Methods and compositions for screening and treating developmental disorders

Information

  • Patent Grant
  • 10233495
  • Patent Number
    10,233,495
  • Date Filed
    Friday, September 27, 2013
    10 years ago
  • Date Issued
    Tuesday, March 19, 2019
    5 years ago
Abstract
This document provides methods and materials related to genetic variations of developmental disorders. For example, this document provides methods for using such genetic variations to assess susceptibility of developing Autism Spectrum Disorder.
Description
REFERENCE TO A SEQUENCE LISTING

The instant application includes a sequence listing. A compact disc labeled “COPY 1 of 3” contains a computer readable form of the Sequence Listing file named ASD_20130923_ST25.txt. The Sequence Listing is 608,686,080 bytes in size and was recorded on Sep. 24, 2013. The compact disc is 1 of 3 compact discs. Duplicate copies of the compact disc are labeled “COPY 2 of 3,” and “COPY 3 of 3.” The compact disc and duplicate copies are identical and are hereby incorporated by reference in their entirety.


BACKGROUND OF THE DISCLOSURE

Genetic risk can be conferred by subtle differences in individual genomes within a population. Genes can differ between individuals due to genomic variability, the most frequent of which are due to single nucleotide polymorphisms (SNPs). SNPs can be located, on average, every 500-1000 base pairs in the human genome. Additional genetic polymorphisms in a human genome can be caused by duplication, insertion, deletion, translocation and/or inversion, of short and/or long stretches of DNA. Thus, in general, genetic variability among individuals occurs on many scales, ranging from single nucleotide changes, to gross changes in chromosome structure and function. Recently, many copy number variations (CNVs) of DNA segments, including deletions, insertions, duplications, amplifications, and complex multi-site variants, ranging in length from kilobases to megabases in size, have been discovered (Redon, R. et al. Nature 444:444-54 (2006) and Estivill, X. & Armengol, L. PLoS Genetics 3(10): e190 (2007)). To date, known CNVs account for over 15% of the assembled human genome (Estivill, X. Armengol, L. PLoS Genetics 3(10): e190 (2007)). However, a majority of these variants are extremely rare and cover a small percentage of a human genome of any particular individual.


Today, it is estimated that one in every 88 children is diagnosed with Autism Spectrum Disorder (ASD) according to the CDC, making it more common than childhood cancer, juvenile diabetes and pediatric AIDS combined. An estimated 1.5 million individuals in the U.S. and tens of millions worldwide are affected by autism. Government statistics suggest the prevalence rate of autism is increasing 10-17 percent annually. There is no established explanation for this increase, although improved screening and environmental influences are two reasons often considered. Studies suggest boys are five times more likely than girls to develop autism and receive the screening three to four times more frequently. Current estimates are that in the United States alone, one out of 54 boys is diagnosed with autism. ASD can be characterized by problems and symptoms in the following areas: communication, both verbal and non-verbal, such as pointing, eye contact, and smiling; social, such as sharing emotions, understanding how others think and feel, and holding a conversation; and routines or repetitive behaviors (also called stereotyped behaviors), such as repeating words or actions, obsessively following routines or schedules, and playing in repetitive ways. As genetic variations conferring risk to developmental disorders, including ASD, are uncovered, genetic testing can play a role for clinical therapeutics.


Despite these advances towards an understanding of the etiology of developmental disorders, a large fraction of the genetic contribution to these disorders remains undetermined Identification of underlying genetic variants that can contribute to developmental disorder pathogenesis can aid in the screening and identification of individuals at risk of developing these disorders and can be useful for disease management. There is a need to identify new treatments for developmental disorders, specifically ASD, and the identification of novel genetic risk factors and causes can assist in the development of potential therapeutics and agents. There is also a need for improved assays for predicting and determining potential treatments and their effectiveness.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. In the event of a conflict between a term herein and a term incorporated by reference, the term herein controls.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings.



FIG. 1 represents an example of group 1 (Genic (distinct CNV-subregions); OR>6). There are 10 ASD cases and 0 NVE subjects affected by non-overlapping and overlapping CNV-subregions. The CNV are gains (log 2 ratio>0.35) or losses (log 2 ratio<−0.35) and affect the gene NRG1 on chromosome 8. The calculated odds ratio (OR) for this CNV-subregion is 14.94.



FIG. 2 represents an example of group 2 (Exon+ve, ASD>4, Normals<2, no Sanger filter applied). There are 34 ASD cases in total (including 31 with an identical sized loss) and 1 NVE subject affected by overlapping CNV-subregions that impact an exon. The CNV are a gain (log 2 ratio>0.35) or losses (log 2 ratio<−0.35) and affect the gene MIDN on chromosome 19. The calculated odds ratio (OR) for this CNV-subregion is 52.68.



FIG. 3 represents an example of group 3 (Exon+ve, 5>ASD>1, Normals<2, Sanger−ve). There are 4 ASD cases in total and 1 NVE subject affected by an overlapping CNV-subregion that impacts an exon. The CNV are losses (log 2 ratio<−0.35) and affect the gene PTGER3 on chromosome 1 and no Sanger CNVs overlap this CNV (Sanger−ve). The calculated odds ratio (OR) for this CNV-subregion is 5.92.



FIG. 4 represents an example of group 4 (Intron+ve, ASD>4, Normals<2, no Sanger filter applied). There are 8 ASD cases in total (3 cases impact an identical CNV loss) and 0 NVE subjects affected by an overlapping CNV-subregion that impacts an intron. The CNV are losses (log 2 ratio<−0.35) or a gain (log 2 ratio>0.35) and affect the gene CALN1 on chromosome 7. The calculated odds ratio (OR) for this CNV-subregion is 11.92.



FIG. 5 represents an example of group 5 (MTRNR2L_family). There is 1 ASD case and 0 NVE subjects that impacts an exon of an MTRNR2L gene family member. The CNV gain (log 2 ratio>0.35) is 1.7 Mb in size and its left breakpoint disrupts MTRNR2L4 and its right breakpoint disrupts ALG1 on chromosome 16. The calculated odds ratio (OR) for this CNV-subregion is 1.47.



FIG. 6 represents an example of group 6 (High OR intergenic (OR>30)). There are 20 ASD cases in total (5 representative cases are depicted) and 0 NVE subjects affected by an overlapping CNV-subregion that impacts an intergenic region (adjacent to SDC1). The CNV are losses (log 2 ratio<−0.35) on chromosome 2. The calculated odds ratio (OR) for this CNV-subregion is 30.33.





SUMMARY OF THE INVENTION

In one aspect, provided herein is a method of screening one or more subjects for at least one genetic variation that disrupts or modulates one or more genes in Table 3, comprising: assaying at least one nucleic acid sample obtained from each of the one or more subjects for the at least one genetic variation in one or more genes in Table 3. In some embodiements, the at least one genetic variation is associated with a developmental disorder (DD). In some embodiments, the at least one genetic variation is one encoded by one or more of SEQ ID NOs 1 to 883. In some embodiments, the at least one genetic variation comprises one or more point mutations, single nucleotide polymorphisms (SNPs), single nucleotide variants (SNVs), translocations, insertions, deletions, amplifications, inversions, microsatellites, interstitial deletions, copy number variations (CNVs), or any combination thereof. In some embodiments, the at least one genetic variation disrupts or modulates one or more genes in Table 3. In some embodiments, the at least one genetic variation disrupts or modulates two or more genes in Table 3. In some embodiments, the at least one genetic variation disrupts or modulates the expression or function of one or more RNA transcripts encoded by SEQ ID NOs 884-1690, one or more polypeptides produced therefrom, or a combination thereof. In some embodiments, the assaying comprises detecting nucleic acid information from the at least one nucleic acid sample. In some embodiments, the nucleic acid information is detected by one or more methods selected from the group comprising PCR, sequencing, Northern blots, or any combination thereof. In some embodiments, the sequencing comprises one or more high-throughput sequencing methods. In some embodiments, the one or more high throughput sequencing methods comprise Massively Parallel Signature Sequencing (MPSS), polony sequencing, 454 pyrosequencing, Illumina sequencing, SOLiD sequencing, ion semiconductor sequencing, DNA nanoball sequencing, heliscope single molecule sequencing, single molecule real time (SMRT) sequencing, RNAP sequencing, Nanopore DNA sequencing, sequencing by hybridization, or microfluidic Sanger sequencing. In some embodiments, the at least one nucleic acid sample is collected from blood, saliva, urine, serum, tears, skin, tissue, or hair from the one or more subjects. In some embodiments, the assaying the at least one nucleic acid sample of the one or more subjects comprises purifying nucleic acids from the at least one nucleic acid sample. In some embodiments, the assaying the at least one nucleic acid sample of the one or more subjects comprises amplifying at least one nucleotide sequence in the at least one nucleic acid sample. In some embodiments, the assaying the at least one nucleic acid sample for at least one genetic variation comprises a microarray analysis of the at least one nucleic acid sample. In some embodiments, the microarray analysis comprises a CGH array analysis. In some embodiments, the CGH array detects the presence or absence of the at least one genetic variations. In some embodiments, the method further comprises determining whether the one or more subjects has a DD, or an altered susceptibility to a DD. In some embodiments, the one or more subjects were previously diagnosed or are suspected as having the DD. In some embodiments, the diagnosis or grounds for suspicion that the subject may have the DD is based on an evaluation by a medical doctor, a psychologist, a neurologist, a psychiatrist, or other professionals who screen subjects for the DD. In some embodiments, the determining comprises an evaluation of the one or more subject's motor skills, autonomic function, neurophychiatry, mood, cognition, behavior, thoughts, speech, or a combination thereof. In some embodiments, the evaluation comprises observation, a questionnaire, a checklist, a test, or a combination thereof. In some embodiments, the evaluation comprises a developmental exam, the subject's past medical histroy, or a combination thereof. In some embodiments, the screening the one or more subjects further comprises selecting one or more therapies based on the presence or absence of the one or more genetic variations. In some embodiments, the assaying at least one nucleic acid sample obtained from each of the one or more subjects comprises analyzing the whole genome or whole exome from the one or more subjects. In some embodiments, the nucleic acid information has already been obtained for the whole genome or whole exome from the one or more individuals and the nucleic acid information is obtained from in silico analysis. In some embodiments, the DD is Autism Spectrum Disorder (ASD). In some embodiments, the one or more subjects have at least one symptom of a DD. In some embodiments, the at least one symptom comprises difficulty with verbal communication, including problems using and understanding language, difficulty with non-verbal communication, such as gestures and facial expressions such as smiling, difficulty with social interaction, including relating to people and to his or her surroundings, unusual ways of playing with toys and other objects, difficulty adjusting to changes in routine or familiar surroundings, repetitive body movements or patterns of behavior, such as hand flapping, spinning, and head banging, changing response to sound, temper tantrums, difficulty sleeping, aggressive behavior, fearfulness, anxiety, or a combination thereof. In some embodiments, the one or more subjects are human. In some embodiments, the one or more subjects are less than 30 years old, less than 20 years old, less than 10 years old, less than 5 years old, less than 2 years old, or less than 1 year old.


In one aspect, provided herein is a method of diagnosing one or more first subjects for a DD, comprising: assaying at least one nucleic acid sample of each of the one or more subjects for the presence or absence of at least one genetic variation in one or more genes in Table 3. In some embodiments, the at least one genetic variation is one encoded by at least one of SEQ ID NOs 1-883. In some embodiments, the one or more first subjects is diagnosed with the DD if the at least one genetic variation is present. In some embodiments, the one or more first subjects is not diagnosed with DD if the at least one genetic variation is absent. In some embodiments, the assaying comprises detecting nucleic acid information from the at least one nucleic acid sample. In some embodiments, the nucleic acid information is detected by one or more methods selected from the group comprising PCR, sequencing, Northern blots, hybridization, or any combination thereof. In some embodiments, the sequencing comprises one or more high-throughput sequencing methods. In some embodiments, the one or more high throughput sequencing methods comprise Massively Parallel Signature Sequencing (MPSS), polony sequencing, 454 pyrosequencing, Illumina sequencing, SOLiD sequencing, ion semiconductor sequencing, DNA nanoball sequencing, heliscope single molecule sequencing, single molecule real time (SMRT) sequencing, RNAP sequencing, Nanopore DNA sequencing, sequencing by hybridization, or microfluidic Sanger sequencing. In some embodiments, the method further comprises determining whether the one or more first subjects has a DD or an altered susceptibility to a DD. In some embodiments, the one or more first subjects were previously diagnosed or are suspected as having the DD based on an evaluation by a medical doctor, a psychologist, a neurologist, a psychiatrist, a speech therapist, or other professionals who screen subjects for a DD. In some embodiments, the determining comprises an evaluation of the one or more first subject's motor skills, autonomic function, neurophychiatry, mood, cognition, behavior, thoughts, speech, or a combination thereof. In some embodiments, the evaluation comprises observation, a questionnaire, a checklist, a test, or a combination thereof. In some embodiments, the evaluation comprises a developmental exam, the subject's past medical histroy, or a combination thereof. In some embodiments, the determining comprises comparing the nucleic acid information of the one or more first subjects to nucleic acid information of one or more second subjects. In some embodiments, the one more second subjects comprise one or more subjects not suspected of having the DD. In some embodiments, the one or more second subjects comprise one or more subjects suspected of having the DD. In some embodiments, the one or more first subjects comprise one or more subjects with the DD. In some embodiments, the one or more second subjects comprise one or more subjects without the DD. In some embodiments, the one or more first subjects comprise one or more subjects who are symptomatic for the DD. In some embodiments, the one or more second subjects comprise one or more subjects who are asymptomatic for the DD. In some embodiments, the one or more first subjects comprise one or more subjects that have an increased susceptibility to the DD. In some embodiments, the one or more second subjects comprise one or more subjects that have a decreased susceptibility to the DD. In some embodiments, the one or more first subjects comprise one or more subjects receiving a treatment, therapeutic regimen, or any combination thereof for a DD. In some embodiments, determining whether the one or more subjects have the DD or an altered susceptibility to the DD comprises analyzing at least one behavioral analysis of the one or more subjects and the nucleic acid sequence information of the one or more subjects, or a combination thereof. In some embodiments, the at least one nucleic acid sample is collected from blood, saliva, urine, serum, tears, skin, tissue, or hair from the one or more subjects. In some embodiments, assaying comprises purifying nucleic acids from the at least one nucleic acid sample. In some embodiments, assaying comprises amplifying at least one nucleotide sequence in the at least one nucleic acid sample. In some embodiments, assaying comprises a microarray analysis of the at least one nucleic acid sample. In some embodiments, wherein the microarray analysis comprises a CGH array analysis. In some embodiments, the CGH array detects the presence or absence of the at least one genetic variations. In some embodiments, the at least one genetic variation comprises one or more point mutations, single nucleotide polymorphisms, (SNPs), single nucleotide variants (SNVs), translocations, insertions, deletions, amplifications, inversions, microsatellites, interstitial deletions, copy number variations (CNVs), or any combination thereof. In some embodiments, the at least one genetic variation results in a loss of function for one or more genes in Table 3, a gain of function for one or more genes in Table 3, or a combination thereof. In some embodiments, the at least one genetic variation disrupts or modulates the one or more genes in Table 3. In some embodiments, the at least one genetic variation disrupts or modulates the expression or function of one or more RNA transcripts encoded by SEQ ID NOs 884-1690. In some embodiments, the method further comprises selecting one or more therapies based on the presence or absence of the one or more genetic variations. In some embodiments, the assaying at least one nucleic acid sample obtained from each of the one or more subjects comprises analyzing the whole genome or whole exome from the one or more subjects. In some embodiments, the nucleic acid information has already been obtained for the whole genome or whole exome from the one or more individuals and the nucleic acid information is obtained from in silico analysis. In some embodiments, the DD is ASD. In some embodiments, the one or more subjects has at least one symptom of a DD. In some embodiments, the at least one symptom comprises difficulty with verbal communication, including problems using and understanding language, difficulty with non-verbal communication, such as gestures and facial expressions such as smiling, difficulty with social interaction, including relating to people and to his or her surroundings, unusual ways of playing with toys and other objects, difficulty adjusting to changes in routine or familiar surroundings, repetitive body movements or patterns of behavior, such as hand flapping, spinning, and head banging, changing response to sound, temper tantrums, difficulty sleeping, aggressive behavior, fearfulness, anxiety, or a combination thereof. In some embodiments, the one or more subjects are human. In some embodiments, the one or more subjects is less than 30 years old, less than 20 years old, less than 10 years old, less than 5 years old, less than 2 years old, or less than 1 year old.


In one aspect, provided herein is a method of screening for a therapeutic agent for treatment of a DD, comprising identifying an agent that disrupts or modulates one or more genes in Table 3, or one or more expression products thereof. In some embodiments, the one or more expression products comprise one or more RNA transcripts. In some embodiments, the one or more RNA transcripts comprise one or more RNA transcripts of Table 4, or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, the one or more expression products comprise one or more polypeptides. In some embodiments, the one or more polypeptides are translated from one or more RNA transcripts of Table 4, or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, disrupting or modulating the one or more genes in Table 3 or one or more expression products thereof, comprises an increase in expression of the one or more expression products. In some embodiments, disrupting or modulating the one or more genes in Table 3 or one or more expression products thereof, comprises a decrease in expression of the one or more expression products.


In one aspect, provided herein is a method of treating a subject for a DD, comprising administering one or more agents to disrupt or modulate one or more genes in Table 3 or one or more expression products thereof, thereby treating the DD. In some embodiments, the one or more expression products comprise one or more RNA transcripts. In some embodiments, the one or more RNA transcripts comprise one or more RNA transcripts of Table 4, or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, the one or more expression products comprise one or more polypeptides. In some embodiments, the one or more polypeptides are translated from one or more RNA transcripts of Table 4, or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, the one or more agents are selected from the group comprising: an antibody, a drug, a combination of drugs, a compound, a combination of compounds, radiation, a genetic sequence, a combination of genetic sequences, heat, cryogenics, and a combination of two or more of any combination thereof. In some embodiments, the DD is ASD. In some embodiments, the one or more subjects has at least one symptom of a DD. In some embodiments, the at least one symptom comprises difficulty with verbal communication, including problems using and understanding language, difficulty with non-verbal communication, such as gestures and facial expressions such as smiling, difficulty with social interaction, including relating to people and to his or her surroundings, unusual ways of playing with toys and other objects, difficulty adjusting to changes in routine or familiar surroundings, repetitive body movements or patterns of behavior, such as hand flapping, spinning, and head banging, changing response to sound, temper tantrums, difficulty sleeping, aggressive behavior, fearfulness, anxiety, or a combination thereof. In some embodiments, the one or more subjects is human. In some embodiments, the one or more subjects is less than 30 years old, less than 20 years old, less than 10 years old, less than 5 years old, less than 2 years old, or less than 1 year old.


In one aspect, provided herein is a kit for screening for a DD in one or more subjects, the kit comprising reagents for assaying a nucleic acid sample from the one or more subjects for the presence of at least one genetic variation encoded by SEQID NOs 1-883. In some embodiments, the at least one genetic variation disrupts or modulates one or more genes in Table 3, or one or more expression products thereof. In some embodiments, the one or more expression products comprise one or more RNA transcripts. In some embodiments, the one or more RNA transcripts comprise one or more RNA transcripts of Table 4, or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, the one or more expression products comprise one or more polypeptides. In some embodiments, the one or more polypeptides are translated from one or more RNA transcripts of Table 4, or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, the reagents comprise nucleic acid probes. In some embodiments, the reagents comprise oligonucleotides. In some embodiments, the reagents comprise primers. In some embodiments, the DD is ASD. In some embodiments, the one or more subjects has a symptom of a DD. In some embodiments, the one or more subjects is human. In some embodiments, the one or more subjects is less than 30 years old, less than 20 years old, less than 10 years old, less than 5 years old, less than 2 years old, or less than 1 year old.


In one aspect, provided herein is an isolated polynucleotide sequence or fragment thereof, comprising at least 60% identity to any of polynucleotide sequence of SEQ ID NOs 1-1690. In one aspect, provided herein is an isolated polynucleotide comprising a CNV sequence encoded by any one of SEQ ID NOs 1-883. In some embodiments, the isolated polynucleotide sequence comprises at least 70% identity to any of polynucleotide sequence of SEQ ID NOs 1-1690. In some embodiments, the isolated polynucleotide sequence comprises at least 80% identity to any of polynucleotide sequence of SEQ ID NOs 1-1690. In some embodiments, the isolated polynucleotide sequence comprises at least 90% identity to any of polynucleotide sequence of SEQ ID NOs 1-1690.


In one aspect, provided herein is an isolated polynucleotide sequence comprising at least 60% identity to a compliment of any of polynucleotide sequence of SEQ ID NOs 1-1690. In some embodiments, the isolated polynucleotide sequence comprises at least 70% identity to a compliment of any of polynucleotide sequence of SEQ ID NOs 1-1690. In some embodiments, the isolated polynucleotide sequence comprises at least 80% identity to a compliment of any of polynucleotide sequence of SEQ ID NOs 1-1690. In some embodiments, the isolated polynucleotide sequence comprises at least 90% identity to a compliment of any of polynucleotide sequence of SEQ ID NOs 1-1690. In some embodiments, the polynucleotide sequence comprises any of a CNV of SEQ ID NOs 1-883. In some embodiments, the polynucleotide sequence comprises any of a genomic sequence of a gene in Table 3. In some embodiments, the sequence comprises an RNA sequence transcribed from a genomic sequence of a gene in Table 3. In some embodiments, the polynucleotide sequence comprises any of genetic variation not present in the genome of a subject without a DD. In some embodiments, the polynucleotide sequence fragment comprises a nucleic acid probe. In some embodiments, the nucleic acid probe is capable of hybridization to a nucleic acid of interest. In some embodiments, the polynucleotide sequence fragment comprises a nucleic acid primer. In some embodiments, the nucleic acid primer is capable of intiation of extension or amplifying of a nucleic acid of interest.


In one aspect, provided herein is an isolated polypeptide encoded by an RNA sequence transcribed from any of genomic sequence of a gene in Table 3.


In one aspect, provided herein is a host cell comprising an expression control sequence operably linked to a polynucleotide selected from the group consisting of any of polynucleotide sequence of a gene in Table 3, or a genetic variant encoded by any one of SEQ ID NOs 1-883. In some embodiments, the expression control sequence is non-native to the host cell. In some embodiments, the expression control sequence is native to the host cell.


In one aspect, provided herein is a method for identifying an agent having a therapeutic benefit for treatment of a DD, comprising: (a) providing cells comprising at least one genetic variation of SEQ ID NOs 1-883, (b) contacting the cells of (a) with a test agent, and (c) analyzing whether the agent has a therapeutic benefit for treatment of the cells of (a), thereby identifying agents which have a therapeutic benefit for treatment of the DD.


In some embodiments, the method further comprises (d) providing cells which do not comprise at least one genetic variation of SEQ ID NOs 1-883, (e) contacting the cells of (a) and (d) with a test agent, and (f) analyzing whether the agent has a therapeutic benefit for treatment of the cells of (a) relative to those of (d), thereby identifying agents which have a therapeutic benefit for treatment of the DD. In some embodiments, the therapeutic agent has efficacy for the treatment of a DD. In some embodiments a therapeutic agent is identified by the method results.


In one aspect, provided herein is a panel of biomarkers for a DD comprising one or more genes contained in one or more polynucleotide sequences of a gene in Table 3. In some embodiments, the panel comprises two or more genes contained in the one or more polynucleotide sequences selected from the genes in Table 3. In some embodiments, the panel comprises at least 5, 10, 25, 50, 100 or 200 polynucleotide sequences of the genes in Table 3. In some embodiments, at least one of the polynucleotide sequences is a fragment of the one or more polynucleotide sequences selected from the genes in Table 3. In some embodiments, at least one of the polynucleotide sequences is a variant of the one or more polynucleotide sequences selected from the genes in Table 3. In some embodiments, the panel is selected for analysis of polynucleotide expression levels for a DD. In some embodiments, the polynucleotide expression levels are mRNA expression levels. In some embodiments, the panel is used in the management of patient care for a DD, wherein the management includes one or more of risk assessment, early diagnosis, prognosis establishment, patient treatment monitoring, and treatment efficacy detection. In some embodiments, the panel is used in discovery of therapeutic intervention of a DD. In some embodiments, at least one of the biomarkers is attached to substrate. In some embodiments, the substrate comprises a plastic, glass, a bead, or a plate. In some embodiments, at least one of the biomarkers is labeled with a detectable label. In some embodiments, the panel is an in silico panel.


In one aspect, provided herein is a method for measuring expression levels of polynucleotide sequences from biomarkers for a DD in a subject, comprising: (a) selecting a panel of biomarkers comprising two or more genes contained in one or more polynucleotide sequences selected from the genes in Table 3; (b) isolating cellular RNA from a nucleic acid sample obtained from the subject; (c) synthesizing cDNA from the RNA for each biomarker in the panel using suitable primers; (d) optionally amplifying the cDNA; and (e) quantifying levels of the cDNA from the nucleic acid sample. In some embodiments, the step of selecting a panel of biomarkers comprises at least 5, 10, 25, 50, 100 or 200 genes contained in one or more polynucleotide sequences selected from the genes in Table 3. In some embodiments, the step of quantifying the levels of cDNA further comprises labeling cDNA. In some embodiments, labeling cDNA comprises labeling with at least one chromophore. In some embodiments, the cDNA levels for the nucleic acid sample are compared to a control cDNA level. In some embodiments, the comparison is used in the management of patient care in DD. In some embodiments, the management of patient care includes one or more of risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, and detecting treatment efficacy. In some embodiments, the comparison is used in discovery of therapeutic intervention of a DD.


In one aspect, provided herein is a method for measuring expression levels of polypeptides comprising: (a) selecting a panel of biomarkers comprising at least two polypeptides encoded by an RNA sequence transcribed from a genomic sequence of a gene in Table 3; (b) obtaining a nucleic acid sample; (c) creating an antibody panel for each biomarker in the panel; (d) using the antibody panel to bind the polypeptides from the nucleic acid sample; and (e) quantifying levels of the polypeptides bound from the nucleic acid sample to the antibody panel. In some embodiments, the polypeptide levels of the nucleic acid sample are increased or decreased compared to the polypeptide levels of a control nucleic acid sample. In some embodiments, the subject is treated for a DD patient based on the quantified levels of the polypeptides bound from the nucleic acid sample to the antibody panel. In some embodiments, the treatment of a subject includes one or more of risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, and detecting treatment efficacy. In some embodiments, the comparison is used in discovery of a therapeutic intervention of a DD.


In one aspect, provided herein is a kit for the determination of a DD comprising: at least one reagent that is used in analysis of one or more polynucleotide expression levels for a panel of biomarkers for a DD, wherein the panel comprises two or more genes contained in one or more polynucleotide sequences selected from the genes in Table 3, and instructions for using the kit for analyzing the expression levels. In some embodiments, the one or more polynucleotide expression levels comprise one or more RNA transcript expression levels. In some embodiments, the one or more RNA transcript expression levels correspond to one or more RNA transcripts of Table 4, or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, the at least one reagent comprises at least two sets of suitable primers. In some embodiments, the at least one reagent comprises a reagent for the preparation of cDNA. In some embodiments, the at least one reagent comprises a reagent that is used for detection and quantization of polynucleotides. In some embodiments, the at least one reagent comprises one or more antibodies wherein the one or more antibodies detect the one or more polypeptides are translated from one or more RNA transcripts of Table 4, or the one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, the at least one reagent comprises at least one chromophore.


In one aspect, provided herein is a kit for the determination of a DD comprising: at least one reagent that is used in analysis of polypeptide expression levels for a panel of biomarkers for DD, wherein the panel comprises at least two polypeptides expressed from two or more genes contained in one or more polynucleotide sequences selected from the genes in Table 3; and instructions for using the kit for analyzing the expression levels. In some embodiments, the reagent is an antibody reagent that binds a polypeptide selected in the panel. In some embodiments, the kit further comprises a reagent that is used for detection of a bound polypeptide. In some embodiments, the reagent includes a second antibody.


In one aspect, provided herein is a method of screening a subject for a DD, the method comprising: (a) assaying a nucleic acid sample obtained from the subject by PCR, aCGH, sequencing, SNP genotyping, or Fluorescence in Situ Hybridization to detect sequence information for more than one genetic loci; (b) comparing the sequence information to a panel of nucleic acid biomarkers, wherein the panel comprises at least one nucleic acid biomarker for each of the more than one genetic loci; and wherein the panel comprises at least 2 low frequency nucleic acid biomarkers, wherein the low frequency nucleic acid biomarkers occur at a frequency of 0.1% or less in a population of subjects without a diagnosis of the DD; and (c) screening the subject for the presence or absence of the DD if one or more of the low frequency biomarkers in the panel are present in the sequence information. In some embodiments, the panel comprises at least 5, 10, 25, 50, 100 or 200 low frequency nucleic acid biomarkers. In some embodiments, the presence or absence of the DD in the subject is determined with more than 50%, 55%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, 99.5%, or 99.8% confidence. In some embodiments, the low frequency biomarkers occur at a frequency of 0.01% or less, 0.001% or less, or 0.0001% or less in a population of subjects without a diagnosis of the DD. In some embodiments, the panel of nucleic acid biomarkers comprises at least two genes contained in the one or more polynucleotide sequences selected from the genes in Table 3. In some embodiments, the DD is ASD. In some embodiments, the method further comprises identifying a therapeutic agent useful for treating the DD. In some embodiments, the method further comprises administering one or more of the therapeutic agents to the subject if one or more of the low frequency biomarkers in the panel are present in the sequence information.


In one aspect, provided herein is a kit for screening a subject for a DD, the kit comprising at least one reagent for assaying a nucleic acid sample from the subject for information on a panel of nucleic acid biomarkers, wherein the panel comprises at least 2 low frequency biomarkers, and wherein the low frequency biomarkers occur at a frequency of 0.1% or less in a population of subjects without a diagnosis of the DD. In some embodiments, a presence or absence of the DD in the subject is determined with more than 50%, 55%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, 99.5%, or 99.8% confidence. In some embodiments, the panel comprises at least 5, 10, 25, 50, 100 or 200 low frequency nucleic acid biomarkers. In some embodiments, the low frequency biomarkers occur at a frequency of 0.01% or less, 0.001% or less, or 0.0001% or less in a population of subjects without a diagnosis of the DD. In some embodiments, the panel of nucleic acid biomarkers comprises at least two genes contained in the one or more polynucleotide sequences selected from the genes in Table 3. In some embodiments, the at least one reagent comprises at least two sets of suitable primers. In some embodiments, the at least one reagent comprises a reagent for the preparation of cDNA. In some embodiments, the at least one reagent comprises a reagent that is used for detection and quantization of polynucleotides. In some embodiments, the at least one reagent comprises at least one chromophore.


In one aspect, provided herein is a method of generating a panel of nucleic acid biomarkers comprising: (a) assaying a nucleic acid sample from a first population of subjects by PCR, aCGH, sequencing, SNP genotyping, or Fluorescence in Situ Hybridization for nucleic acid sequence information, wherein the subjects of the first population have a diagnosis of a DD. (b) assaying a nucleic acid sample from a second population of subjects by PCR, aCGH, sequencing, SNP genotyping, or Fluorescence in Situ Hybridization for nucleic acid sequence information, wherein the subjects of the second population are without a diagnosis of a DD; (c) comparing the nucleic acid sequence information from step (a) to that of step (b); (d) determining the frequency of one or more biomarkers from the comparing step; and (e) generating the panel of a nucleic acid biomarkers, wherein the panel comprises at least 2 low frequency biomarkers, and wherein the low frequency biomarkers occur at a frequency of 0.1% or less in a population of subjects without a diagnosis of a DD. In some embodiments, the subjects in the second population of subjects without a diagnosis of a DD comprise one or more subjects not suspected of having the DD. In some embodiments, the subjects in the second population of subjects without a diagnosis of a DD comprise one or more subjects without the DD. In some embodiments, the subjects in the second population of subjects without a diagnosis of a DD comprise one or more subjects who are asymptomatic for the DD. In some embodiments, the subjects in the second population of subjects without a diagnosis of a DD comprise one or more subjects who have decreased susceptibility to the DD. In some embodiments, the subjects in the second population of subjects without a diagnosis of a DD comprise one or more subjects who are unassociated with a treatment, therapeutic regimen, or any combination thereof. In some embodiments, the panel comprises at least 5, 10, 25, 50, 100 or 200 low frequency nucleic acid biomarkers. In some embodiments, the low frequency biomarkers occur at a frequency of 0.01% or less, 0.001% or less, or 0.0001% or less in the second population of subjects without a diagnosis of a DD In some embodiments, the panel comprises at least two genes contained in the one or more polynucleotide sequences selected from the genes in Table 3. In some embodiments, the DD is ASD. In some embodiments, assaying the at least one nucleic acid sample of the one or more subjects comprises purifying the at least one nucleic acid sample from the collected sample. In some embodiments, the method further comprises designing the CGH array to measure one or more genetic variations in Table 1, Table 2, or combinations thereof. In some embodiments, the method further comprises providing the CGH array for the measuring of one or more genetic variations. In some embodiments, assaying at least one nucleic acid sample comprises obtaining the nucleic acid sequence information. In some embodiments, obtaining the nucleic acid information is determined by one or more methods selected from the group comprising PCR, sequencing, Northern blots, FISH, Invader assay, or any combination thereof. In some embodiments, the at least one genetic variation comprises one or more point mutations, polymorphisms, single nucleotide polymorphisms (SNPs), single nucleotide variants (SNVs), translocations, insertions, deletions, amplifications, inversions, microsatellites, interstitial deletions, copy number variations (CNVs), loss of heterozygosity, or any combination thereof. In some embodiments, the at least one genetic variation comprises one or more CNVs listed in Table 1 or CNV subregions in Table 2. In some embodiments, the genetic variation comprises one or more CNVs that disrupt, impair, or modulate expression of one or more genes listed in Table 3. In some embodiments, the at least one genetic variation comprises one or more CNVs that disrupt, impair, or modulate the expression or function of one or more RNA transcripts in Table 4, or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690.


In one aspect, provided herein is a method for screening for a therapeutic agent useful for treating a DD, comprising identifying an agent that modulates the function or expression of one or more genes listed in Table 3 or expression products therefrom. In some embodiments, the expression products comprise one or more RNA transcripts in Table 4, or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, the expression products comprise one or more proteins expressed from a gene in Table 3 or encoded by one or more RNA transcripts in Table 4, or by any of SEQ ID NOs 884-1690. In some embodiments, modulating the function or activity of one or more RNA transcripts or proteins comprises an increase in expression. In some embodiments, modulating the function or activity of one or more RNA transcripts or proteins comprises a decrease in expression.


In one aspect, provided herein is a method of treating a subject for a DD, comprising administering one or more agents to modulate the function of one or more genes listed in Table 3, or expression products therefrom, thereby treating the DD. In some embodiments, the expression products comprise one or more RNA transcripts in Table 4, or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, the expression products comprise one or more proteins expressed from a gene in Table 3, or encoded by one or more RNA transcripts in Table 4. In some embodiments, the one or more agents are selected from the group comprising: an antibody, a drug, a combination of drugs, a compound, a combination of compounds, radiation, a genetic sequence, a combination of genetic sequences, heat, cryogenics, and a combination of two or more of any combination thereof.


In one aspect, provided herein is a kit for screening for a DD in a subject, the kit comprising at least one means for assaying a nucleic acid sample from the subject for the presence of at least one genetic variation in Table 1 or 2 associated with a DD. In some embodiments, the at least one genetic variation is associated with a disruption or aberration of one or more RNA transcripts in Table 4 or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, the at least one genetic variation is associated with a disruption or aberration of one or more proteins expressed from one or more genes listed in Tables 3, or encoded by one or more RNA transcripts in Table 4 or one ore more RNA transcripts encoded by any of SEQ ID NOs 884-1690. In some embodiments, screening the one or more subjects further comprises selecting one or more therapies based on the presence or absence of the one or more genetic variations.


In one aspect, provided herein is a method comprising isolating a poluynucleotide comprising a CNV sequence encoded by any one of SEQ ID NOs 1-883. In some embodiments, assaying the at least one nucleic acid sample of the one or more subjects comprises an analysis of the at least one collected sample or unamplified nucleic acid sample. In some embodiments, assaying the at least one nucleic acid sample of the one or more subjects comprises an Invader assay analysis of the at least one collected sample or unamplified nucleic acid sample. In some embodiments, the method further comprises assaying one or more other genetic variations in the one or more genes in Table 3, wherein the other genetic variations do not comprise a genetic variation encoded by any one of SEQ ID NOs. 1-883. In some embodiments, the one or more other genetic variations are shorter in length than one or more of the genetic variations encoded by any one of SEQ ID NOs. 1-883. In some embodiments, the sequence information of one or more other genetic variations are compared to a compilation of data comprising frequencies of the other genetic variations in at least 2 normal human subjects. In some embodiments, the method further comprises determining whether the other genetic variations are associated with a DD by the comparison. In some embodiments, the assaying comprises analyzing the whole genome or whole exome from the one or more subjects. In some embodiments, the comparing comprises determining an odds ratio (OR) value for the one or more other genetic variations, determining a relative risk value (RR) for the one or more other genetic variations, or a combination thereof. In some embodiments, determining whether the one or more subjects has a DD or an altered susceptibility to a DD comprises comparing the nucleic acid sequence information, the at least one genetic variation identified in the one or more subjects, or a combination thereof, to those of one or more other subjects for enrollment of said subjects or said other subjects in a clinical trial. In some embodiments, the method further comprises detecting one or more genetic variants in an upstream or downstream region of the one or more genes in Table 3 that results in modulation of expression of the gene. In some embodiments, the upstream or downstream region is a gene regulatory sequence. In some embodiments, the method further comprises obtaining sequence information for one or more of the CNVs encoded by SEQ ID NOs 1-883. In some embodiments, the nucleic acid information further comprises sequence information for one or more of the CNVs encoded by SEQ ID NOs 1-883. In some embodiments, sequence information for one or more of the CNVs encoded by SEQ ID NOs 1-883 comprises nucleic acid information relating to a regulatory region of a gene in Table 3.


DETAILED DESCRIPTION OF THE DISCLOSURE

The details of one or more inventive embodiments are set forth in the accompanying drawings, the claims, and in the description herein. Other features, objects, and advantages of inventive embodiments disclosed and contemplated herein will be apparent from the description and drawings, and from the claims. As used herein, unless otherwise indicated, the article “a” means one or more unless explicitly otherwise provided for. As used herein, unless otherwise indicated, terms such as “contain,” “containing,” “include,” “including,” and the like mean “comprising.” As used herein, unless otherwise indicated, the term “or” can be conjunctive or disjunctive. As used herein, unless otherwise indicated, any embodiment can be combined with any other embodiment. As used herein, unless otherwise indicated, some inventive embodiments herein contemplate numerical ranges. When ranges are present, the ranges include the range endpoints. Additionally, every subrange and value within the range is present as if explicitly written out.


Described herein are methods of identifying variations in nucleic acids and genes associated with one or more developmental conditions. Described herein are methods of screening for determining a subject's susceptibility to developing or having, one or more developmental disorders, for example Autism Spectrum Disorder (ASD), based on identification and detection of genetic nucleic acid variations. Also described herein, are methods and compositions for treating and/or preventing one or more developmental conditions using a therapeutic modality. The present disclosure encompasses methods of assessing an individual for probability of response to a therapeutic agent for a developmental disorder, methods for predicting the effectiveness of a therapeutic agent for a developmental disorder, nucleic acids, polypeptides and antibodies and computer-implemented functions. Kits for screening a sample from a subject to detect or determine susceptibility to a developmental disorder are also encompassed by the disclosure.


Genetic Variations Associated with Developmental Disorders


Genomic sequences within populations exhibit variability between individuals at many locations in the genome. For example, the human genome exhibits sequence variations that occur on average every 500 base pairs. Such genetic variations in nucleic acid sequences are commonly referred to as polymorphisms or polymorphic sites. As used herein, a polymorphism, e.g. genetic variation, includes a variation in the sequence of a gene in the genome amongst a population, such as allelic variations and other variations that arise or are observed. Thus, a polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. These differences can occur in coding and non-coding portions of the genome, and can be manifested or detected as differences in nucleic acid sequences, gene expression, including, for example transcription, processing, translation, transport, protein processing, trafficking, DNA synthesis; expressed proteins, other gene products or products of biochemical pathways or in post-translational modifications and any other differences manifested amongst members of a population. A single nucleotide polymorphism (SNP) includes to a polymorphism that arises as the result of a single base change, such as an insertion, deletion or change in a base. A polymorphic marker or site is the locus at which divergence occurs. Such site can be as small as one base pair (an SNP). Polymorphic markers include, but are not limited to, restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats and other repeating patterns, simple sequence repeats and insertional elements, such as Alu. Polymorphic forms also are manifested as different mendelian alleles for a gene. Polymorphisms can be observed by differences in proteins, protein modifications, RNA expression modification, DNA and RNA methylation, regulatory factors that alter gene expression and DNA replication, and any other manifestation of alterations in genomic nucleic acid or organelle nucleic acids.


In some embodiments, these genetic variations can be found to be associated with one or more disorders and/or diseases using the methods disclosed herein. In some embodiments, these genetic variations can be found to be associated with absence of one or more disorders and/or diseases (i.e., the one or more variants are protective against development of the disorder and/or diseases) using the methods disclosed herein. In some embodiments the one or more disorders and/or diseases comprise one or more developmental disorders. In some embodiments the one or more developmental disorders comprise one or more Pervasive Developmental Disorders (PDD). In some embodiments, the one or more PDDs comprise Autism Spectrum Disorder (ASD), also known as autism. In another embodiment, the one or more developmental disorders comprise Pervasive Developmental Disorder—Not Otherwise Specified (PDD-NOS). In some embodiments, PDD can comprise Asperger Syndrome, Rett Syndrome, Fragile X Syndrome and/or Childhood Disintegrative Disorder. In some embodiments genetic variations can be associated with one or more PDDs. In some embodiments genetic variations can be associated with one or more PDD-NOSs.


Scientific evidence suggests there is a potential for various combinations of factors causing ASD, such as multiple genetic variations that may cause autism on their own or when combined with exposure to as yet undetermined environmental factors Timing of exposure during the child's development, such as before, during, or after birth, may also play a role in the development or final presentation of the disorder. A small number of cases can be linked to genetic disorders such as Fragile X, Tuberous Sclerosis, and Angelman's Syndrome, as well as exposure to environmental agents such as infectious ones (maternal rubella or cytomegalovirus) or chemical ones (thalidomide or valproate) during pregnancy.


In some embodiments, these genetic variations comprise point mutations, polymorphisms, single nucleotide polymorphisms (SNPs), single nucleotide variations (SNVs), translocations, insertions, deletions, amplifications, inversions, interstitial deletions, copy number variations (CNVs), loss of heterozygosity, or any combination thereof. As genetic variation includes any deletion, insertion or base substitution of the genomic DNA of one or more individuals in a first portion of a total population which thereby results in a difference at the site of the deletion, insertion or base substitution relative to one or more individuals in a second portion of the total population. Thus, the term “genetic variation” encompasses “wild type” or the most frequently occurring variation, and also includes “mutant,” or the less frequently occurring variation.


As used herein, a target molecule that is “associated with” or “correlates with” a particular genetic variation is a molecule that can be functionally distinguished in its structure, activity, concentration, compartmentalization, degradation, secretion, and the like, as a result of such genetic variation. In some embodiments polymorphisms (e.g. polymorphic markers, genetic variations, or genetic variants) can comprise any nucleotide position at which two or more sequences are possible in a subject population. In some embodiments, each version of a nucleotide sequence with respect to the polymorphism can represent a specific allele, of the polymorphism. In some embodiments, genomic DNA from a subject can contain two alleles for any given polymorphic marker, representative of each copy of the marker on each chromosome. In some embodiments, an allele can be a nucleotide sequence of a given location on a chromosome. Polymorphisms can comprise any number of specific alleles. In some embodiments of the disclosure, a polymorphism can be characterized by the presence of two or more alleles in a population. In some embodiments, the polymorphism can be characterized by the presence of three or more alleles. In some embodiments, the polymorphism can be characterized by four or more alleles, five or more alleles, six or more alleles, seven or more alleles, nine or more alleles, or ten or more alleles. In some embodiments an allele can be associated with one or more diseases or disorders, for example, a developmental disorder risk allele can be an allele that is associated with increased or decreased risk of developing a developmental disorder. In some embodiments, genetic variations and alleles can be used to associate an inherited phenotype, for example a developmental disorder, with a responsible genotype. In some embodiments, a developmental disorder risk allele can be a variant allele that is statistically associated with a screening of one or more developmental disorders. In some embodiments, genetic variations can be of any measurable frequency in the population, for example, a frequency higher than 10%, a frequency from 5-10%, a frequency from 1-5%, a frequency from 0.1-1%, or a frequency below 0.1%. As used herein, variant alleles can be alleles that differ from a reference allele. As used herein, a variant can be a segment of DNA that differs from the reference DNA, such as a genetic variation. In some embodiments, genetic variations can be used to track the inheritance of a gene that has not yet been identified, but whose approximate location is known.


As used herein, a “haplotype” can be information regarding the presence or absence of one or more genetic markers in a given chromosomal region in a subject. In some embodiments, a haplotype can be a segment of DNA characterized by one or more alleles arranged along the segment, for example, a haplotype can comprise one member of the pair of alleles for each genetic variation or locus. In some embodiments, the haplotype can comprise two or more alleles, three or more alleles, four or more alleles, five or more alleles, or any combination thereof, wherein, each allele can comprise one or more genetic variations along the segment.


In some embodiments, a genetic variation can be a functional aberration that can alter gene function, gene expression, polypeptide expression, polypeptide function, or any combination thereof. In some embodiments, a genetic variation can be a loss-of-function mutation, gain-of-function mutation, dominant negative mutation, or reversion. In some embodiments, a genetic variation can be part of a gene's coding region or regulatory region. Regulatory regions can control gene expression and thus polypeptide expression. In some embodiments, a regulatory region can be a segment of DNA wherein regulatory polypeptides, for example, transcription or splicing factors, can bind. In some embodiments a regulatory region can be positioned near the gene being regulated, for example, positions upstream or downstream of the gene being regulated. In some embodiments, a regulatory region (e g, enhancer element) can be several thousands of base pairs upstream or downstream of a gene.


In some embodiments, variants can include changes that affect a polypeptide, such as a change in expression level, sequence, function, localization, binding partners, or any combination thereof. In some embodiments, a genetic variation can be a frameshift mutation, nonsense mutation, missense mutation, neutral mutation, or silent mutation. For example, sequence differences, when compared to a reference nucleotide sequence, can include the insertion or deletion of a single nucleotide, or of more than one nucleotide, resulting in a frame shift; the change of at least one nucleotide, resulting in a change in the encoded amino acid; the change of at least one nucleotide, resulting in the generation of a premature stop codon; the deletion of several nucleotides, resulting in a deletion of one or more amino acids encoded by the nucleotides; the insertion of one or several nucleotides, such as by unequal recombination or gene conversion, resulting in an interruption of the coding sequence of a reading frame; duplication of all or a part of a sequence; transposition; or a rearrangement of a nucleotide sequence. Such sequence changes can alter the polypeptide encoded by the nucleic acid, for example, if the change in the nucleic acid sequence causes a frame shift, the frame shift can result in a change in the encoded amino acids, and/or can result in the generation of a premature stop codon, causing generation of a truncated polypeptide. In some embodiments, a genetic variation associated with a developmental disorder can be a synonymous change in one or more nucleotides, for example, a change that does not result in a change in the amino acid sequence. Such a polymorphism can, for example, alter splice sites, affect the stability or transport of mRNA, or otherwise affect the transcription or translation of an encoded polypeptide. In some embodiments, a synonymous mutation can result in the polypeptide product having an altered structure due to rare codon usage that impacts polypeptide folding during translation, which in some cases may alter its function and/or drug binding properties if it is a drug target. In some embodiments, the changes that can alter DNA increase the possibility that structural changes, such as amplifications or deletions, occur at the somatic level. A polypeptide encoded by the reference nucleotide sequence can be a reference polypeptide with a particular reference amino acid sequence, and polypeptides encoded by variant nucleotide sequences can be variant polypeptides with variant amino acid sequences.


In some embodiments, one or more variant polypeptides can be associated with one or more diseases or disorders, such as ASD. In some embodiments, variant polypeptides and changes in expression, localization, and interaction partners thereof, can be used to associate an inherited phenotype, for example, a developmental disorder, with a responsible genotype. In some embodiments, a developmental disorder associated variant polypeptide can be statistically associated with a diagnosis, prognosis, or theranosis of one or more developmental disorders.


The most common sequence variants comprise base variations at a single base position in the genome, and such sequence variants, or polymorphisms, are commonly called single nucleotide polymorphisms (SNPs) or single nucleotide variants (SNVs). In some embodiments, a SNP represents a genetic variant present at greater than or equal to 1% occurrence in a population and in some embodiments a SNP or an SNV can represent a genetic variant present at any frequency level in a population. A SNP can be a nucleotide sequence variation occurring when a single nucleotide at a location in the genome differs between members of a species or between paired chromosomes in a subject. SNPs can include variants of a single nucleotide, for example, at a given nucleotide position, some subjects can have a ‘G’, while others can have a ‘C’. SNPs can occur in a single mutational event, and therefore there can be two possible alleles possible at each SNP site; the original allele and the mutated allele. SNPs that are found to have two different bases in a single nucleotide position are referred to as biallelic SNPs, those with three are referred to as triallelic, and those with all four bases represented in the population are quadallelic. In some embodiments, SNPs can be considered neutral. In some embodiments SNPs can affect susceptibility to developmental disorders. SNP polymorphisms can have two alleles, for example, a subject can be homozygous for one allele of the polymorphism wherein both chromosomal copies of the individual have the same nucleotide at the SNP location, or a subject can be heterozygous wherein the two sister chromosomes of the subject contain different nucleotides. The SNP nomenclature as reported herein is the official Reference SNP (rs) ID identification tag as assigned to each unique SNP by the National Center for Biotechnological Information (NCBI).


Another genetic variation of the disclosure can be copy number variations (CNVs). As used herein, “CNVs” include alterations of the DNA of a genome that results in an abnormal number of copies of one or more sections of DNA. In some embodiments, a CNV comprises a CNV-subregion. As used herein, a “CNV-subregion” includes a continuous nucleotide sequence within a CNV. In some embodiments, the nucleotide sequence of a CNV-subregion can be shorter than the nucleotide sequence of the CNV. CNVs can be inherited or caused by de novo mutation and can be responsible for a substantial amount of human phenotypic variability, behavioral traits, and disease susceptibility. In some embodiments, CNVs of the current disclosure can be associated with susceptibility to one or more developmental disorders, for example, Autism Spectrum Disorder. In some embodiments, CNVs can include a single gene or include a contiguous set of genes. In some embodiments, CNVs can be caused by structural rearrangements of the genome, for example, unbalanced translocations, insertions, deletions, amplifications, and interstitial deletions. In some embodiments, these structural rearrangements occur on one or more chromosomes. Low copy repeats (LCRs), which are region-specific repeat sequences (also known as segmental duplications), can be susceptible to these structural rearrangements, resulting in CNVs. Factors such as size, orientation, percentage similarity and the distance between the copies can influence the susceptibility of LCRs to genomic rearrangement. In addition, rearrangements may be mediated by the presence of high copy number repeats, such as long interspersed elements (LINEs) and short interspersed elements (SINEs), often via non-homologous recombination. For example, chromosomal rearrangements can arise from non-allelic homologous recombination during meiosis or via a replication-based mechanism such as fork stalling and template switching (FoSTeS) (Zhang F. et al., Nat. Genet., 2009) or microhomology-mediated break-induced repair (MMBIR) (Hastings P. J. et al., PLoS Genet., 2009). In some embodiments, CNVs are referred to as structural variants, which are a broader class of variant that also includes copy number neutral alterations such as inversions and balanced translocations. In some embodiments, CNVs are referred to as structural variants. In some embodiments, structural variants can be a broader class of variant that can also include copy number neutral alterations such as inversions and balanced translocations.


CNVs can account for genetic variation affecting a substantial proportion of the human genome, for example, known CNVs can cover over 15% of the human genome sequence (Estivill, X and Armengol, L., PLoS Genetics, 2007). CNVs can affect gene expression, phenotypic variation and adaptation by disrupting or impairing gene dosage, and can cause disease, for example, microdeletion and microduplication disorders, and can confer susceptibility to diseases and disorders. Updated information about the location, type, and size of known CNVs can be found in one or more databases, for example, the Database of Genomic Variants, which currently contains data for over 100,000 CNVs (as of September, 2013).


Other types of sequence variants can be found in the human genome and can be associated with a disease or disorder, including but not limited to, microsatellites. Microsatellite markers are stable, polymorphic, easily analyzed, and can occur regularly throughout the genome, making them especially suitable for genetic analysis. A polymorphic microsatellite can comprise multiple small repeats of bases, for example, CA repeats, at a particular site wherein the number of repeat lengths varies in a population. In some embodiments, microsatellites, for example, variable number of tandem repeats (VNTRs), can be short segments of DNA that have one or more repeated sequences, for example, about 2 to 5 nucleotides long, that can occur in non-coding DNA. In some embodiments, changes in microsatellites can occur during genetic recombination of sexual reproduction, increasing or decreasing the number of repeats found at an allele, or changing allele length.


Developmental Disorders


Developmental disorders are disorders that occur at some stage in a child's development, often retarding the development, including psychological or physical disorders. In some embodiments, they can be distinguished into specific developmental disorders including Pervasive Developmental Disorders (PDDs) and Pervasive Developmental Disorder—Not Otherwise Specified (PDD-NOS). In a preferred embodiment of the present disclosure, a PDD can comprise Autism Spectrum Disorder (ASD). Generally, symptoms that may be present to some degree in a subject of the present disclosure with a PDD can include difficulty with verbal communication, including problems using and understanding language, difficulty with non-verbal communication, such as gestures and facial expressions such as smiling, difficulty with social interaction, including relating to people and to his or her surroundings, unusual ways of playing with toys and other objects, difficulty adjusting to changes in routine or familiar surroundings, repetitive body movements or patterns of behavior, such as hand flapping, spinning, and head banging, changing response to sound, temper tantrums, difficulty sleeping, aggressive behavior, and/or fearfulness or anxiety. ASD can be defined by a certain set of behaviors that can range from the very mild to the severe. Possible indicators of Autism Spectrum Disorders include a subject whom does not babble, point, or make meaningful gestures by 1 year of age; does not speak one word by 16 months, does not combine two words by 2 years, does not respond to their name, and/or loses language or social skills.


As described herein, Pervasive Developmental Disorders—Not Otherwise Specified (PDD-NOS) can comprise Asperger Syndrome, Rett Syndrome, Fragile X Syndrome, and/or Childhood Disintegrative Disorder. In some embodiments a screening of PDD-NOS can be a screening of being on the autism spectrum, but not falling within any of the existing specific categories of autism. PDD-NOS is a pervasive developmental disorder (PDD)/autism spectrum disorder (ASD) and is often referred to as atypical autism.


Subjects


A “subject”, as used herein, can be an individual of any age or sex from whom a sample containing nucleotides is obtained for analysis by one or more methods described herein so as to obtain nucleic acid information, for example, a male or female adult, child, newborn, or fetus. In some embodiments, a subject can be any target of therapeutic administration. In some embodiments, a subject can be a test subject or a reference subject. In some embodiments, a subject can be associated with a condition or disease or disorder, asymptomatic or symptomatic, have increased or decreased susceptibility to a disease or disorder, be associated or unassociated with a treatment or treatment regimen, or any combination thereof.


As used herein, a “cohort” can represent an ethnic group, a patient group, a particular age group, a group not associated with a particular disease or disorder, a group associated with a particular disease or disorder, a group of asymptomatic subjects, a group of symptomatic subjects, or a group or subgroup of subjects associated with a particular response to a treatment regimen or clinical trial. In some embodiments, a patient can be a subject afflicted with a disease or disorder. In some embodiments, a patient can be a subject not afflicted with a disease or disorder and is considered apparently healthy, or a normal or control subject. In some embodiments, a subject can be a test subject, a patient or a candidate for a therapeutic, wherein genomic DNA from the subject, patient, or candidate is obtained for analysis by one or more methods of the present disclosure herein, so as to obtain genetic variation information of the subject, patient or candidate.


In some embodiments, the nucleic acid sample can be obtained prenatally from a fetus or embryo or from the mother, for example, from fetal or embryonic cells in the maternal circulation. In some embodiments, the nucleic acid sample can be obtained with the assistance of a health care provider, for example, to draw blood. In some embodiments, the nucleic acid sample can be obtained without the assistance of a health care provider, for example, where the nucleic acid sample is obtained non-invasively, such as a saliva sample, or a sample comprising buccal cells that is obtained using a buccal swab or brush, or a mouthwash sample.


The present disclosure also provides methods for assessing genetic variations in subjects who are members of a target population. Such a target population is in some embodiments a population or group of subjects at risk of developing the disease, based on, for example, other genetic factors, biomarkers, biophysical parameters, diagnostic testing such as magnetic resonance imaging (MRI), family history of a developmental disorder, previous screening or medical history, or any combination thereof.


Although ASD is known to affect children to a higher extent than adults, subjects of all ages are contemplated in the present disclosure. In some embodiments subjects can be from specific age subgroups, such as those over the age of 1, over the age of 2, over the age of 3, over the age of 4, over the age of 5, over the age of 6, over the age of 7, over the age of 8, over the age of 9, over the age of 10, over the age of 15, over the age of 20, over the age of 25, over the age of 30, over the age of 35, over the age of 40, over the age of 45, over the age of 50, over the age of 55, over the age of 60, over the age of 65, over the age of 70, over the age of 75, over the age of 80, or over the age of 85. Other embodiments of the disclosure pertain to other age groups, such as subjects aged less than 85, such as less than age 80, less than age 75, less than age 70, less than age 65, less than age 60, less than age 55, less than age 50, less than age 45, less than age 40, less than age 35, less than age 30, less than age 25, less than age 20, less than age 15, less than age 10, less than age 9, less than age 8, less than age 7, less than age 6, less than age 5, less than age 4, less than age 3, less than age 2, or less than age 1. Other embodiments relate to subjects with age at onset of the disease in any of particular age or age ranges defined by the numerical values described in the above or other numerical values bridging these numbers. It is also contemplated that a range of ages can be relevant in certain embodiments, such as age at onset at more than age 15 but less than age 20. Other age ranges are however also contemplated, including all age ranges bracketed by the age values listed in the above.


The genetic variations of the present disclosure found to be associated with a developmental disorder can show similar association in other human populations. Particular embodiments comprising subject human populations are thus also contemplated and within the scope of the disclosure. Such embodiments relate to human subjects that are from one or more human populations including, but not limited to, Caucasian, Ashkenazi Jewish, Sephardi Jewish, European, American, Eurasian, Asian, Central/South Asian, East Asian, Middle Eastern, African, Hispanic, and Oceanic populations. European populations include, but are not limited to, Swedish, Norwegian, Finnish, Russian, Danish, Icelandic, Irish, Kelt, English, Scottish, Dutch, Belgian, French, German, Spanish, Portuguese, Italian, Polish, Bulgarian, Slavic, Serbian, Bosnian, Czech, Greek and Turkish populations. The ethnic contribution in subjects can also be determined by genetic analysis, for example, genetic analysis of ancestry can be carried out using unlinked microsatellite markers or single nucleotide polymorphisms (SNPs) such as those set out in Smith et al. (Smith M. W. et al., 2004, Am. J. Hum. Genet. 74:1001).


It is also well known to the person skilled in the art that certain genetic variations have different population frequencies in different populations, or are polymorphic in one population but not in another. A person skilled in the art can however apply the methods available and as thought herein to practice the present disclosure in any given human population. This can include assessment of genetic variations of the present disclosure, so as to identify those markers that give strongest association within the specific population. Thus, the at-risk variants of the present disclosure can reside on different haplotype background and in different frequencies in various human populations.


Samples


Samples that are suitable for use in the methods described herein can be nucleic acid samples from a subject. A “nucleic acid sample” as used herein can include RNA, DNA, polypeptides, or a combination thereof. Nucleic acids and polypeptides can be extracted from one or more nucleic acid samples including but not limited to, blood, saliva, urine, mucosal scrapings of the lining of the mouth, expectorant, serum, tears, skin, tissue, or hair. A nucleic acid sample can be assayed for nucleic acid information. “Nucleic acid information,” as used herein, includes a nucleic acid sequence itself, the presence/absence of genetic variation in the nucleic acid sequence, a physical property which varies depending on the nucleic acid sequence (for example, Tm), and the amount of the nucleic acid (for example, number of mRNA copies). A “nucleic acid” means any one of DNA, RNA, DNA including artificial nucleotides, or RNA including artificial nucleotides. As used herein, a “purified nucleic acid” includes cDNAs, fragments of genomic nucleic acids, nucleic acids produced polymerase chain reaction (PCR), nucleic acids formed by restriction enzyme treatment of genomic nucleic acids, recombinant nucleic acids, and chemically synthesized nucleic acid molecules. A “recombinant” nucleic acid molecule includes a nucleic acid molecule made by an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques. As used herein, a “polypeptide” includes proteins, fragments of proteins, and peptides, whether isolated from natural sources, produced by recombinant techniques, or chemically synthesized. A polypeptide may have one or more modifications, such as a post-translational modification (e.g., glycosylation, etc.) or any other modification (e.g., pegylation, etc.). The polypeptide may contain one or more non-naturally-occurring amino acids (e.g., such as an amino acid with a side chain modification).


In some embodiments, the nucleic acid sample can comprise cells or tissue, for example, cell lines. Exemplary cell types from which nucleic acids can be obtained using the methods described herein and include but are not limited to, a blood cell; such as a B lymphocyte, T lymphocyte, leukocyte, erythrocyte, macrophage, or neutrophil; a muscle cell such as a skeletal cell, smooth muscle cell or cardiac muscle cell; a germ cell, such as a sperm or egg; an epithelial cell; a connective tissue cell, such as an adipocyte, chondrocyte; fibroblast or osteoblast; a neuron; an astrocyte; a stromal cell; an organ specific cell, such as a kidney cell, pancreatic cell, liver cell, or a keratinocyte; a stem cell; or any cell that develops there from. A cell from which nucleic acids can be obtained can be a blood cell or a particular type of blood cell including, for example, a hematopoietic stem cell or a cell that arises from a hematopoietic stem cell such as a red blood cell, B lymphocyte, T lymphocyte, natural killer cell, neutrophil, basophil, eosinophil, monocyte, macrophage, or platelet. Generally any type of stem cell can be used including, without limitation, an embryonic stem cell, adult stem cell, or pluripotent stem cell.


In some embodiments, a nucleic acid sample can be processed for RNA or DNA isolation, for example, RNA or DNA in a cell or tissue sample can be separated from other components of the nucleic acid sample. Cells can be harvested from a nucleic acid sample using standard techniques known in the art, for example, by centrifuging a cell sample and resuspending the pelleted cells, for example, in a buffered solution, for example, phosphate-buffered saline (PBS). In some embodiments, after centrifuging the cell suspension to obtain a cell pellet, the cells can be lysed to extract DNA. In some embodiments, the nucleic acid sample can be concentrated and/or purified to isolate DNA. All nucleic acid samples obtained from a subject, including those subjected to any sort of further processing, are considered to be obtained from the subject. In some embodiments, standard techniques and kits known in the art can be used to extract RNA or DNA from a nucleic acid sample, including, for example, phenol extraction, a QIAamp® Tissue Kit (Qiagen, Chatsworth, Calif.), a Wizard® Genomic DNA purification kit (Promega), or a Qiagen Autopure method using Puregene chemistry, which can enable purification of highly stable DNA well-suited for archiving.


In some embodiments, determining the identity of an allele or determining copy number can, but need not, include obtaining a nucleic acid sample comprising RNA and/or DNA from a subject, and/or assessing the identity, copy number, presence or absence of one or more genetic variations and their chromosomal locations within the genomic DNA (i.e., subject's genome) derived from the nucleic acid sample.


The individual or organization that performs the determination need not actually carry out the physical analysis of a nucleic acid sample from a subject. In some embodiments, the methods can include using information obtained by analysis of the nucleic acid sample by a third party. In some embodiments, the methods can include steps that occur at more than one site. For example, a nucleic acid sample can be obtained from a subject at a first site, such as at a health care provider or at the subject's home in the case of a self-testing kit. The nucleic acid sample can be analyzed at the same or a second site, for example, at a laboratory or other testing facility.


Methods of Screening


As used herein, screening a subject comprises diagnosing or determining, theranosing, or determining the susceptibility to developing (prognosing) a developmental disorder, for example, ASD. In particular embodiments, the disclosure is a method of determining a presence of, or a susceptibility to, a developmental disorder, by detecting at least one genetic variation in a sample from a subject as described herein. In some embodiments, detection of particular alleles, markers, variations, or haplotypes is indicative of a presence or susceptibility to a developmental disorder. Although there can be many concerns about screening a subject with an ASD, the earlier the screening of ASD is made, the earlier needed interventions can begin. Evidence over the last 15 years indicates that intensive early intervention in optimal educational settings for at least 2 years during the preschool years results in improved outcomes in most young children with ASD. In evaluating a child, clinicians rely on behavioral characteristics to make a diagnosis, prognosis, or theranosis. Some of the characteristic behaviors of ASD may be apparent in the first few months of a child's life, or they may appear at any time during the early years. For the screening problems in at least one of the areas of communication, socialization, or restricted behavior must be present before the age of 3. The screening requires a two-stage process. The first stage involves developmental screening during “well-child” check-ups; the second stage entails a comprehensive evaluation by a multidisciplinary team. A “well child” check-up should include a developmental screening test. Several screening instruments have been developed to quickly gather information about a child's social and communicative development within medical settings. Among them are the Checklist of Autism in Toddlers (CHAT), the modified Checklist for Autism in Toddlers (M-CHAT), the Screening Tool for Autism in Two-Year-Olds (STAT), and the Social Communication Questionnaire (SCQ) for children 4 years of age and older. Some screening instruments rely solely on parent responses to a questionnaire, and some rely on a combination of parent report and observation. Key items on these instruments that appear to differentiate children with autism from other groups before the age of 2 include pointing and pretend play. Screening instruments do not provide individual diagnosis, prognosis, or theranosis, but serve to assess the need for referral for possible screening of ASD. These screening methods may not identify children with mild ASD, such as those with high-functioning autism or Asperger syndrome. The second stage of screening must be comprehensive in order to accurately rule in or rule out an ASD or other developmental problem. This evaluation may be done by a multidisciplinary team that includes a psychologist, a neurologist, a psychiatrist, a speech therapist, or other professionals who screen children with ASD. Because ASDs are complex disorders and may involve other developmental or genetic problems, a comprehensive evaluation should entail developmental and genetic assessment, along with in-depth cognitive and language testing. In addition, measures developed specifically for screening autism are often used. These include the Autism Diagnosis Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS-G). The ADI-R is a structured interview that contains over 100 items and is conducted with a caregiver. It consists of four main factors including the child's communication, social interaction, repetitive behaviors, and age-of-onset symptoms. The ADOS-G is an observational measure used to “press” for socio-communicative behaviors that are often delayed, abnormal, or absent in children with ASD. Still another instrument often used by professionals is the Childhood Autism Rating Scale (CARS). It can aid in evaluating the child's body movements, adaptation to change, listening response, verbal communication, and relationship to people. It is suitable for use with children over 2 years of age. The examiner observes the child and also obtains relevant information from the parents. The child's behavior is rated on a scale based on deviation from the typical behavior of children of the same age. Two other tests that can be used to assess any child with a developmental delay are a formal audiologic hearing evaluation and a lead screening. Although some hearing loss can co-occur with ASD, some children with ASD may be incorrectly thought to have such a loss. In addition, if the child has suffered from an ear infection, transient hearing loss can occur. Lead screening is essential for children who remain for a long period of time in the oral-motor stage in which they put any and everything into their mouths. Children with an autistic disorder usually have elevated blood lead levels. Customarily, an expert screening team has the responsibility of thoroughly evaluating the child, assessing the child's unique strengths and weaknesses, and determining a formal screen. The team will then meet with the parents to explain the results of the evaluation.


PDD-NOS is typically screened by psychologists and Pediatric Neurologists. No singular specific test can be administered to determine whether or not a child is on the spectrum. Screening can be made through observations, questionnaires, and tests. A parent will usually initiate the quest into the screening with questions for their child's pediatrician about their child's development after noticing abnormalities. From there, doctors will ask questions to gauge the child's development in comparison to age-appropriate milestones. One test that measures this is the Modified Checklist of Autism in Toddlers (MCHAT). This is a list of questions whose answers will determine whether or not the child should be referred to a specialist such as a developmental pediatrician, a neurologist, a psychiatrist, or a psychologist. Another checklist, the DSM-IV is a series of characteristics and criteria to qualify for an autism diagnosis. Because PDD-NOS is a spectrum disorder, not every child shows the same signs. The two main characteristics of the disorder are difficulties with social interaction skills and communication. Signs are often visible in babies but a diagnosis is usually not made until around age 4. Even though PDD-NOS is considered milder than typical autism, this is not always true. While some characteristics may be milder, others may be more severe. Once a child with PDD-NOS enters school, he or she will often be very eager to interact with classmates, but may act socially different to peers and be unable to make genuine connections. As they age, the closest connections they make are typically with their parents. Children with PDD-NOS have difficulty reading facial expressions and relating to feelings of others. They may not know how to respond when someone is laughing or crying. Literal thinking is also characteristic of PDD-NOS. They will most likely have difficulty understanding figurative speech and sarcasm Inhibited communication skills are a sign of PDD-NOS that begins immediately after birth. As an infant, they will not babble, and as they age, they do not speak when age appropriate. Once verbal communication begins, their vocabulary is often limited. Some characteristics of language-based patterns are: repetitive or rigid language, narrow interests, uneven language development, and poor nonverbal communication. A very common characteristic of PDD-NOS is severe difficulty grasping the difference between pronouns, particularly between “you” and “me” when conversing. During the last few years, screening instruments have been devised to screen for Asperger syndrome and higher functioning autism. The Autism Spectrum Screening Questionnaire (ASSQ), the Australian Scale for Asperger's Syndrome, and the most recent, the Childhood Asperger Syndrome Test (CAST), are some of the instruments that are reliable for identification of school-age children with Asperger syndrome or higher functioning autism. These tools concentrate on social and behavioral impairments in children without significant language delay. If, following the screening process or during a routine “well child” check-up, a subject's doctor sees any of the possible indicators of ASD, further evaluation is indicated.


While means for screening ASDs exist, many times symptoms go unnoticed until late in childhood or symptoms are so minor they are left unnoticed. Thus there exists a need for an improved ASD screening test. Described herein are methods of screening an individual for one or more developmental disorders, including but not limited to, determining the identity and location of genetic variations, such as variations in nucleotide sequence and copy number, and the presence or absence of alleles or genotypes in one or more samples from one or more subjects using any of the methods described herein. In some embodiments, determining an association to having or developing a developmental disorder can be performed by detecting particular variations that appear more frequently in test subjects compared to reference subjects and analyzing the molecular and physiological pathways these variations can affect.


Within any given population, there can be an absolute susceptibility of developing a disease or trait, defined as the chance of a person developing the specific disease or trait over a specified time-period. Susceptibility (e.g. being at-risk) is typically measured by looking at very large numbers of people, rather than at a particular individual. As described herein, certain copy number variations (genetic variations) are found to be useful for susceptibility assessment of a developmental disorder. Susceptibility assessment can involve detecting particular genetic variations in the genome of individuals undergoing assessment. Particular genetic variations are found more frequently in individuals with a developmental disorder, than in individuals without a developmental disorder. Therefore, these genetic variations have predictive value for detecting a developmental disorder, or a susceptibility to a developmental disorder, in an individual. Without intending to be limited by theory, it is believed that the genetic variations described herein to be associated with susceptibility of a developmental disorder represent functional variants predisposing to the disease. In some embodiments, a genetic variation can confer a susceptibility of the condition, for example carriers of the genetic variation are at a different risk of the condition than non-carriers. In some embodiments, the presence of a genetic variation is indicative of increased susceptibility to a developmental disorder, such as Autism Spectrum Disorder.


In some embodiments, screening can be performed using any of the methods disclosed, alone or in combination. In some embodiments, screening can be performed using Polymerase Chain Reaction (PCR). In some embodiments screening can be performed using Array Comparative Genomic Hybridization (aCGH) to detect CNVs. In another preferred embodiment screening can be performed using exome sequencing to detect SNVs, indels, and in some cases CNVs using appropriate analysis algorithms. In another preferred embodiment screening is performed using high-throughput (also known as next generation) whole genome sequencing methods and appropriate algorithms to detect all or nearly all genetic variations present in a genomic DNA sample. In some embodiments, the genetic variation information as it relates to the current disclosure can be used in conjunction with any of the above mentioned symptomatic screening tests to screen a subject for ASD, for example, using a combination of aCGH and a childhood screening test, such as the Checklist of Autism in Toddlers (CHAT).


In some embodiments, information from any of the above screening methods (e.g. specific symptoms, scoring matrix, or genetic variation data) can be used to define a subject as a test subject or reference subject. In some embodiments, information from any of the above screening methods can be used to associate a subject with a test or reference population, for example, a subject in a population. In the present study, for example, all the probands in Table 1 met the criteria for autism on one or both of the screening measures including the Autism Diagnostic Interview-Revised (ADI-R) training and the Autism Diagnostic Observation Schedule (ADOS) training.


In one embodiment, an association with a developmental disorder can be determined by the statistical likelihood of the presence of a genetic variation in a subject with a developmental disorder, for example, an unrelated individual or a first or second-degree relation of the subject. In some embodiments, an association with a developmental disorder can be determined by determining the statistical likelihood of the absence of a genetic variation in an unaffected reference subject, for example, an unrelated individual or a first or second-degree relation of the subject. The methods described herein can include obtaining and analyzing a nucleic acid sample from one or more suitable reference subjects.


In the present context, the term screening comprises diagnosis, prognosis, and theranosis. Screening can refer to any available screening method, including those mentioned herein. As used herein, susceptibility can be proneness of a subject towards the development of a developmental condition, or towards being less able to resist a particular developmental condition than one or more control subjects. In some embodiments, susceptibility can encompass increased susceptibility. For example, particular nucleic acid variations of the disclosure as described herein can be characteristic of increased susceptibility to development of a developmental disorder. In some embodiments, particular nucleic acid variations can confer decreased susceptibility, for example particular nucleic variations of the disclosure as described herein can be characteristic of decreased susceptibility to development of a developmental disorder.


As described herein, a genetic variation predictive of susceptibility to or presence of a developmental disorder can be one where the particular genetic variation is more frequently present in a group of subjects with the condition (affected), compared to the frequency of its presence in a reference group (control), such that the presence of the genetic variation is indicative of susceptibility to or presence of the developmental disorder. In some embodiments, the reference group can be a population nucleic acid sample, for example, a random nucleic acid sample from the general population or a mixture of two or more nucleic acid samples from a population. In some embodiments, disease-free controls can be characterized by the absence of one or more specific disease-associated symptoms, for example, individuals who have not experienced symptoms associated with a developmental disorder. In some embodiments, the disease-free control group is characterized by the absence of one or more disease-specific risk factors, for example, at least one genetic and/or environmental risk factor. In some embodiments, a reference sequence can be referred to for a particular site of genetic variation. In some embodiments, a reference allele can be a wild-type allele and can be chosen as either the first sequenced allele or as the allele from a control individual. In some embodiments, one or more reference subjects can be characteristically matched with one or more affected subjects, for example, with matched aged, gender or ethnicity.


A person skilled in the art can appreciate that for genetic variations with two or more alleles present in the population being studied, and wherein one allele can found in increased frequency in a group of individuals with a developmental disorder in the population, compared with controls, the other allele of the marker can be found in decreased frequency in the group of individuals with the trait or disease, compared with controls. In such a case, one allele of the marker, for example, the allele found in increased frequency in individuals with a developmental disorder, can be the at-risk allele, while the other allele(s) can be a neutral or protective allele.


A genetic variant associated with a developmental disorder can be used to predict the susceptibility of the disease for a given genotype. For any genetic variation, there can be one or more possible genotypes, for example, homozygote for the at-risk variant (e.g., in autosomal recessive disorders), heterozygote, and non-carrier of the at-risk variant. Autosomal recessive disorders can also result from two distinict genetic variants impacting the same gene such that the individual is a compound heterozygote (e.g., the maternal allele contains a different mutation than the paternal allele). Compound heterozygosity may result from two different SNVs, two different CNVs, an SNV and a CNV, or any combination of two different genetic variants but each present on a different allele for the gene. For X-linked genes, males who possess one copy of a variant-containing gene may be affected, while carrier females, who also possess a wild-type gene, may remain unaffected. In some embodiments, susceptibility associated with variants at multiple loci can be used to estimate overall susceptibility. For multiple genetic variants, there can be k (k=3^n*2^P) possible genotypes; wherein n can be the number of autosomal loci and p can be the number of gonosomal (sex chromosomal) loci. Overall susceptibility assessment calculations can assume that the relative susceptibilities of different genetic variants multiply, for example, the overall susceptibility associated with a particular genotype combination can be the product of the susceptibility values for the genotype at each locus. If the susceptibility presented is the relative susceptibility for a person, or a specific genotype for a person, compared to a reference population, then the combined susceptibility can be the product of the locus specific susceptibility values and can correspond to an overall susceptibility estimate compared with a population. If the susceptibility for a person is based on a comparison to non-carriers of the at-risk allele, then the combined susceptibility can correspond to an estimate that compares the person with a given combination of genotypes at all loci to a group of individuals who do not carry at-risk variants at any of those loci. The group of non-carriers of any at-risk variant can have the lowest estimated susceptibility and can have a combined susceptibility, compared with itself, for example, non-carriers, of 1.0, but can have an overall susceptibility, compared with the population, of less than 1.0.


Overall risk for multiple risk variants can be performed using standard methodology. Genetic variations described herein can form the basis of risk analysis that combines other genetic variations known to increase risk of a developmental disorder, or other genetic risk variants for a developmental disorder. In certain embodiments of the disclosure, a plurality of variants (genetic variations, variant alleles, and/or haplotypes) can be used for overall risk assessment. These variants are in some embodiments selected from the genetic variations as disclosed herein. Other embodiments include the use of the variants of the present disclosure in combination with other variants known to be useful for screening a susceptibility to a developmental disorder. In such embodiments, the genotype status of a plurality of genetic variations, markers and/or haplotypes is determined in an individual, and the status of the individual compared with the population frequency of the associated variants, or the frequency of the variants in clinically healthy subjects, such as age-matched and sex-matched subjects.


Methods such as the use of available algorithms and software can be used to identify, or call, significant genetic variations, including but not limited to, algorithms of DNA Analytics or DNAcopy, iPattern and/or QuantiSNP. In some embodiments, a threshold logratio value can be used to determine losses and gains. For example, using DNA Analytics, a log2 ratio cutoff of ≥0.25 and ≤0.25 to classify CNV gains and losses respectively can be used. As a further example, using DNAcopy, a log2 ratio cutoff of ≥0.35 and ≤0.35 to classify CNV gains and losses respectively can be used. For example, an Aberration Detection Module 2 (ADM2) algorithm, such as that of DNA Analytics 4.0.85 can be used to identify, or call, significant genetic variations. In some embodiments, two or more algorithms can be used to identify, or call, significant genetic variations. For example, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more algorithms can be used to identify, or call, significant genetic variations. In some embodiments, significant genetic variations can be CNVs.


CNVs detected by 2 or more algorithms can be defined as stringent and can be utilized for further analyses. In some embodiments, the information and calls from two or more of the methods described herein can be compared to each other to identify significant genetic variations more or less stringently. For example, CNV calls generated by two or more of DNA Analytics, Aberration Detection Module 2 (ADM2) algorithms, and DNAcopy algorithms can be defined as stringent CNVs. In some embodiments significant or stringent genetic variations can be tagged as identified or called if it can be found to have a minimal reciprocal overlap to a genetic variation detected by one or more platforms and/or methods described herein. For example, a minimum of 50% reciprocal overlap can be used to tag the CNVs as identified or called. For example, significant or stringent genetic variations can be tagged as identified or called if it can be found to have a reciprocal overlap of more than about 50%, 55% 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%, 99%, or equal to 100%, to a genetic variation detected by one or more platforms and/or methods described herein. For example, significant or stringent genetic variations can be tagged as identified or called if it can be found to have a reciprocal overlap of more than about 50% reciprocal overlap to a genetic variation detected by one or more platforms and/or methods described herein. In another embodiment, genetic variations can be detected from the log 2 ratio values calculated for individual probes present on an aCGH microarray via a statistical comparison of the probe's log 2 ratio value in a cohort of subjects with the disease or developmental disorder (e.g., autism) to the probe's log 2 ratio value in a cohort of subjects without the disease or developmental disorder (e.g., autism).


In some embodiments, a threshold log ratio value can be used to determine losses and gains. A log ratio value can be any log ratio value; for example, a log ratio value can be a log 2 ratio or a log 10 ratio. In some embodiments, a CNV segment whose median log 2 ratio is less than or equal to a log 2 ratio threshold value can be classified as a loss. For example, any segment whose median log 2 ratio is less than or equal to −0.1, −0.11, −0.12, −0.13, −0.14, −0.15, −0.16, −0.17, −0.18, −0.19, −0.2, −0.21, −0.22, −0.23, −0.24, −0.25, −0.26, −0.27, −0.28, −0.29, −0.3, −0.31, −0.32, −0.33, −0.34, −0.35, −0.36, −0.37, −0.38, −0.39, −0.4, −0.41, −0.42, −0.43, −0.44, −0.45, −0.46, −0.47, −0.48, −0.49, −0.5, −0.55, −0.6, −0.65, −0.7, −0.75, −0.8, −0.85, −0.9, −0.95, −1, −1.1, −1.2, −1.3, −1.4, −1.5, −1.6, −1.7, −1.8, −1.9, −2, −2.1, −2.2, −2.3, −2.4, −2.5, −2.6, −2.7, −2.8, −2.9, −3, −3.1, −3.2, −3.3, −3.4, −3.5, −3.6, −3.7, −3.8, −3.9, −4, −4.1, −4.2, −4.3, −4.4, −4.5, −4.6, −4.7, −4.8, −4.9, −5, −5.5, −6, −6.5, −7, −7.5, −8, −8.5, −9, −9.5, −10, −11, −12, −13, −14, −15, −16, −17, −18, −19, −20 or less, can be classified as a loss.


In some embodiments, one algorithm can be used to call or identify significant genetic variations, wherein any segment whose median log 2 ratio was less than or equal to −0.1, −0.11, −0.12, −0.13, −0.14, −0.15, −0.16, −0.17, −0.18, −0.19, −0.2, −0.21, −0.22, −0.23, −0.24, −0.25, −0.26, −0.27, −0.28, −0.29, −0.3, −0.31, −0.32, −0.33, −0.34, −0.35, −0.36, −0.37, −0.38, −0.39, −0.4, −0.41, −0.42, −0.43, −0.44, −0.45, −0.46, −0.47, −0.48, −0.49, −0.5, −0.55, −0.6, −0.65, −0.7, −0.75, −0.8, −0.85, −0.9, −0.95, −1, −1.1, −1.2, −1.3, −1.4, −1.5, −1.6, −1.7, −1.8, −1.9, −2, −2.1, −2.2, −2.3, −2.4, −2.5, −2.6, −2.7, −2.8, −2.9, −3, −3.1, −3.2, −3.3, −3.4, −3.5, −3.6, −3.7, −3.8, −3.9, −4, −4.1, −4.2, −4.3, −4.4, −4.5, −4.6, −4.7, −4.8, −4.9, −5, −5.5, −6, −6.5, −7, −7.5, −8, −8.5, −9, −9.5, −10, −11, −12, −13, −14, −15, −16, −17, −18, −19, −20 or less, can be classified as a loss. For example, any CNV segment whose median log 2 ratio is less than −0.35 as determined by DNAcopy can be classified as a loss. For example, losses can be determined according to a threshold log 2 ratio, which can be set at −0.35.


In some embodiments, two algorithms can be used to call or identify significant genetic variations, wherein any segment whose median log 2 ratio is less than or equal to −0.1, −0.11, −0.12, −0.13, −0.14, −0.15, −0.16, −0.17, −0.18, −0.19, −0.2, −0.21, −0.22, −0.23, −0.24, −0.25, −0.26, −0.27, −0.28, −0.29, −0.3, −0.31, −0.32, −0.33, −0.34, −0.35, −0.36, −0.37, −0.38, −0.39, −0.4, −0.41, −0.42, −0.43, −0.44, −0.45, −0.46, −0.47, −0.48, −0.49, −0.5, −0.55, −0.6, −0.65, −0.7, −0.75, −0.8, −0.85, −0.9, −0.95, −1, −1.1, −1.2, −1.3, −1.4, −1.5, −1.6, −1.7, −1.8, −1.9, −2, −2.1, −2.2, −2.3, −2.4, −2.5, −2.6, −2.7, −2.8, −2.9, −3, −3.1, −3.2, −3.3, −3.4, −3.5, −3.6, −3.7, −3.8, −3.9, −4, −4.1, −4.2, −4.3, −4.4, −4.5, −4.6, −4.7, −4.8, −4.9, −5, −5.5, −6, −6.5, −7, −7.5, −8, −8.5, −9, −9.5, −10, −11, −12, −13, −14, −15, −16, −17, −18, −19, −20 or less, as determined by one algorithm, and wherein any segment whose median log 2 ratio is less than or equal to −0.1, −0.11, −0.12, −0.13, −0.14, −0.15, −0.16, −0.17, −0.18, −0.19, −0.2, −0.21, −0.22, −0.23, −0.24, −0.25, −0.26, −0.27, −0.28, −0.29, −0.3, −0.31, −0.32, −0.33, −0.34, −0.35, −0.36, −0.37, −0.38, −0.39, −0.4, −0.41, −0.42, −0.43, −0.44, −0.45, −0.46, −0.47, −0.48, −0.49, −0.5, −0.55, −0.6, −0.65, −0.7, −0.75, −0.8, −0.85, −0.9, −0.95, −1, −1.1, −1.2, −1.3, −1.4, −1.5, −1.6, −1.7, −1.8, −1.9, −2, −2.1, −2.2, −2.3, −2.4, −2.5, −2.6, −2.7, −2.8, −2.9, −3, −3.1, −3.2, −3.3, −3.4, −3.5, −3.6, −3.7, −3.8, −3.9, −4, −4.1, −4.2, −4.3, −4.4, −4.5, −4.6, −4.7, −4.8, −4.9, −5, −5.5, −6, −6.5, −7, −7.5, −8, −8.5, −9, −9.5, −10, −11, −12, −13, −14, −15, −16, −17, −18, −19, −20, or less, as determined by the other algorithm can be classified as a loss. For example, CNV calling can comprise using the Aberration Detection Module 2 (ADM2) algorithm and the DNAcopy algorithm, wherein losses can be determined according to a two threshold log 2 ratios, wherein the Aberration Detection Module 2 (ADM2) algorithm log 2 ratio can be −0.25 and the DNAcopy algorithm log 2 ratio can be −0.41.


In some embodiments, the use of two algorithms to call or identify significant genetic variations can be a stringent method. In some embodiments, the use of two algorithms to call or identify significant genetic variations can be a more stringent method compared to the use of one algorithm to call or identify significant genetic variations.


In some embodiments, any CNV segment whose median log 2 ratio is greater than a log 2 ratio threshold value can be classified as a gain. For example, any segment whose median log 2 ratio is greater than 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, or more can be classified as a gain.


In some embodiments, one algorithm can be used to call or identify significant genetic variations, wherein any segment whose median log 2 ratio is greater than or equal to 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, or more can be classified as a gain. For example, any CNV segment whose median log 2 ratio is greater than 0.35 as determined by DNAcopy can be classified as a gain. For example, gains can be determined according to a threshold log 2 ratio, which can be set at 0.35.


In some embodiments, two algorithms can be used to call or identify significant genetic variations, wherein any segment whose median log 2 ratio is greater than or equal to 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, or 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3 or more, as determined by one algorithm, and wherein any segment whose median log 2 ratio is greater than or equal to 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, or 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, or more, as determined by the other algorithm the can be classified as a gain. For example, CNV calling can comprise using the Aberration Detection Module 2 (ADM2) algorithm and the DNAcopy algorithm, wherein gains can be determined according to a two threshold log 2 ratios, wherein the Aberration Detection Module 2 (ADM2) algorithm log 2 ratio can be 0.25 and the DNAcopy algorithm log 2 ratio can be 0.32.


Any CNV segment whose absolute (median log-ratio/mad) value is less than 2 can be excluded (not identified as a significant genetic variation). For example, any CNV segment whose absolute (median log-ratio/mad) value is less than 2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1, 0.9, 0.8, 0.7, 0.6, or 0.5 or less can be excluded.


In some embodiments, multivariate analyses or joint risk analyses, including the use of multiplicative model for overall risk assessment, can subsequently be used to determine the overall risk conferred based on the genotype status at the multiple loci. Use of a multiplicative model, for example, assuming that the risk of individual risk variants multiply to establish the overall effect, allows for a straight-forward calculation of the overall risk for multiple markers. The multiplicative model is a parsimonious model that usually fits the data of complex traits reasonably well. Deviations from multiplicity have been rarely described in the context of common variants for common diseases, and if reported are usually only suggestive since very large sample sizes can be required to be able to demonstrate statistical interactions between loci. Assessment of risk based on such analysis can subsequently be used in the methods, uses and kits of the disclosure, as described herein.


In some embodiments, the significance of increased or decreased susceptibility can be measured by a percentage. In some embodiments, a significant increased susceptibility can be measured as a relative susceptibility of at least 1.2, including but not limited to: at least 1.3, at least 1.4, at least 1.5, at least 1.6, at least 1.7, at least 1.8, at least 1.9, at least 2.0, at least 2.5, at least 3.0, at least 4.0, at least 5.0, at least 6.0, at least 7.0, at least 8.0, at least 9.0, at least 10.0, and at least 15.0. In some embodiments, a relative susceptibility of at least 2.0, at least 3.0, at least 4.0, at least, 5.0, at least 6.0, or at least 10.0 is significant. Other values for significant susceptibility are also contemplated, for example, at least 2.5, 3.5, 4.5, 5.5, or any suitable other numerical values, wherein the values are also within scope of the present disclosure. In some embodiments, a significant increase in susceptibility is at least about 20%, including but not limited to about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 150%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, and 1500%. In one particular embodiment, a significant increase in susceptibility is at least 100%. In other embodiments, a significant increase in susceptibility is at least 200%, at least 300%, at least 400%, at least 500%, at least 700%, at least 800%, at least 900% and at least 1000%. Other cutoffs or ranges as deemed suitable by the person skilled in the art to characterize the disclosure are also contemplated, and those are also within scope of the present disclosure. In certain embodiments, a significant increase in susceptibility is characterized by a p-value, such as a p-value of less than 0.5, less than 0.4, less than 0.3, less than 0.2, less than 0.1, less than 0.05, less than 0.01, less than 0.001, less than 0.0001, less than 0.00001, less than 0.000001, less than 0.0000001, less than 0.00000001, or less than 0.000000001.


In some embodiments, an individual who is at a decreased susceptibility for or the lack of presence of a developmental condition can be an individual in whom at least one genetic variation, conferring decreased susceptibility for or the lack of presence of the developmental disorder is identified. In some embodiments, the genetic variations conferring decreased susceptibility are also protective. In one aspect, the genetic variations can confer a significant decreased susceptibility of or lack of presence of the developmental disorder.


In some embodiments, significant decreased susceptibility can be measured as a relative susceptibility of less than 0.9, including but not limited to less than 0.9, less than 0.8, less than 0.7, less than 0.6, less than 0.5, less than 0.4, less than 0.3, less than 0.2 and less than 0.1. In some embodiments, the decrease in susceptibility is at least 20%, including but not limited to at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% and at least 98%. Other cutoffs or ranges as deemed suitable by the person, skilled in the art to characterize the disclosure are however also contemplated, and those are also within scope of the present disclosure. In certain embodiments, a significant decrease in susceptibility is characterized by a p-value, such as a p-value of less than 0.05, less than 0.01, less than 0.001, less than 0.0001, less than 0.00001, less than 0.000001, less than 0.0000001, less than 0.00000001, or less than 0.000000001. Other tests for significance can be used, for example, a Fisher-exact test. Other statistical tests of significance known to the skilled person are also contemplated and are also within scope of the disclosure.


In some preferred embodiments, the significance of increased or decreased susceptibility can be determined according to the ratio of measurements from a test subject to a reference subject. In some embodiments, losses or gains of one or more CNVs can be determined according to a threshold log2 ratio determined by these measurements. In some embodiments, a log2 ratio value greater than 0.35 is indicative of a gain of one or more CNVs. In some embodiments, a log2 ratio value less than −0.35 is indicative of a loss of one or more CNVs. In some embodiments, the ratio of measurements from a test subject to a reference subject may be inverted such that the log 2 ratios of copy number gains are negative and the log 2 ratios of copy number losses are positive.


In some embodiments, the combined or overall susceptibility associated with a plurality of variants associated with a developmental disorder can also be assessed; for example, the genetic variations described herein to be associated with susceptibility to a developmental disorder can be combined with other common genetic risk factors. Combined risk for such genetic variants can be estimated in an analogous fashion to the methods described herein.


Calculating risk conferred by a particular genotype for the individual can be based on comparing the genotype of the individual to previously determined risk expressed, for example, as a relative risk (RR) or an odds ratio (OR), for the genotype, for example, for a heterozygous carrier of an at-risk variant for a developmental disorder. An odds ratio can be a statistical measure used as a metric of causality. For example, in genetic disease research it can be used to convey the significance of a variant in a disease cohort relative to an unaffected/normal cohort. The calculated risk for the individual can be the relative risk for a subject, or for a specific genotype of a subject, compared to the average population. The average population risk can be expressed as a weighted average of the risks of different genotypes, using results from a reference population, and the appropriate calculations to calculate the risk of a genotype group relative to the population can then be performed. Alternatively, the risk for an individual can be based on a comparison of particular genotypes, for example, heterozygous and/or homozygous carriers of an at-risk allele of a marker compared with non-carriers of the at-risk allele. Using the population average can, in certain embodiments, be more convenient, since it provides a measure that can be easy to interpret for the user, for example, a measure that gives the risk for the individual, based on his/her genotype, compared with the average in the population.


In some embodiments, the OR value can be calculated as follows: OR=(A/(N1−A))/(U/(N2−U)), where A=number of affected cases with variant, N1=total number of affected cases, U=number of unaffected cases with variant and N2=total number of unaffected cases. In circumstances where U=0, it is conventional to set U=1, so as to avoid infinities. In some preferred embodiments the OR can be calculated essentially as above, except that where U OR A=0, 0.5 is added to all of A, N1, U, N2. In another embodiment, a Fisher's Exact Test (FET) can be calculated using standard methods. In another embodiment, the p-values can be corrected for false discovery rate (FDR) using the Benjamini-Hochberg method (Benjamini Y. and Hochberg Y. 1995 J. Royal Statistical Society 57:289; Osborne J. A. and Barker C. A. 2007).


In certain embodiments of the disclosure, a genetic variation is correlated to a developmental disorder by referencing genetic variation data to a look-up table that comprises correlations between the genetic variation and a developmental disorder. The genetic variation in certain embodiments comprises at least one indication of the genetic variation. In some embodiments, the table comprises a correlation for one genetic variation. In other embodiments, the table comprises a correlation for a plurality of genetic variations. In both scenarios, by referencing to a look-up table that gives an indication of a correlation between a genetic variation and a developmental disorder, a risk for a developmental disorder, or a susceptibility to a developmental disorder, can be identified in the individual from whom the nucleic acid sample is derived.


The present disclosure also pertains to methods of clinical screening, for example, diagnosis, prognosis, or theranosis of a subject performed by a medical professional using the methods disclosed herein. In other embodiments, the disclosure pertains to methods of screening performed by a layman. The layman can be a customer of a genotyping, microarray, exome sequencing, or whole genome sequencing service provider. The layman can also be a genotype, microarray, exome sequencing, or whole genome sequencing service provider, who performs genetic analysis on a DNA sample from an individual, in order to provide service related to genetic risk factors for particular traits or diseases, based on the genotype status of the subject obtained from use of the methods described herein. The resulting genotype or genetic information can be made available to the individual and can be compared to information about developmental disorders or risk of developing a developmental disorder associated with one or various genetic variations, including but not limited to, information from public or private genetic variation databases or literature and scientific publications. The screening applications of developmental disorder-associated genetic variations, as described herein, can, for example, be performed by an individual, a health professional, or a third party, for example a service provider who interprets genotype information from the subject. In some embodiments the genetic analysis is performed in a CLIA-certified laboratory (i.e., the federal regulatory standards the U.S. that are specified in the Clinical Laboratory Improvement Amendments, administered by the Centers for Medicare and Medicaid Services) or equivalent laboratories in Europe and elsewhere in the world.


The information derived from analyzing sequence data can be communicated to any particular body, including the individual from which the nucleic acid sample or sequence data is derived, a guardian or representative of the individual, clinician, research professional, medical professional, service provider, and medical insurer or insurance company. Medical professionals can be, for example, doctors, nurses, medical laboratory technologists, and pharmacists. Research professionals can be, for example, principle investigators, research technicians, postdoctoral trainees, and graduate students.


In some embodiments, a professional can be assisted by determining whether specific genetic variants are present in a nucleic acid sample from a subject, and communicating information about genetic variants to a professional. After information about specific genetic variants is reported, a medical professional can take one or more actions that can affect subject care. For example, a medical professional can record information in the subject's medical record regarding the subject's risk of developing a developmental disorder. In some embodiments, a medical professional can record information regarding risk assessment, or otherwise transform the subject's medical record, to reflect the subject's current medical condition. In some embodiments, a medical professional can review and evaluate a subject's entire medical record and assess multiple treatment strategies for clinical intervention of a subject's condition.


A medical professional can initiate or modify treatment after receiving information regarding a subject's screening of a developmental disorder, for example. In some embodiments, a medical professional can recommend a change in therapy. In some embodiments, a medical professional can enroll a subject in a clinical trial for, by way of example, detecting correlations between a haplotype as described herein and any measurable or quantifiable parameter relating to the outcome of the treatment as described above.


In some embodiments, a medical professional can communicate information regarding a subject's screening of developing a developmental disorder to a subject or a subject's family. In some embodiments, a medical professional can provide a subject and/or a subject's family with information regarding a developmental disorder and risk assessment information, including treatment options, and referrals to specialists. In some embodiments, a medical professional can provide a copy of a subject's medical records to a specialist. In some embodiments, a research professional can apply information regarding a subject's risk of developing a developmental disorder to advance scientific research. In some embodiments, a research professional can obtain a subject's haplotype as described herein to evaluate a subject's enrollment, or continued participation, in a research study or clinical trial. In some embodiments, a research professional can communicate information regarding a subject's screening of a developmental disorder to a medical professional. In some embodiments, a research professional can refer a subject to a medical professional.


Any appropriate method can be used to communicate information to another person. For example, information can be given directly or indirectly to a professional and a laboratory technician can input a subject's genetic variation as described herein into a computer-based record. In some embodiments, information is communicated by making a physical alteration to medical or research records. For example, a medical professional can make a permanent notation or flag a medical record for communicating the risk assessment to other medical professionals reviewing the record. In addition, any type of communication can be used to communicate the risk assessment information. For example, mail, e-mail, telephone, and face-to-face interactions can be used. The information also can be communicated to a professional by making that information electronically available to the professional. For example, the information can be communicated to a professional by placing the information on a computer database such that the professional can access the information. In addition, the information can be communicated to a hospital, clinic, or research facility serving as an agent for the professional.


Results of these tests, and optionally interpretive information, can be returned to the subject, the health care provider or to a third party. The results can be communicated to the tested subject, for example, with a prognosis and optionally interpretive materials that can help the subject understand the test results and prognosis; used by a health care provider, for example, to determine whether to administer a specific drug, or whether a subject should be assigned to a specific category, for example, a category associated with a specific disease endophenotype, or with drug response or non-response; used by a third party such as a healthcare payer, for example, an insurance company or HMO, or other agency, to determine whether or not to reimburse a health care provider for services to the subject, or whether to approve the provision of services to the subject. For example, the healthcare payer can decide to reimburse a health care provider for treatments for a developmental disorder if the subject has a developmental disorder or has an increased risk of developing a developmental disorder.


Also provided herein are databases that include a list of genetic variations as described herein, and wherein the list can be largely or entirely limited to genetic variations identified as useful for screening a developmental disorder as described herein. The list can be stored, for example, on a flat file or computer-readable medium. The databases can further include information regarding one or more subjects, for example, whether a subject is affected or unaffected, clinical information such as endophenotype, age of onset of symptoms, any treatments administered and outcomes, for example, data relevant to pharmacogenomics, diagnostics, prognostics or theranostics, and other details, for example, data about the disorder in the subject, or environmental or other genetic factors. The databases can be used to detect correlations between a particular haplotype and the information regarding the subject.


The methods described herein can also include the generation of reports for use, for example, by a subject, care giver, or researcher, that include information regarding a subject's genetic variations, and optionally further information such as treatments administered, treatment history, medical history, predicted response, and actual response. The reports can be recorded in a tangible medium, e.g., a computer-readable disk, a solid state memory device, or an optical storage device.


Methods of Screening Using Variations in RNA and/or Polypeptides


In some embodiments of the disclosure, screening of a developmental disorder can be made by examining or comparing changes in expression, localization, binding partners, and composition of a polypeptide encoded by a nucleic acid associated with a developmental disorder, for example, in those instances where the genetic variations of the present disclosure results in a change in the composition or expression of the polypeptide and/or RNA, for example, mRNAs, microRNAs (miRNAs), and other noncoding RNAs (ncRNAs). Thus, screening of a developmental disorder can be made by examining expression and/or composition of one of these polypeptides and/or RNA, or another polypeptide and/or RNA encoded by a nucleic acid associated with a developmental disorder, in those instances where the genetic variation of the present disclosure results in a change in the expression, localization, binding partners, and/or composition of the polypeptide and/or RNA. In some embodiments, screening can comprise diagnosing a subject. In some embodiments, screening can comprise determining a prognosis of a subject, for example determining the susceptibility of developing a developmental disorder. In some embodiments, screening can comprise theranosing a subject.


The genetic variations described herein that show association to a developmental disorder can play a role through their effect on one or more of these nearby genes. For example, while not intending to be limited by theory, it is generally expected that a deletion of a chromosomal segment comprising a particular gene, or a fragment of a gene, can either result in an altered composition or expression, or both, of the encoded polypeptide and/or mRNA. Likewise, duplications, or high number copy number variations, are in general expected to result in increased expression of encoded polypeptide and/or RNA. Other possible mechanisms affecting genes within a genetic variation region include, for example, effects on transcription, effects on RNA splicing, alterations in relative amounts of alternative splice forms of mRNA, effects on RNA stability, effects on transport from the nucleus to cytoplasm, and effects on the efficiency and accuracy of translation. Thus, DNA variations can be detected directly, using the subjects unamplified or amplified genomic DNA, or indirectly, using RNA or DNA obtained from the subject's tissue(s) that are present in an aberrant form or expression level as a result of the genetic variations of the disclosure showing association to a developmental disorder (e.g., ASD). In another embodiment, DNA variations can be detected indirectly using a polypeptide or protein obtained from the subject's tissue(s) that is present in an aberrant form or expression level as a result of genetic variations of the disclosure showing association to the developmental disorder. In another embodiment, an aberrant form or expression level of a polypeptide or protein that results from one or more genetic variations of the disclosure showing association to the developmental disorder can be detected indirectly via another polypeptide or protein present in the same biological/cellular pathway that is modulated or interacts with said polypeptide or protein that results from one or more genetic variations of the disclosure. In some embodiments, the genetic variations of the disclosure showing association to a developmental disorder can affect the expression of a gene within the genetic variation region. In some embodiments, a genetic variation affecting an exonic region of a gene can affect, disrupt, or modulate the expression of the gene. In some embodiments, a genetic variation affecting an intergenic region of a gene can affect, disrupt, or modulate the expression of the gene.


Certain genetic variation regions can have flanking duplicated segments, and genes within such segments can have altered expression and/or composition as a result of such genomic alterations. Regulatory elements affecting gene expression can be located far away, even as far as tens or hundreds of kilobases away, from the gene that is regulated by said regulatory elements. Thus, in some embodiments, regulatory elements for genes that are located outside the genetic variation region can be located within the genetic variation, and thus be affected by the genetic variation. It is thus contemplated that the detection of the genetic variations described herein, can be used for assessing expression for one or more of associated genes not directly impacted by the genetic variations. In some embodiments, a genetic variation affecting an intergenic region of a gene can affect, disrupt, or modulate the expression of a gene located elsewhere in the genome, such as described above. For example, a genetic variation affecting an intergenic region of a gene can affect, disrupt, or modulate the expression of a transcription factor, located elsewhere in the genome, which regulates the gene.


In some embodiments, genetic variations of the disclosure showing association to ASD can affect protein expression at the translational level. It can be appreciated by those skilled in the art that this can occur by increased or decreased expression of one or more microRNAs (miRNAs) that regulates expression of a protein known to be important, or implicated, in the cause, onset, or progression of ASD. Increased or decreased expression of the one or more miRNAs can result from gain or loss of the whole miRNA gene, disruption or impairment of a portion of the gene (e.g., by an indel or CNV), or even a single base change (SNP or SNV) that produces an altered, non-functional or aberrant functioning miRNA sequence. It can also be appreciated by those skilled in the art that the expression of protein, for example, one known to cause ASD by increased or decreased expression, can result due to a genetic variation that results in alteration of an existing miRNA binding site within the polypeptide's mRNA transcript, or even creates a new miRNA binding site that leads to aberrant polypeptide expression.


A variety of methods can be used for detecting polypeptide composition and/or expression levels, including but not limited to enzyme linked immunosorbent assays (ELISA), Western blots, spectroscopy, mass spectrometry, peptide arrays, colorimetry, electrophoresis, isoelectric focusing, immunoprecipitations, immunoassays, and immunofluorescence and other methods well-known in the art. A test nucleic acid sample from a subject can be assessed for the presence of an alteration in the expression and/or an alteration in composition of the polypeptide encoded by a nucleic acid associated with a developmental disorder. An “alteration” in the polypeptide expression or composition, as used herein, refers to an alteration in expression or composition in a test nucleic acid sample, as compared to the expression or composition of the polypeptide in a control nucleic acid sample. Such alteration can, for example, be an alteration in the quantitative polypeptide expression or can be an alteration in the qualitative polypeptide expression, for example, expression of a mutant polypeptide or of a different splicing variant, or a combination thereof. In some embodiments, screening of a developmental disorder can be made by detecting a particular splicing variant encoded by a nucleic acid associated with a developmental disorder, or a particular pattern of splicing variants.


Antibodies can be polyclonal or monoclonal and can be labeled or unlabeled. An intact antibody or a fragment thereof can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled as previously described herein. Other non-limiting examples of indirect labeling include detection of a primary antibody using a labeled secondary antibody, for example, a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin.


Detecting Genetic Variations Associated with Autism Spectrum Disorder


Described herein, are methods that can be used to detect genetic variations. Detecting specific genetic variations, for example polymorphic markers and/or haplotypes, copy number, absence or presence of an allele, or genotype associated with a developmental disorder as described herein, can be accomplished by methods known in the art for analyzing nucleic acids and/or detecting sequences at polymorphic or genetically variable sites, for example, amplification techniques, hybridization techniques, sequencing, arrays, or any combination thereof. Thus, by use of these methods disclosed herein or other methods available to the person skilled in the art, one or more alleles at polymorphic markers, including microsatellites, SNPs, SNVs, indels, CNVs, or other types of genetic variations, can be identified in a sample obtained from a subject.


Nucleic Acids


The nucleic acids and polypeptides described herein can be used in methods and kits of the present disclosure. In some embodiments, aptamers that specifically bind the nucleic acids and polypeptides described herein can be used in methods and kits of the present disclosure. As used herein, a nucleic acid can comprise a deoxyribonucleotide (DNA) or ribonucleotide (RNA), whether singular or in polymers, naturally occurring or non-naturally occurring, double-stranded or single-stranded, coding, for example a translated gene, or non-coding, for example a regulatory region, or any fragments, derivatives, mimetics or complements thereof. In some embodiments, nucleic acids can comprise oligonucleotides, nucleotides, polynucleotides, nucleic acid sequences, genomic sequences, complementary DNA (cDNA), antisense nucleic acids, DNA regions, probes, primers, genes, regulatory regions, introns, exons, open-reading frames, binding sites, target nucleic acids and allele-specific nucleic acids.


A “probe,” as used herein, includes a nucleic acid fragment for examining a nucleic acid in a specimen using the hybridization reaction based on the complementarity of nucleic acid.


“A “hybrid” as used herein, includes a double strand formed between any one of the abovementioned nucleic acid, within the same type, or across different types, including DNA-DNA, DNA-RNA, RNA-RNA or the like.


“Isolated” nucleic acids, as used herein, are separated from nucleic acids that normally flank the gene or nucleotide sequence (as in genomic sequences) and/or has been completely or partially purified from other transcribed sequences (e.g., as in an RNA library). For example, isolated nucleic acids of the disclosure can be substantially isolated with respect to the complex cellular milieu in which it naturally occurs, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. In some instances, the isolated material can form part of a composition, for example, a crude extract containing other substances, buffer system or reagent mix. In some embodiments, the material can be purified to essential homogeneity using methods known in the art, for example, by polyacrylamide gel electrophoresis (PAGE) or column chromatography (e.g., HPLC). With regard to genomic DNA (gDNA), the term “isolated” also can refer to nucleic acids that are separated from the chromosome with which the genomic DNA is naturally associated. For example, the isolated nucleic acid molecule can contain less than about 250 kb, 200 kb, 150 kb, 100 kb, 75 kb, 50 kb, 25 kb, 10 kb, 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of the nucleotides that flank the nucleic acid molecule in the gDNA of the cell from which the nucleic acid molecule is derived.


Nucleic acids can be fused to other coding or regulatory sequences can be considered isolated. For example, recombinant DNA contained in a vector is included in the definition of “isolated” as used herein. In some embodiments, isolated nucleic acids can include recombinant DNA molecules in heterologous host cells or heterologous organisms, as well as partially or substantially purified DNA molecules in solution. Isolated nucleic acids also encompass in vivo and in vitro RNA transcripts of the DNA molecules of the present disclosure. An isolated nucleic acid molecule or nucleotide sequence can be synthesized chemically or by recombinant means. Such isolated nucleotide sequences can be useful, for example, in the manufacture of the encoded polypeptide, as probes for isolating homologous sequences (e.g., from other mammalian species), for gene mapping (e.g., by in situ hybridization with chromosomes), or for detecting expression of the gene, in tissue (e.g., human tissue), such as by Northern blot analysis or other hybridization techniques disclosed herein. The disclosure also pertains to nucleic acid sequences that hybridize under high stringency hybridization conditions, such as for selective hybridization, to a nucleotide sequence described herein Such nucleic acid sequences can be detected and/or isolated by allele- or sequence-specific hybridization (e.g., under high stringency conditions). Stringency conditions and methods for nucleic acid hybridizations are well known to the skilled person (see, e.g., Current Protocols in Molecular Biology, Ausubel, F. et al., John Wiley & Sons, (1998), and Kraus, M. and Aaronson, S., Methods Enzymol., 200:546-556 (1991), the entire teachings of which are incorporated by reference herein.


Calculations of “identity” or “percent identity” between two or more nucleotide or amino acid sequences can be determined by aligning the sequences for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first sequence). The nucleotides at corresponding positions are then compared, and the percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=# of identical positions/total # of positions×100). For example, a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.


In some embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95%, of the length of the reference sequence. The actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm. A non-limiting example of such a mathematical algorithm is described in Karlin, S. and Altschul, S., Proc. Natl. Acad. Sci. USA, 90-5873-5877 (1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0), as described in Altschul, S. et al., Nucleic Acids Res., 25:3389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, any relevant parameters of the respective programs (e.g., NBLAST) can be used. For example, parameters for sequence comparison can be set at score=100, word length=12, or can be varied (e.g., W=5 or W=20). Other examples include the algorithm of Myers and Miller, CABIOS (1989), ADVANCE, ADAM, BLAT, and FASTA. In some embodiments, the percent identity between two amino acid sequences can be accomplished using, for example, the GAP program in the GCG software package (Accelrys, Cambridge, UK).


“Probes” or “primers” can be oligonucleotides that hybridize in a base-specific manner to a complementary strand of a nucleic acid molecule. Probes can include primers, which can be a single-stranded oligonucleotide probe that can act as a point of initiation of template-directed DNA synthesis using methods including but not limited to, polymerase chain reaction (PCR) and ligase chain reaction (LCR) for amplification of a target sequence. Oligonucleotides, as described herein, can include segments or fragments of nucleic acid sequences, or their complements. In some embodiments, DNA segments can be between 5 and 10,000 contiguous bases, and can range from 5, 10, 12, 15, 20, or 25 nucleotides to 10, 15, 20, 25, 30, 40, 50, 100, 200, 500, 1000 or 10,000 nucleotides. In addition to DNA and RNA, probes and primers can include polypeptide nucleic acids (PNA), as described in Nielsen, P. et al., Science 254: 1497-1500 (1991). A probe or primer can comprise a region of nucleotide sequence that hybridizes to at least about 15, typically about 20-25, and in certain embodiments about 40, 50, 60 or 75, consecutive nucleotides of a nucleic acid molecule.


The present disclosure also provides isolated nucleic acids, for example, probes or primers, that contain a fragment or portion that can selectively hybridize to a nucleic acid that comprises, or consists of, a nucleotide sequence, wherein the nucleotide sequence can comprise at least one polymorphism or polymorphic allele contained in the genetic variations described herein or the wild-type nucleotide that is located at the same position, or the compliments thereof. In some embodiments, the probe or primer can be at least 70% identical, at least 80% identical, at least 85% identical, at least 90% identical, or at least 95% identical, to the contiguous nucleotide sequence or to the complement of the contiguous nucleotide sequence.


In some embodiments, a nucleic acid probe can be an oligonucleotide capable of hybridizing with a complementary region of a gene associated with a developmental disorder containing a genetic variation described herein. The nucleic acid fragments of the disclosure can be used as probes or primers in assays such as those described herein.


The nucleic acids of the disclosure, such as those described above, can be identified and isolated using standard molecular biology techniques well known to the skilled person. In some embodiments, DNA can be amplified and/or can be labeled (e.g., radiolabeled, fluorescently labeled) and used as a probe for screening, for example, a cDNA library derived from an organism. cDNA can be derived from mRNA and can be contained in a suitable vector. For example, corresponding clones can be isolated, DNA obtained fallowing in vivo excision, and the cloned insert can be sequenced in either or both orientations by art-recognized methods to identify the correct reading frame encoding a polypeptide of the appropriate molecular weight. Using these or similar methods, the polypeptide and the DNA encoding the polypeptide can be isolated, sequenced and further characterized.


In some embodiments, nucleic acid can comprise one or more polymorphisms, variations, or mutations, for example, single nucleotide polymorphisms (SNPs), single nucleotide variations (SNVs), copy number variations (CNVs), for example, insertions, deletions, inversions, and translocations. In some embodiments, nucleic acids can comprise analogs, for example, phosphorothioates, phosphoramidates, methyl phosphonate, chiralmethyl phosphonates, 2-0-methyl ribonucleotides, or modified nucleic acids, for example, modified backbone residues or linkages, or nucleic acids combined with carbohydrates, lipids, polypeptide or other materials, or peptide nucleic acids (PNAs), for example, chromatin, ribosomes, and transcriptosomes. In some embodiments nucleic acids can comprise nucleic acids in various structures, for example, A DNA, B DNA, Z-form DNA, siRNA, tRNA, and ribozymes. In some embodiments, the nucleic acid may be naturally or non-naturally polymorphic, for example, having one or more sequence differences, for example, additions, deletions and/or substitutions, as compared to a reference sequence. In some embodiments, a reference sequence can be based on publicly available information, for example, the U.C. Santa Cruz Human Genome Browser Gateway (genome.ucsc.edu/cgi-bin/hgGateway) or the NCBI website (www.ncbi.nlm.nih.gov). In some embodiments, a reference sequence can be determined by a practitioner of the present disclosure using methods well known in the art, for example, by sequencing a reference nucleic acid.


In some embodiment a probe can hybridize to an allele, SNP, or CNV as described herein. In some embodiments, the probe can bind to another marker sequence associated with a developmental disorder as described herein.


One of skill in the art would know how to design a probe so that sequence specific hybridization can occur only if a particular allele is present in a genomic sequence from a test nucleic acid sample. The disclosure can also be reduced to practice using any convenient genotyping method, including commercially available technologies and methods for genotyping particular genetic variations


Control probes can also be used, for example, a probe that binds a less variable sequence, for example, a repetitive DNA associated with a centromere of a chromosome, can be used as a control. In some embodiments, probes can be obtained from commercial sources. In some embodiments, probes can be synthesized, for example, chemically or in vitro, or made from chromosomal or genomic DNA through standard techniques. In some embodiments sources of DNA that can be used include genomic DNA, cloned DNA sequences, somatic cell hybrids that contain one, or a part of one, human chromosome along with the normal chromosome complement of the host, and chromosomes purified by flow cytometry or microdissection. The region of interest can be isolated through cloning, or by site-specific amplification using PCR.


One or more nucleic acids for example, a probe or primer, can also be labeled, for example, by direct labeling, to comprise a detectable label. A detectable label can comprise any label capable of detection by a physical, chemical, or a biological process for example, a radioactive label, such as 32P or 3H, a fluorescent label, such as FITC, a chromophore label, an affinity-ligand label, an enzyme label, such as alkaline phosphatase, horseradish peroxidase, or 12 galactosidase, an enzyme cofactor label, a hapten conjugate label, such as digoxigenin or dinitrophenyl, a Raman signal generating label, a magnetic label, a spin label, an epitope label, such as the FLAG or HA epitope, a luminescent label, a heavy atom label, a nanoparticle label, electrochemical label, a light scattering label, a spherical shell label, semiconductor nanocrystal label, such as quantum dots (described in U.S. Pat. No. 6,207,392), and probes labeled with any other signal generating label known to those of skill in the art, wherein a label can allow the probe to be visualized with or without a secondary detection molecule. A nucleotide can be directly incorporated into a probe with standard techniques, for example, nick translation, random priming, and PCR labeling. A “signal,” as used herein, include a signal suitably detectable and measurable by appropriate means, including fluorescence, radioactivity, chemiluminescence, and the like.


Non-limiting examples of label moieties useful for detection include, without limitation, suitable enzymes such as horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; members of a binding pair that are capable of forming complexes such as streptavidinibiotin, avidin/biotin or an antigen/antibody complex including, for example, rabbit IgG and anti-rabbit IgG; fluorophores such as umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, tetramethyl rhodamine, eosin, green fluorescent protein, erythrosin, coumarin, methyl coumarin, pyrene, malachite green, stilbene, lucifer yellow, Cascade Blue, Texas Red, dichlorotriazinylamine fluorescein, dansyl chloride, phycoerythrin, fluorescent lanthanide complexes such as those including Europium and Terbium, cyanine dye family members, such as Cy3 and Cy5, molecular beacons and fluorescent derivatives thereof, as well as others known in the art as described, for example, in Principles of Fluorescence Spectroscopy, Joseph R. Lakowicz (Editor), Plenum Pub Corp, 2nd edition (July 1999) and the 6th Edition of the Molecular Probes Handbook by Richard P. Hoagland; a luminescent material such as luminol; light scattering or plasmon resonant materials such as gold or silver particles or quantum dots; or radioactive material include 14C, 123I, 124I, 125I, Tc99m, 32P, 33P, 35S or 3H.


Other labels can also be used in the methods of the present disclosure, for example, backbone labels. Backbone labels comprise nucleic acid stains that bind nucleic acids in a sequence independent manner. Non-limiting examples include intercalating dyes such as phenanthridines and acridines (e.g., ethidium bromide, propidium iodide, hexidium iodide, dihydroethidium, ethidium homodimer-1 and -2, ethidium monoazide, and ACMA); some minor grove binders such as indoles and imidazoles (e.g., Hoechst 33258, Hoechst 33342, Hoechst 34580 and DAPI); and miscellaneous nucleic acid stains such as acridine orange (also capable of intercalating), 7-AAD, actinomycin D, LDS751, and hydroxystilbamidine. All of the aforementioned nucleic acid stains are commercially available from suppliers such as Molecular Probes, Inc. Still other examples of nucleic acid stains include the following dyes from Molecular Probes: cyanine dyes such as SYTOX Blue, SYTOX Green, SYTOX Orange, POPO-1, POPO-3, YOYO-1, YOYO-3, TOTO-1, TOTO-3, JOJO-1, LOLO-1, BOBO-1, BOBO-3, PO-PRO-1, PO-PRO-3, BO-PRO-1, BO-PRO-3, TO-PRO-1, TO-PRO-3, TO-PRO-5, JO-PRO-1, LO-PRO-1, YO-PRO-1, YO-PRO-3, PicoGreen, OliGreen, RiboGreen, SYBR Gold, SYBR Green I, SYBR Green II, SYBR DX, SYTO-40, −41, −42, −43, −44, −45 (blue), SYTO-13, −16, −24, −21, −23, −12, −11, −20, −22, −15, −14, −25 (green), SYTO-81, −80, −82, −83, −84, −85 (orange), SYTO-64, −17, −59, −61, −62, −60, −63 (red).


In some embodiments, fluorophores of different colors can be chosen, for example, 7-amino-4-methylcoumarin-3-acetic acid (AMCA), 5-(and-6)-carboxy-X-rhodamine, lissamine rhodamine B, 5-(and-6)-carboxyfluorescein, fluorescein-5-isothiocyanate (FITC), 7-diethylaminocoumarin-3-carboxylic acid, tetramethylrhodamine-5-(and-6)-isothiocyanate, 5-(and-6)-carboxytetramethylrhodamine, 7-hydroxycoumarin-3-carboxylic acid, 6-[fluorescein 5-(and-6)-carboxamido]hexanoic acid, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a diaza-3-indacenepropionic acid, eosin-5-isothiocyanate, erythrosin-5-isothiocyanate, TRITC, rhodamine, tetramethylrhodamine, R-phycoerythrin, Cy-3, Cy-5, Cy-7, Texas Red, Phar-Red, allophycocyanin (APC), and CASCADE™ blue acetylazide, such that each probe in or not in a set can be distinctly visualized. In some embodiments, fluorescently labeled probes can be viewed with a fluorescence microscope and an appropriate filter for each fluorophore, or by using dual or triple band-pass filter sets to observe multiple fluorophores. In some embodiments, techniques such as flow cytometry can be used to examine the hybridization pattern of the probes.


In other embodiments, the probes can be indirectly labeled, for example, with biotin or digoxygenin, or labeled with radioactive isotopes such as 32P and/or 3H. As a non-limiting example, a probe indirectly labeled with biotin can be detected by avidin conjugated to a detectable marker. For example, avidin can be conjugated to an enzymatic marker such as alkaline phosphatase or horseradish peroxidase. In some embodiments, enzymatic markers can be detected using colorimetric reactions using a substrate and/or a catalyst for the enzyme. In some embodiments, catalysts for alkaline phosphatase can be used, for example, 5-bromo-4-chloro-3-indolylphosphate and nitro blue tetrazolium. In some embodiments, a catalyst can be used for horseradish peroxidase, for example, diaminobenzoate.


Methods of Detecting Genetic Variations


In some embodiments, standard techniques for genotyping for the presence genetic variations, for example, amplification, can be used. Amplification of nucleic acids can be accomplished using methods known in the art. Generally, sequence information from the region of interest can be used to design oligonucleotide primers that can be identical or similar in sequence to opposite strands of a template to be amplified. In some embodiments, amplification methods can include but are not limited to, fluorescence-based techniques utilizing PCR, for example, ligase chain reaction (LCR), Nested PCR, transcription amplification, self-sustained sequence replication, nucleic acid based sequence amplification (NASBA), and multiplex ligation-dependent probe amplification (MLPA). Guidelines for selecting primers for PCR amplification are well known in the art. In some embodiments, a computer program can be used to design primers, for example, Oligo (National Biosciences, Inc, Plymouth Minn.), MacVector (Kodak/IBI), and GCG suite of sequence analysis programs.


In some embodiments, commercial methodologies available for genotyping, for example, SNP genotyping, can be used, but are not limited to, TaqMan genotyping assays (Applied Biosystems), SNPlex platforms (Applied Biosystems), gel electrophoresis, capillary electrophoresis, size exclusion chromatography, mass spectrometry, for example, MassARRAY system (Sequenom), minisequencing methods, real-time Polymerase Chain Reaction (PCR), Bio-Plex system (BioRad), CEQ and SNPstream systems (Beckman), array hybridization technology, for example, Affymetrix GeneChip (Perlegen), BeadArray Technologies, for example, Illumina GoldenGate and Infinium assays, array tag technology, Multiplex Ligation-dependent Probe Amplification (MLPA), and endonuclease-based fluorescence hybridization technology (Invader; Third Wave). PCR can be a procedure in which target nucleic acid is amplified in a manner similar to that described in U.S. Pat. No. 4,683,195 and subsequent modifications of the procedure described therein. PCR can include a three phase temperature cycle of denaturation of DNA into single strands, annealing of primers to the denatured strands, and extension of the primers by a thermostable DNA polymerase enzyme. This cycle can be repeated so that there are enough copies to be detected and analyzed. In some embodiments, real-time quantitative PCR can be used to determine genetic variations, wherein quantitative PCR can permit both detection and quantification of a DNA sequence in a nucleic acid sample, for example, as an absolute number of copies or as a relative amount when normalized to DNA input or other normalizing genes. In some embodiments, methods of quantification can include the use of fluorescent dyes that can intercalate with double-stranded DNA, and modified DNA oligonucleotide probes that can fluoresce when hybridized with a complementary DNA.


In some embodiments of the disclosure, a nucleic acid sample obtained from the subject can be collected and PCR can used to amplify a fragment of nucleic acid that comprises one or more genetic variations that can be indicative of a susceptibility to a developmental disorder. In some embodiments, detection of genetic variations can be accomplished by expression analysis, for example, by using quantitative PCR. In some embodiments, this technique can assess the presence or absense of a genetic alteration in the expression or composition of one or more polypeptides or splicing variants encoded by a nucleic acid associated with a developmental disorder.


In some embodiments, the nucleic acid sample from a subject containing a SNP can be amplified by PCR prior to detection with a probe. In such an embodiment, the amplified DNA serves as the template for a detection probe and, in some embodiments, an enhancer probe. Certain embodiments of the detection probe, the enhancer probe, and/or the primers used for amplification of the template by PCR can comprise the use of modified bases, for example, modified A, T, C, G, and U, wherein the use of modified bases can be useful for adjusting the melting temperature of the nucleotide probe and/or primer to the template DNA, In some embodiments, modified bases are used in the design of the detection nucleotide probe. Any modified base known to the skilled person can be selected in these methods, and the selection of suitable bases is well within the scope of the skilled person based on the teachings herein and known bases available from commercial sources as known to the skilled person.


In some embodiments, identification of genetic variations can be accomplished using hybridization methods. The presence of a specific marker allele or a particular genomic segment comprising a genetic variation, or representative of a genetic variation, can be indicated by sequence-specific hybridization of a nucleic acid probe specific for the particular allele or the genetic variation in a nucleic acid sample that has or has not been amplified but methods described herein. The presence of more than one specific marker allele or several genetic variations can be indicated by using two or more sequence-specific nucleic acid probes, wherein each is specific for a particular allele and/or genetic variation.


Hybridization can be performed by methods well known to the person skilled in the art, for example, hybridization techniques such as fluorescent in situ hybridization (FISH), Southern analysis, Northern analysis, or in situ hybridization. In some embodiments, hybridization refers to specific hybridization, wherein hybridization can be performed with no mismatches. Specific hybridization, if present, can be using standard methods. In some embodiments, if specific hybridization occurs between a nucleic acid probe and the nucleic acid in the nucleic acid sample, the nucleic acid sample can contain a sequence that can be complementary to a nucleotide present in the nucleic acid probe. In some embodiments, if a nucleic acid probe can contain a particular allele of a polymorphic marker, or particular alleles for a plurality of markers, specific hybridization is indicative of the nucleic acid being completely complementary to the nucleic acid probe, including the particular alleles at polymorphic markers within the probe. In some embodiments a probe can contain more than one marker alleles of a particular haplotype, for example, a probe can contain alleles complementary to 2, 3, 4, 5 or all of the markers that make up a particular haplotype. In some embodiments detection of one or more particular markers of the haplotype in the nucleic acid sample is indicative that the source of the nucleic acid sample has the particular haplotype.


In some embodiments, PCR conditions and primers can be developed that amplify a product only when the variant allele is present or only when the wild type allele is present, for example, allele-specific PCR. In some embodiments of allele-specific PCR, a method utilizing a detection oligonucleotide probe comprising a fluorescent moiety or group at its 3′ terminus and a quencher at its 5′ terminus, and an enhancer oligonucleotide, can be employed, as described by Kutyavin et al. (Nucleic Acid Res. 34:e128 (2006)).


An allele-specific primer/probe can be an oligonucleotide that is specific for particular a polymorphism can be prepared using standard methods. In some embodiments, allele-specific oligonucleotide probes can specifically hybridize to a nucleic acid region that contains a genetic variation. In some embodiments, hybridization conditions can be selected such that a nucleic acid probe can specifically bind to the sequence of interest, for example, the variant nucleic acid sequence.


In some embodiments, allele-specific restriction digest analysis can be used to detect the existence of a polymorphic variant of a polymorphism, if alternate polymorphic variants of the polymorphism can result in the creation or elimination of a restriction site. Allele-specific restriction digests can be performed, for example, with the particular restriction enzyme that can differentiate the alleles. In some embodiments, PCR can be used to amplify a region comprising the polymorphic site, and restriction fragment length polymorphism analysis can be conducted. In some embodiments, for sequence variants that do not alter a common restriction site, mutagenic primers can be designed that can introduce one or more restriction sites when the variant allele is present or when the wild type allele is present.


In some embodiments, fluorescence polarization template-directed dye-terminator incorporation (FP-TDI) can be used to determine which of multiple polymorphic variants of a polymorphism can be present in a subject. Unlike the use of allele-specific probes or primers, this method can employ primers that can terminate adjacent to a polymorphic site, so that extension of the primer by a single nucleotide can result in incorporation of a nucleotide complementary to the polymorphic variant at the polymorphic site.


In some embodiments, DNA containing an amplified portion can be dot-blotted, using standard methods and the blot contacted with the oligonucleotide probe. The presence of specific hybridization of the probe to the DNA can then be detected. The methods can include determining the genotype of a subject with respect to both copies of the polymorphic site present in the genome, wherein if multiple polymorphic variants exist at a site, this can be appropriately indicated by specifying which variants are present in a subject. Any of the detection means described herein can be used to determine the genotype of a subject with respect to one or both copies of the polymorphism present in the subject's genome.


In some embodiments, a peptide nucleic acid (PNA) probe can be used in addition to, or instead of, a nucleic acid probe in the methods described herein. A PNA can be a DNA mimic having a peptide-like, inorganic backbone, for example, N-(2-aminoethyl) glycine units with an organic base (A, G, C, T or U) attached to the glycine nitrogen via a methylene carbonyl linker.


Nucleic acid sequence analysis can also be used to detect genetic variations, for example, genetic variations can be detected by sequencing exons, introns, 5′ untranslated sequences, or 3′ untranslated sequences. One or more methods of nucleic acid analysis that are available to those skilled in the art can be used to detect genetic variations, including but not limited to, direct manual sequencing, automated fluorescent sequencing, single-stranded conformation polymorphism assays (SSCP); clamped denaturing gel electrophoresis (CDGE); denaturing gradient gel electrophoresis (DGGE), two-dimensional gel electrophoresis (2DGE or TDGE); conformational sensitive gel electrophoresis (CSGE); denaturing high performance liquid chromatography (DHPLC), infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry, mobility shift analysis, quantitative real-time PCR, restriction enzyme analysis, heteroduplex analysis; chemical mismatch cleavage (CMC), RNase protection assays, use of polypeptides that recognize nucleotide mismatches, allele-specific PCR, real-time pyrophosphate DNA sequencing, PCR amplification in combination with denaturing high performance liquid chromatography (dHPLC), and combinations of such methods.


Sequencing can be accomplished through classic Sanger sequencing methods, which are known in the art. In some embodiments sequencing can be performed using high-throughput sequencing methods some of which allow detection of a sequenced nucleotide immediately after or upon its incorporation into a growing strand, for example, detection of sequence in substantially real time or real time. In some cases, high throughput sequencing generates at least 1,000, at least 5,000, at least 10,000, at least 20,000, at least 30,000, at least 40,000, at least 50,000, at least 100,000 or at least 500,000 sequence reads per hour; with each read being at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 120 or at least 150 bases per read (or 500-1,000 bases per read for 454).


High-throughput sequencing methods can include but are not limited to, Massively Parallel Signature Sequencing (MPSS, Lynx Therapeutics), Polony sequencing, 454 pyrosequencing, Illumina (Solexa) sequencing, SOLiD sequencing, on semiconductor sequencing, DNA nanoball sequencing, Helioscope™ single molecule sequencing, Single Molecule SMRT™ sequencing, Single Molecule real time (RNAP) sequencing, Nanopore DNA sequencing, and/or sequencing by hybridization, for example, a non-enzymatic method that uses a DNA microarray, or microfluidic Sanger sequencing.


In some embodiments, high-throughput sequencing can involve the use of technology available by Helicos BioSciences Corporation (Cambridge, Mass.) such as the Single Molecule Sequencing by Synthesis (SMSS) method. SMSS is unique because it allows for sequencing the entire human genome in up to 24 hours. This fast sequencing method also allows for detection of a SNP/nucleotide in a sequence in substantially real time or real time. Finally, SMSS is powerful because, like the MIP technology, it does not use a pre-amplification step prior to hybridization. SMSS does not use any amplification. SMSS is described in US Publication Application Nos. 20060024711; 20060024678; 20060012793; 20060012784; and 20050100932. In some embodiments, high-throughput sequencing involves the use of technology available by 454 Life Sciences, Inc. (a Roche company, Branford, Conn.) such as the PicoTiterPlate device which includes a fiber optic plate that transmits chemiluminescent signal generated by the sequencing reaction to be recorded by a CCD camera in the instrument. This use of fiber optics allows for the detection of a minimum of 20 million base pairs in 4.5 hours.


In some embodiments, PCR-amplified single-strand nucleic acid can be hybridized to a primer and incubated with a polymerase, ATP sulfurylase, luciferase, apyrase, and the substrates luciferin and adenosine 5′ phosphosulfate. Next, deoxynucleotide triphosphates corresponding to the bases A, C, G, and T (U) can be added sequentially. A base incorporation can be accompanied by release of pyrophosphate, which can be converted to ATP by sulfurylase, which can drive synthesis of oxyluciferin and the release of visible light. Since pyrophosphate release can be equimolar with the number of incorporated bases, the light given off can be proportional to the number of nucleotides adding in any one step. The process can repeat until the entire sequence can be determined. In some embodiments, pyrosequencing can be utilized to analyze amplicons to determine whether breakpoints are present. In some embodiments, pyrosequencing can map surrounding sequences as an internal quality control.


Pyrosequencing analysis methods are known in the art. Sequence analysis can include a four-color sequencing by ligation scheme (degenerate ligation), which involves hybridizing an anchor primer to one of four positions. Then an enzymatic ligation reaction of the anchor primer to a population of degenerate nonamers that are labeled with fluorescent dyes can be performed. At any given cycle, the population of nonamers that is used can be structured such that the identity of one of its positions can be correlated with the identity of the fluorophore attached to that nonamer. To the extent that the ligase discriminates for complementarily at that queried position, the fluorescent signal can allow the inference of the identity of the base. After performing the ligation and four-color imaging, the anchor primer: nonamer complexes can be stripped and a new cycle begins. Methods to image sequence information after performing ligation are known in the art.


In some embodiments, analysis by restriction enzyme digestion can be used to detect a particular genetic variation if the genetic variation results in creation or elimination of one or more restriction sites relative to a reference sequence. In some embodiments, restriction fragment length polymorphism (RFLP) analysis can be conducted, wherein the digestion pattern of the relevant DNA fragment indicates the presence or absence of the particular genetic variation in the nucleic acid sample.


In some embodiments, arrays of oligonucleotide probes that can be complementary to target nucleic acid sequence segments from a subject can be used to identify genetic variations. In some embodiments, an array of oligonucleotide probes comprises an oligonucleotide array, for example, a microarray. In some embodiments, the present disclosure features arrays that include a substrate having a plurality of addressable areas, and methods of using them. At least one area of the plurality includes a nucleic acid probe that binds specifically to a sequence comprising a genetic variation, and can be used to detect the absence or presence of the genetic variation, for example, one or more SNPs, microsatellites, or CNVs, as described herein, to determine or identify an allele or genotype. For example, the array can include one or more nucleic acid probes that can be used to detect a genetic variation associated with a gene and/or gene product. In some embodiments, the array can further comprise at least one area that includes a nucleic acid probe that can be used to specifically detect another marker associated with a developmental disorder, for example Autism Spectrum Disorder, as described herein.


Microarray hybridization can be performed by hybridizing a nucleic acid of interest, for example, a nucleic acid encompassing a genetic variation, with the array and detecting hybridization using nucleic acid probes. In some embodiments, the nucleic acid of interest is amplified prior to hybridization. Hybridization and detecting can be carried out according to standard methods described in Published PCT Applications: WO 92/10092 and WO 95/11995, and U.S. Pat. No. 5,424,186. For example, an array can be scanned to determine the position on the array to which the nucleic acid hybridizes. The hybridization data obtained from the scan can be, for example, in the form of fluorescence intensities as a function of location on the array.


Arrays can be formed on substrates fabricated with materials such as paper; glass; plastic, for example, polypropylene, nylon, or polystyrene; polyacrylamide; nitrocellulose; silicon; optical fiber; or any other suitable solid or semisolid support; and can be configured in a planar, for example, glass plates or silicon chips); or three dimensional, for example, pins, fibers, beads, particles, microtiter wells, and capillaries, configuration.


Methods for generating arrays are known in the art and can include for example; photolithographic methods (U.S. Pat. Nos. 5,143,854, 5,510,270 and 5,527,681); mechanical methods, for example, directed-flow methods (U.S. Pat. No. 5,384,261); pin-based methods (U.S. Pat. No. 5,288,514); bead-based techniques (PCT US/93/04145); solid phase oligonucleotide synthesis methods; or by other methods known to a person skilled in the art (see, e.g., Bier, F. F., et al. Adv Biochem Eng Biotechnol 109:433-53 (2008); Hoheisel, J. D., Nat Rev Genet 7: 200-10 (2006); Fan, J. B., et al. Methods Enzymol 410:57-73 (2006); Raqoussis, J. & Elvidge, G., Expert Rev Mol Design 6: 145-52 (2006); Mockler, T. C., et al. Genomics 85: 1-15 (2005), and references cited therein, the entire teachings of each of which are incorporated by reference herein). Many additional descriptions of the preparation and use of oligonucleotide arrays for detection of polymorphisms can be found, for example, in U.S. Pat. No. 6,858,394, U.S. Pat. No. 6,429,027, U.S. Pat. No. 5,445,934, U.S. Pat. No. 5,700,637, U.S. Pat. No. 5,744,305, U.S. Pat. No. 5,945,334, U.S. Pat. No. 6,054,270, U.S. Pat. No. 6,300,063, U.S. Pat. No. 6,733,977, U.S. Pat. No. 7,364,858, EP 619 321, and EP 373 203, the entire teachings of which are incorporated by reference herein. Methods for array production, hybridization, and analysis are also described in Snijders et al., Nat. Genetics 29:263-264 (2001); Klein et al., Proc. Natl. Acad. Sci. USA 96:4494-4499 (1999); Albertson et al., Breast Cancer Research and Treatment 78:289-298 (2003); and Snijders et al., “BAC microarray based comparative genomic hybridization,” in: Zhao et al. (eds), Bacterial Artificial Chromosomes: Methods and Protocols, Methods in Molecular Biology, Humana Press, 2002.


In some embodiments, oligonucleotide probes forming an array can be attached to a substrate by any number of techniques, including, but not limited to, in situ synthesis, for example, high-density oligonucleotide arrays, using photolithographic techniques; spotting/printing a medium to low density on glass, nylon, or nitrocellulose; by masking; and by dot-blotting on a nylon or nitrocellulose hybridization membrane. In some embodiments, oligonucleotides can be immobilized via a linker, including but not limited to, by covalent, ionic, or physical linkage. Linkers for immobilizing nucleic acids and polypeptides, including reversible or cleavable linkers, are known in the art (U.S. Pat. No. 5,451,683 and WO98/20019). In some embodiments, oligonucleotides can be non-covalently immobilized on a substrate by hybridization to anchors, by means of magnetic beads, or in a fluid phase, for example, in wells or capillaries.


An array can comprise oligonucleotide hybridization probes capable of specifically hybridizing to different genetic variations. In some embodiments, oligonucleotide arrays can comprise a plurality of different oligonucleotide probes coupled to a surface of a substrate in different known locations. In some embodiments, oligonucleotide probes can exhibit differential or selective binding to polymorphic sites, and can be readily designed by one of ordinary skill in the art, for example, an oligonucleotide that is perfectly complementary to a sequence that encompasses a polymorphic site, for example, a sequence that includes the polymorphic site, within it, or at one end, can hybridize preferentially to a nucleic acid comprising that sequence, as opposed to a nucleic acid comprising an alternate polymorphic variant.


In some embodiments, arrays can include multiple detection blocks, for example, multiple groups of probes designed for detection of particular polymorphisms. In some embodiments, these arrays can be used to analyze multiple different polymorphisms. In some embodiments, detection blocks can be grouped within a single array or in multiple, separate arrays, wherein varying conditions, for example, conditions optimized for particular polymorphisms, can be used during hybridization. General descriptions of using oligonucleotide arrays for detection of polymorphisms can be found, for example, in U.S. Pat. Nos. 5,858,659 and 5,837,832. In addition to oligonucleotide arrays, cDNA arrays can be used similarly in certain embodiments.


The methods described herein can include but are not limited to providing an array as described herein; contacting the array with a nucleic acid sample, and detecting binding of a nucleic acid from the nucleic acid sample to the array. In some embodiments, the method can comprise amplifying nucleic acid from the nucleic acid sample, for example, a region associated with a developmental disorder or a region that includes another region associated with a developmental disorder. In some embodiments, the methods described herein can include using an array that can identify differential expression patterns or copy numbers of one or more genes in nucleic acid samples from control and affected individuals. For example, arrays of probes to a marker described herein can be used to identify genetic variations between DNA from an affected subject, and control DNA obtained from an individual that does not have a developmental disorder. Since the nucleotides on the array can contain sequence tags, their positions on the array can be accurately known relative to the genomic sequence


In some embodiments, it can be desirable to employ methods that can detect the presence of multiple genetic variations, for example, polymorphic variants at a plurality of polymorphic sites, in parallel or substantially simultaneously. In some embodiments, these methods can comprise oligonucleotide arrays and other methods, including methods in which reactions, for example, amplification and hybridization, can be performed in individual vessels, for example, within individual wells of a multi-well plate or other vessel.


Determining the identity of a genetic variation can also include or consist of reviewing a subject's medical history, where the medical history includes information regarding the identity, copy number, presence or absence of one or more alleles or SNPs in the subject, e.g., results of a genetic test.


In some embodiments extended runs of homozygosity (ROH) may be useful to map recessive disease genes in outbred populations. Furthermore, even in complex disorders, a high number of affected individuals may have the same haplotype in the region surrounding a disease mutation. Therefore, a rare pathogenic variant and surrounding haplotype can be enriched in frequency in a group of affected individuals compared with the haplotype frequency in a cohort of unaffected controls. Homozygous haplotypes (HH) that are shared by multiple affected individuals can be important for the discovery of recessive disease genes in complex disorders such as ASD. In some embodiments, the traditional homozygosity mapping method can be extended by analysing the haplotype within shared ROH regions to identify homozygous segments of identical haplotype that are present uniquely or at a higher frequency in ASD probands compared to parental controls. Such regions are termed risk homozygous haplotypes (rHH), which may contain low-frequency recessive variants that contribute to ASD risk in a subset of ASD patients.


Genetic variations can also be identified using any of a number of methods well known in the art. For example, genetic variations available in public databases, which can be searched using methods and custom algorithms or algorithms known in the art, can be used. In some embodiments, a reference sequence can be from, for example, the human draft genome sequence, publicly available in various databases, or a sequence deposited in a database such as GenBank.


Any of the polynucleotides described, including polynucleotides comprising a genetic variation, can be made synthetically using methods known in the art.


Methods of Detecting CNVs


Detection of genetic variations, specifically CNVs, can be accomplished by one or more suitable techniques described herein. Generally, techniques that can selectively determine whether a particular chromosomal segment is present or absent in an individual can be used for genotyping CNVs. Identification of novel copy number variations can be done by methods for assessing genomic copy number changes.


In some embodiments, methods include but are not limited to, methods that can quantitatively estimate the number of copies of a particular genomic segment, but can also include methods that indicate whether a particular segment is present in a nucleic acid sample or not. In some embodiments, the technique to be used can quantify the amount of segment present, for example, determining whether a DNA segment is deleted, duplicated, or triplicated in subject, for example, Fluorescent In Situ Hybridization (FISH) techniques, and other methods described herein. In some embodiments, methods include detection of copy number variation from array intensity and sequencing read depth using a stepwise Bayesian model (Zhang Z. D., et al. BMC Bioinformatics. 2010 Oct. 31; 11:539). In some embodiments, methods include detecting copy number variations using shotgun sequencing, CNV-seq (Xie C., et al. BMC Bioinformatics. 2009 Mar. 6; 10:80). In some embodiments, methods include analyzing next-generation sequencing (NGS) data for CNV detection using any one of several algorithms developed for each of the four broad methods for CNV detection using NGS, namely the depth of coverage (DOC), read-pair (RP), split-read (SR) and assembly-based (AS) methods. (Teo S. M., et al. Bioinformatics. 2012 Aug. 31). In some embodiments, methods include combining coverage with map information for the identification of deletions and duplications in targeted sequence data (Nord A. S., et al. BMC Genomics. 2011 Apr. 12; 12:184).


