactttaactacagttt



acacctcgggcgcataaagtttttcttctctttctctctggttgtttctgtttctgagtggaccaacagcagaacccacgaggatttgttttgagtat



ggagctgttgcgggtttgctcctttttcttgctttgcgtgctcagtttttacagactgtaaaggagatgtgttgtttgtgaagatggagcagagtca



aatctgtgcttctaactgagatgagagtgtattaatcacgtatcgcagggctccagctgttttagaagccacatcatgttaaacattaactggttt



ggattaaaagaacattaatattataatacacatatcttagtggtaaacagctttttttttttaaggtcagattgcctcaggtttagaaagaggctgag



aaatcaaatcttgaacacaatcaacttacatattttaaaggaatctgcctcaaatgagaaaatatgctagttatctagatagaggaaagagatatt



tacttttttaaaaattaaaatagttatgaaatctggcagaaaaggtaaagcctagaagaaactatgaaagctattctcatgttaccaaattctatct



gcgcatatgtttttgtataacatttcggtgacagtgggagtcggttccctttcccaacctgcagagactatcttccaatacagaatctgtctatttat



gcttgtgtttacaaactgtatttgttgggtttgggtttttgttttctttggtggcatttttcaggtcactttgcttctataacaaaggtaattgttttcaaat



aatttgtcttcaccttttcctgtatttgtacatagtgattcagtattagagaaaagtgcattgtttctgtcatatttccaatctgtgttggtgctcatttga



gaaaataaaagttttcaaatattaactcttaaaaaaaaaa (SEQ ID NO: 660)





Pkd1
ccctcccctcccgatcctcatccccttgccctcccccagcccagggacttttccggaaagtttttattttccgtctgggctctcggagaaagaa
NM_002742
NM_008858



gctcctggctcagcggctgcaaaactttcctgctgccgcgccgccagcccccgccctccgctgcccggccctgcgccccgccgagcgat



gagcgcccctccggtcctgcggccgcccagtccgctgctgcccgtggcggcggcagctgccgcagcggccgccgcactggtcccagg



gtccgggcccgggcccgcgccgttcttggctcctgtcgcggccccggtcgggggcatctcgttccatctgcagatcggcctgagccgtga



gccggtgctgctgctgcaggactcgtccggggactacagcctggcgcacgtccgcgagatggcttgctccattgtcgaccagaagttccct



gaatgtggtttctacggaatgtatgataagatcctgctttttcgccatgaccctacctctgaaaacatccttcagctggtgaaagcggccagtga



tatccaggaaggcgatcttattgaagtggtcttgtcagcttccgccacctttgaagactttcagattcgtccccacgctctctttgttcattcatac



agagctccagctttctgtgatcactgtggagaaatgctgtgggggctggtacgtcaaggtcttaaatgtgaagggtgtggtctgaattaccata



agagatgtgcatttaaaatacccaacaattgcagcggtgtgaggcggagaaggctctcaaacgtttccctcactggggtcagcaccatccg



cacatcatctgctgaactctctacaagtgcccctgatgagccccttctgcaaaaatcaccatcagagtcgtttattggtcgagagaagaggtc



aaattctcaatcatacattggacgaccaattcaccttgacaagattttgatgtctaaagttaaagtgccgcacacatttgtcatccactcctacac



ccggcccacagtgtgccagtactgcaagaagcttctgaaggggcttttcaggcagggcttgcagtgcaaagattgcagattcaactgccat



aaacgttgtgcaccgaaagtaccaaacaactgccttggcgaagtgaccattaatggagatttgcttagccctggggcagagtctgatgtggt



catggaagaagggagtgatgacaatgatagtgaaaggaacagtgggctcatggatgatatggaagaagcaatggtccaagatgcagaga



tggcaatggcagagtgccagaacgacagtggcgagatgcaagatccagacccagaccacgaggacgccaacagaaccatcagtccatc



aacaagcaacaatatcccactcatgagggtagtgcagtctgtcaaacacacgaagaggaaaagcagcacagtcatgaaagaaggatgga



tggtccactacaccagcaaggacacgctgcggaaacggcactattggagattggatagcaaatgtattaccctctttcagaatgacacagga



agcaggtactacaaggaaattcctttatctgaaattttgtctctggaaccagtaaaaacttcagctttaattcctaatggggccaatcctcattgttt



cgaaatcactacggcaaatgtagtgtattatgtgggagaaaatgtggtcaatccttccagcccatcaccaaataacagtgttctcaccagtgg



cgttggtgcagatgtggccaggatgtgggagatagccatccagcatgcccttatgcccgtcattcccaagggctcctccgtgggtacagga



accaacttgcacagagatatctctgtgagtatttcagtatcaaattgccagattcaagaaaatgtggacatcagcacagtatatcagatttttcct



gatgaagtactgggttctggacagtttggaattgtttatggaggaaaacatcgtaaaacaggaagagatgtagctattaaaatcattgacaaat



tacgatttccaacaaaacaagaaagccagcttcgtaatgaggttgcaattctacagaaccttcatcaccctggtgttgtaaatttggagtgtatg



tttgagacgcctgaaagagtgtttgttgttatggaaaaactccatggagacatgctggaaatgatcttgtcaagtgaaaagggcaggttgcca



gagcacataacgaagtttttaattactcagatactcgtggctttgcggcaccttcattttaaaaatatcgttcactgtgacctcaaaccagaaaat



gtgttgctagcctcagctgatccttttcctcaggtgaaactttgtgattttggttttgcccggatcattggagagaagtctttccggaggtcagtg



gtgggtacccccgcttacctggctcctgaggtcctaaggaacaagggctacaatcgctctctagacatgtggtctgttggggtcatcatctat



gtaagcctaagcggcacattcccatttaatgaagatgaagacatacacgaccaaattcagaatgcagctttcatgtatccaccaaatccctgg



aaggaaatatctcatgaagccattgatcttatcaacaatttgctgcaagtaaaaatgagaaagcgctacagtgtggataagaccttgagccac



ccttggctacaggactatcagacctggttagatttgcgagagctggaatgcaaaatcggggagcgctacatcacccatgaaagtgatgacct



gaggtgggagaagtatgcaggcgagcaggggctgcagtaccccacacacctgatcaatccaagtgctagccacagtgacactcctgaga



ctgaagaaacagaaatgaaagccctcggtgagcgtgtcagcatcctctgagttccatctcctataatctgtcaaaacactgtggaactaataa



atacatacggtcaggtttaacatttgccttgcagaactgccattattttctgtcagatgagaacaaagctgttaaactgttagcactgttgatgtat



ctgagttgccaagacaaatcaacagaagcatttgtattttgtgtgaccaactgtgttgtattaacaaaagttccctgaaacacgaaacttgttatt



gtgaatgattcatgttatatttaatgcattaaacctgtctccactgtgcctttgcaaatcagtgtttttcttactggagcttcattttggtaagagaca



gaatgtatctgtgaagtagttctgtttggtgtgtcccattggtgttgtcattgtaaacaaactcttgaagagtcgcttatttccagtgttctatgaaca



actccaaaacccatgtgggaaaaaaatgaatgaggagggtagggaataaaatcctaagacacaaatgcatgaacaagttttaatgtatagttt



tgaatcctttgcctgcctggtgtgcctcagtatatttaaactcaagacaatgcacctagctgtgcaagacctagtgctcttaagcctaaatgcctt



agaaatgtaaactgccatatataacagatacatttccctctttcttataatactctgttgtactatggaaaatcagctgctcagcaacctttcaccttt



gtgtatttttcaataataaaaaatattcttgtcaaaa (SEQ ID NO: 661)





Ptpn2
gctcgggcgccgagtctgcgcgctgacgtccgacgctccaggtactttccccacggccgacagggcttggcgtgggggcggggcgcg
NM_002828
NM_008977



gcgcgcagcgcgcatgcgccgcagcgccagcgctctccccggatcgtgcggggcctgagcctctccgccggcgcaggctctgctcgc



gccagctcgctcccgcagccatgcccaccaccatcgagcgggagttcgaagagttggatactcagcgtcgctggcagccgctgtacttgg



aaattcgaaatgagtcccatgactatcctcatagagtggccaagtttccagaaaacagaaatcgaaacagatacagagatgtaagcccatat



gatcacagtcgtgttaaactgcaaaatgctgagaatgattatattaatgccagtttagttgacatagaagaggcacaaaggagttacatcttaa



cacagggtccacttcctaacacatgctgccatttctggcttatggtttggcagcagaagaccaaagcagttgtcatgctgaaccgcattgtgg



agaaagaatcggttaaatgtgcacagtactggccaacagatgaccaagagatgctgtttaaagaaacaggattcagtgtgaagctcttgtca



gaagatgtgaagtcgtattatacagtacatctactacaattagaaaatatcaatagtggtgaaaccagaacaatatctcactttcattatactacct



ggccagattttggagtccctgaatcaccagcttcatttctcaatttcttgtttaaagtgagagaatctggctccttgaaccctgaccatgggcctg



cggtgatccactgtagtgcaggcattgggcgctctggcaccttctctctggtagacacttgtcttgttttgatggaaaaaggagatgatattaac



ataaaacaagtgttactgaacatgagaaaataccgaatgggtcttattcagaccccagatcaactgagattctcatacatggctataatagaag



gagcaaaatgtataaagggagattctagtatacagaaacgatggaaagaactttctaaggaagacttatctcctgcctttgatcattcaccaaa



caaaataatgactgaaaaatacaatgggaacagaataggtctagaagaagaaaaactgacaggtgaccgatgtacaggactttcctctaaa



atgcaagatacaatggaggagaacagtgagagtgctctacggaaacgtattcgagaggacagaaaggccaccacagctcagaaggtgc



agcagatgaaacagaggctaaatgagaatgaacgaaaaagaaaaaggtggttatattggcaacctattctcactaagatggggtttatgtca



gtcattttggttggcgcttttgttggctggacactgttttttcagcaaaatgccctataaacaattaattttgcccagcaagcttctgcactagtaac



tgacagtgctacattaatcataggggtttgtctgcagcaaacgcctcatatcccaaaaacggtgcagtagaatagacatcaaccagataagtg



atatttacagtcacaagcccaacatctcaggactcttgactgcaggttcctctgaaccccaaactgtaaatggctgtctaaaataaagacattca



tgtttgttaaaaactggtaaattttgcaactgtattcatacatgtcaaacacagtatttcacctgaccaacattgagatatcctttatcacaggctttg



tttttggaggctatctggattttaacctgcacttgatataagcaataaatattgtggttttatctacgttattggaaagaaaatgacatttaaataatgt



gtgtaatgtataatgtactattgacatgggcatcaacacttttattcttaagcatttcagggtaaatatattttataagtatctatttaatcttttgtagtt



aactgtactttttaagagctcaatttgaaaaatctgttactaaaaaaataaattgtatgtcgattgaattgtactggatacattttccatttttctaaag



agaagtttgatatgagcagttagaagttggaataagcaatttctactatatattgcatttcttttatgttttacagttttccccattttaaaaagaaaag



caaacaaagaaacaaaagtttttcctaaaaatatctttgaaggaaaattctccttactgggatagtcaggtaaacagttggtcaagactttgtaa



agaaattggtttctgtaaatcccattattgatatgtttatttttcatgaaaatttcaatgtagttggggtagattatgatttaggaagcaaaagtaaga



agcagcattttatgattcataatttcagtttactagactgaagttttgaagtaaacacttttcagtttctttctacttcaataaatagtatgcttatatgc



aaaccttacattgtcattttaacttaatgaatattttttaaagcaaactgtttaatgaatttaactgctcatttgaatgctagctttcctcagctttcaac



attccattcagtgtttaatttgtcttacttaaacttgaaattgttgttacaaatttaattgctaggaggcatggatagcatacattattatggatagcat



accttatttcagtggttttcaaactatgctcattggatgtccaggtgggtcaagaggttactttcaaccacagcatctctgccttgtctctttatatg



ccacataagatttctgcataaggcttaagtattttaaagggggcagttatcatttaaaaacagtttggtcgggcgcggtggctcatgcctgtaat



cccagcactttgggaggctgaagtgggcagatcacctgaggtcaggagttcaagaccagcctggccaacgtggtgaaacaccatctctac



taaaaatgcaaaaattagctgggcatggtggagggcacctgtaatctcagctactcaggaggctgaggtaggagaattgcttgaacccagg



agatggaggttgcagtgagctgagatcacgtcactgcactccagccagggcgacagagcgagactccatctcaaaagaaacaaacaaaa



aaaacagtttgggccgggtgtggtggctcacgcttgtaatcccagcacttcggaaggccaaggcgggcggatcacgaggtcaagagatg



gagactgtcctggccaacatggtgaaatcccttctttactaaaaatacaaaaattatctgggcgtggtggtgcatgcctgtagtcccagctcctt



gggaggctaaggcaggagaatcacttgaacccgggaggcagaggttgcagtgagccgagattgcaccactgcactccagcctggcaac



agagcaagacttcgtctc (SEQ ID NO: 662)





Grk6
cggctggctgcggcggccggggaggccggggaggccgcggcgcggtcactgcgagccgagccgagccgcgccgagccgcgccga
NM_001004106
NM_001038018



tcgccatccggcctcggcactcgcgcgcgatcccggccggcggcgcggcccggcgggccaggcggcgccacagcccatggagctcg



agaacatcgtagcgaacacggtgctactcaaggcccgggaaggtggcggtggaaatcgcaaaggcaaaagcaagaaatggcggcaga



tgctccagttccctcacatcagccagtgcgaagagctgcggctcagcctcgagcgtgactatcacagcctgtgcgagcggcagcccattg



ggcgcctgctgttccgagagttctgtgccacgaggccggagctgagccgctgcgtcgccttcctggatggggtggccgagtatgaagtga



ccccggatgacaagcggaaggcatgtgggcggcagctaacgcagaattttctgagccacacgggtcctgacctcatccctgaggtccccc



ggcagctggtgacgaactgcacccagcggctggagcagggtccctgcaaagaccttttccaggaactcacccggctgacccacgagtac



ctgagcgtggccccttttgccgactacctcgacagcatctacttcaaccgtttcctgcagtggaagtggctggaaaggcagccagtgaccaa



aaacaccttcaggcaataccgagtcctgggcaaaggtggctttggggaggtgtgcgcctgccaggtgcgggccacaggtaagatgtatgc



ctgcaagaagctagagaaaaagcggatcaagaagcggaaaggggaggccatggcgctgaacgagaagcagatcctggagaaagtga



acagtaggtttgtagtgagcttggcctacgcctatgagaccaaggacgcgctgtgcctggtgctgacactgatgaacgggggcgacctcaa



gttccacatctaccacatgggccaggctggcttccccgaagcgcgggccgtcttctacgccgccgagatctgctgtggcctggaggacct



gcaccgggagcgcatcgtgtacagggacctgaagcccgagaacatcttgctggatgaccacggccacatccgcatctctgacctgggact



agctgtgcatgtgcccgagggccagaccatcaaagggcgtgtgggcaccgtgggttacatggctccggaggtggtgaagaatgaacggt



acacgttcagccctgactggtgggcgctcggctgcctcctgtacgagatgatcgcaggccagtcgcccttccagcagaggaagaagaag



atcaagcgggaggaggtggagcggctggtgaaggaggtccccgaggagtattccgagcgcttttccccgcaggcccgctcactttgctca



cagctcctctgcaaggaccctgccgaacgcctggggtgtcgtgggggcagtgcccgcgaggtgaaggagcaccccctctttaagaagct



gaacttcaagcggctgggagctggcatgctggagccgccgttcaagcctgacccccaggccatttactgcaaggatgttctggacattgaa



cagttctctacggtcaagggcgtggagctggagcctaccgaccaggacttctaccagaagtttgccacaggcagtgtgcccatcccctggc



agaacgagatggtggagaccgagtgcttccaagagctgaatgtctttgggctggatggctcagttcccccagacctggactggaagggcc



agccacctgcacctcctaaaaagggactgctgcagagactcttcagtcgccaagattgctgtggaaactgcagcgacagcgaggaagag



ctccccacccgcctctagcccccagcccgaggcccccaccagcagttggcggtagcagctactccgagcgccgtttacagttttgcacagt



gatcttccccattgtccactcaagtcgtggcctggggaacacagacggagctgtccccagtgtcctccgtccctcagcccctggcctggctg



agtttggcagggcctgggccatccctgggacaaaggtgcgtcccttcagctcttctccgtggagctcggggctttctgtatttatgtatttgtac



gaatgtatatagcgaccagagcattcttaattcccgccgcagacctggcgcccccgccttggctcctgggggcagccagccctggctggg



agagcgggagctggcagaggagccactgccaaactcaaggctcctctggcccagcttggatggctgagggtggtcacacccctgagcct



tcagcactgtgctggccaccccggcctctgagtaagactcgtgcctccccctgctgccctgggctcaggctgctaccctctggggcccaaa



gctgtcccttctcagtgcttgtcagcgctgggtctggggcctctgtatgccctaggcctgtgccaaagtggccagagattgggctgcctgtga



tacccatcagcccactgccccggccggcccagataggtctgcctctgccttccagctcccacagcctggtccctgatactgggctctgtcct



gcagacacctctttcagaaacgcccaagcccagcccctaggagggggtggggcatccctggtcaaccctcaaacattccggactcccctc



ataacaatagacacatgtgcccagcaataatccgccccttcctgtgtgcgcctgtggggtgcgtgcgcgcgcgtgtgtacctgtgtgggtga



aggggatagggcgaggctgtgcctgtgccccaggtcccagccctggcccttcccagactgtgatggccatcctggtcccagtgttagggt



agcatgggattacagggccctgttttttccatatttaaagccaatttttattactcgttttgtccaacgtaa (SEQ ID NO: 663)





Cdkn2a
cgagggctgcttccggctggtgcccccgggggagacccaacctggggcgacttcaggggtgccacattcgctaagtgctcggagttaata
NM_000077
NM_001040654



gcacctcctccgagcactcgctcacggcgtccccttgcctggaaagataccgcggtccctccagaggatttgagggacagggtcggagg



gggctcttccgccagcaccggaggaagaaagaggaggggctggctggtcaccagagggtggggcggaccgcgtgcgctcggcggct



gcggagagggggagagcaggcagcgggcggcggggagcagcatggagccggcggcggggagcagcatggagccttcggctgact



ggctggccacggccgcggcccggggtcgggtagaggaggtgcgggcgctgctggaggcgggggcgctgcccaacgcaccgaatag



ttacggtcggaggccgatccaggtcatgatgatgggcagcgcccgagtggcggagctgctgctgctccacggcgcggagcccaactgc



gccgaccccgccactctcacccgacccgtgcacgacgctgcccgggagggcttcctggacacgctggtggtgctgcaccgggccggg



gcgcggctggacgtgcgcgatgcctggggccgtctgcccgtggacctggctgaggagctgggccatcgcgatgtcgcacggtacctgc



gcgcggctgcggggggcaccagaggcagtaaccatgcccgcatagatgccgcggaaggtccctcagacatccccgattgaaagaacc



agagaggctctgagaaacctcgggaaacttagatcatcagtcaccgaaggtcctacagggccacaactgcccccgccacaacccacccc



gctttcgtagttttcatttagaaaatagagcttttaaaaatgtcctgccttttaacgtagatatatgccttcccccactaccgtaaatgtccatttatat



cattttttatatattcttataaaaatgtaaaaaagaaaaacaccgcttctgccttttcactgtgttggagttttctggagtgagcactcacgccctaa



gcgcacattcatgtgggcatttcttgcgagcctcgcagcctccggaagctgtcgacttcatgacaagcattttgtgaactagggaagctcagg



ggggttactggcttctcttgagtcacactgctagcaaatggcagaaccaaagctcaaataaaaataaaataattttcattcattcactcaaaaaa



aaaaaaaa (SEQ ID NO: 664)





Sbf1
gggcgggccggctggctgggaagatggcggcgggaacctgggccgccgccgccgccgccgccgccgccgcggagcgaaccaggg
NM_002972
NM_001170561



gtgtccggggtgcgcggtccagggccggggccgggccatgagcgcgccgtcctcgagtccccgagccgcggagcccgcccgcgccc



ctcgggccgccccgcgtccctcgccatggcgcggctcgcggactacttcgtgctggtggcgttcgggccgcacccgcgcgggagtggg



gaaggccagggccagattctgcagcgcttcccagagaaggactgggaggacaacccattcccccagggcatcgagctgttttgccagcc



cagcgggtggcagctgtgtcccgagaggaatccaccgaccttctttgttgctgtcctcaccgacatcaactccgagcgccactactgcgcct



gcttgaccttctgggagccagcggagccttcacaggaaacgacgcgcgtggaggatgccacagagagggaggaagagggggatgag



ggaggccagacccacctgtctcccacagcacctgccccatctgcccagctgtttgcaccgaagacgctggtactggtgtcgcgactcgac



cacacggaggtgttcaggaacagccttggcctcatctatgccatccacgtggagggcctgaatgtgtgcctggagaacgtgattgggaacc



tgctgacgtgcactgtgcccctggctgggggctcgcagaggacgatctctttgggggctggtgaccggcaggtcatccagactccactgg



ccgactcgctgcccgtcagccgctgcagcgtggccctgctcttccgccagctaggcatcaccaacgtgctgtctttgttctgtgccgccctca



cggagcacaaggttctcttcctgtcccggagctaccagcggctcgccgatgcctgtaggggcctcctggcactgctgtttcctctcagatac



agcttcacctatgtgcccatcctgccggctcagctgctggaggtcctcagcacacccacgcccttcatcattggggtcaacgcggccttcca



ggcagagacccaggagctgctcgatgtgattgttgctgatctggatggagggacggtcaccattcctgagtgtgtgcacattccacccttgc



cagagccactgcagagtcagacgcacagtgtgctgagcatggtcctggacccggagctggagttggctgacctcgccttccctccgccca



cgacatccacctcctccctgaagatgcaggacaaggagctgcgcgcggtcttcctgcggctgttcgctcagctgctgcagggctatcgctg



gtgcctgcacgtcgtgcgcatccacccggagcctgtcatccgcttccataaggcagccttcctgggccagcgtgggctggtagaggacga



tttcctgatgaaggtgctggagggcatggcctttgctggctttgtgtcagagcgtggggtcccataccgccctacggacctgttcgatgagct



ggtggcccacgaggtggcaaggatgcgggcggatgagaaccacccccagcgtgtcctgcgtcacgtccaggaactggcagagcagct



ctacaagaacgagaacccgtacccagccgtggcgatgcacaaggtacagaggcccggtgagagcagccacctgcgacgggtgccccg



acccttcccccggctggatgagggcaccgtgcagtggatcgtggaccaggctgcagccaagatgcagggtgcacccccagctgtgaag



gccgagaggaggaccaccgtgccctcagggccccccatgactgccatactggagcggtgcagtgggctgcatgtcaacagcgcccggc



ggctggaggttgtgcgcaactgcatctcctacgtgtttgaggggaaaatgcttgaggccaagaagctgctcccagccgtgttgagggccct



gaaggggcgagctgcccgccgctgcctcgcccaggagctgcacctgcatgtgcagcagaaccgtgcggtcctggaccaccagcagttt



gactttgtcgtccgtatgatgaactgctgcctgcaggactgcacttctctggacgagcatggcattgcggcggctctgctgcctctggtcaca



gccttctgccggaagctgagcccgggggtgacgcagtttgcatacagctgtgtgcaggagcacgtggtgtggagcacgccacagttctgg



gaggccatgttctatggggatgtgcagactcacatccgggccctctacctggagcccacggaggacctggcccccgcccaggaggttgg



ggaggcaccttcccaggaggacgagcgctctgccctagacgtggcttctgagcagcggcgcttgtggccaactctgagtcgtgagaagc



agcaggagctggtgcagaaggaggagagcacggtgttcagccaggccatccactatgccaaccgcatgagctacctcctcctgcccctg



gacagcagcaagagccgcctacttcgggagcgtgccgggctgggcgacctggagagcgccagcaacagcctggtcaccaacagcatg



gctggcagtgtggccgagagctatgacacggagagcggcttcgaggatgcagagacctgcgacgtagctggggctgtggtccgcttcat



caaccgctttgtggacaaggtctgcacggagagtggggtcaccagcgaccacctcaaggggctgcatgtcatggtgccagacattgtcca



gatgcacatcgagaccctggaggccgtgcagcgggagagccggaggctgccgcccatccagaagcccaagctgctgcggccgcgcct



gctgccgggtgaggagtgtgtgctggacggcctgcgcgtctacctgctgccggatgggcgtgaggagggcgcggggggcagtgctgg



gggaccagcattgctcccagctgagggcgccgtcttcctcaccacgtaccgggtcatcttcacggggatgcccacggaccccctggttgg



ggagcaggtggtggtccgctccttcccggtggctgcgctgaccaaggagaagcgcatcagcgtccagacccctgtggaccagctcctgc



aggacgggctccagctgcgctcctgcacattccagctgctgaaaatggcctttgacgaggaggtggggtctgacagcgccgagctcttcc



gtaagcagctgcataagctgcggtacccgccggacatcagggccacctttgcgttcaccttgggctctgcccacacacctggccggccac



cgcgagtcaccaaggacaagggtccttccctcagaaccctgtcccggaacctggtcaagaacgccaagaagaccatcgggcggcagca



tgtcactcgcaagaagtacaacccccccagctgggagcaccggggccagccgccccctgaggaccaggaggacgagatctcagtgtcg



gaggagctggagcccagcacgctgaccccgtcctcagccctgaagccctccgaccgcatgaccatgagcagcctggtggaaagggctt



gctgtcgcgactaccagcgcctcggtctgggcaccctgagcagcagcctgagccgggccaagtctgagcccttccgcatttctccggtca



accgcatgtatgccatctgccgcagctacccagggctgctgatcgtgccccagagtgtccaggacaacgccctgcagcgcgtgtcccgct



gctaccgccagaaccgcttccccgtggtctgctggcgcagcgggcggtccaaggcggtgctgctgcgctctggaggcctgcatggcaaa



ggtgtcgtcggcctcttcaaggcccagaacgcaccttctccaggccagtcccaggcggactcgagtagcctggagcaggagaagtacct



gcaggctgtggtcagctccatgccccgctacgccgacgcgtcgggacgcaacacgcttagcggcttctcctcagcccacatgggcagtca



cgttcccagccccagagccagggtcaccacgctgtccaaccccatggcggcctcggcctccagacggaccgcaccccgaggtaagtgg



ggcagtgtccggaccagtggacgcagcagtggccttggcaccgatgtgggctcccggctagctggcagagacgcgctggccccacccc



aggccaacgggggccctcccgacccgggcttcctgcgtccgcagcgagcagccctctatatccttggggacaaagcccagctcaagggt



gtgcggtcagaccccctgcagcagtgggagctggtgcccattgaggtattcgaggcacggcaggtgaaggctagcttcaagaagctgct



gaaagcatgtgtcccaggctgccccgctgctgagcccagcccagcctccttcctgcgctcactggaggactcagagtggctgatccagat



ccacaagctgctgcaggtgtctgtgctggtggtggagctcctggattcaggctcctccgtgctggtgggcctggaggatggctgggacatc



accacccaggtggtatccttggtgcagctgctctcagaccccttctaccgcacgctggagggctttcgcctgctggtggagaaggagtggc



tgtccttcggccatcgcttcagccaccgtggagctcacaccctggccgggcagagcagcggcttcacacccgtcttcctgcagttcctgga



ctgcgtacaccaggtccacctgcagttccccatggagtttgagttcagccagttctacctcaagttcctcggctaccaccatgtgtcccgccgt



ttccggaccttcctgctcgactctgactatgagcgcattgagctggggctgctgtatgaggagaagggggaacgcaggggccaggtgccg



tgcaggtctgtgtgggagtatgtggaccggctgagcaagaggacgcctgtgttccacaattacatgtatgcgcccgaggacgcagaggtc



ctgcggccctacagcaacgtgtccaacctgaaggtgtgggacttctacactgaggagacgctggccgagggccctccctatgactgggaa



ctggcccaggggccccctgaacccccagaggaagaacggtctgatggaggcgctccccagagcaggcgccgcgtggtgtggccctgtt



acgacagctgcccgcgggcccagcctgacgccatctcacgcctgctggaggagctgcagaggctggagacagagttgggccaacccg



ctgagcgctggaaggacacctgggaccgggtgaaggctgcacagcgcctcgagggccggccagacggccgtggcacccctagctccc



tccttgtgtccaccgcaccccaccaccgtcgctcgctgggtgtgtacctgcaggaggggcccgtgggctccaccctgagcctcagcctgg



acagcgaccagagtagtggctcaaccacatccggctcccgtcaggctgcccgccgcagcaccagcaccctgtacagccagttccagaca



gcagagagtgagaacaggtcctacgagggcactctgtacaagaagggggccttcatgaagccttggaaggcccgctggttcgtgctgga



caagaccaagcaccagctgcgctactacgaccaccgtgtggacacagagtgcaagggtgtcatcgacttggcggaggtggaggctgtgg



cacctggcacgcccactatgggtgcccctaagactgtggacgagaaggccttctttgacgtgaagacaacgcgtcgcgtttacaacttctgt



gcccaggacgtgccctcggcccagcagtgggtggaccggatccagagctgcctgtcggacgcctgagcctcccagccctgcccggctg



ctctgcttccggtcgttaccgaccactaggggtgggcagggccgccccggccatgtttacagccccggccctcgacagtattgaggcccc



gagcccccagcacttgtgtgtacagcccccgtccccgccccgccccgcccggccggccctaacttattttggcgtcacagctgagcaccgt



gccgggaggtggccaaggtacagcccgcaatgggcctgtaaatagtccggccccgtcagcgtgtgctggtccagccagcggctgcagg



cgagtttctagaaccagagtctatataaagagagaactaacgccacgctcctgtgcctgccttccccactccccggctgcctgctctcggcct



acccagagggtcccatctgcccctatccaggcccacctggcgggaggttggcatctttctcgtgagcctctcctggtgcctgggtccaccca



gctcggcctgcatgtccctgggagtgactttgctctgggggcggatcgagcaggaggcttcactggggacttgcttgattccctccacgcct



cagggctggtctaggggccggcacggctggagaggaagcccccatccctacccaggggatgcagaagctgacctcacagaggcttgg



gggtgaaagggtgggtggtcatttgaccccagaaggctgttgcaggtccagaggacacttgaggtggacgtcagtttctggctagacccg



agctgaagggatggaggccggaggcgggggggggggggggacagtgggctcccaggggaatgcaggttgaccacatctggctcctg



ccaggcaacgagcagcatctggcagagtaaggggccaacgcccatgggggatggaccctctcagttcttgggaattctgccccaaaagt



cctttccctggggtctcagagggcccccgtccttcccttcttggtgtcactgtggcccctcactgctcttttcctattcaaacctgagtcccacca



ggcccagggcttcacctgctgagctgttgtgtccttgcctgtgacgaggcctggccaggggtgcaggagcagaaggtggggagggttata



gacgctgcaaaggccaagagaacatctgagagtggcagctggtgacctggccagaggggctggtgaggggcagagaacctggctaga



ggctgggtccctcaggtggtcctctcaggtgggaggcgagcagcaggtgtgggtgaggggaaggttctgatgacagctgcagaggcag



ggcccagtgctggcaggtggggggccaagaccctcccctggtgggacgttgaagccaaggatggccttggaccctgtcaggcccagca



tggtcccgccacctcccccaccccacaggtggtgttgggacacctgggcgagatgtgagggtgggctcacttgagccactgaaaccagc



caggtcttccctcaggccggacagatggcgcctgaccgaagttcctggcacctggaaaacccacaggtcagagtaaggggagaaagga



ccctgccctccctgttccacgtctgtggggggagaggacaaatgccaggcacagggtaggcggcgagaacaaggcactcaatgtgtagc



tggggcagagactcggcctctggggagctgagcgggttccctccacccccaaccgtggtggaaagacaagctcgctggggcggggtgg



gggtctggtctccacctgcccctcccactcagccactgaggacaaggtggggcccaggcttctgggagggggagctggcacaaaagga



agtcctggggttgatgtgtttgagcgttaggcgaagtggttccccccatcccccaaacggaaaaatgtcagtatttgctaagctgtagagacc



tgatgccgtgatgtggcctgttccgcctccacccattacacggggataacgctggggggtggcgggcccacaaaagaggtgctggagga



gactctcccacccctggccgggccggggctttggggccggaaggttcacagtacgcggtttgtccgaacgtcacggcttttattgggagtt



gggggtttggggtgccctgtcaggtgatcagaacattaaaaatggactcaacgtaaaaaaaaaaaaaaaaaa (SEQ ID NO: 665)





Lpmk
gccgtcagggccccagggagcgcggggcgccgctgctgctgttcttcggctcggttctgtctaccgggcagcgccggggccggcggct
NM_152230
NM_027184



gcggcggcagaggaacaggagccgggagccgcgttccgccgagagttgggcagaggagcgcccgcgccccggcggcgtcatgggc



cccctccccgcgcttcagagggcaccagccgcgggaacccccgggcctcctcgcgcccgagcctgagcgaccctcgggttctccggcg



ccccctccctcgccctattttttttcctactctcgctgccgttaccgcttctgctctccgttatggcaacagagccaccatcccccctccgggtcg



aggcgccgggccccccagaaatgcggacctcaccggcgatcgagtccacccctgagggcaccccgcagccggcgggcggcagactc



cgcttcctcaacggctgcgtgcccctctcgcatcaggtggccgggcacatgtacgggaaggacaaagtgggtatactgcaacatccagat



ggcacagttttgaaacagttacaaccacctccaaggggcccaagagagctggaattctataatatggtttatgctgctgactgttttgatggtgt



tcttctagagctacgaaaatatttgccaaaatattatggcatctggtcacctcccactgcaccaaacgatttatacctaaaactggaagatgtga



cccataaatttaataagccctgtataatggatgtaaagatagggcaaaaaagctatgatccttttgcctcatctgagaagattcagcaacaggt



cagcaagtacccattaatggaagagattgggttcttggtgcttggcatgagggtttatcatgttcattccgatagctatgagacagaaaaccag



cattacggaagaagcttaacaaaagaaactataaaggatggagtctccagattttttcataatgggtactgcttaagaaaagatgctgttgctg



ccagtattcagaagattgagaaaattctgcagtggtttgaaaaccagaagcagcttaatttttacgcaagttcattactctttgtttatgaaggttc



atctcagccaaccactacaaaattgaatgacagaactttggcagaaaagtttttgtccaaaggacaactgtcagacacagaagtactagagta



caataataactttcatgtgttaagttccacagctaatggaaaaatagagtcttcagtgggcaaaagcttgtccaagatgtatgcgcgtcacagg



aaaatatatacaaaaaagcatcacagtcagacttcattgaaagttgaaaatctggagcaagacaatgggtggaaaagcatgtcacaggaac



atttaaatggaaatgtactttcccaactggaaaaagttttctaccatcttcccactggttgccaagagattgctgaagtagaagtgcgaatgata



gattttgctcatgtgttccctagcaacacaatagatgagggatatgtttatgggctaaagcatttaatttctgtacttcgaagtattttagacaattg



aatcctctgttgcagtctttttaaggggtgggccaatcataatgaagaggggcagtcaatatctgcacctttaatgctatgtaaaaaatttgtatta



tgagtcgacattttatttgtctttatacttttggaagaatggttaacttttttataatcttactcaggaaaactaactatttgttcattagaaaactatgaa



gaataaagaaacttaggaatgttaagcagggaatgtggtggtacatggcttaaacatcttttttggctcaagcaaaatgcaaaccattattcagt



cattaagagtttagttagctttctgtagccaattcatgaaatctctgtccacccagccttgacaatgagccatatctaaaatattacattattagaac



acctaccaaaatctcgaaagcacaggttgatgtccttagtattgctatgtatgaagttactaaaactggagaaaattctacttcagaaataagta



ctgtttaggttttatattaaaagttcagaccagcatatcaaagggtgctccttagtgaaatgatttagaattgttgcattccaaaagcaggttttctc



tttaatttttacatctctctctcaaaatattatacttcatgaaaaagacaattgatgtggatgacaacaacaaagtcttgaaattaagggcacacta



attgtccttactggggttaggggaagagagatattattttcaaggaacaaaatattttcctttacaatctttcattcatgagaaaattggaatataaa



tttattacattgtgaaagtatcataaaccatatacctttgtatctaaatgcagcttcaaaaaagtaaataattgaagttttatttctcctctaaataactt



gaatttttttctttaaaaatttatgtatttatatgtccccatttagttaagtggtagtgtaaatgtatgttgttaaaaacagtttctcagaattatagtaag



caatgaaagacaatatctaattaggttgttatcaaaaatactgtgtgtaaattagtccgtaatatagggtttggtgcgtatctatattcatgcttctat



ttcactcttcctcaaaacagttttatattatgttgaccagtgaaattgtaacttaatttcatggggacaggggcagtgctacagttcctggaaaaat



tagatttgtattatctttgtttcacacccaccaccttaaaaaaaaatcaactagttatttgtcatttaaaacatttaaaactttgagtcttcaaatacatt



tgatgttaatgctgccattacttgcacttccattcactaataacatttctaggtagttatcagttttgtcatattcctggaaaatattttggggttgtaa



attctttctcctctttttcttctggagttacaaattgaatttttaaatccgagcacctttattgtggtgtggagaaaattatcacaattttatgtttatttta



ccttctcagccttctctgagggcactttgcaaatacctgagtccaaacagaagtaccaactaaatgctctatgaactctatccttagtaaatctatt



aaacctgaataatttaaaagatcatgttcattttgtaatagcaaaatttgattttaattttttatttagaattggtgtatttatcatagggacttccaatttt



tcttcactttttgaatggatattggctatagttttatgttttaacgggaatgaatttcaagtcataataatcagaatttttagttttacttttttcttttacaat



atggattttgttgttatttggatagtggttcaataaatcttaagctcagataattaaacactattttgaatcttaacaagatactgaggctttttttgtat



gggatgatatcaacctatgtacaatgaatttaataaacttaagtattgtcagattttttgcacattttagctcaataaaatcttaatgttcaagatttttt



tatctgcatttggaaatacaattttgtaaaatcaatgtcttacctttttgatacaatagatcatgttttgtttttaataaagcaagaagcccttttatctgt



tgtttttcagggaagggattaacatttaattctgtttgtttacatttgttatcattgttatccaatgctcattttatgttgctttataagtaggcttaggtat



aacagaataagtatctgtttatctaatctacatgtgactatcttagtctctctcggtcacttaatattatgctgaaatttaccactgtggggatgaatg



atcgctattcaccaagtatatttgaacatgtaaatgcttaagaaataagcataatgcggatatagtttgggttaataggattctcatagttttttttcc



cctatgaaacataagtaatgattttagtgtatttcttatggaatacactcatttaaaaaggactttaagaaattgtggatgtgaataatacctttctct



aataaaaatttaaattgtataatagttttataatatttacattaattgatattttaatatggatagacattgcatagattcaaataaattaaaatcaatga



taaatgctaaatattttatctaaatagtttttcaagaaacagttatggaaatgtgtatattaaatggctctaatgtggagcttgtggtatttcaactca



gtattcattattagttgtgtgtctggaaagattgtacttacttttcctctttacactacagtttgctcttatggggctctaaactgtttaactgaagaac



cttcgtctgtattttgattgagcataatttagtattttatgatttccaagatgatgttcttatgtctatcaagtctatgtatcaaatttataacatcatttaa



gaaaaaggaatttccacagatacttcagttgcaattttttgtttcatgctactgaaaatacatttgtttctaggggttggaatattatagaagatgta



ggatgaaagaaaacgatagaacaacgaaagaattctgtttatgaaattacaggaattgtgtccactatggtaaagcattgtcattttagtacattt



tctcttagtagtttggcattttatactttaaaacttgttttgctttaaaaattgtttataatgcttaccttctttctccagtgcctttagtcttgatttgatatg



tttgtaccctcagttaccctttctattacatgtttttgatgttttcatagcctaggaaacatcgattcctttttaataattgtcaatctgattatttaaaga



ggtaacaattatctgttaatgctttggaaaaacaagtagggttgcctttggaggccaggcttcttagttcattcaaaaatattccttggatttatgc



catgtattaagcatttttagcccccagtattacaactgtgaaccaaacggataaggccctaaccattttcagcattctctttggatggggtgggat



tggggacttaattaaaatagagatatagaaaaataggcatctaaataagataataagtgtggggttgaaatgaagcatctaacaatagttgaa



gttagaagtaatattttacagtattgtaacctctatttaagtttgggtattagttacagatagcataaaaaagccttaatttttcactttccttgctggc



aaaggtacatttatttagactgtccatttaaagtaatgtttaacataaacattactgtgaaaaacattccattacatattcccaagcaaatgagctg



catcttctttactgtattttacaatttagtacaacagttttaggcctcaatcttaacatcactggtattttaaatttggcaatgaatatgaaattacttttg



acttacagattgattatattattactttgaaaatgcattaatttcttagaaaagtttggagcctctatctttttttgagttaatacttaaattctcattactt



atattaatagcctgtactaagtgaaaatattatttatgcaagtaaacaagtcactataggcttttaagacttttctttaattttagattttgtcatcaaag



tttaaattttttacctactgtccacttaaatataatttaacagtttgtaaagtgaaatagttttaagtatgatgtatgatgcacctgcatataaatgaaa



atggcgtgcacaaagacactttactatgggaactgtactggaagatttatgaaagcatgtgaaattgcacctaaaattgtgttattagtgactat



aagcagcaatgctaaatttattgtacttgatgaatgaatgtatttagtcacagttactttggtttaaatgtataaatgtctttagggttttttrnaaatgt



gtttgtaatttgtactattgtgggggtatacttggactgcaggggttattgtcaatgtgtgctttgtgtttttattttatagaatcatctaatgtgatata



ccaatttttataagtgatatttacataattctaataactgtatatttgacaacctattaaaatgttttgcattggaa (SEQ ID NO: 666)