In some embodiments, other genotyping technologies can be used for detection of CNVs, including but not limited to, karyotype analysis, Molecular Inversion Probe array technology, for example, Affymetrix SNP Array 6.0, and BeadArray Technologies, for example, Illumina GoldenGate and Infinium assays, as can other platforms such as NimbleGen HD2.1 or HD4.2, High-Definition Comparative Genomic Hybridization (CGH) arrays (Agilent Technologies), tiling array technology (Affymetrix), multiplex ligation-dependent probe amplification (MLPA), Invader assay, fluorescence in situ hybridization, and, in one embodiment, Array Comparative Genomic Hybridization (aCGH) methods. As described herein, karyotype analysis can be a method to determine the content and structure of chromosomes in a nucleic acid sample. In some embodiments, karyotyping can be used, in lieu of aCGH, to detect translocations, which can be copy number neutral, and, therefore, not detectable by aCGH. Information about amplitude of particular probes, which can be representative of particular alleles, can provide quantitative dosage information for the particular allele, and by consequence, dosage information about the CNV in question, since the marker can be selected as a marker representative of the CNV and can be located within the CNV. In some embodiments, if the CNV is a deletion, the absence of particular marker allele is representative of the deletion. In some embodiments, if the CNV is a duplication or a higher order copy number variation, the signal intensity representative of the allele correlating with the CNV can represent the copy number. A summary of methodologies commonly used is provided in Perkel (Perkel J. Nature Methods 5:447-453 (2008)).


PCR assays can be utilized to detect CNVs and can provide an alternative to array analysis. In particular, PCR assays can enable detection of precise boundaries of gene/chromosome variants, at the molecular level, and which boundaries are identical in different individuals. PCR assays can be based on the amplification of a junction fragment present only in individuals that carry a deletion. This assay can convert the detection of a loss by array CGH to one of a gain by PCR.


Examples of PCR techniques that can be used in the present disclosure include, but are not limited to quantitative PCR, real-time quantitative PCR (qPCR), quantitative fluorescent PCR (QF-PCR), multiplex fluorescent PCR (MF-PCR), real time PCR (RT-PCR), single cell PCR, PCR-RFLP/RT-PCR-RFLP, hot start PCR and Nested PCR. Other suitable amplification methods include the ligase chain reaction (LCR), ligation mediated PCR (LM-PCR), degenerate oligonucleotide probe PCR (DOP-PCR), transcription amplification, self-sustained sequence replication, selective amplification of target polynucleotide sequences, consensus sequence primed polymerase chain reaction (CP-PCR), arbitrarily primed polymerase chain reaction (AP-PCR) and nucleic acid based sequence amplification (NABSA).


Alternative methods for the simultaneous interrogation of multiple regions include quantitative multiplex PCR of short fluorescent fragments (QMPSF), multiplex amplifiable probe hybridization (MAPH) and multiplex ligation-dependent probe amplification (MLPA), in which copy-number differences for up to 40 regions can be scored in one experiment. Another approach can be to specifically target regions that harbor known segmental duplications, which are often sites of copy-number variation. By targeting the variable nucleotides between two copies of a segmental duplication (called paralogous sequence variants) using a SNP-genotyping method that provides independent fluorescence intensities for the two alleles, it is possible to detect an increase in intensity of one allele compared with the other.


In some embodiments, the amplified piece of DNA can be bound to beads using the sequencing element of the nucleic acid tag under conditions that favor a single amplified piece of DNA molecule to bind a different bead and amplification occurs on each bead. In some embodiments, such amplification can occur by PCR. Each bead can be placed in a separate well, which can be a picoliter-sized well. In some embodiments, each bead is captured within a droplet of a PCR-reaction-mixture-in-oil-emulsion and PCR amplification occurs within each droplet. The amplification on the bead results in each bead carrying at least one million, at least 5 million, or at least 10 million copies of the single amplified piece of DNA molecule.


In embodiments where PCR occurs in oil-emulsion mixtures, the emulsion droplets are broken, the DNA is denatured and the beads carrying single-stranded nucleic acids clones are deposited into a well, such as a picoliter-sized well, for further analysis according to the methods described herein. These amplification methods allow for the analysis of genomic DNA regions. Methods for using bead amplification followed by fiber optics detection are described in Margulies et al. 2005, Nature. 15; 437(7057):376-80, and as well as in US Publication Application Nos. 20020012930; 20030068629; 20030100102; 20030148344; 20040248161; 20050079510, 20050124022; and 20060078909.


Another variation on the array-based approach can be to use the hybridization signal intensities that are obtained from the oligonucleotides employed on Affymetrix SNP arrays or in Illumina Bead Arrays. Here hybridization intensities are compared with average values that are derived from controls, such that deviations from these averages indicate a change in copy number. As well as providing information about copy number, SNP arrays have the added advantage of providing genotype information. For example, they can reveal loss of heterozygosity, which could provide supporting evidence for the presence of a deletion, or might indicate segmental uniparental disomy (which can recapitulate the effects of structural variation in some genomic regions—Prader-Willi and Angelman syndromes, for example).


Many of the basic procedures followed in microarray-based genome profiling are similar, if not identical, to those followed in expression profiling and SNP analysis, including the use of specialized microarray equipment and data-analysis tools. Since microarray-based expression profiling has been well established in the last decade, much can be learned from the technical advances made in this area. Examples of the use of microarrays in nucleic acid analysis that can be used are described in U.S. Pat. No. 6,300,063, U.S. Pat. No. 5,837,832, U.S. Pat. No. 6,969,589, U.S. Pat. No. 6,040,138, U.S. Pat. No. 6,858,412, U.S. application Ser. No. 08/529,115, U.S. application Ser. No. 10/272,384, U.S. application Ser. No. 10/045,575, U.S. application Ser. No. 10/264,571 and U.S. application Ser. No. 10/264,574. It should be noted that there are also distinct differences such as target and probe complexity, stability of DNA over RNA, the presence of repetitive DNA and the need to identify single copy number alterations in genome profiling.


In some embodiments, the genetic variations detected comprise CNVs and can be detected using array CGH. In some embodiments, array CGH can be been implemented using a wide variety of techniques. The initial approaches used arrays produced from large-insert genomic clones such as bacterial artificial chromosomes (BACs). Producing sufficient BAC DNA of adequate purity to make arrays is arduous, so several techniques to amplify small amounts of starting material have been employed. These techniques include ligation-mediated PCR (Snijders et al, Nat. Genet. 29:263-64), degenerate primer PCR using one or several sets of primers, and rolling circle amplification. BAC arrays that provide complete genome tiling paths are also available. Arrays made from less complex nucleic acids such as cDNAs, selected PCR products, and oligonucleotides can also be used. Although most CGH procedures employ hybridization with total genomic DNA, it is possible to use reduced complexity representations of the genome produced by PCR techniques. Computational analysis of the genome sequence can be used to design array elements complementary to the sequences contained in the representation. Various SNP genotyping platforms, some of which use reduced complexity genomic representations, can be useful for their ability to determine both DNA copy number and allelic content across the genome. In some embodiments, small amounts of genomic DNA can be amplified with a variety of whole genome or whole exome amplification methods prior to CGH analysis of the nucleic acid sample. A “whole exome,” as used herein, includes s exons throughout the whole genome that are expressed in genes. Since exon selection has tissue and cell type specificity, these positions may be different in the various cell types resulting from a splice variant or alternative splicing. A “whole genome,” as used herein, includes the entire genetic code of a genome.


The different basic approaches to array CGH provide different levels of performance, so some are more suitable for particular applications than others. The factors that determine performance include the magnitudes of the copy number changes, their genomic extents, the state and composition of the specimen, how much material is available for analysis, and how the results of the analysis can be used. Many applications use reliable detection of copy number changes of much less than 50%, a more stringent requirement than for other microarray technologies. Note that technical details are extremely important and different implementations of methods using the same array CGH approach can yield different levels of performance. Various CGH methods are known in the art and are equally applicable to one or more methods of the present disclosure. For example, CGH methods are disclosed in U.S. Pat. Nos. 7,030,231; 7,011,949; 7,014,997; 6,977,148; 6,951,761; and 6,916,621, the disclosure from each of which is incorporated by reference herein in its entirety.


The data provided by array CGH are quantitative measures of DNA sequence dosage. Array CGH provides high-resolution estimates of copy number aberrations, and can be performed efficiently on many nucleic acid samples. The advent of array CGH technology makes it possible to monitor DNA copy number changes on a genomic scale and many projects have been launched for studying the genome in specific diseases.


In some embodiments, whole genome array-based comparative genome hybridization (array CGH) analysis, or array CGH on a subset of genomic regions, can be used to efficiently interrogate human genomes for genomic imbalances at multiple loci within a single assay. The development of comparative genomic hybridization (CGH) (Kallioniemi et al, 1992, Science 258: 818-21) provided the first efficient approach to scanning entire genomes for variations in DNA copy number. The importance of normal copy number variation involving large segments of DNA has been unappreciated. Array CGH is a breakthrough technique in human genetics, which is attracting interest from clinicians working in fields as diverse as cancer and IVF (In Vitro Fertilization). The use of CGH microarrays in the clinic holds great promise for identifying regions of genomic imbalance associated with disease. Advances from identifying chromosomal critical regions associated with specific phenotypes to identifying the specific dosage sensitive genes can lead to therapeutic opportunities of benefit to patients. Array CGH is a specific, sensitive and rapid technique that can enable the screening of the whole genome in a single test. It can facilitate and accelerate the screening process in human genetics and is expected to have a profound impact on the screening and counseling of patients with genetic disorders. It is now possible to identify the exact location on the chromosome where an aberration has occurred and it is possible to map these changes directly onto the genomic sequence.


An array CGH approach provides a robust method for carrying out a genome-wide scan to find novel copy number variants (CNVs). The array CGH methods can use labeled fragments from a genome of interest, which can be competitively hybridized with a second differentially labeled genome to arrays that are spotted with cloned DNA fragments, revealing copy-number differences between the two genomes. Genomic clones (for example, BACs), cDNAs, PCR products and oligonucleotides, can all be used as array targets. The use of array CGH with BACs was one of the earliest employed methods and is popular, owing to the extensive coverage of the genome it provides, the availability of reliable mapping data and ready access to clones. The last of these factors is important both for the array experiments themselves, and for confirmatory FISH experiments.


In a typical CGH measurement, total genomic DNA is isolated from control and reference subjects, differentially labeled, and hybridized to a representation of the genome that allows the binding of sequences at different genomic locations to be distinguished. More than two genomes can be compared simultaneously with suitable labels. Hybridization of highly repetitive sequences is typically suppressed by the inclusion of unlabeled Cot-1 DNA in the reaction. In some embodiments of array CGH, it is beneficial to mechanically shear the genomic DNA in a nucleic acid sample, for example, with sonication, prior to its labeling and hybridization step. In another embodiment, array CGH may be performed without use of Cot-1 DNA or a sonication step in the preparation of the genomic DNA in a nucleic acid sample. The relative hybridization intensity of the test and reference signals at a given location can be proportional to the relative copy number of those sequences in the test and reference genomes. If the reference genome is normal then increases and decreases in signal intensity ratios directly indicate DNA copy number variation within the genome of the test cells. Data are typically normalized so that the modal ratio for the genome is set to some standard value, typically 1.0 on a linear scale or 0.0 on a logarithmic scale. Additional measurements such as FISH or flow cytometry can be used to determine the actual copy number associated with a ratio level.


In some embodiments, an array CGH procedure can include the following steps. First, large-insert clones, for example, BACs can be obtained from a supplier of clone libraries. Then, small amounts of clone DNA can be amplified, for example, by degenerate oligonucleotide-primed (DOP) PCR or ligation-mediated PCR in order to obtain sufficient quantities needed for spotting. Next, PCR products can be spotted onto glass slides using, for example, microarray robots equipped with high-precision printing pins. Depending on the number of clones to be spotted and the space available on the microarray slide, clones can either be spotted once per array or in replicate. Repeated spotting of the same clone on an array can increase precision of the measurements if the spot intensities are averaged, and allows for a detailed statistical analysis of the quality of the experiments. Subject and control DNAs can be labeled, for example, with either Cy3 or Cy5-dUTP using random priming and can be subsequently hybridized onto the microarray in a solution containing an excess of Cot1-DNA to block repetitive sequences. Hybridizations can either be performed manually under a coverslip, in a gasket with gentle rocking or, automatically using commercially available hybridization stations. These automated hybridization stations can allow for an active hybridization process, thereby improving the reproducibility as well as reducing the actual hybridization time, which increases throughput. The hybridized DNAs can detected through the two different fluorochromes using standard microarray scanning equipment with either a scanning confocal laser or a charge coupled device (CCD) camera-based reader, followed by spot identification using commercially or freely available software packages.


The use of CGH with arrays that comprise long oligonucleotides (60-100 bp) can improve the detection resolution (in some embodiments, as small as ˜3-5 kb sized CNVs on arrays designed for interrogation of human whole genomes) over that achieved using BACs (limited to 50-100 kb or larger sized CNVs due to the large size of BAC clones). In some embodiments, the resolution of oligonucleotide CGH arrays is achieved via in situ synthesis of 1-2 million unique features/probes per microarray, which can include microarrays available from Roche NimbleGen and Agilent Technologies. In addition to array CGH methods for copy number detecton, other embodiments for partial or whole genome analysis of CNVs within a genome include, but are not limited to, use of SNP genotyping microarrays and sequencing methods.


Another method for copy number detection that uses oligonucleotides can be representational oligonucleotide microarray analysis (ROMA). It is similar to that applied in the use of BAC and CGH arrays, but to increase the signal-to-noise ratio, the ‘complexity’ of the input DNA is reduced by a method called representation or whole-genome sampling. Here the DNA that is to be hybridized to the array can be treated by restriction digestion and then ligated to adapters, which results in the PCR-based amplification of fragments in a specific size-range. As a result, the amplified DNA can make up a fraction of the entire genomic sequence—that is, it is a representation of the input DNA that has significantly reduced complexity, which can lead to a reduction in background noise. Other suitable methods available to the skilled person can also be used, and are within scope of the present disclosure.


A comparison of one or more genomes relative to one or more other genomes with array CGH, or a variety of other CNV detection methods, can reveal the set of CNVs between two genomes, between one genome in comparison to multiple genomes, or between one set of genomes in comparison to another set of genomes. In some embodiments, an array CGH experiment can be performed by hybrizing a single test genome against a pooled nucleic acid sample of two or more genomes, which can result in minimizing the detection of higher frequency variants in the experiment. In some embodiments, a test genome can be hybridized alone (i.e., one-color detetion) to a microarray, for example, using array CGH or SNP genotyping methods, and the comparison step to one or more reference genomes can be performed in silico to reveal the set of CNVs in the test genome relative to the one or more reference genomes. In one preferred embodiment, a single test genome is compared to a single reference genome in a 2-color experiment wherein both genomes are cohybridized to the microarray.


Array CGH can be used to identify genes that are causative or associated with a particular phenotype, condition, or disease by comparing the set of CNVs found in the affected cohort to the set of CNVs found in an unaffected cohort. An unaffected cohort may consist of any individual unaffected by the phenotype, condition, or disease of interest, but in one preferred embodiment is comprised of individuals or subjects that are apparently healthy (normal). Methods employed for such analyses are described in U.S. Pat. Nos. 7,702,468 and 7,957,913. In some embodiments of CNV comparison methods, candidate genes that are causative or associated (i.e., potentially serving as a biomarker) with a phenotype, condition, or disease will be identified by CNVs that occur in the affected cohort but not in the unaffected cohort. In some embodiments of CNV comparison methods, candidate genes that are causative or associated (i.e., potentially serving as a biomarker) with a phenotype, condition, or disease will be identified by CNVs that occur at a statistically significant higher frequency in the affected cohort as compared their frequency in the unaffected cohort. Thus, CNVs preferentially detected in the affected cohort as compared to the unaffected cohort can serve as beacons of genes that are causative or associated with a particular phenotype, condition, or disease. In some embodiments, CNV detection and comparison methods can result in direct identification of the gene that is causative or associated with phenotype, condition, or disease if the CNVs are found to overlap with or encompass the gene(s). In some embodiments, CNV detection and comparison methods can result in identification of regulatory regions of the genome (e.g., promoters, enhancers, transcription factor binding sites) that regulate the expression of one or more genes that are causative or associated with the phenotype, condition, or disease of interest.


Due to the large amount of genetic variation between any two genomes, or two sets (cohorts) of genomes, being compared, one preferred embodiment is to reduce the genetic variation search space by interrogating only CNVs, as opposed to the full set of genetic variants that can be identified in an individual's genome or exome. The set of CNVs that occur only, or at a statistically higher frequency, in the affected cohort as compared to the unaffected cohort can then be further investigated in targeted sequencing experiments to reveal the full set of genetic variants (of any size or type) that are causative or associated (i.e., potentially serving as a biomarker) with a phenotype, condition, or disease. It can be appreciated to those skilled in the art that the targeted sequencing experiments are performed in both the affected and unaffected cohorts in order to identify the genetic variants (e.g., SNVs and indels) that occur only, or at a statistically significant higher frequency, in the affected individual or cohort as compared to the unaffected cohort.


When investigating a particular phenotype, condition, or disease, such as ASD, it can be appreciated by those skilled in the art that the number of ASD candidate genes (or regulatory sequences) identified via CNV (or other variant types) detection methods may increase or decrease when additional ASD cohorts are analyzed. Similarly, the number of ASD candidate genes (or regulatory sequences), for example, identified via CNV (or other variant types) detection methods may increase or decrease when additional unaffected cohorts are used to interpret the affected cohort CNVs (or other variat types). For very rare CNVs (e.g., <0.1% frequency in the general population), only a single case may be observed in a given ASD cohort (e.g., 100 cases) but further statistical significance or evidence for the gene (or regulatory sequence/locus in the genome) can be established by: 1) CNV analysis of additional ASD cohorts, 2) CNV analysis of additional Normal cohorts, 3) targeted gene sequencing of both ASD and Normal cohorts, and/or 4) functional characterization of the ASD candidate gene (e.g., in silico analysis of the predicted impact of the candidate mutation on the gene product, RNAi knockdown experiments, biochemical assays on ASD patient tissue, gene expression analysis of disease-relevant tissues or of induced pluripotent stem cells (iPSCs) created from the ASD patient(s) harboring the candidate ASD-causing genetic variant).


A candidate gene may validate as causative of the phenotype, condition, or disease (e.g., ASD), which may, for example, be confirmed via mechansism of action experiments, or it may serve as a biomarker of the phenotype, condition, or disease. Thus, in the example of ASD, in some embodiments, the ASD-specific gene (or regulatory sequence/locus) may be a biomarker of age-of-onset for ASD and disease severity, and thus have diagnostic utility for monitoring patients known to be at risk for ASD or as a general screening test in the population for early diagnosis of the disease. In some embodiments, the ASD-specific gene/biomarker may be an indicator of drug response (e.g., a particular subtype of ASD may respond best to a therapeutic targeting a particular phenotype, causative gene, or other gene in the same pathway as the causative gene) and thus have utility during drug development in clinical trials. For example, clinical trials for a therapeutic that targets a ASD genetic subtype comprising only 10% of all patients exhibiting symptoms of ASD, can be designed to comprise only those 10% of patients with a specific genotype(s) in order to reduce the time and cost of such clinical trials (e.g., smaller number of patients in the clinical trial). It can be appreciated by those skilled in the art that such patient stratification methods (i.e., specific genotypes correlated with the disease or drug response) can be employed not only for targeted therapeutics, but in general for any drug that is approved or in development (i.e., the mechanism of action may or may not be known). For example, drugs in development or approved to treat, for example, cancer, may have utility in being repurposed to treat ASD. Such patient stratification methods can also be utilized to develop a companion diagnostic test (e.g., comprising the specific genes/genotypes found in patients that are indicative of drug response) for a particular drug, either concurrently during the clinical trials for the drug or after drug approval (e.g., as a new indication or for the physician to use in guiding medical decisions for the patient).


Further neurodevelopmental and/or links to ASD pathology can be established via pathway analysis of the genes, which may take into consideration binding interactions (e.g., via yeast 2-hybrid screen) and molecular events (e.g., kinase activity or other enzymatic processes) if such information is available for the gene(s) of interest (i.e., specified in the analysis). Both commercial (e.g., Ingenuity's IPA software and Thomson Reuter's GeneGo software) and open source software (e.g., String: string-db.org/) are available for such analyses. To assess connections to established ASD biology, analyses can be performed for the set of candidate ASD genes independently or against known causative ASD genes (e.g., FMR1, MECP2, and contactins such as CNTN4) singly or as a group. In some embodiments, ASD candidate genes can be distributed into one or more of several categories: 1) linked to a known causative ASD gene (e.g., binding partner) or a novel family member of a known ASD gene, 2) apoptosis pathway, 3) cell signaling (e.g., small GTPases, Wnt), 4) metabolism defects (e g, amino acids, purines/pyrimidines), mitochondrial dysfunction, 5) neuroprotective factors, 6) neurotransmitter signaling, 7) synapse formation/function, 8) ubiquitin/proteasome pathway, 9) neuropsychiatric genes, some of which are known drug targets, and 10) other (e.g., established role in other diseases with no obvious neurodevelopmental biology, such as cancer) or unknown gene function (e.g., limited or no gene information presently annotated for the ASD-specific gene).


A method of screening a subject for a disease or disorder can comprise assaying a nucleic acid sample from the subject to detect sequence information for more than one genetic locus and comparing the sequence information to a panel of nucleic acid biomarkers and screening the subject for the presence or absence of the disease or disorder if one or more of low frequency biomarkers in the panel are present in the sequence information.


The panel can comprise at least one nucleic acid biomarker for each of the more than one genetic loci. For example, the panel can comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 150, 200 or more nucleic acid biomarkers for each of the more than one genetic locus. In some embodiments, the panel can comprise from about 2-1000 nucleic acid biomarkers. For example, the panel can comprise from about 2-900, 2-800, 2-700, 2-600, 2-500, 2-400, 2-300, 2-200, 2-100, 25-900, 25-800, 25-700, 25-600, 25-500, 25-400, 25-300, 25-200, 25-100, 100-1000, 100-900, 100-800, 100-700, 100-600, 100-500, 100-400, 100-300, 100-200, 200-1000, 200-900, 200-800, 200-700, 200-600, 200-500, 200-400, 200-300, 300-1000, 300-900, 300-800, 300-700, 300-600, 300-500, 300-400, 400-1000, 400-900, 400-800, 400-700, 400-600, 400-500, 500-1000, 500-900, 500-800, 500-700, 500-600, 600-1000, 600-900, 600-800, 600-700, 700-1000, 700-900, 700-800, 800-1000, 800-900, or 900-1000 nucleic acid biomarkers.


The panel can comprise at least 2 low frequency biomarkers. For example, the panel can comprise at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 3, 14, 15, 15, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 250, 500, or 1000 or more low frequency biomarkers. In some embodiments, the panel can comprise from about 2-1000 low frequency biomarkers. For example, the panel can comprise from about 2-900, 2-800, 2-700, 2-600, 2-500, 2-400, 2-300, 2-200, 2-100, 25-900, 25-800, 25-700, 25-600, 25-500, 25-400, 25-300, 25-200, 25-100, 100-1000, 100-900, 100-800, 100-700, 100-600, 100-500, 100-400, 100-300, 100-200, 200-1000, 200-900, 200-800, 200-700, 200-600, 200-500, 200-400, 200-300, 300-1000, 300-900, 300-800, 300-700, 300-600, 300-500, 300-400, 400-1000, 400-900, 400-800, 400-700, 400-600, 400-500, 500-1000, 500-900, 500-800, 500-700, 500-600, 600-1000, 600-900, 600-800, 600-700, 700-1000, 700-900, 700-800, 800-1000, 800-900, or 900-1000 1000 low frequency biomarkers. In some embodiments, a low frequency biomarker can occur at a frequency of 0.1% or less in a population of subjects without a diagnosis of the disease or disorder. For example, a low frequency biomarker can occur at a frequency of 0.05%, 0.01%, 0.005%, 0.001%, 0.0005%, 0.0001%, 0.00005%, or 0.00001% or less in a population of subjects without a diagnosis of the disease or disorder. In some embodiments, a low frequency biomarker can occur at a frequency from about 0.00001%-0.1% in a population of subjects without a diagnosis of the disease or disorder. For example, a low frequency biomarker can occur at a frequency of from about 0.00001%-0.00005%, 0.00001%-0.0001%, 0.00001%-0.0005%, 0.00001%-0.001%, 0.00001%-0.005%, 0.00001%-0.01%, 0.00001%-0.05%, 0.00005%-0.0001%, 0.00005%-0.0005%, 0.00005%-0.001%, 0.00005%-0.005%, 0.00005%-0.01%, 0.00005%-0.05%, 0.00005%-0.1%, 0.0001%-0.0005%, 0.0001%-0.001%, 0.0001%-0.005%, 0.0001%-0.01%, 0.0001%-0.05%, 0.0001%-0.1%, 0.0005%-0.001%, 0.0005%-0.005%, 0.0005%-0.01%, 0.0005%-0.05%, 0.0005%-0.1%, 0.001%-0.005%, 0.001%-0.01%, 0.001%-0.05%, 0.001%-0.1%, 0.005%-0.01%, 0.005%-0.05%, 0.005%-0.1%, 0.01%-0.05%, 0.01%-0.1%, or 0.05%-0.1% in a population of subjects without a diagnosis of the disease or disorder


In some embodiments, the presence or absence of the disease or disorder in the subject can be determined with at least 50% confidence. For example, the presence or absence of the disease or disorder in the subject can be determined with at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% confidence. In some embodiments, the presence or absence of the disease or disorder in the subject can be determined with a 50%-100% confidence. For example, the presence or absence of the disease or disorder in the subject can be determined with a 60%-100%, 70%-100%, 80%-100%, 90%400%, 50%-90%, 50%-80%, 50%-70%, 50%-60%, 60%-90%, 60%-80%, 60%-70%, 70%-90%, 70%-80%, or 80%-90%. In one embodiement, ASD candidate CNVs and genes or regulatory loci associated with these CNVs can be determined or identified by comparing genetic data from a cohort of normal individuals to that of an individual or a cohort of individuals known to have, or be susceptible to a developmental disorder such as ASD.


In one embodiment, ASD candidate CNV-subregions and genes associated with these regions can be determined or identified by comparing genetic data from a cohort of normal individuals, such as a pre-existing database of CNVs found in normal individuals termed the Normal Variation Engine (NVE), to that of a cohort of individual known to have, or be susceptible to a developmental disorder such as ASD.


In some embodiments, a nucleic acid sample from one individual or nucleic acid samples from a pool of 2 or more individuals without ASD can serve as as the reference nucleic acid sample(s) and the nucleic acid sample from an individual known to have ASD or being tested to determine if they have ASD can serve as the test nucleic acid sample. In one preferred embodiment, the reference and test nucleic acid samples are sex-matched and co-hybridized on the CGH array. For example, reference nucleic acid samples can be labeled with a fluorophore such as Cy5, using methods described herein, and test subject nucleic acid samples can be labeled with a different fluorophore, such as Cy3. After labeling, nucleic acid samples can be combined and can be co-hybridized to a microarray and analyzed using any of the methods described herein, such as aCGH. Arrays can then be scanned and the data can be analyzed with software. Genetic alterations, such as CNVs, can be called using any of the methods described herein. A list of the genetic alterations, such as CNVs, can be generated for one or more test subjects and/or for one or more reference subjects. Such lists of CNVs can be used to generate a master list of non-redundant CNVs and/or CNV-subregions for each type of cohort. In one embodiment, a cohort of test nucleic acid samples, such as individuals known to have or suspected to have ASD, can be cohybridized with an identical sex-matched reference individual or sex-matched pool of reference individuals to generate a list of redundant or non-redudant CNVs. Such lists can be based on the presence or absence of one or more CNVs and/or CNV subregions present in individuals within the cohort. In this manner, a master list can contain a number of distinct CNVs and/or CNV-subregions, some of which are uniquely present in a single individual and some of which are present in multiple individuals.


In some embodiments, CNVs and/or CNV-subregions of interest can be obtained by annotation of each CNV and/or CNV-subregion with relevant information, such as overlap with known genes and/or exons exons or intergenic regulatory regions such as transcription factor binding sites. In some embodiments, CNVs and/or CNV-subregions of interest can be obtained by calculating the OR for a CNV and/or CNV-subregion according to the following formula: OR=(ASD/((# individuals in ASD cohort)−ASD))/(NVE/((# individuals in NVE cohort)−NVE)), where: ASD=number of ASD individuals with a CNV-subregion of interest and NVE=number of NVE subjects with the CNV-subregion of interest. If NVE=0, it can be set to 1 to avoid dealing with infinities in cases where no CNVs are seen in the NVE. In some embodiments, a set of publicly available CNVs (e.g., the Database of Genomic Variants) can be used as the Normal cohort for comparison to the affected cohort CNVs. In another embodiment, the set of Normal cohort CNVs may comprise a private database generated by the same CNV detection method, such as array CGH, or by a plurality of CNV detection methods that include, but are not limited to, array CGH, SNP genotyping arrays, custom CGH arrays, custom genotyping arrays, exome sequencing, whole genome sequencing, targeted sequencing, FISH, q-PCR, or MLPA.


The number of individuals in any given cohort can be at least about 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2500, 5000, 7500, 10,000, 100,000, or more. In some embodiments, the number of individuals in any given cohort can be from 25-900, 25-800, 25-700, 25-600, 25-500, 25-400, 25-300, 25-200, 25-100, 100-1000, 100-900, 100-800, 100-700, 100-600, 100-500, 100-400, 100-300, 100-200, 200-1000, 200-900, 200-800, 200-700, 200-600, 200-500, 200-400, 200-300, 300-1000, 300-900, 300-800, 300-700, 300-600, 300-500, 300-400, 400-1000, 400-900, 400-800, 400-700, 400-600, 400-500, 500-1000, 500-900, 500-800, 500-700, 500-600, 600-1000, 600-900, 600-800, 600-700, 700-1000, 700-900, 700-800, 800-1000, 800-900, or 900-1000.


In some embodiments, a method of determining relevance or statistical significance of a genetic variant in a human subject to a disease or a condition associated with a genotype comprising screening a genome of a human subject with the disease or condition, such as by array Comparative Genomic Hybridization, sequencing, or SNP genotyping, to provide information on one or more genetic variants, such as those in Tables 1 and 2. The method can further comprise comparing, such as via a computer, information of said one or more genetic variants from the genome of said subject to a compilation of data comprising frequencies of genetic variants in at least 100 normal human subjects, such as those without the disease or condition. The method can further comprise determining a statistical significance or relevance of said one or more genetic variants from said comparison to the condition or disease or determining whether a genetic variant is present in said human subject but not present in said compilation of data from said comparison, or an algorithm can be used to call or identify significant genetic variations, such as a genetic variation whose median log 2 ratio is above or below a computed value. A computer can comprise computer executable logic that provides instructions for executing said comparison.


Different categories for CNVs of interest can be defined. In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions do not overlap (distinct CNV/CNV-subregion), but impact the same gene (or regulatory locus) and are associated with an OR of greater than 6 (Genic (distinct CNV-subregions); OR>6). For example, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions do not overlap, but impact the same gene (or regulatory locus), and are associated with an OR of at least 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, or more. In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions do not overlap, but impact the same gene (or regulatory locus), and are associated with an OR from about 6-100, 6-50, 6-40, 6-30, 6-20, 6-10, 6-9, 6-8, 6-7, 8-100, 8-50, 8-40, 8-30, 8-20, 8-10, 10-100, 10-50, 10-40, 10-30, 10-20, 20-100, 20-50, 20-40, 20-30, 30-100, 30-50, 30-40, 40-100, 40-50, 50-100, or 5-7. The CNV-subregion/gene can be an exonic or intronic part of the gene, or both.


In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions do not overlap a known gene (e.g., are non-genic or intergenic) and they are associated with an OR of at least 7 (Exon+ve, ASD>4, NVE<2, no Sanger filter applied). For example, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregion does not overlap a known gene (e.g., is non-genic or intergenic) and/or non-overlapping, impact an exon, affect 5 or more ASD cases but only 0 or 1 Normal subjects, no Sanger filter of CNVs is applied, and are associated with an OR of at least 8, 9, 10, 11, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, or more. In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions are overlapping and/or non-overlapping, impact an exon, affect 5 or more ASD cases but only 0 or 1 Normal subjects, no filter of Sanger CNVs is applied, and are associated with an OR from about 7-100, 7-50, 7-40, 7-30, 7-20, 20-100, 20-50, 20-40, 20-30, 30-100, 30-50, 30-40, 40-100, 40-50, 50-100, or 7-11.


In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions are overlapping and/or non-overlapping, impact an exon, and they affect <5 ASD cases but only 0 or 1 Normal subjects, a Sanger filter is applied, and there are no Sanger CNVs that overlap (Exon+ve, 5>ASD>1, Normals<2, Sanger filter−ve). This can enable identification of rarer CNVs in cases with a neurodevelopmental disorder but with the stringency of Sanger CNVs that are presumed to be relatively common in the general population. In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions are overlapping and/or non-overlapping, impact an exon, and they affect 1 ASD cases but only 0 or 1 Normal subjects, a Sanger filter is applied, there are no Sanger CNVs that overlap, and are associated with an OR greater than 1, such as 1.47, or from 1-2.5. In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions are overlapping and/or non-overlapping, impact an exon, and they affect 2 ASD cases but only 0 or 1 Normal subjects, a Sanger filter is applied, there are no Sanger CNVs that overlap, and are associated with an OR greater than 2.5, such as 2.95, or from 2.5-4. In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions are overlapping and/or non-overlapping, impact an exon, and they affect 3 ASD cases but only 0 or 1 Normal subjects, a Sanger filter is applied, there are no Sanger CNVs that overlap, and are associated with an OR greater than 4, such as 4.44, or from 4-5.5. In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions are overlapping and/or non-overlapping, impact an exon, and they affect 4 ASD cases but only 0 or 1 Normal subjects, a Sanger filter is applied, there are no Sanger CNVs that overlap, and are associated with an OR greater than 5.5, such as 5.92, or from 5.5-6.8


In some embodiments, a CNVs/CNV-subregions can be of interest if the OR associated with the sum of ASD cases and the sum of NVE subjects affecting the same gene (including distinct CNVs/CNV-subregions) is at least 6. For example, a CNV/CNV-subregion can be of interest if the OR associated with the sum of ASD cases and the sum of NVE subjects affecting the same gene (including distinct CNVs/CNV-subregions) is at least 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, or more. In some embodiments, a CNVs/CNV-subregions can be of interest if the OR associated with the sum of ASD cases and the sum of NVE subjects affecting the same gene (including distinct CNVs/CNV-subregions) is from about 6-100, 6-50, 6-40, 6-30, 6-20, 6-10, 6-9, 6-8, 6-7, 8-100, 8-50. 8-40, 8-30, 8-20, 8-10, 10-100, 10-50, 10-40, 10-30, 10-20, 20-100, 20-50, 20-40, 20-30, 30-100, 30-50, 30-40, 40-100, 40-50, 50-100, or 5-7.


In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact an intron and they affect 5 or more ASD cases but only 0 or 1 Normal subjects, no Sanger filter of CNVs is applied, and they are associated with an OR of at least 7 (Intron+ve, ASD>4, Normals<2, no Sanger filter applied). For example, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact an intron and they affect 5 or more ASD cases but only 0 or 1 Normal subjects, no Sanger filter of CNVs is applied, and they are associated with an OR of at least 8, 9, 10, 11, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, or more. In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact an intron and they affect 5 or more ASD cases but only 0 or 1 Normal subjects, no Sanger filter of CNVs is applied, and they are associated with an OR from about 7-100, 7-50, 7-40, 7-30, 7-20, 20-100, 20-50, 20-40, 20-30, 30-100, 30-50, 30-40, 40-100, 40-50, 50-100, or 7-11. CNVs/CNV-subregions impacting introns can be pathogenic (e.g., such variants can result in alternatively spliced mRNAs or loss of a microRNA binding site, which may deleteriously impact the resulting protein's structure or expression level).


In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact the MTRNR2L (also known as humanin) gene family (MTRNR2L_family). While humanins may have neuroprotective properties for Alzheimer's disease, it is not established in neurodevelopment disorders; however, recently links have been established between the Alzheimer's gene APP and neurodevelopmental disorders such as autism (Westmark C J. What's hAPPening at synapses? The role of amyloid β-protein precursor and β-amyloid in neurological disorders. Mol Psychiatry. 2012 Aug. 28). In some embodiments, a rare CNV of less than 0.2% frequency in a neurodevelopmental cohort can be of interest. For example, 1 ASD case may contain a CNV impacting a humanin gene family member and this same CNV may not be found in a Normal subject or in only 1 Normal subject such that the OR is 1.47. In another embodiment, the OR may be close to 1, such as 0.98, but with screening of larger cohorts of Normal subjects and ASD cases (or other neurodevelopmental cohort) for both CNVs and any other type of genetic variant, such as SNVs via sequencing, it may be found that deleterious mutations in a humanin gene occur at higher frequency in neurodevelopmental cases than in Normal subjects. In some embodiments CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact the MTRNR2L1 gene and they affect 4 ASD cases but only 0 or 1 Normal subjects and are associated with an OR greater than 5.5, such as greater than 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, or more, or 5.92. In some embodiments CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact the MTRNR2L1 gene and they affect 4 ASD cases but only 0 or 1 Normal subjects and are associated with an OR from about 5.5-6.8 In some embodiments CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact the MTRNR2L4 gene and they affect 1 ASD case but only 0 or 1 Normal subjects and are associated with an OR greater than 1, such greater than 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, or more, or 1.47. In some embodiments CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact the MTRNR2L4 gene and they affect 1 ASD case but only 0 or 1 Normal subjects and are associated with an OR from about 1-2.5. In some embodiments CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact the MTRNR2L5 gene and they affect 2 ASD cases but only 3 Normal subjects and are associated with an OR greater than 0.5, such as greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, or more, or 0.98. In some embodiments CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact the MTRNR2L5 gene and they affect 2 ASD cases but only 3 Normal subjects and are associated with an OR from about 0.5-1. In some embodiments CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact the MTRNR2L8 gene and they affect 1 ASD cases but only 0 or 1 Normal subjects and are associated with an OR greater than 1, such as greater than 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, or more, or 1.47. In some embodiments CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact the MTRNR2L8 gene and they affect 1 ASD cases but only 0 or 1 Normal subjects and are associated with an OR from about 1-2.5.


In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions occur within intergenic regions and are associated with an OR of greater than 30 (High OR intergenic (OR>30)). For example, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions occur within intergenic regions and are associated with an OR of greater than 31, 32, 33, 34, 35, 40, 45, 50, 66, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more. In some embodiments, CNVs/CNV-subregions can be of interest if the CNVs/CNV-subregions impact occur within intergenic regions and are associated with an OR from about 30-100, 30-90, 30-80, 30-70, 30-60, 30-50, 30-40, 40-100, 40-90, 40-80, 40-70, 40-60, 40-50, 50-100, 50-90, 50-80, 50-70, 50-60, 60-100, 60-90, 60-80, 60-70, 70-100, 70-90, 70-80, 80-100, 80-90, or 90-100.


In some embodiments, a CNV/CNV-subregion can be of interest if the CNV/CNV-subregion overlaps a known gene, and is associated with an OR of at least 10. In some embodiments, a CNV/CNV-subregion can be of interest if the CNV/CNV-subregion overlaps a known gene, is associated with an OR of at least 6, and if the OR associated with the sum of ASD cases and the sum of NVE subjects affecting the same gene (including distinct CNV-subregions) is at least 6.


The data presented in Tables 1-4 was generated on the basis of a comparison of copy number variants (CNVs) identified in a NVE and an ASD cohort. CNV genome locations are provided using the Human March 2006 (NCBI36/hg18) assembly. It can be appreciated by those skilled in the art that a CNV found in an affected individual may have one or more subregions that are preferentially found in the affected cohort as compared to the unaffected cohort and, similarly, other subregions within the CNV that are found at comparable frequencies, or not statistically significant different frequencies, in the affected and unaffected cohorts. In a preferred embodiment, CNV detection and analysis methods are employed that enable comparison of CNV subregions to facilitate identification of genes (or regulatory loci) that are causative or associated with the phenotype, condition, or disease being investigated (or detected for diagnostic purposes)


Table 1 lists all CNVs (SEQ ID NOs: 1-883) of interest, obtained as described in the text, with the exception that, for each entry, the chromosome (Chr) and original CNV start and stop positions are listed, along with original CNV size, type (loss or gain), ASD case ID, gene symbols (for the CNV-subregion, not the original CNV), Odds Ratio (OR) that is relevant to the CNV-subregion and, finally, the category of interest. The gene symbols refer to annotations for genes within the CNV-subregion, not the original CNV. In addition, the column ‘SEQ ID No’ lists the SEQ IDs of the sequences being submitted. Note that for some CNVs that are identical between different individuals, the priority numbers (and SEQ IDs) are identical. In other words, the sequence for a given CNV is only included once, if identical in different individuals. For example, 2 rows of Table 1 may refer to identical CNVs in 2 ASD cases.


Table 2 is identical to Table 1, with 4 exceptions. The CNV coordinates listed refer to the actual CNV-subregions found to be unique or significantly different between the ASD and NVE cohorts, as opposed to Table 1, which lists the original CNVs. In addition, an extra column details whether genic CNV-subregions of interest overlap an exon or not (Exon Overlap, Y=yes, N=N). 2 extra columns detail the number of NVE subjects (NVE) and the number of ASD cases (ASD) that harbor the relevant CNV-subregion.


Table 3 represents a non-redundant list for all genes listed in Table 2 (namely, those relevant to CNV-subregions of interest), and includes the Gene name (RefSeq Gene Symbol), Exon overlap (Y=yes, N=no), NCBI Gene ID (DNA Accession number), Gene Description (brief gene description), and RefSeq Summary (summary of gene function).


Table 4 represents a non-redundant list for all genes listed in Table 2 (namely, those relevant to CNV-subregions of interest) and includes RefSeq Gene Symbol, Exon overlap (intronic, exonic or both, SEQ ID No (consecutive SEQ ID numbers from Table 1). SEQ ID NOs: 884-1690 refer to the transcript sequences; RefSeq Accession Number (may be multiple entries per gene, hence Table 4 has more entries than Table 3); mRNADescription (brief description of mRNA), and RefSeq Summmary (summary of gene function). For CNVs that encompass consecutive introns and exons, there may be multiple features reported per CNV.


More than one RNA product (e.g., alternatively spliced mRNA transcripts and non-coding RNAs) can be produced from a single gene. Table 4 lists all presently known transcript variants (and their RNA accession numbers) but new variants may be found when further studies are completed and that generation of these additional transcript variants (and ultimately polypeptide and/or regulatory RNA products) may also be impacted by one or more CNVs or CNV subregions listed in Tables 1 and 2, respectively. The transcripts listed in Table 4 can be expression products of the same gene biomarker. The gene biomarker can comprise genomic DNA encoding the gene, including exons, introns, and/or regulatory binding regions (such as enhancers, promoters, silencers, and/or response elements). Point mutations, polymorphisms, single nucleotide polymorphisms (SNPs), single nucleotide variations (SNVs), translocations, insertions, deletions, amplifications, inversions, microsatellites, interstitial deletions, CNVs, loss of heterozygosity, or any other aberrations which affect the structure or function of one or more gene biomarkers and/or expression products thereof, can be associated with a neurodevelopmental disorder as described herein.


Table 5 represents a key showing the relationship of the chromosome number in coumn 1 of Table 1 and Table 2 and the actual chromosome where the CNVs/CNV-subregions were detected.


In some embodiments, the CNVs from Table 1 only include the CNVs in Table 1 of U.S. Provisional Application No. 61/744,463.


In some embodiments, the CNV subregions from Table 2 only include the CNV subregions in Table 2 of U.S. Provisional Application No. 61/744,463.


In some embodiments, the genes from Table 3 only include the genes in Table 3 of U.S. Provisional Application No. 61/744,463.


In some embodiments, the transcripts from Table 4 only include the transcripts in Table 4 of U.S. Provisional Application No. 61/744,463.


















TABLE 1





Chr
Original CNV Start
Original CNV Stop
Original CNV Size
CNVType
ASD Case ID(s)
RefSeq Gene Symbol(s)
OR
Category
SEQ ID NO
























1
554287
773763
219476
loss
1229
LOC643837, NCRNA00115
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
439


1
554287
839166
284879
gain
1252
LOC643837, NCRNA00115
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
440


1
554287
842726
288439
gain
1742
LOC643837, NCRNA00115
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
441


1
554287
893629
339342
gain
1811
LOC643837, NCRNA00115
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
442


1
554287
839166
284879
gain
1837
LOC643837, NCRNA00115
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
440


1
554287
839166
284879
gain
1900
LOC643837, NCRNA00115
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
440


1
554287
839166
284879
gain
1252
LOC643837
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
440


1
554287
842726
288439
gain
1742
LOC643837
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
441


1
554287
893629
339342
gain
1811
LOC643837
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
442


1
554287
839166
284879
gain
1837
LOC643837
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
440


1
554287
839166
284879
gain
1900
LOC643837
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
440


1
9769722
9776903
7181
loss
1301
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1474
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1487
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1533
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1536
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1546
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1551
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1573
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1602
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1648
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1658
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1734
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1740
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1923
CLSTN1
21.04
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1301
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1474
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1487
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1533
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1536
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1546
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1551
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1573
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1602
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1648
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1658
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1734
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1740
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9769722
9776903
7181
loss
1923
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
8


1
9772802
9776903
4101
loss
1436
CLSTN1
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
9


1
16713074
17155989
442915
gain
1501
CROCC
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
318


1
16799711
17154037
354326
loss
1905
CROCC
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
322


1
16799711
17154037
354326
loss
1949
CROCC
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
322


1
16888048
17154037
265989
loss
1694
CROCC
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
321


1
16888048
17154037
265989
loss
1947
CROCC
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
321


1
17080364
17154037
73673
loss
1673
CROCC
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
320


1
17080364
17154037
73673
loss
1677
CROCC
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
320


1
17112697
17154037
11340
loss
1658
CROCC
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
319


1
17114337
17154037
39700
loss
1256
CROCC
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
317


1
31762404
31764282
1878
loss
1405
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1508
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1513
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1527
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1557
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1583
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1617
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1628
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1644
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1647
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1696
LOC284551
10.51
Genic (distinct CNV-subreaions); OR > 6
387


1
31762404
31764282
1878
loss
1811
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1836
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
31762404
31764282
1878
loss
1908
LOC284551
10.51
Genic (distinct CNV-subregions); OR > 6
387


1
34876833
34884849
8016
loss
1239

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1253

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1291

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1347

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1439

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1455

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1474

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1492

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1511

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1564

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1598

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1601

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1641

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1646

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1717

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1786

30.33
high OR intergenic (OR > 30)
207


1
34876833
34884849
8016
loss
1827

30.33
high OR intergenic (OR > 30)
207


1
34876833
34886493
9660
loss
1928

30.33
high OR intergenic (OR > 30)
209


1
34876833
34884849
8016
loss
2005

30.33
high OR intergenic (OR > 30)
207


1
34878816
34884849
6033
loss
1643

30.33
high OR intergenic (OR > 30)
205


1
54862228
54876067
13839
loss
1677
ACOT11
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
389


1
54862228
54876067
13839
loss
1721
ACOT11
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
389


1
54862228
54876067
13839
loss
1915
ACOT11
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
389


1
54864879
54879813
14934
loss
1908
ACOT11
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
390


1
54864879
54876067
11188
loss
2028
ACOT11
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
391


1
54866506
54876067
9561
loss
1668
ACOT11
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
388


1
54866506
54876067
9561
loss
1729
ACOT11
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
388


1
68435695
68436445
750
loss
1259
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
264


1
68435695
68436445
750
loss
1267
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
264


1
68435695
68436445
750
loss
1344
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
264


1
68435695
68436445
750
loss
1345
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
264


1
68435695
68436445
750
loss
1510
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
264


1
68435695
68436445
750
loss
1563
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
264


1
68435695
68436445
750
loss
1594
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
264


1
68435695
68436445
750
loss
1640
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
264


1
68435695
68436445
750
loss
1750
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
261


1
68435695
68436445
750
loss
1826
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
264


1
68435695
68436445
750
loss
1852
WLS
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
264


1
71091004
71094314
3310
loss
1739
PTGER3
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
610


1
71091004
71094314
3310
loss
1802
PTGER3
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
610


1
71091004
71094314
3310
loss
1837
PTGER3
5.92
Exon + ve, 5 > ASD > I, Normals < 2, Sanger − ve
640


1
71091004
71094314
3310
loss
1844
PTGER3
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
640


1
71103367
71113670
10303
gain
1259
PTGER3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
739


1
71106139
71121446
15307
gain
2041
PTGER3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
740


1
102231556
102237620
6064
loss
1284
OLFM3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
741


1
102231556
102241226
9670
loss
1862
OLFM3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
742


1
103832879
104012520
179641
gain
1567
AMY2B
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
526


1
103899771
104012520
112749
gain
1317
AMY2B
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
525


1
103899771
103962495
62724
gain
1955
AMY2B
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
527


1
103901454
103962495
61041
gain
1991
AMY2B
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
528


1
103904723
104012520
107797
gain
2032
AMY2B
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
529


1
105838975
106062421
223446
loss
2024

46.2
high OR intergenic (OR > 30)
849


1
105838975
106062421
223446
loss
2024

49.43
high OR intergenic (OR > 30)
519


1
105882119
105931012
48893
loss
1416

46.2
high OR intergenic (OR > 30)
845


1
105882119
105931012
48893
loss
1947

46.2
high OR intergenic (OR > 30)
845


1
105882119
105931012
48893
loss
1416

49.43
high OR intergenic (OR > 30)
845


1
105882119
105931012
48893
loss
1947

49.43
high OR intergenic (OR > 30)
845


1
105890374
105931012
40638
loss
1253

46.2
high OR intergenic (OR > 30)
842


1
105890374
105938579
48205
loss
1324

46.2
high OR intergenic (OR > 30)
844


1
105890374
105938579
48205
loss
1494

46.2
high OR intergenic (OR > 30)
844


1
105890374
105931012
40638
loss
1502

46.2
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1515

46.2
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1557

46.2
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1564

46.2
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1717

46.2
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1741

46.2
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
gain
1810

46.2
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1915

46.2
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1253

49.43
high OR intergenic (OR > 30)
842


1
105890374
105938579
48205
loss
1324

49.43
high OR intergenic (OR > 30)
844


1
105890374
105938579
48205
loss
1494

49.43
high OR intergenic (OR > 30)
544


1
105890374
105931012
40638
loss
1502

49.43
high OR intergenic (OR > 30)
542


1
105890374
105931012
40638
loss
1515

49.43
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1557

49.43
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1564

49.43
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1717

49.43
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1741

49.43
high OR intergenic (OR > 30)
842


1
105890574
105931012
40638
gain
1810

49.43
high OR intergenic (OR > 30)
842


1
105890374
105931012
40638
loss
1915

49.43
high OR intergenic (OR > 30)
842


1
105900548
105931012
30464
loss
1287

46.2
high OR intergenic (OR > 30)
843


1
105900548
105931012
50464
loss
1337

46.2
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
gain
1521

46.2
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1558

46.2
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1566

46.2
high OR intergenic (OR > 30)
843


1
105900548
105938579
38031
loss
1659

46.2
high OR intergenic (OR > 30)
847


1
105900548
105931012
30464
gain
1787

46.2
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1832

46.2
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1955

46.2
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1959

16.2
high OR intergenic (OR > 30)
843


1
105900548
105938579
38031
loss
1994

46.2
high OR intergenic (OR > 30)
847


1
105900545
105931012
30464
loss
2005

46.2
high OR intergenic (OR > 30)
843


1
105900545
105931012
30464
loss
1287

49.43
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1337

49.43
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
gain
1521

49.43
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1558

49.43
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1566

49.43
high OR intergenic (OR > 30)
843


1
105900548
105938579
38031
loss
1659

49.43
high OR intergenic (OR > 30)
847


1
105900548
105931012
30464
gain
1787

49.43
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1832

49.43
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1955

49.43
high OR intergenic (OR > 30)
843


1
105900548
105931012
30464
loss
1959

49.43
high OR intergenic (OR > 30)
843


1
105900548
105938579
38031
loss
1994

49.43
high OR intergenic (OR > 30)
847


1
105900548
105931012
30464
loss
2005

49.43
high OR intergenic (OR > 30)
843


1
105909959
105931012
21053
loss
1250

46.2
high OR intergenic (OR > 30)
841


1
105909959
105931012
21053
gain
1410

46.2
high OR intergenic (OR > 30)
841


1
105909959
105926088
16129
loss
1765

46.2
high OR intergenic (OR > 30)
848


1
105909959
105931012
21053
loss
1766

46.2
high OR intergenic (OR > 30)
841


1
105909959
105931012
21053
loss
1250

49.43
high OR intergenic (OR > 30)
841


1
105909959
105931012
21053
gain
1410

49.43
high OR intergenic (OR > 30)
841


1
105909959
105926088
16129
loss
1765

49.43
high OR intergenic (OR > 30)
848


1
105909959
105931012
21053
loss
1766

49.43
high OR intergenic (OR > 30)
841


1
105917569
105931012
13443
gain
1522

49.43
high OR intergenic (OR > 30)
846


1
105917569
105931012
13443
gain
1563

49.43
high OR intergenic (OR > 30)
846


1
113799262
113807947
8685
loss
1426
MAGI3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1442
MAGI3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1443
MAGI3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1476
MAGI3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1500
MAGI3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1505
MAGI3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1525
MAGI3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1426
MAGI3
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1442
MAGI3
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1443
MAGI3
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1476
MAGI3
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1500
MAGI3
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1505
MACI3
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113799262
113807947
8685
loss
1525
MAGI3
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
351


1
113801663
113807947
6284
gain
1590
MAGI3
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
352


1
141559466
144093719
2534253
gain
1599
SEC22B
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
309


1
141559466
144093719
2534253
gain
1599
SEC22B
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
309


1
141559466
144093719
2534253
gain
1599
NBPF9, LOC653513,
13.95
Genic (distinct CNV-subregions); OR > 6
309








PPIAL4A, PDE4DIP,











PPIAL4C, PPIAL4B,











LOC728855, LOC728875,











SRGAP2P2,C1orf152





1
143820820
144003068
182248
gain
1617
SEC22B
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
671


1
143820820
144003068
182248
gain
1617
SEC22B
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
671


1
143822873
144003068
180195
gain
1713
SEC22B
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
672


1
147306304
148081741
775437
gain
1293
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
265








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











HIST2H4B, HIST2H4A





1
147306304
148081741
775437
gain
1294
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
265








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











HIST2H4B, HIST2H4A





1
147306304
148081741
775437
gain
1293
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
265








FCGR1C, LOC728855





1
147306304
148081741
775437
gain
1294
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
265








FCGR1C, LOC728855





1
147306304
147847659
541355
gain
1387
PPIAL4A, PPIAI,4C,
13.95
Genic (distinct CNV-subregions); OR > 6
312








FCGR1C, LOC728855





1
147308557
148088285
779728
loss
2022
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
271








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











HIST2H4B, HIST2H4A





1
147308557
148088285
779728
loss
2029
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
271








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











HIST2H4B, HIST2H4A





1
147308557
147847659
539102
loss
1414
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
313








FCGR1C, LOC728855





1
147308557
147847659
539102
loss
1442
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
313








FCGR1C, LOC728855





1
147308557
147847659
539102
loss
1476
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
313








FCGR1C, LOC728855





1
147308557
147847659
539102
loss
1526
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
313








FCGR1C, LOC728855





1
147308557
147847659
539102
loss
1821
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
313








FCGR1C, LOC728855





1
147308557
147847659
539102
loss
1827
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
313








FCGR1C, LOC728855





1
147308557
147847659
539102
loss
1910
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
313








FCGR1C, LOC728855





1
147308557
147847659
539102
loss
1913
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subresions); OR > 6
313








FCGR1C, LOC728855





1
147308557
147847659
539102
loss
1943
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
313








FCGR1C, LOC728855





1
147308557
147847659
539102
loss
1961
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
313








FCGR1C, LOC728855





1
147308557
147847659
539102
loss
2002
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
313








FCGR1C, LOC728855





1
147308557
148088285
779728
loss
2022
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
271








FCGR1C, LOC728855





1
147308557
148088285
779728
loss
2029
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
271








FCGR1C, LOC728855





1
147311437
147847659
536222
loss
1276
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
311








FCGR1C, LOC728855





1
147311437
147847659
536222
loss
1782
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
311








FCGR1C, LOC728855





1
147313991
148081769
767778
loss
1686
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
266








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











HIST2H4B, HIST2H4A





1
147313991
148088285
774294
loss
1739
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
267








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











HIST2H4B, HIST2H4A





1
147313991
148088285
774294
loss
1757
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
267








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











HIST2H4B, HIST2H4A





1
147315901
148088285
774294
loss
1947
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
267








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











H1ST2H4B, HIST2H4A





1
147313991
147847659
533668
loss
1539
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
314








FCGR1C, LOC728855





1
147313991
147847659
533668
loss
1573
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
314








FCGR1C, LOC728855





1
147313991
148081769
767778
loss
1686
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
266








FCGR1C, LOC728855





1
147313991
148088285
774294
loss
1739
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
267








FCGR1C, LOC728855





1
147313991
147847659
533668
loss
1744
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
314








FCGR1C, LOC728855





1
147313991
148088285
774294
loss
1757
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
267








FCGR1C, LOC728855





1
147313991
147847659
533668
loss
1762
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
314








FCGR1C, LOC728855





1
147313991
147847659
533668
loss
1917
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
314








FCGR1C, LOC728855





1
147313991
148088285
774294
loss
1947
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
267








FCGR1C, LOC728855





1
147315217
148084402
769185
loss
1861
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
269








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











H1ST2H4B, H1ST2H4A





1
147315217
148115321
800104
loss
1954
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
270








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











HIST2H4B, HIST2H4A





1
147315217
147847659
532442
loss
1253
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
310








FCGR1C, LOC728855





1
147315217
147847659
532442
loss
1318
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
310








FCGR1C, LOC728855





1
147515217
147847659
532442
loss
1524
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
310








FCGR1C, LOC728855





1
147315217
148084402
769185
loss
1861
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
269








FCGR1C, LOC728855





1
147315217
148115321
800104
loss
1954
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
270








FCGR1C, LOC728855





1
147441409
147847659
406250
loss
1726
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
316








FCGR1C, LOC728855





1
147471665
147847659
375994
loss
1585
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
315








FCGR1C, LOC728855





1
147644831
148088285
443454
loss
1817
HIST2H3A, LOC728855,
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
268








HIST2H2AA4, HIST2H3D,











HIST2H3C, HIST2H2BF,











FCGR1A, HIST2H2AA3,











HIST2H4B, HIST2H4A





1
147644831
148088285
443454
loss
1817
PPIAL4A, PPIAL4C,
13.95
Genic (distinct CNV-subregions); OR > 6
268








FCGR1C, LOC728855





1
150712926
150935932
223006
gain
2018
LCE3E
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
278


1
150712926
150935932
223006
gain
2018
LCE3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
278


1
150796077
150819879
23802
loss
1224
LCE3E
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
272


1
150796077
150839754
43677
loss
1487
LCH3E
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
275


1
150796077
150823073
26996
loss
1750
LCE3E
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
276


1
150796077
150819879
23802
loss
1759
LCE3E
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
272


1
150796077
150819879
23802
loss
1224
LCE3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
272


1
150796077
150839754
43677
loss
1487
LCE3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
275


1
150796077
150823073
26996
loss
1750
LCE3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
276


1
150796077
150819879
23802
loss
1759
LCE3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
272


1
150818222
150857070
35515
gain
1265
LCE3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
273


1
150818222
150851439
33217
gain
1267
LCE3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
274


1
150818222
150857070
38848
gain
1297
LCF3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
273


1
150818222
150857070
38848
gain
1779
LCE3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
273


1
150818222
150843192
24970
gain
1953
LCE3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
277


1
150818222
150857070
38848
gain
2034
LCE3D
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
273


1
181429536
181431556
2020
loss
1275
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1277
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2026
loss
1392
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1410
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1427
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1696
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1697
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1774
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1777
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1778
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1824
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1838
LAMC2
25.67
Intron + ve, ASD > 4, Normals • 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1870
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1893
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1893
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1950
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
181429536
181431556
2020
loss
1953
LAMC2
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
225


1
188512897
188537295
24398
gain
1788
FAM5C
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
531


1
188526975
188537295
10320
gain
1354
FAM5C
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
530


1
188526975
188537295
10320
gain
1596
FAM5C
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
530


1
188526975
188537295
10320
gain
1669
FAM5C
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
530


1
188526975
188537295
10320
gain
1742
FAM5C
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
530


1
194971624
195095156
123532
loss
1291
CFH
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
214


1
194971624
195095156
123532
loss
1440
CFH
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
214


1
194971624
195065867
94243
loss
1712
CFH
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
220


1
194971624
195095156
123532
loss
1291
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
214


1
194971624
195095156
123532
loss
1440
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
214


1
194971624
195065867
94243
loss
1712
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
220


1
194977713
195097118
119405
gain
1572
CFH
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
217


1
194977713
195065867
88154
gain
1591
CFH
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
218


1
194977713
195097118
119405
gain
1665
CFH
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
217


1
194977713
195097118
119405
gain
1572
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
217


1
194977713
195065867
88154
gain
1591
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
218


1
194977713
195097118
119405
gain
1665
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
217


1
194978218
195095156
116938
loss
1315
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
215


1
194978218
195065867
87649
loss
1412
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
216


1
194978218
195065867
87649
loss
1425
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
216


1
194978218
195065867
87649
loss
1442
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
216


1
194978218
195065867
87649
loss
1443
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
216


1
194978218
195095156
116938
loss
1493
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
215


1
194978218
195065867
87649
loss
1494
CFH
27.22
Exon ve, ASD > 4, Normals < 2, no Sanger filter applied
216


1
194978218
195095156
116938
loss
1503
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
215


1
194978218
195046932
68714
loss
1633
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
219


1
194978218
195065867
87649
loss
1717
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
216


1
194978218
195062793
84575
loss
1917
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
221


1
194978218
195065867
87649
loss
1968
CFH
27.22
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
216


1
199054239
199199515
145276
gain
1587
CAMSAP1L1,
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
743








C1orf106, GPR25





1
199054239
199199515
145276
gain
1799
CAMSAP1L1,
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
743








C1orf106, GPR25





1
209721622
209741682
20060
loss
1918
RD3
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
675


1
209723776
209741682
17906
loss
1804
RD3
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
674


1
209725571
209741682
16111
loss
1297
RD3
4.44
Kxon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
673


1
242999910
244841528
1841618
loss
1767
TFB2M
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
744


1
244191230
244851275
660045
gain
1819
TFB2M
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
745


1
246769018
246862029
93011
loss
1664
OR2T29
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
746


1
246769018
246875016
105998
loss
1672
OR2T29
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
747


1
247069126
247073548
4422
loss
1678
SH3BP5L
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
748


1
247071226
247073548
2022
loss
2022
SH3BP5L
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
749


2
20234103
20236210
2107
loss
1272

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1275

30.33
high OR inlergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1104

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1437

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1443

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1487

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1488

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1541

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1594

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1607

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1665

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1723

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1726

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1788

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1813

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1853

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1879

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
1952

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
2020

30.33
high OR intergenic (OR > 30)
210


2
20234103
20236210
2107
loss
2035

30.33
high OR intergenic (OR > 30)
210


2
35556102
35562007
5905
gain
1230

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1263

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
loss
1271

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
loss
1276

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
loss
1286

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1417

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
loss
1456

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
loss
1470

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1568

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1589

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1606

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1611

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1612

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1614

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1637

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1670

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
loss
1726

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1864

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1881

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5965
gain
1918

33.47
high OR intergenic (OR > 30)
875


2
55556102
35562007
5905
gain
1956

33.47
high OR intergenic (OR > 30)
875


2
35556102
35562007
5905
gain
1969

33.47
high OR intergenic (OR > 30)
875


2
76849598
76866680
17082
loss
1599
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
44


2
76849598
76866680
17082
loss
1599
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
44


2
76849598
76866680
17082
loss
1599
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
44


2
76854519
76863459
8940
loss
1254
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
45


2
76854519
76863459
8940
loss
1279
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
45


2
76854519
76863459
8940
loss
1286
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
45


2
76854519
76863459
8940
loss
1289
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
45


2
76854519
76863459
8940
loss
1295
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
45


2
76854519
76863459
8940
loss
1344
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
45


2
76854519
76863459
8940
loss
1424
LRRTM4
8.24
Genic (distinct CNV subrcgions); ()R 6
45


2
76854519
76868055
13536
loss
1456
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
46


2
76854519
76863459
8940
loss
1492
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
45


2
76854519
76863459
8940
loss
1495
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
45


2
76854519
76863459
8940
loss
1501
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
45


2
76854519
76863459
8940
loss
1512
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
45


2
76854519
76863459
8940
loss
1524
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
45


2
76854519
76868055
13536
loss
1525
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
46


2
76854519
76863459
8940
gain
1660
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
45


2
76854519
76863459
8940
loss
1711
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
45


2
76854519
76863459
8940
loss
1909
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
45


2
76854519
76863459
8940
loss
2031
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
45


2
76854519
76868055
13536
loss
1456
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
46


2
76854519
76868055
13536
loss
1525
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
46


2
76854519
76868055
13536
loss
1456
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
46


2
76854519
76868055
13536
loss
1525
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
46


2
77040204
77041952
1748
loss
1416
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
47


2
77040204
77041952
1748
loss
1418
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
47


2
77080924
77088262
7538
loss
1474
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
48


2
77080924
77083734
2810
loss
1822
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
49


2
77080924
77101859
20935
loss
1850
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
50


2
77080924
77088262
7338
loss
1474
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
48


2
77080924
77101859
20935
loss
1850
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
50


2
77080924
77101859
20935
loss
1850
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
50


2
77465598
77466768
1170
loss
1305
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
51


2
77465598
77466768
1170
loss
1347
LRRTM4
8.24
Genic (distinct CNV-subreaions); OR > 6
51


2
77465598
77466768
1170
loss
1991
LRRTM4
8.24
Genic (distinct CNV-subregions); OR > 6
51


2
85465078
85500335
35257
loss
1624
ELMOD3, CAPG
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
750


2
85465078
85500335
35257
loss
1928
ELMOD3, CAPG
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
750


2
112206769
112337951
131182
gain
1498
ANAPC1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
353


2
112263258
112337951
74693
loss
1814
ANAPC1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
356


2
112307418
112337951
30533
gain
1558
ANAPC1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
554


2
112308558
112337951
29393
loss
1794
ANAPC1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
355


2
112308558
112337951
29393
loss
1810
ANAPC1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
355


2
112308558
112337951
29393
loss
1833
ANAPC1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
355


2
112308558
112337951
29393
loss
1908
ANAPC1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
355


2
112308558
112337951
29393
loss
2005
ANAPC1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
355


2
112745189
112764889
19700
loss
1905
ZC3H6
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
555


2
112752277
112764889
12612
gain
1266
ZC3H6
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
552


2
112752277
112764889
12612
gain
1653
ZC3H6
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
532


2
112752277
112764889
12612
gain
1694
ZC3H6
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
532


2
112752277
112764889
12612
gain
1910
ZC3H6
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
532


2
113215024
113216275
1251
loss
1249
CKAP2L
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
676


2
113215024
113216275
1251
loss
1265
CKAP2L
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
676


2
113215024
113216275
1251
loss
1306
CKAP2L
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
676


2
115483979
115504398
20419
loss
1798
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
213


2
115492911
115504398
11487
loss
1293
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
211


2
115492911
115504398
11487
loss
1298
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
211


2
115492911
115493163
252
loss
1720
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115495165
252
loss
1723
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493163
352
loss
1837
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115504398
11487
loss
1855
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
211


2
115492911
115493163
252
loss
1916
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493163
252
loss
1935
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493163
252
loss
1942
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493163
252
loss
1946
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493163
252
loss
1952
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493165
252
loss
1953
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493163
252
loss
1958
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493163
252
loss
1960
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115495165
252
loss
1963
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493163
252
loss
1965
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493163
252
loss
1966
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
115492911
115493163
252
loss
1969
DPP10
28.77
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
212


2
120359909
120361151
1242
gain
1224
PTPN4
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
751


2
120359909
120361151
1242
gain
1942
PTPN4
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
751


2
131921816
131976434
54618
loss
1224
LOC150776, TUBA3D,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
323








MZT2A





2
131921816
131976434
54618
loss
1295
LOC150776, TUBA3D,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
323








MZT2A





2
131921816
131976434
54618
loss
1301
LOC150776, TUBA3D,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
323








MZT2A





2
131921816
131976434
54618
loss
1404
LOC150776, TUBA3D,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
323








MZT2A





2
131921816
131976434
54618
loss
1492
LOC150776, TUBA3D,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
323








MZT2A





2
131921816
131982998
61182
loss
1742
LOC150776, TUBA3D,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
324








MZT2A





2
131921816
131976434
54618
loss
1896
LOC150776, TUBA3D,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
323








MZT2A





2
131921816
131976434
54618
loss
1900
LOC150776, TUBA3D,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
323








MZT2A





2
131921816
131976434
54618
loss
1917
LOC150776, TUBA3D,
15.45
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
525








MZT2A





2
140701510
140702990
1480
gain
1237

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1240

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1272

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1486
gain
1343

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1432

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1486
gain
1501

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1601

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1486
gain
1616

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1617

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1618

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1620

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1629

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1642

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gam
1645

33.47
high OR intergenic (OR > 30)
190


2
110701510
140702990
1480
gain
1672

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1865

35.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1900

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1904

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1949

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
1999

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
2031

33.47
high OR intergenic (OR > 30)
190


2
140701510
140702990
1480
gain
2034

33.47
high OR intergenic (OR > 30)
190


2
150020572
150022009
1637
gain
1281
LYPD6
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
357


2
150020372
150022009
1657
gain
1389
LYPD6
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
357


2
150020372
150022009
1637
gain
1391
LYPD6
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
357


2
150020372
150022009
1637
gain
1411
LYPD6
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
357


2
150020372
150022009
1637
gain
1434
LYPD6
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
357


2
150020372
150022009
1637
gain
1435
LYPD6
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
357


2
150020372
150022009
1637
gain
1449
LYPD6
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
357


2
150020372
150022009
1637
gain
1654
LYPD6
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
357


2
165652444
165654598
2154
loss
1484
SCN3A
2.95
Exon + ve- 5 > ASD > 1, Normals < 2, Sanger − ve
752


2
165652444
165654598
2154
loss
1873
SCN3A
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
752


2
178545984
178556781
10797
loss
1949
PDE11A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
536


2
178552260
178567628
15368
loss
1410
PDE11A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
534


2
178552260
178558860
6600
loss
1500
PDE11A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
535


2
178552260
178558860
6600
loss
1505
PDE11A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
535


2
178552260
178567628
15368
loss
1811
PDE11A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
534


2
197607589
197612724
5135
loss
1281
ANKRD44
14.83
Genic (distinct CNV-subregions); OR > 6
306


2
197883024
197884226
1202
loss
1299
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
loss
1391
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
gain
1448
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
loss
1465
ANKRD44
14.83
Genic (distinct CNV-subregions); OR > 6
307


2
197883024
197884226
1202
loss
1477
ANKRD44
14.83
Cienic (distinct CNV-subregions); OR > 6
307


2
197883024
197884226
1202
loss
1548
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
loss
1559
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
loss
1566
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
loss
1580
ANKRD44
14.83
Genic (distinct CNV-subregions); OR > 6
507


2
197883024
197884226
1202
gain
1597
ANKRD44
14.83
Genic (distinct CNV-subregions); OR > 6
307


2
197883024
197884226
1202
loss
1609
ANKRD44
14.83
Genic (distinct CNV-subregions); OR > 6
307


2
197883024
197884226
1202
loss
1629
ANKRD44
14.83
Genic (distinct CNV-subregions); OR > 6
307


2
197883024
197926527
43503
gain
1644
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
308


2
197883024
197884226
1202
loss
1699
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
loss
1704
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
loss
1724
ANKRD44
14.83
Genic (distinct CNV-subregions); OR > 6
307


2
197883024
197884226
1202
gain
1743
ANKRD44
14.83
Genic (distinct CNV-subregions); OR > 6
307


2
197883024
197884226
1202
loss
1830
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
loss
1844
ANKRD44
14.83
Genic (distinct CNV-subregions); OR > 6
307


2
197883024
197884226
1202
loss
1869
ANKRD44
14.83
Genic (distinct CNV-subregions); OR > 6
307


2
197883024
197884226
1202
loss
1905
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
loss
1921
ANKRD44
14.83
Genic (distinct CNV-subresions); OR > 6
307


2
197883024
197884226
1202
loss
1952
ANKRD44
14.83
Genic (distinct CNV-subresions); OR > 6
307


2
197883024
197884226
1202
loss
1959
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
507


2
197883024
197884226
1202
loss
1962
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197884226
1202
loss
1964
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
197883024
197881226
1202
loss
2031
ANKRD44
14.83
Genic (distinct CNV subrcsions); OR 6
307


2
197883024
197884226
1202
loss
2035
ANKRD44
14.83
Genic (distinct CNV-subreaions); OR > 6
307


2
213922938
213938010
15072
loss
1870
SPAG16
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
538


2
213932902
213933569
667
loss
1386
SPAG16
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
537


2
213932902
213933569
667
loss
1500
SPAG16
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
537


2
213932902
213933569
667
loss
1583
SPAG16
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
537


2
213932902
213933569
667
loss
1912
SPAG16
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
537


2
215367912
215378790
10878
gain
1370
BARD1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
677


2
215367912
215378790
10878
gain
1604
BARD1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
677


2
215367912
215378790
10878
gain
1925
BARD1
4.44
Exon t ve, 5 > ASD > 1, Normals < 2, Sanger − ve
677


3
76072
406838
330766
gain
1598
CHL1
4.44
Exon t ve, 5 > ASD > 1, Normals < 2, Sanger − ve
679


3
76072
406838
330766
gain
1598
CHL1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
679


3
227364
1488979
1261615
gain
1657
CHL1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
680


3
227364
1488979
1261615
gain
1657
CHL1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
680


3
310349
353620
43271
gain
1273
CHL1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
678


3
2389001
2955718
566717
gain
1851
CNTN4
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
754


3
2747805
2834416
86611
gain
1595
CNTN4
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
753


3
15114373
16536184
1421811
loss
1850
HACL1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
756


3
15587405
15593664
6259
loss
1564
HACL1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
755


3
29370672
29380899
10227
loss
1442
RBMS3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
393


3
29370672
29380899
10227
loss
1475
RBMS3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
393


3
29370672
29380899
10227
loss
1500
RBMS3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
393


3
29370672
29380899
10227
loss
1567
RBMS3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
393


3
29370672
29380899
10227
loss
1442
RBMS3
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
393


3
29370672
29380899
10227
loss
1475
RBMS3
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
393


3
29370672
29380899
10227
loss
1500
RBMS3
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
393


3
29370672
29380899
10227
loss
1567
RBMS3
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
393


3
29373456
29379164
5708
loss
1324
RBMS3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
392


3
29373456
29379164
5708
loss
1568
RBMS3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
392


3
29373456
29379164
5708
loss
1585
RBMS3
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
392


3
29379164
29380899
1735
loss
1425
RBMS3
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
539


3
32285101
32285133
32
gain
1233
CMTM8
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
358


3
32285101
32290376
5275
gain
1282
CMTM8
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
359


3
32285101
32285133
32
gain
1419
CMTM8
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
358


3
32285101
32285133
32
gain
1452
CMTM8
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
358


3
32285101
32285133
32
gain
1467
CMTM8
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
358


3
32285101
32285133
32
gain
1561
CMTM8
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
358


3
32285101
32285133
32
gain
1604
CMTM8
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
358


3
32285101
32285133
32
gain
2024
CMTM8
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
358


3
33868917
33873484
4567
loss
1259
PDCD6IP
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
540


3
33868917
33873484
4567
loss
1274
PDCD6IP
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
540


3
33868917
33873484
4567
loss
1724
PDCD6IP
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
540


3
33871823
33873484
1661
gain
1602
PDCD6IP
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
541


3
33871823
33873484
1661
gain
1926
PDCD6IP
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
541


3
38415026
38433483
18457
loss
1725
XYLB
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
543


3
38415026
38428090
13064
loss
1802
XYLB
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
544


3
38415026
38433483
18457
loss
1725
XYLB
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
545


3
38417568
38428090
10522
loss
1428
XYLB
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
542


3
38417568
38428090
10522
loss
1848
XYLB
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
542


3
38417568
38430518
12950
loss
1881
XYLB
7.42
Intron + ve, ASD > 1, Normals < 2, no Sanger filter applied
545


3
38417568
38430518
12950
loss
1881
XYLB
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
545


3
42708033
42718285
10252
loss
1966
HHATL
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
548


3
42708033
42718285
10252
loss
1966
HHATL
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
548


3
42713487
42715137
1650
loss
1393
HHATL
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
546


3
42713487
42715137
1650
loss
1620
HHATL
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
546


3
42713487
42718285
4798
loss
1776
HHATL
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
547


3
42713487
42718285
4798
loss
1806
HHATL
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
547


3
42713487
42718285
4798
loss
1776
HHATL
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
547


3
42713487
42718285
4798
loss
1806
HHATL
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
547


3
45218616
45264751
46135
gain
1514
TMEM158
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
757


3
45218616
45264751
46135
gain
1874
TMFM158
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
757


3
50166741
50184719
17978
loss
1965
SEMA3F
7.46
Genic (distinct CNV-subreaions); OR > 6
521


3
50166741
50184719
17978
loss
1965
SEMA3F
7.46
Genic (distinct CNV-subreaions); OR > 6
521


3
50166741
50184719
17978
loss
1965
SEMA3F
7.46
Genic (distinct CNV-subreaions); OR > 6
521


3
50166741
50184719
17978
loss
1965
SEMA3F
7.46
Genic (distinct CNV-subregions); OR > 6
521


3
50171930
50173645
1715
loss
1548
SEMA3F
7.46
Genic (distinct CNV-subregions); OR > 6
522


3
50171930
50173645
1715
loss
1727
SEMA3F
7.46
Genic (distinct CNV-subreaions); OR > 6
522


3
50171930
50174341
2411
loss
1739
SEMA3F
7.46
Genic (distinct CNV-subregions); OR > 6
523


3
50171930
50174341
2411
loss
1739
SEMA3F
7.46
Genic (distinct CNV-subregions); OR > 6
523


3
50173645
50174341
696
loss
1232
SFMA3F
7.46
Genic (distinct CNV-subregions); OR > 6
524


3
50173645
50174341
696
loss
1299
SEMA3F
7.46
Genic (distinct CNV-subregions); OR > 6
524


3
50173645
50174341
696
loss
1697
SEMA3F
7.46
Genic (distinct CNV-subregions); OR > 6
524


3
50173645
50174341
696
loss
1737
SFMA3F
7.46
Genic (distinct CNV-subreaions); OR > 6
524


3
50173645
50174341
696
loss
1868
SFMA3F
7.46
Genic (distinct CNV-subreaions); OR > 6
524


3
50173645
50174341
696
loss
1958
SFMA3F
7.46
Genic (distinct CNV-subreaions); OR > 6
524


3
52997045
53011885
14840
loss
1515
SFMBT1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
242


3
52997045
53006923
9878
loss
1576
SFMBT1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
243


3
52997045
53011885
14840
loss
1515
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
242


3
52997045
53006923
9878
loss
1576
SFMBT1
19.51
Intron ve, ASD > 4, Normals < 2, no Sanger filter applied
243


3
52999601
53011885
12284
loss
1343
SFMBT1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
240


3
52999601
53011885
12284
loss
1568
SFMBT1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
240


3
52999601
53011885
12284
loss
1587
SFMBT1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
240


3
52999601
53011885
12284
loss
1343
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
240


3
52999601
53011885
12284
loss
1568
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
240


3
52999601
53011885
12284
loss
1587
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
240


3
53001678
53011885
10267
loss
1236
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
239


3
53001678
53011885
10207
loss
1272
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
239


3
53001678
53011885
10207
loss
1277
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
259


3
53001678
53020109
18431
loss
1494
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
241


3
53001678
53011885
10207
loss
1605
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
239


3
53001678
53011885
10207
loss
1705
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
239


3
53001678
53011885
10207
loss
1744
SFMBT1
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
239


3
53001678
53011885
10207
loss
1792
SFMBT1
19.51
Intron + ve ASD > 4, Normals < 2, no Sanger filter applied
239


3
53001678
53020109
18431
loss
1494
SFMBT1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
241


3
53003136
53014254
11118
loss
1347
SFMBT1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
519


3
55005156
53020109
16975
loss
1426
SFMBT1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
550


3
53003136
53020109
16973
loss
1441
SFMBT1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
550


3
53003136
53020109
16973
loss
1784
SFMBT1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
550


3
56583582
56594585
11003
loss
1117
CCDC66
8.91
Intron + ve, ASD > 1, Normals < 2, no Sanger filter applied
445


3
56583582
56594585
11003
loss
1436
CCDC66
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
443


3
56583582
56594585
11003
loss
1618
CCDC66
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
443


3
56583582
56591797
8215
loss
1794
CCDC66
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
444


3
56583582
56594585
11003
loss
1901
CCDC66
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
443


3
56583582
56594585
11003
loss
2024
CCDC66
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
443


3
56583582
56594585
11003
loss
1417
CCDC66
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
443


3
56583582
56594585
11003
loss
1436
CCDC66
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
443


3
56583582
56594585
11003
loss
1618
CCDC66
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
443


3
56583582
56594585
11003
loss
1901
CCDC66
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
443


3
56583582
56594585
11003
loss
2024
CCDC66
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
443


3
60636043
60968063
332020
loss
1660
FHIT
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
361


3
60717895
60719263
1368
gain
1266
FHIT
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
360


3
60717895
60719263
1368
gain
1274
FHIT
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
360


3
60717895
60719263
1368
gain
1275
FHIT
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
560


3
60717895
60719263
1368
gain
1389
FHIT
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
560


3
60717895
60719263
1368
gain
1606
FHIT
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
560


3
60717895
60719263
1368
gain
1611
FHIT
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
360


3
60717895
60719263
1368
gain
1884
FHIT
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
360


3
65250214
70625658
5375444
loss
1680
SUCLG2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
552


3
67746879
67748167
1288
loss
1673
SUCLG2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
551


3
67746879
67750163
3284
loss
1748
SUCLG2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
553


3
67746879
67748167
1288
loss
1940
SUCLG2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
551


3
67746879
67748167
1288
loss
1953
SUCLG2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
551


3
117168477
117172945
4468
loss
1434
LSAMP
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
325


3
117168477
117174471
5994
loss
1723
LSAMP
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
326


3
117168477
117174471
5994
loss
1916
LSAMP
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
326


3
117168477
117170906
2429
loss
1958
LSAMP
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
327


3
117168477
117170906
2429
loss
1961
LSAMP
15.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
327


3
117168477
117170906
2429
loss
1963
LSAMP
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
327


3
117168477
117170906
2429
loss
1966
LSAMP
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
327


3
117168477
117170906
2429
loss
1967
LSAMP
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
327


3
117168477
117170906
2429
loss
1969
LSAMP
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
327


3
156826698
156832789
6091
loss
1224
PLCH1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
554


3
156826698
156841384
14686
loss
1548
PLCH1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
555


3
156826698
156834492
7794
loss
1707
PLCH1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
556


3
156826698
156832789
6091
loss
1729
PLCH1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
554


3
156826698
156832789
6091
loss
2023
PLCH1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
554


3
168455955
168466714
10759
gain
1424
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
280


3
168466681
168466714
33
gain
1394
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
279


3
168466681
168466714
33
gain
1395
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
279


3
168466681
168466714
33
gain
1396
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
279


3
168466681
168466714
33
gain
1432
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
279


3
168466681
168466714
33
gain
1570
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
279


3
168466681
168466714
55
gain
1573
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
279


3
168466681
168466714
55
gain
1620
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
279


3
168466681
168482917
16236
gain
1865
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
279


3
168466681
168466714
33
gain
1884
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
279


3
168466681
168466714
33
gain
1908
ZBBX
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
279


3
192544305
192552734
8429
loss
1251
CCDC50
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
394


3
192544305
192552734
8429
loss
1284
CCDC50
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
394


3
192544305
192552734
8429
loss
1401
CCDC50
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
394


3
192544305
192552734
8429
loss
1657
CCDC50
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
394


3
192544305
192552734
8429
loss
1697
CCDC50
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
394


3
192544305
192552734
8429
loss
1803
CCDC50
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
394


3
192544305
192552734
8429
loss
1884
CCDC50
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
304


3
197135314
197531031
395717
gain
1227
ZDHHC19
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
758


3
197135314
197531031
395717
gain
1227
PCYT1A, TCTEX1D2
2.05
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
758


3
197412253
197977900
565647
gain
1565
ZDHHC19
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
759


3
197412253
197977900
565647
gain
1565
PCYT1A, TCTEX1D2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
759


4
68899247
69643272
744025
gain
1451
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
05


4
68901210
69677857
776647
gain
1268
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
91


4
68901210
60665979
761760
gain
1417
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
93


4
68901210
69677857
776647
gain
1548
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
91


4
68901210
69643272
742062
gain
1657
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
97


4
68901210
69643272
742062
gain
1669
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
97


4
69069651
69643272
573621
gain
1239
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69665979
596328
gain
1277
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
92


4
69069651
69643272
573621
loss
1291
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69643272
573621
gain
1387
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69643272
573621
loss
1555
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69643272
573621
gain
1578
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69643272
573621
gain
1665
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69643272
573621
gain
1667
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69643272
573621
gain
1672
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69665979
596328
loss
1714
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
92


4
69069651
69656183
586532
loss
1715
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
99


4
69069651
69643272
573621
gain
1761
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69643272
573621
gain
1833
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69656183
586532
gain
1842
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
99


4
69069651
69643272
573621
gain
1860
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69643272
573621
gain
1885
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69643272
573621
gain
1894
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69643272
573621
gain
1911
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69684769
615118
gain
1952
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
100


4
69069651
69643272
573621
gain
2001
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
90


4
69069651
69696642
626991
gain
2030
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
101


4
69075140
69643272
568132
gain
1447
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
94


4
69088563
69643272
554709
gain
1691
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
98


4
69120776
69687545
566769
gain
1588
UGT2B15,TMPRSS11E
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
96


4
71197387
71318078
120691
loss
1242
CABS1, SMR3A
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
681


4
71197387
71318078
120691
loss
1860
CABS1, SMR3A
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
681


4
71197387
71318078
120691
loss
1242
SMR3B, SMR3A
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
681


4
71197387
71318078
120691
loss
1860
SMR3B, SMR3A
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
681


4
71197387
71318078
120691
loss
1242
PROL1, SMR3B
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
681


4
71197387
71318078
120691
loss
1860
PROL1, SMR3B
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
681


4
71263280
71284124
20844
loss
1537
SMR3B, SMR3A
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
682


4
94589345
94590778
1433
loss
1391
GRID2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
445


4
94589345
94590778
1433
loss
1418
GRID2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
445


4
94589345
94590778
1433
loss
1724
GRID2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
445


4
94589345
94590778
1433
loss
1777
GRID2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
445


4
94589345
94590778
1433
loss
1821
GRID2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
445


4
94589345
94590778
1433
loss
1864
GRID2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
445


4
119525941
119348829
22885
loss
1753
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
130


4
119325944
119348829
22885
loss
1753
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
130


4
119325944
119348829
22885
loss
1753
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
130


4
119333528
119348829
15301
loss
1234
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1307
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1392
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1413
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1428
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1560
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1798
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1800
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119350354
16826
loss
1884
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
131


4
119333528
119348829
15301
loss
1894
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1959
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1962
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1966
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1969
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
2023
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
2034
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
2042
NDST3
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1234
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1307
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1392
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1413
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1428
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1560
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1798
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1800
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119350354
16826
loss
1884
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
131


4
119333528
119348829
15301
loss
1894
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1959
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1962
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1966
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1969
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
2023
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
2034
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
2042
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1234
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1307
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1392
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1413
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1428
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1560
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1798
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1800
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119350354
16826
loss
1884
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
131


4
119333528
119348829
15301
loss
1894
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1959
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1962
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1966
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
1969
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
2023
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
2034
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333528
119348829
15301
loss
2042
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
127


4
119333701
119348829
15128
loss
1718
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
129


4
119333701
119348829
15128
loss
1550
NDST3
30.33
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
129


4
119333701
119348829
15128
loss
1718
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
129


4
119333701
119348829
15128
loss
1550
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
129


4
119334954
119348829
13875
loss
1290
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
128


4
119334954
119348829
13875
loss
1629
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
128


4
119334954
119348829
13875
loss
1659
NDST3
12.0s
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
128


4
119334954
119348829
13875
loss
1708
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
128


4
119334954
119348829
13875
loss
1720
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
128


4
119334954
119348829
13875
loss
1824
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
128


4
119334954
119348829
13875
loss
1946
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
128


4
119334954
119348829
13875
loss
2020
NDST3
42.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
128


4
129950848
129952427
1579
gain
1261
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
gain
1272
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
gain
1542
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
loss
1572
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
gain
1585
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
gain
1696
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
loss
1703
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
gain
1710
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
loss
1721
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
loss
1724
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
gain
1743
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
gain
1776
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
gain
1818
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
gain
1860
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
loss
1883
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
gain
1908
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
loss
2031
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
129950848
129952427
1579
loss
2044
PHF17
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
222


4
145201241
145265078
63837
gain
1426
GYPA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
683


4
145240937
145255693
14756
gain
1929
GYPA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
685


4
145242544
145255693
13149
gain
1677
GYPA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
684


4
173659100
173672958
13858
gain
1230
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
446


4
173659100
173674198
15098
gain
1250
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
447


4
173659100
173672958
13858
gain
1396
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
446


4
173659100
173672958
13858
gain
1798
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
446


4
173659100
173666072
6972
gain
1834
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
446


4
173659100
173666072
6972
gain
2034
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
448


4
173659100
173672958
13858
gain
1230
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
446


4
173659100
173674198
15098
gain
1250
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
447


4
173659100
173672958
13858
gain
1396
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
446


4
173659100
173672958
13858
gain
1798
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
446


4
173659100
173666072
6972
gain
1834
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
448


4
173659100
173666072
6972
gain
2034
GALNTL6
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
448


4
175860235
175863396
3161
gain
1288
GLRA3
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
328


4
175860235
175863396
3161
gain
1534
GLRA3
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
328


4
175860235
175863396
3161
gain
1570
GLRA3
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
328


4
175860235
175863396
3161
gain
1571
GLRA3
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
328


4
175860235
175863396
3161
gain
1821
GLRA3
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
328


4
175860235
175863396
3161
gain
1860
GLRA3
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
328


4
175860235
175863396
3161
gain
1911
GLRA3
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
328


4
175860235
175863396
3161
gain
1931
GLRA3
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
328


4
175860235
175863396
3161
gain
2032
GLRA3
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
328


4
188089090
190030740
1941650
gain
1691
TRIML2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
687


4
188089090
190030740
1941650
gain
1691
TRIML2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
687


4
188089090
190030740
1941650
gain
1691
LOC401164
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
687


4
188688388
189297555
609167
gain
1704
TRIML2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
688


4
188688388
189297555
609167
gain
1704
TRIML2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
688


4
189229198
189255442
26244
loss
1619
TRIML2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
686


4
189421034
189866429
445395
loss
1499
LOC401164
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
689


4
189499856
189863764
363908
gain
1534
LOC401164
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
690


4
191041481
191153613
112132
gain
1230
TUBB4Q
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
691


4
191041481
191153613
112132
gain
1292
TUBB4Q
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
691


4
191133836
191153613
19777
loss
1696
TUBB4Q
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
692


5
9279249
12716482
3437233
loss
1850
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
13


5
9279249
12716482
3437233
loss
1850
CTNND2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
13


5
10677114
10699881
22767
loss
1666
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
11


5
10683077
10691335
8258
loss
1438
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
10


5
10683077
10691335
8258
loss
1619
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
10


5
10683077
10691335
8258
loss
1629
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
10


5
10683077
10691335
8258
loss
1630
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
10


5
10683077
10688336
5259
loss
1696
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
12


5
10683077
10688336
5259
loss
1916
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
12


5
10683077
10688336
5259
loss
1958
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
12


5
10683077
10688336
5259
loss
1965
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
12


5
10683077
10691335
8258
loss
1998
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
10


5
10683077
10691335
8258
loss
2026
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
10


5
10683077
10688336
5259
loss
2012
ANKRD33B
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
12


5
11924716
12010455
85739
gain
1946
CTNND2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
760


5
136992201
136995509
3308
loss
1671
KLHL3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
450


5
136994174
136995509
1335
loss
1522
KLHL3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
449


5
136994174
136995509
1335
loss
1730
KLHL3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
449


5
136994174
136995509
1335
loss
1742
KLHL3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
449


5
136994174
136995509
1335
loss
1856
KLHL3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
449


5
136991171
136995509
1335
loss
1917
KLHL3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
449


5
138301606
138313486
11880
gain
1309
SIL1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
693


5
138301606
138313486
11880
gain
1395
SIL1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
693


5
138301606
138313486
11880
gain
1411
SIL1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
693


5
140535820
140541178
5358
loss
1425
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
140535820
140541178
5358
loss
1439
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
140535820
140541178
5358
loss
1441
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
140535820
140541178
5358
loss
1490
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
140535820
140541178
5358
loss
1493
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
140535820
140541178
5358
loss
1515
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
140535820
140541178
5358
loss
1555
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
140535820
140541178
5358
loss
1564
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
140535820
140541178
5358
loss
1580
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
140535820
140541178
5358
loss
1582
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
140535820
140541178
5358
loss
1611
PCDHB8, PCDHB16
16.46
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
282


5
147861447
147867311
5864
loss
1307
HTR4
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
451


5
147861447
147867311
5864
loss
1307
HTR4
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
451


5
147861447
147867311
5864
loss
1393
HTR4
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
451


5
147861447
147867311
5864
loss
1729
HTR4
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
451


5
147861447
147867311
5864
loss
1740
HTR4
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
451


5
147861447
147867311
5864
loss
1742
HTR4
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
151


5
150159466
150207307
47841
loss
1405
IRGM
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
694


5
150185190
150207307
22117
loss
1831
IRGM
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
696


5
150191322
150207307
15985
loss
1696
IRGM
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
695


5
180189516
180362342
172826
loss
1229
BTNF8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
80


5
180189516
180365977
176461
loss
1532
BTNI,8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
84


5
180189516
180362342
172826
loss
1548
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
80


5
180189516
180365977
176461
loss
1612
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
84


5
180189516
180365977
176461
loss
1686
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
84


5
180189516
180357210
167694
loss
1861
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
87


5
180192214
180362342
170128
gain
1316
BTNF8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
82


5
180192214
180362342
170128
loss
1580
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
82


5
180192214
180365977
173763
loss
1606
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
86


5
180192214
180362342
170128
loss
1641
BTNF8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
82


5
180194323
180362342
168019
gain
1253
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180362342
168019
gain
1426
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180378586
184263
loss
1429
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
83


5
180194323
180362342
168019
gain
1441
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180362342
168019
gain
1442
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180362342
168019
gain
1495
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180362342
168019
gain
1496
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180362342
168019
gain
1502
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180362342
168019
gain
1504
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180362342
168019
gain
1517
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180365977
171654
loss
1546
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
85


5
180194323
180378586
184263
loss
1634
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
83


5
180194323
180362342
168019
gain
1648
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180365977
171654
loss
1696
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
85


5
180194323
180365977
171654
loss
1792
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
85


5
180194323
180362342
168019
loss
1805
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180378586
184263
loss
1851
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
83


5
180194323
180362342
168019
loss
1897
BTOL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180378586
184263
loss
1902
BTNF8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
83


5
180194323
180365977
171654
loss
1927
BTNF8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
85


5
180194323
180362342
168019
gain
1997
BTNL8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


5
180194323
180362342
168019
loss
2035
BTNF8, LOC729678, ZFP62
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
81


6
26795887
26868101
72517
gain
1538

36.62
high OK intergenic (OR > 30)
179


6
26801068
26861184
60116
loss
1224

36.62
high OR intergenic (OR > 30)
174


6
26801068
26868404
67336
loss
1252

36.62
high OR intergenic (OR > 30)
175


6
26801068
26861184
60116
loss
1572

36.62
high OR intergenic (OR > 30)
174


6
26811016
26861184
50168
loss
1273

36.62
high OR intergenic (OR > 30)
176


6
26811016
26861184
50168
loss
1286

36.62
high OR intergenic (OR > 30)
176


6
26811016
26861184
50168
loss
1293

36.62
high OR intergenic (OR > 30)
176


6
26811016
26861184
50168
loss
1307

36.62
high OR inlergenic (OR > 30)
176


6
26811016
26861184
50168
loss
1411

36.62
high OR inlergenic (OR > 30)
176


6
26811016
26861184
50168
loss
1419

36.62
high OR intergenic (OR > 30)
176


6
26811016
26863540
52524
gain
1475

36.62
high OR intergenic (OR > 30)
177


6
26811016
26868404
57388
gain
1485

36.62
high OR intergenic (OR > 30)
178


6
26811016
26861184
50168
gain
1525

36.62
high OR intergenic (OR > 30)
176


6
26811016
26863540
52524
gain
1599

36.62
high OR intergenic (OR > 30)
177


6
26811016
26861184
50168
loss
1602

36.62
high OR intergenic (OR > 30)
176


6
26811016
26861184
50168
loss
1615

36.62
high OR intergenic (OR > 30)
176


6
26811016
26863540
52524
gain
1628

36.62
high OR intergenic (OR > 30)
177


6
26811016
26861184
50168
loss
1629

36.62
high OR intergenic (OR > 30)
176


6
26811016
26861184
50168
gain
1773

36.62
high OR intergenic (OR > 30)
176


6
26811016
26861184
50168
gain
1807

36.62
high OR intergenic (OR > 30)
176


6
26811016
26861184
50168
loss
1899

36.62
high OR intergenic (OR > 30)
176


6
26811016
26868404
57388
loss
1920

36.62
high OR intergenic (OR > 30)
178


6
26811016
26861184
50168
loss
1931

36.62
high OR intergenic (OR > 30)
176


6
26811016
26855591
44575
gain
2041

36.62
high OR intergenic (OR > 30)
180


6
31085482
31114029
28547
loss
1662
PBMUCL1
2.05
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
761


6
31102719
31114029
11310
loss
1849
PBMUCL1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
762


6
33400195
33511247
111052
loss
1841
SYNGAP1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
364


6
33491109
33507587
16478
loss
1297
SYNGAP1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
362


6
33491109
33505074
14865
loss
1905
SYNGAP1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
366


6
33491109
33505974
14865
loss
2031
SYNGAP1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
366


6
33492394
33505974
13580
loss
1872
SYNGAP1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
365


6
33492394
33505974
13580
loss
1967
SYNGAP1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
365


6
33495074
33505974
10900
loss
1824
SYNGAP1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
363


6
33495074
33505974
10900
loss
1840
SYNGAP1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
363


6
35846772
35878656
31884
loss
1694
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
163


6
35846772
35878656
31884
loss
1694
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
163


6
35848099
35878656
30557
loss
1718
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
165


6
35848099
35878656
30557
loss
1718
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
165


6
35849860
35878656
28796
loss
1680
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
162


6
35849860
35878656
28796
loss
1680
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
162


6
35851495
35872078
20583
loss
1852
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
166


6
35851495
35875112
23617
loss
1950
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
169


6
35851495
35873335
21840
loss
1965
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
171


6
35851495
35878656
27161
loss
2006
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
172


6
35851495
35873335
21840
loss
2018
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
171


6
35851495
35872078
20583
loss
1852
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
166


6
35851495
35875112
23617
loss
1950
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
169


6
35851495
35873335
21840
loss
1965
C6orfl27
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
171


6
35851495
35878656
27161
loss
2006
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
172


6
35851495
35873335
21840
loss
2018
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
171


6
35853209
35862502
9293
loss
1940
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
189


6
35853209
35875112
21903
loss
1946
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
168


6
35853209
35873335
20126
loss
1958
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
170


6
35853209
35873335
20126
loss
1961
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
170


6
35853209
35873335
20126
loss
1962
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
170


6
35853209
35873335
20126
loss
2005
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
170


6
35853209
35875112
21903
loss
1946
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
168


6
35853209
35873335
20126
loss
1958
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
170


6
35853209
35873335
20126
loss
1961
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
170


6
35853209
35873335
20126
loss
1962
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
170


6
35853209
35873335
20126
loss
2005
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
170


6
35855652
35873335
17683
loss
1301
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
158


6
35855652
35873335
17683
loss
1837
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
158


6
35855652
35873335
17683
loss
1839
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
158


6
35855652
35873335
17683
loss
1952
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
158


6
35855652
35873335
17683
loss
1959
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
158


6
35855652
35873335
17683
loss
1301
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
158


6
35855652
35873335
17683
loss
1837
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
158


6
35855652
35875335
17683
loss
1839
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
158


6
35855652

17683
loss
1952
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
158


6
35855652
35873335
17683
loss
1950
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
158


6
35856922
35872078
15156
gain
1347
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
159


6
35856922
35873335
16413
gain
1348
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
160


6
35856922
35873335
16413
gain
1530
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
160


6
35856922
35878656
21734
loss
1017
C6orf127
35.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
167


6
35856922
35872078
15156
gain
1347
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
159


6
35856922
35873335
16413
gain
1348
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
160


6
35856922
35873335
16413
gain
1530
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
160


6
35856922
35878656
21734
loss
1917
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
167


6
35862502
35875112
12610
gain
1414
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
161


6
35862502
35873335
10833
gain
1710
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
164


6
35862502
35873335
10833
gain
1760
C6orf127
38.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
164


6
78983276
79091850
108574
loss
1449

38.2
high OR intergenic (OR > 30)
865


6
78999263
79091850
92587
gain
1662

38.2
high OR intergenic (OR > 30)
868


6
79011979
79091850
79871
loss
1502

38.2
high OR intergenic (OR > 30)
866


6
79011979
79091850
79871
gain
1722

38.2
high OR intergenic (OR > 30)
866


6
79011979
79091850
79871
gain
1744

38.2
high OR intergenic (OR > 30)
866


6
79015901
79091850
75949
gain
1689

38.2
high OR intergenic (OR > 30)
869


6
79015901
79091850
75949
gain
2037

38.2
high OR intergenic (OR > 30)
869


6
79015901
79091850
75949
gain
2045

38.2
high OR intergenic (OR > 30)
869


6
79018959
79091850
72891
gain
1220

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1241

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1274

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1279

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1446

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1496

38.2
high OR intergenic (OR > 30)
864


6
79018959
79085247
66288
loss
1534

38.2
high OR intergenic (OR > 30)
867


6
79018959
79091850
72891
gain
1555

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1687

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1698

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1712

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1757

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1774

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1817

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1950

38.2
high OR intergenic (OR > 30)
864


6
79018959
79091850
72891
gain
1965

38.2
high OR inlergenic (OR > 30)
864


6
79018959
79091850
72891
gain
2043

38.2
high OR intergenic (OR > 30)
864


6
81097222
81100756
3534
loss
1552
BCKDHB
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
557


6
81097222
81114986
17764
gain
1621
BCKDHB
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
558


6
81097222
81106976
9754
gain
1707
BCKDHB
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
559


6
81097222
81100756
3534
gain
1753
BCKDHB
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
557


6
81097222
81102939
5717
gain
1773
BCKDHB
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
560


6
88089481
88096147
6666
loss
2034
C6orf162, GJB7
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
642


6
88089541
88096147
6606
loss
1943
C6orf162, GJB7
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
641


6
88089541
88096147
6606
loss
1951
C6orf162, GJB7
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
641


6
88089541
88096147
6606
loss
1964
C6orf162, GJB7
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
641


6
88896497
88923379
26882
gain
1662
CNR1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
697


6
88896497
88923379
26882
gain
1735
CNR1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
697


6
88899057
88923379
24322
gain
1899
CNR1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
698


6
107108807
107111183
2376
gain
1402
AIM1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
699


6
107108807
107111183
2376
gain
1527
AIM1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
699


6
107108807
107111183
2376
gain
1710
AIM1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
699


6
118817492
119113493
296001
gain
1511
C6orf204, BRD7P3
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
561


6
118817492
119113493
296001
gain
1710
C6orf204, BRD7P3
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
561


6
118817492
119113493
296001
gain
1511
C6orf204
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
561


6
118817492
119113493
296001
gain
1710
C6orf204
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
561


6
118817492
119113493
206001
gain
1511
C6orf204, PLN
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
561


6
118817492
119113493
296001
gain
1710
C6orf204, PLN
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
561


6
118817492
119113493
296001
gain
1511
C6orf204
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
561


6
118817492
119113493
296001
gain
1710
C6orf204
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
561


6
118844331
118969193
124862
gain
1759
C6orf204, BRD7P3
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
563


6
118844331
118969193
124862
gain
1759
C6orf204
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
563


6
118956715
118958026
1311
loss
1565
C6orf204
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
562


6
118956715
118958026
1311
loss
1590
C6orf204
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
562


6
119007312
119168291
160979
gain
1777
C6orf204
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
700


6
124469271
124509956
40685
gain
1244
NKAIN2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
452


6
124469271
124509956
40685
gain
1247
NKAIN2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
452


6
124469271
124509956
40685
gain
1277
NKAIN2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
452


6
124469271
124509956
40685
gain
1450
NKAIN2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
452


6
124469271
124509956
40685
gain
1610
NKAIN2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
452


6
124469271
124509956
40685
gain
1880
NKAIN2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
452


6
132745678
132752481
6803
loss
1389
MOXD1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
395


6
132745678
132755865
10187
loss
1540
MOXD1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
396


6
132745678
132752481
6803
loss
1605
MOXD1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
395


6
132748175
132752481
4306
loss
1657
MOXDI
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
397


6
132748175
132752481
4306
loss
1729
MOXD1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
397


6
132748175
132755865
7690
loss
1738
MOXDI
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
398


6
132748175
132752481
4306
loss
1743
MOXDI
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
397


6
134622620
134635779
13159
loss
1224
SGK1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
52


6
134622620
134635779
13159
loss
1708
SGK1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
52


6
134624093
134635779
11686
loss
1576
SGKI
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
53


6
134624093
134635779
11686
loss
1667
SGK1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
53


6
134627341
134634265
6924
loss
1665
SGKI
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
54


6
139635466
139651247
15781
loss
1401
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
184


6
139635466
139648318
12852
loss
1403
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
185


6
139635466
139648318
12852
loss
1895
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
185


6
139635466
139651247
15781
loss
1401
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
184


6
139635466
139648318
12852
loss
1403
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
185


6
139635466
139648318
12852
loss
1895
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
185


6
139638465
139651247
12782
loss
1387
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
183


6
139638465
139651247
12782
loss
1396
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
183


6
139638465
139651247
12782
loss
1696
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
183


6
139638465
139651247
12782
loss
1387
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
183


6
139638465
139651247
12782
loss
1396
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
183


6
139638465
139651247
12782
loss
1696
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
183


6
139641158
139651247
10089
loss
1372
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
182


6
139641158
139654105
12947
loss
1432
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
186


6
139641158
139648318
7160
loss
1572
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
187


6
139641158
139648318
7160
loss
1616
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
187


6
139641158
139648318
7160
loss
1864
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
187


6
139641158
139651247
10089
loss
2040
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
182


6
139641158
139648318
7160
loss
2042
TXLNB
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
187


6
139641158
139651247
10089
loss
1372
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
182


6
139641158
139654105
12947
loss
1432
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
186


6
139641158
139648318
7160
loss
1572
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
187


6
139641158
139648318
7160
loss
1616
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
187


6
139641158
139648318
7160
loss
1864
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
187


6
139641158
139651247
10089
loss
2040
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
182


6
139641158
139648318
7160
loss
2042
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
187


6
139643729
139648318
4589
loss
1230
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
181


6
139643729
139648318
4589
loss
1428
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
181


6
139643729
139648318
4589
loss
1551
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
181


6
139643729
139648318
4589
loss
1577
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
181


6
139643729
139648318
4589
loss
1811
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
181


6
139643729
139648318
4589
loss
1837
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
181


6
139643729
139648318
4589
loss
1859
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
181


6
139643729
139651247
7518
loss
1896
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
188


6
139643729
139648318
4589
loss
1898
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
181


6
139643729
139648318
4589
loss
1946
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
181


6
139643729
139648318
4589
loss
2044
TXLNB
36.62
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
181


6
152772611
152779853
7242
loss
1403
SYNE1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
564


6
152772611
152776554
3943
loss
1476
SYNE1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
565


6
152772611
152776554
3943
loss
1538
SYNE1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
565


6
152772611
152776554
3943
loss
1654
SYNE1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
565


6
152772611
152776554
3943
loss
1828
SYNE1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
565


6
168726608
168738488
11880
loss
1556
SMOC2
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
40


6
168726608
168738488
11880
loss
1556
SMOC2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
40


6
168728054
168730714
2660
loss
1477
SMOC2
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
37


6
168728054
168730714
2660
loss
1495
SMOC2
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
37


6
168728054
168738488
10434
loss
1505
SMOC2
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
38


6
168728054
168730714
2660
loss
1506
SMOC2
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
37


6
168728054
168734148
6094
loss
1527
SMOC2
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
30


6
168728054
168738488
10434
loss
1598
SMOC2
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
38


6
168728054
168738488
10434
loss
1641
SMOC2
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
38


6
168728054
168738488
10434
loss
1647
SMOC2
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
38


6
168728054
168738488
10434
loss
1715
SMOC2
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
38


6
168728054
168738488
10434
loss
1505
SMOC2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
38


6
168728054
168734148
6094
loss
1527
SMOC2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
39


6
168728054
168738488
10434
loss
1598
SMOC2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
38


6
168728054
168738488
10434
loss
1641
SMOC2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
38


6
168728054
168738488
10434
loss
1647
SMOC2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
38


6
168728054
168738488
10434
loss
1715
SMOC2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
38


7
1037402
1047707
10305
loss
1571
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1699
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1703
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1726
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1797
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037102
1047707
10305
loss
1843
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1928
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1960
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1963
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1966
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
2032
C7orf50
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1571
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1600
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1703
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1726
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1797
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1843
C7orf30
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1928
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1960
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1963
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1966
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
2032
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1571
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1699
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1703
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1726
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1797
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1843
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1928
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1960
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1963
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
1966
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1037402
1047707
10305
loss
2032
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
228


7
1038517
1047707
9190
loss
1416
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
227


7
1038517
1047707
9190
loss
1498
C7orf50
19.51
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
227


7
1038517
1047707
9190
loss
1416
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
227


7
1038517
1047707
9190
loss
1498
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
227


7
1047636
1047707
71
loss
1225
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
226


7
1047636
1047707
71
loss
1635
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
226


7
1047636
1047707
71
loss
1672
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
226


7
1047636
1047707
71
loss
2018
C7orf50
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
226


7
3488309
3497686
9377
loss
1948
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
401


7
3496005
3497686
1681
loss
1422
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
399


7
3496005
3497686
1681
loss
1423
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
399


7
3496005
3497686
1681
loss
1561
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
399


7
3496005
3499937
3932
loss
1834
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
400


7
3496005
3497686
1681
loss
1893
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
399


7
3496005
3497686
1681
loss
1905
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
399


7
4042651
4049103
6452
loss
1306
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
402


7
4042651
4049103
6452
loss
1418
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
402


7
4042651
4049103
6452
loss
1493
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
402


7
4042651
4049103
6452
loss
1502
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
402


7
4042651
4049103
6452
loss
1647
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
402


7
4042651
4049103
6452
loss
1711
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
402


7
4042651
4049103
6452
loss
1751
SDK1
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
402


7
5102197
5183556
81359
loss
1548
ZNF890P
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
763


7
5138605
5148416
9811
loss
1727
ZNF890P
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
764


7
5825981
5831318
5337
gain
1711
ZNF815
2.05
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
765


7
5825981
5851216
25235
loss
1967
ZNF815
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
766


7
16805635
17715252
909617
gain
1755
AGR3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
767


7
16866725
16883040
16315
loss
1835
AGR3
2.05
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
768


7
23802428
23809218
6790
loss
1413
STK31
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
453


7
23802428
23809218
6700
loss
1472
STK31
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
453


7
23802428
23811096
8668
loss
1583
STK31
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
454


7
23802428
23809218
6790
loss
1584
STK31
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
453


7
23802428
23802515
87
loss
1619
STK31
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
455


7
23802428
23802515
87
loss
1960
STK31
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
455


7
47938912
48966480
1027568
loss
1886
ABCA13
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
406


7
48443242
48449543
6301
gain
1223
ABCA13
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
403


7
48443242
48449543
6301
loss
1583
ABCA13
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
403


7
48443511
48449543
6032
gain
1273
ABCA13
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
404


7
48443511
48450802
7291
gain
1615
ABCA13
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
405


7
48443511
48452957
9446
gain
1891
ABCA13
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
407


7
48443511
48449543
6032
gain
2028
ABCA13
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
404


7
62090591
62480276
389685
gain
1567
LOC100287834,
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
770








LOC100287704, LOC643955





7
62252722
62563446
310724
gain
1389
LOC100287834,
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
769








LOC100287704, LOC643955





7
71482849
71491600
8751
loss
1727
CALN1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
368


7
71482849
71491600
8751
loss
1743
CALN1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
368


7
71482849
71501309
18460
loss
1853
CALN1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
369


7
71487316
71491600
4284
loss
1677
CALN1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
367


7
71487316
71491600
4284
loss
1718
CALN1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
367


7
71487316
71491600
4284
loss
1724
CALN1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
367


7
71487316
71491600
4284
loss
1735
CALN1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
367


7
71487316
71491600
4284
loss
1751
CALN1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
367


7
100160244
100182350
22106
loss
2020
ZAN
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
205


7
100162851
100183859
21008
loss
1227
ZAN
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
205


7
100162851
100183859
21008
loss
1236
ZAN
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger Filter applied
291


7
100162851
100182350
19499
loss
1771
ZAN
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
292


7
100162851
100183859
21008
loss
1803
ZAN
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
291


7
100162851
100183859
21008
loss
1824
ZAN
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
291


7
100162851
100183859
21008
loss
2034
ZAN
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
291


7
100166257
100182350
16093
loss
1777
ZAN
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
293


7
100166257
100183859
17602
loss
1896
ZAN
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
294


7
100166257
100182350
16093
loss
2030
ZAN
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
293


7
102465042
102554005
88963
gain
1464
FBXL13
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
701


7
102465042
102554005
88963
gain
1997
FBXL13
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
701


7
102465042
102554005
88963
gain
1464
ARMC10, FBXL13
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
701


7
102465042
102554005
88963
gain
1997
ARMC10, FBXL13
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
701


7
102465042
102554005
88963
gain
1464
ARMC10, NAPEPLD
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
701


7
102465042
102554005
88963
gain
1997
ARMC10, NAPEPLD
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
701


7
102496150
102520569
24419
gain
1848
ARMC10, FBXL13
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
702


7
104706525
104708287
1762
loss
1286
SRPK2
7.42
Genic (distinct CNV-subreaions); OR > 6
566


7
104706525
104708287
1762
loss
1774
SRPK2
7.42
Genic (distinct CNV-subreaions); OR > 6
566


7
104706525
104708287
1762
loss
1839
SRPK2
7.42
Genic (distinct CNV-subreaions); OR > 6
566


7
104706525
104708287
1762
loss
1901
SRPK2
7.42
Genic (distinct CNV-subregions); OR > 6
566


7
104760047
104764319
4272
loss
2033
SRPK2
7.42
Genic (distinct CNV-subreaions); OR > 6
567


7
108554265
108785119
230851
loss
1287

30.33
high OR intergenic (OR > 30)
872


7
108554265
108785119
230851
loss
1287

36.62
high OR intergenic (OR > 30)
872


7
108696828
1087061.30
9302
gain
1234

30.33
high OK intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1256

30.33
high OR intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1285

30.33
high OR intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1306

30.33
high OR intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1344

30.33
high OR intergenic (OR > 30)
870


7
108696828
108708143
11315
gain
1346

30.33
high OR intergenic (OR > 30)
874


7
108696828
108708143
11315
gain
1410

30.33
high OR intergenic (OR > 30)
874


7
108696828
108708143
11315
gain
1430

30.33
high OR intergenic (OR > 30)
874


7
108696828
108706130
9302
gain
1521

30.33
high OR intergenic (OR > 30)
870


7
108696828
108708143
11315
gain
1622

30.33
high OR intergenic (OR > 30)
874


7
108696828
108708143
11315
gain
1661

30.33
high OR intergenic (OR > 30)
874


7
108696828
108708143
11315
gain
1704

30.33
high OR intergenic (OR > 30)
874


7
108696828
108706130
9302
gain
1792

30.33
high OR intergenic (OR > 30)
870


7
108696828
108708143
11315
gain
1813

30.33
high OR intergenic (OR > 30)
874


7
108696828
108706130
9302
gain
1908

30.33
high OR intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1950

30.33
high OR intergenic (OR > 30)
870


7
108696828
108708143
11315
gain
1970

30.33
high OR intergenic (OR > 30)
874


7
108696828
108708143
11315
gain
2028

30.33
high OR intergenic (OR > 30)
874


7
108696828
108706130
9302
gain
2031

30.33
high OR intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1234

36.62
high OR intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1256

36.62
high OR intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1285

36.62
high OR intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1306

36.62
high OR intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1344

36.62
high OR intergenic (OR > 30)
870


7
108696828
108708143
11315
gain
1346

36.62
high OR intergenic (OR > 30)
874


7
108696828
108708143
11315
gain
1410

36.62
high OR intergenic (OR > 30)
874


7
108696828
108708143
11315
gain
1430

36.62
high OR intergenic (OR > 30)
874


7
108696828
108706130
9302
gain
1521

36.62
high OR intergenic (OR > 30)
870


7
108696828
108708143
11315
gain
1622

36.62
high OR intergenic (OR > 30)
874


7
108696828
108708143
11315
gain
1661

36.62
high OR intergenic (OR > 30)
874


7
108696828
108708143
11315
gain
1704

36.62
high OR intergenic (OR > 30)
874


7
108696828
108706130
9302
gain
1792

36.62
high OR intergenic (OR > 30)
870


7
108696828
108708143
11315
gain
1813

36.62
high OR intergenic (OR > 30)
874


7
108696828
108706130
9302
gain
1908

36.62
high OR intergenic (OR > 30)
870


7
108696828
108706130
9302
gain
1950

36.62
high OR intergenic (OR > 30)
870


7
108696828
108708143
11315
gain
1970

36.62
high OR intergenic (OR > 30)
874


7
108696828
108708143
11315
gain
2028

36.62
high OR intergenic (OR > 30)
874


7
108696828
108706130
9302
gain
2031

36.62
high OR intergenic (OR > 30)
870


7
108700255
108706130
5875
gain
1267

36.62
high OR intergenic (OR > 30)
871


7
108700255
108708143
7888
gain
1304

36.62
high OR intergenic (OR > 30)
873


7
108700255
108706130
5875
gain
1423

36.62
high OR intergenic (OR > 30)
871


7
108700255
108708143
7888
gain
1620

36.62
high OR intergenic (OR > 30)
873


7
118609124
118645208
36084
gain
1612

30.33
high OR intergenic (OR > 30)
883


7
118618468
118622742
4274
gain
1222

30.33
high OR intergenic (OR > 30)
880


7
118618468
118645208
26740
gain
1323

30.33
high OR intergenic (OR > 30)
881


7
118618468
118622742
4274
gain
1374

30.33
high OR intergenic (OR > 30)
880


7
118618468
118633999
15531
gain
1485

30.33
high OR intergenic (OR > 30)
882


7
118618468
118645208
26740
gain
1533

30.33
high OR intergenic (OR > 30)
881


7
118618468
118645208
26740
gain
1543

30.33
high OR intergenic (OR > 30)
881


7
118618468
118622742
1274
gain
1568

30.33
high OK intergenic (OR > 30)
880


7
118618468
118622742
4274
gain
1601

30.33
high OR intergenic (OR > 30)
880


7
118618468
118622742
4274
gain
1616

30.33
high OR intergenic (OR > 30)
880


7
118618468
118633999
15531
gain
1635

30.33
high OR intergenic (OR > 30)
882


7
118618468
118622742
4274
gain
1665

30.33
high OR intergenic (OR > 30)
880


7
118618468
118633999
15531
gain
1740

30.33
high OR intergenic (OR > 30)
882


7
118618468
118622742
4274
gain
1766

30.33
high OR intergenic (OR > 30)
880


7
118618468
118622742
4274
gain
1783

30.33
high OR intergenic (OR > 30)
880


7
118618468
118622742
4274
gain
1834

30.33
high OR intergenic (OR > 30)
880


7
118618468
118622742
4274
gain
1876

30.33
high OR intergenic (OR > 30)
880


7
118618468
118622742
4274
gain
1921

30.33
high OR intergenic (OR > 30)
880


7
118618468
118622742
4274
gain
1926

30.33
high OR intergenic (OR > 30)
880


7
118618468
118622742
4274
gain
2030

30.33
high OR intergenic (OR > 30)
880


7
141408013
141446728
38715
gain
1225
MGAM
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
568


7
141408013
141446728
38715
gain
1720
MGAM
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
568


7
141408013
141446728
38715
gain
1225
MGAM
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
568


7
141408013
141446728
38715
gain
1720
MGAM
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
568


7
141410894
141443577
32683
gain
1691
MGAM
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
569


7
141410894
141442231
31337
gain
1734
MGAM
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
570


7
141410894
141443577
32683
gain
1691
MGAM
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
569


7
141413352
141442231
28879
loss
1897
MGAM
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
571


7
141953817
142205830
252013
loss
1232
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
102


7
141953817
142205830
252013
loss
1232
PRSS2
18.1
Genic (distinct CNV-subresions); OR > 6
102


7
141989750
142205830
216080
loss
1803
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
117


7
141989750
142205830
216080
loss
1803
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
117


7
141993718
142207147
213429
loss
1930
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
123


7
141993718
142207147
213429
loss
1930
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
123


7
142005505
142152205
146700
loss
1601
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
109


7
142007171
142152205
145034
loss
1242
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
103


7
142009000
142140540
131540
loss
2018
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
125


7
142009000
142205830
196830
loss
2024
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
126


7
142009000
142205830
196830
loss
2024
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
126


7
142018368
142152205
133837
loss
1349
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
105


7
142018368
142152205
133837
loss
1374
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
105


7
142018368
142152205
133837
loss
1697
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
105


7
142018368
142202274
183906
loss
1784
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
115


7
142018368
142202274
183906
loss
1784
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
115


7
142021348
142152205
130857
loss
1347
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
104


7
142027745
142152205
124460
loss
1568
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
107


7
142027745
142152205
124460
loss
1753
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
107


7
142041787
142205830
164043
loss
1837
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
119


7
142041787
142205830
164043
loss
1837
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
119


7
142083555
142205830
122275
loss
1884
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
122


7
142083555
142205830
122275
loss
1884
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
122


7
142085047
142205830
120783
loss
1780
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
114


7
142085047
142205830
120783
loss
1780
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
114


7
142086589
142218998
132409
loss
1660
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
111


7
142086589
142207147
120558
loss
1844
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
120


7
142086589
142218998
132409
loss
1660
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
111


7
142086589
142207147
120558
loss
1844
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
120


7
142090029
142205830
115801
loss
1793
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
116


7
142090029
142167908
77879
loss
1867
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
121


7
142090029
142205830
115801
loss
1793
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
116


7
142097873
142196011
98138
loss
1604
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
110


7
142097873
142152205
54332
loss
1720
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
113


7
142097873
142205830
107957
loss
1830
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
118


7
142097873
142205830
107957
loss
1921
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
118


7
142097873
142152205
54332
loss
2041
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
113


7
142097873
142196011
98138
loss
1604
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
110


7
142097873
142205830
107957
loss
1830
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
118


7
142097873
142205830
107957
loss
1921
PRSS2
18.1
Genic (dislinct CNV-subregions); OR > 6
118


7
142103597
142152205
48608
loss
1573
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
108


7
142103597
142205830
102233
loss
1937
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
124


7
142103597
142205830
102233
loss
1937
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
124


7
142135117
142167901
32784
loss
1386
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
106


7
142136345
142176074
39729
loss
1667
PRSS1
46.2
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
112


7
142149857
142205830
55973
loss
1824
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
250


7
142152205
142205830
53625
loss
1308
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
245


7
142156165
142187073
30908
gain
1446
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
247


7
142156165
142187097
30932
gain
1694
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
249


7
142156165
142187097
30932
gain
1794
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
249


7
142156165
142187097
30932
gain
1997
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
249


7
142167908
142205830
37922
loss
1845
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
251


7
142167908
142205830
37922
loss
1897
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
251


7
142176074
142205830
29756
loss
1242
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
244


7
142176074
112108576
22302
loss
1347
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
246


7
142176074
142205830
29756
loss
1391
PRSS2
18.1
Genic (dislincl CNV-subreaions); OR > 6
244


7
142176074
142205830
29756
loss
1392
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
244


7
142176074
142205830
29756
loss
1401
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
244


7
142176074
142205830
29756
loss
1465
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
244


7
142176074
142207147
31073
loss
1532
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
248


7
142176074
142205830
29756
loss
1568
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
244


7
142176074
142198376
22302
loss
1601
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
246


7
142176074
142205830
29756
loss
1621
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
244


7
142176074
142205830
29756
loss
1622
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
244


7
142176074
142207147
31073
loss
1638
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
248


7
142176074
142205830
29756
loss
1640
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
244


7
142176074
142205830
29756
loss
1697
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
244


7
142176074
142205830
29756
loss
1752
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
244


7
142176074
142205830
29756
loss
1753
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
244


7
142176074
142205830
29756
loss
1788
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
244


7
142176074
142205830
29756
loss
1806
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
244


7
142176074
142205830
29756
loss
1838
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
244


7
142176074
142205830
20756
loss
1894
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
244


7
142176074
142205830
29756
loss
1914
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
244


7
142176074
142205830
29756
loss
2018
PRSS2
18.1
Genic (distinct CNV-subreaions); OR > 6
244


7
142176074
142205830
2906
loss
2020
PRSS2
18.1
Genic (distinct CNV-subregions); OR > 6
244


7
145855888
145885711
29823
gain
1236
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
572


7
145855888
145885711
29823
gain
1718
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
572


7
145855888
145887768
31880
gain
1752
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
573


7
145855888
145885711
29823
gain
1762
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
572


7
145855888
145998282
142394
gain
1871
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
574


7
145855888
145885711
29823
gain
1236
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
572


7
145855888
145885711
29823
gain
1718
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
572


7
145855888
145887768
31880
gain
1752
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
573


7
145855888
145885711
29823
gain
1762
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
572


7
145855888
145998282
142394
gain
1871
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
574


7
145855888
145885711
29823
gain
1236
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
572


7
145855888
145885711
29823
gain
1718
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
572


7
145855888
145887768
31880
gain
1752
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
573


7
145855888
145885711
29823
gain
1762
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
572


7
145855888
145998282
142394
gain
1871
CNTNAP2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
574


7
147702365
147710037
7672
loss
1728
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
74


7
147704200
147710037
5837
loss
1227
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1346
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147711471
7271
gain
1423
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
73


7
147704200
147710037
5837
loss
1517
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1621
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1636
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1639
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1645
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1670
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1727
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1753
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1754
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1761
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1792
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1806
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1820
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1826
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1836
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1854
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1867
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1872
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1916
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1918
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
1960
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
2003
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147704200
147710037
5837
loss
2028
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147701200
147710037
5837
loss
2041
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
70


7
147707161
147710037
2876
loss
1279
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147707161
147710037
3876
loss
1750
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147707161
147710037
2876
loss
1850
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147707161
147710037
2876
loss
1857
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147707161
147710037
2876
loss
1868
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147707161
147710037
3876
loss
1911
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147707161
147710037
2876
loss
1943
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147707161
147710037
2876
loss
1967
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147707161
147710037
2876
loss
1998
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147707161
147710037
2876
loss
2004
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147707161
147710037
2876
loss
2022
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
71


7
147708382
147710037
1655
loss
1324
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
72


7
147708382
147710037
1655
loss
1718
CNTNAP2
64.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
72


7
149183338
149210297
26959
gain
1486
ZNF862
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
771


7
149183338
149191205
7867
gain
1755
ZNF862
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
772


7
149183338
149210297
26959
gain
1486
LOC401431, ATP6V0E2,
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
771








ZNF862





7
149192529
149360797
168268
gain
1755
LOC401431, ATP6V0F2,
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
773








ZNF862





7
152883490
154689863
1806371
gain
1730
DPP6
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
69


7
152883490
154689863
1806373
gain
1730
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
69


7
153854753
153865845
11092
loss
1786
DPP6
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
576


7
153860688
153865845
5157
loss
1297
DPP6
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
575


7
153860688
153865845
5157
loss
1316
DPP6
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
575


7
153860688
153865845
5157
loss
1835
DPP6
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
575


7
154028650
154032130
3480
gain
1241
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1272
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1295
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1297
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1307
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1323
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1400
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1405
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1406
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1414
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1448
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1463
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1468
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1492
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1510
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1536
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1538
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1539
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1544
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1545
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1555
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1563
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1564
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1572
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
151028650
154032130
3480
loss
1574
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1577
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1621
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1624
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1637
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1647
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1657
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1658
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1662
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1664
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1668
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1669
OPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1670
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1689
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1692
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1705
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1708
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1717
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1725
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1732
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1738
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1740
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1743
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1784
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1787
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1802
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1808
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1809
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1814
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1828
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1833
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1844
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1853
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1854
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1867
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1871
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1881
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1888
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1900
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1931
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
loss
1937
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


7
154028650
154032130
3480
gain
1948
DPP6
109.38
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
68


8
2058685
2064563
5878
gain
1408
MYOM2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
703


8
2058685
2064563
5878
gain
1532
MYOM2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
703


8
2058685
2064563
5878
gain
1408
MYOM2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
703


8
2058685
2064563
5878
gain
1532
MYOM2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
703


8
2063254
2064563
1309
gain
1860
MYOM2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
704


8
6718944
6926661
207717
gain
1572
DEFA5
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
706


8
6718944
6926661
207717
gain
1572
DEFA5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
706


8
6867192
6901436
34244
gain
1661
DEFA5
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
707


8
6897144
7824059
926915
loss
1551
DEFA5
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
705


8
6897144
7824059
926915
loss
1551
DEFA5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
705


8
17650616
17809338
158722
loss
1528
MTUS1
2.05
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
774


8
17650616
17809338
158722
loss
1528
FGL1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
774


8
17662453
17751935
89482
gain
1656
MTUS1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
775


8
17783765
17703450
9685
loss
2023
FGL1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
776


8
25120552
25125700
5148
loss
1224
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1229
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1259
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25124428
3876
gain
1274
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
79


8
25120552
25124128
3876
loss
1401
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
79


8
25120552
25125700
5148
loss
1445
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1451
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1536
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1546
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1551
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
gain
1566
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1573
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1576
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25124428
3876
loss
1592
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
79


8
25120552
25125700
5148
loss
1593
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1611
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1612
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1670
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1676
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1687
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1732
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1738
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1739
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1740
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1741
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25124428
3876
loss
1764
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
79


8
25120552
25124128
3876
loss
1798
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
79


8
25120552
25125700
5148
loss
1848
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1867
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1880
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1881
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
1899
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
25120552
25125700
5148
loss
2000
DOCK5
51.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
78


8
31655933
31663317
7384
gain
1274
NRG1
14.94
Genic (distinct CNV-subreaions); OR > 6
27


8
31811829
31815721
3892
loss
1477
NRG1
14.94
Genic (distinct CNV-subreaions); OR > 6
28


8
31811829
31815721
3892
loss
1477
NRG1
14.94
Genic (distinct CNV-subregions); OR > 6
28


8
31814234
31815721
1487
loss
1402
NRG1
14.94
Genic (distinct CNV-subreaions); OR > 6
29


8
32113808
32180056
66248
loss
1900
NRG1
14.94
Genic (distinct CNV-subregions); OR > 6
30


8
32113808
32180056
66248
loss
1900
NRG1
14.94
Genic (distinct CNV-subregions); OR > 6
30


8
32113808
32180056
66248
loss
1900
NRG1
14.94
Genic (distinct CNV-subreaions); OR > 6
30


8
32113808
32180056
66248
loss
1900
NRG1
14.94
Genic (distinct CNV-subreaions); OR > 6
30


8
32143953
32148169
4216
loss
1844
NRG1
14.94
Genic (distinct CNV-subreaions); OR > 6
31


8
32148169
32148230
61
gain
1707
NRG1
14.94
Genic (distinct CNV-subreaions); OR > 6
32


8
32271978
32274487
2509
loss
1471
NRG1
14.94
Genic (distinct CNV-subreaions); OR > 6
33


8
32271978
32274487
2509
loss
1618
NRG1
14.94
Genic (distinct CNV-subreaions); OR > 6
33


8
32514378
33520956
6578
loss
1293
NRG1
14.94
Genic (distinct CNV-subregions); OR > 6
34


8
32514378
32520956
6578
loss
1721
NRG1
14.94
Genic (distinct CNV-subregions); OR > 6
34


8
39341524
39505256
163732
gain
1663
ADAM5P
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
331


8
39341524
39505256
163732
gain
1748
ADAM5P
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
331


8
39345557
39505256
159699
gain
1437
ADAM5P
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
329


8
39345557
39505256
159699
gain
1546
ADAM5P
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
329


8
39350798
39505256
154458
gain
1495
ADAM5P
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
330


8
39350798
39505256
154458
gain
1535
ADAM5P
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
330


8
39350798
39505256
154458
gain
1693
ADAM5P
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
330


8
39350798
39505256
154458
gain
1700
ADAM5P
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
330


8
39350798
39505256
154458
gain
1730
ADAM5P
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
330


8
43057445
43647063
589618
gain
1406
POTEA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
709


8
43057445
43647063
589618
gain
1695
POTEA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
709


8
43170238
43647063
476825
gain
1316
POTEA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
708


8
51389250
51390466
1216
loss
1223
SNTG1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
456


8
51389250
51390466
1216
loss
1405
SNTG1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
456


8
51389250
51390466
1216
loss
1473
SNTG1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
456


8
51389250
51390466
1216
loss
1572
SNTG1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
456


8
51389250
51390466
1216
loss
1573
SNTG1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
456


8
51389250
51390466
1216
loss
1876
SNTG1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
456


8
52426081
52430531
4450
loss
1712
PXDNL
7.42
Genic (distinct CNV-subregions); OR > 6
577


8
52426081
52430531
4450
loss
1712
PXDNL
7.42
Genic (distinct CNV-subregions); OR > 6
577


8
52428921
52430531
1610
loss
1474
PXDNL
7.42
Genic (distinct CNV-subregions); OR > 6
578


8
52428921
52430531
1610
loss
1507
PXDNL
7.42
Genic (distinct CNV-subreaions); OR > 6
578


8
52684674
52686421
1747
loss
1844
PXDNL
7.42
Genic (distinct CNV-subreaions); OR > 6
579


8
52749454
52751043
1589
loss
1252
PXDNL
7.42
Genic (distinct CNV-subregions); OR > 6
580


8
88382155
88388307
6152
loss
1234
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1260
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1261
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1270
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1284
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388507
6152
loss
1285
CNBD1
112.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1289
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1301
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1354
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1372
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1373
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1417
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1419
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1428
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1433
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1449
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1451
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1452
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1477
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1486
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1509
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88391064
8909
loss
1527
CNBD1
142.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
67


8
88382155
88388307
6152
loss
1533
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1558
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1561
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1573
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1576
CNBD1
112.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88391064
8909
loss
1581
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
67


8
88382155
88388307
6152
loss
1595
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1602
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1609
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1615
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1621
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1622
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1629
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1634
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1638
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1639
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1658
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1667
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1672
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1677
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1681
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1683
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1697
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1715
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1723
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1724
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1725
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1732
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1743
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1750
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1751
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1753
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1754
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1758
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1760
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1765
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1776
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1787
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1796
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1707
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1802
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1807
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1811
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1814
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1816
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1822
CNBD1
142.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1852
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1850
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1862
CNBD1
142.05
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1864
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1867
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1870
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1874
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1900
CNBD1
112.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1901
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1908
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1923
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1926
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1927
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1929
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88388307
6152
loss
1945
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
88382155
88391064
8909
loss
1996
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
67


8
88382155
88388307
6152
loss
2028
CNBD1
142.95
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
66


8
95219409
95219513
104
gain
1282
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
283


8
95219409
95219588
179
gain
1306
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1308
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1394
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219513
104
gain
1567
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
283


8
95219409
95219513
104
gain
1601
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
283


8
95219409
95219588
179
gain
1619
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1640
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1677
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1708
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219513
104
gain
1928
CDH17
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
283


8
95219409
95219588
179
gain
1306
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1308
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1394
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1619
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1640
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1677
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219409
95219588
179
gain
1708
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
231


8
95219513
05210588
75
gain
1271
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
230


8
95219513
95219588
75
gain
1389
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
230


8
95219513
95219588
75
gain
1449
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
230


8
95219513
95227278
7765
loss
1643
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
232


8
95219513
95219588
75
gain
1661
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
230


8
95219513
95219588
75
gain
1814
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
230


8
95219513
95219588
75
gain
1853
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
230


8
95219513
95219588
75
gain
1893
CDH17
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
230


8
107368178
107369802
1624
loss
1306
OXR1
6.71
Genic (distinct CNV-subreaions); OR > 6
635


8
107368178
107369802
1624
loss
1619
OXR1
6.71
Genic (distinct CNV-subregions); OR > 6
635


8
107605521
107616812
11291
gain
1464
OXR1
6.71
Genic (distinct CNV-subregions); OR > 6
636


8
107605521
107616812
11291
gain
1519
OXR1
6.71
Genic (distinct CNV-subregions); OR > 6
636


8
107605521
107616812
11291
gain
1723
OXR1
6.71
Genic (distinct CNV-subregions); OR > 6
636


8
107697816
107699245
1429
gain
1373
OXR1
6.71
Genic (distinct CNV-subregions); OR > 6
637


8
107697816
107701550
3734
gain
1872
OXR1
6.71
Genic (distinct CNV-subregions); OR > 6
638


8
107607816
107701550
3734
gain
1916
OXR1
6.71
Genic (distinct CNV-subregions); OR > 6
638


8
107697816
107701550
3734
gain
1872
OXR1
6.71
Genic (distinct CNV-subregions); OR > 6
638


8
107697816
107701550
3734
gain
1946
OXR1
6.71
Genic (distinct CNV-subregions); OR > 6
638


8
107737273
107739119
1846
loss
1574
OXR1
6.71
Genic (distinct CNV-subregions); OR > 6
639


8
114408613
114415656
7043
loss
1876
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
5


8
114408613
114415656
7043
loss
1878
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
5


8
114414403
114415656
1253
loss
1848
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
1851
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
111115656
1253
loss
1855
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


8
114414403
114415656
1253
loss
1871
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
1897
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
1902
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
1916
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
1918
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
1921
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
1935
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
1953
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
1969
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
1988
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


8
114414403
114415656
1253
loss
2031
CSMD3
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
4


9
19239599
19554273
314674
gain
1418
ACER2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
778


9
19415150
19434760
19610
gain
1297
ACER2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
777


9
19677387
24675102
4997715
loss
1418
IFNA22P
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
457


9
21245159
21267945
22786
gain
1798
IFNA22P
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
459


9
21245159
21274020
28861
gain
2020
IFNA22P
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
460


9
21250372
21267945
17573
gain
1432
IFNA22P
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
458


9
21250372
21267945
17573
gain
1485
IFNA22P
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
458


9
21250372
21267945
17573
gain
1615
IFNA22P
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
458


9
28533149
28557998
24849
loss
1820
LINGO2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
463


9
28540140
28618391
78251
loss
1309
LINGO2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
461


9
28540140
28574335
34195
loss
1988
LINGO2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
464


9
28541438
28548817
7379
gain
1530
LINGO2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
462


9
28541438
28548817
7379
gain
1585
LINGO2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
462


9
28541438
28548817
7379
gain
1606
LINGO2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
462


9
71217016
71239115
21169
gain
1829
APBA1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
43


9
71224527
71239115
14588
gain
1558
APBA1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
41


9
71224527
71245672
21145
loss
1639
APBA1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
42


9
71224527
71239115
14588
gain
1904
APBA1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
41


9
71224527
71239115
14588
gain
1970
APBA1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
41


9
73771087
73777413
6326
gain
1855
C9orf85
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
583


9
73771087
73780717
9630
gain
1893
C9orl85
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
584


9
73771180
73777413
6233
gain
1268
C9orf85
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
581


9
73771180
73780717
9537
gain
1793
C9orf85
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
582


9
73771180
73780717
9537
gain
1883
C9orf85
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
582


9
79033036
79047245
14209
gain
1589
VPS13A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
643


9
79037727
79067111
29384
gain
1782
VPS13A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
644


9
79037727
79067111
29384
gain
1897
VPS13A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
644


9
79037727
79067111
29384
gain
1938
VPS13A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
644


9
97689541
97695268
5727
loss
1426
C9orf102
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
585


9
97689541
97695268
5727
loss
1552
C9orf102
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
585


9
97689541
07695268
5727
loss
1580
C9orf102
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
585


9
97693397
97695268
1871
loss
1442
C9orf102
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
586


9
97693397
97695268
1871
loss
1996
C9orf102
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
586


9
107567321
107567415
94
loss
1308
TMEM38B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
465


9
107567321
107567415
94
loss
1502
TMEM38B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
465


9
107567321
107567415
94
loss
1555
TMEM38B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
465


9
107567321
107567415
94
loss
1563
TMEM38B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
465


9
107567321
107567415
94
gain
1611
TMEM38B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
465


9
107567321
107567415
94
loss
1876
TMEM38B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
465


9
111604593
111621391
16798
loss
1475
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
409


9
111604593
111621391
16798
loss
1475
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
109


9
111604593
111621391
16798
loss
1475
PALM2-AKAP2, PALM2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
409


9
111606594
111609722
3128
loss
1227
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
408


9
111606594
111609722
3128
loss
1621
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
408


9
111606594
111609722
3128
loss
1670
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
408


9
111606594
111613988
7394
loss
1805
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
410


9
111606594
111609722
3128
loss
1854
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
408


9
111606594
111613988
7394
loss
1878
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
410


9
111606594
111613988
7394
loss
1805
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
410


9
111606594
111613988
7394
loss
1878
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
410


9
111609722
111619128
9406
loss
1420
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
411


9
111609722
111616410
6688
loss
1516
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
412


9
111609722
111619128
9406
gain
1680
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
411


9
111609722
111619128
9406
loss
1893
PALM2-AKAP2, PALM2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
411


9
111609722
111619128
9406
loss
1420
PALM2-AKAP2, PALM2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
411


9
111609722
111616410
6688
loss
1516
PALM2-AKAP2, PALM2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
412


9
111609722
111619128
9406
gain
1680
PALM2-AKAP2, PALM2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
411


9
111609722
111619128
9406
loss
1893
PALM2-AKAP2, PALM2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
411


9
122900485
122906633
6148
loss
1698
CEP110
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
413


9
122900485
122906633
6148
loss
1755
CEP110
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
413


9
122900485
122906633
6148
loss
1959
CEP110
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
413


9
122900702
122906633
5931
loss
1734
CEP110
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
414


9
122900702
122906633
5931
loss
1762
CEP110
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
414


9
122900702
122906633
5931
loss
1952
CEP110
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
414


9
122900702
122906633
5931
loss
1964
CEP110
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
414


9
134088348
134110043
21695
loss
1639
NTNG2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
780


9
134091469
134110043
18574
loss
1230
NTNG2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
779


9
134539589
134545846
6257
loss
1345
GTF3C4
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
781


9
134544331
134545846
1515
loss
2036
GTF3C4
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
782


10
882548
899657
17109
loss
1293
LARP4B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
466


10
885098
897387
12289
loss
1813
LARP4B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
467


10
885098
897387
12289
loss
1845
LARP4B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
467


10
885098
897387
12289
loss
1855
LARP4B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
467


10
885098
897387
12289
loss
1953
LARP4B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
467


10
885098
897387
12289
loss
2031
LARP4B
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
467


10
15026547
15055229
28682
gain
1243
DCLRE1C
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
332


10
15026547
15099650
73103
gain
1298
DCLRE1C
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15099650
73103
gain
1760
DCLRE1C
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026517
15100510
82963
gain
1877
DCLRE1C
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
335


10
15026547
15000650
73103
gain
1894
DCLRE1C
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15055229
28682
gain
1910
DCLRE1C
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
332


10
15026547
15099650
73103
gain
1936
DCLRE1C
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15099650
73103
loss
1948
DCLRE1C
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15055229
28682
gain
1243
MEIG1
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
332


10
15026547
15099650
73103
gain
1298
MEIG1
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15009650
73103
gain
1760
MEIG1
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026517
15109510
82963
gain
1877
MEIG1
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
335


10
15026547
15099650
73103
gain
1894
MEIG1
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15055229
28682
gain
1910
MEIG1
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
332


10
15026547
15099650
73103
gain
1936
MEIG1
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15099650
73103
loss
1948
MEIG1
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15055229
28682
gain
1243
MEIG1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
332


10
15026547
15099650
73103
gain
1298
MEIG1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15099650
73103
gain
1760
MEIG1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15109510
82963
gain
1877
MEIG1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
335


10
15026547
15099650
73103
gain
1894
MEIG1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15055229
28682
gain
1910
MEIG1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
332


10
15026547
15099650
73103
gain
1936
MEIG1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15026547
15099650
73103
loss
1948
MEIG1
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
333


10
15041059
15047327
6268
gain
1570
MEIG1
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
334


10
24564345
24586451
22106
gain
1504
KIAA1217, PRINS
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
783


10
24564345
24586451
22106
gain
1726
KIAA1217, PRINS
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
783


10
41971605
43049635
1078030
gain
1746
CSGALNACT2, RET
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
784


10
41971605
43049635
1078030
gain
1746
RASGEF1A
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
784


10
42601499
43277721
676222
gain
1968
CSGALNACT2, RET
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
785


10
42601499
43277721
676222
gain
1968
RASGEF1A
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
785


10
45478103
47017598
1539495
gain
1408
ANUBL1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
646


10
45478103
46558272
1080169
gain
1653
ANUBL1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
647


10
45487335
46558272
1070937
gain
1293
ANUBL1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
645


10
45487335
47172534
1685199
gain
1832
ANUBL1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
648


10
55202411
57178733
1976322
gain
1429
PCDH15
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
59


10
55202411
57178733
1976322
gain
1429
PCDH15
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
59


10
55202411
57178733
1976322
gain
1129
MTRNR2L5
0.98
MTRNR2L_family
59


10
56114489
56156253
41764
loss
1684
PCDH15
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
470


10
56114489
56156253
41764
loss
1684
PCDH15
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
470


10
56120991
56154328
33337
gain
1605
PCDH15
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
468


10
56120991
56154328
33337
gain
1897
PCDH15
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
468


10
56120991
56154328
33337
gain
1605
PCDH15
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
468


10
56120991
56154328
33337
gain
1897
PCDH15
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
468


10
56122417
56164820
42403
loss
1631
PCDH15
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
469


10
56122417
56142414
19997
gain
1935
PCDH15
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
171


10
56122417
56164820
42403
loss
1631
PCDH15
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
469


10
57021814
57031555
9741
loss
1583
MTRNR2L5
0.98
MTRNR2L_family
60


10
67723300
67878684
155384
loss
1446
CTNNA3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
787


10
67803521
67902637
99116
loss
1441
CTNNA3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
786


10
77916218
77928738
12520
gain
1272
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77928738
12520
loss
1305
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77928669
12451
loss
1321
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
199


10
77916218
77928758
12520
loss
1347
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77928738
12520
gain
1389
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77942809
26501
loss
1426
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
200


10
77916218
77928738
12520
loss
1455
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77940201
23983
loss
1504
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
201


10
77916218
77928738
12520
loss
1517
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77928738
12520
loss
1567
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77926390
12520
gain
1574
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
203


10
77916218
77928738
12520
loss
1582
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77928738
12520
gain
1592
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77917893
1675
loss
1598
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
204


10
77916218
77928738
12520
gain
1743
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77940201
23983
gain
1748
C10orf11
24.12
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
201


10
77916218
77928738
12520
gain
1272
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77928738
12520
loss
1305
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77928669
12451
loss
1321
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
199


10
77916218
77928738
12520
loss
1347
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77928738
12520
gain
1389
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77942809
26591
loss
1426
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
200


10
77916218
77928738
12520
loss
1455
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77940201
23983
loss
1504
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
201


10
77916218
77928738
12520
loss
1517
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77928738
12520
loss
1567
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77926390
10172
gain
1574
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
203


10
77916218
77928738
12520
loss
1582
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77928738
12520
gain
1592
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77917893
1675
loss
1598
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
204


10
77916218
77928738
12520
gain
1743
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
198


10
77916218
77940201
23983
gain
1748
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
201


10
77916218
77942809
26591
loss
1426
C10orf11
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
200


10
77916218
77940201
23983
loss
1504
C10orf11
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
201


10
77916218
77940201
23983
gain
1748
C10orf11
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
201


10
77916218
77942809
26591
loss
1426
C10orf11
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
200


10
77917870
77928738
10868
gain
1540
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
202


10
77917870
77928738
10868
gain
1606
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
202


10
77917870
77928738
10868
gain
1733
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
202


10
77917870
77942809
24939
gain
1755
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
205


10
77917870
77928738
10868
gain
1893
C10orf11
31.9
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
202


10
77917870
77942809
24939
gain
1755
C10orf11
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
205


10
77917870
77942809
24939
gain
1755
C10orf11
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
205


10
77926390
77940201
13811
gain
1267
C10orf11
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
336


10
77926390
77942809
16419
gain
1279
C10orf11
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
337


10
77926390
77942809
16419
gain
1667
C10orf11
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
337


10
77926390
77942809
16419
gain
1728
C10orf11
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
337


10
77926390
77942809
16419
gain
1766
C10orf11
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
337


10
77926390
77942809
16419
gain
1279
C10orf11
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
337


10
77926390
77942809
16419
gain
1667
C10orf11
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
337


10
77926390
77942809
16419
gain
1728
C10orf11
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
337


10
77926390
77942809
16419
gain
1766
C10orf11
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
337


10
108856357
108866593
10236
gain
1269
SORCS1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
338


10
108856357
108866593
10236
loss
1299
SORCS1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
338


10
108856357
108866593
10236
loss
1315
SORCS1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
338


10
108856357
108866593
10236
loss
1465
SORCS1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
338


10
108856357
108866593
10236
loss
1492
SORCS1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
338


10
108856357
108866703
10346
loss
1495
SORCS1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
339


10
108856357
108866593
10236
loss
1566
SORCS1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
338


10
108856357
108866593
10236
loss
1720
SORCS1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
338


10
108856357
108866593
10236
loss
1758
SORCS1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
338


10
116940096
116971507
31411
gain
1394
ATRNL1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116940096
116958657
18561
gain
1409
ATRNL1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
287


10
116940096
116958657
18561
gain
1410
ATRNL1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
287


10
116940096
116963861
23765
gain
1416
ATRNL1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
288


10
116940096
116953711
13615
gain
1438
ATRNL1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
289


10
116940096
116958657
18561
gain
1603
ATRNL1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
287


10
116940096
116971507
31411
gain
1834
ATRNL1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116940096
116971507
31411
gain
1924
ATRNL1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116940096
116971507
31411
gain
1394
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116940096
116958657
18561
gain
1409
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
287


10
116940096
116958657
18561
gain
1410
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
287


10
116940096
116963861
23765
gain
1416
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
288


10
116940096
116953711
13615
gain
1438
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
289


10
116940096
116958657
18561
gain
1603
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
287


10
116940096
116971507
31411
gain
1834
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116940096
116971507
31411
gain
1924
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116940096
116971507
31411
gain
1394
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116940096
116958657
18561
gain
1409
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
287


10
116940096
116958657
18561
gain
1410
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
287


10
116940096
116963861
23765
gain
1416
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
288


10
116940096
116958657
18561
gain
1603
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
287


10
116940096
116971507
31411
gain
1834
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116940096
116971507
31411
gain
1924
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116940096
116971507
31411
gain
1394
ATRNL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116910096
116963861
23765
gain
1416
ATRNL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
288


10
116940096
116971507
31411
gain
1834
ATRNL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116940096
116971507
31411
gain
1924
ATRNL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
286


10
116949327
116971507
22180
gain
1292
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
284


10
116949327
116958657
9330
gain
1346
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
285


10
116949327
116971507
22180
gain
1880
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
284


10
116949327
116971507
22180
gain
1292
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
284


10
116949327
116958657
9330
gain
1346
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
285


10
116949327
116971507
22180
gain
1880
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
284


10
116949327
116971507
22180
gain
1292
ATRNL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
284


10
116949327
116971507
22180
gain
1880
ATRNL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
284


10
116953711
116958657
4946
gain
1761
ATRNL1
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
290


11
4926583
4934594
8011
gain
1273
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
234


11
4926583
4946289
19706
gain
1304
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
235


11
4926583
4946289
19706
gain
1346
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
235


11
4926583
4951962
25379
gain
1436
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
236


11
4926583
4934594
8011
gain
1453
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
234


11
4926583
4934594
8011
gain
1577
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
234


11
4926583
4946289
19706
gain
1504
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
235


11
4926583
4950282
23699
gain
1669
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
237


11
4926583
4946289
19706
gain
1744
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
235


11
4926583
4951962
25379
gain
1813
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
336


11
4926583
4949093
22510
gain
1858
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
238


11
4926583
4931594
8011
gain
1880
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
234


11
4926583
4934594
8011
gain
1916
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
234


11
4926583
4934594
8011
gain
1960
OR51A2
21.04
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
234


11
5226853
5230363
3510
gain
1424
HBG1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
587


11
5226853
5230363
3510
gain
1486
HBG1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
587


11
5226853
5230363
3510
gain
1758
HBG1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
587


11
5226853
5230363
3510
gain
1843
HBG1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
587


11
5226853
5230363
3510
gain
1911
HBG1
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
587


11
5738494
5766615
28121
gain
1438
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
194


11
5742476
5774108
31632
gain
1394
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
192


11
5742476
5766615
24139
gain
1434
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
193


11
5742476
5774108
31632
gain
1536
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
192


11
5742476
5775970
33494
gain
1538
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
195


11
5742476
5775970
33494
gain
1551
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
195


11
5742476
5766615
24139
gain
1643
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
193


11
5742476
5766615
24139
gain
1712
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
193


11
5742476
5775970
33494
gain
1727
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
195


11
5742476
5766615
24139
gain
1817
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
193


11
5742476
5774108
31632
gain
1821
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
192


11
5742476
5775970
33494
gain
1823
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
195


11
5742476
5775970
33494
gain
1824
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
195


11
5742476
5774108
31632
gain
1825
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
192


11
5742476
5774108
31632
gain
1902
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
192


11
5742476
5766615
24139
gain
1903
OR52N1
33.47
Exon * ve, ASD > 4, Normals < 2, no Sanger filter applied
193


11
5742476
5766615
24139
gain
1991
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
193


11
5742176
5766615
24139
gain
2033
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
193


11
5742176
5766615
24139
gain
2044
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
193


11
5744034
5766615
22581
gain
1877
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger Filter applied
197


11
5745329
5766615
21286
gain
1671
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
196


11
5749258
5766615
17357
gain
1235
OR52N1
33.47
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
191


11
5828251
5839924
11673
loss
1723
OR52E8
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
36


11
5832681
5839924
7243
loss
1574
OR52E8
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
35


11
5832681
5839924
7243
loss
1769
OR52E8
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
35


11
5832681
5839924
7243
loss
1856
OR52E8
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
35


11
5832681
5839924
7243
loss
1858
OR52E8
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
35


11
5832681
5839924
7243
loss
1877
OR52E8
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
35


11
5832681
5839924
7243
loss
2034
OR52E8
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
35


11
9971600
10668699
697099
loss
1959
MRVI1, LYVE1, AMPD3,
1.47
MTRNR2L_family
61








MTRNR2L8,











LOC100129827,











SBF2, RNF141, ADM





11
34919050
34920722
1672
loss
1285
PDHX
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
588


11
34919050
34920722
1672
loss
1572
PDHX
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
588


11
34919050
34920722
1672
loss
1590
PDHX
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
588


11
34919050
34920722
1672
loss
1688
PDHX
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
588


11
34919050
34919798
748
loss
1737
PDHX
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
589


11
51235737
51371826
136089
gain
1708
OR4C46
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
788


11
51235737
51785063
3519326
gain
1943
OR4C46
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
789


11
55112618
55177650
65032
gain
1270

49.43
high OR intergenic (OR > 30)
852


11
55112618
55219985
107367
gain
1296

49.43
high OR intergenic (OR > 30)
854


11
55112618
55202450
89832
gain
1542

49.43
high OR intergenic (OR > 30)
855


11
55112618
55219985
107367
gain
1545

49.43
high OR intergenic (OR > 30)
854


11
55112618
55196550
83932
gain
1590

49.43
high OR intergenic (OR > 30)
856


11
55112618
55196550
83932
gain
1608

49.43
high OR intergenic (OR > 30)
856


11
55112618
55219985
107367
gain
1721

49.43
high OR intergenic (OR > 30)
851


11
55112618
55219985
107367
gain
1750

49.43
high OR intergenic (OR > 30)
854


11
55112618
55219985
107367
gain
1755

49.43
high OR intergenic (OR > 30)
854


11
55113618
55219985
107367
gain
1787

49.43
high OR intergenic (OR > 30)
854


11
55112618
55219985
107367
gain
1792

49.43
high OR intergenic (OR > 30)
854


11
55112618
55209626
97008
gain
1807

49.43
high OR intergenic (OR > 30)
860


11
55112618
55203706
91088
gain
1862

49.43
high OR intergenic (OR > 30)
861


11
55112618
55219985
107367
gain
1870

49.43
high OR intergenic (OR > 30)
854


11
55112618
55219985
107367
gain
1900

49.43
high OR intergenic (OR > 30)
854


11
55112618
55223056
110438
gain
1937

49.43
high OR intergenic (OR > 30)
862


11
55112618
55219985
107367
gain
1998

49.43
high OR intergenic (OR > 30)
854


11
55112618
55219985
107367
gain
2026

49.43
high OR intergenic (OR > 30)
854


11
55112618
55205278
92660
gain
2030

49.43
high OR intergenic (OR > 30)
863


11
55114405
55207305
92900
gain
1222

49.43
high OR intergenic (OR > 30)
850


11
55114405
55219985
105580
gain
1230

49.43
high OR intergenic (OR > 30)
851


11
55114405
55196550
82145
gain
1271

49.43
high OR intergenic (OR > 30)
853


11
55114405
55219985
105580
gain
1285

49.43
high OR intergenic (OR > 30)
851


11
55114405
55203706
89301
gain
1607

49.43
high OR intergenic (OR > 30)
857


11
55114405
55209626
95221
gain
1711

49.43
high OR intergenic (OR > 30)
858


11
55114405
55223056
108651
gain
1763

49.43
high OR intergenic (OR > 30)
859


11
55114405
55203706
89301
gain
1783

49.43
high OR intergenic (OR > 30)
857


11
55114405
55207305
92900
gain
1808

49.43
high OR intergenic (OR > 30)
850


11
55114405
55219985
105580
gain
1830

49.43
high OR intergenic (OR > 30)
851


11
55114405
55203706
89301
gain
1928

49.43
high OR intergenic (OR > 30)
857


11
55114405
55219985
105580
gain
2041

49.43
high OR intergenic (OR > 30)
851


11
55114405
55209626
95221
gain
2044

49.43
high OR intergenic (OR > 30)
858


11
55509638
55516797
7159
loss
1868
OR7E5P
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
791


11
55510238
55516120
5882
loss
1245
OR7E5P
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
790


11
88553783
88566456
12673
loss
1539
TYR
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
472


11
88560991
88562255
1264
loss
1691
TYR
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
473


11
88560991
88562255
1264
loss
1720
TYR
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
473


11
88560991
88562255
1264
loss
1746
TYR
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
473


11
88560991
88562255
1264
loss
1760
TYR
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
473


11
88560991
88562255
1264
gain
1993
TYR
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
473


11
101496791
101499019
2228
loss
1247
YAP1
8.91
Genic (distinct CNV-subreaions); OR > 6
474


11
101496791
101499019
2228
loss
1274
YAP1
8.91
Genic (distinct CNV-subreaions); OR > 6
474


11
101496791
101499019
2228
loss
1546
YAP1
8.91
Genic (distinct CNV-subreaions); OR > 6
474


11
101544468
101550679
6211
gain
1221
YAP1
8.91
Genic (distinct CNV-subreaions); OR > 6
475


11
101550679
101554376
3697
loss
1233
YAP1
8.9l
Genic (distinct CNV-subreaions); OR > 6
476


11
101550679
101554376
3697
loss
2037
YAP1
8.91
Genic (distinct CNV-subregions); OR > 6
476


11
107160270
107177546
17376
gain
1222
SLC35F2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
477


11
107160270
107177546
17276
gain
1349
SLC35F2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
477


11
107160270
107177546
17276
gain
1794
SLC35F2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
477


11
107160270
107177516
17276
gain
1818
SLC35F2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
177


11
107160270
107177516
17276
gain
1860
SLC35F2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
477


11
107160270
107177516
17276
gain
1867
SLC35F2
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
477


11
120856405
120859352
2947
gain
1324
SORL1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
590


11
120856405
120859352
2947
gain
1411
SORL1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
590


11
120856405
120859352
2947
gain
1416
SORL1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
590


11
120856405
120859352
2947
gain
1825
SORL1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
590


11
120856405
120859352
2947
gain
1834
SORL1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
590


11
123756697
123770639
13942
gain
1463
OR8B2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
792


11
123756697
123770639
13942
gain
1467
OR8B2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
792


11
131427991
131434659
6668
gain
1604
NTM
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
478


11
131427991
131436397
8406
gain
1644
NTM
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
479


11
131427991
131434659
6668
gain
1660
NTM
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
478


11
131427991
131434659
6668
gain
1808
NTM
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
478


11
131427991
131436397
8406
gain
1843
NTM
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
479


11
131427991
131434659
6668
gain
1912
NTM
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
478


12
12422129
12433043
10914
loss
1349
LOH12CR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
370


12
12422129
12433043
10914
loss
1463
LOH12CR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
370


12
12422129
12433043
10914
loss
1722
LOH12CR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
370


12
12422129
12433043
10914
loss
1754
LOH12CR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
370


12
12422129
12433043
10914
loss
1778
LOH12CR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
370


12
12422129
12433043
10914
loss
1923
LOH12CR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
370


12
12422129
12433043
10914
loss
1942
LOH12CR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
370


12
12422129
12433043
10914
loss
2006
LOH12CR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
370


12
79721736
79723181
1445
loss
1281
LIN7A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
591


12
79721736
79723181
1445
loss
1465
LIN7A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
591


12
79721736
79723181
1445
loss
1476
LIN7A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
591


12
79721736
79723181
1445
loss
1511
LIN7A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
591


12
79721736
79723181
1445
loss
1599
LIN7A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
591


12
100624427
100631726
7299
loss
1874
CHPT1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
341


12
100626837
100631726
4889
loss
1395
CHPT1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
340


12
100626837
100631726
4889
loss
1422
CHPT1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
340


12
100626837
100631726
4889
loss
1573
CHPT1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
340


12
100626837
100631726
4889
loss
1616
CHPT1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
340


12
100626837
100631726
4889
loss
1621
CHPT1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
340


12
100626837
100631726
4889
loss
1815
CHPT1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
340


12
100626837
100631726
4889
loss
1898
CHPT1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
340


12
100626837
100631726
4889
loss
1900
CHPT1
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
340


12
108123730
108127525
3795
gain
1902
ACACB
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
710


12
108123730
108126163
2433
gain
1936
ACACB
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
711


12
108123730
108126163
2433
gain
1937
ACACB
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
711


12
110497697
110512490
14793
loss
1443
ATXN2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
592


12
110497697
110509958
12261
loss
1576
ATXN2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
593


12
110497697
110509958
12261
loss
1604
ATXN2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
593


12
110497697
110509958
12261
loss
1815
ATXN2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
593


12
110497697
110509958
12261
loss
1854
ATXN2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
593


12
119355352
119372494
17142
gain
1543
GATC, COX6A1, TRIAP1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
712


12
119355352
119372494
17142
gain
1599
GATC, COX6A1, TRIAP1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
712


12
119355352
119372494
17142
gain
1851
GATC, COX6A1, TRIAP1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
712


12
131716981
131825117
108136
loss
1621
PGAM5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
794


12
131707099
131806639
9540
loss
1256
PGAM5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
793


13
27892889
27894406
1517
loss
1299
FLT1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
371


13
27892889
27894406
1517
loss
1447
FLT1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
371


13
27892889
27894406
1517
loss
1592
FLT1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
371


13
27892880
27894406
1517
loss
1752
FLT1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
371


13
27892889
27894406
1517
loss
1779
FLT1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
371


13
27892889
27895569
2680
loss
1912
FLT1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
372


13
27892889
27894406
1517
loss
1916
FLT1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
371


13
27892889
27894406
1517
loss
1952
FLT1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
371


13
37988946
37992035
3089
loss
1687

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1720

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1722

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1737

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1742

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1754

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1755

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1848

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1855

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1868

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1881

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1918

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1919

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1920

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1921

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1935

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1938

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1942

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1953

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1963

33.47
high OR inlergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1965

33.47
high OR intergenic (OR > 30)
876


13
37988946
37992035
3089
loss
1969

33.47
high OR intergenic (OR > 30)
876


13
42372718
42687363
314645
gain
1897
DNAJC15
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
795


13
42372718
42687363
314645
gain
1897
ENOX1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
795


13
42507464
42607572
100108
gain
1948
DNAJC15
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
796


13
42593061
42915998
322937
loss
1316
ENOX1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
797


13
45637710
45637778
68
loss
1227
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1293
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger Filter applied
173


13
45637710
45637778
68
loss
1296
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1297
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
gain
1402
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1451
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1452
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
15637710
45637778
68
loss
1657
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1723
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1742
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1761
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1839
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1848
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
15637710
45637778
68
loss
1871
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1803
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1925
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1927
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1954
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1956
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1958
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1965
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1969
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
1970
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
2030
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
45637710
45637778
68
loss
2031
LCP1
38.2
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
173


13
100692746
100695073
2327
gain
1251
NALCN
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
594


13
100692746
100695073
2327
gain
1272
NALCN
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
594


13
100692746
100695073
2327
gain
1776
NALCN
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
594


13
100692746
100695073
2327
gain
1815
NALCN
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
594


13
100692746
100695073
2327
gain
1883
NALCN
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
594


13
100923250
100931039
7789
gain
1422
ITGBL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
480


13
100923250
100931179
7929
gain
1551
ITGBL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
481


13
100923250
100931039
7789
gain
1742
ITGBL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
480


13
100923250
100931039
7789
gain
1753
ITGBL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
480


13
100923250
100931039
7789
gain
1867
ITGBL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
480


13
100923250
100931039
7789
gain
1881
ITGBL1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
480


13
101217467
101229748
12281
gain
1781
FGF14
8.91
Genic (distinct CNV-subregions); OR > 6
482


13
101217467
101229748
12281
gain
1925
FGF14
8.91
Genic (distinct CNV-subregions); OR > 6
482


13
101524762
101598573
73811
loss
1826
FGF14
8.91
Genic (distinct CNV-subregions); OR > 6
483


13
101524762
101598573
73811
loss
1826
FGF14
8.91
Genic (distinct CNV-subregions); OR > 6
483


13
101524762
101598573
73811
loss
1826
FGF14
8.91
Genic (distinct CNV-subregions); OR > 6
483


13
101521762
101508573
73811
loss
1826
FGF14
8.91
Genic (distinct CNV-subregions); OR > 6
483


13
101524762
101598573
73811
loss
1826
FGF14
8.91
Genic (dislincl CNV-subregions); OR > 6
483


13
101574080
101575763
1683
loss
1617
FGF14
8.91
Genic (distinct CNV-subregions); OR > 6
484


13
101582092
101587700
5608
loss
1597
FGF14
8.91
Genic (distinct CNV-subregions); OR > 6
485


13
101641002
101646218
5216
loss
1954
FGF14
8.91
Genic (distinct CNV-subregions); OR > 6
486


13
102483043
102499472
16429
gain
1308
SLC10A2
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
595


13
102483043
102499472
16429
gain
1320
SLC10A2
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
595


13
102483043
102199472
16429
gain
1521
SLC10A2
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
595


13
102483043
102499472
16429
gain
1580
SLC10A2
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
595


13
102483043
102499472
16429
gain
1826
SLC10A2
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
595


13
112711763
112829665
117902
gain
1471
MCF2L
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
799


13
112793058
112805778
12720
gain
1418
MCF2L
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
798


13
113762090
113767184
5094
loss
1956
RASA3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
800


13
113762090
113767184
5094
loss
1958
RASA3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
800


14
22929952
22958797
28845
loss
1537
MYH6
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
596


14
22929952
22959169
29517
loss
1669
MYH6
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
598


14
22929952
22957582
27630
gain
1945
MYH6
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
600


14
22929952
22958797
28845
loss
1537
MYH6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
596


14
32929952
22959469
29517
loss
1669
MYH6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
598


14
22929952
22957582
27630
gain
1945
MYH6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
600


14
22929952
22958797
28845
loss
1537
MYH7
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
596


14
22929952
23959469
29517
loss
1669
MYH7
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
598


14
22929952
22957582
27630
gain
1915
MYH7
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
600


14
22929952
22958797
28845
loss
1537
MIR208B, MYH7
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
596


14
22929952
22959469
29517
loss
1669
MIR208B, MYH7
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
598


14
22929952
22957582
27630
gain
1945
MIR208B, MYH7
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
600


14
22929952
22959469
28845
loss
1537
MYH7
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
596


14
22929952
22959469
29517
loss
1669
MYH7
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
598


14
22943262
22951086
7824
loss
1577
MYH6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
597


14
22943262
22955470
12208
loss
1856
MYH6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
599


14
22943262
22955470
12208
loss
1856
MYH7
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
599


14
22946615
22955470
8855
loss
2032
MYH7
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
601


14
38866449
38872944
6495
loss
1235
CTAGE5
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
373


14
38866449
38872818
6369
loss
1237
CTAGE5
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
374


14
38866449
38872944
6495
loss
1526
CTAGE5
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
373


14
38866449
38874484
8035
loss
1541
CTAGE5
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
375


14
38866449
38874484
8035
loss
1609
CTAGE5
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
375


14
38866449
38872944
6495
loss
1819
CTAGE5
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
373


14
38866449
38872818
6369
loss
1915
CTAGE5
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
374


14
38866449
38872944
6495
loss
2027
CTAGE5
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
373


14
38866449
38872944
6495
loss
1235
CTAGE5
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
373


14
38866449
38872944
6495
loss
1526
CTAGE5
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
373


14
38866449
38874484
8035
loss
1541
CTAGE5
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
375


14
38866449
38874484
8035
loss
1609
CTAGE5
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
375


14
38866449
38872944
6495
loss
1819
CTAGE5
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
373


14
38866449
38872944
6495
loss
2027
CTAGE5
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
373


14
46772100
46787389
15289
loss
1729
MDGA2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
604


14
46774115
46787389
13274
loss
1609
MDGA2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
602


14
46774115
46789074
14959
loss
1666
MDGA2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
603


14
46774115
46787389
13274
loss
1693
MDGA2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
602


14
46774115
46787389
13274
loss
1850
MDGA2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
602


14
69086125
69093444
7319
loss
1848

33.47
high OR intergenic (OR > 30)
878


14
69086125
69093444
7319
loss
1855

33.47
high OR intergenic (OR > 30)
878


14
69088190
69093444
5254
loss
1401

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1465

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1704

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1710

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1722

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1723

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1751

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1752

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1754

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1761

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1763

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093141
5254
loss
1775

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1797

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1814

33.47
high OR intergenic (OR > 30)
877


14
60088190
69093444
5254
loss
1833

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1852

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1853

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093444
5254
loss
1881

33.47
high OR intergenic (OR > 30)
877


14
69088190
69093144
5254
loss
1807

33.47
high OR intergenic (OR > 30)
877


14
69088190
69098569
10379
loss
1945

33.47
high OR intergenic (OR > 30)
879


14
72995201
73092112
96911
gain
1291
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
136


14
72995201
73092112
96911
gain
1291
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
136


14
73051686
73071404
19718
loss
1237
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
134


14
73051686
73071404
19718
loss
1237
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
134


14
73058103
73061942
3839
loss
1676
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
233


14
73058103
73071404
13301
loss
1687
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
139


14
73058103
73112042
53939
loss
1718
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
140


14
73058103
73092112
34009
loss
1721
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
141


14
73058103
73071404
13301
loss
1687
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
139


14
73058103
73112042
53939
loss
1718
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
140


14
73058103
73092112
34009
loss
1721
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
141


14
73060301
73112042
51741
loss
1238
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
135


14
73060301
73101327
41026
loss
1574
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
137


14
73060301
73092112
31811
loss
1672
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
138


14
73060301
73092112
31811
loss
1720
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
138


14
73060301
73112042
51741
loss
1723
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
135


14
73060301
73092112
31811
loss
1760
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
138


14
73060301
73104540
44239
loss
1862
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
144


14
73060301
73092112
31811
loss
1916
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
138


14
73060301
73092112
31811
loss
2003
HEATR4
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
138


14
73060301
73112042
51741
loss
1238
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
135


14
73060301
73101327
41026
loss
1574
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
137


14
73060301
73092112
31811
loss
1672
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
138


14
73060301
73092112
31811
loss
1720
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
138


14
73060301
73112042
51741
loss
1723
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
135


14
73060301
73092112
31811
loss
1760
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
138


14
73060301
73104540
44239
loss
1862
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
144


14
73060301
73092112
31811
loss
1916
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
138


14
73060301
73092112
31811
loss
2003
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
138


14
73061942
73101327
39385
loss
1232
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
132


14
73061942
73071404
9462
loss
1233
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
133


14
73061942
73092112
30170
loss
1773
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
142


14
73061942
73112042
50100
loss
1779
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
113


14
73061942
73092112
30170
loss
1800
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
142


14
73061942
73112042
50100
loss
1837
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
143


14
73061942
73092112
30170
loss
1871
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
142


14
73061942
73112042
50100
loss
1917
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
143


14
73061942
73092112
30170
loss
1943
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
142


14
73061942
73092112
30170
loss
1948
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
142


14
73061942
73112042
50100
loss
1967
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
143


14
73061942
73002112
30170
loss
2005
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
112


14
73061942
73104540
42598
loss
2041
HEATR4
41.39
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
145


14
80413494
80429808
16314
loss
1293
C14orf145
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
487


14
80413494
80429808
16314
gain
1324
C14orf145
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
487


14
80413494
80429808
16314
loss
1844
C14orf145
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
487


14
80413494
80429808
16314
loss
1916
C14orf145
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
487


14
80413494
80429808
16314
loss
1957
C14orf145
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
187


14
80413494
80429808
16314
loss
1961
C14orf145
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
487


14
90323329
90324691
1365
loss
1279
TTC7B
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
376


14
90323329
90324694
1365
loss
1287
TTC7B
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
376


14
90323329
90324694
1365
gain
1298
TTC7B
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
376


14
90323329
90321601
1365
loss
1559
TTC7B
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
376


14
90323329
90324694
1365
loss
1647
TTC7B
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
376


14
90323329
90324694
1365
loss
1786
TTC7B
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
376


14
90323329
90324694
1365
loss
1794
TTC7B
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
376


14
90323329
90324694
1365
loss
1891
TTC7B
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
376


14
102008576
105330913
3322337
gain
1447
JAG2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
649


14
102008576
105330913
3322337
gain
1447
JAG2
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
649


14
102008576
105330913
3322337
gain
1447
PACS2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
649


14
104679956
104715063
35107
loss
1695
JAG2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
650


14
104679956
104716526
36570
loss
1739
JAG2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
651


14
104679956
104715063
35107
loss
1695
JAG2
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
650


14
104679956
104716526
36570
loss
1739
JAG2
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
651


14
104686613
104703676
17063
loss
1856
JAG2
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
652


14
104902380
104905434
3054
loss
2036
PACS2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
801


15
18362555
21246527
2883972
gain
1333
GOLGA8E, GOLGA8IP,
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
415








HERC2P2, HERC2P7





15
20742114
21218231
475790
gain
1951
GOLGA8E, GOLGA8IP,
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
417








HERC2P2, HERC2P7





15
20760283
21218234
457951
loss
1564
GOLGA8E, GOLGA8IP,
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
416








HERC2P2, HERC2P7





15
20760283
21218234
457951
loss
1761
GOLGA8E, GOLGA8IP,
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
416








HERC2P2, HERC2P7





15
20760283
21218234
457951
loss
1799
GOLGA8E, GOLGA8IP,
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
416








HERC2P2, HERC2P7





15
20760283
21218234
457951
loss
1839
GOLGA8E, GOLGA8IP,
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
416








HERC2P2, HERC2P7





15
20760283
21218234
457951
loss
1948
GOLGA8E, GOLGA8IP,
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
416








HERC2P2, HERC2P7





15
26805834
28439781
1633947
gain
1988
APBA2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
802


15
26805834
28154955
1349121
loss
1994
APBA2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
803


15
32445353
32594200
148847
loss
1935
MIR1233-1, GOLGA8A,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
345








MIR1233-2





15
32452971
32517839
64868
loss
1245
MIR1233-1, GOLGA8A,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
342








MIR1233-2





15
32454294
32594200
139906
loss
1317
MIR1233-1, GOLGA8A,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
343








MIR1233-2





15
32454294
32594200
139906
loss
1440
MIR1233-1, GOLGA8A,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
343








MIR1233-2





15
32454294
32594200
139906
loss
1724
MIR1233-1, GOLGA8A,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
343








MIR1233-2





15
32454294
32594200
139906
loss
2041
MIR1233-1, GOLGA8A,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
343








MIR1233-2





15
32456500
32594200
137700
loss
1449
MIR1233-1, GOLGA8A,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
344








MIR1233-2





15
32456500
32594200
137700
loss
1467
MIR1233-1, GOLGA8A,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
344








MIR1233-2





15
32456500
32594200
137700
loss
1829
MIR1233-1, GOLGA8A,
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
344








MIR1233-2





15
52519074
52533227
14153
loss
1260
UNC13C
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
605


15
52519074
52533227
14153
loss
1451
UNC13C
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
605


15
52519074
52533227
14153
loss
1670
UNC13C
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
605


15
52519074
52533227
14153
loss
1672
UNC13C
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
605


15
52519074
52533227
14153
loss
1741
UNC13C
7/42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
605


15
56031543
56044966
13423
loss
1680
ALDH1A2
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
347


15
56036057
56039530
3473
loss
1233
ALDH1A2
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
346


15
56036057
56039530
3473
loss
1371
ALDH1A2
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
346


15
56036057
56039530
3473
loss
1402
ALDH1A2
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
346


15
56036057
56039530
3473
loss
1407
ALDH1A2
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
346


15
56036057
56039530
3473
loss
1464
ALDH1A2
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
346


15
56036057
56039530
3473
loss
1519
ALDH1A2
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
346


15
56036057
56039530
3473
loss
1602
ALDH1A2
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
346


15
56036057
56039530
3473
loss
1902
ALDH1A2
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
346


15
69017805
69224833
207028
gain
1565
LRRC49
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
378


15
69027858
69034501
6643
loss
1308
LRRC49
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
377


15
69027858
69034501
6643
loss
1309
LRRC49
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
377


15
69027858
69034501
6643
loss
1420
LRRC49
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
377


15
69027858
69034501
6643
loss
1422
LRRC49
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
377


15
69027858
69034501
6643
loss
1432
LRRC49
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
377


15
69027858
69034501
6643
loss
1434
LRRC49
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
377


15
69027858
69034501
6643
loss
1447
LRRC49
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
377


15
69592364
73892403
4300039
loss
1415
SNUPN
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
713


15
69592364
73892403
4300039
loss
1415
SNUPN
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
713


15
69592364
73892403
4300039
loss
1415
SNX33, CSPG4
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
713


15
73661881
73759785
97904
gain
2018
SNUPN
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
715


15
73661881
73759785
97904
gain
2018
SNUPN
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
715


15
73661881
73759785
97904
gain
2018
SNX33, CSPG4
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
715


15
73680498
73686655
6157
loss
1773
SNUPN
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
714


15
76203086
76226426
23340
gain
1300
CIB2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
804


15
76206143
76223381
17238
gain
1918
CIB2
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
805


15
99826818
100282819
456001
gain
1370
TM2D3, TARSL2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
716


15
99845964
100128118
282154
gain
1947
TM2D3, TARSL2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
718


15
99976057
100071959
95902
gain
1907
TM2D3, TARSL2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
717


16
386962
388480
1518
loss
1248
NME4
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
653


16
386962
388480
1518
loss
1758
NME4
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
653


16
386962
402342
15380
loss
1810
NME4
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
654


16
386962
388480
1518
loss
1865
NME4
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
653


16
759120
764070
4950
loss
1242
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
4950
loss
1257
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
4950
loss
1282
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
1950
loss
1344
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
4950
loss
1346
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
4950
loss
1369
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
4050
loss
1386
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1387
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1405
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
1950
loss
1410
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
1950
loss
1419
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
1950
loss
1468
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
4950
loss
1485
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1512
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1532
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1540
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
823948
64828
gain
1628
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
380


16
759120
764070
4950
loss
1649
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1653
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1709
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1721
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1722
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
4950
loss
1723
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
4950
loss
1776
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
4950
loss
1788
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1903
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1905
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1923
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
1959
MIR662, MSLNL
11.92
Genic (distinct CNV-subregions); OR > 6
379


16
759120
764070
4950
loss
2034
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
764070
4950
loss
2040
MIR662, MSLNL
11.92
Genic (distinct CNV-subreaions); OR > 6
379


16
759120
823948
64828
gain
1628
PRR25, MSLNL, RPUSD1,
11.92
Genic (distinct CNV-subregions); OR > 6
380








CHTF18, GNG13





16
3361009
5067233
1706224
gain
1567
CLUAP1, SLX4,ZNF174,
1.47
MTRNR2L_family
62








ZNF434, ZNF597, C16orf90,











NAT15, NLRC3, MTRNR2L4





16
3361009
5067233
1706224
gain
1567
LOC342346
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
62


16
4554395
4588011
33616
loss
1689
LOC342346
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
806


16
18072714
18645462
572748
gain
1965
ABCC6P1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
721


16
18516136
18772626
256490
gain
1714
ABCC6P1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
719


16
18516136
18645462
129326
gain
1811
ABCC6P1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
720


16
29238804
30106808
868004
loss
1671
SPN
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
489


16
29238804
30106808
868004
loss
1671
QPRT
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
489


16
29238804
30106808
868004
loss
1671
MVP, KCTD13, INO80E,
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
489








ASPHD1, DOC2A, MAZ,











ZG16, LOC440356, PRRT2,











C16orf92,TAOK2,











C16orf53,TMEM219,











HIRIP3, SEZ6L2, FAM57B,











C16orf54, CDIPT





16
29238804
30106808
868004
loss
1671
ALDOA, GDPD3, PPP4C,
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
489








TBX6, YPEL3





16
29238804
30106808
868004
loss
1671
CORO1A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
489


16
29560500
29619548
59048
gain
1608
SPN
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
488


16
29560500
30106808
546308
gain
1700
SPN
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490


16
29560500
30106808
546308
loss
1823
SPN
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490


16
29560500
30106808
546308
loss
1893
SPN
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490


16
29560500
30090559
539059
gain
1968
SPN
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
491


16
29560500
29619548
59048
gain
1608
QPRT
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
488


16
29560500
30106808
546308
gain
1700
QPRT
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490


16
29560500
30106808
546308
loss
1823
QPRT
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490


16
29560500
30106808
546308
loss
1893
QPRT
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490


16
29560500
30099559
539059
gain
1968
QPRT
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
491


16
29560500
30106808
546308
gain
1700
MVP, KCTD13, INO80E,
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490








ASPHD1, DOC2A, MAZ,











ZG16, LOC440356, PRRT2,











C16orf92,TAOK2,











C16orf53,TMEM219,











HIRIP3, SEZ6L2, FAM57B,











C16orf54, CDIPT





16
29560500
30106808
546308
loss
1823
MVP, KCTD13, INO80E,
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490








ASPHD1, DOC2A, MAZ,











ZG16, LOC440356, PRRT2,











C16orf92,TAOK2,











C16orf53,TMEM219,











HIRIP3, SEZ6L2, FAM57B,











C16orf54, CDIPT





16
29560500
30106808
546308
loss
1893
MVP, KCTD13, INO80E,
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490








ASPHD1, DOC2A, MAZ,











ZG16, LOC440356, PRRT2,











C16orf92,TAOK2,











C16orf53,TMEM219,











HIRIP3, SEZ6L2, FAM57B,











C16orf54, CDIPT





16
29560500
30099559
539059
gain
1968
MVP, KCTD13, INO80E,
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
491








ASPHD1, DOC2A, MAZ,











ZG16, LOC440356, PRRT2,











C16orf92,TAOK2,











C16orf53,TMEM219,











HIRIP3, SEZ6L2, FAM57B,











C16orf54, CDIPT





16
29560500
30106808
546308
gain
1700
ALDOA, GDPD3, PPP4C,
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490








TBX6, YPEL3





16
29560500
30106808
546308
loss
1823
ALDOA, GDPD3, PPP4C,
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490








TBX6, YPEL3





16
29560500
30106808
546308
loss
1893
ALDOA, GDPD3, PPP4C,
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
490








TBX6, YPEL3





16
29560500
30099559
539059
gain
1968
ALDOA, GDPD3, PPP4C,
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
491








TBX6, YPEL3





16
29560500
30106808
546308
gain
1700
CORO1A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
490


16
29560500
30106808
546308
loss
1823
CORO1A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
490


16
29560500
30106808
546308
loss
1893
CORO1A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
490


16
68710277
68850394
140117
loss
1538
CLEC18C, LOC729513
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
419


16
68710277
68842364
132087
loss
1742
CLEC18C, LOC729513
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
420


16
68710277
68838384
128107
loss
1792
CLEC18C, LOC729513
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
421


16
68710277
68859920
149643
loss
1793
CLEC18C, LOC729513
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
122


16
68710277
68842364
132087
loss
1935
CLEC18C, LOC729513
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
420


16
68710277
68850394
140117
loss
1538
EXOSC6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
419


16
68710277
68842364
132087
loss
1742
EXOSC6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
420


16
68710277
68859920
149643
loss
1793
EXOSC6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
422


16
68710277
68842364
132087
loss
1935
EXOSC6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
420


16
68732367
68844016
111649
gain
1323
CLEC18C, LOC729513
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
418


16
68732367
68838384
106017
loss
1875
CLEC18C, LOC729513
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
423


16
68732367
68844016
111649
gain
1323
EXOSC6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
118


16
70641420
70665147
24027
loss
1775
HPR
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
349


16
70653499
70665447
11948
gain
1489
HPR
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
348


16
70653499
70665447
11948
gain
1497
HPR
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
348


16
70653499
70665447
11948
gain
1723
HPR
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
348


16
70653499
70665447
11948
gain
1731
HPR
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
348


16
70653499
70665447
11948
gain
1734
HPR
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
348


16
70653499
70665147
11948
gain
1737
HPR
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
348


16
70652499
70665147
11948
gain
1877
HPR
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
348


16
70653499
70665447
11948
gain
2034
HPR
13.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
348


16
72918129
72964783
46654
gain
1440
LOC283922
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
606


16
72918129
72964783
46654
gain
1490
LOC283922
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
606


16
72918129
72964783
46654
gain
1499
LOC283922
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
606


16
72918129
72964783
46654
gain
1521
LOC283922
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
606


16
72918129
72964783
46654
gain
1913
LOC283922
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
606


16
72929786
73040905
111119
loss
1263
GLG1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
722


16
72929786
73040905
111119
loss
1285
GLG1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
722


16
72929786
73044781
114995
loss
1831
GLG1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
723


16
75003957
75100865
6908
gain
1423
CNTNAP4
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
424


16
75093957
75100865
6908
gain
1793
CNTNAP4
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
424


16
75093957
75100865
6908
gain
1807
CNTNAP4
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
424


16
75093957
75100865
6908
gain
1823
CNTNAP4
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
424


16
75093957
75100865
6908
gain
1860
CNTNAP4
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
424


16
75093957
75100865
6908
gain
1923
CNTNAP4
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
424


16
75093957
75100865
6908
gain
2035
CNTNAP4
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
424


16
76348665
77371827
1023162
gain
1851
CLEC3A
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
299


16
76348665
77371827
1023162
gain
1851
WWOX
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
299


16
76494618
76634178
139560
loss
1676
CLEC3A
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
725


16
76617253
76630181
12928
gain
1489
CLEC3A
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
724


16
76925748
76940218
14470
gain
1258
WWOX
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
296


16
76925748
76942679
16931
gain
1333
WWOX
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
297


16
76925748
76940218
14470
gain
1354
WWOX
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
296


16
76925748
76940218
14470
gain
1436
WWOX
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
296


16
76925748
76942679
16931
gain
1454
WWOX
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
297


16
76925748
76940218
14470
gain
1605
WWOX
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
296


16
76925748
76944661
18913
gain
1683
WWOX
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
298


16
76925748
76940218
14470
gain
1925
WWOX
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
296


16
76925748
76942679
16931
gain
1969
WWOX
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
297


17
4617676
4629625
11952
loss
1692
TM4SF5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
807


17
4617676
4629628
11952
loss
1924
TM4SF5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
807


17
12135773
12441508
5735
gain
1520
FLJ34690
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
426


17
12435897
12441508
5611
loss
1416
FLJ34690
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
425


17
12435897
12441508
5611
loss
1676
FLJ34690
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
425


17
12435897
12441508
5611
loss
1678
FLJ34690
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
425


17
12435897
12441508
5611
loss
1852
FLJ34690
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
425


17
12435897
12441508
5611
loss
1878
FLJ34690
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
425


17
12435897
12441508
5611
loss
2028
FLJ34690
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
425


17
21628739
22142513
513774
gain
1451
MTRNR2L1
5.92
MTRNR2L_family
55


17
21628739
22032563
103824
gain
1584
MTRNR2L1
5.92
MTRNR2L_family
56


17
21628739
22129889
501150
loss
1743
MTRNR2L1
5.92
MTRNR2L_family
57


17
21845327
22142513
297186
gain
1837
MTRNR2L1
5.92
MTRNR2L_family
58


17
32830127
32835765
3638
gain
1252
ACACA
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
350


17
32830127
32833765
3638
gain
1285
ACACA
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
350


17
32830127
32833765
3638
gain
1372
ACACA
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
350


17
32830127
32833765
3638
gain
1407
ACACA
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
350


17
32830127
32833765
3638
gain
1434
ACACA
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
350


17
32830127
32833765
3638
gain
1573
ACACA
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
350


17
32830127
32833765
3638
gain
1617
ACACA
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
350


17
32830127
32833765
3638
gain
1825
ACACA
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
350


17
32830127
32833765
3638
gain
2042
ACACA
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
350


17
40209353
40213056
3703
loss
1836
ADAM11
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
808


17
40209353
40213056
3703
loss
1955
ADAM11
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
808


17
41504832
41710400
205568
loss
1320
KIAA1267
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
147


17
41504832
41710400
205568
loss
1320
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
147


17
41504832
41710400
205568
loss
1320
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
147


17
41506317
41710400
204083
loss
1319
KIAA1267
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
146


17
41506317
41710400
204083
loss
1319
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
146


17
41506317
41710400
204083
loss
1319
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
116


17
41508943
42142363
633420
loss
1542
KIAA1267
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
152


17
41508943
41710400
201457
loss
1587
KIAA1267
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
153


17
41508943
41566540
57597
loss
1656
KIAA1267
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
155


17
41508943
41579322
70379
loss
1861
KIAA1267
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
157


17
41508943
42142363
633420
loss
1542
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
152


17
41508943
41710400
201457
loss
1587
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
153


17
41508943
41566540
57597
loss
1656
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
155


17
41508943
41579322
70379
loss
1861
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
157


17
41508943
42142363
633420
loss
1542
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
152


17
41508943
41710400
201457
loss
1587
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
153


17
41508943
41566540
57597
loss
1656
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
155


17
41508943
41579322
70379
loss
1861
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
157


17
41512318
41710400
198082
loss
1530
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
41710400
198082
loss
1533
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
41710400
198082
loss
1535
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
42151941
639623
loss
1536
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
151


17
41512318
41710400
198082
loss
1537
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
41710400
198082
loss
1539
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
41710400
198082
loss
1586
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
42142363
630045
loss
1662
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
156


17
41512318
41710400
198082
loss
1684
KIAA1267
22.58
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
41710400
198082
loss
1530
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
41710400
198082
loss
1533
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
41710400
198082
loss
1535
KIAA1267
39.70
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
42151941
639623
loss
1536
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
151


17
41512318
41710400
198082
loss
1537
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
41710400
198082
loss
1539
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
41710400
198082
loss
1586
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
42142363
630045
loss
1662
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
156


17
41512318
41710100
198082
loss
1684
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
150


17
41512318
42151941
639623
loss
1536
NSF
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
151


17
41514481
41710400
195919
loss
1655
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
154


17
41518222
41647135
128913
gain
1394
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
148


17
41518222
41710400
192178
gain
1465
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
149


17
41518222
41710400
192178
loss
1675
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
149


17
41518222
41710400
192178
loss
1734
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
149


17
41518222
41710400
192178
gain
1840
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
149


17
41518222
41710400
192178
gain
1844
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
149


17
41518222
41710400
192178
gain
1869
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
149


17
41518222
41710400
192178
loss
1887
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
149


17
41518222
41710400
192178
gain
1907
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
149


17
41518222
41710400
192178
gain
1914
KIAA1267
39.79
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
149


17
41521544
42148637
627093
gain
1671
NSF
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
302


17
41521544
42148637
627093
gain
1751
NSF
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
302


17
41527705
42143048
615343
loss
1250
NSF
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
300


17
41527705
42143048
615343
loss
1436
NSF
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
300


17
41568539
42143048
574509
loss
1266
NSF
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
301


17
41568539
42151941
583402
gain
1800
NSF
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
303


17
41568539
42147225
578686
gain
2032
NSF
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
305


17
41568539
42143048
574509
gain
2036
NSF
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
301


17
41706870
42147225
440355
gain
1991
NSF
14.94
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
304


17
57327446
57336509
9063
loss
1439
INTS2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
607


17
57327446
57336509
9063
loss
1601
INTS2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
607


17
57327446
57336828
9382
loss
1641
INTS2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
608


17
57329783
57336509
6726
loss
1784
INTS2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
609


17
57331106
57336509
5403
gain
1875
INTS2
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
610


17
68327352
68336699
9347
loss
1283
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1296
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1306
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1309
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1344
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1370
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1394
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1396
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1410
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1708
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1776
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1831
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1833
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1843
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9317
loss
1898
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1921
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
68327352
68336699
9347
loss
1928
SLC39A11
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
229


17
76213226
76227620
14394
gain
1831
RPTOR
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
726


17
76213226
76227620
14394
gain
1852
RPTOR
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
726


17
76213226
76227620
14394
gain
1929
RPTOR
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
726


18
503208
505156
2248
loss
1284

52.68
high OR intergenic (OR > 30)
75


18
503208
505156
2248
loss
1389

52.68
high OR intergenic (OR > 30)
75


18
503208
505156
2248
loss
1413

52.68
high OR intergenic (OR > 30)
75


18
503208
506827
3619
loss
1415

52.68
high OR intergenic (OR > 30)
76


18
503208
505456
2248
loss
1439

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1452

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1464

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1472

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1474

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1495

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1504

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
gain
1534

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1545

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1567

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1568

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1572

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1584

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
gain
1662

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1672

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1697

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1699

52.68
high OR intergenic (OR > 30)
75


18
503208
510633
7425
loss
1703

52.68
high OR intergenic (OR > 30)
77


18
503208
505456
2248
loss
1730

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
gain
1777

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1802

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1809

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1830

52.68
high OR intergenic (OR > 30)
75


18
503208
506827
3619
loss
1870

52.68
high OR intergenic (OR > 30)
76


18
503208
505456
2218
gain
1871

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1875

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1968

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
1999

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
2031

52.68
high OR intergenic (OR > 30)
75


18
503208
505456
2248
loss
2044

52.68
high OR intergenic (OR > 30)
75


18
17513277
17514596
1319
gain
1250
ABHD3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
492


18
17513277
17514596
1319
loss
1426
ABHD3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
492


18
17513277
17514596
1319
loss
1442
ABHD3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
492


18
17513277
17514596
1319
gain
1611
ABHD3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
492


18
17513277
17514596
1319
loss
1670
ABHD3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
492


18
17513277
17514596
1319
gain
2045
ABHD3
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
492


18
48694600
48716663
22063
gain
1354
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
7


18
48694600
48716663
22063
gain
1354
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
7


18
48694600
48716663
22063
gain
1354
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
7


18
48698719
48716663
17941
gain
1227
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1236
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1459
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1464
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1572
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1617
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1792
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1818
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
18698719
48716663
17944
gain
1857
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
2026
DCC
16.46
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1227
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1236
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1459
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1464
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1572
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1617
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1792
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1818
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1857
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
2026
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1227
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1236
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1459
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1464
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1572
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1617
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1792
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1818
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
1857
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48698719
48716663
17944
gain
2026
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
6


18
48702422
48716663
14241
gain
1415
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48702422
48716663
14241
gain
1672
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48702422
48716663
14241
gain
1697
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48702422
48716663
14241
gain
1728
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
221


18
48702422
48716663
14241
gain
1740
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48702422
48716663
14241
gain
1776
DCC
25.67
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48702422
48716663
14241
gain
1415
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48702422
48716663
14241
gain
1672
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48702422
48716663
14241
gain
1697
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48702422
48716663
14241
gain
1728
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48702422
48716663
14241
gain
1740
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48702422
48716663
14241
gain
1776
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
224


18
48714802
48716663
1861
gain
1405
DCC
27.22
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
223


18
65357415
65369843
12428
loss
1852
DOK6
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
428


18
65359770
65369843
10073
loss
1296
DOK6
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
427


18
65359770
65369843
10073
loss
1307
DOK6
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
427


18
65359770
65369843
10073
loss
1370
DOK6
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
427


18
65359770
65369843
10073
loss
1664
DOK6
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
427


18
65359770
65369843
10073
loss
1905
DOK6
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
427


18
65359770
65369843
10073
loss
1935
DOK6
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
427


18
65911512
65923901
12389
loss
1276
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
493


18
65911512
65916736
5224
loss
1493
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
494


18
65911512
65916736
5234
loss
1509
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
494


18
65911512
65923901
12389
loss
1276
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
493


18
65911512
65916736
5224
loss
1493
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
494


18
65911512
65916736
5234
loss
1509
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
494


18
65911512
65923901
12389
loss
1276
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
493


18
659155.39
65923901
8362
loss
1663
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
495


18
65915539
65923901
8362
loss
1663
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
495


18
65916736
65923901
7165
loss
1260
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
496


18
65916736
65923901
7165
loss
1613
RTTN
8.91
Genic (distinct CNV-subregions); OR > 6
196


19
241442
247531
6089
loss
1565
PPAP2C
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
727


19
241442
247531
6089
loss
1567
PPAP2C
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
727


19
241442
244260
2818
loss
1944
PPAP2C
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
728


19
1200840
1202176
1336
loss
1224
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1227
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1221809
20969
loss
1230
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
gain
1234
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1301
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1416
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1471
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1495
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1503
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1504
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1520
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1527
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1528
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1529
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1532
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1544
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1566
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1574
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1577
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1629
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1672
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1688
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1724
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1728
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1742
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1203447
2607
loss
1802
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
3


19
1200840
1202176
1336
loss
1827
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1831
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1870
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
1883
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1203447
2607
loss
1921
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
3


19
1200840
1202176
1336
loss
1964
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
2018
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1200840
1202176
1336
loss
2044
MIDN
52.68
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
1


19
1398325
1400840
2515
gain
1258

168.48
high OR intergenic (OR > 30)
64


19
1398325
1400840
2515
gain
1421

168.48
high OR intergenic (OR > 30)
64


19
1398325
1400840
2515
gain
1637

168.48
high OR intergenic (OR > 30)
64


19
1398325
1400840
2515
gain
1873

168.48
high OR intergenic (OR > 30)
64


19
1398325
1400840
2515
gain
1926

168.48
high OR intergenic (OR > 30)
64


19
1400798
1400840
42
loss
1229

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
12
gain
1236

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1238

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1239

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1240

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1245

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
12
gain
1259

168.48
high OR intergenic (OR > 30)
63


19
1400798
1405308
4510
gain
1264

168.48
high OR intergenic (OR > 30)
65


19
1400798
1400840
42
gain
1268

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1269

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1270

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1279

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1280

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1315

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1317

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1324

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1389

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1401

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1402

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1404

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1406

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1413

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1416

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1417

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1419

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1427

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1434

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1447

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1449

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1450

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1452

168.48
high OR inlergenic (OR > 30)
63


19
1400798
1400840
42
loss
1461

168.48
high OR inlergenic (OR > 30)
63


19
1400798
1400840
42
loss
1466

168.48
high OR inlergenic (OR > 30)
63


19
1400798
1400840
42
loss
1504

168.48
high OR inlergenic (OR > 30)
63


19
1400798
1400840
42
loss
1505

168.48
high OR inlergenic (OR > 30)
63


19
1400798
1400840
42
gain
1510

168.48
high OR inlergenic (OR > 30)
63


19
1400798
1400840
42
gain
1524

168.48
high OR inlergenic (OR > 30)
65


19
1400798
1400840
42
loss
1529

168.48
high OR inlergenic (OR > 30)
63


19
1400798
1400840
42
gain
1530

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1532

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1534

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1541

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1543

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1548

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1559

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1570

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1572

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1574

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1576

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1587

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1592

168.48
high OR intergenic (OR > 30)
65


19
1400798
1400840
42
gain
1591

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1596

168.48
high OR intergenic (OR > 30)
65


19
1400798
1400840
42
gain
1600

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1612

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
12
gain
1630

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1633

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1661

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1672

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1687

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1724

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1807

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1827

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1828

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1829

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1835

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1837

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1841

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1842

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1862

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1864

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1871

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1874

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1876

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1885

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1888

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1909

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1913

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1914

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1917

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1928

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1931

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1934

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
1951

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1959

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
1964

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
2006

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
2024

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
2029

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
2030

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
2041

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
gain
2042

168.48
high OR intergenic (OR > 30)
63


19
1400798
1400840
42
loss
2044

168.48
high OR intergenic (OR > 30)
63


19
13083527
14014612
31085
gain
1461
IL27RA, RLN3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
809


19
13983527
14014612
31085
gain
1878
IL27RA, RLN3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
809


19
19944096
20517399
573303
loss
1918
ZNF486
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
657


19
19944096
20517399
573503
loss
1918
ZNF737
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
657


19
20115129
20270725
155596
loss
1577
ZNF486
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
810


19
20383210
20523643
140433
loss
1416
ZNF737
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
656


19
20425020
20517399
92379
loss
1333
ZNF737
5.93
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
655


19
20425020
20517399
92379
loss
1781
ZNF737
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
655


19
23776705
23805817
29022
gain
1783
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
256


19
23776795
23805817
29022
gain
1783
RPSAP58
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
256


19
23785986
25800104
14118
gain
1525
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
252


19
23785986
23800104
14118
gain
1587
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
252


19
23785986
23800104
14118
gain
1323
RPSAP58
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
252


19
23785986
23800104
14118
gain
1587
RPSAP58
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
252


19
23786448
23800104
13656
gain
1509
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
253


19
23786448
23804481
18033
gain
1541
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
254


19
23786448
23800104
13656
gain
1585
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
253


19
23786448
23800104
13656
gain
1606
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
253


19
23786448
23804481
18033
gain
1608
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
254


19
23786448
23800104
13656
gain
1612
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
253


19
23786448
23790608
4160
gain
1775
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
255


19
23786448
23790608
4160
gain
1777
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
255


19
23786448
23790608
4160
gain
2041
RPSAP58
17.98
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
255


19
23786448
23800104
13656
gain
1509
RPSAP58
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
253


19
23786448
23804481
18033
gain
1541
RPSAP58
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
254


19
23786448
23800104
13656
gain
1585
RPSAP58
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
253


19
23786448
23800104
13656
gain
1606
RPSAP58
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
253


19
23786448
23804481
18033
gain
1608
RPSAP58
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
254


19
23786448
23800104
13656
gain
1612
RPSAP58
13.43
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
253


19
42530955
42537766
6811
loss
1348
HKR1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
381


19
42530955
42537766
6811
loss
1459
HKR1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
381


19
42530955
42537766
6811
loss
1684
HKR1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
381


19
42530955
42537766
6811
loss
1816
HKR1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
381


19
42530955
42537766
6811
loss
2021
HKR1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
381


19
42530955
42537766
6811
loss
1348
HKR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
381


19
42530955
42537766
6811
loss
1459
HKR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
381


19
42530955
42537766
6811
loss
1684
HKR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
381


19
42530955
42537766
6811
loss
1816
HKR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
381


19
42530955
42537766
6811
loss
2024
HKR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
381


19
42537228
42537766
538
loss
1402
HKR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
382


19
42537228
42537766
538
loss
1528
HKR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
382


19
42537228
42537766
538
loss
1658
HKR1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
382


19
46032427
46089262
56835
gain
1229
CYP2A6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
611


19
46032427
46063357
30930
gain
1395
CYP2A6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
612


19
46032427
46060523
28096
gain
1538
CYP2A6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
613


19
46032427
46063357
30930
gain
1869
CYP2A6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
612


19
46032427
46063357
30930
gain
2020
CYP2A6
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
612


19
48494496
48575260
80764
loss
1786
CD177, PRG1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
812


19
48494496
48551450
56954
loss
1899
CD177, PRG1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
812


19
52315524
52339852
24328
gain
1393
SAR1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
658


19
52215524
52339852
24328
gain
1514
SAR1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
658


19
52315524
52365982
50458
gain
1871
SAR1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
659


19
52315524
52339852
24328
gain
1954
SAR1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
658


19
57885454
58252109
366655
gain
1646
HERV-V1
8.98
Genic (distinct CNV-subregions); OR > 6
436


19
58201323
58244012
42689
gain
1786
HERV-V1
8.98
Genic (distinct CNV-subreaions); OR > 6
438


19
58206232
58244012
37780
gain
1649
HERV-V1
8.98
Genic (distinct CNV-subregions); OR > 6
437


19
58208527
58244012
35185
gain
1287
HERV-V1
8.98
Genic (distinct CNV-subregions); OR > 6
435


19
58208527
58244012
35185
gain
1337
HERV-V1
8.98
Genic (distinct CNV-subreaions); OR > 6
435


19
58208527
58244012
35485
gain
1348
HERV-V1
8.98
Genic (distinct CNV-subregions); OR > 6
435


19
58208527
58244012
35485
gain
1424
HERV-V1
8.98
Genic (distinct CNV-subregions); OR > 6
435


19
58208527
58244012
35185
gain
1458
HERV-V1
8.98
Genic (distinct CNV-subregions); OR > 6
435


19
58208527
58244012
35485
gain
1505
HERV-V1
8.98
Genic (distinct CNV-subreaions); OR > 6
435


19
58208527
58244012
35485
gain
1511
HERV-V1
8.98
Genic (distinct CNV-subreaions); OR > 6
435


19
58208527
58244012
35485
gain
1529
HERV-V1
8.98
Genic (distinct CNV-subregions); OR > 6
435


19
58208527
58244012
35485
gain
1633
HERV-V1
8.98
Genic (distinct CNV-subregions); OR > 6
435


19
58910511
58923614
13103
gain
1606
MIR516B2, MIR526A2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
729


19
58920523
58927377
6854
gain
1914
MIR516B2, MIR526A2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
730


19
58920523
58927377
6854
gain
1966
MIR516B2, MIR526A2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
730


19
58920523
58927377
6854
gain
1914
MIR518A1, MIR518E
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
730


19
58920523
58927377
6854
gain
1966
MIR518A1, MIR518E
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
730


19
59403499
59440262
36763
loss
2006
LILRB3
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
26


19
59404710
59434202
29492
loss
1804
LILRB3
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
25


19
59406523
59440262
33739
loss
1429
LILRB3
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
22


19
59406523
59440274
33751
loss
1803
LILRB3
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
24


19
59406523
59440262
33739
loss
1875
LILRB3
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
22


19
59410642
59434202
23560
loss
1230
LILRB3
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
20


19
59410642
59434202
23560
loss
1346
LILRB3
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
20


19
59410642
59434159
23517
loss
1392
LILRB3
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
21


19
59410642
59434202
23560
loss
1616
LILRB3
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
20


19
59411618
59440274
28656
loss
1635
LILRB3
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
23


19
59840242
59869388
29146
gain
1751
LILRB4
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
814


19
59864456
59865970
1514
loss
1627
LILRB4
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
813


19
63483128
63704294
221166
gain
1862
SLC27A5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
816


19
63694462
63718171
23709
gain
1571
SLC27A5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
815


20
1511632
1546858
35226
gain
1298
SIRPB1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
614


20
1511632
1546858
35226
gain
1449
SIRPB1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
614


20
1511632
1548251
36619
gain
1722
SIRPB1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
616


20
1511632
1548251
36619
gain
1935
SIRPB1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
616


20
1544485
1820899
276414
gain
1473
SIRPB1
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
615


20
26080750
28252024
2171274
gain
1694
FRG1B
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
18


20
26148764
28250082
2101318
gain
1392
FRG1B
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
15


20
26148764
28252024
2103260
gain
1429
FRG1B
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
17


20
26148764
28252024
2103260
gain
1571
FRG1B
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
17


20
26148764
28252024
2103260
gain
1875
FRG1B
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
17


20
26173123
28266113
2092990
gain
1285
FRG1B
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
14


20
26173123
28266113
2092990
gain
1401
FRG1B
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
14


20
26173123
28252024
2078901
gain
1405
FRG1B
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
16


20
26173123
28252024
2078901
gain
1422
FRG1B
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
16


20
26173123
28250082
2076959
gain
1865
FRG1B
14.94
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
19


20
45214150
45220204
6045
loss
1471
EYA2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
429


20
45214159
45220204
6045
loss
1533
EYA2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
429


20
45214159
45220204
6045
loss
1572
EYA2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
429


20
45214159
45220204
6045
loss
1632
EYA2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
429


20
45214159
45220204
6045
loss
1734
EYA2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
429


20
45214159
45220204
6045
loss
1742
EYA2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
429


20
45214159
45220204
6015
loss
1742
EYA2
10.41
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
429


20
52081719
52092989
11270
loss
1472
BCAS1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
497


20
52081719
52092989
11270
loss
1490
BCAS1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
497


20
52081719
52092989
11270
loss
1595
BCAS1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
497


20
52081719
52092989
11270
loss
1721
BCAS1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
497


20
52081719
52092989
11270
loss
1876
BCAS1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
497


20
52081719
52092989
11270
loss
2043
BCAS1
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
497


20
60949338
62419534
1470196
gain
1699
LOC63930
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
499


20
60949338
62419534
1470196
gain
1699
LOC63930, NCRNA00029
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
499


20
60949338
62419534
1470196
gain
1699
HAR1B, HAR1A
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
499


20
61130661
61131984
1323
gain
1625
LOC63930
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
617


20
61130661
61136457
5796
loss
1773
LOC63930
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
618


20
61130661
61136457
5796
loss
1821
LOC63930
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
618


20
61130661
61131984
1323
loss
1886
LOC63930
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
617


20
61130661
61136457
5796
loss
1773
LOC63930, NCRNA00029
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
618


20
61130661
61136457
5796
loss
1821
LOC63930, NCRNA00029
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
618


20
61195158
61204000
8842
gain
1262
HAR1B, HAR1A
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
498


20
61195158
61204000
8842
gain
1324
HAR1B, HAR1A
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
498


20
61195158
61204000
8842
gain
1541
HAR1B, HAR1A
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
498


20
61195158
61204000
8842
gain
1542
HAR1B, HAR1A
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
498


20
61195158
61204000
8842
gain
1591
HAR1B, HAR1A
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
498


21
46514488
46679302
164814
gain
1430
C21orf58, PCNT
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
817


21
46514488
46679302
164814
gain
1430
PCNT
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
817


21
46559453
46599682
40229
gain
1730
C21orf58, PCNT
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
818


21
46657906
46674328
16422
gain
1953
PCNT
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
819


22
17031614
19794060
2762446
gain
1753
DGCR11, DGCR2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17031614
18125356
1093742
gain
1844
DGCR11, DGCR2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
501


22
17031614
19794060
2762446
gain
1753
DGCR2
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
260


22
17031614
18125356
1093742
gain
1844
DGCR2
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger Filter applied
501


22
17031614
19794060
2762446
gain
1753
DGCR2, TSSK2, DGCR14
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17031614
18125356
1093742
gain
1844
DGCR2, TSSK2, DGCR14
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
501


22
17031614
19794060
2762446
gain
1753
CLTCL1, SLC25A1, GSC2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17031614
18125356
1093742
gain
1844
CLTCL1, SLC25A1, GSC2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
501


22
17031614
19794060
2762446
gain
1753
CLTCL1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17031614
18125356
1093742
gain
1844
CLTCL1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
501


22
17031614
10704060
2762446
gain
1753
HIRA, CLDN5, C22orf39,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260








MRPL40, LOC150185, CDC45,











UFD1L





22
17031614
18125356
1093742
gain
1844
HIRA, CLDN5, C22orf39,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
501








MRPL40, LOC150185,











CDC45, UFD1L





22
17031614
10704060
2762446
gain
1753
SEPT5, GP1BB,
4.44
Exon + ve, 5 > ASD > I, Normals < 2, Sanger − ve
260








SEPT5-GP1BB





22
17031614
18125356
1093742
gain
1844
SEPT5, GP1BB,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
501








SEPT5-GP1BB





22
17031614
19794060
2762446
gain
1753
GP1BB, SEPT5-GP1BB
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
260


22
17031614
18125356
1093742
gain
1844
GP1BB, SEPT5-GP1BB
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
501


22
17031614
19794060
2762446
gain
1753
TBX1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17031614
18125356
1093742
gain
1844
TBX1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
501


22
17031614
19794060
2762446
gain
1753
TBX1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17031614
19794060
2762446
gain
1753
GNB1L, TBX1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17031614
19794060
2762446
gain
1753
ARVCF, MIR185, C22orf29,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260








COMT, GNB1L, TXNRD2,











C22orf25





22
17031614
19794060
2762446
gain
1753
DGCR8, ZDHHC8, MIR3618,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260








TRMT2A, MIR1306,











RANBP1, C22orf25





22
17031614
19794060
2762446
gain
1753
ZDHHC8
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
260


22
17031614
19794060
2762446
gain
1753
ZDHHC8
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
260


22
17031614
19794060
2762446
gain
1753
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
260


22
17031614
19794060
2762446
gain
1753
ZDHHC8
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17031614
19794060
2762446
gain
1753
SERPIND1, PI4KA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17031614
19794060
2762446
gain
1753
CRKL, SNAP29, PI4KA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17031614
19794060
2762446
gain
1753
CRKL
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
260


22
17031614
19794060
2762446
gain
1753
CRKL
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
260


22
17274339
20141979
2867640
gain
1490
DGCR11, DGCR2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17274339
20141979
2867640
gain
1490
DGCR2
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
258


22
17274339
20141979
2867640
gain
1490
DGCR2, TSSK2, DGCR14
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17274339
20141979
2867640
gain
1490
CLTCL1, SLC25A1, GSC2
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17274339
20111070
2867640
gain
1490
CLTCL1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17274339
20141979
2867640
gain
1490
HIRA, CLDN5, C22orf39,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258








MRPL40, LOC150185,











CDC45, UFD1L





22
17274339
20141979
2867640
gain
1490
SEPT5, GP1BB, SEPT5-
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258








GP1BB





22
17274339
20141979
2867640
gain
1490
GP1BB, SEPT5-GP1BB
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
258


22
17274339
20141979
2867640
gain
1490
TBX1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17274339
20141979
2867640
gain
1490
TBX1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17274339
20141979
2867640
gain
1490
GNB1L, TBX1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17274339
20141979
2867640
gain
1490
ARVCF, MIR185, C22orf29,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258








COMT, GNB1L, TXNRD2,











C22orf25





22
17274339
20141979
2867640
gain
1490
DGCR8, ZDHHC8, MIR3618,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258








TRMT2A, MIR1306, RANBP1,











C22orf25





22
17274339
20111979
2867640
gain
1490
ZDHHC8
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger Filter applied
258


22
17274339
20141979
2867640
gain
1490
ZDHHC8
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
258


22
17274339
20141979
2867640
gain
1490
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
258


22
17274339
20141979
2867640
gain
1490
ZDHHC8
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17274339
20141979
2867640
gain
1490
SERPIND1, PI4KA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17274339
20141979
2867640
gain
1490
CRKL, SNAP29, PI4KA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17274339
20141979
2867640
gain
1490
CRKL
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
258


22
17274339
20141979
2867640
gain
1490
CRKL
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
258


22
17431181
17433410
2229
loss
1598
DGCR2
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
500


22
17431181
17433410
2229
loss
1623
DGCR2
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
500


22
17431181
17433410
2229
loss
1641
DGCR2
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger liIter applied
500


22
18092255
18093176
921
gain
1780
GP1BB, SEPT5-GP1BB
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
619


22
18092255
18095689
3434
loss
2005
GP1BB, SEPT5-GP1BB
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
620


22
18123761
18127933
4172
loss
2005
TBX1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
660


22
18131561
19794060
1662499
gain
1844
TBX1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
261


22
18131561
19794060
1662499
gain
1844
GNB1L, TBX1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
261


22
18131561
19794060
1662499
gain
1844
ARVCF, MIR185, C22orf29,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
261








COMT, GNB1L, TXNRD2,











C22orf25





22
18131561
19794060
1662499
gain
1844
DGCR8, ZDHHC8, MIR3618,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
261








TRMT2A, MIR1306,











RANBP1, C22orf25





22
18131561
19794060
1662499
gain
1844
ZDHHC8
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
261


22
18131561
19794060
1662499
gain
1844
ZDHHC8
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
261


22
18131561
19794060
1662499
gain
1844
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
261


22
18131561
19794060
1662499
gain
1844
ZDHHC8
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
261


22
18131561
19794060
1662499
gain
1844
SERPIND1, PI4KA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
261


22
18131561
19794060
1662499
gain
1844
CRKL, SNAP29, PI4KA
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
261


22
18131561
19794060
1662499
gain
1844
CRKL
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
261


22
18131561
19794060
1662499
gain
1844
CRKL
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
261


22
18504519
18513615
9096
loss
1963
ZDHHC8
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
262


22
18504519
18513615
9096
loss
1968
ZDHHC8
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
262


22
18504519
18513615
9096
loss
1963
ZDHHC8
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
262


22
18504519
18513615
9096
loss
1968
ZDHHC8
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
262


22
18504519
18513615
9096
loss
1963
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
262


22
18504519
18513615
9096
loss
1968
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
262


22
18505513
18513615
8102
loss
1557
ZDHHC8
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
259


22
18505513
18519020
13507
loss
1991
ZDHHC8
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
263


22
18505513
18513615
8102
loss
1993
ZDHHC8
11.92
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
259


22
18505513
18513615
8102
loss
1557
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
259


22
18505513
18519020
13507
loss
1991
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
263


22
18505513
18513615
8102
loss
1993
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
259


22
18505513
18519020
13507
loss
1991
ZDHHC8
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
263


22
18507465
18513615
6150
loss
1314
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
257


22
18507465
18513615
6150
loss
1833
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
257


22
18507465
18513615
6150
loss
1859
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
257


22
18507465
18513615
6150
loss
2043
ZDHHC8
17.98
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
257


22
19607268
19620943
13675
gain
1242
CRKL
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
502


22
19607268
19620943
13675
gain
1242
CRKL
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
502


22
19615302
19616903
1601
loss
1633
CRKL
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
503


22
19615302
19616903
1601
gain
1717
CRKL
8.91
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
503


22
22603439
22735036
131597
loss
1618
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
433


22
22603439
22735036
131597
loss
1618
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
433


22
22603439
22735036
131597
loss
1618
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
433


22
22603439
22735036
131597
loss
1618
GSTTP2
10.41
Exon ve, ASD 4, Normals < 2, no Sanger filter applied
433


22
22618049
22725305
107256
loss
1263
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1278
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22736990
118941
loss
1282
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
430


22
22618049
22725305
107256
loss
1468
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22720195
102146
loss
1489
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
512


22
22618049
22725305
107256
loss
1564
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22721042
102993
loss
1568
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
513


22
22618049
22667608
49559
loss
1573
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
514


22
22618049
22725305
107256
loss
1602
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1671
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22721042
102993
loss
1716
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
513


22
22618049
22725305
107256
loss
1742
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1819
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1833
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1851
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1263
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1278
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22736990
118941
loss
1282
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
430


22
22618049
22725305
107256
loss
1468
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subreaions); OR > 6
511


22
22618049
22720195
102146
loss
1489
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
512


22
22618049
22725305
107256
loss
1564
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22721042
102993
loss
1568
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
513


22
22618049
22667608
49559
loss
1573
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
514


22
22618049
22725305
107256
loss
1602
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1671
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618019
22721042
102993
loss
1716
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
513


22
22618049
22725305
107256
loss
1742
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1819
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1833
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1851
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1263
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1278
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22736990
118941
loss
1282
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
430


22
22618049
22725305
107256
loss
1468
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22720195
102146
loss
1489
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
512


22
22618049
22725305
107256
loss
1564
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22721042
102993
loss
1568
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
513


22
22618049
22667608
49559
loss
1573
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
514


22
22618049
22725305
107256
loss
1602
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1671
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22721042
102993
loss
1716
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
513


22
22618049
22725305
107256
loss
1742
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1819
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1833
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22725305
107256
loss
1851
DDTL, GSTT2B, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
511


22
22618049
22736990
118941
loss
1282
GSTTP2
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
430


22
22643742
22721042
77300
loss
1606
DDTL, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
515


22
22643742
22725305
81563
loss
1741
DDTL, DDL
8.2
Genic (distinct CNV-subregions); OR > 6
516


22
22643712
22721042
77300
loss
1606
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
515


22
22643742
22725305
81563
loss
1741
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
516


22
22644243
22721042
76799
loss
1232
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
517


22
22644243
22725305
81062
loss
1268
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
518


22
22644243
22720195
75952
loss
1496
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
519


22
22644243
22725305
81062
loss
1533
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
518


22
22644243
22677959
33716
loss
1534
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
520


22
22644243
22725305
81062
loss
1656
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
518


22
22644243
22720195
75952
loss
1667
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
519


22
22644243
22720195
75952
loss
1669
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
519


22
22644243
22725305
81062
loss
1720
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
518


22
22644243
22725305
81062
loss
1729
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
518


22
22644243
22720195
75952
loss
1809
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
519


22
22644243
22725305
81062
loss
1868
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
518


22
22644243
22720195
75952
loss
2037
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
519


22
22644243
22725305
81062
loss
2040
DDTL, GSTT2, DDT
8.2
Genic (distinct CNV-subregions); OR > 6
518


22
22667608
22739574
71966
loss
1345
GSTTP2
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
431


22
22667608
22736990
69382
loss
1792
GSTTP2
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
434


22
22677959
22735036
57077
gain
1412
GSTTP2
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
432


22
22677959
22735036
57077
gain
1449
GSTTP2
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
432


22
22677959
22735036
57077
loss
1639
GSTTP2
10.41
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
432


22
27921706
28639409
717703
gain
1581
ZMAT5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
821


22
28479825
28481680
1855
gain
1468
ZMAT5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
820


22
34122937
34133937
11000
loss
1432
MCM5
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34133937
11000
loss
1438
MCM5
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34133937
11000
loss
1823
MCM5
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34133937
11000
loss
1875
MCM5
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34132976
10039
loss
1908
MCM5
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
505


22
34122937
34133937
11000
loss
1432
MCM5
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34133937
11000
loss
1438
MCM5
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34133937
11000
loss
1823
MCM5
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34133937
11000
loss
1875
MCM5
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34132976
10039
loss
1908
MCM5
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
505


22
34122937
34133937
11000
loss
1432
MCM5
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34133937
11000
loss
1438
MCM5
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34133937
11000
loss
1823
MCM5
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34133937
11000
loss
1875
MCM5
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
504


22
34122937
34132976
10039
loss
1908
MCM5
7.42
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
505


22
34129033
34130625
1592
loss
2031
MCM5
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
506


22
37685496
37715385
29889
loss
1252
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1277
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1300
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1311
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1333
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1389
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1391
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1395
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1396
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1463
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1465
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1614
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1617
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1618
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1635
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1660
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1664
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1683
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1697
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1740
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1743
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1765
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1767
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1769
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1774
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1778
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37718669
33173
loss
1783
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
89


22
37685496
37715385
29889
loss
1830
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1842
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1867
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
1920
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


22
37685496
37715385
29889
loss
2020
APOBEC3A
49.43
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
88


23
2554044
2747802
193758
gain
1917
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
510


23
2554044
2747802
193758
gain
1917
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
510


23
2705374
2814330
108956
gain
1434
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
508


23
2705374
2814330
108956
gain
1434
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
508


23
2705378
2814330
108952
gain
1509
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
509


23
2705378
2814330
108952
gain
1732
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
509


23
2705378
2814330
108952
gain
1825
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
509


23
2705378
2814330
108952
gain
1509
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
509


23
2705378
2814330
108952
gain
1732
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
509


23
2705378
2814330
108952
gain
1825
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
509


23
2711273
36573368
33862095
gain
1337
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
507


23
2711273
36573368
33862095
gain
1337
XG
8.91
Exon + ve, ASD > 4, Normals < 2, no Sanger filter applied
507


23
2711273
36573368
33862095
gain
1337
ARSF
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
507


23
2711273
36573368
33862095
gain
1337
NLGN4X
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
507


23
2711273
36573368
33862095
gain
1337
CA5BP1,TMEM27
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
507


23
2711273
36573368
33862095
gain
1337
DDX53
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
507


23
2711273
36573368
33862095
gain
1337
APOO
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
507


23
2711273
36573368
33862095
gain
1337
APOO
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
507


23
2711273
36573368
33862095
gain
1337
DMD
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
507


23
2749116
3191663
442547
gain
1917
ARSF
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
822


23
6156507
6107101
250894
gain
1570
NLGN4X
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
823


23
15576976
15628244
51268
loss
1413
CA5BP1, TMEM27
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
824


23
22891406
23015097
123691
loss
1811
DDX53
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
825


23
23760270
23778330
18060
gain
1527
APOO
2.05
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
731


23
23760270
23778330
18060
gain
1527
APOO
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
731


23
23761633
23778330
16697
gain
1619
APOO
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
732


23
31793198
31823142
29944
loss
1562
DMD
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
826


23
36649382
154442377
117792995
gain
1337
PRRG1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
SYTL5, CXorf27
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
ZNF674, LOC401588
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154142377
117792995
gain
1337
GLOD5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
NUDT10, NUDT11
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
LOC441495,CENPVL1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154142377
117792995
gain
1337
SPIN4, LOC92249
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
EDA2R
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
NCRNA00183
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
621


23
36649382
154442377
117792995
gain
1337
MAGT1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
TAF7L
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
MCART6
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
ZDHHC9
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
621


23
36649382
154442377
117792995
gain
1337
OR13H1, LOC286467
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
LOC286467
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
LOC286467
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
MAGEC1, MAGEC3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
MIR890
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
TMEM185A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
TMEM185A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
621


23
36649382
154442377
117792995
gain
1337
MAGEA11
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
CXorf40B, LOC100272228
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
NSDHL
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
L1CAM
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
FLNA
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
F8
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
36649382
154442377
117792995
gain
1337
TMLHE
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
621


23
37200683
37201899
1216
gain
2020
PRRG1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
733


23
37200683
37201899
1216
gain
2031
PRRG1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
733


23
37674337
37893418
219081
gain
1649
SYTL5, CXorf27
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
827


23
46248133
46295089
46956
gain
1874
ZNF674, LOC401588
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
828


23
48171740
52710629
4538889
gain
1349
GLOD5
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
829


23
48171740
52710629
4538889
gain
1349
NUDT10, NUDT11
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
829


23
48171740
52710629
4538889
gain
1349
L0C441495,CENPVL1
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
829


23
62321946
62663185
341239
gain
1646
SPIN4, LOC92249
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
830


23
65635181
65947086
311905
loss
1692
EDA2R
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
662


23
65684935
65848643
163708
gain
1255
EDA2R
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
661


23
65684935
65848643
163708
gain
1438
EDA2R
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
661


23
73083877
73086192
2315
loss
1345
NCRNA00183
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
622


23
73083877
73086192
2315
loss
1493
NCRNA00183
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
622


23
73083877
73086192
2315
loss
1574
NCRNA00183
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
622


23
73083877
73086192
2315
loss
1856
NCRNA00183
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
622


23
76992219
77010018
17799
gain
1273
MAGT1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
663


23
76992219
77010018
17799
gain
1421
MAGT1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
663


23
76992219
76998610
6391
gain
1864
MAGT1
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
664


23
100409973
100414722
4749
gain
1862
TAF7L
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
831


23
103224094
103273837
49743
gain
1424
MCART6
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
832


23
128768758
128782290
13532
gain
1806
ZDHHC9
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
624


23
128772381
128782290
9909
gain
1824
ZDHHC9
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
625


23
128775325
128780946
5621
gain
1459
ZDHHC9
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
623


23
128777108
128780946
3838
gain
2037
ZDHHC9
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
626


23
130480966
130801955
320989
gain
1771
OR13H1, LOC286467
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
666


23
130480966
130801955
320989
gain
1940
OR13H1, LOC286467
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
666


23
130480966
130801955
320989
gain
1771
LOC286467
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
666


23
130480966
130801955
320989
gain
1940
LOC286467
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
666


23
130480966
130801955
320989
gain
1771
LOC286467
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
666


23
130480966
130801955
320989
gain
1940
LOC286467
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
666


23
130724110
130732350
8240
gain
1464
LOC286467
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
665


23
140749582
141011409
264827
gain
1641
MAGEC1, MAGEC3
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
833


23
144883013
144883778
765
loss
1585
MIR890
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
834


23
148452844
148694272
241428
gain
1429
TMEM185A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
627


23
148452844
148694272
241428
gain
1429
TMEM185A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
627


23
148452844
148694272
241428
gain
1429
MAGEA11
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
627


23
148456474
148543850
87376
gain
1967
TMEM185A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
630


23
148456474
148543850
87376
gain
1967
TMEM185A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
630


23
148491866
148543850
51984
loss
1873
TMEM185A
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
629


23
148491866
148543850
51984
loss
1873
TMEM185A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
629


23
148512859
148543850
30991
gain
1739
TMEM185A
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
628


23
148573318
148609934
36616
gain
1739
MAGEA11
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
667


23
148573318
148609934
36616
gain
1967
MAGEA11
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
667


23
148856479
149008717
152238
gain
1429
CXorf40B, LOC100272228
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
835


23
151730135
151853605
123470
gain
1887
NSDHL
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
836


23
152787203
152793677
6474
loss
1820
L1CAM
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
837


23
153232909
153256482
23573
loss
1907
FLNA
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
838


23
153864652
153867340
2688
gain
1754
F8
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
839


23
154395845
154429912
34067
gain
1724
TMLHE
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
840


23
154441943
154456908
14965
gain
1950
TMLHE
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
634


23
154446801
154494590
47789
gain
1271
TMLHE
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
631


23
154456891
154582414
125523
gain
1337
TMLHE
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
632


23
154456891
154456908
17
loss
1493
TMLHE
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
633


23
154456891
154456908
17
loss
2033
TMLHE
7.42
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
633


29
278512
285879
7367
loss
1727
HMX1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
385


29
278512
285879
7367
loss
1727
HMX1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
385


29
279211
285879
6668
loss
1704
HMX1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
383


29
279211
285879
6668
loss
1883
HMX1
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
383


29
279211
285879
6668
loss
1704
HMX1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger Filter applied
383


29
279211
285879
6668
loss
1883
HMX1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
383


29
282241
285879
3638
loss
1721
HMX1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
384


29
282241
287373
5132
loss
1797
HMX1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
386


29
282241
285879
3638
loss
1874
HMX1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
384


29
282241
285879
3638
loss
1955
HMX1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
384


29
282241
285879
3638
loss
1958
HMX1
11.92
Intron + ve, ASD > 4, Normals < 2, no Sanger filter applied
384


34
583370
1141964
558594
loss
1244
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
gain
1309
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
gain
1320
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
gain
1493
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
gain
1541
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
gain
1542
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
gain
1543
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
585370
1141964
558594
gain
1560
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
gain
1570
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
gain
1585
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
gain
1587
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
gain
1588
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
gain
1589
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
gain
1605
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
gain
1606
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
1718
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
1737
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
1741
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
585370
1141964
558594
loss
1743
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
1757
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
1800
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
1816
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
1856
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
1859
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
gain
1861
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
gain
1862
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
1868
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
1919
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
1921
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
1935
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
1940
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
1942
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
1957
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
1966
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
1969
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
2003
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
2004
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


34
583370
1141964
558594
loss
2005
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
2018
C9orf169, RNF208
31.25
Genic (distinct CNV-subreaions); OR > 6
206


34
583370
1141964
558594
loss
2035
C9orf169, RNF208
31.25
Genic (distinct CNV-subregions); OR > 6
206


40
53140
740717
687577
gain
1477
LOC727849, LOC80154,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
734








LOC440297





40
53140
744689
691549
gain
1541
LOC727849, LOC80154,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
735








LOC440297





40
53140
741444
688304
loss
2022
LOC727849, LOC80154,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
736








LOC440297





42
86934
405510
318576
gain
1391
KRT39, KRTAP1-1,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
737








KRTAP1-3, KRTAP1-5,











KRTAP2-2, KRTAP2-1,











KRTAP3-2, KRTAP3-3,











KRTAP2-4, KRT40,











KRTAP4-11, KRTAP3-1,











KRTAP4-12, LOC730755





42
86934
405510
318576
gain
1559
KRT39, KRTAP1-1,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
737








KRTAP1-3, KRTAP1-5,











KRTAP2-2, KRTAP2-1,











KRTAP3-2, KRTAP3-3,











KRTAP2-4, KRT40,











KRTAP4-11, KRTAP3-1,











KRTAP4-12, LOC730755





42
107381
663922
556541
gain
1836
KRT39, KRTAP1-1,
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
738








KRTAP1-3, KRTAP1-5,











KRTAP2-2, KRTAP2-1,











KRTAP3-2, KRTAP3-3,











KRTAP2-4, KRT40,











KRTAP4-11, KRTAP3-1,











KRTAP4-12, LOC730755





42
2174372
2614478
440106
loss
1223
PYCR1, LOC92659
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
668


42
2174372
2614478
440106
loss
1872
PYCR1, LOC92659
2.95
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
668


42
2174372
2614478
440106
loss
1223
GCGR
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
668


42
2174372
2614478
440106
loss
1872
GCGR
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
668


42
2174372
2614478
440106
loss
1223
FAM195B
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
668


42
2174372
2614478
440106
loss
1872
FAM195B
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
668


42
2319521
2614478
204057
loss
1727
GCGR
4.44
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
669


42
2319521
2614478
294957
loss
1727
FAM195B
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
669


42
2332710
2614478
281768
gain
1891
FAM195B
5.92
Exon + ve, 5 > ASD > 1, Normals < 2, Sanger − ve
670




























TABLE 2






CNV














Sub-
CNV
CNV
CNV

ASD

Exon







region
Subregion
Subregion
Subregion
CNV
Case
RefSeq Gene
Over






Chr
Number
Start
Stop
Size
Type
ID(s)
Symbol(s)
lap
NVE
ASD
OR
Category



























1
1
750052
770858
20,806
loss
1229
LOC643837,
Y
1
6
8.91
Exon+ve, ASD > 4,









NCRNA00115




Normals < 2,














no Sanger filter applied


1
1
750052
770858
20,806
gain
1252
LOC643837,
Y
1
6
8.91
Exon+ve, ASD > 4,









NCRNA00115




Normals < 2,














no Sanger filter applied


1
1
750052
770858
20,806
gain
1742
LOC643837,
Y
1
6
8.91
Exon+ve, ASD > 4,









NCRNA00115




Normals < 2,














no Sanger filter applied


1
1
755052
770858
20,806
gain
1811
LOC643837,
Y
1
6
8.91
Exon+ve, ASD > 4,









NCRNA00115




Normals < 2,














no Sanger filter applied


1
1
750052
770858
20,806
gain
1837
LOC643837,
Y
1
6
8.91
Exon+ve, ASD > 4,









NCRNA00115




Normals < 2,














no Sanger filter applied


1
1
750052
770858
20,806
gain
1900
LOC643837,
Y
1
6
8.91
Exon+ve, ASD > 4,









NCRNA00115




Normals < 2,














no Sanger filter applied


1
2
777694
783568
5,874
gain
1252
LOC643837
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
2
777694
783568
5,874
gain
1742
LOC643837
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
2
777694
783568
5,874
gain
1811
LOC643837
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
2
777694
783568
5,874
gain
1837
LOC643837
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
2
777694
783568
5,874
gain
1900
LOC643837
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1301
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1474
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1487
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1533
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1536
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1546
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1551
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1573
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1602
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1648
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1658
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1734
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1740
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
3
9769722
9772801
3,079
loss
1923
CLSTN1
N
1
14
21.04
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1301
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1436
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1474
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1487
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1533
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1536
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1546
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1551
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1573
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1602
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1648
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1658
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1734
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1740
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
4
9772802
9776903
4,101
loss
1923
CLSTN1
N
1
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
5
17148593
17154037
5,444
loss
1256
CROCC
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
5
17148593
17154037
5,444
gain
1501
CROCC
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
5
17148593
17154037
5,444
loss
1658
CROCC
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
5
17148593
17154037
5,444
loss
1673
CROCC
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
5
17148593
17154037
5,444
loss
1677
CROCC
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
5
17148593
17154037
5,444
loss
1694
CROCC
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
5
17148593
17154037
5,444
loss
1905
CROCC
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
5
17148593
17154037
5,444
loss
1947
CROCC
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
5
17148593
17154037
5,444
loss
1949
CROCC
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
6
31762404
31764282
1,878
loss
1405
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1508
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1513
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1527
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1557
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1583
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1617
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1628
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1644
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1647
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1696
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1811
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1836
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
6
31762404
31764282
1,878
loss
1908
LOC284551
Y
2
14
10.51
Genic (distinct CNV-














subregions); OR > 6


1
7
34883376
34884849
1,473
loss
1239

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1253

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1291

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1347

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1439

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1455

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1474

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1492

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1511

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1564

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1598

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1601

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1641

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1643

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1646

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1717

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1786

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1827

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
1928

N
0
20
30.33
high OR intergenic (OR > 30)


1
7
34883376
34884849
1,473
loss
2005

N
0
20
30.33
high OR intergenic (OR > 30)


1
8
54866507
54876067
9,560
loss
1668
ACOT11
Y
1
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
8
54866507
54876067
9,560
loss
1677
ACOT11
Y
1
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
8
54866507
54876067
9,560
loss
1721
ACOT11
Y
1
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
8
54866507
54876067
9,560
loss
1729
ACOT11
Y
1
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
8
54866507
54876067
9,560
loss
1908
ACOT11
Y
1
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
8
54866507
54876067
9,560
loss
1915
ACOT11
Y
1
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
8
54866507
54876067
9,560
loss
2028
ACOT11
Y
1
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1259
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1267
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1344
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1345
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1510
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1563
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1594
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1640
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1750
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1826
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
9
68435695
68436445
750
loss
1852
WLS
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
10
71091004
71094314
3,310
loss
1739
PTGER3
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
10
71091004
71094314
3,310
loss
1802
PTGER3
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
10
71091004
71094314
3,310
loss
1837
PTGER3
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
10
71091004
71094314
3,310
loss
1844
PTGER3
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
10
71106139
71113670
7,531
gain
1259
PTGER3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
10
71106139
71113670
7,531
gain
2041
PTGER3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
11
102231556
102237620
6,064
loss
1284
OLFM3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
11
102231556
102237620
6,064
loss
1862
OLFM3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
12
103904723
103906463
1,740
gain
1317
AMY2B
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
12
103904723
103906463
1,740
gain
1567
AMY2B
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
12
103904723
103906463
1,740
gain
1955
AMY2B
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
12
103904723
103906463
1,740
gain
1991
AMY2B
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
12
103904723
103906463
1,740
gain
2032
AMY2B
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
13
105909960
105917568
7,608
loss
1250

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1253

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1287

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1324

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1337

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
gain
1410

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1416

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1494

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1502

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1515

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
gain
1521

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1557

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1558

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1564

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1566

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1659

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1717

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1741

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1765

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1766

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
gain
1787

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
gain
1810

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1832

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1915

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1947

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1955

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1959

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
1994

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
2005

N
0
30
46.2
high OR intergenic (OR > 30)


1
13
105909960
105917568
7,608
loss
2024

N
0
30
46.2
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1250

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1253

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1287

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1324

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1337

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
gain
1410

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1416

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1494

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1502

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1515

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
gain
1521

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
gain
1522

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1557

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1558

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
gain
1563

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1564

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1566

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1659

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1717

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1741

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1765

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1766

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
gain
1787

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
gain
1810

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1832

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1915

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1947

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1955

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1959

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
1994

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
2005

N
0
32
49.43
high OR intergenic (OR > 30)


1
14
105917569
105926087
8,518
loss
2024

N
0
32
49.43
high OR intergenic (OR > 30)


1
15
113799262
113801662
2,400
loss
1426
MAGI3
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113799262
113801662
2,400
loss
1442
MAGI3
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113799262
113801662
2,400
loss
1443
MAGI3
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113799262
113801662
2,400
loss
1476
MAGI3
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113799262
113801662
2,400
loss
1500
MAGI3
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113799262
113801662
2,400
loss
1505
MAGI3
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113799262
113801662
2,400
loss
1525
MAGI3
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113801663
113807947
6,284
loss
1426
MAGI3
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113801663
113807947
6,284
loss
1442
MAGI3
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113801663
113807947
6,284
loss
1443
MAGI3
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113801663
113807947
6,284
loss
1476
MAGI3
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113801663
113807947
6,284
loss
1500
MAGI3
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113801663
113807947
6,284
loss
1505
MAGI3
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113801663
113807947
6,284
loss
1525
MAGI3
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
15
113801663
113807947
6,284
gain
1590
MAGI3
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
16
142730209
143623627
893,418
gain
1599
NBPF9,
Y
0
1
13.95
Genic (distinct CNV-









LOC653513,




subregions); OR > 6









PPIAL4A,














PDE4DIP,














PPIAL4C,














PPIAL4B,














LOC728855,














LOC728875,














SRGAP2P2,














C1orf152







1
17
143820820
143822872
2,052
gain
1599
SEC22B
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
17
143820820
143822872
2,052
gain
1617
SEC22B
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
18
143822873
143830858
7,985
gain
1599
SEC22B
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
18
143822873
143830858
7,985
gain
1617
SEC22B
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
18
143822873
143830858
7,985
gain
1713
SEC22B
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
19
147644832
147847659
202,827
loss
1253
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1276
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
gain
1293
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
gain
1294
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1318
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
gain
1387
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1414
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1442
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1476
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1524
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1526
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1539
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1573
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1585
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1686
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1726
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1739
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1744
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1757
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1762
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1782
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1817
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1821
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1827
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1861
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1910
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1913
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1917
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1943
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1947
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1954
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
1961
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
2002
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
2022
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
19
147644832
147847659
202,827
loss
2029
PPIAL4A,
Y
4
35
13.95
Genic (distinct CNV-









PPIAL4C,




subregions); OR > 6









FCGR1C,














LOC728855







1
20
147847660
148081741
234,081
gain
1293
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4,









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
20
147847660
148081741
234,081
gain
1294
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4,









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
20
147847660
148081741
234,081
loss
1686
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4,









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
20
147847660
148081741
234,081
loss
1739
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4,









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
20
147847660
148081741
234,081
loss
1757
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4,









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
20
147847660
148081741
234,081
loss
1817
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4,









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
20
147847660
148081741
234,081
loss
1861
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4, d









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
20
147847660
148081741
234,081
loss
1947
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4,









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
20
147847660
148081741
234,081
loss
1954
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4,









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
20
147847660
148081741
234,081
loss
2022
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4,









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
20
147847660
148081741
234,081
loss
2029
HIST2H3A,
Y
0
11
16.46
Exon+ve, ASD > 4,









LOC728855,




Normals < 2,









HIST2H2AA4,




no Sanger filter applied









HIST2H3D,














HIST2H3C,














HIST2H2BF,














FCGR1A,














HIST2H2AA3,














HIST2H4B,














HIST2H4A







1
21
150797906
150818221
20,315
loss
1224
LCE3E
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
21
150797906
150818221
20,315
loss
1487
LCE3E
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
21
150797906
150818221
20,315
loss
1750
LCE3E
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
21
150797906
150818221
20,315
loss
1759
LCE3E
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
21
150797906
150818221
20,315
gain
2018
LCE3E
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
loss
1224
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
gain
1265
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
gain
1267
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
gain
1297
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
loss
1487
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
loss
1750
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
loss
1759
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
gain
1779
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
gain
1953
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
gain
2018
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
22
150818222
150819878
1,656
gain
2034
LCE3D
Y
1
11
16.46
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1275
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1277
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1392
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1410
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1427
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1696
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1697
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1774
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1777
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1778
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1824
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1838
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1870
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1883
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1893
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1950
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
23
181429536
181431556
2,020
loss
1953
LAMC2
N
0
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
24
188526975
188537295
10,320
gain
1354
FAM5C
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
24
188526975
188537295
10,320
gain
1596
FAM5C
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
24
188526975
188537295
10,320
gain
1669
FAM5C
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
24
188526975
188537295
10,320
gain
1742
FAM5C
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
24
188526975
188537295
10,320
gain
1788
FAM5C
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
25
194977713
194978217
504
loss
1291
CFH
Y
0
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
25
194977713
194978217
504
loss
1440
CFH
Y
0
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
25
194977713
194978217
504
gain
1572
CFH
Y
0
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
25
194977713
194978217
504
gain
1591
CFH
Y
0
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
25
194977713
194978217
504
gain
1665
CFH
Y
0
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
25
194977713
194978217
504
loss
1712
CFH
Y
0
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1291
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1315
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1412
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1425
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1440
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1442
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1443
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1493
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1494
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1503
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
gain
1572
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
gain
1591
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1633
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
gain
1665
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1712
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1717
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1917
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
26
194978218
195009357
31,139
loss
1968
CFH
Y
0
18
27.22
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


1
27
199082295
199149078
66,783
gain
1587
CAMSAPIL1,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









C1orf106, CPR25




Normals < 2, Sanger−ve


1
27
199082295
199149078
66,783
gain
1799
CAMSAPIL1,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









C1orf106, CPR25




Normals < 2, Sanger−ve


1
28
209725571
209741682
16,111
loss
1297
RD3
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
28
209725571
209741682
16,111
loss
1804
RD3
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
28
209725571
209741682
16,111
loss
1918
RD3
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
29
244771086
244794417
23,331
loss
1767
TFB2M
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
29
244771086
244794417
23,331
gain
1819
TFB2M
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
30
246769019
246794551
25,532
loss
1664
OR2T29
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
30
246769019
246794551
25,532
loss
1672
OR2T29
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
31
247071226
247073548
2,322
loss
1678
SH3BP5L
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


1
31
247071226
247073548
2,322
loss
2022
SH3BP5L
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
32
20234103
20236210
2,107
loss
1272

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1275

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1404

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1437

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1443

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1487

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1488

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1541

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1594

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1607

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1665

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1723

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1726

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1788

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1813

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1853

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1879

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
1952

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
2020

N
0
20
30.33
high OR intergenic (OR > 30)


2
32
20234103
20236210
2,107
loss
2035

N
0
20
30.33
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1230

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1263

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
loss
1271

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
loss
1276

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
loss
1286

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1417

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
loss
1456

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
loss
1470

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1568

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1589

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1606

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1611

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1612

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1614

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1637

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1670

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
loss
1726

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1864

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1881

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1918

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1956

N
0
22
33.47
high OR intergenic (OR > 30)


2
33
35556102
35562007
5,905
gain
1969

N
0
22
33.47
high OR intergenic (OR > 30)


2
34
76849598
76854518
4,920
loss
1599
LRRTM4
N
0
1
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1254
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1279
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1286
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1289
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1295
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1344
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1424
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1456
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1492
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1495
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1501
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1512
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1524
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1525
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1599
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
gain
1660
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1711
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
1909
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
34
76854519
76863459
8,940
loss
2031
LRRTM4
N
4
19
8.24
Genic (distinct CNV-














subregions); OR > 6


2
35
76863460
76866680
3,220
loss
1456
LRRTM4
N
0
3
8.24
Genic (distinct CNV-














subregions); OR > 6


2
35
76863460
76866680
3,220
loss
1525
LRRTM4
N
0
3
8.24
Genic (distinct CNV-














subregions); OR > 6


2
35
76863460
76866680
3,220
loss
1599
LRRTM4
N
0
3
8.24
Genic (distinct CNV-














subregions); OR > 6


2
36
76866681
76868055
1,374
loss
1456
LRRTM4
N
0
2
8.24
Genic (distinct CNV-














subregions); OR > 6


2
36
76866681
76868055
1,374
loss
1525
LRRTM4
N
0
2
8.24
Genic (distinct CNV-














subregions); OR > 6


2
37
77040204
77041952
1,748
loss
1416
LRRTM4
N
0
2
8.24
Genic (distinct CNV-














subregions); OR > 6


2
37
77040204
77041952
1,748
loss
1418
LRRTM4
N
0
2
8.24
Genic (distinct CNV-














subregions); OR > 6


2
38
77080924
77083734
2,810
loss
1474
LRRTM4
N
0
3
8.24
Genic (distinct CNV-














subregions); OR > 6


2
38
77080924
77083734
2,810
loss
1822
LRRTM4
N
0
3
8.24
Genic (distinct CNV-














subregions); OR > 6


2
38
77080924
77083734
2,810
loss
1850
LRRTM4
N
0
3
8.24
Genic (distinct CNV-














subregions); OR > 6


2
39
77083735
77088262
4,527
loss
1474
LRRTM4
N
0
2
8.24
Genic (distinct CNV-














subregions); OR > 6


2
39
77083735
77088262
4,527
loss
1850
LRRTM4
N
0
2
8.24
Genic (distinct CNV-














subregions); OR > 6


2
40
77088263
77101859
13,596
loss
1850
LRRTM4
N
0
1
8.24
Genic (distinct CNV-














subregions); OR > 6


2
41
77465598
77466768
1,170
loss
1305
LRRTM4
N
1
3
8.24
Genic (distinct CNV-














subregions); OR > 6


2
41
77465598
77466768
1,170
loss
1347
LRRTM4
N
1
3
8.24
Genic (distinct CNV-














subregions); OR > 6


2
41
77465598
77466768
1,170
loss
1991
LRRTM4
N
1
3
8.24
Genic (distinct CNV-














OR > 6


2
42
85465078
85500335
35,257
loss
1624
ELMOD3, CAPG
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
42
85465078
85500335
35,257
loss
1928
ELMOD3, CAPG
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
43
112308559
112337951
29,392
gain
1498
ANAPC1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
43
112308559
112337951
29,392
gain
1558
ANAPC1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
43
112308559
112337951
29,392
loss
1794
ANAPC1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
43
112308559
112337951
29,392
loss
1810
ANAPC1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
43
112308559
112337951
29,392
loss
1814
ANAPC1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
43
112308559
112337951
29,392
loss
1833
ANAPC1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
43
112308559
112337951
29,392
loss
1908
ANAPC1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
43
112308559
112337951
29,392
loss
2005
ANAPC1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
44
112752278
112761949
9,671
gain
1266
ZC3H6
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
44
112752278
112761949
9,671
gain
1653
ZC3H6
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
44
112752278
112761949
9,671
gain
1694
ZC3H6
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
44
112752278
112761949
9,671
loss
1905
ZC3H6
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
44
112752278
112761949
9,671
gain
1910
ZC3H6
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
45
113215024
113216275
1,251
loss
1249
CKAP2L
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
45
113215024
113216275
1,251
loss
1265
CKAP2L
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
45
113215024
113216275
1,251
loss
1306
CKAP2L
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
46
115492911
115493163
252
loss
1293
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1298
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1720
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1723
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1798
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1837
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1855
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1916
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1935
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1942
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1946
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1952
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1953
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1958
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1960
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1963
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1965
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1966
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
46
115492911
115493163
252
loss
1969
DPP10
N
0
19
28.77
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
47
120359909
120361151
1,242
gain
1224
PTPN4
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
47
120359909
120361151
1,242
gain
1942
PTPN4
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
48
131943629
131976434
32,805
loss
1224
LOC150776,
Y
1
9
13.43
Exon+ve, ASD > 4,









TUBA3D,




Normals < 2,









MZT2A




no Sanger filter applied


2
48
131943629
131976434
32,805
loss
1295
LOC150776,
Y
1
9
13.43
Exon+ve, ASD > 4,









TUBA3D,




Normals < 2,









MZT2A




no Sanger filter applied


2
48
131943629
131976434
32,805
loss
1301
LOC150776,
Y
1
9
13.43
Exon+ve, ASD > 4,









TUBA3D,




Normals < 2,









MZT2A




no Sanger filter applied


2
48
131943629
131976434
32,805
loss
1404
LOC150776,
Y
1
9
13.43
Exon+ve, ASD > 4,









TUBA3D,




Normals < 2,









MZT2A




no Sanger filter applied


2
48
131943629
131976434
32,805
loss
1492
LOC150776,
Y
1
9
13.43
Exon+ve, ASD > 4,









TUBA3D,




Normals < 2,









MZT2A




no Sanger filter applied


2
48
131943629
131976434
32,805
loss
1742
LOC150776,
Y
1
9
13.43
Exon+ve, ASD > 4,









TUBA3D,




Normals < 2,









MZT2A




no Sanger filter applied


2
48
131943629
131976434
32,805
loss
1896
LOC150776,
Y
1
9
13.43
Exon+ve, ASD > 4,









TUBA3D,




Normals < 2,









MZT2A




no Sanger filter applied


2
48
131943629
131976434
32,805
loss
1900
LOC150776,
Y
1
9
13.43
Exon+ve, ASD > 4,









TUBA3D,




Normals < 2,









MZT2A




no Sanger filter applied


2
48
131943629
131976434
32,805
loss
1917
LOC150776,
Y
1
9
13.43
Exon+ve, ASD > 4,









TUBA3D,




Normals < 2,









MZT2A




no Sanger filter applied


2
49
140701510
140702990
1,480
gain
1237

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1240

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1272

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1343

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1432

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1501

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1601

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1616

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1617

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1618

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1620

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1629

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1642

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1645

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1672

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1865

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1900

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1904

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1949

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
1999

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
2031

N
0
22
33.47
high OR intergenic (OR > 30)


2
49
140701510
140702990
1,480
gain
2034

N
0
22
33.47
high OR intergenic (OR > 30)


2
50
150020372
150022009
1,637
gain
1281
LYPD6
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
50
150020372
150022009
1,637
gain
1389
LYPD6
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
50
150020372
150022009
1,637
gain
1391
LYPD6
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
50
150020372
150022009
1,637
gain
1411
LYPD6
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
50
150020372
150022009
1,637
gain
1434
LYPD6
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
50
150020372
150022009
1,637
gain
1435
LYPD6
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
50
150020372
150022009
1,637
gain
1449
LYPD6
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
50
150020372
150022009
1,637
gain
1654
LYPD6
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
51
165652444
165654598
2,154
loss
1484
SCN3A
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
51
165652444
165654598
2,154
loss
1873
SCN3A
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
52
178555243
178556781
1,538
loss
1410
PDE11A
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
52
178555243
178556781
1,538
loss
1500
PDE11A
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
52
178555243
178556781
1,538
loss
1505
PDE11A
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
52
178555243
178556781
1,538
loss

custom character

PDE11A
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
52
178555243
178556781
1,538
loss
1949
PDE11A
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
53
197607589
197612724
5,135
loss
1281
ANKRD44
N
0
1
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1299
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1391
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
gain
1448
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1465
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1477
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1548
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1559
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1566
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1580
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
gain
1597
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1609
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1629
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
gain
1644
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1699
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1704
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1724
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
gain
1743
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1830
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1844
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1869
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1905
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1921
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1952
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1959
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1962
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
1964
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
2031
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
54
197883024
197884226
1,202
loss
2035
ANKRD44
Y
3
28
14.83
Genic (distinct CNV-














subregions); OR > 6


2
55
213932902
213933569
667
loss
1386
SPAG16
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
55
213932902
213933569
667
loss
1500
SPAG16
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
55
213932902
213933569
667
loss
1583
SPAG16
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
55
213932902
213933569
667
loss
1870
SPAG16
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
55
213932902
213933569
667
loss
1912
SPAG16
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


2
56
215367912
215377668
9,756
gain
1370
BARD1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
56
215367912
215377668
9,756
gain
1604
BARD1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


2
56
215367912
215377668
9,756
gain
1925
BARD1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
57
310349
353620
43,271
gain
1273
CHL1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
57
310349
353620
43,271
gain
1598
CHL1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
57
310349
353620
43,271
gain
1657
CHL1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
58
353621
404590
50,969
gain
1598
CHL1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
58
353621
404590
50,969
gain
1657
CHL1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
59
2747805
2795529
47,724
gain
1295
CNTN4
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
59
2747805
2795529
47,724
gain
1851
CNTN4
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
60
15587405
15593664
6,259
loss
1564
HACL1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
60
15587405
15593664
6,259
loss
1850
HACL1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
61
29373456
29379163
5,707
loss
1324
RBMS3
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
61
29373456
29379163
5,707
loss
1442
RBMS3
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
61
29373456
29379163
5,707
loss
1475
RBMS3
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
61
29373456
29379163
5,707
loss
1500
RBMS3
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
61
29373456
29379163
5,707
loss
1567
RBMS3
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
61
29373456
29379163
5,707
loss
1568
RBMS3
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
61
29373456
29379163
5,707
loss
1585
RBMS3
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
62
29379165
29380899
1,734
loss
1425
RBMS3
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
62
29379165
29380899
1,734
loss
1442
RBMS3
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
62
29379165
29380899
1,734
loss
1475
RBMS3
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
62
29379165
29380899
1,734
loss
1500
RBMS3
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
62
29379165
29380899
1,734
loss
1567
RBMS3
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
63
32285101
32285133
32
gain
1233
CMTM8
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
63
32285101
32285133
32
gain
1282
CMTM8
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
63
32285101
32285133
32
gain
1419
CMTM8
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
63
32285101
32285133
32
gain
1452
CMTM8
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
63
32285101
32285133
32
gain
1467
CMTM8
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
63
32285101
32285133
32
gain
1561
CMTM8
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
63
32285101
32285133
32
gain
1604
CMTM8
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
63
32285101
32285133
32
gain
2024
CMTM8
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
64
33871823
33873484
1,661
loss
1259
PDCD6IP
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
64
33871823
33873484
1,661
loss
1274
PDCD6IP
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
64
33871823
33873484
1,661
gain
1602
PDCD6IP
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
64
33871823
33873484
1,661
loss
1724
PDCD6IP
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
64
33871823
33873484
1,661
gain
1926
PDCD6IP
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
65
38417568
38428089
10,521
loss
1428
XYLB
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
65
38417568
38428089
10,521
loss
1725
XYLB
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
65
38417568
38428089
10,521
loss
1802
XYLB
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
65
38417568
38428089
10,521
loss
1848
XYLB
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
65
38417568
38428089
10,521
loss
1881
XYLB
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
66
38428091
38430518
2,427
loss
1725
XYLB
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
66
38428091
38430518
2,427
loss
1881
XYLB
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
67
42713487
42715137
1,650
loss
1393
HHATL
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
67
42713487
42715137
1,650
loss
1620
HHATL
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
67
42713487
42715137
1,650
loss
1776
HHATL
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
67
42713487
42715137
1,650
loss
1806
HHATL
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
67
42713487
42715137
1,650
loss
1966
HHATL
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
68
42715138
42718285
3,147
loss
1776
HHATL
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
68
42715138
42718285
3,147
loss
1806
HHATL
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
68
42715138
42718285
3,147
loss
1966
HHATL
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
69
45239359
45244718
5,359
gain
1514
TMEM158
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
69
45239359
45244718
5,359
gain
1874
TMEM158
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
70
50166741
50171929
5,188
loss
1965
SEMA3F
Y
2
1
7.46
Genic (distinct CNV-














subregions); OR > 6


3
71
50171930
50173644
1,714
loss
1548
SEMA3F
Y
2
4
7.46
Genic (distinct CNV-














subregions); OR > 6


3
71
50171930
50173644
1,714
loss
1727
SEMA3F
Y
2
4
7.46
Genic (distinct CNV-














subregions); OR > 6


3
71
50171930
50173644
1,714
loss
1739
SEMA3F
Y
2
4
7.46
Genic (distinct CNV-














subregions); OR > 6


3
71
50171930
50173644
1,714
loss
1965
SEMA3F
Y
2
4
7.46
Genic (distinct CNV-














subregions); OR > 6


3
72
50173646
50174341
695
loss
1232
SEMA3F
N
2
8
7.46
Genic (distinct CNV-














subregions); OR > 6


3
72
50173646
50174341
695
loss
1299
SEMA3F
N
2
8
7.46
Genic (distinct CNV-














subregions); OR > 6


3
72
50173646
50174341
695
loss
1697
SEMA3F
N
2
8
7.46
Genic (distinct CNV-














subregions); OR > 6


3
72
50173646
50174341
695
loss
1737
SEMA3F
N
2
8
7.46
Genic (distinct CNV-














subregions); OR > 6


3
72
50173646
50174341
695
loss
1739
SEMA3F
N
2
8
7.46
Genic (distinct CNV-














subregions); OR > 6


3
72
50173646
50174341
695
loss
1868
SEMA3F
N
2
8
7.46
Genic (distinct CNV-














subregions); OR > 6


3
72
50173646
50174341
695
loss
1958
SEMA3F
N
2
8
7.46
Genic (distinct CNV-














subregions); OR > 6


3
72
50173646
50174341
695
loss
1965
SEMA3F
N
2
8
7.46
Genic (distinct CNV-














subregions); OR > 6


3
73
50174342
50184719
10,377
loss
1965
SEMA3F
N
2
1
7.46
Genic (distinct CNV-














subregions); OR > 6


3
74
52999601
53001677
2,076
loss
1343
SFMBT1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
74
52999601
53001677
2,076
loss
1515
SFMBT1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
74
52999601
53001677
2,076
loss
1568
SFMBT1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
74
52999601
53001677
2,076
loss
1576
SFMBT1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
74
52999601
53001677
2,076
loss
1587
SFMBT1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1236
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1272
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1277
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1343
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1494
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1515
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1568
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1576
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1587
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1605
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1705
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1744
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
75
53001678
53003135
1,457
loss
1792
SFMBT1
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
76
53011886
53014254
2,368
loss
1347
SFMBT1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
76
53011886
53014254
2,368
loss
1426
SFMBT1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
76
53011886
53014254
2,368
loss
1441
SFMBT1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
76
53011886
53014254
2,368
loss
1494
SFMBT1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
76
53011886
53014254
2,368
loss
1784
SFMBT1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
77
56583582
56591797
8,215
loss
1417
CCDC66
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
77
56583582
56591797
8,215
loss
1436
CCDC66
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
77
56583582
56591797
8,215
loss
1618
CCDC66
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
77
56583582
56591797
8,215
loss
1794
CCDC66
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
77
56583582
56591797
8,215
loss
1901
CCDC66
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
77
56583582
56591797
8,215
loss
2024
CCDC66
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
78
56591798
56594585
2,787
loss
1417
CCDC66
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
78
56591798
56594585
2,787
loss
1436
CCDC66
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
78
56591798
56594585
2,787
loss
1618
CCDC66
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
78
56591798
56594585
2,787
loss
1901
CCDC66
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
78
56591798
56594585
2,787
loss
2024
CCDC66
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
79
60717895
60719263
1,368
gain
1266
FHIT
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
79
60717895
60719263
1,368
gain
1274
FHIT
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
79
60717895
60719263
1,368
gain
1275
FHIT
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
79
60717895
60719263
1,368
gain
1389
FHIT
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
79
60717895
60719263
1,368
gain
1606
FHIT
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
79
60717895
60719263
1,368
gain
1611
FHIT
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
79
60717895
60719263
1,368
loss
1660
FHIT
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
79
60717895
60719263
1,368
gain
1884
FHIT
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
80
67746879
67748167
1,288
loss
1673
SUCLG2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
80
67746879
67748167
1,288
loss
1680
SUCLG2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
80
67746879
67748167
1,288
loss
1748
SUCLG2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
80
67746879
67748167
1,288
loss
1940
SUCLG2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
80
67746879
67748167
1,288
loss
1953
SUCLG2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
81
117168477
117170905
2,428
loss
1434
LSAMP
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
81
117168477
117170905
2,428
loss
1723
LSAMP
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
81
117168477
117170905
2,428
loss
1916
LSAMP
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
81
117168477
117170905
2,428
loss
1958
LSAMP
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
81
117168477
117170905
2,428
loss
1961
LSAMP
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
81
117168477
117170905
2,428
loss
1963
LSAMP
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
81
117168477
117170905
2,428
loss
1966
LSAMP
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
81
117168477
117170905
2,428
loss
1967
LSAMP
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
81
117168477
117170905
2,428
loss
1969
LSAMP
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
82
156831184
156832789
1,605
loss
1224
PLCH1
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
82
156831184
156832789
1,605
loss
1548
PLCH1
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
82
156831184
156832789
1,605
loss
1707
PLCH1
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
82
156831184
156832789
1,605
loss
1729
PLCH1
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
82
156831184
156832789
1,605
loss
2023
PLCH1
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1394
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1395
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1396
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1432
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1434
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1570
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1573
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1620
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1865
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1884
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
83
168466681
168466714
33
gain
1908
ZBBX
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
84
192544305
192546279
1,974
loss
1251
CCDC50
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
84
192544305
192546279
1,974
loss
1284
CCDC50
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
84
192544305
192546279
1,974
loss
1401
CCDC50
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
84
192544305
192546279
1,974
loss
1657
CCDC50
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
84
192544305
192546279
1,974
loss
1697
CCDC50
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
84
192544305
192546279
1,974
loss
1803
CCDC50
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
84
192544305
192546279
1,974
loss
1884
CCDC50
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


3
85
197412253
197422859
10,606
gain
1227
ZDHHC19
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
85
197412253
197422859
10,606
gain
1565
ZDHHC19
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


3
86
197488773
197516473
27,700
gain
1227
PCYT1A,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









TCTEX1D2




Normals < 2, Sanger−ve


3
86
197488773
197516473
27,700
gain
1565
PCYT1A,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









TCTEX1D2




Normals < 2, Sanger−ve


4
87
69165815
69643272
477,457
gain
1239
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1268
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1277
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
loss
1291
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1387
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1417
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1447
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1451
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1548
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
loss
1555
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1578
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1588
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1657
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1665
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1667
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1669
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1672
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1694
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
loss
1714
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
loss
1715
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1761
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1833
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1842
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1860
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1885
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1894
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1911
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
1952
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
2001
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
87
69165815
69643272
477,457
gain
2030
UGT2B15,
Y
1
30
46.2
Exon+ve, ASD > 4,









TMPRSS11E




Normals < 2,














no Sanger filter applied


4
88
71197387
71263279
65,892
loss
1242
CABS1, SMR3A
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
88
71197387
71263279
65,892
loss
1860
CABS1, SMR3A
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
89
71263280
71284124
20,844
loss
1242
SMR3B, SMR3A
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
89
71263280
71284124
20,844
loss
1537
SMR3B, SMR3A
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
89
71263280
71284124
20,844
loss
1860
SMR3B, SMR3A
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
90
71284125
71318078
33,953
loss
1242
PROL1, SMR3B
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
90
71284125
71318078
33,953
loss
1860
PROL1, SMR3B
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
91
94589345
94590778
1,433
loss
1391
GRID2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
91
94589345
94590778
1,433
loss
1418
GRID2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
91
94589345
94590778
1,433
loss
1724
GRID2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
91
94589345
94590778
1,433
loss
1777
GRID2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
91
94589345
94590778
1,433
loss
1821
GRID2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
91
94589345
94590778
1,433
loss
1864
GRID2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1234
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1307
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1392
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1413
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1428
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1560
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1753
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1798
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1800
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1884
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1894
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1959
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1962
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1966
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
1969
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
2023
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
2034
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
92
119333528
119333700
172
loss
2042
NDST3
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1234
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1307
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1392
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1413
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1428
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1560
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1718
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1753
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1798
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1800
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1859
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1884
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1894
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1959
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1962
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1966
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
1969
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
2023
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
2034
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
93
119333701
119334953
1,252
loss
2042
NDST3
N
0
20
30.33
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1234
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1290
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1307
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1392
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1413
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1428
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1560
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1629
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1659
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1708
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1718
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1720
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1753
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1798
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1800
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1824
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1859
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1884
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1894
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1946
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1959
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1962
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1966
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
1969
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
2020
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
2023
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
2034
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
94
119334954
119345370
10,416
loss
2042
NDST3
N
0
28
42.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1261
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1272
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1542
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
loss
1572
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1585
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1696
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
loss
1703
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1710
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
loss
1721
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
loss
1724
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1743
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1776
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1818
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1860
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
loss
1883
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
gain
1908
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
loss
2031
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
95
129950848
129952427
1,579
loss
2044
PHF17
N
0
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
96
145242544
145255693
13,149
gain
1426
GYPA
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
96
145242544
145255693
13,149
gain
1677
GYPA
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
96
145242544
145255693
13,149
gain
1929
GYPA
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
97
173659100
173660684
1,584
gain
1230
GALNTL6
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
97
173659100
173660684
1,584
gain
1250
GALNTL6
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
97
173659100
173660684
1,584
gain
1396
GALNTL6
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
97
173659100
173660684
1,584
gain
1798
GALNTL6
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
97
173659100
173660684
1,584
gain
1834
GALNTL6
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
97
173659100
173660684
1,584
gain
2034
GALNTL6
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
98
173660685
173663053
2,368
gain
1230
GALNTL6
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
98
173660685
173663053
2,368
gain
1250
GALNTL6
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
98
173660685
173663053
2,368
gain
1396
GALNTL6
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
98
173660685
173663053
2,368
gain
1798
GALNTL6
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
98
173660685
173663053
2,368
gain
1834
GALNTL6
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
98
173660685
173663053
2,368
gain
2034
GALNTL6
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
99
175860235
175862083
1,848
gain
1288
GLRA3
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
99
175860235
175862083
1,848
gain
1534
GLRA3
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
99
175860235
175862083
1,848
gain
1570
GLRA3
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
99
175860235
175862083
1,848
gain
1571
GLRA3
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
99
175860235
175862083
1,848
gain
1821
GLRA3
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
99
175860235
175862083
1,848
gain
1860
GLRA3
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
99
175860235
175862083
1,848
gain
1914
GLRA3
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
99
175860235
175862083
1,848
gain
1931
GLRA3
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
99
175860235
175862083
1,848
gain
2032
GLRA3
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


4
100
189229198
189255442
26,244
loss
1619
TRIML2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
100
189229198
189255442
26,244
gain
1691
TRIML2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
100
189229198
189255442
26,244
gain
1704
TRIML2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
101
189255443
189277552
22,109
gain
1691
TRIML2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
101
189255443
189277552
22,109
gain
1704
TRIML2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
102
189759097
189816040
56,943
loss
1499
LOC401164
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
102
189759097
189816040
56,943
gain
1534
LOC401164
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
102
189759097
189816040
56,943
gain
1691
LOC401164
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
103
191133836
191153613
19,777
gain
1230
TUBB4Q
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
103
191133836
191153613
19,777
gain
1292
TUBB4Q
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


4
103
191133836
191153613
19,777
loss
1696
TUBB4Q
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


5
104
10683077
10688336
5,259
loss
1438
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
1619
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
1629
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
1630
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
1666
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
1696
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
1850
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
1916
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
1958
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
1965
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
1998
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
2026
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
104
10683077
10688336
5,259
loss
2042
ANKRD33B
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
105
11956462
11958076
1,614
loss
1850
CTNND2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


5
105
11956462
11958076
1,614
gain
1946
CTNND2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


5
106
136994175
136995509
1,334
loss
1522
KLHL3
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
106
136994175
136995509
1,334
loss
1671
KLHL3
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
106
136994175
136995509
1,334
loss
1730
KLHL3
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
106
136994175
136995509
1,334
loss
1742
KLHL3
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
106
136994175
136995509
1,334
loss
1856
KLHL3
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
106
136994175
136995509
1,334
loss
1917
KLHL3
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
107
138306541
138313486
6,945
gain
1309
SIL1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


5
107
138306541
138313486
6,945
gain
1395
SIL1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


5
107
138306541
138313486
6,945
gain
1411
SIL1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


5
108
140538667
140541178
2,511
loss
1425
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
108
140538667
140541178
2,511
loss
1439
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
108
140538667
140541178
2,511
loss
1441
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
108
140538667
140541178
2,511
loss
1490
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
108
140538667
140541178
2,511
loss
1493
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
108
140538667
140541178
2,511
loss
1515
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
108
140538667
140541178
2,511
loss
1555
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
108
140538667
140541178
2,511
loss
1564
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
108
140538667
140541178
2,511
loss
1580
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
108
140538667
140541178
2,511
loss
1582
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
108
140538667
140541178
2,511
loss
1641
PCDHB8,
Y
1
11
16.46
Exon+ve, ASD > 4,









PCDHB16




Normals < 2,














no Sanger filter applied


5
109
147861447
147867311
5,864
loss
1301
HTR4
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
109
147861447
147867311
5,864
loss
1307
HTR4
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
109
147861447
147867311
5,864
loss
1395
HTR4
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
109
147861447
147867311
5,864
loss
1729
HTR4
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
109
147861447
147867311
5,864
loss
1740
HTR4
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
109
147861447
147867311
5,864
loss
1742
HTR4
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


5
110
150204135
150207307
3,172
loss
1405
IRGM
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


5
110
150204135
150207307
3,172
loss
1696
IRGM
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


5
110
150204135
150207307
3,172
loss
1831
IRGM
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


5
111
180194323
180342859
148,536
loss
1229
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1253
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1316
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1426
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1429
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1441
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1442
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1495
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1496
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1502
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1504
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1517
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1532
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1546
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1548
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1580
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1606
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1612
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1634
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1641
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1648
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1686
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1696
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1792
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1805
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1851
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1861
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1897
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1902
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
1927
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
gain
1997
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


5
111
180194323
180342859
148,536
loss
2035
BTNL8,
Y
0
32
49.43
Exon+ve, ASD > 4,









LOC729678,




Normals < 2,









ZFP62




no Sanger filter applied


6
112
26811016
26849721
38,705
loss
1224

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1252

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1273

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1286

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1293

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1307

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1411

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1419

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
gain
1475

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
gain
1485

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
gain
1525

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
gain
1538

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1572

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
gain
1599

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1602

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1615

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
gain
1628

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1629

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
gain
1773

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
gain
1807

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1899

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1929

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
loss
1931

N
0
24
36.62
high OR intergenic (OR > 30)


6
112
26811016
26849721
38,705
gain
2041

N
0
24
36.62
high OR intergenic (OR > 30)


6
113
31109597
31114029
4,432
loss
1662
PBMUCL1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
113
31109597
31114029
4,432
loss
1849
PBMUCL1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
114
33504620
33505974
1,354
loss
1297
SYNGAP1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
114
33504620
33505974
1,354
loss
1824
SYNGAP1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
114
33504620
33505974
1,354
loss
1840
SYNGAP1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
114
33504620
33505974
1,354
loss
1841
SYNGAP1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
114
33504620
33505974
1,354
loss
1872
SYNGAP1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
114
33504620
33505974
1,354
loss
1905
SYNGAP1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
114
33504620
33505974
1,354
loss
1967
SYNGAP1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
114
33504620
33505974
1,354
loss
2031
SYNGAP1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1301
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
gain
1347
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
gain
1348
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
gain
1530
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1680
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1694
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1718
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1837
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1839
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1852
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1917
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1940
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1946
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1950
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1952
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1958
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1959
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1961
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1962
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
1965
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
2005
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
2006
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
115
35856922
35862501
5,579
loss
2018
C6orf127
Y
0
23
35.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1301
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
gain
1347
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
gain
1348
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
gain
1414
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
gain
1530
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1680
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1694
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
gain
1710
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1718
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
gain
1760
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1837
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1839
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1852
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1917
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1946
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1950
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1952
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1958
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1959
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1961
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1962
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
1965
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
2005
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
2006
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
116
35862503
35864635
2,132
loss
2018
C6orf127
Y
0
25
38.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
117
79018960
79024556
5,596
gain
1220

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1241

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1274

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1279

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1446

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
loss
1449

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1496

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
loss
1502

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
loss
1534

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1555

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1662

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1687

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1689

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1698

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1712

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1722

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1744

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1757

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1774

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1817

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1959

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
1965

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
2037

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
2043

N
0
25
38.2
high OR intergenic (OR > 30)


6
117
79018960
79024556
5,596
gain
2045

N
0
25
38.2
high OR intergenic (OR > 30)


6
118
81099147
81100756
1,609
loss
1552
BCKDHB
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
118
81099147
81100756
1,609
gain
1621
BCKDHB
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
118
81099147
81100756
1,609
gain
1707
BCKDHB
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
118
81099147
81100756
1,609
gain
1753
BCKDHB
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
118
81099147
81100756
1,609
gain
1773
BCKDHB
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
119
88089542
88096147
6,605
loss
1943
C6orf162, GJB7
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
119
88089542
88096147
6,605
loss
1951
C6orf162, GJB7
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
119
88089542
88096147
6,605
loss
1964
C6orf162, GJB7
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
119
88089542
88096147
6,605
loss
2034
C6orf162, GJB7
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
120
88899057
88923379
24,322
gain
1662
CNR1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
120
88899057
88923379
24,322
gain
1735
CNR1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
120
88899057
88923379
24,322
gain
1899
CNR1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
121
107108807
107111183
2,376
gain
1402
AIM1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
121
107108807
107111183
2,376
gain
1527
AIM1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
121
107108807
107111183
2,376
gain
1710
AIM1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
122
118844331
118956714
112,383
gain
1511
C6orf204,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









BRD7P3




Normals < 2, Sanger−ve


6
122
118844331
118956714
112,383
gain
1710
C6orf204,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









BRD7P3




Normals < 2, Sanger−ve


6
122
118844331
118956714
112,383
gain
1759
C6orf204,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









BRD7P3




Normals < 2, Sanger−ve


6
123
118956715
118958026
1,311
gain
1511
C6orf204
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
123
118956715
118958026
1,311
loss
1565
C6orf204
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
123
118956715
118958026
1,311
loss
1590
C6orf204
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
123
118956715
118958026
1,311
gain
1710
C6orf204
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
123
118956715
118958026
1,311
gain
1759
C6orf204
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
124
118969194
119007311
38,117
gain
1511
C6orf204, PLN
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
124
118969194
119007311
38,117
gain
1710
C6orf204, PLN
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
125
119007312
119113493
106,181
gain
1511
C6orf204
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
125
119007312
119113493
106,181
gain
1710
C6orf204
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
125
119007312
119113493
106,181
gain
1777
C6orf204
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


6
126
124469271
124478060
8,789
gain
1244
NKAIN2
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
126
124469271
124478060
8,789
gain
1247
NKAIN2
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
126
124469271
124478060
8,789
gain
1277
NKAIN2
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
126
124469271
124478060
8,789
gain
1450
NKAIN2
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
126
124469271
124478060
8,789
gain
1610
NKAIN2
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
126
124469271
124478060
8,789
gain
1880
NKAIN2
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
127
132748175
132749308
1,133
loss
1389
MOXD1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
127
132748175
132749308
1,133
loss
1540
MOXD1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
127
132748175
132749308
1,133
loss
1605
MOXD1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
127
132748175
132749308
1,133
loss
1657
MOXD1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
127
132748175
132749308
1,133
loss
1729
MOXD1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
127
132748175
132749308
1,133
loss
1738
MOXD1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
127
132748175
132749308
1,133
loss
1743
MOXD1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
128
134627341
134631700
4,359
loss
1224
SGK1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
128
134627341
134631700
4,359
loss
1576
SGK1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
128
134627341
134631700
4,359
loss
1665
SGK1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
128
134627341
134631700
4,359
loss
1667
SGK1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
128
134627341
134631700
4,359
loss
1708
SGK1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1372
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1387
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1396
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1401
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1403
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1432
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1572
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1616
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1696
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1864
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
1895
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
2040
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
129
139641158
139643728
2,570
loss
2042
TXLNB
N
0
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1230
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1372
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1387
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1396
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1401
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1403
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1428
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1432
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1551
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1572
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1577
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1616
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1696
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1811
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1837
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1859
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1864
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1895
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1896
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1898
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
1946
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
2040
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
2042
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
130
139643729
139645416
1,687
loss
2044
TXLNB
N
0
24
36.62
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
131
152772611
152776554
3,943
loss
1403
SYNE1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
131
152772611
152776554
3,943
loss
1476
SYNE1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
131
152772611
152776554
3,943
loss
1538
SYNE1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
131
152772611
152776554
3,943
loss
1654
SYNE1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
131
152772611
152776554
3,943
loss
1828
SYNE1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
132
168728054
168730714
2,660
loss
1477
SMOC2
N
1
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
132
168728054
168730714
2,660
loss
1495
SMOC2
N
1
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
132
168728054
168730714
2,660
loss
1505
SMOC2
N
1
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
132
168728054
168730714
2,660
loss
1506
SMOC2
N
1
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
132
168728054
168730714
2,660
loss
1527
SMOC2
N
1
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
132
168728054
168730714
2,660
loss
1556
SMOC2
N
1
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
132
168728054
168730714
2,660
loss
1598
SMOC2
N
1
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
132
168728054
168730714
2,660
loss
1641
SMOC2
N
1
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
132
168728054
168730714
2,660
loss
1647
SMOC2
N
1
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
132
168728054
168730714
2,660
loss
1715
SMOC2
N
1
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
133
168730715
168734147
3,432
loss
1505
SMOC2
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
133
168730715
168734147
3,432
loss
1527
SMOC2
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
133
168730715
168734147
3,432
loss
1556
SMOC2
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
133
168730715
168734147
3,432
loss
1598
SMOC2
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
133
168730715
168734147
3,432
loss
1641
SMOC2
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
133
168730715
168734147
3,432
loss
1647
SMOC2
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


6
133
168730715
168734147
3,432
loss
1715
SMOC2
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
1571
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
1699
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
1703
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
1726
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
1797
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
1843
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
1928
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
1960
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
1963
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
1966
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
134
1037402
1038516
1,114
loss
2032
C7orf50
N
1
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1416
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1498
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1571
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1699
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1703
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1726
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1797
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1843
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1928
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1960
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1963
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
1966
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
135
1038517
1047635
9,118
loss
2032
C7orf50
N
1
13
19.51
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1225
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1416
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1498
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1571
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1635
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1672
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1699
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1703
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1726
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1797
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1843
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1928
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1960
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1963
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
1966
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
2018
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
136
1047636
1047707
71
loss
2032
C7orf50
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
137
3496005
3497686
1,681
loss
1422
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
137
3496005
3497686
1,681
loss
1423
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
137
3496005
3497686
1,681
loss
1561
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
137
3496005
3497686
1,681
loss
1834
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
137
3496005
3497686
1,681
loss
1893
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
137
3496005
3497686
1,681
loss
1905
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
137
3496005
3497686
1,681
loss
1948
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
138
4042651
4049103
6,452
loss
1306
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
138
4042651
4049103
6,452
loss
1418
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
138
4042651
4049103
6,452
loss
1493
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
138
4042651
4049103
6,452
loss
1502
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
138
4042651
4049103
6,452
loss
1647
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
138
4042651
4049103
6,452
loss
1711
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
138
4042651
4049103
6,452
loss
1751
SDK1
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
139
5138605
5148416
9,811
loss
1548
ZNF890P
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
139
5138605
5148416
9,811
loss
1727
ZNF890P
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
140
5825982
5831318
5,336
gain
1711
ZNF815
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
140
5825982
5831318
5,336
loss
1967
ZNF815
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
141
16866725
16883040
16,315
gain
1755
AGR3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
141
16866725
16883040
16,315
loss
1835
AGR3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
142
23802428
23802515
87
loss
1413
STK31
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
142
23802428
23802515
87
loss
1472
STK31
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
142
23802428
23802515
87
loss
1583
STK31
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
142
23802428
23802515
87
loss
1584
STK31
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
142
23802428
23802515
87
loss
1619
STK31
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
142
23802428
23802515
87
loss
1960
STK31
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
143
48443511
48449543
6,032
gain
1223
ABCA13
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
143
48443511
48449543
6,032
gain
1273
ABCA13
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
143
48443511
48449543
6,032
gain
1583
ABCA13
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
143
48443511
48449543
6,032
gain
1615
ABCA13
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
143
48443511
48449543
6,032
gain
1886
ABCA13
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
143
48443511
48449543
6,032
gain
1891
ABCA13
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
143
48443511
48449543
6,032
gain
2028
ABCA13
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
144
62313534
62480276
166,742
gain
1389
LOC100287834,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









LOC100287704,




Normals < 2, Sanger−ve









LOC643955







7
144
62313534
62480276
166,742
gain
1567
LOC100287834,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









LOC100287704,




Normals < 2, Sanger−ve









LOC643955







7
145
71487316
71491600
4,284
loss
1677
CALN1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
145
71487316
71491600
4,284
loss
1718
CALN1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
145
71487316
71491600
4,284
loss
1724
CALN1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
145
71487316
71491600
4,284
loss
1727
CALN1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
145
71487316
71491600
4,284
loss
1735
CALN1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
145
71487316
71491600
4,284
loss
1743
CALN1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
145
71487316
71491600
4,284
loss
1751
CALN1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
145
71487316
71491600
4,284
loss
1853
CALN1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
146
100181105
100182350
1,245
loss
1227
ZAN
Y
0
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
146
100181105
100182350
1,245
loss
1236
ZAN
Y
0
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
146
100181105
100182350
1,245
loss
1771
ZAN
Y
0
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
146
100181105
100182350
1,245
loss
1777
ZAN
Y
0
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
146
100181105
100182350
1,245
loss
1803
ZAN
Y
0
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
146
100181105
100182350
1,245
loss
1824
ZAN
Y
0
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
146
100181105
100182350
1,245
loss
1896
ZAN
Y
0
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
146
100181105
100182350
1,245
loss
2020
ZAN
Y
0
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
146
100181105
100182350
1,245
loss
2030
ZAN
Y
0
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
146
100181105
100182350
1,245
loss
2034
ZAN
Y
0
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
147
102465042
102496149
31,107
gain
1464
FBXL13
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
147
102465042
102496149
31,107
gain
1997
FBXL13
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
148
102496150
102520569
24,419
gain
1464
ARMC10,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









FBXL13




Normals < 2, Sanger−ve


7
148
102496150
102520569
24,419
gain
1848
ARMC10,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









FBXL13




Normals < 2, Sanger−ve


7
148
102496150
102520569
24,419
gain
1997
ARMC10,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









FBXL13




Normals < 2, Sanger−ve


7
149
102520570
102554005
33,435
gain
1464
ARMC10,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









NAPEPLD




Normals < 2, Sanger−ve


7
149
102520570
102554005
33,435
gain
1997
ARMC10,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









NAPEPLD




Normals < 2, Sanger−ve


7
150
104706525
104708287
1,762
loss
1286
SRPK2
N
0
4
7.42
Genic (distinct CNV-














subregions); OR > 6


7
150
104706525
104708287
1,762
loss
1774
SRPK2
N
0
4
7.42
Genic (distinct CNV-














subregions); OR > 6


7
150
104706525
104708287
1,762
loss
1839
SRPK2
N
0
4
7.42
Genic (distinct CNV-














subregions); OR > 6


7
150
104706525
104708287
1,762
loss
1901
SRPK2
N
0
4
7.42
Genic (distinct CNV-














subregions); OR > 6


7
151
104760047
104764319
4,272
loss
2033
SRPK2
N
0
1
7.42
Genic (distinct CNV-














subregions); OR > 6


7
152
108696828
108700254
3,426
gain
1234

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1256

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1285

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
loss
1287

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1306

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1344

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1346

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1410

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1430

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1521

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1622

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1661

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1704

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1792

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1813

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1908

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1950

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
1970

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
2028

N
0
20
30.33
high OR intergenic (OR > 30)


7
152
108696828
108700254
3,426
gain
2031

N
0
20
30.33
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1234

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1256

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1267

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1285

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
loss
1287

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1304

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1306

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1344

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1346

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1410

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1423

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1430

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1521

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1622

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1629

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1661

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1704

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1792

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1813

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1908

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1950

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
1970

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
2028

N
0
24
36.62
high OR intergenic (OR > 30)


7
153
108700255
108706129
5,874
gain
2031

N
0
24
36.62
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1222

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1323

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1374

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1485

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1533

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1543

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1568

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1601

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1612

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1616

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1635

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1665

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1740

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1766

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1783

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1834

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1876

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1921

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
1926

N
1
20
30.33
high OR intergenic (OR > 30)


7
154
118620876
118622741
1,865
gain
2030

N
1
20
30.33
high OR intergenic (OR > 30)