Rock1
gctggttccccttccgagcgtccgcgccccgcatgcgcagtctgccccggcggtctccgtttgtttgaacaggaaggcggacatattagtcc
NM_005406
NM_009071



ctctcagcccccctcgccccaccccccaggcattcgccgccgcgactcgccctttccccggctgggaccgcagcccctcccagaagctcc



cccatcagcagccgccgggacccaactatcgtcttcctcttcgcccgctctccagcctttcctctgctaagtctccatcgggcatcgacctcg



ccctgccccaccggacaccgtagcagcagccccagcagcgacgggacaaaatgggagagtgaggctgtcctgcgtggaccagctcgt



ggccgagactgatcggtgcgtcgggccgggccgagtagagccggggacgcggggctagaccgtctacagcgcctctgagcggagcg



ggcccggcccgtggcccgagcggcggccgcagctggcacagctcctcacccgccctttgctttcgcctttcctcttctccctcccttgttgcc



cggagggagtctccaccctgcttctctttctctacccgctcctgcccatctcgggacggggacccctccatggcgacggcggccggggcc



cgctagactgaagcacctcgccggagcgacgaggctggtggcgacggcgctgtcggctgtcgtgaggggctgccgggtgggatgcga



ctttgggcgtccgagcggctgtgggtcgctgttgcccccggcccggggtctggagagcggaggtcccctcagtgaggggaagacgggg



gaaccgggcgcacctggtgaccctgaggttccggctcctccgccccgcggctgcgaacccaccgcggaggaagttggttgaaattgcttt



ccgctgctggtgctggtaagagggcattgtcacagcagcagcaacatgtcgactggggacagttttgagactcgatttgaaaaaatggaca



acctgctgcgggatcccaaatcggaagtgaattcggattgtttgctggatggattggatgctttggtatatgatttggattttcctgccttaagaa



aaaacaaaaatattgacaactttttaagcagatataaagacacaataaataaaatcagagatttacgaatgaaagctgaagattatgaagtagt



gaaggtgattggtagaggtgcatttggagaagttcaattggtaaggcataaatccaccaggaaggtatatgctatgaagcttctcagcaaattt



gaaatgataaagagatctgattctgcttttttctgggaagaaagggacatcatggcttttgccaacagtccttgggttgttcagcttttttatgcatt



ccaagatgatcgttatctctacatggtgatggaatacatgcctggtggagatcttgtaaacttaatgagcaactatgatgtgcctgaaaaatgg



gcacgattctatactgcagaagtagttcttgcattggatgcaatccattccatgggttttattcacagagatgtgaagcctgataacatgctgctg



gataaatctggacatttgaagttagcagattttggtacttgtatgaagatgaataaggaaggcatggtacgatgtgatacagcggttggaacac



ctgattatatttcccctgaagtattaaaatcccaaggtggtgatggttattatggaagagaatgtgactggtggtcggttggggtatttttatacga



aatgcttgtaggtgatacacctttttatgcagattctttggttggaacttacagtaaaattatgaaccataaaaattcacttacctttcctgatgataa



tgacatatcaaaagaagcaaaaaaccttatttgtgccttccttactgacagggaagtgaggttagggcgaaatggtgtagaagaaatcaaac



gacatctcttcttcaaaaatgaccagtgggcttgggaaacgctccgagacactgtagcaccagttgtacccgatttaagtagtgacattgatac



tagtaattttgatgacttggaagaagataaaggagaggaagaaacattccctattcctaaagctttcgttggcaatcaactaccttttgtaggatt



tacatattatagcaatcgtagatacttatcttcagcaaatcctaatgataacagaactagctccaatgcagataaaagcttgcaggaaagtttgc



aaaaaacaatctataagctggaagaacagctgcataatgaaatgcagttaaaagatgaaatggagcagaagtgcagaacctcaaacataaa



actagacaagataatgaaagaattggatgaagagggaaatcaaagaagaaatctagaatctacagtgtctcagattgagaaggagaaaatg



ttgctacagcatagaattaatgagtaccaaagaaaagctgaacaggaaaatgagaagagaagaaatgtagaaaatgaagtttctacattaaa



ggatcagttggaagacttaaagaaagtcagtcagaattcacagcttgctaatgagaagctgtcccagttacaaaagcagctagaagaagcc



aatgacttacttaggacagaatcggacacagctgtaagattgaggaagagtcacacagagatgagcaagtcaattagtcagttagagtccct



gaacagagagttgcaagagagaaatcgaattttagagaattctaagtcacaaacagacaaagattattaccagctgcaagctatattagaag



ctgaacgaagagacagaggtcatgattctgagatgattggagaccttcaagctcgaattacatctttacaagaggaggtgaagcatctcaaa



cataatctcgaaaaagtggaaggagaaagaaaagaggctcaagacatgcttaatcactcagaaaaggaaaagaataatttagagatagattt



aaactacaaacttaaatcattacaacaacggttagaacaagaggtaaatgaacacaaagtaaccaaagctcgtttaactgacaaacatcaatc



tattgaagaggcaaagtctgtggcaatgtgtgagatggaaaaaaagctgaaagaagaaagagaagctcgagagaaggctgaaaatcggg



ttgttcagattgagaaacagtgttccatgctagacgttgatctgaagcaatctcagcagaaactagaacatttgactggaaataaagaaaggat



ggaggatgaagttaagaatctaaccctgcaactggagcaggaatcaaataagcggctgttgttacaaaatgaattgaagactcaagcatttg



aggcagacaatttaaaaggtttagaaaagcagatgaaacaggaaataaatactttattggaagcaaagagattattagaatttgagttagctca



gcttacgaaacagtatagaggaaatgaaggacagatgcgggagctacaagatcagcttgaagctgagcaatatttctcgacactttataaaa



cccaggtaaaggaacttaaagaagaaattgaagaaaaaaacagagaaaatttaaagaaaatacaggaactacaaaatgaaaaagaaactc



ttgctactcagttggatctagcagaaacaaaagctgagtctgagcagttggcgcgaggccttctggaagaacagtattttgaattgacgcaag



aaagcaagaaagctgcttcaagaaatagacaagagattacagataaagatcacactgttagtcggcttgaagaagcaaacagcatgctaac



caaagatattgaaatattaagaagagagaatgaagagctaacagagaaaatgaagaaggcagaggaagaatataaactggagaaggag



gaggagatcagtaatcttaaggctgcctttgaaaagaatatcaacactgaacgaacccttaaaacacaggctgttaacaaattggcagaaata



atgaatcgaaaagattttaaaattgatagaaagaaagctaatacacaagatttgagaaagaaagaaaaggaaaatcgaaagctgcaactgg



aactcaaccaagaaagagagaaattcaaccagatggtagtgaaacatcagaaggaactgaatgacatgcaagcgcaattggtagaagaat



gtgcacataggaatgagcttcagatgcagttggccagcaaagagagtgatattgagcaattgcgtgctaaacttttggacctctcggattcta



caagtgttgctagttttcctagtgctgatgaaactgatggtaacctcccagagtcaagaattgaaggttggctttcagtaccaaatagaggaaa



tatcaaacgatatggctggaagaaacagtatgttgtggtaagcagcaaaaaaattttgttctataatgacgaacaagataaggagcaatccaa



tccatctatggtattggacatagataaactgtttcacgttagacctgtaacccaaggagatgtgtatagagctgaaactgaagaaattcctaaaa



tattccagatactatatgcaaatgaaggtgaatgtagaaaagatgtagagatggaaccagtacaacaagctgaaaaaactaatttccaaaatc



acaaaggccatgagtttattcctacactctaccactttcctgccaattgtgatgcctgtgccaaacctctctggcatgtttttaagccaccccctg



ccctagagtgtcgaagatgccatgttaagtgccacagagatcacttagataagaaagaggacttaatttgtccatgtaaagtaagttatgatgt



aacatcagcaagagatatgctgctgttagcatgttctcaggatgaacaaaaaaaatgggtaactcatttagtaaagaaaatccctaagaatcc



accatctggttttgttcgtgcttcccctcgaacgctttctacaagatccactgcaaatcagtctttccggaaagtggtcaaaaatacatctggaaa



aactagttaaccatgtgactgagtgccctgtggaatcgtgtgggatgctacctgataaaccaggcttctttaaccatgcagagcagacaggct



gtttctttgacacaaatatcacaggcttcagggttaagattgctgtttttctgtccttgctttggcacaacacactgagggttttttttattgcgggttt



gcctacaggtagattagattaattattactatgtaatgcaagtacagttgggggaaagcttaggtagatatattttttttaaaaggtgctgccttttt



ggatttataagaaaatgcctgtcagtcgtgatagaacagagttttcctcatatgagtaagaggaagggactttcactttcaagtggaacagcca



tcactatcaagatcagctcatggaaggagtaaagaaaatatctcaaaatgagacaaactgaagttttgttttttttttaatgacttaagtttttgtgct



cttgcaagactatacaaaactattttaagaaagcagtgatatcacttgaacttcagtgccctcactgtagaatttaaaagccttactgttgattgcc



catgttggacttgatggagaaattaaatatctttcattatgctttacaaaatactgtatatgtttcagcaagtttggggaatgggagaggacaaaa



aaaagttacatttaatctatgcatttttgccaagccatattgagttattttactactagagacattaggaaactaactgtacaaaagaaccaagttta



aaagcattttgtggggtacatcatttctataattgtataatgtatttctttgtggttttaaatgataaagacattaagttaacaaacatataagaaatgt



atgcactgtttgaaatgtaaattattcttagaacactttcaatgggggttgcattgtccttttagtgccttaatttgagataattattttactgccatga



gtaagtatagaaatttcaaaaaatgtattttcaaaaaattatgtgtgtcagtgagtttttcattgataattggtttaatttaaaatatttagaggtttgtt



ggactttcataaattgagtacaatctttgcatcaaactacctgctacaataatgactttataaaactgcaaaaaatgtagaaggttgcaccaacat



aaaaaggaaatatggcaatacatccatgatgttttccagttaacataggaattaccagataaatactgttaaactcttgtccagtaacaagagtt



gattcatatggacagtatgatttattgtttatttttttaaccaaatacctcctcagtaatttataatggctttgcagtaatgtgtatcagataagaagca



ctggaaaaccgatcgtctctaggatgatatgcatgtttcaagtggtattgaaagccgcactgatggatatgtaataataaacatatctgttattaa



tatactaatgactctgtgctcatttaatgagaaataaaagtaatttatggatgggtatctttaatttttactgcaatgtgttttctcatggctgaaatga



atggaaaacatacttcaaattagtctctgattgtatataaatgtttgtgaaattccatggttagcttaaagtgtatttttaaaagataaaa (SEQ



ID NO: 667)





Stk17b
gaacggcgatgccccagacgcggctgcagttttcaaaccgcgactgcaagcttcggtagtcctctccgctgctgtcgccaggagtcacttc
NM_004226
NM_133810



acgagaagccaggtcacaaccgtcggcccttgtctggaaaagtaaaagtggatcctgccacgttcggagctccctggcgcctcgcccggc



tggagctagagaactcgtcctgtggcggcccccggcgtggggcgggacagcggccccctggagggggcagtcccgggagaacctgc



ggcggccggagcggtaaaaataagtgactaaagaagcagacctgggaatcacctaacatgtcgaggaggagatttgattgccgaagtatt



tcaggcctactaactacaactcctcaaattccaataaaaatggaaaactttaataatttctatatacttacatctaaagagctagggagaggaaa



atttgctgtggttagacaatgtatatcaaaatctactggccaagaatatgctgcaaaatttctaaaaaagagaagaagaggacaggattgtcga



gcagaaattttacacgagattgctgtgcttgaattggcaaagtcttgtccccgtgttattaatcttcatgaggtctatgaaaatacaagtgaaatc



attttgatattggaatatgctgcaggtggagaaattttcagcctgtgtttacctgagttggctgaaatggtttctgaaaatgatgttatcagactcat



taaacaaatacttgaaggagtttattatctacatcagaataacattgtacaccttgatttaaagccacagaatatattactgagcagcatataccct



ctcggggacattaaaatagtagattttggaatgtctcgaaaaatagggcatgcgtgtgaacttcgggaaatcatgggaacaccagaatattta



gctccagaaatcctgaactatgatcccattaccacagcaacagatatgtggaatattggtataatagcatatatgttgttaactcacacatcacc



atttgtgggagaagataatcaagaaacatacctcaatatttctcaagttaatgtagattattcggaagaaactttttcatcagtttcacagctggcc



acagactttattcagagccttttagtaaaaaatccagagaaaagaccaacagcagagatatgcctttctcattcttggctacagcagtgggact



ttgaaaacttgtttcaccctgaagaaacttccagttcctctcaaactcaggatcattctgtaaggtcctctgaagacaagacttctaaatcctcct



gtaatggaacctgtggtgatagagaagacaaagagaatatcccagaggatagcagcatggtttccaaaagatttcgtttcgatgactcattac



ccaatccccatgaacttgtttcagatttgctctgttagcacttttttctttgactcatttggactgaatttgaaattttatatccactccagtgagcttat



gatttgtagcttcatatatgacatgtttatattgtaaatgcacttttccatggaataatttagggaagtgttttaatgttaaattactagttgctagcatg



ttatgatttcatatcctgagatagctctgcagataagaaaatatttaaatatatgacaaaaagtaaaattgtacatgtgagtttacatgttaatgaaa



taattcaacttcaaatgaacttaccagaatgttttgcatatcaacaaaaaaagtggcttgagttttattatagttggtgtaaactgaacacagtgaa



gacattggaatttaataggttctctctctaaggtgactcttataccatgcctctatcaacataatttgtttaggaaagcagtatgaagtttaagcca



aaataatttctactttatagatgctcaagagacattttacaattgaaaatgtattcaattacaaatattttgaaacttcgtaagcttttcattctctgtg



gtctgttatatgagagagatcctttaactagagcaaagagggagttagaaacctgatcagggatattctttacaagttggagcagaggaaaga



gtagcatgccttcgtattttaacgcaaatgtctttttcctcctcccaacctacttgagatctgataaggtctggaagatggagatatttggtatgca



agtgtagagttttttaatcctccagaatttctagagtagaagatacttaggtatagttaaatattctgtatttttagtcaaacatatttattaattgaata



tagaagaaaatgttgacacactcagacagcttactgaattttagatgtcttctgcatcttagaatacaagccagtcattcagagttctaaaagtat



gcataaaaaattacagcaccggtaggtctattaacacagtgcccgagtcagcggtagcaagactgatgtgatcataaaacatgacatcagg



ctcgtctgaagttcttgtgtgaaattcctagtgagtgaggaggctcagcttaaagccatctgcagagtggcccctcattgtggtcttttgctggg



accaatgcaagagactagggagagcaaaatgtttgcttatggctagagactatatccagccctaatgatggggaaagttagtccttttcgggt



aatcttttatgaattttcacctgatgaccgttatattggtctgttatcatgttacgataactgtgatctcatgaccatgttgctgtatcagaagaaata



gtttgacaaatggtaacaacaacctgatgttccccctttagacctttaacttctcaaaattttggtaagtttccaaattctttaataataacttaaaact



ttttgaataactatcaggtcactttatttgaccacatggtgaattcctttaatgtcttcagcatttgttaaggaaaagttttctctacttgtgtgtgtatg



tgtgcacatgtgtgtatgtacaggtgtatgtatatatctatagatagatacaatacattctttagacacttttcaagattctttgctgtggtatattgtg



ctcaactcaggtgccaaaggagctttttttttttttttttttttttgagatggagttttgctctgtctctcaggctggagtgcagtggcatgatctcagc



tcacggcaacctctgcctcccgggttcaagcaattctcctgtctcagcctcctgagtagttgggattacaggcgcatgccaccgtgcccagct



aatttttgtatttttagtagagacggggtttcaccatgttggccaggctggtcacaaactcctgacttcaagtgatccacccgcctcggcctccc



aaagtgctgggattacaggcgtgagccactgcgcccccgcccaggagctcttttcttatgacatataaattatgacatttatattctttatatgac



tttatgttctcttcttatgacatttaaattctttaagtagtttgttggtccaataaactagacgttgtataatctaaattgagcccttgtatatctaaaact



gatgagttgtttctaaattgttgattgtccatttacttgccttggtattaagataatgcaagtaaagtttagtaagtcattggataatgaaatgcttat



gtttctgaagaccatattatatttttaatttttagaggaatcatgccatcccccaaaaaatcaagaaatatttgaattttaaattataagttcatttgtta



aaagacatttttacaaatgtctgaaaatcttaaaatactttacatctacctttaagtagtagaatacagagctgtaaatttccatgcatttttcctgat



attaagttttatagtaaaaaagcaactagtgattgcacaaagaatataaaaatccactctttttacaaaggtgtgaatttaaataacgttattgattg



gaatatgaaaatagaccaatcatttaagagctttttagcaaatgattcaattcttactctttttctcccaagattgaaaagcataatgtatttctctaa



agtaggaatctagagagcccctgtgagtggacaaatgtcagtaacacttgaacacatgagaagataagtgttatgttgtgataatttaaagtta



aatttgctttttgggtaggatccctaaatagatgggatttttaaatagatgatatatagatgacaattgcaattgtcattttaattattttccctacagt



aaagaacctagctctgagcagtgaaattgtaatggcactttaaaggaagtaagccgttaactgttctctagtggagcgatctccaactgttttg



gcactagggacgggttttgtggaagaaaatttttccacaggactgggggtttagggggatggtttcaggatgattcaagtacattacatttatc



attagattctcataaggagcatgcaacctagatctcttgcacgtgtggttcacagcaggattcgagctcctttgagaatctaatgccatggctga



tctaacaggaaactgagctcaggcagtaatgcttggcaccgccccccaccttctatgcagcccggtcgtggcctggggactggggacccc



tgctctagtcagtaataaggtacttgtgccagaatataaatcaacacattgcttcctttatcaaagaagtcttgttatttaaaaaaagtcaactgag



ccagtatgattagtgatgtaattgattttcattctggcacaagcctctttcattctggacagctcacaaatagttaatggaccatgctttgaatagc



cttcctctaagcaacatttataaatactgatattttagaactgtttacatttcttctgtttatttttgaattttcagtttgatatcttgtccttattcattgttgt



ataaacaactgtactttaatttcaagtagtattaaaagtatttcacttcagtttggggggattattatcaatttataattttataaaagtattttaaagaa



taattgtaaattttccataaattacaacttcctgccatattttattaaataataatcttgcttaaggcatatagacagacattattatgagtattccagta



aaaaaaatctacatcaacttgaccattctggctaaaaattaaaaagcacttttttatatctgtggttgtcatttgtttcaaagcatttctaaatttattgt



tcttaaaagtatgtctgcatgttctagcctttgacctaggtcatctatgaaccctctttgtgtctaataaacatatctgtaaaggcaaaaaaaaaaa



aaaaaaa (SEQ ID NO: 668)





Mast2
taggcaggcggctgagccggcggcgggtggcctgcccaacgtgtgctgggtgggagaaggcgaggcgtcagcgatgctgtctcttccg
NM_015112
NM_001042743



tgaggagcgcagaggaggtcgcggcgccggaggccccagaaggctcgaaggcgccgcgggctggggtcggtggcttagggagccc



gtccggccatggtggccgcgggtggtggttggcgcggctgcgctgcggcccggggcagtgcggagccgggacagtcgcggcgctga



cgcccgcgggccccagctgcagatatgaagcggagccgctgccgcgaccgaccgcagccgccgccgcccgaccgccgggaggatg



gagttcagcgggcagcggagctgtctcagtctttgccgccgcgccggcgagcgccgcccgggaggcagcggctggaggagcggacg



ggccccgcggggcccgagggcaaggagcaggatgtagtaactggagttagtcccctgctcttcaggaaactcagtaatcctgacatatttt



catccactggaaaagttaaacttcagcgacaactgagtcaggatgattgtaagttatggagaggaaacctggccagctctctatcgggtaag



cagctgctccctttgtccagcagtgtacatagcagtgtgggacaggtgacttggcagtcgtcaggagaagcatcaaacctggttcgaatgag



aaaccagtcccttggacagtctgcaccttctcttactgctggcctgaaggagttgagccttccaagaagaggcagcttttgtcggacaagtaa



ccgcaagagcttgattgtgacctctagcacatcacctacactaccacggccacactcaccactccatggccacacaggtaacagtcctttgg



acagcccccggaatttctctccaaatgcacctgctcacttttcttttgttcctgcccgtaggactgatgggcggcgctggtctttggcctctttgc



cctcttcaggatatggaactaacactcctagctccactgtctcatcatcatgctcctcacaggaaaagctgcatcagttgcctttccagcctaca



gctgatgagctgcactttttgacgaagcatttcagcacagagagcgtaccagatgaggaaggacggcagtccccagccatgcggcctcgc



tcccggagcctcagtcccggacgatccccagtatcctttgacagtgaaataataatgatgaatcatgtttacaaagaaagattcccaaaggcc



accgcacaaatggaagagcgactagcagagtttatttcctccaacactccagacagcgtgctgcccttggcagatggagccctgagctttat



tcatcatcaggtgattgagatggcccgagactgcctggataaatctcggagtggcctcattacatcacaatacttctacgaacttcaagataatt



tggagaaacttttacaagatgctcatgagcgctcagagagctcagaagtggcttttgtgatgcagctggtgaaaaagctgatgattatcattgc



ccgcccagcacgtctcctggaatgcctggagtttgaccctgaagagttctaccaccttttagaagcagctgagggccacgccaaagaggg



acaagggattaaatgtgacattccccgctacatcgttagccagctgggcctcacccgggatcccctagaagaaatggcccagttgagcagc



tgtgacagtcctgacactccagagacagatgattctattgagggccatggggcatctctgccatctaaaaagacaccctctgaagaggactt



cgagaccattaagctcatcagcaatggcgcctatggggctgtatttctggtgcggcacaagtccacccggcagcgctttgccatgaagaag



atcaacaagcagaacctgatcctacggaaccagatccagcaggccttcgtggagcgtgacatactgactttcgctgagaacccctttgtggt



cagcatgttctgctcctttgataccaagcgccacttgtgcatggtgatggagtacgttgaagggggagactgtgccactctgctgaagaatatt



ggggccctgcctgtggacatggtgcgtctatactttgcggaaactgtgctggccctggagtacttacacaactatggcatcgtgcaccgtga



cctcaagcctgacaacctcctaattacatccatggggcacatcaagctcacggactttggactgtccaaaattggcctcatgagtctgacaac



gaacttgtatgagggtcatattgaaaaggatgcccgggaattcctggacaagcaggtatgcgggaccccagaatacattgcgcctgaggtg



atcctgcgccagggctatgggaagccagtggactggtgggccatgggcattatcctgtatgagttcctggtgggctgcgtccctttttttgga



gatactccggaggagctctttgggcaggtgatcagtgatgagattgtgtggcctgagggtgatgaggcactgcccccagacgcccaggac



ctcacctccaaactgctccaccagaaccctctggagagacttggcacaggcagtgcctatgaggtgaagcagcacccattctttactggtct



ggactggacaggacttctccgccagaaggctgaatttattcctcagttggagtcagaggatgatactagctattttgacacccgctcagagcg



ataccaccacatggactcggaggatgaggaagaagtgagtgaggatggctgccttgagatccgccagttctcttcctgctctccaaggttca



acaaggtgtacagcagcatggagcggctctcactgctcgaggagcgccggacaccacccccgaccaagcgcagcctgagtgaggaga



aggaggaccattcagatggcctggcagggctcaaaggccgagaccggagctgggtgattggctcccctgagatattacggaagcggctg



tcggtgtctgagtcatcccacacagagagtgactcaagccctccaatgacagtgcgacgccgctgctcaggcctcctggatgcgcctcggt



tcccggagggccctgaggaggccagcagcaccctcaggaggcaaccacaggagggtatatgggtcctgacacccccatctggagagg



gggtatctgggcctgtcactgaacactcaggggagcagcggccaaagctggatgaggaagctgttggccggagcagtggttccagtcca



gctatggagacccgaggccgtgggacctcacagctggctgagggagccacagccaaggccatcagtgacctggctgtgcgtagggccc



gccaccggctgctctctggggactcaacagagaagcgcactgctcgccctgtcaacaaagtgatcaagtccgcctcagccacagccctct



cactcctcattccttcggaacaccacacctgctccccgttggccagccccatgtccccacattctcagtcgtccaacccatcatcccgggact



cttctccaagcagggacttcttgccagcccttggcagcatgaggcctcccatcatcatccaccgagctggcaagaagtatggcttcaccctg



cgggccattcgcgtctacatgggtgactccgatgtctacaccgtgcaccatatggtgtggcacgtggaggatggaggtccggccagtgag



gcagggcttcgtcaaggtgacctcatcacccatgtcaatggggaacctgtgcatggcctggtgcacacggaggtggtagagctgatcctga



agagtggaaacaaggtggccatttcaacaactcccctggagaacacatccattaaagtggggccagctcggaagggcagctacaaggcc



aagatggcccgaaggagcaagaggagccgcggcaaggatgggcaagaaagcagaaaaaggagctccctgttccgcaagatcaccaa



gcaagcatccctgctccacaccagccgcagcctttcttcccttaaccgctccttgtcatcaggggagagtgggccaggctctcccacacaca



gccacagcctttccccccgatctcccactcaaggctaccgggtgacccccgatgctgtgcattcagtgggagggaattcatcacagagcag



ctcccccagctccagcgtgcccagttccccagccggctctgggcacacacggcccagctccctccacggtctggcacccaagctccaac



gccagtaccgctctccacggcgcaagtcagcaggcagcatcccactgtcaccactggcccacaccccttctcccccacccccaacagctt



cacctcagcggtccccatcgcccctgtctggccatgtagcccaggcctttcccacaaagcttcacttgtcacctcccctgggcaggcaactct



cacggcccaagagtgcggagccaccccgttcaccactactcaagagggtgcagtcggctgagaaactggcagcagcacttgccgcctct



gagaagaagctagccacttctcgcaagcacagccttgacctgccccactctgaactaaagaaggaactgccgcccagggaagtgagccc



tctggaggtagttggagccaggagtgtgctgtctggcaagggggccctgccagggaagggggtgctgcagcctgctccctcacgggccc



taggcaccctccggcaggaccgagccgaacgacgggagtcgctgcagaagcaagaagccattcgtgaggtggactcctcagaggacg



acaccgaggaagggcctgagaacagccagggtgcacaggagctgagcttggcacctcacccagaagtgagccagagtgtggccccta



aaggagcaggagagagtggggaagaggatcctttcccgtccagagaccctaggagcctgggcccaatggtcccaagcctattgacagg



gatcacactggggcctcccagaatggaaagtcccagtggtccccacaggaggctcgggagcccacaagccattgaggaggctgccagc



tcctcctcagcaggccccaacctaggtcagtctggagccacagaccccatccctcctgaaggttgctggaaggcccagcacctccacacc



caggcactaacagcactttctcccagcacttcgggactcacccccaccagcagttgctctcctcccagctccacctctgggaagctgagcat



gtggtcctggaaatcccttattgagggcccagacagggcatccccaagcagaaaggcaaccatggcaggtgggctagccaacctccagg



atttggaaaacacaactccagcccagcctaagaacctgtctcccagggagcaggggaagacacagccacctagtgcccccagactggcc



catccatcttatgaggatcccagccagggctggctatgggagtctgagtgtgcacaagcagtgaaagaggatccagccctgagcatcacc



caagtgcctgatgcctcaggtgacagaaggcaggacgttccatgccgaggctgccccctcacccagaagtctgagcccagcctcaggag



gggccaagaaccagggggccatcaaaagcatcgggatttggcattggttccagatgagcttttaaagcaaacatagcagttgtttgccatttc



ttgcactcagacctgtgtaatatatgctcctggaaaccatcaaaaaaaaaaaaaaaaaa (SEQ ID NO: 669)





Pdp1
agagtgggcaggccgggggtgagggctcgcgctccgggagctgcacggggctgcgtggaaagagcgccgagcggtggcgtcgttgt
NM_001161779
NM_001098231



cgccccctcctcgtcgggaagaatcgtttggtctcctgccgtgcccggttcgtattccctactccctgccacgagccgccccgtccgggatc



ctccacccgtccaaagttgtgagggggcgccgggcgtgctcgcggatcggcggccgcgggcgtgcggagggctggacgagccctgg



agcgccaggagaatgtgtgtgtgtcccgggcccagacgaattggaatcccagtcagaagttccagcctgccactgttctctgatgccatgc



cagcaccaactcaactgttttttcctctcatccgtaactgtgaactgagcaggatctatggcactgcatgttactgccaccacaaacatctctgtt



gttcctcatcgtacattcctcagagtcgactgagatacacacctcatccagcatatgctaccttttgcaggccaaaggagaactggtggcagt



acacccaaggaaggagatatgcttccacaccacagaaattttacctcacacctccacaagtcaatagcatccttaaagctaatgaatacagttt



caaagtgccagaatttgacggcaaaaatgtcagttctatccttggatttgacagcaatcagctgcctgcaaatgcacccattgaggaccgga



gaagtgcagcaacctgcttgcagaccagagggatgcttttgggggtttttgatggccatgcaggttgtgcttgttcccaggcagtcagtgaaa



gactcttttattatattgctgtctctttgttaccccatgagactttgctagagattgaaaatgcagtggagagcggccgggcactgctacccattc



tccagtggcacaagcaccccaatgattactttagtaaggaggcatccaaattgtactttaacagcttgaggacttactggcaagagcttataga



cctcaacactggtgagtcgactgatattgatgttaaggaggctctaattaatgccttcaagaggcttgataatgacatctccttggaggcgcaa



gttggtgatcctaattcttttctcaactacctggtgcttcgagtggcattttctggagccactgcttgtgtggcccatgtggatggtgttgaccttc



atgtggccaatactggcgatagcagagccatgctgggtgtgcaggaagaggacggctcatggtcagcagtcacgctgtctaatgaccaca



atgctcaaaatgaaagagaactagaacggctgaaattggaacatccaaagagtgaggccaagagtgtcgtgaaacaggatcggctgcttg



gcttgctgatgccatttagggcatttggagatgtaaagttcaaatggagcattgaccttcaaaagagagtgatagaatctggcccagaccagt



tgaatgacaatgaatataccaagtttattcctcctaattatcacacacctccttatctcactgctgagccagaggtaacttaccaccgattaaggc



cacaggataagtttctggtgttggctactgatgggttgtgggagactatgcataggcaggatgtggttaggattgtgggtgagtacctaactg



gcatgcatcaccaacagccaatagctgttggtggctacaaggtgactctgggacagatgcatggccttttaacagaaaggagaaccaaaat



gtcctcggtatttgaggatcagaacgcagcaacccatctcattcgccacgctgtgggcaacaacgagtttgggactgttgatcatgagcgcc



tctctaaaatgcttagtcttcctgaagagcttgctcgaatgtacagagatgacattacaatcattgtagttcagttcaattctcatgttgtaggggc



gtatcaaaaccaagaatagtgagtggctctttcactggcaattctcaaatgatatacatttaaagggcagattttttaaaaagatactactataata



aacatttccagttggtcattctaagcatttacccttttgatactctagctagtcaggtactccaaattgactttgcagcagggtggcagggtcagg



agagtctggtcctgcctagctcagatttcatggcacctgcacttgaagcaagtcacttctttatcacaggtgtcttgaaacattagcttcttttacc



aacctgagaaaattaggatgacctggcaaataagatcttgaataggccaaaagcaagtatcttgctgtgtgtagtctcttggttaaagtgaaga



aacagtactgttcacacctttcttcactgagattccagtgtacatgagaacatatatttattgcatgattttctagatacacagtctatgcattattca



tatacatttattttagcctaaagtggttttcaaatccagttcttcaagccataaatgaccaagatccaagcaatctgaatttgtttttgtgcttatttga



ctggaatgcttcttaagtggaataactatactccgttatccacccgatttcctaatgtaattgaaagattttctattttgccacacacttggagacaa



taagggtttttagttttatctactcttctattgaagttaaagaaagaaaaaaagctttttttatttgtattaatgaaaagctttagtttaaaataaggaga



tccagaataaaaagaagagactgatctcttcaattattgtcatctgtagccaccagcacatcactcttatgtaatccccaaaggcttggcatgcc



gtaagtgtgtggtgggtagactgctgccggggaatcgtacttcttatttagtaatgataagacttttcattatttttggaattttaaagatgacataa



ataagtttaaatatcaatttggggagtaaggtttaatattgccatcgggtattgagacaggaggaagtttctgtttttctccatttagacataggtc



aattaaaatatttgggtttaaaatgactaaatgctttaaacatattgtagcttaagatatatgtgttaagatatatacatgagaaactttaaaaggta



actactgtgcatgcctgatgcttaatagaatacttagtggcatcaaatgtttgcagcagtctccataattatattcagtcccttctaatactgtatca



atgtaaatgaaataaatatattcaaattggctttttgatatgcatcaagtggcattttgttcctgtgtttaatagtgatctgtatacagctgtgcacata



ttgtcatcacttattctagcatcactgttaaggctgtgattatgtttgatattcacctggattttaatacaagccaatatcagcttcccattgtgtaata



acttgggtgtttaggagtcttttcacattttttggggatatgaactagatgttcaagaactccttctggactgtggatactgaatcagtgtactattg



gctgcagaatttgtttcaattgaaaatagactcaggaagattgctgctcagaatatcatataatgtttattttttgaggtgtttttgtttttatttgtgtgt



ttttttttttttaagtcagcttggaacttttttcctgggtagtatttgggagagggaaaggctgtactatatatttatttctaaatgttttgactgggcatt



tttcttttaatgaaatatgtggactgctctagcaaaccctattttcagctactatttgaatattcttgaacaccaccactgaagagtttcatatacacc



aaataatgtctcatctctatagtacagggaatataaaattggtttcctgtggtcatgatcaagatagtagtattattacacaagaaacttggtctgc



agtctggaagcttgtctgctctatagaaatgaaaatgcagcatgaagttgacattgtggaaatgaaagtaattgggtattagaaatctgaaagt



actgtcatctaaaagcaattgtgattttattgtaattggttgtcactgttgtacggtgtctagaattaaagaatacatgtaaactttcatggtatttag



cctttcttaaatttttttaaaatttaaactttctaacctatgtattcaacttctgtatttatatttaatcagtggttcatgttatataatacacccttaactagt



taaatggaatgttggtatggtacagagtaccatattgctaagaaaactgtcttataaaagatgtatatgtgtgaagacatgaaagtttaatgtaca



gaatggttggagaaatgcctatggtgaattaaagcttcatatctgctttctgaaaaaaaaaaaaaaa (SEQ ID NO: 670)