7
155
141440185
141442231
2,046
gain
1225
MGAM
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
155
141440185
141442231
2,046
gain
1691
MGAM
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
155
141440185
141442231
2,046
gain
1720
MGAM
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
155
141440185
141442231
2,046
gain
1734
MGAM
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
155
141440185
141442231
2,046
loss
1897
MGAM
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
156
141442232
141443577
1,345
gain
1225
MGAM
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
156
141442232
141443577
1,345
gain
1691
MGAM
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
156
141442232
141443577
1,345
gain
1720
MGAM
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
157
142136345
142140539
4,194
loss
1232
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1242
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1347
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1349
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1374
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1386
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1568
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1573
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1601
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1604
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1660
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1667
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1697
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1720
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1753
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1780
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1784
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1793
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1803
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1830
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1837
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1844
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1867
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1884
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1921
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1930
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
1937
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
2018
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
2024
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
157
142136345
142140539
4,194
loss
2041
PRSS1
Y
0
30
46.2
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
158
142176075
142187072
10,997
loss
1232
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1242
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1308
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1347
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1391
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1392
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1401
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
gain
1446
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1465
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1532
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1568
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1601
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1604
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1621
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1622
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1638
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1640
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1660
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
gain
1694
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1697
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1752
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1753
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1780
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1784
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1788
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1793
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
gain
1794
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1803
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1806
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1824
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1830
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1837
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1838
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1844
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1845
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1884
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1894
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1897
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1914
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1921
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1930
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
1937
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
gain
1997
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
2018
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
2020
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
158
142176075
142187072
10,997
loss
2024
PRSS2
Y
4
46
18.1
Genic (distinct CNV-














subregions); OR > 6


7
159
145855888
145857190
1,302
gain
1236
CNTNAP2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
159
145855888
145857190
1,302
gain
1718
CNTNAP2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
159
145855888
145857190
1,302
gain
1752
CNTNAP2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
159
145855888
145857190
1,302
gain
1762
CNTNAP2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
159
145855888
145857190
1,302
gain
1871
CNTNAP2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
160
145857191
145862540
5,349
gain
1236
CNTNAP2
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
160
145857191
145862540
5,349
gain
1718
CNTNAP2
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
160
145857191
145862540
5,349
gain
1752
CNTNAP2
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
160
145857191
145862540
5,349
gain
1762
CNTNAP2
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
160
145857191
145862540
5,349
gain
1871
CNTNAP2
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
161
145862541
145885711
23,170
gain
1236
CNTNAP2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
161
145862541
145885711
23,170
gain
1718
CNTNAP2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
161
145862541
145885711
23,170
gain
1752
CNTNAP2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
161
145862541
145885711
23,170
gain
1762
CNTNAP2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
161
145862541
145885711
23,170
gain
1871
CNTNAP2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1227
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1279
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1324
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1346
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
gain
1423
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1517
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1621
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1636
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1639
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1645
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1670
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1718
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1727
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1728
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1753
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1754
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1759
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1761
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1792
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1806
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1820
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1826
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1836
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1850
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1854
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1857
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1867
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1868
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1872
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1911
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1916
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1918
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1943
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1960
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1967
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
1998
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
2003
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
2004
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
2022
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
2028
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
162
147708383
147710037
1,654
loss
2041
CNTNAP2
N
0
41
64.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
163
149183338
149191205
7,867
gain
1486
ZNF862
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
163
149183338
149191205
7,867
gain
1755
ZNF862
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


7
164
149192529
149210297
17,768
gain
1486
LOC401431,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









ATP6V0E2,




Normals < 2, Sanger−ve









ZNF862







7
164
149192529
149210297
17,768
gain
1755
LOC401431,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









ATP6V0E2,




Normals < 2, Sanger−ve









ZNF862







7
165
153860688
153865845
5,157
loss
1297
DPP6
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
165
153860688
153865845
5,157
loss
1316
DPP6
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
165
153860688
153865845
5,157
gain
1730
DPP6
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
165
153860688
153865845
5,157
loss
1786
DPP6
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
165
153860688
153865845
5,157
loss
1835
DPP6
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1241
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1272
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1295
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1297
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1307
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1323
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1400
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1405
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1406
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1414
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1448
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1463
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1468
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1492
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1510
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1536
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1538
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1539
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1544
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1545
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1555
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1563
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1564
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1572
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1574
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1577
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1621
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1624
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1637
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1647
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1657
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1658
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1662
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1664
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1668
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1669
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1670
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1689
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1692
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1705
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1708
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1717
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1725
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1730
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1732
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1738
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1740
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1743
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1784
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1787
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1802
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1808
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1809
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1814
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1828
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1833
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1844
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1853
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1854
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1867
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1871
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1881
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1888
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1900
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1931
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
loss
1937
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


7
166
154028650
154032130
3,480
gain
1948
DPP6
N
0
67
109.38
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
167
2058685
2063253
4,568
gain
1408
MYOM2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
167
2058685
2063253
4,568
gain
1532
MYOM2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
168
2063254
2064563
1,309
gain
1408
MYOM2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
168
2063254
2064563
1,309
gain
1532
MYOM2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
168
2063254
2064563
1,309
gain
1860
MYOM2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
169
6897144
6901436
4,292
loss
1551
DEFA5
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
169
6897144
6901436
4,292
gain
1572
DEFA5
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
169
6897144
6901436
4,292
gain
1661
DEFA5
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
170
6901437
6909486
8,049
loss
1551
DEFA5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
170
6901437
6909486
8,049
gain
1572
DEFA5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
171
17673968
17751935
77,967
loss
1528
MTUS1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
171
17673968
17751935
77,967
gain
1656
MTUS1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
172
17783766
17793450
9,684
loss
1528
FGL1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
172
17783766
17793450
9,684
loss
2023
FGL1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
173
25120552
25123024
2,472
loss
1224
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1229
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1259
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
gain
1274
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1401
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1445
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1451
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1536
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1546
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1551
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
gain
1566
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1573
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1576
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1592
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1593
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1611
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1612
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1670
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1676
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1687
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1732
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1738
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1739
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1740
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1741
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1764
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1798
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1848
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1867
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1880
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1881
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
1899
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
173
25120552
25123024
2,472
loss
2000
DOCK5
N
0
33
51.05
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
174
31655933
31663317
7,384
gain
1274
NRG1
N
0
1
14.94
Genic (distinct CNV-














subregions); OR > 6


8
175
31811829
31814233
2,404
loss
1477
NRG1
N
0
1
14.94
Genic (distinct CNV-














subregions); OR > 6


8
176
31814234
31815721
1,487
loss
1402
NRG1
N
0
2
14.94
Genic (distinct CNV-














subregions); OR > 6


8
176
31814234
31815721
1,487
loss
1477
NRG1
N
0
2
14.94
Genic (distinct CNV-














subregions); OR > 6


8
177
32113808
32143952
30,144
loss
1900
NRG1
N
0
1
14.94
Genic (distinct CNV-














subregions); OR > 6


8
178
32143953
32148168
4,215
loss
1844
NRG1
N
0
2
14.94
Genic (distinct CNV-














subregions); OR > 6


8
178
32143953
32148168
4,215
loss
1900
NRG1
N
0
2
14.94
Genic (distinct CNV-














subregions); OR > 6


8
179
32148170
32148230
60
gain
1707
NRG1
N
0
2
14.94
Genic (distinct CNV-














subregions); OR > 6


8
179
32148170
32148230
60
loss
1900
NRG1
N
0
2
14.94
Genic (distinct CNV-














subregions); OR > 6


8
180
32148231
32180056
31,825
loss
1900
NRG1
N
0
1
14.94
Genic (distinct CNV-














subregions); OR > 6


8
181
32271978
32274487
2,509
loss
1471
NRG1
N
0
2
14.94
Genic (distinct CNV-














subregions); OR > 6


8
181
32271978
32274487
2,509
loss
1618
NRG1
N
0
2
14.94
Genic (distinct CNV-














subregions); OR > 6


8
181
32514378
32520956
6,578
loss
1293
NRG1
N
0
2
14.94
Genic (distinct CNV-














subregions); OR > 6


8
181
32514378
32520956
6,578
loss
1721
NRG1
N
0
2
14.94
Genic (distinct CNV-














subregions); OR > 6


8
182
39350798
39352360
1,562
gain
1437
ADAM5P
Y
0
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
182
39350798
39352360
1,562
gain
1495
ADAM5P
Y
0
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
182
39350798
39352360
1,562
gain
1535
ADAM5P
Y
0
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
182
39350798
39352360
1,562
gain
1546
ADAM5P
Y
0
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
182
39350798
39352360
1,562
gain
1663
ADAM5P
Y
0
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
182
39350798
39352360
1,562
gain
1693
ADAM5P
Y
0
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
182
39350798
39352360
1,562
gain
1700
ADAM5P
Y
0
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
182
39350798
39352360
1,562
gain
1730
ADAM5P
Y
0
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
182
39350798
39352360
1,562
gain
1748
ADAM5P
Y
0
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
183
43315319
43316714
1,395
gain
1316
POTEA
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
183
43315319
43316714
1,395
gain
1406
POTEA
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
183
43315319
43316714
1,395
gain
1695
POTEA
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


8
184
51389250
51390466
1,216
loss
1223
SNTG1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
184
51389250
51390466
1,216
loss
1405
SNTG1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
184
51389250
51390466
1,216
loss
1473
SNTG1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
184
51389250
51390466
1,216
loss
1572
SNTG1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
184
51389250
51390466
1,216
loss
1573
SNTG1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
184
51389250
51390466
1,216
loss
1876
SNTG1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
185
52426081
52428920
2,839
loss
1712
PXDNL
N
0
1
7.42
Genic (distinct CNV-














subregions); OR > 6


8
185
52428921
52430531
1,610
loss
1474
PXDNL
N
0
3
7.42
Genic (distinct CNV-














subregions); OR > 6


8
185
52428921
52430531
1,610
loss
1507
PXDNL
N
0
3
7.42
Genic (distinct CNV-














subregions); OR > 6


8
185
52428921
52430531
1,610
loss
1712
PXDNL
N
0
3
7.42
Genic (distinct CNV-














subregions); OR > 6


8
186
52684674
52686421
1,747
loss
1844
PXDNL
N
0
1
7.42
Genic (distinct CNV-














subregions); OR > 6


8
187
52749454
52751043
1,589
loss
1252
PXDNL
N
0
1
7.42
Genic (distinct CNV-














subregions); OR > 6


8
188
88382155
88388307
6,152
loss
1234
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1260
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1261
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1270
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1284
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1285
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1289
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1301
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1354
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1372
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1373
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1417
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1419
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1428
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1433
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1449
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1451
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1452
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1477
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1486
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1509
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1527
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1533
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1558
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1561
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1573
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1576
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1581
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1595
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1602
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1609
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1615
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1621
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1622
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1629
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1634
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1638
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1639
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1658
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1667
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1672
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1677
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1681
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1683
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1697
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1715
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1723
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1724
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1725
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1732
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1743
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1750
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1751
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1753
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1754
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1758
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1760
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1765
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1776
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1787
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1796
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1797
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1802
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1807
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1811
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1814
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1816
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1822
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1852
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1859
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1862
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1864
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1867
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1870
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1874
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1900
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1901
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1908
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1923
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1926
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1927
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1929
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1945
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
1996
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
188
88382155
88388307
6,152
loss
2028
CNBD1
N
0
85
142.95
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1282
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1306
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1308
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1394
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1567
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1601
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1619
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1640
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1677
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1708
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
189
95219409
95219512
103
gain
1928
CDH17
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1274
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1306
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1308
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1389
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1394
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1449
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1619
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1640
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
loss
1643
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1661
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1677
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1708
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1814
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1853
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
190
95219514
95219587
73
gain
1893
CDH17
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
191
107368178
107369802
1,624
loss
1306
OXR1
N
2
2
6.71
Genic (distinct CNV-














subregions); OR > 6


8
191
107368178
107369802
1,624
loss
1619
OXR1
N
2
2
6.71
Genic (distinct CNV-














subregions); OR > 6


8
192
107605521
107616812
11,291
gain
1464
OXR1
N
0
3
6.71
Genic (distinct CNV-














subregions); OR > 6


8
192
107605521
107616812
11,291
gain
1519
OXR1
N
0
3
6.71
Genic (distinct CNV-














subregions); OR > 6


8
192
107605521
107616812
11,291
gain
1723
OXR1
N
0
3
6.71
Genic (distinct CNV-














subregions); OR > 6


8
193
107697816
107699245
1,429
gain
1373
OXR1
N
0
3
6.71
Genic (distinct CNV-














subregions); OR > 6


8
193
107697816
107699245
1,429
gain
1872
OXR1
N
0
3
6.71
Genic (distinct CNV-














subregions); OR > 6


8
193
107697816
107699245
1,429
gain
1946
OXR1
N
0
3
6.71
Genic (distinct CNV-














subregions); OR > 6


8
194
107699246
107701550
2,304
gain
1872
OXR1
N
0
2
6.71
Genic (distinct CNV-














subregions); OR > 6


8
194
107699246
107701550
2,304
gain
1946
OXR1
N
0
2
6.71
Genic (distinct CNV-














subregions); OR > 6


8
195
107737273
107739119
1,846
loss
1574
OXR1
N
0
1
6.71
Genic (distinct CNV-














subregions); OR > 6


8
196
114414403
114415656
1,253
loss
1848
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1851
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1855
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1871
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1876
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1878
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1897
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1902
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1916
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1918
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1921
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1935
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1953
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1969
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
1988
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


8
196
114414403
114415656
1,253
loss
2031
CSMD3
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
197
19415150
19434760
19,610
gain
1297
ACER2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


9
197
19415150
19434760
19,610
gain
1418
ACER2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


9
198
21250372
21267945
17,573
loss
1418
IFNA22P
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
198
21250372
21267945
17,573
gain
1432
IFNA22P
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
198
21250372
21267945
17,573
gain
1485
IFNA22P
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
198
21250372
21267945
17,573
gain
1615
IFNA22P
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
198
21250372
21267945
17,573
gain
1798
IFNA22P
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
198
21250372
21267945
17,573
gain
2020
IFNA22P
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
199
28541438
28548817
7,379
loss
1309
LINGO2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
199
28541438
28548817
7,379
gain
1530
LINGO2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
199
28541438
28548817
7,379
gain
1585
LINGO2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
199
28541438
28548817
7,379
gain
1606
LINGO2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
199
28541438
28548817
7,379
loss
1820
LINGO2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
199
28541438
28548817
7,379
loss
1988
LINGO2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
200
71224527
71239115
14,588
gain
1558
APBA1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
200
71224527
71239115
14,588
loss
1639
APBA1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
200
71224527
71239115
14,588
gain
1829
APBA1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
200
71224527
71239115
14,588
gain
1904
APBA1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
200
71224527
71239115
14,588
gain
1970
APBA1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
201
73775988
73777413
1,425
gain
1268
C9orf85
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
201
73775988
73777413
1,425
gain
1793
C9orf85
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
201
73775988
73777413
1,425
gain
1855
C9orf85
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
201
73775988
73777413
1,425
gain
1883
C9orf85
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
201
73775988
73777413
1,425
gain
1893
C9orf85
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
202
79037750
79047245
9,495
gain
1589
VPS13A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


9
202
79037750
79047245
9,495
gain
1782
VPS13A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


9
202
79037750
79047245
9,495
gain
1897
VPS13A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


9
202
79037750
79047245
9,495
gain
1938
VPS13A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


9
203
97693397
97692568
1,871
loss
1426
C9orf102
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
203
97693397
97692568
1,871
loss
1442
C9orf102
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
203
97693397
97692568
1,871
loss
1552
C9orf102
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
203
97693397
97692568
1,871
loss
1580
C9orf102
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
203
97693397
97692568
1,871
loss
1996
C9orf102
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
204
107567322
107567415
93
loss
1308
TMEM38B
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
204
107567322
107567415
93
loss
1502
TMEM38B
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
204
107567322
107567415
93
loss
1555
TMEM38B
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
204
107567322
107567415
93
loss
1563
TMEM38B
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
204
107567322
107567415
93
gain
1611
TMEM38B
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
204
107567322
107567415
93
loss
1876
TMEM38B
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
205
111606594
111609721
3,127
loss
1227
PALM2-AKAP2,
N
1
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
205
111606594
111609721
3,127
loss
1475
PALM2-AKAP2,
N
1
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
205
111606594
111609721
3,127
loss
1621
PALM2-AKAP2,
N
1
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
205
111606594
111609721
3,127
loss
1670
PALM2-AKAP2,
N
1
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
205
111606594
111609721
3,127
loss
1805
PALM2-AKAP2,
N
1
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
205
111606594
111609721
3,127
loss
1854
PALM2-AKAP2,
N
1
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
205
111606594
111609721
3,127
loss
1878
PALM2-AKAP2,
N
1
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
206
111609723
111613988
4,265
loss
1420
PALM2-AKAP2,
N
0
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
206
111609723
111613988
4,265
loss
1475
PALM2-AKAP2,
N
0
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
206
111609723
111613988
4,265
loss
1516
PALM2-AKAP2,
N
0
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
206
111609723
111613988
4,265
gain
1680
PALM2-AKAP2,
N
0
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
206
111609723
111613988
4,265
loss
1805
PALM2-AKAP2,
N
0
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
206
111609723
111613988
4,265
loss
1878
PALM2-AKAP2,
N
0
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
206
111609723
111613988
4,265
loss
1893
PALM2-AKAP2,
N
0
7
10.41
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
207
111613989
111616410
2,421
loss
1420
PALM2-AKAP2,
N
0
5
7.42
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
207
111613989
111616410
2,421
loss
1475
PALM2-AKAP2,
N
0
5
7.42
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
207
111613989
111616410
2,421
loss
1516
PALM2-AKAP2,
N
0
5
7.42
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
207
111613989
111616410
2,421
gain
1680
PALM2-AKAP2,
N
0
5
7.42
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
207
111613989
111616410
2,421
loss
1893
PALM2-AKAP2,
N
0
5
7.42
Intron+ve, ASD > 4,









PALM2




Normals < 2,














no Sanger filter applied


9
208
122900703
122906633
5,930
loss
1698
CEP110
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
208
122900703
122906633
5,930
loss
1734
CEP110
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
208
122900703
122906633
5,930
loss
1755
CEP110
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
208
122900703
122906633
5,930
loss
1762
CEP110
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
208
122900703
122906633
5,930
loss
1952
CEP110
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
208
122900703
122906633
5,930
loss
1959
CEP110
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
208
122900703
122906633
5,930
loss
1964
CEP110
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


9
209
134091469
134110043
18,574
loss
1230
NTNG2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


9
209
134091469
134110043
18,574
loss
1639
NTNG2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


9
210
134544331
134545846
1,515
loss
1345
GTF3C4
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


9
210
134544331
134545846
1,515
loss
2036
GTF3C4
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


10
211
885098
897387
12,289
loss
1293
LARP4B
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
211
885098
897387
12,289
loss
1813
LARP4B
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
211
885098
897387
12,289
loss
1845
LARP4B
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
211
885098
897387
12,289
loss
1855
LARP4B
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
211
885098
897387
12,289
loss
1953
LARP4B
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
211
885098
897387
12,289
loss
2031
LARP4B
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
212
15026547
15041058
14,511
gain
1243
DCLRE1C
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
212
15026547
15041058
14,511
gain
1298
DCLRE1C
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
212
15026547
15041058
14,511

custom character

1760
DCLRE1C
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
212
15026547
15041058
14,511
gain
1877
DCLRE1C
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
212
15026547
15041058
14,511
gain
1894
DCLRE1C
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
212
15026547
15041058
14,511
gain
1910
DCLRE1C
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
212
15026547
15041058
14,511
gain
1936
DCLRE1C
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
212
15026547
15041058
14,511
loss
1948
DCLRE1C
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
213
15041059
15047327
6,268
gain
1243
MEIG1
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
213
15041059
15047327
6,268
gain
1298
MEIG1
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
213
15041059
15047327
6,268
gain
1570
MEIG1
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
213
15041059
15047327
6,268
gain
1760
MEIG1
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
213
15041059
15047327
6,268
gain
1877
MEIG1
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
213
15041059
15047327
6,268
gain
1894
MEIG1
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
213
15041059
15047327
6,268
gain
1910
MEIG1
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
214
15041059
15047327
6,268
gain
1936
MEIG1
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
214
15041059
15047327
6,268
loss
1948
MEIG1
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
215
15047328
15055229
7,901
gain
1243
MEIG1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
215
15047328
15055229
7,901
gain
1298
MEIG1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
215
15047328
15055229
7,901
gain
1760
MEIG1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
215
15047328
15055229
7,901
gain
1877
MEIG1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
215
15047328
15055229
7,901
gain
1894
MEIG1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
215
15047328
15055229
7,901
gain
1910
MEIG1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
215
15047328
15055229
7,901
gain
1936
MEIG1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
215
15047328
15055229
7,901
loss
1948
MEIG1
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
216
24584817
24586451
1,634
gain
1504
KIAA1217,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









PRINS




Normals < 2, Sanger−ve


10
216
24584817
24586451
1,634
gain
1726
KIAA1217,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









PRINS




Normals < 2, Sanger−ve


10
217
42887273
42955951
68,678
gain
1746
CSGALNACT2,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









RET




Normals < 2, Sanger−ve


10
217
42887273
42955951
68,678
gain
1968
CSGALNACT2,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









RET




Normals < 2, Sanger−ve


10
218
43009998
43031954
21,956
gain
1746
RASGEF1A
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


10
218
43009998
43031954
21,956
gain
1968
RASGEF1A
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


10
219
45487335
45489822
2,487
gain
1293
ANUBL1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


10
219
45487335
45489822
2,487
gain
1408
ANUBL1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


10
219
45487335
45489822
2,487
gain
1653
ANUBL1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


10
219
45487335
45489822
2,487
gain
1832
ANUBL1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


10
220
56140997
56142414
1,417
gain
1429
PCDH15
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
220
56140997
56142414
1,417
gain
1605
PCDH15
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
220
56140997
56142414
1,417
loss
1631
PCDH15
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
220
56140997
56142414
1,417
loss
1684
PCDH15
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
220
56140997
56142414
1,417
gain
1897
PCDH15
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
220
56140997
56142414
1,417
gain
1935
PCDH15
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
221
56142415
56154328
11,913
gain
1429
PCDH15
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
221
56142415
56154328
11,913
gain
1605
PCDH15
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
221
56142415
56154328
11,913
loss
1631
PCDH15
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
221
56142415
56154328
11,913
loss
1684
PCDH15
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
221
56142415
56154328
11,913
gain
1897
PCDH15
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
222
57028397
57031555
3,158
gain
1429
MTRNR2L5
Y
2
3
0.98
MTRNR2L_family


10
222
57028397
57031555
3,158
loss
1583
MTRNR2L5
Y
2
3
0.98
MTRNR2L_family


10
223
67803521
67817917
14,396
loss
1441
CTNNA3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


10
223
67803521
67817917
14,396
loss
1446
CTNNA3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


10
224
77916218
77917869
1,651
gain
1272
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
loss
1305
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
loss
1321
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
loss
1347
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
gain
1389
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
loss
1426
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
loss
1455
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
loss
1504
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
loss
1517
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
loss
1567
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
gain
1574
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
loss
1582
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
gain
1592
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
loss
1598
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
gain
1743
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
224
77916218
77917869
1,651
gain
1748
C10orf11
N
0
16
24.12
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1272
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
loss
1305
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
loss
1321
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
loss
1347
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1389
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
loss
1426
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
loss
1455
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
loss
1504
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
loss
1517
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1540
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
loss
1567
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1574
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
loss
1582
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1592
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
loss
1598
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1606
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1733
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1743
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1748
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1755
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
225
77917870
77917892
22
gain
1893
C10orf11
N
0
21
31.9
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
226
77928739
77940201
11,462
gain
1267
C10orf11
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
226
77928739
77940201
11,462
gain
1279
C10orf11
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
226
77928739
77940201
11,462
loss
1426
C10orf11
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
226
77928739
77940201
11,462
loss
1504
C10orf11
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
226
77928739
77940201
11,462
gain
1667
C10orf11
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
226
77928739
77940201
11,462
gain
1728
C10orf11
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
226
77928739
77940201
11,462
gain
1748
C10orf11
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
226
77928739
77940201
11,462
gain
1755
C10orf11
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
226
77928739
77940201
11,462
gain
1766
C10orf11
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
227
77940202
77942809
2,607
gain
1279
C10orf11
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
227
77940202
77942809
2,607
loss
1426
C10orf11
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
227
77940202
77942809
2,607
gain
1667
C10orf11
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
227
77940202
77942809
2,607
gain
1728
C10orf11
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
227
77940202
77942809
2,607
gain
1755
C10orf11
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
227
77940202
77942809
2,607
gain
1766
C10orf11
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
228
108856357
108866592
10,235
gain
1269
SORCS1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
228
108856357
108866592
10,235
loss
1299
SORCS1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
228
108856357
108866592
10,235
loss
1315
SORCS1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
228
108856357
108866592
10,235
loss
1465
SORCS1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
228
108856357
108866592
10,235
loss
1492
SORCS1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
228
108856357
108866592
10,235
loss
1495
SORCS1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
228
108856357
108866592
10,235
loss
1566
SORCS1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
228
108856357
108866592
10,235
loss
1720
SORCS1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
228
108856357
108866592
10,235
loss
1758
SORCS1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
229
116940096
116949326
9,230
gain
1394
ATRNL1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
229
116940096
116949326
9,230
gain
1409
ATRNL1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
229
116940096
116949326
9,230
gain
1410
ATRNL1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
229
116940096
116949326
9,230
gain

custom character

ATRNL1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
229
116940096
116949326
9,230
gain
1438
ATRNL1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
229
116940096
116949326
9,230
gain
1603
ATRNL1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
229
116940096
116949326
9,230
gain
1834
ATRNL1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
229
116940096
116949326
9,230
gain
1924
ATRNL1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1292
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1346
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1394
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1409
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1410
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1416
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1438
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1603
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1834
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1880
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
230
116949327
116953710
4,383
gain
1924
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1292
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1346
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1394
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1409
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1410
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1416
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1603
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1761
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1834
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1880
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
231
116953712
116958657
4,945
gain
1924
ATRNL1
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
232
116958658
116963861
5,203
gain
1292
ATRNL1
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
232
116958658
116963861
5,203
gain
1394
ATRNL1
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
232
116958658
116963861
5,203
gain
1416
ATRNL1
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
232
116958658
116963861
5,203
gain
1834
ATRNL1
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
232
116958658
116963861
5,203
gain
1880
ATRNL1
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


10
232
116958658
116963861
5,203
gain
1924
ATRNL1
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1273
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1304
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1346
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1436
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1453
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1577
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1594
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1669
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1744
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1813
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1858
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1880
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1916
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
233
4932215
4934594
2,379
gain
1960
OR51A2
Y
1
14
21.04
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
234
5226853
5228202
1,349
gain
1424
HBG1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
234
5226853
5228202
1,349
gain
1486
HBG1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
234
5226853
5228202
1,349
gain
1758
HBG1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
234
5226853
5228202
1,349
gain
1843
HBG1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
234
5226853
5228202
1,349
gain
1911
HBG1
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1235
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1394
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1434
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1438
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1536
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1538
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1551
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1643
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1671
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1712
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1727
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1817
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1821
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1823
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1824
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1825
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1877
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1902
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1903
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
1991
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
2033
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
235
5765439
5766615
1,176
gain
2044
OR52N1
Y
0
22
33.47
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
236
5832681
5839924
7,243
loss
1574
OR52E8
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
236
5832681
5839924
7,243
loss
1723
OR52E8
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
236
5832681
5839924
7,243
loss
1769
OR52E8
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
236
5832681
5839924
7,243
loss
1856
OR52E8
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
236
5832681
5839924
7,243
loss
1858
OR52E8
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
236
5832681
5839924
7,243
loss
1877
OR52E8
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
236
5832681
5839924
7,243
loss
2034
OR52E8
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
237
10210600
10668699
458,099
loss
1959
MRVI1, LYVE1,
Y
0
1
1.47
MTRNR2L_family









AMPD3,














MTRNR2L8,














LOC100129827,














SPF2, RNF141,














ADM







11
238
34919050
34919798
748
loss
1285
PDHX
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
238
34919050
34919798
748
loss
1572
PDHX
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
238
34919050
34919798
748
loss
1590
PDHX
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
238
34919050
34919798
748
loss
1688
PDHX
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
238
34919050
34919798
748
loss
1737
PDHX
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
239
51286364
51371826
85,462
gain
1708
OR4C46
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


11
239
51286364
51371826
85,462
gain
1943
OR4C46
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


11
240
55114405
55118213
3,808
gain
1222

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1230

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1270

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1271

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1285

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1296

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1542

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1545

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1590

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1607

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1608

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1711

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1721

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1750

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1755

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1763

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1783

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1787

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1793

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1807

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1808

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1830

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1862

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1870

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1900

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1928

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1937

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
1998

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
2026

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
2030

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
2041

N
0
32
49.43
high OR intergenic (OR > 30)


11
240
55114405
55118213
3,808
gain
2044

N
0
32
49.43
high OR intergenic (OR > 30)


11
241
55510238
55516120
5,882
loss
1245
OR7E5P
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


11
241
55510238
55516120
5,882
loss
1868
OR7E5P
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


11
242
88560991
88562255
1,264
loss
1539
TYR
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
242
88560991
88562255
1,264
loss
1691
TYR
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
242
88560991
88562255
1,264
loss
1720
TYR
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
242
88560991
88562255
1,264
loss
1746
TYR
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
242
88560991
88562255
1,264
loss
1760
TYR
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
242
88560991
88562255
1,264
gain
1993
TYR
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
243
101496791
101499019
2,228
loss
1247
YAP1
N
1
3
8.91
Genic (distinct CNV-














subregions); OR > 6


11
243
101496791
101499019
2,228
loss
1274
YAP1
N
1
3
8.91
Genic (distinct CNV-














subregions); OR > 6


11
243
101496791
101499019
2,228
loss
1546
YAP1
N
1
3
8.91
Genic (distinct CNV-














subregions); OR > 6


11
244
101544468
101550679
6,211
gain
1224
YAP1
N
0
1
8.91
Genic (distinct CNV-














subregions); OR > 6


11
245
101550679
101554376
3,697
loss
1233
YAP1
N
0
2
8.91
Genic (distinct CNV-














subregions); OR > 6


11
245
101550679
101554376
3,697
loss
2037
YAP1
N
0
2
8.91
Genic (distinct CNV-














subregions); OR > 6


11
246
107176390
107177546
1,156
gain
1222
SLC35F2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
246
107176390
107177546
1,156
gain
1349
SLC35F2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
246
107176390
107177546
1,156
gain
1794
SLC35F2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
246
107176390
107177546
1,156
gain
1818
SLC35F2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
246
107176390
107177546
1,156
gain
1860
SLC35F2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
246
107176390
107177546
1,156
gain
1867
SLC35F2
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
247
120856405
120859352
2,947
gain
1324
SORL1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
247
120856405
120859352
2,947
gain
1411
SORL1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
247
120856405
120859352
2,947
gain
1416
SORL1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
247
120856405
120859352
2,947
gain
1825
SORL1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
247
120856405
120859352
2,947
gain
1834
SORL1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
248
123756697
123770639
13,942
gain
1463
OR8B2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


11
248
123756697
123770639
13,942
gain
1467
OR8B2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


11
249
131427991
131429531
1,540
gain
1604
NTM
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
249
131427991
131429531
1,540
gain
1644
NTM
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
249
131427991
131429531
1,540
gain
1660
NTM
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
249
131427991
131429531
1,540
gain
1808
NTM
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
249
131427991
131429531
1,540
gain
1843
NTM
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


11
249
131427991
131429531
1,540
gain
1912
NTM
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
250
12422129
12423719
1,590
loss
1349
LOH12CR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
250
12422129
12423719
1,590
loss
1463
LOH12CR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
250
12422129
12423719
1,590
loss
1722
LOH12CR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
250
12422129
12423719
1,590
loss
1754
LOH12CR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
250
12422129
12423719
1,590
loss
1778
LOH12CR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
250
12422129
12423719
1,590
loss
1923
LOH12CR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
250
12422129
12423719
1,590
loss
1942
LOH12CR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
250
12422129
12423719
1,590
loss
2006
LOH12CR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
251
79721736
79723181
1,445
loss
1281
LIN7A
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
251
79721736
79723181
1,445
loss
1465
LIN7A
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
251
79721736
79723181
1,445
loss
1476
LIN7A
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
251
79721736
79723181
1,445
loss
1511
LIN7A
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
251
79721736
79723181
1,445
loss
1599
LIN7A
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
252
100629833
100631726
1,893
loss
1395
CHPT1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
252
100629833
100631726
1,893
loss
1422
CHPT1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
252
100629833
100631726
1,893
loss
1573
CHPT1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
252
100629833
100631726
1,893
loss
1616
CHPT1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
252
100629833
100631726
1,893
loss
1621
CHPT1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
252
100629833
100631726
1,893
loss
1815
CHPT1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
252
100629833
100631726
1,893
loss
1874
CHPT1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
252
100629833
100631726
1,893
loss
1898
CHPT1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
252
100629833
100631726
1,893
loss
1900
CHPT1
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
253
108123730
108126163
2,433
gain
1902
ACACB
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


12
253
108123730
108126163
2,433
gain
1936
ACACB
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


12
253
108123730
108126163
2,433
gain
1937
ACACB
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


12
254
110497697
110509958
12,261
loss
1443
ATXN2
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
254
110497697
110509958
12,261
loss
1576
ATXN2
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
254
110497697
110509958
12,261
loss
1604
ATXN2
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
254
110497697
110509958
12,261
loss
1815
ATXN2
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
254
110497697
110509958
12,261
loss
1854
ATXN2
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


12
255
119355352
119372494
17,142
gain
1543
GATC, COX6A1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









TRIAP1




Normals < 2, Sanger−ve


12
255
119355352
119372494
17,142
gain
1599
GATC, COX6A1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









TRIAP1




Normals < 2, Sanger−ve


12
255
119355352
119372494
17,142
gain
1851
GATC, COX6A1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









TRIAP1




Normals < 2, Sanger−ve


12
256
131797099
131806639
9,540
loss
1256
PGAM5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


12
256
131797099
131806639
9,540
loss
1621
PGAM5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


13
257
27892889
27894406
1,517
loss
1299
FLT1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
257
27892889
27894406
1,517
loss
1447
FLT1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
257
27892889
27894406
1,517
loss
1592
FLT1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
257
27892889
27894406
1,517
loss
1752
FLT1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
257
27892889
27894406
1,517
loss
1779
FLT1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
257
27892889
27894406
1,517
loss
1912
FLT1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
257
27892889
27894406
1,517
loss
1916
FLT1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
257
27892889
27894406
1,517
loss
1952
FLT1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
258
37988946
37992035
3,089
loss
1687

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1720

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1722

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1737

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1742

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1754

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1755

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1848

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1855

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1868

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1881

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1918

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1919

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1920

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1921

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1935

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1938

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1942

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1953

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1963

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1965

N
0
22
33.47
high OR intergenic (OR > 30)


13
258
37988946
37992035
3,089
loss
1969

N
0
22
33.47
high OR intergenic (OR > 30)


13
259
42518313
42593060
74,747
gain
1897
DNAJC15
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


13
259
42518313
42593060
74,747
gain
1948
DNAJC15
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


13
260
42639217
42687363
48,146
loss
1316
ENOX1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


13
260
42639217
42687363
48,146
gain
1897
ENOX1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


13
261
45637710
45637778
68
loss
1227
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1293
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1296
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1297
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
gain
1402
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1451
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1452
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1657
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1723
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1742
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1761
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1839
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1848
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1871
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1893
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1925
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1927
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1954
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1956
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1958
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1965
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1969
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
1970
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
2030
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
261
45637710
45637778
68
loss
2031
LCP1
N
0
25
38.2
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
262
100693893
100695073
1,180
gain
1251
NALCN
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
262
100693893
100695073
1,180
gain
1272
NALCN
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
262
100693893
100695073
1,180
gain
1776
NALCN
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
262
100693893
100695073
1,180
gain
1815
NALCN
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
262
100693893
100695073
1,180
gain
1883
NALCN
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
264
100923250
100931039
7,789
gain
1422
ITGBL1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
264
100923250
100931039
7,789
gain
1551
ITGBL1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
264
100923250
100931039
7,789
gain
1742
ITGBL1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
264
100923250
100931039
7,789
gain
1753
ITGBL1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
264
100923250
100931039
7,789
gain
1867
ITGBL1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
264
100923250
100931039
7,789
gain
1881
ITGBL1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
265
101217467
101229748
12,281
gain
1781
FGF14
N
1
2
8.91
Genic (distinct CNV-














subregions); OR > 6


13
265
101217467
101229748
12,281
gain
1925
FGF14
N
1
2
8.91
Genic (distinct CNV-














subregions); OR > 6


13
266
101524762
101574079
49,317
loss
1826
FGF14
N
0
1
8.91
Genic (distinct CNV-














subregions); OR > 6


13
267
101574080
101575763
1,683
loss
1617
FGF14
N
0
2
8.91
Genic (distinct CNV-














subregions); OR > 6


13
267
101574080
101575763
1,683
loss
1826
FGF14
N
0
2
8.91
Genic (distinct CNV-














subregions); OR > 6


13
268
101575764
101582091
6,327
loss
1826
FGF14
N
0
1
8.91
Genic (distinct CNV-














subregions); OR > 6


13
269
101582092
101587700
5,608
loss
1597
FGF14
N
0
2
8.91
Genic (distinct CNV-














subregions); OR > 6


13
269
101582092
101587700
5,608
loss
1826
FGF14
N
0
2
8.91
Genic (distinct CNV-














subregions); OR > 6


13
270
101587701
101598573
10,872
loss
1826
FGF14
N
0
1
8.91
Genic (distinct CNV-














subregions); OR > 6


13
271
101641002
101646218
5,216
loss
1954
FGF14
N
0
1
8.91
Genic (distinct CNV-














subregions); OR > 6


13
272
102483043
102499472
16,429
gain
1308
SLC10A2
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
272
102483043
102499472
16,429
gain
1320
SLC10A2
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
272
102483043
102499472
16,429
gain
1521
SLC10A2
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
272
102483043
102499472
16,429
gain
1580
SLC10A2
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
272
102483043
102499472
16,429
gain
1826
SLC10A2
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


13
273
112793058
112805778
12,720
gain
1418
MCF2L
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


13
273
112793058
112805778
12,720
gain
1471
MCF2L
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


13
274
113762090
113767184
5,094
loss
1956
RASA3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


13
274
113762090
113767184
5,094
loss
1958
RASA3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
275
22929952
22943261
13,309
loss
1537
MYH6
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
275
22929952
22943261
13,309
loss
1669
MYH6
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
275
22929952
22943261
13,309
gain
1945
MYH6
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
276
22943262
22946614
3,352
loss
1537
MYH6
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
276
22943262
22946614
3,352
loss
1577
MYH6
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
276
22943262
22946614
3,352
loss
1669
MYH6
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
276
22943262
22946614
3,352
loss
1856
MYH6
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
276
22943262
22946614
3,352
gain
1945
MYH6
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
277
22951087
22955470
4,383
loss
1537
MYH7
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
277
22951087
22955470
4,383
loss
1669
MYH7
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
277
22951087
22955470
4,383
loss
1856
MYH7
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
277
22951087
22955470
4,383
gain
1945
MYH7
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
277
22951087
22955470
4,383
loss
2032
MYH7
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
278
22955471
22957582
2,111
loss
1537
MIR208B, MYH7
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
278
22955471
22957582
2,111
loss
1669
MIR208B, MYH7
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
278
22955471
22957582
2,111
gain
1945
MIR208B, MYH7
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
279
22957583
22958797
1,214
loss
1537
MYH7
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
279
22957583
22958797
1,214
loss
1669
MYH7
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
280
38866449
38872818
6,369
loss
1235
CTAGE5
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
280
38866449
38872818
6,369
loss
1237
CTAGE5
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
280
38866449
38872818
6,369
loss
1526
CTAGE5
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
280
38866449
38872818
6,369
loss
1541
CTAGE5
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
280
38866449
38872818
6,369
loss
1609
CTAGE5
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
280
38866449
38872818
6,369
loss
1819
CTAGE5
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
280
38866449
38872818
6,369
loss
1915
CTAGE5
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
280
38866449
38872818
6,369
loss
2027
CTAGE5
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
281
38872819
38872944
125
loss
1235
CTAGE5
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
281
38872819
38872944
125
loss
1526
CTAGE5
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
281
38872819
38872944
125
loss
1541
CTAGE5
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
281
38872819
38872944
125
loss
1609
CTAGE5
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
281
38872819
38872944
125
loss
1819
CTAGE5
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
281
38872819
38872944
125
loss
2027
CTAGE5
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
282
46774115
46778734
4,619
loss
1609
MDGA2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
282
46774115
46778734
4,619
loss
1666
MDGA2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
282
46774115
46778734
4,619
loss
1693
MDGA2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
282
46774115
46778734
4,619
loss
1729
MDGA2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
282
46774115
46778734
4,619
loss
1850
MDGA2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
283
69092212
69093444
1,232
loss
1401

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1465

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1704

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1710

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1722

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1723

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1751

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1752

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1754

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232

custom character

1761

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1763

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1778

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1797

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1814

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1833

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1848

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1852

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1853

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1855

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1881

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1897

N
0
22
33.47
high OR intergenic (OR > 30)


14
283
69092212
69093444
1,232
loss
1945

N
0
22
33.47
high OR intergenic (OR > 30)


14
284
73060301
73061941
1,640
loss
1237
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1238
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
gain
1291
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1574
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1672
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1676
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1687
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1718
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1720
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1721
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1723
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1760
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1862
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
1916
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
284
73060301
73061941
1,640
loss
2003
HEATR4
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1232
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1233
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1237
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1238
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
gain
1291
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1574
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1672
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1687
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1718
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1720
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1721
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1723
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1760
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1773
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1779
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1800
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1837
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1862
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1871
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1916
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1917
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1943
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1948
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
1967
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
2003
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
2005
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
285
73061943
73071403
9,460
loss
2041
HEATR4
N
0
27
41.39
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
286
80413494
80429808
16,314
loss
1293
C14orf145
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
286
80413494
80429808
16,314
gain
1324
C14orf145
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
286
80413494
80429808
16,314
loss
1844
C14orf145
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
286
80413494
80429808
16,314
loss
1916
C14orf145
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
286
80413494
80429808
16,314
loss
1957
C14orf145
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
286
80413494
80429808
16,314
loss
1961
C14orf145
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
287
90323329
90324694
1,365
loss
1279
TTC7B
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
287
90323329
90324694
1,365
loss
1287
TTC7B
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
287
90323329
90324694
1,365
gain
1298
TTC7B
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
287
90323329
90324694
1,365
loss
1559
TTC7B
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
287
90323329
90324694
1,365
loss
1647
TTC7B
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
287
90323329
90324694
1,365
loss
1786
TTC7B
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
287
90323329
90324694
1,365
loss
1794
TTC7B
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
287
90323329
90324694
1,365
loss
1891
TTC7B
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


14
288
104679956
104686612
6,656
gain
1447
JAG2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
288
104679956
104686612
6,656
loss
1695
JAG2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
288
104679956
104686612
6,656
loss
1739
JAG2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
289
104686613
104688434
1,821
gain
1447
JAG2
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
289
104686613
104688434
1,821
loss
1695
JAG2
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
289
104686613
104688434
1,821
loss
1739
JAG2
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
289
104686613
104688434
1,821
loss
1856
JAG2
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
290
104902380
104905434
3,054
gain
1447
PACS2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


14
290
104902380
104905434
3,054
loss
2036
PACS2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
291
20760284
21205712
445,428
gain
1333
GOLGA8E,
Y
0
7
10.41
Exon+ve, ASD > 4,









GOLGA8IP,




Normals < 2,









HERC2P2,




no Sanger filter applied









HERC2P7







15
291
20760284
21205712
445,428
loss
1564
GOLGA8E,
Y
0
7
10.41
Exon+ve, ASD > 4,









GOLGA8IP,




Normals < 2,









HERC2P2,




no Sanger filter applied









HERC2P7







15
291
20760284
21205712
445,428
loss
1761
GOLGA8E,
Y
0
7
10.41
Exon+ve, ASD > 4,









GOLGA8IP,




Normals < 2,









HERC2P2,




no Sanger filter applied









HERC2P7







15
291
20760284
21205712
445,428
loss
1799
GOLGA8E,
Y
0
7
10.41
Exon+ve, ASD > 4,









GOLGA8IP,




Normals < 2,









HERC2P2,




no Sanger filter applied









HERC2P7







15
291
20760284
21205712
445,428
loss
1839
GOLGA8E,
Y
0
7
10.41
Exon+ve, ASD > 4,









GOLGA8IP,




Normals < 2,









HERC2P2,




no Sanger filter applied









HERC2P7







15
291
20760284
21205712
445,428
loss
1948
GOLGA8E,
Y
0
7
10.41
Exon+ve, ASD > 4,









GOLGA8IP,




Normals < 2,









HERC2P2,




no Sanger filter applied









HERC2P7







15
291
20760284
21205712
445,428
gain
1951
GOLGA8E,
Y
0
7
10.41
Exon+ve, ASD > 4,









GOLGA8IP,




Normals < 2,









HERC2P2,




no Sanger filter applied









HERC2P7







15
291
27028094
27115748
87,654
gain
1988
APBA2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
291
27028094
27115748
87,654
loss
1994
APBA2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
292
32456500
32514938
58,438
loss
1245
MIR1233-1,
Y
1
9
13.43
Exon+ve, ASD > 4,









GOLGA8A,




Normals < 2,









MIR1233-2,




no Sanger filter applied


15
292
32456500
32514938
58,438
loss
1317
MIR1233-1,
Y
1
9
13.43
Exon+ve, ASD > 4,









GOLGA8A,




Normals < 2,









MIR1233-2,




no Sanger filter applied


15
292
32456500
32514938
58,438
loss
1440
MIR1233-1,
Y
1
9
13.43
Exon+ve, ASD > 4,









GOLGA8A,




Normals < 2,









MIR1233-2,




no Sanger filter applied


15
292
32456500
32514938
58,438
loss
1449
MIR1233-1,
Y
1
9
13.43
Exon+ve, ASD > 4,









GOLGA8A,




Normals < 2,









MIR1233-2,




no Sanger filter applied


15
292
32456500
32514938
58,438
loss
1467
MIR1233-1,
Y
1
9
13.43
Exon+ve, ASD > 4,









GOLGA8A,




Normals < 2,









MIR1233-2,




no Sanger filter applied


15
292
32456500
32514938
58,438
loss
1724
MIR1233-1,
Y
1
9
13.43
Exon+ve, ASD > 4,









GOLGA8A,




Normals < 2,









MIR1233-2,




no Sanger filter applied


15
292
32456500
32514938
58,438
loss
1829
MIR1233-1,
Y
1
9
13.43
Exon+ve, ASD > 4,









GOLGA8A,




Normals < 2,









MIR1233-2,




no Sanger filter applied


15
292
32456500
32514938
58,438
loss
1935
MIR1233-1,
Y
1
9
13.43
Exon+ve, ASD > 4,









GOLGA8A,




Normals < 2,









MIR1233-2,




no Sanger filter applied


15
292
32456500
32514938
58,438
loss
2041
MIR1233-1,
Y
1
9
13.43
Exon+ve, ASD > 4,









GOLGA8A,




Normals < 2,









MIR1233-2,




no Sanger filter applied


15
293
52519074
52533227
14,153
loss
1260
UNC13C
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
293
52519074
52533227
14,153
loss
1451
UNC13C
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
293
52519074
52533227
14,153
loss
1670
UNC13C
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
293
52519074
52533227
14,153
loss
1672
UNC13C
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
293
52519074
52533227
14,153
loss
1741
UNC13C
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
294
56036057
56039530
3,473
loss
1233
ALDH1A2
N
1
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
294
56036057
56039530
3,473
loss
1371
ALDH1A2
N
1
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
294
56036057
56039530
3,473
loss
1402
ALDH1A2
N
1
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
294
56036057
56039530
3,473
loss
1407
ALDH1A2
N
1
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
294
56036057
56039530
3,473
loss
1464
ALDH1A2
N
1
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
294
56036057
56039530
3,473
loss
1519
ALDH1A2
N
1
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
294
56036057
56039530
3,473
loss
1602
ALDH1A2
N
1
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
294
56036057
56039530
3,473
loss
1680
ALDH1A2
N
1
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
294
56036057
56039530
3,473
loss
1902
ALDH1A2
N
1
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
295
69027858
69034501
6,643
loss
1308
LRRC49
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
295
69027858
69034501
6,643
loss
1309
LRRC49
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
295
69027858
69034501
6,643
loss
1420
LRRC49
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
295
69027858
69034501
6,643
loss
1422
LRRC49
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
295
69027858
69034501
6,643
loss
1432
LRRC49
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
295
69027858
69034501
6,643
loss
1434
LRRC49
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
295
69027858
69034501
6,643
loss
1447
LRRC49
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
295
69027858
69034501
6,643
gain
1565
LRRC49
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


15
296
73684637
73686655
2,018
loss
1415
SNUPN
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
296
73684637
73686655
2,018
loss
1773
SNUPN
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
296
73684637
73686655
2,018
gain
2018
SNUPN
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
297
73686656
73690130
3,474
loss
1415
SNUPN
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
297
73686656
73690130
3,474
gain
2018
SNUPN
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
298
73729296
73759785
30,489
loss
1415
SNX33, CSPG4
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
298
73729296
73759785
30,489
gain
2018
SNX33, CSPG4
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
299
76206143
76220301
14,158
gain
1300
CIB2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
299
76206143
76220301
14,158
gain
1918
CIB2
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
300
99976057
100033499
57,442
gain
1370
TM2D3, TARSL2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
300
99976057
100033499
57,442
gain
1907
TM2D3, TARSL2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


15
300
99976057
100033499
57,442
gain
1947
TM2D3, TARSL2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
301
386962
388480
1,518
loss
1248
NME4
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
301
386962
388480
1,518
loss
1758
NME4
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
301
386962
388480
1,518
loss
1810
NME4
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
301
386962
388480
1,518
loss
1865
NME4
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
302
759120
764070
4,950
loss
1242
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1257
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1282
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1344
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1346
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1369
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1386
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1387
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1405
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1410
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1419
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1468
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1485
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1512
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1532
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1540
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
gain
1628
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1649
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1653
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1709
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1721
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1722
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1723
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1776
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1788
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1903
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1905
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1923
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
1959
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
2034
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
302
759120
764070
4,950
loss
2040
MIR662, MSLNL
Y
4
31
11.92
Genic (distinct CNV-














subregions); OR > 6


16
303
764071
823948
59,877
gain
1628
PRR25, MSLNL,
Y
3
1
11.92
Genic (distinct CNV-









RPUSD1,




subregions); OR > 6









CHTF18, GNG13,







16
304
3361009
3600998
239,989
gain
1567
CLUAP1, SLX4,
Y
0
1
1.47
MTRNR2L_family









ZNF174, ZNF434,














ZNF597,














C16orf90, NAT15,














NLRC3,














MTRNR2L4







16
305
4568980
4574011
5,031
gain
1567
LOC342346
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
305
4568980
4574011
5,031
loss
1567
LOC342346
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
306
18516137
18645462
129,325
gain
1714
ABCC6P1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
306
18516137
18645462
129,325
gain
1811
ABCC6P1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
306
18516137
18645462
129,325
gain
1965
ABCC6P1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
307
29560500
29592920
32,420
ÿain
1608
SPN
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
307
29560500
29592920
32,420
loss
1671
SPN
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
307
29560500
29592920
32,420
gain
1700
SPN
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
307
29560500
29592920
32,420
loss
1823
SPN
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
307
29560500
29592920
32,420
loss
1893
SPN
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
307
29560500
29592920
32,420
gain
1968
SPN
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
308
29598013
29619548
21,535
gain
1608
QPRT
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
308
29598013
29619548
21,535
loss
1671
QPRT
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
308
29598013
29619548
21,535
gain
1700
QPRT
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
308
29598013
29619548
21,535
loss
1823
QPRT
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
308
29598013
29619548
21,535
loss
1893
QPRT
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
308
29598013
29619548
21,535
gain
1968
QPRT
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
309
29619549
29955055
335,506
loss
1671
MVP, KCTD13,
Y
1
5
7.42
Exon+ve, ASD > 4,









INO80E,




Normals < 2,









ASPHD1,




no Sanger filter applied









DOC2A, MAZ,














ZG16,














LOC440356,














PRRT2, C16orf92,














TAOK2,














C16prf53,














TMEM219,














HIRIP3, SEZ6L2,














FAM57B,














C16orf54, CDIPT







16
309
29619549
29955055
335,506
gain
1700
MVP, KCTD13,
Y
1
5
7.42
Exon+ve, ASD > 4,









INO80E,




Normals < 2,









ASPHD1,




no Sanger filter applied









DOC2A, MAZ,














ZG16,














LOC440356,














PRRT2, C16orf92,














TAOK2,














C16prf53,














TMEM219,














HIRIP3, SEZ6L2,














FAM57B,














C16orf54, CDIPT







16
309
29619549
29955055
335,506
loss
1823
MVP, KCTD13,
Y
1
5
7.42
Exon+ve, ASD > 4,









INO80E,




Normals < 2,









ASPHD1,




no Sanger filter applied









DOC2A, MAZ,














ZG16,














LOC440356,














PRRT2, C16orf92,














TAOK2,














C16prf53,














TMEM219,














HIRIP3, SEZ6L2,














FAM57B,














C16orf54, CDIPT







16
309
29619549
29955055
335,506
loss
1893
MVP, KCTD13,
Y
1
5
7.42
Exon+ve, ASD > 4,









INO80E,




Normals < 2,









ASPHD1,




no Sanger filter applied









DOC2A, MAZ,














ZG16,














LOC440356,














PRRT2, C16orf92,














TAOK2,














C16prf53,














TMEM219,














HIRIP3, SEZ6L2,














FAM57B,














C16orf54, CDIPT







16
309
29619549
29955055
335,506
gain
1968
MVP, KCTD13,
Y
1
5
7.42
Exon+ve, ASD > 4,









INO80E,




Normals < 2,









ASPHD1,




no Sanger filter applied









DOC2A, MAZ,














ZG16,














LOC440356,














PRRT2, C16orf92,














TAOK2,














C16prf53,














TMEM219,














HIRIP3, SEZ6L2,














FAM57B,














C16orf54, CDIPT







16
310
29959974
30027212
67,238
loss
1671
ALDOA, GDPD3,
Y
1
5
7.42
Exon+ve, ASD > 4,









PPP4C, TBX6,




Normals < 2,









YPEL3




no Sanger filter applied


16
310
29959974
30027212
67,238
gain
1671
ALDOA, GDPD3,
Y
1
5
7.42
Exon+ve, ASD > 4,









PPP4C, TBX6,




Normals < 2,









YPEL3




no Sanger filter applied


16
310
29959974
30027212
67,238
loss
1671
ALDOA, GDPD3,
Y
1
5
7.42
Exon+ve, ASD > 4,









PPP4C, TBX6,




Normals < 2,









YPEL3




no Sanger filter applied


16
310
29959974
30027212
67,238
loss
1671
ALDOA, GDPD3,
Y
1
5
7.42
Exon+ve, ASD > 4,









PPP4C, TBX6,




Normals < 2,









YPEL3




no Sanger filter applied


16
310
29959974
30027212
67,238
gain
1968
ALDOA, GDPD3,
Y
1
5
7.42
Exon+ve, ASD > 4,









PPP4C, TBX6,




Normals < 2,









YPEL3




no Sanger filter applied


16
311
30099560
30104791
5,231
loss
1671
CORO1A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
311
30099560
30104791
5,231
gain
1700
CORO1A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
311
30099560
30104791
5,231
loss
1823
CORO1A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
311
30099560
30104791
5,231
loss
1893
CORO1A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
312
68753210
68838384
85,174
gain
1323
CLEC18C,
Y
1
7
10.41
Exon+ve, ASD > 4,









LOC729513




Normals < 2,














no Sanger filter applied


16
312
68753210
68838384
85,174
loss
1538
CLEC18C,
Y
1
7
10.41
Exon+ve, ASD > 4,









LOC729513




Normals < 2,














no Sanger filter applied


16
312
68753210
68838384
85,174
loss
1742
CLEC18C,
Y
1
7
10.41
Exon+ve, ASD > 4,









LOC729513




Normals < 2,














no Sanger filter applied


16
312
68753210
68838384
85,174
loss
1792
CLEC18C,
Y
1
7
10.41
Exon+ve, ASD > 4,









LOC729513




Normals < 2,














no Sanger filter applied


16
312
68753210
68838384
85,174
loss
1793
CLEC18C,
Y
1
7
10.41
Exon+ve, ASD > 4,









LOC729513




Normals < 2,














no Sanger filter applied


16
312
68753210
68838384
85,174
loss
1875
CLEC18C,
Y
1
7
10.41
Exon+ve, ASD > 4,









LOC729513




Normals < 2,














no Sanger filter applied


16
312
68753210
68838384
85,174
loss
1935
CLEC18C,
Y
1
7
10.41
Exon+ve, ASD > 4,









LOC729513




Normals < 2,














no Sanger filter applied


16
313
68838385
68842364
3,979
gain
1323
EXOSC6
Y
0
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
313
68838385
68842364
3,979
loss
1538
EXOSC6
Y
0
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
313
68838385
68842364
3,979
loss
1742
EXOSC6
Y
0
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
313
68838385
68842364
3,979
loss
1793
EXOSC6
Y
0
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
313
68838385
68842364
3,979
loss
1935
EXOSC6
Y
0
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
314
70653499
70665447
11,948
gain
1489
HPR
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
314
70653499
70665447
11,948
gain
1497
HPR
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
314
70653499
70665447
11,948
gain
1723
HPR
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
314
70653499
70665447
11,948
gain
1731
HPR
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
314
70653499
70665447
11,948
gain
1734
HPR
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
314
70653499
70665447
11,948
gain
1737
HPR
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
314
70653499
70665447
11,948
loss
1775
HPR
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
314
70653499
70665447
11,948
gain
1877
HPR
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
314
70653499
70665447
11,948
gain
2034
HPR
Y
1
9
13.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
315
72918129
72929785
11,656
gain
1440
LOC283922
Y
0
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
315
72918129
72929785
11,656
gain
1490
LOC283922
Y
0
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
315
72918129
72929785
11,656
gain
1449
LOC283922
Y
0
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
315
72918129
72929785
11,656
gain
1521
LOC283922
Y
0
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
315
72918129
72929785
11,656
gain
1913
LOC283922
Y
0
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
316
73038137
73040905
2,768
loss
1263
GLG1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
316
73038137
73040905
2,768
loss
1285
GLG1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
316
73038137
73040905
2,768
loss
1831
GLG1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
317
75093958
75097330
3,372
gain
1423
CNTNAP4
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
317
75093958
75097330
3,372
gain
1793
CNTNAP4
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
317
75093958
75097330
3,372
gain
1807
CNTNAP4
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
317
75093958
75097330
3,372
gain
1823
CNTNAP4
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
317
75093958
75097330
3,372
gain
1860
CNTNAP4
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
317
75093958
75097330
3,372
gain
1923
CNTNAP4
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
317
75093958
75097330
3,372
gain
2035
CNTNAP4
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
318
76617253
76624877
7,624
gain
1489
CLEC3A
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
318
76617253
76624877
7,624
loss
1676
CLEC3A
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
318
76617253
76624877
7,624
gain
1851
CLEC3A
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


16
319
76925749
76929597
3,848
gain
1258
WWOX
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
319
76925749
76929597
3,848
gain
1333
WWOX
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
319
76925749
76929597
3,848
gain
1354
WWOX
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
319
76925749
76929597
3,848
gain
1436
WWOX
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
319
76925749
76929597
3,848
gain
1454
WWOX
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
319
76925749
76929597
3,848
gain
1605
WWOX
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
319
76925749
76929597
3,848
gain
1683
WWOX
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
319
76925749
76929597
3,848
gain
1851
WWOX
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
319
76925749
76929597
3,848
gain
1925
WWOX
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


16
319
76925749
76929597
3,848
gain
1969
WWOX
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
320
4617676
4629628
11,952
loss
1692
TM4SF5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


17
320
4617676
4629628
11,952
loss
1924
TM4SF5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


17
321
12435897
12441508
5,611
loss
1416
FLJ34690
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
321
12435897
12441508
5,611
gain
1520
FLJ34690
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
321
12435897
12441508
5,611
loss
1676
FLJ34690
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
321
12435897
12441508
5,611
loss
1678
FLJ34690
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
321
12435897
12441508
5,611
loss
1852
FLJ34690
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
321
12435897
12441508
5,611
loss
1878
FLJ34690
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
321
12435897
12441508
5,611
loss
2028
FLJ34690
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
322
21845327
21956831
111,504
gain
1454
MTRNR2L1
Y
1
4
5.92
MTRNR2L_family


17
322
21845327
21956831
111,504
gain
1584
MTRNR2L1
Y
1
4
5.92
MTRNR2L_family


17
322
21845327
21956831
111,504
loss
1743
MTRNR2L1
Y
1
4
5.92
MTRNR2L_family


17
322
21845327
21956831
111,504
gain
1837
MTRNR2L1
Y
1
4
5.92
MTRNR2L_family


17
323
32832643
32833765
1,122
gain
1252
ACACA
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
323
32832643
32833765
1,122
gain
1285
ACACA
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
323
32832643
32833765
1,122
gain
1372
ACACA
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
323
32832643
32833765
1,122
gain
1407
ACACA
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
323
32832643
32833765
1,122
gain
1434
ACACA
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
323
32832643
32833765
1,122
gain
1573
ACACA
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
323
32832643
32833765
1,122
gain
1617
ACACA
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
323
32832643
32833765
1,122
gain
1825
ACACA
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
323
32832643
32833765
1,122
gain
2042
ACACA
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
324
40209354
40213056
3,702
loss
1836
ADAM11
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


17
324
40209354
40213056
3,702
loss
1955
ADAM11
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


17
325
41508943
41512317
3,374
loss
1319
KIAA1267
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
325
41508943
41512317
3,374
loss
1320
KIAA1267
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
325
41508943
41512317
3,374
loss
1542
KIAA1267
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
325
41508943
41512317
3,374
loss
1587
KIAA1267
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
325
41508943
41512317
3,374
loss
1656
KIAA1267
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
325
41508943
41512317
3,374
loss
1861
KIAA1267
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1319
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1320
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1530
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1533
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1535
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1536
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1537
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1539
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1542
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1586
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1587
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1656
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1662
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1684
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
326
41512318
41514480
2,162
loss
1861
KIAA1267
N
0
15
22.58
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1319
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1320
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
gain
1394
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
gain
1465
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1530
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1533
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1535
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1536
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1537
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1539
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1542
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1586
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1587
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1655
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1656
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1662
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1675
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1684
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1734
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
gain
1840
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
gain
1844
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1861
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
gain
1869
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
loss
1887
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
gain
1907
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
327
41518222
41519701
1,479
gain
1914
KIAA1267
N
1
26
39.79
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
328
42142364
42143048
684
loss
1250
NSF
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
328
42142364
42143048
684
loss
1266
NSF
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
328
42142364
42143048
684
loss
1436
NSF
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
328
42142364
42143048
684
loss
1536
NSF
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
328
42142364
42143048
684
gain
1671
NSF
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
328
42142364
42143048
684
gain
1751
NSF
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
328
42142364
42143048
684
gain
1800
NSF
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
328
42142364
42143048
684
gain
1991
NSF
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
328
42142364
42143048
684
gain
2032
NSF
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
328
42142364
42143048
684
gain
2036
NSF
N
0
10
14.94
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
329
57331106
57336509
5,403
loss
1439
INTS2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
329
57331106
57336509
5,403
loss
1601
INTS2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
329
57331106
57336509
5,403
loss
1641
INTS2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
329
57331106
57336509
5,403
loss
1784
INTS2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
329
57331106
57336509
5,403
gain
1875
INTS2
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1283
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1296
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1306
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1309
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1344
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1370
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1394
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1396
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1410
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1708
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1776
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1831
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1833
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1843
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1898
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1921
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
330
68331630
68336699
5,069
loss
1928
SLC39A11
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


17
331
76213226
76214810
1,584
gain
1831
RPTOR
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


17
331
76213226
76214810
1,584
gain
1852
RPTOR
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


17
331
76213226
76214810
1,584
gain
1929
RPTOR
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


18
332
503208
505456
2,248
loss
1284

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1389

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1413

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1415

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1439

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1452

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1464

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1472

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1474

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1472

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1495

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1504

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
gain
1534

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1545

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1567

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1568

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1572

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1584

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
gain
1662

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1672

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1699

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1703

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1730

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
gain
1777

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1802

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1809

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1830

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1870

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
gain
1871

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1875

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1968

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
1999

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
2031

N
0
34
52.68
high OR intergenic (OR > 30)


18
332
503208
505456
2,248
loss
2044

N
0
34
52.68
high OR intergenic (OR > 30)


18
333
17513277
17514596
1,319
gain
1250
ABHD3
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
333
17513277
17514596
1,319
loss
1426
ABHD3
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
333
17513277
17514596
1,319
loss
1442
ABHD3
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
333
17513277
17514596
1,319
gain
1611
ABHD3
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
333
17513277
17514596
1,319
loss
1670
ABHD3
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
333
17513277
17514596
1,319
gain
2045
ABHD3
N
0
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
1227
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
1236
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
1354
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
1459
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
1464
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
1572
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
1617
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
1792
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
1818
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
1857
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
334
48698719
48702421
3,702
gain
2026
DCC
N
0
11
16.46
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1227
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1236
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1354
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1415
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1459
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1464
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1572
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1617
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1672
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1697
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1728
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1740
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1776
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1792
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1818
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
1857
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
335
48708982
48714801
5,819
gain
2026
DCC
N
1
17
25.67
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1227
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1236
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1354
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1405
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1415
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1459
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1464
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1572
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1617
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1672
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1697
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1728
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1740
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1776
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1792
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1818
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
1857
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
336
48714802
48716663
1,861
gain
2026
DCC
N
1
18
27.22
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
337
65367912
65369843
1,931
loss
1296
DOK6
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
337
65367912
65369843
1,931
loss
1307
DOK6
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
337
65367912
65369843
1,931
loss
1370
DOK6
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
337
65367912
65369843
1,931
loss
1664
DOK6
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
337
65367912
65369843
1,931
loss
1852
DOK6
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
337
65367912
65369843
1,931
loss
1905
DOK6
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
337
65367912
65369843
1,931
loss
1935
DOK6
N
0
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


18
338
65911512
65915538
4,026
loss
1276
RTTN
N
0
3
8.91
Genic (distinct CNV-














subregions); OR > 6


18
338
65911512
65915538
4,026
loss
1493
RTTN
N
0
3
8.91
Genic (distinct CNV-














subregions); OR > 6


18
338
65911512
65915538
4,026
loss
1509
RTTN
N
0
3
8.91
Genic (distinct CNV-














subregions); OR > 6


18
339
65915539
65916735
1,196
loss
1276
RTTN
N
0
4
8.91
Genic (distinct CNV-














subregions); OR > 6


18
339
65915539
65916735
1,196
loss
1493
RTTN
N
0
4
8.91
Genic (distinct CNV-














subregions); OR > 6


18
339
65915539
65916735
1,196
loss
1509
RTTN
N
0
4
8.91
Genic (distinct CNV-














subregions); OR > 6


18
339
65915539
65916735
1,196
loss
1663
RTTN
N
0
4
8.91
Genic (distinct CNV-














subregions); OR > 6


18
340
65916737
65923901
7,164
loss
1260
RTTN
N
0
4
8.91
Genic (distinct CNV-














subregions); OR > 6


18
340
65916737
65923901
7,164
loss
1276
RTTN
N
0
4
8.91
Genic (distinct CNV-














subregions); OR > 6


18
340
65916737
65923901
7,164
loss
1613
RTTN
N
0
4
8.91
Genic (distinct CNV-














subregions); OR > 6


18
340
65916737
65923901
7,164
loss
1663
RTTN
N
0
4
8.91
Genic (distinct CNV-














subregions); OR > 6


19
341
241442
244260
2,818
loss
1565
PPAP2C
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
341
241442
244260
2,818
loss
1567
PPAP2C
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
341
241442
244260
2,818
loss
1944
PPAP2C
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
342
1200840
1202175
1,335
loss
1224
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1227
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1230
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1234
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1301
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1416
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1471
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1495
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1503
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1504
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1520
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1527
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1528
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1529
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1532
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1544
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1566
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1574
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1577
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1629
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1672
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1688
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1724
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1728
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1742
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1802
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1827
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1831
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1870
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1883
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1921
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
1964
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
2018
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
342
1200840
1202175
1,335
loss
2044
MIDN
Y
1
34
52.68
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
343
1400798
1400840
42
loss
1229

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1236

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1238

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1239

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1240

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1245

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1258

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1259

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1264

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1268

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1269

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1270

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1279

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1280

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1315

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1317

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1324

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1389

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1401

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1402

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1404

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1406

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1413

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1416

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1417

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1419

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1421

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1427

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1434

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1447

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1449

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1450

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1452

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1461

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1466

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1504

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1505

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1510

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1524

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1529

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1530

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1532

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1534

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1541

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1543

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1548

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1559

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1570

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1572

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1574

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1576

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1587

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1592

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1594

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1596

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1600

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1612

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1630

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1633

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1637

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1661

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1672

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1687

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1724

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1807

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1827

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1828

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1829

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1835

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1837

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1841

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1842

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1862

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1864

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1871

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1872

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1874

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1876

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1885

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1888

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1909

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1913

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1914

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1917

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1926

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1928

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1931

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1934

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
1951

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1959

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
1964

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
2006

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
2024

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
2029

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
2030

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
2041

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
gain
2042

N
1
98
168.48
high OR intergenic (OR > 30)


19
343
1400798
1400840
42
loss
2044

N
1
98
168.48
high OR intergenic (OR > 30)


19
344
13993305
14014612
21,307
gain
1461
IL27RA, RLN3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
344
13993305
14014612
21,307
gain
1878
IL27RA, RLN3
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
345
20146625
20221909
75,284
loss
1577
ZNF486
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
345
20146625
20221909
75,284
loss
1918
ZNF486
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
346
20510788
20517399
6,611
loss
1333
ZNF737
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
346
20510788
20517399
6,611
loss
1416
ZNF737
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
346
20510788
20517399
6,611
loss
1781
ZNF737
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
346
20510788
20517399
6,611
loss
1918
ZNF737
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
347
23786449
23790608
4,159
gain
1323
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
1509
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
1541
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
1585
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
1587
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
1606
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
1608
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
1612
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
1775
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
1777
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
1783
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
347
23786449
23790608
4,159
gain
2041
RPSAP58
N
0
12
17.98
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
348
23790609
23800104
9,495
gain
1323
RPSAP58
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
348
23790609
23800104
9,495
gain
1509
RPSAP58
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
348
23790609
23800104
9,495
gain
1541
RPSAP58
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
348
23790609
23800104
9,495
gain
1585
RPSAP58
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
348
23790609
23800104
9,495
gain
1587
RPSAP58
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
348
23790609
23800104
9,495
gain
1606
RPSAP58
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
348
23790609
23800104
9,495
gain
1608
RPSAP58
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
348
23790609
23800104
9,495
gain
1612
RPSAP58
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
348
23790609
23800104
9,495
gain
1783
RPSAP58
N
0
9
13.43
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
349
42530955
42537227
6,272
loss
1348
HKR1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
349
42530955
42537227
6,272
loss
1459
HKR1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
349
42530955
42537227
6,272
loss
1684
HKR1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
349
42530955
42537227
6,272
loss
1816
HKR1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
349
42530955
42537227
6,272
loss
2024
HKR1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
350
42537228
42537766
538
loss
1348
HKR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
350
42537228
42537766
538
loss
1402
HKR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
350
42537228
42537766
538
loss
1459
HKR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
350
42537228
42537766
538
loss
1528
HKR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
350
42537228
42537766
538
loss
1658
HKR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
350
42537228
42537766
538
loss
1684
HKR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
350
42537228
42537766
538
loss
1816
HKR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
350
42537228
42537766
538
loss
2024
HKR1
N
0
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
351
46032427
46046858
14,431
gain
1229
CYP2A6
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
351
46032427
46046858
14,431
gain
1395
CYP2A6
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
351
46032427
46046858
14,431
gain
1538
CYP2A6
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
351
46032427
46046858
14,431
gain
1869
CYP2A6
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
351
46032427
46046858
14,431
gain
2020
CYP2A6
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
352
48536891
48551450
14,559
loss
1786
CD177, PRG1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
352
48536891
48551450
14,559
loss
1899
CD177, PRG1
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
353
52315524
52339852
24,328
gain
1393
SAE1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
353
52315524
52339852
24,328
gain
1814
SAE1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
353
52315524
52339852
24,328
gain
1871
SAE1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
353
52315524
52339852
24,328
gain
1924
SAE1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
354
58208527
58212112
3,585
gain
1287
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1337
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1348
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1424
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1458
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1505
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1511
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1529
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1633
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1646
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1649
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
354
58208527
58212112
3,585
gain
1786
HERV-V1
Y
2
12
8.98
Genic (distinct CNV-














subregions); OR > 6


19
355
58920524
58923614
3,090
gain
1606
MIR516B2,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









MIR526A2




Normals < 2, Sanger−ve


19
355
58920524
58923614
3,090
gain
1914
MIR516B2,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









MIR526A2




Normals < 2, Sanger−ve


19
355
58920524
58923614
3,090
gain
1966
MIR516B2,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









MIR526A2




Normals < 2, Sanger−ve


19
356
58923615
58927377
3,762
gain
1914
MIR518A1,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









MIR518E




Normals < 2, Sanger−ve


19
356
58923615
58927377
3,762
gain
1966
MIR518A1,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









MIR518E




Normals < 2, Sanger−ve


19
357
59411618
59414644
3,026
loss
1230
LILRB3
Y
1
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
357
59411618
59414644
3,026
loss
1346
LILRB3
Y
1
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
357
59411618
59414644
3,026
loss
1392
LILRB3
Y
1
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
357
59411618
59414644
3,026
loss
1429
LILRB3
Y
1
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
357
59411618
59414644
3,026
loss
1616
LILRB3
Y
1
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
357
59411618
59414644
3,026
loss
1635
LILRB3
Y
1
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
357
59411618
59414644
3,026
loss
1803
LILRB3
Y
1
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
357
59411618
59414644
3,026
loss
1804
LILRB3
Y
1
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
357
59411618
59414644
3,026
loss
1875
LILRB3
Y
1
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
357
59411618
59414644
3,026
loss
2006
LILRB3
Y
1
10
14.94
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


19
358
59864456
59865970
1,514
loss
1627
LILRB4
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
358
59864456
59865970
1,514
gain
1751
LILRB4
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
359
63698020
63704294
6,274
gain
1571
SLC27A5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


19
359
63698020
63704294
6,274
gain
1862
SLC27A5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


20
360
1544486
1546858
2,372
gain
1298
SIRPB1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
360
1544486
1546858
2,372
gain
1449
SIRPB1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
360
1544486
1546858
2,372
gain
1473
SIRPB1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
360
1544486
1546858
2,372
gain
1722
SIRPB1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
360
1544486
1546858
2,372
gain
1935
SIRPB1
N
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
361
26173124
28250082
2,076,
gain
1285
FRG1B
Y
0
10
14.94
Exon+ve, ASD > 4,






958







Normals < 2,














no Sanger filter applied


20
361
26173124
28250082
2,076,
gain
1392
FRG1B
Y
0
10
14.94
Exon+ve, ASD > 4,






958







Normals < 2,














no Sanger filter applied


20
361
26173124
28250082
2,076,
gain
1401
FRG1B
Y
0
10
14.94
Exon+ve, ASD > 4,






958







Normals < 2,














no Sanger filter applied


20
361
26173124
28250082
2,076,
gain
1405
FRG1B
Y
0
10
14.94
Exon+ve, ASD > 4,






958







Normals < 2,














no Sanger filter applied


20
361
26173124
28250082
2,076,
gain
1422
FRG1B
Y
0
10
14.94
Exon+ve, ASD > 4,






958







Normals < 2,














no Sanger filter applied


20
361
26173124
28250082
2,076,
gain
1429
FRG1B
Y
0
10
14.94
Exon+ve, ASD > 4,






958







Normals < 2,














no Sanger filter applied


20
361
26173124
28250082
2,076,
gain
1571
FRG1B
Y
0
10
14.94
Exon+ve, ASD > 4,






958







Normals < 2,














no Sanger filter applied


20
361
26173124
28250082
2,076,
gain
1694
FRG1B
Y
0
10
14.94
Exon+ve, ASD > 4,






958







Normals < 2,














no Sanger filter applied


20
361
26173124
28250082
2,076,
gain
1865
FRG1B
Y
0
10
14.94
Exon+ve, ASD > 4,






958







Normals < 2,














no Sanger filter applied


20
361
26173124
28250082
2,076,
gain
1875
FRG1B
Y
0
10
14.94
Exon+ve, ASD > 4,






958







Normals < 2,














no Sanger filter applied


20
362
45217841
45220204
2,363
loss
1475
EYA2
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
362
45217841
45220204
2,363
loss
1533
EYA2
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
362
45217841
45220204
2,363
loss
1572
EYA2
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
362
45217841
45220204
2,363
loss
1632
EYA2
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
362
45217841
45220204
2,363
loss
1734
EYA2
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
362
45217841
45220204
2,363
loss
1742
EYA2
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
362
45217841
45220204
2,363
loss
1887
EYA2
N
1
7
10.41
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
363
52090394
52092989
2,595
loss
1472
BCAS1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
363
52090394
52092989
2,595
loss
1490
BCAS1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
363
52090394
52092989
2,595
loss
1595
BCAS1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
363
52090394
52092989
2,595
loss
1721
BCAS1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
363
52090394
52092989
2,595
loss
1876
BCAS1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
363
52090394
52092989
2,595
loss
2043
BCAS1
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
364
61130661
61131984
1,323
gain
1625
LOC63930
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
364
61130661
61131984
1,323
gain
1699
LOC63930
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
364
61130661
61131984
1,323
loss
1773
LOC63930
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
364
61130661
61131984
1,323
loss
1821
LOC63930
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
364
61130661
61131984
1,323
loss
1886
LOC63930
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
365
61131985
61136457
4,472
gain
1699
LOC63930,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









NCRNA00029




Normals < 2, Sanger−ve


20
365
61131985
61136457
4,472
loss
1773
LOC63930,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









NCRNA00029




Normals < 2, Sanger−ve


20
365
61131985
61136457
4,472
loss
1821
LOC63930,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









NCRNA00029




Normals < 2, Sanger−ve


20
366
61195158
61204000
8,842
gain
1262
HAR1B, HAR1A
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
366
61195158
61204000
8,842
gain
1324
HAR1B, HAR1A
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
366
61195158
61204000
8,842
gain
1541
HAR1B, HAR1A
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
366
61195158
61204000
8,842
gain
1542
HAR1B, HAR1A
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
366
61195158
61204000
8,842
gain
1591
HAR1B, HAR1A
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


20
366
61195158
61204000
8,842
gain
1699
HAR1B, HAR1A
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


21
367
46559453
46599682
40,229
gain
1430
C21orf58, PCNT
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


21
367
46559453
46599682
40,229
gain
1730
C21orf58, PCNT
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


21
368
46657906
46674328
16,422
gain
1430
PCNT
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


21
368
46657906
46674328
16,422
gain
1953
PCNT
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
369
17403164
17431180
28,016
gain
1490
DGCR11, DGCR2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
369
17403164
17431180
28,016
gain
1753
DGCR11, DGCR2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
369
17403164
17431180
28,016
gain
1844
DGCR11, DGCR2
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
370
17431181
17433410
2,229
gain
1490
DGCR2
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
370
17431181
17433410
2,229
loss
1598
DGCR2
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
370
17431181
17433410
2,229
loss
1623
DGCR2
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
370
17431181
17433410
2,229
loss
1641
DGCR2
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
370
17431181
17433410
2,229
gain
1753
DGCR2
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
370
17431181
17433410
2,229
gain
1844
DGCR2
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
371
17433411
17515293
81,882
gain
1490
DGCR2, TSSK2,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









DGCR14




Normals < 2, Sanger−ve


22
371
17433411
17515293
81,882
gain
1753
DGCR2, TSSK2,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









DGCR14




Normals < 2, Sanger−ve


22
371
17433411
17515293
81,882
gain
1844
DGCR2, TSSK2,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









DGCR14




Normals < 2, Sanger−ve


22
372
17516927
17572569
55,642
gain
1490
CLTCL1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









SLC25A1, GSC2




Normals < 2, Sanger−ve


22
372
17516927
17572569
55,642
gain
1753
CLTCL1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









SLC25A1, GSC2




Normals < 2, Sanger−ve


22
372
17516927
17572569
55,642
gain
1844
CLTCL1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









SLC25A1, GSC2




Normals < 2, Sanger−ve


22
373
17574912
17652879
77,967
gain
1490
CLTCL1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
373
17574912
17652879
77,967
gain
1753
CLTCL1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
373
17574912
17652879
77,967
gain
1844
CLTCL1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
374
17662875
17941363
278,488
gain
1490
HIRA, CLDN5,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









C22orf39,




Normals < 2, Sanger−ve









MRPL40,














LOC150185,














CDC45, UFD1L







22
374
17662875
17941363
278,488
gain
1753
HIRA, CLDN5,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









C22orf39,




Normals < 2, Sanger−ve









MRPL40,














LOC150185,














CDC45, UFD1L







22
374
17662875
17941363
278,488
gain
1844
HIRA, CLDN5,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









C22orf39,




Normals < 2, Sanger−ve









MRPL40,














LOC150185,














CDC45, UFD1L







22
375
17957096
18092254
135,158
gain
1490
SEPT5, GP1BB,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









SEPT5-GP1BB




Normals < 2, Sanger−ve


22
375
17957096
18092254
135,158
gain
1753
SEPT5, GP1BB,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









SEPT5-GP1BB




Normals < 2, Sanger−ve


22
375
17957096
18092254
135,158
gain
1844
SEPT5, GP1BB,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









SEPT5-GP1BB




Normals < 2, Sanger−ve


22
376
18092255
18093176
921
gain
1490
GP1BB, SEPT5-
Y
1
5
7.42
Exon+ve, ASD > 4,









GP1BB




Normals < 2,














no Sanger filter applied


22
376
18092255
18093176
921
gain
1753
GP1BB, SEPT5-
Y
1
5
7.42
Exon+ve, ASD > 4,









GP1BB




Normals < 2,














no Sanger filter applied


22
376
18092255
18093176
921
gain
1780
GP1BB, SEPT5-
Y
1
5
7.42
Exon+ve, ASD > 4,









GP1BB



















no Sanger filter applied


22
376
18092255
18093176
921
gain
1844
GP1BB, SEPT5-
Y
1
5
7.42
Exon+ve, ASD > 4,









GP1BB




Normals < 2,














no Sanger filter applied


22
376
18092255
18093176
921
loss
2005
GP1BB, SEPT5-
Y
1
5
7.42
Exon+ve, ASD > 4,









GP1BB




Normals < 2,














no Sanger filter applied


22
377
18123761
18125355
1,594
gain
1490
TBX1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
377
18123761
18125355
1,594
gain
1753
TBX1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
377
18123761
18125355
1,594
gain
1844
TBX1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
377
18123761
18125355
1,594
loss
2005
TBX1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
378
18131562
18140658
9,096
gain
1490
TBX1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
378
18131562
18140658
9,096
gain
1753
TBX1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
378
18131562
18140658
9,096
gain
1844
TBX1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
379
18142945
18166699
23,754
gain
1490
GNB1L, TBX1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
379
18142945
18166699
23,754
gain
1753
GNB1L, TBX1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
379
18142945
18166699
23,754
gain
1844
GNB1L, TBX1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
380
18173638
18409271
235,633
gain
1490
ARVCF, MIR185,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









C22orf29, COMT,




Normals < 2, Sanger−ve









GNBIL,














TXNRD2,














C22orf25







22
380
18173638
18409271
235,633
gain
1753
ARVCF, MIR185,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









C22orf29, COMT,




Normals < 2, Sanger−ve









GNBIL,














TXNRD2,














C22orf25







22
380
18173638
18409271
235,633
gain
1844
ARVCF, MIR185,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









C22orf29, COMT,




Normals < 2, Sanger−ve









GNBIL,














TXNRD2,














C22orf25







22
381
18433173
18504518
71,345
gain
1490
DGCR8,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









ZDHHC8,




Normals < 2, Sanger−ve









MIR3618,














TRMT2A,














MIR1306,














RANBP1,














C22orf25







22
381
18433173
18504518
71,345
gain
1753
DGCR8,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









ZDHHC8,




Normals < 2, Sanger−ve









MIR3618,














TRMT2A,














MIR1306,














RANBP1,














C22orf25







22
381
18433173
18504518
71,345
gain
1844
DGCR8,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









ZDHHC8,




Normals < 2, Sanger−ve









MIR3618,














TRMT2A,














MIR1306,














RANBP1,














C22orf25







22
382
18504519
18505512
993
gain
1490
ZDHHC8
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
382
18504519
18505512
993
gain
1753
ZDHHC8
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
382
18504519
18505512
993
gain
1844
ZDHHC8
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
382
18504519
18505512
993
loss
1963
ZDHHC8
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
382
18504519
18505512
993
loss
1968
ZDHHC8
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
383
18505513
18507464
1,951
gain
1490
ZDHHC8
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
383
18505513
18507464
1,951
loss
1557
ZDHHC8
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
383
18505513
18507464
1,951
gain
1753
ZDHHC8
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
383
18505513
18507464
1,951
gain
1844
ZDHHC8
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
383
18505513
18507464
1,951
loss
1963
ZDHHC8
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
383
18505513
18507464
1,951
loss
1968
ZDHHC8
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
383
18505513
18507464
1,951
loss
1991
ZDHHC8
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
383
18505513
18507464
1,951
loss
1993
ZDHHC8
Y
1
8
11.92
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
loss
1314
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
gain
1490
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
loss
1557
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
gain
1753
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
loss
1833
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
gain
1844
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
loss
1859
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
loss
1963
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
loss
1968
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
loss
1991
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
loss
1993
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
384
18507465
18513604
6,139
loss
2043
ZDHHC8
Y
1
12
17.98
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
385
18513616
18519020
5,404
gain
1490
ZDHHC8
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
385
18513616
18519020
5,404
gain
1753
ZDHHC8
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
385
18513616
18519020
5,404
gain
1844
ZDHHC8
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
385
18513616
18519020
5,404
loss
1991
ZDHHC8
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
386
19459699
19475462
15,763
gain
1490
SERPIND1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









PI4KA




Normals < 2, Sanger−ve


22
386
19459699
19475462
15,763
gain
1753
SERPIND1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









PI4KA




Normals < 2, Sanger−ve


22
386
19459699
19475462
15,763
gain
1844
SERPIND1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









PI4KA




Normals < 2, Sanger−ve


22
387
19476441
19607267
130,826
gain
1490
CRKL, SNAP29,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









PI4KA




Normals < 2, Sanger−ve


22
387
19476441
19607267
130,826
gain
1753
CRKL, SNAP29,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









PI4KA




Normals < 2, Sanger−ve


22
387
19476441
19607267
130,826
gain
1844
CRKL, SNAP29,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









PI4KA




Normals < 2, Sanger−ve


22
388
19615302
19616903
1,601
gain
1242
CRKL
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
388
19615302
19616903
1,601
gain
1490
CRKL
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
388
19615302
19616903
1,601
loss
1633
CRKL
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
388
19615302
19616903
1,601
gain
1717
CRKL
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
388
19615302
19616903
1,601
gain
1753
CRKL
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
388
19615302
19616903
1,601
gain
1844
CRKL
N
1
6
8.91
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
389
19616904
19620943
4,039
gain
1242
CRKL
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
389
19616904
19620943
4,039
gain
1490
CRKL
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
389
19616904
19620943
4,039
gain
1753
CRKL
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
389
19616904
19620943
4,039
gain
1844
CRKL
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
390
22618050
22643741
25,691
loss
1263
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1278
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1282
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1468
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1489
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1564
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1568
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1573
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1602
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1618
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1671
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1716
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1742
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1819
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1833
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
390
22618050
22643741
25,691
loss
1851
DDTL, GSTT2B,
Y
6
16
8.2
Genic (distinct CNV-









GSTT2, DDT




subregions); OR > 6


22
391
22643742
22644242
500
loss
1263
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1278
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1282
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1468
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1489
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1564
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1568
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1573
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1602
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1606
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1618
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1671
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1716
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1741
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1742
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1819
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1833
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
391
22643742
22644242
500
loss
1851
DDTL, DDT
Y
6
18
8.2
Genic (distinct CNV-














subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1232
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1263
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1268
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1278
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1282
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1468
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1489
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1496
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1533
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1534
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1564
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1568
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1573
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1602
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1606
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1618
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1656
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1667
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1669
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1671
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1716
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1720
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1729
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1741
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1742
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1809
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1819
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1833
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1851
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
1868
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
2037
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
392
22644243
22667607
23,364
loss
2040
DDTL, GSTT2,
Y
6
32
8.2
Genic (distinct CNV-









DDT




subregions); OR > 6


22
393
22725306
22735036
9,730
loss
1282
GSTTP2
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
393
22725306
22735036
9,730
loss
1345
GSTTP2
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
393
22725306
22735036
9,730
gain
1412
GSTTP2
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
393
22725306
22735036
9,730
gain
1449
GSTTP2
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
393
22725306
22735036
9,730
loss
1618
GSTTP2
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
393
22725306
22735036
9,730
loss
1639
GSTTP2
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
393
22725306
22735036
9,730
loss
1792
GSTTP2
Y
0
7
10.41
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
394
28479825
28481680
1,855
gain
1468
ZMAT5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
394
28479825
28481680
1,855
gain
1581
ZMAT5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


22
395
34122937
34129032
6,095
loss
1432
MCM5
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
395
34122937
34129032
6,095
loss
1438
MCM5
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
395
34122937
34129032
6,095
loss
1823
MCM5
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
395
34122937
34129032
6,095
loss
1875
MCM5
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
395
34122937
34129032
6,095
loss
1908
MCM5
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
396
34129033
34130625
1,592
loss
1432
MCM5
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
396
34129033
34130625
1,592
loss
1438
MCM5
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
396
34129033
34130625
1,592
loss
1823
MCM5
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
396
34129033
34130625
1,592
loss
1875
MCM5
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
396
34129033
34130625
1,592
loss
1908
MCM5
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
396
34129033
34130625
1,592
loss
2031
MCM5
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
397
34130626
34132976
2,350
loss
1432
MCM5
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
397
34130626
34132976
2,350
loss
1438
MCM5
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
397
34130626
34132976
2,350
loss
1823
MCM5
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
397
34130626
34132976
2,350
loss
1875
MCM5
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
397
34130626
34132976
2,350
loss
1908
MCM5
Y
1
5
7.42
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1252
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1277
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1309
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1314
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1333
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1389
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1391
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1395
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1396
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1463
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1465
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1614
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1617
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1618
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1635
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1660
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1664
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1683
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1697
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1740
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1743
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1765
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1767
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1769
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1774
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1778
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1783
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1830
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1842
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1867
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
1920
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


22
398
37685496
37689057
3,561
loss
2020
APOBEC3A
Y
0
32
49.43
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
399
2740069
2742851
2,782
gain
1337
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
399
2740069
2742851
2,782
gain
1434
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
399
2740069
2742851
2,782
gain
1509
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
399
2740069
2742851
2,782
gain
1732
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
399
2740069
2742851
2,782
gain
1825
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
399
2740069
2742851
2,782
gain
1917
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
400
2743951
2747802
3,851
gain
1337
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
400
2743951
2747802
3,851
gain
1434
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
400
2743951
2747802
3,851
gain
1509
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
400
2743951
2747802
3,851
gain
1732
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
400
2743951
2747802
3,851
gain
1825
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
400
2743951
2747802
3,851
gain
1917
XG
Y
1
6
8.91
Exon+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
401
2965671
3071668
105,997
gain
1337
ARSF
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
401
2965671
3071668
105,997
gain
1917
ARSF
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
402
6156507
6407401
250,894
gain
1337
NLGN4X
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
402
6156507
6407401
250,894
gain
1570
NLGN4X
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
403
15576976
15628244
51,268
gain
1337
CA5BP1,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









TMEM27




Normals < 2, Sanger−ve


23
403
15576976
15628244
51,268
loss
1413
CA5BP1,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









TMEM27




Normals < 2, Sanger−ve


23
404
22924046
23003050
79,004
gain
1337
DDX53
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
404
22924046
23003050
79,004
loss
1811
DDX53
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
405
23760270
23761632
1,362
gain
1337
APOO
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
405
23760270
23761632
1,362
gain
1527
APOO
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
406
23761633
23778330
16,697
gain
1337
APOO
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
406
23761633
23778330
16,697
gain
1527
APOO
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
406
23761633
23778330
16,697
gain
1619
APOO
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
407
31793198
31823142
29,944
gain
1337
DMD
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
407
31793198
31823142
29,944
loss
1862
DMD
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
408
37200683
37201899
1,216
gain
1337
PRRG1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
408
37200683
37201899
1,216
gain
2020
PRRG1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
408
37200683
37201899
1,216
gain
2031
PRRG1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
409
37674337
37775408
101,071
gain
1337
SYTL5, CXorf27
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
409
37674337
37775408
101,071
gain
1649
SYTL5, CXorf27
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
410
46248133
46295089
46,956
gain
1337
ZNF674,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









LOC401588




Normals < 2, Sanger−ve


23
410
46248133
46295089
46,956
gain
1874
ZNF674,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









LOC401588




Normals < 2, Sanger−ve


23
411
48514030
48520825
6,795
gain
1337
GLOD5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
411
48514030
48520825
6,795
gain
1349
GLOD5
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
412
51038044
51341682
303,638
gain
1337
NUDT10,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









NUDT11




Normals < 2, Sanger−ve


23
412
51038044
51341682
303,638
gain
1349
NUDT10,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









NUDT11




Normals < 2, Sanger−ve


23
413
51379409
51453406
73,997
gain
1337
LOC441495,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









CENPVL1




Normals < 2, Sanger−ve


23
413
51379409
51453406
73,997
gain
1349
LOC441495,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









CENPVL1




Normals < 2, Sanger−ve


23
414
62435471
62610451
174,980
gain
1337
SPIN4, LOC92249
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
414
62435471
62610451
174,980
gain
1646
SPIN4, LOC92249
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
415
65684935
65848643
163,708
gain
1255
EDA2R
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
415
65684935
65848643
163,708
gain
1337
EDA2R
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
415
65684935
65848643
163,708
gain
1438
EDA2R
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
415
65684935
65848643
163,708
loss
1692
EDA2R
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
416
73083877
73086192
2,315
gain
1337
NCRNA00183
Y
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
416
73083877
73086192
2,315
loss
1345
NCRNA00183
Y
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
416
73083877
73086192
2,315
loss
1493
NCRNA00183
Y
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
416
73083877
73086192
2,315
loss
1574
NCRNA00183
Y
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
416
73083877
73086192
2,315
loss
1856
NCRNA00183
Y
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
417
76992219
76998609
6,390
gain
1273
MAGT1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
417
76992219
76998609
6,390
gain
1337
MAGT1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
417
76992219
76998609
6,390
gain
1421
MAGT1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
417
76992219
76998609
6,390
gain
1864
MAGT1
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
418
100409973
100414721
4,748
gain
1337
TAF7L
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
418
100409973
100414721
4,748
gain
1862
TAF7L
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
419
103231403
103239703
8,300
gain
1337
MCART6
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
419
103231403
103239703
8,300
gain
1424
MCART6
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
420
128777108
128780946
3,838
gain
1337
ZDHHC9
Y
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
420
128777108
128780946
3,838
gain
1459
ZDHHC9
Y
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
420
128777108
128780946
3,838
gain
1806
ZDHHC9
Y
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
420
128777108
128780946
3,838
gain
1824
ZDHHC9
Y
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
420
128777108
128780946
3,838
gain
2037
ZDHHC9
Y
0
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
421
130480966
130724109
243,143
gain
1337
OR13H1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









LOC286467




Normals < 2, Sanger−ve


23
421
130480966
130724109
243,143
gain
1771
OR13H1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









LOC286467




Normals < 2, Sanger−ve


23
421
130480966
130724109
243,143
gain
1940
OR13H1,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









LOC286467




Normals < 2, Sanger−ve


23
422
130724110
130732350
8,240
gain
1337
LOC286467
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
422
130724110
130732350
8,240
gain
1464
LOC286467
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
422
130724110
130732350
8,240
gain
1771
LOC286467
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
422
130724110
130732350
8,240
gain
1940
LOC286467
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
423
130742717
130797596
54,879
gain
1337
LOC286467
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
423
130742717
130797596
54,879
gain
1771
LOC286467
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
423
130742717
130797596
54,879
gain
1940
LOC286467
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
424
140749582
140898529
148,947
gain
1337
MAGEC1,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









MAGEC3




Normals < 2, Sanger−ve


23
424
140749582
140898529
148,947
gain
1641
MAGEC1,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









MAGEC3




Normals < 2, Sanger−ve


23
425
144883013
144883778
765
gain
1337
MIR890
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
425
144883013
144883778
765
loss
1585
MIR890
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
426
148491866
148507661
15,795
gain
1337
TMEM185A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
426
148491866
148507661
15,795
gain
1429
TMEM185A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
426
148491866
148507661
15,795
loss
1873
TMEM185A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
426
148491866
148507661
15,795
gain
1967
TMEM185A
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
427
148515379
148517418
2,039
gain
1337
TMEM185A
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
427
148515379
148517418
2,039
gain
1429
TMEM185A
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
427
148515379
148517418
2,039
gain
1739
TMEM185A
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
427
148515379
148517418
2,039
loss
1873
TMEM185A
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
427
148515379
148517418
2,039
gain
1967
TMEM185A
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
428
148573318
148609933
36,615
gain
1337
MAGEA11
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
428
148573318
148609933
36,615
gain
1429
MAGEA11
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
428
148573318
148609933
36,615
gain
1739
MAGEA11
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
428
148573318
148609933
36,615
gain
1967
MAGEA11
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
429
148856479
149008717
152,238
gain
1337
CXorf40B,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









LOC100272228




Normals < 2, Sanger−ve


23
429
148856479
149008717
152,238
gain
1429
CXorf40B,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









LOC100272228




Normals < 2, Sanger−ve


23
430
151770680
151788382
17,702
gain
1337
NSDHL
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
430
151770680
151788382
17,702
gain
1887
NSDHL
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
431
152787203
152793677
6,474
gain
1337
L1CAM
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
431
152787203
152793677
6,474
loss
1820
L1CAM
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
432
153232909
153256482
23,573
gain
1337
FLNA
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
432
153232909
153256482
23,573
loss
1907
FLNA
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
433
153864652
153867340
2,688
gain
1337
F8
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
433
153864652
153867340
2,688
gain
1754
F8
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
434
154395845
154404961
9,116
gain
1337
TMLHE
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
434
154395845
154404961
9,116
gain
1724
TMLHE
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


23
435
154456891
154456908
17
gain
1271
TMLHE
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
435
154456891
154456908
17
gain
1337
TMLHE
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
435
154456891
154456908
17
loss
1493
TMLHE
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
435
154456891
154456908
17
gain
1950
TMLHE
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


23
435
154456891
154456908
17
loss
2033
TMLHE
N
1
5
7.42
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


29
436
279211
282240
3,029
loss
1704
HMX1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


29
436
279211
282240
3,029
loss
1727
HMX1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


29
436
279211
282240
3,029
loss
1883
HMX1
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


29
437
282241
282257
16
loss
1704
HMX1
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


29
437
282241
282257
16
loss
1721
HMX1
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


29
437
282241
282257
16
loss
1727
HMX1
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


29
437
282241
282257
16
loss
1797
HMX1
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


29
437
282241
282257
16
loss
1874
HMX1
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


29
437
282241
282257
16
loss
1883
HMX1
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


29
437
282241
282257
16
loss
1955
HMX1
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


29
437
282241
282257
16
loss
1958
HMX1
N
1
8
11.92
Intron+ve, ASD > 4,














Normals < 2,














no Sanger filter applied


34
438
583370
1141964
558,594
loss
1244
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1309
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1320
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1493
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1541
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1542
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1543
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1560
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1570
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1585
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1587
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1588
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1589
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1605
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1606
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1718
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1737
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1741
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1743
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1757
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1800
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1816
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1856
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1859
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1861
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
gain
1862
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1868
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1919
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1921
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1935
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1940
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1942
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1957
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1966
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
1969
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
2003
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
2004
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
2005
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
2018
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


34
438
583370
1141964
558,594
loss
2035
C9orf169,
Y
2
40
31.25
Genic (distinct CNV-









RNF208




subregions); OR > 6


40
439
408980
740717
331,737
gain
1477
LOC727849,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









LOC80154,




Normals < 2, Sanger−ve









LOC440297







40
439
408980
740717
331,737
gain
1541
LOC727849,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









LOC80154,




Normals < 2, Sanger−ve









LOC440297







40
439
408980
740717
331,737
loss
2022
LOC727849,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









LOC80154,




Normals < 2, Sanger−ve









LOC440297







42
440
134605
405509
270,904
gain
1391
KRT39,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









KRTAP1-1,




Normals < 2, Sanger−ve









KRTAP1-3,














KRTAP1-5,














KRTAP2-2,














KRTAP2-1,














KRTAP3-2,














KRTAP3-3,














KRTAP2-4,














KRT40,














KRTAP4-11,














KRTAP3-1,














KRTAP4-12,














LOC730755







42
440
134605
405509
270,904
gain
1559
KRT39,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









KRTAP1-1,




Normals < 2, Sanger−ve









KRTAP1-3,














KRTAP1-5,














KRTAP2-2,














KRTAP2-1,














KRTAP3-2,














KRTAP3-3,














KRTAP2-4,














KRT40,














KRTAP4-11,














KRTAP3-1,














KRTAP4-12,














LOC730755







42
440
134605
405509
270,904
gain
1836
KRT39,
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,









KRTAP1-1,




Normals < 2, Sanger−ve









KRTAP1-3,














KRTAP1-5,














KRTAP2-2,














KRTAP2-1,














KRTAP3-2,














KRTAP3-3,














KRTAP2-4,














KRT40,














KRTAP4-11,














KRTAP3-1,














KRTAP4-12,














LOC730755







42
441
2174372
2319520
145,148
loss
1223
PYCR1,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









LOC92659




Normals < 2, Sanger−ve


42
441
2174372
2319520
145,148
loss
1872
PYCR1,
Y
1
2
2.95
Exon+ve, 5 > ASD > 1,









LOC92659




Normals < 2, Sanger−ve


42
442
2319521
2332709
13,188
loss
1223
GCGR
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


42
442
2319521
2332709
13,188
loss
1727
GCGR
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


42
442
2319521
2332709
13,188
loss
1872
GCGR
Y
1
3
4.44
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


42
443
2332710
2342015
9,305
loss
1223
FAM195B
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


42
443
2332710
2342015
9,305
loss
1727
FAM195B
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


42
443
2332710
2342015
9,305
loss
1872
FAM195B
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve


42
443
2332710
2342015
9,305
gain
1891
FAM195B
Y
1
4
5.92
Exon+ve, 5 > ASD > 1,














Normals < 2, Sanger−ve





















TABLE 3





Gene

Exon





Number
Gene Name
overlap
NCBI Gene ID
Gene Description
RefSeq Summmary




















1
ABCA13
N
154664
ATP-binding cassette sub-
In human, the ATP-binding cassette (ABC) family of transmembrane transporters has at least 48 genes and 7 gene






family A member 13
subfamilies. This gene is a member of ABC gene subfamily A (ABCA). Genes within the ABCA family typically encode







several thousand amino acids. Like other ABC transmembrane transporter proteins, this protein has 12 or more







transmembrane alpha-helix domains that likely arrange to form a single central chamber with multiple substrate binding







sites. It is also predicted to have two large extracellular domains and two nucleotide binding domains as is typical for







ABCA proteins. Alternative splice variants have been described but their biological validity has not been







demonstrated.[provided by RefSeq, Mar 2009]. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic coordinates







used for the transcript record were based on transcript alignments.


2
ABCC6PI
Y
653190
N/A
N/A


3
ABHD3
N
171586
abhydrolase domain-
This gene encodes a protein containing an alpha/beta hydrolase fold, which is a catalytic domain found in a very wide






containing protein 3
range of enzymes. The function of this protein has not been determined. [provided by RefSeq, Jul 2008].


4
ACACA
N
31
acetyl-CoA carboxylase 1
Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. ACC is a biotin-containing enzyme which






isoform 2
catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. There are two







ACC forms, alpha and beta, encoded by two different genes. ACC-alpha is highly enriched in lipogenic tissues. The







enzyme is under long term control at the transcriptional and translational levels and under short term regulation by the







phosphorylation/dephosphorylation of targeted serine residues and by allosteric transformation by citrate or palmitoyl-







CoA. Multiple alternatively spliced transcript variants divergent in the 5 sequence and encoding distinct isoforms have







been found for this gene. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (2) is the longest transcript,







which has several additional exons in the 5′ region, as compared to variant 1. It uses a downstream start codon and the







resulting isoform (2) has a shorter N-terminus, as compared to isoform 1.


5
ACACB
Y
32
acetyl-CoA carboxylase 2
Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. ACC is a biotin-containing enzyme which






precursor
catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. ACC-beta is







thought to control fatty acid oxidation by means of the ability of malonyl-CoA to inhibit carnitine-palmitoyl-CoA







transferase I, the rate-limiting step in fatty acid uptake and oxidation by mitochondria. ACC-beta may be involved in the







regulation of fatty acid oxidation, rather than fatty acid biosynthesis. There is evidence for the presence of two ACC-beta







isoforms. [provided by RefSeq, Jul 2008].


6
ACER2
Y
340485
alkaline ceramidase 2
The sphingolipid metabolite sphingosine- 1-phosphate promotes cell proliferation and survival, whereas its precursor,







sphingosine, has the opposite effect. The ceramidase ACER2 hydrolyzes very long chain ceramides to generate







sphingosine (Xu et al., 2006 [PubMed 16940153]).[supplied by OMIM, Jul 2010].


7
ACOT11
Y
26027
acyl-coenzyme A
This gene encodes a member of the acyl-CoA thioesterase family which catalyse the conversion of activated fatty acids to






thioesterase 11 isoform 2
the corresponding non-esterified fatty acid and coenzyme A. Expression of a mouse homolog in brown adipose tissue is







induced by low temperatures and repressed by warm temperatures. Higher levels of expression of the mouse homolog has







been found in obesity-resistant mice compared with obesity-prone mice, suggesting a role of acyl-CoA thioesterase 11 in







obesity. Alternative splicing results in transcript variants. [provided by RefSeq, Nov 2010]. Transcript Variant: This







variant (2) uses alternate exons in the 3′ coding region and UTR, compared to variant 1. The encoded isoform (BFIT2) has







a distinct C-terminus compared to isoform BFIT1. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic coordinates







used for the transcript record were based on transcript alignments.


8
ADAM11
Y
4185
disintegrin and
This gene encodes a member of the ADAM (a disintegrin and metalloprotease) protein family. Members of this family are






metalloproteinase domain-
membrane-anchored proteins structurally related to snake venom disintegrins, and have been implicated in a variety of






containing protein 11
biological processes involving cell-cell and cell-matrix interactions, including fertilization, muscle development, and






preproprotein
neurogenesis. This gene represents a candidate tumor supressor gene for human breast cancer based on its location within a







minimal region of chromosome 17q21 previously defined by tumor deletion mapping. [provided by RefSeq, Jul 2008].


9
ADAM5P
Y
255926
N/A
N/A


10
ADM
Y
133
ADM precursor
Adrenomedullin, a hypotensive peptide found in human pheochromocytoma, consists of 52 amino acids, has 1







intramolecular disulfide bond, and shows a slight homology with the calcitonin gene-related peptide. It may function as a







hormone in circulation control because it is found in blood in a considerable concentration. The precursor, called







preproadrenomedullin, is 185 amino acids long. By RNA-blot analysis, human adrenomedullin mRNA was found to be







highly expressed in several tissues. Genomic ADM DNA consists of 4 exons and 3 introns, with the 5-prime flanking







region containing TATA, CAAT, and GC boxes. There are also multiple binding sites for activator protein-2 and a cAMP-







regulated enhancer element. [provided by RefSeq, Jul 2008].


11
AGR3
Y
155465
anterior gradient protein 3
N/A






homolog precursor



12
AIM1
Y
202
absent in melanoma 1
N/A






protein



13
ALDH1A2
N
8854
retinal dehydrogenase 2
This protein belongs to the aldehyde dehydrogenase family of proteins. The product of this gene is an enzyme that






isoform 3
catalyzes the synthesis of retinoic acid (RA) from retinaldehyde. Retinoic acid, the active derivative of vitamin A (retinol),







is a hormonal signaling molecule that functions in developing and adult tissues. The studies of a similar mouse gene







suggest that this enzyme and the cytochrome CYP26A1, concurrently establish local embryonic retinoic acid levels which







facilitate posterior organ development and prevent spina bifida. Four transcript variants encoding distinct isoforms have







been identified for this gene. [provided by RefSeq, May 2011]. Transcript Variant: This variant (3) differs in the 5 UTR







and coding sequence compared to variant 1. The resulting isoform (3) is shorter at the N-terminus compared to isoform 1.


14
ALDOA
Y
226
fructose-bisphosphate
The protein encoded by this gene, Aldolase A (fructose-bisphosphate aldolase), is a glycolytic enzyme that catalyzes the






aldolase A isoform 2
reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Three







aldolase isozymes (A, B, and C), encoded by three different genes, are differentially expressed during development.







Aldolase A is found in the developing embryo and is produced in even greater amounts in adult muscle. Aldolase A







expression is repressed in adult liver, kidney and intestine and similar to aldolase C levels in brain and other nervous







tissue. Aldolase A deficiency has been associated with myopathy and hemolytic anemia. Alternative splicing and







alternative promoter usage results in multiple transcript variants. Related pseudogenes have been identified on







chromosomes 3 and 10. [provided by RefSeq, Aug 2011]. Transcript Variant: This variant (6) differs in the 5′ UTR and 5′







coding region, and uses an alternate start codon, compared to variant 1. The resulting isoform (2) is longer at the N-







terminus, compared to isoform 1.


15
ADMPD3
Y
272
AMP deaminase 3 isoform
This gene encodes a member of the AMP deaminase gene family. The encoded protein is a highly regulated enzyme that






1C
catalyzes the hydrolytic deamination of adenosine monophosphate to inosine monophosphate, a branch point in the







adenylate catabolic pathway. This gene encodes the erythrocyte (E) isoforms, whereas other family members encode







isoforms that predominate in muscle (M) and liver (L) cells. Mutations in this gene lead to the clinically asymptomatic,







autosomal recessive condition erythrocyte AMP deaminase deficiency. Alternatively spliced transcript variants encoding







different isoforms of this gene have been described. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (3)







contains an alternate, in-frame exon for its 5′ UTR and 5′ coding region and initiates translation at an alternate start codon,







compared to variant 1. It encodes isoform 1C, which has a shorter, distinct N-terminus, compared to isoform 1A.


16
AMY2B
N
280
alpha-amylase 2B
Amylases are secreted proteins that hydrolyze 1,4-alpha-glucoside bonds in oligosaccharides and polysaccharides, and






precursor
thus catalyze the first step in digestion of dietary starch and glycogen. The human genome has a cluster of several amylase







genes that are expressed at high levels in either salivary gland or pancreas. This gene encodes an amylase isoenzyme







produced by the pancreas. [provided by RefSeq, Jul 2008].


17
ANAPC1
Y
64682
anaphase-promoting
ANAPC1 is 1 of at least 10 subunits of the anaphase-promoting complex (APC), which functions at the metaphase-to-






complex subunit 1
anaphase transition of the cell cycle and is regulated by spindle checkpoint proteins. The APC is an E3 ubiquitin ligase that







targets cell cycle regulatory proteins for degradation by the proteasome, thereby allowing progression through the cell







cycle. [supplied by OMIM, Apr 2004].


18
ANKRD33B
N
651746
ankyrin repeat domain-
N/A






containing protein 33B



19
ANKRD44
both
91526
serine/threonine-protein
N/A






phosphatase 6 regulatory







ankyrin repeat subunit B



20
ANUBL1
Y
N/A
N/A
N/A


21
APBA1
Y
320
amyloid beta A4 precursor
The protein encoded by this gene is a member of the X11 protein family. It is a neuronal adapter protein that interacts with






protein-binding family A
the Alzheimer's disease amyloid precursor protein (APP). It stabilizes APP and inhibits production of proteolytic APP






member 1
fragments including the A beta peptide that is deposited in the brains of Alzheimer's disease patients. This gene product is







believed to be involved in signal transduction processes. It is also regarded as a putative vesicular trafficking protein in the







brain that can form a complex with the potential to couple synaptic vesicle exocytosis to neuronal cell adhesion. [provided







by RefSeq, Jul 2008].


22
APBA2
Y
321
amyloid beta A4 precursor
The protein encoded by this gene is a member of the X11 protein family. It is a neuronal adapter protein that interacts with






protein-binding family A
the Alzheimer's disease amyloid precursor protein (APP). It stabilizes APP and inhibits production of proteolytic APP






member 2 isoform b
fragments including the A beta peptide that is deposited in the brains of Alzheimer's disease patients. This gene product is







believed to be involved in signal transduction processes. It is also regarded as a putative vesicular trafficking protein in the







brain that can form a complex with the potential to couple synaptic vesicle exocytosis to neuronal cell adhesion. Multiple







transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]. Transcript







Variant: This variant (2) lacks an alternate in-frame exon, compared to variant 1, resulting in a shorter protein (isoform b),







compared to isoform a. Publication Note: This RefSeq record includes a subset of the publications that are available for







this gene. Please see the Gene record to access additional publications.


23
APOBEC3A
Y
200315
probable DNA dC->dU-
This gene is a member of the cytidine deaminase gene family. It is one of seven related genes or pseudogenes found in a






editing enzyme APOBEC-
cluster, thought to result from gene duplication, on chromosome 22. Members of the cluster encode proteins that are






3A
structurally and functionally related to the C to U RNA-editing cytidine deaminase APOBEC1. The protein encoded by







this gene lacks the zinc binding activity of other family members. The protein plays a role in immunity, by restricting







transmission of foreign DNA such as viruses. One mechanism of foreign DNA restriction is deamination of foreign







double-stranded DNA cytidines to uridines, which leads to DNA degradation. However, other mechanisms are also







thought to be involved, as anti-viral effect is not dependent on deaminase activity. One allele of this gene results from the







deletion of approximately 29.5 kb of sequence between this gene, APOBEC3A, and the adjacent gene APOBEC3B. The







breakpoints of the deletion are within the two genes, so the deletion allele is predicted to have the promoter and coding







region of APOBEC3A, but the 3 UTR of APOBEC3B. [provided by RefSeq, Jul 2010]. Transcript Variant: This variant







(2) represents the deletion allele; its 5′ UTR and coding region are derived from APOBEC3A, while its 3′ UTR is derived







from APOBEC3B. Variants 1 and 2 encode the same protein.


24
APOO
Y
79135
apolipoprotein O precursor
This gene is a member of the apolipoprotein family. Members of this protein family are involved in the transport and







metabolism of lipids. The encoded protein associates with HDL, LDL and VLDL lipoproteins and is characterized by







chondroitin-sulfate glycosylation. This protein may be involved in preventing lipid accumulation in the myocardium in







obese and diabetic patients. Alternative splicing results in multiple transcript variants. Pseudogenes of this gene are found







on chromosomes 3, 4, 5, 12 and 16.[provided by RefSeq, Sep 2009]. Transcript Variant: This variant (1) represents the







longer transcript and is predicted to encode the functional protein.


25
ARMC10
Y
83787
armadillo repeat-
This gene encodes a protein that contains an armadillo repeat and transmembrane domain. The encoded protein decreases






containing protein 10
the transcriptional activity of the tumor suppressor protein p53 through direct interaction with the DNA-binding domain of






isoform f
p53, and may play a role in cell growth and survival. Upregulation of this gene may play a role in hepatocellular







carcinoma. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene, and a







pseudogene of this gene is located on the long arm of chromosome 3. [provided by RefSeq, Sep 2011]. Transcript Variant:







This variant (F) lacks three in-frame exons in the coding region compared to variant A. This results in a shorter protein







(isoform f) compared to isoform a.


26
ARSF
Y
416
arylsulfatase F precursor
This gene is a member of the sulfatase family, and more specifically, the arylsulfatase subfamily. Members of the







subfamily share similarity in sequence and splice sites, and are clustered together on chromosome X, suggesting that they







are derived from recent gene duplication events. Sulfatases are essential for the correct composition of bone and cartilage







matrix. The activity of this protein, unlike that of arylsulfatase E, is not inhibited by warfarin. Multiple alternatively







spliced variants, encoding the same protein, have been identified.[provided by RefSeq, Jan 2011]. Transcript Variant: This







variant (3) differs in the 5′ UTR compared to variant 1. Variants 1, 2 and 3 encode the same protein. Sequence Note: This







RefSeq record was created from transcript and genomic sequence data to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


27
ARVCF
7
421
armadillo repeal protein
Armadillo Repeat gene deleted in Velo-Cardio-Facial syndrome (ARVCF) is a member of the catenin family. This family






deleted in velo-cardio-
plays an important role in the formation of adherens junction complexes, which are thought to facilitate communication






facial syndrome
between the inside and outside environments of a cell. The ARVCF gene was isolated in the search for the genetic defect







responsible for the autosomal dominant Velo-Cardio-Facial syndrome (VCFS), a relatively common human disorder with







phenotypic features including cleft palate, conotruncal heart defects and facial dysmorphology. The ARVCF gene encodes







a protein containing two motifs, a coiled coil domain in the N-terminus and a 10 armadillo repeat sequence in the







midregion. Since these sequences can facilitate protein-protein interactions ARVCF is thought to function in a protein







complex. In addition, ARVCF contains a predicted nuclear-targeting sequence suggesting that it may have a function as a







nuclear protein. [provided by RefSeq, Jun 2010]. Publication Note: This RefSeq record includes a subset of the







publications that are available for this gene. Please see the Gene record to access additional publications.


28
ASPHD1
Y
253982
aspartate beta-hydroxylase
N/A






domain-containing protein 1



29
ATP6V0E2
Y
155066
V-type proton ATPase
Multisubunit vacuolar-type proton pumps, or H(+)-ATPases, acidify various intracellular compartments, such as vacuoles,






subunit e 2 isoform 2
clathrin-coated and synaptic vesicles, endosomes, lysosomes, and chromaffin granules. H(+)-ATPases are also found in







plasma membranes of specialized cells, where they play roles in urinary acidification, bone resorption, and sperm







maturation. Multiple subunits form H(+)-ATPases, with proteins of the V1 class hydrolyzing ATP for energy to transport







H+, and proteins of the V0 class forming an integral membrane domain through which H* is transported. ATP6V0E2







encodes an isoform of the H(+)-ATPase V0 e subunit, an essential proton pump component (Blake-Palmer et al., 2007







[PubMed 17350184]).[supplied by OMIM, Mar 2008]. Transcript Variant: This variant (2) lacks an alternate segment in







the 3 coding region, compared to variant 1, that causes a frameshift. The resulting protein (isoform 2) has a longer and







distinct C-terminus, compared to isoform 1.


30
ATRNL1
N
26033
attractin-like protein 1
N/A






precursor



31
ATXN2
N
6311
ataxin-2
The autosomal dominant cerebellar ataxias (ADCA) are a heterogeneous group of neurodegenerative disorders







characterized by progressive degeneration of the cerebellum, brain stem and spinal cord. Clinically, ADCA has been







divided into three groups: ADCA types I-III. Defects in this gene are the cause of spinocerebellar ataxia type 2 (SCA2).







SCA2 belongs to the autosomal dominant cerebellar ataxias type I (ADCA I) which are characterized by cerebellar ataxia







in combination with additional clinical features like optic atrophy, ophthalmoplegia, bulbar and extrapyramidal signs,







peripheral neuropathy and dementia. SCA2 is caused by expansion of a CAG repeat in the coding region of this gene. This







locus has been mapped to chromosome 12, and it has been determined that the diseased allele contains 37-50 CAG repeats,







compared to 17-29 in the normal allele. Longer expansions result in earlier onset of the disease. Alternatively spliced







transcript variants encoding different isoforms have been identified but their full length sequence has not been determined.







[provided by RefSeq, Jan 2010].


32
BARD1
Y
580
BRCA1-associated RING
This gene encodes a protein which interacts with the N-terminal region of BRCA1. In addition to its ability to bind






domain protein 1
BRCA1 in vivo and in vitro, it shares homology with the 2 most conserved regions of BRCA1: the N-terminal RING motif







and the C-terminal BRCT domain. The RING motif is a cysteine-rich sequence found in a variety of proteins that regulate







cell growth, including the products of tumor suppressor genes and dominant protooncogenes. This protein also contains 3







tandem ankyrin repeats. The BARD1/BRCA1 interaction is disrupted by tumorigenic amino acid substitutions in BRCA1,







implying that the formation of a stable complex between these proteins may be an essential aspect of BRCA1 tumor







suppression. This protein may be the target of oncogenic mutations in breast or ovarian cancer. [provided by RefSeq, Jul







2008].


33
BCASI
N
8537
breast carcinoma-amplified
This gene resides in a region at 20q13 which is amplified in a variety of tumor types and associated with more aggressive






sequence 1
tumor phenotypes. Among the genes identified from this region, it was found to be highly expressed in three amplified







breast cancer cell lines and in one breast tumor without amplification at 20q13.2. However, this gene is not in the common







region of maximal amplification and its expression was not detected in the breast cancer cell line MCF7, in which this







region is highly amplified. Although not consistently expressed, this gene is a candidate oncogene. [provided by RefSeq,







Jul 2008]. Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the sequence







consistent with the reference genome assembly. The genomic coordinates used for the transcript record were based on







alignments.


34
BCKDHB
N
594
2-oxoisovalerate
Branched-chain keto acid dehydrogenase is a multienzyme complex associated with the inner membrane of mitochondria,






dehydrogenase subunit
and functions in the catabolism of branched-chain amino acids. The complex consists of multiple copies of 3 components:






beta, mitochondrial
branched-chain alpha-keto acid decarboxylase (El), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3).






precursor
This gene encodes the El beta subunit, and mutations therein have been associated with maple syrup urine disease







(MSUD), type 1B, a disease characterized by a maple syrup odor to the urine in addition to mental and physical







retardation, and feeding problems. Alternative splicing at this locus results in transcript variants with different 3 non-







coding regions, but encoding the same isoform. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (2) is







missing a segment in the 3′ UTR compared to transcript variant 1, and thus has a shorter 3′ UTR. Both variants 1 and 2







encode the same protein.


35
BRD7P3
Y
23629
N/A
N/A


36
BTNL8
Y
79908

N/A


37
C10orf11
N
83938

N/A


38
C14orf145
N
N/A
N/A
N/A


39
C16orf53
Y
79447
PAXIP1-associated
C16ORF53 (PA1) is a component of a Set 1-like multiprotein histone methyltransferase complex (Cho et al., 2007






protein 1
[PubMed 17500065]).[supplied by OMIM, May 2008]. Sequence Note: This RefSeq record was created from transcript







and genomic sequence data because no single transcript was available for the full length of the gene. The extent of this







transcript is supported by transcript alignments.


40
C16orf54
Y
283897
transmembrane protein
N/A






C16orf54



41
C16orf90
Y
646174
uncharacterized protein
N/A






C16 orf90



42
C16orf92
Y
146378
uncharacterized protein
N/A






C16orf92 isoform 1







precursor



43
C1orf106
Y
55765
uncharacterized protein
N/A






C1orf106 isoform 2



44
C1orf152
Y
N/A
N/A
N/A


45
C21orf58
Y
54058
uncharacterized protein
N/A






C21orf58



46
C22orf25
Y
128989
uncharacterized protein
N/A






C22orf25



47
C22orf29
Y
79680
uncharactcrizcd protein
N/A






C22orf29



48
C22orB9
Y
128977
UPF0545 protein C22orf39
N/A






isoform 2



49
C6orf127
V
340204
colipase-like protein
N/A






C6orf127 precursor



50
C6orf162
Y
57150
UPF0708 protein C6orf162
N/A


51
C6orf204
Y
N/A
N/A
N/A


52
C6orf204
both
N/A
N/A
N/A


53
C7orf50
N
84310
uncharacterized protein
N/A






C7orf50



54
C9orf102
N
375748
RAD26L hypothetical
N/A






protein



55
C9orf169
Y
37591
UPF0574 protein C9orf169
N/A


56
C9orf85
Y
138241
uncharacterized protein
N/A


57
CA5BP1
Y
340591
N/A
N/A


58
CABS1
Y
85438
testis development protein
N/A






NYD-SP26



59
CALN1
N
83698
calcium-binding protein 8
This gene encodes a protein with high similarity to the calcium-binding proteins of the calmodulin family. The encoded






isoform
protein contains two EF-hand domains and potential calcium-binding sites. Alternative splicing results in multiple







transcript variants. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (2) differs in the 5 UTR compared to







variant 1.


60
CAMSAP1L1
Y
N/A
N/A
N/A


61
CAPG
Y
822
macrophage-capping
This gene encodes a member of the gelsolin/villin family of actin-regulatory proteins. The encoded protein reversibly






protein
blocks the barbed ends of F-actin filaments in a Ca2+and phosphoinositide-regulated manner, but does not sever







preformed actin filaments. By capping the barbed ends of actin filaments, the encoded protein contributes to the control of







actin-based motility in non-muscle cells. Alternatively spliced transcript variants have been observed, but have not been







fully described. [provided by RefSeq, Jul 2008].


62
CCDC50
N
152137
coiled-coil domain-
This gene encodes a soluble, cytoplasmic, tyrosine-phosphorylated protein with multiple ubiquitin-interacting domains.






containing protein 50 short
Mutations in this gene cause nonsyndromic, postlingual, progressive sensorineural DFNA44 hearing loss. In mouse, the






isoform
protein is expressed in the inner ear during development and postnatal maturation and associates with microtubule-based







structures. This protein may also function as a negative regulator of NF-kB signaling and as an effector of epidermal







growth factor (EGF)-mediated cell signaling. Alternative splicing results in multiple transcript variants encoding distinct







isoforms. [provided by RefSeq, Oct 2008]. Transcript Variant: This variant (1) lacks an in-frame exon in the coding region,







compared to variant 2, and encodes the short isoform. Sequence Note: The RefSeq transcript and protein were derived







from transcript and genomic sequence to make the sequence consistent with the reference genome assembly. The extent of







this transcript is supported by transcript alignments. Publication Note: This RefSeq record includes a subset of the







publications that are available for this gene. Please see the Gene record to access additional publications.


63
CCDC66
N
285331
coiled-coil domain-
N/A






containing protein 66







isoform 1



64
CD177
Y
57126
CD177 antigen precursor
NB1, a glycosyl-phosphatidylinositol (GPI)-linked N-glycosylated cell surface glycoprotein, was first described in a case







of neonatal alloimmune neutropenia (Lalezari et al., 1971 [PubMed 5552408]).[supplied by OMIM, Mar 2008].







Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the







Gene record to access additional publications.


65
CDC45
Y
8318
cell division control
The protein encoded by this gene was identified by its strong similarity with Saccharomyces cerevisiae Cdc45, an






protein 45 homolog
essential protein required to the initiation of DNA replication. Cdc45 is a member of the highly conserved multiprotein






isoform 2
complex including Cdc6/Cdc18, the minichromosome maintenance proteins (MCMs) and DNA polymerase, which is







important for early steps of DNA replication in eukaryotes. This protein has been shown to interact with MCM7 and DNA







polymerase alpha. Studies of the similar gene in Xenopus suggested that this protein play a pivotal role in the loading of







DNA polymerase alpha onto chromatin. Multiple alternatively spliced transcript variants encoding different isoforms have







been found for this gene. [provided by RefSeq, May 2010]. Transcript Variant: This variant (2) lacks an in-frame exon in







the CDS, as compared to variant 1. The resulting isoform (2) lacks an internal segment, as compared to isoform 1.


66
CDH17
N
1015
cadherin-17 precursor
This gene is a member of the cadherin superfamily, genes encoding calcium-dependent, membrane-associated







glycoproteins. The encoded protein is cadherin-like, consisting of an extracellular region, containing 7 cadherin domains,







and a transmembrane region but lacking the conserved cytoplasmic domain. The protein is a component of the







gastrointestinal tract and pancreatic ducts, acting as an intestinal proton-dependent peptide transporter in the first step in







oral absorption of many medically important peptide-based drugs. The protein may also play a role in the morphological







organization of liver and intestine. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan







2009]. Transcript Variant: This variant (2) differs in the 5′ UTR compared to variant 1. Both variants 1 and 2 encode the







same protein.


67
CDIPT
Y
10423
CDP-diacylglycerol--
Phosphatidylinositol breakdown products are ubiquitous second messengers that function downstream of many G protein-






inositol 3-
coupled receptors and tyrosine kinases regulating cell growth, calcium metabolism, and protein kinase C activity. Two






phosphatidyltransferase
enzymes, CDP-diacylglycerol synthase and phosphatidylinositol synthase, are involved in the biosynthesis of







phosphatidylinositol. Phosphatidylinositol synthase, a member of the CDP-alcohol phosphatidyl transferase class-I family,







is an integral membrane protein found on the cytoplasmic side of the endoplasmic reticulum and the Golgi apparatus.







[provided by RefSeq, Jul 2008].


68
CENPVL1
Y
389857
N/A
N/A


69
CEP110
N
N/A
N/A
N/A


70
CFH
Y
3075
complement factor H
This gene is a member of the Regulator of Complement Activation (RCA) gene cluster and encodes a protein with twenty






isoform b precursor
short consensus repeat (SCR) domains. This protein is secreted into the bloodstream and has an essential role in the







regulation of complement activation, restricting this innate defense mechanism to microbial infections. Mutations in this







gene have been associated with hemolytic-uremic syndrome (HUS) and chronic hypocomplementemic nephropathy.







Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Oct







2011]. Transcript Variant: This variant (2) utilizes an alternate terminal exon which results in an early stop codon. The







resulting protein (isoform b, also known as the ‘factor H-like 1’ or ‘FHL-1’ isoform) has a distinct C-terminus and is shorter







than isoform a.


71
CHL1
Y
10752
neural cell adhesion
The protein encoded by this gene is a member of the L1 gene family of neural cell adhesion molecules. It is a neural






molecule L1-like protein
recognition molecule that may be involved in signal transduction pathways. The deletion of one copy of this gene may be






precursor
responsible for mental defects in patients with 3p- syndrome. Several alternatively spliced transcript variants of this gene







have been described, but their full length nature is not known. [provided by RefSeq, Jul 2008].


72
CHPT1
N
56994
cholinephosphotransferase 1
N/A


73
CHTF18
Y
63922
chromosone transmission
CHTF18, CHTF8 (MIM 613202), and DCC1 (DSCC1; MIM 613203) are components of an alternative replication factor C






fidelity protein 18
(RFC) (see MIM 600404) complex that loads PCNA (MIM 176740) onto DNA during S phase of the cell cycle (Merkle et






homolog
al., 2003 [PubMed 12766176]; Bermudez et al., 2003 [PubMed 12930902]).[supplied by OMIM, Dec 2009].


74
CIB2
Y
10518
calcium and integrin-
The amino acid sequence the protein encoded by this gene is similar to that of KIP/CIB, calcineurin B, and calmodulin.






binding family member 2
This suggests that the encoded protein may be a Ca2+-binding regulatory protein that interacts with DNA-dependent







protein kinase catalytic subunit (DNA-PKcs). [provided by RefSeq, Jul 2008].


75
CKAP2L
Y
150468
cytoskeleton-associated
N/A






protein 2-like



76
CLDN5
Y
7122
claudin-5
This gene encodes a member of the claudin family. Claudins are integral membrane proteins and components of tight







junction strands. Tight junction strands serve as a physical barrier to prevent solutes and water from passing freely through







the paracellular space between epithelial or endothelial cell sheets. Mutations in this gene have been found in patients with







velocardiofacial syndrome. Alternatively spliced transcript variants encoding the same protein have been found for this







gene. [provided by RefSeq, Aug 2008]. Transcript Variant: This variant (2) lacks a segment in the 5′ UTR, as compared to







variant 1.


77
CLEC18C
Y
283971
C-type lectin domain
N/A






family 18 member C







precursor



78
CLEC3A
Y
10143
C-type lectin domain
N/A






family 3 member A







isoform 1 precursor



79
CLSTN1
N
22883
calsyntenin-1 isoform 1
N/A






precursor



80
CLTCLI
Y
8218
clathrin heavy chain 2
This gene is a member of the clathrin heavy chain family and encodes a major protein of the polyhedral coat of coated pits






isoform 2
and vesicles. Chromosomal aberrations involving this gene are associated with meningioma, DiGeorge syndrome, and







velo-cardio-facial syndrome. Multiple transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, Jun 2009]. Transcript Variant: This variant (2) lacks an alternate in-frame exon in the 3′ coding







region, compared to variant 1. The resulting isoform (2) lacks an internal segment near the C-terminus, compared to







isoform 1.


81
CLUAP1
Y
23059
clusterin-associated protein
N/A






1 isoform 2



82
CMTM8


CKLF-like MARVEL
This gene belongs to the chemokine-like factor gene superfamily, a novel family that is similar to the chemokine and the






transmembrane domain-
transmembrane 4 superfamilies. This gene is one of several chemokine-like factor genes located in a cluster on






containing protein 8
chromosome 3. This gene is widely expressed in many tissues, but the exact function of the encoded protein is unknown.







[provided by RefSeq, Jul 2008].


83
CNBD1


cyclic nucleotide-binding
N/A






domain-containing protein 1



84
CNR1


cannabinoid receptor 1
This gene encodes one of two cannabinoid receptors. The cannabinoids, principally delta-9-tetrahydrocannabinol and






isoform b
synthetic analogs, are psychoactive ingredients of marijuana. The cannabinoid receptors are members of the guanine-







nucleotide-binding protein (G-protein) coupled receptor family, which inhibit adenylate cyclase activity in a dose-







dependent, stereoselective and pertussis toxin-sensitive manner. The two receptors have been found to be involved in the







cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana.







Multiple transcript variants encoding two different protein isoforms have been described for this gene. [provided by







RefSeq, May 2009]. Transcript Variant: This variant (2) lacks an internal segment near the 5 end of the coding region,







compared to variant 1. The resulting protein (isoform b) has a shorter and distinct N-terminus compared to isoform a.







PubMed ID: 15620723 referred to this variant and its protein as CB1b.


85
CNTN4


contactin-4 isoform a
This gene encodes a member of the contactin family of immunoglobulins. Contactins are axon-associated cell adhesion






preursor
molecules that function in neuronal network formation and plasticity. The encoded protein is a







glycosylphosphatidylinositol-anchored neuronal membrane protein that may play a role in the formation of axon







connections in the developing nervous system. Deletion or mutation of this gene may play a role in 3p deletion syndrome







and autism spectrum disorders. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May







2011]. Transcript Variant: This variant (1) encodes the longest isoform (a). Both variants 1 and 4 encode the same isoform.


86
CNTNAP2


contactin-associated
This gene encodes a member of the neurexin family which functions in the vertebrate nervous system as cell adhesion






protein-like 2 precursor
molecules and receptors. This protein, like other neurexin proteins, contains epidermal growth factor repeats and laminin G







domains. In addition, it includes an F5/8 type C domain, discoidin/neuropilin- and fibrinogen-like domains,







thrombospondin N-terminal-like domains and a putative PDZ binding site. This protein is localized at the juxtaparanodes







of myelinated axons, and mediates interactions between neurons and glia during nervous system development and is also







involved in localization of potassium channels within differentiating axons. This gene encompasses almost 1.5% of







chromosome 7 and is one of the largest genes in the human genome. It is directly bound and regulated by forkhead box







protein P2 (FOXP2), a transcription factor related to speech and language development. This gene has been implicated in







multiple neurodevelopmental disorders, including Gilles de la Tourette syndrome, schizophrenia, epilepsy, autism, ADHD







and mental retardation, [provided by RefSeq, Mar 2010]. Sequence Note: This RefSeq record was created from transcript







and genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


87
CNTNAP4
N
85445
contactin-associated
This gene product belongs to the neurexin family, members of which function in the vertebrate nervous system as cell






protein-like 4 isoform 1
adhesion molecules and receptors. This protein, like other neurexin proteins, contains epidermal growth factor repeats and






precursor
laminin G domains. In addition, it includes an F5/8 type C domain, discoidin/neuropilin- and fibrinogen-like domains, and







thrombospondin N-terminal-like domains. Alternative splicing results in two transcript variants encoding different







isoforms. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (1) encodes the longer isoform (1). Sequence







Note: This RefSeq record was created from transcript and genomic sequence data because no single transcript was







available for the full length of the gene. The extent of this transcript is supported by transcript alignments.


88
COMT
Y
1312
catechol O-
Catechol-O-methyltransferase catalyzes the transfer of a methyl group from 5-adenosylmethionine to catecholamines,






methyltransferase isoform
including the neurotransmitters dopamine, epinephrine, and norepinephrine. This 0-methylation results in one of the major






S-COMT
degradative pathways of the catecholamine transmitters. In addition to its role in the metabolism of endogenous







substances, COMT is important in the metabolism of catechol drugs used in the treatment of hypertension, asthma, and







Parkinson disease. COMT is found in two forms in tissues, a soluble form (S-COMT) and a membrane-bound form (MB-







COMT). The differences between S-COMT and MB-COMT reside within the N-termini. Several transcript variants are







formed through the use of alternative translation initiation sites and promoters. [provided by RefSeq, Sep 2008]. Transcript







Variant: This variant (4, also known as S-COMT) contains a shorter 5′ UTR and a translation start site which lies 50







codons downstream compared to that of variant 1. The resulting isoform (S-COMT) is shorter at the N-terminus compared







to isoform MB-COMT. S-COMT is a soluble protein. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data because no single transcript was available for the full length of the gene. The extent of this







transcript is supported by transcript alignments.


89
CORO1A
Y
11151
coronin-1A
This gene encodes a member of the WD repeat protein family. WD repeats are minimally conserved regions of







approximately 40 amino acids typically bracketed by gly-his and trp-asp (GH-WD), which may facilitate formation of







heterotrimeric or multiprotein complexes. Members of this family are involved in a variety of cellular processes, including







cell cycle progression, signal transduction, apoptosis, and gene regulation. Alternative splicing results in multiple transcript







variants. A related pseudogene has been defined on chromosome 16. [provided by RefSeq, Sep 2010]. Transcript Variant:







This variant (2) differs in the 5 UTR compared to variant 1. Both variants 1 and 2 encode the same protein.


90
COX6A1
Y
1337
cytochrome c oxidase
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the electron transfer






subunit 6A1,
from reduced cytochrome c to oxygen. It is a heteromeric complex consisting of 3 catalytic subunits encoded by






mitochondrial precursor
mitochondrial genes and multiple structural subunits encoded by nuclear genes. The mitochondrially-encoded subunits







function in the electron transfer and the nuclear-encoded subunits may function in the regulation and assembly of the







complex. This nuclear gene encodes polypeptide 1 (liver isoform) of subunit VIa, and polypeptide 1 is found in all non-







muscle tissues. Polypeptide 2 (heart/muscle isoform) of subunit VIa is encoded by a different gene, and is present only in







striated muscles. These two polypeptides share 66% amino acid sequence identity. It has been reported that there may be







several pseudogenes on chromosomes 1,6, 7q21, 7q31-32 and 12. However, only one pseudogene (COX6A1P) on







chromosome 1p31.1 has been documented. [provided by RefSeq, Jul 2008].


91
CRKL
Y
1399
crk-like protein
This gene encodes a protein kinase containing 5H2 and 5H3 (src homology) domains which has been shown to activate







the RAS and JUN kinase signaling pathways and transform fibroblasts in a RAS-dependent fashion. It is a substrate of the







BCR-ABL tyrosine kinase, plays a role in fibroblast transformation by BCR-ABL, and may be oncogenic.[provided by







RefSeq, Jan 2009].


92
CRKL
both
1399
crk-like protein
This gene encodes a protein kinase containing 5H2 and 5H3 (src homology) domains which has been shown to activate







the RAS and JUN kinase signaling pathways and transform fibroblasts in a RAS-dependent fashion. It is a substrate of the







BCR-ABL tyrosine kinase, plays a role in fibroblast transformation by BCR-ABL, and may be oncogenic.[provided by







RefSeq, Jan 2009].


93
CROCC
Y
9696
rootletin
N/A


94
CSGALNACT2
Y
55454
chondroitin sulfate N-
N/A






acetylgalactosaminyl-







transferase 2



95
CSMD3
N
114788
CUB and sushi domain-
N/A






containting protein 3







isoform 3



96
CSPG4
Y
1464
chondroitin sulfate
A human melanoma-associated chondroitin sulfate proteoglycan plays a role in stabilizing cell-substratum interactions






proteoglycan 4
during early events of melanoma cell spreading on endothelial basement membranes. CSPG4 represents an integral






precursor
membrane chondroitin sulfate proteoglycan expressed by human malignant melanoma cells. [provided by RefSeq, Jul







2008].


97
CTAGE5
N
4253
cutaneous T-cell
The protein encoded by this gene is a tumor-associated antigen found in cutaneous T-cell lymphoma and several other






lymphoma-associated
cancers. Autoantibodies against the encoded protein have been found in some cancers. Several transcript variants encoding






antigen 5 isoform 7
different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]. Transcript Variant: This variant (7)







lacks a portion of the 5′ coding region and initiates translation at a downstream start codon compared to variant 6. The







resulting isoform (7) is shorter at the N-terminus compared to isoform 6. Sequence Note: This RefSeq record was created







from transcript and genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments.


98
CTNNA3
Y
29119
catenin alpha-3
N/A


99
CTNND2
Y
1501
catenin delta-a
This gene encodes an adhesive junction associated protein of the armadillo/beta-catenin superfamily and is implicated in







brain and eye development and cancer formation. The protein encoded by this gene promotes the disruption of E-cadherin







based adherens junction to favor cell spreading upon stimulation by hepatocyte growth factor. This gene is overexpressed







in prostate adenocarcinomas and is associated with decreased expression of tumor suppressor E-cadherin in this tissue.







This gene resides in a region of the short arm of chromosome 5 that is deleted in Cri du Chat syndrome. [provided by







RefSeq, Aug 2010].


100
CXorf27
Y
25763
huntingtin-interacting
This gene encodes a protein shown to interact with huntingtin, which contains an expanded polyglutamine tract in






protein M
individuals with Huntington′s disease (PMID: 9700202). [provided by RefSeq, Aug 2011].


101
CXorf40B
Y
541578
protein CXorf40B
N/A


102
CYP2A6
Y
1548
cytochrome P450 2A6
This gene, CYP2A6, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins






precursor
are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and







other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by phenobarbital. The







enzyme is known to hydroxylate coumarin, and also metabolizes nicotine, aflatoxin B1, nitrosamines, and some







pharmaceuticals. Individuals with certain allelic variants are said to have a poor metabolizer phenotype, meaning they do







not efficiently metabolize coumarin or nicotine. This gene is part of a large cluster of cytochrome P450 genes from the







CYP2A, CYP2B and CYP2F subfamilies on chromosome 19q. The gene was formerly referred to as CYP2A3; however, it







has been renamed CYP2A6. [provided by RefSeq, Jul 2008].


103
DCC
N
1630
netrin receptor DCC
This gene encodes a netrin 1 receptor. The transmembrane protein is a member of the immunoglobulin superfamily of cell







adhesion molecules, and mediates axon guidance of neuronal growth cones towards sources of netrin 1 ligand. The







cytoplasmic tail interacts with the tyrosine kinases Src and focal adhesion kinase (FAK, also known as PTK2) to mediate







axon attraction. The protein partially localizes to lipid rafts, and induces apoptosis in the absence of ligand. The protein







functions as a tumor suppressor, and is frequently mutated or downregulated in colorectal cancer and esophageal







carcinoma. [provided by RefSeq, Oct 2009]. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


104
DCLRE1C
Y
64421
protein artemis isoform a
This gene encodes a nuclear protein that is involved in V(D)J recombination and DNA repair. The protein has single-







strand-specific 5′-3′ exonuclease activity; it also exhibits endonuclease activity on 5′ and 3′ overhangs and hairpins when







complexed with protein kinase, DNA-activated, catalytic polypeptide. Mutations in this gene cause Athabascan-type







severe combined immunodeficiency (SCIDA). [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (a)







encodes the longest isoform (a).


105
DDT
Y
1652
D-dopachrome
D-dopachrome tautomerase converts D-dopachrome into 5,6-dihydroxyindole. The DDT gene is related to the migration






decarboxylase
inhibitory factor (MIF) in terms of sequence, enzyme activity, and gene structure. DDT and MIF are closely linked on







chromosome 22. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (2) differs in the 5′ UTR compared to







variant 1. Variants 1 and 2 encode the same protein.


106
DDTL
Y
100037417
D-dopachrome
N/A






decarboxylase-like protein



107
DDX53
Y
1684000
DEAD box protein 53
This intronless gene encodes a protein which contains several domains found in members of the DEAD-box helicase







protein family. Other members of this protein family participate in ATP-dependent RNA unwinding. [provided by RefSeq,







Sep 2011].


108
DEFA5
Y
1670
defensin-5 preproprotein
Defensins are a family of microbicidal and cytotoxic peptides thought to be involved in host defense. They are abundant







in the granules of neutrophils and also found in the epithelia of mucosal surfaces such as those of the intestine, respiratory







tract, urinary tract, and vagina. Members of the defensin family are highly similar in protein sequence and distinguished by







a conserved cysteine motif. Several of the alpha defensin genes appear to be clustered on chromosome 8. The protein







encoded by this gene, defensin, alpha 5, is highly expressed in the secretory granules of Paneth cells of the ileum.







[provided by RefSeq, Jul 2008].


109
DGCR11
Y
25786
N/A
N/A


110
DGCR14
Y
8220
protein DGCR14
This gene is located within the minimal DGS critical region (MDGCR) thought to contain the gene(s) responsible for a







group of developmental disorders. These disorders include DiGeorge syndrome, velocardiofacial syndrome, conotruncal







anomaly face syndrome, and some familial or sporadic conotruncal cardiac defects which have been associated with







microdeletion of 22q11.2. The encoded protein may be a component of C complex spliceosomes, and the orthologous







protein in the mouse localizes to the nucleus. [provided by RefSeq, Jul 2008].


111
DGCR2
Y
9993
integral membrane protein
Deletions of the 22q11.2 have been associated with a wide range of developmental defects (notably DiGeorge syndrome,






DGCR2/IDD isoform 4
velocardiofacial syndrome, conotruncal anomaly face syndrome and isolated conotruncal cardiac defects) classified under






precursor
the acronym CATCH 22. The DGCR2 gene encodes a novel putative adhesion receptor protein, which could play a role in







neural crest cells migration, a process which has been proposed to be altered in DiGeorge syndrome. Alternative splicing







results in multiple transcript variants.[provided by RefSeq. May 2010]. Transcript Variant: This variant (4) uses an







alternate in-frame splice site in the 5′ coding region, compared to variant 1. The resulting isoform (4) lacks a short internal







segment, compared to isoform 1.


112
DGCR8
Y
54487
microprocessor complex
This gene encodes a subunit of the microprocessor complex which mediates the biogenesis of microRNAs from the






subunit DGCR8
primary microRNA transcript. The encoded protein is a double-stranded RNA binding protein that functions as the non-






isoform 1
catalytic subunit of the microprocessor complex. This protein is required for binding the double-stranded RNA substrate







and facilitates cleavage of the RNA by the ribonucleasc III protein, Drosha. Alternate splicing results in multiple transcript







variants, [provided by RefSeq, Jun 2010]. Transcript Variant: This variant (1) represents the longer transcript and encodes







the longer isoform (1). Sequence Note: This RefSeq record was created from transcript and genomic sequence data to







make the sequence consistent with the reference genome assembly. The genomic coordinates used for the transcript record







were based on transcript alignments. Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


113
DMD
Y
1756
dystrophin Dp140c
The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified through a positional






isoform
cloning approach, targeted at the isolation of the gene responsible for Duchenne (DMD) and Becker (BMD) Muscular







Dystrophies. 1)M1) is a recessive, fatal, X-linked disorder occurring at a frequency of about 1 in 3,500 new-born males.







BMD is a milder allelic form. In general, DMD patients cany mutations which cause premature translation termination







(nonsense or frame shift mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from







in-frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least eight independent,







tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin RNA is differentially spliced, producing a







range of different transcripts, encoding a large set of protein isoforms. Dystrophin (as encoded by the Dp427 transcripts) is







a large, rod-like cytoskcletal protein which is found at the inner surface of muscle fibers. Dystrophin is part of the







dystrophin-glycoprotein complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix,







[provided by RefSeq, Jul 2008]. Transcript Variant: Dp140 transcripts use exons 45-79, starting at a promoter/exon 1







located in intron 44. Dp140 transcripts have a long (1 kb) 5′ UTR since translation is initialed in exon 51 (corresponding to







aa 2461 of dystrophin). In addition to the alternative promoter and exon 1, differential splicing of exons 71-74 and 78







produces at least five Dp 140 isoforms. Of these, this transcript (Dp 140c) lacks exons 71-74. Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


114
DNAJC15
Y
29103
dnaJ homolog subfamily
N/A






C member 15



115
DOC2A
Y
8448
double C2-like domain-
There are at least two protein isoforms of the Double C2 protein, namely alpha (DOC2A) and beta (DOC2B), which






containing protein
contain two C2-like domains. DOC2A and DOC2B are encoded by different genes; these genes arc at times contused with






alpha
the unrelated DAB2 gene which was initially named DOC-2. DOC2A is mainly expressed in brain and is suggested to be







involved in Ca(2+)-dependent neurotransmitter release, [provided by RefSeq, Jul 2008]. Publication Note: This RefSeq







record includes a subset of the publications that are available for this gene. Please see the Gene record to access additional







publications.


116
DOCK5
N
80005
dedicator of
N/A






cytokinesis







protein 5



117
DOK6
N
220164
docking protein 6
DOK6 is a member of the DOK (see DOK1; MIM 602919) family of intracellular adaptors that play a role in the RET







(MIM 164761) signaling cascade (Crowder et aL, 2004 [PubMed 15286081]).[supplied by OMIM, Mar 2008]. Sequence







Note: This RefSeq record was created from transcript and genomic sequence data to make the sequence consistent with the







reference genome assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


118
DDP10
N
57628
inactive dipeptidyl
This gene encodes a single-pass type II membrane protein that is a member of the S9B family in clan SC of the serine






peptidase 10
proteases. This protein has no detectable protease activity, most likely due to the absence of the conserved serine residue






isoform b
normally present in the catalytic domain of serine proteases. However, it does bind specific voltage-gated potassium







channels and alters their expression and biophysical properties. Mutations in this gene have been associated with asthma







Alternate transcriptional splice variants, encoding different isoforms, have been characterized, [provided by RefSeq, Jul







2008]. Transcript Variant: This variant (4) has an alternate 5′ exon. as compared to variant 3. The resulting isoform (b) has







a shorter and distinct N-terminus when compared to isoform c. Sequence Note: This RefSeq record was created from







transcript and genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to access additional







publications.


119
DPP6
N
1804

This gene encodes a single-pass type II membrane protein that is a member of the S9B family in clan SC of the serine







proteases. This protein has no detectable protease activity, most likely due to the absence of the conserved serine residue







normally present in the catalytic domain of serine proteases. However, it does bind specific voltage-gated potassium







channels and alters their expression and biophysical properties. Alternate transcriptional splice variants, encoding different







isoforms, have been characterized. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (2) includes an







alternate in-frame exon, compared to variant 1, resulting in a shorter protein (isoform 2, also referred to as S) that has a







shorter and distinct N-terminus, compared to isoform 1. Sequence Note: This RefSeq record was created from transcript







and genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to access additional







publications.


120
EDA2R
Y
60401

EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that are encoded by the anhidrotic ectodermal dysplasia (EDA)







gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. The protein







encoded by this gene specifically binds to EDA-A2 isoform. This protein is a type III transmembrane protein of the TNFR







(tumor necrosis factor receptor) superfamily, and contains 3 cysteine-rich repeats and a single transmembrane domain but







lacks an N-terminal signal peptide. Alternatively spliced transcript variants have been found for this gene. [provided by







RefSeq, May 2011]. Transcript Variant: This variant (3) contains an alternate exon and uses an alternate splice site in the 3′







coding region but maintains the reading frame compared to variant 1. The resulting protein (isoform 2) is longer compared







to isoform 1. Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the transcript record were







based on transcript alignments.


121
ELMOD3
Y
84173
ELMO domain
N/A






containing protein 3







isoform b



122
ENOX1
Y
55068
ecto-NOX disulfide-
Electron transport pathways are generally associated with mitochondrial membranes, but non-mitochondrial pathways are






thiol exhanger 1
also biologically significant. Plasma membrane electron transport pathways are involved in functions as diverse as cellular







defense, intracellular redox homeostasis, and control of cell growth and survival. Members of the ecto-NOX family, such







as CNOX, or ENOX1, are involved in plasma membrane transport pathways. These enzymes exhibit both a hydroquinone







(NADH) oxidase activity and a protein disulfide-thiol interchange activity in series, with each activity cycling every 22 to







26 minutes (Scarlett et al., 2005 [PubMed 15882838]).[supplied by OMIM, Mar 2008]. Transcript Variant: This variant (3)







differs in the 5′ UTR compared to variant 1. Variants 1, 2 and 3 encode the same protein. Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


123
EXOSC6
Y
118460
exosome complex
This gene product constitutes one of the subunits of the multisubunit particle called exosome, which mediates mRNA






component MTR3
degradation. The composition of human exosome is similar to its yeast counterpart. This protein is homologous to the yeast







Mtr3 protein. Its exact function is not known, however, it has been shown using a cell-free RNA decay system that the







exosome is required for rapid degradation of unstable mRNAs containing AU-rich elements (AREs), but not for poly(A)







shortening. The exosome does not recognize ARE-containing mRNAs on its own, but requires ARE-binding proteins that







could interact with the exosome and recruit it to unstable mRNAs, thereby promoting their rapid degradation. [provided by







RefSeq, Jul 2008].


124
EYA2
N
2139
eyes absent homolog 2
This gene encodes a member of the eyes absent (EYA) family of proteins. The encoded protein may be post-






isoform a
translationally modified and may play a role in eye development. A similar protein in mice can act as a transcriptional







activator. Alternative splicing results in multiple transcript variants, but the full-length natures of all of these variants have







not yet been determined. [provided by RefSeq, Jul 2009]. Transcript Variant: This variant (1), also known as EYA2I,







represents the longer transcript and encodes the longer isoform (a). Sequence Note: The RefSeq transcript and protein were







derived from genomic sequence to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on alignments.


125
F8
Y
2157
coagulation factor VIII
This gene encodes coagulation factor VIII, which participates in the intrinsic pathway of blood coagulation; factor VIII is






isoform a precursor
a cofactor for factor IXa which, in the presence of Ca’and phospholipids, converts factor X to the activated form Xa.







This gene produces two alternatively spliced transcripts. Transcript variant 1 encodes a large glycoprotein, isoform a,







which circulates in plasma and associates with von Willebrand factor in a noncovalent complex. This protein undergoes







multiple cleavage events. Transcript variant 2 encodes a putative small protein, isoform b, which consists primarily of the







phospholipid binding domain of factor VIIIc. This binding domain is essential for coagulant activity. Defects in this gene







results in hemophilia A, a common recessive X-linked coagulation disorder. [provided by RefSeq, Jul 2008]. Transcript







Variant: This variant (1) consists of 26 exons and encodes the full-length isoform (a).


126
FAM195B
Y
348262
protein FAM195B
N/A


127
FAM57B
Y
83723
protein FAM57B
N/A


128
FAM5C
N
339479
protein FAM5C precursor
N/A


129
FBXL13
Y
222235
F-box/LRR-repeat protein
Members of the F-box protein family, such as FBXL13, are characterized by an approximately 40-amino acid F-box motif.






13 isoform 2
SCF complexes, formed by SKP1 (MIM 601434), cullin (see CULl; MIM 603134), and F-box proteins, act as protein-







ubiquitin ligases. F-box proteins interact with SKP1 through the F box, and they interact with ubiquitination targets







through other protein interaction domains (Jin et al., 2004 [PubMed 15520277]).[supplied by OMIM, Mar 2008].







Transcript Variant: This variant (2) contains a different segment in the 5 UTR and lacks an alternate in-frame segment in







the 3′ CDS, compared to variant 1. The resulting protein (isoform 2) is shorter when it is compared to isoform 1.


130
FCGR1A
Y
2209
high affinity
This gene encodes a protein that plays an important role in the immune response. This protein is a high-affinity Fc-gamma






immunoglobulin gamma
receptor. The gene is one of three related gene family members located on chromosome 1. [provided by RefSeq, Jul 2008].






Fc receptor I precursor



131
FCGR1C
Y
100132417
N/A
The gene represents one of three related immunoglobulin gamma Fc receptor genes located on chromosome 1. This family







member lacks the transmembrane and coiled-coiled domains found in other family members and is thought to be a







pseudogene of Fc-gamma-receptor 1A. [provided by RefSeq, Apr 2009]. Sequence Note: The RefSeq transcript was







derived from the reference genome assembly. The genomic coordinates were determined from alignments.


132
FGF14
N
2259
fibroblast growth factor 14
The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess






isoform 1A
broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic







development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. A mutation in this gene is associated







with autosomal dominant cerebral ataxia. Alternatively spliced transcript variants have been found for this gene. [provided







by RefSeq, Jul 2008]. Transcript Variant: This variant (1) encodes the shorter isoform (1A). Sequence Note: This RefSeq







record was created from transcript and genomic sequence data because no single transcript was available for the full length







of the gene. The extent of this transcript is supported by transcript alignments.


133
FGL1
Y
2267
fibrinogen-like protein 1
Fibrinogen-like 1 is a member of the fibrinogen family. This protein is homologous to the carboxy terminus of the






precursor
fibrinogen beta- and gamma- subunits which contains the four conserved cysteines of fibrinogens and fibrinogen related







proteins. However, this protein lacks the platelet-binding site, cross-linking region and a thrombin-sensitive site which are







necessary for fibrin clot formation. This protein may play a role in the development of hepatocellular carcinomas. Four







alternatively spliced transcript variants encoding the same protein exist for this gene. [provided by RefSeq, Jul 2008].







Transcript Variant: This variant (4) represents the longest transcript. All four variants encode the same protein. Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene record







to access additional publications.


134
FHIT
N
2272
bis(5′-adenosyl)-
This gene, a member of the histidine triad gene family, encodes a diadenosine 5′,5-P1,P3-triphosphate hydrolase involved






triphosphatase
in purine metabolism. The gene encompasses the common fragile site FRA3B on chromosome 3, where carcinogen-







induced damage can lead to translocations and aberrant transcripts of this gene. In fact, aberrant transcripts from this gene







have been found in about half of all esophageal, stomach, and colon carcinomas. Alternatively spliced transcript variants







have been found for this gene. [provided by RefSeq, Oct 2009]. Transcript Variant: This variant (2) has an alternate splice







site in the 3′ UTR, as compared to variant 1. Both variants 1 and 2 encode the same protein.


135
FLJ34690
N
284034
N/A
N/A


136
FLNA
Y
2316
filamin-A isoform 2
The protein encoded by this gene is an actin-binding protein that crosslinks actin filaments and links actin filaments to







membrane glycoproteins. The encoded protein is involved in remodeling the cytoskeleton to effect changes in cell shape







and migration. This protein interacts with integrins, transmembrane receptor complexes, and second messengers. Defects







in this gene are a cause of several syndromes, including periventricular nodular heterotopias (PVNH1, PVNH4),







otopalatodigital syndromes (OPD1, OPD2), frontometaphyseal dysplasia (FMD), Melnick-Needles syndrome (MNS), and







X-linked congenital idiopathic intestinal pseudoobstruction (CIIPX). Two transcript variants encoding different isoforms







have been found for this gene.[provided by RefSeq, Mar 2009]. Transcript Variant: This variant (2) includes an alternate







in-frame exon and encodes a slightly longer protein isoform (2).


137
FLT1
N
2321
vascular endothelial
This gene encodes a member of the vascular endothelial growth factor receptor (VEGFR) family. VEGFR family members






growth factor receptor 1
are receptor tyrosine kinases (RTKs) which contain an extracellular ligand-binding region with seven immunoglobulin






isoform 4 precursor
(Ig)-like domains, a transmembrane segment, and a tyrosine kinase (TK) domain within the cytoplasmic domain. This







protein binds to VEGFR-A, VEGFR-B and placental growth factor and plays an important role in angiogenesis and







vasculogenesis. Expression of this receptor is found in vascular endothelial cells, placental trophoblast cells and peripheral







blood monocytes. Multiple transcript variants encoding different isoforms have been found for this gene. Isoforms include







a full-length transmembrane receptor isoform and shortened, soluble isoforms. The soluble isoforms are associated with







the onset of pre-eclampsia. [provided by RefSeq, May 2009]. Transcript Variant: This variant (4) differs in the 3 coding







region and 3′ UTR, compared to variant 1. The encoded soluble protein (isoform 4) has a shorter, distinct C-terminus and







lacks the transmembrane and cytoplasmic regions of isoform 1.


138
FRG1B
Y
284802
N/A
N/A


139
GALNTL6
N
442117
polypeptide N-
N/A






acetylgalactosaminyl-







transferase-like 6



140
GATC
Y
283459
N/A
N/A


141
GCGR
Y
2642
glucagon receptor
The protein encoded by this gene is a glucagon receptor that is important in controlling blood glucose levels. Defects in






precursor
this gene are a cause of non-insulin-dependent diabetes mellitus (NIDDM).[provided by RefSeq, Jan 2010].


142
GDPD3
Y
79153
glycerophosphodiester
N/A






phosphodiesterase domain-







containing protein 3



143
GJB7
Y
375519
gap junction beta-7 protein
Connexins, such as GJB7, are involved in the formation of gap junctions, intercellular conduits that directly connect the







cytoplasms of contacting cells. Each gap junction channel is formed by docking of 2 hemichannels, each of which contains







6 connexin subunits (Sohl et al., 2003 [PubMed 12881038]).[supplied by OMIM, Mar 2008].


144
GLG1
Y
2734
Golgi apparatus protein 1
N/A






isoform 3 precursor



145
GLOD5
Y
392465
glyoxalase domain-
This gene encodes a protein with a glyoxalase domain. [provided by RefSeq, Sep 2011].






containing protein 5



146
GLRA3
N
8001
glycine receptor subunit
The GLRA3 gene encodes the alpha-3 subunit of the neuronal glycine receptor, a ligand-gated chloride channel composed






alpha-3 isoform a
of ligand-binding alpha and structural beta polypeptides (Kingsmore et al., 1994 [PubMed 7894176]).[supplied by OMIM,






precursor
Nov 2009].


147
GNB1L
Y
54584
guanine nucleotide-binding
This gene encodes a G-protein beta-subunit-like polypeptide which is a member of the WD repeat protein family. WD






protein subunit beta-like
repeats are minimally conserved regions of approximately 40 amino acids typically bracketed by gly-his and trp-asp (GH-






protein 1
WD), which may facilitate formation of heterotrimeric or multiprotein complexes. Members of this family are involved in







a variety of cellular processes, including cell cycle progression, signal transduction, apoptosis, and gene regulation. This







protein contains 6 WD repeats and is highly expressed in the heart. The gene maps to the region on chromosome 22q11,







which is deleted in DiGeorge syndrome, trisomic in derivative 22 syndrome and tetrasomic in cat-eye syndrome.







Therefore, this gene may contribute to the etiology of those disorders. Transcripts from this gene share exons with some







transcripts from the C22orf29 gene. [provided by RefSeq, Jul 2008]. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access additional publications.


148
GNG13
Y
51764
guanine nucleotide-binding
Heterotrimeric G proteins, which consist of alpha (see MIM 139320), beta (see MIM 139380), and gamma subunits,






protein G(I)/G(S)/G(0)
function as signal transducers for the 7-transmembrane-helix G protein-coupled receptors. GNG13 is a gamma subunit that






subunit gamma-13
is expressed in taste, retinal, and neuronal tissues and plays a key role in taste transduction (Li et al., 2006 [PubMed






precursor
16473877]).[supplied by OMIM, Oct 2009].


149
GOLGA8A
Y
23015
N/A
The Golgi apparatus, which participates in glycosylation and transport of proteins and lipids in the secretory pathway,







consists of a series of stacked, flattened membrane sacs referred to as cisternae. Interactions between the Golgi and







microtubules are thought to be important for the reorganization of the Golgi after it fragments during mitosis. The golgins







constitute a family of proteins which are localized to the Golgi. This gene encodes a golgin which structurally resembles its







family member GOLGA2, suggesting that they may share a similar function. There are many similar copies of this gene on







chromosome 15. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2009]. Transcript







Variant: This variant (2) represents use of an alternate upstream promoter, contains additional 5 exons, and retains an







intron, compared to variant 1. This variant is represented as non-coding because the use of the 5′-most expected







translational start codon renders the transcript a candidate for nonsense-mediated mRNA decay (NMD). Sequence Note:







The RefSeq transcript was derived from the reference genome assembly. The genomic coordinates were determined from







alignments.


150
GOLGA8E
Y
390535
N/A
N/A


151
GOLGA8IP
Y
283796
N/A
N/A


152
GP1BB
Y
2812
platelet glycoprotein Ib
Platelet glycoprotein lb (GPlb) is a heterodimeric transmembrane protein consisting of a disulfide-linked 140 kD alpha






beta chain precursor
chain and 22 kD beta chain. It is part of the GPlb-V-IX system that constitutes the receptor for von Willebrand factor







(VWF), and mediates platelet adhesion in the arterial circulation. GPlb alpha chain provides the VWF binding site, and







GPlb beta contributes to surface expression of the receptor and participates in transmembrane signaling through







phosphorylation of its intracellular domain. Mutations in the GPlb beta subunit have been associated with Bernard-Soulier







syndrome, velocardiofacial syndrome and giant platelet disorder. The 206 amino acid precursor of GPlb beta is







synthesized from a 1.0 kb mRNA expressed in plateletes and megakaryocytes. A 411 amino acid protein arising from a







longer, unspliced transcript in endothelial cells has been described; however, the authenticity of this product has been







questioned. Yet another less abundant GPlb beta mRNA species of 3.5 kb, expressed in nonhematopoietic tissues such as







endothelium, brain and heart, was shown to result from inefficient usage of a non-consensus polyA signal in the







neighboring upstream gene (SEPT5, septin 5). In the absence of polyadenylation from its own imperfect site, the SEPT5







gene produces read-through transcripts that use the consensus polyA signal of this gene. [provided by RefSeq, Dec 2010].







Sequence Note: This RefSeq record was created from genomic sequence data to make the sequence consistent with the







reference genome assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


153
GPR25
Y
2848
probable G-protein
N/A






coupled receptor 25



154
GRID2
N
2895
glutamate receptor delta-2
Human glutamate receptor delta-2 (GRID2) is a relatively new member of the family of ionotropic glutamate receptors






subunit precursor
which are the predominant excitatory neurotransmitter receptors in the mammalian brain. GRID2 is a predicted 1,007







amino acid protein that shares 97% identity with the mouse homolog which is expressed selectively in cerebellar Purkinje







cells. A point mutation in mouse GRID2, associated with the phenotype named ′lurcher′, in the heterozygous state leads to







ataxia resulting from selective, cell-autonomous apoptosis of cerebellar Purkinje cells during postnatal development. Mice







homozygous for this mutation die shortly after birth from massive loss of mid- and hindbrain neurons during late







embryogenesis. This strongly suggests a role for GRID2 in neuronal apoptotic death. [provided by RefSeq, Jul 2008].


155
GSC2
Y
2928
homeobox protein
Goosecoidlike (GSCL), a homeodomain-containing gene, resides in the critical region for VCFS/DGS on 22q11.






goosecoid-2
Velocardiofacial syndrome (VCFS) is a developmental disorder characterized by conotruncal heart defects, craniofacial







anomalies, and learning disabilities. VCFS is phenotypically related to DiGeorge syndrome (DGS) and both syndromes are







associated with hemizygous 22q11 deletions. Because many of the tissues and structures affected in VCFS/DGS derive







from the pharyngeal arches of the developing embryo, it is believed that haploinsufficiency of a gene involved in







embryonic development may be responsible for its etiology. The gene is expressed in a limited number of adult tissues, as







well as in early human development. [provided by RefSeq, Jul 2008]. Sequence Note: This RefSeq record was created







from genomic sequence data because no single transcript was available for the full length of the gene. The extent of this







transcript is supported by experimental evidence.


156
GSTT2
Y
2953
glutathione 5-transferase
Glutathione 5-transferase (GSTs) theta 2 (GSTT2) is a member of a superfamily of proteins that catalyze the conjugation






theta-2
of reduced glutathione to a variety of electrophilic and hydrophobic compounds. Human GSTs can be divided into five







main classes: Alpha, Mu, Pi, Theta, and Zeta. The theta class members GSTT1 and GSTT2 share 55% amino acid







sequence identity and both are thought to have an important role in human carcinogenesis. The theta genes have a similar







structure, being composed of five exons with identical exon/intron boundaries. [provided by RefSeq, Jul 2008]. Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene record







to access additional publications.


157
GSTT2B
Y
653689
glutathione 5-transferase
N/A






theta-2B



158
GSTTP2
Y
653399
N/A
N/A


159
GTF3C4
Y
9329
general transcription factor
N/A






3C polypeptide 4



160
GYPA
Y
2993
glycophorin-A precursor
Glycophorins A (GYPA) and B (GYPB) are major sialoglycoproteins of the human erythrocyte membrane which bear the







antigenic determinants for the MN and Ss blood groups. In addition to the M or N and S or s antigens that commonly occur







in all populations, about 40 related variant phenotypes have been identified. These variants include all the variants of the







Miltenberger complex and several isoforms of Sta, as well as Dantu, Sat, He, Mg, and deletion variants Ena, S-s-U- and







Mk. Most of the variants are the result of gene recombinations between GYPA and GYPB. [provided by RefSeq, Jul







2008]. Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make the sequence







consistent with the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments. Sequence Note: This RefSeq record represents the GYPA*0010101 allele.


161
HACL1
Y
26061
2-hydroxyacyl-CoA lyase 1
N/A


162
HAR1A
Y
768096
N/A
N/A


163
HAR1B
Y
768097
N/A
N/A


164
HBG1
Y
3047
hemoglobin subunit
The gamma globin genes (HBG1 and HBG2) are normally expressed in the fetal liver, spleen and bone marrow. Two






gamma-1
gamma chains together with two alpha chains constitute fetal hemoglobin (HbF) which is normally replaced by adult







hemoglobin (HbA) at birth. In some beta-thalassemias and related conditions, gamma chain production continues into







adulthood. The two types of gamma chains differ at residue 136 where glycine is found in the G-gamma product (HBG2)







and alanine is found in the A-gamma product (HBG1). The former is predominant at birth. The order of the genes in the







beta-globin cluster is: 5′-epsilon gamma-G -- gamma-A-- delta -- beta--3′. [provided by RefSeq, Jul 2008].


165
HEATR4
N
399671
HEAT repeat-containing
N/A






protein 4



166
HERC2P2
Y
400322
N/A
N/A


167
HERC2P7
Y
100132101
N/A
N/A


168
HERV-VI
Y
N/A
N/A
N/A


169
HHATL
Y
57467
N/A
N/A


170
HIRA
Y
7920
protein HIRA
This gene encodes a histone chaperone that preferentially places the variant histone H3.3 in nucleosomes. Orthologs of







this gene in yeast, flies, and plants are necessary for the formation of transcriptionally silent heterochomatin. This gene







plays an important role in the formation of the senescence-associated heterochromatin foci. These foci likely mediate the







irreversible cell cycle changes that occur in senescent cells. It is considered the primary candidate gene in some







haploinsufficiency syndromes such as DiGeorge syndrome, and insufficient production of the gene may disrupt normal







embryonic development. [provided by RefSeq, Jul 2008].


171
HIRIP3
Y
8479
HIRA-interacting protein 3
The HIRA protein shares sequence similarity with Hirlp and Hir2p, the two corepressors of histone gene transcription






isoform 2
characterized in the yeast, Saccharomyces cerevisiae. The structural features of the HIRA protein suggest that it may







function as part of a multiprotein complex. Several cDNAs encoding HIRA-interacting proteins, or HIRIPs, have been







identified. In vitro, the protein encoded by this gene binds HIRA, as well as H2B and H3 core histones, indicating that a







complex containing HIRA-HIRIP3 could function in some aspects of chromatin and histone metabolism. Alternatively







spliced transcript variants encoding distinct isoforms have been found for this gene.[provided by RefSeq, Aug 2011].







Transcript Variant: This variant (2) lacks an exon in the coding region, resulting in frame-shift, compared to variant 1. The







resulting isoform (2) is shorter and has a distinct C-terminus, compared to isoform 1.


172
HIST2H2AA3
Y
8337
histone H2A type 2-A
Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in







eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which







approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with







linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is







intronless and encodes a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead







contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1. This gene is one of







four histone genes in the cluster that are duplicated; this record represents the centromeric copy. [provided by RefSeq, Jul







2008].


173
HIST2H2AA4
Y
723790
histone H2A type 2-A
Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in







eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which







approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with







linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is







intronless and encodes a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead







contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1. This gene is one of







four histone genes in the cluster that are duplicated; this record represents the telomeric copy. [provided by RefSeq, Jul







2008]. Sequence Note: The RefSeq transcript was derived from the reference genome assembly. The genomic coordinates







used for the transcript record were based on transcript alignments.


174
HIST2H2BF
Y
440689
histone H2B type 2-F
N/A






isoform b



175
HIST2H3A
Y
333932
histone H3.2
Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in







eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a nucleosome, an octamer composed







of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the







interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This







gene is intronless and encodes a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead,







they contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1. This gene is one







of four histone genes in the cluster that are duplicated; this record represents the centromeric copy. [provided by RefSeq,







Jul 2008].


176
HIST2H3C
Y
126961
histone H3.2
Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in







eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a nucleosome, an octamer composed







of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the







interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This







gene is intronless and encodes a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead,







they contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1. This gene is one







of four histone genes in the cluster that are duplicated; this record represents the telomeric copy. [provided by RefSeq, Jul







2008].


177
HIST2H3D
Y
653604
histone H3.2
N/A


178
HIST2H4A
Y
8370
histone H4
Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in







eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a nucleosome, an octamer composed







of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the







interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This







gene is intronless and encodes a member of the histone H4 family. Transcripts from this gene lack polyA tails; instead,







they contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1. This gene is one







of four histone genes in the cluster that are duplicated; this record represents the centromeric copy. [provided by RefSeq,







Jul 2008].


179
HIST2H4B
Y
554313
histone H4
Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in







eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a nucleosome, an octamer composed







of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the







interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This







gene is intronless and encodes a member of the histone H4 family. Transcripts from this gene lack polyA tails; instead,







they contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1. This gene is one







of four histone genes in the cluster that are duplicated; this record represents the telomeric copy. [provided by RefSeq, Jul







2008].


180
HKR1
N
284459
Krueppel-related zinc
N/A






finger protein 1



181
HMX1
both
3166
homeobox protein HMX1
This gene encodes a transcription factor that belongs to the H6 family of homeobox proteins. This protein can bind a 5′-







CAAG-3 core DNA sequence, and it is involved in the development of craniofacial structures. Mutations in this gene







cause oculoauricular syndrome, a disorder of the eye and external ear. [provided by RefSeq, Oct 2009]. Sequence Note:







The RefSeq transcript and protein were derived from genomic sequence to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


182
HPR
Y
3250
haptoglobin-related protein
This gene encodes a haptoglobin-related protein that binds hemoglobin as efficiently as haptoglobin. Unlike haptoglobin,






precursor
plasma concentration of this protein is unaffected in patients with sickle cell anemia and extensive intravascular hemolysis,







suggesting a difference in binding between haptoglobin-hemoglobin and haptoglobin-related protein-hemoglobin







complexes to CD163, the hemoglobin scavenger receptor. This protein may also be a clinically important predictor of







recurrence of breast cancer. [provided by RefSeq, Oct 2011].


183
HTR4
N
3360
5-hydroxytryptamine
This gene is a member of the family of serotonin receptors, which are G protein coupled receptors that stimulate cAMP






receptor 4 isoform i
production in response to serotonin (5-hydroxytryptamine). The gene product is a glycosylated transmembrane protein that







functions in both the peripheral and central nervous system to modulate the release of various neurotransmitters. Multiple







transcript variants encoding proteins with distinct C-terminal sequences have been described. [provided by RefSeq, May







2010]. Transcript Variant: This variant (i) differs in the 5′ UTR and includes an alternate in-frame exon, compared to







variant b. This results in a longer protein (isoform i), compared to isoform b.


184
IFNA22P
Y
3453
N/A
N/A


185
IL27RA
Y
9466
interleukin-27 receptor
In mice, CD4+ helper T-cells differentiate into type 1 (Thi) cells, which are critical for cell-mediated immunity,






subunit alpha precursor
predominantly under the influence of IL12. Also, IL4 influences their differentiation into type 2 (Th2) cells, which are







critical for most antibody responses. Mice deficient in these cytokines, their receptors, or associated transcription factors







have impaired, but are not absent of, Thi or Th2 immune responses. This gene encodes a protein which is similar to the







mouse T-cell cytokine receptor Tccr at the amino acid level, and is predicted to be a glycosylated transmembrane protein.







[provided by RefSeq, Jul 2008].


186
INO80E
Y
283899
IN080 complex subunit E
N/A


187
INTS2
N
57508
integrator complex subunit
INTS2 is a subunit of the Integrator complex, which associates with the C-terminal domain of RNA polymerase II large






2
subunit (POLR2A; MIM 180660) and mediates 3-prime end processing of small nuclear RNAs Ul (RNU1; MIM 180680)







and U2 (RNU2; MIM 180690) (Baillat et al., 2005 [PubMed 16239144]).[supplied by OMIM, Mar 2008]. Transcript







Variant: This variant (1) is the protein-coding variant. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data because no single transcript was available for the full length of the gene. The extent of this







transcript is supported by transcript alignments.


188
IRGM
Y
345611
immunity-related GTPase
This gene encodes a member of the p47 immunity-related GTPase family. The encoded protein may play a role in the






family M protein
innate immune response by regulating autophagy formation in response to intracellular pathogens. Polymorphisms that







affect the normal expression of this gene are associated with a susceptibility to Crohn's disease and tuberculosis.[provided







by RefSeq, Oct 2010]. Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the transcript record were







based on alignments.


189
ITGBLI
N
9358
integrin beta-like protein 1
N/A






precursor



190
JAG2
Y
3714
protein jagged-2 isoform b
The Notch signaling pathway is an intercellular signaling mechanism that is essential for proper embryonic development.






precursor
Members of the Notch gene family encode transmembrane receptors that are critical for various cell fate decisions. The







protein encoded by this gene is one of several ligands that activate Notch and related receptors. Two transcript variants







encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]. Transcript Variant: This







variant (2) lacks an alternate in-frame exon compared to variant 1, resulting in a shorter protein (isoform b) than isoform a







encoded by variant 1. Isoform b is also known as hJAG2.del-E6.


191
KCTD13
Y
253980
BTB/POZ domain-
N/A






containing adapter for







CUL3-mediated RhoA







degradation protein 1



192
KIAA1217
Y
56243
sickle tail protein homolog
N/A






isoform 3



193
KIA1267
N
284058
MLL1/MLL complex
N/A






subunit KIAA1267







isoform 1



194
KLHL3
N
26249
kelch-like protein 3
N/A


195
KRT39
Y
390792
keratin, type I cytoskeletal
This gene encodes a member of the type I (acidic) keratin family, which belongs to the superfamily of intermediate






39
filament (IF) proteins. Keratins are heteropolymeric structural proteins which form the intermediate filament. These







filaments, along with actin microfilaments and microtubules, compose the cytoskeleton of epithelial cells. The type I







keratin genes are clustered in a region of chromosome 17q12-q21. [provided by RefSeq, Jul 2009].


196
KRT40
Y
125115
keratin, type I cytoskeletal
This gene encodes a member of the type I (acidic) keratin family, which belongs to the superfamily of intermediate






40
filament (IF) proteins. Keratins are heteropolymeric structural proteins which form the intermediate filament. These







filaments, along with actin microfilaments and microtubules, compose the cytoskeleton of epithelial cells. The type I







keratin genes are clustered in a region of chromosome 17q12-q21. [provided by RefSeq, Jul 2009]. Sequence Note: The







RefSeq transcript and protein were derived from genomic sequence to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on alignments.


197
KRTAP1-1
Y
81851
keratin-associated protein
This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a matrix of keratin






1-1
intermediate filaments which contribute to the structure of hair fibers. KAP family members appear to have unique,







family-specific amino- and carboxyl-terminal regions and are subdivided into three multi-gene families according to amino







acid composition: the high sulfur, the ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the







high sulfur KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, Jul 2008].


198
KRTAP1-3
Y
81850
keratin-associated protein
This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a matrix of keratin






1-3
intermediate filaments which contribute to the structure of hair fibers. KAP family members appear to have unique,







family-specific amino- and carboxyl-terminal regions and are subdivided into three multi-gene families according to amino







acid composition: the high sulfur, the ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the







high sulfur KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, Jul 2008].


199
KRTAP1-5
Y
83895
keratin-associated protein
This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a matrix of keratin






1-5
intermediate filaments which contribute to the structure of hair fibers. KAP family members appear to have unique,







family-specific amino- and carboxyl-terminal regions and are subdivided into three multi-gene families according to amino







acid composition: the high sulfur, the ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the







high sulfur KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, Jul 2008].


200
KRTAP2-1
Y
81872
keratin-associated protein
N/A






2-1



201
KRTAP2-2
Y
728279
keratin associated protein
N/A






2-2



202
KRTAP2-4
Y
85294
keratin-associated protein
This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a matrix of keratin






2-4
intermediate filaments which contribute to the structure of hair fibers. KAP family members appear to have unique,







family-specific amino- and carboxyl-terminal regions and are subdivided into three multi-gene families according to amino







acid composition: the high sulfur, the ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the







high sulfur KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, Jul 2008].


203
KRTAP3-1
Y
83896
keratin-associated protein
This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a matrix of keratin






3-1
intermediate filaments which contribute to the structure of hair fibers. KAP family members appear to have unique,







family-specific amino- and carboxyl-terminal regions and are subdivided into three multi-gene families according to amino







acid composition: the high sulfur, the ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the







high sulfur KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, Jul 2008].


204
KRTAP3-2
Y
83897
keratin-associated protein
This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a matrix of keratin






3-2
intermediate filaments which contribute to the structure of hair fibers. KAP family members appear to have unique,







family-specific amino- and carboxyl-terminal regions and are subdivided into three multi-gene families according to amino







acid composition: the high sulfur, the ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the







high sulfur KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, Jul 2008].


205
KRTAP3-3
Y
85293
keratin-associated protein
This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a matrix of keratin






3-3
intermediate filaments which contribute to the structure of hair fibers. KAP family members appear to have unique,







family-specific amino- and carboxyl-terminal regions and are subdivided into three multi-gene families according to amino







acid composition: the high sulfur, the ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the







high sulfur KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, Jul 2008].


206
KRTAP4-11
Y
653240
keratin-associated protein
This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a matrix of keratin






4-11
intermediate filaments which contribute to the structure of hair fibers. KAP family members appear to have unique,







family-specific amino- and carboxyl-terminal regions and are subdivided into three multi-gene families according to amino







acid composition: the high sulfur, the ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the







ultrahigh sulfur KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, Mar 2009].







Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the sequence consistent







with the reference genome assembly. The genomic coordinates used for the transcript record were based on alignments.


207
KRTAP4-12
Y
83755
keratin-associated protein
This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a matrix of keratin






4-12
intermediate filaments which contribute to the structure of hair fibers. KAP family members appear to have unique,







family-specific amino- and carboxyl-terminal regions and are subdivided into three multi-gene families according to amino







acid composition: the high sulfur, the ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the







ultrahigh sulfur KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, Jul 2008].


208
L1CAM
Y
3897
neural cell adhesion
The protein encoded by this gene is an axonal glycoprotein belonging to the immunoglobulin supergene family. The






molecule L1 isoform 3
ectodomain, consisting of several immunoglobulin-like domains and fibronectin-like repeats (type III), is linked via a






precursor
single transmembrane sequence to a conserved cytoplasmic domain. This cell adhesion molecule plays an important role in







nervous system development, including neuronal migration and differentiation. Mutations in the gene cause three X-linked







neurological syndromes known by the acronym CRASH (corpus callosum hypoplasia, retardation, aphasia, spastic







paraplegia and hydrocephalus). Alternative splicing of a neuron-specific exon is thought to be functionally relevant.







[provided by RefSeq, Jul 2008]. Transcript Variant: This variant (3) lacks an internal exon in the 5 region and a neuron-







specific exon in the 3′ region, as compared to variant 1. The resulting isoform (3) is shorter, and lacks an internal segment







in the N-terminus and is missing a tyrosine-based sorting motif in the C-terminus.


209
LAMC2
N
3918
laminin subunit gamma-2
Laminins, a family of extracellular matrix glycoproteins, are the major noncollagenous constituent of basement






isoform b precursor
membranes. They have been implicated in a wide variety of biological processes including cell adhesion, differentiation,







migration, signaling, neurite outgrowth and metastasis. Laminins, composed of 3 non identical chains: laminin alpha, beta







and gamma (formerly A, Bl, and B2, respectively), have a cruciform structure consisting of 3 short arms, each formed by







a different chain, and a long arm composed of all 3 chains. Each laminin chain is a multidomain protein encoded by a







distinct gene. Several isoforms of each chain have been described. Different alpha, beta and gamma chain isomers combine







to give rise to different heterotrimeric laminin isoforms which are designated by Arabic numerals in the order of their







discovery, i.e. alphalbetalgammal heterotrimer is laminin 1. The biological functions of the different chains and trimer







molecules are largely unknown, but some of the chains have been shown to differ with respect to their tissue distribution,







presumably reflecting diverse functions in vivo. This gene encodes the gamma chain isoform laminin, gamma 2. The







gamma 2 chain, formerly thought to be a truncated version of beta chain (B2t), is highly homologous to the gamma 1







chain; however, it lacks domain VI, and domains V, IV and III are shorter. It is expressed in several fetal tissues but







differently from gamma 1, and is specifically localized to epithelial cells in skin, lung and kidney. The gamma 2 chain







together with alpha 3 and beta 3 chains constitute laminin 5 (earlier known as kalinin), which is an integral part of the







anchoring filaments that connect epithelial cells to the underlying basement membrane. The epithelium-specific expression







of the gamma 2 chain implied its role as an epithelium attachment molecule, and mutations in this gene have been







associated with junctional epidermolysis bullosa, a skin disease characterized by blisters due to disruption of the







epidermal-dermal junction. Two transcript variants resulting from alternative splicing of the 3′ terminal exon, and encoding







different isoforms of gamma 2 chain, have been described. The two variants are differentially expressed in embryonic







tissues, however, the biological significance of the two forms is not known. Transcript variants utilizing alternative







polyA signal have also been noted in literature. [provided by RefSeq, Aug 2011]. Transcript Variant: This variant (2)







represents a shorter transcript variant, compared to variant 1, and encodes a shorter isoform (b). Transcript variant 2, unlike







variant 1, has limited expression only in the embryonic cerebral cortex, lung and distal tubules of the kidney. Sequence







Note: This RefSeq record was created from transcript and genomic sequence data because transcript sequence consistent







with the reference genome assembly was not available for all regions of the RefSeq transcript. The extent of this transcript







is supported by transcript alignments.


210
LARP4B
N
23185
la-related protein 4B
N/A


211
LCE3D
Y
84648
late cornified envelope
N/A






protein 3D



212
LCE3E
Y
353145
late cornified envelope
N/A






protein 3E



213
LCP1
N
3936
plastin-2
Plastins are a family of actin-binding proteins that are conserved throughout eukaryote evolution and expressed in most







tissues of higher eukaryotes. In humans, two ubiquitous plastin isoforms (Land T) have been identified. Plastin 1







(otherwise known as Fimbrin) is a third distinct plastin isoform which is specifically expressed at high levels in the small







intestine. The L isoform is expressed only in hemopoietic cell lineages, while the T isoform has been found in all other







normal cells of solid tissues that have replicative potential (fibroblasts, endothelial cells, epithelial cells, melanocytes, etc.).







However, L-plastin has been found in many types of malignant human cells of non-hemopoietic origin suggesting that its







expression is induced accompanying tumorigenesis in solid tissues. [provided by RefSeq, Jul 2008]. Publication Note: This







RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


214
LILRB3
Y
11025
leukocyte
This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at






immunoglobulin-like
chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or






receptor subfamily B
four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor






member 3 isoform 1
tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I






precursor
molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. It







is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity.







Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].







Transcript Variant: This variant (1) represents the longer transcript and encodes the longer isoform (1).


215
LILRB4
Y
11006
leukocyte
This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at






immunoglobulin-like
chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or






receptor subfamily B
four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor






member 4 isoform 2
tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I






precursor
molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response.







The receptor can also function in antigen capture and presentation. It is thought to control inflammatory responses and







cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (2) uses an







alternate in-frame splice site in the 3 coding region, compared to variant 1, resulting in a protein (isoform 2) that is 1 aa







shorter than isoform 1.


216
LIN7A
N
8825
protein lin-7 homolog A
N/A


217
LINGO2
N
158038
leucine-rich repeat and
N/A






immunoglobulin-like







domain-containing nogo







receptor-interacting protein







2 precursor



218
LOC100129827
Y
N/A
N/A
N/A


219
LOC100272228
Y
100272228
N/A
N/A


220
LOC100287704
Y
100287704
N/A
N/A


221
LOC100287834
Y
100287834
N/A
N/A


222
LOC150185
Y
150185
N/A
N/A


223
LOC150776
Y
150776
N/A
N/A


224
LOC283922
Y
283922
N/A
N/A


225
LOC284551
Y
284551
N/A
N/A


226
LOC286467
Y
286467
N/A
N/A


227
LOC342346
Y
N/A
N/A
N/A


228
LOC401164
Y
401164
N/A
N/A


229
LOC401431
Y
401431
N/A
N/A


230
LOC401588
Y
401588
N/A
N/A


231
LOC440297
Y
440297
N/A
N/A


232
LOC440356
Y
440356
N/A
N/A


233
LOC441495
Y
441495
N/A
N/A


234
LOC63930
N
63930
N/A
N/A


235
LOC63930
Y
63930
N/A
N/A


236
LOC643837
Y
643837
N/A
N/A


237
LOC643955
Y
643955
N/A
N/A


238
LOC653513
Y
653513
N/A
N/A


239
LOC727849
Y
727849
N/A
N/A


240
LOC728855
Y
728855
N/A
N/A


241
LOC728875
Y
728875
N/A
N/A


242
LOC729513
Y
729513
N/A
N/A


243
LOC729678
Y
729678
N/A
N/A


244
LOC730755
Y
730755
keratin associated protein
N/A






2-4-like



245
LOC80154
Y
N/A
N/A
N/A


246
LOC92249
Y
92249
N/A
N/A


247
LOC92659
Y
92659
N/A
N/A


248
LOH12CR1
N
118426
loss of heterozygosity 12
N/A






chromosomal region 1







protein



249
LRRC49
N
54839
leucine-rich repeat-
N/A






containing protein 49







isoform 49



250
LRRTM4
N
80059
leucine-rich repeat
N/A






transmembrane neuronal







protein 4 isoform a



251
LSAMP
N
4045
limbic system-associated
The protein encoded by this gene is a neuronal surface glycoprotein found in cortical and subcortical regions of the limbic






membrane protein
system. During development of the limbic system, this encoded protein is found on the surface of axonal membranes and






preproprotein
growth cones, where it acts as a selective homophilic adhesion molecule, and guides the development of specific patterns







of neuronal connections. [provided by RefSeq, Jul 2008]. Sequence Note: This RefSeq record was created from transcript







and genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


252
LYPD6
N
130574
1y6/PLAUR domain-
Members of the LY6 protein family (see SLURP1; MIM 606119), such as LYPD6, have at least one 80-amino acid LU






containing protein 6
domain that contains 10 conserved cysteines with a defined disulfide-bonding pattern (Zhang et al., 2010 [PubMed






precursor
19653121]).[supplied by OMIM, Apr 2010]. Transcript Variant: This variant (1) represents the longer transcript. Variants







1 and 2 encode the same protein.


253
LYVE1
Y
10894
lymphatic vessel
This gene encodes a type I integral membrane glycoprotein. The encoded protein acts as a receptor and binds to both






endothelial hyaluronic acid
soluble and immobilized hyaluronan. This protein may function in lymphatic hyaluronan transport and have a role in tumor






receptor 1 precursor
metastasis. [provided by RefSeq, Jul 2008].


254
MAGEA11
Y
4110
melanoma-associated
This gene is a member of the MAGEA gene family. The members of this family encode proteins with 50 to 80% sequence






antigen 11 isoform b
identity to each other. The promoters and first exons of the MAGEA genes show considerable variability, suggesting that







the existence of this gene family enables the same function to be expressed under different transcriptional controls. The







MAGEA genes are clustered at chromosomal location Xq28. They have been implicated in some hereditary disorders, such







as dyskeratosis congenita. Two transcript variants encoding different isoforms have been found for this gene. [provided by







RefSeq, Jul 2008]. Transcript Variant: This variant (2) differs in the 5 UTR and CDS compared to variant 1. The resulting







isoform (b) is shorter and has a distinct N-terminus compared to isoform a. Publication Note: This RefSeq record includes







a subset of the publications that are available for this gene. Please see the Gene record to access additional publications.


255
MAGEC1
Y
9947
melanoma-associated
This gene is a member of the melanoma antigen gene (MAGE) family. The proteins of this family are tumor-specific






antigen C1
antigens that can be recognized by autologous cytolytic T lymphocytes. This protein contains a large number of unique







short repetitive sequences in front of the MAGE-homologous sequence, and therefore is about 800 aa longer than the other







MAGE proteins. [provided by RefSeq, Jul 2008]. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic coordinates







used for the transcript record were based on transcript alignments. Publication Note: This RefSeq record includes a subset







of the publications that are available for this gene. Please see the Gene record to access additional publications.


256
MAGEC3
Y
139081
melanoma-associated
This gene is a member of the MAGEC gene family. The members of this family are not expressed in normal tissues,






antigen C3 isoform 1
except for testis, and are expressed in tumors of various histological types. The MAGEC genes are clustered on







chromosome Xq26-q27. Two transcript variants encoding distinct isoforms have been found for this gene. [provided by







RefSeq, Jul 2008]. Transcript Variant: This variant (1) is the longer transcript and encodes the longer isoform (1).


257
MAGI3
N
260425
membrane-associated
N/A






guanylate kinase, WW and







PDZ domain-containing







protein 3 isoform 1



258
MAGT1
Y
84061
magnesium transporter
This gene encodes a magnesium cation transporter protein that localizes to the cell membrane. This protein also associates






protein 1
with N-oligosaccharyl transferase and therefore may have a role in N-glycosylation. Mutations in this gene cause mental







retardation X-linked type 95 (MRX95). This gene may have multiple in-frame translation initiation sites, one of which







would encode a shorter protein with an N-terminus containing a signal peptide at amino acids 1-29. [provided by RefSeq,







Jan 2010].


259
MAZ
Y
4150
myc-associated zinc finger
N/A






protein isoform 1



260
MCART6
Y
401612
mitochondrial carrier triple
N/A






repeat protein 6



261
MCF2L
Y
23263
guanine nucleotide
N/A






exchange factor DBS







isoform a



262
MCM5
Y
4174
DNA replication licensing
The protein encoded by this gene is structurally very similar to the CDC46 protein from S. cerevisiae, a protein involved






factor MCM5
in the initiation of DNA replication. The encoded protein is a member of the MCM family of chromatin-binding proteins







and can interact with at least two other members of this family. The encoded protein is upregulated in the transition from







the GO to Gl/S phase of the cell cycle and may actively participate in cell cycle regulation. [provided by RefSeq, Jul







2008].


263
MDGA2
N
161357
MAM domain-containing
N/A






glycosylphosphatidylinosit







ol anchor protein 2 isoform







1



264
MEIG1
Y
644890
meiosis expressed gene 1
N/A






protein homolog



265
MGAM
Y
8972
maltase-glucoamylase,
This gene encodes maltase-glucoamylase, which is a brush border membrane enzyme that plays a role in the final steps of






intestinal
digestion of starch. The protein has two catalytic sites identical to those of sucrase-isomaltase, but the proteins are only







59% homologous. Both are members of glycosyl hydrolase family 31, which has a variety of substrate specificities.







[provided by RefSeq, Jul 2008].


266
MIDN
Y
90007
midnolin
N/A


267
MIR1233-1
Y
100302160
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5 and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


268
MIR1233-2
Y
100422845
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


269
MIR1306
Y
100302197
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


270
MIR185
Y
406961
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


271
MIR208B
Y
100126336
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


272
MIR3618
Y
100500860
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5 and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


273
MIR516B2
Y
574485
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


274
MIR518A1
Y
574488
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


275
MIR518
Y
574487
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


276
MIR526A2
Y
57486
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5 and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


277
MIR662
Y
724032
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


278
MIR890
Y
100126303
N/A
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene







expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by







RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-







coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an







approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer







ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base







pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The







RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]. Sequence Note: This record







represents a predicted microRNA stem-loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be







included in the intermediate precursor miRNA produced by Drosha cleavage.


279
MOXD1
N
26002
DBH-like monooxygenase
N/A






protein 1 isoform 2



280
MRPL40
Y
64976
39S ribosomal protein L40,
Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the






mitochondrial precursor
mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They







have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed.







Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA.







Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in







biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein.







Deletions in this gene may contribute to the etiology of velo-cardio-facial syndrome and DiGeorge syndrome. [provided by







RefSeq, Jul 2008].


281
MRVI1
Y
10335
protein MRVI1 isoform b
This gene is similar to a putative mouse tumor suppressor gene (Mrvil) that is frequently disrupted by mouse AIDS-







related virus (MRV). The encoded protein, which is found in the membrane of the endoplasmic reticulum, is similar to







Jaw1, a lymphoid-restricted protein whose expression is down-regulated during lymphoid differentiation. This protein is a







substrate of cGMP-dependent kinase-1 (PKG1) that can function as a regulator of IP3-induced calcium release. Studies in







mouse suggest that MRV integration at Mrvi1 induces myeloid leukemia by altering the expression of a gene important for







myeloid cell growth and/or differentiation, and thus this gene may function as a myeloid leukemia tumor suppressor gene.







Several alternatively spliced transcript variants encoding different isoforms have been found for this gene, and alternative







translation start sites, including a non-AUG (CUG) start site, are used. [provided by RefSeq, May 2011]. Transcript







Variant: This variant (3) differs in the 5′ UTR, lacks a portion of the 5′ coding region, initiates translation from an







downstream in-frame non-AUG (CUG) start codon, and uses an alternate in-frame splice site in the central coding region,







compared to variant 1. The encoded isoform (b, also known as MRVI1B) is shorter at the N-terminus, compared to isoform







a. Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make the sequence







consistent with the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


282
MSLNL
Y
401827
mesothelin-like protein
N/A


283
MTRNR2L1
Y
100462977
humanin-like protein 1
N/A


284
MTRNR2L4
Y
100463285
humanin-like protein 4
N/A


285
MTRNR2L5
Y
100463289
humanin-like protein 5
N/A


286
MTRNR2L8
Y
100463486
humanin-like protein 8
N/A


287
MTUS1
Y
57509
microtubule-associated
This gene encodes a protein which contains a C-terminal domain able to interact with the angiotension II (AT2) receptor






tumor suppressor 1
and a large coiled-coil region allowing dimerization. Multiple alternatively spliced transcript variants encoding different






isoform 5
isoforms have been found for this gene. One of the transcript variants has been shown to encode a mitochondrial protein







that acts as a tumor suppressor and partcipates in AT2 signaling pathways. Other variants may encode nuclear or







transmembrane proteins but it has not been determined whether they also participate in AT2 signaling pathways. [provided







by RefSeq, Jul 2008]. Transcript Variant: This variant (5), also known as ATIP1, lacks multiple 5 exons but has an







alternate 5′ exon, compared to variant 1. It encodes the shortest isoform (5) which has a much shorter and distinct N-







terminus, compared to isoform 1. Isoform 5 is a mitochondrial protein. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access additional publications.


288
MVP
Y
9961
major vault protein
This gene encodes the major vault protein which is a lung resistance-related protein. Vaults are multi-subunit structures







that may be involved in nucleo-cytoplasmic transport. This protein mediates drug resistance, perhaps via a transport







process. It is widely distributed in normal tissues, and overexpressed in multidrug-resistant cancer cells. The protein







overexpression is a potentially useful marker of clinical drug resistance. This gene produces two transcripts by using two







alternative exon 2 sequences; however, the open reading frames are the same in both transcripts. [provided by RefSeq, Jul







2008]. Transcript Variant: This variant (1) is the longer transcript. Variants 1 and 2 encode the same protein. Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene record







to access additional publications.


289
MYH6
Y
4624
myosin-6
Cardiac muscle myosin is a hexamer consisting of two heavy chain subunits, two light chain subunits, and two regulatory







subunits. This gene encodes the alpha heavy chain subunit of cardiac myosin. The gene is located 4kb downstream of the







gene encoding the beta heavy chain subunit of cardiac myosin. Mutations in this gene cause familial hypertrophic


290
MYH7
Y
4625

cardiomyopathy and atrial septal defect 3. [provided by RefSeq, Mar 2010].






myosin-7
Muscle myosin is a hexameric protein containing 2 heavy chain subunits, 2 alkali light chain subunits, and 2 regulatory







light chain subunits. This gene encodes the beta (or slow) heavy chain subunit of cardiac myosin. It is expressed







predominantly in normal human ventricle. It is also expressed in skeletal muscle tissues rich in slow-twitch type I muscle







fibers. Changes in the relative abundance of this protein and the alpha (or fast) heavy subunit of cardiac myosin correlate







with the contractile velocity of cardiac muscle. Its expression is also altered during thyroid hormone depletion and







hemodynamic overloading. Mutations in this gene are associated with familial hypertrophic cardiomyopathy, myosin







storage myopathy, dilated cardiomyopathy, and Laing early-onset distal myopathy. [provided by RefSeq, Jul 2008].


291
MYOM2
Y
9172
myomesin-2
The giant protein titin, together with its associated proteins, interconnects the major structure of sarcomeres, the M bands







and Z discs. The C-terminal end of the titin string extends into the M line, where it binds tightly to M-band constituents of







apparent molecular masses of 190 kD and 165 kD. The predicted MYOM2 protein contains 1,465 amino acids. Like







MYOM1, MYOM2 has a unique N-terminal domain followed by 12 repeat domains with strong homology to either







fibronectin type III or immunoglobulin C2 domains. Protein sequence comparisons suggested that the MYOM2 protein







and bovine M protein are identical. [provided by RefSeq, Jul 2008].


292
MZT2A
Y
653784
mitotic-spindle organizing
N/A






protein 2A



293
NALCN
N
259232
sodium leak channel non-
NALCN forms a voltage-independent, nonselective, noninactivating cation channel permeable to Na






selective protein
is responsible for the neuronal background sodium leak conductance (Lu et al., 2007 [PubMed 17448995]).[supplied by


294
NAPEPLD
Y
222236
N-acyl-
OMIM, Mar 2008].






phosphatidylethanolamine-
NAPEPLD is a phospholipase D type enzyme that catalyzes the release of N-acylethanolamine (NAE) from N-acyl-






hydrolyzing phospholipase
phosphatidylethanolamine (NAPE) in the second step of the biosynthesis of N-acylethanolamine (Okamoto et al., 2004






D
[PubMed 14634025]).[supplied by OMIM, Oct 2008]. Transcript Variant: This variant (2) differs in the 3′ UTR, compared







to variant 1. Variants 1 and 2 encode the same protein. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data because no single transcript was available for the full length of the gene. The extent of this







transcript is supported by transcript alignments.


295
NAT15
Y
N/A
N/A
N/A


296
NBPF9
Y
uncharacterized protein

N/A





LOC400818




297
NCRNA00029
Y
N/A
N/A
N/A


298
NCRNA00115
Y
N/A
N/A
N/A


299
NCRNA00183
N
N/A
N/A
N/A


300
NDST3
N
9348
bifunctional heparan
This gene encodes a member of the heparan sulfate/heparin GlcNAc N-deacetylase/ N-sulfotransferase family. The






sulfate N-deacetylase/N-
encoded enzyme is a type II transmembrane protein that resides in the Golgi apparatus. This monomeric bifunctional






sulfotransferase 3
enzyme catalyzes the N-deacetylation and N-sulfation of N-acetylglucosamine residues in heparan sulfate and heparin,







which are the initial chemical modifications required for the biosynthesis of the functional oligosaccharide sequences that







define the specific ligand binding activities of heparan sulfate and heparin. [provided by RefSeq, Nov 2008].


301
NKAIN2
N
154215
sodium/potassium-
The protein encoded by this gene is a transmembrane protein that interacts with the beta subunit of Na,K-ATPase






transporting ATPase
(ATP1B1). A chromosomal translocation involving this gene is a cause of lymphoma. At least two transcript variants






subunit beta-1-interacting
encoding different isoforms have been found for this gene. [provided by RefSeq, May 2010]. Transcript Variant: This






protein 2 isoform 2
variant (2) lacks an alternate in-frame exon compared to variant 1. The resulting isoform (2) has the same N- and C-termini







but is shorter compared to isoform 1.


302
NLGN4X
Y
57502
neuroligin-4, X-linked
This gene encodes a member of a family of neuronal cell surface proteins. Members of this family may act as splice site-







specific ligands for beta-neurexins and may be involved in the formation and remodeling of central nervous system







synapses. The encoded protein interacts with discs, large (Drosophila) homolog 4 (DLG4). Mutations in this gene have







been associated with autism and Asperger syndrome. Two transcript variants encoding the same protein have been







identified for this gene. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (2) differs in the 5 UTR







compared to variant 1. Variants 1 and 2 encode the same isoform.


303
NLRC3
Y
197358
protein NLRC3
N/A


304
NME4
Y
4833
nucleoside diphosphate
The nucleoside diphosphate (NDP) kinases (EC 2.7.4.6) are ubiquitous enzymes that catalyze transfer of gamma-






kinase, mitochondrial
phosphates, via a phosphohistidine intermediate, between nucleoside and dioxynucleoside tri- and diphosphates. The






precursor
enzymes are products of the nm23 gene family, which includes NME4 (Milon et al., 1997 [PubMed 9099850]).[supplied







by OMIM, May 2008].


305
NRG1
N
3084
pro-neuregulin-1,
The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with the NEU/ERBB2






membrane-bound isoform
receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This protein is a signaling protein that






isoform HRG-beta2b
mediates cell-cell interactions and plays critical roles in the growth and development of multiple organ systems. It is







known that an extraordinary variety of different isoforms are produced from this gene through alternative promoter usage







and splicing. These isoforms are tissue-specifically expressed and differ significantly in their structure, and thereby these







isoforms are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases such as cancer,







schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript Variant: This variant (HRG-







beta2b) lacks an internal exon and the 3′ exon, but has an alternate 3′ UTR, compared to variant HRG-betal. The resulting







isoform (HRG-beta2b) lacks an internal segment and is C-terminal truncated, compared to isoform HRG-betal.


306
NSDHL
Y
50814
sterol-4-alpha-carboxylate
The protein encoded by this gene is localized in the endoplasmic reticulum and is involved in cholesterol biosynthesis.






3-dehydrogenase,
Mutations in this gene are associated with CHILD syndrome, which is a X-linked dominant disorder of lipid metabolism






decarboxylating
with disturbed cholesterol biosynthesis, and typically lethal in males. Alternatively spliced transcript variants with







differing 5′ UTR have been found for this gene. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (1)







represents the more predominant transcript. Transcript variants 1 and 2 encode the same protein.


307
NSF
N
4905
N/A
N/A


308
NTM
N
50863
neurotrimin isoform 2
This gene encodes a member of the IgLON (LAMP, OBCAM, Ntm) family of immunoglobulin (Ig) domain-containing






precursor
glycosylphosphatidylinositol (GPI)-anchored cell adhesion molecules. The encoded protein may promote neurite







outgrowth and adhesion via a homophilic mechanism. This gene is closely linked to a related family member, opioid







binding protein/cell adhesion molecule-like (OPCML), on chromosome 11. Multiple transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, Jan 2009]. Transcript Variant: This variant (2) differs in the







5′ UTR and in the coding region compared to variant 3, resulting in a protein that maintains the reading frame but is shorter







and has a distinct N-terminus, compared to isoform 3.


309
NTNG2
Y
84628
netrin-G2 precursor
N/A


310
NUDT10
Y
170685
diphosphoinositol
NUDT10 belongs to a subgroup of phosphohydrolases that preferentially attack diphosphoinositol polyphosphates (Hidaka






polyphosphate
et al., 2002 [PubMed 12105228]).[supplied by OMIM, Mar 2008]. Sequence Note: removed 2 bases from the 5′ end that






phosphohydrolase 3-alpha
did not align to the reference genome assembly.


311
NUDT11
Y
55190
diphosphoinositol
NUDT11 belongs to a subgroup of phosphohydrolases that preferentially attack diphosphoinositol polyphosphates






polyphosphate
(Hidaka et al., 2002 [PubMed 12105228]).[supplied by OMIM, Mar 2008].






phosphohydrolase 3-beta



312
OLFM3
Y
118427
noelin-3 precursor
N/A


313
OR13H1
Y
347468
olfactory receptor 13H1
Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception







of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising







from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter







and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The







olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and







proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008].


314
OR2T29
Y
343563
olfactory receptor 2T29
Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception







of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising







from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter







and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The







olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and







proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]. Sequence Note: The RefSeq







transcript and protein were derived from genomic sequence to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on homologous alignments.


315
OR4C46
Y
119749
olfactory receptor 4C46
Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception







of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising







from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter







and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The







olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and







proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008].


316
OR51A2
Y
401667
olfactory receptor 51A2
Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception







of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising







from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter







and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The







olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and







proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008].


317
OR52E8
Y
390079
olfactory receptor 52E8
Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception







of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising







from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter







and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The







olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and







proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008].


318
OR52N1
Y
79743
olfactory receptor 52N1
Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception







of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising







from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter







and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The







olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and







proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008].


319
OR7E5P
Y
219445
N/A
Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception







of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising







from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter







and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The







olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and







proteins for this organism is independent of other organisms. This family member is believed to be a pseudogene.







[provided by RefSeq, Jun 2009]. Sequence Note: This RefSeq record was created from transcript and genomic sequence







data to make the sequence consistent with the reference genome assembly. The genomic coordinates used for the transcript







record were based on transcript alignments.


320
OR8B2
Y
26595
olfactory receptor 8B2
Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception







of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising







from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter







and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The







olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and







proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008].


321
OXR1
N
55074
oxidation resistance
N/A






protein 1 isoform 2



322
PACS2
Y
23241
phosphofurin acidic cluster
N/A






sorting protein 2 isoform 1



323
PALM2
N
114299
paralemmin-2 isoform a
N/A


324
PALM2-
N
445815
PALM2-AKAP2 protein
PALM2-AKAP2 mRNAs are naturally occurring read-through products of the neighboring PALM2 and AKAP2 genes.



AKAP2


isoform 2
The significance of these read-through mRNAs and the function the resulting fusion protein products have not yet been







determined. Alternative splicing of this gene results in several transcript variants encoding different isoforms, but the full-







length nature of some of these variants has not been defined. [provided by RefSeq, Oct 2010]. Transcript Variant: This







variant (2) lacks an in-frame exon near the 3 coding region compared to variant 1. It encodes a shorter isoform (2) but has







identical N- and C-termini to isoform 1.


325
PBMUCLI1
Y
N/A
N/A
N/A


326
PCDH15
N
65217
protocadherin-15 isoform
This gene is a member of the cadherin superfamily. Family members encode integral membrane proteins that mediate






CD1-4 precursor
calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of normal retinal and cochlear function.







Mutations in this gene result in hearing loss and Usher Syndrome Type IF (USH1F). Extensive alternative splicing







resulting in multiple isoforms has been observed in the mouse ortholog. Similar alternatively spliced transcripts are







inferred to occur inhuman, and additional variants are likely to occur. [provided by RefSeq, Dec 2008]. Transcript







Variant: This variant (C) lacks two alternate in-frame exons in the 5′ and 3′ coding region, compared to variant A. The







resulting isoform (CD1-4) lacks a 5-aa segment near the N-terminus and a 2-aa segment near the C-terminus, compared to







isoform CD1-1. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene.







Please see the Gene record to access additional publications.


327
PCDHB16
Y
57717
protocadherin beta-16
This gene is a member of the protocadherin beta gene cluster, one of three related gene clusters tandemly linked on






precursor
chromosome five. The gene clusters demonstrate an unusual genomic organization similar to that of B-cell and T-cell







receptor gene clusters. The beta cluster contains 16 genes and 3 pseudogenes, each encoding 6 extracellular cadherin







domains and a cytoplasmic tail that deviates from others in the cadherin superfamily. The extracellular domains interact in







a homophilic manner to specify differential cell-cell connections. Unlike the alpha and gamma clusters, the transcripts







from these genes are made up of only one large exon, not sharing common 3′ exons as expected. These neural cadherin-







like cell adhesion proteins are integral plasma membrane proteins. Their specific functions are unknown but they most







likely play a critical role in the establishment and function of specific cell-cell neural connections. [provided by RefSeq,







Jul 2008].


328
PCDHB8
Y
56128
protocadherin beta-8
This gene is a member of the protocadherin beta gene cluster, one of three related gene clusters tandemly linked on






precursor
chromosome five. The gene clusters demonstrate an unusual genomic organization similar to that of B-cell and T-cell







receptor gene clusters. The beta cluster contains 16 genes and 3 pseudogenes, each encoding 6 extracellular cadherin







domains and a cytoplasmic tail that deviates from others in the cadherin superfamily. The extracellular domains interact in







a homophilic manner to specify differential cell-cell connections. Unlike the alpha and gamma clusters, the transcripts







from these genes are made up of only one large exon, not sharing common 3′ exons as expected. These neural cadherin-







like cell adhesion proteins are integral plasma membrane proteins. Their specific functions are unknown but they most







likely play a critical role in the establishment and function of specific cell-cell neural connections. [provided by RefSeq,







Jul 2008].


329
PCNT
Y
5116
pericentrin
The protein encoded by this gene binds to calmodulin and is expressed in the centrosome. It is an integral component of







the pericentriolar material (PCM). The protein contains a series of coiled-coil domains and a highly conserved PCM







targeting motif called the PACT domain near its C-terminus. The protein interacts with the microtubule nucleation







component gamma-tubulin and is likely important to normal functioning of the centrosomes, cytoskeleton, and cell-cycle







progression. Mutations in this gene cause Seckel syndrome-4 and microcephalic osteodysplastic primordial dwarfism type







II. [provided by RefSeq, Jul 2008]. Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


330
PCYT1A
Y
5130
choline-phosphate
N/A






cytidylyltransferase A



331
PDCD6IP
N
10015
programmed cell death 6-
This gene encodes a protein thought to participate in programmed cell death. Studies using mouse cells have shown that






interacting protein isoform
overexpression of this protein can block apoptosis. In addition, the product of this gene binds to the product of the PDCD6






2
gene, a protein required for apoptosis, in a calcium-dependent manner. This gene product also binds to endophilins,







proteins that regulate membrane shape during endocytosis. Overexpression of this gene product and endophilins results in







cytoplasmic vacuolization, which may be partly responsible for the protection against cell death. Several alternatively







spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2009].







Transcript Variant: This variant (2) uses an alternative in-frame acceptor splice site at an internal coding exon compared to







variant 1. This results in an isoform (2) 5 aa longer than isoform 1.


332
PDE11A
N
50940
dual 3′,5′-cyclic-AMP and
The 3′,5′-cyclic nucleotides cAMP and cGMP function as second messengers in a wide variety of signal transduction






-GMP phosphodiesterase
pathways. 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) catalyze the hydrolysis of cAMP and cGMP to the






11A isoform 2
corresponding 5′-monophosphates and provide a mechanism to downregulate cAMP and cGMP signaling. This gene







encodes a member of the PDE protein superfamily. Mutations in this gene are a cause of Cushing disease and







adrenocortical hyperplasia. Multiple transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, Jul 2008]. Transcript Variant: This variant (2) contains a distinct 5 UTR and lacks an in-frame







portion of the 5′ coding region, compared to variant 4. The resulting isoform (2) has a shorter N-terminus, compared to







isoform 4.


333
PDE4DIP
Y
9659
myomegalin isoform 2
The protein encoded by this gene serves to anchor phosphodiesterase 4D to the Golgi/centrosome region of the cell.







Defects in this gene may be a cause of myeloproliferative disorder (MBD) associated with eosinophilia. Several transcript







variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2010]. Transcript Variant:







This variant (2) lacks multiple 3′ exons and has an alternate 3′ exon compared to variant 1. The resulting isoform (2) is C-







terminal truncated compared to isoform 1.


334
PDHX
N
8050
pyruvate dehydrogenase
The pyruvate dehydrogenase (PDH) complex is located in the mitochondrial matrix and catalyzes the conversion of






protein X component
pyruvate to acetyl coenzyme A. The PDH complex thereby links glycolysis to Krebs cycle. The PDH complex contains






mitochondrial isoform 2
three catalytic subunits, El, E2, and E3, two regulatory subunits, El kinase and El phosphatase, and a non-catalytic







subunit, E3 binding protein (E3BP). This gene encodes the E3 binding protein subunit; also known as component X of the







pyruvate dehydrogenase complex. This protein tethers E3 dimers to the E2 core of the PDH complex. Defects in this gene







are a cause of pyruvate dehydrogenase deficiency which results in neurological dysfunction and lactic acidosis in infancy







and early childhood. This protein is also a minor antigen for antimitochondrial antibodies. These autoantibodies are present







in nearly 95% of patients with the autoimmune liver disease primary biliary cirrhosis (PBC). In PBC, activated T







lymphocytes attack and destroy epithelial cells in the bile duct where this protein is abnormally distributed and







overexpressed. PBC eventually leads to cirrhosis and liver failure. Alternative splicing results in multiple transcript







variants encoding distinct isoforms.[provided by RefSeq, Oct 2009]. Transcript Variant: This variant (2) lacks a segment in







the 5′ region, resulting in upstream in-frame AUG start codon, as compared to variant 1. The resulting isoform (2) has a







shorter and distinct N-terminus, as compared to isoform 1.


335
PGAM5
Y
192111
serine/threonine-protein
N/A






phosphatase PGAM5,







mitochondrial isoform 3



336
PHF17
N
79960
protein Jade-1 short
N/A






isoform



337
PI4KA
Y
5297
phosphatidylinositol 4-
This gene encodes a phosphatidylinositol (PI) 4-kinase which catalyzes the first committed step in the biosynthesis of






kinase alpha isoform 1
phosphatidylinositol 4,5-bisphosphate. The mammalian PI 4-kinases have been classified into two types, II and III, based







on their molecular mass, and modulation by detergent and adenosine. The protein encoded by this gene is a type III







enzyme that is not inhibited by adenosine. Two transcript variants encoding different isoforms have been described for this







gene. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (1) represents the longer transcript and encodes the







longer isoform (1).


338
PLCHI
N
23007
1-phosphatidylinositol-4,5-
PLCH1 is a member of the PLC-eta family of the phosphoinositide-specific phospholipase C (PLC) superfamily of






bisphosphate
enzymes that cleave phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) to generate second messengers inositol 1,4,5-






phosphodiesterase eta-1
trisphosphate (IP3) and diacylglycerol (DAG) (Hwang et al., 2005 [PubMed 15702972]).[supplied by OMIM, Jun 2009].






isoform c
Transcript Variant: This variant (3) has an alternate exon in the 3 end of the coding sequence compared to variant 1. This







exon contains an in-frame stop codon, resulting in an isoform (c) that has a shorter and distinct C-terminus compared to







isoform a.


339
PLN
Y
5350
cardiac phospholamban
The protein encoded by this gene is found as a pentamer and is a major substrate for the cAMP-dependent protein kinase







in cardiac muscle. The encoded protein is an inhibitor of cardiac muscle sarcoplasmic reticulum Ca(2+)-ATPase in the







unphosphorylated state, but inhibition is relieved upon phosphorylation of the protein. The subsequent activation of the







Ca(2+) pump leads to enhanced muscle relaxation rates, thereby contributing to the inotropic response elicited in heart by







beta-agonists. The encoded protein is a key regulator of cardiac diastolic function. Mutations in this gene are a cause of







inherited human dilated cardiomyopathy with refractory congestive heart failure. [provided by RefSeq, Jul 2008].


340
POTEA
Y
340441
POTE ankyrin domain
N/A






family member A isoform







2



341
PPAP2C
Y
8612
lipid phosphate
The protein encoded by this gene is a member of the phosphatidic acid phosphatase (PAP) family. PAPs convert






phosphohydrolase 2
phosphatidic acid to diacylglycerol, and function in de novo synthesis of glycerolipids as well as in receptor-activated






isoform 1
signal transduction mediated by phospholipase D. This protein is similar to phosphatidic acid phosphatase type 2A







(PPAP2A) and type 2B (PPAP2B). All three proteins contain 6 transmembrane regions, and a consensus N-glycosylation







site. This protein has been shown to possess membrane associated PAP activity. Three alternatively spliced transcript







variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant







(1) differs in the 5′ region, including the 5′ UTR and a part of the coding region, as compared to variant 3. The resulting







isoform (1) has a distinct and shorter N-terminus, as compared to isoform 3.


342
PPIAL4A
Y
164022
peptidylprolyl cis-trans
N/A






isomerase A-like 4B



343
PPIAL4B
Y
653505
peptidylprolyl cis-trans
N/A






isomerase A-like 4A/B/C



344
PPIAL4C
Y
653598
peptidylprolyl cis-trans
N/A






isomerase A-like 4A/B/C



345
PPP4C
Y
5531
serine/threonine-protein
N/A






phosphatase 4 catalytic







subunit



346
PRG1
Y
23574
N/A
N/A


347
PRINS
Y
100169750
N/A
N/A


348
PROL1
Y
58503
proline-rich protein 1
This gene encodes a member of the proline-rich protein family. The protein may provide a protective function at the eye






precursor
surface. [provided by RefSeq, Jul 2008].


349
PRR25
Y
388199
proline-rich protein 25
N/A


350
PRRG1
Y
5638
transmembrane gamma-
This gene encodes a vitamin K-dependent, gamma-carboxyglutamic acid (Gla)-containing, single-pass transmembrane






carboxyglutamic acid
protein. This protein contains a Gla domain at the N-terminus, preceded by a propeptide sequence required for post-






protein 1 isoform 1
translational gamma-carboxylation of specific glutamic acid residues by a vitamin K-dependent gamma-carboxylase. The






precursor
C-terminus is proline-rich containing PPXY and MOO motifs found in a variety of signaling and cytoskeletal proteins.







This gene is highly expressed in the spinal cord. Several alternatively spliced transcript variants have been found for this







gene. [provided by RefSeq, Mar 2010]. Transcript Variant: This variant (2) is missing a 5′ non-coding exon compared to







variant 1. Variants 1-4 encode the same isoform (1).


351
PRRT2
Y
112476
proline-rich
N/A






transmembrane protein 2



352
PRSS1
Y
5644
trypsin-1 preproprotein
This gene encodes a trypsinogen, which is a member of the trypsin family of serine proteases. This enzyme is secreted by







the pancreas and cleaved to its active form in the small intestine. It is active on peptide linkages involving the carboxyl







group of lysine or arginine. Mutations in this gene are associated with hereditary pancreatitis. This gene and several other







trypsinogen genes are localized to the T cell receptor beta locus on chromosome 7. [provided by RefSeq, Jul 2008].


353
PRSS2
Y
5645
trypsin-2 preproprotein
This gene encodes a trypsinogen, which is a member of the trypsin family of serine proteases. This enzyme is secreted by







the pancreas and cleaved to its active form in the small intestine. It is active on peptide linkages involving the carboxyl







group of lysine or arginine. This gene and several other trypsinogen genes are localized to the T cell receptor beta locus on







chromosome 7. [provided by RefSeq, Jul 2008].


354
PTGER3
Y
5733
prostaglandin E2 receptor
The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein is one of four






EP3 subtype isoform 4
receptors identified for prostaglandin E2 (PGE2). This receptor may have many biological functions, which involve







digestion, nervous system, kidney reabsorption, and uterine contraction activities. Studies of the mouse counterpart suggest







that this receptor may also mediate adrenocorticotropic hormone response as well as fever generation in response to







exogenous and endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, Aug 2009]. Transcript Variant: This variant (4) has multiple differences compared to variant 1. The







resulting protein (isoform 4) has a distinct and shorter C-terminus, as compared to isoform 1. Transcript variants 4, 9 and







11 encode the same protein. Other names for variant 4 are EP3 subtype lb, pEPR-lb, and EP3a1.


355
PTPN4
Y
5775
tyrosine-protein
The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be






phosphatase non-receptor
signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and






type 4
oncogenic transformation. This protein contains a C-terminal PTP domain and an N-terminal domain homologous to the







band 4.1 superfamily of cytoskeletal-associated proteins. This PTP has been shown to interact with glutamate receptor







delta 2 and epsilon subunits, and is thought to play a role in signalling downstream of the glutamate receptors through







tyrosine dephosphorylation. [provided by RefSeq, Jul 2008].


356
PXDNL
N
137902
peroxidasin-like protein
N/A






precursor



357
PYCR1
Y
5831
pyrroline-5-carboxylate
This gene encodes an enzyme that catalyzes the NAD(P)H-dependent conversion of pyrroline-5-carboxylate to proline.






reductase 1, mitochondrial
This enzyme may also play a physiologic role in the generation of NADP(+) in some cell types. The protein forms a






isoform 1
homopolymer and localizes to the mitochondrion. Alternate splicing results in two transcript variants encoding different







isoforms. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (1) encodes the longer isoform (1) of this







protein.


358
QPRT
Y
23475
nicotinate-nucleotide
This gene encodes a key enzyme in catabolism of quinolinate, an intermediate in the tryptophan-nicotinamide adenine






pyrophosphorylase
dinucleotide pathway. Quinolinate acts as a most potent endogenous exitotoxin to neurons. Elevation of quinolinate levels






[carboxylating] precursor
in the brain has been linked to the pathogenesis of neurodegenerative disorders such as epilepsy, Alzheimer′s disease, and







Huntington's disease. [provided by RefSeq, Jul 2008].


359
RANBP1
Y
5902
ran-specific GTPase-
Ran/TC4-binding protein, RanBP1, interacts specifically with GTP-charged RAN. RANBP1 encodes a 23-kD protein that






activating protein
binds to RAN complexed with GTP but not GDP. RANBP1 does not activate GTPase activity of RAN but does markedly







increase GTP hydrolysis by the RanGTPase-activating protein (RanGAP1). The RANBP1 cDNA encodes a 201-amino







acid protein that is 92% similar to its mouse homolog. In both mammalian cells and in yeast, RANBP1 acts as a negative







regulator of RCC1 by inhibiting RCC1-stimulated guanine nucleotide release from RAN. [provided by RefSeq, Jul 2008].


360
RASA3
Y
22821
ras GTPase-activating
The protein encoded by this gene is member of the GAP1 family of GTPase-activating proteins. The gene product






protein 3
stimulates the GTPase activity of normal RAS p21 but not its oncogenic counterpart. Acting as a suppressor of RAS







function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound







form of RAS, thereby allowing control of cellular proliferation and differentiation. This family member is an inositol







1,3,4,5-tetrakisphosphate-binding protein, like the closely related RAS p21 protein activator 2. The two family members







have distinct pleckstrin-homology domains, with this particular member having a domain consistent with its localization to







the plasma membrane. [provided by RefSeq, Jul 2008].


361
RASGEF1A
Y
221002
ras-GEF domain-
N/A






containing family member







1A



362
RBMS3
N
27303
RNA-binding motif,
This gene encodes an RNA-binding protein that belongs to the c-myc gene single-strand binding protein family. These






single-stranded-interacting
proteins are characterized by the presence of two sets of ribonucleoprotein consensus sequence (RNP-CS) that contain






protein 3 isoform 4
conserved motifs, RNP1 and RNP2, originally described in RNA binding proteins, and required for DNA binding. These







proteins have been implicated in such diverse functions as DNA replication, gene transcription, cell cycle progression and







apoptosis. The encoded protein was isolated by virtue of its binding to an upstream element of the a1pha2(I) collagen







promoter. The observation that this protein localizes mostly in the cytoplasm suggests that it may be involved in a







cytoplasmic function such as controlling RNA metabolism, rather than transcription. Multiple alternatively spliced







transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Apr 2010]. Transcript







Variant: This variant (4) differs in the 3 UTR and has multiple differences in the coding region, compared to variant 1.







The encoded isoform (4) is shorter and lacks the last aa, compared to isoform 1. Sequence Note: This RefSeq record was







created from transcript and genomic sequence data to make the sequence consistent with the reference genome assembly.







The genomic coordinates used for the transcript record were based on transcript alignments.


363
RD3
Y
343035
protein RD3
This gene encodes a retinal protein that is associated with promyelocytic leukemia-gene product (PML) bodies in the







nucleus. Mutations in this gene cause Leber congenital amaurosis type 12, a disease that results in retinal degeneration.







Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2009]. Transcript Variant: This







variant (1) represents the longer transcript. Both variants 1 and 2 encode the same protein.


364
RET
U
5979
proto-oncogene tyrosine-
This gene, a member of the cadherin superfamily, encodes one of the receptor tyrosine kinases, which are cell-surface






protein kinase receptor Ret
molecules that transduce signals for cell growth and differentiation. This gene plays a crucial role in neural crest






isoform c precursor
development, and it can undergo oncogenic activation in vivo and in vitro by cytogenetic rearrangement. Mutations in this







gene are associated with the disorders multiple endocrine neoplasia, type HA, multiple endocrine neoplasia, type JIB,







Hirschsprung disease, and medullary thyroid carcinoma. Two transcript variants encoding different isoforms have been







found for this gene. Additional transcript variants have been described but their biological validity has not been confirmed.







[provided by RefSeq, Jul 2008]. Transcript Variant: This variant (4) differs in the 3′ UTR and coding region compared to







variant 2. The resulting isoform (c) is shorter and has a distinct C-terminus compared to isoform a. This isoform is also







known as Ret9.


365
RLN3
Y
117579
relaxin-3 preproprotein
Relaxins are known endocrine and autocrine/paracrine hormones, belonging to the insulin gene superfamily. In the human







there are three non-allelic relaxin genes, RLN1, RLN2 and RLN3. RLN1 and RLN2 share high sequence homology.







Relaxin is produced by the ovary, and targets the mammalian reproductive system to ripen the cervix, elongate the pubic







symphysis and inhibit uterine contraction. It may have additional roles in enhancing sperm motility, regulating blood







pressure, controlling heart rate and releasing oxytocin and vasopressin. The protein encoded by this gene is a member of







the relaxin family. The active form of the encoded protein consists of an A chain and a B chain but their cleavage sites are







not definitely described yet. It may play a role in neuropeptide signaling processes. [provided by RefSeq, Jul 2008].


366
RNF141
Y
50862
RING finger protein 141
The protein encoded by this gene contains a RING finger, a motif known to be involved in protein-DNA and protein-







protein interactions. Abundant expression of this gene was found in the testicular tissue of fertile men, but was not detected







in azoospermic patients. Studies of the mouse counterpart suggest that this gene may function as a testis specific







transcription factor during spermatogenesis. [provided by RefSeq, Jul 2008].


367
RNF208
Y
727800
RING finger protein 208
N/A


368
RPSAP58
Y
388524
N/A
N/A


369
RPTOR
Y
57521
regulatory-associated
This gene encodes a component of a signaling pathway that regulates cell growth in response to nutrient and insulin






protein of mTOR isoform
levels. The encoded protein forms a stoichiometric complex with the mTOR kinase, and also associates with eukaryotic






2
initiation factor 4E-binding protein-1 and ribosomal protein S6 kinase. The protein positively regulates the downstream







effector ribosomal protein S6 kinase, and negatively regulates the mTOR kinase. Multiple transcript variants encoding







different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]. Transcript Variant: This variant (2)







lacks alternate in-frame exons compared to variant 1. This results in a shorter protein (isoform 2) compared to isoform 1.







The transcript is described in PMID:19388141. Sequence Note: The RefSeq transcript and protein were derived from







genomic sequence to make the sequence consistent with the reference genome assembly. The genomic coordinates used







for the transcript record were based on alignments.


370
RPUSD1
Y
113000
RNA pseudouridylate
N/A






synthase domain-







containing protein 1



371
RTTN
N
25914
rotatin
RTTN is required for the early developmental processes of left-right (L-R) specification and axial rotation and may play a







role in notochord development (Faisst et al., 2002 [PubMed 11900971]).[supplied by OMIM, Mar 2008].


372
SAE1
Y
10055
SUMO-activating enzyme
Posttranslational modification of proteins by the addition of the small protein SUMO (see SUM01; MIM 601912), or






subunit 1 isoform b
sumoylation, regulates protein structure and intracellular localization. SAE1 and UBA2 (MIM 613295) form a heterodimer







that functions as a SUMO-activating enzyme for the sumoylation of proteins (Okuma et al., 1999 [PubMed







9920803]).[supplied by OMIM, Mar 2010]. Transcript Variant: This variant (2) lacks two alternate exons, compared to







variant 1, which causes a frameshift. The resulting protein (isoform b) has a distinct C-terminus and is shorter than isoform







a.


373
SBF2
Y
81846
myotubularin-related
This gene encodes a pseudophosphatase and member of the myotubularin-related protein family. This gene maps within






protein 13
the CMT4B2 candidate region of chromosome 1 1p15 and mutations in this gene have been associated with Charcot-Marie-







Tooth Disease, type 4B2. [provided by RefSeq, Jul 2008]. Publication Note: This RefSeq record includes a subset of the







publications that are available for this gene. Please see the Gene record to access additional publications.


374
SCN3A
Y
6328
sodium channel protein
Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha subunit with 24






type 3 subunit alpha
transmembrane domains and one or more regulatory beta subunits. They are responsible for the generation and propagation






isoform 3
of action potentials in neurons and muscle. This gene encodes one member of the sodium channel alpha subunit gene







family, and is found in a cluster of five alpha subunit genes on chromosome 2. Multiple transcript variants encoding







different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (3), also







known as the neonatal form, uses an alternate in-frame splice site in the central coding region and an alternate form of an







exon in the 5 coding region, compared to variant 1. The resulting isoform (3) is shorter than isoform 1, and contains one







amino acid substitution relative to isoform 2.


375
SDK1
N
221935
protein sidekick-1
N/A


376
SEC22B
Y
9554
vesicle-trafficking protein
The protein encoded by this gene is a member of the SEC22 family of vesicle trafficking proteins. It seems to complex






SEC22b precursor
with SNARE and it is thought to play a role in the ER-Golgi protein trafficking. This protein has strong similarity to Mus







musculus and Cricetulus griseus proteins.[provided by RefSeq, Sep 2009].


377
SEMA3F
both
6405
semaphorin-3F precursor
The semaphorins are a family of proteins that are involved in signaling. All the family members have a secretion signal, a







500-amino acid sema domain, and 16 conserved cysteine residues (Kolodkin et al., 1993 [PubMed 8269517]). Sequence







comparisons have grouped the secreted semaphorins into 3 general classes, all of which also have an immunoglobulin







domain. The semaphorin III family, consisting of human semaphorin III (SEMA3A; MIM 603961), chicken collapsin, and







mouse semaphorins A, D, and E, all have a basic domain at the C terminus. Chicken collapsin contributes to path finding







by axons during development by inhibiting extension of growth cones (Luo et al., 1993 [PubMed 8402908]) through an







interaction with a collapsin response mediator protein of relative molecular mass 62K (CRMP62) (Goshima et al., 1995







[PubMed 7637782]), a putative homolog of an axonal guidance associated UNC33 gene product (MIM 601168). SEMA3F







is a secreted member of the semaphorin III family. [supplied by OMIM, Mar 2008].


378
SEPT5
Y
5413
septin-5 isoform2
This gene is a member of the septin gene family of nucleotide binding proteins, originally described in yeast as cell







division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse and appear to regulate







cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid







cells. This gene is mapped to 22q11, the region frequently deleted in DiGeorge and velocardiofacial syndromes. A







translocation involving the MLL gene and this gene has also been reported in patients with acute myeloid leukemia.







Alternative splicing results in multiple transcript variants. The presence of a non-consensus polyA signal (AACAAT) in







this gene also results in read-through transcription into the downstream neighboring gene (GP1BB; platelet glycoprotein







Ib), whereby larger, non-coding transcripts are produced. [provided by RefSeq, Dec 2010]. Transcript Variant: This variant







(2) differs in the 5′ UTR, lacks a portion of the 5′ coding region, and uses an alternate start codon, compared to variant 1.







The encoded isoform 2 has a shorter and distinct N-terminus, compared to isoform 1. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to access additional







publications.


379
SEPT5-GP1BB
Y
100526833
N/A
This locus represents naturally occurring read-through transcription between the neighboring SEPT5 (septin 5) and







GP1BB (glycoprotein lb (platelet), beta polypeptide) genes on chromosome 22. This read-through transcription arises from







inefficient use of an imperfect polyA signal in the upstream SEPT5 gene, whereby transcription continues into the GP1BB







gene. Alternative splicing results in multiple read-through variants. The read-through transcripts are candidates for







nonsense-mediated mRNA decay (NMD), and are therefore unlikely to produce protein products. [provided by RefSeq,







Dec 2010].


380
SERPIND1
Y
3053
heparin cofactor 2
The product encoded by this gene is a serine proteinase inhibitor which rapidly inhibits thrombin in the presence of






precursor
dermatan sulfate or heparin. The gene contains five exons and four introns. This protein shares homology with







antithrombin III and other members of the alpha 1-antitrypsin superfamily. Mutations in this gene are associated with







heparin cofactor II deficiency. [provided by RefSeq, Jul 2008].


381
SEZ6L2
Y
26470
seizure 6-like protein 2
This gene encodes a seizure-related protein that is localized on the cell surface. The gene is located in a region of






isoform 6 precursor
chromosome 16p11.2 that is thought to contain candidate genes for autism spectrum disorders (ASD), though there is no







evidence directly implicating this gene in ASD. Increased expression of this gene has been found in lung cancers, and the







protein is therefore considered to be a novel prognostic marker for lung cancer. Alternative splicing of this gene results in







multiple transcript variants. [provided by RefSeq, Aug 2011]. Transcript Variant: This variant (6) lacks an alternate in-







frame exon in the 5 coding region, compared to variant 5, resulting in an isoform (6) that is shorter than isoform 5.


382
SFMBT1
N
51460
scm-like with four MBT
This gene shares high similarity with the Drosophila Scm (sex comb on midleg) gene. It encodes a protein which contains






domains protein 1
four malignant brain tumor repeat (mbt) domains and may be involved in antigen recognition. Several alternative splice







variants that encode the same protein have been characterized. [provided by RefSeq, Aug 2010]. Transcript Variant: This







variant (3) differs in the 5′ UTR, compared to variant 1. Variants 1, 2 and 3 encode the same protein. Sequence Note: This







RefSeq record was created from transcript and genomic sequence data to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


383
SGK1
N
6446
serine/threonine-protein
This gene encodes a serine/threonine protein kinase that plays an important role in cellular stress response. This kinase






kinase Sgkl isoform 1
activates certain potassium, sodium, and chloride channels, suggesting an involvement in the regulation of processes such







as cell survival, neuronal excitability, and renal sodium excretion. High levels of expression of this gene may contribute to







conditions such as hypertension and diabetic nephropathy. Several alternatively spliced transcript variants encoding







different isoforms have been noted for this gene. [provided by RefSeq, Jan 2009]. Transcript Variant: This variant (1)







represents the predominant transcript and encodes the shortest isoform (1).


384
SH3BP5L
Y
80851
SH3 domain-binding
N/A






protein 5-like



385
SIL1
Y
64374
nucleotide exchange factor
This gene encodes a resident endoplasmic reticulum (ER), N-linked glycoprotein with an N-terminal ER targeting






SIL1 precursor
sequence, 2 putative N-glycosylation sites, and a C-terminal ER retention signal. This protein functions as a nucleotide







exchange factor for another unfolded protein response protein. Mutations in this gene have been associated with







Marinesco-Sjogren syndrome. Alternate transcriptional splice variants have been characterized. [provided by RefSeq, Jul







2008]. Transcript Variant: This variant (2) lacks an exon in the 5′ UTR compared to variant 1. Variants 1 and 2 encode the







same protein.


386
SIRPB1
N
10326
signal-regulatory protein
The protein encoded by this gene is a member of the signal-regulatory-protein (SIRP) family, and also belongs to the






beta-1 isoform 3 precursor
immunoglobulin superfamily. SIRP family members are receptor-type transmembrane glycoproteins known to be involved







in the negative regulation of receptor tyrosine kinase-coupled signaling processes. This protein was found to interact with







TYROBP/DAP12, a protein bearing immunoreceptor tyrosine-based activation motifs. This protein was also reported to







participate in the recruitment of tyrosine kinase SYK. Multiple transcript variants encoding different isoforms have been







found for this gene. [provided by RefSeq, Feb 2009]. Transcript Variant: This variant (3) differs in the 3′ UTR and coding







sequence compared to variant 1. The resulting isoform (3) is similar in sequence to isoform 1 and contains the same







number of aa as does isoform 1.


387
SLC10A2
Y
6555
ileal sodium/bile acid
This gene encodes a sodium/bile acid cotransporter. This transporter is the primary mechanism for uptake of intestinal bile






cotransporter
acids by apical cells in the distal ileum. Bile acids are the catabolic product of cholesterol metabolism, so this protein is







also critical for cholesterol homeostasis. Mutations in this gene cause primary bile acid malabsorption (PBAM);







muatations in this gene may also be associated with other diseases of the liver and intestines, such as familial







hypertriglyceridemia (FHTG). [provided by RefSeq, Mar 2010].


388
SLC25A1
Y
6576
N/A
The mitochondrial tricarboxylate transporter (also called citrate transport protein, or CTP) is responsible for the movement







of citrate across the mitochondrial inner membrane (Kaplan et al., 1993 [PubMed 8514800]).[supplied by OMIM, Jan







2011]. Transcript Variant: This variant (2) has an alternate 5′ exon, as compared to variant 1. It includes a uORF which has







a strong Kozak signal and overlaps the downstream ORF. It appears that this transcript is a nonsense-mediated mRNA







decay candidate.


389
SLC27A5
Y
10998
bile acyl-CoA synthetase
The protein encoded by this gene is an isozyme of very long-chain acyl-CoA synthetase (VLCS). It is capable of






precursor
activating very long-chain fatty-acids containing 24- and 26-carbons. It is expressed in liver and associated with







endoplasmic reticulum but not with peroxisomes. Its primary role is in fatty acid elongation or complex lipid synthesis







rather than in degradation. This gene has a mouse ortholog. [provided by RefSeq, Jul 2008].


390
SLC35F2
N
54733
solute carrier family 35
N/A






member F2



391
SLC39A11
N
201266
zinc transporter ZIP11
N/A






isoform 2



392
SLX4
Y
84464
structure-specific
This gene encodes a structure-specific endonuclease subunit. The encoded protein contains a central BTB domain and it






endonuclease subunit
forms a multiprotein complex with the ERCC4(XPF)-ERCC1, MUS81-EME1, and SLX1 endonucleases, and also






SLX4
associates with MSH2/MSH3 mismatch repair complex, telomere binding complex TERF2(TRF2)-TERF2IP(RAP1), the







protein kinase PLK1 and the uncharacterized protein C20orf94. The multiprotein complex is required for repair of specific







types of DNA lesions and is critical for cellular responses to replication fork failure. The encoded protein acts as a docking







platform for the assembly of multiple structure-specific endonucleases.[provided by RefSeq, Jan 2011].


393
SMOC2
N
64094
SPARC-related modular
This gene encodes a member of the SPARC family (secreted protein acidic and rich in cysteine/osteonectin/BM-40),






calcium-binding protein 2
which are highly expressed during embryogenesis and wound healing. The gene product is a matricellular protein which






isoform 2 precursor
promotes matrix assembly and can stimulate endothelial cell proliferation and migration, as well as angiogenic activity.







Associated with pulmonary function, this secretory gene product contains a Kazal domain, two thymoglobulin type-1







domains, and two EF-hand calcium-binding domains. The encoded protein may serve as a target for controlling







angiogenesis in tumor growth and myocardial ischemia. Alternative splicing results in multiple transcript variants.







[provided by RefSeq, Oct 2009]. Transcript Variant: This variant (2) uses an alternate in-frame splice site in the central







coding region, compared to variant 1. This results in a shorter protein (isoform 2), compared to isoform 1.


394
SMR3A
Y
26952
submaxillary gland
N/A






androgen-regulated protein







3A precursor



395
SMR3B
Y
10879
submaxillary gland
N/A






androgen-regulated protein







3B precursor



396
SNAP29
Y
9342
synaptosomal-associated
This gene, a member of the SNAP25 gene family, encodes a protein involved in multiple membrane trafficking steps. Two






protein 29
other members of this gene family, SNAP23 and SNAP25, encode proteins that bind a syntaxin protein and mediate







synaptic vesicle membrane docking and fusion to the plasma membrane. The protein encoded by this gene binds tightly to







multiple syntaxins and is localized to intracellular membrane structures rather than to the plasma membrane. While the







protein is mostly membrane-bound, a significant fraction of it is found free in the cytoplasm. Use of multiple







polyadenylation sites has been noted for this gene. [provided by RefSeq, Jul 2008]. Sequence Note: This RefSeq record







was created from transcript and genomic sequence data because no single transcript was available for the full length of the







gene. The extent of this transcript is supported by transcript alignments.


397
SNTG1
N
54212
gamma-l-syntrophin
The protein encoded by this gene is a member of the syntrophin family. Syntrophins are cytoplasmic peripheral membrane







proteins that typically contain 2 pleckstrin homology (PH) domains, a PDZ domain that bisects the first PH domain, and a







C-terminal domain that mediates dystrophin binding. This gene is specifically expressed in the brain. Transcript variants







for this gene have been described, but their full-length nature has not been determined. [provided by RefSeq, Jul 2008].


398
SNUPN
Y
10073
snuiportin-1
The nuclear import of the spliceosomal snRNPs Ul, U2, U4 and U5, is dependent on the presence of a complex nuclear







localization signal. The latter is composed of the 5′-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U







snRNA and the Sm core domain. The protein encoded by this gene interacts specifically with m3G-cap and functions as an







snRNP-specific nuclear import receptor. Alternatively spliced transcript variants encoding the same protein have been







identified for this gene. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (3) differs in the 5 UTR,







compared to variant 1. Variants 1, 2 and 3 encode the same protein.


399
SNX33
Y
257364
sorting nexin-33
N/A


400
SORCS1
N
114815
VPS 10 domain-containing
This gene encodes one family member of vacuolar protein sorting 10 (VPS10) domain-containing receptor proteins. The






receptor SorCS1 isoform c
VPS10 domain name comes from the yeast carboxypeptidase Y sorting receptor Vps10 protein. Members of this gene






precursor
family are large with many exons but the CDS lengths are usually less than 3700 nt. Very large introns typically separate







the exons encoding the VPS10 domain; the remaining exons are separated by much smaller-sized introns. These genes are







strongly expressed in the central nervous system. Two of the five family members (sortilin and sortilin-related receptor)







are synthesized as preproproteins; it is not yet known if this encoded protein is also a preproprotein. Alternatively spliced







transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]. Transcript Variant:







This variant (3) differs in the 3 UTR and coding sequence compared to variant 2. The resulting isoform (c) has a shorter







and distinct C-terminus compared to isoform b. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic coordinates







used for the transcript record were based on transcript alignments.


401
SORL1
N
6653
sortilin-related receptor
This gene encodes a mosaic protein that belongs to at least two families: the vacuolar protein sorting 10 (VPS10) domain-






preproprotein
containing receptor family, and the low density lipoprotein receptor (LDLR) family. The encoded protein also contains







fibronectin type III repeats and an epidermal growth factor repeat. The encoded protein is translated as a preproprotein and







likely plays roles in endocytosis and sorting. There may be an association between expression of this locus and







Alzheimer′s Disease.[provided by RefSeq, Sep 2010]. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic coordinates







used for the transcript record were based on transcript alignments.


402
SPAG16
N
79582
sperm-associated antigen
Cilia and flagella are comprised of a microtubular backbone, the axoneme, which is organized by the basal body and






16 protein isoform 2
surrounded by plasma membrane. SPAG16 encodes 2 major proteins that associate with the axoneme of sperm tail and the







nucleus of postmeiotic germ cells, respectively (Zhang et al., 2007 [PubMed 17699735]).[supplied by OMIM, Jul 2008].


403
SPIN4
Y
139886
spindlin-4
N/A


404
SPN
Y
6693
leukosialin precursor
The protein encoded by this gene is a major sialoglycoprotein found on the surface of thymocytes, T lymphocytes,







monocytes, granulocytes, and some B lymphocytes. It may be part of a physiologic ligand-receptor complex involved in T-







cell activation. During T-cell activation, this protein is actively removed from the T-cell-APC (antigen-presenting cell)







contact site, suggesting a negative regulatory role in adaptive immune response. [provided by RefSeq, Sep 2011].


405
SRGAP2P2
Y
647135
N/A
N/A


406
SRPK2
N
6733
serine/threonine-protein
N/A






kinase SRPK2 isoform a



407
STK31
N
56164
serine/threonine-protein
This gene is similar to a mouse gene that encodes a putative protein kinase with a tudor domain, and shows testis-specific






kinase 31 isoform b
expression. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq,







Jul 2008]. Transcript Variant: This variant (3) uses an alternate splice-site in the 5′ end that results in translation initiation







at a downstream start codon, compared to variant 1. The encoded protein (isoform b) has a shorter N-terminus, compared







to isoform a.


408
SUCLG2
N
8801
succinyl-CoA ligase
This gene encodes a GTP-specific beta subunit of succinyl-CoA synthetase. Succinyl-CoA synthetase catalyzes the






[GDP-forming] subunit
reversible reaction involving the formation of succinyl-CoA and succinate. Alternate splicing results in multiple transcript






beta, mitochondrial
variants. Pseudogenes of this gene are found on chromosomes 5 and 12. [provided by RefSeq, Apr 2010]. Transcript






isoform 2 precursor
Variant: This variant (2) differs in the 3′UTR, and 3′coding region, compared to variant 1. The encoded isoform (2) is







shorter and has a distinct C-terminus, compared to isoform 1.


409
SYNE1
Y
23345
nesprin-1 isoform 2
This gene encodes a spectrin repeat containing protein expressed in skeletal and smooth muscle, and peripheral blood







lymphocytes, that localizes to the nuclear membrane. Mutations in this gene have been associated with autosomal recessive







spinocerebellar ataxia 8, also referred to as autosomal recessive cerebellar ataxia type 1 or recessive ataxia of Beauce.







Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Jul 2008].







Transcript Variant: This variant (2) differs in the 5′ UTR and has multiple coding region differences, compared to variant







1. This results in a shorter protein (isoform 2 which has also been referred to as the longer isoform), compared to isoform







1.


410
SYNGAP1
N
8831
ras GTPase-activating
The protein encoded by this gene is a major component of the postsynaptic density (PSD), a group of proteins found






protein SynGAP
associated with NMDA receptors at synapses. The encoded protein is phosphoiylated by calmodulin-dependent protein







kinase II and dephosphoiylated by NMDA receptor activation. Defects in this gene are a cause of mental retardation







autosomal dominant type 5 (MRD5). [provided by RefSeq, Dec 2009]. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access additional publications.


411
SYTL5
Y
94122
synaptotagmin-like protein
The protein encoded by this gene belongs to the synaptotagmin-like (Sip) protein family, which contains a unique






5 isoform 1
homology domain at the N-terminus, referred to as the Slp homology domain (SHD). The SHD functions as a binding site







for Rab27A, which plays a role in protein transport. Expression of this gene is restricted to placenta and liver, suggesting







that it might be involved in Rab27A-dependent membrane trafficking in specific tissues. Alternatively spliced transcript







variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]. Transcript Variant:







This variant (1) encodes the shorter isoform (1). Variants 1 and 2 encode the same isoform.


412
TAF7L
Y
54457
transcription initiation
This gene is similar to a mouse gene that encodes a TATA box binding protein-associated factor, and shows testis-specific






factor TFIID subunit 7-like
expression. The encoded protein could be a spermatogenesis-specific component of the DNA-binding general transcription






isoform 1
factor complex TFIID. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, Dec 2009]. Transcript Variant: This variant (1) represents the longer transcript and encodes the







longer isoform (1).


413
TAOK2
Y
9344
serine/threonine-protein
This gene encodes a serine/threonine protein kinase that is involved in many different processes, including, cell signaling,






kinase TAO2 isoform 3
microtubule organization and stability, and apoptosis. Alternatively spliced transcript variants encoding different isoforms







have been described for this gene. [provided by RefSeq, Oct 2011]. Transcript Variant: This variant (3) is alternatively







spliced at the 3 end compared to variant 1. However, it maintains the reading frame, and encodes a shorter isoform (3)







missing a protein segment compared to isoform 1.


414
TARSL2
Y
123283
probable threonyl-tRNA
N/A






synthetase 2, cytoplasmic



415
TBX1
Y
6899
T-box transcription factor
This gene is a member of a phylogenetically conserved family of genes that share a common DNA-binding domain, the T-






TBX1 isoform B
box. T-box genes encode transcription factors involved in the regulation of developmental processes. This gene product







shares 98% amino acid sequence identity with the mouse ortholog. DiGeorge syndrome (DGS)/velocardiofacial syndrome







(VCFS), a common congenital disorder characterized by neural-crest-related developmental defects, has been associated







with deletions of chromosome 22q11.2, where this gene has been mapped. Studies using mouse models of DiGeorge







syndrome suggest a major role for this gene in the molecular etiology of DGSNCFS. Several alternatively spliced







transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2008].







Transcript Variant: This variant (B) contains an alternate exon 9 and an additional exon 10 compared to variant C. It







encodes an isoform (B) with the same N-terminal 336 aa, but an unique C-terminus with respect to isoforms A and C.


416
TBX6
Y
6911
T-box transcription factor
This gene is a member of a phylogenetically conserved family of genes that share a common DNA-binding domain, the T-






TBX6
box. T-box genes encode transcription factors involved in the regulation of developmental processes. Knockout studies in







mice indicate that this gene is important for specification of paraxial mesoderm structures. [provided by RefSeq, Aug







2008].


417
TCTEX1D2
Y
255758
tctex1 domain-containing
N/A






protein 2



418
TFB2M
Y
64216
dimethyladenosine
N/A






transferase 2,







mitochondrial



419
TMSD3
Y
80213
TM2 domain-containing
The protein encoded by this gene contains a structural module related to that of the seven transmembrane domain G






protein 3 isoform b
protein-coupled receptor superfamily. This protein has sequence and structural similarities to the beta-amyloid binding






precursor
protein (BBP), but, unlike BBP, it does not regulate a response to beta-amyloid peptide. This protein may have regulatory







roles in cell death or proliferation signal cascades. Several alternatively spliced transcript variants of this gene are







described but the full length nature of some variants has not been determined. Multiple polyadenylation sites have been







found in this gene. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (2) lacks an exon within the coding







region, but maintains the same reading frame, as compared to variant 1. Thus isoform b lacks an internal fragment of 26 aa







compared to isoform a.


420
TM4SF5
Y
9032
transmembrane 4 L6
The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as the tetraspanin family.






family member 5 precursor
Most of these members are cell-surface proteins that are characterized by the presence of four hydrophobic domains. The







proteins mediate signal transduction events that play a role in the regulation of cell development, activation, growth and







motility. This encoded protein is a cell surface glycoprotein and is highly similar in sequence and structure to







transmembrane 4 superfamily member 1. It may play a role in cell proliferation, and overexpression of this protein may be







associated with the uncontrolled growth of tumour cells. [provided by RefSeq, Jul 2008].


421
TMEM158
Y
25907
transmembrane protein 158
Constitutive activation of the Ras pathway triggers an irreversible proliferation arrest reminiscent of replicative






precursor
senescence. Transcription of this gene is upregulated in response to activation of the Ras pathway, but not under other







conditions that induce senescence. The encoded protein is similar to a rat cell surface receptor proposed to function in a







neuronal survival pathway. [provided by RefSeq, Jul 2008].


422
TMEM185A
both
94548
transmembrane protein
The protein encoded by this gene is predicted to be a transmembrane protein, but this has not been experimentally






185A isoform 2
determined. This gene is better known for localizing to the CpG island of the fragile site FRAXF. The 5-prime untranslated







region of this gene contains a CGG trinucleotide repeat sequence that normally consists of 7-40 tandem CGG repeats but







which can expand to greater than 300 repeats. Methylation of the CpG island leads to transcriptional silencing of this gene,







but neither the silencing nor an expanded repeat region appear to manifest itself in a clear phenotypic manner. Two







transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2010]. Transcript







Variant: This variant (2) lacks an alternate in-frame exon compared to variant 1. The resulting isoform (2) has the same N-







and C-termini but is shorter compared to isoform 1. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic coordinates







used for the transcript record were based on transcript alignments.


423
TMEM219
Y
124446
transmembrane protein 219
N/A


424
TMEM27
Y
57393
collectrin precursor
This gene encodes a transmembrane protein that is important for trafficking amino acid transporters to the apical brush







border of proximal tubules. It also plays a role in controlling insulin exocytosis by regulating formation of the SNARE







(soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) complex in pancreatic beta cells. [provided by







RefSeq, Nov 2009].


425
TMEM38B
N
55151
trimeric intracellular cation
N/A


426
TMLHE
both
55217
channel type B
This gene encodes the protein trimethyllysine dioxygenase which is the first enzyme in the carnitine biosynthesis pathway.






trimethyllysine
Carnitine play an essential role in the transport of activated fatty acids across the inner mitochondrial membrane. The






dioxygenase,
encoded protein converts trimethyllysine into hydroxytrimethyllysine. A pseudogene of this gene is found on chromosome






mitochondrial isoform 2
X. Alternate splicing results in multiple transcript variants. [provided by RefSeq, May 2010]. Transcript Variant: This






precursor
variant (2) differs in the 3 UTR and coding region differences, compared to variant 1. The resulting protein (isoform 2) has







a distinct C-terminus and is shorter than isoform 1.


427
TMPRSS11E
Y
28983
transmembrane protease
N/A






serine 11E precursor



428
TRIAPA
Y
51499
TP53-regulated inhibitor of
N/A






apoptosis 1



429
TRIML2
Y
205860
probable E3 ubiquitin-
N/A






protein ligase TRIML2



430
TRMT2A
Y
27037
tRNA (uracil-5-)-
N/A






methyltransferase homolog







A



431
TSSK2
Y
23617
testis-specific
TSSK2 belongs to a family of serine/threonine kinases highly expressed in testis (Hao et al., 2004 [PubMed






serine/threonine-protein







kinase 2
15044604]).[supplied by OMIM, Mar 2008].


432
TTC7B
Y
145567
tetratricopeptide repeat
N/A






protein 7B



433
UBA3D
Y
113457
tubulin alpha-3C/D chain
This gene encodes a member of the alpha tubulin family. Tubulin is a major component of microtubules, which are







composed of alpha- and beta-tubulin heterodimers and microtubule-associated proteins in the cytoskeleton. Microtubules







maintain cellular structure, function in intracellular transport, and play a role in spindle formation during mitosis.


434
TUBB4Q
Y
N/A
N/A
[provided by RefSeq, Oct 2011].


435
TXLNB
N
167838
thioredoxin reductase 2,
N/A


436
TXNRD2
Y
10587
mitochondrial precursor
N/A







Thioredoxin reductase (TR) is a dimeric NADPH-dependent FAD containing enzyme that catalyzes the reduction of the







active site disulfide of thioredoxin and other substrates. TR is a member of a family of pyridine nucleotide-disulfide







oxidoreductases and is a key enzyme in the regulation of the intracellular redox environment. Three thioredoxin reductase







genes have been found that encode selenocysteine containing proteins. This gene partially overlaps the COMT gene on







chromosome 22. [provided by RefSeq, Jul 2008].


437
TYR
N
7299
tyrosinase precursor
The enzyme encoded by this gene catalyzes the first 2 steps, and at least 1 subsequent step, in the conversion of tyrosine to







melanin. The enzyme has both tyrosine hydroxylase and dopa oxidase catalytic activities, and requires copper for function.







Mutations in this gene result in oculocutaneous albinism, and nonpathologic polymorphisms result in skin pigmentation







variation. The human genome contains a pseudogene similar to the 3 half of this gene. [provided by RefSeq, Oct 2008].


438
UFD1L
Y
7353
ubiquitin fusion
The protein encoded by this gene forms a complex with two other proteins, nuclear protein localization-4 and valosin-






degradation protein 1
containing protein, and this complex is necessary for the degradation of ubiquitinated proteins. In addition, this complex






homolog isoform B
controls the disassembly of the mitotic spindle and the formation of a closed nuclear envelope after mitosis. Mutations in







this gene have been associated with Catch 22 syndrome as well as cardiac and craniofacial defects. Alternative splicing







results in multiple transcript variants encoding different isoforms. A related pseudogene has been identified on







chromosome 18. [provided by RefSeq, Jun 2009]. Transcript Variant: This variant (2) uses an alternate splice site in the 3′







coding region that results in a frameshift, compared to variant 1. The encoded isoform (B) has a distinct C-terminus and is







shorter than isoform A.


439
UGT2B15
Y
7366
UDP-
This gene encodes a member of the UDP-glycosyltransferase (UDPGT) family. The UDPGTs are of major importance in






glucuronosyltransferase
the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This protein






2B15 precursor
displays activity towards several classes of xenobiotic substrates, including simple phenolic compounds, 7-hydroxylated







coumarins, flavonoids, anthraquinones, and certain drugs and their hydroxylated metabolites. It also catalyzes the







glucuronidation of endogenous estrogens and androgens. [provided by RefSeq, Oct 2011].


440
UNC13C
N
440279
protein unc-13 homolog C
N/A


441
VPS13A
Y
23230
vacuolar protein sorting-
The protein encoded by this gene may control steps in the cycling of proteins through the trans-Golgi network to






associated protein 13A
endosomes, lysosomes and the plasma membrane. Mutations in this gene cause the autosomal recessive disorder, chorea-






isoform B
acanthocytosis. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Jul 2008].







Transcript Variant: This variant (B) contains a distinct 3′coding region and 3′UTR, compared to variant A. The resulting







isoform (B) has a shorter C-terminus compared to isoform A.


442
WLS
N
79971
protein wntless homolog
N/A






isoform 1



443
WWOX
N
51741
WW domain-containing
WW domain-containing proteins are found in all eukaryotes and play an important role in the regulation of a wide variety






oxidoreductase isoform 3
of cellular functions such as protein degradation, transcription, and RNA splicing. This gene encodes a protein which







contains 2 WW domains and a short-chain dehydrogenase/reductase domain (SRD). The highest normal expression of this







gene is detected in hormonally regulated tissues such as testis, ovary, and prostate. This expression pattern and the







presence of an SRD domain suggest a role for this gene in steroid metabolism. The encoded protein is more than 90%







identical to the mouse protein, which is an essential mediator of tumor necrosis factor-alpha-induced apoptosis, suggesting







a similar, important role in apoptosis for the human protein. In addition, there is evidence that this gene behaves as a







suppressor of tumor growth. Alternative splicing of this gene generates transcript variants that encode different isoforms.







[provided by RefSeq, Jul 2008]. Transcript Variant: This variant (3) has a much shorter and alternate 3′end, as compared







to variant 1. It encodes the shortest isoform (3) which contains only part of the first WW domain and lacks the second WW







domain and the SRD region.


444
XG
Y
7499
glycoprotein Xg isoform 3
This gene encodes the XG blood group antigen, and is located at the pseudoautosomal boundary on the short (p) arm of






precursor
chromosome X. The three 5′ exons reside in the pseudoautosomal region and the remaining exons within the X-specific







end. A truncated copy of this gene is found on the Y chromosome at the pseudoautosomal boundary. It is transcribed, but







not expected to make a Y-chromosome specific gene product. Alternatively spliced transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, Nov 2008]. Transcript Variant: This variant (3) uses an







alternate donor splice site at one of the coding exons compared to transcript variant 1, resulting in an isoform (3)







containing one additional aa compared to isoform 1. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data because no quality transcript was available for the full length of the gene. The extent of this







transcript is supported by transcript alignments. Sequence Note: This RefSeq record represents the XG*001.1.1 allele.


445
XYLB
both
9942
xylulose kinase
The protein encoded by this gene shares 22% sequence identity with Hemophilus influenzae xylulokinase, and even







higher identity to other gene products in C.elegans (45%) and yeast (31-35%), which are thought to belong to a family of







enzymes that include fucokinase, gluconokinase, glycerokinase and xylulokinase. These proteins play important roles in







energy metabolism. [provided by RefSeq, Aug 2009].


446
YAP1
N
10413
yorkie homolog isoform 2
This gene encodes the human ortholog of chicken YAP protein which binds to the SH3 domain of the Yes proto-oncogene







product. This protein contains a WW domain that is found in various structural, regulatory and signaling molecules in







yeast, nematode, and mammals, and may be involved in protein-protein interaction. [provided by RefSeq, Jul 2008].







Transcript Variant: This variant (2) lacks two alternate in-frame exons compared to variant 1. This results in a shorter







protein (isoform 2), compared to isoform 1. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


447
YPEL3
Y
83719
protein yippee-like 3
N/A






isoform 1



448
ZAN
Y
7455
zonadhesin isoform 6
This gene encodes a sperm membrane protein that binds the zona pellucida of the egg in a species-specific manner. The






precursor
encoded protein may be involved in signaling or gamete recognition. Alternate transcriptional splice variants, encoding







different isoforms, have been characterized. [provided by RefSeq, Jul 2008]. Transcript Variant: This variant (6) has







multiple differences in the coding region but maintains the reading frame, compared to variant 3. This variant encodes







isoform 6 which is 91 aa shorter than isoform 3.


449
ZBBX
N
79740
zinc finger B-box domain-
N/A






containing protein 1







isoform 3



450
ZC3H6
N
376940
zinc finger CCCH domain-
N/A






containing protein 6



451
ZDHHC19
Y
131540
probable
N/A






palmitoyltransferase







ZDHHC19



452
ZDHHC8
Y
29801
probable
This gene encodes a four transmembrane protein that is a member of the zinc finger DHHC domain-containing protein






palmitoyltransferase
family. The encoded protein may function as a palmitoyltransferase. Defects in this gene may be associated with a






ZDHHC8 isoform 2
susceptibility to schizophrenia. Alternate splicing of this gene results in multiple transcript variants. A pseudogene of this







gene is found on chromosome 22.[provided by RefSeq, May 2010]. Transcript Variant: This variant (2) uses an alternate







splice site in the 3 coding region, which results in a frameshift, compared to variant 1. It encodes isoform 2, which has a







shorter and distinct C-terminus, compared to isoform 1. Sequence Note: This RefSeq record was created from transcript







and genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to access additional







publications.


453
ZDHHC8
both
29801
probable
This gene encodes a four transmembrane protein that is a member of the zinc finger DHHC domain-containing protein






palmitoyltransferase
family. The encoded protein may function as a palmitoyltransferase. Defects in this gene may be associated with a






ZDHHC8 isoform 2
susceptibility to schizophrenia. Alternate splicing of this gene results in multiple transcript variants. A pseudogene of this







gene is found on chromosome 22.[provided by RefSeq, May 2010]. Transcript Variant: This variant (2) uses an alternate







splice site in the 3′coding region, which results in a frameshift, compared to variant 1. It encodes isoform 2, which has a







shorter and distinct C-terminus, compared to isoform 1. Sequence Note: This RefSeq record was created from transcript







and genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to access additional







publications.


454
ZDHHC9
N
51114
palmitoyltransferase
This gene encodes an integral membrane protein that is a member of the zinc finger DHHC domain-containing protein






ZDHHC9
family. The encoded protein forms a complex with golgin subfamily A member 7 and functions as a palmitoyltransferase.







This protein specifically palmitoylates HRAS and NRAS. Mutations in this gene are associated with X-linked mental







retardation. Alternate splicing results in multiple transcript variants that encode the same protein. [provided by RefSeq,







May 2010]. Transcript Variant: This variant (1) is the longer transcript and both variants 1 and 2 encode the same protein.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make the sequence







consistent with the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


455
ZFP62
Y
643836
zinc finger protein 62
N/A






homolog isoform 2



456
ZG16
Y
653808
zymogen granule
N/A






membrane protein 16







precursor



457
ZMAT5
Y
55954
zinc finger matrin-type
N/A






protein 5



458
ZNF174
Y
7727
zinc finger protein 174
N/A






isoform b



459
ZNF434
Y
54925
zinc finger protein 434
N/A


460
ZNF486
Y
90649
zinc finger protein 486
N/A


461
ZNF597
Y
146434
zinc finger protein 597
N/A


462
ZNF674
Y
641339
zinc finger protein 674
This gene encodes a zinc finger protein with an N-terminal Kruppel-associated box-containing (KRAB) domain and 11






isoform 2
Kruppel-type C2H2 zinc finger domains. Like other zinc finger proteins, this gene may function as a transcription factor.







This gene resides on an area of chromosome X that has been implicated in nonsyndromic X-linked mental retardation.







Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jun 2010].







Transcript Variant: This variant (2) uses alternate in-frame donor and acceptor splice sites at two coding exons compared







to variant 1, resulting in an isoform (2), which is 6 aa shorter than isoform 1. Sequence Note: This RefSeq record was







created from transcript and genomic sequence data to make the sequence consistent with the reference genome assembly.







The genomic coordinates used for the transcript record were based on transcript alignments.


463
ZNF737
Y
1000129842
zinc finger protein 737
N/A


464
ZNF815
Y
401303
N/A
N/A


465
ZNF862
Y
643641
zinc finger protein 862
N/A


466
ZNF890P
Y
645700
N/A
N/A





















TABLE 4








RefSeq




Gene
Exon
SEQ ID
Accession




name
overlap
No
Number
mRNA Description
RefSeq Summary







MIDN
Y
 884
NM_177401

Homo sapiens midnolin

N/A






(MIDN), mRNA.



CSMD3
N
 885
NM_052900

Homo sapiens CUB and

N/A






Sushi multiple domains 3







(CSMD3), transcript variant







c, mRNA.



CSMD3
N
 886
NM_198123

Homo sapiens CUB and

N/A






Sushi multiple domains 3







(CSMD3), transcript variant







a, mRNA.



CSMD3
N
 887
NM_198124

Homo sapiens CUB and

N/A






Sushi multiple domains 3







(CSMD3), transcript variant







b, mRNA.



DCC
N
 888
NM_005215

Homo sapiens deleted in

This gene encodes a netrin 1 receptor. The transmembrane protein is a member of the immunoglobulin






colorectal carcinoma (DCC),
superfamily of cell adhesion molecules, and mediates axon guidance of neuronal growth cones towards






mRNA.
sources of netrin 1 ligand. The cytoplasmic tail interacts with the tyrosine kinases Src and focal







adhesion kinase (FAK, also known as PTK2) to mediate axon attraction. The protein partially localizes







to lipid rafts, and induces apoptosis in the absence of ligand. The protein functions as a tumor







suppressor, and is frequently mutated or downregulated in colorectal cancer and esophageal carcinoma.







[provided by RefSeq, October 2009]. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments.


CLSTN1
N
 889
NM_001009566

Homo sapiens calsyntenin 1

N/A






(CLSTN1), transcript







variant 1, mRNA.



CLSTN1
N
 890
NM_014944

Homo sapiens calsyntenin 1

N/A






(CLSTN1), transcript







variant 2, mRNA.



ANKRD33B
N
 891
NM_001164440

Homo sapiens ankyrin

N/A






repeat domain 33B







(ANKRD33B), mRNA.



CTNND2
Y
 892
NM_001332

Homo sapiens catenin

This gene encodes an adhesive junction associated protein of the armadillo/beta-catenin superfamily






(cadherin-associated
and is implicated in brain and eye development and cancer formation. The protein encoded by this






protein), delta 2 (neural
gene promotes the disruption of E-cadherin based adherens junction to favor cell spreading upon






plakophilin-related arm-
stimulation by hepatocyte growth factor. This gene is overexpressed in prostate adenocarcinomas and






repeat protein) (CTNND2),
is associated with decreased expression of tumor suppressor E-cadherin in this tissue. This gene resides






mRNA.
in a region of the short arm of chromosome 5 that is deleted in Cri du Chat syndrome. [provided by







RefSeq, August 2010].


FRG1B
Y
 893
NR_003579

Homo sapiens FSHD region

N/A






gene 1 family, member B







(FRG1B), non-coding RNA.



LILRB3
Y
 894
NM_001081450

Homo sapiens leukocyte

This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in






immunoglobulin-like
a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class






receptor, subfamily B (with
of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane






TM and ITIM domains),
domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The






member 3 (LILRB3),
receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting






transcript variant 1, mRNA.
cells and transduces a negative signal that inhibits stimulation of an immune response. It is thought to







control inflammatory responses and cytotoxicity to help focus the immune response and limit







autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, July 2008]. Transcript Variant: This variant (1) represents the longer transcript







and encodes the longer isoform (1).


LILRB3
Y
 895
NM_006864

Homo sapiens leukocyte

This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in






immunoglobulin-like
a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class






receptor, subfamily B (with
of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane






TM and ITIM domains),
domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The






member 3 (LILRB3),
receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting






transcript variant 2, mRNA.
cells and transduces a negative signal that inhibits stimulation of an immune response. It is thought to







control inflammatory responses and cytotoxicity to help focus the immune response and limit







autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, July 2008]. Transcript Variant: This variant (2) uses an alternate in-frame splice







site in the 3′ coding region, compared to variant 1. The resulting protein (isoform 2) is 1 aa shorter than







isoform 1.


NRG1
N
 896
NM_001159995

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-beta1c, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-beta1c) has an alternate 5′ exon and lacks an internal exon, compared to







variant HRG-beta1. The resulting isoform (HRG-beta1c, also known as type IV fetal C beta 1a and







fetal b IV-beta 1a) is shorter, and has a different N-terminus and lacks an internal segment, compared







to isoform HRG-beta1.


NRG1
N
 897
NM_001159996

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






ndf43c, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (ndf43c, also known as ndf43) lacks multiple 5′ exons, but has an alternate 5′







exon, an alternate internal segment and an additional exon in the 3′ region, compared to variant HRG-







beta1. The resulting isoform (ndf43c) is much shorter, and has alternate N- and C-termini and a







different internal segment, compared to isoform HRG-beta1.


NRG1
N
 898
NM_001159999

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-beta1b, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-beta1b) has an alternate 5′ exon, compared to variant HRG-beta1. The







resulting isoform (HRG-beta1b, also known as type IV fetal B beta 1a) is shorter, and has a different







N-terminus, compared to isoform HRG-beta1.


NRG1
N
 899
NM_001160001

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-beta1d, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-beta1d) has an alternate 5′ exon and lacks two internal exons, compared to







variant HRG-beta1. The resulting isoform (HRG-beta1d, also known as IV-beta 1a and type IV fetal A







beta 1a) is shorter, and has a different N-terminus and lacks an internal segment, compared to isoform







HRG-beta1.


NRG1
N
 900
NM_001160002

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-gamma2, nRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-gamma2) lacks an internal exon and multiple 3′ exons, and has an alternate







3′ UTR, compared to variant HRG-beta1. The resulting isoform (HRG-gamma2, also known as gamma







protein isoform 1) lacks an internal segment and is C-terminal truncated, compared to isoform HRG-







beta1. Sequence Note: This RefSeq record was created from transcript and genomic sequence data to







make the sequence consistent with the reference genome assembly. The genomic coordinates used for







the transcript record were based on transcript alignments.


NRG1
N
 901
NM_001160004

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






ndf43b, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (ndf43b, also called ndf43-beta2) lacks an internal exon, but has an additional







exon in the 3′ coding region, compared to variant HRG-beta1. The resulting isoform (ndf43b) is







shorter, and lacks an internal segment and has a different C-terminus, compared to isoform HRG-







beta1. Sequence Note: This RefSeq record was created from transcript and genomic sequence data to







make the sequence consistent with the reference genome assembly. The genomic coordinates used for







the transcript record were based on transcript alignments.


NRG1
N
 902
NM_001160005

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-beta3b, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-beta3b) lacks two internal exons and multiple 3′ exons, and has an







alternate 3′ sequence including the coding region and UTR, compared to variant HRG-beta1. The







resulting isoform (HRG-beta3b, also known as HRG-beta 3 protein isoform) is much shorter, and lacks







an internal segment and has a different C-terminus, compared to isoform HRG-beta1. Sequence Note:







This RefSeq record was created from transcript and genomic sequence data to make the sequence







consistent with the reference genome assembly. The genomic coordinates used for the transcript record







were based on transcript alignments.


NRG1
N
 903
NM_001160007

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-gamma3, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-gamma3) lacks two internal exons and multiple 3′ exons, and has an







alternate 3′ UTR, compared to variant HRG-beta1. The resulting isoform (HRG-gamma3, also known







as gamma protein isoform 2) lacks an internal segment and is C-terminal truncated, compared to







isoform HRG-beta1. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


NRG1
N
 904
NM_001160008

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-beta2b, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-beta2b) lacks an internal exon and the 3′ exon, but has an alternate 3′ UTR,







compared to variant HRG-beta1. The resulting isoform (HRG-beta2b) lacks an internal segment and is







C-terminal truncated, compared to isoform HRG-beta1.


NRG1
N
 905
NM_004495

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-gamma, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-gamma) lacks multiple 3′ exons and has an alternate 3′ UTR, compared to







variant HRG-beta1. The resulting isoform (HRG-gamma) is C-terminal truncated, compared to







isoform HRG-beta1. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


NRG1
N
 906
NM_013956

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-beta1, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-beta1) is the longest transcript and encodes the longest isoform (HRG-







beta1).


NRG1
N
 907
NM_013957

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-beta2, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-beta2) lacks an internal exon in the 3′ coding region, compared to variant







HRG-beta1. The resulting isoform (HRG-beta2) has identical N- and C-termini, but lacks an internal







segment, compared to isoform HRG-beta1.


NRG1
N
 908
NM_013958

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-beta3, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-beta3, also known as GGF or (3GFHFB1) lacks multiple 3′ exons, and has







an alternate 3′ sequence including the coding region and UTR, compared to variant HRG-beta1. The







resulting isoform (HRG-beta3) is much shorter, and has a different C-terminus, compared to isoform







HRG-beta1.


NRG1
N
 909
NM_013959

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






SMDF, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (SMDF) is expressed mainly in the nervous system. It lacks multiple 5′ and 3′







exons, but has an alternate 5′ exon and an alternate 3′ sequence including the coding region and UTR,







compared to variant HRG-beta1. The resulting isoform (SMDF) is much shorter, and has different N-







and C-termini, compared to isoform HRG-beta1.


NRG1
N
 910
NM_013960

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






ndf43, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (ndf43) has an alternate internal segment and an additional exon in the 3′ region,







compared to variant HRG-beta1. The resulting isoform (ndf43) is shorter, and has a different internal







segment and C-terminus, compared to isoform HRG-beta1.


NRG1
N
 911
NM_013962

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






GGF2, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (GGF2, also called GGFHBS5) is expressed in the nervous system and functions







as a neuronal signal that promotes the proliferation and survival of the oligodendrocyte and the







myelinating cell. This variant lacks two internal exons and multiple 3′ exons, and has an alternate 5′







exon and an alternate 3′ sequence including the coding region and UTR, compared to variant HRG-







beta1. The resulting isoform (GGF2) is shorter, and has different N- and C- termini as well as lacks an







internal segment, compared to isoform HRG-beta1.


NRG1
N
 912
NM_013964

Homo sapiens neuregulin 1

The protein encoded by this gene was originally identified as a 44-kD glycoprotein that interacts with






(NRG1), transcript variant
the NEU/ERBB2 receptor tyrosine kinase to increase its phosphorylation on tyrosine residues. This






HRG-alpha, mRNA.
protein is a signaling protein that mediates cell-cell interactions and plays critical roles in the growth







and development of multiple organ systems. It is known that an extraordinary variety of different







isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms







are tissue-specifically expressed and differ significantly in their structure, and thereby these isoforms







are classified into types I, II, III, IV, V and VI. The gene dysregulation has been linked to diseases







such as cancer, schizophrenia and bipolar disorder (BPD). [provided by RefSeq, May 2009]. Transcript







Variant: This variant (HRG-alpha, also called erbB2) has an alternate internal segment, compared to







variant HRG-beta1. The resulting isoform (HRG-alpha) is shorter, and has identical N- and C-termini







and a different internal segment, compared to isoform HRG-beta1.


OR52E8
Y
 913
NM_001005168

Homo sapiens olfactory

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that






receptor, family 52,
triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-






subfamily E, member 8
protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a






(OR52E8), mRNA.
7-transmembrane domain structure with many neurotransmitter and hormone receptors and are







responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory







receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor







genes and proteins for this organism is independent of other organisms. [provided by RefSeq, July







2008].


SMOC2
N
 914
NM_001166412

Homo sapiens SPARC

This gene encodes a member of the SPARC family (secreted protein acidic and rich in






related modular calcium
cysteine/osteonectin/BM-40), which are highly expressed during embryogenesis and wound healing.






binding 2 (SMOC2),
The gene product is a matricellular protein which promotes matrix assembly and can stimulate






transcript variant 2, mRNA.
endothelial cell proliferation and migration, as well as angiogenic activity. Associated with pulmonary







function, this secretory gene product contains a Kazal domain, two thymoglobulin type-1 domains, and







two EF-hand calcium-binding domains. The encoded protein may serve as a target for controlling







angiogenesis in tumor growth and myocardial ischemia. Alternative splicing results in multiple







transcript variants. [provided by RefSeq, October 2009]. Transcript Variant: This variant (2) uses an







alternate in-frame splice site in the central coding region, compared to variant 1. This results in a







shorter protein (isoform 2), compared to isoform 1.


SMOC2
N
 915
NM_022138

Homo sapiens SPARC

This gene encodes a member of the SPARC family (secreted protein acidic and rich in






related modular calcium
cysteine/osteonectin/BM-40), which are highly expressed during embryogenesis and wound healing.






binding 2 (SMOC2),
The gene product is a matricellular protein which promotes matrix assembly and can stimulate






transcript variant 1, mRNA.
endothelial cell proliferation and migration, as well as angiogenic activity. Associated with pulmonary







function, this secretory gene product contains a Kazal domain, two thymoglobulin type-1 domains, and







two EF-hand calcium-binding domains. The encoded protein may serve as a target for controlling







angiogenesis in tumor growth and myocardial ischemia. Alternative splicing results in multiple







transcript variants. [provided by RefSeq, October 2009]. Transcript Variant: This variant (1) represents the







longer transcript and encodes the longer isoform (1).


APBA1
Y
 916
NM_001163

Homo sapiens amyloid beta

The protein encoded by this gene is a member of the X11 protein family. It is a neuronal adapter






(A4) precursor protein-
protein that interacts with the Alzheimer's disease amyloid precursor protein (APP). It stabilizes APP






binding, family A, member
and inhibits production of proteolytic APP fragments including the A beta peptide that is deposited in






1 (APBA1), mRNA.
the brains of Alzheimer's disease patients. This gene product is believed to be involved in signal







transduction processes. It is also regarded as a putative vesicular trafficking protein in the brain that







can form a complex with the potential to couple synaptic vesicle exocytosis to neuronal cell adhesion.







[provided by RefSeq, July 2008].


LRRTM4
N
 917
NM_001134745

Homo sapiens leucine rich

N/A






repeat transmembrane







neuronal 4 (LRRTM4),







transcript variant 1, mRNA.



LRRTM4
N
 918
NM_024993

Homo sapiens leucine rich

N/A






repeat transmembrane







neuronal 4 (LRRTM4),







transcript variant 1, mRNA.



SGK1
N
 919
NM_001143676

Homo sapiens

This gene encodes a serine/threonine protein kinase that plays an important role in cellular stress






serum/glucocorticoid
response. This kinase activates certain potassium, sodium, and chloride channels, suggesting an






regulated kinase 1 (SGK1),
involvement in the regulation of processes such as cell survival, neuronal excitability, and renal






transcript variant 2, mRNA.
sodium excretion. High levels of expression of this gene may contribute to conditions such as







hypertension and diabetic nephropathy. Several alternatively spliced transcript variants encoding







different isoforms have been noted for this gene. [provided by RefSeq, January 2009]. Transcript Variant:







This variant (2) contains additional in-frame exons at the 5′ end compared to transcript variant 1,







resulting in an isoform (2) with a longer and an unique N-terminus compared to isoform 1. Isoform 2 is







reported to have an increased protein half-life, and is preferentially targeted to the plasma membrane.


SGK1
N
 920
NM_001143677

Homo sapiens

This gene encodes a serine/threonine protein kinase that plays an important role in cellular stress






serum/glucocorticoid
response. This kinase activates certain potassium, sodium, and chloride channels, suggesting an






regulated kinase 1 (SGK1),
involvement in the regulation of processes such as cell survival, neuronal excitability, and renal






transcript variant 3, mRNA.
sodium excretion. High levels of expression of this gene may contribute to conditions such as







hypertension and diabetic nephropathy. Several alternatively spliced transcript variants encoding







different isoforms have been noted for this gene. [provided by RefSeq, January 2009]. Transcript Variant:







This variant (3) contains an alternative in-frame, 5′ terminal exon compared to transcript variant 1,







resulting in an isoform (3) with a longer and an unique N-terminus compared to isoform 1.


SGK1
N
 921
NM_001143678

Homo sapiens

This gene encodes a serine/threonine protein kinase that plays an important role in cellular stress






serum/glucocorticoid
response. This kinase activates certain potassium, sodium, and chloride channels, suggesting an






regulated kinase 1 (SGK1),
involvement in the regulation of processes such as cell survival, neuronal excitability, and renal






transcript variant 4, mRNA.
sodium excretion. High levels of expression of this gene may contribute to conditions such as







hypertension and diabetic nephropathy. Several alternatively spliced transcript variants encoding







different isoforms have been noted for this gene. [provided by RefSeq, January 2009]. Transcript Variant:







This variant (4) contains an alternative in-frame, 5′ terminal exon compared to transcript variant 1,







resulting in an isoform (4) with a longer and an unique N-terminus compared to isoform 1.


SGK1
N
 922
NM_005627

Homo sapiens

This gene encodes a serine/threonine protein kinase that plays an important role in cellular stress






serum/glucocorticoid
response. This kinase activates certain potassium, sodium, and chloride channels, suggesting an






regulated kinase 1 (SGK1),
involvement in the regulation of processes such as cell survival, neuronal excitability, and renal






transcript variant 1, mRNA
sodium excretion. High levels of expression of this gene may contribute to conditions such as







hypertension and diabetic nephropathy. Several alternatively spliced transcript variants encoding







different isoforms have been noted for this gene. [provided by RefSeq, January 2009]. Transcript Variant:







This variant (1) represents the predominant transcript and encodes the shortest isoform (1).


MTRNR2L1
Y
 923
NM_001190452

Homo sapiens MT-RNR2-

N/A






like 1 (MTRNR2L1),







mRNA.



MTRNR2L5
Y
 924
NM_001190478

Homo sapiens MT-RNR2-

N/A






like 5 (MTRNR2L5),







mRNA.



PCDH15
N
 925
NM_001142763

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant A, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (A) encodes isoform CD1-1. Sequence Note: The RefSeq transcript and protein were derived







from genomic sequence to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on orthologous data. Publication Note:







This RefSeq record includes a subset of the publications that are available for this gene. Please see the







Gene record to access additional publications.


PCDH15
N
 926
NM_001142764

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant B, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (B) lacks an alternate in-frame exon in the 5′ coding region, compared to variant A. The







resulting isoform (CD1-2) lacks a 5-aa segment near the N-terminus, compared to isoform CD1-1.







Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on orthologous data. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


PCDH15
N
 927
NM_001142765

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant D, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (D) lacks an alternate in-frame exon in the 5′ coding region and two alternate in-frame exons in







the central coding region, compared to variant A. The resulting isoform (CD1-6) lacks a 5-aa segment







near the N-terminus and a 71-aa segment in the central protein, compared to isoform CD1-1. Sequence







Note: The RefSeq transcript and protein were derived from genomic sequence to make the sequence







consistent with the reference genome assembly. The genomic coordinates used for the transcript record







were based on orthologous data. Publication Note: This RefSeq record includes a subset of the







publications that are available for this gene. Please see the Gene record to access additional







publications.


PCDH15
N
 928
NM_001142766

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant E, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (E) lacks three alternate in-frame exons, compared to variant A. The resulting isoform (CD1-7)







has the same N- and C-termini but lacks three internal segments, compared to isoform CD1-1.







Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on orthologous data. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


PCDH15
N
 929
NM_001142767

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant F, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (F) lacks 4 alternate in-frame exons, compared to variant A. The resulting isoform (CD1-8) has







the same N- and C-termini but lacks four internal segments, compared to isoform CD1-1. Sequence







Note: The RefSeq transcript and protein were derived from genomic sequence to make the sequence







consistent with the reference genome assembly. The genomic coordinates used for the transcript record







were based on orthologous data. Publication Note: This RefSeq record includes a subset of the







publications that are available for this gene. Please see the Gene record to access additional







publications.


PCDH15
N
 930
NM_001142768

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant G, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (G) lacks two alternate in-frame exons in the 5′ coding region, compared to variant A. The







resulting isoform (CD1-9) lacks a 27-aa segment near the N-terminus, compared to isoform CD1-1.







Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on orthologous data. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


PCDH15
N
 931
NM_001142769

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant I, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (I) includes an alternate in-frame exon in the central coding region and has a distinct 3′ splice







pattern, compared to variant A. The resulting isoform (CD2-1) includes an alternate 7-aa segment in







the central coding region and has a distinct and longer C-terminus, compared to isoform CD1-1.







Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on orthologous data. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


PCDH15
N
 932
NM_001142770

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant J, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (J) lacks an alternate in-frame exon in the 5′ coding region and has a distinct 3′ splice pattern,







compared to variant A. The resulting isoform (CD2-2) lacks a 5-aa segment in the 5′ coding region and







has a distinct and longer C-terminus, compared to isoform CD1-1. Sequence Note: The RefSeq







transcript and protein were derived from genomic sequence to make the sequence consistent with the







reference genome assembly. The genomic coordinates used for the transcript record were based on







orthologous data. Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


PCDH15
N
 933
NM_001142771

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant K, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (K) has a distinct 3′ splice pattern, compared to variant A. The resulting isoform (CD3-1) has a







distinct and longer C-terminus, compared to isoform CD1-1. Sequence Note: The RefSeq transcript







and protein were derived from genomic sequence to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on orthologous







data. Publication Note: This RefSeq record includes a subset of the publications that are available for







this gene. Please see the Gene record to access additional publications.


PCDH15
N
 934
NM_001142772

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant L, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (L) lacks an alternate in-frame exon in the 5′ coding region and has a distinct 3′ splice pattern,







compared to variant A. The resulting isoform (CD3-2) lacks a 5-aa segment near the N-terminus and







has a distinct and longer C-terminus, compared to isoform CD1-1. Sequence Note: The RefSeq







transcript and protein were derived from genomic sequence to make the sequence consistent with the







reference genome assembly. The genomic coordinates used for the transcript record were based on







orthologous data. Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


PCDH15
N
 935
NM_001142773

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant H, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (H) lacks three alternate in-frame exons, compared to variant A. The resulting isoform (CD1-







10) has the same N- and C-termini but lacks two internal segments, compared to isoform CD1-10.







Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on orthologous data. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


PCDH15
N
 936
NM_033056

Homo sapiens

This gene is a member of the cadherin superfamily. Family members encode integral membrane






protocadherin-related 15
proteins that mediate calcium-dependent cell-cell adhesion. It plays an essential role in maintenance of






(PCDH15), transcript
normal retinal and cochlear function. Mutations in this gene result in hearing loss and Usher Syndrome






variant C, mRNA.
Type IF (USH1F). Extensive alternative splicing resulting in multiple isoforms has been observed in







the mouse ortholog. Similar alternatively spliced transcripts are inferred to occur in human, and







additional variants are likely to occur. [provided by RefSeq, December 2008]. Transcript Variant: This







variant (C) lacks two alternate in-frame exons in the 5′ and 3′ coding region, compared to variant A.