Yes1
ggaggaggtggagagtgaggccgaggcgtggggagcccgggaactccctcctcctgaagtaacgcgtcccgggccggctctgccgtc
NM_005433
NM_009535



gttgctgccgccgggcgccccgggacgaggaggtggaggagggagagggcccgcgggcctcgcctccgccctccgccacctcgagc



tgcggtagcagcgactcatgagagcgcggccggaggacagatttgataatgggctgcattaaaagtaaagaaaacaaaagtccagccatt



aaatacagacctgaaaatactccagagcctgtcagtacaagtgtgagccattatggagcagaacccactacagtgtcaccatgtccgtcatct



tcagcaaagggaacagcagttaatttcagcagtctttccatgacaccatttggaggatcctcaggggtaacgccttttggaggtgcatcttcct



cattttcagtggtgccaagttcatatcctgctggtttaacaggtggtgttactatatttgtggccttatatgattatgaagctagaactacagaaga



cctttcatttaagaagggtgaaagatttcaaataattaacaatacggaaggagattggtgggaagcaagatcaatcgctacaggaaagaatg



gttatatcccgagcaattatgtagcgcctgcagattccattcaggcagaagaatggtattttggcaaaatggggagaaaagatgctgaaagat



tacttttgaatcctggaaatcaacgaggtattttcttagtaagagagagtgaaacaactaaaggtgcttattccctttctattcgtgattgggatga



gataaggggtgacaatgtgaaacactacaaaattaggaaacttgacaatggtggatactatatcacaaccagagcacaatttgatactctgca



gaaattggtgaaacactacacagaacatgctgatggtttatgccacaagttgacaactgtgtgtccaactgtgaaacctcagactcaaggtct



agcaaaagatgcttgggaaatccctcgagaatctttgcgactagaggttaaactaggacaaggatgtttcggcgaagtgtggatgggaacat



ggaatggaaccacgaaagtagcaatcaaaacactaaaaccaggtacaatgatgccagaagctttccttcaagaagctcagataatgaaaaa



attaagacatgataaacttgttccactatatgctgttgtttctgaagaaccaatttacattgtcactgaatttatgtcaaaaggaagcttattagattt



ccttaaggaaggagatggaaagtatttgaagcttccacagctggttgatatggctgctcagattgctgatggtatggcatatattgaaagaatg



aactatattcaccgagatcttcgggctgctaatattcttgtaggagaaaatcttgtgtgcaaaatagcagactttggtttagcaaggttaattgaa



gacaatgaatacacagcaagacaaggtgcaaaatttccaatcaaatggacagctcctgaagctgcactgtatggtcggtttacaataaagtct



gatgtctggtcatttggaattctgcaaacagaactagtaacaaagggccgagtgccatatccaggtatggtgaaccgtgaagtactagaaca



agtggagcgaggatacaggatgccgtgccctcagggctgtccagaatccctccatgaattgatgaatctgtgttggaagaaggaccctgat



gaaagaccaacatttgaatatattcagtccttcttggaagactacttcactgctacagagccacagtaccagccaggagaaaatttataattca



agtagcctattttatatgcacaaatctgccaaaatataaagaacttgtgtagattttctacaggaatcaaaagaagaaaatcttctttactctgcat



gtttttaatggtaaactggaatcccagatatggttgcacaaaaccacttttttttccccaagtattaaactctaatgtaccaatgatgaatttatcag



cgtatttcagggtccaaacaaaatagagctaagatactgatgacagtgtgggtgacagcatggtaatgaaggacagtgaggctcctgcttatt



tataaatcatttcctttctttttttccccaaagtcagaattgctcaaagaaaattatttattgttacagataaaacttgagagataaaaagctataccat



aataaaatctaaaattaaggaatatcatgggaccaaataattccattccagttttttaaagtttcttgcatttattattctcaaaagttttttctaagtta



aacagtcagtatgcaatcttaatatatgctttcttttgcatggacatgggccaggtttttcaaaaggaatataaacaggatctcaaacttgattaaa



tgttagaccacagaagtggaatttgaaagtataatgcagtacattaatattcatgttcatggaactgaaagaataagaactttttcacttcagtcct



tttctgaagagtttgacttagaataatgaaggtaactagaaagtgagttaatcttgtatgaggttgcattgattttttaaggcaatatataattgaaa



ctactgtccaatcaaaggggaaatgttttgatctttagatagcatgcaaagtaagacccagcattttaaaagccctttttaaaaactagacttcgt



actgtgagtattgcttatatgtccttatggggatgggtgccacaaatagaaaatatgaccagatcagggacttgaatgcacttttgctcatggtg



aatatagatgaacagagaggaaaatgtatttaaaagaaatacgagaaaagaaagtgaaagttttacaagttagagggatggaaggtaatgtt



taatgttgatgtcatggagtgacagaatggctttgctggcactcagagctcctcacttagctatattctgagactttgaagagttataaagtataa



ctataaaactaatttttcttacacactaaatgggtatttgttcaaaataatgaagttatggcttcacattcattgcagtgggatatggtttttatgtaaa



acatttttagaactccagttttcaaatcatgtttgaatctacattcacttttttttgttttcttttttgagacggagtctcgctctgtcgcccaggctgga



gtgcagtggcgcgatctcggctcactgcaagctctgcctcccaggttcacaccattctcctgcctcagcctcccgagtagctgggactacag



gtgcccaccaccacgcctggctagttttttgtatttttagtagagacgcagtttcaccgtgttagccaggatggtctcgatctcctgaccttgtga



tctgcccgcctcggcctcccaaagtgctgggattacaggcgtgagccaccgcgcccagcctacattcacttctaaagtctatgtaatggtggt



cattttttcccttttagaatacattaaatggttgatttggggaggaaaacttattctgaatattaacggtggtgaaaaggggacagtttttaccctaa



agtgcaaaagtgaaacatacaaaataagactaatttttaagagtaactcagtaatttcaaaatacagatttgaatagcagcattagtggtttgagt



gtctagcaaaggaaaaattgatgaataaaatgaaggtctggtgtatatgttttaaaatactctcatatagtcacactttaaattaagccttatattag



gcccctctattttcaggatataattcttaactatcattatttacctgattttaatcatcagattcgaaattctgtgccatggcatatatgttcaaattcaa



accatttttaaaatgtgaagatggacttcatgcaagttggcagtggactggtactaaaaattgtggagcttactgtttacgtaacctgcttagta



ttgacactctctaccaagagggtcttcctaagaagagtgctgtcattatttcctcttatcaacaacttgtgacatgagattttttaagggctttatgt



gaactatgatattgtaatttttctaagcatattcaaaagggtgacaaaattacgtttatgtactaaatctaatcaggaaagtaaggcaggaaaagt



tgatggtattcattaggttttaactgaatggagcagttccttatataataacaattgtatagtagggataaaacactaacttaatgtgtattcatttta



aattgttctgtatttttaaattgccaagaaaaacaactttgtaaatttggagatattttccaacagcttttcgtcttcagtgtcttaatgtggaagttaa



cccttaccaaaaaaggaagttggcaaaaacagccttctagcacacttttttaaatgaataatggtagcctaaacttaatatttttataaagtattgt



aatattgttttgtggataattgaaataaaaagttctcattgaatgcacctattaatcgttttagttgctattcatattctcattcgttttttaaaaactgat



atattctgaatttattcttccattgagaaaaaaatgttcagttacttgtaactactgagcagaatttaatcaatcctttattaaattcagaacattattg



aa (SEQ ID NO: 671)





Met
gccctcgccgcccgcggcgccccgagcgctttgtgagcagatgcggagccgagtggagggcgcgagccagatgcggggcgacagct
NM_001127500
NM_008591



gacttgctgagaggaggcggggaggcgcggagcgcgcgtgtggtccttgcgccgctgacttctccactggttcctgggcaccgaaagat



aaacctctcataatgaaggcccccgctgtgcttgcacctggcatcctcgtgctcctgtttaccttggtgcagaggagcaatggggagtgtaaa



gaggcactagcaaagtccgagatgaatgtgaatatgaagtatcagcttcccaacttcaccgcggaaacacccatccagaatgtcattctacat



gagcatcacattttccttggtgccactaactacatttatgttttaaatgaggaagaccttcagaaggttgctgagtacaagactgggcctgtgct



ggaacacccagattgtttcccatgtcaggactgcagcagcaaagccaatttatcaggaggtgtttggaaagataacatcaacatggctctagt



tgtcgacacctactatgatgatcaactcattagctgtggcagcgtcaacagagggacctgccagcgacatgtctttccccacaatcatactgc



tgacatacagtcggaggttcactgcatattctccccacagatagaagagcccagccagtgtcctgactgtgtggtgagcgccctgggagcc



aaagtcctttcatctgtaaaggaccggttcatcaacttctttgtaggcaataccataaattcttcttatttcccagatcatccattgcattcgatatca



gtgagaaggctaaaggaaacgaaagatggttttatgtttttgacggaccagtcctacattgatgttttacctgagttcagagattcttaccccatt



aagtatgtccatgcctttgaaagcaacaattttatttacttcttgacggtccaaagggaaactctagatgctcagacttttcacacaagaataatc



aggttctgttccataaactctggattgcattcctacatggaaatgcctctggagtgtattctcacagaaaagagaaaaaagagatccacaaag



aaggaagtgtttaatatacttcaggctgcgtatgtcagcaagcctggggcccagcttgctagacaaataggagccagcctgaatgatgacat



tcttttcggggtgttcgcacaaagcaagccagattctgccgaaccaatggatcgatctgccatgtgtgcattccctatcaaatatgtcaacgac



ttcttcaacaagatcgtcaacaaaaacaatgtgagatgtctccagcatttttacggacccaatcatgagcactgctttaataggacacttctgag



aaattcatcaggctgtgaagcgcgccgtgatgaatatcgaacagagtttaccacagctttgcagcgcgttgacttattcatgggtcaattcagc



gaagtcctcttaacatctatatccaccttcattaaaggagacctcaccatagctaatcttgggacatcagagggtcgcttcatgcaggttgtggt



ttctcgatcaggaccatcaacccctcatgtgaattttctcctggactcccatccagtgtctccagaagtgattgtggagcatacattaaaccaaa



atggctacacactggttatcactgggaagaagatcacgaagatcccattgaatggcttgggctgcagacatttccagtcctgcagtcaatgcc



tctctgccccaccctttgttcagtgtggctggtgccacgacaaatgtgtgcgatcggaggaatgcctgagcgggacatggactcaacagatc



tgtctgcctgcaatctacaaggttttcccaaatagtgcaccccttgaaggagggacaaggctgaccatatgtggctgggactttggatttcgg



aggaataataaatttgatttaaagaaaactagagttctccttggaaatgagagctgcaccttgactttaagtgagagcacgatgaatacattga



aatgcacagttggtcctgccatgaataagcatttcaatatgtccataattatttcaaatggccacgggacaacacaatacagtacattctcctatg



tggatcctgtaataacaagtatttcgccgaaatacggtcctatggctggtggcactttacttactttaactggaaattacctaaacagtgggaatt



ctagacacatttcaattggtggaaaaacatgtactttaaaaagtgtgtcaaacagtattcttgaatgttataccccagcccaaaccatttcaactg



agtttgctgttaaattgaaaattgacttagccaaccgagagacaagcatcttcagttaccgtgaagatcccattgtctatgaaattcatccaacc



aaatcttttattagtacttggtggaaagaacctctcaacattgtcagttttctattttgctttgccagtggtgggagcacaataacaggtgttggga



aaaacctgaattcagttagtgtcccgagaatggtcataaatgtgcatgaagcaggaaggaactttacagtggcatgtcaacatcgctctaattc



agagataatctgttgtaccactccttccctgcaacagctgaatctgcaactccccctgaaaaccaaagcctttttcatgttagatgggatcctttc



caaatactttgatctcatttatgtacataatcctgtgtttaagccttttgaaaagccagtgatgatctcaatgggcaatgaaaatgtactggaaatt



aagggaaatgatattgaccctgaagcagttaaaggtgaagtgttaaaagttggaaataagagctgtgagaatatacacttacattctgaagcc



gttttatgcacggtccccaatgacctgctgaaattgaacagcgagctaaatatagagtggaagcaagcaatttcttcaaccgtccttggaaaa



gtaatagttcaaccagatcagaatttcacaggattgattgctggtgttgtctcaatatcaacagcactgttattactacttgggtttttcctgtggct



gaaaaagagaaagcaaattaaagatctgggcagtgaattagttcgctacgatgcaagagtacacactcctcatttggataggcttgtaagtgc



ccgaagtgtaagcccaactacagaaatggtttcaaatgaatctgtagactaccgagctacttttccagaagatcagtttcctaattcatctcaga



acggttcatgccgacaagtgcagtatcctctgacagacatgtcccccatcctaactagtggggactctgatatatccagtccattactgcaaaa



tactgtccacattgacctcagtgctctaaatccagagctggtccaggcagtgcagcatgtagtgattgggcccagtagcctgattgtgcatttc



aatgaagtcataggaagagggcattttggttgtgtatatcatgggactttgttggacaatgatggcaagaaaattcactgtgctgtgaaatcctt



gaacagaatcactgacataggagaagtttcccaatttctgaccgagggaatcatcatgaaagattttagtcatcccaatgtcctctcgctcctg



ggaatctgcctgcgaagtgaagggtctccgctggtggtcctaccatacatgaaacatggagatcttcgaaatttcattcgaaatgagactcat



aatccaactgtaaaagatcttattggctttggtcttcaagtagccaaaggcatgaaatatcttgcaagcaaaaagtttgtccacagagacttggc



tgcaagaaactgtatgctggatgaaaaattcacagtcaaggttgctgattttggtcttgccagagacatgtatgataaagaatactatagtgtac



acaacaaaacaggtgcaaagctgccagtgaagtggatggctttggaaagtctgcaaactcaaaagtttaccaccaagtcagatgtgtggtc



ctttggcgtgctcctctgggagctgatgacaagaggagccccaccttatcctgacgtaaacacctttgatataactgtttacttgttgcaaggg



agaagactcctacaacccgaatactgcccagaccccttatatgaagtaatgctaaaatgctggcaccctaaagccgaaatgcgcccatccttt



tctgaactggtgtcccggatatcagcgatcttctctactttcattggggagcactatgtccatgtgaacgctacttatgtgaacgtaaaatgtgtc



gctccgtatccttctctgttgtcatcagaagataacgctgatgatgaggtggacacacgaccagcctccttctgggagacatcatagtgctagt



actatgtcaaagcaacagtccacactttgtccaatggttttttcactgcctgacctttaaaaggccatcgatattctttgctcttgccaaaattgca



ctattataggacttgtattgttatttaaattactggattctaaggaatttcttatctgacagagcatcagaaccagaggcttggtcccacaggcca



cggaccaatggcctgcagccgtgacaacactcctgtcatattggagtccaaaacttgaattctgggttgaattttttaaaaatcaggtaccactt



gatttcatatgggaaattgaagcaggaaatattgagggcttcttgatcacagaaaactcagaagagatagtaatgctcaggacaggagcgg



cagccccagaacaggccactcatttagaattctagtgtttcaaaacacttttgtgtgttgtatggtcaataacatttttcattactgatggtgtcattc



acccattaggtaaacattcccttttaaatgtttgtttgttttttgagacaggatctcactctgttgccagggctgtagtgcagtggtgtgatcatagc



tcactgcaacctccacctcccaggctcaagcctcccgaatagctgggactacaggcgcacaccaccatccccggctaatttttgtattttttgt



agagacggggttttgccatgttgccaaggctggtttcaaactcctggactcaagaaatccacccacctcagcctcccaaagtgctaggatta



caggcatgagccactgcgcccagcccttataaatttttgtatagacattcctttggttggaagaatatttataggcaatacagtcaaagtttcaaa



atagcatcacacaaaacatgtttataaatgaacaggatgtaatgtacatagatgacattaagaaaatttgtatgaaataatttagtcatcatgaaa



tatttagttgtcatataaaaacccactgtttgagaatgatgctactctgatctaatgaatgtgaacatgtagatgttttgtgtgtatttttttaaatgaa



aactcaaaataagacaagtaatttgttgataaatatttttaaagataactcagcatgtttgtaaagcaggatacattttactaaaaggttcattggtt



ccaatcacagctcataggtagagcaaagaaagggtggatggattgaaaagattagcctctgtctcggtggcaggttcccacctcgcaagca



attggaaacaaaacttttggggagttttattttgcattagggtgtgttttatgttaagcaaaacatactttagaaacaaatgaaaaaggcaattgaa



aatcccagctatttcacctagatggaatagccaccctgagcagaactttgtgatgcttcattctgtggaattttgtgcttgctactgtatagtgcat



gtggtgtaggttactctaactggttttgtcgacgtaaacatttaaagtgttatattttttataaaaatgtttatttttaatgatatgagaaaaattttgtta



ggccacaaaaacactgcactgtgaacattttagaaaaggtatgtcagactgggattaatgacagcatgattttcaatgactgtaaattgcgata



aggaaatgtactgattgccaatacaccccaccctcattacatcatcaggacttgaagccaagggttaacccagcaagctacaaagagggtgt



gtcacactgaaactcaatagttgagtttggctgttgttgcaggaaaatgattataactaaaagctctctgatagtgcagagacttaccagaaga



cacaaggaattgtactgaagagctattacaatccaaatattgccgtttcataaatgtaataagtaatactaattcacagagtattgtaaatggtgg



atgacaaaagaaaatctgctctgtggaaagaaagaactgtctctaccagggtcaagagcatgaacgcatcaatagaaagaactcggggaa



acatcccatcaacaggactacacacttgtatatacattcttgagaacactgcaatgtgaaaatcacgtttgctatttataaacttgtccttagatta



atgtgtctggacagattgtgggagtaagtgattcttctaagaattagatacttgtcactgcctatacctgcagctgaactgaatggtacttcgtat



gttaatagttgttctgataaatcatgcaattaaagtaaagtgatgcaacatcttgtaaaaaaaaaaaaaaaaaaaa (SEQ ID NO: 672)





Ppm1g
agttgctaaggaaatgactgcccgcagcgcctggccccgccgcgcaggccgggcggggtctggagcggcgccgtttccgcttccgctc
NM_177983
NM_008014



cctcacagctcccgtcccgttaccgcctcctggccggcctcgcgcctttcaccggcaccttgcgtcggtcgcgccgcggggcctgctcctg



ccgcgcgcacccccggggcttcggctccggcacgggtcgcgcccagctttcctgcacctgaggccgccggccagccgccgccatgggt



gcctacctctcccagcccaacacggtgaagtgctccggggacggggtcggcgccccgcgcctgccgctgccctacggcttctccgccat



gcaaggctggcgcgtctccatggaggatgctcacaactgtattcctgagctggacagtgagacagccatgttttctgtctacgatggacatg



gaggggaggaagttgccttgtactgtgccaaatatcttcctgatatcatcaaagatcagaaggcctacaaggaaggcaagctacagaaggc



tttagaagatgccttcttggctattgacgccaaattgaccactgaagaagtcattaaagagctggcacagattgcagggcgacccactgagg



atgaagatgaaaaagaaaaagtagctgatgaagatgatgtggacaatgaggaggctgcactgctgcatgaagaggctaccatgactattga



agagctgctgacacgctacgggcagaactgtcacaagggccctccccacagcaaatctggaggtgggacaggcgaggaaccagggtc



ccagggcctcaatggggaggcaggacctgaggactcaactagggaaactccttcacaagaaaatggccccacagccaaggcctacaca



ggcttttcctccaactcggaacgtgggactgaggcaggccaagttggtgagcctggcattcccactggtgaggctgggccttcctgctcttc



agcctctgacaagctgcctcgagttgctaagtccaagttctttgaggacagtgaggatgagtcagatgaggcggaggaagaagaggaaga



cagtgaggaatgcagcgaggaagaggatggctacagcagtgaggaggcagagaatgaggaagatgaggatgacaccgaggaggctg



aagaggacgatgaagaagaagaagaagagatgatggtgccagggatggaaggcaaagaggagcctggctctgacagtggtacaacag



cggtggtggccctgatacgagggaagcagttgattgtagccaacgcaggagactctcgctgtgtggtatctgaggctggcaaagctttaga



catgtcctatgatcacaaaccagaggatgaagtagaactagcacgcatcaagaatgctggtggcaaggtcaccatggatgggcgagtcaa



cgggggcctcaacctctccagagccattggggaccacttctataagagaaacaagaacctgccacctgaggaacagatgatttcagccctt



cctgacatcaaggtgctgactctcactgacgaccatgaattcatggtcattgcctgtgatggcatctggaatgtgatgagcagccaggaagtt



gtagatttcattcaatcaaagatcagccagcgtgatgaaaatggggagcttcggttattgtcatccattgtggaagagctgctggatcagtgcc



tggcaccagacacttctggggatggtacagggtgtgacaacatgacctgcatcatcatttgcttcaagccccgaaacacagcagagctcca



gccagagagtggcaagcgaaaactagaggaggtgctctctactgagggggctgaagaaaatggcaacagcgacaagaagaagaaggc



caagcgagactagcagtcatccagacccctgcccacctagactgttttctgagccctccggacctgagactgagttttgtctttttcctttagcc



ttagcagtgggtatgaggtgtgcagggggagctgggtggcttcactccgcccattccaaagagggctctccctccacactgcagccggga



gcctctgctgtccttcccagccgcctctgctcctcgggctcatcaccggttctgtgcctgtgctctgttgtgttggagggaaggactggcggtt



ctggtttttactctgtgaactttatttaaggacattcttttttattggcggctccatggccctcggccgcttgcacccgctctctgttgtacactttca



atcaacactttttcagactaaaggccaaaacctaa (SEQ ID NO: 673)





Blvrb
Ggcgtggcccttcgagccagctccgccccgttgttcctggcttgagtagggcagagagcaccgcccagcagccagtgggttcccgcgc
NM_000713
NM_144923



gtgccgagactctgaggccttgcacccccacgatcccgtacgatggccgtcaagaagatcgcgatcttcggcgccactggccagaccgg



gctcaccaccctggcgcaggcggtgcaagcaggttacgaagtgacagtgctggtgcgggactcctccaggctgccatcagaggggccc



cggccggcccacgtggtagtgggagatgttctgcaggcagccgatgtggacaagaccgtggctgggcaggacgctgtcatcgtgctgct



gggcacccgcaatgacctcagtcccacgacagtgatgtccgagggcgcccggaacattgtggcagccatgaaggctcatggtgtggaca



aggtcgtggcctgcacctcggctttcctgctctgggaccctaccaaggtgcccccacgactgcaggctgtgactgatgaccacatccggat



gcacaaggtgctgcgggaatcaggcctgaagtacgtggctgtgatgccgccacacataggagaccagccactaactggggcgtacaca



gtgaccctggatggacgagggccctcaagggtcatctccaaacatgacctgggccatttcatgctgcgctgcctcaccaccgatgagtacg



acggacacagcacctacccctcccaccagtaccagtagcactctgtccccatctgggagggtggcattctgggacatgaggagcaaagga



agggggcaataaatgttgagccaagagcttcaaattactctagagaaaccgacaaaaaaaaaaaaaaaaaa (SEQ ID NO: 674)





Tnk1
ggaactcggggtgcggccctcgccggccccgggccagcggccaggtccccgccctccgcgggatttactcctgtcccgcctcctcggat
NM_001251902
NM_031880



ttagcccaggcagcctgggaggttccgcagtcgccgcttccgccttgaccaggtggagctggagacctggtctctctagggcctaccctga



gctcaccatctgaaggagagtgccatcatccttaggaactccttctccagacatgcttcctgaggctggctccctgtggctactgaagctgct



ccgggacatccagttggcccagttttactggcccatccttgaggagcttaatgtcactcggccagagcacttcgactttgtaaagcctgagga



cctggacggcattggcatgggccggcctgcccagcgcagactgtccgaagctctgaaaaggctacgttctgggcctaagtctaagaactg



ggtctacaagatccttggaggttttgcccctgagcacaaggagcccaccctgccctcggacagcccacggcacctccctgagccagagg



ggggcctcaagtgtctgatcccagagggtgctgtttgcagaggggagctgctgggttcaggctgcttcggtgtggtgcaccgagggctgtg



gacgctgcccagtggcaagagtgtcccagtggctgtcaagtccctccgggtaggtcccgaaggcccgatgggcacagaactgggggac



ttcctgcgagaggtatcggtcatgatgaacttggagcacccacacgtgctgcgtctgcacggccttgtactgggccagcctctgcagatggt



gatggagctggcgccactgggctccctgcacgcgcgcctaacggccccggccccgacacccccgctgctcgtggccctgctctgcctctt



cctgcggcagctggcgggagccatggcgtacctgggggcccgcgggctggtgcaccgagacctcgctacgcgcaacctactgctggc



gtcgccgcgcaccatcaaggtggctgacttcgggctggtgcggcctctgggcggtgcccggggccgctacgtcatgggcgggccccgc



cctatcccctacgcctggtgtgccccagagagcctgcgccacggagccttctcgtctgcctcggacgtgtggatgtttggggtgacgctgtg



ggagatgttctccgggggcgaggaaccctgggccggggtcccaccgtacctcatcctgcagcggctggaggacagagcccggctgcct



aggcctcccctctgctccagggccctctactccctcgccttgcgctgctgggccccccaccctgccgaccggcctagcttttcccacctgga



ggggctgctgcaagaggccgggccttcggaagcatgttgtgtgagggatgtcacagaaccaggcgccctgaggatggagactggtgac



cccatcacagtcatcgagggcagctcctctttccacagccccgactccacaatctggaagggccagaatggtcgcaccttcaaagtgggca



gcttcccagcctcggcagtgacgctggcagatgcggggggcttgccagccacccgtccagtccacagaggcacccctgcccggggaga



tcaacacccaggaagcatagatggagacagaaagaaggcaaatctttgggatgcgcccccagcacggggccagaggaggaacatgcc



cctggagaggatgaaaggcatttccaggagtctggagtcagttctgtccctcggtcctcgtcccacagggggtggttcaagcccccctgaa



attcgacaagccagagctgtgccccagggacctccaggcctgcctccacgcccacctttatcctctagctctcctcagcccagccagccctc



tagggagaggcttccctggcccaaaagaaaacccccacacaatcaccccatgggaatgcctggagcccgtaaagccgctgccctctctg



gaggcctcttgtccgatcctgagttgcagaggaagattatggaggtggagctgagtgtgcatggggtcacccaccaggagtgccagacag



cactaggagccactgggggagatgtggtttctgccatccggaacctcaaggtagatcagctcttccacctgagtagccggtccagagctga



ctgctggcgcatcctggagcattaccagtgggacctctcagctgccagccgctatgtcctggccaggccctgagctcagcttctgcgggca



cagacaccagcatgaaaagcctaggcccctgagggcctggccacatgggaccaagcggaaccagaacaaggtcccgacaggggtaga



cgttccacctggggagatcccacctgccgtaggcacatggaggaggagcccagagttgggcactggcaaatgtctcctccctcccatgct



ccttggcttctgaaggctgaagctcctttggctgggccaagaaggatctagtctgcccactacattctcaaacaagaggacttggaggaaaa



gagctgctatacatcatatgcagaggaagcttctacgcgctagagaggatcaaggggccacactggaccatgtgaacagccatcctgaact



gccatcagctaccacactggactctgcagggcagccatcctggatgatggaagccaccatattgacttggggtataggcccaaactgcctt



cgtttggtccagggccatcgtgggtgatgacgattgctctcttgcactcaaggacatttgatgctggtagtatggattatgagatggactagcc



cctgccccagcccagctctcacattcccctttgttttttcccataccaactgcttctaccctcccctattacatacatctttcaatgtccaaaaagtt



acaaagtttatatgaatgtaacatataaaaaaa (SEQ ID NO: 675)





Prkab2
actgggcggactccgcgccgccggccttgtagccattttaggaggaatcgctggtcgccagcgaggggtgcggcttcaatttcaataacttt
NM_005399
NM_182997



attggtggcctgatctgcagaacagccatcacatcagtggcccttggaggagggagcgcatcgcccgaggtggtccccgacgagctgca



gccatgggaaacaccaccagcgaccgggtgtccggggagcgccacggcgccaaggctgcacgctccgagggcgcaggcggccatg



ccccggggaaggagcacaagatcatggtggggagtacggacgaccccagcgtgttcagcctccctgactccaagctccctggggacaa



agagtttgtatcatggcagcaggatttggaggactccgtaaagcccacacagcaggcccggcccactgttatccgctggtctgaaggagg



caaggaggtcttcatctctgggtccttcaacaattggagcaccaagattccactgattaagagccataatgactttgttgccatcctggacctcc



ctgagggagagcaccaatacaagttctttgtggatggacagtgggttcatgatccatcagagcctgtggttaccagtcagcttggcacaatta



acaatttgatccatgtcaagaaatctgattttgaggtgttcgatgctttaaagttagattctatggaaagttctgagacatcttgtagagacctttcc



agctcacccccagggccttatggtcaagaaatgtatgcgtttcgatctgaggaaagattcaaatccccacccatccttcctcctcatctacttca



agttattcttaacaaagacactaatatttcttgtgacccagccttactccctgagcccaaccatgttatgctgaaccatctctatgcattgtccatta



aggacagtgtgatggtccttagcgcaacccatcgctacaagaagaagtatgttactactctgctatacaagcccatttgaagggatcccttctt



gcctctaaggattcaggagaagcatctcccttgcatttctggactgaaccagtcttacctgagactggaaggctgatttgctttgaggctgatat



gtgtgtttcagagcctctgagtaggatgctctgctttgcatttgattgcagatgagagctttatgagttcacggaatttattttaagaaaaaaaaa



tatacatatgagaagaaggtaaatggaagcctcctagccccagctagaagtattgtttctgcctgtgggttttcaccaagacctgtttgggggc



gctgcaggaataactatataggaagatttttcctaaaatgaaagaacagcaaactcttaggatccttgttgggtggagattctatcactgctacc



ttggctctccaaggaatgggcttgtgctagaccgctgccctacttaacagctgcctcattgcaagggcagtttttcttgcatgggttctctatatt



cccagagtatgtggcacaatctgtgttgtttatatgataccagatgccccacaagaacccttattcctctcatttcacattcttcctttaatagcctc



cttcagatcccatacctgacccctctctaacacaaaacttattgggtaagtgactttgaaaagttttgtggcacctgacccaccccagacacta



gggctatcagaaggtctcctttttagcccagcacaggcccaggccactttgtcgtgtttgttttaacttctaaagaaaatatgtttcagcattataa



gaaaggcagaatgcagaacacctacatttttgttttagtttggtgccaaggctcaggctgtattggcaaattcccgaaagttttcccactttgcct



ggccctgcttctgtcttttctttctcagtaaacagttctgaaggcaggagtggaacccgggagtattttcatgtctttcatccttgaaagatttttat



gtgcctgcattttttttttaattaaaaaatgccttttcattggtcttaagagaccgcattggagaatttcaggcttttgataaatgcttcttcaaagaga



ttttcttctctagtctagccttccacattcttagattaatatggccaaccctgtacacatcactacactaaacactgctctagataaactgctcaagt



tcatttaactcatttgatgcacctaaaggggttcctcattttaaagatttgttaggccaagaagcaagagagtattcctagtattcccaaccatga



aaagtatcattctttgcaccaaatgttaacaaaatcattttgttctcctgcctcttctttttaaaggtgtttgatgcttaagtggggtcactgaattcca



tttgtggactgaaaagtattcaatccacttttggggttcagagataaaacattttttcccaagtagctggggctcttccattttgcagataagtcaa



ataatcaacactaaaggaggctaaactgttgatgaatgagagactccctgactgctcagatgaccctagccacactgaaagggcacctaca



ggtcagtttagctacctcctgtctttcccatgcaaagctgataacacagttgtctttggacttgtagacctcttggattccaggtgtgatggagta



aagtgtgggattgttgttttgctgggatgcaaataactaaatgctttggtggttaattgctaagagtaaatactactttagccatccaaggccacc



ttctgcagcaaaaggcttttgtggagaaccttttatgttcccaaccactttttgaatggtgtgccatttaaaaatccaggccagatcctattataac



caactctcaggatttacagccttcagttgtactagaattttgtttttatccaatactcattaaataagtgggccacttaggaagattcaaaatcttgg



ttattacatgaagtttgttatatttcttgtcaacagtattgaaatgtaatatgtatgtgttcatgtatgaaaatttttactccacacaggtgtttcagtag



agtggggcaggaaaagagatctcttcgatttctttcaggcctgaggcttttgtgaaatgcgtcagccccctgtgacagtaggttttgatgctagt



gatcttcagatctttctctctggaaatgtgcagagagtgtcagtttcccaagttctgaggtaactctcagcccagatgtgaaatgggagcctac



cagctggtatagaagggaatgggtaggaggcactgggtgctgactcattcagcactgtcccttttctatactgctgatacatcccatggttctg



agaagccttatctcagtctatttggaagagagggaggaagagaaggaagtaacccaaagtactactcatttatcattgtatattgattagttaaa



gggataattaatttaatgctgaggagagtttgacagattttgaaaatgagtaaaggcaaaaaaaatttttttagcctttattttgcttttgggaatttt



acagagtcaaagtaggcagaataagaaaatagttcttcaggagggccgacctttaaagaacttcaacatagtttcggaattgtggggaagag



aagagtgactgagctgagaagtaataatagaataaagggttgagtaacttacaactgaaaatgatctcttttaaaaagaaattaaatcagacac



cacatggtggtgtccttggatctcactgtacagaattagcagtgtataaccatcttctcttttcatcttgttccaattctctcctctttcctttccattct



gctttaagctcatgtgtcaggcagactttaccagagtgtcagacattacctaaaacacatacgttagccatgctgctggtatggagaaattcca



caccatgattattagcctcctttaagctgaatgggatttaaccattctaggcaacacccctgaagggcatacctaacctcaatagtgttggctttt



aaaacgtatgtttgtatggtagagaaactttgtaaaagaagaatccaagagaagtttgtgaggatcctacaaacccaggcccactcactttgct



ctaattctttctagtatcttgtagatctaatgggtctgggataaaaactttgaaaagtgtcaatattccatgtatgctgctgaaatgaagttaagtttg



gaaagaagtgatacctctagactgggtttatattaatctgggatataaatgaagaagacatactaatagaactccttgcttttaattggggaaata



gggctttaataattttgacctcaactaaaaatgatatgcaatagtctctgtgtgtgtttgaaatacattgtgttctcagagatttctacattctcacgtt



ctagtgatttggggcatgggcttaatagcagatgtacagtgtattcctgcattattgtgcttccccttaaagcccagttcttgctgtcttctaccag



gggctgctgactccagttacccatggaatgcaggacctgggaggggtagccattagggtctttcaaaactctttggatctaagcatttgtctct



ccttaagtgccaatcacaattggatatggaaggactgtgatttctgcaatgaacccaaacttttagagtaaaaagccaaatttaaattataagaa



agaagggaaaaaagagaaaaactcaagtctattacttgtagagtccaattcttagcaatggaatcgctctaggattctagtttgggctttgtctg



gatttgcttttctcagttgtgctttgaagtgaataagctttgttacaaattaattttttattagttccaatattagttggagttaacttgaattgcttgtatg



tagcacagcacttttgcagtaagattggtgtgaaatactaaacactatggattttgtaggtgtcaggttaaatggtcaagggatacctacattaa



gtcatatattaggtattgatgatcttacttcttttctgttcccctgtacaaaacacttacctaacccagcttgtggttttaggacagccaaagctcac



tgttgttggttagtcctaatcactacacgggtctcataaatgagacttgtttgaattttggtacattggagcatgttggttggtattacacggcagc



atttcgaatgagtgcagctctgtgtctgtcagaaaggagagataagactactttgaagggaattaaatatgtgagtcctctttttaatggtgctttt



tgtaacctttaatgctgaggtacagagctgcttttcaatatttcataaaggagtggcagacaagagtggattttaaagctgttcttcaaacgtaatt



tgtcactggactctgacacacctggaaattatatgatatgatacatacagaaatgttgtgggttttttccataaaactttaataaaagtattatacag



caataaaaaaaaaaaaaaa (SEQ ID NO: 676)