The resulting isoform (CD1-4) lacks a 5-aa segment near the N-terminus and a 2-aa segment near the







C-terminus, compared to isoform CD1-1. Publication Note: This RefSeq record includes a subset of







the publications that are available for this gene. Please see the Gene record to access additional







publications.


ADM
Y
 937
NM_001124

Homo sapiens

Adrenomedullin, a hypotensive peptide found in human pheochromocytoma, consists of 52 amino






adrenomedullin (ADM),
acids, has 1 intramolecular disulfide bond, and shows a slight homology with the calcitonin gene-






mRNA.
related peptide. It may function as a hormone in circulation control because it is found in blood in a







considerable concentration. The precursor, called preproadrenomedullin, is 185 amino acids long. By







RNA-blot analysis, human adrenomedullin mRNA was found to be highly expressed in several tissues.







Genomic ADM DNA consists of 4 exons and 3 introns, with the 5-prime flanking region containing







TATA, CAAT, and GC boxes. There are also multiple binding sites for activator protein-2 and a







cAMP-regulated enhancer element. [provided by RefSeq, July 2008].


AMPD3
Y
 938
NM_000480

Homo sapiens adenosine

This gene encodes a member of the AMP deaminase gene family. The encoded protein is a highly






monophosphate deaminase 3
regulated enzyme that catalyzes the hydrolytic deamination of adenosine monophosphate to inosine






(AMPD3), transcript variant
monophosphate, a branch point in the adenylate catabolic pathway. This gene encodes the erythrocyte






1, mRNA.
(E) isoforms, whereas other family members encode isoforms that predominate in muscle (M) and







liver (L) cells. Mutations in this gene lead to the clinically asymptomatic, autosomal recessive







condition erythrocyte AMP deaminase deficiency. Alternatively spliced transcript variants encoding







different isoforms of this gene have been described. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (1) encodes the longest isoform (1A).


AMPD3
Y
 939
NM_001025389

Homo sapiens adenosine

This gene encodes a member of the AMP deaminase gene family. The encoded protein is a highly






monophosphate deaminase 3
regulated enzyme that catalyzes the hydrolytic deamination of adenosine monophosphate to inosine






(AMPD3), transcript variant
monophosphate, a branch point in the adenylate catabolic pathway. This gene encodes the erythrocyte






2, mRNA.
(E) isoforms, whereas other family members encode isoforms that predominate in muscle (M) and







liver (L) cells. Mutations in this gene lead to the clinically asymptomatic, autosomal recessive







condition erythrocyte AMP deaminase deficiency. Alternatively spliced transcript variants encoding







different isoforms of this gene have been described. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (2) contains an alternate exon for its 5′ UTR, lacks a portion of the 5′ coding







region, and initiates translation at a downstream start codon, compared to variant 1. It encodes isoform







1B, which has a shorter N-terminus, compared to isoform 1A. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to







access additional publications.


AMPD3
Y
 940
NM_001025390

Homo sapiens adenosine

This gene encodes a member of the AMP deaminase gene family. The encoded protein is a highly






monophosphate deaminase 3
regulated enzyme that catalyzes the hydrolytic deamination of adenosine monophosphate to inosine






(AMPD3), transcript variant
monophosphate, a branch point in the adenylate catabolic pathway. This gene encodes the erythrocyte






3, mRNA.
(E) isoforms, whereas other family members encode isoforms that predominate in muscle (M) and







liver (L) cells. Mutations in this gene lead to the clinically asymptomatic, autosomal recessive







condition erythrocyte AMP deaminase deficiency. Alternatively spliced transcript variants encoding







different isoforms of this gene have been described. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (3) contains an alternate, in-frame exon for its 5′ UTR and 5′ coding region and







initiates translation at an alternate start codon, compared to variant 1. It encodes isoform 1C, which has







a shorter, distinct N-terminus, compared to isoform 1A.


AMPD3
Y
 941
NM_001172430

Homo sapiens adenosine

This gene encodes a member of the AMP deaminase gene family. The encoded protein is a highly






monophosphate deaminase 3
regulated enzyme that catalyzes the hydrolytic deamination of adenosine monophosphate to inosine






(AMPD3), transcript variant
monophosphate, a branch point in the adenylate catabolic pathway. This gene encodes the erythrocyte






4, mRNA.
(E) isoforms, whereas other family members encode isoforms that predominate in muscle (M) and







liver (L) cells. Mutations in this gene lead to the clinically asymptomatic, autosomal recessive







condition erythrocyte AMP deaminase deficiency. Alternatively spliced transcript variants encoding







different isoforms of this gene have been described. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (4) contains an alternate exon for its 5′ UTR, lacks a portion of the 5′ coding







region, and initiates translation at a downstream start codon, compared to variant 1. It encodes isoform







1B, which has a shorter N-terminus, compared to isoform 1A. Sequence Note: This RefSeq record was







created from transcript and genomic sequence data to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on transcript







alignments.


AMPD3
Y
 942
NM_001172431

Homo sapiens adenosine

This gene encodes a member of the AMP deaminase gene family. The encoded protein is a highly






monophosphate deaminase 3
regulated enzyme that catalyzes the hydrolytic deamination of adenosine monophosphate to inosine






(AMPD3), transcript variant
monophosphate, a branch point in the adenylate catabolic pathway. This gene encodes the erythrocyte






5, mRNA.
(E) isoforms, whereas other family members encode isoforms that predominate in muscle (M) and







liver (L) cells. Mutations in this gene lead to the clinically asymptomatic, autosomal recessive







condition erythrocyte AMP deaminase deficiency. Alternatively spliced transcript variants encoding







different isoforms of this gene have been described. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (5) contains an alternate exon for its 5′ UTR, lacks portions of the 5′ coding







region, and initiates translation at a downstream start codon, compared to variant 1. It encodes isoform







4, which has a shorter N-terminus, compared to isoform 1A. Sequence Note: This RefSeq record was







created from transcript and genomic sequence data to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on transcript







alignments.


LYVE1
Y
 943
NM_006691

Homo sapiens lymphatic

This gene encodes a type I integral membrane glycoprotein. The encoded protein acts as a receptor






vessel endothelial
and binds to both soluble and immobilized hyaluronan. This protein may function in lymphatic






hyaluronan receptor 1
hyaluronan transport and have a role in tumor metastasis. [provided by RefSeq, July 2008].






(LYVE1), mRNA.



MRVI1
Y
 944
NM_001098579

Homo sapiens murine

This gene is similar to a putative mouse tumor suppressor gene (Mrvi1) that is frequently disrupted by






retrovirus integration site 1
mouse AIDS-related virus (MRV). The encoded protein, which is found in the membrane of the






homolog (MRVI1),
endoplasmic reticulum, is similar to Jaw1, a lymphoid-restricted protein whose expression is down-






transcript variant 1, mRNA.
regulated during lymphoid differentiation. This protein is a substrate of cGMP-dependent kinase-1







(PKG1) that can function as a regulator of IP3-induced calcium release. Studies in mouse suggest that







MRV integration at Mrvi1 induces myeloid leukemia by altering the expression of a gene important for







myeloid cell growth and/or differentiation, and thus this gene may function as a myeloid leukemia







tumor suppressor gene. Several alternatively spliced transcript variants encoding different isoforms







have been found for this gene, and alternative translation start sites, including a non-AUG (CUG) start







site, are used. [provided by RefSeq, May 2011]. Transcript Variant: This variant (1) encodes isoform a,







also known as MRVI1A. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


MRVI1
Y
 945
NM_001100163

Homo sapiens murine

This gene is similar to a putative mouse tumor suppressor gene (Mrvi1) that is frequently disrupted by






retrovirus integration site 1
mouse AIDS-related virus (MRV). The encoded protein, which is found in the membrane of the






homolog (MRVI1),
endoplasmic reticulum, is similar to Jaw1, a lymphoid-restricted protein whose expression is down-






transcript variant 3, mRNA.
regulated during lymphoid differentiation. This protein is a substrate of cGMP-dependent kinase-1







(PKG1) that can function as a regulator of IP3-induced calcium release. Studies in mouse suggest that







MRV integration at Mrvi1 induces myeloid leukemia by altering the expression of a gene important for







myeloid cell growth and/or differentiation, and thus this gene may function as a myeloid leukemia







tumor suppressor gene. Several alternatively spliced transcript variants encoding different isoforms







have been found for this gene, and alternative translation start sites, including a non-AUG (CUG) start







site, are used. [provided by RefSeq, May 2011]. Transcript Variant: This variant (3) differs in the 5′







UTR, lacks a portion of the 5′ coding region, initiates translation from an downstream in-frame non-







AUG (CUG) start codon, and uses an alternate in-frame splice site in the central coding region,







compared to variant 1. The encoded isoform (b, also known as MRVI1B) is shorter at the N-terminus,







compared to isoform a. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


MRVI1
Y
 946
NM_001100167

Homo sapiens murine

This gene is similar to a putative mouse tumor suppressor gene (Mrvi1) that is frequently disrupted by






retrovirus integration site 1
mouse AIDS-related virus (MRV). The encoded protein, which is found in the membrane of the






homolog (MRVI1),
endoplasmic reticulum, is similar to Jaw1, a lymphoid-restricted protein whose expression is down-






transcript variant 4, mRNA.
regulated during lymphoid differentiation. This protein is a substrate of cGMP-dependent kinase-1







(PKG1) that can function as a regulator of IP3-induced calcium release. Studies in mouse suggest that







MRV integration at Mrvi1 induces myeloid leukemia by altering the expression of a gene important for







myeloid cell growth and/or differentiation, and thus this gene may function as a myeloid leukemia







tumor suppressor gene. Several alternatively spliced transcript variants encoding different isoforms







have been found for this gene, and alternative translation start sites, including a non-AUG (CUG) start







site, are used. [provided by RefSeq, May 2011]. Transcript Variant: This variant (4) differs in the 5′







UTR, lacks a portion of the 5′ coding region, and uses a downstream in-frame start codon, compared to







variant 1. The encoded isoform (c) is shorter at the N-terminus, compared to isoform a. Both variants 4







and 6 encode the same isoform. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments. CCDS Note:







This CCDS representation uses a downstream AUG start codon compared to CCDS44539.1. It is







supported by the mRNA AK127209.1, which lacks the exon containing the alternative non-AUG







(CUG) start codon described in PMID:10321731. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


MRVI1
Y
 947
NM_001206880

Homo sapiens murine

This gene is similar to a putative mouse tumor suppressor gene (Mrvi1) that is frequently disrupted by






retrovirus integration site 1
mouse AIDS-related virus (MRV). The encoded protein, which is found in the membrane of the






homolog (MRVI1),
endoplasmic reticulum, is similar to Jaw1, a lymphoid-restricted protein whose expression is down-






transcript variant 5, mRNA.
regulated during lymphoid differentiation. This protein is a substrate of cGMP-dependent kinase-1







(PKG1) that can function as a regulator of IP3-induced calcium release. Studies in mouse suggest that







MRV integration at Mrvi1 induces myeloid leukemia by altering the expression of a gene important for







myeloid cell growth and/or differentiation, and thus this gene may function as a myeloid leukemia







tumor suppressor gene. Several alternatively spliced transcript variants encoding different isoforms







have been found for this gene, and alternative translation start sites, including a non-AUG (CUG) start







site, are used. [provided by RefSeq, May 2011]. Transcript Variant: This variant (5) differs in the 5′







UTR and 5′ coding region, and uses an alternate in-frame splice site and lacks an alternate in-frame







exon in the central coding region, compared to variant 1. The encoded isoform (e) has a distinct N-







terminus and is shorter than isoform a. Sequence Note: This RefSeq record was created from transcript







and genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments.


MRVI1
Y
 948
NM_001206881

Homo sapiens murine

This gene is similar to a putative mouse tumor suppressor gene (Mrvi1) that is frequently disrupted by






retrovirus integration site 1
mouse AIDS-related virus (MRV). The encoded protein, which is found in the membrane of the






homolog (MRVI1),
endoplasmic reticulum, is similar to Jaw1, a lymphoid-restricted protein whose expression is down-






transcript variant 6, mRNA.
regulated during lymphoid differentiation. This protein is a substrate of cGMP-dependent kinase-1







(PKG1) that can function as a regulator of IP3-induced calcium release. Studies in mouse suggest that







MRV integration at Mrvi1 induces myeloid leukemia by altering the expression of a gene important for







myeloid cell growth and/or differentiation, and thus this gene may function as a myeloid leukemia







tumor suppressor gene. Several alternatively spliced transcript variants encoding different isoforms







have been found for this gene, and alternative translation start sites, including a non-AUG (CUG) start







site, are used. [provided by RefSeq, May 2011]. Transcript Variant: This variant (6) differs in the 5′







UTR, lacks a portion of the 5′ coding region, and uses a downstream in-frame start codon, compared to







variant 1. The encoded isoform (c) is shorter at the N-terminus, compared to isoform a. Both variants 4







and 6 encode the same isoform. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments. CCDS Note:







This CCDS representation uses a downstream AUG start codon compared to CCD544539.1. It is







supported by the mRNA AK127209.1, which lacks the exon containing the alternative non-AUG







(CUG) start codon described in PMID:10321731. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


MRVI1
Y
 949
NM_130385

Homo sapiens murine

This gene is similar to a putative mouse tumor suppressor gene (Mrvi1) that is frequently disrupted by






retrovirus integration site 1
mouse AIDS-related virus (MRV). The encoded protein, which is found in the membrane of the






homolog (MRVI1),
endoplasmic reticulum, is similar to Jaw1, a lymphoid-restricted protein whose expression is down-






transcript variant 2, mRNA.
regulated during lymphoid differentiation. This protein is a substrate of cGMP-dependent kinase-1







(PKG1) that can function as a regulator of IP3-induced calcium release. Studies in mouse suggest that







MRV integration at Mrvi1 induces myeloid leukemia by altering the expression of a gene important for







myeloid cell growth and/or differentiation, and thus this gene may function as a myeloid leukemia







tumor suppressor gene. Several alternatively spliced transcript variants encoding different isoforms







have been found for this gene, and alternative translation start sites, including a non-AUG (CUG) start







site, are used. [provided by RefSeq, May 2011]. Transcript Variant: This variant (2) differs in the 5′







UTR and 5′ coding region, and uses an alternate in-frame splice site in the central coding region,







compared to variant 1. The encoded isoform (d) has a distinct N-terminus and is longer than isoform a.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


MTRNR2L8
Y
 950
NM_001190702

Homo sapiens MT-RNR2-

N/A






like 8 (MTRNR2L8),







mRNA.



RNF141
Y
 951
NM_016422

Homo sapiens ring finger

The protein encoded by this gene contains a RING finger, a motif known to be involved in protein-






protein 141 (RNF141),
DNA and protein-protein interactions. Abundant expression of this gene was found in the testicular






mRNA.
tissue of fertile men, but was not detected in azoospermic patients. Studies of the mouse counterpart







suggest that this gene may function as a testis specific transcription factor during spermatogenesis.







[provided by RefSeq, July 2008].


SBF2
Y
 952
NM_030962

Homo sapiens SET binding

This gene encodes a pseudophosphatase and member of the myotubularin-related protein family. This






factor 2 (SBF2), mRNA.
gene maps within the CMT4B2 candidate region of chromosome 11p15 and mutations in this gene







have been associated with Charcot-Marie-Tooth Disease, type 4B2. [provided by RefSeq, July 2008].







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


C16orf90
Y
 953
NM_001080524

Homo sapiens chromosome

N/A






16 open reading frame 90







(C16orf90), mRNA.



CLUAP1
Y
 954
NM_015041

Homo sapiens clusterin

N/A






associated protein 1







(CLUAP1), transcript







variant 1, mRNA.



CLUAP1
Y
 955
NM_024793

Homo sapiens clusterin

N/A






associated protein 1







(CLUAP1), transcript







variant 2, mRNA.



MTRNR2L4
Y
 956
NM_001190476

Homo sapiens MT-RNR2-

N/A






like 4 (MTRNR2L4),







mRNA.



NLRC3
Y
 957
NM_178844

Homo sapiens NLR family,

N/A






CARD domain containing 3







(NLRC3), mRNA.



SLX4
Y
 958
NM_032444

Homo sapiens SLX4

This gene encodes a structure-specific endonuclease subunit. The encoded protein contains a central






structure-specific
BTB domain and it forms a multiprotein complex with the ERCC4(XPF)-ERCC1, MUS81-EME1, and






endonuclease subunit
SLX1 endonucleases, and also associates with MSH2/MSH3 mismatch repair complex, telomere






homolog (S. cerevisiae)
binding complex TERF2(TRF2)-TERF2IP(RAP1), the protein kinase PLK1 and the uncharacterized






(SLX4), mRNA.
protein C20orf94. The multiprotein complex is required for repair of specific types of DNA lesions and







is critical for cellular responses to replication fork failure. The encoded protein acts as a docking







platform for the assembly of multiple structure-specific endonucleases. [provided by RefSeq, January 2011].


ZNF174
Y
 959
NM_001032292

Homo sapiens zinc finger

N/A






protein 174 (ZNF174),







transcript variant 2, mRNA.



ZNF174
Y
 960
NM_003450

Homo sapiens zinc finger

N/A






protein 174 (ZNF174),







transcript variant 1, mRNA.



ZNF434
Y
 961
NM_017810

Homo sapiens zinc finger

N/A






protein 434 (ZNF434),







mRNA.



ZNF597
Y
 962
NM_152457

Homo sapiens zinc finger

N/A






protein 597 (ZNF597),







mRNA.



CNBD1
N
 963
NM_173538

Homo sapiens cyclic

N/A






nucleotide binding domain







containing 1 (CNBD1),







mRNA.



DPP6
N
 964
NM_001039350

Homo sapiens dipeptidyl-

This gene encodes a single-pass type II membrane protein that is a member of the S9B family in clan






peptidase 6 (DPP6),
SC of the serine proteases. This protein has no detectable protease activity, most likely due to the






transcript variant 3, mRNA.
absence of the conserved serine residue normally present in the catalytic domain of serine proteases.







However, it does bind specific voltage-gated potassium channels and alters their expression and







biophysical properties. Alternate transcriptional splice variants, encoding different isoforms, have been







characterized. [provided by RefSeq, July 2008]. Transcript Variant: This variant (3) includes an







alternate in-frame exon, compared to variant 1, resulting in a shorter protein (isoform 3) that has a







shorter and distinct N-terminus, compared to isoform 1. Sequence Note: This RefSeq record was







created from transcript and genomic sequence data to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on transcript







alignments. Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


DPP6
N
 965
NM_001936

Homo sapiens dipeptidyl-

This gene encodes a single-pass type II membrane protein that is a member of the 59B family in clan






peptidase 6 (DPP6),
SC of the serine proteases. This protein has no detectable protease activity, most likely due to the






transcript variant 2, mRNA.
absence of the conserved serine residue normally present in the catalytic domain of serine proteases.







However, it does bind specific voltage-gated potassium channels and alters their expression and







biophysical properties. Alternate transcriptional splice variants, encoding different isoforms, have been







characterized. [provided by RefSeq, July 2008]. Transcript Variant: This variant (2) includes an







alternate in-frame exon, compared to variant 1, resulting in a shorter protein (isoform 2, also referred







to as S) that has a shorter and distinct N-terminus, compared to isoform 1. Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with







the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments. Publication Note: This RefSeq record includes a subset of the publications that







are available for this gene. Please see the Gene record to access additional publications.


DPP6
N
 966
NM_130797

Homo sapiens dipeptidyl-

This gene encodes a single-pass type II membrane protein that is a member of the S9B family in clan






peptidase 6 (DPP6),
SC of the serine proteases. This protein has no detectable protease activity, most likely due to the






transcript variant 1, mRNA.
absence of the conserved serine residue normally present in the catalytic domain of serine proteases.







However, it does bind specific voltage-gated potassium channels and alters their expression and







biophysical properties. Alternate transcriptional splice variants, encoding different isoforms, have been







characterized. [provided by RefSeq, July 2008]. Transcript Variant: This variant (1) encodes the longest







isoform (1, also referred to as L). Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments. Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please







see the Gene record to access additional publications.


CNTNAP2
N
 967
NM_014141

Homo sapiens contactin

This gene encodes a member of the neurexin family which functions in the vertebrate nervous system






associated protein-like 2
as cell adhesion molecules and receptors. This protein, like other neurexin proteins, contains epidermal






(CNTNAP2), mRNA.
growth factor repeats and laminin G domains. In addition, it includes an F5/8 type C domain,







discoidin/neuropilin- and fibrinogen-like domains, thrombospondin N-terminal-like domains and a







putative PDZ binding site. This protein is localized at the juxtaparanodes of myelinated axons, and







mediates interactions between neurons and glia during nervous system development and is also







involved in localization of potassium channels within differentiating axons. This gene encompasses







almost 1.5% of chromosome 7 and is one of the largest genes in the human genome. It is directly







bound and regulated by forkhead box protein P2 (FOXP2), a transcription factor related to speech and







language development. This gene has been implicated in multiple neurodevelopmental disorders,







including Gilles de la Tourette syndrome, schizophrenia, epilepsy, autism, ADHD and mental







retardation. [provided by RefSeq, March 2010]. Sequence Note: This RefSeq record was created from







transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


DOCK5
N
 968
NM_024940

Homo sapiens dedicator of

N/A






cytokinesis 5 (DOCK5),







mRNA.



BTNL8
Y
 969
NM_001040462

Homo sapiens butyrophilin-

N/A






like 8 (BTNL8), transcript







variant 2, mRNA.



BTNL8
Y
 970
NM_001159707

Homo sapiens butyrophilin-

N/A






like 8 (BTNL8), transcript







variant 3, mRNA.



BTNL8
Y
 971
NM_001159708

Homo sapiens butyrophilin-

N/A






like 8 (BTNL8), transcript







variant 4, mRNA.



BTNL8
Y
 972
NM_001159709

Homo sapiens butyrophilin-

N/A






like 8 (BTNL8), transcript







variant 5, mRNA.



BTNL8
Y
 973
NM_001159710

Homo sapiens butyrophilin-

N/A






like 8 (BTNL8), transcript







variant 6, mRNA.



BTNL8
Y
 974
NM_024850

Homo sapiens butyrophilin-

N/A






like 8 (BTNL8), transcript







variant 1, mRNA.



LOC729678
Y
 975
NR_027183

Homo sapiens

N/A






uncharacterized LOC729678







(LOC729678), non-coding







RNA.



ZFP62
Y
 976
NM_001172638

Homo sapiens zinc finger

N/A






protein 62 homolog (mouse)







(ZFP62), transcript variant







2, mRNA.



ZFP62
Y
 977
NM_152283

Homo sapiens zinc finger

N/A






protein 62 homolog (mouse)







(ZFP62), transcript variant







1, mRNA.



APOBEC3A
Y
 978
NM_001193289

Homo sapiens

This gene is a member of the cytidine deaminase gene family. It is one of seven related genes or






apolipoprotein B mRNA
pseudogenes found in a cluster, thought to result from gene duplication, on chromosome 22. Members






editing enzyme, catalytic
of the cluster encode proteins that are structurally and functionally related to the C to U RNA-editing






polypeptide-like 3A
cytidine deaminase APOBEC1. The protein encoded by this gene lacks the zinc binding activity of






(APOBEC3A), transcript
other family members. The protein plays a role in immunity, by restricting transmission of foreign






variant 2, mRNA.
DNA such as viruses. One mechanism of foreign DNA restriction is deamination of foreign double-







stranded DNA cytidines to uridines, which leads to DNA degradation. However, other mechanisms are







also thought to be involved, as anti-viral effect is not dependent on deaminase activity. One allele of







this gene results from the deletion of approximately 29.5 kb of sequence between this gene,







APOBEC3A, and the adjacent gene APOBEC3B. The breakpoints of the deletion are within the two







genes, so the deletion allele is predicted to have the promoter and coding region of APOBEC3A, but







the 3′ UTR of APOBEC3B. [provided by RefSeq, July 2010]. Transcript Variant: This variant (2)







represents the deletion allele; its 5′ UTR and coding region are derived from APOBEC3A, while its







3′UTR is derived from APOBEC3B. Variants 1 and 2 encode the same protein.


APOBEC3A
Y
 979
NM_145699

Homo sapiens

This gene is a member of the cytidine deaminase gene family. It is one of seven related genes or






apolipoprotein B mRNA
pseudogenes found in a cluster, thought to result from gene duplication, on chromosome 22. Members






editing enzyme, catalytic
of the cluster encode proteins that are structurally and functionally related to the C to U RNA-editing






polypeptide-like 3A
cytidine deaminase APOBEC1. The protein encoded by this gene lacks the zinc binding activity of






(APOBEC3A), transcript
other family members. The protein plays a role in immunity, by restricting transmission of foreign






variant 1, mRNA.
DNA such as viruses. One mechanism of foreign DNA restriction is deamination of foreign double-







stranded DNA cytidines to uridines, which leads to DNA degradation. However, other mechanisms are







also thought to be involved, as anti-viral effect is not dependent on deaminase activity. One allele of







this gene results from the deletion of approximately 29.5 kb of sequence between this gene,







APOBEC3A, and the adjacent gene APOBEC3B. The breakpoints of the deletion are within the two







genes, so the deletion allele is predicted to have the promoter and coding region of APOBEC3A, but







the 3′ UTR of APOBEC3B. [provided by RefSeq, July 2010]. Transcript Variant: This variant (1)







represents the longer transcript. Variants 1 and 2 encode the same protein.


TMPRSS11E
Y
 980
NM_014058

Homo sapiens

N/A






transmembrane protease,







serine 11E (TMPRSS11E),







mRNA.



UGT2B15
Y
 981
NM_001076

Homo sapiens UDP

This gene encodes a member of the UDP-glycosyltransferase (UDPGT) family. The UDPGTs are of






glucuronosyltransferase 2
major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and






family, polypeptide B15
endogenous compounds. This protein displays activity towards several classes of xenobiotic substrates,






(UGT2B15), mRNA.
including simple phenolic compounds, 7-hydroxylated coumarins, flavonoids, anthraquinones, and







certain drugs and their hydroxylated metabolites. It also catalyzes the glucuronidation of endogenous







estrogens and androgens. [provided by RefSeq, October 2011].


PRSS1
Y
 982
NM_002769

Homo sapiens protease,

This gene encodes a trypsinogen, which is a member of the trypsin family of serine proteases. This






serine, 1 (trypsin 1)
enzyme is secreted by the pancreas and cleaved to its active form in the small intestine. It is active on






(PRSS1), mRNA.
peptide linkages involving the carboxyl group of lysine or arginine. Mutations in this gene are







associated with hereditary pancreatitis. This gene and several other trypsinogen genes are localized to







the T cell receptor beta locus on chromosome 7. [provided by RefSeq, July 2008].


PRSS2
Y
 983
NM_002770

Homo sapiens protease,

This gene encodes a trypsinogen, which is a member of the trypsin family of serine proteases. This






serine, 2 (trypsin 2)
enzyme is secreted by the pancreas and cleaved to its active form in the small intestine. It is active on






(PRSS2), mRNA.
peptide linkages involving the carboxyl group of lysine or arginine. This gene and several other







trypsinogen genes are localized to the T cell receptor beta locus on chromosome 7. [provided by







RefSeq, July 2008].


NDST3
N
 984
NM_004784

Homo sapiens N-

This gene encodes a member of the heparan sulfate/heparin GlcNAc N-deacetylase/N-






deacetylase/N-
sulfotransferase family. The encoded enzyme is a type II transmembrane protein that resides in the






sulfotransferase (heparan
Golgi apparatus. This monomeric bifunctional enzyme catalyzes the N-deacetylation and N-sulfation






glucosaminyl) 3 (NDST3),
of N-acetylglucosamine residues in heparan sulfate and heparin, which are the initial chemical






mRNA.
modifications required for the biosynthesis of the functional oligosaccharide sequences that define the







specific ligand binding activities of heparan sulfate and heparin. [provided by RefSeq, November 2008].


HEATR4
N
 985
NM_001220484

Homo sapiens HEAT repeat

N/A






containing 4 (HEATR4),







transcript variant 1, mRNA.



HEATR4
N
 986
NM_203309

Homo sapiens HEAT repeat

N/A






containing 4 (HEATR4),







transcript variant 2, mRNA.



KIAA1267
N
 987
NM_001193465

Homo sapiens KIAA1267

N/A






(KIAA1267), transcript







variant 3, mRNA.



KIAA1267
N
 988
NM_001193466

Homo sapiens KIAA1267

N/A






(KIAA1267), transcript







variant 1, mRNA.



KIAA1267
N
 989
NM_015443

Homo sapiens KIAA1267

N/A






(KIAA1267), transcript







variant 2, mRNA.



NSF
N
 990
NM_006178

Homo sapiens N-

N/A






ethylmaleimide-sensitive







factor (NSF), transcript







variant 1, mRNA.



NSF
N
 991
NM_040116

Homo sapiens N-

N/A






ethylmaleimide-sensitive







factor (NSF), transcript







variant 2, non-coding RNA.



C6orf127
Y
 992
NM_001010886

Homo sapiens chromosome

N/A






6 open reading frame 127







(C6orf127), mRNA.



LCP1
N
 993
NM_002298

Homo sapiens lymphocyte

Plastins are a family of actin-binding proteins that are conserved throughout eukaryote evolution and






cytosolic protein 1 (L-
expressed in most tissues of higher eukaryotes. In humans, two ubiquitous plastin isoforms (L and T)






plastin) (LCP1), mRNA.
have been identified. Plastin 1 (otherwise known as Fimbrin) is a third distinct plastin isoform which is







specifically expressed at high levels in the small intestine. The L isoform is expressed only in







hemopoietic cell lineages, while the T isoform has been found in all other normal cells of solid tissues







that have replicative potential (fibroblasts, endothelial cells, epithelial cells, melanocytes, etc.).







However, L-plastin has been found in many types of malignant human cells of non-hemopoietic origin







suggesting that its expression is induced accompanying tumorigenesis in solid tissues. [provided by







RefSeq, July 2008]. Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


TXLNB
N
 994
NM_153235

Homo sapiens taxilin beta

N/A






(TXLNB), mRNA.



OR52N1
Y
 995
NM_001001913

Homo sapiens olfactory

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that






receptor, family 52,
triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-






subfamily N, member 1
protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a






(OR52N1), mRNA.
7-transmembrane domain structure with many neurotransmitter and hormone receptors and are







responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory







receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor







genes and proteins for this organism is independent of other organisms. [provided by RefSeq, July 2008].


C10orf11
N
 996
NM_032024

Homo sapiens chromosome

N/A






10 open reading frame 11







(C10orf11), mRNA.



C9orf169
Y
 997
NM_199001

Homo sapiens chromosome

N/A






9 open reading frame 169







(C9orf169), mRNA.



RNF208
Y
 998
NM_031297

Homo sapiens ring finger

N/A






protein 208 (RNF208),







mRNA.



DPP10
N
 999
NM_001004360

Homo sapiens dipeptidyl-

This gene encodes a single-pass type II membrane protein that is a member of the S9B family in clan






peptidase 10 (non-
SC of the serine proteases. This protein has no detectable protease activity, most likely due to the






functional) (DPP10),
absence of the conserved serine residue normally present in the catalytic domain of serine proteases.






transcript variant 2, mRNA.
However, it does bind specific voltage-gated potassium channels and alters their expression and







biophysical properties. Mutations in this gene have been associated with asthma. Alternate







transcriptional splice variants, encoding different isoforms, have been characterized. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (2) has an alternate 5′ exon, as compared to variant







3. The resulting isoform (short, also referred to as DPL2-s and d) has a shorter and distinct N-terminus







when compared to isoform c. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments. Sequence







Note: removed 2 bases from the 5′ end that did not align to the reference genome assembly. Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please







see the Gene record to access additional publications.


DPP10
N
1000
NM_001178034

Homo sapiens dipeptidyl-

This gene encodes a single-pass type II membrane protein that is a member of the S9B family in clan






peptidase 10 (non-
SC of the serine proteases. This protein has no detectable protease activity, most likely due to the






functional) (DPP10),
absence of the conserved serine residue normally present in the catalytic domain of serine proteases.






transcript variant 3, mRNA.
However, it does bind specific voltage-gated potassium channels and alters their expression and







biophysical properties. Mutations in this gene have been associated with asthma. Alternate







transcriptional splice variants, encoding different isoforms, have been characterized. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (1) encodes the longest isoform (c). Sequence







Note: This RefSeq record was created from transcript and genomic sequence data to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


DPP10
N
1001
NM_001178036

Homo sapiens dipeptidyl-

This gene encodes a single-pass type II membrane protein that is a member of the S9B family in clan






peptidase 10 (non-
SC of the serine proteases. This protein has no detectable protease activity, most likely due to the






functional) (DPP10),
absence of the conserved serine residue normally present in the catalytic domain of serine proteases.






transcript variant 5, mRNA.
However, it does bind specific voltage-gated potassium channels and alters their expression and







biophysical properties. Mutations in this gene have been associated with asthma. Alternate







transcriptional splice variants, encoding different isoforms, have been characterized. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (5) has an alternate 5′ exon, as compared to variant







3. The resulting isoform (a) has a shorter and distinct N-terminus when compared to isoform c.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


DPP10
N
1002
NM_001178037

Homo sapiens dipeptidyl-

This gene encodes a single-pass type II membrane protein that is a member of the S9B family in clan






peptidase 10 (non-
SC of the serine proteases. This protein has no detectable protease activity, most likely due to the






functional) (DPP10),
absence of the conserved serine residue normally present in the catalytic domain of serine proteases.






transcript variant 4, mRNA.
However, it does bind specific voltage-gated potassium channels and alters their expression and







biophysical properties. Mutations in this gene have been associated with asthma. Alternate







transcriptional splice variants, encoding different isoforms, have been characterized. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (4) has an alternate 5′ exon, as compared to variant







3. The resulting isoform (b) has a shorter and distinct N-terminus when compared to isoform c.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


DPP10
N
1003
NM_020868

Homo sapiens dipeptidyl-

This gene encodes a single-pass type II membrane protein that is a member of the S9B family in clan






peptidase 10 (non-
SC of the serine proteases. This protein has no detectable protease activity, most likely due to the






functional) (DPP10),
absence of the conserved serine residue normally present in the catalytic domain of serine proteases.






transcript variant 1, mRNA.
However, it does bind specific voltage-gated potassium channels and alters their expression and







biophysical properties. Mutations in this gene have been associated with asthma. Alternate







transcriptional splice variants, encoding different isoforms, have been characterized. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (1) has an alternate 5′ exon, as compared to variant







3. The resulting isoform (long, also referred to as DPL2-1) is slightly shorter and has a distinct N-







terminus when compared to isoform c. Sequence Note: This RefSeq record was created from transcript







and genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments. Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please







see the Gene record to access additional publications.


CFH
Y
1004
NM_000186

Homo sapiens complement

This gene is a member of the Regulator of Complement Activation (RCA) gene cluster and encodes a






factor H (CFH), nuclear
protein with twenty short consensus repeat (SCR) domains. This protein is secreted into the






gene encoding
bloodstream and has an essential role in the regulation of complement activation, restricting this innate






mitochondrial protein,
defense mechanism to microbial infections. Mutations in this gene have been associated with






transcript variant 1, mRNA.
hemolytic-uremic syndrome (HUS) and chronic hypocomplementemic nephropathy. Alternate







transcriptional splice variants, encoding different isoforms, have been characterized. [provided by







RefSeq, October 2011]. Transcript Variant: This variant (1) represents the longer transcript and encodes the







longer isoform (a).


CFH
Y
1005
NM_001014975

Homo sapiens complement

This gene is a member of the Regulator of Complement Activation (RCA) gene cluster and encodes a






factor H (CFH), nuclear
protein with twenty short consensus repeat (SCR) domains. This protein is secreted into the






gene encoding
bloodstream and has an essential role in the regulation of complement activation, restricting this innate






mitochondrial protein,
defense mechanism to microbial infections. Mutations in this gene have been associated with






transcript variant 2, mRNA.
hemolytic-uremic syndrome (HUS) and chronic hypocomplementemic nephropathy. Alternate







transcriptional splice variants, encoding different isoforms, have been characterized. [provided by







RefSeq, October 2011]. Transcript Variant: This variant (2) utilizes an alternate terminal exon which







results in an early stop codon. The resulting protein (isoform b, also known as the ‘factor H-like 1’ or







‘FHL-1’ isoform) has a distinct C-terminus and is shorter than isoform a.


PHF17
N
1006
NM_024900

Homo sapiens PHD finger

N/A






protein 17 (PHF17),







transcript variant S, mRNA.



PHF17
N
1007
NM_199320

Homo sapiens PHD finger

N/A






protein 17 (PHF17),







transcript variant L, mRNA.



LAMC2
N
1008
NM_005562

Homo sapiens laminin,

Laminins, a family of extracellular matrix glycoproteins, are the major noncollagenous constituent of






gamma 2 (LAMC2),
basement membranes. They have been implicated in a wide variety of biological processes including






transcript variant 1, mRNA.
cell adhesion, differentiation, migration, signaling, neurite outgrowth and metastasis. Laminins,







composed of 3 non identical chains: laminin alpha, beta and gamma (formerly A, B1, and B2,







respectively), have a cruciform structure consisting of 3 short arms, each formed by a different chain,







and a long arm composed of all 3 chains. Each laminin chain is a multidomain protein encoded by a







distinct gene. Several isoforms of each chain have been described. Different alpha, beta and gamma







chain isomers combine to give rise to different heterotrimeric laminin isoforms which are designated







by Arabic numerals in the order of their discovery, i.e. alpha1beta1gamma1 heterotrimer is laminin 1.







The biological functions of the different chains and trimer molecules are largely unknown, but some of







the chains have been shown to differ with respect to their tissue distribution, presumably reflecting







diverse functions in vivo. This gene encodes the gamma chain isoform laminin, gamma 2. The gamma







2 chain, formerly thought to be a truncated version of beta chain (B2t), is highly homologous to the







gamma 1 chain; however, it lacks domain VI, and domains V, IV and III are shorter. It is expressed in







several fetal tissues but differently from gamma 1, and is specifically localized to epithelial cells in







skin, lung and kidney. The gamma 2 chain together with alpha 3 and beta 3 chains constitute laminin 5







(earlier known as kalinin), which is an integral part of the anchoring filaments that connect epithelial







cells to the underlying basement membrane. The epithelium-specific expression of the gamma 2 chain







implied its role as an epithelium attachment molecule, and mutations in this gene have been associated







with junctional epidermolysis bullosa, a skin disease characterized by blisters due to disruption of the







epidermal-dermal junction. Two transcript variants resulting from alternative splicing of the 3′ terminal







exon, and encoding different isoforms of gamma 2 chain, have been described. The two variants are







differentially expressed in embryonic tissues, however, the biological significance of the two forms is







not known. Transcript variants utilizing alternative polyA_signal have also been noted in literature.







[provided by RefSeq, August 2011]. Transcript Variant: This variant (1) represents the full length







transcript variant. It encodes isoform (a) which is expressed in the epithelia of embryonic tissues.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data because







transcript sequence consistent with the reference genome assembly was not available for all regions of







the RefSeq transcript. The extent of this transcript is supported by transcript alignments.


LAMC2
N
1009
NM_018891

Homo sapiens laminin,

Laminins, a family of extracellular matrix glycoproteins, are the major noncollagenous constituent of






gamma 2 (LAMC2),
basement membranes. They have been implicated in a wide variety of biological processes including






transcript variant 2, mRNA.
cell adhesion, differentiation, migration, signaling, neurite outgrowth and metastasis. Laminins,







composed of 3 non identical chains: laminin alpha, beta and gamma (formerly A, B1, and B2,







respectively), have a cruciform structure consisting of 3 short arms, each formed by a different chain,







and a long arm composed of all 3 chains. Each laminin chain is a multidomain protein encoded by a







distinct gene. Several isoforms of each chain have been described. Different alpha, beta and gamma







chain isomers combine to give rise to different heterotrimeric laminin isoforms which are designated







by Arabic numerals in the order of their discovery, i.e. alpha1beta1gamma1 heterotrimer is laminin 1.







The biological functions of the different chains and trimer molecules are largely unknown, but some of







the chains have been shown to differ with respect to their tissue distribution, presumably reflecting







diverse functions in vivo. This gene encodes the gamma chain isoform laminin, gamma 2. The gamma







2 chain, formerly thought to be a truncated version of beta chain (B2t), is highly homologous to the







gamma 1 chain; however, it lacks domain VI, and domains V, IV and III are shorter. It is expressed in







several fetal tissues but differently from gamma 1, and is specifically localized to epithelial cells in







skin, lung and kidney. The gamma 2 chain together with alpha 3 and beta 3 chains constitute laminin 5







(earlier known as kalinin), which is an integral part of the anchoring filaments that connect epithelial







cells to the underlying basement membrane. The epithelium-specific expression of the gamma 2 chain







implied its role as an epithelium attachment molecule, and mutations in this gene have been associated







with junctional epidermolysis bullosa, a skin disease characterized by blisters due to disruption of the







epidermal-dermal junction. Two transcript variants resulting from alternative splicing of the 3′ terminal







exon, and encoding different isoforms of gamma 2 chain, have been described. The two variants are







differentially expressed in embryonic tissues, however, the biological significance of the two forms is







not known. Transcript variants utilizing alternative polyA_signal have also been noted in literature.







[provided by RefSeq, August 2011]. Transcript Variant: This variant (2) represents a shorter transcript







variant, compared to variant 1, and encodes a shorter isoform (b). Transcript variant 2, unlike variant 1,







has limited expression only in the embryonic cerebral cortex, lung and distal tubules of the kidney.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data because







transcript sequence consistent with the reference genome assembly was not available for all regions of







the RefSeq transcript. The extent of this transcript is supported by transcript alignments.


C7orf50
N
1010
NM_001134395

Homo sapiens chromosome

N/A






7 open reading frame 50







(C7orf50), transcript variant







2, mRNA.



C7orf50
N
1011
NM_001134396

Homo sapiens chromosome

N/A






7 open reading frame 50







(C7orf50), transcript variant







3, mRNA.



C7orf50
N
1012
NM_032350

Homo sapiens chromosome

N/A






7 open reading frame 50







(C7orf50), transcript variant







1, mRNA.



SLC39A11
N
1013
NM_001159770

Homo sapiens solute carrier

N/A






family 39 (metal ion







transporter), member 11







(SLC39A11), transcript







variant 1, mRNA.



SLC39A11
N
1014
NM_139177

Homo sapiens solute carrier

N/A






family 39 (metal ion







transporter), member 11







(SLC39A11), transcript







variant 2, mRNA.



CDH17
N
1015
NM_001144663

Homo sapiens cadherin 17,

This gene is a member of the cadherin superfamily, genes encoding calcium-dependent, membrane-






LI cadherin (liver-intestine)
associated glycoproteins. The encoded protein is cadherin-like, consisting of an extracellular region,






(CDH17), transcript variant
containing 7 cadherin domains, and a transmembrane region but lacking the conserved cytoplasmic






2, mRNA.
domain. The protein is a component of the gastrointestinal tract and pancreatic ducts, acting as an







intestinal proton-dependent peptide transporter in the first step in oral absorption of many medically







important peptide-based drugs. The protein may also play a role in the morphological organization of







liver and intestine. Alternative splicing results in multiple transcript variants. [provided by RefSeq, January







2009]. Transcript Variant: This variant (2) differs in the 5′ UTR compared to variant 1. Both variants 1







and 2 encode the same protein.


CDH17
N
1016
NM_004063

Homo sapiens cadherin 17,

This gene is a member of the cadherin superfamily, genes encoding calcium-dependent, membrane-






LI cadherin (liver-intestine)
associated glycoproteins. The encoded protein is cadherin-like, consisting of an extracellular region,






(CDH17), transcript variant
containing 7 cadherin domains, and a transmembrane region but lacking the conserved cytoplasmic






1, mRNA.
domain. The protein is a component of the gastrointestinal tract and pancreatic ducts, acting as an







intestinal proton-dependent peptide transporter in the first step in oral absorption of many medically







important peptide-based drugs. The protein may also play a role in the morphological organization of







liver and intestine. Alternative splicing results in multiple transcript variants. [provided by RefSeq, January







2009]. Transcript Variant: This variant (1) represents the longer transcript. Both variants 1 and 2







encode the same protein.


OR51A2
Y
1017
NM_001004748

Homo sapiens olfactory

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that






receptor, family 51,
triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-






subfamily A, member 2
protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a






(OR51A2), mRNA.
7-transmembrane domain structure with many neurotransmitter and hormone receptors and are







responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory







receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor







genes and proteins for this organism is independent of other organisms. [provided by RefSeq, July 2008].


SFMBT1
N
1018
NM_001005158

Homo sapiens Scm-like with

This gene shares high similarity with the Drosophila Scm (sex comb on midleg) gene. It encodes a






four mbt domains 1
protein which contains four malignant brain tumor repeat (mbt) domains and may be involved in






(SFMBT1), transcript
antigen recognition. Several alternative splice variants that encode the same protein have been






variant 2, mRNA.
characterized. [provided by RefSeq, August 2010]. Transcript Variant: This variant (2) differs in the 5′







UTR, compared to variant 1. Variants 1, 2 and 3 encode the same protein. Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with







the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


SFMBT1
N
1019
NM_001005159

Homo sapiens Scm-like with

This gene shares high similarity with the Drosophila Scm (sex comb on midleg) gene. It encodes a






four mbt domains 1
protein which contains four malignant brain tumor repeat (mbt) domains and may be involved in






(SFMBT1), transcript
antigen recognition. Several alternative splice variants that encode the same protein have been






variant 1, mRNA.
characterized. [provided by RefSeq, August 2010]. Transcript Variant: This variant (1) represents the







longest transcript. Variants 1, 2 and 3 encode the same protein. Sequence Note: This RefSeq record







was created from transcript and genomic sequence data to make the sequence consistent with the







reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


SFMBT1
N
1020
NM_016329

Homo sapiens Scm-like with

This gene shares high similarity with the Drosophila Scm (sex comb on midleg) gene. It encodes a






four mbt domains 1
protein which contains four malignant brain tumor repeat (mbt) domains and may be involved in






(SFMBT1), transcript
antigen recognition. Several alternative splice variants that encode the same protein have been






variant 3, mRNA.
characterized. [provided by RefSeq, August 2010]. Transcript Variant: This variant (3) differs in the 5′







UTR, compared to variant 1. Variants 1, 2 and 3 encode the same protein. Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with







the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


RPSAP58
N
1021
NR_003662

Homo sapiens ribosomal

N/A






protein SA pseudogene 58







(RPSAP58), non-coding







RNA.



ZDHHC8
Y
1022
NM_001185024

Homo sapiens zinc finger,

This gene encodes a four transmembrane protein that is a member of the zinc finger DHHC domain-






DHHC-type containing 8
containing protein family. The encoded protein may function as a palmitoyltransferase. Defects in this






(ZDHHC8), transcript
gene may be associated with a susceptibility to schizophrenia. Alternate splicing of this gene results in






variant 1, mRNA.
multiple transcript variants. A pseudogene of this gene is found on chromosome 22. [provided by







RefSeq, May 2010]. Transcript Variant: This variant (1) encodes the longer isoform (1). Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please







see the Gene record to access additional publications.


ZDHHC8
both
1022
NM_001185024

Homo sapiens zinc finger,

This gene encodes a four transmembrane protein that is a member of the zinc finger DHHC domain-






DHHC-type containing 8
containing protein family. The encoded protein may function as a palmitoyltransferase. Defects in this






(ZDHHC8), transcript
gene may be associated with a susceptibility to schizophrenia. Alternate splicing of this gene results in






variant 1, mRNA.
multiple transcript variants. A pseudogene of this gene is found on chromosome 22. [provided by







RefSeq, May 2010]. Transcript Variant: This variant (1) encodes the longer isoform (1). Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please







see the Gene record to access additional publications.


ZDHHC8
Y
1023
NM_013373

Homo sapiens zinc finger,

This gene encodes a four transmembrane protein that is a member of the zinc finger DHHC domain-






DHHC-type containing 8
containing protein family. The encoded protein may function as a palmitoyltransferase. Defects in this






(ZDHHC8), transcript
gene may be associated with a susceptibility to schizophrenia. Alternate splicing of this gene results in






variant 2, mRNA.
multiple transcript variants. A pseudogene of this gene is found on chromosome 22. [provided by







RefSeq, May 2010]. Transcript Variant: This variant (2) uses an alternate splice site in the 3 coding







region, which results in a frameshift, compared to variant 1. It encodes isoform 2, which has a shorter







and distinct C-terminus, compared to isoform 1. Sequence Note: This RefSeq record was created from







transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


ZDHHC8
both
1023
NM_013373

Homo sapiens zinc finger,

This gene encodes a four transmembrane protein that is a member of the zinc finger DHHC domain-






DHHC-type containing 8
containing protein family. The encoded protein may function as a palmitoyltransferase. Defects in this






(ZDHHC8), transcript
gene may be associated with a susceptibility to schizophrenia. Alternate splicing of this gene results in






variant 2, mRNA.
multiple transcript variants. A pseudogene of this gene is found on chromosome 22. [provided by







RefSeq, May 2010]. Transcript Variant: This variant (2) uses an alternate splice site in the 3′ coding







region, which results in a frameshift, compared to variant 1. It encodes isoform 2, which has a shorter







and distinct C-terminus, compared to isoform 1. Sequence Note: This RefSeq record was created from







transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


ARVCF
Y
1024
NM_001670

Homo sapiens armadillo

Armadillo Repeat gene deleted in Velo-Cardio-Facial syndrome (ARVCF) is a member of the catenin






repeat gene deleted in
family. This family plays an important role in the formation of adherens junction complexes, which are






velocardiofacial syndrome
thought to facilitate communication between the inside and outside environments of a cell. The






(ARVCF), mRNA.
ARVCF gene was isolated in the search for the genetic defect responsible for the autosomal dominant







Velo-Cardio-Facial syndrome (VCFS), a relatively common human disorder with phenotypic features







including cleft palate, conotruncal heart defects and facial dysmorphology. The ARVCF gene encodes







a protein containing two motifs, a coiled coil domain in the N-terminus and a 10 armadillo repeat







sequence in the midregion. Since these sequences can facilitate protein-protein interactions ARVCF is







thought to function in a protein complex. In addition, ARVCF contains a predicted nuclear-targeting







sequence suggesting that it may have a function as a nuclear protein. [provided by RefSeq, June 2010].







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


C22orf25
Y
1025
NM_152906

Homo sapiens chromosome

N/A






22 open reading frame 25







(C22orf25), mRNA.



C22orf29
Y
1026
NM_024627

Homo sapiens chromosome

N/A






22 open reading frame 29







(C22orf29), mRNA.



C22orf39
Y
1027
NM_001166242

Homo sapiens chromosome

N/A






22 open reading frame 39







(C22orf39), transcript







variant 2, mRNA.



C22orf39
Y
1028
NM_173793

Homo sapiens chromosome

N/A






22 open reading frame 39







(C22orf39), transcript







variant 1, mRNA.



CDC45
Y
1029
NM_001178010

Homo sapiens cell division

The protein encoded by this gene was identified by its strong similarity with Saccharomyces cerevisiae






cycle 45 homolog (S.
Cdc45, an essential protein required to the initiation of DNA replication. Cdc45 is a member of the







cerevisiae) (CDC45),

highly conserved multiprotein complex including Cdc6/Cdc18, the minichromosome maintenance






transcript variant 1, mRNA.
proteins (MCMs) and DNA polymerase, which is important for early steps of DNA replication in







eukaryotes. This protein has been shown to interact with MCM7 and DNA polymerase alpha. Studies







of the similar gene in Xenopus suggested that this protein play a pivotal role in the loading of DNA







polymerase alpha onto chromatin. Multiple alternatively spliced transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, May 2010]. Transcript Variant: This







variant (1) encodes the longest isoform (1). Publication Note: This RefSeq record includes a subset of







the publications that are available for this gene. Please see the Gene record to access additional







publications.


CDC45
Y
1030
NM_001178011

Homo sapiens cell division

The protein encoded by this gene was identified by its strong similarity with Saccharomyces cerevisiae






cycle 45 homolog (S.
Cdc45, an essential protein required to the initiation of DNA replication. Cdc45 is a member of the







cerevisiae) (CDC45),

highly conserved multiprotein complex including Cdc6/Cdc18, the minichromosome maintenance






transcript variant 3, mRNA.
proteins (MCMs) and DNA polymerase, which is important for early steps of DNA replication in







eukaryotes. This protein has been shown to interact with MCM7 and DNA polymerase alpha. Studies







of the similar gene in Xenopus suggested that this protein play a pivotal role in the loading of DNA







polymerase alpha onto chromatin. Multiple alternatively spliced transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, May 2010]. Transcript Variant: This







variant (3) lacks two in-frame exons in the CDS, as compared to variant 1. The resulting isoform (3)







lacks two internal segments, as compared to isoform 1. Publication Note: This RefSeq record includes







a subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


CDC45
Y
1031
NM_003504

Homo sapiens cell division

The protein encoded by this gene was identified by its strong similarity with Saccharomyces






cycle 45 homolog (S.

cerevisiae Cdc45, an essential protein required to the initiation of DNA replication. Cdc45 is a member








cerevisiae) (CDC45),

of the highly conserved multiprotein complex including Cdc6/Cdc18, the minichromosome






transcript variant 2, mRNA.
maintenance proteins (MCMs) and DNA polymerase, which is important for early steps of DNA







replication in eukaryotes. This protein has been shown to interact with MCM7 and DNA polymerase







alpha. Studies of the similar gene in Xenopus suggested that this protein play a pivotal role in the







loading of DNA polymerase alpha onto chromatin. Multiple alternatively spliced transcript variants







encoding different isoforms have been found for this gene. [provided by RefSeq, May 2010].







Transcript Variant: This variant (2) lacks an in-frame exon in the CDS, as compared to variant 1. The







resulting isoform (2) lacks an internal segment, as compared to isoform 1.


CLDN5
Y
1032
NM_001130861

Homo sapiens claudin 5

This gene encodes a member of the claudin family. Claudins are integral membrane proteins and






(CLDN5), transcript variant
components of tight junction strands. Tight junction strands serve as a physical barrier to prevent






1, mRNa.
solutes and water from passing freely through the paracellular space between epithelial or endothelial







cell sheets. Mutations in this gene have been found in patients with velocardiofacial syndrome.







Alternatively spliced transcript variants encoding the same protein have been found for this gene.







[provided by RefSeq, August 2008]. Transcript Variant: This variant (1) is intronless. Both variants 1 and







2 encode the same protein.


CLDN5
Y
1033
NM_003277

Homo sapiens claudin 5

This gene encodes a member of the claudin family. Claudins are integral membrane proteins and






(CLDN5), transcript variant
components of tight junction strands. Tight junction strands serve as a physical barrier to prevent






2, mRNA.
solutes and water from passing freely through the paracellular space between epithelial or endothelial







cell sheets. Mutations in this gene have been found in patients with velocardiofacial syndrome.







Alternatively spliced transcript variants encoding the same protein have been found for this gene.







[provided by RefSeq, August 2008]. Transcript Variant: This variant (2) lacks a segment in the 5′ UTR, as







compared to variant 1.


CLTCL1
Y
1034
NM_001835

Homo sapiens clathrin,

This gene is a member of the clathrin heavy chain family and encodes a major protein of the






heavy chain-like 1
polyhedral coat of coated pits and vesicles. Chromosomal aberrations involving this gene are






(CLTCL1), transcript
associated with meningioma, DiGeorge syndrome, and velo-cardio-facial syndrome. Multiple






variant 2, mRNA.
transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, June







2009]. Transcript Variant: This variant (2) lacks an alternate in-frame exon in the 3′ coding region,







compared to variant 1. The resulting isoform (2) lacks an internal segment near the C-terminus,







compared to isoform 1.


CLTCL1
Y
1035
NM_007098

Homo sapiens clathrin,

This gene is a member of the clathrin heavy chain family and encodes a major protein of the






heavy chain-like 1
polyhedral coat of coated pits and vesicles. Chromosomal aberrations involving this gene are






(CLTCL1), transcript
associated with meningioma, DiGeorge syndrome, and velo-cardio-facial syndrome. Multiple






variant 1, mRNA.
transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, June







2009]. Transcript Variant: This variant (1) represents the longer transcript and encodes the longer







isoform (1).


COMT
Y
1036
NM_000754

Homo sapiens catechol-O-

Catechol-O-methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine to






methyltransferase (COMT),
catecholamines, including the neurotransmitters dopamine, epinephrine, and norepinephrine. This O-






transcript variant 1, mRNA.
methylation results in one of the major degradative pathways of the catecholamine transmitters. In







addition to its role in the metabolism of endogenous substances, COMT is important in the metabolism







of catechol drugs used in the treatment of hypertension, asthma, and Parkinson disease. COMT is







found in two forms in tissues, a soluble form (S-COMT) and a membrane-bound form (MB-COMT).







The differences between S-COMT and MB-COMT reside within the N-termini. Several transcript







variants are formed through the use of alternative translation initiation sites and promoters. [provided







by RefSeq, September 2008]. Transcript Variant: This variant (1, also known as MB-COMT) represents the







longest transcript and encodes the longer isoform (MB-COMT). Variants 1, 2, and 3 all encode







isoform MB-COMT and may also make the shorter isoform S-COMT at a low level. MB-COMT is a







membrane-bound protein. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data because no single transcript was available for the full length of the gene. The







extent of this transcript is supported by transcript alignments.


COMT
Y
1037
NM_001135161

Homo sapiens catechol-O-

Catechol-O-methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine to






methyltransferase (COMT),
catecholamines, including the neurotransmitters dopamine, epinephrine, and norepinephrine. This O-






transcript variant 2, mRNA.
methylation results in one of the major degradative pathways of the catecholamine transmitters. In







addition to its role in the metabolism of endogenous substances, COMT is important in the metabolism







of catechol drugs used in the treatment of hypertension, asthma, and Parkinson disease. COMT is







found in two forms in tissues, a soluble form (S-COMT) and a membrane-bound form (MB-COMT).







The differences between S-COMT and MB-COMT reside within the N-termini. Several transcript







variants are formed through the use of alternative translation initiation sites and promoters. [provided







by RefSeq, September 2008]. Transcript Variant: This variant (2) differs in the 5′ UTR compared to variant 1.







Variants 1, 2, and 3 all encode isoform MB-COMT and may also make the shorter isoform S-COMT at







a low level. MB-COMT is a membrane-bound protein. Sequence Note: This RefSeq record was







created from transcript and genomic sequence data because no single transcript was available for the







full length of the gene. The extent of this transcript is supported by transcript alignments.


COMT
Y
1038
NM_001135162

Homo sapiens catechol-O-

Catechol-O-methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine to






methyltransferase (COMT),
catecholamines, including the neurotransmitters dopamine, epinephrine, and norepinephrine. This O-






transcript variant 3, mRNA.
methylation results in one of the major degradative pathways of the catecholamine transmitters. In







addition to its role in the metabolism of endogenous substances, COMT is important in the metabolism







of catechol drugs used in the treatment of hypertension, asthma, and Parkinson disease. COMT is







found in two forms in tissues, a soluble form (S-COMT) and a membrane-bound form (MB-COMT).







The differences between S-COMT and MB-COMT reside within the N-termini. Several transcript







variants are formed through the use of alternative translation initiation sites and promoters. [provided







by RefSeq, September 2008]. Transcript Variant: This variant (3) differs in the 5 UTR compared to variant 1.







Variants 1, 2, and 3 all encode isoform MB-COMT and may also make the shorter isoform S-COMT at







a low level. MB-COMT is a membrane-bound protein. Sequence Note: This RefSeq record was







created from transcript and genomic sequence data because no single transcript was available for the







full length of the gene. The extent of this transcript is supported by transcript alignments.


COMT
Y
1039
NM_007310

Homo sapiens catechol-O-

Catechol-O-methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine to






methyltransferase (COMT),
catecholamines, including the neurotransmitters dopamine, epinephrine, and norepinephrine. This O-






transcript variant 4, mRNA.
methylation results in one of the major degradative pathways of the catecholamine transmitters. In







addition to its role in the metabolism of endogenous substances, COMT is important in the metabolism







of catechol drugs used in the treatment of hypertension, asthma, and Parkinson disease. COMT is







found in two forms in tissues, a soluble form (S-COMT) and a membrane-bound form (MB-COMT).







The differences between S-COMT and MB-COMT reside within the N-termini. Several transcript







variants are formed through the use of alternative translation initiation sites and promoters. [provided







by RefSeq, September 2008]. Transcript Variant: This variant (4, also known as S-COMT) contains a shorter







5′ UTR and a translation start site which lies 50 codons downstream compared to that of variant 1. The







resulting isoform (S-COMT) is shorter at the N-terminus compared to isoform MB-COMT. S-COMT







is a soluble protein. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data because no single transcript was available for the full length of the gene. The extent of







this transcript is supported by transcript alignments.


CRKL
Y
1040
NM_005207

Homo sapiens v-crk

This gene encodes a protein kinase containing SH2 and SH3 (src homology) domains which has been






sarcoma virus CT10
shown to activate the RAS and JUN kinase signaling pathways and transform fibroblasts in a RAS-






oncogene homolog (avian)-
dependent fashion. It is a substrate of the BCR-ABL tyrosine kinase, plays a role in fibroblast






like (CRKL), mRNA.
transformation by BCR-ABL, and may be oncogenic. [provided by RefSeq, January 2009].


CRKL
both
1040
NM_005207

Homo sapiens v-crk

This gene encodes a protein kinase containing SH2 and SH3 (src homology) domains which has been






sarcoma virus CT10
shown to activate the RAS and JUN kinase signaling pathways and transform fibroblasts in a RAS-






oncogene homolog (avian)-
dependent fashion. It is a substrate of the BCR-ABL tyrosine kinase, plays a role in fibroblast






like (CRKL), mRNA.
transformation by BCR-ABL, and may be oncogenic. [provided by RefSeq, January 2009].


DGCR11
Y
1041
NR_024157

Homo sapiens DiGeorge

N/A






syndrome critical region







gene 11 (DGCR11), non-







coding RNA.



DGCR14
Y
1042
NM_022719

Homo sapiens DiGeorge

This gene is located within the minimal DGS critical region (MDGCR) thought to contain the gene(s)






syndrome critical region
responsible for a group of developmental disorders. These disorders include DiGeorge syndrome,






gene 14 (DGCR14), mRNA.
velocardiofacial syndrome, conotruncal anomaly face syndrome, and some familial or sporadic







conotruncal cardiac defects which have been associated with microdeletion of 22q11.2. The encoded







protein may be a component of C complex spliceosomes, and the orthologous protein in the mouse







localizes to the nucleus. [provided by RefSeq, July 2008].


DGCR2
Y
1043
NM_001173533

Homo sapiens DiGeorge

Deletions of the 22q11.2 have been associated with a wide range of developmental defects (notably






syndrome critical region
DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly face syndrome and isolated






gene 2 (DGCR2), transcript
conotruncal cardiac defects) classified under the acronym CATCH 22. The DGCR2 gene encodes a






variant 2, mRNA.
novel putative adhesion receptor protein, which could play a role in neural crest cells migration, a







process which has been proposed to be altered in DiGeorge syndrome. Alternative splicing results in







multiple transcript variants. [provided by RefSeq, May 2010]. Transcript Variant: This variant (2) lacks







an alternate in-frame exon in the 5′ coding region, compared to variant 1. The resulting isoform (2)







lacks an internal segment, compared to isoform 1.


DGCR2
Y
1044
NM_001173534

Homo sapiens DiGeorge

Deletions of the 22q11.2 have been associated with a wide range of developmental defects (notably






syndrome critical region
DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly face syndrome and isolated






gene 2 (DGCR2), transcript
conotruncal cardiac defects) classified under the acronym CATCH 22. The DGCR2 gene encodes a






variant 3, mRNA.
novel putative adhesion receptor protein, which could play a role in neural crest cells migration, a







process which has been proposed to be altered in DiGeorge syndrome. Alternative splicing results in







multiple transcript variants. [provided by RefSeq, May 2010]. Transcript Variant: This variant (3) lacks







an alternate in-frame exon and uses an alternate in-frame splice site in the 5′ coding region, compared







to variant 1. The resulting isoform (3) lacks two internal segments, compared to isoform 1. Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please







see the Gene record to access additional publications.


DGCR2
Y
1045
NM_001184781

Homo sapiens DiGeorge

Deletions of the 22q11.2 have been associated with a wide range of developmental defects (notably






syndrome critical region
DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly face syndrome and isolated






gene 2 (DGCR2), transcript
conotruncal cardiac defects) classified under the acronym CATCH 22. The DGCR2 gene encodes a






variant 4, mRNA.
novel putative adhesion receptor protein, which could play a role in neural crest cells migration, a







process which has been proposed to be altered in DiGeorge syndrome. Alternative splicing results in







multiple transcript variants. [provided by RefSeq, May 2010]. Transcript Variant: This variant (4) uses







an alternate in-frame splice site in the 5′ coding region, compared to variant 1. The resulting isoform







(4) lacks a short internal segment, compared to isoform 1.


DGCR2
Y
1046
NM_005137

Homo sapiens DiGeorge

Deletions of the 22q11.2 have been associated with a wide range of developmental defects (notably






syndrome critical region
DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly face syndrome and isolated






gene 2 (DGCR2), transcript
conotruncal cardiac defects) classified under the acronym CATCH 22. The DGCR2 gene encodes a






variant 1, mRNA.
novel putative adhesion receptor protein, which could play a role in neural crest cells migration, a







process which has been proposed to be altered in DiGeorge syndrome. Alternative splicing results in







multiple transcript variants. [provided by RefSeq, May 2010]. Transcript Variant: This variant (1)







represents the longest transcript and encodes the longest isoform (1).


DGCR2
Y
1047
NM_033674

Homo sapiens DiGeorge

Deletions of the 22q11.2 have been associated with a wide range of developmental defects (notably






syndrome critical region
DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly face syndrome and isolated






gene 2 (DGCR2), transcript
conotruncal cardiac defects) classified under the acronym CATCH 22. The DGCR2 gene encodes a






variant 5, non-coding RNA.
novel putative adhesion receptor protein, which could play a role in neural crest cells migration, a







process which has been proposed to be altered in DiGeorge syndrome. Alternative splicing results in







multiple transcript variants. [provided by RefSeq, May 2010]. Transcript Variant: This variant (5) lacks







an alternate in-frame exon and uses an alternate in-frame splice site in the 5′ coding region, compared







to variant 1, which results in a frameshift and early stop codon. The transcript is sufficiently abundant







to represent as a RefSeq record; however, the predicted protein is not represented because the product







is significantly truncated and the transcript is a candidate for nonsense-mediated mRNA decay (NMD).







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


DGCR8
Y
1048
NM_001190326

Homo sapiens DiGeorge

This gene encodes a subunit of the microprocessor complex which mediates the biogenesis of






syndrome critical region
microRNAs from the primary microRNA transcript. The encoded protein is a double-stranded RNA






gene 8 (DGCR8), transcript
binding protein that functions as the non-catalytic subunit of the microprocessor complex. This protein






variant 2, mRNA.
is required for binding the double-stranded RNA substrate and facilitates cleavage of the RNA by the







ribonuclease III protein, Drosha. Alternate splicing results in multiple transcript variants. [provided by







RefSeq, June 2010]. Transcript Variant: This variant (2) lacks an in-frame exon in the coding region,







compared to variant 1. The encoded isoform (2) is shorter than isoform 1. Publication Note: This







RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene







record to access additional publications.


DGCR8
Y
1049
NM_022720

Homo sapiens DiGeorge

This gene encodes a subunit of the microprocessor complex which mediates the biogenesis of






syndrome critical region
microRNAs from the primary microRNA transcript. The encoded protein is a double-stranded RNA






gene 8 (DGCR8), transcript
binding protein that functions as the non-catalytic subunit of the microprocessor complex. This protein






variant 1, mRNA.
is required for binding the double-stranded RNA substrate and facilitates cleavage of the RNA by the







ribonuclease III protein, Drosha. Alternate splicing results in multiple transcript variants. [provided by







RefSeq, June 2010]. Transcript Variant: This variant (1) represents the longer transcript and encodes the







longer isoform (1). Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments. Publication Note: This







RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene







record to access additional publications.


GNB1L
Y
1050
NM_053004

Homo sapiens guanine

This gene encodes a G-protein beta-subunit-like polypeptide which is a member of the WD repeat






nucleotide binding protein
protein family. WD repeats are minimally conserved regions of approximately 40 amino acids






(G protein), beta
typically bracketed by gly-his and trp-asp (GH-WD), which may facilitate formation of heterotrimeric






polypeptide 1-like
or multiprotein complexes. Members of this family are involved in a variety of cellular processes,






(GNB1L), mRNA.
including cell cycle progression, signal transduction, apoptosis, and gene regulation. This protein







contains 6 WD repeats and is highly expressed in the heart. The gene maps to the region on







chromosome 22q11, which is deleted in DiGeorge syndrome, trisomic in derivative 22 syndrome and







tetrasomic in cat-eye syndrome. Therefore, this gene may contribute to the etiology of those disorders.







Transcripts from this gene share exons with some transcripts from the C22orf29 gene. [provided by







RefSeq, July 2008]. Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


GP1BB
Y
1051
NM_000407

Homo sapiens glycoprotein

Platelet glycoprotein lb (GPIb) is a heterodimeric transmembrane protein consisting of a disulfide-






Ib (platelet), beta
linked 140 kD alpha chain and 22 kD beta chain. It is part of the GPIb-V-IX system that constitutes the






polypeptide (GP1BB),
receptor for von Willebrand factor (VWF), and mediates platelet adhesion in the arterial circulation.






mRNA.
GPIb alpha chain provides the VWF binding site, and GPIb beta contributes to surface expression of







the receptor and participates in transmembrane signaling through phosphorylation of its intracellular







domain. Mutations in the GPIb beta subunit have been associated with Bernard-Soulier syndrome,







velocardiofacial syndrome and giant platelet disorder. The 206 amino acid precursor of GPIb beta is







synthesized from a 1.0 kb mRNA expressed in plateletes and megakaryocytes. A 411 amino acid







protein arising from a longer, unspliced transcript in endothelial cells has been described; however, the







authenticity of this product has been questioned. Yet another less abundant GPIb beta mRNA species







of 3.5 kb, expressed in nonhematopoietic tissues such as endothelium, brain and heart, was shown to







result from inefficient usage of a non-consensus polyA signal in the neighboring upstream gene







(SEPT5, septin 5). In the absence of polyadenylation from its own imperfect site, the SEPT5 gene







produces read-through transcripts that use the consensus polyA signal of this gene. [provided by







RefSeq, December 2010]. Sequence Note: This RefSeq record was created from genomic sequence data to







make the sequence consistent with the reference genome assembly. The genomic coordinates used for







the transcript record were based on transcript alignments.


GSC2
Y
1052
NM_005315

Homo sapiens goosecoid

Goosecoidlike (GSCL), a homeodomain-containing gene, resides in the critical region for VCFS/DGS






homeobox 2 (GSC2),
on 22q11. Velocardiofacial syndrome (VCFS) is a developmental disorder characterized by






mRNA.
conotruncal heart defects, craniofacial anomalies, and learning disabilities. VCFS is phenotypically







related to DiGeorge syndrome (DGS) and both syndromes are associated with hemizygous 22q11







deletions. Because many of the tissues and structures affected in VCFS/DGS derive from the







pharyngeal arches of the developing embryo, it is believed that haploinsufficiency of a gene involved







in embryonic development may be responsible for its etiology. The gene is expressed in a limited







number of adult tissues, as well as in early human development. [provided by RefSeq, July 2008].







Sequence Note: This RefSeq record was created from genomic sequence data because no single







transcript was available for the full length of the gene. The extent of this transcript is supported by







experimental evidence.


HIRA
Y
1053
NM_003325

Homo sapiens HIR histone

This gene encodes a histone chaperone that preferentially places the variant histone H3.3 in






cell cycle regulation
nucleosomes. Orthologs of this gene in yeast, flies, and plants are necessary for the formation of






defective homolog A (S.
transcriptionally silent heterochomatin. This gene plays an important role in the formation of the







cerevisiae) (HIRA), mRNA.

senescence-associated heterochromatin foci. These foci likely mediate the irreversible cell cycle







changes that occur in senescent cells. It is considered the primary candidate gene in some







haploinsufficiency syndromes such as DiGeorge syndrome, and insufficient production of the gene







may disrupt normal embryonic development. [provided by RefSeq, July 2008].


LOC150185
Y
1054
NR_024381

Homo sapiens

N/A






uncharacterized LOC150185







(LOC150185), non-coding







RNA.



MIR1306
Y
1055
NR_031706

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






1306 (MIR1306),
regulation of gene expression in multicellular organisms by affecting both the stability and translation






microRNA.
of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


MIR185
Y
1056
NR_029706

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






185 (MIR185), microRNA.
regulation of gene expression in multicellular organisms by affecting both the stability and translation







of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


MIR3618
Y
1057
NR_037412

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






3618 (MIR3618),
regulation of gene expression in multicellular organisms by affecting both the stability and translation






microRNA.
of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


MRPL40
Y
1058
NM_003776

Homo sapiens mitochondrial

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein






ribosomal protein L40
synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S






(MRPL40), nuclear gene
subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared






encoding mitochondrial
to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian






protein, mRNA.
mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different







species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in







biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a







39S subunit protein. Deletions in this gene may contribute to the etiology of velo-cardio-facial







syndrome and DiGeorge syndrome. [provided by RefSeq, July 2008].


PI4KA
Y
1059
NM_002650

Homo sapiens

This gene encodes a phosphatidylinositol (PI) 4-kinase which catalyzes the first committed step in the






phosphatidylinositol 4-
biosynthesis of phosphatidylinositol 4,5-bisphosphate. The mammalian PI 4-kinases have been






kinase, catalytic, alpha
classified into two types, II and III, based on their molecular mass, and modulation by detergent and






(PI4KA), transcript variant
adenosine. The protein encoded by this gene is a type III enzyme that is not inhibited by adenosine.






2, mRNA.
Two transcript variants encoding different isoforms have been described for this gene. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (2) differs in the 5′ UTR and CDS compared to







variant 1. The resulting isoform (2) is shorter at the N-terminus compared to isoform 1.


PI4KA
Y
1060
NM_058004

Homo sapiens

This gene encodes a phosphatidylinositol (PI) 4-kinase which catalyzes the first committed step in the






phosphatidylinositol 4-
biosynthesis of phosphatidylinositol 4,5-bisphosphate. The mammalian PI 4-kinases have been






kinase, catalytic, alpha
classified into two types, II and III, based on their molecular mass, and modulation by detergent and






(PI4KA), transcript variant
adenosine. The protein encoded by this gene is a type III enzyme that is not inhibited by adenosine.






1, mRNA.
Two transcript variants encoding different isoforms have been described for this gene. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (1) represents the longer transcript and encodes the







longer isoform (1).


RANBP1
Y
1061
NM_002882

Homo sapiens RAN binding

Ran/TC4-binding protein, RanBP1, interacts specifically with GTP-charged RAN. RANBP1 encodes a






protein 1 (RANBP1),
23-kD protein that binds to RAN complexed with GTP but not GDP. RANBP1 does not activate






mRNA.
GTPase activity of RAN but does markedly increase GTP hydrolysis by the RanGTPase-activating







protein (RanGAP1). The RANBP1 cDNA encodes a 201-amino acid protein that is 92% similar to its







mouse homolog. In both mammalian cells and in yeast, RANBP1 acts as a negative regulator of RCC1







by inhibiting RCC1-stimulated guanine nucleotide release from RAN. [provided by RefSeq, July 2008].


SEPT5
Y
1062
NM_001009939

Homo sapiens septin 5

This gene is a member of the septin gene family of nucleotide binding proteins, originally described in






(SEPT5), transcript variant
yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and






2, mRNA.
mouse and appear to regulate cytoskeletal organization. Disruption of septin function disturbs







cytokinesis and results in large multinucleate or polyploid cells. This gene is mapped to 22q11, the







region frequently deleted in DiGeorge and velocardiofacial syndromes. A translocation involving the







MLL gene and this gene has also been reported in patients with acute myeloid leukemia. Alternative







splicing results in multiple transcript variants. The presence of a non-consensus polyA signal







(AACAAT) in this gene also results in read-through transcription into the downstream neighboring







gene (GP1BB; platelet glycoprotein Ib), whereby larger, non-coding transcripts are produced.







[provided by RefSeq, December 2010]. Transcript Variant: This variant (2) differs in the 5′ UTR, lacks a







portion of the 5′ coding region, and uses an alternate start codon, compared to variant 1. The encoded







isoform 2 has a shorter and distinct N-terminus, compared to isoform 1. Publication Note: This RefSeq







record includes a subset of the publications that are available for this gene. Please see the Gene record







to access additional publications.


SEPT5
Y
1063
NM_002688

Homo sapiens septin 5

This gene is a member of the septin gene family of nucleotide binding proteins, originally described in






(SEPT5), transcript variant
yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and






1, mRNA.
mouse and appear to regulate cytoskeletal organization. Disruption of septin function disturbs







cytokinesis and results in large multinucleate or polyploid cells. This gene is mapped to 22q11, the







region frequently deleted in DiGeorge and velocardiofacial syndromes. A translocation involving the







MLL gene and this gene has also been reported in patients with acute myeloid leukemia. Alternative







splicing results in multiple transcript variants. The presence of a non-consensus polyA signal







(AACAAT) in this gene also results in read-through transcription into the downstream neighboring







gene (GP1BB; platelet glycoprotein Ib), whereby larger, non-coding transcripts are produced.







[provided by RefSeq, December 2010]. Transcript Variant: This variant (1) encodes the longer isoform (1).







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


SEPT5-
Y
1064
NR_037611

Homo sapiens SEPT5-

This locus represents naturally occurring read-through transcription between the neighboring SEPT5


GP1BB



GP1BB readthrough
(septin 5) and GP1BB (glycoprotein Ib (platelet), beta polypeptide) genes on chromosome 22. This






(SEPT5-GP1BB), non-
read-through transcription arises from inefficient use of an imperfect polyA signal in the upstream






coding RNA.
SEPT5 gene, whereby transcription continues into the GP1BB gene. Alternative splicing results in







multiple read-through variants. The read-through transcripts are candidates for nonsense-mediated







mRNA decay (NMD), and are therefore unlikely to produce protein products. [provided by RefSeq,







December 2010]. Sequence Note: This RefSeq record was created from transcript and genomic sequence







data to make the sequence consistent with the reference genome assembly. The genomic coordinates







used for the transcript record were based on transcript alignments.


SEPT5-
Y
1065
NR_037612

Homo sapiens SEPT5-

This locus represents naturally occurring read-through transcription between the neighboring SEPT5


GP1BB



GP1BB readthrough
(septin 5) and GP1BB (glycoprotein Ib (platelet), beta polypeptide) genes on chromosome 22. This






(SEPT5-GP1BB), non-
read-through transcription arises from inefficient use of an imperfect polyA signal in the upstream






coding RNA.
SEPT5 gene, whereby transcription continues into the GP1BB gene. Alternative splicing results in







multiple read-through variants. The read-through transcripts are candidates for nonsense-mediated







mRNA decay (NMD), and are therefore unlikely to produce protein products. [provided by RefSeq,







December 2010].


SERPIND1
Y
1066
NM_000185

Homo sapiens serpin

The product encoded by this gene is a serine proteinase inhibitor which rapidly inhibits thrombin in






peptidase inhibitor, clade D
the presence of dermatan sulfate or heparin. The gene contains five exons and four introns. This






(heparin cofactor), member
protein shares homology with antithrombin III and other members of the alpha 1-antitrypsin






1 (SERPIND1), mRNA.
superfamily. Mutations in this gene are associated with heparin cofactor II deficiency. [provided by







RefSeq, July 2008].


SLC25A1
Y
1067
NM_005984

Homo sapiens solute carrier

The mitochondrial tricarboxylate transporter (also called citrate transport protein, or CTP) is






family 25 (mitochondrial
responsible for the movement of citrate across the mitochondrial inner membrane (Kaplan et al., 1993






carrier; citrate transporter),
[PubMed 8514800]). [supplied by OMIM, January 2011]. Transcript Variant: This variant (1) encodes a






member 1 (SLC25A1),
functional protein.






nuclear gene encoding







mitochondrial protein,







transcript variant 1, mRNA.



SLC25A1
Y
1068
NR_033687

Homo sapiens solute carrier

The mitochondrial tricarboxylate transporter (also called citrate transport protein, or CTP) is






family 25 (mitochondrial
responsible for the movement of citrate across the mitochondrial inner membrane (Kaplan et al., 1993






carrier; citrate transporter),
[PubMed 8514800]). [supplied by OMIM, January 2011]. Transcript Variant: This variant (2) has an






member 1 (SLC25A1),
alternate 5′ exon, as compared to variant 1. It includes a uORF which has a strong Kozak signal and






transcript variant 2, non-
overlaps the downstream ORF. It appears that this transcript is a nonsense-mediated mRNA decay






coding RNA.
candidate.


SNAP29
Y
1069
NM_004782

Homo sapiens

This gene, a member of the SNAP25 gene family, encodes a protein involved in multiple membrane






synaptosomal-associated
trafficking steps. Two other members of this gene family, SNAP23 and SNAP25, encode proteins that






protein, 29 kDa (SNAP29),
bind a syntaxin protein and mediate synaptic vesicle membrane docking and fusion to the plasma






mRNA.
membrane. The protein encoded by this gene binds tightly to multiple syntaxins and is localized to







intracellular membrane structures rather than to the plasma membrane. While the protein is mostly







membrane-bound, a significant fraction of it is found free in the cytoplasm. Use of multiple







polyadenylation sites has been noted for this gene. [provided by RefSeq, July 2008]. Sequence Note:







This RefSeq record was created from transcript and genomic sequence data because no single







transcript was available for the full length of the gene. The extent of this transcript is supported by







transcript alignments.


TBX1
Y
1070
NM_005992

Homo sapiens T-box 1

This gene is a member of a phylogenetically conserved family of genes that share a common DNA-






(TBX1), transcript variant
binding domain, the T-box. T-box genes encode transcription factors involved in the regulation of






B, mRNA.
developmental processes. This gene product shares 98% amino acid sequence identity with the mouse







ortholog. DiGeorge syndrome (DGS)/velocardiofacial syndrome (VCFS), a common congenital







disorder characterized by neural-crest-related developmental defects, has been associated with







deletions of chromosome 22q11.2, where this gene has been mapped. Studies using mouse models of







DiGeorge syndrome suggest a major role for this gene in the molecular etiology of DGS/VCFS.







Several alternatively spliced transcript variants encoding different isoforms have been described for







this gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (B) contains an alternate







exon 9 and an additional exon 10 compared to variant C. It encodes an isoform (B) with the same N-







terminal 336 aa, but an unique C-terminus with respect to isoforms A and C.


TBX1
Y
1071
NM_080646

Homo sapiens T-box 1

This gene is a member of a phylogenetically conserved family of genes that share a common DNA-






(TBX1), transcript variant
binding domain, the T-box. T-box genes encode transcription factors involved in the regulation of






A, mRNA.
developmental processes. This gene product shares 98% amino acid sequence identity with the mouse







ortholog. DiGeorge syndrome (DGS)/velocardiofacial syndrome (VCFS), a common congenital







disorder characterized by neural-crest-related developmental defects, has been associated with







deletions of chromosome 22q11.2, where this gene has been mapped. Studies using mouse models of







DiGeorge syndrome suggest a major role for this gene in the molecular etiology of DGS/VCFS.







Several alternatively spliced transcript variants encoding different isoforms have been described for







this gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (A) contains an alternate







exon 9 compared to variant C, resulting in an isoform (A) with the same N-terminal 336 aa, but an







unique C-terminus with respect to isoforms B and C.


TBX1
Y
1072
NM_080647

Homo sapiens T-box 1

This gene is a member of a phylogenetically conserved family of genes that share a common DNA-






(TBX1), transcript variant
binding domain, the T-box. T-box genes encode transcription factors involved in the regulation of






C, mRNA.
developmental processes. This gene product shares 98% amino acid sequence identity with the mouse







ortholog. DiGeorge syndrome (DGS)/velocardiofacial syndrome (VCFS), a common congenital







disorder characterized by neural-crest-related developmental defects, has been associated with







deletions of chromosome 22q11.2, where this gene has been mapped. Studies using mouse models of







DiGeorge syndrome suggest a major role for this gene in the molecular etiology of DGS/VCFS.







Several alternatively spliced transcript variants encoding different isoforms have been described for







this gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (C) encodes the longest







isoform (C) with the same N-terminal 336 aa, but an unique C-terminus with respect to isoforms A and B.


TRMT2A
Y
1073
NM_022727

Homo sapiens TRM2 tRNA

N/A






methyltransferase 2







homolog A (S. cerevisiae)







(TRMT2A), transcript







variant 1, mRNA.



TRMT2A
Y
1074
NM_182984

Homo sapiens TRM2 tRNA

N/A






methyltransferase 2







homolog A (S. cerevisiae)







(TRMT2A), transcript







variant 2, mRNA.



TSSK2
Y
1075
NM_053006

Homo sapiens testis-specific

TSSK2 belongs to a family of serine/threonine kinases highly expressed in testis (Hao et al., 2004






serine kinase 2 (TSSK2),
[PubMed 15044604]). [supplied by OMIM, March 2008].






mRNA.



TXNRD2
Y
1076
NM_006440

Homo sapiens thioredoxin

Thioredoxin reductase (TR) is a dimeric NADPH-dependent FAD containing enzyme that catalyzes






reductase 2 (TXNRD2),
the reduction of the active site disulfide of thioredoxin and other substrates. TR is a member of a






nuclear gene encoding
family of pyridine nucleotide-disulfide oxidoreductases and is a key enzyme in the regulation of the






mitochondrial protein,
intracellular redox environment. Three thioredoxin reductase genes have been found that encode






mRNA.
selenocysteine containing proteins. This gene partially overlaps the COMT gene on chromosome 22.







[provided by RefSeq, July 2008].


UFD1L
Y
1077
NM_001035247

Homo sapiens ubiquitin

The protein encoded by this gene forms a complex with two other proteins, nuclear protein






fusion degradation 1 like
localization-4 and valosin-containing protein, and this complex is necessary for the degradation of






(yeast) (UFD1L), transcript
ubiquitinated proteins. In addition, this complex controls the disassembly of the mitotic spindle and the






variant 2, mRNA.
formation of a closed nuclear envelope after mitosis. Mutations in this gene have been associated with







Catch 22 syndrome as well as cardiac and craniofacial defects. Alternative splicing results in multiple







transcript variants encoding different isoforms. A related pseudogene has been identified on







chromosome 18. [provided by RefSeq, June 2009]. Transcript Variant: This variant (2) uses an alternate







splice site in the 3′ coding region that results in a frameshift, compared to variant 1. The encoded







isoform (B) has a distinct C-terminus and is shorter than isoform A.


UFD1L
Y
1078
NM_005659

Homo sapiens ubiquitin

The protein encoded by this gene forms a complex with two other proteins, nuclear protein






fusion degradation 1 like
localization-4 and valosin-containing protein, and this complex is necessary for the degradation of






(yeast) (UFD1L), transcript
ubiquitinated proteins. In addition, this complex controls the disassembly of the mitotic spindle and the






variant 1, mRNA.
formation of a closed nuclear envelope after mitosis. Mutations in this gene have been associated with







Catch 22 syndrome as well as cardiac and craniofacial defects. Alternative splicing results in multiple







transcript variants encoding different isoforms. A related pseudogene has been identified on







chromosome 18. [provided by RefSeq, June 2009]. Transcript Variant: This variant (1) represents the







longer transcript and encodes the longer isoform (A).


WLS
N
1079
NM_001002292

Homo sapiens wntless

N/A






homolog (Drosophila)







(WLS), transcript variant 2,







mRNA.



WLS
N
1080
NM_001193334

Homo sapiens wntless

N/A






homolog (Drosophila)







(WLS), transcript variant 3,







mRNA.



WLS
N
1081
NM_024911

Homo sapiens wntless

N/A






homolog (Drosophila)







(WLS), transcript variant 1,







mRNA.



FCGR1A
Y
1082
NM_000566

Homo sapiens Fc fragment

This gene encodes a protein that plays an important role in the immune response. This protein is a






of IgG, high affinity Ia,
high-affinity Fc-gamma receptor. The gene is one of three related gene family members located on






receptor (CD64) (FCGR1A),
chromosome 1. [provided by RefSeq, July 2008].






mRNA.



FCGR1C
Y
1083
NR_027484

Homo sapiens Fc fragment

The gene represents one of three related immunoglobulin gamma Fc receptor genes located on






of IgG, high affinity Ic,
chromosome 1. This family member lacks the transmembrane and coiled-coiled domains found in






receptor (CD64),
other family members and is thought to be a pseudogene of Fc-gamma-receptor 1A. [provided by






pseudogene (FCGR1C),
RefSeq, April 2009]. Sequence Note: The RefSeq transcript was derived from the reference genome






non-coding RNA.
assembly. The genomic coordinates were determined from alignments.


HIST2H2AA3
Y
1084
NM_003516

Homo sapiens histone

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the






cluster 2, H2aa3
chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3,






(HIST2H2AA3), mRNA.
and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units,







called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and







functions in the compaction of chromatin into higher order structures. This gene is intronless and







encodes a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead







contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1.







This gene is one of four histone genes in the cluster that are duplicated; this record represents the







centromeric copy. [provided by RefSeq, July 2008].


HIST2H2AA4
Y
1085
NM_001040874

Homo sapiens histone

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the






cluster 2, H2aa4
chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3,






(HIST2H2AA4), mRNA.
and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units,







called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and







functions in the compaction of chromatin into higher order structures. This gene is intronless and







encodes a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead







contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1.







This gene is one of four histone genes in the cluster that are duplicated; this record represents the







telomeric copy. [provided by RefSeq, July 2008]. Sequence Note: The RefSeq transcript was derived







from the reference genome assembly. The genomic coordinates used for the transcript record were







based on transcript alignments.


HIST2H2BF
Y
1086
NM_001024599

Homo sapiens histone

N/A






cluster 2, H2bf







(HIST2H2BF), transcript







variant 1, mRNA.



HIST2H2BF
Y
1087
NM_001161334

Homo sapiens histone

N/A






cluster 2, H2bf







(HIST2H2BF), transcript







variant 2, mRNA.



HIST2H3A
Y
1088
NM_001005464

Homo sapiens histone

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the






cluster 2, H3a (HIST2H3A),
chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped






mRNA.
around a nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3,







and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with







the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless







and encodes a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead,







they contain a palindromic termination element. This gene is found in a histone cluster on chromosome







1. This gene is one of four histone genes in the cluster that are duplicated; this record represents the







centromeric copy. [provided by RefSeq, July 2008].


HIST2H3C
Y
1089
NM_021059

Homo sapiens histone

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the






cluster 2, H3b (HIST2H3C),
chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped






mRNA.
around a nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3,







and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with







the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless







and encodes a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead,







they contain a palindromic termination element. This gene is found in a histone cluster on chromosome







1. This gene is one of four histone genes in the cluster that are duplicated; this record represents the







telomeric copy. [provided by RefSeq, July 2008].


HIST2H3D
Y
1090
NM_001123375

Homo sapiens histone

N/A






cluster 2, H3d (HIST2H3D),







mRNA.



HIST2H4A
Y
1091
NM_003548

Homo sapiens histone

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the






cluster 2, H4a (HIST2H4A),
chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped






mRNA.
around a nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3,







and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with







the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless







and encodes a member of the histone H4 family. Transcripts from this gene lack polyA tails; instead,







they contain a palindromic termination element. This gene is found in a histone cluster on chromosome







1. This gene is one of four histone genes in the cluster that are duplicated; this record represents the







centromeric copy. [provided by RefSeq, July 2008].


HIST2H4B
Y
1092
NM_001034077

Homo sapiens histone

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the






cluster 2, H4b (HIST2H4B),
chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped






mRNA.
around a nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3,







and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with







the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless







and encodes a member of the histone H4 family. Transcripts from this gene lack polyA tails; instead,







they contain a palindromic termination element. This gene is found in a histone cluster on chromosome







1. This gene is one of four histone genes in the cluster that are duplicated; this record represents the







telomeric copy. [provided by RefSeq, July 2008].


LOC728855
Y
1093
NR_024510

Homo sapiens

N/A






uncharacterized LOC728855







(LOC728855), non-coding







RNA.



LOC728855
Y
1094
NR_024511

Homo sapiens

N/A






uncharacterized LOC728855







(LOC728855), non-coding







RNA.



PPIAL4A
Y
1095
NM_178230

Homo sapiens

N/A






peptidylprolyl isomerase A







(cyclophilin A)-like 4A







(PPIAL4A), mRNA.



PPIAL4C
Y
1096
NM_001135789

Homo sapiens

N/A






peptidylprolyl isomerase A







(cyclophilin A)-like 4C







(PPIAL4C), mRNA.



LCE3D
Y
1097
NM_032563

Homo sapiens late cornified

N/A






envelope 3D (LCE3D),







mRNA.



LCE3E
Y
1098
NM_178435

Homo sapiens late cornified

N/A






envelope 3E (LCE3E),







mRNA.



ZBBX
N
1099
NM_001199201

Homo sapiens zinc finger,

N/A






B-box domain containing







(ZBBX), transcript variant







1, mRNA.



ZBBX
N
1100
NM_001199202

Homo sapiens zinc finger,

N/A






B-box domain containing







(ZBBX), transcript variant







3, mRNA.



ZBBX
N
1101
NM_024687

Homo sapiens zinc finger,

N/A






B-box domain containing







(ZBBX), transcript variant







2, mRNA.



PCDHB16
Y
1102
NM_0290957

Homo sapiens protocadherin

This gene is a member of the protocadherin beta gene cluster, one of three related gene clusters






beta 16 (PCDHB16),
tandemly linked on chromosome five. The gene clusters demonstrate an unusual genomic organization






mRNA.
similar to that of B-cell and T-cell receptor gene clusters. The beta cluster contains 16 genes and 3







pseudogenes, each encoding 6 extracellular cadherin domains and a cytoplasmic tail that deviates from







others in the cadherin superfamily. The extracellular domains interact in a homophilic manner to







specify differential cell-cell connections. Unlike the alpha and gamma clusters, the transcripts from







these genes are made up of only one large exon, not sharing common 3′ exons as expected. These







neural cadherin-like cell adhesion proteins are integral plasma membrane proteins. Their specific







functions are unknown but they most likely play a critical role in the establishment and function of







specific cell-cell neural connections. [provided by RefSeq, July 2008].


PCDHB8
Y
1103
NM_019120

Homo sapiens protocadherin

This gene is a member of the protocadherin beta gene cluster, one of three related gene clusters






beta 8 (PCDHB8), mRNA.
tandemly linked on chromosome five. The gene clusters demonstrate an unusual genomic organization







similar to that of B-cell and T-cell receptor gene clusters. The beta cluster contains 16 genes and 3







pseudogenes, each encoding 6 extracellular cadherin domains and a cytoplasmic tail that deviates from







others in the cadherin superfamily. The extracellular domains interact in a homophilic manner to







specify differential cell-cell connections. Unlike the alpha and gamma clusters, the transcripts from







these genes are made up of only one large exon, not sharing common 3′ exons as expected. These







neural cadherin-like cell adhesion proteins are integral plasma membrane proteins. Their specific







functions are unknown but they most likely play a critical role in the establishment and function of







specific cell-cell neural connections. [provided by RefSeq, July 2008].


ATRNL1
N
1104
NM_207303

Homo sapiens attractin-like

N/A






1 (ATRNL1), mRNA.



ZAN
Y
1105
NM_003386

Homo sapiens zonadhesin

This gene encodes a sperm membrane protein that binds the zona pellucida of the egg in a species-






(ZAN), transcript variant 3,
specific manner. The encoded protein may be involved in signaling or gamete recognition. Alternate






mRNA.
transcriptional splice variants, encoding different isoforms, have been characterized. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (3) represents the longer transcript and encodes the







longer isoform (3).


ZAN
Y
1106
NM_173059

Homo sapiens zonadhesin

This gene encodes a sperm membrane protein that binds the zona pellucida of the egg in a species-






(ZAN), transcript variant 6,
specific manner. The encoded protein may be involved in signaling or gamete recognition. Alternate






mRNA.
transcriptional splice variants, encoding different isoforms, have been characterized. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (6) has multiple differences in the coding region







but maintains the reading frame, compared to variant 3. This variant encodes isoform 6 which is 91 aa







shorter than isoform 3.


WWOX
N
1107
NM_016373

Homo sapiens WW domain

WW domain-containing proteins are found in all eukaryotes and play an important role in the






containing oxidoreductase
regulation of a wide variety of cellular functions such as protein degradation, transcription, and RNA






(WWOX), transcript variant
splicing. This gene encodes a protein which contains 2 WW domains and a short-chain






1, mRNA.
dehydrogenase/reductase domain (SRD). The highest normal expression of this gene is detected in







hormonally regulated tissues such as testis, ovary, and prostate. This expression pattern and the







presence of an SRD domain suggest a role for this gene in steroid metabolism. The encoded protein is







more than 90% identical to the mouse protein, which is an essential mediator of tumor necrosis factor-







alpha-induced apoptosis, suggesting a similar, important role in apoptosis for the human protein. In







addition, there is evidence that this gene behaves as a suppressor of tumor growth. Alternative splicing







of this gene generates transcript variants that encode different isoforms. [provided by RefSeq, July







2008]. Transcript Variant: This variant (1) encodes the longest isoform.


WWOX
N
1108
NM_130791

Homo sapiens WW domain

WW domain-containing proteins are found in all eukaryotes and play an important role in the






containing oxidoreductase
regulation of a wide variety of cellular functions such as protein degradation, transcription, and RNA






(WWOX), transcript variant
splicing. This gene encodes a protein which contains 2 WW domains and a short-chain






2, mRNA.
dehydrogenase/reductase domain (SRD). The highest normal expression of this gene is detected in







hormonally regulated tissues such as testis, ovary, and prostate. This expression pattern and the







presence of an SRD domain suggest a role for this gene in steroid metabolism. The encoded protein is







more than 90% identical to the mouse protein, which is an essential mediator of tumor necrosis factor-







alpha-induced apoptosis, suggesting a similar, important role in apoptosis for the human protein. In







addition, there is evidence that this gene behaves as a suppressor of tumor growth. Alternative splicing







of this gene generates transcript variants that encode different isoforms. [provided by RefSeq, July







2008]. Transcript Variant: This variant (2) is much shorter and has an alternate 3′ end, as compared to







variant 1. It encodes a shorter isoform (2) which contains a partial sequence of the SRD region and has







a different C-terminus from that of isoform 1. Publication Note: This RefSeq record includes a subset







of the publications that are available for this gene. Please see the Gene record to access additional







publications.


WWOX
N
1109
NM_130844

Homo sapiens WW domain

WW domain-containing proteins are found in all eukaryotes and play an important role in the






containing oxidoreductase
regulation of a wide variety of cellular functions such as protein degradation, transcription, and RNA






(WWOX), transcript variant
splicing. This gene encodes a protein which contains 2 WW domains and a short-chain






3, mRNA.
dehydrogenase/reductase domain (SRD). The highest normal expression of this gene is detected in







hormonally regulated tissues such as testis, ovary, and prostate. This expression pattern and the







presence of an SRD domain suggest a role for this gene in steroid metabolism. The encoded protein is







more than 90% identical to the mouse protein, which is an essential mediator of tumor necrosis factor-







alpha-induced apoptosis, suggesting a similar, important role in apoptosis for the human protein. In







addition, there is evidence that this gene behaves as a suppressor of tumor growth. Alternative splicing







of this gene generates transcript variants that encode different isoforms. [provided by RefSeq, July







2008]. Transcript Variant: This variant (3) has a much shorter and alternate 3′ end, as compared to







variant 1. It encodes the shortest isoform (3) which contains only part of the first WW domain and







lacks the second WW domain and the SRD region.


CLEC3A
Y
1110
NM_001244755

Homo sapiens C-type lectin

N/A






domain family 3, member A







(CLEC3A), transcript







variant 2, mRNA.



CLEC3A
Y
1111
NM_005752

Homo sapiens C-type lectin

N/A






domain family 3, member A







(CLEC3A), transcript







variant 1, mRNA.



ANKRD44
both
1112
NM_001195144

Homo sapiens ankyrin

N/A






repeat domain 44







(ANKRD44), transcript







variant A, mRNA.



ANKRD44
both
1113
NM_153697

Homo sapiens ankyrin

N/A






repeat domain 44







(ANKRD44), transcript







variant B, mRNA.



LOC653513
Y
1114
NR_037182

Homo sapiens

N/A






phosphodiesterase 4D







interacting protein







pseudogene (LOC653513),







non-coding RNA.



LOC728875
Y
1115
NR_024584

Homo sapiens

N/A






uncharacterized LOC728875







(LOC728875), non-coding







RNA.



NBPF9
Y
1116
NM_001037675

Homo sapiens

N/A






neuroblastoma breakpoint







family, member 9 (NBPF9),







mRNA.



PDE4DIP
Y
1117
NM_001002810

Homo sapiens

The protein encoded by this gene serves to anchor phosphodiesterase 4D to the Golgi/centrosome






phosphodiesterase 4D
region of the cell. Defects in this gene may be a cause of myeloproliferative disorder (MBD)






interacting protein
associated with eosinophilia. Several transcript variants encoding different isoforms have been found






(PDE4DIP), transcript
for this gene. [provided by RefSeq, August 2010]. Transcript Variant: This variant (4) lacks multiple 3′






variant 4, mRNA.
exons but has an alternate 3′ sequence compared to variant 1. The resulting isoform (4) is C-terminal







truncated compared to isoform 1. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments.


PDE4DIP
Y
1118
NM_001002811

Homo sapiens

The protein encoded by this gene serves to anchor phosphodiesterase 4D to the Golgi/centrosome






phosphodiesterase 4D
region of the cell. Defects in this gene may be a cause of myeloproliferative disorder (MBD)






interacting protein
associated with eosinophilia. Several transcript variants encoding different isoforms have been found






(PDE4DIP), transcript
for this gene. [provided by RefSeq, August 2010]. Transcript Variant: This variant (5) lacks multiple 5′






variant 5, mRNA.
and 3′ exons but has alternate 5′ and 3′ sequences compared to variant 1. The resulting isoform (5) has







a shorter and distinct N-terminus and is C-terminal truncated compared to isoform 1.


PDE4DIP
Y
1119
NM_001002812

Homo sapiens

The protein encoded by this gene serves to anchor phosphodiesterase 4D to the Golgi/centrosome






phosphodiesterase 4D
region of the cell. Defects in this gene may be a cause of myeloproliferative disorder (MBD)






interacting protein
associated with eosinophilia. Several transcript variants encoding different isoforms have been found






(PDE4DIP), transcript
for this gene. [provided by RefSeq, August 2010]. Transcript Variant: This variant (2) lacks multiple 3′






variant 2, mRNA.
exons and has an alternate 3′ exon compared to variant 1. The resulting isoform (2) is C-terminal







truncated compared to isoform 1.


PDE4DIP
Y
1120
NM_001195260

Homo sapiens

The protein encoded by this gene serves to anchor phosphodiesterase 4D to the Golgi/centrosome






phosphodiesterase 4D
region of the cell. Defects in this gene may be a cause of myeloproliferative disorder (MBD)






interacting protein
associated with eosinophilia. Several transcript variants encoding different isoforms have been found






(PDE4DIP), transcript
for this gene. [provided by RefSeq, August 2010]. Transcript Variant: This variant (6) differs in both






variant 6, mRNA.
UTRs and in the coding sequence compared to variant 1. The resulting isoform (6) is shorter at the N-







and C-termini compared to isoform 1. Sequence Note: This RefSeq record was created from transcript







and genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments.


PDE4DIP
Y
1121
NM_001195261

Homo sapiens

The protein encoded by this gene serves to anchor phosphodiesterase 4D to the Golgi/centrosome






phosphodiesterase 4D
region of the cell. Defects in this gene may be a cause of myeloproliferative disorder (MBD)






interacting protein
associated with eosinophilia. Several transcript variants encoding different isoforms have been found






(PDE4DIP), transcript
for this gene. [provided by RefSeq, August 2010]. Transcript Variant: This variant (7) differs in both






variant 7, mRNA.
UTRs and in the coding sequence compared to variant 1. The resulting isoform (7) has a longer and







distinct N-terminus and a shorter C-terminus compared to isoform 1. Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with







the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


PDE4DIP
Y
1122
NM_001198832

Homo sapiens

The protein encoded by this gene serves to anchor phosphodiesterase 4D to the Golgi/centrosome






phosphodiesterase 4D
region of the cell. Defects in this gene may be a cause of myeloproliferative disorder (MBD)






interacting protein
associated with eosinophilia. Several transcript variants encoding different isoforms have been found






(PDE4DIP), transcript
for this gene. [provided by RefSeq, August 2010]. Transcript Variant: This variant (8) differs in the 5′






variant 8, mRNA.
UTR and CDS compared to variant 1. The resulting isoform (8) has a longer and distinct N-terminus







and lacks two internal segments compared to isoform (1). Sequence Note: This RefSeq record was







created from transcript and genomic sequence data to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on transcript







alignments.


PDE4DIP
Y
1123
NM_001198834

Homo sapiens

The protein encoded by this gene serves to anchor phosphodiesterase 4D to the Golgi/centrosome






phosphodiesterase 4D
region of the cell. Defects in this gene may be a cause of myeloproliferative disorder (MBD)






interacting protein
associated with eosinophilia. Several transcript variants encoding different isoforms have been found






(PDE4DIP), transcript
for this gene. [provided by RefSeq, August 2010]. Transcript Variant: This variant (9) has an alternate






variant 9, mRNA.
splice site in the last splice junction compared to variant 1. The resulting isoform (9) has a longer and







distinct C-terminus compared to isoform 1. Sequence Note: This RefSeq record was created from







transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


PDE4DIP
Y
1124
NM_014644

Homo sapiens

The protein encoded by this gene serves to anchor phosphodiesterase 4D to the Golgi/centrosome






phosphodiesterase 4D
region of the cell. Defects in this gene may be a cause of myeloproliferative disorder (MBD)






interacting protein
associated with eosinophilia. Several transcript variants encoding different isoforms have been found






(PDE4DIP), transcript
for this gene. [provided by RefSeq, August 2010]. Transcript Variant: This variant (1) represents the






variant 1, mRNA.
longest transcript and encodes isoform 1. Sequence Note: The RefSeq transcript and protein were







derived from genomic sequence to make the sequence consistent with the reference genome assembly.







The genomic coordinates used for the transcript record were based on alignments.


PDE4DIP
Y
1125
NM_022359

Homo sapiens

The protein encoded by this gene serves to anchor phosphodiesterase 4D to the Golgi/centrosome






phosphodiesterase 4D
region of the cell. Defects in this gene may be a cause of myeloproliferative disorder (MBD)






interacting protein
associated with eosinophilia. Several transcript variants encoding different isoforms have been found






(PDE4DIP), transcript
for this gene. [provided by RefSeq, August 2010]. Transcript Variant: This variant (3) has alternate 5′ and






variant 3, mRNA.
3′ sequences and lacks multiple 3′ exons compared to variant 1. The resulting isoform (3) has a longer







and distinct N-terminus and a truncated C-terminus compared to isoform 1. Sequence Note: This







RefSeq record was created from transcript and genomic sequence data to make the sequence consistent







with the reference genome assembly. The genomic coordinates used for the transcript record were







based on transcript alignments.


PPIAL4B
Y
1126
NM_001143883

Homo sapiens

N/A






peptidylprolyl isomerase A







(cyclophilin A)-like 4B







(PPIAL4B), mRNA.



SEC22B
Y
1127
NM_004892

Homo sapiens SEC22

The protein encoded by this gene is a member of the SEC22 family of vesicle trafficking proteins. It






vesicle trafficking protein
seems to complex with SNARE and it is thought to play a role in the ER-Golgi protein trafficking.






homolog B (S. cerevisiae)
This protein has strong similarity to Mus musculus and Cricetulus griseus proteins. [provided by






(gene/pseudogene)
RefSeq, September 2009].






(SEC22B), mRNA.



SRGAP2P2
Y
1128
NR_034178

Homo sapiens SLIT-ROBO

N/A






Rho GTPase activating







protein 2 pseudogene 2







(SRGAP2P2), non-coding







RNA.



CROCC
Y
1129
NM_014675

Homo sapiens ciliary rootlet

N/A






coiled-coil, rootletin







(CROCC), mRNA.



LOC150776
Y
1130
NR_026922

Homo sapiens

N/A






sphingomyelin







phosphodiesterase 4, neutral







membrane pseudogene







(LOC150776), non-coding







RNA.



MZT2A
Y
1131
NM_001085365

Homo sapiens mitotic

N/A






spindle organizing protein







2A (MZT2A), mRNA.



TUBA3D
Y
1132
NM_080386

Homo sapiens tubulin, alpha

This gene encodes a member of the alpha tubulin family. Tubulin is a major component of






3d (TUBA3D), mRNA.
microtubules, which are composed of alpha- and beta-tubulin heterodimers and microtubule-associated







proteins in the cytoskeleton. Microtubules maintain cellular structure, function in intracellular







transport, and play a role in spindle formation during mitosis. [provided by RefSeq, October 2011].


LSAMP
N
1133
NM_002338

Homo sapiens limbic

The protein encoded by this gene is a neuronal surface glycoprotein found in cortical and subcortical






system-associated
regions of the limbic system. During development of the limbic system, this encoded protein is found






membrane protein
on the surface of axonal membranes and growth cones, where it acts as a selective homophilic






(LSAMP), mRNA.
adhesion molecule, and guides the development of specific patterns of neuronal connections. [provided







by RefSeq, July 2008]. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


GLRA3
N
1134
NM_001042543

Homo sapiens glycine

The GLRA3 gene encodes the alpha-3 subunit of the neuronal glycine receptor, a ligand-gated






receptor, alpha 3 (GLRA3),
chloride channel composed of ligand-binding alpha and structural beta polypeptides (Kingsmore et al.,






transcript variant 2, mRNA.
1994 [PubMed 7894176]). [supplied by OMIM, November 2009].


GLRA3
N
1135
NM_006529

Homo sapiens glycine

The GLRA3 gene encodes the alpha-3 subunit of the neuronal glycine receptor, a ligand-gated






receptor, alpha 3 (GLRA3),
chloride channel composed of ligand-binding alpha and structural beta polypeptides (Kingsmore et al.,






transcript variant 1, mRNA.
1994 [PubMed 7894176]). [supplied by OMIM, November 2009].


ADAM5P
Y
1136
NR_001448

Homo sapiens ADAM

N/A






metallopeptidase domain 5,







pseudogene (ADAM5P),







non-coding RNA.



DCLRE1C
Y
1137
NM_001033855

Homo sapiens DNA cross-

This gene encodes a nuclear protein that is involved in V(D)J recombination and DNA repair. The






link repair 1C (DCLRE1C),
protein has single-strand-specific 5′-3′ exonuclease activity; it also exhibits endonuclease activity on 5′






transcript variant a, mRNA.
and 3′ overhangs and hairpins when complexed with protein kinase, DNA-activated, catalytic







polypeptide. Mutations in this gene cause Athabascan-type severe combined immunodeficiency







(SCIDA). [provided by RefSeq, July 2008]. Transcript Variant: This variant (a) encodes the longest







isoform (a).


DCLRE1C
Y
1138
NM_001033857

Homo sapiens DNA cross-

This gene encodes a nuclear protein that is involved in V(D)J recombination and DNA repair. The






link repair 1C (DCLRE1C),
protein has single-strand-specific 5′-3′ exonuclease activity; it also exhibits endonuclease activity on 5′






transcript variant d, mRNA.
and 3′ overhangs and hairpins when complexed with protein kinase, DNA-activated, catalytic







polypeptide. Mutations in this gene cause Athabascan-type severe combined immunodeficiency







(SCIDA). [provided by RefSeq, July 2008]. Transcript Variant: This variant (d), also called variant 1,







includes an alternate exon in the 5′ UTR resulting in use of a downstream in-frame start codon,







compared to variant a. Variant d encodes isoform d which is shorter than isoform a.


DCLRE1C
Y
1139
NM_001033858

Homo sapiens DNA cross-

This gene encodes a nuclear protein that is involved in V(D)J recombination and DNA repair. The






link repair 1C (DCLRE1C),
protein has single-strand-specific 5′-3′ exonuclease activity; it also exhibits endonuclease activity on 5′






transcript variant c, mRNA.
and 3′ overhangs and hairpins when complexed with protein kinase, DNA-activated, catalytic







polypeptide. Mutations in this gene cause Athabascan-type severe combined immunodeficiency







(SCIDA). [provided by RefSeq, July 2008]. Transcript Variant: This variant (c), also called variant 5,







includes two alternate exons in the 5′ UTR resulting in use of a downstream in-frame start codon,







compared to variant a. Variant c encodes isoform c, which is shorter than isoform a.


DCLRE1C
Y
1140
NM_022487

Homo sapiens DNA cross-

This gene encodes a nuclear protein that is involved in V(D)J recombination and DNA repair. The






link repair 1C (DCLRE1C),
protein has single-strand-specific 5′-3′ exonuclease activity; it also exhibits endonuclease activity on 5′






transcript variant b, mRNA.
and 3′ overhangs and hairpins when complexed with protein kinase, DNA-activated, catalytic







polypeptide. Mutations in this gene cause Athabascan-type severe combined immunodeficiency







(SCIDA). [provided by RefSeq, July 2008]. Transcript Variant: This variant (b), also called variant 3,







lacks an exon in the 3′ coding region, compared to variant a. It encodes isoform b which has a shorter







and distinct N-terminus, compared to variant a.


MEIG1
Y
1141
NM_001080836

Homo sapiens meiosis

N/A






expressed gene 1 homolog







(mouse) (MEIG1), mRNA.



SORCS1
N
1142
NM_001013031

Homo sapiens sortilin-

This gene encodes one family member of vacuolar protein sorting 10 (VPS10) domain-containing






related VPS10 domain
receptor proteins. The VPS10 domain name comes from the yeast carboxypeptidase Y sorting receptor






containing receptor 1
Vps10 protein. Members of this gene family are large with many exons but the CDS lengths are






(SORCS1), transcript
usually less than 3700 nt. Very large introns typically separate the exons encoding the VPS10 domain;






variant 2, mRNA.
the remaining exons are separated by much smaller-sized introns. These genes are strongly expressed







in the central nervous system. Two of the five family members (sortilin and sortilin-related receptor)







are synthesized as preproproteins; it is not yet known if this encoded protein is also a preproprotein.







Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (2) encodes the longest isoform (b). Sequence







Note: This RefSeq record was created from transcript and genomic sequence data to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


SORCS1
N
1143
NM_001206569

Homo sapiens sortilin-

This gene encodes one family member of vacuolar protein sorting 10 (VPS10) domain-containing






related VPS10 domain
receptor proteins. The VPS10 domain name comes from the yeast carboxypeptidase Y sorting receptor






containing receptor 1
Vps10 protein. Members of this gene family are large with many exons but the CDS lengths are






(SORCS1), transcript
usually less than 3700 nt. Very large introns typically separate the exons encoding the VPS10 domain;






variant 3, mRNA.
the remaining exons are separated by much smaller-sized introns. These genes are strongly expressed







in the central nervous system. Two of the five family members (sortilin and sortilin-related receptor)







are synthesized as preproproteins; it is not yet known if this encoded protein is also a preproprotein.







Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (3) differs in the 3′ UTR and coding sequence







compared to variant 2. The resulting isoform (c) has a shorter and distinct C-terminus compared to







isoform b. Sequence Note: This RefSeq record was created from transcript and genomic sequence data







to make the sequence consistent with the reference genome assembly. The genomic coordinates used







for the transcript record were based on transcript alignments.


SORCS1
N
1144
NM_001206570

Homo sapiens sortilin-

This gene encodes one family member of vacuolar protein sorting 10 (VPS10) domain-containing






related VPS10 domain
receptor proteins. The VPS10 domain name comes from the yeast carboxypeptidase Y sorting receptor






containing receptor 1
Vps10 protein. Members of this gene family are large with many exons but the CDS lengths are






(SORCS1), transcript
usually less than 3700 nt. Very large introns typically separate the exons encoding the VPS10 domain;






variant 4, mRNA.
the remaining exons are separated by much smaller-sized introns. These genes are strongly expressed







in the central nervous system. Two of the five family members (sortilin and sortilin-related receptor)







are synthesized as preproproteins; it is not yet known if this encoded protein is also a preproprotein.







Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (4) lacks an alternate exon compared to variant 2,







that causes a frameshift. The resulting isoform (d) has a shorter and distinct C-terminus compared to







isoform b. Sequence Note: This RefSeq record was created from transcript and genomic sequence data







to make the sequence consistent with the reference genome assembly. The genomic coordinates used







for the transcript record were based on transcript alignments. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to







access additional publications.


SORCS1
N
1145
NM_001206571

Homo sapiens sortilin-

This gene encodes one family member of vacuolar protein sorting 10 (VPS10) domain-containing






related VPS10 domain
receptor proteins. The VPS10 domain name comes from the yeast carboxypeptidase Y sorting receptor






containing receptor 1
Vps10 protein. Members of this gene family are large with many exons but the CDS lengths are






(SORCS1), transcript
usually less than 3700 nt. Very large introns typically separate the exons encoding the VPS10 domain;






variant 5, mRNA.
the remaining exons are separated by much smaller-sized introns. These genes are strongly expressed







in the central nervous system. Two of the five family members (sortilin and sortilin-related receptor)







are synthesized as preproproteins; it is not yet known if this encoded protein is also a preproprotein.







Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (5) differs in the 3′ UTR and coding sequence







compared to variant 2. The resulting isoform (e) has a shorter and distinct C-terminus compared to







isoform b. Sequence Note: This RefSeq record was created from transcript and genomic sequence data







to make the sequence consistent with the reference genome assembly. The genomic coordinates used







for the transcript record were based on transcript alignments. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to







access additional publications.


SORCS1
N
1146
NM_001206572

Homo sapiens sortilin-

This gene encodes one family member of vacuolar protein sorting 10 (VPS10) domain-containing






related VPS10 domain
receptor proteins. The VPS10 domain name comes from the yeast carboxypeptidase Y sorting receptor






containing receptor 1
Vps10 protein. Members of this gene family are large with many exons but the CDS lengths are






(SORCS1), transcript
usually less than 3700 nt. Very large introns typically separate the exons encoding the VPS10 domain;






variant 6, mRNA.
the remaining exons are separated by much smaller-sized introns. These genes are strongly expressed







in the central nervous system. Two of the five family members (sortilin and sortilin-related receptor)







are synthesized as preproproteins; it is not yet known if this encoded protein is also a preproprotein.







Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (6) differs in the 3′ UTR and coding sequence







compared to variant 2. The resulting isoform (f) has a shorter and distinct C-terminus compared to







isoform b. Sequence Note: This RefSeq record was created from transcript and genomic sequence data







to make the sequence consistent with the reference genome assembly. The genomic coordinates used







for the transcript record were based on transcript alignments. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to







access additional publications.


SORCS1
N
1147
NM_052918

Homo sapiens sortilin-

This gene encodes one family member of vacuolar protein sorting 10 (VPS10) domain-containing






related VPS10 domain
receptor proteins. The VPS10 domain name comes from the yeast carboxypeptidase Y sorting receptor






containing receptor 1
Vps10 protein. Members of this gene family are large with many exons but the CDS lengths are






(SORCS1), transcript
usually less than 3700 nt. Very large introns typically separate the exons encoding the VPS10 domain;






variant 1, mRNA.
the remaining exons are separated by much smaller-sized introns. These genes are strongly expressed







in the central nervous system. Two of the five family members (sortilin and sortilin-related receptor)







are synthesized as preproproteins; it is not yet known if this encoded protein is also a preproprotein.







Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (1) differs in the 3′ UTR and coding sequence







compared to variant 2. The resulting isoform (a) has a shorter and distinct C-terminus compared to







isoform b. Sequence Note: This RefSeq record was created from transcript and genomic sequence data







to make the sequence consistent with the reference genome assembly. The genomic coordinates used







for the transcript record were based on transcript alignments.


CHPT1
N
1148
NM_020244

Homo sapiens choline

N/A






phosphotransferase 1







(CHPT1), mRNA.



GOLGA8A
Y
1149
NM_181077

Homo sapiens golgin A8

The Golgi apparatus, which participates in glycosylation and transport of proteins and lipids in the






family, member A
secretory pathway, consists of a series of stacked, flattened membrane sacs referred to as cisternae.






(GOLGA8A), transcript
Interactions between the Golgi and microtubules are thought to be important for the reorganization of






variant 1, mRNA.
the Golgi after it fragments during mitosis. The golgins constitute a family of proteins which are







localized to the Golgi. This gene encodes a golgin which structurally resembles its family member







GOLGA2, suggesting that they may share a similar function. There are many similar copies of this







gene on chromosome 15. Alternative splicing results in multiple transcript variants. [provided by







RefSeq, March 2009]. Transcript Variant: This variant (1) represents the shorter transcript and encodes







the functional protein. Sequence Note: The RefSeq transcript and protein were derived from genomic







sequence to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on alignments.


GOLGA8A
Y
1150
NR_027409

Homo sapiens golgin A8

The Golgi apparatus, which participates in glycosylation and transport of proteins and lipids in the






family, member A
secretory pathway, consists of a series of stacked, flattened membrane sacs referred to as cisternae.






(GOLGA8A), transcript
Interactions between the Golgi and microtubules are thought to be important for the reorganization of






variant 2, mRNA.
the Golgi after it fragments during mitosis. The golgins constitute a family of proteins which are







localized to the Golgi. This gene encodes a golgin which structurally resembles its family member







GOLGA2, suggesting that they may share a similar function. There are many similar copies of this







gene on chromosome 15. Alternative splicing results in multiple transcript variants. [provided by







RefSeq, March 2009]. Transcript Variant: This variant (2) represents use of an alternate upstream







promoter, contains additional 5′ exons, and retains an intron, compared to variant 1. This variant is







represented as non-coding because the use of the 5'-most expected translational start codon renders the







transcript a candidate for nonsense-mediated mRNA decay (NMD). Sequence Note: The RefSeq







transcript was derived from the reference genome assembly. The genomic coordinates were determined







from alignments.


MIR1233-1
Y
1151
NR_036050

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






1223-1 (MIR1233-1),
regulation of gene expression in multicellular organisms by affecting both the stability and translation






microRNA.
of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


MIR1233-2
Y
1152
NR_036261

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






1223-2 (MIR1233-2),
regulation of gene expression in multicellular organisms by affecting both the stability and translation






microRNA.
of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


ALDH1A2
N
1153
NM_001206897

Homo sapiens aldehyde

This protein belongs to the aldehyde dehydrogenase family of proteins. The product of this gene is an






dehydrogenase 1 family,
enzyme that catalyzes the synthesis of retinoic acid (RA) from retinaldehyde. Retinoic acid, the active






member A2 (ALDH1A2),
derivative of vitamin A (retinol), is a hormonal signaling molecule that functions in developing and






transcript variant 4, mRNA.
adult tissues. The studies of a similar mouse gene suggest that this enzyme and the cytochrome







CYP26A1, concurrently establish local embryonic retinoic acid levels which facilitate posterior organ







development and prevent spina bifida. Four transcript variants encoding distinct isoforms have been







identified for this gene. [provided by RefSeq, May 2011]. Transcript Variant: This variant (4) differs in







the 5′ UTR and coding sequence compared to variant 1. The resulting isoform (4) has a shorter and







distinct N-terminus compared to isoform 1. Sequence Note: removed 1 base from the 5′ end that did







not align to the reference genome assembly. Publication Note: This RefSeq record includes a subset of







the publications that are available for this gene. Please see the Gene record to access additional







publications.


ALDH1A2
N
1154
NM_003888

Homo sapiens aldehyde

This protein belongs to the aldehyde dehydrogenase family of proteins. The product of this gene is an






dehydrogenase 1 family,
enzyme that catalyzes the synthesis of retinoic acid (RA) from retinaldehyde. Retinoic acid, the active






member A2 (ALDH1A2),
derivative of vitamin A (retinol), is a hormonal signaling molecule that functions in developing and






transcript variant 1, mRNA.
adult tissues. The studies of a similar mouse gene suggest that this enzyme and the cytochrome







CYP26A1, concurrently establish local embryonic retinoic acid levels which facilitate posterior organ







development and prevent spina bifida. Four transcript variants encoding distinct isoforms have been







identified for this gene. [provided by RefSeq, May 2011]. Transcript Variant: This variant (1)







represents the longest transcript and encodes the longest isoform (1). Publication Note: This RefSeq







record includes a subset of the publications that are available for this gene. Please see the Gene record







to access additional publications.


ALDH1A2
N
1155
NM_170696

Homo sapiens aldehyde

This protein belongs to the aldehyde dehydrogenase family of proteins. The product of this gene is an






dehydrogenase 1 family,
enzyme that catalyzes the synthesis of retinoic acid (RA) from retinaldehyde. Retinoic acid, the active






member A2 (ALDH1A2),
derivative of vitamin A (retinol), is a hormonal signaling molecule that functions in developing and






transcript variant 2, mRNA.
adult tissues. The studies of a similar mouse gene suggest that this enzyme and the cytochrome







CYP26A1, concurrently establish local embryonic retinoic acid levels which facilitate posterior organ







development and prevent spina bifida. Four transcript variants encoding distinct isoforms have been







identified for this gene. [provided by RefSeq, May 2011]. Transcript Variant: This variant (2) lacks an







alternate in-frame exon compared to variant 1. The resulting isoform (2) has the same N- and C-







termini but is shorter compared to isoform 1. Sequence Note: removed 1 base from the 5′ end that did







not align to the reference genome assembly. Publication Note: This RefSeq record includes a subset of







the publications that are available for this gene. Please see the Gene record to access additional







publications.


ALDH1A2
N
1156
NM_170697

Homo sapiens aldehyde

This protein belongs to the aldehyde dehydrogenase family of proteins. The product of this gene is an






dehydrogenase 1 family,
enzyme that catalyzes the synthesis of retinoic acid (RA) from retinaldehyde. Retinoic acid, the active






member A2 (ALDH1A2),
derivative of vitamin A (retinol), is a hormonal signaling molecule that functions in developing and






transcript variant 3, mRNA.
adult tissues. The studies of a similar mouse gene suggest that this enzyme and the cytochrome







CYP26A1, concurrently establish local embryonic retinoic acid levels which facilitate posterior organ







development and prevent spina bifida. Four transcript variants encoding distinct isoforms have been







identified for this gene. [provided by RefSeq, May 2011]. Transcript Variant: This variant (3) differs in







the 5′ UTR and coding sequence compared to variant 1. The resulting isoform (3) is shorter at the N-







terminus compared to isoform 1.


HPR
Y
1157
NM_020995

Homo sapiens haptoglobin-

This gene encodes a haptoglobin-related protein that binds hemoglobin as efficiently as haptoglobin.






related protein (HPR),
Unlike haptoglobin, plasma concentration of this protein is unaffected in patients with sickle cell






mRNA.
anemia and extensive intravascular hemolysis, suggesting a difference in binding between haptoglobin-







hemoglobin and haptoglobin-related protein-hemoglobin complexes to CD163, the hemoglobin







scavenger receptor. This protein may also be a clinically important predictor of recurrence of breast







cancer. [provided by RefSeq, October 2011].


ACACA
N
1158
NM_198834

Homo sapiens acetyl-CoA

Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. ACC is a biotin-






carboxylase alpha
containing enzyme which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting






(ACACA), transcript variant
step in fatty acid synthesis. There are two ACC forms, alpha and beta, encoded by two different genes.






1, mRNA.
ACC-alpha is highly enriched in lipogenic tissues. The enzyme is under long term control at the







transcriptional and translational levels and under short term regulation by the







phosphorylation/dephosphorylation of targeted serine residues and by allosteric transformation by







citrate or palmitoyl-CoA. Multiple alternatively spliced transcript variants divergent in the 5′ sequence







and encoding distinct isoforms have been found for this gene. [provided by RefSeq, July 2008].







Transcript Variant: This variant (1) encodes the longest isoform (1).


ACACA
N
1159
NM_198836

Homo sapiens acetyl-CoA

Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. ACC is a biotin-






carboxylase alpha
containing enzyme which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting






(ACACA), transcript variant
step in fatty acid synthesis. There are two ACC forms, alpha and beta, encoded by two different genes.






3, mRNA.
ACC-alpha is highly enriched in lipogenic tissues. The enzyme is under long term control at the







transcriptional and translational levels and under short term regulation by the







phosphorylation/dephosphorylation of targeted serine residues and by allosteric transformation by







citrate or palmitoyl-CoA. Multiple alternatively spliced transcript variants divergent in the 5′ sequence







and encoding distinct isoforms have been found for this gene. [provided by RefSeq, July 2008].







Transcript Variant: This variant (3) has an alternate 5′ UTR exon, and uses a downstream start codon,







as compared to variant (1). The resulting isoform (2) has a shorter N-terminus, as compared to isoform 1.


ACACA
N
1160
NM_198837

Homo sapiens acetyl-CoA

Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. ACC is a biotin-






carboxylase alpha
containing enzyme which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting






(ACACA), transcript variant
step in fatty acid synthesis. There are two ACC forms, alpha and beta, encoded by two different genes.






4, mRNA.
ACC-alpha is highly enriched in lipogenic tissues. The enzyme is under long term control at the







transcriptional and translational levels and under short term regulation by the







phosphorylation/dephosphorylation of targeted serine residues and by allosteric transformation by







citrate or palmitoyl-CoA. Multiple alternatively spliced transcript variants divergent in the 5′ sequence







and encoding distinct isoforms have been found for this gene. [provided by RefSeq, July 2008].







Transcript Variant: This variant (4) has a shorter and alternate 5′ sequence, as compared to variant 1.







The resulting isoform (3) has a distinct and shorter N-terminus, as compared to isoform 1.


ACACA
N
1161
NM_198838

Homo sapiens acetyl-CoA

Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. ACC is a biotin-






carboxylase alpha
containing enzyme which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting






(ACACA), transcript variant
step in fatty acid synthesis. There are two ACC forms, alpha and beta, encoded by two different genes.






5, mRNA.
ACC-alpha is highly enriched in lipogenic tissues. The enzyme is under long term control at the







transcriptional and translational levels and under short term regulation by the







phosphorylation/dephosphorylation of targeted serine residues and by allosteric transformation by







citrate or palmitoyl-CoA. Multiple alternatively spliced transcript variants divergent in the 5′ sequence







and encoding distinct isoforms have been found for this gene. [provided by RefSeq, July 2008].







Transcript Variant: This variant (5) has a shorter and alternate 5′ sequence and uses a downstream start







codon, as compared to variant 1. The resulting isoform (4) has a shorter N-terminus, as compared to







isoform 1.


ACACA
N
1162
NM_198839

Homo sapiens acetyl-CoA

Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. ACC is a biotin-






carboxylase alpha
containing enzyme which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting






(ACACA), transcript variant
step in fatty acid synthesis. There are two ACC forms, alpha and beta, encoded by two different genes.






2, mRNA.
ACC-alpha is highly enriched in lipogenic tissues. The enzyme is under long term control at the







transcriptional and translational levels and under short term regulation by the







phosphorylation/dephosphorylation of targeted serine residues and by allosteric transformation by







citrate or palmitoyl-CoA. Multiple alternatively spliced transcript variants divergent in the 5′ sequence







and encoding distinct isoforms have been found for this gene. [provided by RefSeq, July 2008].







Transcript Variant: This variant (2) is the longest transcript, which has several additional exons in the







5′ region, as compared to variant 1. It uses a downstream start codon and the resulting isoform (2) has a







shorter N-terminus, as compared to isoform 1.


MAGI3
N
1163
NM_001142782

Homo sapiens membrane

N/A






associated guanylate kinase,







WW and PDZ domain







containing 3 (MAGI3),







transcript variant 1, mRNA.



MAGI3
N
1164
NM_152900

Homo sapiens membrane

N/A






associated guanylate kinase,







WW and PDZ domain







containing 3 (MAGI3),







transcript variant 2, mRNA.



ANAPC1
Y
1165
NM_022662

Homo sapiens anaphase

ANAPC1 is 1 of at least 10 subunits of the anaphase-promoting complex (APC), which functions at






promoting complex subunit
the metaphase-to-anaphase transition of the cell cycle and is regulated by spindle checkpoint proteins.






1 (ANAPC1), mRNA.
The APC is an E3 ubiquitin ligase that targets cell cycle regulatory proteins for degradation by the







proteasome, thereby allowing progression through the cell cycle. [supplied by OMIM, April 2004].


LYPD6
N
1166
NM_001195685

Homo sapiens LY6/PLAUR

Members of the LY6 protein family (see SLURP1; MIM 606119), such as LYPD6, have at least one






domain containing 6
80-amino acid LU domain that contains 10 conserved cysteines with a defined disulfide-bonding






(LYPD6), transcript variant
pattern (Zhang et al., 2010 [PubMed 19653121]). [supplied by OMIM, April 2010]. Transcript Variant:






1, mRNA.
This variant (1) represents the longer transcript. Variants 1 and 2 encode the same protein.


LYPD6
N
1167
NM_194317

Homo sapiens LY6/PLAUR

Members of the LY6 protein family (see SLURP1; MIM 606119), such as LYPD6, have at least one






domain containing 6
80-amino acid LU domain that contains 10 conserved cysteines with a defined disulfide-bonding






(LYPD6), transcript variant
pattern (Zhang et al., 2010 [PubMed 19653121]). [supplied by OMIM, April 2010]. Transcript Variant:






2, mRNA.
This variant (2) uses a different segment for its 5′ UTR, compared to variant 1. Variants 1 and 2 encode







the same protein.


CMTM8
N
1168
NM_178868

Homo sapiens CKLF-like

This gene belongs to the chemokine-like factor gene superfamily, a novel family that is similar to the






MARVEL transmembrane
chemokine and the transmembrane 4 superfamilies. This gene is one of several chemokine-like factor






domain containing 8
genes located in a cluster on chromosome 3. This gene is widely expressed in many tissues, but the






(CMTM8), mRNA.
exact function of the encoded protein is unknown. [provided by RefSeq, July 2008].


FHIT
N
1169
NM_001166243

Homo sapiens fragile

This gene, a member of the histidine triad gene family, encodes a diadenosine 5′,5′″-P1,P3-triphosphate






histidine triad gene (FHIT),
hydrolase involved in purine metabolism. The gene encompasses the common fragile site FRA3B on






transcript variant 2, mRNA.
chromosome 3, where carcinogen-induced damage can lead to translocations and aberrant transcripts







of this gene. In fact, aberrant transcripts from this gene have been found in about half of all







esophageal, stomach, and colon carcinomas. Alternatively spliced transcript variants have been found







for this gene. [provided by RefSeq, October 2009]. Transcript Variant: This variant (2) has an alternate







splice site in the 3′ UTR, as compared to variant 1. Both variants 1 and 2 encode the same protein.


FHIT
N
1170
NM_002012

Homo sapiens fragile

This gene, a member of the histidine triad gene family, encodes a diadenosine 5′,5′″-P1,P3-






histidine triad gene (FHIT),
triphosphate hydrolase involved in purine metabolism. The gene encompasses the common fragile site






transcript variant 1, mRNA.
FRA3B on chromosome 3, where carcinogen-induced damage can lead to translocations and aberrant







transcripts of this gene. In fact, aberrant transcripts from this gene have been found in about half of all







esophageal, stomach, and colon carcinomas. Alternatively spliced transcript variants have been found







for this gene. [provided by RefSeq, October 2009]. Transcript Variant: This variant (1) is the longer







transcript.


SYNGAP1
N
1171
NM_006772

Homo sapiens synaptic Ras

The protein encoded by this gene is a major component of the postsynaptic density (PSD), a group of






GTPase activating protein 1
proteins found associated with NMDA receptors at synapses. The encoded protein is phosphorylated






(SYNGAP1), mRNA.
by calmodulin-dependent protein kinase II and dephosphorylated by NMDA receptor activation.







Defects in this gene are a cause of mental retardation autosomal dominant type 5 (MRD5). [provided







by RefSeq, December 2009]. Publication Note: This RefSeq record includes a subset of the publications that







are available for this gene. Please see the Gene record to access additional publications.


CALN1
N
1172
NM_001017440

Homo sapiens calneuron 1

This gene encodes a protein with high similarity to the calcium-binding proteins of the calmodulin






(CALN1), transcript variant
family. The encoded protein contains two EF-hand domains and potential calcium-binding sites.






2, mRNA.
Alternative splicing results in multiple transcript variants. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (2) differs in the 5′ UTR compared to variant 1.


CALN1
N
1173
NM_031468

Homo sapiens calneuron 1

This gene encodes a protein with high similarity to the calcium-binding proteins of the calmodulin






(CALN1), transcript variant
family. The encoded protein contains two EF-hand domains and potential calcium-binding sites.






1, mRNA.
Alternative splicing results in multiple transcript variants. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (1) represents the longer transcript.


LOH12CR1
N
1174
NM_058169

Homo sapiens loss of

N/A






heterozygosity, 12,







chromosomal region 1







(LOH12CR1), mRNA.



FLT1
N
1175
NM_001159920

Homo sapiens fms-related

This gene encodes a member of the vascular endothelial growth factor receptor (VEGFR) family.






tyrosine kinase 1 (vascular
VEGFR family members are receptor tyrosine kinases (RTKs) which contain an extracellular ligand-






endothelial growth
binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and a






factor/vascular permeability
tyrosine kinase (TK) domain within the cytoplasmic domain. This protein binds to VEGFR-A,






factor receptor) (FLT1),
VEGFR-B and placental growth factor and plays an important role in angiogenesis and vasculogenesis.






transcript variant 2, mRNA.
Expression of this receptor is found in vascular endothelial cells, placental trophoblast cells and







peripheral blood monocytes. Multiple transcript variants encoding different isoforms have been found







for this gene. Isoforms include a full-length transmembrane receptor isoform and shortened, soluble







isoforms. The soluble isoforms are associated with the onset of pre-eclampsia. [provided by RefSeq,







May 2009]. Transcript Variant: This variant (2), also known as sFlt1 or sVEGFR-1, differs in the 3′







coding region and 3′ UTR, compared to variant 1. The encoded soluble protein (isoform 2) has a







shorter, distinct C-terminus and lacks the transmembrane and cytoplasmic regions of isoform 1.







Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on alignments.


FLT1
N
1176
NM_001160030

Homo sapiens fms-related

This gene encodes a member of the vascular endothelial growth factor receptor (VEGFR) family.






tyrosine kinase 1 (vascular
VEGFR family members are receptor tyrosine kinases (RTKs) which contain an extracellular ligand-






endothelial growth
binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and a






factor/vascular permeability
tyrosine kinase (TK) domain within the cytoplasmic domain. This protein binds to VEGFR-A,






factor receptor) (FLT1),
VEGFR-B and placental growth factor and plays an important role in angiogenesis and vasculogenesis.






transcript variant 3, mRNA.
Expression of this receptor is found in vascular endothelial cells, placental trophoblast cells and







peripheral blood monocytes. Multiple transcript variants encoding different isoforms have been found







for this gene. Isoforms include a full-length transmembrane receptor isoform and shortened, soluble







isoforms. The soluble isoforms are associated with the onset of pre-eclampsia. [provided by RefSeq,







May 2009]. Transcript Variant: This variant (3) differs in the 3′ coding region and 3′ UTR, compared







to variant 1. The encoded soluble protein (isoform 3) has a shorter, distinct C-terminus and lacks the







transmembrane and cytoplasmic regions of isoform 1.


FLT1
N
1177
NM_001160031

Homo sapiens fms-related

This gene encodes a member of the vascular endothelial growth factor receptor (VEGFR) family.






tyrosine kinase 1 (vascular
VEGFR family members are receptor tyrosine kinases (RTKs) which contain an extracellular ligand-






endothelial growth
binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and a






factor/vascular permeability
tyrosine kinase (TK) domain within the cytoplasmic domain. This protein binds to VEGFR-A,






factor receptor) (FLT1),
VEGFR-B and placental growth factor and plays an important role in angiogenesis and vasculogenesis.






transcript variant 4, mRNA.
Expression of this receptor is found in vascular endothelial cells, placental trophoblast cells and







peripheral blood monocytes. Multiple transcript variants encoding different isoforms have been found







for this gene. Isoforms include a full-length transmembrane receptor isoform and shortened, soluble







isoforms. The soluble isoforms are associated with the onset of pre-eclampsia. [provided by RefSeq,







May 2009]. Transcript Variant: This variant (4) differs in the 3′ coding region and 3′ UTR, compared







to variant 1. The encoded soluble protein (isoform 4) has a shorter, distinct C-terminus and lacks the







transmembrane and cytoplasmic regions of isoform 1.


FLT1
N
1178
NM_002019

Homo sapiens fms-related

This gene encodes a member of the vascular endothelial growth factor receptor (VEGFR) family.






tyrosine kinase 1 (vascular
VEGFR family members are receptor tyrosine kinases (RTKs) which contain an extracellular ligand-






endothelial growth
binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and a






factor/vascular permeability
tyrosine kinase (TK) domain within the cytoplasmic domain. This protein binds to VEGFR-A,






factor receptor) (FLT1),
VEGFR-B and placental growth factor and plays an important role in angiogenesis and vasculogenesis.






transcript variant 1, mRNA.
Expression of this receptor is found in vascular endothelial cells, placental trophoblast cells and







peripheral blood monocytes. Multiple transcript variants encoding different isoforms have been found







for this gene. Isoforms include a full-length transmembrane receptor isoform and shortened, soluble







isoforms. The soluble isoforms are associated with the onset of pre-eclampsia. [provided by RefSeq,







May 2009]. Transcript Variant: This variant (1) the longest isoform (1). Isoform 1 is a transmembrane







protein. Sequence Note: This RefSeq record was created from transcript and genomic sequence data to







make the sequence consistent with the reference genome assembly. The genomic coordinates used for







the transcript record were based on transcript alignments.


CTAGE5
N
1179
NM_001247988

Homo sapiens CTAGE

The protein encoded by this gene is a tumor-associated antigen found in cutaneous T-cell lymphoma






family, member 5
and several other cancers. Autoantibodies against the encoded protein have been found in some






(CTAGE5), transcript
cancers. Several transcript variants encoding different isoforms have been found for this gene.






variant 5, mRNA.
[provided by RefSeq, October 2011]. Transcript Variant: This variant (5) differs in the 5′ UTR and coding







sequence, lacks an alternate in-frame exon, and uses an alternate in-frame splice junction at the 3′ end







of an exon compared to variant 6. The resulting isoform (5) is shorter at the N-terminus and lacks two







internal segments compared to isoform 6. Sequence Note: This RefSeq record was created from







transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


CTAGE5
N
1180
NM_001247989

Homo sapiens CTAGE

The protein encoded by this gene is a tumor-associated antigen found in cutaneous T-cell lymphoma






family, member 5
and several other cancers. Autoantibodies against the encoded protein have been found in some






(CTAGE5), transcript
cancers. Several transcript variants encoding different isoforms have been found for this gene.






variant 6, mRNA.
[provided by RefSeq, October 2011]. Transcript Variant: This variant (6) represents the longest transcript







and encodes the longest isoform (6). Sequence Note: This RefSeq record was created from transcript







and genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments.


CTAGE5
N
1181
NM_001247990

Homo sapiens CTAGE

The protein encoded by this gene is a tumor-associated antigen found in cutaneous T-cell lymphoma






family, member 5
and several other cancers. Autoantibodies against the encoded protein have been found in some






(CTAGE5), transcript
cancers. Several transcript variants encoding different isoforms have been found for this gene.






variant 7, mRNA.
[provided by RefSeq, October 2011]. Transcript Variant: This variant (7) lacks a portion of the 5′ coding







region and initiates translation at a downstream start codon compared to variant 6. The resulting







isoform (7) is shorter at the N-terminus compared to isoform 6. Sequence Note: This RefSeq record







was created from transcript and genomic sequence data to make the sequence consistent with the







reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


CTAGE5
N
1182
NM_005930

Homo sapiens CTAGE

The protein encoded by this gene is a tumor-associated antigen found in cutaneous T-cell lymphoma






family, member 5
and several other cancers. Autoantibodies against the encoded protein have been found in some






(CTAGE5), transcript
cancers. Several transcript variants encoding different isoforms have been found for this gene.






variant 1, mRNA.
[provided by RefSeq, October 2011]. Transcript Variant: This variant (1) uses an alternate in-frame splice







junction at the 3′ end of an exon compared to variant 6. The resulting isoform (1) lacks an internal







segment compared to isoform 6.


CTAGE5
N
1183
NM_203354

Homo sapiens CTAGE

The protein encoded by this gene is a tumor-associated antigen found in cutaneous T-cell lymphoma






family, member 5
and several other cancers. Autoantibodies against the encoded protein have been found in some






(CTAGE5), transcript
cancers. Several transcript variants encoding different isoforms have been found for this gene.






variant 2, mRNA.
[provided by RefSeq, October 2011]. Transcript Variant: This variant (2) differs in the 5′ UTR and coding







sequence and uses an alternate in-frame splice junction at the 3′ end of an exon compared to variant 6.







The resulting isoform (2) has a shorter and distinct N-terminus and lacks an internal segment compared







to isoform 6.