Trpm7
gcgccgctcacgtggtccgtccccagccccgtcgccggcggaggcgggcgcgggcgcgtccctgtggccagtcacccggaggagttg
NM_017672
NM_021450



gtcgcacaattatgaaagactcggcttctgctgctagcgccggagctgagttagttctgagaaggtttccctgggcgttccttgtccggcggc



ctctgctgccgcctccggagacgcttcccgatagatggctacaggccgcggaggaggaggaggtggagttgctgcccttccggagtccg



ccccgtgaggagaatgtcccagaaatcctggatagaaagcactttgaccaagagggaatgtgtatatattataccaagttccaaggaccctc



acagatgccttccaggatgtcaaatttgtcagcaactcgtcaggtgtttttgtggtcgcttggtcaagcaacatgcttgttttactgcaagtcttgc



catgaaatactcagatgtgaaattgggtgaccattttaatcaggcaatagaagaatggtctgtggaaaagcatacagaacagagcccaacg



gatgcttatggagtcataaattttcaagggggttctcattcctacagagctaagtatgtgaggctatcatatgacaccaaacctgaagtcattct



gcaacttctgcttaaagaatggcaaatggagttacccaaacttgttatctctgtacatgggggcatgcagaaatttgagcttcacccacgaatc



aagcagttgcttggaaaaggtcttattaaagctgcagttacaactggagcctggattttaactggaggagtaaacacaggtgtggcaaaacat



gttggagatgccctcaaagaacatgcttccagatcatctcgaaagatttgcactatcggaatagctccatggggagtgattgaaaacagaaat



gatcttgttgggagagatgtggttgctccttatcaaaccttattgaaccccctgagcaaattgaatgttttgaataatctgcattcccatttcatatt



ggtggatgatggcactgttggaaagtatggggcggaagtcagactgagaagagaacttgaaaaaactattaatcagcaaagaattcatgct



aggattggccagggtgtccctgtggtggcacttatatttgagggtgggccaaatgttatcctcacagttcttgaataccttcaggaaagccccc



ctgttccagtagttgtgtgtgaaggaacaggcagagctgcagatctgctagcgtatattcataaacaaacagaagaaggagggaatcttcct



gatgcagcagagcccgatattatttccactatcaaaaaaacatttaactttggccagaatgaagcacttcatttatttcaaacactgatggagtg



catgaaaagaaaggagcttatcactgttttccatattgggtcagatgaacatcaagatatagatgtagcaatacttactgcactgctaaaaggta



ctaatgcatctgcatttgaccagcttatccttacattggcatgggatagagttgacattgccaaaaatcatgtatttgtttatggacagcagtggct



ggttggatccttggaacaagctatgcttgatgctcttgtaatggatagagttgcatttgtaaaacttcttattgaaaatggagtaagcatgcataa



attccttaccattccgagactggaagaactttacaacactaaacaaggtccaactaatccaatgctgtttcatcttgttcgagacgtcaaacagg



gaaatcttcctccaggatataagatcactctgattgatataggacttgttattgaatatctcatgggaggaacctacagatgcacctatactagg



aaacgttttcgattaatatataatagtcttggtggaaataatcggaggtctggccgaaatacctccagcagcactcctcagttgcgaaagagtc



atgaatcttttggcaatagggcagataaaaaggaaaaaatgaggcataaccatttcattaagacagcacagccctaccgaccaaagattgat



acagttatggaagaaggaaagaagaaaagaaccaaagatgaaattgtagacattgatgatccagaaaccaagcgctttccttatccacttaat



gaacttttaatttgggcttgccttatgaagaggcaggtcatggcccgttttttatggcaacatggtgaagaatcaatggctaaagcattagttgc



ctgtaagatctatcgttcaatggcatatgaagcaaagcagagtgacctggtagatgatacttcagaagaactaaaacagtattccaatgatttt



ggtcagttggccgttgaattattagaacagtccttcagacaagatgaaaccatggctatgaaattgctcacttatgaactgaagaactggagta



attcaacctgccttaagttagcagtttcttcaagacttagaccttttgtagctcacacctgtacacaaatgttgttatctgatatgtggatgggaag



gctgaatatgaggaaaaattcctggtacaaggtcatactaagcattttagttccacctgccatattgctgttagagtataaaactaaggctgaaa



tgtcccatatcccacaatctcaagatgctcatcagatgacaatggatgacagcgaaaacaactttcagaacataacagaagagatccccatg



gaagtgtttaaagaagtacggattttggatagtaatgaaggaaagaatgagatggagatacaaatgaaatcaaaaaagcttccaattacgcg



aaagttttatgccttttatcatgcaccaattgtaaaattctggtttaacacgttggcatatttaggctttctgatgctttatacatttgtggttcttgtaca



aatggaacagttaccttcagttcaagaatggattgttattgcttatatttttacttatgccattgagaaagtccgtgagatctttatgtctgaagctg



ggaaagtaaaccagaagattaaagtatggtttagtgattacttcaacatcagtgatacaattgccataatttctttcttcattggctttggactaag



atttggagcaaaatggaactttgcaaatgcatatgataatcatgtttttgtggctggaagattaatttactgtcttaacataatattttggtatgtgcg



tttgctagattttctagctgtaaatcaacaggcaggaccttatgtaatgatgcttggaaaaatggtggccaatatgttctacattgtagtgcttatg



gctcttgtattacttagttttggtgttcccagaaaggcaatactttatcctcatgaagcaccatcttggactcttgctaaagatatagtttttcaccca



tactggatgatttttggtgaagtttatgcatacgaaattgatgtgtgtgcaaatgattctgttatccctcaaatctgtggtcctgggacgtggttga



ctccatttcttcaagcagtctacctctttgtacagtatatcattatggttaatcttcttattgcatttttcaacaatgtgtatttacaagtgaaggcaattt



ccaatattgtatggaagtaccagcgttatcattttattatggcttatcatgagaaaccagttctgcctcctccacttatcattcttagccatatagttt



ctctgttttgctgcatatgtaagagaagaaagaaagataagacttccgatggaccaaaacttttcttaacagaagaagatcaaaagaaacttca



tgattttgaagagcagtgtgttgaaatgtatttcaatgaaaaagatgacaaatttcattctgggagtgaagagagaattcgtgtcacttttgaaag



agtggaacagatgtgcattcagattaaagaagttggagatcgtgtcaactacataaaaagatcattacaatcattagattctcaaattggccatt



tgcaagatctttcagccctgacggtagatacattaaaaacactcactgcccagaaagcgtcggaagctagcaaagttcataatgaaatcaca



cgagaactgagcatttccaaacacttggctcaaaaccttattgatgatggtcctgtaagaccttctgtatggaaaaagcatggtgttgtaaatac



acttagctcctctcttcctcaaggtgatcttgaaagtaataatccttttcattgtaatattttaatgaaagatgacaaagatccccagtgtaatatatt



tggtcaagacttacctgcagtaccccagagaaaagaatttaattttccagaggctggttcctcttctggtgccttattcccaagtgctgtttcccc



tccagaactgcgacagagactacatggggtagaactcttaaaaatatttaataaaaatcaaaaattaggcagttcatctactagcataccacat



ctgtcatccccaccaaccaaattttttgttagtacaccatctcagccaagttgcaaaagccacttggaaactggaaccaaagatcaagaaact



gtttgctctaaagctacagaaggagataatacagaatttggagcatttgtaggacacagagatagcatggatttacagaggtttaaagaaaca



tcaaacaagataaaaatactatccaataacaatacttctgaaaacactttgaaacgagtgagttctcttgctggatttactgactgtcacagaact



tccattcctgttcattcaaaacaagcagaaaaaatcagtagaaggccatctaccgaagacactcatgaagtagattccaaagcagctttaata



ccggattggttacaagatagaccatcaaacagagaaatgccatctgaagaaggaacattaaatggtctcacttctccatttaagccagctatg



gatacaaattactattattcagctgtggaaagaaataacttgatgaggttatcacagagcattccatttacacctgtgcctccaagaggggagc



ctgtcacagtgtatcgtttggaagagagttcacccaacatactaaataacagcatgtcttcttggtcacaactaggcctctgtgccaaaataga



gtttttaagcaaagaggagatgggaggaggtttacgaagagctgtcaaagtacagtgtacctggtcagaacatgatatcctcaaatcagggc



atctttatattatcaaatcttttcttccagaggtggttaatacatggtcaagtatttacaaagaagatacagttctgcatctctgtctgagagaaattc



aacaacagagagcagcacaaaagcttacgtttgcctttaatcaaatgaaacccaaatccataccatattctccaaggttccttgaagttttcctg



ctgtattgccattcagcaggacagtggtttgctgtggaagaatgtatgactggagaatttagaaaatacaacaataataatggagatgagatta



ttccaactaatactctggaagagatcatgctagcctttagccactggacttacgaatatacaagaggggagttactggtacttgatttgcaaggt



gttggtgaaaatttgactgacccatctgtgataaaagcagaagaaaagagatcctgtgatatggtttttggcccagcaaatctaggagaagat



gcaattaaaaacttcagagcaaaacatcactgtaattcttgctgtagaaagcttaaacttccagatctgaagaggaatgattatacgcctgataa



aattatatttcctcaggatgagccttcagatttgaatcttcagcctggaaattccaccaaagaatcagaatcaactaattctgttcgtctgatgttat



aatattaatattactgaatcattggttttgcctgcacctcacagaaatgttactgtgtcacttttccctcgggaggaaattgtttggtaatatagaaa



ggtgtatgcaagttgaatttgctgactccagcacagttaaaaggtcaatattcttttgacctgattaatcagtcagaaagtccctataggataga



gctggcagctgagaaattttaaaggtaattgataattagtatttataactttttaaagggctctttgtatagcagaggatctcatttgactttgttttga



tgagggtgatgctctctcttatgtggtacaataccattaaccaaaggtaggtgtccatgcagattttattggcagctgttttattgccattcaacta



gggaaatgaagaaatcacgcagccttttggttaaatggcagtcaaaattttcctcagtgtatttagtgtgttcagtgatgatatcactggttccca



actagatgcttgttggccacgggaagggaaatgacttgttctaattctaggttcacagaggtatgagaagcctgaactgaagaccattttcaa



gagggacggtatttatgaatcagggttaggctccatatttaaagatagagccagtttttttttttaaatagaacccaaattgtgtaaaaatgttaatt



gggttttttaaacattgttttatcaagtcactgttaagtagaagaaagccatggtaaactgatacataacctaaattataaaagcagaaacctaac



tcactcgtcaagggaagttaccttttgaggaaagttaaagtacttttttccctatctgtatctatagcaacaacccagaacttacaaacttctccaa



agattttattgattgttatatcaaatcagaatgtaaacatgaactcttgcatatatttaaaattgtgttggaacatttgaacatgaatgctgtttgtggt



acttaagaaattaattcagttggattatcattatgtgatactggcagattgcagtgcaaccttatgccaataaaatgtaatttaacagccccagat



attgttgaatattcaacaataacaagaaaagcttttcatctaagttttatgctttaattttttttctttttttttctttttcttttgtttccttggtactaattttaat



ttttatttggaagggagcagtataaagcttatttgtatttagtagtgtatctcatagatacagacaaggcaagagatgataagctgtttaaatagtg



tttaatattgattgggggtggggagaaagaaaaagtgtattacttaaagatactatatacgttttgtatatcattaaatctttaaaagaaatgaaata



aatttattgtttacagatgtttagtgagtttaatcattctgaaaaattatctgacattttcagggtgtcaatttgagtatcagtttttttaaatgaaccatt



tgtatacctgtgcttttgatctcctgtcctgtacaatgtttaaattaatactgatttcttactgtcttcttagaaatctgttttttgttaggccaaaaaagg



gcaatatgggctgtctgttgatttttaattttatattgattattttcacaggcttataatagtagctatacttttttttttttttttttttttgagacggagtctc



gctctgttgcttgggctggagtgcagtggtgcgatctcagctcaccacaaccgccgccttccgggtttaagtgattctcctgcctcagcctcc



cgagtagctgggactacaggcacacgccaccatgcccagctaatttttatatttttagtagagacagggtttcactatgttggccagtgtggtc



acaaactcctgaccttgtgagccaccgcacctggctgctaacacttatttagtgcctactgtgtaccagacattactctaagtatttcacatatatt



aacctacttaatccttataacaatgttataaagaaataggtgttattatcctgttttgcagatttgaaagtcaaggtgctagagaggtaaagtaac



gtccataagattcttacgtttatttaataataagtagcaacggtaggatttgaacccaggctggctgcctttcatctatactgtttttgttttgttttgtt



ttgttttgttttgttttgtttgtcttggtggggcatggtggctcatgcctgtaatcccagcacttcgggaggccaaggcaggtggatcacttgggc



tcaggagtttgagaccagcctgggcaacatggcaaaatcctatctctgctaaaaaaaaaaatacaaaaattaggccaggtgcagtggctcat



gcctgtaatcccagcactttgggaggccaaggtgggcggatcacaaggtcaggagttcgagaccagcctgaccaacatagtgaaacccc



gtctctactaaaaatacaaaaaattagctgggcatggcggtgagtgcctgtaatcccagctactcaggagtctgaggcaggagaattgcttg



aacctgggaggtggaggttgcagtgagctgagatcgtgccattgcgctccagcctgggcaacagtgcgagactccgtcaaaaaaaaaaa



aataactggatgtgatggtgtgcacctgtagttccagctacttgggagactgaggtgggaggatcacttgagcctgggagactgaggcagc



agtgagctgagatcatgccactgctttccaacctgggcaacagagtgagatcctgtctcagaaagaaaaaaaaaaaaaagacaacctcttg



ctctgttgcccaggctggagtgtagtagcgtgatcatagctcactgcagccgtaaactcctgggctcaagcaatcctcctgccactgcctctt



gattaggtggaaccacaggcatgcaccaccacacgtacctaattttatatatatatttttttatttttcatttttatttatttttgtttttttgagttgaagtc



tcactctgttgcccaggccggagtacagtggcacaatcttggctcactgcaacctctgcctcccaagatcaagcaattctcgtgcttcagcct



ccaaagtagctgagattacaggtacccaccataatgcctggctgctttttgtatttttcgtagagacaaggtttcaccttgttggccaggctgatc



tcaaactcctgacctcaagtgatccacctcccccggctacccaaagtactgggattataggtgtgagccaccatgcctgggtaacacccaac



taattttaaatatatattttgtagagatggggtctagccttgttgcccacgctggtctcaaattcctgggctcaagtgatcctctcgcctgagcttc



ccaaagtggtagaattgcaggcatgaattgctgcacccagcctcatctgtgctgtgaattatgtgctgtattgactctcaagcatgatgaccatt



ggtggtttctgtaccatttcctgttactttactgaaacacacctactccattaacttcttgggttaagtctagaaagtaacagtttacttgtaaacca



catttcttatccccaataagtatttttttaagcttattaaagttcattattactaccctatgatgtgaaagtgtcatttgcttaatctttttaattttttattctc



aacctcatcttactgaagagaataaaactcttttaccatattcttaaaatgtggaattctcggccaggtgcagtggctcacgcctgtaattccatc



actttgggaggccaaggtgggtggatcatctgaggtcaggagttcaagaccagcctggccaacatggtgaaaccccgtctctactaaaaat



acaaaaattatctgggtgtggtggcgcgtgcctgtaggcccagctactcaggaggctgaggcaggagaattgcttgaacccaagaggtgg



aggttgcagtgagcctagattgctgccactgcactccagcctgggtgacagcagaactctgtctcaaaaaaaagatgtggaattcttttctgc



aaatgttctctaatagtataccttcttcagtctgtcgatatatgtatgctattattttacaagtaatacatgttgcttgtattggaaattatagaaaagat



tatattggattgtttagaaaatatttttaaatgtgaagaaaaatataaaaattactcccttgttccactttccccactctcaagtcagactatgttgtttt



catagttagtagctagcagtctaccccactagattatatgcttcacagagggaagggaccctcaagacttcactggattgagtagcacccaat



accttgcttgctgcctggtttgtgatgggcatactgtaagaaaaaaaaatctgaatgacaaaatgtttttccataataccagacttcctcttgaag



agatgggtcgtaatgttgtagtcttacatgcttacgtagacaatcaaagcaagaatactcaataaatggctatttaccacttgaaagaaa



(SEQ ID NO: 677)





Ppp3cc
aaggcggaagggtggggagggcggcgctcggggcgggaggcccggccgggtccgctaggacagcggggccgctgggaagttgtg
NM_001243974
NM_008915



agagcggcgctcgggggcgcgcttgcgtgcacgagggcccgggccgcgagcagccgcggccgtcccggtcgccacccttagcagcg



gtcgcggtcggtgccgaagcggtgttccccgccttagccgctggcgcctcccaagagagcggccggtgggccctcgtcctgtcagtggc



gtcggaggccggcgctgcggtggccgcgcccttctggtgctcggacaccgctgaggagccggggccgggcacggctggctgacggct



ccgggcagctaaggctgcccgaggagaaggcggcggccgcggcgtaggcgcacgtccggcgggctcctggagcctggaggaggcc



gaggggaccatgtccgggaggcgcttccacctctccaccaccgaccgcgtcatcaaagctgtcccctttcctccaacccaacggcttacttt



caaggaagtatttgagaatgggaaacctaaagttgatgttttaaaaaaccatttggtaaaggaaggacgactggaagaggaagtagccttaa



agataatcaatgatggggctgccatcctgaggcaagagaagactatgatagaagtagatgctccaatcacagtatgtggtgatattcatgga



caattctttgacctaatgaagttatttgaagttggaggatcacctagtaacacacgctacctctttctgggtgactatgtggacagaggctatttc



agtatagagtgtgtgctgtatttatggagtttaaagattaatcatcccaaaacattgtttctgcttcggggaaatcatgaatgcaggcatcttaca



gactatttcaccttcaaacaggaatgtcgaatcaaatattcggaacaggtgtatgatgcctgtatggagacatttgactgtcttcctcttgctgcc



ctcttaaaccagcagtttctctgtgtacatggaggaatgtcacctgaaattacttctttagatgacattaggaaattagacaggtttacggaacct



cccgcctttggacctgtgtgtgacctgctttggtctgatccctcagaggattatggcaatgagaagaccttggagcactatacccacaacact



gtccgagggtgctcttatttctacagttaccctgcagtttgtgaatttttgcagaacaataatttactatcaattatcagagcccatgaagcccaag



atgctgggtatcgaatgtacaggaagagccaagccacaggctttccatcacttattacaattttctctgcccccaattacctagatgtctataac



aataaagctgctgtgttgaaatatgaaaacaatgtcatgaatatcaggcagtttaactgttctccacacccctactggcttccaaactttatggat



gttttcacatggtctttgccttttgttggggaaaaagtcacagagatgctggtaaatgtgctcaacatatgctctgatgacgaactgatttctgatg



atgaagcagaagatcactacattccaagctatcagaaaggaagcactacagttcgtaaggagatcatcaggaataagatcagagccattgg



gaagatggcacgggtcttttcaattcttcggcaagaaagtgagagtgtgctgactctcaagggcctgactcccacaggcacactccctctgg



gcgtcctctcaggaggcaagcagactatcgagacagccacagtagaagcggtagaggcccgggaagccatcagagggttctcgcttca



gcacaagatccggagttttgaagaagcgcgaggtctggaccgaattaatgagcgaatgccaccccgaaaggatagcatacacgctggtg



ggccaatgaaatctgtaacctcagcacactcacatgctgcgcacaggagcgaccaagggaagaaagcccattcatgacttagagtcctgc



cgtggctcaggtggatctaaaactcaagaacaaattctatttatttattattggaaaatgaaaagcaactcaaaacaacttcaacgtggaggtg



catttataattcagtctgcatttattctgtaaaaaggtggctgttttataaattcttttaatttatgttcaatatatataaaaagtgcatctgttttgtttttc



ccttttttctccataattttaagaaatgaatctgattgttgtcaacacatttgtgaagtcttgtgctataaaggggaacttcccctaataaaagggcc



ttggaaacctcaaacctgggtttctgacttgaaaaaaaaaaaaaaa (SEQ ID NO: 678)









In some aspects, the nucleic acids of the compositions encode the shRNA sequences targeting the sequences provided in Table 2. Table 2 further demonstrates enrichment in tumor versus spleen for the selected shRNA based on deep sequencing analysis (“Enrich Fold”)
