CTAGE5
N
1184
NM_203355

Homo sapiens CTAGE

The protein encoded by this gene is a tumor-associated antigen found in cutaneous T-cell lymphoma






family, member 5
and several other cancers. Autoantibodies against the encoded protein have been found in some






(CTAGE5), transcript
cancers. Several transcript variants encoding different isoforms have been found for this gene.






variant 3, mRNA.
[provided by RefSeq, October 2011]. Transcript Variant: This variant (3) lacks an alternate in-frame exon







and uses an alternate in-frame splice junction at the 3′ end of an exon compared to variant 6. The







resulting isoform (3) lacks two internal segments compared to isoform 6.


CTAGE5
N
1185
NM_203356

Homo sapiens CTAGE

The protein encoded by this gene is a tumor-associated antigen found in cutaneous T-cell lymphoma






family, member 5
and several other cancers. Autoantibodies against the encoded protein have been found in some






(CTAGE5), transcript
cancers. Several transcript variants encoding different isoforms have been found for this gene.






variant 4, mRNA.
[provided by RefSeq, October 2011]. Transcript Variant: This variant (4) differs in the 5′ UTR and coding







sequence, initiates translation at a downstream start codon, and uses an alternate in-frame splice







junction at the 3′ end of an exon compared to variant 6. The resulting isoform (4) is shorter at the N-







terminus and lacks an internal segment compared to isoform 6. Unlike the other variants, this variant







may exhibit testis-specific expression.


TTC7B
N
1186
NM_001010854

Homo sapiens

N/A






tetratricopeptide repeat







domain 7B (TTC7B),







mRNA.



LRRC49
N
1187
NM_001199017

Homo sapiens leucine rich

N/A






repeat containing 49







(LRRC49), transcript variant







1, mRNA.



LRRC49
N
1188
NM_001199018

Homo sapiens leucine rich

N/A






repeat containing 49







(LRRC49), transcript variant







3, mRNA.



LRRC49
N
1189
NM_017691

Homo sapiens leucine rich

N/A






repeat containing 49







(LRRC49), transcript variant







2, mRNA.



MIR662
Y
1190
NR_030384
Homo spaiens microRNA
microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






662 (MIR662), microRNA.
regulation of gene expression in multicellular organisms by affecting both the stability and translation







of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


MSLNL
Y
1191
NM_001025190

Homo sapiens mesothelin-

N/A






like (MSLNL), mRNA.



CHTF18
Y
1192
NM_022092

Homo sapiens CTF18,

CHTF18, CHTF8 (MIM 613202), and DCC1 (DSCC1; MIM 613203) are components of an alternative






chromosome transmission
replication factor C (RFC) (see MIM 600404) complex that loads PCNA (MIM 176740) onto DNA






fidelity factor 18 homolog
during S phase of the cell cycle (Merkle et al., 2003 [PubMed 12766176]; Bermudez et al., 2003






(S. cerevisiae) (CHTF18),
[PubMed 12930902]). [supplied by OMIM, December 2009].






mRNA.



GNG13
Y
1193
NM_016541

Homo sapiens guanine

Heterotrimeric G proteins, which consist of alpha (see MIM 139320), beta (see MIM 139380), and






nucleotide binding protein
gamma subunits, function as signal transducers for the 7-transmembrane-helix G protein-coupled






(G protein), gamma 13
receptors. GNG13 is a gamma subunit that is expressed in taste, retinal, and neuronal tissues and plays






(GNG13), mRNA.
a key role in taste transduction (Li et al., 2006 [PubMed 16473877]). [supplied by OMIM, October 2009].


PRR25
Y
1194
NM_001013638

Homo sapiens proline rich

N/A






25 (PRR25), mRNA.



RPUSD1
Y
1195
NM_058192

Homo sapiens RNA

N/A






pseudouridylate synthase







domain containing 1







(RPUSD1), mRNA.



HKR1
N
1196
NM_181786

Homo sapiens HKR1, GLI-

N/A






Kruppel zinc finger family







member (HKR1), mRNA.



HMX1
both
1197
NM_018942

Homo sapiens H6 family

This gene encodes a transcription factor that belongs to the H6 family of homeobox proteins. This






homeobox 1 (HMX1),
protein can bind a 5'-CAAG-3′ core DNA sequence, and it is involved in the development of






mRNA.
craniofacial structures. Mutations in this gene cause oculoauricular syndrome, a disorder of the eye and







external ear. [provided by RefSeq, October 2009]. Sequence Note: The RefSeq transcript and protein were







derived from genomic sequence to make the sequence consistent with the reference genome assembly.







The genomic coordinates used for the transcript record were based on transcript alignments.


LOC284551
Y
1198
NR_027085

Homo sapiens

N/A






uncharacterized LOC284551







(LOC284551), non-coding







RNA.



ACOT11
Y
1199
NM_015547

Homo sapiens acyl-CoA

This gene encodes a member of the acyl-CoA thioesterase family which catalyse the conversion of






thioesterase 11 (ACOT11),
activated fatty acids to the corresponding non-esterified fatty acid and coenzyme A. Expression of a






transcript variant 1, mRNA.
mouse homolog in brown adipose tissue is induced by low temperatures and repressed by warm







temperatures. Higher levels of expression of the mouse homolog has been found in obesity-resistant







mice compared with obesity-prone mice, suggesting a role of acyl-CoA thioesterase 11 in obesity.







Alternative splicing results in transcript variants. [provided by RefSeq, November 2010]. Transcript Variant:







This variant (1) encodes the longer isoform (BFIT1) of this protein.


ACOT11
Y
1200
NM_147161

Homo sapiens acyl-CoA

This gene encodes a member of the acyl-CoA thioesterase family which catalyse the conversion of






thioesterase 11 (ACOT11),
activated fatty acids to the corresponding non-esterified fatty acid and coenzyme A. Expression of a






transcript variant 2, mRNA.
mouse homolog in brown adipose tissue is induced by low temperatures and repressed by warm







temperatures. Higher levels of expression of the mouse homolog has been found in obesity-resistant







mice compared with obesity-prone mice, suggesting a role of acyl-CoA thioesterase 11 in obesity.







Alternative splicing results in transcript variants. [provided by RefSeq, November 2010]. Transcript Variant:







This variant (2) uses alternate exons in the 3′ coding region and UTR, compared to variant 1. The







encoded isoform (BFIT2) has a distinct C-terminus compared to isoform BFIT1. Sequence Note: This







RefSeq record was created from transcript and genomic sequence data to make the sequence consistent







with the reference genome assembly. The genomic coordinates used for the transcript record were







based on transcript alignments.


RBMS3
N
1201
NM_001003792

Homo sapiens RNA binding

This gene encodes an RNA-binding protein that belongs to the c-myc gene single-strand binding






motif, single stranded
protein family. These proteins are characterized by the presence of two sets of ribonucleoprotein






interacting protein 3
consensus sequence (RNP-CS) that contain conserved motifs, RNP1 and RNP2, originally described in






(RBMS3), transcript variant
RNA binding proteins, and required for DNA binding. These proteins have been implicated in such






3, mRNA.
diverse functions as DNA replication, gene transcription, cell cycle progression and apoptosis. The







encoded protein was isolated by virtue of its binding to an upstream element of the alpha2(I) collagen







promoter. The observation that this protein localizes mostly in the cytoplasm suggests that it may be







involved in a cytoplasmic function such as controlling RNA metabolism, rather than transcription.







Multiple alternatively spliced transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, April 2010]. Transcript Variant: This variant (3), also known as DD23-S,







lacks a 3 nt segment and an in-frame exon in the coding region, as compared to variant 1. The encoded







isoform 3 thus lacks an internal aa and an internal segment, as compared to isoform 1. Sequence Note:







This RefSeq record was created from transcript and genomic sequence data to make the sequence







consistent with the reference genome assembly. The genomic coordinates used for the transcript record







were based on transcript alignments.


RBMS3
N
1202
NM_001003793

Homo sapiens RNA binding

This gene encodes an RNA-binding protein that belongs to the c-myc gene single-strand binding






motif, single stranded
protein family. These proteins are characterized by the presence of two sets of ribonucleoprotein






interacting protein 3
consensus sequence (RNP-CS) that contain conserved motifs, RNP1 and RNP2, originally described in






(RBMS3), transcript variant
RNA binding proteins, and required for DNA binding. These proteins have been implicated in such






1, mRNA.
diverse functions as DNA replication, gene transcription, cell cycle progression and apoptosis. The







encoded protein was isolated by virtue of its binding to an upstream element of the alpha2(I) collagen







promoter. The observation that this protein localizes mostly in the cytoplasm suggests that it may be







involved in a cytoplasmic function such as controlling RNA metabolism, rather than transcription.







Multiple alternatively spliced transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, April 2010]. Transcript Variant: This variant (1), also known as DD23-L,







encodes the longest isoform (1). Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments.


RBMS3
N
1203
NM_001177711

Homo sapiens RNA binding

This gene encodes an RNA-binding protein that belongs to the c-myc gene single-strand binding






motif, single stranded
protein family. These proteins are characterized by the presence of two sets of ribonucleoprotein






interacting protein 3
consensus sequence (RNP-CS) that contain conserved motifs, RNP1 and RNP2, originally described in






(RBMS3), transcript variant
RNA binding proteins, and required for DNA binding. These proteins have been implicated in such






5, mRNA.
diverse functions as DNA replication, gene transcription, cell cycle progression and apoptosis. The







encoded protein was isolated by virtue of its binding to an upstream element of the alpha2(I) collagen







promoter. The observation that this protein localizes mostly in the cytoplasm suggests that it may be







involved in a cytoplasmic function such as controlling RNA metabolism, rather than transcription.







Multiple alternatively spliced transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, April 2010]. Transcript Variant: This variant (5) lacks an in-frame exon in







the coding region, compared to variant 1. The encoded isoform (5) is shorter than isoform 1. Sequence







Note: This RefSeq record was created from transcript and genomic sequence data to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


RBMS3
N
1204
NM_001177712

Homo sapiens RNA binding

This gene encodes an RNA-binding protein that belongs to the c-myc gene single-strand binding






motif, single stranded
protein family. These proteins are characterized by the presence of two sets of ribonucleoprotein






interacting protein 3
consensus sequence (RNP-CS) that contain conserved motifs, RNP1 and RNP2, originally described in






(RBMS3), transcript variant
RNA binding proteins, and required for DNA binding. These proteins have been implicated in such






4, mRNA.
diverse functions as DNA replication, gene transcription, cell cycle progression and apoptosis. The







encoded protein was isolated by virtue of its binding to an upstream element of the alpha2(I) collagen







promoter. The observation that this protein localizes mostly in the cytoplasm suggests that it may be







involved in a cytoplasmic function such as controlling RNA metabolism, rather than transcription.







Multiple alternatively spliced transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, April 2010]. Transcript Variant: This variant (4) differs in the 3′ UTR and







has multiple differences in the coding region, compared to variant 1. The encoded isoform (4) is







shorter and lacks the last aa, compared to isoform 1. Sequence Note: This RefSeq record was created







from transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


RBMS3
N
1205
NM_014483

Homo sapiens RNA binding

This gene encodes an RNA-binding protein that belongs to the c-myc gene single-strand binding






motif, single stranded
protein family. These proteins are characterized by the presence of two sets of ribonucleoprotein






interacting protein 3
consensus sequence (RNP-CS) that contain conserved motifs, RNP1 and RNP2, originally described in






(RBMS3), transcript variant
RNA binding proteins, and required for DNA binding. These proteins have been implicated in such






2, mRNA.
diverse functions as DNA replication, gene transcription, cell cycle progression and apoptosis. The







encoded protein was isolated by virtue of its binding to an upstream element of the alpha2(I) collagen







promoter. The observation that this protein localizes mostly in the cytoplasm suggests that it may be







involved in a cytoplasmic function such as controlling RNA metabolism, rather than transcription.







Multiple alternatively spliced transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, April 2010]. Transcript Variant: This variant (2) lacks an internal in-frame







exon and the last 3′ exon, but has an alternate 3′ segment, as compared to variant 1. The encoded







isoform 2 lacks an internal segment and the last aa, as compared to isoform 1. Sequence Note: This







RefSeq record was created from transcript and genomic sequence data to make the sequence consistent







with the reference genome assembly. The genomic coordinates used for the transcript record were







based on transcript alignments.


CCDC50
N
1206
NM_174908

Homo sapiens coiled-coil

This gene encodes a soluble, cytoplasmic, tyrosine-phosphorylated protein with multiple ubiquitin-






domain containing 50
interacting domains. Mutations in this gene cause nonsyndromic, postlingual, progressive






(CCDC50), transcript
sensorineural DFNA44 hearing loss. In mouse, the protein is expressed in the inner ear during






variant 1, mRNA.
development and postnatal maturation and associates with microtubule-based structures. This protein







may also function as a negative regulator of NF-kB signaling and as an effector of epidermal growth







factor (EGF)-mediated cell signaling. Alternative splicing results in multiple transcript variants







encoding distinct isoforms. [provided by RefSeq, October 2008]. Transcript Variant: This variant (1) lacks







an in-frame exon in the coding region, compared to variant 2, and encodes the short isoform. Sequence







Note: The RefSeq transcript and protein were derived from transcript and genomic sequence to make







the sequence consistent with the reference genome assembly. The extent of this transcript is supported







by transcript alignments. Publication Note: This RefSeq record includes a subset of the publications







that are available for this gene. Please see the Gene record to access additional publications.


CCDC50
N
1207
NM_178335

Homo sapiens coiled-coil

This gene encodes a soluble, cytoplasmic, tyrosine-phosphorylated protein with multiple ubiquitin-






domain containing 50
interacting domains. Mutations in this gene cause nonsyndromic, postlingual, progressive






(CCDC50), transcript
sensorineural DFNA44 hearing loss. In mouse, the protein is expressed in the inner ear during






variant 2, mRNA.
development and postnatal maturation and associates with microtubule-based structures. This protein







may also function as a negative regulator of NF-kB signaling and as an effector of epidermal growth







factor (EGF)-mediated cell signaling. Alternative splicing results in multiple transcript variants







encoding distinct isoforms. [provided by RefSeq, October 2008]. Transcript Variant: This variant (2)







represents the longer transcript and encodes the long isoform. Sequence Note: The RefSeq transcript







and protein were derived from transcript and genomic sequence to make the sequence consistent with







the reference genome assembly. The extent of this transcript is supported by transcript alignments.







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


MOXD1
N
1208
NM_015529

Homo sapiens

N/A






monooxygenase, DBH-like







1 (MOXD1), transcript







variant 2, mRNA.



SDK1
N
1209
NM_152744

Homo sapiens sidekick

N/A






homolog 1, cell adhesion







molecule (chicken) (SDK1),







transcript variant 1, mRNA.



SDK1
N
1210
NR_027816

Homo sapiens sidekick

N/A






homolog 1, cell adhesion







molecule (chicken) (SDK1),







transcript variant 2, non-







coding RNA.



ABCA13
N
1211
NM_152701

Homo sapiens ATP-binding

In human, the ATP-binding cassette (ABC) family of transmembrane transporters has at least 48 genes






cassette, sub-family A
and 7 gene subfamilies. This gene is a member of ABC gene subfamily A (ABCA). Genes within the






(ABC1), member 13
ABCA family typically encode several thousand amino acids. Like other ABC transmembrane






(ABCA13), mRNA.
transporter proteins, this protein has 12 or more transmembrane alpha-helix domains that likely arrange







to form a single central chamber with multiple substrate binding sites. It is also predicted to have two







large extracellular domains and two nucleotide binding domains as is typical for ABCA proteins.







Alternative splice variants have been described but their biological validity has not been







demonstrated. [provided by RefSeq, March 2009]. Sequence Note: This RefSeq record was created from







transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


PALM2
N
1212
NM_001037293

Homo sapiens paralemmin 2

N/A






(PALM2), transcript variant







2, mRNA.



PALM2
N
1213
NM_053016

Homo sapiens paralemmin 2

N/A






(PALM2), transcript variant







1, mRNA.



PALM2-
N
1214
NM_007203

Homo sapiens PALM2-

PALM2-AKAP2 mRNAs are naturally occurring read-through products of the neighboring PALM2


AKAP2



AKAP2 readthrough
and AKAP2 genes. The significance of these read-through mRNAs and the function the resulting






(PALM2-AKAP2),
fusion protein products have not yet been determined. Alternative splicing of this gene results in






transcript variant 1, mRNA.
several transcript variants encoding different isoforms, but the full-length nature of some of these







variants has not been defined. [provided by RefSeq, October 2010]. Transcript Variant: This variant (1) is a







longer transcript and encodes the longer isoform (1). Sequence Note: This RefSeq record was created







from transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


PALM2-
N
1215
NM_147150

Homo sapiens PALM2-

PALM2-AKAP2 mRNAs are naturally occurring read-through products of the neighboring PALM2


AKAP2



AKAP2 readthrough
and AKAP2 genes. The significance of these read-through mRNAs and the function the resulting






(PALM2-AKAP2),
fusion protein products have not yet been determined. Alternative splicing of this gene results in






transcript variant 2, mRNA.
several transcript variants encoding different isoforms, but the full-length nature of some of these







variants has not been defined. [provided by RefSeq, October 2010]. Transcript Variant: This variant (2)







lacks an in-frame exon near the 3′ coding region compared to variant 1. It encodes a shorter isoform (2)







but has identical N- and C-termini to isoform 1.


GOLGA8E
Y
1216
NR_033350

Homo sapiens golgin A8

N/A






family, member E







(GOLGA8E), non-coding







RNA.



GOLGA8IP
Y
1217
NR_024074

Homo sapiens golgin A8

N/A






family, member I,







pseudogene (GOLGA8IP),







non-coding RNA.



HERC2P2
Y
1218
NR_002824

Homo sapiens hect domain

N/A






and RLD 2 pseudogene 2







(HERC2P2), non-coding







RNA.



HERC2P7
Y
1219
NR_036470

Homo sapiens hect domain

N/A






and RLD 2 pseudogene 7







(HERC2P7), non-coding







RNA.



CLEC18C
Y
1220
NM_173619

Homo sapiens C-type lectin

N/A






domain family 18, member







C (CLEC18C), mRNA.



EXOSC6
Y
1221
NM_058219

Homo sapiens exosome

This gene product constitutes one of the subunits of the multisubunit particle called exosome, which






component 6 (EXOSC6),
mediates mRNA degradation. The composition of human exosome is similar to its yeast counterpart.






mRNA.
This protein is homologous to the yeast Mtr3 protein. Its exact function is not known, however, it has







been shown using a cell-free RNA decay system that the exosome is required for rapid degradation of







unstable mRNAs containing AU-rich elements (AREs), but not for poly(A) shortening. The exosome







does not recognize ARE-containing mRNAs on its own, but requires ARE-binding proteins that could







interact with the exosome and recruit it to unstable mRNAs, thereby promoting their rapid degradation.







[provided by RefSeq, July 2008].


LOC729513
Y
1222
NR_033959

Homo sapiens SMG1

N/A






homolog,







phosphatidylinositol 3-







kinase-related kinase (C.








elegans) pseudogene








(LOC729513), non-coding







RNA.



CNTNAP4
N
1223
NM_033401

Homo sapiens contactin

This gene product belongs to the neurexin family, members of which function in the vertebrate nervous






associated protein-like 4
system as cell adhesion molecules and receptors. This protein, like other neurexin proteins, contains






(CNTNAP4), transcript
epidermal growth factor repeats and laminin G domains. In addition, it includes an F5/8 type C






variant 1, mRNA.
domain, discoidin/neuropilin- and fibrinogen-like domains, and thrombospondin N-terminal-like







domains. Alternative splicing results in two transcript variants encoding different isoforms. [provided







by RefSeq, July 2008]. Transcript Variant: This variant (1) encodes the longer isoform (1). Sequence







Note: This RefSeq record was created from transcript and genomic sequence data because no single







transcript was available for the full length of the gene. The extent of this transcript is supported by







transcript alignments.


CNTNAP4
N
1224
NM_138994

Homo sapiens contactin

This gene product belongs to the neurexin family, members of which function in the vertebrate






associated protein-like 4
nervous system as cell adhesion molecules and receptors. This protein, like other neurexin proteins,






(CNTNAP4), transcript
contains epidermal growth factor repeats and laminin G domains. In addition, it includes an F5/8 type






variant 2, mRNA.
C domain, discoidin/neuropilin- and fibrinogen-like domains, and thrombospondin N-terminal-like







domains. Alternative splicing results in two transcript variants encoding different isoforms. [provided







by RefSeq, July 2008]. Transcript Variant: This variant (2) uses an alternate exon in the 5′ UTR and







CDS and lacks several coding exons, compared to variant 1. It encodes a shorter protein (isoform 2)







which has a distinct N-terminus, compared to isoform 1. Sequence Note: This RefSeq record was







created from transcript and genomic sequence data because no single transcript was available for the







full length of the gene. The extent of this transcript is supported by transcript alignments.


FLJ34690
N
1225
NR_034144

Homo sapiens

N/A






uncharacterized protein







FLJ34690 (FLJ34690),







transcript variant 2, non-







coding RNA.



FLJ34690
N
1226
NR_034145

Homo sapiens

N/A






uncharacterized protein







FLJ34690 (FLJ34690),







transcript variant 1, non-







coding RNA.



DOK6
N
1227
NM_152721

Homo sapiens docking

DOK6 is a member of the DOK (see DOK1; MIM 602919) family of intracellular adaptors that play a






protein 6 (DOK6), mRNA.
role in the RET (MIM 164761) signaling cascade (Crowder et al., 2004 [PubMed 15286081]). [supplied







by OMIM, March 2008]. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


EYA2
N
1228
NM_005244

Homo sapiens eyes absent

This gene encodes a member of the eyes absent (EYA) family of proteins. The encoded protein may






homolog 2 (Drosophila)
be post-translationally modified and may play a role in eye development. A similar protein in mice can






(EYA2), transcript variant 1,
act as a transcriptional activator. Alternative splicing results in multiple transcript variants, but the full-






mRNA.
length natures of all of these variants have not yet been determined. [provided by RefSeq, July 2009].







Transcript Variant: This variant (1), also known as EYA2I, represents the longer transcript and







encodes the longer isoform (a). Sequence Note: The RefSeq transcript and protein were derived from







genomic sequence to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on alignments.


EYA2
N
1229
NM_172110

Homo sapiens eyes absent

This gene encodes a member of the eyes absent (EYA) family of proteins. The encoded protein may






homolog 2 (Drosophila)
be post-translationally modified and may play a role in eye development. A similar protein in mice can






(EYA2), transcript variant 5,
act as a transcriptional activator. Alternative splicing results in multiple transcript variants, but the full-






mRNA.
length natures of all of these variants have not yet been determined. [provided by RefSeq, July 2009].







Transcript Variant: This variant (5) lacks an alternate in-frame segment in the 3′ coding region,







compared to variant 1, resulting in an isoform (c) that is shorter than isoform a.


DDT
Y
1230
NM_001084392

Homo sapiens D-

D-dopachrome tautomerase converts D-dopachrome into 5,6-dihydroxyindole. The DDT gene is






dopachrome tautomerase
related to the migration inhibitory factor (MIF) in terms of sequence, enzyme activity, and gene






(DDT), transcript variant 2,
structure. DDT and MIF are closely linked on chromosome 22. [provided by RefSeq, July 2008].






mRNA.
Transcript Variant: This variant (2) differs in the 5′ UTR compared to variant 1. Variants 1 and 2







encode the same protein.


DDT
Y
1231
NM_001355

Homo sapiens D-

D-dopachrome tautomerase converts D-dopachrome into 5,6-dihydroxyindole. The DDT gene is






dopachrome tautomerase
related to the migration inhibitory factor (MIF) in terms of sequence, enzyme activity, and gene






(DDT), transcript variant 1,
structure. DDT and MIF are closely linked on chromosome 22. [provided by RefSeq, July 2008].






mRNA.
Transcript Variant: This variant (1) represents the longer transcript. Variants 1 and 2 encode the same







protein.


DDTL
Y
1232
NM_001084393

Homo sapiens D-

N/A






dopachrome tautomerase-







like (DDTL), mRNA.



GSTT2
Y
1233
NM_000854

Homo sapiens glutathione S-

Glutathione S-transferase (GSTs) theta 2 (GSTT2) is a member of a superfamily of proteins that






transferase theta 2 (GSTT2),
catalyze the conjugation of reduced glutathione to a variety of electrophilic and hydrophobic






mRNA.
compounds. Human GSTs can be divided into five main classes: Alpha, Mu, Pi, Theta, and Zeta. The







theta class members GSTT1 and GSTT2 share 55% amino acid sequence identity and both are thought







to have an important role in human carcinogenesis. The theta genes have a similar structure, being







composed of five exons with identical exon/intron boundaries. [provided by RefSeq, July 2008].







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


GSTT2B
Y
1234
NM_001080843

Homo sapiens glutathione S-

N/A






transferase theta 2B







(gene/pseudogene)







(GSTT2B), mRNA.



GSTTP2
Y
1235
NR_003082

Homo sapiens glutathione S-

N/A






transferase theta pseudogene







2 (GSTTP2), non-coding







RNA.



LOC643837
Y
1236
NR_015368

Homo sapiens

N/A






uncharacterized LOC643837







(LOC643837), non-coding







RNA.



CCDC66
N
1237
NM_001012506

Homo sapiens coiled-coil

N/A






domain containing 66







(CCDC66), transcript







variant 2, mRNA.



CCDC66
N
1238
NM_001141947

Homo sapiens coiled-coil

N/A






domain containing 66







(CCDC66), transcript







variant 1, mRNA.



CCDC66
N
1239
NR_024460

Homo sapiens coiled-coil

N/A






domain containing 66







(CCDC66), transcript







variant 3, non-coding RNA.



GRID2
N
1240
NM_001510

Homo sapiens glutamate

Human glutamate receptor delta-2 (GRID2) is a relatively new member of the family of ionotropic






receptor, ionotropic, delta 2
glutamate receptors which are the predominant excitatory neurotransmitter receptors in the mammalian






(GRID2), mRNA.
brain. GRID2 is a predicted 1,007 amino acid protein that shares 97% identity with the mouse homolog







which is expressed selectively in cerebellar Purkinje cells. A point mutation in mouse GRID2,







associated with the phenotype named ‘lurcher’, in the heterozygous state leads to ataxia resulting from







selective, cell-autonomous apoptosis of cerebellar Purkinje cells during postnatal development. Mice







homozygous for this mutation die shortly after birth from massive loss of mid- and hindbrain neurons







during late embryogenesis. This strongly suggests a role for GRID2 in neuronal apoptotic death.







[provided by RefSeq, July 2008].


GALNTL6
N
1241
NM_001034845

Homo sapiens UDP-N-

N/A






acetyl-alpha-D-







galactosamine:polypeptide







N-







acetylgalactosaminyl-







transferase-like 6 (GALNTL6),







mRNA.



KLHL3
N
1242
NM_017415

Homo sapiens kelch-like 3

N/A






(Drosophila) (KLHL3),







mRNA.



HTR4
N
1243
NM_000870

Homo sapiens 5-

This gene is a member of the family of serotonin receptors, which are G protein coupled receptors that






hydroxytryptamine
stimulate cAMP production in response to serotonin (5-hydroxytryptamine). The gene product is a






(serotonin) receptor 4
glycosylated transmembrane protein that functions in both the peripheral and central nervous system to






(HTR4), transcript variant b,
modulate the release of various neurotransmitters. Multiple transcript variants encoding proteins with






mRNA.
distinct C-terminal sequences have been described. [provided by RefSeq, May 2010]. Transcript







Variant: This variant (b) encodes the longest isoform (b).


HTR4
N
1244
NM_001040169

Homo sapiens 5-

This gene is a member of the family of serotonin receptors, which are G protein coupled receptors that






hydroxytryptamine
stimulate cAMP production in response to serotonin (5-hydroxytryptamine). The gene product is a






(serotonin) receptor 4
glycosylated transmembrane protein that functions in both the peripheral and central nervous system to






(HTR4), transcript variant a,
modulate the release of various neurotransmitters. Multiple transcript variants encoding proteins with






mRNA.
distinct C-terminal sequences have been described. [provided by RefSeq, May 2010]. Transcript







Variant: This variant (a) differs in the 5′ UTR, 3′ coding region and 3′ UTR, compared to variant b. The







resulting isoform (a) has a distinct C-terminus and is shorter than isoform b. Publication Note: This







RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene







record to access additional publications.


HTR4
N
1245
NM_001040172

Homo sapiens 5-

This gene is a member of the family of serotonin receptors, which are G protein coupled receptors that






hydroxytryptamine
stimulate cAMP production in response to serotonin (5-hydroxytryptamine). The gene product is a






(serotonin) receptor 4
glycosylated transmembrane protein that functions in both the peripheral and central nervous system to






(HTR4), transcript variant d,
modulate the release of various neurotransmitters. Multiple transcript variants encoding proteins with






mRNA.
distinct C-terminal sequences have been described. [provided by RefSeq, May 2010]. Transcript







Variant: This variant (d) differs in the 5′ UTR and uses an alternate 3′ terminal exon compared to







variant b. The encoded isoform (d) has a distinct C-terminus and is shorter than isoform b. Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please







see the Gene record to access additional publications.


HTR4
N
1246
NM_001040173

Homo sapiens 5-

This gene is a member of the family of serotonin receptors, which are G protein coupled receptors that






hydroxytryptamine
stimulate cAMP production in response to serotonin (5-hydroxytryptamine). The gene product is a






(serotonin) receptor 4
glycosylated transmembrane protein that functions in both the peripheral and central nervous system to






(HTR4), transcript variant i,
modulate the release of various neurotransmitters. Multiple transcript variants encoding proteins with






mRNA.
distinct C-terminal sequences have been described. [provided by RefSeq, May 2010]. Transcript







Variant: This variant (i) differs in the 5′ UTR and includes an alternate in-frame exon, compared to







variant b. This results in a longer protein (isoform i), compared to isoform b.


HTR4
N
1247
NM_199453

Homo sapiens 5-

This gene is a member of the family of serotonin receptors, which are G protein coupled receptors that






hydroxytryptamine
stimulate cAMP production in response to serotonin (5-hydroxytryptamine). The gene product is a






(serotonin) receptor 4
glycosylated transmembrane protein that functions in both the peripheral and central nervous system to






(HTR4), transcript variant g,
modulate the release of various neurotransmitters. Multiple transcript variants encoding proteins with






mRNA.
distinct C-terminal sequences have been described. [provided by RefSeq, May 2010]. Transcript







Variant: This variant (g), also known as E or G1 , differs in the 5′ UTR, 3′ coding region and 3′ UTR,







compared to variant 1. The resulting isoform (isoform g) has a distinct C-terminus and is shorter than







isoform b. Publication Note: This RefSeq record includes a subset of the publications that are available







for this gene. Please see the Gene record to access additional publications.


NKAIN2
N
1248
NM_001040214

Homo sapiens Na+/K+

The protein encoded by this gene is a transmembrane protein that interacts with the beta subunit of






transporting ATPase
Na,K-ATPase (ATP1B1). A chromosomal translocation involving this gene is a cause of lymphoma.






interacting 2 (NKAIN2),
At least two transcript variants encoding different isoforms have been found for this gene. [provided by






transcript variant 1, mRNA.
RefSeq, May 2010]. Transcript Variant: This variant (1) represents the longer transcript and encodes







the longer isoform (1).


NKAIN2
N
1249
NM_153355

Homo sapiens Na+/K+

The protein encoded by this gene is a transmembrane protein that interacts with the beta subunit of






transporting ATPase
Na,K-ATPase (ATP1B1). A chromosomal translocation involving this gene is a cause of lymphoma.






interacting 2 (NKAIN2),
At least two transcript variants encoding different isoforms have been found for this gene. [provided by






transcript variant 2, mRNA.
RefSeq, May 2010]. Transcript Variant: This variant (2) lacks an alternate in-frame exon compared to







variant 1. The resulting isoform (2) has the same N- and C-termini but is shorter compared to isoform 1.


STK31
N
1250
NM_001122833

Homo sapiens

This gene is similar to a mouse gene that encodes a putative protein kinase with a tudor domain, and






serine/threonine kinase 31
shows testis-specific expression. Alternative splicing results in multiple transcript variants encoding






(STK31), transcript variant
different isoforms. [provided by RefSeq, July 2008]. Transcript Variant: This variant (3) uses an






3, mRNA.
alternate splice-site in the 5′ end that results in translation initiation at a downstream start codon,







compared to variant 1. The encoded protein (isoform b) has a shorter N-terminus, compared to isoform a.


STK31
N
1251
NM_031414

Homo sapiens

This gene is similar to a mouse gene that encodes a putative protein kinase with a tudor domain, and






serine/threonine kinase 31
shows testis-specific expression. Alternative splicing results in multiple transcript variants encoding






(STK31), transcript variant
different isoforms. [provided by RefSeq, July 2008]. Transcript Variant: This variant (1) encodes the






1, mRNA.
longer isoform (a).


STK31
N
1252
NM_032944

Homo sapiens

This gene is similar to a mouse gene that encodes a putative protein kinase with a tudor domain, and






serine/threonine kinase 31
shows testis-specific expression. Alternative splicing results in multiple transcript variants encoding






(STK31), transcript variant
different isoforms. [provided by RefSeq, July 2008]. Transcript Variant: This variant (2) uses an






2, mRNA.
alternate splice-site in the 5′ end that results in translation initiation at a downstream start codon,







compared to variant 1. The encoded protein (isoform b) has a shorter N-terminus, compared to isoform a.


SNTG1
N
1253
NM_018967

Homo sapiens syntrophin,

The protein encoded by this gene is a member of the syntrophin family. Syntrophins are cytoplasmic






gamma 1 (SNTG1), mRNA.
peripheral membrane proteins that typically contain 2 pleckstrin homology (PH) domains, a PDZ







domain that bisects the first PH domain, and a C-terminal domain that mediates dystrophin binding.







This gene is specifically expressed in the brain. Transcript variants for this gene have been described,







but their full-length nature has not been determined. [provided by RefSeq, July 2008].


IFNA22P
Y
1254
NR_036676

Homo sapiens interferon,

N/A






alpha 22, pseudogene







(IFNA22P), non-coding







RNA.



LINGO2
N
1255
NM_152570

Homo sapiens leucine rich

N/A






repeat and Ig domain







containing 2 (LINGO2),







mRNA.



TMEM38B
N
1256
NM_018112

Homo sapiens

N/A






transmembrane protein 38B







(TMEM38B), mRNA.



LARP4B
N
1257
NM_015155

Homo sapiens La

N/A






ribonucleoprotein domain







family, member 4B







(LARP4B), mRNA.



TYR
N
1258
NM_000372

Homo sapiens tyrosinase

The enzyme encoded by this gene catalyzes the first 2 steps, and at least 1 subsequent step, in the






(oculocutaneous albinism
conversion of tyrosine to melanin. The enzyme has both tyrosine hydroxylase and dopa oxidase






IA) (TYR), mRNA.
catalytic activities, and requires copper for function. Mutations in this gene result in oculocutaneous







albinism, and nonpathologic polymorphisms result in skin pigmentation variation. The human genome







contains a pseudogene similar to the 3′ half of this gene. [provided by RefSeq, October 2008].


YAP1
N
1259
NM_001130145

Homo sapiens Yes-

This gene encodes the human ortholog of chicken YAP protein which binds to the SH3 domain of the






associated protein 1
Yes proto-oncogene product. This protein contains a WW domain that is found in various structural,






(YAP1), transcript variant 1,
regulatory and signaling molecules in yeast, nematode, and mammals, and may be involved in protein-






mRNA.
protein interaction. [provided by RefSeq, July 2008]. Transcript Variant: This variant (1) represents the







longest transcript and encodes the longest protein (isoform 1). Sequence Note: This RefSeq record was







created from transcript and genomic sequence data to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on transcript







alignments. Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


YAP1
N
1260
NM_001195044

Homo sapiens Yes-

This gene encodes the human ortholog of chicken YAP protein which binds to the SH3 domain of the






associated protein 1
Yes proto-oncogene product. This protein contains a WW domain that is found in various structural,






(YAP1), transcript variant 3,
regulatory and signaling molecules in yeast, nematode, and mammals, and may be involved in protein-






mRNA.
protein interaction. [provided by RefSeq, July 2008]. Transcript Variant: This variant (3) lacks an







alternate in-frame exon in the 3′ coding region, compared to variant 1. This results in a shorter protein







(isoform 3), compared to isoform 1. Sequence Note: This RefSeq record was created from transcript







and genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments. Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please







see the Gene record to access additional publications.


YAP1
N
1261
NM_001195045

Homo sapiens Yes-

This gene encodes the human ortholog of chicken YAP protein which binds to the SH3 domain of the






associated protein 1
Yes proto-oncogene product. This protein contains a WW domain that is found in various structural,






(YAP1), transcript variant 4,
regulatory and signaling molecules in yeast, nematode, and mammals, and may be involved in protein-






mRNA.
protein interaction. [provided by RefSeq, July 2008]. Transcript Variant: This variant (4) differs in the 5′







UTR, lacks a portion of the 5′ coding region, and initiates translation at a downstream start codon,







compared to variant 1. The encoded isoform (4) is shorter than isoform 1. Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with







the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments. Publication Note: This RefSeq record includes a subset of the publications that







are available for this gene. Please see the Gene record to access additional publications.


YAP1
N
1262
NM_006106

Homo sapiens Yes-

This gene encodes the human ortholog of chicken YAP protein which binds to the SH3 domain of the






associated protein 1
Yes proto-oncogene product. This protein contains a WW domain that is found in various structural,






(YAP1), transcript variant 2,
regulatory and signaling molecules in yeast, nematode, and mammals, and may be involved in protein-






mRNA.
protein interaction. [provided by RefSeq, July 2008]. Transcript Variant: This variant (2) lacks two







alternate in-frame exons compared to variant 1. This results in a shorter protein (isoform 2), compared







to isoform 1. Sequence Note: This RefSeq record was created from transcript and genomic sequence







data to make the sequence consistent with the reference genome assembly. The genomic coordinates







used for the transcript record were based on transcript alignments.


SLC35F2
N
1263
NM_017515

Homo sapiens solute carrier

N/A






family 35, member F2







(SLC35F2), mRNA.



NTM
N
1264
NM_001048209

Homo sapiens neurotrimin

This gene encodes a member of the IgLON (LAMP, OBCAM, Ntm) family of immunoglobulin (Ig)






(NTM), transcript variant 2,
domain-containing glycosylphosphatidylinositol (GPI)-anchored cell adhesion molecules. The encoded






mRNA.
protein may promote neurite outgrowth and adhesion via a homophilic mechanism. This gene is







closely linked to a related family member, opioid binding protein/cell adhesion molecule-like







(OPCML), on chromosome 11. Multiple transcript variants encoding different isoforms have been







found for this gene. [provided by RefSeq, January 2009]. Transcript Variant: This variant (2) differs in the







5′ UTR and in the coding region compared to variant 3, resulting in a protein that maintains the reading







frame but is shorter and has a distinct N-terminus, compared to isoform 3.


NTM
N
1265
NM_001144058

Homo sapiens neurotrimin

This gene encodes a member of the IgLON (LAMP, OBCAM, Ntm) family of immunoglobulin (Ig)






(NTM), transcript variant 3,
domain-containing glycosylphosphatidylinositol (GPI)-anchored cell adhesion molecules. The encoded






mRNA.
protein may promote neurite outgrowth and adhesion via a homophilic mechanism. This gene is







closely linked to a related family member, opioid binding protein/cell adhesion molecule-like







(OPCML), on chromosome 11. Multiple transcript variants encoding different isoforms have been







found for this gene. [provided by RefSeq, January 2009]. Transcript Variant: This variant (3) encodes the







longest isoform (3). Sequence Note: The RefSeq transcript and protein were derived from genomic







sequence to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on alignments.


NTM
N
1266
NM_001144059

Homo sapiens neurotrimin

This gene encodes a member of the IgLON (LAMP, OBCAM, Ntm) family of immunoglobulin (Ig)






(NTM), transcript variant 4,
domain-containing glycosylphosphatidylinositol (GPI)-anchored cell adhesion molecules. The encoded






mRNA.
protein may promote neurite outgrowth and adhesion via a homophilic mechanism. This gene is







closely linked to a related family member, opioid binding protein/cell adhesion molecule-like







(OPCML), on chromosome 11. Multiple transcript variants encoding different isoforms have been







found for this gene. [provided by RefSeq, January 2009]. Transcript Variant: This variant (4) differs in the







3′ coding region and 3′ UTR compared to variant 3. The resulting protein (isoform 4) has a distinct C-







terminus, compared to isoform 3. Sequence Note: The RefSeq transcript and protein were derived from







genomic sequence to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on alignments.


NTM
N
1267
NM_016522

Homo sapiens neurotrimin

This gene encodes a member of the IgLON (LAMP, OBCAM, Ntm) family of immunoglobulin (Ig)






(NTM), transcript variant 1,
domain-containing glycosylphosphatidylinositol (GPI)-anchored cell adhesion molecules. The encoded






mRNA.
protein may promote neurite outgrowth and adhesion via a homophilic mechanism. This gene is







closely linked to a related family member, opioid binding protein/cell adhesion molecule-like







(OPCML), on chromosome 11. Multiple transcript variants encoding different isoforms have been







found for this gene. [provided by RefSeq, January 2009]. Transcript Variant: This variant (1) lacks an







alternate exon in the 3′ coding region, compared to variant 3. This variant encodes isoform 1, which is







shorter than isoform 3.


ITGBL1
N
1268
NM_004791

Homo sapiens integrin, beta-

N/A






like 1 (with EGF-like repeat







domains) (ITGBL1),







mRNA.



FGF14
N
1269
NM_004115

Homo sapiens fibroblast

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF






growth factor 14 (FGF14),
family members possess broad mitogenic and cell survival activities, and are involved in a variety of






transcript variant 1, mRNA.
biological processes, including embryonic development, cell growth, morphogenesis, tissue repair,







tumor growth and invasion. A mutation in this gene is associated with autosomal dominant cerebral







ataxia. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, July







2008]. Transcriupt Variant: This variant (1) encodes the shorter isoform (1A). Sequence Note: This







RefSeq record was created from transcript and genomic sequence data because no single transcript was







available for the full length of the gene. The extent of this transcript is supported by transcript







alignments.


FGF14
N
1270
NM_175929

Homo sapiens fibroblast

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF






growth factor 14 (FGF14),
family members possess broad mitogenic and cell survival activities, and are involved in a variety of






transcript variant 2, mRNA.
biological processes, including embryonic development, cell growth, morphogenesis, tissue repair,







tumor growth and invasion. A mutation in this gene is associated with autosomal dominant cerebral







ataxia. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, July







2008]. Transcript Variant: This variant (2) has an alternate 5′ sequence including the 5′ UTR and







coding region. as compared to variant 1. It encodes isoform 1B, which has a different and longer N-







terminus than isoform 1A. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data because no single transcript was available for the full length of the gene. The







extent of this transcript is supported by transcript alignments.


QPRT
Y
1271
NM_014298

Homo sapiens quinolinate

This gene encodes a key enzyme in catabolism of quinolinate, an intermediate in the tryptophan-






phosphoribosyltransferase
nicotinamide adenine dinucleotide pathway. Quinolinate acts as a most potent endogenous exitotoxin






(QPRT), mRNA.
to neurons. Elevation of quinolinate levels in the brain has been linked to the pathogenesis of







neurodegenerative disorders such as epilepsy, Alzheimer's disease, and Huntington's disease. [provided







by RefSeq, July 2008].


SPN
Y
1272
NM_001030288

Homo sapiens sialophorin

The protein encoded by this gene is a major sialoglycoprotein found on the surface of thymocytes, T






(SPN), transcript variant 1,
lymphocytes, monocytes, granulocytes, and some B lymphocytes. It may be part of a physiologic






mRNA.
ligand-receptor complex involved in T-cell activation. During T-cell activation, this protein is actively







removed from the T-cell-APC (antigen-presenting cell) contact site, suggesting a negative regulatory







role in adaptive immune response. [provided by RefSeq, September 2011].


SPN
Y
1273
NM_003123

Homo sapiens sialophorin

The protein encoded by this gene is a major sialoglycoprotein found on the surface of thymocytes, T






(SPN), transcript variant 2,
lymphocytes, monocytes, granulocytes, and some B lymphocytes. It may be part of a physiologic






mRNA.
ligand-receptor complex involved in T-cell activation. During T-cell activation, this protein is actively







removed from the T-cell-APC (antigen-presenting cell) contact site, suggesting a negative regulatory







role in adaptive immune response. [provided by RefSeq, September 2011].


ALDOA
Y
1274
NM_000034

Homo sapiens aldolase A,

The protein encoded by this gene, Aldolase A (fructose-bisphosphate aldolase), is a glycolytic enzyme






fructose-bisphosphate
that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate






(ALDOA), transcript variant
and dihydroxyacetone phosphate. Three aldolase isozymes (A, B, and C), encoded by three different






1, mRNA.
genes, are differentially expressed during development. Aldolase A is found in the developing embryo







and is produced in even greater amounts in adult muscle. Aldolase A expression is repressed in adult







liver, kidney and intestine and similar to aldolase C levels in brain and other nervous tissue. Aldolase







A deficiency has been associated with myopathy and hemolytic anemia. Alternative splicing and







alternative promoter usage results in multiple transcript variants. Related pseudogenes have been







identified on chromosomes 3 and 10. [provided by RefSeq, August 2011]. Transcript Variant: This







variant (1) represents the longest transcript and encodes isoform 1. Variants 2-4 encode the same







isoform.


ALDOA
Y
1275
NM_001127617

Homo sapiens aldolase A,

The protein encoded by this gene, Aldolase A (fructose-bisphosphate aldolase), is a glycolytic enzyme






fructose-bisphosphate
that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate






(ALDOA), transcript variant
and dihydroxyacetone phosphate. Three aldolase isozymes (A, B, and C), encoded by three different






4, mRNA.
genes, are differentially expressed during development. Aldolase A is found in the developing embryo







and is produced in even greater amounts in adult muscle. Aldolase A expression is repressed in adult







liver, kidney and intestine and similar to aldolase C levels in brain and other nervous tissue. Aldolase







A deficiency has been associated with myopathy and hemolytic anemia. Alternative splicing and







alternative promoter usage results in multiple transcript variants. Related pseudogenes have been







identified on chromosomes 3 and 10. [provided by RefSeq, August 2011]. Transcript Variant: This







variant (4) differs in the 5′ UTR, compared to variant 1. Variants 1-4 encode the same isoform (1).


ALDOA
Y
1276
NM_001243177

Homo sapiens aldolase A,

The protein encoded by this gene, Aldolase A (fructose-bisphosphate aldolase), is a glycolytic enzyme






fructose-bisphosphate
that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate






(ALDOA), transcript variant
and dihydroxyacetone phosphate. Three aldolase isozymes (A, B, and C), encoded by three different






6, mRNA.
genes, are differentially expressed during development. Aldolase A is found in the developing embryo







and is produced in even greater amounts in adult muscle. Aldolase A expression is repressed in adult







liver, kidney and intestine and similar to aldolase C levels in brain and other nervous tissue. Aldolase







A deficiency has been associated with myopathy and hemolytic anemia. Alternative splicing and







alternative promoter usage results in multiple transcript variants. Related pseudogenes have been







identified on chromosomes 3 and 10. [provided by RefSeq, August 2011]. Transcript Variant: This







variant (6) differs in the 5′ UTR and 5′ coding region, and uses an alternate start codon, compared to







variant 1. The resulting isoform (2) is longer at the N-terminus, compared to isoform 1.


ALDOA
Y
1277
NM_184041

Homo sapiens aldolase A,

The protein encoded by this gene, Aldolase A (fructose-bisphosphate aldolase), is a glycolytic enzyme






fructose-bisphosphate
that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate






(ALDOA), transcript variant
and dihydroxyacetone phosphate. Three aldolase isozymes (A, B, and C), encoded by three different






2, mRNA.
genes, are differentially expressed during development. Aldolase A is found in the developing embryo







and is produced in even greater amounts in adult muscle. Aldolase A expression is repressed in adult







liver, kidney and intestine and similar to aldolase C levels in brain and other nervous tissue. Aldolase







A deficiency has been associated with myopathy and hemolytic anemia. Alternative splicing and







alternative promoter usage results in multiple transcript variants. Related pseudogenes have been







identified on chromosomes 3 and 10. [provided by RefSeq, August 2011]. Transcript Variant: This







variant (2) differs in the 5′ UTR, compared to variant 1. Variants 1-4 encode the same isoform (1).


ALDOA
Y
1278
NM_184043

Homo sapiens aldolase A,

The protein encoded by this gene, Aldolase A (fructose-bisphosphate aldolase), is a glycolytic enzyme






fructose-bisphosphate
that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate






(ALDOA), transcript variant
and dihydroxyacetone phosphate. Three aldolase isozymes (A, B, and C), encoded by three different






3, mRNA.
genes, are differentially expressed during development. Aldolase A is found in the developing embryo







and is produced in even greater amounts in adult muscle. Aldolase A expression is repressed in adult







liver, kidney and intestine and similar to aldolase C levels in brain and other nervous tissue. Aldolase







A deficiency has been associated with myopathy and hemolytic anemia. Alternative splicing and







alternative promoter usage results in multiple transcript variants. Related pseudogenes have been







identified on chromosomes 3 and 10. [provided by RefSeq, August 2011]. Transcript Variant: This







variant (3) differs in the 5′ UTR, compared to variant 1. Variants 1-4 encode the same isoform (1).


ASPHD1
Y
1279
NM_181718

Homo sapiens aspartate

N/A






beta-hydroxylase domain







containing 1 (ASPHD1),







mRNA.



C16orf53
Y
1280
NM_024516

Homo sapiens chromosome

C16ORF53 (PA1) is a component of a Set1-like multiprotein histone methyltransferase complex (Cho






16 open reading frame 53
et al., 2007 [PubMed 17500065]). [supplied by OMIM, May 2008]. Sequence Note: This RefSeq record






(C16orf53), mRNA.
was created from transcript and genomic sequence data because no single transcript was available for







the full length of the gene. The extent of this transcript is supported by transcript alignments.


C16orf54
Y
1281
NM_175900

Homo sapiens chromosome

N/A






16 open reading frame 54







(C16orf54), mRNA.



C16orf92
Y
1282
NM_001109659

Homo sapiens chromosome

N/A






16 open reading frame 92







(C16orf92), transcript







variant 1, mRNA.



C16orf92
Y
1283
NM_001109660

Homo sapiens chromosome

N/A






16 open reading frame 92







(C16orf92), transcript







variant 2, mRNA.



CDIPT
Y
1284
NM_006319

Homo sapiens CDP-

Phosphatidylinositol breakdown products are ubiquitous second messengers that function downstream






diacylglycerol--inositol 3-
of many G protein-coupled receptors and tyrosine kinases regulating cell growth, calcium metabolism,






phosphatidyltransferase
and protein kinase C activity. Two enzymes, CDP-diacylglycerol synthase and phosphatidylinositol






(CDIPT), mRNA.
synthase, are involved in the biosynthesis of phosphatidylinositol. Phosphatidylinositol synthase, a







member of the CDP-alcohol phosphatidyl transferase class-I family, is an integral membrane protein







found on the cytoplasmic side of the endoplasmic reticulum and the Golgi apparatus. [provided by







RefSeq, July 2008].


COROIA
Y
1285
NM_001193333

Homo sapiens coronin, actin

This gene encodes a member of the WD repeat protein family. WD repeats are minimally conserved






binding protein, 1A
regions of approximately 40 amino acids typically bracketed by gly-his and tip-asp (GH-WD), which






(CORO1A), transcript
may facilitate formation of heterotrimeric or multiprotein complexes. Members of this family are






variant 1, mRNA.
involved in a variety of cellular processes, including cell cycle progression, signal transduction,







apoptosis, and gene regulation. Alternative splicing results in multiple transcript variants. A related







pseudogene has been defined on chromosome 16. [provided by RefSeq, September 2010]. Transcript Variant:







This variant (1) represents the longer transcript. Both variants 1 and 2 encode the same protein.







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


COROIA
Y
1286
NM_007074

Homo sapiens coronin, actin

This gene encodes a member of the WD repeat protein family. WD repeats are minimally conserved






binding protein, 1A
regions of approximately 40 amino acids typically bracketed by gly-his and tip-asp (GH-WD), which






(CORO1A), transcript
may facilitate formation of heterotrimeric or multiprotein complexes. Members of this family are






variant 2, mRNA.
involved in a variety of cellular processes, including cell cycle progression, signal transduction,







apoptosis, and gene regulation. Alternative splicing results in multiple transcript variants. A related







pseudogene has been defined on chromosome 16. [provided by RefSeq, September 2010]. Transcript Variant:







This variant (2) differs in the 5′ UTR compared to variant 1. Both variants 1 and 2 encode the same







protein.


DOC2A
Y
1287
NM_003586

Homo sapiens double C2-

There are at least two protein isoforms of the Double C2 protein, namely alpha (DOC2A) and beta






like domains, alpha
(DOC2B), which contain two C2-like domains. DOC2A and DOC2B are encoded by different genes;






(DOC2A), mRNA.
these genes are at times confused with the unrelated DAB2 gene which was initially named DOC-2.







DOC2A is mainly expressed in brain and is suggested to be involved in Ca(2+)-dependent







neurotransmitter release. [provided by RefSeq, July 2008]. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to







access additional publications.


FAM57B
Y
1288
NM_031478

Homo sapiens family with

N/A






sequence similarity 57,







member B (FAM57B),







mRNA.



GDPD3
Y
1289
NM_024307

Homo sapiens

N/A






glycerophosphodiester







phosphodiesterase domain







containing 3 (GDPD3),







mRNA.



HIRIP3
Y
1290
NM_001197323

Homo sapiens HIRA

The HIRA protein shares sequence similarity with Hir1p and Hir2p, the two corepressors of histone






interacting protein 3
gene transcription characterized in the yeast, Saccharomyces cerevisiae. The structural features of the






(HIRIP3), transcript variant
HIRA protein suggest that it may function as part of a multiprotein complex. Several cDNAs encoding






2, mRNA.
HIRA-interacting proteins, or HIRIPs, have been identified. In vitro, the protein encoded by this gene







binds HIRA, as well as H2B and H3 core histones, indicating that a complex containing HIRA-HIRIP3







could function in some aspects of chromatin and histone metabolism. Alternatively spliced transcript







variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, August 2011] .







Transcript Variant: This variant (2) lacks an exon in the coding region, resulting in frame-shift,







compared to variant 1. The resulting isoform (2) is shorter and has a distinct C-terminus, compared to







isoform 1.


HIRIP3
Y
1291
NM_003609

Homo sapiens HIRA

The HIRA protein shares sequence similarity with Hir1p and Hir2p, the two corepressors of histone






interacting protein 3
gene transcription characterized in the yeast, Saccharomyces cerevisiae. The structural features of the






(HIRIP3), transcript variant
HIRA protein suggest that it may function as part of a multiprotein complex. Several cDNAs encoding






1, mRNA.
HIRA-interacting proteins, or HIRIPs, have been identified. In vitro, the protein encoded by this gene







binds HIRA, as well as H2B and H3 core histones, indicating that a complex containing HIRA-HIRIP3







could function in some aspects of chromatin and histone metabolism. Alternatively spliced transcript







variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, August 2011].







Transcript Variant: This variant (1) encodes the longer isoform (1).


INO80E
Y
1292
NM_173618

Homo sapiens INO80

N/A






complex subunit E







(INO80E), mRNA.



KCTD13
Y
1293
NM_178863

Homo sapiens potassium

N/A






channel tetramerisation







domain containing 13







(KCTD13), mRNA.



LOC440356
Y
1294
NR_015396

Homo sapiens

N/A






uncharacterized LOC440356







(LOC440356), transcript







variant 1, non-coding RNA.



LOC440356
Y
1295
NR_024370

Homo sapiens

N/A






uncharacterized LOC440356







(LOC440356), transcript







variant 2, non-coding RNA.



MAZ
Y
1296
NM_001042539

Homo sapiens MYC-

N/A






associated zinc finger







protein (purine-binding







transcription factor) (MAZ),







transcript variant 2, mRNA.



MAZ
Y
1297
NM_002383

Homo sapiens MYC-

N/A






associated zinc finger







protein (purine-binding







transcription factor) (MAZ),







transcript variant 1, mRNA.



MVP
Y
1298
NM_005115

Homo sapiens major vault

This gene encodes the major vault protein which is a lung resistance-related protein. Vaults are multi-






protein (MVP), transcript
subunit structures that may be involved in nucleo-cytoplasmic transport. This protein mediates drug






variant 2, mRNA.
resistance, perhaps via a transport process. It is widely distributed in normal tissues, and overexpressed







in multidrug-resistant cancer cells. The protein overexpression is a potentially useful marker of clinical







drug resistance. This gene produces two transcripts by using two alternative exon 2 sequences;







however, the open reading frames are the same in both transcripts. [provided by RefSeq, July 2008].







Transcript Variant: This variant (2) uses a different splice site in the 5′ UTR, compared to variant 1.







Variants 1 and 2 encode the same protein. Publication Note: This RefSeq record includes a subset of







the publications that are available for this gene. Please see the Gene record to access additional







publications.


MVP
Y
1299
NM_017458

Homo sapiens major vault

This gene encodes the major vault protein which is a lung resistance-related protein. Vaults are multi-






protein (MVP), transcript
subunit structures that may be involved in nucleo-cytoplasmic transport. This protein mediates drug






variant 1, mRNA.
resistance, perhaps via a transport process. It is widely distributed in normal tissues, and overexpressed







in multidrug-resistant cancer cells. The protein overexpression is a potentially useful marker of clinical







drug resistance. This gene produces two transcripts by using two alternative exon 2 sequences;







however, the open reading frames are the same in both transcripts. [provided by RefSeq, July 2008].







Transcript Variant: This variant (1) is the longer transcript. Variants 1 and 2 encode the same protein.







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


PPP4C
Y
1300
NM_002720

Homo sapiens protein

N/A






phosphatase 4, catalytic







subunit (PPP4C), mRNA.



PRRT2
Y
1301
NM_145239

Homo sapiens proline-rich

N/A






transmembrane protein 2







(PRRT2), mRNA.



SEZ6L2
Y
1302
NM_001114099

Homo sapiens seizure

This gene encodes a seizure-related protein that is localized on the cell surface. The gene is located in






related 6 homolog (mouse)-
a region of chromosome 16p11.2 that is thought to contain candidate genes for autism spectrum






like 2 (SEZ6L2), transcript
disorders (ASD), though there is no evidence directly implicating this gene in ASD. Increased






variant 3, mRNA.
expression of this gene has been found in lung cancers, and the protein is therefore considered to be a







novel prognostic marker for lung cancer. Alternative splicing of this gene results in multiple transcript







variants. [provided by RefSeq, August 2011]. Transcript Variant: This variant (3) uses an alternate in-







frame splice site in the 5′ coding region, and lacks an alternate in-frame exon in the 3′ coding region,







compared to variant 5. The encoded isoform (3) is shorter than isoform 5.


SEZ6L2
Y
1303
NM_001114100

Homo sapiens seizure

This gene encodes a seizure-related protein that is localized on the cell surface. The gene is located in






related 6 homolog (mouse)-
a region of chromosome 16p11.2 that is thought to contain candidate genes for autism spectrum






like 2 (SEZ6L2), transcript
disorders (ASD), though there is no evidence directly implicating this gene in ASD. Increased






variant 4, mRNA.
expression of this gene has been found in lung cancers, and the protein is therefore considered to be a







novel prognostic marker for lung cancer. Alternative splicing of this gene results in multiple transcript







variants. [provided by RefSeq, August 2011]. Transcript Variant: This variant (4) lacks two alternate







exons resulting in the loss of an in-frame segment in the 5′ coding region, compared to variant 5. The







encoded isoform (4) is shorter than isoform 5.


SEZ6L2
Y
1304
NM_001243332

Homo sapiens seizure

This gene encodes a seizure-related protein that is localized on the cell surface. The gene is located in






related 6 homolog (mouse)-
a region of chromosome 16p11.2 that is thought to contain candidate genes for autism spectrum






like 2 (SEZ6L2), transcript
disorders (ASD), though there is no evidence directly implicating this gene in ASD. Increased






variant 5, mRNA.
expression of this gene has been found in lung cancers, and the protein is therefore considered to be a







novel prognostic marker for lung cancer. Alternative splicing of this gene results in multiple transcript







variants. [provided by RefSeq, August 2011]. Transcript Variant: This variant (5) represents the longest







transcript and encodes the longest isoform (5).


SEZ6L2
Y
1305
NM_001243333

Homo sapiens seizure

This gene encodes a seizure-related protein that is localized on the cell surface. The gene is located in






related 6 homolog (mouse)-
a region of chromosome 16p11.2 that is thought to contain candidate genes for autism spectrum






like 2 (SEZ6L2), transcript
disorders (ASD), though there is no evidence directly implicating this gene in ASD. Increased






variant 6, mRNA.
expression of this gene has been found in lung cancers, and the protein is therefore considered to be a







novel prognostic marker for lung cancer. Alternative splicing of this gene results in multiple transcript







variants. [provided by RefSeq, August 2011]. Transcript Variant: This variant (6) lacks an alternate in-







frame exon in the 5′ coding region, compared to variant 5, resulting in an isoform (6) that is shorter







than isoform 5.


SEZ6L2
Y
1306
NM_012410

Homo sapiens seizure

This gene encodes a seizure-related protein that is localized on the cell surface. The gene is located in






related 6 homolog (mouse)-
a region of chromosome 16p11.2 that is thought to contain candidate genes for autism spectrum






like 2 (SEZ6L2), transcript
disorders (ASD), though there is no evidence directly implicating this gene in ASD. Increased






variant 1, mRNA.
expression of this gene has been found in lung cancers, and the protein is therefore considered to be a







novel prognostic marker for lung cancer. Alternative splicing of this gene results in multiple transcript







variants. [provided by RefSeq, August 2011]. Transcript Variant: This variant (1) uses an alternate in-







frame splice site in the 5′ coding region, compared to variant 5, resulting in an isoform (1) that is







shorter than isoform 5.


SEZ6L2
Y
1307
NM_201575

Homo sapiens seizure

This gene encodes a seizure-related protein that is localized on the cell surface. The gene is located in






related 6 homolog (mouse)-
a region of chromosome 16p11.2 that is thought to contain candidate genes for autism spectrum






like 2 (SEZ6L2), transcript
disorders (ASD), though there is no evidence directly implicating this gene in ASD. Increased






variant 2, mRNA.
expression of this gene has been found in lung cancers, and the protein is therefore considered to be a







novel prognostic marker for lung cancer. Alternative splicing of this gene results in multiple transcript







variants. [provided by RefSeq, August 2011]. Transcript Variant: This variant (2) lacks an alternate in-







frame exon in the 3′ coding region, compared to variant 5, resulting in an isoform (2) that is shorter







than isoform 5.


TAOK2
Y
1308
NM_001252043

Homo sapiens TAO kinase 2

This gene encodes a serine/threonine protein kinase that is involved in many different processes,






(TAOK2), transcript variant
including, cell signaling, microtubule organization and stability, and apoptosis. Alternatively spliced






3, mRNA.
transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq,







October 2011]. Transcript Variant: This variant (3) is alternatively spliced at the 3′ end compared to variant







1. However, it maintains the reading frame, and encodes a shorter isoform (3) missing a protein







segment compared to isoform 1.


TAOK2
Y
1309
NM_004783

Homo sapiens TAO kinase 2

This gene encodes a serine/threonine protein kinase that is involved in many different processes,






(TAOK2), transcript variant
including, cell signaling, microtubule organization and stability, and apoptosis. Alternatively spliced






2, mRNA.
transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq,







October 2011]. Transcript Variant: This variant (2) contains alternate exons at the 3′ end compared to







variant 1. This results in a shorter isoform (2, also known as PSK1-beta) with a distinct C-terminus







compared to isoform 1.


TAOK2
Y
1310
NM_016151

Homo sapiens TAO kinase 2

This gene encodes a serine/threonine protein kinase that is involved in many different processes,






(TAOK2), transcript variant
including, cell signaling, microtubule organization and stability, and apoptosis. Alternatively spliced






1, mRNA.
transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq,







October 2011]. Transcript Variant: This variant (1) encodes the longest isoform (1, also known as PSK1-







alpha).


TBX6
Y
1311
NM_004608

Homo sapiens T-box 6

This gene is a member of a phylogenetically conserved family of genes that share a common DNA-






(TBX6), mRNA.
binding domain, the T-box. T-box genes encode transcription factors involved in the regulation of







developmental processes. Knockout studies in mice indicate that this gene is important for







specification of paraxial mesoderm structures. [provided by RefSeq, August 2008].


TMEM219
Y
1312
NM_001083613

Homo sapiens

N/A






transmembrane protein 219







(TMEM219), transcript







variant 1, mRNA.



TMEM219
Y
1313
NM_194280

Homo sapiens

N/A






transmembrane protein 219







(TMEM219), transcript







variant 2, mRNA.



YPEL3
Y
1314
NM_001145524

Homo sapiens yippee-like 3

N/A






(Drosophila) (YPEL3),







transcript variant 2, mRNA.



YPEL3
Y
1315
NM_031477

Homo sapiens yippee-like 3

N/A






(Drosophila) (YPEL3),







transcript variant 1, mRNA.



ZG16
Y
1316
NM_152338

Homo sapiens zymogen

N/A






granule protein 16 homolog







(rat) (ZG16), mRNA.



ABHD3
N
1317
NM_138340

Homo sapiens abhydrolase

This gene encodes a protein containing an alpha/beta hydrolase fold, which is a catalytic domain






domain containing 3
found in a very wide range of enzymes. The function of this protein has not been determined.






(ABHD3), mRNA.
[provided by RefSeq, July 2008].


RTTN
N
1318
NM_173630

Homo sapiens rotatin

RTTN is required for the early developmental processes of left-right (L-R) specification and axial






(RTTN), mRNA.
rotation and may play a role in notochord development (Faisst et al., 2002 [PubMed







11900971]). [supplied by OMIM, March 2008].


BCAS1
N
1319
NM_003657

Homo sapiens breast

This gene resides in a region at 20q13 which is amplified in a variety of tumor types and associated






carcinoma amplified
with more aggressive tumor phenotypes. Among the genes identified from this region, it was found to






sequence 1 (BCAS1),
be highly expressed in three amplified breast cancer cell lines and in one breast tumor without






mRNA.
amplification at 20q13.2. However, this gene is not in the common region of maximal amplification







and its expression was not detected in the breast cancer cell line MCF7, in which this region is highly







amplified. Although not consistently expressed, this gene is a candidate oncogene. [provided by







RefSeq, July 2008]. Sequence Note: The RefSeq transcript and protein were derived from genomic







sequence to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on alignments.


HAR1A
Y
1320
NR_003244

Homo sapiens highly

N/A






accelerated region 1A (non-







protein coding) (HAR1A),







non-coding RNA.



HAR1B
Y
1321
NR_003245

Homo sapiens highly

N/A






accelerated region 1B (non-







protein coding) (HAR1B),







non-coding RNA.



LOC63930
N
1322
NR_033370

Homo sapiens

N/A






uncharacterized LOC63930







(LOC63930), non-coding







RNA.



LOC63930
Y
1322
NR_033370

Homo sapiens

N/A






uncharacterized LOC63930







(LOC63930), non-coding







RNA.



MCM5
Y
1323
NM_006739

Homo sapiens

The protein encoded by this gene is structurally very similar to the CDC46 protein from S. cerevisiae,






minichromosome
a protein involved in the initiation of DNA replication. The encoded protein is a member of the MCM






maintenance complex
family of chromatin-binding proteins and can interact with at least two other members of this family.






component 5 (MCM5),
The encoded protein is upregulated in the transition from the G0 to G1/S phase of the cell cycle and






mRNA.
may actively participate in cell cycle regulation. [provided by RefSeq, July 2008].


APOO
Y
1324
NM_024122

Homo sapiens

This gene is a member of the apolipoprotein family. Members of this protein family are involved in






apolipoprotein O (APOO),
the transport and metabolism of lipids. The encoded protein associates with HDL, LDL and VLDL






transcript variant 1, mRNA.
lipoproteins and is characterized by chondroitin-sulfate glycosylation. This protein may be involved in







preventing lipid accumulation in the myocardium in obese and diabetic patients. Alternative splicing







results in multiple transcript variants. Pseudogenes of this gene are found on chromosomes 3, 4, 5, 12







and 16. [provided by RefSeq, September 2009]. Transcript Variant: This variant (1) represents the longer







transcript and is predicted to encode the functional protein.


APOO
Y
1325
NR_026545

Homo sapiens

This gene is a member of the apolipoprotein family. Members of this protein family are involved in






apolipoprotein O (APOO),
the transport and metabolism of lipids. The encoded protein associates with HDL, LDL and VLDL






transcript variant 2, non-
lipoproteins and is characterized by chondroitin-sulfate glycosylation. This protein may be involved in






coding RNA.
preventing lipid accumulation in the myocardium in obese and diabetic patients. Alternative splicing







results in multiple transcript variants. Pseudogenes of this gene are found on chromosomes 3, 4, 5, 12







and 16. [provided by RefSeq, September 2009]. Transcript Variant: This variant (2) omits a coding exon







resulting in a frameshift and premature stop codon. The transcript is likely non-coding because it is a







candidate for nonsense-mediated decay (NMD); therefore, the truncated protein is not annotated.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


ARSF
Y
1326
NM_001201538

Homo sapiens arylsulfatase

This gene is a member of the sulfatase family, and more specifically, the arylsulfatase subfamily.






F (ARSF), transcript variant
Members of the subfamily share similarity in sequence and splice sites, and are clustered together on






2, mRNA.
chromosome X, suggesting that they are derived from recent gene duplication events. Sulfatases are







essential for the correct composition of bone and cartilage matrix. The activity of this protein, unlike







that of arylsulfatase E, is not inhibited by warfarin. Multiple alternatively spliced variants, encoding







the same protein, have been identified, [provided by RefSeq, January 2011]. Transcript Variant: This







variant (2) differs in the 5′ UTR compared to variant 1. Variants 1, 2 and 3 encode the same protein.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


ARSF
Y
1327
NM_001201539

Homo sapiens arylsulfatase

This gene is a member of the sulfatase family, and more specifically, the arylsulfatase subfamily.






F (ARSF), transcript variant
Members of the subfamily share similarity in sequence and splice sites, and are clustered together on






3, mRNA.
chromosome X, suggesting that they are derived from recent gene duplication events. Sulfatases are







essential for the correct composition of bone and cartilage matrix. The activity of this protein, unlike







that of arylsulfatase E, is not inhibited by warfarin. Multiple alternatively spliced variants, encoding







the same protein, have been identified, [provided by RefSeq, January 2011]. Transcript Variant: This







variant (3) differs in the 5′ UTR compared to variant 1. Variants 1, 2 and 3 encode the same protein.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


ARSF
Y
1328
NM_004042

Homo sapiens arylsulfatase

This gene is a member of the sulfatase family, and more specifically, the arylsulfatase subfamily.






F (ARSF), transcript variant
Members of the subfamily share similarity in sequence and splice sites, and are clustered together on






1, mRNA.
chromosome X, suggesting that they are derived from recent gene duplication events. Sulfatases are







essential for the correct composition of bone and cartilage matrix. The activity of this protein, unlike







that of arylsulfatase E, is not inhibited by warfarin. Multiple alternatively spliced variants, encoding







the same protein, have been identified, [provided by RefSeq, January 2011]. Transcript Variant: This







variant (1) represents the shortest variant. Variants 1, 2 and 3 encode the same protein. Sequence Note:







This RefSeq record was created from transcript and genomic sequence data to make the sequence







consistent with the reference genome assembly. The genomic coordinates used for the transcript record







were based on transcript alignments.


CA5BP1
Y
1329
NR_026551

Homo sapiens carbonic

N/A






anhydrase VB pseudogene 1







(CA5BP1), non-coding







RNA.



DDX53
Y
1330
NM_182699

Homo sapiens DEAD (Asp-

This intronless gene encodes a protein which contains several domains found in members of the






Glu-Ala-Asp) box
DEAD-box helicase protein family. Other members of this protein family participate in ATP-






polypeptide 53 (DDX53),
dependent RNA unwinding. [provided by RefSeq, September 2011].






mRNA.



DMD
Y
1331
NM_000109

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp427c, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: transcript Dp427c is expressed predominantly in







neurons of the cortex and the CA regions of the hippocampus. It uses a unique promoter/exon 1 located







about 130 kb upstream of the Dp427m transcript promoter. The transcript includes the common exon 2







of transcript Dp427m and has a similar length of 14 kb. The Dp427c isoform contains a unique N-







terminal MED sequence, instead of the MLWWEEVEDCY sequence of isoform Dp427m. The







remainder of isoform Dp427c is identical to isoform Dp427m. Sequence Note: This RefSeq record was







created from transcript and genomic sequence data to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on transcript







alignments.


DMD
Y
1332
NM_004006

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp427m, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: transcript Dp427m encodes the main dystrophin







protein found in muscle. As a result of alternative promoter use, exon 1 encodes a unique N-terminal







MLWWEEVEDCY aa sequence. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments.


DMD
Y
1333
NM_004007

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp427l, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: transcript Dp4271 originates at a unique







promoter/exon 1 with splicing to exon 3 of the full length dystrophin (Dp427m) transcript.







Consequently, amino acids 1-31 are replaced by a single methionine. Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with







the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


DMD
Y
1334
NM_004009

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp427p1, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: transcript Dp427p1 initiates from a unique







promoter/exon 1 located in what corresponds to the first intron of transcript Dp427m. The transcript







adds the common exon 2 of Dp427m and has a similar length (14 kb). The Dp427p1 isoform replaces







the MLWWEEVEDCY-start of Dp427m with a unique N-terminal MSEVSSD aa sequence. Sequence







Note: This RefSeq record was created from transcript and genomic sequence data to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


DMD
Y
1335
NM_004010

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp427p2, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: transcript Dp427p2 has an additional 82 nt directly







after exon 1 which introduces a translational stop codon 24 bp downstream of the same ATG codon







included in the Dp427p1 transcript. This transcript has unknown coding capacity. Sequence Note: This







RefSeq record was created from transcript and genomic sequence data to make the sequence consistent







with the reference genome assembly. The genomic coordinates used for the transcript record were







based on transcript alignments.


DMD
Y
1336
NM_004011

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp260-1, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: transcript Dp260-1 uses exons 30-79, and







originates from a promoter/exon 1 sequence located in intron 29 of the dystrophin gene. As a result,







Dp260-1 contains a 95 bp exon 1 encoding a unique N-terminal 16 aa MTEIILLIFFPAYFLN-







sequence that replaces amino acids 1-1357 of the full-length dystrophin product (Dp427m isoform).







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


DMD
Y
1337
NM_004012

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp260-2, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: transcript Dp260-2 uses exons 30-79, starting from







a promoter/exon 1 sequence located in intron 29 of the dystrophin gene that is alternatively spliced and







lacks N-terminal amino acids 1-1357 of the full length dystrophin (Dp427m isoform). The Dp260-2







transcript encodes a unique N-terminal MSARKLRNLSYKK sequence. Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with







the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


DMD
Y
1338
NM_004013

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp140, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: Dp140 transcripts use exons 45-79, starting at a







promoter/exon 1 located in intron 44. Dp140 transcripts have a long (1 kb) 5′ UTR since translation is







initiated in exon 51 (corresponding to aa 2461 of dystrophin). In addition to the alternative promoter







and exon 1, differential splicing of exons 71-74 and 78 produces at least five Dp140 isoforms. Of







these, this transcript (Dp140) contains all of the exons.


DMD
Y
1339
NM_004014

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp116, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: transcript Dp116 uses exons 56-79, starting from a







promoter/exon 1 within intron 55. As a result, the Dp116 isoform contains a unique N-terminal







MLHRKTYHVK aa sequence, instead of aa 1-2739 of dystrophin. Differential splicing produces







several Dp116-subtypes. The Dp116 isoform is also known as S-dystrophin or apo-dystrophin-2.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


DMD
Y
1340
NM_004015

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp71, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: Dp71 transcripts use exons 63-79 with a novel 80-







to 100-nt exon containing an ATG start site for a new coding sequence of 17 nt. The short coding







sequence is in-frame with the consecutive dystrophin sequence from exon 63. Differential splicing of







exons 71 and 78 produces at least four Dp71 isoforms. Of these, this transcript (Dp71) includes both







exons 71 and 78.


DMD
Y
1341
NM_004016

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp71b, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: Dp71 transcripts use exons 63-79 with a novel 80-







to 100-nt exon containing an ATG start site for a new coding sequence of 17 nt. The short coding







sequence is in-frame with the consecutive dystrophin sequence from exon 63. Differential splicing of







exons 71 and 78 produces at least four Dp71 isoforms. Of these, this transcript (Dp71b) lacks exon 78







and encodes a protein with a different C-terminus than Dp71 and Dp71a isoforms.


DMD
Y
1342
NM_004017

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp71a, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: Dp71 transcripts use exons 63-79 with a novel 80-







to 100-nt exon containing an ATG start site for a new coding sequence of 17 nt. The short coding







sequence is in-frame with the consecutive dystrophin sequence from exon 63. Differential splicing of







exons 71 and 78 produces at least four Dp71 isoforms. Of these, this transcript (Dp71a) lacks exon 71.


DMD
Y
1343
NM_004018

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp71ab, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: Dp71 transcripts use exons 63-79 with a novel 80-







to 100-nt exon containing an ATG start site for a new coding sequence of 17 nt. The short coding







sequence is in-frame with the consecutive dystrophin sequence from exon 63. Differential splicing of







exons 71 and 78 produces at least four Dp71 isoforms. Of these, this transcript (Dp71ab) lacks both







exons 71 and 78 and encodes a protein with a C-terminus like isoform Dp71b.


DMD
Y
1344
NM_004019

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp40, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: transcript Dp40 uses exons 63-70. The 5′ UTR and







encoded first 7 aa are identical to that in transcript Dp71, but the stop codon lies at the splice junction







of the exon/intron 70. The 3′ UTR includes nt from intron 70 which includes an alternative







polyadenylation site. The Dp40 isoform lacks the normal C-terminal end of full-length dystrophin (aa







3409-3685).


DMD
Y
1345
NM_004020

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp140c, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: Dp140 transcripts use exons 45-79, starting at a







promoter/exon 1 located in intron 44. Dp140 transcripts have a long (1 kb) 5′ UTR since translation is







initiated in exon 51 (corresponding to aa 2461 of dystrophin). In addition to the alternative promoter







and exon 1, differential splicing of exons 71-74 and 78 produces at least five Dp140 isoforms. Of







these, this transcript (Dp140c) lacks exons 71-74. Sequence Note: This RefSeq record was created







from transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


DMD
Y
1346
NM_004021

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp140b, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: Dp140 transcripts use exons 45-79, starting at a







promoter/exon 1 located in intron 44. Dp140 transcripts have a long (1 kb) 5′ UTR since translation is







initiated in exon 51 (corresponding to aa 2461 of dystrophin). In addition to the alternative promoter







and exon 1, differential splicing of exons 71-74 and 78 produces at least five Dp140 isoforms. Of







these, this transcript (Dp140b) lacks exon 78 and encodes a protein with a unique C-terminus.


DMD
Y
1347
NM_004022

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp140qb, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: Dp140 transcripts use exons 45-79, starting at a







promoter/exon 1 located in intron 44. Dp140 transcripts have a long (1 kb) 5′ UTR since translation is







initiated in exon 51 (corresponding to aa 2461 of dystrophin). In addition to the alternative promoter







and exon 1, differential splicing of exons 71-74 and 78 produces at least five Dp140 isoforms. Of







these, this transcript (Dp140ab) lacks exons 71 and 78 and encodes a protein with a unique C-terminus.


DMD
Y
1348
NM_004023

Homo sapiens dystrophin

The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified






(DMD), transcript variant
through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne






Dp140bc, mRNA.
(DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder







occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general,







DMD patients carry mutations which cause premature translation termination (nonsense or frame shift







mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-







frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least







eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin







RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein







isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein







which is found at the inner surface of muscle fibers. Dystrophin is part of the dystrophin-glycoprotein







complex (DGC), which bridges the inner cytoskeleton (F-actin) and the extra-cellular matrix.







[provided by RefSeq, July 2008]. Transcript Variant: Dp140 transcripts use exons 45-79, starting at a







promoter/exon 1 located in intron 44. Dp140 transcripts have a long (1 kb) 5′ UTR since translation is







initiated in exon 51 (corresponding to aa 2461 of dystrophin). In addition to the alternative promoter







and exon 1, differential splicing of exons 71-74 and 78 produces at least five Dp140 isoforms. Of







these, this transcript (Dp140bc) lacks exons 71-74 and 78 and encodes a protein with a unique C-







terminus.


NLGN4X
Y
1349
NM_020742

Homo sapiens neuroligin 4,

This gene encodes a member of a family of neuronal cell surface proteins. Members of this family






X-linked (NLGN4X),
may act as splice site-specific ligands for beta-neurexins and may be involved in the formation and






transcript variant 1, mRNA.
remodeling of central nervous system synapses. The encoded protein interacts with discs, large







(Drosophila) homolog 4 (DLG4). Mutations in this gene have been associated with autism and







Asperger syndrome. Two transcript variants encoding the same protein have been identified for this







gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (1) represents the longer







transcript. Variants 1 and 2 encode the same isoform.


NLGN4X
Y
1350
NM_181332

Homo sapiens neuroligin 4,

This gene encodes a member of a family of neuronal cell surface proteins. Members of this family






X-linked (NLGN4X),
may act as splice site-specific ligands for beta-neurexins and may be involved in the formation and






transcript variant 2, mRNA.
remodeling of central nervous system synapses. The encoded protein interacts with discs, large







(Drosophila) homolog 4 (DLG4). Mutations in this gene have been associated with autism and







Asperger syndrome. Two transcript variants encoding the same protein have been identified for this







gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (2) differs in the 5′ UTR







compared to variant 1. Variants 1 and 2 encode the same isoform.


TMEM27
Y
1351
NM_020665

Homo sapiens

This gene encodes a transmembrane protein that is important for trafficking amino acid transporters to






transmembrane protein 27
the apical brush border of proximal tubules. It also plays a role in controlling insulin exocytosis by






(TMEM27), mRNA.
regulating formation of the SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein







receptor) complex in pancreatic beta cells. [provided by RefSeq, November 2009].


XG
Y
1352
NM_001141919

Homo sapiens Xg blood

This gene encodes the XG blood group antigen, and is located at the pseudoautosomal boundary on






group (XG), transcript
the short (p) arm of chromosome X. The three 5′ exons reside in the pseudoautosomal region and the






variant 2, mRNA.
remaining exons within the X-specific end. A truncated copy of this gene is found on the Y







chromosome at the pseudoautosomal boundary. It is transcribed, but not expected to make a Y-







chromosome specific gene product. Alternatively spliced transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, November 2008]. Transcript Variant: This







variant (2) contains an additional in-frame coding exon compared to transcript variant 1. This results in







a longer isoform (2) with a 15 aa segment not found in isoform 1. Sequence Note: This RefSeq record







was created from transcript and genomic sequence data because no quality transcript was available for







the full length of the gene. The extent of this transcript is supported by transcript alignments.


XG
Y
1353
NM_001141920

Homo sapiens Xg blood

This gene encodes the XG blood group antigen, and is located at the pseudoautosomal boundary on






group (XG), transcript
the short (p) arm of chromosome X. The three 5′ exons reside in the pseudoautosomal region and the






variant 3, mRNA.
remaining exons within the X-specific end. A truncated copy of this gene is found on the Y







chromosome at the pseudoautosomal boundary. It is transcribed, but not expected to make a Y-







chromosome specific gene product. Alternatively spliced transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, November 2008]. Transcript Variant: This







variant (3) uses an alternate donor splice site at one of the coding exons compared to transcript variant







1, resulting in an isoform (3) containing one additional aa compared to isoform 1. Sequence Note: This







RefSeq record was created from transcript and genomic sequence data because no quality transcript







was available for the full length of the gene. The extent of this transcript is supported by transcript







alignments. Sequence Note: This RefSeq record represents the XG*001.1.1 allele.


XG
Y
1354
NM_175569

Homo sapiens Xg blood

This gene encodes the XG blood group antigen, and is located at the pseudoautosomal boundary on






group (XG), transcript
the short (p) arm of chromosome X. The three 5′ exons reside in the pseudoautosomal region and the






variant 1, mRNA.
remaining exons within the X-specific end. A truncated copy of this gene is found on the Y







chromosome at the pseudoautosomal boundary. It is transcribed, but not expected to make a Y-







chromosome specific gene product. Alternatively spliced transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, November 2008]. Transcript Variant: This







variant (1) represents the predominant transcript and encodes isoform 1. Sequence Note: This RefSeq







record was created from transcript and genomic sequence data because no quality transcript was







available for the full length of the gene. The extent of this transcript is supported by transcript







alignments. Sequence Note: This RefSeq record represents the XG*001.1.1 allele.


SEMA3F
both
1355
NM_004186

Homo sapiens sema domain,

The semaphorins are a family of proteins that are involved in signaling. All the family members have a






immunoglobulin domain
secretion signal, a 500-amino acid sema domain, and 16 conserved cysteine residues (Kolodkin et al.,






(Ig), short basic domain,
1993 [PubMed 8269517]). Sequence comparisons have grouped the secreted semaphorins into 3






secreted, (semaphorin) 3F
general classes, all of which also have an immunoglobulin domain. The semaphorin III family,






SEMA3F), mRNA.
(consisting of human semaphorin III (SEMA3A; MIM 603961), chicken collapsin, and mouse







semaphorins A, D, and E, all have a basic domain at the C terminus. Chicken collapsin contributes to







path finding by axons during development by inhibiting extension of growth cones (Luo et al., 1993







[PubMed 8402908]) through an interaction with a collapsin response mediator protein of relative







molecular mass 62K (CRMP62) (Goshima et al., 1995 [PubMed 7637782]), a putative homolog of an







axonal guidance associated UNC33 gene product (MIM 601168). SEMA3F is a secreted member of







the semaphorin III family. [supplied by OMIM, March 2008].


AMY2B
N
1356
NM_020978

Homo sapiens amylase,

Amylases are secreted proteins that hydrolyze 1,4-alpha-glucoside bonds in oligosaccharides and






alpha 2B (pancreatic)
polysaccharides, and thus catalyze the first step in digestion of dietary starch and glycogen. The human






(AMY2B), mRNA.
genome has a cluster of several amylase genes that are expressed at high levels in either salivary gland







or pancreas. This gene encodes an amylase isoenzyme produced by the pancreas. [provided by RefSeq,







July 2008].


FAM5C
N
1357
NM_199051

Homo sapiens family with

N/A






sequence similarity 5,







member C (FAM5C),







mRNA.



ZC3H6
N
1358
NM_198581

Homo sapiens zinc finger

N/A






CCCH-type containing 6







(ZC3H6), mRNA.



PDE11A
N
1359
NM_001077196

Homo sapiens

The 3′,5′-cyclic nucleotides cAMP and cGMP function as second messengers in a wide variety of






phosphodiesterase 11A
signal transduction pathways. 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) catalyze the






(PDE11A), transcript variant
hydrolysis of cAMP and cGMP to the corresponding 5′-monophosphates and provide a mechanism to






1, mRNA.
downregulate cAMP and cGMP signaling. This gene encodes a member of the PDE protein







superfamily. Mutations in this gene are a cause of Cushing disease and adrenocortical hyperplasia.







Multiple transcript variants encoding different isoforms have been found for this gene. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (1) contains a distinct 5′ UTR and lacks an in-frame







portion of the 5′ coding region, compared to variant 4. The resulting isoform (1) has a shorter N-







terminus, compared to isoform 4.


PDE11A
N
1360
NM_001077197

Homo sapiens

The 3′,5′-cyclic nucleotides cAMP and cGMP function as second messengers in a wide variety of






phosphodiesterase 11A
signal transduction pathways. 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) catalyze the






(PDE11A), transcript variant
hydrolysis of cAMP and cGMP to the corresponding 5′-monophosphates and provide a mechanism to






3, mRNA.
downregulate cAMP and cGMP signaling. This gene encodes a member of the PDE protein







superfamily. Mutations in this gene are a cause of Cushing disease and adrenocortical hyperplasia.







Multiple transcript variants encoding different isoforms have been found for this gene. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (3) contains a distinct 5′ UTR and 5′ coding region,







compared to variant 4. The resulting isoform (3) contains a shorter and distinct N-terminus, compared







to isoform 4.


PDE11A
N
1361
NM_001077358

Homo sapiens

The 3′,5′-cyclic nucleotides cAMP and cGMP function as second messengers in a wide variety of






phosphodiesterase 11A
signal transduction pathways. 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) catalyze the






(PDE11A), transcript variant
hydrolysis of cAMP and cGMP to the corresponding 5′-monophosphates and provide a mechanism to






2, mRNA.
downregulate cAMP and cGMP signaling. This gene encodes a member of the PDE protein







superfamily. Mutations in this gene are a cause of Cushing disease and adrenocortical hyperplasia.







Multiple transcript variants encoding different isoforms have been found for this gene. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (2) contains a distinct 5′ UTR and lacks an in-frame







portion of the 5′ coding region, compared to variant 4. The resulting isoform (2) has a shorter N-







terminus, compared to isoform 4.


PDE11A
N
1362
NM_016953

Homo sapiens

The 3′,5′-cyclic nucleotides cAMP and cGMP function as second messengers in a wide variety of






phosphodiesterase 11A
signal transduction pathways. 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) catalyze the






(PDE11A), transcript variant
hydrolysis of cAMP and cGMP to the corresponding 5′-monophosphates and provide a mechanism to






4, mRNA.
downregulate cAMP and cGMP signaling. This gene encodes a member of the PDE protein







superfamily. Mutations in this gene are a cause of Cushing disease and adrenocortical hyperplasia.







Multiple transcript variants encoding different isoforms have been found for this gene. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (4) represents the longest transcript and encodes the







longest isoform (4).


SPAG16
N
1363
NM_001025436

Homo sapiens sperm

Cilia and flagella are comprised of a microtubular backbone, the axoneme, which is organized by the






associated antigen 16
basal body and surrounded by plasma membrane. SPAG16 encodes 2 major proteins that associate






(SPAG16), transcript variant
with the axoneme of sperm tail and the nucleus of postmeiotic germ cells, respectively (Zhang et al.,






2, mRNA.
2007 [PubMed 17699735]). [supplied by OMIM, July 2008].


SPAG16
N
1364
NM_024532

Homo sapiens sperm

Cilia and flagella are comprised of a microtubular backbone, the axoneme, which is organized by the






associated antigen 16
basal body and surrounded by plasma membrane. SPAG16 encodes 2 major proteins that associate






(SPAG16), transcript variant
with the axoneme of sperm tail and the nucleus of postmeiotic germ cells, respectively (Zhang et al.,






1, mRNA.
2007 [PubMed 17699735]). [supplied by OMIM, July 2008].


PDCD6IP
N
1365
NM_001162429

Homo sapiens programmed

This gene encodes a protein thought to participate in programmed cell death. Studies using mouse






cell death 6 interacting
cells have shown that overexpression of this protein can block apoptosis. In addition, the product of






protein (PDCD6IP),
this gene binds to the product of the PDCD6 gene, a protein required for apoptosis, in a calcium-






transcript variant 2, mRNA.
dependent manner. This gene product also binds to endophilins, proteins that regulate membrane shape







during endocytosis. Overexpression of this gene product and endophilins results in cytoplasmic







vacuolization, which may be partly responsible for the protection against cell death. Several







alternatively spliced transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, June 2009]. Transcript Variant: This variant (2) uses an alternative in-frame







acceptor splice site at an internal coding exon compared to variant 1. This results in an isoform (2) 5 aa







longer than isoform 1.


PDCD6IP
N
1366
NM_013374

Homo sapiens programmed

This gene encodes a protein thought to participate in programmed cell death. Studies using mouse






cell death 6 interacting
cells have shown that overexpression of this protein can block apoptosis. In addition, the product of






protein (PDCD6IP),
this gene binds to the product of the PDCD6 gene, a protein required for apoptosis, in a calcium-






transcript variant 1, mRNA.
dependent manner. This gene product also binds to endophilins, proteins that regulate membrane shape







during endocytosis. Overexpression of this gene product and endophilins results in cytoplasmic







vacuolization, which may be partly responsible for the protection against cell death. Several







alternatively spliced transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, June 2009]. Transcript Variant: This variant (1) represents the predominant







transcript and encodes isoform 1.


PDCD6IP
N
1367
NR_028767

Homo sapiens programmed

This gene encodes a protein thought to participate in programmed cell death. Studies using mouse






cell death 6 interacting
cells have shown that overexpression of this protein can block apoptosis. In addition, the product of






protein (PDCD6IP),
this gene binds to the product of the PDCD6 gene, a protein required for apoptosis, in a calcium-






transcript variant 3, non-
dependent manner. This gene product also binds to endophilins, proteins that regulate membrane shape






coding RNA.
during endocytosis. Overexpression of this gene product and endophilins results in cytoplasmic







vacuolization, which may be partly responsible for the protection against cell death. Several







alternatively spliced transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, June 2009]. Transcript Variant: This variant (3) uses an alternate promoter, and is







missing several coding exons from the 5′ end compared to variant 1. It is represented as non-coding







because it lacks a large portion of the N-terminal coding region, which includes the BRO1-like







domain. Publication Note: This RefSeq record includes a subset of the publications that are available







for this gene. Please see the Gene record to access additional publications.


PDCD6IP
N
1368
NR_027868

Homo sapiens programmed

This gene encodes a protein thought to participate in programmed cell death. Studies using mouse






cell death 6 interacting
cells have shown that overexpression of this protein can block apoptosis. In addition, the product of






protein (PDCD6IP),
this gene binds to the product of the PDCD6 gene, a protein required for apoptosis, in a calcium-






transcript variant 4, non-
dependent manner. This gene product also binds to endophilins, proteins that regulate membrane shape






coding RNA.
during endocytosis. Overexpression of this gene product and endophilins results in cytoplasmic







vacuolization, which may be partly responsible for the protection against cell death. Several







alternatively spliced transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, June 2009]. Transcript Variant: This variant (4) contains a different 3′ terminal







exon, and is missing several coding exons from the 3′ end compared to variant 1. It is represented as







non-coding because it lacks a large portion of the C-terminal coding region, and the BRO1-like domain







at the N-terminus is truncated. Publication Note: This RefSeq record includes a subset of the







publications that are available for this gene. Please see the Gene record to access additional







publications.


XYLB
both
1369
NM_005108

Homo sapiens xylulokinase

The protein encoded by this gene shares 22% sequence identity with Hemophilus influenzae






homolog (H. influenzae)
xylulokinase, and even higher identity to other gene products in C. elegans (45%) and yeast (31-35%),






(XYLB), mRNA.
which are thought to belong to a family of enzymes that include fucokinase, gluconokinase,







glycerokinase and xylulokinase. These proteins play important roles in energy metabolism. [provided







by RefSeq, August 2009].


HHATL
Y
1370
NM_020707

Homo sapiens hedgehog

N/A






acyltransferase-like







(HHATL), transcript variant







1, mRNA.



HHATL
Y
1371
NR_027753

Homo sapiens hedgehog

N/A






acyltransferase-like







(HHATL), transcript variant







2, non-coding RNA.



SUCLG2
N
1372
NM_001177599

Homo sapiens succinate-

This gene encodes a GTP-specific beta subunit of succinyl-CoA synthetase. Succinyl-CoA synthetase






CoA ligase, GDP-forming,
catalyzes the reversible reaction involving the formation of succinyl-CoA and succinate. Alternate






beta subunit (SUCLG2),
splicing results in multiple transcript variants. Pseudogenes of this gene are found on chromosomes 5






nuclear gene encoding
and 12. [provided by RefSeq, April 2010]. Transcript Variant: This variant (1) encodes the longer






mitochondrial protein,
isoform (1).






transcript variant 1, mRNA.



SUCLG2
N
1373
NM_003848

Homo sapiens succinate-

This gene encodes a GTP-specific beta subunit of succinyl-CoA synthetase. Succinyl-CoA synthetase






CoA ligase, GDP-forming,
catalyzes the reversible reaction involving the formation of succinyl-CoA and succinate. Alternate






beta subunit (SUCLG2),
splicing results in multiple transcript variants. Pseudogenes of this gene are found on chromosomes 5






nuclear gene encoding
and 12. [provided by RefSeq, April 2010]. Transcript Variant: This variant (2) differs in the 3′ UTR, and






mitochondrial protein,
3′ coding region, compared to variant 1. The encoded isoform (2) is shorter and has a distinct C-






transcript variant 2, mRNA.
terminus, compared to isoform 1.


PLCH1
N
1374
NM_001130960

Homo sapiens

PLCH1 is a member of the PLC-eta family of the phosphoinositide-specific phospholipase C (PLC)






phospholipase C, eta 1
superfamily of enzymes that cleave phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) to generate






(PLCH1), transcript variant
second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) (Hwang et al., 2005






1, mRNA.
[PubMed 15702972]). [supplied by OMIM, June 2009]. Transcript Variant: This variant (1) encodes the







longest isoform (a).


PLCH1
N
1375
NM_001130961

Homo sapiens

PLCH1 is a member of the PLC-eta family of the phosphoinositide-specific phospholipase C (PLC)






phospholipase C, eta 1
superfamily of enzymes that cleave phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) to generate






(PLCH1), transcript variant
second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) (Hwang et al., 2005






3, mRNA.
[PubMed 15702972]). [supplied by OMIM, June 2009]. Transcript Variant: This variant (3) has an







alternate exon in the 3′ end of the coding sequence compared to variant 1. This exon contains an in-







frame stop codon, resulting in an isoform (c) that has a shorter and distinct C-terminus compared to







isoform a.


PLCH1
N
1376
NM_014996

Homo sapiens

PLCH1 is a member of the PLC-eta family of the phosphoinositide-specific phospholipase C (PLC)






phospholipase C, eta 1
superfamily of enzymes that cleave phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) to generate






(PLCH1), transcript variant
second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) (Hwang et al., 2005






2, mRNA.
[PubMed 15702972]). [supplied by OMIM, June 2009]. Transcript Variant: This variant (2) differs in the







5′ UTR and contains an alternate in-frame coding exon compared to variant 1. These differences cause







translation initiation at a downstream AUG and an isoform (b) with a shorter N-terminus compared to







isoform a.


BCKDHB
N
1377
NM_000056

Homo sapiens branched

Branched-chain keto acid dehydrogenase is a multienzyme complex associated with the inner






chain keto acid
membrane of mitochondria, and functions in the catabolism of branched-chain amino acids. The






dehydrogenase E1, beta
complex consists of multiple copies of 3 components: branched-chain alpha-keto acid decarboxylase






polypeptide (BCKDHB),
(E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3). This gene encodes the E1






nuclear gene encoding
beta subunit, and mutations therein have been associated with maple syrup urine disease (MSUD), type






mitochondrial protein,
1B, a disease characterized by a maple syrup odor to the urine in addition to mental and physical






transcript variant 2, mRNA.
retardation, and feeding problems. Alternative splicing at this locus results in transcript variants with







different 3′ non-coding regions, but encoding the same isoform. [provided by RefSeq, July 2008].







Transcript Variant: This variant (2) is missing a segment in the 3′ UTR compared to transcript variant







1, and thus has a shorter 3′ UTR. Both variants 1 and 2 encode the same protein.


BCKDHB
N
1378
NM_183050

Homo sapiens branched

Branched-chain keto acid dehydrogenase is a multienzyme complex associated with the inner






chain keto acid
membrane of mitochondria, and functions in the catabolism of branched-chain amino acids. The






dehydrogenase E1, beta
complex consists of multiple copies of 3 components: branched-chain alpha-keto acid decarboxylase






polypeptide (BCKDHB),
(E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3). This gene encodes the E1






nuclear gene encoding
beta subunit, and mutations therein have been associated with maple syrup urine disease (MSUD), type






mitochondrial protein,
1B, a disease characterized by a maple syrup odor to the urine in addition to mental and physical






transcript variant 1, mRNA.
retardation, and feeding problems. Alternative splicing at this locus results in transcript variants with







different 3 non-coding regions, but encoding the same isoform. [provided by RefSeq, July 2008].







Transcript Variant: This variant (1) represents the longer transcript. Both variants 1 and 2 encode the







same protein. Sequence Note: This RefSeq record was created from transcript and genomic sequence







data to make the sequence consistent with the reference genome assembly. The extent of this transcript







is supported by transcript alignments.


BRD7P3
Y
1379
NR_002730

Homo sapiens bromodomain

N/A






containing 7 pseudogene 3







(BRD7P3), non-coding







RNA.



PLN
Y
1380
NM_002667

Homo sapiens

The protein encoded by this gene is found as a pentamer and is a major substrate for the cAMP-






phospholamban (PLN),
dependent protein kinase in cardiac muscle. The encoded protein is an inhibitor of cardiac muscle






mRNA.
sarcoplasmic reticulum Ca(2+)-ATPase in the unphosphorylated state, but inhibition is relieved upon







phosphorylation of the protein. The subsequent activation of the Ca(2+) pump leads to enhanced







muscle relaxation rates, thereby contributing to the inotropic response elicited in heart by beta-







agonists. The encoded protein is a key regulator of cardiac diastolic function. Mutations in this gene







are a cause of inherited human dilated cardiomyopathy with refractory congestive heart failure.







[provided by RefSeq, July 2008].


SYNE1
Y
1381
NM_033071

Homo sapiens spectrin

This gene encodes a spectrin repeat containing protein expressed in skeletal and smooth muscle, and






repeat containing, nuclear
peripheral blood lymphocytes, that localizes to the nuclear membrane. Mutations in this gene have






envelope 1 (SYNE1),
been associated with autosomal recessive spinocerebellar ataxia 8, also referred to as autosomal






transcript variant 2, mRNA.
recessive cerebellar ataxia type 1 or recessive ataxia of Beauce. Alternatively spliced transcript







variants encoding different isoforms have been described. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (2) differs in the 5′ UTR and has multiple coding region differences, compared to







variant 1. This results in a shorter protein (isoform 2 which has also been referred to as the longer







isoform), compared to isoform 1.


SYNE1
Y
1382
NM_182961

Homo sapiens spectrin

This gene encodes a spectrin repeat containing protein expressed in skeletal and smooth muscle, and






repeat containing, nuclear
peripheral blood lymphocytes, that localizes to the nuclear membrane. Mutations in this gene have






envelope 1 (SYNE1),
been associated with autosomal recessive spinocerebellar ataxia 8, also referred to as autosomal






transcript variant 1, mRNA.
recessive cerebellar ataxia type 1 or recessive ataxia of Beauce. Alternatively spliced transcript







variants encoding different isoforms have been described. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (1) represents the longest transcript and encodes the longest protein (isoform 1







which has also been referred to as the longest isoform).


SRPK2
N
1383
NM_182691

Homo sapiens SRSF protein

N/A






kinase 2 (SRPK2), transcript







variant 2, mRNA.



SRPK2
N
1384
NM_182692

Homo sapiens SRSF protein

N/A






kinase 2 (SRPK2), transcript







variant 1, mRNA.



MGAM
Y
1385
NM_004668

Homo sapiens maltase-

This gene encodes maltase-glucoamylase, which is a brush border membrane enzyme that plays a role






glucoamylase (alpha-
in the final steps of digestion of starch. The protein has two catalytic sites identical to those of sucrase-






glucosidase) (MGAM),
isomaltase, but the proteins are only 59% homologous. Both are members of glycosyl hydrolase family






mRNA.
31, which has a variety of substrate specificities. [provided by RefSeq, July 2008].


PXDNL
N
1386
NM_144651

Homo sapiens peroxidasin

N/A






homolog (Drosophila)-like







(PXDNL), mRNA.



C9orf85
Y
1387
NM_182505

Homo sapiens chromosome

N/A






9 open reading frame 85







(C9orf85), mRNA.



C9orf102
N
1388
NM_001010895

Homo sapiens chromosome

N/A






9 open reading frame 102







(C9orf102), mRNA.



HBG1
Y
1389
NM_000559

Homo sapiens hemoglobin,

The gamma globin genes (HBG1 and HBG2) are normally expressed in the fetal liver, spleen and






gamma A (HBG1), mRNA.
bone marrow. Two gamma chains together with two alpha chains constitute fetal hemoglobin (HbF)







which is normally replaced by adult hemoglobin (HbA) at birth. In some beta-thalassemias and related







conditions, gamma chain production continues into adulthood. The two types of gamma chains differ







at residue 136 where glycine is found in the G-gamma product (HBG2) and alanine is found in the A-







gamma product (HBG1). The former is predominant at birth. The order of the genes in the beta-globin







cluster is: 5′-epsilon -- gamma-G -- gamma-A -- delta -- beta--3′. [provided by RefSeq, July 2008].


PDHX
N
1390
NM_001135024

Homo sapiens pyruvate

The pyruvate dehydrogenase (PDH) complex is located in the mitochondrial matrix and catalyzes the






dehydrogenase complex,
conversion of pyruvate to acetyl coenzyme A. The PDH complex thereby links glycolysis to Krebs






component X (PDHX),
cycle. The PDH complex contains three catalytic subunits, E1, E2, and E3, two regulatory subunits, E1






transcript variant 2, mRNA.
kinase and E1 phosphatase, and a non-catalytic subunit, E3 binding protein (E3BP). This gene encodes







the E3 binding protein subunit; also known as component X of the pyruvate dehydrogenase complex.







This protein tethers E3 dimers to the E2 core of the PDH complex. Defects in this gene are a cause of







pyruvate dehydrogenase deficiency which results in neurological dysfunction and lactic acidosis in







infancy and early childhood. This protein is also a minor antigen for antimitochondrial antibodies.







These autoantibodies are present in nearly 95% of patients with the autoimmune liver disease primary







biliary cirrhosis (PBC). In PBC, activated T lymphocytes attack and destroy epithelial cells in the bile







duct where this protein is abnormally distributed and overexpressed. PBC eventually leads to cirrhosis







and liver failure. Alternative splicing results in multiple transcript variants encoding distinct







isoforms. [provided by RefSeq, October 2009]. Transcript Variant: This variant (2) lacks a segment in the 5′







region, resulting in upstream in-frame AUG start codon, as compared to variant 1. The resulting







isoform (2) has a shorter and distinct N-terminus, as compared to isoform 1.


PDHX
N
1391
NM_001166158

Homo sapiens pyruvate

The pyruvate dehydrogenase (PDH) complex is located in the mitochondrial matrix and catalyzes the






dehydrogenase complex,
conversion of pyruvate to acetyl coenzyme A. The PDH complex thereby links glycolysis to Krebs






component X (PDHX),
cycle. The PDH complex contains three catalytic subunits, E1, E2, and E3, two regulatory subunits, E1






nuclear gene encoding
kinase and E1 phosphatase, and a non-catalytic subunit, E3 binding protein (E3BP). This gene encodes






mitochondrial protein,
the E3 binding protein subunit; also known as component X of the pyruvate dehydrogenase complex.






transcript variant 3, mRNA.
This protein tethers E3 dimers to the E2 core of the PDH complex. Defects in this gene are a cause of







pyruvate dehydrogenase deficiency which results in neurological dysfunction and lactic acidosis in







infancy and early childhood. This protein is also a minor antigen for antimitochondrial antibodies.







These autoantibodies are present in nearly 95% of patients with the autoimmune liver disease primary







biliary cirrhosis (PBC). In PBC, activated T lymphocytes attack and destroy epithelial cells in the bile







duct where this protein is abnormally distributed and overexpressed. PBC eventually leads to cirrhosis







and liver failure. Alternative splicing results in multiple transcript variants encoding distinct







isoforms. [provided by RefSeq, October 2009]. Transcript Variant: This variant (3) lacks multiple in-frame







exons in the central coding region, compared to variant 1, resulting in a protein (isoform 3) that lacks







227 aa, compared to isoform 1. Sequence Note: The RefSeq transcript and protein were derived from







transcript and genomic sequence to make the sequence consistent with the reference genome assembly.







The genomic coordinates used for the transcript record were based on alignments.


PDHX
N
1392
NM_003477

Homo sapiens pyruvate

The pyruvate dehydrogenase (PDH) complex is located in the mitochondrial matrix and catalyzes the






dehydrogenase complex,
conversion of pyruvate to acetyl coenzyme A. The PDH complex thereby links glycolysis to Krebs






component X (PDHX),
cycle. The PDH complex contains three catalytic subunits, E1, E2, and E3, two regulatory subunits, E1






nuclear gene encoding
kinase and E1 phosphatase, and a non-catalytic subunit, E3 binding protein (E3BP). This gene encodes






mitochondrial protein,
the E3 binding protein subunit; also known as component X of the pyruvate dehydrogenase complex.






transcript variant 1, mRNA.
This protein tethers E3 dimers to the E2 core of the PDH complex. Defects in this gene are a cause of







pyruvate dehydrogenase deficiency which results in neurological dysfunction and lactic acidosis in







infancy and early childhood. This protein is also a minor antigen for antimitochondrial antibodies.







These autoantibodies are present in nearly 95% of patients with the autoimmune liver disease primary







biliary cirrhosis (PBC). In PBC, activated T lymphocytes attack and destroy epithelial cells in the bile







duct where this protein is abnormally distributed and overexpressed. PBC eventually leads to cirrhosis







and liver failure. Alternative splicing results in multiple transcript variants encoding distinct







isoforms. [provided by RefSeq, October 2009]. Transcript Variant: This variant (1) encodes the longest







isoform (1). Sequence Note: Sequence Note: The RefSeq transcript and protein were derived from







transcript and genomic sequence to make the sequence consistent with the reference genome assembly.







The genomic coordinates used for the transcript record were based on alignments.


SORL1
N
1393
NM_003105

Homo sapiens sortilin-

This gene encodes a mosaic protein that belongs to at least two families: the vacuolar protein sorting






related receptor, L(DLR
10 (VPS10) domain-containing receptor family, and the low density lipoprotein receptor (LDLR)






class) A repeats containing
family. The encoded protein also contains fibronectin type III repeats and an epidermal growth factor






(SORL1), mRNA.
repeat. The encoded protein is translated as a preproprotein and likely plays roles in endocytosis and







sorting. There may be an association between expression of this locus and Alzheimer's







Disease. [provided by RefSeq, September 2010]. Sequence Note: This RefSeq record was created from







transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


LIN7A
N
1394
NM_004664

Homo sapiens lin-7

N/A






homolog A (C. elegans)







(LIN7A), mRNA.



ATXN2
N
1395
NM_002973

Homo sapiens ataxin 2

The autosomal dominant cerebellar ataxias (ADCA) are a heterogeneous group of neurodegenerative






(ATXN2), mRNA.
disorders characterized by progressive degeneration of the cerebellum, brain stem and spinal cord.







Clinically, ADCA has been divided into three groups: ADCA types I-III. Defects in this gene are the







cause of spinocerebellar ataxia type 2 (SCA2). SCA2 belongs to the autosomal dominant cerebellar







ataxias type I (ADCA I) which are characterized by cerebellar ataxia in combination with additional







clinical features like optic atrophy, ophthalmoplegia, bulbar and extrapyramidal signs, peripheral







neuropathy and dementia. SCA2 is caused by expansion of a CAG repeat in the coding region of this







gene. This locus has been mapped to chromosome 12, and it has been determined that the diseased







allele contains 37-50 CAG repeats, compared to 17-29 in the normal allele. Longer expansions result







in earlier onset of the disease. Alternatively spliced transcript variants encoding different isoforms







have been identified but their full length sequence has not been determined. [provided by RefSeq,







January 2010].


NALCN
N
1396
NM_052867

Homo sapiens sodium leak

NALCN forms a voltage-independent, nonselective, noninactivating cation channel permeable to Na+,






channel, non-selective
K+, and Ca(2+). It is responsible for the neuronal background sodium leak conductance (Lu et al.,






(NALCN), mRNA.
2007 [PubMed 17448995]). [supplied by OMIM, March 2008].


SLC10A2
Y
1397
NM_000452

Homo sapiens solute carrier

This gene encodes a sodium/bile acid cotransporter. This transporter is the primary mechanism for






family 10 (sodium/bile acid
uptake of intestinal bile acids by apical cells in the distal ileum. Bile acids are the catabolic product of






cotransporter family),
cholesterol metabolism, so this protein is also critical for cholesterol homeostasis. Mutations in this






member 2 (SLC10A2),
gene cause primary bile acid malabsorption (PBAM); muatations in this gene may also be associated






mRNA.
with other diseases of the liver and intestines, such as familial hypertriglyceridemia (FHTG). [provided







by RefSeq, March 2010].


MIR208B
Y
1398
NR_030624

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






208b (MIR208B),
regulation of gene expression in multicellular organisms by affecting both the stability and translation






microRNA.
of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


MYH6
Y
1399
NM_002471

Homo sapiens myosin,

Cardiac muscle myosin is a hexamer consisting of two heavy chain subunits, two light chain subunits,






heavy chain 6, cardiac
and two regulatory subunits. This gene encodes the alpha heavy chain subunit of cardiac myosin. The






muscle, alpha (MYH6),
gene is located 4kb downstream of the gene encoding the beta heavy chain subunit of cardiac myosin.






mRNA.
Mutations in this gene cause familial hypertrophic cardiomyopathy and atrial septal defect 3. [provided







by RefSeq, March 2010].


MYH7
Y
1400
NM_000257

Homo sapiens myosin,

Muscle myosin is a hexameric protein containing 2 heavy chain subunits, 2 alkali light chain subunits,






heavy chain 7, cardiac
and 2 regulatory light chain subunits. This gene encodes the beta (or slow) heavy chain subunit of






muscle, beta (MYH7),
cardiac myosin. It is expressed predominantly in normal human ventricle. It is also expressed in






mRNA.
skeletal muscle tissues rich in slow-twitch type I muscle fibers. Changes in the relative abundance of







this protein and the alpha (or fast) heavy subunit of cardiac myosin correlate with the contractile







velocity of cardiac muscle. Its expression is also altered during thyroid hormone depletion and







hemodynamic overloading. Mutations in this gene are associated with familial hypertrophic







cardiomyopathy, myosin storage myopathy, dilated cardiomyopathy, and Laing early-onset distal







myopathy. [provided by RefSeq, July 2008].


MDGA2
N
1401
NM_001113498

Homo sapiens MAM

N/A






domain containing







glycosylphosphatidylinositol







anchor 2 (MDGA2),







transcript variant 1, mRNA.



MDGA2
N
1402
NM_182830

Homo sapiens MAM

N/A






domain containing







glycosylphosphatidylinositol







anchor 2 (MDGA2),







transcript variant 2, mRNA.



UNC13C
N
1403
NM_001080534

Homo sapiens unc-13

N/A






homolog C (C. elegans)







(UNC13C), mRNA.



LOC283922
Y
1404
NR_026950

Homo sapiens pyruvate

N/A






dehydrogenase phosphatase







regulatory subunit







pseudogene (LOC283922),







non-coding RNA.



INTS2
N
1405
NM_020748

Homo sapiens integrator

INTS2 is a subunit of the Integrator complex, which associates with the C-terminal domain of RNA






complex subunit 2 (INTS2),
polymerase II large subunit (POLR2A; MIM 180660) and mediates 3-prime end processing of small






transcript variant 1, mRNA.
nuclear RNAs U1 (RNU1; MIM 180680) and U2 (RNU2; MIM 180690) (Baillat et al., 2005 [PubMed







16239144]). [supplied by OMIM, March 2008]. Transcript Variant: This variant (1) is the protein-coding







variant. Sequence Note: This RefSeq record was created from transcript and genomic sequence data







because no single transcript was available for the full length of the gene. The extent of this transcript is







supported by transcript alignments.


INTS2
N
1406
NR_026641

Homo sapiens integrator

INTS2 is a subunit of the Integrator complex, which associates with the C-terminal domain of RNA






complex subunit 2 (INTS2),
polymerase II large subunit (POLR2A; MIM 180660) and mediates 3-prime end processing of small






transcript variant 2, non-
nuclear RNAs U1 (RNU1; MIM 180680) and U2 (RNU2; MIM 180690) (Baillat et al., 2005 [PubMed






coding RNA.
16239144]). [supplied by OMIM, March 2008]. Transcript Variant: This variant (2) uses an alternate







splice junction downstream of the translation start site used in variant 1, resulting in a severely







truncated protein product. Therefore, it is likely that variant 2 does not encode a protein. Sequence







Note: This RefSeq record was created from transcript and genomic sequence data because no single







transcript was available for the full length of the gene. The extent of this transcript is supported by







transcript alignments.


CYP2A6
Y
1407
NM_000762

Homo sapiens cytochrome

This gene, CYP2A6, encodes a member of the cytochrome P450 superfamily of enzymes. The






P450, family 2, subfamily
cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug






A, polypeptide 6 (CYP2A6),
metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the






mRNA.
endoplasmic reticulum and its expression is induced by phenobarbital. The enzyme is known to







hydroxylate coumarin, and also metabolizes nicotine, aflatoxin B1, nitrosamines, and some







pharmaceuticals. Individuals with certain allelic variants are said to have a poor metabolizer







phenotype, meaning they do not efficiently metabolize coumarin or nicotine. This gene is part of a







large cluster of cytochrome P450 genes from the CYP2A, CYP2B and CYP2F subfamilies on







chromosome 19q. The gene was formerly referred to as CYP2A3; however, it has been renamed







CYP2A6. [provided by RefSeq, July 2008].


SIRPB1
N
1408
NM_001083910

Homo sapiens signal-

The protein encoded by this gene is a member of the signal-regulatory-protein (SIRP) family, and also






regulatory protein beta 1
belongs to the immunoglobulin superfamily. SIRP family members are receptor-type transmembrane






(SIRPB1), transcript variant
glycoproteins known to be involved in the negative regulation of receptor tyrosine kinase-coupled






2, mRNA.
signaling processes. This protein was found to interact with TYROBP/DAP12, a protein bearing







immunoreceptor tyrosine-based activation motifs. This protein was also reported to participate in the







recruitment of tyrosine kinase SYK. Multiple transcript variants encoding different isoforms have been







found for this gene. [provided by RefSeq, February 2009]. Transcript Variant: This variant (2) lacks two in-







frame coding exons in the 3′ region compared to variant 1. The resulting isoform (2) lacks an internal







segment compared to isoform 1.


SIRPB1
N
1409
NM_001135844

Homo sapiens signal-

The protein encoded by this gene is a member of the signal-regulatory-protein (SIRP) family, and also






regulatory protein beta 1
belongs to the immunoglobulin superfamily. SIRP family members are receptor-type transmembrane






(SIRPB1), transcript variant
glycoproteins known to be involved in the negative regulation of receptor tyrosine kinase-coupled






3, mRNA.
signaling processes. This protein was found to interact with TYROBP/DAP12, a protein bearing







immunoreceptor tyrosine-based activation motifs. This protein was also reported to participate in the







recruitment of tyrosine kinase SYK. Multiple transcript variants encoding different isoforms have been







found for this gene. [provided by RefSeq, February 2009]. Transcript Variant: This variant (3) differs in the







3′ UTR and coding sequence compared to variant 1. The resulting isoform (3) is similar in sequence to







isoform 1 and contains the same number of aa as does isoform 1.


SIRPB1
N
1410
NM_006065

Homo sapiens signal-

The protein encoded by this gene is a member of the signal-regulatory-protein (SIRP) family, and also






regulatory protein beta 1
belongs to the immunoglobulin superfamily. SIRP family members are receptor-type transmembrane






(SIRPB1), transcript variant
glycoproteins known to be involved in the negative regulation of receptor tyrosine kinase-coupled






1, mRNA.
signaling processes. This protein was found to interact with TYROBP/DAP12, a protein bearing







immunoreceptor tyrosine-based activation motifs. This protein was also reported to participate in the







recruitment of tyrosine kinase SYK. Multiple transcript variants encoding different isoforms have been







found for this gene. [provided by RefSeq, February 2009]. Transcript Variant: This variant (1) encodes the







longest transcript and the longer isoform (1). Variants 1 and 3 encode different proteins having the







same number of aa.


CENPVL1
Y
1411
NR_033772

Homo sapiens centromere

N/A






protein V-like 1







(CENPVL1), non-coding







RNA.



CXorf27
Y
1412
NM_012274

Homo sapiens chromosome

This gene encodes a protein shown to interact with huntingtin, which contains an expanded






X open reading frame 27
polyglutamine tract in individuals with Huntington's disease (PMID: 9700202). [provided by RefSeq,






(CXorf27), mRNA.
August 2011].


CXorf40B
Y
1413
NM_001013845

Homo sapiens chromosome

N/A






X open reading frame 40B







(CXorf40B), mRNA.



EDA2R
Y
1414
NM_001199687

Homo sapiens ectodysplasin

EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that are encoded by the anhidrotic






A2 receptor (EDA2R),
ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by






transcript variant 1, mRNA.
loss of hair, sweat glands, and teeth. The protein encoded by this gene specifically binds to EDA-A2







isoform. This protein is a type III transmembrane protein of the TNFR (tumor necrosis factor receptor)







superfamily, and contains 3 cysteine-rich repeats and a single transmembrane domain but lacks an N-







terminal signal peptide. Alternatively spliced transcript variants have been found for this







gene. [provided by RefSeq, May 2011]. Transcript Variant: This variant (1) represents the longer







transcript. Variants 1 and 2 both encode the same protein (isoform 1).


EDA2R
Y
1415
NM_001242310

Homo sapiens ectodysplasin

EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that are encoded by the anhidrotic






A2 receptor (EDA2R),
ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by






transcript variant 3, mRNA.
loss of hair, sweat glands, and teeth. The protein encoded by this gene specifically binds to EDA-A2







isoform. This protein is a type III transmembrane protein of the TNFR (tumor necrosis factor receptor)







superfamily, and contains 3 cysteine-rich repeats and a single transmembrane domain but lacks an N-







terminal signal peptide. Alternatively spliced transcript variants have been found for this







gene. [provided by RefSeq, May 2011]. Transcript Variant: This variant (3) contains an alternate exon







and uses an alternate splice site in the 3 coding region but maintains the reading frame compared to







variant 1. The resulting protein (isoform 2) is longer compared to isoform 1. Sequence Note: This







RefSeq record was created from transcript and genomic sequence data to make the sequence consistent







with the reference genome assembly. The genomic coordinates used for the transcript record were







based on transcript alignments.


EDA2R
Y
1416
NM_021783

Homo sapiens ectodysplasin

EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that are encoded by the anhidrotic






A2 receptor (EDA2R),
ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by






transcript variant 2, mRNA.
loss of hair, sweat glands, and teeth. The protein encoded by this gene specifically binds to EDA-A2







isoform. This protein is a type III transmembrane protein of the TNFR (tumor necrosis factor receptor)







superfamily, and contains 3 cysteine-rich repeats and a single transmembrane domain but lacks an N-







terminal signal peptide. Alternatively spliced transcript variants have been found for this







gene. [provided by RefSeq, May 2011]. Transcript Variant: This variant (2) differs in the 5′ UTR







compared to variant 1. Variants 1 and 2 both encode the same protein (isoform 1). Publication Note:







This RefSeq record includes a subset of the publications that are available for this gene. Please see the







Gene record to access additional publications.


F8
Y
1417
NM_000132

Homo sapiens coagulation

This gene encodes coagulation factor VIII, which participates in the intrinsic pathway of blood






factor VIII, procoagulant
coagulation; factor VIII is a cofactor for factor IXa which, in the presence of Ca+2 and phospholipids,






component (F8), transcript
converts factor X to the activated form Xa. This gene produces two alternatively spliced transcripts.






variant 1, mRNA.
Transcript variant 1 encodes a large glycoprotein, isoform a, which circulates in plasma and associates







with von Willebrand factor in a noncovalent complex. This protein undergoes multiple cleavage







events. Transcript variant 2 encodes a putative small protein, isoform b, which consists primarily of the







phospholipid binding domain of factor VIIIc. This binding domain is essential for coagulant activity.







Defects in this gene results in hemophilia A, a common recessive X-linked coagulation disorder.







[provided by RefSeq, July 2008]. Transcript Variant: This variant (1) consists of 26 exons and encodes







the full-length isoform (a).


F8
Y
1418
NM_019863

Homo sapiens coagulation

This gene encodes coagulation factor VIII, which participates in the intrinsic pathway of blood






factor VIII, procoagulant
coagulation; factor VIII is a cofactor for factor IXa which, in the presence of Ca+2 and phospholipids,






component (F8), transcript
converts factor X to the activated form Xa. This gene produces two alternatively spliced transcripts.






variant 2, mRNA.
Transcript variant 1 encodes a large glycoprotein, isoform a, which circulates in plasma and associates







with von Willebrand factor in a noncovalent complex. This protein undergoes multiple cleavage







events. Transcript variant 2 encodes a putative small protein, isoform b, which consists primarily of the







phospholipid binding domain of factor VIIIc. This binding domain is essential for coagulant activity.







Defects in this gene results in hemophilia A, a common recessive X-linked coagulation disorder.







[provided by RefSeq, July 2008]. Transcript Variant: This variant (2) contains an unique 5′ exon located







within intron 22 of transcript variant 1. This exon codes for eight amino acids and is spliced to exons







23-26 maintaining the reading frame. The resulting isoform (b) is considerably shorter compared to







isoform a, and includes the phospholipid binding domain.


FLNA
Y
1419
NM_001110556

Homo sapiens filamin A,

The protein encoded by this gene is an actin-binding protein that crosslinks actin filaments and links






alpha (FLNA), transcript
actin filaments to membrane glycoproteins. The encoded protein is involved in remodeling the






variant 2, mRNA.
cytoskeleton to effect changes in cell shape and migration. This protein interacts with integrins,







transmembrane receptor complexes, and second messengers. Defects in this gene are a cause of several







syndromes, including periventricular nodular heterotopias (PVNH1, PVNH4), otopalatodigital







syndromes (OPD1, OPD2), frontometaphyseal dysplasia (FMD), Melnick-Needles syndrome (MNS),







and X-linked congenital idiopathic intestinal pseudoobstruction (CIIPX). Two transcript variants







encoding different isoforms have been found for this gene. [provided by RefSeq, March 2009]. Transcript







Variant: This variant (2) includes an alternate in-frame exon and encodes a slightly longer protein







isoform (2).


FLNA
Y
1420
NM_001080489

Homo sapiens filamin A,

The protein encoded by this gene is an actin-binding protein that crosslinks actin filaments and links






alpha (FLNA), transcript
actin filaments to membrane glycoproteins. The encoded protein is involved in remodeling the






variant 1, mRNA.
cytoskeleton to effect changes in cell shape and migration. This protein interacts with integrins,







transmembrane receptor complexes, and second messengers. Defects in this gene are a cause of several







syndromes, including periventricular nodular heterotopias (PVNH1, PVNH4), otopalatodigital







syndromes (OPD1, OPD2), frontometaphyseal dysplasia (FMD), Melnick-Needles syndrome (MNS),







and X-linked congenital idiopathic intestinal pseudoobstruction (CIIPX). Two transcript variants







encoding different isoforms have been found for this gene. [provided by RefSeq, March 2009]. Transcript







Variant: This variant (1) is the predominant transcript and encodes a slightly shorter protein isoform (1).


GLOD5
Y
1421
NM_001080489

Homo sapiens glyoxalase

This gene encodes a protein with a glyoxalase domain. [provided by RefSeq, September 2011].






domain containing 5







(GLOD5), mRNA.



L1CAM
Y
1422
NM_000425

Homo sapiens L1 cell

The protein encoded by this gene is an axonal glycoprotein belonging to the immunoglobulin






adhesion molecule
supergene family. The ectodomain, consisting of several immunoglobulin-like domains and






(L1CAM), transcript variant
fibronectin-like repeats (type III), is linked via a single transmembrane sequence to a conserved






1, mRNA.
cytoplasmic domain. This cell adhesion molecule plays an important role in nervous system







development, including neuronal migration and differentiation. Mutations in the gene cause three X-







linked neurological syndromes known by the acronym CRASH (corpus callosum hypoplasia,







retardation, aphasia, spastic paraplegia and hydrocephalus). Alternative splicing of a neuron-specific







exon is thought to be functionally relevant. [provided by RefSeq, July 2008]. Transcript Variant: This







variant (1) includes a neuron-specific exon in the 3′ region and encodes the full-length isoform (1).


L1CAM
Y
1423
NM_001143963

Homo sapiens L1 cell

The protein encoded by this gene is an axonal glycoprotein belonging to the immunoglobulin






adhesion molecule
supergene family. The ectodomain, consisting of several immunoglobulin-like domains and






(L1CAM), transcript variant
fibronectin-like repeats (type III), is linked via a single transmembrane sequence to a conserved






3, mRNA.
cytoplasmic domain. This cell adhesion molecule plays an important role in nervous system







development, including neuronal migration and differentiation. Mutations in the gene cause three X-







linked neurological syndromes known by the acronym CRASH (corpus callosum hypoplasia,







retardation, aphasia, spastic paraplegia and hydrocephalus). Alternative splicing of a neuron-specific







exon is thought to be functionally relevant. [provided by RefSeq, July 2008]. Transcript Variant: This







variant (3) lacks an internal exon in the 5′ region and a neuron-specific exon in the 3′ region, as







compared to variant 1. The resulting isoform (3) is shorter, and lacks an internal segment in the N-







terminus and is missing a tyrosine-based sorting motif in the C-terminus.


L1CAM
Y
1424
NM_024003

Homo sapiens L1 cell

The protein encoded by this gene is an axonal glycoprotein belonging to the immunoglobulin






adhesion molecule
supergene family. The ectodomain, consisting of several immunoglobulin-like domains and






(L1CAM), transcript variant
fibronectin-like repeats (type III), is linked via a single transmembrane sequence to a conserved






2, mRNA.
cytoplasmic domain. This cell adhesion molecule plays an important role in nervous system







development, including neuronal migration and differentiation. Mutations in the gene cause three X-







linked neurological syndromes known by the acronym CRASH (corpus callosum hypoplasia,







retardation, aphasia, spastic paraplegia and hydrocephalus). Alternative splicing of a neuron-specific







exon is thought to be functionally relevant. [provided by RefSeq, July 2008]. Transcript Variant: This







variant (2) lacks a neuron-specific exon in the 3′ region, as compared to variant 1. The resulting







isoform (2) is shorter and is missing a tyrosine-based sorting motif.


LOC100272228
Y
1425
NR_027456

Homo sapiens

N/A






uncharacterized







LOC100272228







(LOC100272228), non-







coding RNA.



LOC286467
Y
1426
NR_026975

Homo sapiens family with

N/A






sequence similarity 195,







member A pseudogene







(LOC286467), non-coding







RNA.



LOC401588
Y
1427
NR_015378

Homo sapiens

N/A






uncharacterized LOC401588







(LOC401588), non-coding







RNA.



LOC441495
Y
1428
NR_033773

Homo sapiens centromere

N/A






protein V pseudogene







(LOC441495), non-coding







RNA.



LOC92249
Y
1429
NR_015353

Homo sapiens

N/A






uncharacterized LOC92249







(LOC92249), non-coding







RNA.



MAGEA11
Y
1430
NM_0010011544

Homo sapiens melanoma

This gene is a member of the MAGEA gene family. The members of this family encode proteins with






antigen family A, 11
50 to 80% sequence identity to each other. The promoters and first exons of the MAGEA genes show






(MAGEA11), transcript
considerable variability, suggesting that the existence of this gene family enables the same function to






variant 2, mRNA.
be expressed under different transcriptional controls. The MAGEA genes are clustered at chromosomal







location Xq28. They have been implicated in some hereditary disorders, such as dyskeratosis







congenita. Two transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, July 2008]. Transcript Variant: This variant (2) differs in the 5′ UTR and CDS







compared to variant 1. The resulting isoform (b) is shorter and has a distinct N-terminus compared to







isoform a. Publication Note: This RefSeq record includes a subset of the publications that are available







for this gene. Please see the Gene record to access additional publications.


MAGEA11
Y
1431
NM_005366

Homo sapiens melanoma

This gene is a member of the MAGEA gene family. The members of this family encode proteins with






antigen family A, 11
50 to 80% sequence identity to each other. The promoters and first exons of the MAGEA genes show






(MAGEA11), transcript
considerable variability, suggesting that the existence of this gene family enables the same function to






variant 1, mRNA.
be expressed under different transcriptional controls. The MAGEA genes are clustered at chromosomal







location Xq28. They have been implicated in some hereditary disorders, such as dyskeratosis







congenita. Two transcript variants encoding different isoforms have been found for this gene.







[provided by RefSeq, July 2008]. Transcript Variant: This variant (1) encodes the longer isoform (a).







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


MAGEC1
Y
1432
NM_005462

Homo sapiens melanoma

This gene is a member of the melanoma antigen gene (MAGE) family. The proteins of this family are






antigen family C, 1
tumor-specific antigens that can be recognized by autologous cytolytic T lymphocytes. This protein






(MAGEC1), mRNA.
contains a large number of unique short repetitive sequences in front of the MAGE-homologous







sequence, and therefore is about 800 aa longer than the other MAGE proteins. [provided by RefSeq,







July 2008]. Sequence Note: This RefSeq record was created from transcript and genomic sequence data







to make the sequence consistent with the reference genome assembly. The genomic coordinates used







for the transcript record were based on transcript alignments. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to







access additional publications.


MAGEC3
Y
1433
NM_138702

Homo sapiens melanoma

This gene is a member of the MAGEC gene family. The members of this family are not expressed in






antigen family C, 3
normal tissues, except for testis, and are expressed in tumors of various histological types. The






(MAGEC3), transcript
MAGEC genes are clustered on chromosome Xq26-q27. Two transcript variants encoding distinct






variant 1, mRNA.
isoforms have been found for this gene. [provided by RefSeq, July 2008]. Transcript Variant: This







variant (1) is the longer transcript and encodes the longer isoform (1).


MAGEC3
Y
1434
NM_177456

Homo sapiens melanoma

This gene is a member of the MAGEC gene family. The members of this family are not expressed in






antigen family C, 3
normal tissues, except for testis, and are expressed in tumors of various histological types. The






(MAGEC3), transcript
MAGEC genes are clustered on chromosome Xq26-q27. Two transcript variants encoding distinct






variant 2, mRNA.
isoforms have been found for this gene. [provided by RefSeq, July 2008]. Transcript Variant: This







variant (2) has several alternate splice sites, as compared to variant 1. It encodes the shorter isoform







(2), which has different N- and C-termini, as compared to isoform 1.


MAGT1
Y
1435
NM_032121

Homo sapiens magnesium

This gene encodes a magnesium cation transporter protein that localizes to the cell membrane. This






transporter 1 (MAGT1),
protein also associates with N-oligosacchaiyl transferase and therefore may have a role in N-






mRNA.
glycosylation. Mutations in this gene cause mental retardation X-linked type 95 (MRX95). This gene







may have multiple in-frame translation initiation sites, one of which would encode a shorter protein







with an N-terminus containing a signal peptide at amino acids 1-29. [provided by RefSeq, January 2010].


MCART6
Y
1436
NM_001012755

Homo sapiens mitochondrial

N/A






carrier triple repeat 6







(MCART6), nuclear gene







encoding mitochondrial







protein, mRNA.



MIR890
Y
1437
NM_030589

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






890 (MIR890), microRNA.
regulation of gene expression in multicellular organisms by affecting both the stability and translation







of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


NSDHL
Y
1438
NM_001129765

Homo sapiens NAD(P)

The protein encoded by this gene is localized in the endoplasmic reticulum and is involved in






dependent steroid
cholesterol biosynthesis. Mutations in this gene are associated with CHILD syndrome, which is a X-






dehydrogenase-like
linked dominant disorder of lipid metabolism with disturbed cholesterol biosynthesis, and typically






(NSDHL), transcript variant
lethal in males. Alternatively spliced transcript variants with differing 5′ UTR have been found for this






2, mRNA.
gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (2) contains an additional 5′







non-coding exon, hence has a longer 5′ UTR compared to variant 1. Transcript variants 1 and 2 encode







the same protein. Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


NSDHL
Y
1439
NM_015922

Homo sapiens NAD(P)

The protein encoded by this gene is localized in the endoplasmic reticulum and is involved in






dependent steroid
cholesterol biosynthesis. Mutations in this gene are associated with CHILD syndrome, which is a X-






dehydrogenase-like
linked dominant disorder of lipid metabolism with disturbed cholesterol biosynthesis, and typically






(NSDHL), transcript variant
lethal in males. Alternatively spliced transcript variants with differing 5′ UTR have been found for this






1, mRNA.
gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (1) represents the more







predominant transcript. Transcript variants 1 and 2 encode the same protein.


NUDT10
Y
1440
NM_153183

Homo sapiens nudix

NUDT10 belongs to a subgroup of phosphohydrolases that preferentially attack diphosphoinositol






(nucleoside diphosphate
polyphosphates (Hidaka et al., 2002 [PubMed 12105228]). [supplied by OMIM, March 2008]. Sequence






linked moiety X)-type motif
Note: removed 2 bases from the 5′ end that did not align to the reference genome assembly.






10 (NUDT10), mRNA.



NUDT11
Y
1441
NM_018159

Homo sapiens nudix

NUDT11 belongs to a subgroup of phosphohydrolases that preferentially attack diphosphoinositol






(nucleoside diphosphate
polyphosphates (Hidaka et al., 2002 [PubMed 12105228]). [supplied by OMIM, March 2008].






linked moiety X)-type motif







11 (NUDT11), mRNA.



OR13H1
Y
1442
NM_001004486

Homo sapiens olfactory

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that






receptor, family 13,
triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-






subfamily H, member 1
protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a






(OR13H1), mRNA.
7-transmembrane domain structure with many neurotransmitter and hormone receptors and are







responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory







receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor







genes and proteins for this organism is independent of other organisms. [provided by RefSeq, July 2008].


PRRG1
Y
1443
NM_000950

Homo sapiens proline rich

This gene encodes a vitamin K-dependent, gamma-carboxyglutamic acid (Gla)-containing, single-pass






Gla (G-carboxyglutamic
transmembrane protein. This protein contains a Gla domain at the N-terminus, preceded by a






acid) 1 (PRRG1), transcript
propeptide sequence required for post-translational gamma-carboxylation of specific glutamic acid






variant 1, mRNA.
residues by a vitamin K-dependent gamma-carboxylase. The C-terminus is proline-rich containing







PPXY and PXXP motifs found in a variety of signaling and cytoskeletal proteins. This gene is highly







expressed in the spinal cord. Several alternatively spliced transcript variants have been found for this







gene. [provided by RefSeq, March 2010]. Transcript Variant: This variant (1) represents the longest







transcript and encodes the longer isoform (1). Variants 1-4 encode the same isoform.


PRRG1
Y
1444
NM_001142395

Homo sapiens proline rich

This gene encodes a vitamin K-dependent, gamma-carboxyglutamic acid (Gla)-containing, single-pass






Gla (G-carboxyglutamic
transmembrane protein. This protein contains a Gla domain at the N-terminus, preceded by a






acid) 1 (PRRG1), transcript
propeptide sequence required for post-translational gamma-carboxylation of specific glutamic acid






variant 2, mRNA.
residues by a vitamin K-dependent gamma-carboxylase. The C-terminus is proline-rich containing







PPXY and PXXP motifs found in a variety of signaling and cytoskeletal proteins. This gene is highly







expressed in the spinal cord. Several alternatively spliced transcript variants have been found for this







gene. [provided by RefSeq, March 2010]. Transcript Variant: This variant (2) is missing a 5′ non-coding







exon compared to variant 1. Variants 1-4 encode the same isoform (1).


PRRG1
Y
1445
NM_001173486

Homo sapiens proline rich

This gene encodes a vitamin K-dependent, gamma-carboxyglutamic acid (Gla)-containing, single-pass






Gla (G-carboxyglutamic
transmembrane protein. This protein contains a Gla domain at the N-terminus, preceded by a






acid) 1 (PRRG1), transcript
propeptide sequence required for post-translational gamma-carboxylation of specific glutamic acid






variant 5, mRNA.
residues by a vitamin K-dependent gamma-carboxylase. The C-terminus is proline-rich containing







PPXY and PXXP motifs found in a variety of signaling and cytoskeletal proteins. This gene is highly







expressed in the spinal cord. Several alternatively spliced transcript variants have been found for this







gene. [provided by RefSeq, March 2010]. Transcript Variant: This variant (5) is missing a 5′ non-coding







exon, and contains an alternate 3′ terminal exon compared to variant 1. The latter causes a frame-shift







and a shorter isoform (2) with a distinct C-terminus compared to isoform 1. Isoform 2 retains a partial







Gla domain at the N-terminus, however, this protein is predicted and lacks experimental evidence.


PRRG1
Y
1446
NM_001173489

Homo sapiens proline rich

This gene encodes a vitamin K-dependent, gamma-carboxyglutamic acid (Gla)-containing, single-pass






Gla (G-carboxyglutamic
transmembrane protein. This protein contains a Gla domain at the N-terminus, preceded by a






acid) 1 (PRRG1), transcript
propeptide sequence required for post-translational gamma-carboxylation of specific glutamic acid






variant 3, mRNA.
residues by a vitamin K-dependent gamma-carboxylase. The C-terminus is proline-rich containing







PPXY and PXXP motifs found in a variety of signaling and cytoskeletal proteins. This gene is highly







expressed in the spinal cord. Several alternatively spliced transcript variants have been found for this







gene. [provided by RefSeq, March 2010]. Transcript Variant: This variant (3) uses an alternative donor







splice site at the 5′ terminal non-coding exon compared to variant 1. Variants 1-4 encode the same







isoform (1).


PRRG1
Y
1447
NM_001173490

Homo sapiens proline rich

This gene encodes a vitamin K-dependent, gamma-carboxyglutamic acid (Gla)-containing, single-pass






Gla (G-carboxyglutamic
transmembrane protein. This protein contains a Gla domain at the N-terminus, preceded by a






acid) 1 (PRRG1), transcript
propeptide sequence required for post-translational gamma-carboxylation of specific glutamic acid






variant 4, mRNA.
residues by a vitamin K-dependent gamma-carboxylase. The C-terminus is proline-rich containing







PPXY and PXXP motifs found in a variety of signaling and cytoskeletal proteins. This gene is highly







expressed in the spinal cord. Several alternatively spliced transcript variants have been found for this







gene. [provided by RefSeq, March 2010]. Transcript Variant: This variant (4) uses an alternative donor







splice site at the 5′ terminal non-coding exon, and is missing another 5′ non-coding exon compared to







variant 1. Variants 1-4 encode the same isoform (1).


SPIN4
Y
1448
NM_001012968

Homo sapiens spindlin

N/A






family, member 4 (SPIN4),







mRNA.



SYTL5
Y
1449
NM_001163334

Homo sapiens

The protein encoded by this gene belongs to the synaptotagmin-like (Slp) protein family, which






synaptotagmin-like 5
contains a unique homology domain at the N-terminus, referred to as the Slp homology domain (SHD).






(SYTL5), transcript variant
The SHD functions as a binding site for Rab27A, which plays a role in protein transport. Expression of






3, mRNA.
this gene is restricted to placenta and liver, suggesting that it might be involved in Rab27A-dependent







membrane trafficking in specific tissues. Alternatively spliced transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, September 2009]. Transcript Variant: This







variant (3) contains an in-frame coding exon missing in variant 1, resulting in a longer isoform (2) with







an additional 22 aa protein segment compared to isoform 1.


SYTL5
Y
1450
NM_001163335

Homo sapiens

The protein encoded by this gene belongs to the synaptotagmin-like (Slp) protein family, which






synaptotagmin-like 5
contains a unique homology domain at the N-terminus, referred to as the Slp homology domain (SHD).






(SYTL5), transcript variant
The SHD functions as a binding site for Rab27A, which plays a role in protein transport. Expression of






2, mRNA.
this gene is restricted to placenta and liver, suggesting that it might be involved in Rab27A-dependent







membrane trafficking in specific tissues. Alternatively spliced transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, September 2009]. Transcript Variant: This







variant (2) differs in the 5′ UTR compared to variant 1. Variants 1 and 2 encode the same isoform (1).


SYTL5
Y
1451
NM_138780

Homo sapiens

The protein encoded by this gene belongs to the synaptotagmin-like (Slip) protein family, which






synaptotagmin-like 5
contains a unique homology domain at the N-terminus, referred to as the Slp homology domain (SHD).






(SYTL5), transcript variant
The SHD functions as a binding site for Rab27A, which plays a role in protein transport. Expression of






1, mRNA.
this gene is restricted to placenta and liver, suggesting that it might be involved in Rab27A-dependent







membrane trafficking in specific tissues. Alternatively spliced transcript variants encoding different







isoforms have been found for this gene. [provided by RefSeq, September 2009]. Transcript Variant: This







variant (1) encodes the shorter isoform (1). Variants 1 and 2 encode the same isoform.


TAF7L
Y
1452
NM_001168474

Homo sapiens TAF7-like

This gene is similar to a mouse gene that encodes a TATA box binding protein-associated factor, and






RNA polymerase II, TATA
shows testis-specific expression. The encoded protein could be a spermatogenesis-specific component






box binding protein (TBP)-
of the DNA-binding general transcription factor complex TFIID. Alternatively spliced transcript






associated factor, 50 kDa
variants encoding different isoforms have been found for this gene. [provided by RefSeq, December 2009].






(TAF7L), transcript variant
Transcript Variant: This variant (2) differs in the 5′ UTR, lacks a portion of the 5′ coding region, and






2, mRNA.
initiates translation at a downstream start codon, compared to variant 1. The encoded isoform (2) has a







shorter N-terminus, compared to isoform 1.


TAF7L
Y
1453
NM_024885

Homo sapiens TAF7-like

This gene is similar to a mouse gene that encodes a TATA box binding protein-associated factor, and






RNA polymerase II, TATA
shows testis-specific expression. The encoded protein could be a spermatogenesis-specific component






box binding protein (TBP)-
of the DNA-binding general transcription factor complex TFIID. Alternatively spliced transcript






associated factor, 50 kDa
variants encoding different isoforms have been found for this gene. [provided by RefSeq, December 2009].






(TAF7L), transcript variant
Transcript Variant: This variant (1) represents the longer transcript and encodes the longer isoform (1).






1, mRNA.