TABLE 2





Mouse
Mouse


SEQ

Human



Gene
Gene


ID

Gene
Human


Symbol
ID
shRNA Clone ID
shRNA Target Sequence
NO:
Enrich Fold
Symbol
Gene ID






















Akap8l
54194
ND000290
CGAAACCGCAGGCTTATGATG
1
0.5
AKAP8L
26993





Akap8l
54194
ND000285
CAGACTGCTCAGACAACAGTG
2
0.7
AKAP8L
26993





Akap8l
54194
TRCN0000288034
CCACAAGGAACACTTCAAATA
3
1.0
AKAP8L
26993





Akap8l
54194
ND000291
AGACCTCTACCGGTCAAGCTA
4
1.1
AKAP8L
26993





Akap8l
54194
ND000286
ATAGAGGCTACGAGAACTATG
5
1.4
AKAP8L
26993





Akap8l
54194
TRCN0000288033
CCAGAACATCATACCCGAGTA
6
1.6
AKAP8L
26993





Akap8l
54194
ND000289
TTAGATATGATGCCGCACTTG
7
1.7
AKAP8L
26993





Akap8l
54194
TRCN0000088483
CCCACCTGTGATTATGGATAT
8
1.8
AKAP8L
26993





Akap8l
54194
ND000288
GGCGAGAATCCTTTCACTGAC
9
1.9
AKAP8L
26993





Akap8l
54194
TRCN0000088486
CGAGAACTATGGTTATGGCTA
10
2.1
AKAP8L
26993





Akap8l
54194
ND000292
CAAATACCGGACCTTCTATGA
11
2.8
AKAP8L
26993





Akap8l
54194
TRCN0000307538
GATATCTGAAGGGCGAGAATC
12
3.8
AKAP8L
26993





Akap8l
54194
TRCN0000307539
ACCGGTCAAGCTATGACTATG
13
4.4
AKAP8L
26993





Akap8l
54194
ND000287
TTGGATTTGGCAATGGCATGA
14
7.1
AKAP8L
26993





Akap8l
54194
TRCN0000088487
CCGAAACCACTTTGCAGTCTA
15
11.8
AKAP8L
26993





Alk
11682
TRCN0000361004
ACCTAGAGGAGAATCACTTTA
16
0.2
ALK
238





Alk
11682
TRCN0000023725
GCCTTCATGGAAGGGATATTT
17
0.4
ALK
238





Alk
11682
TRCN0000361067
CGGGCCTGTATACCGGATAAT
18
0.7
ALK
238





Alk
11682
TRCN0000361003
GTGGAGCCACCTACGTGTTTA
19
0.9
ALK
238





Alk
11682
ND000299
GGAATCTGACCTGGACGATGA
20
1.0
ALK
238





Alk
11682
ND000293
CTTCGTTGTACCCTCGCTCTT
21
1.1
ALK
238





Alk
11682
ND000298
GAAGGGATATTTACCTCTAAA
22
1.3
ALK
238





Alk
11682
TRCN0000023728
CCGGGATATTGCTGCTAGAAA
23
1.7
ALK
238





Alk
11682
TRCN0000023724
GCATCGCATTGGAGGCTATAA
24
2.1
ALK
238





Alk
11682
ND000297
GGGCCTGTATACCGGATAATG
25
2.4
ALK
238





Alk
11682
TRCN0000023726
CGGAGGATATATAGGTGGCAA
26
2.9
ALK
238





Alk
11682
ND000300
ATCGAATACGGTCCAGTAGTA
27
3.4
ALK
238





Alk
11682
ND000296
TGCTTCCGCGTAGTCAGAAAT
28
3.8
ALK
238





Alk
11682
ND000294
CCTGCGGCAATGTCAACTATG
29
9.4
ALK
238





Alk
11682
TRCN0000023727
CCCGAACGTCAACTATGGTTA
30
9.5
ALK
238





Alk
11682
ND000295
GGCGAGGAGACGATTCTTGAA
31
13.5
ALK
238





Arhgap5
11855
TRCN0000321111
TGGTACATATCCTCGTAAATT
32
0.5
ARHGAP5
394





Arhgap5
11855
TRCN0000360350
ATTGCAATCAGTATATCATTC
33
0.8
ARHGAP5
394





Arhgap5
11855
TRCN0000360421
GATCATGAACGTAACCATAAA
34
1.2
ARHGAP5
394





Arhgap5
11855
TRCN0000360349
TGATAATAGCAGCAACTAAAT
35
1.3
ARHGAP5
394





Arhgap5
11855
TRCN0000321112
AGCATGACTGGAGAGGTTTAA
36
1.4
ARHGAP5
394





Arhgap5
11855
TRCN0000321110
TGATAGTCAGAATCGAATTAT
37
1.4
ARHGAP5
394





Arhgap5
11855
TRCN0000321109
GAACTGGTTCATGGGTATATA
38
1.5
ARHGAP5
394





Arhgap5
11855
TRCN0000012706
GCAAGCTCTAAGAGGAGTATT
39
3.6
ARHGAP5
394





Arhgap5
11855
TRCN0000012707
CCTGATCCTTTGATTCCATAT
40
6.0
ARHGAP5
394





Arhgap5
11855
TRCN0000321181
ACAGATCCTCTTGGTATTATA
41
8.3
ARHGAP5
394





Arhgap5
11855
TRCN0000012703
GCACGATTTAATGTCAACATT
42
15.7
ARHGAP5
394





Blvrb
233016
ND000310
CTCAGTCCCACTACAGTAATG
43
0.8
BLVRB
645





Blvrb
233016
ND000308
TGACCACATCCGGATGCATAA
44
1.0
BLVRB
645





Blvrb
233016
ND000306
GCCTCACCACCAATGAGTATG
45
1.2
BLVRB
645





Blvrb
233016
ND000309
TGAGAAATGACACAAATAGAG
46
1.2
BLVRB
645





Blvrb
233016
ND000303
TGCAAGAGTCAGGGCTGAAAT
47
1.3
BLVRB
645





Blvrb
233016
ND000301
GGAAGCTGTCATCGTGCTACT
48
1.5
BLVRB
645





Blvrb
233016
ND000304
GCATAAGATTCTGCAAGAGTC
49
1.9
BLVRB
645





Blvrb
233016
TRCN0000042385
CCTCAGTCCCACTACAGTAAT
50
2.2
BLVRB
645





Blvrb
233016
ND000302
TCGAGGGTCATATCCAAGCAT
51
2.4
BLVRB
645





Blvrb
233016
TRCN0000324726
GAACATCGTGACAGCCATGAA
52
3.0
BLVRB
645





Blvrb
233016
TRCN0000042384
CCAATGAGTATGACGGACACA
53
3.1
BLVRB
645





Blvrb
233016
ND000307
GAGGGTCATGCATCCTGAGAA
54
3.1
BLVRB
645





Blvrb
233016
ND000305
TAGGAGACCAACCACTAACTG
55
5.3
BLVRB
645





Blvrb
233016
TRCN0000324662
GCTGAAATACGTGGCAGTGAT
56
5.3
BLVRB
645





Blvrb
233016
TRCN0000042386
CGGATGCATAAGATTCTGCAA
57
8.0
BLVRB
645





Cblb
208650
ND000027
TCTACATCGATAGTCTCATGA
58
0.7
CBLB
868





Cblb
208650
TRCN0000244603
CTACACCTCACGATCATATAA
59
0.9
CBLB
868





Cblb
208650
TRCN0000244605
TGAGCGAGAATGAGTACTTTA
60
0.9
CBLB
868





Cblb
208650
ND000026
ATCGAACATCCCAGATTTAGG
61
1.0
CBLB
868





Cblb
208650
ND000029
TAAAGTGTACTGGTCCATTAG
62
1.4
CBLB
868





Cblb
208650
TRCN0000244607
CTTGTACTCCAGTACCATAAT
63
1.5
CBLB
868





Cblb
208650
ND000028
GTATGAGACAGAAGGACTGAG
64
1.5
CBLB
868





Cblb
208650
TRCN0000244604
CCAGATTTAGGCATCTATTTG
65
1.6
CBLB
868





Cblb
208650
ND000031
TCAGCACTTGAGACTTATATT
66
1.7
CBLB
868





Cblb
208650
ND000024
TACACCTCACGATCATATAAA
67
2.1
CBLB
868





Cblb
208650
ND000033
AACACAGACGCCATGATTTGC
68
5.1
CBLB
868





Cblb
208650
ND000032
AAGATGTCAAGATTGAGCCTT
69
5.3
CBLB
868





Cblb
208650
TRCN0000244606
CCCTGATTTAACCGGATTATG
70
6.1
CBLB
868





Cblb
208650
ND000030
AGCCAGGTCCAATTCCATTTC
71
10.0
CBLB
868





Cblb
208650
ND000025
CGAGCGATCCGGCTCTTTAAA
72
10.8
CBLB
868





Cdkn2a
12578
ND000317
CTTGGTGAAGTTCGTGCGATC
73
0.6
CDKN2A
1029





Cdkn2a
12578
TRCN0000257162
CGCTCTGGCTTTCGTGAACAT
74
0.8
CDKN2A
1029





Cdkn2a
12578
TRCN0000362594
GATGATGATGGGCAACGTTCA
75
0.9
CDKN2A
1029





Cdkn2a
12578
TRCN0000231228
TCCCAAGAGCAGAGCTAAATC
76
0.9
CDKN2A
1029





Cdkn2a
12578
TRCN0000362666
TCTTGGTGAAGTTCGTGCGAT
77
1.0
CDKN2A
1029





Cdkn2a
12578
TRCN0000362596
ACGGGCATAGCTTCAGCTCAA
78
1.1
CDKN2A
1029





Cdkn2a
12578
TRCN0000222730
GCTCGGCTGGATGTGCGCGAT
79
1.1
CDKN2A
1029





Cdkn2a
12578
TRCN0000231225
TTGAGGCTAGAGAGGATCTTG
80
1.2
CDKN2A
1029





Cdkn2a
12578
TRCN0000222731
CATCAAGACATCGTGCGATAT
81
2.1
CDKN2A
1029





Cdkn2a
12578
TRCN0000077815
GTGAACATGTTGTTGAGGCTA
82
2.3
CDKN2A
1029





Cdkn2a
12578
TRCN0000077816
GTCTTTGTGTACCGCTGGGAA
83
3.3
CDKN2A
1029





Cdkn2a
12578
TRCN0000362595
CTAGCGATGCTAGCGTGTCTA
84
4.1
CDKN2A
1029





Cdkn2a
12578
TRCN0000222729
GTGATGATGATGGGCAACGTT
85
5.6
CDKN2A
1029





Cdkn2a
12578
TRCN0000231226
GCTCAACTACGGTGCAGATTC
86
6.9
CDKN2A
1029





Cdkn2a
12578
TRCN0000231227
TCAAGACATCGTGCGATATTT
87
7.2
CDKN2A
1029





Dgka
13139
TRCN0000024825
GAGCTAAGTAAGGTGGTATAT
88
0.7
DGKA
1606





Dgka
13139
TRCN0000368765
GCGATGTACTGAAGGTCTTTG
89
0.7
DGKA
1606





Dgka
13139
ND000059
TCAGTGATGTGTACTGCTACT
90
0.8
DGKA
1606





Dgka
13139
ND000054
GTATATCTCGACCGATGGTTC
91
1.0
DGKA
1606





Dgka
13139
TRCN0000378505
TGATGCGAGTGGCCGAATATC
92
1.1
DGKA
1606





Dgka
13139
TRCN0000024828
CCTAGGATTTGAACAATTCAT
93
1.2
DGKA
1606





Dgka
13139
ND000058
AAAGATTCTCAAGGATATAGA
94
1.6
DGKA
1606





Dgka
13139
ND000056
GAGGGATGTTCCATCACCTTC
95
1.9
DGKA
1606





Dgka
13139
ND000053
TACAGACATCCTTACACAACC
96
2.0
DGKA
1606





Dgka
13139
TRCN0000024824
GCCGAATATCTAGACTGGGAT
97
3.4
DGKA
1606





Dgka
13139
TRCN0000024827
CGGCTGGAAGTGGTAGGAATA
98
3.5
DGKA
1606





Dgka
13139
ND000055
GTTCCTCAGTTCCGGATATTG
99
5.0
DGKA
1606





Dgka
13139
TRCN0000024826
CCTGAGCTGTAACTTCTGTAA
100
6.8
DGKA
1606





Dgka
13139
ND000057
TGCGAACAGAGCATTAGCCTT
101
7.8
DGKA
1606





Dgka
13139
TRCN0000361167
TGTTCCTCAGTTCCGGATATT
102
10.2
DGKA
1606





Dgkz
104418
ND000063
CACCTTCCACAGCAAGGAGAT
103
0.4
DGKZ
8525





Dgkz
104418
ND000061
ATCGTGGTGCATACCCAATGC
104
0.4
DGKZ
8525





Dgkz
104418
TRCN0000278613
CCTGGATGTCTTTAACAACTA
105
0.7
DGKZ
8525





Dgkz
104418
ND000060
CGAGTAGTGTGTGACGGAATG
106
0.9
DGKZ
8525





Dgkz
104418
ND000065
CACATCTGGTTTGAGACCAAC
107
1.4
DGKZ
8525





Dgkz
104418
TRCN0000278690
GAGAAGTTCAACAGCCGCTTT
108
1.6
DGKZ
8525





Dgkz
104418
ND000069
ACTGTGCAGGCACCATGCCCT
109
2.0
DGKZ
8525





Dgkz
104418
ND000068
AGAAGCTGTTCAGATCTAGGG
110
2.8
DGKZ
8525





Dgkz
104418
TRCN0000297512
GTGGACTTCAAAGAATTCATT
111
3.6
DGKZ
8525





Dgkz
104418
ND000064
ACTACGAGGCTCTACATTATG
112
5.2
DGKZ
8525





Dgkz
104418
ND000067
AGTACATAATTTGAGGATTCT
113
5.5
DGKZ
8525





Dgkz
104418
TRCN0000278682
CGAGGCTCTACATTATGACAA
114
6.0
DGKZ
8525





Dgkz
104418
TRCN0000278614
CCTGTAAGATCGTGGTGCATA
115
6.4
DGKZ
8525





Dgkz
104418
ND000062
GAAACCGCAGTGCATCGTCTT
116
7.7
DGKZ
8525





Dgkz
104418
ND000066
CAGCATCACGGATTCGAATTG
117
14.0
DGKZ
8525





Egr2
13654
TRCN0000218224
AGGATCCTTCAGCATTCTTAT
118
0.4
EGR2
1959





Egr2
13654
ND000075
AGCTCTGGCTGACACACCAG
119
0.6
EGR2
1959





Egr2
13654
TRCN0000081682
CCAGGATCCTTCAGCATTCTT
120
0.6
EGR2
1959





Egr2
13654
TRCN0000081678
GCTGTATATTTCTGCCTATTA
121
1.3
EGR2
1959





Egr2
13654
TRCN0000235777
ACTATTGTGGCCGCAAGTTTG
122
1.3
EGR2
1959





Egr2
13654
TRCN0000235775
AGCGGGTACTACCGTTTATTT
123
1.6
EGR2
1959





Egr2
13654
TRCN0000235778
CTGTATATTTCTGCCTATTAA
124
2.4
EGR2
1959





Egr2
13654
ND000073
GTGACCACCTTACTACTCACA
125
3.2
EGR2
1959





Egr2
13654
ND000074
GTTTGCCAGGAGTGACGAAAG
126
3.9
EGR2
1959





Egr2
13654
TRCN0000081681
CCTTCACCTACATGGGCAAAT
127
4.0
EGR2
1959





Egr2
13654
TRCN0000081680
CCAGAAGGTATCATCAATATT
128
5.1
EGR2
1959





Egr2
13654
TRCN0000081679
CCACTCTCTACCATCCGTAAT
129
5.2
EGR2
1959





Egr2
13654
ND000072
CCGTGCCAGAGAGATCCACAC
130
5.6
EGR2
1959





Egr2
13654
ND000071
CAATAGGTTGGGAGTTGCTGA
131
8.6
EGR2
1959





Egr2
13654
TRCN0000235776
ACTCTCTACCATCCGTAATTT
132
10.2
EGR2
1959





Eif2ak3
13666
TRCN0000321872
CCATGAGTTCATCTGGAACAA
133
0.4
EIF2AK3
9451





Eif2ak3
13666
ND000328
CATAGCTCCTTCTCCTGAAAG
134
0.9
EIF2AK3
9451





Eif2ak3
13666
ND000332
GATGACTGCAATTACGCTATC
135
1.1
EIF2AK3
9451





Eif2ak3
13666
ND000325
GTCGCCATTTATGTCGGTAGT
136
1.1
EIF2AK3
9451





Eif2ak3
13666
ND000326
TGGAAACAACTACTCCCATAA
137
1.1
EIF2AK3
9451





Eif2ak3
13666
TRCN0000321873
GTGACCCATCTGCACTAATTT
138
1.3
EIF2AK3
9451





Eif2ak3
13666
ND000329
GCATGATGGCAACCATTATGT
139
1.3
EIF2AK3
9451





Eif2ak3
13666
ND000330
ATCCCGATATCTAACAGATTT
140
1.6
EIF2AK3
9451





Eif2ak3
13666
ND000333
TGTCGCCGATGGGATAGTGAT
141
1.9
EIF2AK3
9451





Eif2ak3
13666
TRCN0000321805
GCCACTTTGAACTTCGGTATA
142
2.0
EIF2AK3
9451





Eif2ak3
13666
TRCN0000028759
CCATACGATAACGGTTACTAT
143
4.8
EIF2AK3
9451





Eif2ak3
13666
TRCN0000321806
CCTCTACTGTTCACTCAGAAA
144
5.8
EIF2AK3
9451





Eif2ak3
13666
ND000327
CATACGATAACGGTTACTATC
145
5.9
EIF2AK3
9451





Eif2ak3
13666
ND000331
CGTGACCCATCTGCACTAATT
146
7.3
EIF2AK3
9451





Eif2ak3
13666
TRCN0000028799
GCCTGTTTGATGATACAAGTT
147
13.4
EIF2AK3
9451





Entpd1
12495
ND000082
GAATGTAAGTGAGCTCTATGG
148
0.3
ENTPD1
953





Entpd1
12495
TRCN0000222348
CCGAACTGATACCAACATCCA
149
0.4
ENTPD1
953





Entpd1
12495
TRCN0000222346
CCCATGCTTTAACCCAGGATA
150
0.4
ENTPD1
953





Entpd1
12495
TRCN0000222345
CCTTGGTTTCACCTCTATCTT
151
0.8
ENTPD1
953





Entpd1
12495
TRCN0000222344
CCAAGGACATTCAGGTTTCAA
152
0.9
ENTPD1
953





Entpd1
12495
ND000085
CAGGAACAGAGTTGGCTAAGC
153
1.0
ENTPD1
953





Entpd1
12495
ND000078
TTAACCCAGGATACGAGAAGG
154
1.1
ENTPD1
953





Entpd1
12495
ND000081
ACTATCTCAGCCATGGCTTTG
155
1.2
ENTPD1
953





Entpd1
12495
ND000077
TTCAAGTGGTGGCGTCCTTAA
156
1.3
ENTPD1
953





Entpd1
12495
ND000076
GACTTTGGGCTACATGCTGAA
157
1.4
ENTPD1
953





Entpd1
12495
ND000080
GGCATGCGCTTGCTTAGAATG
158
1.9
ENTPD1
953





Entpd1
12495
ND000084
GCACTGGAGACTACGAACAGT
159
1.9
ENTPD1
953





Entpd1
12495
ND000083
GTGGATTACTATTAACTATCT
160
6.5
ENTPD1
953





Entpd1
12495
TRCN0000222347
GCTCCTGGGAACAGATTCATT
161
7.3
ENTPD1
953





Entpd1
12495
ND000079
ACCATTTGATCAGTTTCGAAT
162
13.3
ENTPD1
953





F11r
16456
TRCN0000284518
GCTGATTCCCAGGACTATATT
163
0.6
F11R
50848





F11r
16456
TRCN0000124868
GTATCGCTGTATAACTATGTA
164
0.6
F11R
50848





F11r
16456
ND000093
ATTGACCTGCACCTACTCT
165
0.6
F11R
50848





F11r
16456
ND000094
GCCGGGAGGAAACTGTTGT
166
0.6
F11R
50848





F11r
16456
TRCN0000271840
CCTGGTTCAAGGACGGGATAT
167
0.7
F11R
50848





F11r
16456
TRCN0000271841
TTCGGTGTACACTGCTCAATC
168
0.7
F11R
50848





F11r
16456
TRCN0000271792
CACCGGGTAAGAAGGTCATTT
169
0.9
F11R
50848





F11r
16456
ND000088
ACTTGCATGGTCTCCGAGGAA
170
0.9
F11R
50848





F11r
16456
ND000086
GTAACACTGATTCTCCTTGGA
171
1.0
F11R
50848





F11r
16456
ND000090
GTTATAACAGCCAGATCACAG
172
1.1
F11R
50848





F11r
16456
ND000092
TAGCTGCACAGGATGCCTTCA
173
1.3
F11R
50848





F11r
16456
ND000087
GGTTTGCCTATAGCCGTGGAT
174
1.9
F11R
50848





F11r
16456
TRCN0000271794
CCTATAGCCGTGGATACTTTG
175
4.3
F11R
50848





F11r
16456
ND000091
CTCCGTTGTCCATTTGCCTTA
176
4.6
F11R
50848





F11r
16456
ND000089
CCACCCTCTGAATATTCCTGG
177
6.8
F11R
50849





Fyn
14360
TRCN0000023383
CATCCCGAACTACAACAACTT
178
0.7
FYN
2534





Fyn
14360
TRCN0000023381
CCTTTGGAAACCCAAGAGGTA
179
0.9
FYN
2534





Fyn
14360
TRCN0000361148
TCTGAGACAGAAGCGTGTTAT
180
1.4
FYN
2534





Fyn
14360
TRCN0000023379
GCTCGGTTGATTGAAGACAAT
181
1.4
FYN
2534





Fyn
14360
TRCN0000361213
TTGACAATGGTGGATACTATA
182
1.9
FYN
2534





Fyn
14360
TRCN0000361149
TCTTCACCTGATTCAACTAAA
183
1.9
FYN
2534





Fyn
14360
TRCN0000023382
GCTCTGAAGTTGCCAAACCTT
184
2.0
FYN
2534





Fyn
14360
TRCN0000361212
CACTGTTTGTGGCGCTTTATG
185
2.3
FYN
2534





Fyn
14360
TRCN0000361152
CATCGAGCGCATGAATTATAT
186
2.9
FYN
2534





Fyn
14360
TRCN0000023380
CCTGTATGGAAGGTTCACAAT
187
6.5
FYN
2534





Fyn
14360
ND000111
TCGATGTTATGTCAAAGGCC
188
0.5
FYN
2534





Fyn
14360
ND000112
ACCACACAAACTTCCTGTAT
189
0.7
FYN
2534





Fyn
14360
ND000115
ACAGCTCCTGTCCTTTGGAAA
190
1.0
FYN
2534





Fyn
14360
ND000113
GCAGCGAAACTGACAGAGGAG
191
4.1
FYN
2534





Fyn
14360
ND000114
ACACTGTTTGTGGCGCTTTAT
192
4.4
FYN
2534





Grk6
26385
ND000356
TGACTACCACAGCCTATGTGA
193
0.5
GRK6
2870





Grk6
26385
TRCN0000022851
CGAGAAACAGATCTTGGAGAA
194
0.6
GRK6
2870





Grk6
26385
ND000355
CTAACCTTGCTTAGCAACTGT
195
0.6
GRK6
2870





Grk6
26385
ND000359
AGGAATGAGCGCTACACGTTC
196
1.0
GRK6
2870





Grk6
26385
TRCN0000022853
TCTTGGAGAAAGTGAACAGTA
197
1.1
GRK6
2870





Grk6
26385
TRCN0000022850
GCGCCTGTTATTTCGTGAGTT
198
1.1
GRK6
2870





Grk6
26385
TRCN0000361581
GAACAGTTCTCTACAGTTAAA
199
1.1
GRK6
2870





Grk6
26385
ND000354
CAGGCTATTTATTGCAAGGAT
200
1.2
GRK6
2870





Grk6
26385
ND000357
GAGCTTAGCCTACGCCTATGA
201
1.3
GRK6
2870





Grk6
26385
TRCN0000022852
GCAAAGGCAAGAGCAAGAAAT
202
1.3
GRK6
2870





Grk6
26385
TRCN0000361580
CCATGGCTCTCAACGAGAAAC
203
2.7
GRK6
2870





Grk6
26385
ND000358
TCTATGCTGCTGAGATCTGCT
204
4.2
GRK6
2870





Grk6
26385
TRCN0000361508
GCCGACTAATGCAGAACTTTC
205
4.5
GRK6
2870





Grk6
26385
ND000360
CGCCTGTTATTTCGTGAGTTC
206
5.8
GRK6
2870





Grk6
26385
TRCN0000022849
CGCCGACTAATGCAGAACTTT
207
11.0
GRK6
2870





Hipk1
15257
ND000371
CTACCTGCAATCACGCTACTA
208
0.3
HIPK1
204851





Hipk1
15257
ND000374
AGCGGAGGGTTCACATGTATG
209
0.4
HIPK1
204851





Hipk1
15257
TRCN0000361231
CAACCAGTACAGCACTATTAT
210
0.4
HIPK1
204851





Hipk1
15257
TRCN0000361237
TACCCTTTCTCTGGCTAATTC
211
0.7
HIPK1
204851





Hipk1
15257
TRCN0000368011
AGCCTGAAGGCGAGGTCTAAT
212
1.1
HIPK1
204851





Hipk1
15257
ND000376
CATTGGCACCCGTACTATCAT
213
1.1
HIPK1
204851





Hipk1
15257
TRCN0000023157
GCTTCAGAATACGATCAGATT
214
1.2
HIPK1
204851





Hipk1
15257
ND000375
GAAGACTCTTAACCACCAATT
215
1.8
HIPK1
204851





Hipk1
15257
TRCN0000361233
ATACGATCAGATTCGCTATAT
216
1.9
HIPK1
204851





Hipk1
15257
ND000372
CTGTCATACATTTGGTCTCTT
217
2.7
HIPK1
204851





Hipk1
15257
ND000377
GCTACTAGCCCTGAGTTCTTA
218
3.4
HIPK1
204851





Hipk1
15257
TRCN0000361232
TATAACTTTGTCCGTTCTTAT
219
4.5
HIPK1
204851





Hipk1
15257
ND000373
CTCGCTGCTAAACTACCAATC
220
6.3
HIPK1
204851





Hipk1
15257
ND000378
GCCAATCATCATTCCAGATAC
221
6.7
HIPK1
204851





Hipk1
15257
TRCN0000023154
CGCTCCAAATACAAGCACAAA
222
12.3
HIPK1
204851





Inpp5b
16330
TRCN0000080903
GCTTAGAGGTTCCTGGATAAA
223
0.5
INPP5B
3633





Inpp5b
16330
TRCN0000080906
CCTTTGGTTCACACACCAGAA
224
0.7
INPP5B
3633





Inpp5b
16330
ND000130
CTGTTAGTGACCTGACGTTGA
225
0.8
INPP5B
3633





Inpp5b
16330
TRCN0000305895
ATATTCTAGCTAGCATATTTG
226
0.8
INPP5B
3633





Inpp5b
16330
TRCN0000311434
GGCCAGAGTTTGACCATATAA
227
1.4
INPP5B
3633





Inpp5b
16330
ND000131
GAGTCCTTCACGATTCATAAT
228
1.4
INPP5B
3633





Inpp5b
16330
TRCN0000080905
CGGATCTCCTATCCATACATT
229
1.5
INPP5B
3633





Inpp5b
16330
ND000128
GTATCGGACAAGGCTCACATT
230
1.6
INPP5B
3633





Inpp5b
16330
ND000129
TTCGAGACACAATCGTGAGAT
231
1.9
INPP5B
3633





Inpp5b
16330
ND000127
CTGTCCAAGCCGCAAACATGT
232
3.1
INPP5B
3633





Inpp5b
16330
ND000133
CTCAAGCTTGTATTCCAACTT
233
4.3
INPP5B
3633





Inpp5b
16330
ND000132
ATATAAGGGACTGTCTAGATA
234
4.6
INPP5B
3633





Inpp5b
16330
TRCN0000080904
CGAGTCCTTCACGATTCATAA
235
6.2
INPP5B
3633





Inpp5b
16330
TRCN0000080907
CCGAGTCCTTCACGATTCATA
236
8.1
INPP5B
3633





Inpp5b
16330
ND000134
CGTCCGACTGGTTGGGATTAT
237
9.5
INPP5B
3633





Ipmk
69718
TRCN0000024840
CCCAGATGGTACAGTTCTGAA
238
0.5
IPMK
253430





Ipmk
69718
ND000384
CGAGGCTCTGTGGGTTCTATA
239
0.5
IPMK
253430





Ipmk
69718
TRCN0000360733
TTGCCGTGCTTCGGAGTATTT
240
0.6
IPMK
253430





Ipmk
69718
TRCN0000360808
GATGCGATTGCCGCCAGTATT
241
0.7
IPMK
253430





Ipmk
69718
TRCN0000024839
CCTAACGAAAGAGACCCTGAA
242
0.8
IPMK
253430





Ipmk
69718
ND000383
ATTGCCGTGCTTCGGAGTATT
243
1.1
IPMK
253430





Ipmk
69718
ND000380
AGCGGAAGTACGGATGATAGA
244
1.3
IPMK
253430





Ipmk
69718
TRCN0000360807
GAGGCTCTGTGGGTTCTATAT
245
1.4
IPMK
253430





Ipmk
69718
ND000379
TGCCCAAATACTACGGCGTCT
246
1.7
IPMK
253430





Ipmk
69718
TRCN0000024843
CGGCAAGGACAAAGTGGGCAT
247
2.9
IPMK
253430





Ipmk
69718
ND000381
CTAGCAACACAGTCGATGAGG
248
3.2
IPMK
253430





Ipmk
69718
TRCN0000360732
ACCAAACGATGTGTACCTAAA
249
4.0
IPMK
253430





Ipmk
69718
TRCN0000024841
ACCCTGTATAATGGACGTGAA
250
4.1
IPMK
253430





Ipmk
69718
ND000382
CCTGTATAATGGACGTGAAGA
251
4.7
IPMK
253430





Ipmk
69718
TRCN0000024842
CACCAAACGATGTGTACCTAA
252
6.9
IPMK
253430





Jun
16476
TRCN0000229526
GAACAGGTGGCACAGCTTAAG
253
0.5
JUN
3725





Jun
16476
TRCN0000042693
CGGCTACAGTAACCCTAAGAT
254
0.5
JUN
3725





Jun
16476
TRCN0000055205
CTACGCCAACCTCAGCAACTT
255
0.7
JUN
3725





Jun
16476
TRCN0000055206
CGGTGCCTACGGCTACAGTAA
256
0.8
JUN
3725





Jun
16476
TRCN0000042695
GCTTAAGCAGAAAGTCATGAA
257
0.9
JUN
3725





Jun
16476
TRCN0000360499
AGCGCATGAGGAACCGCATTG
258
0.9
JUN
3725





Jun
16476
TRCN0000360498
CCTATCGACATGGAGTCTCAG
259
0.9
JUN
3725





Jun
16476
TRCN0000042697
GAAGCGCATGAGGAACCGCAT
260
1.0
JUN
3725





Jun
16476
TRCN0000360511
ATTCGATCTCATTCAGTATTA
261
1.1
JUN
3725





Jun
16476
TRCN0000360572
GGATCGCTCGGCTAGAGGAAA
262
1.2
JUN
3725





Jun
16476
TRCN0000055207
GCGGATCAAGGCAGAGAGGAA
263
3.1
JUN
3725





Jun
16476
TRCN0000229528
GGCATGTGCTGTGATCATTTA
264
3.2
JUN
3725





Jun
16476
TRCN0000042694
ACGCAGCAGTTGCAAACGTTT
265
3.3
JUN
3725





Jun
16476
TRCN0000055203
GCGGGCTAACTGCAATAAGAT
266
5.2
JUN
3725





Jun
16476
TRCN0000229525
CAGTAACCCTAAGATCCTAAA
267
5.5
JUN
3725





Jun
16476
TRCN0000229527
GCTAACGCAGCAGTTGCAAAC
268
5.8
JUN
3725





Jun
16476
TRCN0000218856
GAAAGTCATGAACCACGTTAA
269
6.4
JUN
3725





Mast2
17776
TRCN0000225743
AGCAACAACAGGAAGGTATAT
270
0.4
MAST2
23139





Mast2
17776
TRCN0000022896
GCATCCACGAACAAGACCATA
271
0.7
MAST2
23139





Mast2
17776
TRCN0000225741
TTGAGACCAAGCGTCACTTAT
272
1.0
MAST2
23139





Mast2
17776
ND000396
CCGCAAGAGCTTGATTGTAAC
273
1.2
MAST2
23139





Mast2
17776
TRCN0000022898
GCTGGTTCTGAAGAGTGGAAA
274
1.2
MAST2
23139





Mast2
17776
ND000392
GATATTACGGAAGCGGTTATC
275
1.3
MAST2
23139





Mast2
17776
ND000393
ACGAATACCACGGTCCCAAAT
276
1.4
MAST2
23139





Mast2
17776
TRCN0000218393
GTGGAAACAAGGTATCAATTT
277
1.5
MAST2
23139





Mast2
17776
ND000397
GAAGTGTGCTATCCGGGAAAG
278
1.6
MAST2
23139





Mast2
17776
ND000395
GCCTCATTACGTCACACTATT
279
1.6
MAST2
23139





Mast2
17776
TRCN0000022895
CCTCATTACGTCACACTATTT
280
1.9
MAST2
23139





Mast2
17776
TRCN0000225742
ACTTGTATGAGGGTCATATTG
281
4.1
MAST2
23139





Mast2
17776
TRCN0000022897
CGAATGAGAAACCAATCCCTT
282
4.2
MAST2
23139





Mast2
17776
ND000394
GCATCAAACCTGGTTCGAATG
283
4.3
MAST2
23139





Mast2
17776
TRCN0000022894
CCCTGTCAACAAAGTAATCAA
284
5.1
MAST2
23139





Mdfic
16543
TRCN0000237997
GGAGGAAACAGGCAAGATAAA
285
0.2
MDFIC
29969





Mdfic
16543
TRCN0000237994
TGATGCGGGACCAGTCCATTT
286
0.4
MDFIC
29969





Mdfic
16543
ND000148
TGTAATGAGGACAATACGGAG
287
0.4
MDFIC
29969





Mdfic
16543
TRCN0000362432
TCCTGACCCTCTGCAACATTG
288
0.6
MDFIC
29969





Mdfic
16543
TRCN0000237996
TGACATGGACTGCGGCATCAT
289
0.8
MDFIC
29969





Mdfic
16543
TRCN0000095981
CGAAGCATGTAATGAGGACAA
290
1.0
MDFIC
29969





Mdfic
16543
TRCN0000095982
GACATCAGTAAGAAGAGTAAA
291
1.1
MDFIC
29969





Mdfic
16543
TRCN0000237998
TGCCAAGTGACAGGTTATAAA
292
1.1
MDFIC
29969





Mdfic
16543
TRCN0000095983
TGCAACATTGTCCTGGGACAA
293
1.5
MDFIC
29969





Mdfic
16543
TRCN0000237995
ATCGTCAGACTGTCTAGAAAT
294
1.6
MDFIC
29969





Mdfic
16543
TRCN0000095980
CCGTGGAGAATCACAAGATAT
295
2.6
MDFIC
29969





Mdfic
16543
TRCN0000362509
GTTTATCTATTGGAGGTTAAA
296
4.4
MDFIC
29969





Mdfic
16543
ND000147
GAAGAGTAAAGTAAATGCTGT
297
5.1
MDFIC
29969





Mdfic
16543
TRCN0000095979
CGCCGGATGTATGTGGTTTAA
298
7.2
MDFIC
29969





Mdfic
16543
TRCN0000362431
GCCGGATGTATGTGGTTTAAT
299
10.0
MDFIC
29969





Nptxr
73340
TRCN0000219475
CTTGGTCTCTCCCATCATATA
300
0.5
NPTXR
23467





Nptxr
73340
ND000150
ACAGCAACTGGCACCATATCT
301
0.8
NPTXR
23467





Nptxr
73340
TRCN0000219474
GATACCTTGGGAGGCCGATTT
302
0.8
NPTXR
23467





Nptxr
73340
ND000155
GGCCAATGAGATCGTGCTTCT
303
1.0
NPTXR
23467





Nptxr
73340
ND000154
GTAGCCTTTGACCCTCAAATC
304
1.0
NPTXR
23467





Nptxr
73340
ND000152
CAATGGAGCTGCTGATCAACG
305
1.0
NPTXR
23467





Nptxr
73340
TRCN0000219472
GACAGCAACTGGCACCATATC
306
1.1
NPTXR
23467





Nptxr
73340
ND000158
TTGGTCTCTCCCATCATATAC
307
1.3
NPTXR
23467





Nptxr
73340
ND000159
ATACCTTGGGAGGCCGATTTG
308
1.3
NPTXR
23467





Nptxr
73340
ND000153
CCTGTCAGTTTCAGGACTTTG
309
2.0
NPTXR
23467





Nptxr
73340
ND000156
TCCGCAACAACTACATGTACG
310
2.1
NPTXR
23467





Nptxr
73340
ND000157
ATAAGCTGGTAGAGGCCTTTG
311
3.9
NPTXR
23467





Nptxr
73340
ND000149
CGGTGCCGTCATCTGCATCAT
312
6.6
NPTXR
23467





Nptxr
73340
TRCN0000219473
CAAGCCACACGGCATCCTTAT
313
7.0
NPTXR
23467





Nptxr
73340
ND000151
TCAAGCCACACGGCATCCTTA
314
7.2
NPTXR
23467





Nuak2
74137
ND000434
TTGGACTTGCCTGAACGTCTT
315
0.2
NUAK2
81788





Nuak2
74137
TRCN0000361872
TTTGACGGGCAGGATCATAAA
316
0.4
NUAK2
81788





Nuak2
74137
TRCN0000024271
GCCAATGGAAACATCAAGATT
317
0.7
NUAK2
81788





Nuak2
74137
TRCN0000361873
GTGTAGTGACTGCCATTATTT
318
0.7
NUAK2
81788





Nuak2
74137
ND000436
CCAAGGTGTGCAGCTTCTTCA
319
1.6
NUAK2
81788





Nuak2
74137
ND000431
CCTGATCCGGTGGCTGTTAAT
320
1.7
NUAK2
81788





Nuak2
74137
TRCN0000378457
GGGCTCATCAAGTCGCCTAAA
321
1.8
NUAK2
81788





Nuak2
74137
TRCN0000024270
CCGAAAGGCATTCTCAAGAAA
322
2.1
NUAK2
81788





Nuak2
74137
TRCN0000024273
GTCGCCTAAACCTCTGATGAA
323
2.1
NUAK2
81788





Nuak2
74137
TRCN0000024272
CCGAGGCGATCTGTATGATTA
324
2.1
NUAK2
81788





Nuak2
74137
TRCN0000378409
GAAGTCTCGACAGCGTGAATC
325
2.8
NUAK2
81788





Nuak2
74137
ND000435
TCGGACCGCTGTTTGACTTCA
326
2.8
NUAK2
81788





Nuak2
74137
ND000433
TAGCAGCAAGATTGTGATTGT
327
4.5
NUAK2
81788





Nuak2
74137
ND000432
AGTCTCGACAGCGTGAATCTG
328
5.4
NUAK2
81788





Nuak2
74137
TRCN0000024269
CCCAAGGAAAGGCATCCTTAA
329
13.1
NUAK2
81788





Pdzk1ip1
67182
TRCN0000244507
GATGGCAGATACTCCTCAATG
330
0.4
PDZK1IP1
10158





Pdzk1ip1
67182
ND000172
GGGAATGGATGGCAGATACTC
331
0.5
PDZK1IP1
10158





Pdzk1ip1
67182
ND000176
CTCCCTCACCTCTCTAGAATC
332
0.6
PDZK1IP1
10158





Pdzk1ip1
67182
ND000170
TGCAATCGTCTTCGCCGTCAA
333
0.8
PDZK1IP1
10158





Pdzk1ip1
67182
ND000173
CATTGCTGTCGCTGTGTTCTT
334
1.2
PDZK1IP1
10158





Pdzk1ip1
67182
TRCN0000244505
ACAAGAATGCCTACGAGAATG
335
1.7
PDZK1IP1
10158





Pdzk1ip1
67182
ND000174
TTCTTGGTCCTTGTTGCAATC
336
2.0
PDZK1IP1
10158





Pdzk1ip1
67182
TRCN0000244509
GGAGCACAGTGATGATCATTG
337
2.5
PDZK1IP1
10158





Pdzk1ip1
67182
ND000171
ACTGCTCTACAGGAATCTACT
338
2.5
PDZK1IP1
10158





Pdzk1ip1
67182
ND000175
CTGTCAACAAGGTCTAGGAAA
339
4.8
PDZK1IP1
10158





Pdzk1ip1
67182
TRCN0000244508
CCTCATTGCTGTCGCTGTGTT
340
6.3
PDZK1IP1
10158





PdzK1ip1
67182
TRCN0000244506
TCTACAGGAATCTACTGAAAC
341
12.9
PDZK1IP1
10158





Pkd1
18763
ND000445
CAAGTCCTATGACCCTAATTT
342
0.5
PKD1
5310





Pkd1
18763
TRCN0000304664
GGTGGACACCACTCAGTATTA
343
0.8
PKD1
5310





Pkd1
18763
TRCN0000072086
CCAACTCAACATCACCGTAAA
344
0.8
PKD1
5310





Pkd1
18763
TRCN0000304612
ACACAATACCACGCATATTTA
345
0.9
PKD1
5310





Pkd1
18763
ND000447
GGCCGCTTCAAATATGAAATA
346
1.2
PKD1
5310





Pkd1
18763
ND000444
TTCACTAGGAGTGGCATATTC
347
1.3
PKD1
5310





Pkd1
18763
ND000442
CATCTATAAGGGTAGTCTTTC
348
1.4
PKD1
5310





Pkd1
18763
ND000441
GTTATTACCTCTCTTGTTTCT
349
1.8
PKD1
5310





Pkd1
18763
ND000446
GTAGTCTACCCTGTCTATTTG
350
2.9
PKD1
5310





Pkd1
18763
TRCN0000072084
GCCCTGTACCTTTCAACCAAT
351
4.9
PKD1
5310





Pkd1
18763
ND000443
CATGTCATCGAGTACTCTTTA
352
6.2
PKD1
5310





Pkd1
18763
TRCN0000304611
CAACTGATGGTGTCCTATATA
353
7.7
PKD1
5310





Pkd1
18763
TRCN0000072085
CCATCATTGAAGGTGGCTCAT
354
8.9
PKD1
5310





Pkd1
18763
TRCN0000072087
GCTTCACTACTCTTCCTGCTT
355
9.9
PKD1
5310





Pkd1
18763
TRCN0000331808
CGCTCGCACTTTCAGCAATAA
356
47.6
PKD1
5310





Ppm1g
14208
TRCN0000326875
GAGGATGATAAAGACAAAGTA
357
0.3
PPM1G
5496





Ppm1g
14208
TRCN0000326874
GCTTTCCTCAGCCCATTACAA
358
0.5
PPM1G
5496





Ppm1g
14208
ND000458
GAGATGATGGTCCCTGGAATG
359
0.8
PPM1G
5496





Ppm1g
14208
TRCN0000375841
TGACCACAGAGGAAGTCATTA
360
1.1
PPM1G
5496





Ppm1g
14208
TRCN0000081212
GATGCCTTCTTGGCTATTGAT
361
1.1
PPM1G
5496





Ppm1g
14208
TRCN0000306418
CCATGGATGGACGAGTCAATG
362
1.2
PPM1G
5496





Ppm1g
14208
ND000460
TGACGCGATATGGGCAGAACT
363
1.2
PPM1G
5496





Ppm1g
14208
ND000464
GCTACCATGACTATTGAAGAG
364
1.3
PPM1G
5496





Ppm1g
14208
ND000462
TGGCAAAGCTTTAGATATGTC
365
2.1
PPM1G
5496





Ppm1g
14208
ND000465
CATGGATGGACGAGTCAATGG
366
2.9
PPM1G
5496





Ppm1g
14208
TRCN0000081210
CTTCGGTTATTGTCATCCATT
367
3.0
PPM1G
5496





Ppm1g
14208
ND000459
TGCCTGTGCTCTGTTGTGTTG
368
3.6
PPM1G
5496





Ppm1g
14208
ND000461
CAAATTAGTGAGCCCGGTACT
369
6.2
PPM1G
5496





Ppm1g
14208
TRCN0000081209
GCCTTGTACTGTGCCAAATAT
370
7.1
PPM1G
5496





Ppm1g
14208
ND000463
CATGACGTGCATCATCATTTG
371
8.5
PPM1G
5496





Ppp2r2d
52432
ND000490
ACTTCGAGACCCATTTAGAAT
372
0.7
PPP2R2D
55844





Ppp2r2d
52432
ND000488
CAGAAGATCCCAGCAGTAGAT
373
0.9
PPP2R2D
55844





Ppp2r2d
52432
TRCN0000080899
GCCACCAATAACTTGTATATA
374
1.0
PPP2R2D
55844





Ppp2r2d
52432
TRCN0000430828
ATAGTGATCATGAAACATATC
375
1.3
PPP2R2D
55844





Ppp2r2d
52432
ND000487
ATATGTACGCCGGTCAATTAG
376
1.4
PPP2R2D
55844





Ppp2r2d
52432
TRCN0000425449
ATGCTCATACATATCACATAA
377
1.5
PPP2R2D
55844





Ppp2r2d
52432
TRCN0000427220
TCATCTCCACCGTTGAGTTTA
378
1.6
PPP2R2D
55844





Ppp2r2d
52432
ND000491
GATCTGAGAATTAACCTATGG
379
1.7
PPP2R2D
55844





Ppp2r2d
52432
TRCN0000080901
CCATTTAGAATTACGGCACTA
380
1.9
PPP2R2D
55844





Ppp2r2d
52432
TRCN0000080902
CGGTTCAGACAGTGCCATTAT
381
2.0
PPP2R2D
55844





Ppp2r2d
52432
ND000489
CACCGTTGAGTTTAACTACTC
382
4.0
PPP2R2D
55844





Ppp2r2d
52432
ND000486
GCTCAATAAAGGCCATTACTC
383
4.9
PPP2R2D
55844





Ppp2r2d
52432
TRCN0000431278
GAGAATTAACCTATGGCATTT
384
8.3
PPP2R2D
55844





Ppp2r2d
52432
ND000492
CCACAGTGGTCGATACATGAT
385
16.3
PPP2R2D
55844





Ppp2r2d
52432
TRCN0000080900
CCCACATCAGTGCAATGTATT
386
17.2
PPP2R2D
55844





Ppp3cc
19057
ND000512
CCCGAGGTCTAGACCGAATTA
387
0.1
PPP3CC
5533





Ppp3cc
19057
ND000510
TCACAGTGTGTGGTGATGTTC
388
0.4
PPP3CC
5533





Ppp3cc
19057
TRCN0000012695
GCTGTATCTATGGAGCTTAAA
389
0.4
PPP3CC
5533





Ppp3cc
19057
TRCN0000012693
CCTATGAGCAAATCACATTTA
390
0.4
PPP3CC
5533





Ppp3cc
19057
ND000511
AGGAATGTCGGATCAAGTATT
391
0.7
PPP3CC
5533





Ppp3cc
19057
TRCN0000012694
CGGCTAACTTTGAAGGAAGTT
392
0.9
PPP3CC
5533





Ppp3cc
19057
TRCN0000012696
CGGATGAAGAAATGAACGTAA
393
1.2
PPP3CC
5533





Ppp3cc
19057
ND000508
ACCTAGTAATACTCGCTACCT
394
1.4
PPP3CC
5533





Ppp3cc
19057
ND000513
CTGTATCTATGGAGCTTAAAG
395
1.6
PPP3CC
5533





Ppp3cc
19057
ND000515
AGAAATGAACGTAACCGATGA
396
1.8
PPP3CC
5533





Ppp3cc
19057
ND000514
CAAACAACTTAAACTTGGAGG
397
2.4
PPP3CC
5533





Ppp3cc
19057
ND000507
TGTAATTCAGTCGCATTTATT
398
2.6
PPP3CC
5533





Ppp3cc
19057
ND000506
GGACAATTCTTTGACCTGATG
399
4.2
PPP3CC
5533





Ppp3cc
19057
TRCN0000012697
CGAGGTCTAGACCGAATTAAT
400
4.3
PPP3CC
5533





Ppp3cc
19057
ND000509
TTCCGTCACTTATTACGATTT
401
4.4
PPP3CC
5533





Prkab2
108097
ND000529
CTGTGGTTACCAGTCAGCTTG
402
0.2
PRKAB2
5565





Prkab2
108097
TRCN0000025112
GTATGTCACCACGCTGCTGTA
403
0.4
PRKAB2
5565





Prkab2
108097
ND000527
CCCTCACCTACTCCAAGTTAT
404
0.7
PRKAB2
5565





Prkab2
108097
TRCN0000361908
TATGAGTTCACGGAGTTTATT
405
0.7
PRKAB2
5565





Prkab2
108097
TRCN0000025111
CGCAACCCATCGCTACAAGAA
406
0.8
PRKAB2
5565





Prkab2
108097
TRCN0000025109
CATCGCTACAAGAAGAAGTAT
407
0.9
PRKAB2
5565





Prkab2
108097
ND000528
CAATTGGAGCACCAAGATCCC
408
1.1
PRKAB2
5565





Prkab2
108097
ND000530
AGTGGGTTCATGATCCGTCAG
409
1.1
PRKAB2
5565





Prkab2
108097
ND000526
ACCGTTATCCGCTGGTCTGAA
410
1.8
PRKAB2
5565





Prkab2
108097
TRCN0000361952
GATCTGAGGAGAGATTCAAAT
411
2.0
PRKAB2
5565





Prkab2
108097
TRCN0000361953
CTTAACAAGGACACGAATATT
412
2.3
PRKAB2
5565





Prkab2
108097
TRCN0000361910
CTCTGATAAAGAGTCATAATG
413
2.6
PRKAB2
5565





Prkab2
108097
TRCN0000025110
CGCTGCTGTATAAGCCCATCT
414
4.1
PRKAB2
5565





Prkab2
108097
ND000525
CTTACGGTCAAGAAATGTATG
415
4.8
PRKAB2
5565





Prkab2
108097
TRCN0000025113
CATTAAGGACAGTGTGATGGT
416
7.0
PRKAB2
5565





Ptpn2
19255
ND000532
TCCGAACACATGCTGCCATTT
417
0.5
PTPN2
5771





Ptpn2
19255
TRCN0000029891
GCCAAGATTGACAGACACCTA
418
1.0
PTPN2
5771





Ptpn2
19255
TRCN0000279253
AGACTATTCTGCAGCTATAAA
419
1.0
PTPN2
5771





Ptpn2
19255
TRCN0000029893
CCGTTATACTTGGAAATTCGA
420
1.0
PTPN2
5771





Ptpn2
19255
TRCN0000279254
AGTATCGAATGGGACTTATTC
421
1.2
PTPN2
5771





Ptpn2
19255
ND000534
TTATATTAATGCCAGCTTAGT
422
1.4
PTPN2
5771





Ptpn2
19255
ND000531
ATGTTCATGACTTGAGACTAT
423
1.7
PTPN2
5771





Ptpn2
19255
TRCN0000279329
ATATGATCACAGTCGTGTTAA
424
2.2
PTPN2
5771





Ptpn2
19255
TRCN0000279252
CGGTGGAAAGAACTTTCTAAA
425
2.2
PTPN2
5771





Ptpn2
19255
ND000533
CCATATCTCACTTCCATTATA
426
4.7
PTPN2
5771





Ptpn2
19255
TRCN0000279330
TCTCCTACATGGCCATAATAG
427
5.0
PTPN2
5771





Ptpn2
19255
TRCN0000029890
CGGTGGAAAGAACTTTCTAAA
428
5.1
PTPN2
5771





Ptpn2
19255
ND000535
TATCGAATGGGACTTATTCAG
429
5.5
PTPN2
5771





Ptpn2
19255
TRCN0000029892
CCTGTCTTGTTCTGATGGAAA
430
7.4
PTPN2
5771





Rbks
71336
ND000536
TCGCTGCAGTCAGTGTACAGG
431
0.4
RBKS
611132





Rbks
71336
ND000543
GGCCTTCTACCTGGCTTACTA
432
0.6
RBKS
611132





Rbks
71336
ND000537
CTGCAATGATTCTCCTAGAAC
433
0.9
RBKS
611132





Rbks
71336
ND000544
AGTGGTGGGTTCCTGCATGAC
434
0.9
RBKS
611132





Rbks
71336
ND000539
ATATGCCAGCTAGAAATAAGC
435
1.1
RBKS
611132





Rbks
71336
TRCN0000078936
GTGATGATATGCCAGCTAGAA
436
1.2
RBKS
611132





Rbks
71336
ND000538
CATATTTCTACAGAGTTTACA
437
1.7
RBKS
611132





Rbks
71336
TRCN0000078934
TCAATAATGAAGGCCAGAATA
438
1.9
RBKS
611132





Rbks
71336
ND000545
GCTGCCAGGTTGTGGTCATCA
439
2.7
RBKS
611132





Rbks
71336
TRCN0000078937
TGATGATATGCCAGCTAGAAA
440
4.0
RBKS
611132





Rbks
71336
ND000541
CAAGGTTGGCAACGATTCTTT
441
4.1
RBKS
611132





Rbks
71336
ND000542
GAGCCTGTTCCAAAGCACATT
442
5.0
RBKS
611132





Rbks
71336
TRCN0000078935
CCAAAGCACATTCCCACTGAA
443
5.7
RBKS
611132





Rbks
71336
ND000540
CATTAGCCGAGCCAAAGTGAT
444
12.8
RBKS
611132





Rbks
71336
TRCN0000078933
GCCTCCATAATTGTCAATAAT
445
13.9
RBKS
611132





Rock1
19877
ND000568
CATACTGTTAGTCGGCTTGAA
446
0.6
ROCK1
6093





Rock1
19877
ND000567
ATGACATGCAAGCGCAATTGG
447
0.7
ROCK1
6093





Rock1
19877
ND000565
GCCTACAGGTAGATTAGATTA
448
0.9
ROCK1
6093





Rock1
19877
ND000569
AGTTCAATTGGTGAGGCATAA
449
1.0
ROCK1
6093





Rock1
19877
TRCN0000361452
CTAGCAAAGAGAGTGATATTG
450
1.2
ROCK1
6093





Rock1
19877
TRCN0000022901
CCTGGTTTATGATTTGGATTT
451
1.6
ROCK1
6093





Rock1
19877
TRCN0000022900
CGGGAGTTACAAGATCAACTT
452
1.7
ROCK1
6093





Rock1
19877
TRCN0000022902
CCGTGCAAAGTAAGTTACGAT
453
1.8
ROCK1
6093





Rock1
19877
TRCN0000022899
GCAGAAATAATGAATCGCAAA
454
2.0
ROCK1
6093





Rock1
19877
ND000566
ATCAAGATCAGATCGTGGAAG
455
2.2
ROCK1
6093





Rock1
19877
TRCN0000361453
TTCAATTGGTGAGGCATAAAT
456
2.3
ROCK1
6093





Rock1
19877
TRCN0000022903
GCAGTGTCTCAAATTGAGAAA
457
4.1
ROCK1
6093





Rock1
19877
TRCN0000361455
TGTGGGATGCTACCTGATAAA
458
4.4
ROCK1
6093





Rock1
19877
TRCN0000361522
CTACAGGTAGATTAGATTAAT
459
5.6
ROCK1
6093





Rock1
19877
TRCN0000361521
CAACTTTCTAAGCAGATATAA
460
6.5
ROCK1
6093





Sbf1
77980
ND000571
CAGTATGTTACTCGTAAGAAG
461
0.2
SBF1
6305





Sbf1
77980
TRCN0000081099
GCAGTATGTTACTCGTAAGAA
462
0.4
SBF1
6305





Sbf1
77980
ND000575
TGCTAAGTTGTTTCTAGAACC
463
0.8
SBF1
6305





Sbf1
77980
ND000570
CGATACTATGACCACCGAATG
464
0.8
SBF1
6305





Sbf1
77980
TRCN0000081101
CGAGAGGAATCCACCAACTTT
465
0.9
SBF1
6305





Sbf1
77980
TRCN0000081102
GCGATACTATGACCACCGAAT
466
1.5
SBF1
6305





Sbf1
77980
ND000578
CTAACTTATTGTGGTGTCATG
467
1.5
SBF1
6305





Sbf1
77980
ND000574
TCTTGCTGGACTCTGATTATG
468
1.6
SBF1
6305





Sbf1
77980
ND000572
GGCTAGATGAGGGCACAATTC
469
2.2
SBF1
6305





Sbf1
77980
ND000573
GAAGACAACACGTCGCGTTTA
470
3.1
SBF1
6305





Sbf1
77980
ND000577
TACGGAATTGCATCTCCTATG
471
3.2
SBF1
6305





Sbf1
77980
TRCN0000081098
CACGCGGACATCTATGACAAA
472
4.8
SBF1
6305





Sbf1
77980
ND000579
TTACCACATACCGCGTCATCT
473
5.6
SBF1
6305





Sbf1
77980
TRCN0000081100
CCCTACAGCAATGTGTCCAAT
474
6.0
SBF1
6305





Sbf1
77980
ND000576
GACTTTGTCGTCCGCATGATG
475
6.9
SBF1
6305





Smad2
17126
ND000208
AGATCAGTGGGACACAACAGG
476
0.4
SMAD2
4087





Smad2
17126
TRCN0000089336
TGGTGTTCAATCGCATACTAT
477
1.0
SMAD2
4087





Smad2
17126
ND000205
GTAATTACATCCCAGAAACAC
478
1.1
SMAD2
4087





Smad2
17126
TRCN0000089334
CGGTTAGATGAGCTTGAGAAA
479
1.2
SMAD2
4087





Smad2
17126
TRCN0000089333
CCAGTAGTAGTGCCTGAAGTA
480
1.2
SMAD2
4087





Smad2
17126
ND000207
TAACCCGAATGTGCACCATAA
481
1.2
SMAD2
4087





Smad2
17126
ND000199
CCCAACTGTAACCAGAGATAC
482
1.4
SMAD2
4087





Smad2
17126
TRCN0000089335
CCACTGTAGAAATGACAAGAA
483
1.5
SMAD2
4087





Smad2
17126
ND000200
CCTCCGTCGTAGTATTCATGT
484
1.9
SMAD2
4087





Smad2
17126
ND000201
GCCAGTGGTGAAGAGACTTCT
485
1.9
SMAD2
4087





Smad2
17126
ND000203
CTCGGCACACGGAGATTCTAA
486
6.7
SMAD2
4087





Smad2
17126
ND000204
GACAGTATCCCAAAGGTTATT
487
7.1
SMAD2
4087





Smad2
17126
ND000202
GAGTGCGCTTGTATTACATAG
488
7.1
SMAD2
4087





Smad2
17126
TRCN0000089337
CTAAGTGATAGTGCAATCTTT
489
19.3
SMAD2
4087





Smad2
17126
ND000206
TGCCTAAGTGATAGTGCAATC
490
30.3
SMAD2
4087





Socs1
12703
ND000214
TTTCGAGCTGCTGGAGCACTA
491
0.6
SOCS1
8651





Socs1
12703
ND000219
TCGAGCTGCTGGAGCACTACG
492
1.2
SOCS1
8651





Socs1
12703
TRCN0000231240
TCGCCAACGGAACTGCTTCTT
493
1.4
SOCS1
8651





Socs1
12703
ND000218
ACTTCTGGCTGGAGACCTCAT
494
1.5
SOCS1
8651





Socs1
12703
TRCN0000067420
GCGAGACCTTCGACTGCCTTT
495
1.7
SOCS1
8651





Socs1
12703
TRCN0000067418
CGACACTCACTTCCGCACCTT
496
1.8
SOCS1
8651





Socs1
12703
ND000220
CTACCTGAGTTCCTTCCCCTT
497
1.8
SOCS1
8651





Socs1
12703
TRCN0000231238
TTCCGCTCCCACTCCGATTAC
498
1.8
SOCS1
8651





Socs1
12703
TRCN0000231241
TAACCCGGTACTCCGTGACTA
499
1.9
SOCS1
8651





Socs1
12703
ND000216
TACTCCGTGACTACCTGAGTT
500
2.4
SOCS1
8651





Socs1
12703
ND000211
CTTCCGCTCCCACTCCGATTA
501
2.6
SOCS1
8651





Socs1
12703
TRCN0000067422
GCGCGACAGTCGCCAACGGAA
502
2.7
SOCS1
8651





Socs1
12703
TRCN0000231239
TGGACGCCTGCGGCTTCTATT
503
2.9
SOCS1
8651





Socs1
12703
TRCN0000067419
CGCATCCCTCTTAACCCGGTA
504
3.4
SOCS1
8651





Socs1
12703
ND000212
TACATATTCCCAGTATCTTTG
505
3.6
SOCS1
8651





Socs1
12703
TRCN0000231242
GCGCCTTATTATTTCTTATTA
506
4.1
SOCS1
8651





Socs1
12703
TRCN0000067421
CCGTGACTACCTGAGTTCCTT
507
5.8
SOCS1
8651





Socs1
12703
ND000215
GGAGGGTCTCTGGCTTCATTT
508
7.8
SOCS1
8651





Socs1
12703
ND000213
TTCGCGCTCAGCGTGAAGATG
509
8.4
SOCS1
8651





Socs1
12703
ND000217
ATCCCTCTTAACCCGGTACTC
510
8.5
SOCS1
8651





Socs3
12702
ND000222
CGAGAAGATTCCGCTGGTACT
511
0.3
SOCS3
9021





Socs3
12702
TRCN0000067472
GCTGCAGGAGAGCGGATTCTA
512
0.4
SOCS3
9021





Socs3
12702
TRCN0000231180
GGCTAGGAGACTCGCCTTAAA
513
0.7
SOCS3
9021





Socs3
12702
TRCN0000067468
GCTAGGAGACTCGCCTTAAAT
514
0.8
SOCS3
9021





Socs3
12702
ND000227
GAGAGCTTACTACATCTATTC
515
0.9
SOCS3
9021





Socs3
12702
ND000221
GGGAGTTCCTGGATCAGTATG
516
1.0
SOCS3
9021





Socs3
12702
TRCN0000067470
CAAGAGAGCTTACTACATCTA
517
1.1
SOCS3
9021





Socs3
12702
TRCN0000231179
CAGTATGATGCTCCACTTTAA
518
1.2
SOCS3
9021





Socs3
12702
ND000223
CAAGCTGGTGCACCACTACAT
519
1.3
SOCS3
9021





Socs3
12702
ND000224
ACCTGGACTCCTATGAGAAAG
520
1.4
SOCS3
9021





Socs3
12702
TRCN0000067471
CTTCTTCACGTTGAGCGTCAA
521
1.6
SOCS3
9021





Socs3
12702
ND000228
TCGGGAGTTCCTGGATCAGTA
522
1.7
SOCS3
9021





Socs3
12702
ND000226
TGCAGGAGAGCGGATTCTACT
523
1.9
SOCS3
9021





Socs3
12702
ND000225
CCTGGTGGGACAATACCTTTG
524
3.3
SOCS3
9021





Socs3
12702
TRCN0000067469
GATCAGTATGATGCTCCACTT
525
4.6
SOCS3
9021





Socs3
12702
TRCN0000231176
TCTTCACGTTGAGCGTCAAGA
526
4.7
SOCS3
9021





Socs3
12702
TRCN0000231177
CGCTTCGACTGTGTACTCAAG
527
4.9
SOCS3
9021





Socs3
12702
ND000229
GGAGCAAAAGGGTCAGAGGGG
528
5.3
SOCS3
9021





Stk17b
98267
ND000590
AGTGGGACTTTGGAAGCTTGT
529
0.3
STK17B
9262





Stk17b
98267
ND000597
CATCTGGACTGACTCGGAAAT
530
0.5
STK17B
9262





Stk17b
98267
ND000596
ATGCTGCGGGTGGAGAAATTT
531
0.6
STK17B
9262





Stk17b
98267
ND000588
TATCTGAATATTTCTCAAGTG
532
0.6
STK17B
9262





Stk17b
98267
ND000593
TTTACCTGAGTTAGCCGAAAT
533
0.7
STK17B
9262





Stk17b
98267
ND000589
GTTAACTCATACATCACCATT
534
1.1
STK17B
9262





Stk17b
98267
ND000594
CCTATACCATAACTCTATTAC
535
1.3
STK17B
9262





Stk17b
98267
ND000592
CTCAACTATGATCCCATTACC
536
1.3
STK17B
9262





Stk17b
98267
ND000591
AGACCTCCAAGTCCTCCTGTA
537
1.4
STK17B
9262





Stk17b
98267
TRCN0000024255
GCTGTGGTTAGACAATGTATA
538
1.6
STK17B
9262





Stk17b
98267
ND000595
TATTGGCATAATAGCGTATAT
539
3.6
STK17B
9262





Stk17b
98267
TRCN0000024256
GCTTGTTTCATCCTGAGGAAA
540
4.0
STK17B
9262





Stk17b
98267
TRCN0000024258
TCCTCAACTATGATCCCATTA
541
4.2
STK17B
9262





Stk17b
98267
TRCN0000024254
GCAGAAGCTAAGGACGAATTT
542
4.4
STK17B
9262





Stk17b
98267
TRCN0000024257
CAGAATAACATTGTTCACCTT
543
6.4
STK17B
9262





Tnk1
83813
ND000599
TGCCCAGCGCAGACTTAATGA
544
0.3
TNK1
8711





Tnk1
83813
TRCN0000023704
CGTGACACTCTGGGAAATGTT
545
0.6
TNK1
8711





Tnk1
83813
ND000602
GTGTCCCACCATATCTCATCC
546
0.7
TNK1
8711





Tnk1
83813
ND000600
AGTAGCAATACCGGATCACTG
547
0.7
TNK1
8711





Tnk1
83813
TRCN0000023706
GCGGGAAGTATCTGTCATGAT
548
0.8
TNK1
8711





Tnk1
83813
ND000603
AGAGGATGCGAGGCATTTCCA
549
1.1
TNK1
8711





Tnk1
83813
ND000601
GGACAGAGAGAAGGCAACGTT
550
1.1
TNK1
8711





Tnk1
83813
TRCN0000361891
AGAATTGGGTGTACAAGATAC
551
1.3
TNK1
8711





Tnk1
83813
TRCN0000023707
CCACCTATTATCTGCAACTCT
552
1.6
TNK1
8711





Tnk1
83813
TRCN0000023705
GCCTCTGATGTGTGGATGTTT
553
1.7
TNK1
8711





Tnk1
83813
TRCN0000361890
TGCAGAGGATGCGAGGCATTT
554
1.8
TNK1
8711





Tnk1
83813
TRCN0000361889
TGGCGTGACACTCTGGGAAAT
555
2.0
TNK1
8711





Tnk1
83813
TRCN0000023708
CAGACTTAATGAAGCCCTGAA
556
5.2
TNK1
8711





Tnk1
83813
TRCN0000361892
GTGTTGTACATCGAGGGTTAT
557
5.2
TNK1
8711





Tnk1
83813
ND000598
CCAGAACTTCGGCGTACAAGA
558
7.6
TNK1
8711





Trpm7
58800
ND000607
GAAGTATCAGCGGTATCATTT
559
0.4
TRPM7
54822





Trpm7
58800
TRCN0000274774
ATGGATTGTTATCGCTTATAT
560
0.7
TRPM7
54822





Trpm7
58800
ND000606
GCTTGGAAAGGGTCTTATTAA
561
0.9
TRPM7
54822





Trpm7
58800
ND000608
ATTGAATCCCTTGAGCAAATT
562
0.9
TRPM7
54822





Trpm7
58800
TRCN0000274712
CCTTATCAAACCCTATTGAAT
563
1.1
TRPM7
54822





Trpm7
58800
TRCN0000274773
CCAAAGATCAAGAACCCATTT
564
1.2
TRPM7
54822





Trpm7
58800
ND000604
TAGAGGTAATGTTCTCATTGA
565
1.2
TRPM7
54822





Trpm7
58800
ND000610
ACCGGATTGGTTACGAGATAG
566
1.5
TRPM7
54822





Trpm7
58800
TRCN0000274772
ACCTGGTGCAGGACCATTAAC
567
1.7
TRPM7
54822





Trpm7
58800
ND000605
TAGACTTTCTAGCCGTAAATC
568
2.9
TRPM7
54822





Trpm7
58800
TRCN0000274711
CTAGACTTTCTAGCCGTAAAT
569
3.1
TRPM7
54822





Trpm7
58800
TRCN0000023957
CCTCAGGATGAGTCATCAGAT
570
3.5
TRPM7
54822





Trpm7
58800
TRCN0000023956
CCTGGTATAAGGTCATATTAA
571
4.9
TRPM7
54822





Trpm7
58800
TRCN0000023955
GCTCAGAATCTTATTGATGAT
572
5.3
TRPM7
54822





Trpm7
58800
ND000609
GCCCTAACAGTAGATACATTG
573
5.9
TRPM7
54822





Vamp7
20955
TRCN0000115068
CTTACTCACATGGCAATTATT
574
0.6
VAMP7
6845





Vamp7
20955
TRCN0000380436
GCACAACTGAAGCATCACTCT
575
0.8
VAMP7
6845





Vamp7
20955
TRCN0000336075
GCACAAGTGGATGAACTGAAA
576
0.9
VAMP7
6845





Vamp7
20955
TRCN0000336077
TTACGGTTCAAGAGCACAAAC
577
1.0
VAMP7
6845





Vamp7
20955
TRCN0000380733
TAAGAGCCTAGACAAAGTGAT
578
1.0
VAMP7
6845





Vamp7
20955
ND000255
AGCCATGTGTATGAAGAATAT
579
1.2
VAMP7
6845





Vamp7
20955
ND000258
TCCAGGAGCCCATACAAGTAA
580
1.4
VAMP7
6845





Vamp7
20955
ND000256
ATAAACTAACTTACTCACATG
581
1.5
VAMP7
6845





Vamp7
20955
TRCN0000336014
GCCGCCACATTTCGTTGTAAA
582
1.8
VAMP7
6845





Vamp7
20955
TRCN0000353419
GCACTTCCTTATGCTATGAAT
583
1.9
VAMP7
6845





Vamp7
20955
TRCN0000115066
GCCTTAAGATATGCAATGTTA
584
2.2
VAMP7
6845





Vamp7
20955
ND000257
CTGAAAGGAATAATGGTCAGA
585
4.0
VAMP7
6845





Vamp7
20955
ND000259
CTCCTTGTAAATGATACACAA
586
9.8
VAMP7
6845





Vamp7
20955
TRCN0000353291
CTTTGCCTGTCATATAGTTTG
587
10.5
VAMP7
6845





Vamp7
20955
TRCN0000115069
TCGAGCCATGTGTATGAAGAA
588
11.3
VAMP7
6845





Yes1
22612
ND000617
ATCCCTAGCAATTACGTAGTG
589
0.5
YES1
7525





Yes1
22612
TRCN0000339152
TGGTTATATCCCTAGCAATTA
590
0.5
YES1
7525





Yes1
22612
ND000614
TATGCTTCACTCGGCATGTTT
591
0.6
YES1
7525





Yes1
22612
ND000616
ATTCCAGATACGGTTACTCAA
592
0.6
YES1
7525





Yes1
22612
ND000613
TTTAAGAAGGGTGAACGATTT
593
0.7
YES1
7525





Yes1
22612
ND000612
CACGACCAGAGCTCAGTTTGA
594
0.8
YES1
7525





Yes1
22612
ND000615
CAGGTATGGTAAACCGTGAAG
595
0.8
YES1
7525





Yes1
22612
ND000611
GGAGTGGAACATGCTACAGTT
596
1.0
YES1
7525





Yes1
22612
ND000618
CCTCATTCTCAGTGGTGTCAA
597
2.6
YES1
7525





Yes1
22612
ND000619
TCGAGAATCATTGCGACTAGA
598
2.8
YES1
7525





Yes1
22612
TRCN0000339083
CCAGGTACAATGATGCCAGAA
599
2.8
YES1
7525





Yes1
22612
TRCN0000339150
GCGGAAAGATTACTTCTGAAT
600
3.9
YES1
7525





Yes1
22612
TRCN0000023616
GCTGCTCTGTATGGTCGATTT
601
4.1
YES1
7525





Yes1
22612
TRCN0000023618
CCTTGTATGATTATGAAGCTA
602
5.4
YES1
7525





Yes1
22612
TRCN0000023617
GCCAGTCATTATGGAGTGGAA
603
9.7
YES1
7525









shRNAs demonstrating an at least ≧3 shRNAs fold enrichment in tumor relative to spleen indicate a more active target sequence region.


In some aspects, the nucleic acids of the compositions encode the shRNA sequences targeting the human Ppp2r2d and Cblb sequences provided in Table 2a.











TABLE 2a





#
Gene
Human shRNA Target Sequence







1
Ppp2r2d
CCCGCACCAGTGCAACGTGTT




(SEQ ID NO: 636)





2
Ppp2r2d
TCATAGTGGGCGGTACATGAT




(SEQ ID NO: 637)





3
Ppp2r2d
GAGAATTAATTTATGGCACTT




(SEQ ID NO: 638)





4
Ppp2r2d
CCATTTAGGATCACGGCGCTA




(SEQ ID NO: 639)





5
Ppp2r2d
ATAGTGATCATGAAACATATC




(SEQ ID NO: 375)





6
Ppp2r2d
GCCACCAATAACTTGTACATA




(SEQ ID NO: 640)





7
Ppp2r2d
CGGTTCGGATAGCGCCATCAT




(SEQ ID NO: 641)





8
Ppp2r2d
TCATTTCCACCGTTGAGTTTA




(SEQ ID NO: 642)





9
Ppp2r2d
ATGCTCACACATATCATATAA




(SEQ ID NO: 643)





1
Cblb
CGGGCAATAAGACTCTTTAA




(SEQ ID NO: 644)





2
Cblb
TGCCCAGGTCCAGTTCCATTTC




(SEQ ID NO: 645)





3
Cblb
TCCTGATTTAACTGGATTATG




(SEQ ID NO: 646)





4
Cblb
ATCAAACATCCCTGACTTAAG




(SEQ ID NO: 647)





5
Cblb
CTACACCTCATGACCATATAA




(SEQ ID NO: 648)





6
Cblb
TACACCTCATGACCATATAAA




(SEQ ID NO: 649)





7
Cblb
TCAGTGAGAATGAGTACTTTA




(SEQ ID NO: 650)





8
Cblb
CCTGACTTAAGCATATATTTA




(SEQ ID NO: 651)





9
Cblb
TCTACATTGATAGCCTTATGA




(SEQ ID NO: 652)









In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ppp2r2d target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 372, 373, 374, 375, 376, 377, 378, 378, 379, 380, 381, 382, 383, 384, 385, or 386.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Pp2r2d sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 372, 373, 374, 375, 376, 377, 378, 378, 379, 380, 381, 382, 383, 384, 385, or 386.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Eif2ak3 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146 or 147.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Eif2ak3 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146 or 147.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Arhgap5 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or 42.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Arhgap5 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or 42.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Smad2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, or 490.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Smad2 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, or 490.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Akap81 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Akap81 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Rbks target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, or 445.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Rbks sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, or 445.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Egr2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, or 132.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Egr2 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, or 132.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Dgka target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 or 117.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Dgka sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 or 117.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Cblb target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, or 72.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Cblb sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, or 72.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Mdfic target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, or 299.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Mdfic sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, or 299.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Entpd1 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, or 162.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Entpd1 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, or 162.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Vamp7 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, or 587.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Vamp7sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, or 587.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Hipk1 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, or 222.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Hipk1 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, or 222.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Nuak2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, or 329.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Nuak2 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, or 329.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Alk target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or 31.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Alk sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or 31.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Pdzk1ip1 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, or 341.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Pdzk1ip1 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, or 341.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Blvrb target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 52, 53, 54, 55, 56 or 57.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Blvrb that corresponds to a murine target sequence set forth in SEQ ID NO: 52, 53, 54, 55, 56 or 57.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Cdkn2a target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 83, 84, 85, 86 or 87.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Cdkn2a that corresponds to a murine target sequence set forth in SEQ ID NO: 83, 84, 85, 86 or 87.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a F11r target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 175, 176 or 177.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human F11r that corresponds to a murine target sequence set forth in SEQ ID NO: 175, 176 or 177.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Fyn target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 187, 191 or 192.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Fyn that corresponds to a murine target sequence set forth in SEQ ID NO: 187, 191 or 192.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Grk6 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 204, 205, 206 or 207.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Grk6 that corresponds to a murine target sequence set forth in SEQ ID NO: 204, 205, 206 or 207.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Inpp5b target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 232, 234, 235, 236 or 237.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Inpp5b that corresponds to a murine target sequence set forth in SEQ ID NO: 232, 234, 235, 236 or 237.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Impk target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 248, 249, 250, 251 or 252.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Impk that corresponds to a murine target sequence set forth in SEQ ID NO: 248, 249, 250, 251 or 252.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Jun target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 263, 264, 265, 266, 267, 268 or 269.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Jun that corresponds to a murine target sequence set forth in SEQ ID NO: 263, 264, 265, 266, 267, 268 or 269.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Mast2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 281, 282, 283 or 284.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Mast2 that corresponds to a murine target sequence set forth in SEQ ID NO: 281, 282, 283 or 284.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Nptxr target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 311, 312, 313 or 314.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Nptxr that corresponds to a murine target sequence set forth in SEQ ID NO: 311, 312, 313 or 314.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Pkd1 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 351, 352, 353, 354, 355 or 356.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Pkd1 that corresponds to a murine target sequence set forth in SEQ ID NO: 351, 352, 353, 354, 355 or 356.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ppm1g target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 367, 368, 369, 370 or 371.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Ppm1g that corresponds to a murine target sequence set forth in SEQ ID NO: 367, 368, 369, 370 or 371.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ppp3cc target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 399, 400 or 401.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Ppp3cc that corresponds to a murine target sequence set forth in SEQ ID NO: 399, 400 or 401.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Prkab2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 414, 415 or 416.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Prkab2 that corresponds to a murine target sequence set forth in SEQ ID NO: 414, 415 or 416.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ptpn2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 426, 427, 428, 429 or 430.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Ptpn2 that corresponds to a murine target sequence set forth in SEQ ID NO: 426, 427, 428, 429 or 430.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Rock1 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 457, 458, 459 or 460.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Rock1 that corresponds to a murine target sequence set forth in SEQ ID NO: 457, 458, 459 or 460.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Sbf1 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 470, 471, 472, 473, 474 or 475.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Sbf1 that corresponds to a murine target sequence set forth in SEQ ID NO: 470, 471, 472, 473, 474 or 475.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Socs1 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 504, 505, 506, 507, 508, 509 or 510.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Socs1 that corresponds to a murine target sequence set forth in SEQ ID NO: 504, 505, 506, 507, 508, 509 or 510.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Socs3 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 524, 525, 526, 527 or 528.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Socs3 that corresponds to a murine target sequence set forth in SEQ ID NO: 524, 525, 526, 527 or 528.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Stk17b target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 539, 540, 541, 542 or 543.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Stk17b that corresponds to a murine target sequence set forth in SEQ ID NO: 539, 540, 541, 542 or 543.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Tnk1 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 556, 557 or 558.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Tnk1 that corresponds to a murine target sequence set forth in SEQ ID NO: 556, 557 or 558.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Trpm7 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 569, 570, 571, 572 or 573.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Trpm7 that corresponds to a murine target sequence set forth in SEQ ID NO: 569, 570, 571, 572 or 573.


In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Yes1 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 600, 601, 602 or 603.


In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Yes1 that corresponds to a murine target sequence set forth in SEQ ID NO: 600, 601, 602 or 603.


In any embodiment, a human sequence that corresponds to a murine target sequence is a sequence which perfectly corresponds to the human gene sequence, and for example, can have none, 1, 2, 3 or 4 nucleotide mismatches with the at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides of the selected murine target sequence.


An isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally-occurring genome is removed or absent. Thus, an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule (e.g., a chemically synthesized nucleic acid, cDNA, or genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other sequences as well as DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, lentivirus, adenovirus, adeno-associated virus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include an engineered nucleic acid such as a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid. A nucleic acid existing among hundreds to millions of other nucleic acids within, for example, cDNA libraries or genomic libraries, or gel slices containing a genomic DNA restriction digest, is not to be considered an isolated nucleic acid.


In calculating percent sequence identity, two sequences are aligned and the number of identical matches of nucleotides or amino acid residues between the two sequences is determined. The number of identical matches is divided by the length of the aligned region (i.e., the number of aligned nucleotides or amino acid residues) and multiplied by 100 to arrive at a percent sequence identity value. It will be appreciated that the length of the aligned region can be a portion of one or both sequences up to the full-length size of the shortest sequence. It also will be appreciated that a single sequence can align with more than one other sequence and hence, can have different percent sequence identity values over each aligned region. It is noted that the percent identity value is usually rounded to the nearest integer. For example, 78.1%, 78.2%, 78.3%, and 78.4% are rounded down to 78%, while 78.5%, 78.6%, 78.7%, 78.8%, and 78.9% are rounded up to 79%. It is also noted that the length of the aligned region is always an integer.


As used herein, the term “percent sequence identity” refers to the degree of identity between any given query sequence and a subject sequence. A percent identity for any query nucleic acid or amino acid sequence, e.g., a transcription factor, relative to another subject nucleic acid or amino acid sequence can be determined as follows.


As used herein, the term “complementary nucleotide sequence,” also known as an “antisense sequence,” refers to a sequence of a nucleic acid that is completely complementary to the sequence of a “sense” nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). Herein, nucleic acid molecules are provided that comprise a sequence complementary to at least about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides or an entire gene coding strand, or to only a portion thereof.


As used herein, the term “correspond to a nucleotide sequence” refers to a nucleotide sequence of a nucleic acid encoding an identical sequence. In some instances, when antisense nucleotides (nucleic acids) or siRNA's (small inhibitory RNA) hybridize to a target sequence a particular antisense or small inhibitory RNA (siRNA) sequence is substantially complementary to the target sequence, and thus will specifically bind to a portion of an mRNA encoding polypeptide. As such, typically the sequences of those nucleic acids will be highly complementary to the mRNA target sequence, and will have no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 base mismatches throughout the sequence. In many instances, it may be desirable for the sequences of the nucleic acids to be exact matches, i.e. be completely complementary to the sequence to which the oligonucleotide specifically binds, and therefore have zero mismatches along the complementary stretch. Highly complementary sequences will typically bind quite specifically to the target sequence region of the mRNA and will therefore be highly efficient in reducing, and/or even inhibiting the translation of the target mRNA sequence into polypeptide product.


As used herein, the term “vector” refers to any viral or non-viral vector, as well as any plasmid, cosmid, phage or binary vector in double or single stranded linear or circular form that may or may not be self transmissible or mobilizable, and that can transform prokaryotic or eukaryotic host cells either by integration into the cellular genome or which can exist extrachromosomally (e.g., autonomous replicating plasmid with an origin of replication). Any vector known in the art is envisioned for use in the practice of this invention.


Vectors can be viral vectors or non-viral vectors. Should viral vectors be used, it is preferred the viral vectors are replication defective, which can be achieved for example by removing all viral nucleic acids that encode for replication. A replication defective viral vector will still retain its infective properties and enters the cells in a similar manner as a replicating adenoviral vector, however once admitted to the cell a replication defective viral vector does not reproduce or multiply. Vectors also encompass liposomes and nanoparticles and other means to deliver DNA molecule to a cell.


The term “viral vectors” refers to the use of viruses, or virus-associated vectors as carriers of a nucleic acid construct into a cell. Constructs may be integrated and packaged into non-replicating, defective viral genomes like Adenovirus, Adeno-associated virus (AAV), or Herpes simplex virus (HSV) or others, including retroviral and lentiviral vectors, for infection or transduction into cells. The vector may or may not be incorporated into the cell's genome.


“Encoding” refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom, Thus, a gene encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system, Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA.


The term “expression” as used herein is defined as the transcription and/or translation of a particular nucleotide sequence driven by its promoter.


Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors”. Thus, an “Expression vector” is a specialized vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.


In some aspects, the disclosure provides modified cells that harbor vectors capable of expressing the shRNA described herein and further modified to express a CAR. In one aspect the shRNA and the CAR are expressed on the same vector. In another aspect, the shRNA and the CAR are expressed on separate vectors.


In some embodiments, the modified cells described herein are immunoresponsive cells. In some aspects, the immunoresponsive cells express at least one of an antigen-recognizing receptor. In any aspect, the immunoresponsive cells express at least one of an tumor specific antigen-recognizing receptor. In some aspects, tumor cell antigen specific T cells, NKT cells, TIL, CTL cells or other immunoresponsive cells are used. Non-limiting examples of immunoresponsive cells include T cells, such as, for example, αβ-TCR+ T cells (e.g., CD8+ T cells or CD4+ T cells) γδ-TCR+ T cells, tumor-infiltrating lymphocytes (TIL), Natural Killer T cells (NKT), a cytotoxic T lymphocytes (CTL), and a CD4 T cells.


Compositions comprising the immunoresponsive cells of the invention (e.g., T cells, NKT cells, TILs, CTL cells, or their progenitors) can be provided systemically or directly to a subject for the treatment of a cancer. In one embodiment, cells of the invention are directly injected into an organ of interest (e.g., an organ affected by a cancer). Alternatively, compositions comprising genetically modified immunoresponsive cells are provided indirectly to the organ of interest, for example, by administration into the circulatory system (e.g., the tumor vasculature). Expansion and differentiation agents can be provided prior to, during or after administration of the cells to increase production of T cells, NKT cells, TILs, CTL cells in vitro or in vivo.


The modified immunoresponsive cells can be administered in any physiologically acceptable vehicle, normally intravascularly, although they may also be introduced into bone or other convenient site where the cells may find an appropriate site for regeneration and differentiation (e.g., thymus). Usually, at least 1×105 cells will be administered, eventually reaching 1×1010, or more. Immunoresponsive cells of the invention can comprise a purified population of cells. Those skilled in the art can readily determine the percentage of genetically modified immunoresponsive cells in a population using various well-known methods, such as fluorescence activated cell sorting (FACS). Preferable ranges of purity in populations comprising genetically modified immunoresponsive cells are about 50 to about 55%, about 55 to about 60%, and about 65 to about 70%. More preferably the purity is about 70 to about 75%, about 75 to about 80%, about 80 to about 85%; and still more preferably the purity is about 85 to about 90%, about 90 to about 95%, and about 95 to about 100%. Dosages can be readily adjusted by those skilled in the art (e.g., a decrease in purity may require an increase in dosage).


The cells can be introduced by injection, catheter, or the like. If desired, factors can also be included, including, but not limited to, interleukins, e.g. IL-2, IL-3, IL-6, and IL-11, as well as the other interleukins, the colony stimulating factors, such as G-, M- and GM-CSF, interferons, e.g. .gamma.-interferon and erythropoietin.


Compositions of the invention include pharmaceutical compositions comprising the immunoresponsive cells of the invention or their progenitors and a pharmaceutically acceptable carrier. Administration can be autologous or heterologous. For example, immunoresponsive cells, or progenitors can be obtained from one subject, and administered to the same subject or a different, compatible subject.


Chimeric Antigen Receptors


In some instances, the invention provides chimeric antigen receptors (CARs) comprising an antigen binding domain directed to a tumor cell antigen. A CAR is an artificially constructed hybrid protein or polypeptide containing an extracellular portion that recognizes a tumor cell antigen (e.g., the antigen binding domains of an antibody (scFv) and a cytoplasmic signaling domain derived from the T cell receptor and costimulatory domain. (Kalos M, et al., Sci Transl Med. 2011 Aug. 10; 3(95)) Kalos et al. describes the generation of CAR T cells that target CD19 and demonstrates the CAR modified T-cells mediated potent antitumor effect in chronic lymphocytic leukemia patients. Characteristics of CARs include their ability to redirect T-cell specificity and reactivity toward a selected target in a non-MHC-restricted manner, exploiting the antigen-binding properties of monoclonal antibodies. The CAR-modified T-cells have the potential to replicate in vivo and long term persistence allows for sustained tumor control and obviate the need for repeated infusions of antibody. (Kalos M, et al., Sci Transl Med. 2011 Aug. 10; 3(95)) The non-MHC-restricted antigen recognition gives T cells expressing CARs the ability to recognize antigen independent of antigen processing, thus bypassing a major mechanism of tumor escape. Moreover, when expressed in T-cells, CARs advantageously do not dimerize with endogenous T cell receptor (TCR) alpha and beta chains. CAR-modified T cells are described in detail in WO2012/079000 and WO2012/09999 and in Milone et al. 2009 Mol. Ther. 17:1453.


A CAR combines the binding site of a molecule that recognizes an antigen being targeted (i.e., an “antigen binding domain”) with one or more domains of conventional immune receptors responsible for initiating signal transduction that leads to lymphocyte activation (e.g., the “stimulatory domain” or “signaling domain”).


In some embodiments, the binding portion used is derived from the structure of the Fab (antigen binding) fragment of a monoclonal antibody (mAb) that has high affinity for the tumor antigen being targeted. Because the Fab is the product of two genes, the corresponding sequences are usually combined via a short linker fragment that allows the heavy-chain to fold over the light-chain derived peptides into their native configuration, creating a single-chain fragment variable (scFv) region.


Fv or (scFv) antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains, which enables the scFv to form the desired structure for antigen binding.


In some embodiments, the binding portion used is derived from a cytoplasmic signaling domain derived from T cell receptor and costimulatory molecules.


In some embodiments, the signaling portion of CARs contains usually the intracellular domains of the zeta (ζ) chain of the TCR/CD3 complex25 or, less commonly, of the gamma (γ) chain of the immunoglobulin receptor FcεRI26,27 or the CD3-epsilon (ε) chain,28 with the transmembrane region being derived from the same molecule.


In some aspects, the CARs comprise an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain. Further embodiments of the invention provide related nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs of the invention.


In one aspect, the antigen binding domain binds to a tumor cell antigen. The term “tumor cell antigen” or “tumor antigen” as used herein refers to any polypeptide expressed by a tumor that is capable of inducing an immune response. Non-limiting examples of tumor antigens include, for example, prostate-specific membrane antigen (PSMA), Carcinoembryonic Antigen (CEA), CD19, CD20, CD22, ROR1, mesothelin, CD333/IL3Ra, c-Met, Glycolipid F77, EGFRvIII, GD-2, NY-ESO-1 TCR, ERBB2, BIRC5, CEACAM5, WDR46, BAGE, CSAG2, DCT, MAGED4, GAGE1, GAGE2, GAGE3, GAGE4, GAGE5, GAGE6, GAGE7, GAGE5, IL13RA2, MAGEA1, MAGEA2, MAGEA3, MAGEA4, MAGEA6, MAGEA9, MAGEA10, MAGEA12, MAGEB1, MAGEB2, MAGEC2, TP53, TYR, TYRP1, SAGE1, SYCP1, SSX2, SSX4, KRAS, PRAME, NRAS, ACTN4, CTNNB1, CASP8, CDC27, CDK4, EEF2, FN1, HSPA1B, LPGAT1, ME1, HHAT, TRAPPC1, MUM3, MYO1B, PAPOLG, OS9, PTPRK, TPI1, ADFP, AFP, AIM2, ANXA2, ART4, CLCA2, CPSF1, PPIB, EPHA2, EPHA3, FGF5, CA9, TERT, MGAT5, CEL, F4.2, CAN, ETV6, BIRC7, CSF1, OGT, MUC1, MUC2, MUM1, CTAG1A, CTAG2, CTAG, MRPL28, FOLH1, RAGE, SFMBT1, KAAG1, SART1, TSPYL1, SART3, SOX10, TRG, WT1, TACSTD1, SILV, SCGB2A2, MC1R, MLANA, GPR143, OCA2, KLK3, SUPT7L, ARTC1, BRAF, CASP5, CDKN2A, UBXD5, EFTUD2, GPNMB, NFYC, PRDX5, ZUBR1, SIRT2, SNRPD1, HERV-K-MEL, CXorf61, CCDC110, VENTXP1, SPA17, KLK4, ANKRD30A, RAB38, CCND1, CYP1B1, MDM2, MMP2, ZNF395, RNF43, SCRN1, STEAP1, 707-AP, TGFBR2, PXDNL, AKAP13, PRTN3, PSCA, RHAMM, ACPP, ACRBP, LCK, RCVRN, RPS2, RPL10A, SLC45A3, BCL2L1, DKK1, ENAH, CSPG4, RGS5, BCR, BCR-ABL, ABL-BCR, DEK, DEK-CAN, ETV6-AML1, LDLR-FUT, NPM1-ALK1, PML-RARA, SYT-SSX1, SYT-SSX2, FLT3, ABL1, AML1, LDLR, FUT1, NPM1, ALK, PML1, RARA, SYT, SSX1, MSLN, UBE2V1, HNRPL, WHSC2, EIF4EBP1, WNK2, OAS3, BCL-2, MCL1, CTSH, ABCC3, BST2, MFGE8, TPBG, FMOD, XAGE1, RPSA, COTL1, CALR3, PA2G4, EZH2, FMNL1, HPSE, APC, UBE2A, BCAP31, TOP2A, TOP2B, ITGB8, RPA1, ABI2, CCNI, CDC2, SEPT2, STAT1, LRP1, ADAM17, JUP, DDR1, ITPR2, HMOX1, TPM4, BAAT, DNAJC8, TAPBP, LGALS3BP, PAGE4, PAK2, CDKN1A, PTHLH, SOX2, SOX11, TRPM8, TYMS, ATIC, PGK1, SOX4, TOR3A, TRGC2, BTBD2, SLBP, EGFR, IER3, TTK, LY6K, IGF2BP3, GPC3, SLC35A4, HSMD, H3F3A, ALDH1A1, MFI2, MMP14, SDCBP, PARP12, MET, CCNB1, PAX3-FKHR, PAX3, FOXO1, XBP1, SYND1, ETV5, HSPA1A, HMHA1, TRIM68 and any combination thereof.


The present invention relates generally to the use of T cells genetically modified to stably express a shRNA of the invention and a desired CAR. T cells expressing a CAR are generally referred to as CAR T cells. T cells expressing a CAR are referred to herein as CAR T cells or CAR modified T cells. Preferably, the cell can be genetically modified to stably express an antibody binding domain on its surface, conferring novel antigen specificity that is MHC independent. In some instances, the T cell is genetically modified to stably express a CAR that combines an antigen recognition domain of a specific antibody with an intracellular stimulatory domain (e.g., signaling domain). Thus, in addition to an antigen binding domain the CAR can include the intracellular domains of the zeta (ζ) chain of the TCR/CD3 complex, the gamma (γ) chain of the immunoglobulin receptor FcεRI26, 27 or the CD3-epsilon (ε) chain. The CAR can also include a transmembrane region being from the same molecules or other type I transmembrane proteins such as CD4, CD8 and CD28.


In one embodiment, the CAR of the invention comprises an extracellular domain having an antigen recognition domain, a transmembrane domain, and a cytoplasmic domain.


In one embodiment, the transmembrane domain that naturally is associated with one of the domains in the CAR is used. In another embodiment, the cytoplasmic domain can be designed to comprise a stimulatory domain and a costimulatory domain.


A CAR can include intracytoplasmatic portion of co-stimulatory molecules, such as CD28, CD134/OX40, CD137/4-1BB, Lck, ICOS or DAP10.


The disclosure also relates to a strategy of Adoptive cell therapy (ACT). ACT is a procedure in which therapeutic lymphocytes are administered to patients in order to treat cancer. This approach entails the ex vivo generation of tumor specific T cell lymphocytes and infusing them to patients. In addition to the lymphocyte infusion the host may be manipulated in other ways which support the take of the T cells and their immune response, for example, preconditioning the host (with radiation or chemotherapy) and administration of lymphocyte growth factors (such as IL-2). One method for generating such tumor specific lymphocytes involves the expansion of antigen specific T cells.


In one embodiment, the invention provides generating T cells expressing a shRNA of the invention and a desired CAR directed to a tumor antigen. The modified T cells can be generated by introducing a vector (e.g., plasmid, lentiviral vector, retroviral vector, adenoviral vector, adeno-associated viral vector) encoding both 1) an shRNA capable of reducing expression of a target gene described herein and 2) a desired CAR into the cells. The modified T cells of the invention are able to replicate in vivo resulting in long term persistence that can lead to tumor control.


In one aspect, the disclosure provides methods of treating cancer comprising administering a composition capable of silencing genes that inhibit T cell function. In one embodiment, the methods relate to administering T cell expressing a shRNA of the invention and a desired CAR directed to a tumor antigen. In one aspect the T cell to be administered comprises a vector encoding a shRNA of the invention and a desired CAR directed to a tumor antigen.


Pharmaceutical Formulations

In some instances, therapeutic compositions disclosed herein can include, in addition to the tumor targeting T cells, compounds, drugs, and/or agents used for the treatment of cancer. Such compounds, drugs, and/or agents can include, for example, chemotherapy drugs, small molecule drugs or antibodies that stimulate the immune response to a given cancer. In other instances, therapeutic compositions can include, for example, one or more small molecule inhibitors that silence, reduces, eliminates, knocks down, knocks out, or decreases the expression and/or activity of genes selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 and Ppp3cc. Accordingly, the invention provides one or more inhibitors of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 or Ppp3cc.


In one aspect, the invention provides one or more inhibitors of Ppp2r2d.


In another aspect, the invention provides one or more inhibitors of Eif2ak3.


In another aspect, the invention provides one or more inhibitors of Arhgap5.


In another aspect, the invention provides one or more inhibitors of Smad2.


In another aspect, the invention provides one or more inhibitors of Akap81.


In another aspect, the invention provides one or more inhibitors of Rbks.


In another aspect, the invention provides one or more inhibitors of Egr2.


In another aspect, the invention provides one or more inhibitors of Dgka.


In another aspect, the invention provides one or more inhibitors of Cblb.


In another aspect, the invention provides one or more inhibitors of Map3k3.


In another aspect, the invention provides one or more inhibitors vMdfic.


In another aspect, the invention provides one or more inhibitors of Entpd1.


In another aspect, the invention provides one or more inhibitors of Dgkz.


In another aspect, the invention provides one or more inhibitors of Vamp7.


In another aspect, the invention provides one or more inhibitors of Nuak2.


In another aspect, the invention provides one or more inhibitors of Hipk1.


In another aspect, the invention provides one or more inhibitors of Alk. In one embodiment, the inhibitor of Alk includes, for example, for example CH5424802 (Hoffmann-La Roche), LDK378 (Novartis), Crizotinib and PF-02341066 (Pfizer) or AP26113 (Ariad Pharmaceuticals).


In another aspect, the invention provides one or more inhibitors of Pdzk1ip1.


In some instances, therapeutic compositions can include, for example, cytokines, chemokines and other biologic signaling molecules, tumor specific vaccines, cellular cancer vaccines (e.g., GM-CSF transduced cancer cells), tumor specific monoclonal antibodies, autologous and allogeneic stem cell rescue (e.g., to augment graft versus tumor effects), other therapeutic antibodies, molecular targeted therapies, anti-angiogenic therapy, infectious agents with therapeutic intent (such as tumor localizing bacteria) and gene therapy.


In some instances, therapeutic compositions disclosed herein can be formulated for use as or in pharmaceutical compositions. Such compositions can be formulated or adapted for administration to a subject via any route, e.g., any route approved by the Food and Drug Administration (FDA). Exemplary methods are described in the FDA's CDER Data Standards Manual, version number 004 (which is available at fda.give/cder/dsm/DRG/drg00301.htm).


In some instances, pharmaceutical compositions can include an effective amount of one or more peptides. The terms “effective amount” and “effective to treat,” as used herein, refer to an amount or a concentration of one or more peptides for a period of time (including acute or chronic administration and periodic or continuous administration) that is effective within the context of its administration for causing an intended effect or physiological outcome.


The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form.


Methods

In some instances, methods can include selection of a human subject who has or had a condition or disease (e.g., cancer). In some instances, suitable subjects include, for example, subjects who have or had a condition or disease but that resolved the disease or an aspect thereof, present reduced symptoms of disease (e.g., relative to other subjects (e.g., the majority of subjects) with the same condition or disease), and/or that survive for extended periods of time with the condition or disease (e.g., relative to other subjects (e.g., the majority of subjects) with the same condition or disease), e.g., in an asymptomatic state (e.g., relative to other subjects (e.g., the majority of subjects) with the same condition or disease).


The term “subject,” as used herein, refers to any animal. In some instances, the subject is a mammal. In some instances, the term “subject”, as used herein, refers to a human (e.g., a man, a woman, or a child). Samples for use in the methods can include serum samples, e.g., obtained from the selected subject.


In some instances, subject selection can include obtaining a sample from a subject (e.g., a candidate subject) and testing the sample for an indication that the subject is suitable for selection. In some instances, the subject can be confirmed or identified, e.g. by a health care professional, as having had or having a condition or disease. In some instances, exhibition of a positive immune response towards a condition or disease can be made from patient records, family history, and/or detecting an indication of a positive immune response. In some instances multiple parties can be included in subject selection. For example, a first party can obtain a sample from a candidate subject and a second party can test the sample. In some instances, subjects can be selected and/or referred by a medical practitioner (e.g., a general practitioner). In some instances, subject selection can include obtaining a sample from a selected subject and storing the sample and/or using the in the methods disclosed herein. Samples can include, for example, cells or populations of cells.


Methods of Use

In some embodiments, the disclosure provides methods for increasing the immune response in a subject in need thereof. The disclosure provides therapies that are particularly useful for the treatment of subjects having cancer. In some instances, the disclosure provides methods of treatment that include administering to a subject a composition disclosed herein.


Provided herein are methods for treating and/or preventing cancer or symptoms of cancer in a subject comprising administering to the subject a therapeutically effective amount of a composition capable of silencing genes that inhibit T cell function (e.g., an immunoresponsive T cell expressing a shRNA of the invention and a desired CAR directed to a tumor antigen). In some cases the T cell is derived from the patient to be treated and has been modified to express the CAR and an shRNA that reduces expression of a target gene described herein.


In some embodiments, the cancer is a carcinoma, sarcomas, adenocarcinoma, lymphoma, leukemia, etc., including solid and lymphoid cancers, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer, including hepatocarcinoma, lymphoma, including B-acute lymphoblastic lymphoma, non-Hodgkin's lymphomas (e.g., Burkitt's, Small Cell, and Large Cell lymphomas) and Hodgkin's lymphoma, leukemia (including AML, ALL, and CIVIL), and multiple myeloma. In some embodiments, the cancer is melanoma. In some embodiments, the cancer is a plasma cell malignancy, for example, multiple myeloma (MM) or pre-malignant condition of plasma cells. In some embodiments the subject has been diagnosed as having a cancer or as being predisposed to cancer.


As used herein, “cancer” refers to human cancers and carcinomas, sarcomas, adenocarcinomas, lymphomas, leukemias, etc., including solid and lymphoid cancers, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer, including hepatocarcinoma, lymphoma, including B-acute lymphoblastic lymphoma, non-Hodgkin's lymphomas (e.g., Burkitt's, Small Cell, and Large Cell lymphomas) and Hodgkin's lymphoma, leukemia (including AML, ALL, and CML), and multiple myeloma.


The term “anti-tumor effect” as used herein, refers to a biological effect which can be manifested by a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in the number of metastases, an increase in life expectancy, or amelioration of various physiological symptoms associated with the cancerous condition. An “anti-tumor effect” can also be manifested by the ability of the peptides, polynucleotides, cells and antibodies of the invention in prevention of the occurrence of tumor in the first place.


The terms “treat” or “treating,” as used herein, refers to partially or completely alleviating, inhibiting, ameliorating, and/or relieving the disease or condition from which the subject is suffering. In some instances, treatment can result in the continued absence of the disease or condition from which the subject is suffering.


In general, methods include selecting a subject at risk for or with a condition or disease. In some instances, the subject's condition or disease can be treated with a pharmaceutical composition disclosed herein. For example, in some instances, methods include selecting a subject with cancer, e.g., wherein the subject's cancer can be treated by increasing T cell accumulation and infiltration within the tumor.


In some instances, treatments methods can include a single administration, multiple administrations, and repeating administration as required for the prophylaxis or treatment of the disease or condition from which the subject is suffering. In some instances treatment methods can include assessing a level of disease in the subject prior to treatment, during treatment, and/or after treatment. In some instances, treatment can continue until a decrease in the level of disease in the subject is detected.


Following administration, the subject can be evaluated to detect, assess, or determine their level of disease. In some instances, treatment can continue until a change (e.g., reduction) in the level of disease in the subject is detected.


Upon improvement of a patient's condition (e.g., a change (e.g., decrease) in the level of disease in the subject), a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.


It is also within the scope of the present invention to combine any of the methods and any of the compositions disclosed herein with one or more therapeutic agents. A therapeutic agent includes, but is not limited to, small molecules, peptides, antibodies, ribozymes, antisense oligonucleotides, chemotherapeutic agents and radiation.


It is also within the scope of the present invention to combine any of the methods and any of the compositions disclosed herein with conventional cancer therapies and various drugs in order to enhance the efficacy of such therapies through either reducing the doses/toxicity of conventional therapies and/or to increase the sensitivity of conventional therapies. One conventional therapy is the use of radiation therapy. Another conventional therapy is the use of chemotherapeutic drugs that can be divided into: alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, and antitumour agents. All of these drugs affect cell division or DNA synthesis and function in some way. Other conventional cancer therapies are agents that do not directly interfere with DNA. Examples of such agents for which to combine with the present invention may include for example “small-molecule” drugs that block specific enzymes involved in cancer cell growth. Monoclonal antibodies, cancer vaccines, angiogenesis inhibitors, and gene therapy are targeted therapies that can also be combined with the compositions and methods disclosed herein because they also interfere with the growth of cancer cells.


Methods of Screening Test Compounds

Included herein are methods for screening test compounds, e.g., polypeptides, polynucleotides, inorganic or organic large or small molecule test compounds, to identify agents useful in the treatment of cancer e.g., test compounds that silence, reduces, eliminates, knocks down, knocks out, modulates, or decreases the expression and/or activity of genes selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 and Ppp3cc.


As used herein, “small molecules” refers to small organic or inorganic molecules of molecular weight below about 3,000 Daltons. In general, small molecules useful for the invention have a molecular weight of less than 3,000 Daltons (Da). The small molecules can be, e.g., from at least about 100 Da to about 3,000 Da (e.g., between about 100 to about 3,000 Da, about 100 to about 2500 Da, about 100 to about 2,000 Da, about 100 to about 1,750 Da, about 100 to about 1,500 Da, about 100 to about 1,250 Da, about 100 to about 1,000 Da, about 100 to about 750 Da, about 100 to about 500 Da, about 200 to about 1500, about 500 to about 1000, about 300 to about 1000 Da, or about 100 to about 250 Da).


The test compounds can be, e.g., natural products or members of a combinatorial chemistry library. A set of diverse molecules should be used to cover a variety of functions such as charge, aromaticity, hydrogen bonding, flexibility, size, length of side chain, hydrophobicity, and rigidity. Combinatorial techniques suitable for synthesizing small molecules are known in the art, e.g., as exemplified by Obrecht and Villalgordo, Solid-Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries, Pergamon-Elsevier Science Limited (1998), and include those such as the “split and pool” or “parallel” synthesis techniques, solid-phase and solution-phase techniques, and encoding techniques (see, for example, Czarnik, Curr. Opin. Chem. Bio. 1:60-6 (1997)). In addition, a number of small molecule libraries are commercially available. A number of suitable small molecule test compounds are listed in U.S. Pat. No. 6,503,713, incorporated herein by reference in its entirety.


Libraries screened using the methods of the present invention can comprise a variety of types of test compounds. A given library can comprise a set of structurally related or unrelated test compounds. In some embodiments, the test compounds are peptide or peptidomimetic molecules. In some embodiments, the test compounds are nucleic acids.


In some embodiments, the test compounds and libraries thereof can be obtained by systematically altering the structure of a first test compound, e.g., a first test compound that is structurally similar to a known natural binding partner of the target polypeptide, or a first small molecule identified as capable of binding the target polypeptide, e.g., using methods known in the art or the methods described herein, and correlating that structure to a resulting biological activity, e.g., a structure-activity relationship study. As one of skill in the art will appreciate, there are a variety of standard methods for creating such a structure-activity relationship. Thus, in some instances, the work may be largely empirical, and in others, the three-dimensional structure of an endogenous polypeptide or portion thereof can be used as a starting point for the rational design of a small molecule compound or compounds. For example, in one embodiment, a general library of small molecules is screened, e.g., using the methods described herein.


In some embodiments, a test compound is applied to a test sample, e.g., a cell or living tissue or organ, e.g., an eye, and one or more effects of the test compound is evaluated. In a cultured or primary cell for example, the ability of the test compound to silence, reduces, eliminates, knocks down, knocks out, modulates, or decreases the expression and/or activity of genes selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 and Ppp3cc.


In some embodiments, the test sample is, or is derived from (e.g., a sample taken from) an in vivo model of a disorder as described herein. For example, an animal model, e.g., a rodent such as a rat, can be used.


Methods for evaluating each of these effects are known in the art. For example, ability to modulate expression of a protein can be evaluated at the gene or protein level, e.g., using quantitative PCR or immunoassay methods. In some embodiments, high throughput methods, e.g., protein or gene chips as are known in the art (see, e.g., Ch. 12, Genomics, in Griffiths et al., Eds. Modern genetic Analysis, 1999, W. H. Freeman and Company; Ekins and Chu, Trends in Biotechnology, 1999, 17:217-218; MacBeath and Schreiber, Science 2000, 289(5485):1760-1763; Simpson, Proteins and Proteomics: A Laboratory Manual, Cold Spring Harbor Laboratory Press; 2002; Hardiman, Microarrays Methods and Applications: Nuts & Bolts, DNA Press, 2003), can be used to detect an effect on Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 and Ppp3cc activity or gene expression.


A test compound that has been screened by a method described herein and determined to silence, reduces, eliminates, knocks down, knocks out, or decreases the expression and/or activity of genes selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 and Ppp3cc, can be considered a candidate compound. A candidate compound that has been screened, e.g., in an in vivo model of a disorder, e.g., cancer, and determined to have a desirable effect on the disorder, e.g., on one or more symptoms of the disorder, can be considered a candidate therapeutic agent. Candidate therapeutic agents, once screened in a clinical setting, are therapeutic agents. Candidate compounds, candidate therapeutic agents, and therapeutic agents can be optionally optimized and/or derivatized, and formulated with physiologically acceptable excipients to form pharmaceutical compositions.


Thus, test compounds identified as “hits” (e.g., test compounds that inhibiting immunosuppressive pathways used by tumor cells to inactivate and/or suppress immune cells) in a first screen can be selected and systematically altered, e.g., using rational design, to optimize binding affinity, avidity, specificity, or other parameter. Such optimization can also be screened for using the methods described herein. Thus, in one embodiment, the invention includes screening a first library of compounds using a method known in the art and/or described herein, identifying one or more hits in that library, subjecting those hits to systematic structural alteration to create a second library of compounds structurally related to the hit, and screening the second library using the methods described herein.


EXAMPLES

The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.


Recent work has shown that cytotoxic T cells play a central role in immune-mediated control of cancers1-3, and monoclonal antibodies that target inhibitory receptors on T cells can induce significant clinical benefit in patients with advanced disease4-6. However, many of the regulatory mechanisms that result in loss of T cell function within immunosuppressive tumors remain unknown. In the following examples, the inventors demonstrate that such regulatory mechanisms can be systematically discovered in vivo in the tumor microenvironment. The inventors postulated that shRNAs targeting key inhibitors would enable robust T cell infiltration and accumulation in tumors, despite multiple inhibitory signals. Using a pool shRNA screening approach aimed at identifying genes that block the function of tumor-infiltrating CD8 T cells, candidate shRNA were discovered by transfer of shRNA-transduced T cells into tumor-bearing mice, followed by deep sequencing to quantify the representation of all hairpins in tumors and lymphoid organs. The majority of shRNAs induced T cell accumulation in tumors but not the spleen, demonstrating feasibility of discovering shRNAs with differential action across tissues. One of the targets was Ppp2r2d, a regulatory subunit of the PP2A phosphatase7. Control shRNA-transduced T cells underwent apoptosis upon recognition of melanoma cells, while Ppp2r2d shRNA-transduced T cells accumulated in tumors due to enhanced proliferation and resistance to apoptosis. Ppp2r2d shRNA-expressing T cells also significantly delayed tumor growth. This in vivo approach has wide-spread applications to dissect complex immune functions in relevant tissue micro environments.


Immune cells perform complex surveillance functions throughout the body and interact with many different types of cells in distinct tissue microenvironments. Therapeutic targets for modulating immune responses are typically identified in vitro and tested in animal models at a late stage of the process. Here the inventors have addressed the challenge of how targets for immune modulation can be systematically discovered in vivo. This is a central issue in oncology because strong infiltration by CD8 T cells—which have cytotoxic function against tumor cells—is associated with a favorable prognosis in multiple types of human cancer1,3,8. Unfortunately, this natural defense mechanism is severely blunted in the majority of patients by multiple inhibitory signals emanating from the tumor, its stroma, regulatory T cells and myeloid cell populations.9-11


Pooled shRNA libraries have been shown to be powerful discovery tools12-14. The inventors reasoned that shRNAs capable of restoring CD8 T cell function can be systematically discovered in vivo by taking advantage of the extensive proliferative capacity of T cells following triggering of the T cell receptor by a tumor-associated antigen. When introduced into T cells, only a small subset of shRNAs from a pool will restore T cell proliferation resulting in their enrichment within tumors. Over-representation of active shRNAs within each pool can be quantified by deep sequencing of the shRNA cassette from tumors and secondary lymphoid organs (FIG. 1).


Experimental Animals.

C57BL/6 mice, TRP-1 mice (transgenic mice expressing T-cell receptor (TCR) specific for tyrosinase-related protein 1)23, pmel-1 mice (transgenic mice expressing TCR specific for gp100)18, and b2m−/− mice24 were purchased from The Jackson Laboratory. The Rag1−/− OT-I mice16 were purchased from Taconic Farms, Inc. Mice were bred at the Dana-Farber Cancer Institute animal facility. All experimental procedures were approved by the Dana-Farber Cancer Institute Animal Care and Use Committee.


Cell Lines.

B16 melanomas, an aggressive tumor that is difficult to treat, express the surrogate tumor antigen Ovalbumin (Ova), which is recognized by CD8 T cells from OT-I T cell receptor transgenic mice16,17. EL4 thymoma38 and B16-F10 melanoma15 cells were maintained in RPMI 1640 supplemented with 10% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 μg/ml penicillin. Ovalbumin-expressing B16 tumor cells (B16-Ova) were maintained in the same media with addition of 600 μg/mL G418 (Invitrogen).


Vectors and shRNA Sequences.


shRNAs were selected for 255 genes over-expressed in dysfunctional T cells (anergic or exhausted state). pLKO.3G vector was obtained from The RNAi Consortium. pLKO-Thy1.1, pLKO-Ametrine, pLKO-RFP, pLKO-TFP vectors were modified from pLKO.3G vector by replacing GFP with the corresponding reporter gene. Murine Ppp2r2d and Cblb sequences targeted by 10 selected shRNAs are provided in Table 3 (listed in order of shRNA activity (highest to lowest)). The LacZ target sequence targeted by a control shRNA is also listed. All other target sequences can be found in Table 2.












TABLE 3








Murine


#
Gene
Clone ID
shRNA Target Sequence



















LacZ
TRCN0000072227
GCGCTAATCACGACGCGCTGT





(SEQ ID NO: 621)





1
Ppp2r2d
TRCN0000080900
CCCACATCAGTGCAATGTATT





(SEQ ID NO: 386)





2
Ppp2r2d
ND000492
CCACAGTGGTCGATACATGAT





(SEQ ID NO: 385)





3
Ppp2r2d
TRCN0000431278
GAGAATTAACCTATGGCATTT





(SEQ ID NO: 384)





4
Ppp2r2d
ND000486
GCTCAATAAAGGCCATTACTC





(SEQ ID NO: 383)





5
Ppp2r2d
TRCN0000080901
CCATTTAGAATTACGGCACTA





(SEQ ID NO: 380)





6
Ppp2r2d
TRCN0000430828
ATAGTGATCATGAAACATATC





(SEQ ID NO: 375)





7
Ppp2r2d
TRCN0000080899
GCCACCAATAACTTGTATATA





(SEQ ID NO: 374)





8
Ppp2r2d
TRCN0000080902
CGGTTCAGACAGTGCCATTAT





(SEQ ID NO: 381)





9
Ppp2r2d
TRCN0000427220
TCATCTCCACCGTTGAGTTTA





(SEQ ID NO: 378)





10
Ppp2r2d
TRCN0000425449
ATGCTCATACATATCACATAA





(SEQ ID NO: 377)





1
Cblb
ND000025
CGAGCGATCCGGCTCTTTAAA





(SEQ ID NO: 72)





2
Cblb
ND000030
AGCCAGGTCCAATTCCATTTC





(SEQ ID NO: 71)





3
Cblb
TRCN0000244606
CCCTGATTTAACCGGATTATG





(SEQ ID NO: 70)





4
Cblb
ND000026
ATCGAACATCCCAGATTTAGG





(SEQ ID NO: 61)





5
Cblb
TRCN0000244603
CTACACCTCACGATCATATAA





(SEQ ID NO: 59)





6
Cblb
ND000024
TACACCTCACGATCATATAAA





(SEQ ID NO: 67)





7
Cblb
TRCN0000244605
TGAGCGAGAATGAGTACTTTA





(SEQ ID NO: 60)





8
Cblb
TRCN0000244604
CCAGATTTAGGCATCTATTTG





(SEQ ID NO: 65)





9
Cblb
TRCN0000244607
CTTGTACTCCAGTACCATAAT





(SEQ ID NO: 63)





10
Cblb
ND000027
TCTACATCGATAGTCTCATGA





(SEQ ID NO: 58)









Antibodies and Flow Cytometry.

Single-cell suspensions were stained in PBS, 2% FBS with labeled antibodies at 4° C. for 20 minutes, followed by two washes with ice-cold PBS, 2% FBS. Cells were analyzed/sorted using a FACSAria (BD Biosciences) and FlowJo software (TriStar). Antibodies used were specific for CD4, CD8, Vα2, Vβ5.1/5.2, Thy1.1, CD25, CD44, CD62L, CD69, CD122, CD127, IFNγ, TNFα (BioLegend), PD-1, TIM-3, LAG-3, granzyme B, and H-2Kb (BioLegend), Vα3.2 (eBioscience), Vβ13, Vβ14 (BD Biosciences), phospho-Akt (Ser473) and phospho-Bad (Ser112) (Cell Signaling). Apoptotic cells were detected by labeling with annexin V (BioLegend) or activated caspase-3 antibody (Cell Signaling). Mouse anti-CD3/CD28 beads were purchased from Invitrogen.


T Cell Isolation from Tumors.


B16-Ova melanomas were cut into small pieces in petri dishes containing 5 mL of PBS, 2% FBS and washed with PBS. Tumors were resuspended in 15 mL RPMI supplemented with 2% FBS, 50 U/mL Collagenase Type IV (Invitrogen), 20 U/mL DNase (Roche), samples incubated at 37° C. for 2 hours and tissue further dissociated using a gentleMACS Dissociator (Miltenyi Biotech). Suspensions were washed three times with PBS and passed through a 70 μM strainer. Lymphocytes were isolated by density gradient centrifugation and then either analyzed or sorted by flow cytometry using a FACSAria (BD Biosciences).


T Cell Apoptosis.

Cytokine pre-treated OT-I cells were transduced with LacZ or Ppp2r2d shRNAs and injected into mice bearing day 14 B16-Ova tumors. After 7 days, intracellular staining was performed using an activated caspase-3 antibody (Cell Signaling) and CD8/Thy1.1 double-positive T cells were gated in the FACS analysis.


Immunofluorescence and Immunohistochemistry.

B16-Ova tumors from mice treated with OT-I T cells expressing LacZ or Ppp2r2d shRNAs (GFP-expressing vector) were cryopreserved in optimal cutting temperature (O.C.T.) compound (Tissue-Tek). 10 μm-sections from cryopreserved tumors were permeabilized with 0.2% Triton X-100, fixed in 4% paraformaldehyde and stained with a GFP antibody (Molecular Probes) in combination with DAPI. For TUNEL detection, sections were stained with TACS 2 TdT Blue Label (Trevigen) based on manufacturer's directions. Samples were visualized using a laser-scanning confocal microscope (Leica SP5X) and analyzed with ImageJ software (NIH).


qRT-PCR Assay.


Total RNA was extracted using TRIzol reagent (Invitrogen). RNA was reverse transcribed with the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). Real time quantitative PCR reactions were performed as triplicates using an ABI 7900HT instrument with SYBR green (ABI). Rpl23 levels were used for normalization. The following primers were used:











Ppp2r2d forward







(SEQ ID NO: 622)









GGAAGCCGACATCATCTCCAC,







Ppp2r2d reverse







(SEQ ID NO: 623)









GTGAGCGCGGCCTTTATTCT;







Cblb forward







(SEQ ID NO: 624)









GGTCGCATTTTGGGGATTATTGA,







Cblb reverse







(SEQ ID NO: 625)









TTTGGCACAGTCTTACCACTTT;







Rpl23 forward







(SEQ ID NO: 626)









CTGTGAAGGGAATCAAGGGA



and







Rpl23 reverse







(SEQ ID NO: 627)









TGTCGAATTACCACTGCTGG.






Microarray Analysis.

IL-7/IL-15 cultured OT-I T cells were transduced with one of five experimental shRNAs (Ppp2r2d, Arhgap5, Alk, Egr2, Ptpn2) or a LacZ control shRNA. Infected cells were sorted to purity using GFP encoded by the vector as a reporter. T cells (5×106) were injected i.v. into mice bearing day 14 B16-Ova tumors. Seven days later, shRNA-expressing OT-I T cells (CD8+GFP+) were isolated from tumors and spleens. Cells were sorted twice to high purity and total RNA was extracted using TRIzol reagent (Invitrogen) for Affymetrix gene expression profiling (Mouse Genome 430 2.0 Arrays). Arrays for each shRNA were done in triplicate (6 mice per group).


Nanowell Analysis of Cytokine Production at a Single Cell Level

Materials.


Antibodies used for T cell activation were anti-mouse CD3 and anti-mouse CD28 (Biolegend). Antibodies used to capture secreted cytokines were anti-mouse IFNγ (Biolegend), anti-mouse IL-2 (Biolegend), anti-mouse TNFα (Biolegend) and anti-mouse GM-CSF (Biolegend). Detection antibodies were anti-mouse IFNγ (Biolegend), anti-mouse IL-2 (Biolegend), anti-mouse TNFα (Biolegend) and anti-mouse GM-CSF (Biolegend), and they were fluorescently labeled with appropriate Alexa Fluor dyes (Invitrogen) following manufacturer's instructions. The lipids used to prepare supported bilayers were: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) (Avanti Polar Lipids).


Fabrication of PDMS Arrays of Nanowells and Preparation of Supported Lipid Bilayers.


The array of nanowells was manufactured by injecting polydimethylsiloxane (PDMS, Dow Corning) prepared at a 10:1 base/catalyst weight ratio into a custom-built mold encasing a micropatterned silicon master. Arrays of nanowells were cured at 70° C. for 4-16 h. Each array comprised 72×24 blocks, each containing a 7×7 (50 μm×50 μm×50 μm) subarray of nanowells (total of 84,672 wells). The PDMS arrays adhered directly to a 3″×1″ glass slide forming a 1 mm thick layer. Supported lipid bilayers were prepared as described previously 14. Bilayers were generated by applying DOPC liposomes containing 2 mol % biotin-Cap-PE lipids on the PDMS array of nanowells. The surfaces were rinsed with deionized water to remove excess liposomes. Before use, the lipid bilayer was blocked with BSA in PBS (100 μg/mL) for 45 minutes. The bilayer was then incubated with 1 μg/mL of streptavidin in a solution of 100 μg/mL BSA in PBS, followed by incubation with biotinylated CD3 and CD28 antibodies. The device was rinsed extensively with PBS before adding the cells.


Microengraving.


Capture antibodies were diluted in borate buffer (50 mM sodium borate, 8 mM sucrose, and 50 mM NaCl, pH 9.0) to a final concentration of 10 μg/mL and deposited on the surface of epoxy-modified slides for 1 h at room temperature. Slides were blocked with 3% non-fat milk in PBST (PBS with 0.05% (v/v) Tween 20) for 30 min at room temperature and washed with PBS before placing them into contact with the PDMS array of nanowells. A suspension of T cells was dispensed onto the surface of the nanowells, modified with a supported lipid bilayer in media and allowed to settle into the wells. The density of suspended cells applied to the array was optimized empirically to maximize well occupancy by single cells (typically ˜30% of wells). After incubation of the cell-loaded wells, a glass slide coated with capture antibodies was then placed onto the loaded array for cytokine capture. The microarray and glass slide were held together by compression in a hybridization chamber (Agilent Technologies, G2534A) and incubated for 1 h at 37° C. with 5% CO2. The glass slide was then separated from the array and placed in PBS. After microengraving, slides were incubated for 30 min with blocking buffer (PBS, 10 mg/mL BSA, 0.05% (v/v) Tween-20, 2% mouse serum and 2 mM sodium azide), washed with PBST (PBS+ 0.05% v/v Tween-20), and then incubated with fluorescence detection antibodies at 1 μg/mL for 45 min at 25° C. The slides were washed with PBST and PBS, rinsed briefly with water, and dried with a N2 stream. Reference slides were generated at the end of each experiment with the same detection antibodies used on the printed slides. For reference slides, antibodies were diluted in water, spotted onto blank poly-L-lysine slides (1 μL/spot), and the reference slides were dried under vacuum. Slides were scanned using a Genepix 4200AL microarray scanner (Molecular Devices). The median fluorescence intensity of each spot was extracted using Genepix Pro.


On-Chip Image-Based Cytometry.


Before imaging, T cells were stained with CellMask™ Plasma Membrane Stain (Invitrogen, Life Technologies) and SYTOX green (for detection of dead cells, Life Technologies). The cell-loaded arrays of nanowells were mounted face-up on the microscope with a coverslip placed on top of the array. Images were acquired on an automated inverted epifluorescence microscope (Carl Zeiss). Transmitted light and epifluoresence micrographs were collected block-by-block (7×7 microwells per block). The resulting collection of images was analyzed using a custom program to determine the number of cells present in each well and the mean fluorescence intensity of each label. Only viable T cells were considered for the analysis. Although the cells expressed GFP, the fluorescence intensity of GFP was negligible under the utilized microscope acquisition setting compared to SYTOX green, enabling identification of dead cells.


Data analysis.


Data extracted from both on-chip cytometry and printed cytokines were matched in Microsoft Excel using unique identifiers assigned to each well within the array. The dataset was filtered to include wells containing only single cells. To compensate from signal bleed-through and convert the measured fluorescence intensity for the captured cytokines from a given cell into a rate of secretion, the data from standard calibration curves (from reference slides) prepared with known amounts of detection antibodies was used to convert measured intensities to a number of molecules, as described previously (Han, Q., et. al., Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip 10, 1391-1400, doi:10.1039/b926849a (2010).


Example 1
In Vivo RNAi Discovery of Immunotherapy Targets

Two large primary screens were performed, with the first focusing on genes over-expressed in dysfunctional T cells (T cell anergy or exhaustion; 255 genes, 1,275 shRNAs divided into two pools), and the second on kinases/phosphatases (1,307 genes, 6,535 shRNAs divided into seven pools) (Table 4). In these primary screens, each gene was represented by ˜5 shRNAs.













TABLE 4







T cell
Kinase/
shRNA




Dysfunction
Phosphatase
Enrichment



















1st
Genes
255
1307
4-10x: 123


Screen
shRNAs
1275
6535
10-20x: 17 



Candidate
32
82
 >20x: 1 



Genes





2nd
Genes
32
43
4-10x: 191


Screen
shRNAs
480
645
10-20x: 27 



Candidate
17
26
 >20x: 1 



Genes












shRNAs targeting 255 genes over-expressed in dysfunctional T cells (anergic or exhausted state)31-37 and 1,307 kinase/phosphatase genes (˜5 shRNAs per gene) were obtained from The RNAi Consortium (TRC; Broad Institute, Cambridge, Mass., USA). Nine pools were created and shRNAs subcloned into the pLKO-Thy1.1 lentiviral vector. Each pool also contained 85 negative-control shRNAs (number of shRNAs: GFP, 24; LacZ, 20; luciferase 25; RFP 16). OT-I T cells isolated by negative selection (Stemcell Technologies) were cultured with IL-7 (5 ng/mL, Peprotech) and IL-15 (100 ng/mL, Peprotech) in complete RPMI media (RPMI 1640, 10% FBS, 20 mM HEPES, 1 mM sodium pyruvate, 0.05 mM 2-mercaptoethonal, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 μg/ml penicillin). On day 2, OT-I T cells were spin-infected with lentiviral pools (nine lentiviral shRNA pools and a LacZ control shRNA lentiviral vector control) supplemented with protamine sulfate (5 μg/mL) in 24-well plates coated with retronectin (5 μg/mL) at a multiplicity of infection (MOI) of 15. Typically, ˜5×106 OT-1 T cells were infected for each pool.


Following infection, OT-I cells were cultured with IL-7 (2.5 ng/mL), IL-15 (50 ng/mL) and IL-2 (2 ng/mL) in complete RPMI media. On day 5, live shRNA-transduced T were enriched using a dead cell removal kit (Miltenyi), and infected cells were positively selected based on Thy1.1 marker (Stemcell Technologies) to 50-60% Thy1.1 positivity. Successful transduction was monitored by surface expression of the Thy1.1 reporter (FIG. 2). T cells (5×106) were injected i.v. into C57BL/6 mice bearing day 14 B16-Ova tumors (15 mice per shRNA pool)(number of animals chosen to provide sufficient cells for T cell isolation and PCR). Genomic DNA was isolated from 5×106 enriched OT-I cells as the start population for deep sequencing. Seven days later, shRNA-expressing T cells (CD8+Vα2+Vβ5+Thy1.1+) were isolated by flow cytometry from tumors, spleens, tumor-draining lymph nodes and irrelevant lymph nodes for isolation of genomic DNA, followed by PCR amplification of the shRNA cassette. (FIG. 3) Genomic DNA was isolated (Qiagen) and deep-sequencing templates were generated by PCR of the shRNA cassette. Representation of shRNAs in each pool was analyzed by deep sequencing using an Illumina Genome Analyzer30. Data were normalized using the average reads of control shRNAs in each pool. Kinase/phosphatase genes were selected for the secondary screen based on expression levels in T cells.


For certain genes, shRNAs were over-represented in all tested tissues compared to the starting T cell population (e.g. SHP-1), indicative of enhanced proliferation independent of TCR recognition of a tumor antigen. For other genes, there was a selective loss of shRNAs within tumors (e.g. ZAP-70, a critical kinase in the T cell activation pathway). We focused our analysis on genes whose shRNAs showed


substantial over-representation in tumor but not spleen, a secondary lymphoid organ. Substantial T cell accumulation in tumors was observed for a number of shRNAs, despite the immunosuppressive environment. For secondary screens, we created focused pools in which each candidate gene was represented by ˜15 shRNAs.


Primary data from this analysis are shown for three genes in FIG. 4: LacZ (negative control), Cblb (an E3 ubiquitin ligase that induces T cell receptor internalization)19 and Ppp2r2d (not previously studied in T cells). For both Ppp2r2d and Cblb, five shRNAs were substantially increased in tumors (red) compared to spleen, while no enrichment was observed for LacZ shRNAs. Overall, 43 genes met the following criteria: ≧4-fold enrichment for 3 or more shRNAs in tumors compared to spleen (Table 5, FIG. 4, FIG. 5). The set included gene products previously identified as inhibitors of T cell receptor signaling (including Cblb, Dgka, Dgkz, Ptpn2) as well as other well-known inhibitors of T cell function (e.g. Smad2, Socs1, Socs3, Egr2), validating our approach (Table 5, Table 6).20-22 Table 5 describes the functional classification of candidate genes from the secondary screen.












TABLE 5







Function
Genes









Inhibition of TCR signaling
Cbib, Dgka, Dgkz, Fyn, Inpp5b,




Ppp3cc, Ptpn2, Stk17b, Tnk1



Phosphoinositol metabolism
Dgka, Dgkz, Impk, Inpp5b, Sbf1



Inhibitory cytokine signaling
Smad2, Socs1, Socs 3



pathways




AMP signaling, inhibition of
Entpd1, Prkab2, Nuak



mTOR




Cell cycle
Cdkn2a, Pkd1, Ppp2r2d



Actin and microtubules
Arhgap5, Mast2, Rock 1



Potential nuclear functions
Blvrb, Egr2, Impk, Jun, Ppm1g



Role in cancel cells
Alk, Arhgap5, Eif2ak3, Hipk1, Met,




Nuak, Pdzk1ip, Rock1, Yes1










Secondary screens were performed focusing on genes whose shRNAs showed substantial over-representation in tumor but not spleen, a secondary lymphoid organ. Substantial T cell accumulation in tumors was observed for a number of shRNAs, despite the immunosuppressive environment. For these secondary screens, ˜10 additional shRNAs were synthesized for each gene (IDT) for a total of ˜15 shRNAs per gene. These focused pools contained 85 negative-control shRNAs. Two control shRNAs (one for RFP, one for luciferase) showed some enrichment in tumors relative to spleen (4.0 and 5.1-fold, respectively). Cut-off in the secondary screen was defined as ≧3 shRNAs with ≧4 fold enrichment in tumor relative to spleen. Screening results were validated at a cellular level by introducing individual shRNAs into T cells, along with a reporter protein (GFP, TFP, RFP or Ametrine fluorescent proteins, Thy1.1). This approach enabled simultaneous testing of five shRNAs in an animal (three mice per group). Proliferation of shRNA-transduced T cells was visualized based on CFSE dilution after 24 hours as well as 3, 5 and 7 days. In addition, intracellular staining was performed on days 3, 5 and 7 for IFNγ, TNFα and isotype controls. Results from the primary and secondary screen of T cell dysfunction pool shRNA library are provided in Table 6. Genes for which at least 3 shRNAs showed >4 fold enrichment in tumors are listed, along with a brief description of their function. Results from secondary screen of kinase and phosphatase shRNA libraries are shown in Table 7.












TABLE 6






Total #
Enrichment



Symbol
shRNAs
(fold)
Function







Dgkz
6
5.2-14.0
Phosphorylates and thereby inactivates DAG


Egr2
6
4.0-10.2
Transcription factor involved in T cell





unresponsiveness, expression of Cblb


Smad2
5
6.7-30.3
TGF beta signaling pathway


Cblb
5
4.1-10.8
E3 ubiquitin ligase (degradation of TCR and signaling





molecules; ko mice reject tumors)


Inpp5b
5
4.3-9.5 
Inositol polyphosphate-5-phosphatase, hydrolyzes PIP2


Socs1
5
4.1-8.5 
Inhibitor of cytokine signaling


Jun
5
5.2-6.4 
Persistent AP-1 activation in tumor-infiltrating T cells





leads to upregulated PD-1


Entpd1
4
6.5-13.3
Extracellular degradation of ATP to AMP (an inhibitory





signal through AMP kinase)


Vamp7
4
4.0-11.3
Vesicle associated transmembrane protein


Dgka
4
5.0-10.2
Phosphorylates and thereby inactivates DAG


Mdfic
4
4.4-10.0
Inhibits viral gene expression, interacts with cyclin T1





and T2


Nptxr
4
4.0-7.2 
Pentraxin Receptor


F11r
4
4.6-6.8 
Cell migration


Socs3
4
4.6-6.3 
Inhibitor of cytokine signaling


Pdzk1ip1
3
4.8-12.9
Pdzkl interacting protein, expression correlates with





tumor progression


Fyn
3
4.1-6.5 
Inhibits activation of resting T cells (through Csk)


Ypel2
3
4.6-5.1 
Function unknown



















TABLE 7






Total #
Enrichment



Symbol
shRNAs
(fold)
Function







Rbks
6
 4.0-12.8
Ribokinase carbohydrate metabolism


Pkd1
6
4.9-9.9
Cell cycle arrest (activates JAK/STAT pathway)


Ppp2r2d
5
 4.0-17.2
Regulatory subunit of PP2A phosphatase


Eif2ak3
5
 4.8-13.4
ER stress sensor, resistance of cancer cells to





chemotherapy


Ptpn2
5
4.7-7.4
Inhibitor of T cell and cytokine signaling


Hipk1
4
 4.5-12.3
Interacts with p53 and c-myb, knockout mice develop





fewer carcinogen-induced tumors


Grk6
4
4.2-11 
Regulator of particular G-protein coupled receptors


Cdkn2a
4
4.1-7.2
G1 cell cycle arrest and apoptosis in T cells


Sbf1
4
4.8-6.9
Activates MTMR2, which dephosphorylates PI(3)P and





PI(3,5)P2


Ipmk
4
4.0-6.9
Inositol polyphosphate kinase, nuclear functions such as





chromatin remodeling


Rock1
4
4 4.1-6.5 
Rho kinase, inhibitors have shown activity in mouse





models of cancer


Stk17b
4
4.0-6.4
Inhibitor of T cell signaling forms complex with protein





kinase D


Mast2
4
4.1-5.1
Microtubule-associated serine/threonine kinase


Arhgap5
3
 6.0-15.7
Negative regulator of Rho GTPases, inhibition can reduce





cancer cell invasion


Alk
3
 9.6-13.5
Anaplastic lymphoma kinase (translocation of





nucleophosmin and ALK in ALCL)


Nuak
3
 4.5-13.1
Member of AMP-activated protein kinase-related kinase





family, oncogene in melanoma


Akap8l
3
 4.4-11.8
A-kinase anchoring protein, recruits cAMP-dependent





protein kinase (PKA) to chromatin


Pdp1
3
4.1-9.8
Pyruvate dehydrogenase phosphatase 1, regulation of





glucose metabolism


Yes1
3
5.4-9.7
Src family kinase, oncogene in several tumors


Met
3
4.1-8.9
Receptor tyrosine kinase, involved in hepatocellular and





other cancers


Ppm1g
3
6.2-8.2
Dephosphorylates spliceosome substrates and histones





H2A-H2B


Blvrb
3
5.3-8.0
Biliverdin reductase, also transcription factor, arrest of





cell cycle


Tnk1
3
5.2-7.6
Downregulates Ras pathway (phosphorylation of Grb2),





inhibition of NF-kB pathway


Prkab2
3
4.1-7.0
Subunit of AMP kinase, inhibits fatty acid synthesis and





mTOR pathway


Trpm7
3
4.9-5.9
Ion channel and serine-threonine kinase


Ppp3cc
3
4.2-4.4
Regulatory subunit of calcineurin (phosphatase in T cell





receptor signaling)









Example 2
shRNA-Driven Expansion of CD4 and CD8 T Cells in B16 Melanomas

Positive shRNAs from deep sequencing analysis were cloned into lentiviral vectors encoding five different reporter proteins (GFP, TFP, RFP or Ametrine fluorescent proteins, Thy1.1). Cytokine-pretreated OT-I T cells were transduced with lentiviral vectors driving expression of a single shRNA and a reporter protein; 1×106 T cells of each population were mixed and co-injected i.v. into C57BL/6 mice bearing day 14 B16-Ova tumors. After seven days T cells were isolated from tumors, spleens and lymph nodes, and the percentage of reporter-positive CD8+Vα2+Vβ5+ T cells was determined by flow cytometry based on co-introduced reporters. Fold-enrichment in tumors compared to spleen was calculated based on the percentage of OT-I T cells in each organ expressing a particular reporter. When the control LacZ shRNA was expressed in CD8 OT-I T cells, the frequency of shRNA-expressing CD8 OT-I T cells was lower in tumors compared to spleen (˜2-fold). In contrast, experimental shRNAs induced accumulation of CD8 OT-I T cells in tumors but not the spleen (FIG. 6, FIG. 7). For seven of these shRNAs (e.g., Ppp2r2D, Eif2ak3, Arhgap5, Smad2, Akap8I, Rbks and Egr2), T cell accumulation in tumors was >10-fold relative to spleen. The strongest phenotype was observed with shRNAs targeting Ppp2r2d, a regulatory subunit of the PP2A phosphatase7.


CD8+ OT-I or CD4+ TRP-1 T cells expressing Ppp2r2d or LacZ shRNAs were injected into mice bearing day 14 B16-Ova tumors. shRNA-expressing T cells were identified in tumors and spleens using Thy1.1 reporter (FIG. 8, % Thy1.1+ CD8 T cells, left panels). Total numbers of LacZ or Ppp2r2d shRNA-expressing T cells were determined in tumors and spleens 7 days following transfer of 2×106 shRNA-expressing cells (FIG. 8, right panels). Fold-enrichment of Ppp2r2d versus LacZ shRNA-expressing T cells in tumors is indicated. Ppp2r2d shRNA not only induced accumulation of OT-I CD8 T cells, but also CD4 T cells (from TRP-1 TCR transgenic mice)23, with T cell numbers in tumors being significantly higher when Ppp2r2d rather than LacZ shRNA was expressed (36.3-fold for CD8; 16.2-fold for CD4 T cells) (FIG. 8).


T cell enrichment in tumors compared to spleen for cells expressing a panel of Ppp2r2d or Cblb shRNAs (FIG. 17, upper panels) Ppp2r2d and Cblb mRNA levels were also measured by qPCR prior to T cell transfer (FIG. 17, lower panels). The strongest T cell enrichment in tumors was observed for shRNAs with >80% knock-down efficiency at the mRNA level (shRNAs #1 and 2 for both Ppp2r2d and Cblb). CD8 T cell accumulation correlated with the degree of Ppp2r2d knock-down, and two Ppp2r2d shRNAs with the highest in vivo activity induced the lowest levels of Ppp2r2d mRNA (FIG. 17).


Ppp2r2d knockdown was also confirmed at the protein level using a quantitative mass spectrometry approach (FIG. 18). A previously reported approach for absolute quantification (AQUA) of proteins from cell lysates by mass spectrometry was used to measure the effect of Ppp2r2d shRNA expression at the protein level (Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. & Gygi, S. P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. PNAS, 100, 6940-6945 (2003). This strategy is based on a ‘selective reaction monitoring’ approach in which a synthetic peptide with incorporated stable isotopes is used as an internal standard for mass spectrometry analysis. OT-I cells expressing LacZ or Ppp2r2d shRNAs were sorted to purity using FACS. Cells (1×106) were lysed in 1 ml of MPER extraction reagent (Pierce) containing a Protease Inhibitor Cocktail (Sigma), 1 mM EDTA and 1 mM PMSF for 15 minutes on ice with occasional vortexing. Cell debris was removed by centrifugation and the protein supernatant was filtered (0.2 μm SpinX centrifuge filter, Costar). Protein concentration was determined by Bradford assay (Biorad) and UV280 nm analysis (Nanodrop instrument); 0.1 mg of cellular protein was separated by SDS-PAGE and stained with Coomassie blue reagent (Pierce). Gel bands corresponding to a MW range of 45-60 kDa were excised followed by in-gel digestion of proteins with trypsin. Eluted peptides were spiked with 300 fmol of isotopically labeled Ppp2r2d (FFEEPEDPSS[13C-15N-R]-OH)(SEQ ID NO: 628) and Actin B (GYSFTTTAE[13C-15N-R]-OH) (SEQ ID NO: 629) peptides (21st Century Biochemicals) for quantification by LC MS/MS (LTQ XL Orbitrap, Thermo Scientific). The Ppp2r2d peptide was chosen from a region of the protein that differs from other regulatory subunits of PP2A. Initially, a LC-MS/MS run of a LacZ shRNA sample was analyzed to localize the Ppp2r2d and Actin B peptides that were being monitored. The absolute quantification AQUA peptides co-eluted with the corresponding endogenous peptides from the reverse-phase column, yet their higher MW (10 Da) enabled the ratio of peak intensity for endogenous and AQUA peptides to be determined using abundant peptide fragment ions. Triplicate samples were analyzed by SDS-PAGE—LC-MS/MS and statistical significance was determined using Graphpad Prism 6.0 software using a two-sided Student t-test (F test, * p=0.0062).


The specificity of Ppp2r2d shRNA was determined. Ppp2r2d shRNA activity was specific because the phenotype was reversed when a mutated Ppp2r2d cDNA (with wild-type protein sequence, but mutated DNA sequence at the shRNA binding site) was co-introduced with the Ppp2r2d shRNA (FIG. 9, 10a-c). Furthermore, OT-I CD8 T cells over-expressed Ppp2r2d in tumors compared to spleen (in the absence of any shRNA expression), suggesting that it is an intrinsic component of the signaling network inhibiting T cell function in tumors (FIG. 19).


OT-I T cells transduced with lentiviral vectors driving expression of LacZ shRNA, Ppp2r2d shRNA, Ppp2r2d shRNA. Mutant Ppp2r2d cDNA with preserved protein sequence but disrupted shRNA binding site were generated. Wild-type Ppp2r2d cDNA was isolated by RT-PCR using forward primer GGATCCATGGCAGGAGCTGGAGGC (SEQ ID NO: 630) and reverse primer: GCTAGCATTAATTTTGTCCTGGAATATATACAAGTTATTGGTGG (SEQ ID NO: 631). The target sequence of Ppp2r2d shRNA, CCCACATCAGTGCAATGTATT (SEQ ID NO: 632) was mutated to TCCCCACCAATGTAACGTGTT (SEQ ID NO: 633) by overlapping PCR (which conserves protein coding sequence) using forward primer: TCCATCCCCACCAATGTAACGTGTTTGTTTACAGCAGCAGCAAGG (SEQ ID NO: 634) and reverse primer: AAACAAACACGTTACATTGGTGGGGATGGAACTCTGCGGCAGTGA (SEQ ID NO: 635). (FIG. 10a) Both wild-type and mutant Ppp2r2d cDNAs were cloned into a modified pLKO.3 vector with a 2A ribosomal skip peptide-GFP sequence (resulting in stoichiometric Ppp2r2d and GFP expression in cells). Constructs were introduced into EL4 thymoma cells. GFP-expressing EL4 cells were sorted to purity and then transduced with LacZ or Ppp2r2d shRNA lentiviral vectors driving expression of a Thy1.1 reporter. shRNA-transduced (Thy1.1+) cells were analyzed by flow cytometry for GFP expression. The Ppp2r2d shRNA reduced GFP levels when wild-type Ppp2r2d. The Ppp2r2d shRNA was not able to reduce expression of the GFP reporter in cells expressing the mutant Ppp2r2d cDNA, demonstrating that the shRNA binding site had been successfully mutated. (FIG. 10a)


Expression of Ppp2r2d mutant cDNA also prevents phenotype induced by Ppp2r2d shRNA. (FIG. 10b) Ppp2r2d shRNA was cloned into the mutant Ppp2r2d cDNA-2A-GFP construct which resulted in co-expression of Ppp2r2d shRNA and mutated Ppp2r2d cDNA in one vector. OT-I T cells were separately infected with lentiviruses encoding LacZ shRNA (Thy1.1), Ppp2r2d shRNA (Ametrine) or Ppp2r2d shRNA plus mutant Ppp2r2d cDNA (GFP). (FIG. 10b) These three populations there then mixed at the same ratio and injected into mice bearing day 14 B16-Ova tumors. On day 7, each T cell population was quantified in tumors and spleens by gating on OT-I (CD8+Vα2+Vβ5+)-T cells followed by analysis of populations marked by Thy1.1, Ametrine or GFP expression. The percentage of each T cell population in tumors and spleens was quantified by gating on Vα2+Vβ5+ T cells; transduced cells were detected based on expression of Thy1.1 or Ametrine/GFP fluorescent reporters and the results are shown in FIG. 10b. (representative data from 2 independent experiments, n=3 mice per experiment).



FIG. 10c provides real-time PCR analysis for Ppp2r2d expression in OT-I T cells transduced with LacZ shRNA, Ppp2r2d shRNA, and Ppp2r2d shRNA plus Ppp2r2d mutant cDNA. Also, the Ppp2r2d shRNA with the highest in vivo activity was associated with the lowest levels of Ppp2r2d mRNA (FIG. 11).


Microarray analysis of tumor-infiltrating T cells expressing experimental or control shRNAs showed that each shRNA induced a distinct set of gene expression changes, with some overlap between particular shRNAs (FIG. 12a-c). Two genes (Egr2 and Ptpn2) have known functions in T cells. Enrichment in tumor versus spleen was calculated based on deep sequencing results from the secondary screen. (FIG. 12a) Clustering of mean expression levels for mRNAs found to be significantly regulated by T cells in spleens or tumors expressing the LacZ control shRNA or one of five experimental shRNAs. (FIG. 12b) Significant expression differences were defined as an Anova p value<0.01 between T cells expressing LacZ control shRNA or one of five experimental shRNAs (Alk, Arhgap5, Egr2, Ptpn2 or Ppp2r2d) (JMP-Genomics 6.0, SAS Institute Inc.). mRNAs significantly regulated in one or more treatment groups are shown after clustering (Fast Ward). FIG. 12c is a Venn diagram showing overlaps between expression signatures by tumor-infiltrating T cells transduced with one of the five experimental shRNAs (signatures defined as an Anova p<0.01 as described above). Indicated are the numbers of overlapping probe IDs for any combination of the 5 signatures, as indicated by the overlapping ovals. The significance of the overlaps versus that expected by random chance (Fishers Exact Test) is shown in the accompanying table.


Example 3
Changes in T Cell Function Induced by Ppp2r2d

For this example, the cellular mechanisms driving T cell accumulation by a Ppp2r2d shRNA in tumors—specifically T cell infiltration, accumulation and apoptosis were examined. T cell infiltration into tumors was assessed by transfer of OT-I CD8 T cells labeled with a cytosolic dye, CFSE. OT-I T cells expressing Ppp2r2d or LacZ shRNAs were labeled with CFSE and injected into B16-Ova tumor-bearing mice. Twenty-four hours later transduced T cells were isolated from tumors and spleens and quantified by flow cytometry. OT-I T cells expressing LacZ or Ppp2r2d shRNAs were purified using the Thy1.1 reporter and cultured in complete RPMI media without added cytokines for 24 hours. Live cells isolated by Ficoll density gradient centrifugation (Sigma) were labeled with CFSE (carboxyfluorescein diacetate, succinimidyl ester, Invitrogen), and 2×106 labeled cells were injected into mice bearing day 14 B16-Ova tumors. CFSE dilution was quantified by flow cytometry at 24 hours and days 3, 5 and 7 following transfer. In addition, intracellular staining was performed on days 3, 5 and 7 for IFNγ, TNFα and isotype controls (BD). No differences were observed in the frequency of Ppp2r2d or LacZ shRNA-transduced CD8 T cells in tumors on day 1, arguing against a substantial effect on T cell infiltration (FIG. 13a). However, analysis of later time points (days 3 and 5) demonstrated a higher degree of proliferation (based on CFSE dilution) by Ppp2r2d compared to LacZ shRNA-transduced T cells (FIG. 13b, FIG. 20a). Ppp2r2d shRNA-transduced T cells also produced higher levels of interferon-γ, a cytokine critical for anti-tumor immunity (FIG. 13e). The action of Ppp2r2d was downstream of T cell receptor activation because T cell accumulation was enhanced in tumors and to a lesser extent in tumor-draining lymph nodes. In contrast, no accumulation was observed in irrelevant lymph nodes or the spleen where the relevant antigen is not presented to T cells (FIG. 15). A substantial degree of T cell accumulation was even observed for LacZ shRNA-transduced T cells (complete dilution of CFSE dye by day 7), despite the presence of small numbers of such cells in tumors. This suggested that LacZ shRNA-transduced T cells were lost by apoptosis. Indeed, a larger percentage of tumor-infiltrating T cells were labeled with an antibody specific for active caspase-3 when the LacZ control shRNA (rather than Ppp2r2d shRNA) was expressed (FIG. 13g, FIG. 20b). Furthermore, co-culture of CD8 T cells with B16-Ova tumor cells showed that the majority of LacZ shRNA expressing T cells became apoptotic (65.7%) while most Ppp2r2d shRNA-transduced T cells were viable (89.5%, FIG. 13c).


OT-I T cells expressing LacZ or Ppp2r2d shRNAs were purified based on Thy1.1 expression and labeled with CFSE, as described above. CFSE labeled OT-I T cells (1×105) were co-cultured with 5×104 B16-Ova cells per well in a 96-well plate for 72 h. Prior to the assay, B16-Ova cells were exposed to 1 ng/mL IFNγ for 48 hours (to induce MHC class I, which is not expressed in vitro) and washed three times. Apoptosis of OT-I T cells was detected by annexin V labeling of CD8+ cells. (FIG. 13c) Intracellular staining of phospho-AKT (Ser473), phopsho-Bad (Ser 112), Bcl-2 and isotype control was performed at 48 hours using a BD intracellular staining kit. Co-culture of CD8 T cells with B16-Ova tumor cells indeed showed that the majority of LacZ shRNA expressing T cells were apoptotic (65.7%) while the majority of Ppp2r2d shRNA-transduced T cells were viable (89.5%, FIG. 13c). A similar phenotype was observed when Ppp2r2d and LacZ shRNA-expressing T cells were stimulated with immobilized CD3 antibody in the absence of CD28 costimulation (FIG. 14). Specifically, B16-Ova cells (2×105) were injected s.c. into female C57BL/6 mice (10 weeks of age). On day 12, mice bearing tumors of similar size were divided into 7 groups (7-8 mice/group). Anti-CD3/CD28 bead activated CD4 TRP-1 or/and CD8 OT-I T cells infected with Ppp2r2d or LacZ shRNA vectors (2×106 T cells each) were injected i.v. on days 12 and day 17. For the treatment of B16 tumors, mice were treated at day 10 with anti-CD3/CD28 bead activated CD4 TRP-1 and CD8 pmel-1 T cells expressing Ppp2r2d or LacZ shRNAs (3×106 T cells each). Tumor size was measured every three days following transfer and calculated as length×width. Mice with tumors≧20 mm on the longest axis were sacrificed.


These results suggested the possibility that Ppp2r2d shRNA-transduced CD8 T cells may be able to proliferate and survive even when they recognize their antigen directly presented by B16-Ova tumor cells. This idea was tested by implantation of tumor cells into b2m−/− mice which are deficient in expression of MHC class I proteins24. In such mice, only tumor cells but not professional antigen presenting cells of the host could present tumor antigens to T cells. Indeed, Ppp2r2d shRNA-transduced OT-I CD8 T cells showed massive accumulation within B16-Ova tumors in b2m−/− mice (FIG. 12f) while there were very small numbers of T cells in contralateral B16 tumors that lacked expression of the Ova antigen. T cells expressing a Ppp2r2d shRNA could thus effectively proliferate and survive in response to tumor cells, despite a lack of suitable co-stimulatory signals and an inhibitory microenvironment.


Ex vivo analysis of tumor-infiltrating T cells at a single-cell level using a nanowell device also demonstrated that Ppp2r2d silencing increased cytokine production by T cells (FIG. 21a-c). T cells were activated for 3 hours by CD3/CD28 antibodies on lipid bilayers, followed by 1 hour cytokine capture on antibody-coated slides. CD8 T cells showed a higher secretion rate for IFNγ, IL-2 and GM-CSF, and a larger fraction of T cells more than one cytokine (FIG. 21b, c). The presence of larger numbers of IFNγ-producing T cells was confirmed by intracellular cytokine staining (FIG. 21d, FIG. 20).


PP2A phosphatase is composed of a catalytic and scaffolding subunit, and its substrate specificity is determined by one of many regulatory subunits7. Ppp2r2d directs PP2A to Cdk1 substrates during interphase and anaphase; it thereby inhibits entry into mitosis and induces exit from mitosis25. PP2A plays a gatekeeper role for BAD-mediated apoptosis. Phosphorylated BAD is sequestered in its inactive form in the cytosol by 14-3-3, while dephosphorylated BAD is targeted to mitochondria where it causes cell death by binding Bcl-XL and Bcl-226. PP2A phosphatases have also been shown to interact with the cytoplasmic domains of CD28 and CTLA-4 as well as Carmal (upstream of the NF-κB pathway), but it is not known which regulatory subunits are required for these activities; Ppp2r2d antibodies suitable for the required biochemical studies are currently not available.


Example 4
Silencing of Ppp2r2d Enhances Anti-Tumor Activity of CD4 and CD8 T Cells

The ability of a Ppp2r2d shRNA to enhance the efficacy of adoptive T cell therapy was assessed. B16-Ova tumor cells (2×105) were injected subcutaneously into female C57BL/6 mice (10 weeks of age). On day 12, mice bearing tumors of similar size were divided into seven groups (7-8 mice/group), either receiving no T cells, 2×106 shRNA-transduced TRP-1 CD4 T cells, 2×106 shRNA infected OT-I CD8 T cells, or both CD4 and CD8 T cells (days 12 and day 17). According to group, anti-CD3/CD28 bead activated CD4 TRP-1 or/and CD8 OT-I T cells infected with Ppp2r2d or LacZ shRNA vectors (2×106 T cells each) were injected i.v. on days 12 and day 17. For the treatment of B16 tumors, mice were treated at day 10 with anti-CD3/CD28 bead activated CD4 TRP-1 and CD8 pmel-1 T cells expressing Ppp2r2d or LacZ shRNAs (3×106 T cells each). Tumor size was measured every three days following transfer and calculated as length×width. Mice with tumors≧20 mm on the longest axis were sacrificed. Ppp2r2d-silencing improved the therapeutic activity of CD4 and CD8 T cells, and a synergistic effect was observed when Ppp2r2d shRNA-transduced CD4 and CD8 T cells were co-administered (FIG. 16a, b). A Ppp2r2d shRNA also enhanced anti-tumor responses when introduced into T cells specific for endogenous tumor antigens (pmel-1 CD8 T cells and TRP-1 CD4 T cells) (FIG. 16c).


Ppp2r2d-silenced T cells acquired an effector phenotype in tumors (FIG. 22a) and >30% of the cells expressed granzyme B (FIG. 23a). Consistent with greatly increased numbers of such effector T cells in tumors (FIG. 23b), TUNEL staining demonstrated increased apoptosis in tumors when Ppp2r2d rather than LacZ shRNA expressing T cells were present (FIG. 23c). B16 melanomas are highly aggressive tumors in part because MHC class I expression is very low. Interestingly, Ppp2r2d but not LacZ shRNA-expressing T cells significantly increased MHC class I expression (H-2Kb) by tumor cells (FIG. 23d), possibly due to the observed increase in IFNγ secretion by T cells (FIG. 21a-c, FIG. 13e). A Ppp2r2d shRNA did not reduce expression of inhibitory PD-1 or LAG-3 receptors on tumor-infiltrating T cells, demonstrating that its mechanism of action is distinct from these known negative regulators of T cell function (FIG. 22b). This finding suggests combination approaches targeting these intracellular and cell surface molecules.


These results establish the feasibility of in vivo discovery of novel targets for immunotherapy in complex tissue microenvironments. The inventors have shown that it is possible to discover genes with differential action across tissues, as exemplified by T cell accumulation in tumors compared to secondary lymphoid organs. For genes with tissue-selective action, T cell accumulation and survival are likely to be under the control of the T cell receptor and therefore do not occur in tissues lacking presentation of a relevant antigen. Many variations of the approach presented here can be envisioned to investigate control of particular immune cell functions in vivo. For example, fluorescent reporters for expression of cytokines or cytotoxic molecules (granzyme B, perforin) could be integrated into our approach to discover genes that control critical T cell effector functions in tumors.


Targeting of key regulatory switches may offer new approaches to modify the activity of T cells in cancer and other pathologies. The efficacy of such T cell-based therapies could be enhanced by shRNA-mediated silencing of genes that inhibit T cell function in the tumor microenvironment.


OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.


REFERENCES



  • 1. Galon, J., et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960-1964 (2006).

  • 2. Hamanishi, J., et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America 104, 3360-3365 (2007).

  • 3. Mahmoud, S. M., et al. Tumor-Infiltrating CD8+ Lymphocytes Predict Clinical Outcome in Breast Cancer. J Clin Oncol 29, 1949-1955 (2011).

  • 4. Topalian, S. L., et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England journal of medicine 366, 2443-2454 (2012).

  • 5. Brahmer, J. R., et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. The New England journal of medicine 366, 2455-2465 (2012).

  • 6. Hodi, F. S., et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N Engl J Med (2011).

  • 7. Barr, F. A., Elliott, P. R. & Gruneberg, U. Protein phosphatases and the regulation of mitosis. J Cell Sci 124, 2323-2334 (2011).

  • 8. Pages, F., et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27, 5944-5951 (2009).

  • 9. Shiao, S. L., Ganesan, A. P., Rugo, H. S. & Coussens, L. M. Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25, 2559-2572 (2011).

  • 10. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9, 162-174 (2009).

  • 11. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Current opinion in immunology 24, 207-212 (2012).

  • 12. Westbrook, T. F., et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837-848 (2005).

  • 13. Luo, B., et al. Highly parallel identification of essential genes in cancer cells. Proceedings of the National Academy of Sciences of the United States of America 105, 20380-20385 (2008).

  • 14. Zender, L., et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852-864 (2008).

  • 15. Fidler, I. J. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer research 35, 218-224 (1975).

  • 16. Hogquist, K. A., et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17-27 (1994).

  • 17. Bellone, M., et al. Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. Journal of immunology 165, 2651-2656 (2000).

  • 18. Overwijk, W. W., et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. The Journal of experimental medicine 198, 569-580 (2003).

  • 19. Paolino, M. & Penninger, J. M. Cbl-b in T-cell activation. Semin Immunopathol 32, 137-148 (2010).

  • 20. Zheng, Y., Zha, Y. & Gajewski, T. F. Molecular regulation of T-cell anergy. EMBO Rep 9, 50-55 (2008).

  • 21. Doody, K. M., Bourdeau, A. & Tremblay, M. L. T-cell protein tyrosine phosphatase is a key regulator in immune cell signaling: lessons from the knockout mouse model and implications in human disease. Immunological reviews 228, 325-341 (2009).

  • 22. Tamiya, T., Kashiwagi, I., Takahashi, R., Yasukawa, H. & Yoshimura, A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Blot 31, 980-985 (2011).

  • 23. Muranski, P., et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112, 362-373 (2008).

  • 24. Koller, B. H., Marrack, P., Kappler, J. W. & Smithies, O. Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227-1230 (1990).

  • 25. Mochida, S., Maslen, S. L., Skehel, M. & Hunt, T. Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science 330, 1670-1673 (2010).

  • 26. Chiang, C. W., et al. Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Mol Cell Biol 23, 6350-6362 (2003).

  • 27. Turtle, C. J., Hudecek, M., Jensen, M. C. & Riddell, S. R. Engineered T cells for anti-cancer therapy. Current opinion in immunology 24, 633-639 (2012).

  • 28. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nature reviews. Immunology 12, 269-281 (2012).

  • 29. Bollard, C. M., Rooney, C. M. & Heslop, H. E. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol 9, 510-519 (2012).

  • 30. Ashton, J. M., et al. Gene sets identified with oncogene cooperativity analysis regulate in vivo growth and survival of leukemia stem cells. Cell Stem Cell 11, 359-372 (2012).

  • 31. Wherry, E. J., et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670-684 (2007).

  • 32. Parish, I. A., et al. The molecular signature of CD8+ T cells undergoing deletional tolerance. Blood 113, 4575-4585 (2009).

  • 33. Macian, F., et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719-731 (2002).

  • 34. Zha, Y., et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol 7, 1166-1173 (2006).

  • 35. Lopes, A. R., et al. Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. The Journal of clinical investigation 118, 1835-1845 (2008).

  • 36. Kurella, S., et al. Transcriptional modulation of TCR, Notch and Wnt signaling pathways in SEB-anergized CD4+ T cells. Genes Immun 6, 596-608 (2005).

  • 37. Xu, T., et al. Microarray analysis reveals differences in gene expression of circulating CD8(+) T cells in melanoma patients and healthy donors. Cancer research 64, 3661-3667 (2004).

  • 38. Gorer, P. A. Studies in antibody response of mice to tumour inoculation. Br J Cancer 4, 372-379 (1950).


Claims
  • 1. An immunoresponsive cell having tumor specificity comprising a vector, the vector comprising a sequence encoding a shRNA, wherein the shRNA comprises 15 contiguous nucleotides complementary to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678.
  • 2. The immunoresponsive cell of claim 1, wherein the immunoresponsive cell is selected from the group consisting of a tumor-infiltrating lymphocyte (TIL), a Natural Killer T cell (NKT), a cytotoxic T lymphocyte (CTL), and a CD4T cell.
  • 3. The immunoresponsive cell of claim 1, wherein the immunoresponsive cell expresses a tumor-specific T-cell receptor.
  • 4. The immunoresponsive cell of claim 1, wherein the immunoresponsive cell further comprises a vector encoding a chimeric antigen receptor (CAR), wherein the CAR comprises an antigen binding domain, a transmembrane domain, and a stimulatory domain.
  • 5. The immunoresponsive cell of claim 1, wherein the shRNA sequence reduces expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 or Ppp3cc.
  • 6. (canceled)
  • 7. (canceled)
  • 8. The immunoresponsive cell of claim 4, wherein the tumor antigen is selected from the group consisting of prostate-specific membrane antigen (PSMA), Carcinoembryonic Antigen (CEA), CD19, CD20, CD22, ROR1, mesothelin, CD333/IL3Ra, c-Met, Glycolipid F77, EGFRvIII, GD-2, NY-ESO-1 TCR, ERBB2, BIRC5, CEACAM5, WDR46, BAGE, CSAG2, DCT, MAGED4, GAGE1, GAGE2, GAGE3, GAGE4, GAGE5, GAGE6, GAGE7, GAGE8, IL13RA2, MAGEA1, MAGEA2, MAGEA3, MAGEA4, MAGEA6, MAGEA9, MAGEA10, MAGEA12, MAGEB1, MAGEB2, MAGEC2, TP53, TYR, TYRP1, SAGE1, SYCP1, SSX2, SSX4, KRAS, PRAME, NRAS, ACTN4, CTNNB1, CASP8, CDC27, CDK4, EEF2, FN1, HSPA1B, LPGAT1, ME1, HHAT, TRAPPC1, MUM3, MYO1B, PAPOLG, OS9, PTPRK, TPI1, ADFP, AFP, AIM2, ANXA2, ART4, CLCA2, CPSF1, PPIB, EPHA2, EPHA3, FGF5, CA9, TERT, MGAT5, CEL, F4.2, CAN, ETV6, BIRC7, CSF1, OGT, MUC1, MUC2, MUM1, CTAG1A, CTAG2, CTAG, MRPL28, FOLH1, RAGE, SFMBT1, KAAG1, SART1, TSPYL1, SART3, SOX10, TRG, WT1, TACSTD1, SILV, SCGB2A2, MC1R, MLANA, GPR143, OCA2, KLK3, SUPT7L, ARTC1, BRAF, CASP5, CDKN2A, UBXD5, EFTUD2, GPNMB, NFYC, PRDX5, ZUBR1, SIRT2, SNRPD1, HERV-K-MEL, CXorf61, CCDC110, VENTXP1, SPA17, KLK4, ANKRD30A, RAB38, CCND1, CYP1B1, MDM2, MMP2, ZNF395, RNF43, SCRN1, STEAP1, 707-AP, TGFBR2, PXDNL, AKAP13, PRTN3, PSCA, RHAMM, ACPP, ACRBP, LCK, RCVRN, RPS2, RPL10A, SLC45A3, BCL2L1, DKK1, ENAH, CSPG4, RGS5, BCR, BCR-ABL, ABL-BCR, DEK, DEK-CAN, ETV6-AML1, LDLR-FUT, NPM1-ALK1, PML-RARA, SYT-SSX1, SYT-SSX2, FLT3, ABL1, AML1, LDLR, FUT1, NPM1, ALK, PML1, RARA, SYT, SSX1, MSLN, UBE2V1, HNRPL, WHSC2, EIF4EBP1, WNK2, OAS3, BCL-2, MCL1, CTSH, ABCC3, BST2, MFGE8, TPBG, FMOD, XAGE1, RPSA, COTL1, CALR3, PA2G4, EZH2, FMNL1, HPSE, APC, UBE2A, BCAP31, TOP2A, TOP2B, ITGB8, RPA1, ABI2, CCNI, CDC2, SEPT2, STAT1, LRP1, ADAM17, JUP, DDR1, ITPR2, HMOX1, TPM4, BAAT, DNAJC8, TAPBP, LGALS3BP, PAGE4, PAK2, CDKN1A, PTHLH, SOX2, SOX11, TRPM8, TYMS, ATIC, PGK1, SOX4, TOR3A, TRGC2, BTBD2, SLBP, EGFR, IER3, TTK, LY6K, IGF2BP3, GPC3, SLC35A4, HSMD, H3F3A, ALDH1A1, MFI2, MMP14, SDCBP, PARP12, MET, CCNB1, PAX3-FKHR, PAX3, FOXO1, XBP1, SYND1, ETV5, HSPA1A, HMHA1, TRIM68, and any combination thereof.
  • 9. (canceled)
  • 10. (canceled)
  • 11. The immunoresponsive cell of claim 4, wherein the CAR further comprises a costimulatory domain.
  • 12. (canceled)
  • 13. An isolated nucleic acid encoding a chimeric antigen receptor (CAR) and a sequence encoding an shRNA, the shRNA comprises 15 contiguous nucleotides complementary a nucleic acid sequence selected from the group consisting of: SEQ ID NOs: 604-620 and 653-678, andwherein the CAR comprising an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain.
  • 14. The isolated nucleic acid of claim 13, wherein the shRNA sequence reduces expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 and Ppp3cc shRNA.
  • 15-17. (canceled)
  • 18. The isolated nucleic acid of claim 13, wherein the antigen-binding domain binds tumor antigen and wherein the tumor antigen is associated with a melanoma, carcinoma, sarcomas, adenocarcinoma, lymphoma, leukemia, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer.
  • 19. (canceled)
  • 20. A vector comprising the nucleic acid of claim 13.
  • 21-22. (canceled)
  • 23. An immunoresponsive cell comprising the nucleic acid of claim 13.
  • 24. (canceled)
  • 25. The immunoresponsive cell of claim 23, wherein the immunoresponsive cell is tumor specific and selected from the group consisting of a tumor-infiltrating lymphocyte (TIL), a Natural Killer T cell (NKT), a cytotoxic T lymphocyte (CTL), and a CD4 T cell.
  • 26. A composition comprising the immunoresponsive cell of claim 1 and a pharmaceutically acceptable carrier.
  • 27. The composition of claim 26, further comprising an inhibitor of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 or Ppp3cc.
  • 28-30. (canceled)
  • 31. A human T cell harboring the nucleic acid molecule of claim 13.
  • 32. A method of treating cancer in a subject, the method comprising administering to the subject an autologous T cell modified to express a tumor-specific T-cell receptor or chimeric antigen receptor (CAR) and an shRNA, wherein the shRNA comprises 15 contiguous nucleotides complementary a nucleic acid sequence selected from the group consisting of: SEQ ID NOs: 604-620 and 653-678; andwherein the CAR comprises an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain.
  • 33. The method of claim 36, wherein the CAR comprises an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain.
  • 34. (canceled)
  • 35. The immunoresponsive cell of claim 1, wherein the shRNA sequence reduces expression of a gene selected from the group consisting of Cblb, Dgka, Dgkz, Entpd1, Fyn, Ptpn2, Smad2, Socs1 or Socs3.
  • 36. A method of treating cancer in a subject in need thereof by silencing genes that inhibit T cell function comprising administering to the subject an immunoresponsive cell comprising a vector, the vector encoding a tumor-specific T-cell receptor or a chimeric antigen receptor (CAR) and a shRNA sequence,wherein the shRNA sequences comprises a sequence at least 12/15/20/25 contiguous nucleotides complementary to the mRNA sequence encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678.
  • 37-39. (canceled)
  • 40. A method for preparing an immunoresponsive cell having tumor specificity and increased resistance to immunosuppression, comprising: providing an immunoresponsive cell having tumor specificity; and introducing into the cell a vector comprising a sequence encoding a shRNA,wherein the shRNA comprises 15 contiguous nucleotides complementary a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678.
  • 41-42. (canceled)
  • 43. The method of claim 40, wherein the immunoresponsive cell comprises a vector encoding a chimeric antigen receptor (CAR), wherein the CAR comprises an antigen binding domain, a transmembrane domain, and a stimulatory domain.
  • 44. The method of claim 40, wherein the shRNA sequence reduces expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cblb, Mdfic, Entpd1, Dgkz, Vamp7, Hipk1, Nuak2, Alk, Pdzk1 ip1, Inpp5b, Socs1, Jun, Nptxr, Socs3, F11r, Fyn, Ypel2, Pkd1, Grk6, Cdkn2a, Sbf1, Ipmk, Rock1, Stk17b, Mast2, Pdp1, Yes1, Met, Ppm1g, Blvrb, Tnk1, Prkab2, Trpm7 or Ppp3cc.
  • 45. (canceled)
  • 46. The immunoresponsive cell of claim 1 wherein the sequene encoding the shRNA comprises a first sequence comprising 15-25 nucleotides complementary to any of SEQ ID NOs: 604-620 or SEQ ID NOs: 653-678 and a second sequence that is the reverse complement of the first sequence with one or no mistaches, and a third sequence of 5-9 nucleotides positioned between the first and second sequences.
  • 47. The immunoresponsive cell of claim 46 wherein the first sequence comprises 19-25 nucleotides complementary to any of SEQ ID NOs: 604-620 or SEQ ID NOs: 653-6678.
  • 48. (canceled)
  • 49. The isolated nucleic acid molecule of claim 13 wherein the sequene encoding the shRNA comprises a first sequence comprising 15-25 nucleotides complementary to any of SEQ ID NOs: 604-620 or SEQ ID NOs: 653-678 and a second sequence that is the reverse complement of the first sequence with one or no mistaches, and a third sequence of 5-9 nucleotides positioned between the first and second sequences.
  • 50. The isolated nucleic acid molecule of claim 49 wherein the first sequence comprises 19-25 nucleotides complementary to any of SEQ ID NOs: 604-620 or SEQ ID NOs: 653-678.
  • 51. (canceled)
RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §371 of International Application No. PCT/US2014/041739, filed Jun. 10, 2014, which claims priority to and the benefit of provisional application U.S. Ser. No. 61/929,821, filed Jan. 21, 2014, U.S. Ser. No. 61/921,303, filed Dec. 27, 2013 and U.S. Ser. No. 61/833,298, filed Jun. 10, 2013, the contents of which are incorporated herein by reference in their entireties.

GOVERNMENT SUPPORT

This invention was made with Government support under Grant Nos. 1R01CA173750-01 and T32 AI07386, awarded by the National Institutes of Health, and Grant No. P30-CA14051 National Cancer Institute. The Government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/041739 6/10/2014 WO 00
Provisional Applications (3)
Number Date Country
61833298 Jun 2013 US
61921303 Dec 2013 US
61929821 Jan 2014 US