TMEM185A
both
1454
NM_001174092

Homo sapiens

The protein encoded by this gene is predicted to be a transmembrane protein, but this has not been






transmembrane protein
experimentally determined. This gene is better known for localizing to the CpG island of the fragile






185A (TMEM185A),
site FRAXF. The 5-prime untranslated region of this gene contains a CGG trinucleotide repeat






transcript variant 2, mRNA.
sequence that normally consists of 7-40 tandem CGG repeats but which can expand to greater than 300







repeats. Methylation of the CpG island leads to transcriptional silencing of this gene, but neither the







silencing nor an expanded repeat region appear to manifest itself in a clear phenotypic manner. Two







transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq,







March 2010]. Transcript Variant: This variant (2) lacks an alternate in-frame exon compared to variant 1.







The resulting isoform (2) has the same N- and C-termini but is shorter compared to isoform 1.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


TMEM185A
both
1455
NM_032508

Homo sapiens

The protein encoded by this gene is predicted to be a transmembrane protein, but this has not been






transmembrane protein
experimentally determined. This gene is better known for localizing to the CpG island of the fragile






185A (TMEM185A),
site FRAXF. The 5-prime untranslated region of this gene contains a CGG trinucleotide repeat






transcript variant 1, mRNA.
sequence that normally consists of 7-40 tandem CGG repeats but which can expand to greater than 300







repeats. Methylation of the CpG island leads to transcriptional silencing of this gene, but neither the







silencing nor an expanded repeat region appear to manifest itself in a clear phenotypic manner. Two







transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq,







March 2010]. Transcript Variant: This variant (1) represents the longer transcript and encodes the longer







isoform (1). Sequence Note: This RefSeq record was created from transcript and genomic sequence







data to make the sequence consistent with the reference genome assembly. The genomic coordinates







used for the transcript record were based on transcript alignments.


TMLHE
both
1456
NM_001184797

Homo sapiens

This gene encodes the protein trimethyllysine dioxygenase which is the first enzyme in the carnitine






trimethyllysine hydroxylase,
biosynthesis pathway. Carnitine play an essential role in the transport of activated fatty acids across the






epsilon (TMLHE), nuclear
inner mitochondrial membrane. The encoded protein converts trimethyllysine into






gene encoding
hydroxytrimethyllysine. A pseudogene of this gene is found on chromosome X. Alternate splicing






mitochondrial protein,
results in multiple transcript variants. [provided by RefSeq, May 2010]. Transcript Variant: This variant






transcript variant 2, mRNA.
(2) differs in the 3′ UTR and coding region differences, compared to variant 1. The resulting protein







(isoform 2) has a distinct C-terminus and is shorter than isoform 1.


TMLHE
both
1457
NM_018196

Homo sapiens

This gene encodes the protein trimethyllysine dioxygenase which is the first enzyme in the carnitine






trimethyllysine hydroxylase,
biosynthesis pathway. Carnitine play an essential role in the transport of activated fatty acids across the






epsilon (TMLHE), nuclear
inner mitochondrial membrane. The encoded protein converts trimethyllysine into






gene encoding
hydroxytrimethyllysine. A pseudogene of this gene is found on chromosome X. Alternate splicing






mitochondrial protein,
results in multiple transcript variants. [provided by RefSeq, May 2010]. Transcript Variant: This variant






transcript variant 1, mRNA.
(1) represents the longer transcript and encodes the longer isoform (1). Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with







the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


ZDHHC9
N
1458
NM_001008222

Homo sapiens zinc finger,

This gene encodes an integral membrane protein that is a member of the zinc finger DHHC domain-






DHHC-type containing 9
containing protein family. The encoded protein forms a complex with golgin subfamily A member 7






(ZDHHC9), transcript
and functions as a palmitoyltransferase. This protein specifically palmitoylates HRAS and NRAS.






variant 2, mRNA.
Mutations in this gene are associated with X-linked mental retardation. Alternate splicing results in







multiple transcript variants that encode the same protein. [provided by RefSeq, May 2010]. Transcript







Variant: This variant (2) has an alternate 5′ UTR and encodes the same protein, as compared to variant







1. Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


ZDHHC9
N
1459
NM_016032

Homo sapiens zinc finger,

This gene encodes an integral membrane protein that is a member of the zinc finger DHHC domain-






DHHC-type containing 9
containing protein family. The encoded protein forms a complex with golgin subfamily A member 7






(ZDHHC9), transcript
and functions as a palmitoyltransferase. This protein specifically palmitoylates HRAS and NRAS.






variant 1, mRNA.
Mutations in this gene are associated with X-linked mental retardation. Alternate splicing results in







multiple transcript variants that encode the same protein. [provided by RefSeq, May 2010]. Transcript







Variant: This variant (1) is the longer transcript and both variants 1 and 2 encode the same protein.







Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make







the sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


ZNF674
Y
1460
NM_001039891

Homo sapiens zinc finger

This gene encodes a zinc finger protein with an N-terminal Kruppel-associated box-containing






protein 674 (ZNF674),
(KRAB) domain and 11 Kruppel-type C2H2 zinc finger domains. Like other zinc finger proteins, this






transcript variant 1, mRNA.
gene may function as a transcription factor. This gene resides on an area of chromosome X that has







been implicated in nonsyndromic X-linked mental retardation. Alternative splicing results in multiple







transcript variants encoding different isoforms. [provided by RefSeq, June 2010]. Transcript Variant:







This variant (1) encodes the longer isoform (1). Sequence Note: This RefSeq record was created from







transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


ZNF674
Y
1461
NM_001146291

Homo sapiens zinc finger

This gene encodes a zinc finger protein with an N-terminal Kruppel-associated box-containing






protein 674 (ZNF674),
(KRAB) domain and 11 Kruppel-type C2H2 zinc finger domains. Like other zinc finger proteins, this






transcript variant 2, mRNA.
gene may function as a transcription factor. This gene resides on an area of chromosome X that has







been implicated in nonsyndromic X-linked mental retardation. Alternative splicing results in multiple







transcript variants encoding different isoforms. [provided by RefSeq, June 2010]. Transcript Variant:







This variant (2) uses alternate in-frame donor and acceptor splice sites at two coding exons compared







to variant 1, resulting in an isoform (2), which is 6 aa shorter than isoform 1. Sequence Note: This







RefSeq record was created from transcript and genomic sequence data to make the sequence consistent







with the reference genome assembly. The genomic coordinates used for the transcript record were







based on transcript alignments.


ZNF674
Y
1462
NM_001190417

Homo sapiens zinc finger

This gene encodes a zinc finger protein with an N-terminal Kruppel-associated box-containing






protein 674 (ZNF674),
(KRAB) domain and 11 Kruppel-type C2H2 zinc finger domains. Like other zinc finger proteins, this






transcript variant 3, mRNA.
gene may function as a transcription factor. This gene resides on an area of chromosome X that has







been implicated in nonsyndromic X-linked mental retardation. Alternative splicing results in multiple







transcript variants encoding different isoforms. [provided by RefSeq, June 2010]. Transcript Variant:







This variant (3) uses an alternate in-frame splice site at a coding exon, compared to variant 1, resulting







in an isoform (3), which is 5 aa shorter than isoform 1. Sequence Note: This RefSeq record was created







from transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


OXR1
N
1463
NM_001198532

Homo sapiens oxidation

N/A






resistance 1 (OXR1),







transcript variant 3, mRNA.



OXR1
N
1464
NM_001198533

Homo sapiens oxidation

N/A






resistance 1 (OXR1),







transcript variant 4, mRNA.



OXR1
N
1465
NM_001198534

Homo sapiens oxidation

N/A






resistance 1 (OXR1),







transcript variant 5, mRNA.



OXR1
N
1466
NM_001198535

Homo sapiens oxidation

N/A






resistance 1 (OXR1),







transcript variant 6, mRNA.



OXR1
N
1467
NM_018002

Homo sapiens oxidation

N/A






resistance 1 (OXR1),







transcript variant 1, mRNA.



OXR1
N
1468
NM_181354

Homo sapiens oxidation

N/A






resistance 1 (OXR1),







transcript variant 2, mRNA.



PTGER3
Y
1469
NM_001126044

Homo sapiens prostaglandin

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein






E receptor 3 (subtype EP3)
is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many






(PTGER3), transcript
biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine






variant 11, mRNA.
contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate







adrenocorticotropic hormone response as well as fever generation in response to exogenous and







endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, August 2009]. Transcript Variant: This variant (11) has multiple differences







compared to variant 1. The resulting protein (isoform 4) has a distinct and shorter C-terminus, as







compared to isoform 1. Transcript variants 4, 9 and 11 encode the same protein. Another name for this







transcript is EP3 subtype 1c. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data because no single transcript was available for the full length of the gene. The







extent of this transcript is supported by transcript alignments.


PTGER3
Y
1470
NM_198714

Homo sapiens prostaglandin

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein






E receptor 3 (subtype EP3)
is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many






(PTGER3), transcript
biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine






variant 4, mRNA.
contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate







adrenocorticotropic hormone response as well as fever generation in response to exogenous and







endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, August 2009]. Transcript Variant: This variant (4) has multiple differences







compared to variant 1. The resulting protein (isoform 4) has a distinct and shorter C-terminus, as







compared to isoform 1. Transcript variants 4, 9 and 11 encode the same protein. Other names for







variant 4 are EP3 subtype 1b, pEPR-Ib, and EP3a1.


PTGER3
Y
1471
NM_198715

Homo sapiens prostaglandin

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein






E receptor 3 (subtype EP3)
is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many






(PTGER3), transcript
biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine






variant 5, mRNA.
contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate







adrenocorticotropic hormone response as well as fever generation in response to exogenous and







endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, August 2009]. Transcript Variant: This variant (5) lacks multiple 3′ exons and







has an unique 3′ end region when compared to variant 1. The resulting protein (isoform 5) has a







distinct and shorter C-terminus, as compared to isoform 1. Other names for this transcript are EP3-II,







EP3C, and EP3D.


PTGER3
Y
1472
NM_198716

Homo sapiens prostaglandin

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein






E receptor 3 (subtype EP3)
is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many






(PTGER3), transcript
biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine






variant 6, mRNA.
contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate







adrenocorticotropic hormone response as well as fever generation in response to exogenous and







endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, August 2009]. Transcript Variant: This variant (6) lacks two coding exons







compared to variant 1. The resulting protein (isoform 6) has a distinct and shorter C-terminus, as







compared to isoform 1. Other names for this transcript are EP3F and EP3d. Publication Note: This







RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene







record to access additional publications.


PTGER3
Y
1473
NM_198717

Homo sapiens prostaglandin

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein






E receptor 3 (subtype EP3)
is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many






(PTGER3), transcript
biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine






variant 7, mRNA.
contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate







adrenocorticotropic hormone response as well as fever generation in response to exogenous and







endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, August 2009]. Transcript Variant: This variant (7) lacks multiple exons







compared to variant 1. The resulting protein (isoform 7) has a distinct and shorter C-terminus as







compared to isoform 1. Other names for this transcript are EP3b and EP3E. Publication Note: This







RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene







record to access additional publications.


PTGER3
Y
1474
NM_198718

Homo sapiens prostaglandin

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein






E receptor 3 (subtype EP3)
is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many






(PTGER3), transcript
biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine






variant 8, mRNA.
contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate







adrenocorticotropic hormone response as well as fever generation in response to exogenous and







endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, August 2009]. Transcript Variant: This variant (8) has multiple differences







compared to variant 1. The resulting protein (isoform 8) has a distinct and shorter C-terminus, as







compared to isoform 1. Another name for this transcript is EP3e. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to







access additional publications.


PTGER3
Y
1475
NM_198719

Homo sapiens prostaglandin

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein






E receptor 3 (subtype EP3)
is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many






(PTGER3), transcript
biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine






variant 9, mRNA.
contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate







adrenocorticotropic hormone response as well as fever generation in response to exogenous and







endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, August 2009]. Transcript Variant: This variant (9) has multiple differences







compared to variant 1. The resulting protein (isoform 4) has a distinct and shorter C-terminus, as







compared to isoform 1. Transcript variants 4, 9 and 11 encode the same protein. Other names for







variant 9 are EP3A, EP3-I, EP3a2, and EP3 subtype 1a.


PTGER3
Y
1476
NR_028292

Homo sapiens prostaglandin

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein






E receptor 3 (subtype EP3)
is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many






(PTGER3), transcript
biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine






variant 2, non-coding RNA.
contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate







adrenocorticotropic hormone response as well as fever generation in response to exogenous and







endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, August 2009]. Transcript Variant: This variant (2), also known as EP3-V,







lacks one exon and includes an additional exon near the 3′ end, compared to variant 1. This variant is







represented as non-coding because the use of the 5′-most supported translational start codon, as used in







variant 7, renders the transcript a candidate for nonsense-mediated mRNA decay (NMD). Sequence







Note: This RefSeq record was created from transcript and genomic sequence data to make the







sequence consistent with the reference genome assembly. The genomic coordinates used for the







transcript record were based on transcript alignments.


PTGER3
Y
1477
NR_028293

Homo sapiens prostaglandin

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein






E receptor 3 (subtype EP3)
is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many






(PTGER3), transcript
biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine






variant 3, non-coding RNA.
contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate







adrenocorticotropic hormone response as well as fever generation in response to exogenous and







endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, August 2009]. Transcript Variant: This variant (3), also known as EP3-VI,







lacks two and includes one alternate exon, compared to variant 1. This variant is represented as non-







coding because the use of the 5′-most supported translational start codon, as used in variant 7, renders







the transcript a candidate for nonsense-mediated mRNA decay (NMD). Sequence Note: This RefSeq







record was created from transcript and genomic sequence data to make the sequence consistent with







the reference genome assembly. The genomic coordinates used for the transcript record were based on







transcript alignments.


PTGER3
Y
1478
NR_028294

Homo sapiens prostaglandin

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein






E receptor 3 (subtype EP3)
is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many






(PTGER3), transcript
biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine






variant 1, non-coding RNA.
contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate







adrenocorticotropic hormone response as well as fever generation in response to exogenous and







endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this







gene. [provided by RefSeq, August 2009]. Transcript Variant: This variant (1), also known as EP3f,







represents the longest transcript. This variant is represented as non-coding because the use of the 5′-







most supported translational start codon, as used in variant 7, renders the transcript a candidate for







nonsense-mediated mRNA decay (NMD). Sequence Note: This RefSeq record was created from







transcript and genomic sequence data to make the sequence consistent with the reference genome







assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


C6orf162
Y
1479
NM_001042493

Homo sapiens chromosome

N/A






6 open reading frame 162







(C6orf162), transcript







variant 1, mRNA.



C6orf162
Y
1480
NM_020425

Homo sapiens chromosome

N/A






6 open reading frame 162







(C6orf162), transcript







variant 2, mRNA.



GJB7
Y
1481
NM_198568

Homo sapiens gap junction

Connexins, such as GJB7, are involved in the formation of gap junctions, intercellular conduits that






protein, beta 7, 25 kDa
directly connect the cytoplasms of contacting cells. Each gap junction channel is formed by docking of






(GJB7), mRNA.
2 hemichannels, each of which contains 6 connexin subunits (Sohl et al., 2003 [PubMed







12881038]). [supplied by OMIM, March 2008].


VPS13A
Y
1482
NM_001018037

Homo sapiens vacuolar

The protein encoded by this gene may control steps in the cycling of proteins through the trans-Golgi






protein sorting 13 homolog
network to endosomes, lysosomes and the plasma membrane. Mutations in this gene cause the






A (S. cerevisiae) (VPS13A),
autosomal recessive disorder, chorea-acanthocytosis. Alternative splicing of this gene results in






transcript variant C, mRNA.
multiple transcript variants. [provided by RefSeq, July 2008]. Transcript Variant: This variant (C), also







known as 2A, lacks an alternate in-frame segment, compared to variant A, resulting in a shorter protein







(isoform C), compared to isoform A.


VPS13A
Y
1483
NM_001018038

Homo sapiens vacuolar

The protein encoded by this gene may control steps in the cycling of proteins through the trans-Golgi






protein sorting 13 homolog
network to endosomes, lysosomes and the plasma membrane. Mutations in this gene cause the






A (S. cerevisiae) (VPS13A),
autosomal recessive disorder, chorea-acanthocytosis. Alternative splicing of this gene results in






transcript variant D, mRNA.
multiple transcript variants. [provided by RefSeq, July 2008]. Transcript Variant: This variant (D), also







known as 1D, contains a distinct 3′ coding region and 3′ UTR, compared to variant A. The resulting







isoform (D) has a shorter C-terminus compared to isoform A.


VPS13A
Y
1484
NM_015186

Homo sapiens vacuolar

The protein encoded by this gene may control steps in the cycling of proteins through the trans-Golgi






protein sorting 13 homolog
network to endosomes, lysosomes and the plasma membrane. Mutations in this gene cause the






A (S. cerevisiae) (VPS13A),
autosomal recessive disorder, chorea-acanthocytosis. Alternative splicing of this gene results in






transcript variant B, mRNA.
multiple transcript variants. [provided by RefSeq, July 2008]. Transcript Variant: This variant (B)







contains a distinct 3′ coding region and 3′ UTR, compared to variant A. The resulting isoform (B) has a







shorter C-terminus compared to isoform A.


VPS13A
Y
1485
NM_033305

Homo sapiens vacuolar

The protein encoded by this gene may control steps in the cycling of proteins through the trans-Golgi






protein sorting 13 homolog
network to endosomes, lysosomes and the plasma membrane. Mutations in this gene cause the






A (S. cerevisiae) (VPS13A),
autosomal recessive disorder, chorea-acanthocytosis. Alternative splicing of this gene results in






transcript variant A, mRNA.
multiple transcript variants. [provided by RefSeq, July 2008]. Transcript Variant: This variant (A)







encodes the longest isoform (A).


JAG2
Y
1486
NM_002226

Homo sapiens jagged 2

The Notch signaling pathway is an intercellular signaling mechanism that is essential for proper






(JAG2), transcript variant 1,
embryonic development. Members of the Notch gene family encode transmembrane receptors that are






mRNA.
critical for various cell fate decisions. The protein encoded by this gene is one of several ligands that







activate Notch and related receptors. Two transcript variants encoding different isoforms have been







found for this gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (1) represents the







longer transcript and encodes the longer isoform (a).


JAG2
Y
1487
NM_145159

Homo sapiens jagged 2

The Notch signaling pathway is an intercellular signaling mechanism that is essential for proper






(JAG2), transcript variant 2,
embryonic development. Members of the Notch gene family encode transmembrane receptors that are






mRNA.
critical for various cell fate decisions. The protein encoded by this gene is one of several ligands that







activate Notch and related receptors. Two transcript variants encoding different isoforms have been







found for this gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (2) lacks an







alternate in-frame exon compared to variant 1, resulting in a shorter protein (isoform b) than isoform a







encoded by variant 1. Isoform b is also known as hJAG2.del-E6.


PACS2
Y
1488
NM_001100913

Homo sapiens phosphofurin

N/A






acidic cluster sorting protein







2 (PACS2), transcript







variant 1, mRNA.



PACS2
Y
1489
NM_001243127

Homo sapiens phosphofurin

N/A






acidic cluster sorting protein







2 (PACS2), transcript







variant 3, mRNA.



PACS2
Y
1490
NM_015197

Homo sapiens phosphofurin

N/A






acidic cluster sorting protein







2 (PACS2), transcript







variant 2, mRNA.



NME4
Y
1491
NM_005009

Homo sapiens non-

The nucleoside diphosphate (NDP) kinases (EC 2.7.4.6) are ubiquitous enzymes that catalyze transfer






metastatic cells 4, protein
of gamma-phosphates, via a phosphohistidine intermediate, between nucleoside and dioxynucleoside






expressed in (NME4),
tri- and diphosphates. The enzymes are products of the nm23 gene family, which includes NME4






nuclear gene encoding
(Milon et al., 1997 [PubMed 9099850]). [supplied by OMIM, May 2008].






mitochondrial protein,







mRNA.



ZNF737
Y
1492
NM_001159293

Homo sapiens zinc finger

N/A






protein 737 (ZNF737),







mRNA.



ZNF486
Y
1493
NM_052852

Homo sapiens zinc finger

N/A






protein 486 (ZNF486),







mRNA.



SAE1
Y
1494
NM_001145713

Homo sapiens SUMO1

Posttranslational modification of proteins by the addition of the small protein SUMO (see SUMO1;






activating enzyme subunit 1
MIM 601912), or sumoylation, regulates protein structure and intracellular localization. SAE1 and






(SAE1), transcript variant 2,
UBA2 (MIM 613295) form a heterodimer that functions as a SUMO-activating enzyme for the






mRNA.
sumoylation of proteins (Okuma et al., 1999 [PubMed 9920803]). [supplied by OMIM, March 2010].







Transcript Variant: This variant (2) lacks two alternate exons, compared to variant 1, which causes a







frameshift. The resulting protein (isoform b) has a distinct C-terminus and is shorter than isoform a.


SAE1
Y
1495
NM_001145714

Homo sapiens SUMO1

Posttranslational modification of proteins by the addition of the small protein SUMO (see SUMO1;






activating enzyme subunit 1
MIM 601912), or sumoylation, regulates protein structure and intracellular localization. SAE1 and






(SAE1), transcript variant 3,
UBA2 (MIM 613295) form a heterodimer that functions as a SUMO-activating enzyme for the






mRNA.
sumoylation of proteins (Okuma et al., 1999 [PubMed 9920803]). [supplied by OMIM, March 2010].







Transcript Variant: This variant (3) lacks an alternate exon, compared to variant 1, which causes a







frameshift. The resulting protein (isoform b) has a distinct C-terminus and is shorter than isoform a.







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


SAE1
Y
1496
NM_005500

Homo sapiens SUMO1

Posttranslational modification of proteins by the addition of the small protein SUMO (see SUMO1;






activating enzyme subunit 1
MIM 601912), or sumoylation, regulates protein structure and intracellular localization. SAE1 and






(SAE1), transcript variant 1,
UBA2 (MIM 613295) form a heterodimer that functions as a SUMO-activating enzyme for the






mRNA.
sumoylation of proteins (Okuma et al., 1999 [PubMed 9920803]). [supplied by OMIM, March 2010].







Homo sapiens SUMO1

Transcript Variant: This variant (1) encodes the longest isoform (a).


SAE1
Y
1497
NR_027280
activating enzyme subunit 1
Posttranslational modification of proteins by the addition of the small protein SUMO (see SUMO1;






(SAE1), transcript variant 4,
MIM 601912), or sumoylation, regulates protein structure and intracellular localization. SAE1 and






non-coding RNA.
UBA2 (MIM 613295) form a heterodimer that functions as a SUMO-activating enzyme for the







sumoylation of proteins (Okuma et al., 1999 [PubMed 9920803]). [supplied by OMIM, March 2010].







Transcript Variant: This variant (4) contains an alternate 5′ exon, compared to variant 1. This variant is







represented as non-coding because the use of the 5′-most supported translational start codon, as used in







variant 1, renders the transcript a candidate for nonsense-mediated mRNA decay (NMD). Publication







Note: This RefSeq record includes a subset of the publications that are available for this gene. Please







see the Gene record to access additional publications.


FAM195B
Y
1498
NM_001093767

Homo sapiens family with

N/A






sequence similarity 195,







member B (FAM195B),







transcript variant 2, mRNA.



FAM195B
Y
1499
NM_207368

Homo sapiens family with

N/A






sequence similarity 195,







member B (FAM195B),







transcript variant 1, mRNA.



GCGR
Y
1500
NM_000160

Homo sapiens glucagon

The protein encoded by this gene is a glucagon receptor that is important in controlling blood glucose






receptor (GCGR), mRNA.
levels. Defects in this gene are a cause of non-insulin-dependent diabetes mellitus (NIDDM). [provided







by RefSeq, January 2010].


LOC92659
Y
1501
NR_015454

Homo sapiens

NA






uncharacterized LOC92659







(LOC92659), non-coding







RNA.



PYCR1
Y
1502
NM_006907

Homo sapiens pyrroline-5-

This gene encodes an enzyme that catalyzes the NAD(P)H-dependent conversion of pyrroline-5-






carboxylate reductase 1
carboxylate to proline. This enzyme may also play a physiologic role in the generation of NADP(+) in






(PYCR1), transcript variant
some cell types. The protein forms a homopolymer and localizes to the mitochondrion. Alternate






1, mRNA.
splicing results in two transcript variants encoding different isoforms. [provided by RefSeq, July 2008].







Transcript Variant: This variant (1) encodes the longer isoform (1) of this protein.


PYCR1
Y
1503
NM_153824

Homo sapiens pyrroline-5-

This gene encodes an enzyme that catalyzes the NAD(P)H-dependent conversion of pyrroline-5-






carboxylate reductase 1
carboxylate to proline. This enzyme may also play a physiologic role in the generation of NADP(+) in






(PYCR1), transcript variant
some cell types. The protein forms a homopolymer and localizes to the mitochondrion. Alternate






2, mRNA.
splicing results in two transcript variants encoding different isoforms. [provided by RefSeq, July 2008].







Transcript Variant: This variant (2) lacks a portion of the coding region resulting in a frameshift,







compared to variant 1. Isoform 2 has a distinct C-terminus compared to isoform 1.


RD3
Y
1504
NM_001164688

Homo sapiens retinal

This gene encodes a retinal protein that is associated with promyelocytic leukemia-gene product






degeneration 3 (RD3),
(PML) bodies in the nucleus. Mutations in this gene cause Leber congenital amaurosis type 12, a






transcript variant 2, mRNA.
disease that results in retinal degeneration. Alternative splicing results in multiple transcript variants.







[provided by RefSeq, September 2009]. Transcript Variant: This variant (2) uses an alternate splice site in the







5′ UTR compared to variant 1. Both variants 1 and 2 encode the same protein.


RD3
Y
1505
NM_183059

Homo sapiens retinal

This gene encodes a retinal protein that is associated with promyelocytic leukemia-gene product






degeneration 3 (RD3),
(PML) bodies in the nucleus. Mutations in this gene cause Leber congenital amaurosis type 12, a






transcript variant 1, mRNA.
disease that results in retinal degeneration. Alternative splicing results in multiple transcript variants.







[provided by RefSeq, September 2009]. Transcript Variant: This variant (1) represents the longer transcript.







Both variants 1 and 2 encode the same protein.


CKAP2L
Y
1506
NM_152515

Homo sapiens cytoskeleton

N/A






associated protein 2-like







(CKAP2L), mRNA.



BARD1
Y
1507
NM_000465

Homo sapiens BRCA1

This gene encodes a protein which interacts with the N-terminal region of BRCA1. In addition to its






associated RING domain 1
ability to bind BRCA1 in vivo and in vitro, it shares homology with the 2 most conserved regions of






(BARD1), mRNA.
BRCA1: the N-terminal RING motif and the C-terminal BRCT domain. The RING motif is a cysteine-







rich sequence found in a variety of proteins that regulate cell growth, including the products of tumor







suppressor genes and dominant protooncogenes. This protein also contains 3 tandem ankyrin repeats.







The BARD1/BRCA1 interaction is disrupted by tumorigenic amino acid substitutions in BRCA1,







implying that the formation of a stable complex between these proteins may be an essential aspect of







BRCA1 tumor suppression. This protein may be the target of oncogenic mutations in breast or ovarian







cancer. [provided by RefSeq, July 2008].


CHL1
Y
1508
NM_006614

Homo sapiens cell adhesion

The protein encoded by this gene is a member of the L1 gene family of neural cell adhesion






molecule with homology to
molecules. It is a neural recognition molecule that may be involved in signal transduction pathways.






L1CAM (close homolog of
The deletion of one copy of this gene may be responsible for mental defects in patients with 3p-






L1) (CHL1), mRNA.
syndrome. Several alternatively spliced transcript variants of this gene have been described, but their







full length nature is not known. [provided by RefSeq, July 2008].


CABS1
Y
1509
NM_033122

Homo sapiens calcium-

N/A






binding protein, spermatid-







specific 1 (CABS1), mRNA.



PROL1
Y
1510
NM_021225

Homo sapiens proline rich,

This gene encodes a member of the proline-rich protein family. The protein may provide a protective






lacrimal 1 (PROL1),
function at the eye surface. [provided by RefSeq, July 2008].






mRNA.



SMR3A
Y
1511
NM_012390

Homo sapiens submaxillary

N/A






gland androgen regulated







protein 3A (SMR3A),







mRNA.



SMR3B
Y
1512
NM_006685

Homo sapiens submaxillary

N/A






gland androgen regulated







protein 3B (SMR3B),







mRNA.



GYPA
Y
1513
NM_002099

Homo sapiens glycophorin

Glycophorins A (GYPA) and B (GYPB) are major sialoglycoproteins of the human erythrocyte






A (MNS blood group)
membrane which bear the antigenic determinants for the MN and Ss blood groups. In addition to the M






(GYPA), mRNA.
or N and S or s antigens that commonly occur in all populations, about 40 related variant phenotypes







have been identified. These variants include all the variants of the Miltenberger complex and several







isoforms of Sta, as well as Dantu, Sat, He, Mg, and deletion variants Ena, S-s-U- and Mk. Most of the







variants are the result of gene recombinations between GYPA and GYPB. [provided by RefSeq, July







2008]. Sequence Note: This RefSeq record was created from transcript and genomic sequence data to







make the sequence consistent with the reference genome assembly. The genomic coordinates used for







the transcript record were based on transcript alignments. Sequence Note: This RefSeq record







represents the GYPA*0010101 allele.


TRIML2
Y
1514
NM_173553

Homo sapiens tripartite

N/A






motif family-like 2







(TRIML2), mRNA.



LOC401164
Y
1515
NR_033869

Homo sapiens

N/A






uncharacterized LOC401164







(LOC401164), non-coding







RNA.



SIL1
Y
1516
NM_001037633

Homo sapiens SIL1

This gene encodes a resident endoplasmic reticulum (ER), N-linked glycoprotein with an N-terminal






homolog, endoplasmic
ER targeting sequence, 2 putative N-glycosylation sites, and a C-terminal ER retention signal. This






reticulum chaperone (S.
protein functions as a nucleotide exchange factor for another unfolded protein response protein.







cerevisiae) (SIL1), transcript

Mutations in this gene have been associated with Marinesco-Sjogren syndrome. Alternate






variant 1, mRNA.
transcriptional splice variants have been characterized. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (1) represents the longer transcript. Variants 1 and 2 encode the same protein.







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


SIL1
Y
1517
NM_022464

Homo sapiens SIL1

This gene encodes a resident endoplasmic reticulum (ER), N-linked glycoprotein with an N-terminal






homolog, endoplasmic
ER targeting sequence, 2 putative N-glycosylation sites, and a C-terminal ER retention signal. This






reticulum chaperone (S.
protein functions as a nucleotide exchange factor for another unfolded protein response protein.







cerevisiae) (SIL1), transcript

Mutations in this gene have been associated with Marinesco-Sjogren syndrome. Alternate






variant 2, mRNA.
transcriptional splice variants have been characterized. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (2) lacks an exon in the 5′UTR compared to variant 1. Variants 1 and 2 encode







the same protein.


IRGM
Y
1518
NM_001145805

Homo sapiens immunity-

This gene encodes a member of the p47 immunity-related GTPase family. The encoded protein may






related GTPase family, M
play a role in the innate immune response by regulating autophagy formation in response to






(IRGM), mRNA.
intracellular pathogens. Polymorphisms that affect the normal expression of this gene are associated







with a susceptibility to Crohn's disease and tuberculosis. [provided by RefSeq, October 2010]. Sequence







Note: The RefSeq transcript and protein were derived from genomic sequence to make the sequence







consistent with the reference genome assembly. The genomic coordinates used for the transcript record







were based on alignments.


CNR1
Y
1519
NM_001160226

Homo sapiens cannabinoid

This gene encodes one of two cannabinoid receptors. The cannabinoids, principally delta-9-






receptor 1 (brain) (CNR1),
tetrahydrocannabinol and synthetic analogs, are psychoactive ingredients of marijuana. The






transcript variant 3, mRNA.
cannabinoid receptors are members of the guanine-nucleotide-binding protein (G-protein) coupled







receptor family, which inhibit adenylate cyclase activity in a dose-dependent, stereoselective and







pertussis toxin-sensitive manner. The two receptors have been found to be involved in the







cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users







of marijuana. Multiple transcript variants encoding two different protein isoforms have been described







for this gene. [provided by RefSeq, May 2009]. Transcript Variant: This variant (3) contains an







alternate exon in the 5′ UTR, compared to variant 1. Variants 1, 3, 4 and 5 all encode isoform a. This







variant was designated CB1B by PubMed ID: 15289816. Sequence Note: The RefSeq transcript and







protein were derived from genomic sequence to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on alignments







and by its description in PubMed ID: 15289816.


CNR1
Y
1520
NM_001160258

Homo sapiens cannabinoid

This gene encodes one of two cannabinoid receptors. The cannabinoids, principally delta-9-






receptor 1 (brain) (CNR1),
tetrahydrocannabinol and synthetic analogs, are psychoactive ingredients of marijuana. The






transcript variant 4, mRNA.
cannabinoid receptors are members of the guanine-nucleotide-binding protein (G-protein) coupled







receptor family, which inhibit adenylate cyclase activity in a dose-dependent, stereoselective and







pertussis toxin-sensitive manner. The two receptors have been found to be involved in the







cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users







of marijuana. Multiple transcript variants encoding two different protein isoforms have been described







for this gene. [provided by RefSeq, May 2009]. Transcript Variant: This variant (4) contains two







alternate exons in the 5′ UTR, compared to variant 1. Variants 1, 3, 4 and 5 all encode isoform a. This







variant was designated CB1C by PubMed ID: 15289816. Sequence Note: The RefSeq transcript and







protein were derived from genomic sequence to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on alignments







and by its description in PubMed ID: 15289816.


CNR1
Y
1521
NM_001160259

Homo sapiens cannabinoid

This gene encodes one of two cannabinoid receptors. The cannabinoids, principally delta-9-






receptor 1 (brain) (CNR1),
tetrahydrocannabinol and synthetic analogs, are psychoactive ingredients of marijuana. The






transcript variant 5, mRNA.
cannabinoid receptors are members of the guanine-nucleotide-binding protein (G-protein) coupled







receptor family, which inhibit adenylate cyclase activity in a dose-dependent, stereoselective and







pertussis toxin-sensitive manner. The two receptors have been found to be involved in the







cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users







of marijuana. Multiple transcript variants encoding two different protein isoforms have been described







for this gene. [provided by RefSeq, May 2009]. Transcript Variant: This variant (5) uses a different







splice site in the 5′ UTR, compared to variant 1. Variants 1, 3, 4 and 5 all encode isoform a. This







variant was designated CB1D by PubMed ID: 15289816. Sequence Note: The RefSeq transcript and







protein were derived from genomic sequence to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on alignments.


CNR1
Y
1522
NM_016083

Homo sapiens cannabinoid

This gene encodes one of two cannabinoid receptors. The cannabinoids, principally delta-9-






receptor 1 (brain) (CNR1),
tetrahydrocannabinol and synthetic analogs, are psychoactive ingredients of marijuana. The






transcript variant 1, mRNA.
cannabinoid receptors are members of the guanine-nucleotide-binding protein (G-protein) coupled







receptor family, which inhibit adenylate cyclase activity in a dose-dependent, stereoselective and







pertussis toxin-sensitive manner. The two receptors have been found to be involved in the







cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users







of marijuana. Multiple transcript variants encoding two different protein isoforms have been described







for this gene. [provided by RefSeq, May 2009]. Transcript Variant: This variant (1) encodes the longer







isoform (a). Variant 1 has also been called CB1A by PubMed ID: 15289816. Variants 1, 3, 4 and 5 all







encode isoform a. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


CNR1
Y
1523
NM_033181

Homo sapiens cannabinoid

This gene encodes one of two cannabinoid receptors. The cannabinoids, principally delta-9-






receptor 1 (brain) (CNR1),
tetrahydrocannabinol and synthetic analogs, are psychoactive ingredients of marijuana. The






transcript variant 2, mRNA.
cannabinoid receptors are members of the guanine-nucleotide-binding protein (G-protein) coupled







receptor family, which inhibit adenylate cyclase activity in a dose-dependent, stereoselective and







pertussis toxin-sensitive manner. The two receptors have been found to be involved in the







cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users







of marijuana. Multiple transcript variants encoding two different protein isoforms have been described







for this gene. [provided by RefSeq, May 2009]. Transcript Variant: This variant (2) lacks an internal







segment near the 5′ end of the coding region, compared to variant 1. The resulting protein (isoform b)







has a shorter and distinct N-terminus compared to isoform a. PubMed ID: 15620723 referred to this







variant and its protein as CB1b.


AIM1
Y
1524
NM_001624

Homo sapiens absent in

N/A






melanoma 1 (AIM1),







mRNA.



ARMC10
Y
1525
NM_001161009

Homo sapiens armadillo

This gene encodes a protein that contains an armadillo repeat and transmembrane domain. The






repeat containing 10
encoded protein decreases the transcriptional activity of the tumor suppressor protein p53 through






(ARMC10), transcript
direct interaction with the DNA-binding domain of p53, and may play a role in cell growth and






variant B, mRNA.
survival. Upregulation of this gene may play a role in hepatocellular carcinoma. Alternatively spliced







transcript variants encoding multiple isoforms have been observed for this gene, and a pseudogene of







this gene is located on the long arm of chromosome 3. [provided by RefSeq, September 2011]. Transcript







Variant: This variant (B) lacks an in-frame exon in the 5′ coding region compared to variant A. This







results in a shorter protein (isoform b) compared to isoform a.


ARMC10
Y
1526
NM_001161010

Homo sapiens armadillo

This gene encodes a protein that contains an armadillo repeat and transmembrane domain. The






repeat containing 10
encoded protein decreases the transcriptional activity of the tumor suppressor protein p53 through






(ARMC10), transcript
direct interaction with the DNA-binding domain of p53, and may play a role in cell growth and






variant C, mRNA.
survival. Upregulation of this gene may play a role in hepatocellular carcinoma. Alternatively spliced







transcript variants encoding multiple isoforms have been observed for this gene, and a pseudogene of







this gene is located on the long arm of chromosome 3. [provided by RefSeq, September 2011]. Transcript







Variant: This variant (C) lacks an in-frame exon in the 3′ coding region compared to variant A. This







results in a shorter protein (isoform c) compared to isoform a.


ARMC10
Y
1527
NM_001161011

Homo sapiens armadillo

This gene encodes a protein that contains an armadillo repeat and transmembrane domain. The






repeat containing 10
encoded protein decreases the transcriptional activity of the tumor suppressor protein p53 through






(ARMC10), transcript
direct interaction with the DNA-binding domain of p53, and may play a role in cell growth and






variant E, mRNA.
survival. Upregulation of this gene may play a role in hepatocellular carcinoma. Alternatively spliced







transcript variants encoding multiple isoforms have been observed for this gene, and a pseudogene of







this gene is located on the long arm of chromosome 3. [provided by RefSeq, September 2011]. Transcript







Variant: This variant (E) lacks two in-frame exons in the coding region compared to variant A. This







results in a shorter protein (isoform e) compared to isoform a.


ARMC10
Y
1528
NM_001161012

Homo sapiens armadillo

This gene encodes a protein that contains an armadillo repeat and transmembrane domain. The






repeat containing 10
encoded protein decreases the transcriptional activity of the tumor suppressor protein p53 through






(ARMC10), transcript
direct interaction with the DNA-binding domain of p53, and may play a role in cell growth and






variant D, mRNA.
survival. Upregulation of this gene may play a role in hepatocellular carcinoma. Alternatively spliced







transcript variants encoding multiple isoforms have been observed for this gene, and a pseudogene of







this gene is located on the long arm of chromosome 3. [provided by RefSeq, September 2011]. Transcript







Variant: This variant (D) lacks two in-frame exons in the coding region compared to variant A. This







results in a shorter protein (isoform d) compared to isoform a.


ARMC10
Y
1529
NM_001161013

Homo sapiens armadillo

This gene encodes a protein that contains an armadillo repeat and transmembrane domain. The






repeat containing 10
encoded protein decreases the transcriptional activity of the tumor suppressor protein p53 through






(ARMC10), transcript
direct interaction with the DNA-binding domain of p53, and may play a role in cell growth and






variant F, mRNA.
survival. Upregulation of this gene may play a role in hepatocellular carcinoma. Alternatively spliced







transcript variants encoding multiple isoforms have been observed for this gene, and a pseudogene of







this gene is located on the long arm of chromosome 3. [provided by RefSeq, September 2011]. Transcript







Variant: This variant (F) lacks three in-frame exons in the coding region compared to variant A. This







results in a shorter protein (isoform f) compared to isoform a.


ARMC10
Y
1530
NM_031905

Homo sapiens armadillo

This gene encodes a protein that contains an armadillo repeat and transmembrane domain. The






repeat containing 10
encoded protein decreases the transcriptional activity of the tumor suppressor protein p53 through






(ARMC10), transcript
direct interaction with the DNA-binding domain of p53, and may play a role in cell growth and






variant A, mRNA.
survival. Upregulation of this gene may play a role in hepatocellular carcinoma. Alternatively spliced







transcript variants encoding multiple isoforms have been observed for this gene, and a pseudogene of







this gene is located on the long arm of chromosome 3. [provided by RefSeq, September 2011]. Transcript







Variant: This variant (A) represents the longest transcript and encodes the longest isoform (a).


FBXL13
Y
1531
NM_001111038

Homo sapiens F-box and

Members of the F-box protein family, such as FBXL13, are characterized by an approximately 40-






leucine-rich repeat protein
amino acid F-box motif. SCF complexes, formed by SKP1 (MIM 601434), cullin (see CUL1; MIM






13 (FBXL13), transcript
603134), and F-box proteins, act as protein-ubiquitin ligases. F-box proteins interact with SKP1






variant 2, mRNA.
through the F box, and they interact with ubiquitination targets through other protein interaction







domains (Jin et al., 2004 [PubMed 15520277]). [supplied by OMIM, March 2008]. Transcript Variant:







This variant (2) contains a different segment in the 5′ UTR and lacks an alternate in-frame segment in







the 3′ CDS, compared to variant 1. The resulting protein (isoform 2) is shorter when it is compared to







isoform 1.


FBXL13
Y
1532
NM_145032

Homo sapiens F-box and

Members of the F-box protein family, such as FBXL13, are characterized by an approximately 40-






leucine-rich repeat protein
amino acid F-box motif. SCF complexes, formed by SKP1 (MIM 601434), cullin (see CUL1; MIM






13 (FBXL13), transcript
603134), and F-box proteins, act as protein-ubiquitin ligases. F-box proteins interact with SKP1






variant 1, mRNA.
through the F box, and they interact with ubiquitination targets through other protein interaction







domains (Jin et al., 2004 [PubMed 15520277]). [supplied by OMIM, March 2008]. Transcript Variant:







This variant (1) is the longer transcript and it encodes the longer protein (isoform 1).


NAPEPLD
Y
1533
NM_001122838

Homo sapiens N-acyl

NAPEPLD is a phospholipase D type enzyme that catalyzes the release of N-acylethanolamine (NAE)






phosphatidylethanolamine
from N-acyl-phosphatidylethanolamine (NAPE) in the second step of the biosynthesis of N-






phospholipase D
acylethanolamine (Okamoto et al., 2004 [PubMed 14634025]). [supplied by OMIM, October 2008].






(NAPEPLD), transcript
Transcript Variant: This variant (1) represents the longer transcript. Variants 1 and 2 encode the same






variant 1, mRNA.
protein. Sequence Note: This RefSeq record was created from transcript and genomic sequence data







because no single transcript was available for the full length of the gene. The extent of this transcript is







supported by transcript alignments.


NAPEPLD
Y
1534
NM_198990

Homo sapiens N-acyl

NAPEPLD is a phospholipase D type enzyme that catalyzes the release of N-acylethanolamine (NAE)






phosphatidylethanolamine
from N-acyl-phosphatidylethanolamine (NAPE) in the second step of the biosynthesis of N-






phospholipase D
acylethanolamine (Okamoto et al., 2004 [PubMed 14634025]). [supplied by OMIM, October 2008].






(NAPEPLD), transcript
Transcript Variant: This variant (2) differs in the 3′ UTR, compared to variant 1. Variants 1 and 2






variant 2, mRNA.
encode the same protein. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data because no single transcript was available for the full length of the gene. The extent of







this transcript is supported by transcript alignments.


MYOM2
Y
1535
NM_003970

Homo sapiens myomesin

The giant protein titin, together with its associated proteins, interconnects the major structure of






(M-protein) 2, 165 kDa
sarcomeres, the M bands and Z discs. The C-terminal end of the titin string extends into the M line,






(MYOM2), mRNA.
where it binds tightly to M-band constituents of apparent molecular masses of 190 kD and 165 kD. The







predicted MYOM2 protein contains 1,465 amino acids. Like MYOM1, MYOM2 has a unique N-







terminal domain followed by 12 repeat domains with strong homology to either fibronectin type III or







immunoglobulin C2 domains. Protein sequence comparisons suggested that the MYOM2 protein and







bovine M protein are identical. [provided by RefSeq, July 2008].


DEFA5
Y
1536
NM_021010

Homo sapiens defensin,

Defensins are a family of microbicidal and cytotoxic peptides thought to be involved in host defense.






alpha 5, Paneth cell-specific
They are abundant in the granules of neutrophils and also found in the epithelia of mucosal surfaces






(DEFA5), mRNA.
such as those of the intestine, respiratory tract, urinary tract, and vagina. Members of the defensin







family are highly similar in protein sequence and distinguished by a conserved cysteine motif. Several







of the alpha defensin genes appear to be clustered on chromosome 8. The protein encoded by this gene,







defensin, alpha 5, is highly expressed in the secretory granules of Paneth cells of the ileum. [provided







by RefSeq, July 2008].


POTEA
Y
1537
NM_001002920

Homo sapiens POTE

N/A






ankyrin domain family,







member A (POTEA),







transcript variant 1, mRNA.



POTEA
Y
1538
NM_001005365

Homo sapiens POTE

N/A






ankyrin domain family,







member A (POTEA),







transcript variant 2, mRNA.



ACACB
Y
1539
NM_001093

Homo sapiens acetyl-CoA

Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. ACC is a biotin-






carboxylase beta (ACACB),
containing enzyme which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting






mRNA.
step in fatty acid synthesis. ACC-beta is thought to control fatty acid oxidation by means of the ability







of malonyl-CoA to inhibit carnitine-palmitoyl-CoA transferase I, the rate-limiting step in fatty acid







uptake and oxidation by mitochondria. ACC-beta may be involved in the regulation of fatty acid







oxidation, rather than fatty acid biosynthesis. There is evidence for the presence of two ACC-beta







isoforms. [provided by RefSeq, July 2008].


COX6A1
Y
1540
NM_004373

Homo sapiens cytochrome c

Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes






oxidase subunit VIa
the electron transfer from reduced cytochrome c to oxygen. It is a heteromeric complex consisting of 3






polypeptide 1 (COX6A1),
catalytic subunits encoded by mitochondrial genes and multiple structural subunits encoded by nuclear






nuclear gene encoding
genes. The mitochondrially-encoded subunits function in the electron transfer and the nuclear-encoded






mitochondrial protein,
subunits may function in the regulation and assembly of the complex. This nuclear gene encodes






mRNA.
polypeptide 1 (liver isoform) of subunit VIa, and polypeptide 1 is found in all non-muscle tissues.







Polypeptide 2 (heart/muscle isoform) of subunit VIa is encoded by a different gene, and is present only







in striated muscles. These two polypeptides share 66% amino acid sequence identity. It has been







reported that there may be several pseudogenes on chromosomes 1, 6, 7q21, 7q31-32 and 12.







However, only one pseudogene (COX6A1P) on chromosome 1p31.1 has been documented. [provided







by RefSeq, July 2008].


GATC
Y
1541
NM_176818

Homo sapiens glutamyl-

N/A






tRNA(Gln)







amidotransferase, subunit C







homolog (bacterial)







(GATC), transcript variant







1, mRNA.



GATC
Y
1542
NR_033684

Homo sapiens glutamyl-

N/A






tRNA(Gln)







amidotransferase, subunit C







homolog (bacterial)







(GATC), transcript variant







2, non-coding RNA.



TRIAP1
Y
1543
NM_016399

Homo sapiens TP53

N/A






regulated inhibitor of







apoptosis 1 (TRIAP1),







mRNA.



CSPG4
Y
1544
NM_001897

Homo sapiens chondroitin

A human melanoma-associated chondroitin sulfate proteoglycan plays a role in stabilizing cell-






sulfate proteoglycan 4
substratum interactions during early events of melanoma cell spreading on endothelial basement






(CSPG4), mRNA.
membranes. CSPG4 represents an integral membrane chondroitin sulfate proteoglycan expressed by







human malignant melanoma cells. [provided by RefSeq, July 2008].


SNUPN
Y
1545
NM_001042581

Homo sapiens snurportin 1

The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a






(SNUPN), transcript variant
complex nuclear localization signal. The latter is composed of the 5′-2,2,7-terminal trimethylguanosine






2, mRNA.
(m3G) cap structure of the U snRNA and the Sm core domain. The protein encoded by this gene







interacts specifically with m3G-cap and functions as an snRNP-specific nuclear import receptor.







Alternatively spliced transcript variants encoding the same protein have been identified for this gene.







[provided by RefSeq, July 2008]. Transcript Variant: This variant (2) differs in the 5′ UTR, compared to







variant 1. Variants 1, 2 and 3 encode the same protein.


SNUPN
Y
1546
NM_001042588

Homo sapiens snurportin 1

The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a






(SNUPN), transcript variant
complex nuclear localization signal. The latter is composed of the 5′-2,2,7-terminal trimethylguanosine






3, mRNA.
(m3G) cap structure of the U snRNA and the Sm core domain. The protein encoded by this gene







interacts specifically with m3G-cap and functions as an snRNP-specific nuclear import receptor.







Alternatively spliced transcript variants encoding the same protein have been identified for this gene.







[provided by RefSeq, July 2008]. Transcript Variant: This variant (3) differs in the 5′ UTR, compared to







variant 1. Variants 1, 2 and 3 encode the same protein.


SNUPN
Y
1547
NM_005701

Homo sapiens snurportin 1

The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a






(SNUPN), transcript variant
complex nuclear localization signal. The latter is composed of the 5′-2,2,7-terminal trimethylguanosine






1, mRNA.
(m3G) cap structure of the U snRNA and the Sm core domain. The protein encoded by this gene







interacts specifically with m3G-cap and functions as an snRNP-specific nuclear import receptor.







Alternatively spliced transcript variants encoding the same protein have been identified for this gene.







[provided by RefSeq, July 2008]. Transcript Variant: This variant (1) represents the longest transcript.







Variants 1, 2 and 3 encode the same protein.


SNX33
Y
1548
NM_153271

Homo sapiens sorting nexin

N/A






33 (SNX33), mRNA.



TARSL2
Y
1549
NM_152334

Homo sapiens threonyl-

N/A






tRNA synthetase-like 2







(TARSL2), mRNA.



TM2D3
Y
1550
NM_025141

Homo sapiens TM2 domain

The protein encoded by this gene contains a structural module related to that of the seven






containing 3 (TM2D3),
transmembrane domain G protein-coupled receptor superfamily. This protein has sequence and






transcript variant 2, mRNA.
structural similarities to the beta-amyloid binding protein (BBP), but, unlike BBP, it does not regulate







a response to beta-amyloid peptide. This protein may have regulatory roles in cell death or







proliferation signal cascades. Several alternatively spliced transcript variants of this gene are described







but the full length nature of some variants has not been determined. Multiple polyadenylation sites







have been found in this gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (2)







lacks an exon within the coding region, but maintains the same reading frame, as compared to variant







1. Thus isoform b lacks an internal fragment of 26 aa compared to isoform a.


TM2D3
Y
1551
NM_078474

Homo sapiens TM2 domain

The protein encoded by this gene contains a structural module related to that of the seven






containing 3 (TM2D3),
transmembrane domain G protein-coupled receptor superfamily. This protein has sequence and






transcript variant 1, mRNA.
structural similarities to the beta-amyloid binding protein (BBP), but, unlike BBP, it does not regulate







a response to beta-amyloid peptide. This protein may have regulatory roles in cell death or







proliferation signal cascades. Several alternatively spliced transcript variants of this gene are described







but the full length nature of some variants has not been determined. Multiple polyadenylation sites







have been found in this gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (1)







encodes the full length isoform.


ABCC6P1
Y
1552
NR_003569

Homo sapiens ATP-binding

N/A






cassette, sub-family C,







member 6 pseudogene 1







(ABCC6P1), non-coding







RNA.



GLG1
Y
1553
NM_001145666

Homo sapiens golgi

N/A






glycoprotein 1 (GLG1),







transcript variant 2, mRNA.



GLG1
Y
1554
NM_001145667

Homo sapiens golgi

N/A






glycoprotein 1 (GLG1),







transcript variant 3, mRNA.



GLG1
Y
1555
NM_012201

Homo sapiens golgi

N/A






glycoprotein 1 (GLG1),







transcript variant 1, mRNA.



GLG1
Y
1556
NR_027264

Homo sapiens golgi

N/A






glycoprotein 1 (GLG1),







transcript variant 4, non-







coding RNA.



GLG1
Y
1557
NR_027265

Homo sapiens golgi

N/A






glycoprotein 1 (GLG1),







transcript variant 5, non-







coding RNA.



RPTOR
Y
1558
NM_001163034

Homo sapiens regulatory

This gene encodes a component of a signaling pathway that regulates cell growth in response to






associated protein of
nutrient and insulin levels. The encoded protein forms a stoichiometric complex with the mTOR






MTOR, complex 1
kinase, and also associates with eukaryotic initiation factor 4E-binding protein-1 and ribosomal protein






(RPTOR), transcript variant
S6 kinase. The protein positively regulates the downstream effector ribosomal protein S6 kinase, and






2, mRNA.
negatively regulates the mTOR kinase. Multiple transcript variants encoding different isoforms have







been found for this gene. [provided by RefSeq, September 2009]. Transcript Variant: This variant (2) lacks







alternate in-frame exons compared to variant 1. This results in a shorter protein (isoform 2) compared







to isoform 1. The transcript is described in PMID:19388141. Sequence Note: The RefSeq transcript







and protein were derived from genomic sequence to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on alignments.


RPTOR
Y
1559
NM_020761

Homo sapiens regulatory

This gene encodes a component of a signaling pathway that regulates cell growth in response to






associated protein of
nutrient and insulin levels. The encoded protein forms a stoichiometric complex with the mTOR






MTOR, complex 1
kinase, and also associates with eukaryotic initiation factor 4E-binding protein-1 and ribosomal protein






(RPTOR), transcript variant
S6 kinase. The protein positively regulates the downstream effector ribosomal protein S6 kinase, and






1, mRNA.
negatively regulates the mTOR kinase. Multiple transcript variants encoding different isoforms have







been found for this gene. [provided by RefSeq, September 2009]. Transcript Variant: This variant (1)







represents the longer transcript and encodes the longer isoform (1).


PPAP2C
Y
1560
NM_003712

Homo sapiens phosphatidic

The protein encoded by this gene is a member of the phosphatidic acid phosphatase (PAP) family.






acid phosphatase type 2C
PAPs convert phosphatidic acid to diacylglycerol, and function in de novo synthesis of glycerolipids as






(PPAP2C), transcript variant
well as in receptor-activated signal transduction mediated by phospholipase D. This protein is similar






1, mRNA.
to phosphatidic acid phosphatase type 2A (PPAP2A) and type 2B (PPAP2B). All three proteins







contain 6 transmembrane regions, and a consensus N-glycosylation site. This protein has been shown







to possess membrane associated PAP activity. Three alternatively spliced transcript variants encoding







distinct isoforms have been reported. [provided by RefSeq, July 2008]. Transcript Variant: This variant







(1) differs in the 5 region, including the 5′ UTR and a part of the coding region, as compared to variant







3. The resulting isoform (1) has a distinct and shorter N-terminus, as compared to isoform 3.


PPAP2C
Y
1561
NM_177526

Homo sapiens phosphatidic

The protein encoded by this gene is a member of the phosphatidic acid phosphatase (PAP) family.






acid phosphatase type 2C
PAPs convert phosphatidic acid to diacylglycerol, and function in de novo synthesis of glycerolipids as






(PPAP2C), transcript variant
well as in receptor-activated signal transduction mediated by phospholipase D. This protein is similar






2, mRNA.
to phosphatidic acid phosphatase type 2A (PPAP2A) and type 2B (PPAP2B). All three proteins







contain 6 transmembrane regions, and a consensus N-glycosylation site. This protein has been shown







to possess membrane associated PAP activity. Three alternatively spliced transcript variants encoding







distinct isoforms have been reported. [provided by RefSeq, July 2008]. Transcript Variant: This variant







(2) differs in the 5′ region, as compared to variant 3. The translation begins at a downstream start







codon. The resulting isoform (2) has a shorter N-terminus, as compared to isoform 3.


PPAP2C
Y
1562
NM_177543

Homo sapiens phosphatidic

The protein encoded by this gene is a member of the phosphatidic acid phosphatase (PAP) family.






acid phosphatase type 2C
PAPs convert phosphatidic acid to diacylglycerol, and function in de novo synthesis of glycerolipids as






(PPAP2C), transcript variant
well as in receptor-activated signal transduction mediated by phospholipase D. This protein is similar






3, mRNA.
to phosphatidic acid phosphatase type 2A (PPAP2A) and type 2B (PPAP2B). All three proteins







contain 6 transmembrane regions, and a consensus N-glycosylation site. This protein has been shown







to possess membrane associated PAP activity. Three alternatively spliced transcript variants encoding







distinct isoforms have been reported. [provided by RefSeq, July 2008]. Transcript Variant: This variant







(3) encodes the longest isoform (3).


MIR516B2
Y
1563
NR_030207

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






526b-2 (MIR526B2),
regulation of gene expression in multicellular organisms by affecting both the stability and translation






microRNA.
of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


MIR526A2
Y
1564
NR_030208

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






526a-2 (MIR526A2),
regulation of gene expression in multicellular organisms by affecting both the stability and translation






microRNA.
of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


MIR518A1
Y
1565
NR_030210

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






518a-1 (MIR518A1),
regulation of gene expression in multicellular organisms by affecting both the stability and translation






microRNA.
of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


MIR518E
Y
1566
NR_030209

Homo sapiens microRNA

microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional






518e (MIR518E),
regulation of gene expression in multicellular organisms by affecting both the stability and translation






microRNA.
of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated







primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary







transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-







loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease







to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is







incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through







imperfect base pairing with the miRNA and most commonly results in translational inhibition or







destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop.







[provided by RefSeq, September 2009]. Sequence Note: This record represents a predicted microRNA stem-







loop as defined by miRBase. Some sequence at the 5′ and 3′ ends may not be included in the







intermediate precursor miRNA produced by Drosha cleavage.


LOC440297
Y
1567
NR_033579

Homo sapiens chondroitin

N/A






sulfate proteoglycan 4







pseudogene (LOC440297),







non-coding RNA.



LOC727849
Y
1568
NR_033936

Homo sapiens golgin A2

N/A






pseudogene (LOC727849),







non-coding RNA.



KRT39
Y
1569
NM_213656

Homo sapiens keratin 39

This gene encodes a member of the type I (acidic) keratin family, which belongs to the superfamily of






(KRT39), mRNA.
intermediate filament (IF) proteins. Keratins are heteropolymeric structural proteins which form the







intermediate filament. These filaments, along with actin microfilaments and microtubules, compose the







cytoskeleton of epithelial cells. The type I keratin genes are clustered in a region of chromosome







17q12-q21. [provided by RefSeq, July 2009].


KRT40
Y
1570
NM_182497

Homo sapiens keratin 40

This gene encodes a member of the type I (acidic) keratin family, which belongs to the superfamily of






(KRT40), mRNA.
intermediate filament (IF) proteins. Keratins are heteropolymeric structural proteins which form the







intermediate filament. These filaments, along with actin microfilaments and microtubules, compose the







cytoskeleton of epithelial cells. The type I keratin genes are clustered in a region of chromosome







17q12-q21. [provided by RefSeq, July 2009]. Sequence Note: The RefSeq transcript and protein were







derived from genomic sequence to make the sequence consistent with the reference genome assembly.







The genomic coordinates used for the transcript record were based on alignments.


KRTAP1-1
Y
1571
NM_030967

Homo sapiens keratin

This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a






associated protein 1-1
matrix of keratin intermediate filaments which contribute to the structure of hair fibers. KAP family






(KRTAP1-1), mRNA.
members appear to have unique, family-specific amino- and carboxyl-terminal regions and are







subdivided into three multi-gene families according to amino acid composition: the high sulfur, the







ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the high sulfur KAP







family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, July 2008].


KRTAP1-3
Y
1572
NM_030966

Homo sapiens keratin

This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a






associated protein 1-3
matrix of keratin intermediate filaments which contribute to the structure of hair fibers. KAP family






(KRTAP1-3), mRNA.
members appear to have unique, family-specific amino- and carboxyl-terminal regions and are







subdivided into three multi-gene families according to amino acid composition: the high sulfur, the







ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the high sulfur KAP







family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, July 2008].


KRTAP1-5
Y
1573
NM_031957

Homo sapiens keratin

This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a






associated protein 1-5
matrix of keratin intermediate filaments which contribute to the structure of hair fibers. KAP family






(KRTAP1-5), mRNA.
members appear to have unique, family-specific amino- and carboxyl-terminal regions and are







subdivided into three multi-gene families according to amino acid composition: the high sulfur, the







ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the high sulfur KAP







family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, July 2008].


KRTAP2-1
Y
1574
NM_001123387

Homo sapiens keratin

N/A






associated protein 2-1







(KRTAP2-1), mRNA.



KRTAP2-2
Y
1575
NM_033032

Homo sapiens keratin

N/A






associated protein 2-2







(KRTAP2-2), mRNA.



KRTAP2-4
Y
1576
NM_033184

Homo sapiens keratin

This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a






associated protein 2-4
matrix of keratin intermediate filaments which contribute to the structure of hair fibers. KAP family






(KRTAP2-4), mRNA.
members appear to have unique, family-specific amino- and carboxyl-terminal regions and are







subdivided into three multi-gene families according to amino acid composition: the high sulfur, the







ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the high sulfur KAP







family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, July 2008].


KRTAP3-1
Y
1577
NM_031958

Homo sapiens keratin

This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a






associated protein 3-1
matrix of keratin intermediate filaments which contribute to the structure of hair fibers. KAP family






(KRTAP3-1), mRNA.
members appear to have unique, family-specific amino- and carboxyl-terminal regions and are







subdivided into three multi-gene families according to amino acid composition: the high sulfur, the







ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the high sulfur KAP







family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, July 2008].


KRTAP3-2
Y
1578
NM_031959

Homo sapiens keratin

This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a






associated protein 3-2
matrix of keratin intermediate filaments which contribute to the structure of hair fibers. KAP family






(KRTAP3-2), mRNA.
members appear to have unique, family-specific amino- and carboxyl-terminal regions and are







subdivided into three multi-gene families according to amino acid composition: the high sulfur, the







ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the high sulfur KAP







family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, July 2008].


KRTAP3-3
Y
1579
NM_033185

Homo sapiens keratin

This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a






associated protein 3-3
matrix of keratin intermediate filaments which contribute to the structure of hair fibers. KAP family






(KRTAP3-3), mRNA.
members appear to have unique, family-specific amino- and carboxyl-terminal regions and are







subdivided into three multi-gene families according to amino acid composition: the high sulfur, the







ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the high sulfur KAP







family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, July 2008].


KRTAP4-11
Y
1580
NM_033059

Homo sapiens keratin

This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a






associated protein 4-11
matrix of keratin intermediate filaments which contribute to the structure of hair fibers. KAP family






(KRTAP4-11), mRNA.
members appear to have unique, family-specific amino- and carboxyl-terminal regions and are







subdivided into three multi-gene families according to amino acid composition: the high sulfur, the







ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the ultrahigh sulfur







KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, March







2009]. Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to







make the sequence consistent with the reference genome assembly. The genomic coordinates used for







the transcript record were based on alignments.


KRTAP4-12
Y
1581
NM_031854

Homo sapiens keratin

This protein is a member of the keratin-associated protein (KAP) family. The KAP proteins form a






associated protein 4-12
matrix of keratin intermediate filaments which contribute to the structure of hair fibers. KAP family






(KRTAP4-12), mRNA.
members appear to have unique, family-specific amino- and carboxyl-terminal regions and are







subdivided into three multi-gene families according to amino acid composition: the high sulfur, the







ultrahigh sulfur, and the high tyrosine/glycine KAPs. This protein is a member of the ultrahigh sulfur







KAP family and the gene is localized to a cluster of KAPs at 17q12-q21. [provided by RefSeq, July 2008].


LOC730755
Y
1582
NM_001165252

Homo sapiens keratin

N/A






associated protein 2-4-like







(LOC730755), mRNA.



OLFM3
Y
1583
NM_058170

Homo sapiens olfactomedin

N/A






3 (OLFM3), mRNA.



C1orf106
Y
1584
NM_001142569

Homo sapiens chromosome

N/A






1 open reading frame 106







(C1orf106), transcript







variant 2, mRNA.



C1orf106
Y
1585
NM_018265

Homo sapiens chromosome

N/A






1 open reading frame 106







(C1orf106), transcript







variant 1, mRNA.



GPR25
Y
1586
NM_005298

Homo sapiens G protein-

N/A






coupled receptor 25







(GPR25), mRNA.



TFB2M
Y
1587
NM_022366

Homo sapiens transcription

N/A






factor B2, mitochondrial







(TFB2M), nuclear gene







encoding mitochondrial







protein, mRNA.



ORT2T29
Y
1588
NM_001004694

Homo sapiens olfactory

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that






receptor, family 2,
triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-






subfamily T, member 29
protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a






(OR2T29), mRNA.
7-transmembrane domain structure with many neurotransmitter and hormone receptors and are







responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory







receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor







genes and proteins for this organism is independent of other organisms. [provided by RefSeq, July







2008]. Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to







make the sequence consistent with the reference genome assembly. The genomic coordinates used for







the transcript record were based on homologous alignments.


SH3BP5L
Y
1589
NM_030645

Homo sapiens SH3-binding

N/A






domain protein 5-like







(SH3BP5L), mRNA.



CAPG
Y
1590
NM_001747

Homo sapiens capping

This gene encodes a member of the gelsolin/villin family of actin-regulatory proteins. The encoded






protein (actin filament),
protein reversibly blocks the barbed ends of F-actin filaments in a Ca2+ and phosphoinositide-






gelsolin-like (CAPG),
regulated manner, but does not sever preformed actin filaments. By capping the barbed ends of actin






mRNA.
filaments, the encoded protein contributes to the control of actin-based motility in non-muscle cells.







Alternatively spliced transcript variants have been observed, but have not been fully described.







[provided by RefSeq, July 2008].


ELMOD3
Y
1591
NM_001135021

Homo sapiens ELMO/CED-

N/A






12 domain containing 3







(ELMOD3), transcript







variant 2, mRNA.



ELMOD3
Y
1592
NM_001135022

Homo sapiens ELMO/CED-

N/A






12 domain containing 3







(ELMOD3), transcript







variant 3, mRNA.



ELMOD3
Y
1593
NM_001135023

Homo sapiens ELMO/CED-

N/A






12 domain containing 3







(ELMOD3), transcript







variant 4, mRNA.



ELMOD3
Y
1594
NM_032213

Homo sapiens ELMO/CED-

N/A






12 domain containing 3







(ELMOD3), transcript







variant 1, mRNA.



PTPN4
Y
1595
NM_002830

Homo sapiens protein

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs






tyrosine phosphatase, non-
are known to be signaling molecules that regulate a variety of cellular processes including cell growth,






receptor type 4
differentiation, mitotic cycle, and oncogenic transformation. This protein contains a C-terminal PTP






(megakaryocyte) (PTPN4),
domain and an N-terminal domain homologous to the band 4.1 superfamily of cytoskeletal-associated






mRNA.
proteins. This PTP has been shown to interact with glutamate receptor delta 2 and epsilon subunits, and







is thought to play a role in signalling downstream of the glutamate receptors through tyrosine







dephosphorylation. [provided by RefSeq, July 2008].


SCN3A
Y
1596
NM_001081676

Homo sapiens sodium

Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha






channel, voltage-gated, type
subunit with 24 transmembrane domains and one or more regulatory beta subunits. They are






III, alpha subunit (SCN3A),
responsible for the generation and propagation of action potentials in neurons and muscle. This gene






transcript variant 2, mRNA.
encodes one member of the sodium channel alpha subunit gene family, and is found in a cluster of five







alpha subunit genes on chromosome 2. Multiple transcript variants encoding different isoforms have







been found for this gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (2), also







known as 12v1, SCN3A-s, or the adult form, uses an alternate in-frame splice site in the central coding







region, compared to variant 1, resulting in a shorter protein (isoform 2).


SCN3A
Y
1597
NM_001081677

Homo sapiens sodium

Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha






channel, voltage-gated, type
subunit with 24 transmembrane domains and one or more regulatory beta subunits. They are






III, alpha subunit (SCN3A),
responsible for the generation and propagation of action potentials in neurons and muscle. This gene






transcript variant 3, mRNA.
encodes one member of the sodium channel alpha subunit gene family, and is found in a cluster of five







alpha subunit genes on chromosome 2. Multiple transcript variants encoding different isoforms have







been found for this gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (3), also







known as the neonatal form, uses an alternate in-frame splice site in the central coding region and an







alternate form of an exon in the 5′ coding region, compared to variant 1. The resulting isoform (3) is







shorter than isoform 1, and contains one amino acid substitution relative to isoform 2.


SCN3A
Y
1598
NM_006922

Homo sapiens sodium

Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha






channel, voltage-gated, type
subunit with 24 transmembrane domains and one or more regulatory beta subunits. They are






III, alpha subunit (SCN3A),
responsible for the generation and propagation of action potentials in neurons and muscle. This gene






transcript variant 1, mRNA.
encodes one member of the sodium channel alpha subunit gene family, and is found in a cluster of five







alpha subunit genes on chromosome 2. Multiple transcript variants encoding different isoforms have







been found for this gene. [provided by RefSeq, July 2008]. Transcript Variant: This variant (1), also







known as 12v4, represents the longest transcript and encodes the longest isoform (1).


CNTN4
Y
1599
NM_001206955

Homo sapiens contactin 4

This gene encodes a member of the contactin family of immunoglobulins. Contactins are axon-






(CNTN4), transcript variant
associated cell adhesion molecules that function in neuronal network formation and plasticity. The






4, mRNA.
encoded protein is a glycosylphosphatidylinositol-anchored neuronal membrane protein that may play







a role in the formation of axon connections in the developing nervous system. Deletion or mutation of







this gene may play a role in 3p deletion syndrome and autism spectrum disorders. Alternative splicing







results in multiple transcript variants. [provided by RefSeq, May 2011]. Transcript Variant: This







variant (4) differs in the 5′ UTR, compared to variant 1. Both variants 1 and 4 encode the same isoform







(a). Sequence Note: This RefSeq record was created from transcript and genomic sequence data to







make the sequence consistent with the reference genome assembly. The genomic coordinates used for







the transcript record were based on transcript alignments. Publication Note: This RefSeq record







includes a subset of the publications that are available for this gene. Please see the Gene record to







access additional publications.


CNTN4
Y
1600
NM_001206956

Homo sapiens contactin 4

This gene encodes a member of the contactin family of immunoglobulins. Contactins are axon-






(CNTN4), transcript variant
associated cell adhesion molecules that function in neuronal network formation and plasticity. The






5, mRNA.
encoded protein is a glycosylphosphatidylinositol-anchored neuronal membrane protein that may play







a role in the formation of axon connections in the developing nervous system. Deletion or mutation of







this gene may play a role in 3p deletion syndrome and autism spectrum disorders. Alternative splicing







results in multiple transcript variants. [provided by RefSeq, May 2011]. Transcript Variant: This







variant (5) differs in the 5′ UTR, lacks a portion of the 5′ coding region, uses a downstream in-frame







start codon, and uses an alternate in-frame splice site in the central coding region, compared to variant







1. The encoded isoform (d) is shorter at the N-terminus, compared to isoform a. Sequence Note: This







RefSeq record was created from transcript and genomic sequence data to make the sequence consistent







with the reference genome assembly. The genomic coordinates used for the transcript record were







based on transcript alignments. Publication Note: This RefSeq record includes a subset of the







publications that are available for this gene. Please see the Gene record to access additional







publications.


CNTN4
Y
1601
NM_175607

Homo sapiens contactin 4

This gene encodes a member of the contactin family of immunoglobulins. Contactins are axon-






(CNTN4), transcript variant
associated cell adhesion molecules that function in neuronal network formation and plasticity. The






1, mRNA.
encoded protein is a glycosylphosphatidylinositol-anchored neuronal membrane protein that may play







a role in the formation of axon connections in the developing nervous system. Deletion or mutation of







this gene may play a role in 3p deletion syndrome and autism spectrum disorders. Alternative splicing







results in multiple transcript variants. [provided by RefSeq, May 2011]. Transcript Variant: This







variant (1) encodes the longest isoform (a). Both variants 1 and 4 encode the same isoform.


CNTN4
Y
1602
NM_175613

Homo sapiens contactin 4

This gene encodes a member of the contactin family of immunoglobulins. Contactins are axon-






(CNTN4), transcript variant
associated cell adhesion molecules that function in neuronal network formation and plasticity. The






3, mRNA.
encoded protein is a glycosylphosphatidylinositol-anchored neuronal membrane protein that may play







a role in the formation of axon connections in the developing nervous system. Deletion or mutation of







this gene may play a role in 3p deletion syndrome and autism spectrum disorders. Alternative splicing







results in multiple transcript variants. [provided by RefSeq, May 2011]. Transcript Variant: This







variant (3) differs in the 5′ UTR, lacks a portion of the 5′ coding region, and uses a downstream in-







frame start codon, compared to variant 1. The encoded isoform (c) is shorter at the N-terminus,







compared to isoform a. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments. Publication Note: This







RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene







record to access additional publications.


HACL1
Y
1603
NM_012260

Homo sapiens 2-

N/A






hydroxyacyl-CoA lyase 1







(HACL1), mRNA.



TMEM158
Y
1604
NM_015444

Homo sapiens

Constitutive activation of the Ras pathway triggers an irreversible proliferation arrest reminiscent of






transmembrane protein 158
replicative senescence. Transcription of this gene is upregulated in response to activation of the Ras






(gene/pseudogene)
pathway, but not under other conditions that induce senescence. The encoded protein is similar to a rat






(TMEM158), mRNA.
cell surface receptor proposed to function in a neuronal survival pathway. [provided by RefSeq, July







2008].


PCYT1A
Y
1605
NM_005017

Homo sapiens phosphate

N/A






cytidylyltransferase 1,







choline, alpha (PCYT1A),







mRNA.



TCTEX1D2
Y
1606
NM_152773

Homo sapiens Tctex1

N/A






domain containing 2







(TCTEX1D2), mRNA.



ZDHHC19
Y
1607
NM_001039617

Homo sapiens zinc finger,

N/A






DHHC-type containing 19







(ZDHHC19), mRNA.



ZNF890P
Y
1608
NR_034163

Homo sapiens zinc finger

N/A






protein 890, pseudogene







(ZNF890P), non-coding







RNA.



ZNF815
Y
1609
NR_023382

Homo sapiens zinc finger

N/A






protein 815 (ZNF815), non-







coding RNA.



AGR3
Y
1610
NM_176813

Homo sapiens anterior

N/A






gradient 3 homolog







(Xenopus laevis) (AGR3),







mRNA.



LOC100287704
Y
1611
NR_028348

Homo sapiens

N/A






uncharacterized







LOC100287704







(LOC100287704), non-







coding RNA.



LOC100287834
Y
1612
NR_028349

Homo sapiens

N/A






uncharacterized







LOC100287834







(LOC100287834), non-







coding RNA.



LOC643955
Y
1613
NR_003952

Homo sapiens zinc finger

N/A






protein 479 pseudogene







(LOC643955), non-coding







RNA.



ATP6V0E2
Y
1614
NM_001100592

Homo sapiens ATPase, H+

Multisubunit vacuolar-type proton pumps, or H(+)-ATPases, acidify various intracellular






transporting V0 subunit e2
compartments, such as vacuoles, clathrin-coated and synaptic vesicles, endosomes, lysosomes, and






(ATP6V0E2), transcript
chromaffin granules. H(+)-ATPases are also found in plasma membranes of specialized cells, where






variant 2, mRNA.
they play roles in urinary acidification, bone resorption, and sperm maturation. Multiple subunits form







H(+)-ATPases, with proteins of the V1 class hydrolyzing ATP for energy to transport H+, and proteins







of the V0 class forming an integral membrane domain through which H+ is transported. ATP6V0E2







encodes an isoform of the H(+)-ATPase V0 e subunit, an essential proton pump component (Blake-







Palmer et al., 2007 [PubMed 17350184]). [supplied by OMIM, March 2008]. Transcript Variant: This







variant (2) lacks an alternate segment in the 3′ coding region, compared to variant 1, that causes a







frameshift. The resulting protein (isoform 2) has a longer and distinct C-terminus, compared to isoform 1.


ATP6V0E2
Y
1615
NM_145230

Homo sapiens ATPase, H+

Multisubunit vacuolar-type proton pumps, or H(+)-ATPases, acidify various intracellular






transporting V0 subunit e2
compartments, such as vacuoles, clathrin-coated and synaptic vesicles, endosomes, lysosomes, and






(ATP6V0E2), transcript
chromaffin granules. H(+)-ATPases are also found in plasma membranes of specialized cells, where






variant 1, mRNA.
they play roles in urinary acidification, bone resorption, and sperm maturation. Multiple subunits form







H(+)-ATPases, with proteins of the V1 class hydrolyzing ATP for energy to transport H+, and proteins







of the V0 class forming an integral membrane domain through which H+ is transported. ATP6V0E2







encodes an isoform of the H(+)-ATPase V0 e subunit, an essential proton pump component (Blake-







Palmer et al., 2007 [PubMed 17350184]). [supplied by OMIM, March 2008]. Transcript Variant: This







variant (1) represents the predominantly occurring transcript and it encodes isoform 1.


LOC401431
Y
1616
NR_027040

Homo sapiens

N/A






uncharacterized LOC401431







(LOC401431), non-coding







RNA.



ZNF862
Y
1617
NM_001099220

Homo sapiens zinc finger

N/A






protein 862 (ZNF862),







mRNA.



FGL1
Y
1618
NM_004467

Homo sapiens fibrinogen-

Fibrinogen-like 1 is a member of the fibrinogen family. This protein is homologous to the carboxy






like 1 (FGL1), transcript
terminus of the fibrinogen beta- and gamma- subunits which contains the four conserved cysteines of






variant 1, mRNA.
fibrinogens and fibrinogen related proteins. However, this protein lacks the platelet-binding site, cross-







linking region and a thrombin-sensitive site which are necessary for fibrin clot formation. This protein







may play a role in the development of hepatocellular carcinomas. Four alternatively spliced transcript







variants encoding the same protein exist for this gene. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (1) appears to be the predominantly expressed transcript. It lacks an exon in the 5′







UTR and has an alternate exon at the 5′ end compared to the longest variant (4). All four variants







encode the same protein. Publication Note: This RefSeq record includes a subset of the publications







that are available for this gene. Please see the Gene record to access additional publications.


FGL1
Y
1619
NM_147203

Homo sapiens fibrinogen-

Fibrinogen-like 1 is a member of the fibrinogen family. This protein is homologous to the carboxy






like 1 (FGL1), transcript
terminus of the fibrinogen beta- and gamma- subunits which contains the four conserved cysteines of






variant 2, mRNA.
fibrinogens and fibrinogen related proteins. However, this protein lacks the platelet-binding site, cross-







linking region and a thrombin-sensitive site which are necessary for fibrin clot formation. This protein







may play a role in the development of hepatocellular carcinomas. Four alternatively spliced transcript







variants encoding the same protein exist for this gene. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (2) lacks an exon in the 5′ UTR compared to the longest variant (4). All four







variants encode the same protein. Publication Note: This RefSeq record includes a subset of the







publications that are available for this gene. Please see the Gene record to access additional







publications.


FGL1
Y
1620
NM_201552

Homo sapiens fibrinogen-

Fibrinogen-like 1 is a member of the fibrinogen family. This protein is homologous to the carboxy






like 1 (FGL1), transcript
terminus of the fibrinogen beta- and gamma- subunits which contains the four conserved cysteines of






variant 3, mRNA.
fibrinogens and fibrinogen related proteins. However, this protein lacks the platelet-binding site, cross-







linking region and a thrombin-sensitive site which are necessary for fibrin clot formation. This protein







may play a role in the development of hepatocellular carcinomas. Four alternatively spliced transcript







variants encoding the same protein exist for this gene. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (3) has an alternate exon at the 5′ end compared to the longest variant (4). All







four variants encode the same protein. Publication Note: This RefSeq record includes a subset of the







publications that are available for this gene. Please see the Gene record to access additional







publications.


FGL1
Y
1621
NM_021553

Homo sapiens fibrinogen-

Fibrinogen-like 1 is a member of the fibrinogen family. This protein is homologous to the carboxy






like 1 (FGL1), transcript
terminus of the fibrinogen beta- and gamma- subunits which contains the four conserved cysteines of






variant 4, mRNA.
fibrinogens and fibrinogen related proteins. However, this protein lacks the platelet-binding site, cross-







linking region and a thrombin-sensitive site which are necessary for fibrin clot formation. This protein







may play a role in the development of hepatocellular carcinomas. Four alternatively spliced transcript







variants encoding the same protein exist for this gene. [provided by RefSeq, July 2008]. Transcript







Variant: This variant (4) represents the longest transcript. All four variants encode the same protein.







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


MTUS1
Y
1622
NM_001001924

Homo sapiens microtubule

This gene encodes a protein which contains a C-terminal domain able to interact with the angiotension






associated tumor suppressor
II (AT2) receptor and a large coiled-coil region allowing dimerization. Multiple alternatively spliced






1 (MTUS1), transcript
transcript variants encoding different isoforms have been found for this gene. One of the transcript






variant 1, mRNA.
variants has been shown to encode a mitochondrial protein that acts as a tumor suppressor and







partcipates in AT2 signaling pathways. Other variants may encode nuclear or transmembrane proteins







but it has not been determined whether they also participate in AT2 signaling pathways. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (1), also known as ATIP3, encodes the longest







isoform (1). Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


MTUS1
Y
1623
NM_001001925

Homo sapiens microtubule

This gene encodes a protein which contains a C-terminal domain able to interact with the angiotension






associated tumor suppressor
II (AT2) receptor and a large coiled-coil region allowing dimerization. Multiple alternatively spliced






1 (MTUS1), transcript
transcript variants encoding different isoforms have been found for this gene. One of the transcript






variant 2, mRNA.
variants has been shown to encode a mitochondrial protein that acts as a tumor suppressor and







partcipates in AT2 signaling pathways. Other variants may encode nuclear or transmembrane proteins







but it has not been determined whether they also participate in AT2 signaling pathways. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (2) lacks an in-frame exon in the coding region,







compared to variant 1. It encodes isoform 2 which lacks an internal segment, compared to isoform 1.







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


MTUS1
Y
1624
NM_001001931

Homo sapiens microtubule

This gene encodes a protein which contains a C-terminal domain able to interact with the angiotension






associated tumor suppressor
II (AT2) receptor and a large coiled-coil region allowing dimerization. Multiple alternatively spliced






1 (MTUS1), transcript
transcript variants encoding different isoforms have been found for this gene. One of the transcript






variant 4, mRNA.
variants has been shown to encode a mitochondrial protein that acts as a tumor suppressor and







partcipates in AT2 signaling pathways. Other variants may encode nuclear or transmembrane proteins







but it has not been determined whether they also participate in AT2 signaling pathways. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (4), also known as ATIP4, lacks several 5′ exons







but has an alternate 5′ exon, compared to variant 1. It encodes isoform 4 which has a much shorter and







distinct N-terminus, compared to isoform 1. Publication Note: This RefSeq record includes a subset of







the publications that are available for this gene. Please see the Gene record to access additional







publications.


MTUS1
Y
1625
NM_001166393

Homo sapiens microtubule

This gene encodes a protein which contains a C-terminal domain able to interact with the angiotension






associated tumor suppressor
II (AT2) receptor and a large coiled-coil region allowing dimerization. Multiple alternatively spliced






1 (MTUS1), transcript
transcript variants encoding different isoforms have been found for this gene. One of the transcript






variant 6, mRNA.
variants has been shown to encode a mitochondrial protein that acts as a tumor suppressor and







partcipates in AT2 signaling pathways. Other variants may encode nuclear or transmembrane proteins







but it has not been determined whether they also participate in AT2 signaling pathways. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (6), also known as ATIP2, lacks several 5′ exons







but has an alternate 5′ exon, compared to variant 1. It encodes isoform 6 which has a much shorter and







distinct N-terminus, compared to isoform 1. Publication Note: This RefSeq record includes a subset of







the publications that are available for this gene. Please see the Gene record to access additional







publications.


MTUS1
Y
1626
NM_020749

Homo sapiens microtubule

This gene encodes a protein which contains a C-terminal domain able to interact with the angiotension






associated tumor suppressor
II (AT2) receptor and a large coiled-coil region allowing dimerization. Multiple alternatively spliced






1 (MTUS1), nuclear gene
transcript variants encoding different isoforms have been found for this gene. One of the transcript






encoding mitochondrial
variants has been shown to encode a mitochondrial protein that acts as a tumor suppressor and






protein, transcript variant 5,
partcipates in AT2 signaling pathways. Other variants may encode nuclear or transmembrane proteins






mRNA.
but it has not been determined whether they also participate in AT2 signaling pathways. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (5), also known as ATIP1, lacks multiple 5′ exons







but has an alternate 5′ exon, compared to variant 1. It encodes the shortest isoform (5) which has a







much shorter and distinct N-terminus, compared to isoform 1. Isoform 5 is a mitochondrial protein.







Publication Note: This RefSeq record includes a subset of the publications that are available for this







gene. Please see the Gene record to access additional publications.


ACER2
Y
1627
NM_001010887

Homo sapiens alkaline

The sphingolipid metabolite sphingosine-1-phosphate promotes cell proliferation and survival, whereas






ceramidase 2 (ACER2),
its precursor, sphingosine, has the opposite effect. The ceramidase ACER2 hydrolyzes very long chain






mRNA.
ceramides to generate sphingosine (Xu et al., 2006 [PubMed 16940153]). [supplied by OMIM, July 2010].


NTNG2
Y
1628
NM_032536

Homo sapiens netrin G2

N/A






(NTNG2), mRNA.



GTF3C4
Y
1629
NM_012204

Homo sapiens general

N/A






transcription factor IIIC,







polypeptide 4, 90 kDa







(GTF3C4), mRNA.



KIAA1217
Y
1630
NM_001098500

Homo sapiens KIAA1217

N/A






(KIAA1217), transcript







variant 2, mRNA.



KIAA1217
Y
1631
NM_001098501

Homo sapiens KIAA1217

N/A






(KIAA1217), transcript







variant 3, mRNA.



KIAA1217
Y
1632
NM_019590

Homo sapiens KIAA1217

N/A






(KIAA1217), transcript







variant 1, mRNA.



PRINS
Y
1633
NR_023388

Homo sapiens psoriasis

N/A






associated RNA induced by







stress (non-protein coding)







(PRINS), non-coding RNA.



CSGALNACT2
Y
1634
NM_018590

Homo sapiens chondroitin

N/A






sulfate N-acetyl-







galactosaminyltransferase







2 (CSGALNACT2),







mRNA.



RASGEF1A
Y
1635
NM_145313

Homo sapiens RasGEF

N/A






domain family, member 1A







(RASGEF1A), mRNA.



RET
Y
1636
NM_020630

Homo sapiens ret proto-

This gene, a member of the cadherin superfamily, encodes one of the receptor tyrosine kinases, which






oncogene (RET), transcript
are cell-surface molecules that transduce signals for cell growth and differentiation. This gene plays a






variant 4, mRNA.
crucial role in neural crest development, and it can undergo oncogenic activation in vivo and in vitro







by cytogenetic rearrangement. Mutations in this gene are associated with the disorders multiple







endocrine neoplasia, type IIA, multiple endocrine neoplasia, type IIB, Hirschsprung disease, and







medullary thyroid carcinoma. Two transcript variants encoding different isoforms have been found for







this gene. Additional transcript variants have been described but their biological validity has not been







confirmed. [provided by RefSeq, July 2008]. Transcript Variant: This variant (4) differs in the 3′ UTR







and coding region compared to variant 2. The resulting isoform (c) is shorter and has a distinct C-







terminus compared to isoform a. This isoform is also known as Ret9.


RET
Y
1637
NM_020975

Homo sapiens ret proto-

This gene, a member of the cadherin superfamily, encodes one of the receptor tyrosine kinases, which






oncogene (RET), transcript
are cell-surface molecules that transduce signals for cell growth and differentiation. This gene plays a






variant 2, mRNA.
crucial role in neural crest development, and it can undergo oncogenic activation in vivo and in vitro







by cytogenetic rearrangement. Mutations in this gene are associated with the disorders multiple







endocrine neoplasia, type IIA, multiple endocrine neoplasia, type IIB, Hirschsprung disease, and







medullary thyroid carcinoma. Two transcript variants encoding different isoforms have been found for







this gene. Additional transcript variants have been described but their biological validity has not been







confirmed. [provided by RefSeq, July 2008]. Transcript Variant: This variant (2) represents the longer







transcript and encodes the longer isoform (a). This isoform is also known as Ret51.


CTNNA3
Y
1638
NM_001127384

Homo sapiens catenin

N/A






(cadherin-associated







protein), alpha 3







(CTNNA3), transcript







variant 2, mRNA.



CTNNA3
Y
1639
NM_013266

Homo sapiens catenin

N/A






(cadherin-associated







protein), alpha 3







(CTNNA3), transcript







variant 1, mRNA.



OR4C46
Y
1640
NM_001004703

Homo sapiens olfactory

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that






receptor, family 4,
triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-






subfamily C, member 46
protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a






(OR4C46), mRNA.
7-transmembrane domain structure with many neurotransmitter and hormone receptors and are







responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory







receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor







genes and proteins for this organism is independent of other organisms. [provided by RefSeq, July 2008].


OR7E5P
Y
1641
NR_027688

Homo sapiens olfactory

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that






receptor, family 7,
triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-






subfamily E, member 5
protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a






pseudogene (OR7E5P), non-
7-transmembrane domain structure with many neurotransmitter and hormone receptors and are






coding RNA.
responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory







receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor







genes and proteins for this organism is independent of other organisms. This family member is







believed to be a pseudogene. [provided by RefSeq, June 2009]. Sequence Note: This RefSeq record was







created from transcript and genomic sequence data to make the sequence consistent with the reference







genome assembly. The genomic coordinates used for the transcript record were based on transcript







alignments.


OR8B2
Y
1642
NM_001005468

Homo sapiens olfactory

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that






receptor, family 8,
triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-






subfamily B, member 2
protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a






(OR8B2), mRNA.
7-transmembrane domain structure with many neurotransmitter and hormone receptors and are







responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory







receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor







genes and proteins for this organism is independent of other organisms. [provided by RefSeq, July 2008].


PGAM5
Y
1643
NM_001170543

Homo sapiens

N/A






phosphoglycerate mutase







family member 5 (PGAM5),







nuclear gene encoding







mitochondrial protein,







transcript variant 1, mRNA.



PGAM5
Y
1644
NM_001170544

Homo sapiens

N/A






phosphoglycerate mutase







family member 5 (PGAM5),







nuclear gene encoding







mitochondrial protein,







transcript variant 2, mRNA.



PGAM5
Y
1645
NM_138575

Homo sapiens

N/A






phosphoglycerate mutase







family member 5 (PGAM5),







nuclear gene encoding







mitochondrial protein,







transcript variant 3, mRNA.



DNAJC15
Y
1646
NM_013238

Homo sapiens DnaJ (Hsp40)

N/A






homolog, subfamily C,







member 15 (DNAJC15),







mRNA.



ENOX1
Y
1647
NM_001127615

Homo sapiens ecto-NOX

Electron transport pathways are generally associated with mitochondrial membranes, but non-






disulfide-thiol exchanger 1
mitochondrial pathways are also biologically significant. Plasma membrane electron transport






(ENOX1), transcript variant
pathways are involved in functions as diverse as cellular defense, intracellular redox homeostasis, and






2, mRNA.
control of cell growth and survival. Members of the ecto-NOX family, such as CNOX, or ENOX1, are







involved in plasma membrane transport pathways. These enzymes exhibit both a hydroquinone







(NADH) oxidase activity and a protein disulfide-thiol interchange activity in series, with each activity







cycling every 22 to 26 minutes (Scarlett et al., 2005 [PubMed 15882838]). [supplied by OMIM, March







2008]. Transcript Variant: This variant (2) differs in the 5′ UTR compared to variant 1. Variants 1, 2







and 3 encode the same protein.


ENOX1
Y
1648
NM_001242863

Homo sapiens ecto-NOX

Electron transport pathways are generally associated with mitochondrial membranes, but non-






disulfide-thiol exchanger 1
mitochondrial pathways are also biologically significant. Plasma membrane electron transport






(ENOX1), transcript variant
pathways are involved in functions as diverse as cellular defense, intracellular redox homeostasis, and






3, mRNA.
control of cell growth and survival. Members of the ecto-NOX family, such as CNOX, or ENOX1, are







involved in plasma membrane transport pathways. These enzymes exhibit both a hydroquinone







(NADH) oxidase activity and a protein disulfide-thiol interchange activity in series, with each activity







cycling every 22 to 26 minutes (Scarlett et al., 2005 [PubMed 15882838]). [supplied by OMIM, March







2008]. Transcript Variant: This variant (3) differs in the 5′ UTR compared to variant 1. Variants 1, 2







and 3 encode the same protein. Sequence Note: This RefSeq record was created from transcript and







genomic sequence data to make the sequence consistent with the reference genome assembly. The







genomic coordinates used for the transcript record were based on transcript alignments.


ENOX1
Y
1649
NM_017993

Homo sapiens ecto-NOX

Electron transport pathways are generally associated with mitochondrial membranes, but non-






disulfide-thiol exchanger 1
mitochondrial pathways are also biologically significant. Plasma membrane electron transport






(ENOX1), transcript variant
pathways are involved in functions as diverse as cellular defense, intracellular redox homeostasis, and






1, mRNA.
control of cell growth and survival. Members of the ecto-NOX family, such as CNOX, or ENOX1, are







involved in plasma membrane transport pathways. These enzymes exhibit both a hydroquinone







(NADH) oxidase activity and a protein disulfide-thiol interchange activity in series, with each activity







cycling every 22 to 26 minutes (Scarlett et al., 2005 [PubMed 15882838]). [supplied by OMIM, March







2008]. Transcript Variant: This variant (1) represents the longest transcript. Variants 1, 2 and 3 encode







the same protein. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


MCF2L
Y
1650
NM_001112732

Homo sapiens MCF.2 cell

N/A






line derived transforming







sequence-like (MCF2L),







transcript variant 1, mRNA.



MCF2L
Y
1651
NM_024979

Homo sapiens MCF.2 cell

N/A






line derived transforming







sequence-like (MCF2L),







transcript variant 2, mRNA.



RASA3
&
1652
NM_007368

Homo sapiens RAS p21

The protein encoded by this gene is member of the GAP1 family of GTPase-activating proteins. The






protein activator 3
gene product stimulates the GTPase activity of normal RAS p21 but not its oncogenic counterpart.






(RASA3), mRNA.
Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of







RAS proteins resulting in the inactive GDP-bound form of RAS, thereby allowing control of cellular







proliferation and differentiation. This family member is an inositol 1,3,4,5-tetrakisphosphate-binding







protein, like the closely related RAS p21 protein activator 2. The two family members have distinct







pleckstrin-homology domains, with this particular member having a domain consistent with its







localization to the plasma membrane. [provided by RefSeq, July 2008].


APBA2
Y
1653
NM_001130414

Homo sapiens amyloid beta

The protein encoded by this gene is a member of the X11 protein family. It is a neuronal adapter






(A4) precursor protein-
protein that interacts with the Alzheimer's disease amyloid precursor protein (APP). It stabilizes APP






binding, family A, member
and inhibits production of proteolytic APP fragments including the A beta peptide that is deposited in






2 (APBA2), transcript
the brains of Alzheimer's disease patients. This gene product is believed to be involved in signal






variant 2, mRNA.
transduction processes. It is also regarded as a putative vesicular trafficking protein in the brain that







can form a complex with the potential to couple synaptic vesicle exocytosis to neuronal cell adhesion.







Multiple transcript variants encoding different isoforms have been found for this gene. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (2) lacks an alternate in-frame exon, compared to







variant 1, resulting in a shorter protein (isoform b), compared to isoform a. Publication Note: This







RefSeq record includes a subset of the publications that are available for this gene. Please see the Gene







record to access additional publications.


APBA2
Y
1654
NM_005503

Homo sapiens amyloid beta

The protein encoded by this gene is a member of the X11 protein family. It is a neuronal adapter






(A4) precursor protein-
protein that interacts with the Alzheimer's disease amyloid precursor protein (APP). It stabilizes APP






binding, family A, member
and inhibits production of proteolytic APP fragments including the A beta peptide that is deposited in






2 (APBA2), transcript
the brains of Alzheimer's disease patients. This gene product is believed to be involved in signal






variant 1, mRNA.
transduction processes. It is also regarded as a putative vesicular trafficking protein in the brain that







can form a complex with the potential to couple synaptic vesicle exocytosis to neuronal cell adhesion.







Multiple transcript variants encoding different isoforms have been found for this gene. [provided by







RefSeq, July 2008]. Transcript Variant: This variant (1) represents the longest transcript and encodes the







longest isoform (a). Publication Note: This RefSeq record includes a subset of the publications that are







available for this gene. Please see the Gene record to access additional publications.


CIB2
Y
1655
NM_006383

Homo sapiens calcium and

The amino acid sequence the protein encoded by this gene is similar to that of KIP/CIB, calcineurin B,






integrin binding family
and calmodulin. This suggests that the encoded protein may be a Ca2+-binding regulatory protein that






member 2 (CIB2), mRNA.
interacts with DNA-dependent protein kinase catalytic subunit (DNA-PKcs). [provided by RefSeq, July 2008].


TM4SF5
Y
1656
NM_003963

Homo sapiens

The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as the






transmembrane 4 L six
tetraspanin family. Most of these members are cell-surface proteins that are characterized by the






family member 5
presence of four hydrophobic domains. The proteins mediate signal transduction events that play a role






(TM4SF5), mRNA.
in the regulation of cell development, activation, growth and motility. This encoded protein is a cell







surface glycoprotein and is highly similar in sequence and structure to transmembrane 4 superfamily







member 1. It may play a role in cell proliferation, and overexpression of this protein may be associated







with the uncontrolled growth of tumour cells. [provided by RefSeq, July 2008].


ADAM11
Y
1657
NM_002390

Homo sapiens ADAM

This gene encodes a member of the ADAM (a disintegrin and metalloprotease) protein family.






metallopeptidase domain 11
Members of this family are membrane-anchored proteins structurally related to snake venom






(ADAM11), mRNA.
disintegrins, and have been implicated in a variety of biological processes involving cell-cell and cell-







matrix interactions, including fertilization, muscle development, and neurogenesis. This gene







represents a candidate tumor supressor gene for human breast cancer based on its location within a







minimal region of chromosome 17q21 previously defined by tumor deletion mapping. [provided by







RefSeq, July 2008].


IL27RA
Y
1658
NM_004843

Homo sapiens interleukin 27

In mice, CD4+ helper T-cells differentiate into type 1 (Thi) cells, which are critical for cell-mediated






receptor, alpha (IL27RA),
immunity, predominantly under the influence of IL12. Also, IL4 influences their differentiation into






mRNA.
type 2 (Th2) cells, which are critical for most antibody responses. Mice deficient in these cytokines,







their receptors, or associated transcription factors have impaired, but are not absent of, Th1 or Th2







immune responses. This gene encodes a protein which is similar to the mouse T-cell cytokine receptor







Tccr at the amino acid level, and is predicted to be a glycosylated transmembrane protein. [provided by







RefSeq, July 2008].


RLN3
Y
1659
NM_080864

Homo sapiens relaxin 3

Relaxins are known endocrine and autocrine/paracrine hormones, belonging to the insulin gene






(RLN3), mRNA.
superfamily. In the human there are three non-allelic relaxin genes, RLN1, RLN2 and RLN3. RLN1







and RLN2 share high sequence homology. Relaxin is produced by the ovary, and targets the







mammalian reproductive system to ripen the cervix, elongate the pubic symphysis and inhibit uterine







contraction. It may have additional roles in enhancing sperm motility, regulating blood pressure,







controlling heart rate and releasing oxytocin and vasopressin. The protein encoded by this gene is a







member of the relaxin family. The active form of the encoded protein consists of an A chain and a B







chain but their cleavage sites are not definitely described yet. It may play a role in neuropeptide







signaling processes. [provided by RefSeq, July 2008].


CD177
Y
1660
NM_020406

Homo sapiens CD177

NB1, a glycosyl-phosphatidylinositol (GPI)-linked N-glycosylated cell surface glycoprotein, was first






molecule (CD177), mRNA.
described in a case of neonatal alloimmune neutropenia (Lalezari et al., 1971 [PubMed







5552408]). [supplied by OMIM, March 2008]. Publication Note: This RefSeq record includes a subset of







the publications that are available for this gene. Please see the Gene record to access additional







publications.


PRG1
Y
1661
NR_026881

Homo sapiens p53-

N/A






responsive gene 1 (PRG1),







non-coding RNA.



LILRB4
Y
1662
NM_001081438

Homo sapiens leukocyte

This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in






immunoglobulin-like
a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class






receptor, subfamily B (with
of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane






TM and ITIM domains),
domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The






member 4 (LILRB4),
receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting






transcript variant 2, mRNA.
cells and transduces a negative signal that inhibits stimulation of an immune response. The receptor







can also function in antigen capture and presentation. It is thought to control inflammatory responses







and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript







variants encoding different isoforms have been found for this gene. [provided by RefSeq, July 2008].







Transcript Variant: This variant (2) uses an alternate in-frame splice site in the 3′ coding region,







compared to variant 1, resulting in a protein (isoform 2) that is 1 aa shorter than isoform 1.


LILRB4
Y
1663
NM_006847

Homo sapiens leukocyte

This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in






immunoglobulin-like
a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class






receptor, subfamily B (with
of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane






TM and ITIM domains),
domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The






member 4 (LILRB4),
receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting






transcript variant 1, mRNA.
cells and transduces a negative signal that inhibits stimulation of an immune response. The receptor







can also function in antigen capture and presentation. It is thought to control inflammatory responses







and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript







variants encoding different isoforms have been found for this gene. [provided by RefSeq, July 2008].







Transcript Variant: This variant (1) represents the longer transcript and encodes the longer isoform (1).


SLC27A5
Y
1664
NM_012254

Homo sapiens solute carrier

The protein encoded by this gene is an isozyme of very long-chain acyl-CoA synthetase (VLCS). It is






family 27 (fatty acid
capable of activating very long-chain fatty-acids containing 24- and 26-carbons. It is expressed in liver






transporter), member 5
and associated with endoplasmic reticulum but not with peroxisomes. Its primary role is in fatty acid






(SLC27A5), mRNA.
elongation or complex lipid synthesis rather than in degradation. This gene has a mouse ortholog.







[provided by RefSeq, July 2008].


C21orf58
Y
1665
NM_058180

Homo sapiens chromosome

N/A






21 open reading frame 58







(C21orf58), mRNA.



PCNT
Y
1666
NM_006031

Homo sapiens pericentrin

The protein encoded by this gene binds to calmodulin and is expressed in the centrosome. It is an






(PCNT), mRNA.
integral component of the pericentriolar material (PCM). The protein contains a series of coiled-coil







domains and a highly conserved PCM targeting motif called the PACT domain near its C-terminus.







The protein interacts with the microtubule nucleation component gamma-tubulin and is likely







important to normal functioning of the centrosomes, cytoskeleton, and cell-cycle progression.







Mutations in this gene cause Seckel syndrome-4 and microcephalic osteodysplastic primordial







dwarfism type II. [provided by RefSeq, July 2008]. Publication Note: This RefSeq record includes a







subset of the publications that are available for this gene. Please see the Gene record to access







additional publications.


ZMAT5
Y
1667
NM_001003692

Homo sapiens zinc finger,

N/A






matrin-type 5 (ZMAT5),







transcript variant 2, mRNA.



ZMAT5
Y
1668
NM_019103

Homo sapiens zinc finger,

N/A






matrin-type 5 (ZMAT5),







transcript variant 1, mRNA.



ANUBL1
Y
1669
NM_001128324

Homo sapiens zinc finger,

N/A






AN1-type domain 4







(ZFAND4), transcript







variant 2, mRNA.



ANUBL1
Y
1670
NM_174890

Homo sapiens zinc finger,

N/A






AN1-type domain 4







(ZFAND4), transcript







variant 1, mRNA.



C14orf145
N
1671
NM_152446

Homo sapiens centrosomal

N/A






protein 128 kDa (CEP128),







mRNA.



C1orf152
Y
1672
NR_003242

Homo sapiens profilin 1

N/A






pseudogene 2 (PFN1P2),







non-coding RNA.



C6orf204
both
1673
NM_001042475

Homo sapiens centrosomal

The protein encoded by this gene was identified as a breast cancer antigen. Nothing more is known of






protein 85 kDa-like
its function at this time. Three transcript variants encoding different isoforms have been found for this






(CEP85L), transcript variant
gene. [provided by RefSeq, May 2010]. Transcript Variant: This variant (1) represents the longest






1, mRNA.
transcript. Sequence Note: This RefSeq record was created from transcript and genomic sequence data







to make the sequence consistent with the reference genome assembly. The genomic coordinates used







for the transcript record were based on transcript alignments.


C6orf204
both
1674
NM_001178035

Homo sapiens centrosomal

The protein encoded by this gene was identified as a breast cancer antigen. Nothing more is known of






protein 85 kDa-like
its function at this time. Three transcript variants encoding different isoforms have been found for this






(CEP85L), transcript variant
gene. [provided by RefSeq, May 2010]. Transcript Variant: This variant (3) differs in the 5′ UTR and






3, mRNA.
coding sequence compared to variant 1. The resulting isoform (c) has a longer and distinct N-terminus







compared to isoform a. Sequence Note: This RefSeq record was created from transcript and genomic







sequence data to make the sequence consistent with the reference genome assembly. The genomic







coordinates used for the transcript record were based on transcript alignments.


C6orf204
both
1675
NM_206921

Homo sapiens centrosomal

The protein encoded by this gene was identified as a breast cancer antigen. Nothing more is known of






protein 85 kDa-like
its function at this time. Three transcript variants encoding different isoforms have been found for this






(CEP85L), transcript variant
gene. [provided by RefSeq, May 2010]. Transcript Variant: This variant (2) differs in the 3′ UTR and






2, mRNA.
coding sequence compared to variant 1. The resulting isoform (b) has a shorter and distinct C-terminus







compared to isoform a.


CAMSAP1L1
Y
1676
NM_203459

Homo sapiens calmodulin

N/A






regulated spectrin-associated







protein family, member 2







(CAMSAP2), mRNA.



CEP110
N
1677
NM_007018

Homo sapiens centriolin

This gene encodes a centrosomal protein required for the centrosome to function as a microtubule






(CNTRL), mRNA.
organizing center. The gene product is also associated with centrosome maturation. One version of







stem cell myeloproliferative disorder is the result of a reciprocal translocation between chromosomes 8







and 9, with the breakpoint associated with fibroblast growth factor receptor 1 and centrosomal protein







1. [provided by RefSeq, July 2008].


HERV-V1
Y
1678
NM_152473

Homo sapiens endogenous

N/A






retrovirus group V, member







1 (ERVV-1), mRNA.



LOC100129827
Y
1679
NR_034093

Homo sapiens MRVI1

N/A






antisense RNA 1 (non-







protein coding) (MRVI1-







AS1), non-coding RNA.



LOC100129827
Y
1680
NR_034094

Homo sapiens MRVI1

N/A






antisense RNA 1 (non-







protein coding) (MRVI1-







AS1), non-coding RNA.



LOC342346
Y
1681
NM_001145011

Homo sapiens chromosome

N/A






16 open reading frame 96







(C16orf96), mRNA.



LOC80154
Y
1682
NR_026811

Homo sapiens golgin

N/A






subfamily A member 2-like







(AGSK1), non-coding RNA.



NAT15
Y
1683
NM_001083600

Homo sapiens N(alpha)-

N/A






acetyltransferase 60, NatF







catalytic subunit (NAA60),







transcript variant 3, mRNA.



NAT15
Y
1684
NM_001083601

Homo sapiens N(alpha)-

N/A






acetyltransferase 60, NatF







catalytic subunit (NAA60),







transcript variant 1, mRNA.



NAT15
Y
1685
NM_024845

Homo sapiens N(alpha)-

N/A






acetyltransferase 60, NatF







catalytic subunit (NAA60),







transcript variant 2, mRNA.



NCRNA00029
Y
1686
NR_028295

Homo sapiens long

N/A






intergenic non-protein







coding RNA 29







(LINC00029), non-coding







RNA.



NCRNA00115
Y
1687
NR_024321

Homo sapiens long

N/A






intergenic non-protein







coding RNA 115







(LINC00115), non-coding







RNA.



NCRNA00183
N
1688
NR_024582

Homo sapiens JPX

JPX is a nonprotein-coding RNA transcribed from a gene within the X-inactivation center (XIC; MIM






transcript, XIST activator
314670) that appears to participate in X chromosome inactivation (Tian et al., 2010 [PubMed






(non-protein coding) (JPX),
21029862]). [supplied by OMIM, February 2011].






non-coding RNA.



PBMUCL1
Y
1689
NM_001198815

Homo sapiens mucin 22

N/A






(MUC22), mRNA.



TUBB4Q
Y
1690
NM_020040

Homo sapiens tubulin, beta

N/A






polypeptide 4, member Q,







pseudogene (TUBB4Q),







mRNA

















TABLE 5





Chromosome



number in



Table 1 and
Actual


Table 2
Chromosome
















1
chr1


2
chr2


3
chr3


4
chr4


5
chr5


6
chr6


7
chr7


8
chr8


9
chr9


10
chr10


11
chr11


12
chr12


13
chr13


14
chr14


15
chr15


16
chr16


17
chr17


18
chr18


19
chr19


20
chr20


21
chr21


22
chr22


23
chrX


24
chrY


25
chrM


26
chr1_random


27
chr2_random


28
chr3_random


29
chr4_random


30
chr5_random


31
chr6_random


32
chr7_random


33
chr8_random


34
chr9_random


35
chr10_random


36
chr11_random


37
chr12_random


38
chr13_random


39
chr14_random


40
chr15_random


41
chr16_random


42
chr17_random


43
chr18_random


44
chr19_random


45
chr20_random


46
chr21_random


47
chr22_random


48
chrX_random










Computer-Implemented Aspects


As understood by those of ordinary skill in the art, the methods and information described herein (genetic variation association with developmental disorders) can be implemented, in all or in part, as computer executable instructions on known computer readable media. For example, the methods described herein can be implemented in hardware. Alternatively, the method can be implemented in software stored in, for example, one or more memories or other computer readable medium and implemented on one or more processors. As is known, the processors can be associated with one or more controllers, calculation units and/or other units of a computer system, or implanted in firmware as desired. If implemented in software, the routines can be stored in any computer readable memory such as in RAM, ROM, flash memory, a magnetic disk, a laser disk, or other storage medium, as is also known. Likewise, this software can be delivered to a computing device via any known delivery method including, for example, over a communication channel such as a telephone line, the Internet, a wireless connection, etc., or via a transportable medium, such as a computer readable disk, flash drive, etc.


More generally, and as understood by those of ordinary skill in the art, the various steps described above can be implemented as various blocks, operations, tools, modules and techniques which, in turn, can be implemented in hardware, firmware, software, or any combination of hardware, firmware, and/or software. When implemented in hardware, some or all of the blocks, operations, techniques, etc. can be implemented in, for example, a custom integrated circuit (IC), an application specific integrated circuit (ASIC), a field programmable logic array (FPGA), a programmable logic array (PLA), etc.


Results from such genotyping can be stored in a data storage unit, such as a data carrier, including computer databases, data storage disks, or by other convenient data storage means. In certain embodiments, the computer database is an object database, a relational database or a post-relational database. Data can be retrieved from the data storage unit using any convenient data query method.


When implemented in software, the software can be stored in any known computer readable medium such as on a magnetic disk, an optical disk, or other storage medium, in a RAM or ROM or flash memory of a computer, processor, hard disk drive, optical disk drive, tape drive, etc. Likewise, the software can be delivered to a user or a computing system via any known delivery method including, for example, on a computer readable disk or other transportable computer storage mechanism.


The steps of the claimed methods can be operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that can be suitable for use with the methods or system of the claims include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.


The steps of the claimed method and system can be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, and/or data structures that perform particular tasks or implement particular abstract data types. The methods and apparatus can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In both integrated and distributed computing environments, program modules can be located in both local and remote computer storage media including memory storage devices. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this application, which would still fall within the scope of the claims defining the disclosure.


While the risk evaluation system and method, and other elements, have been described as preferably being implemented in software, they can be implemented in hardware, firmware, etc., and can be implemented by any other processor. Thus, the elements described herein can be implemented in a standard multi-purpose CPU or on specifically designed hardware or firmware such as an application-specific integrated circuit (ASIC) or other hard-wired device as desired. When implemented in software, the software routine can be stored in any computer readable memory such as on a magnetic disk, a laser disk, or other storage medium, in a RAM or ROM of a computer or processor, in any database, etc. Likewise, this software can be delivered to a user or a screening system via any known or desired delivery method including, for example, on a computer readable disk or other transportable computer storage mechanism or over a communication channel, for example, a telephone line, the internet, or wireless communication. Modifications and variations can be made in the techniques and structures described and illustrated herein without departing from the spirit and scope of the present disclosure.


ASD Therapeutics


Resarch into a cure for Pervasive Developmental Disorders (PDD), such as Autism Spectrum Disorder (ASD) or Pervasive Developmental Disorders—Not Otherwise Specified (PDD-NOS), such as Asperger Syndrome, Rett Syndrome, Fragile X Syndrome, and/or Childhood Disintegrative Disorder is ongoing. Ways to help minimize the symptoms of autism and to maximize learning exist, including but not limited to, behavioral therapy, educational and/or school-based options, and medication options, although currently there are no medications that can cure autism spectrum disorders or all of the symptoms. The U.S. Food and Drug Administration has not yet approved any medications specifically for the treatment of autism, but in many cases medication can treat some of the symptoms associated with autism. These treatments can include behavior management therapy to help reinforce wanted behaviors and reduce unwanted behaviors, which is often based on Applied Behavior Analysis (ABA), use of speech-language therapists to help people with autism improve their ability to communicate and interact with others, use of occupational therapists to help people find ways to adjust tasks to match their needs and abilities, and physical therapists design activities and exercise to build motor control and improve posture and balance, free appropriate public education from age 3 through high school or age 21, integration of a team of people, including the parents, teachers, caregivers, school psychologists, and other child development specialists to work together to design an Individualized Education Plan (IEP) to help guide the child's school experiences, selective serotonin reuptake inhibitors (SSRIs), tricyclics, psychoactive/anti-psychotics, stimulants, and anti-anxiety drugs are among the medications that a health care provider might use to treat symptoms of autism spectrum disorders.


A person skilled in the art will appreciate and understand that the genetic variants described herein in general may not, by themselves, provide an absolute identification of individuals who can develop a developmental disorder or related conditions. The variants described herein can indicate increased and/or decreased likelihood that individuals carrying the at-risk or protective variants of the disclosure can develop symptoms associated with a developmental disorder. This information can be used to, for example, initiate preventive measures at an early stage, perform regular physical and/or mental exams to monitor the progress and/or appearance of symptoms, or to schedule exams at a regular interval to identify early symptoms, so as to be able to apply treatment at an early stage. This is in particular important since developmental disorders and related disorders are heterogeneous disorders with symptoms that can be individually vague. Screening criteria can comprise a number of symptoms to be present over a period of time; therefore, it is important to be able to establish additional risk factors that can aid in the screening, or facilitate the screening through in-depth phenotyping and/or more frequent examination, or both. For example, individuals with early symptoms that typically are not individually associated with a clinical screening of a developmental disorder and carry an at-risk genetic variation can benefit from early therapeutic treatment, or other preventive measure, or more rigorous supervision or more frequent examination. Likewise, individuals that have a family history of the disease, or are carriers of other risk factors associated with a developmental disorder can, in the context of additionally carrying at least one at-risk genetic variation, benefit from early therapy or other treatment.


Early symptoms of behavioral disorders such as a developmental disorder and related conditions may not be sufficient to fulfill standardized screening criteria. To fulfill those, a certain pattern of symptoms and behavioral disturbance needs to manifest itself over a period of time. Sometimes, certain physical characteristics can also be present. This makes at-risk genetic variants valuable in a screening setting, in particular high-risk variants. Determination of the presence of such variants warrants increased monitoring of the individual in question. Appearance of symptoms combined with the presence of such variants facilitates early screening, which makes early treatment possible. Genetic testing can thus be used to aid in the screening of disease in its early stages, before all criteria for formal screening criteria are all fulfilled. It is well established that early treatment is extremely important for developmental disorders and related disorders, which lends further support to the value of genetic testing for early diagnosis, prognosis, or theranosis of these disorders.


The present disclosure provides methods for identifying compounds or agents that can be used to treat a developmental disorder. Thus, the genetic variations and associated polypeptides of the disclosure are useful as targets for the identification and/or development of therapeutic agents. In certain embodiments, such methods include assaying the ability of an agent or compound to modulate the activity and/or expression of a nucleic acid that is associated with at least one genetic variation described herein, encoded products of the gene sequence, and any other molecules or polypeptides associated with these genes. This in turn can be used to identify agents or compounds that inhibit, enhance, or alter the undesired activity, localization, binding and/or expression of the encoded nucleic acid product, such as mRNA or polypeptides. For example, in some embodiments, small molecule drugs can be developed to target the aberrant polypeptide(s) or RNA(s) resulting from specific disease-causing mutation(s) within a gene, such as described in: Peltz et al. (2009) RNA Biology 6(3):329-34; Van Goor et al. (2009) Proc. Natl. Acad. Sci. USA 106(44):18825-30; Van Goor et al. (2011) Proc. Natl. Acad. Sci. USA 108(46):18843-8; Ramsey et al. (2011) N. Engl. J. Med. 365(18):1663-72. The polypeptides associated with the CNVs listed in Table 1 are described in Table 4 as the accession number (accession) of mRNAs that would encode said polypeptides. Assays for performing such experiments can be performed in cell-based systems or in cell-free systems, as known to the skilled person. Cell-based systems include cells naturally expressing the nucleic acids of interest, or recombinant cells that have been genetically modified so as to express a certain desired nucleic acid molecule.


Variant gene expression in a subject can be assessed by expression of a variant-containing nucleic acid sequence or by altered expression of a normal/wild-type nucleic acid sequence due to variants affecting the level or pattern of expression of the normal transcripts, for example, variants in the regulatory or control region of the gene. Assays for gene expression include direct nucleic acid assays (mRNA), assays for expressed polypeptide levels, or assays of collateral compounds involved in a pathway, for example, a signal pathway. Furthermore, the expression of genes that are up- or down-regulated in response to the signal pathway can also be assayed. One embodiment includes operably linking a reporter gene, such as luciferase, to the regulatory region of one or more gene of interest.


Modulators of gene expression can in some embodiments be identified when a cell is contacted with a candidate compound or agent, and the expression of mRNA is determined. The expression level of mRNA in the presence of the candidate compound or agent is compared to the expression level in the absence of the compound or agent. Based on this comparison, candidate compounds or agents for treating a developmental disorder can be identified as those modulating the gene expression of the variant gene, or gene expression of one or more other genes occurring within the same biological pathway or known, for example, to be binding partners of the variant gene. When expression of mRNA or the encoded polypeptide is statistically significantly greater in the presence of the candidate compound or agent than in its absence, then the candidate compound or agent is identified as a stimulator or up-regulator of expression of the nucleic acid. When nucleic acid expression or polypeptide level is statistically significantly less in the presence of the candidate compound or agent than in its absence, then the candidate compound can be identified as an inhibitor or down-regulator of the nucleic acid expression. The disclosure further provides methods of treatment using a compound identified through drug (compound and/or agent) screening as a gene modulator.


The genetic variations described herein can be used to identify novel therapeutic targets for a developmental disorder. For example, genes containing, or in linkage disequilibrium with, the genetic variations, or their products, as well as genes or their products that are directly or indirectly regulated by or interact with these variant genes or their products, can be targeted for the development of therapeutic agents to treat a developmental disorder, or prevent or delay onset of symptoms associated with a developmental disorder. Therapeutic agents can comprise one or more of, for example, small non-polypeptide and non-nucleic acids, polypeptides, peptides, polypeptide fragments, nucleic acids (RNA, DNA, RNAJ, PNA (peptide nucleic acids), or their derivatives or mimetics which can modulate the function and/or levels of the target genes or their gene products. In some embodiments, treatment of ASD can comprise treatment of one of the genes, or gene products derived thereof, such as mRNA or a polypeptide, with one or more of the therapeutics disclosed herein. In some embodiments, treatment of ASD can comprise treatment of 2 or 3, or 4, or 5, or 6, or 7, or 8, or 9, or 10 or more of the genes, or gene products derived there from, with 2 or 3, or 4, or 5, or 6, or 7, or 8, or 9, or 10 or more of the therapeutics disclosed herein.


RNA Therapeutics


The nucleic acids and/or variants of the disclosure, or nucleic acids comprising their complementary sequence, can be used as antisense constructs to control gene expression in cells, tissues or organs. The methodology associated with antisense techniques is well known to the skilled artisan, and is described and reviewed in Antisense Drug Technology: Principles, Strategies, and Applications, Crooke, Marcel Dekker Inc., New York (2001) In general, antisense nucleic acids are designed to be complementary to a region of mRNA expressed by a gene, so that the antisense molecule hybridizes to the mRNA, thus blocking translation of the mRNA into a polypeptide Several classes of antisense oligonucleotide are known to those skilled in the art, including cleavers and blockers. The former bind to target RNA sites, activate intracellular nucleases {e.g., Rnase H or Rnase L) that cleave the target RNA. Blockers bind to target RNA, inhibit polypeptide translation by steric hindrance of the ribosomes. Examples of blockers include nucleic acids, morpholino compounds, locked nucleic acids and methylphosphonates (Thompson, Drug Discovery Today, 7:912-917 (2002)) Antisense oligonucleotides are useful directly as therapeutic agents, and are also useful for determining and validating gene function, for example, by gene knock-out or gene knock-down experiments. Antisense technology is further described in Lavery et al., Curr. Opin. Drug Discov Devel 6 561-569 (2003), Stephens et al., Curr. Opin. Mol Ther. 5.118-122 (2003), Kurreck, Eur. J. Biochem. 270.1628-44 (2003), Dias et al, Mol Cancer Ter. 1-347-55 (2002), Chen, Methods Mol Med. 75:621-636 (2003), Wang et al., Curr Cancer Drug Targets 1.177-96 (2001), and Bennett, Antisense Nucleic Acid Drug. Dev. 12 215-24 (2002)


The variants described herein can be used for the selection and design of antisense reagents that are specific for particular variants (e.g., particular genetic variations, or polymorphic markers in LD with particular genetic variations). Using information about the variants described herein, antisense oligonucleotides or other antisense molecules that specifically target mRNA molecules that contain one or more variants of the disclosure can be designed. In this manner, expression of mRNA molecules that contain one or more variant of the present disclosure (markers and/or haplotypes) can be inhibited or blocked In some embodiments, the antisense molecules are designed to specifically bind a particular allelic form (i.e., one or several variants (alleles and/or haplotypes)) of the target nucleic acid, thereby inhibiting translation of a product originating from this specific allele or haplotype, but which do not bind other or alternate variants at the specific polymorphic sites of the target nucleic acid molecule.


As antisense molecules can be used to inactivate mRNA so as to inhibit gene expression, and thus polypeptide expression, the molecules can be used to treat a disease or disorder, such as a developmental disorder. The methodology can involve cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated Such mRNA regions include, for example, polypeptide-coding regions, in particular polypeptide-coding regions corresponding to catalytic activity, substrate and/or ligand binding sites, or other functional domains of a polypeptide.


The phenomenon of RNA interference (RNAi) has been actively studied for the last decade, since its original discovery in C. elegans (Fire et al., Nature 391:806-11 (1998)), and in recent years its potential use in treatment of human disease has been actively pursued (reviewed in Kim & Rossi, Nature Rev, Genet. 8: 173-204 (2007)). RNA interference (RNAi), also called gene silencing, is based on using double-stranded RNA molecules (dsRNA) to turn off specific genes. In the cell, cytoplasmic double-stranded RNA molecules (dsRNA) are processed by cellular complexes into small interfering RNA (siRNA). The siRNA guide the targeting of a polypeptide-RNA complex to specific sites on a target mRNA, leading to cleavage of the mRNA (Thompson, Drug Discovery Today, 7:912-917 (2002)). The siRNA molecules are typically about 20, 21, 22 or 23 nucleotides in length. Thus, one aspect of the disclosure relates to isolated nucleic acid sequences, and the use of those molecules for RNA interference, for example, as small interfering RNA molecules (siRNA). In some embodiments, the isolated nucleic acid sequences can be 18-26 nucleotides in length, preferably 19-25 nucleotides in length, more preferably 20-24 nucleotides in length, and more preferably 21, 22 or 23 nucleotides in length.


Another pathway for RNAi-mediated gene silencing originates in endogenously encoded primary microRNA (pn-miRNA) transcripts, which are processed in the cell to generate precursor miRNA (pre-miRNA). These miRNA molecules are exported from the nucleus to the cytoplasm, where they undergo processing to generate mature miRNA molecules (miRNA), which direct translational inhibition by recognizing target sites in the 3′ untranslated regions of mRNAs, and subsequent mRNA degradation by processing P-bodies (reviewed in Kim & Rossi, Nature Rev. Genet. 8: 173-204 (2007)).


Clinical applications of RNAi include the incorporation of synthetic siRNA duplexes, which preferably are approximately 20-23 nucleotides in size, and preferably have 3′ overlaps of 2 nucleotides. Knockdown of gene expression is established by sequence-specific design for the target mRNA. Several commercial sites for optimal design and synthesis of such molecules are known to those skilled in the art.


Other applications provide longer siRNA molecules (typically 25-30 nucleotides in length, preferably about 27 nucleotides), as well as small hairpin RNAs (shRNAs; typically about 29 nucleotides in length). The latter are naturally expressed, as described in Amarzguioui et al. (FEBS Lett. 579:5974-81 (2005)). Chemically synthetic siRNAs and shRNAs are substrates for in vivo processing, and in some cases provide more potent gene-silencing than shorter designs (Kim et al., Nature Biotechnol. 23:222-226 (2005); Siola et al., Nature Biotechnol. 23:227-231 (2005)). In general siRNAs provide for transient silencing of gene expression, because their intracellular concentration is diluted by subsequent cell divisions. By contrast, expressed shRNAs mediate long-term, stable knockdown of target transcripts, for as long as transcription of the shRNA takes place (Marques et al., Nature Biotechnol. 23.559-565 (2006), Brummelkamp et al., Science 296. 550-553 (2002)).


Since RNAi molecules, including siRNA, miRNA and shRNA, act in a sequence-dependent manner, variants described herein can be used to design RNAi reagents that recognize specific nucleic acids comprising specific genetic variations, alleles and/or haplotypes, while not recognizing nucleic acid sequences not comprising the genetic variation, or comprising other alleles or haplotypes. These RNAi reagents can thus recognize and destroy the target nucleic acid sequences. As with antisense reagents, RNAi reagents can be useful as therapeutic agents (i.e., for turning off disease-associated genes or disease-associated gene variants), but can also be useful for characterizing and validating gene function (e.g., by gene knock-out or gene knock-down experiments).


Delivery of RNAi can be performed by a range of methodologies known to those skilled in the art. Methods utilizing non-viral delivery include cholesterol, stable nucleic acid-lipid particle (SNALP), heavy-chain antibody fragment (Fab), aptamers and nanoparticles Viral delivery methods include use of lentivirus, adenovirus and adeno-associated virus. The siRNA molecules are in some embodiments chemically modified to increase their stability. This can include modifications at the 2′ position of the ribose, including 2′-O-methylpunnes and 2′-fluoropyrimidmes, which provide resistance to RNase activity. Other chemical modifications are possible and known to those skilled in the art.


The following references provide a further summary of RNAi, and possibilities for targeting specific genes using RNAi: Kim & Rossi, Nat. Rev. Genet. 8: 173-184 (2007), Chen & Rajewsky, Nat. Rev. Genet. 8: 93-103 (2007), Reynolds, et al., Nat. Biotechnol 22 326-330 (2004), Chi et al., Proc. Natl. Acad. Sa. USA 100-6343-6346 (2003), Vickers et al., J Biol Chem. 278:7108-7118 (2003), Agami, Curr Opin. Chem. Biol. 6:829-834 (2002), Lavery, et al., Curr. Opin. Drug Discov. Devel. 6:561-569 (2003), Shi, Trends Genet. 19:9-12 (2003), Shuey et al., Drug Discov. Today 7 1040-46 (2002), McManus et al., Nat. Rev. Genet. 3.737-747 (2002), Xia et al., Nat. Biotechnol. 20.1006-10 (2002), Plasterk et al., Curr. Opin Genet. Dev. 10 562-7 (2000), Bosher et al., Nat. Cell Biol. 2:E31-6 (2000), and Hunter, Curr. Biol. 9:R440-442 (1999).


A genetic defect leading to increased predisposition or risk for development of a disease, including a developmental disorder, or a defect causing the disease, can be corrected permanently by administering to a subject carrying the defect a nucleic acid fragment that incorporates a repair sequence that supplies the normal/wild-type nucleotide(s) at the site of the genetic defect. Such site-specific repair sequence can encompass an RNA/DNA oligonucleotide that operates to promote endogenous repair of a subject's genomic DNA. The administration of the repair sequence can be performed by an appropriate vehicle, such as a complex with polyethelamine, encapsulated in anionic liposomes, a viral vector such as an adenovirus vector, or other pharmaceutical compositions suitable for promoting intracellular uptake of the administered nucleic acid The genetic defect can then be overcome, since the chimeric oligonucleotides induce the incorporation of the normal sequence into the genome of the subject, leading to expression of the normal/wild-type gene product. The replacement is propagated, thus rendering a permanent repair and alleviation of the symptoms associated with the disease or condition.


Double stranded oligonucleotides are formed by the assembly of two distinct oligonucleotide sequences where the oligonucleotide sequence of one strand is complementary to the oligonucleotide sequence of the second strand; such double stranded oligonucleotides are generally assembled from two separate oligonucleotides (e.g., siRNA), or from a single molecule that folds on itself to form a double stranded structure (e.g., shRNA or short hairpin RNA). These double stranded oligonucleotides known in the art all have a common feature in that each strand of the duplex has a distinct nucleotide sequence, wherein only one nucleotide sequence region (guide sequence or the antisense sequence) has complementarity to a target nucleic acid sequence and the other strand (sense sequence) comprises nucleotide sequence that is homologous to the target nucleic acid sequence.


Double stranded RNA induced gene silencing can occur on at least three different levels: (i) transcription inactivation, which refers to RNA guided DNA or histone methylation; (ii) siRNA induced mRNA degradation; and (iii) mRNA induced transcriptional attenuation. It is generally considered that the major mechanism of RNA induced silencing (RNA interference, or RNAi) in mammalian cells is mRNA degradation. RNA interference (RNAi) is a mechanism that inhibits gene expression at the stage of translation or by hindering the transcription of specific genes. Specific RNAi pathway polypeptides are guided by the dsRNA to the targeted messenger RNA (mRNA), where they “cleave” the target, breaking it down into smaller portions that can no longer be translated into a polypeptide. Initial attempts to use RNAi in mammalian cells focused on the use of long strands of dsRNA. However, these attempts to induce RNAi met with limited success, due in part to the induction of the interferon response, which results in a general, as opposed to a target-specific, inhibition of polypeptide synthesis. Thus, long dsRNA is not a viable option for RNAi in mammalian systems. Another outcome is epigenetic changes to a gene—histone modification and DNA methylation—affecting the degree the gene is transcribed.


More recently it has been shown that when short (18-30 bp) RNA duplexes are introduced into mammalian cells in culture, sequence-specific inhibition of target mRNA can be realized without inducing an interferon response. Certain of these short dsRNAs, referred to as small inhibitory RNAs (“siRNAs”), can act catalytically at sub-molar concentrations to cleave greater than 95% of the target mRNA in the cell. A description of the mechanisms for siRNA activity, as well as some of its applications are described in Provost et al., Ribonuclease Activity and RNA Binding of Recombinant Human Dicer, E.M.B.O. J., 2002 Nov. 1; 21(21): 5864-5874; Tabara et al., The dsRNA Binding Protein RDE-4 Interacts with RDE-1, DCR-1 and a DexH-box Helicase to Direct RNAi in C. elegans, Cell 2002, Jun. 28; 109(7):861-71; Ketting et al., Dicer Functions in RNA Interference and in Synthesis of Small RNA Involved in Developmental Timing in C. elegans; Martinez et al., Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi, Cell 2002, September. 6; 110(5):563; Hutvagner & Zamore, A microRNA in a multiple-turnover RNAi enzyme complex, Science 2002, 297:2056.


From a mechanistic perspective, introduction of long double stranded RNA into plants and invertebrate cells is broken down into siRNA by a Type III endonuclease known as Dicer. Sharp, RNA interference—2001, Genes Dev. 2001, 15:485. Dicer, a ribonuclease-III-like enzyme, processes the dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs. Bernstein, Caudy, Hammond, & Hannon, Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature 2001, 409:363. The siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, Haley, & Zamore, ATP requirements and small interfering RNA structure in the RNA interference pathway, Cell 2001, 107:309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleaves the target to induce silencing. Elbashir, Lendeckel, & Tuschl, RNA interference is mediated by 21- and 22-nucleotide RNAs, Genes Dev 2001, 15:188, FIG. 1.


Generally, the antisense sequence is retained in the active RISC complex and guides the RISC to the target nucleotide sequence by means of complementary base-pairing of the antisense sequence with the target sequence for mediating sequence-specific RNA interference. It is known in the art that in some cell culture systems, certain types of unmodified siRNAs can exhibit “off target” effects. It is hypothesized that this off-target effect involves the participation of the sense sequence instead of the antisense sequence of the siRNA in the RISC complex (see for example, Schwarz et al., 2003, Cell, 115, 199-208). In this instance the sense sequence is believed to direct the RISC complex to a sequence (off-target sequence) that is distinct from the intended target sequence, resulting in the inhibition of the off-target sequence. In these double stranded nucleic acid sequences, each strand is complementary to a distinct target nucleic acid sequence. However, the off-targets that are affected by these dsRNAs are not entirely predictable and are non-specific.


The term “siRNA” refers to small inhibitory RNA duplexes that induce the RNA interference (RNAi) pathway. These molecules can vary in length (generally between 18-30 basepairs) and contain varying degrees of complementarity to their target mRNA in the antisense strand. Some, but not all, siRNA have unpaired overhanging bases on the 5′ or 3′ end of the sense strand and/or the antisense strand. The term “siRNA” includes duplexes of two separate strands, as well as single strands that can form hairpin structures comprising a duplex region. Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, are a class of 20-25 nucleotide-long double-stranded RNA molecules that play a variety of roles in biology.


While the two RNA strands do not need to be completely complementary, the strands should be sufficiently complementary to hybridize to form a duplex structure. In some instances, the complementary RNA strand can be less than 30 nucleotides, preferably less than 25 nucleotides in length, more preferably 19 to 24 nucleotides in length, more preferably 20-23 nucleotides in length, and even more preferably 22 nucleotides in length. The dsRNA of the present disclosure can further comprise at least one single-stranded nucleotide overhang. The dsRNA of the present disclosure can further comprise a substituted or chemically modified nucleotide. As discussed in detail below, the dsRNA can be synthesized by standard methods known in the art.


siRNA can be divided into five (5) groups including non-functional, semi-functional, functional, highly functional, and hyper-functional based on the level or degree of silencing that they induce in cultured cell lines. As used herein, these definitions are based on a set of conditions where the siRNA is transfected into the cell line at a concentration of 100 nM and the level of silencing is tested at a time of roughly 24 hours after transfection, and not exceeding 72 hours after transfection. In this context, “non-functional siRNA” are defined as those siRNA that induce less than 50% (<50%) target silencing. “Semi-functional siRNA” induce 50-79% target silencing. “Functional siRNA” are molecules that induce 80-95% gene silencing. “Highly-functional siRNA” are molecules that induce greater than 95% gene silencing. “Hyperfunctional siRNA” are a special class of molecules. For purposes of this document, hyperfunctional siRNA are defined as those molecules that: (1) induce greater than 95% silencing of a specific target when they are transfected at subnanomolar concentrations (i.e., less than one nanomolar); and/or (2) induce functional (or better) levels of silencing for greater than 96 hours. These relative functionalities (though not intended to be absolutes) can be used to compare siRNAs to a particular target for applications such as functional genomics, target identification and therapeutics.


microRNAs (miRNA) are single-stranded RNA molecules of about 21-23 nucleotides in length, which regulate gene expression. miRNAs are encoded by genes that are transcribed from DNA but not translated into a polypeptide (non-coding RNA); instead they are processed from primary transcripts known as pri-miRNA to short stem-loop structures called pre-miRNA and finally to functional miRNA. Mature miRNA molecules are partially complementary to one or more messenger RNA (mRNA) molecules, and their main function is to downregulate gene expression.


Antibody-Based Therapeutics


The present disclosure embodies agents that modulate a peptide sequence or RNA expressed from a gene associated with a developmental disorder. The term “biomarker”, as used herein, can comprise a genetic variation of the present disclosure or a gene product, for example, RNA and polypeptides, of any one of the genes listed in Tables 1-4. Such modulating agents include, but are not limited to, polypeptides, peptidomimetics, peptoids, or any other forms of a molecule, which bind to, and alter the signaling or function associated with the a developmental disorder associated biomarker, have an inhibitory or stimulatory effect on the developmental disorder associated biomarkers, or have a stimulatory or inhibitory effect on the expression or activity of the a developmental disorder associated biomarkers' ligands, for example, polyclonal antibodies and/or monoclonal antibodies that specifically bind one form of the gene product but not to the other form of the gene product are also provided, or which bind a portion of either the variant or the reference gene product that contains the polymorphic site or sites.


In some embodiments, the present disclosure provides antibody-based agents targeting a developmental disorder associated biomarkers. The antibody-based agents in any suitable form of an antibody e.g., monoclonal, polyclonal, or synthetic, can be utilized in the therapeutic methods disclosed herein. The antibody-based agents include any target-binding fragment of an antibody and also peptibodies, which are engineered therapeutic molecules that can bind to human drug targets and contain peptides linked to the constant domains of antibodies. In some embodiments, the antibodies used for targeting a developmental disorder associated biomarkers are humanized antibodies. Methods for humanizing antibodies are well known in the art. In some embodiments, the therapeutic antibodies comprise an antibody generated against a developmental disorder associated biomarkers described in the present disclosure, wherein the antibodies are conjugated to another agent or agents, for example, a cytotoxic agent or agents.


The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain antigen-binding sites that specifically bind an antigen. A molecule that specifically binds to a polypeptide of the disclosure is a molecule that binds to that polypeptide or a fragment thereof, but does not substantially bind other molecules in a nucleic acid sample, which naturally contains the polypeptide. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab′)2 fragments which can be generated by treating the antibody with an enzyme such as pepsin. The disclosure provides polyclonal and monoclonal antibodies that bind to a polypeptide of the disclosure. The term “monoclonal antibody” or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of a polypeptide of the disclosure. A monoclonal antibody composition thus typically displays a single binding affinity for a particular polypeptide of the disclosure with which it immunoreacts.


Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a desired immunogen, e.g., polypeptide of the disclosure or a fragment thereof. The antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody molecules directed against the polypeptide can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction. At an appropriate time after immunization, e.g., when the antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybndoma technique originally described by Kohler and Milstein, Nature 256:495-497 (1975), the human B cell hybridoma technique (Kozbor et al., Immunol Today 4: 72 (1983)), the EBV-hybndoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss (1985) Inc., pp. 77-96) or trioma techniques. The technology for producing hybndomas is well known (see generally Current Protocols in Immunology (1994) Coligan et al., (eds.) John Wiley & Sons, Inc., New York, N.Y.). Briefly, an immortal cell line (typically a myeloma) is fused to lymphocytes (typically splenocytes) from a mammal immunized with an immunogen as described above, and the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds a polypeptide of the disclosure.


Any of the many well known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating a monoclonal antibody to a polypeptide of the disclosure (see, e.g., Current Protocols in Immunology, supra; Galfre et al., Nature 266:55052 (1977); R. H. Kenneth, in Monoclonal Antibodies: A New Dimension In Biological Analyses, Plenum Publishing Corp., New York, N.Y. (1980); and Lerner, Yale J. Biol. Med. 54:387-402 (1981)). Moreover, the ordinarily skilled worker can appreciate that there are many variations of such methods that also would be useful. Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal antibody to a polypeptide of the disclosure can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide to thereby isolate immunoglobulin library members that bind the polypeptide. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAPa Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Pat. No. 5,223,409; PCT Publication Nos. WO 92/18619, WO 91/17271, WO 92/20791, WO 92/15679; WO 93/01288, WO 92/01047, WO 92/09690, and WO 90/02809; Fuchs et al., Bio/Technology 9: 1370-1372 (1991); Hay et al., Hum. Antibod. Hybndomas 3:81-85 (1992); Huse et al., Science 246: 1275-1281 (1989); and Griffiths et al., EMBO J. 12:725-734 (1993).


Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the disclosure. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art.


In general, antibodies of the disclosure (e.g., a monoclonal antibody) can be used to isolate a polypeptide of the disclosure by standard techniques, such as affinity chromatography or immunoprecipitation. A polypeptide-specific antibody can facilitate the purification of natural polypeptide from cells and of recombinants produced polypeptide expressed in host cells Moreover, an antibody specific for a polypeptide of the disclosure can be used to detect the polypeptide (e.g., in a cellular lysate, cell supernatant, or tissue sample) in order to evaluate the abundance and pattern of expression of the polypeptide. Antibodies can be used diagnostically, prognostically, or theranostically to monitor polypeptide levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. The antibody can be coupled to a detectable substance to facilitate its detection. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotnazinylamine fluorescein, dansyl chloride or phycoerythnn; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H. Antibodies can also be useful in pharmacogenomic analysis. In such embodiments, antibodies against variant polypeptides encoded by nucleic acids according to the disclosure, such as variant polypeptides that are encoded by nucleic acids that contain at least one genetic variation of the disclosure, can be used to identify individuals that can benefit from modified treatment modalities.


Antibodies can furthermore be useful for assessing expression of variant polypeptides in disease states, such as in active stages of a disease, or in an individual with a predisposition to a disease related to the function of the polypeptide, in particular a developmental disorder. Antibodies specific for a variant polypeptide of the present disclosure that is encoded by a nucleic acid that comprises at least one polymorphic marker or haplotype as described herein can be used to screen for the presence of the variant polypeptide, for example, to screen for a predisposition to a developmental disorder as indicated by the presence of the variant polypeptide.


Antibodies can be used in other methods. Thus, antibodies are useful as screening tools for evaluating polypeptides, such as variant polypeptides of the disclosure, in conjunction with analysis by electrophoretic mobility, isoelectric point, tryptic or other protease digest, or for use in other physical assays known to those skilled in the art. Antibodies can also be used in tissue typing. In one such embodiment, a specific variant polypeptide has been correlated with expression in a specific tissue type, and antibodies specific for the variant polypeptide can then be used to identify the specific tissue type.


Subcellular localization of polypeptides, including variant polypeptides, can also be determined using antibodies, and can be applied to assess aberrant subcellular localization of the polypeptide in cells in various tissues. Such use can be applied in genetic testing, but also in monitoring a particular treatment modality. In the case where treatment is aimed at correcting the expression level or presence of the variant polypeptide or aberrant tissue distribution or developmental expression of the variant polypeptide, antibodies specific for the variant polypeptide or fragments thereof can be used to monitor therapeutic efficacy.


Antibodies are further useful for inhibiting variant polypeptide function, for example, by blocking the binding of a variant polypeptide to a binding molecule or partner. Such uses can also be applied in a therapeutic context in which treatment involves inhibiting a variant polypeptide's function. An antibody can be for example, be used to block or competitively inhibit binding, thereby modulating (i.e., agonizing or antagonizing) the activity of the polypeptide. Antibodies can be prepared against specific polypeptide fragments containing sites for specific function or against an intact polypeptide that is associated with a cell or cell membrane.


The present disclosure also embodies the use of any pharmacologic agent that can be conjugated to an antibody or an antibody binding fragment, and delivered in active form. Examples of such agents include cytotoxins, radioisotopes, hormones such as a steroid, anti-metabolites such as cytosines, and chemotherapeutic agents. Other embodiments can include agents such as a coagulant, a cytokine, growth factor, bacterial endotoxin or a moiety of bacterial endotoxin. The targeting antibody-based agent directs the toxin to, and thereby selectively modulates the cell expressing the targeted surface receptor. In some embodiments, therapeutic antibodies employ cross-linkers that provide high in vivo stability (Thorpe et al., Cancer Res., 48:6396, 1988). In any event, it is proposed that agents such as these can, if desired, be successfully conjugated to antibodies or antibody binding fragments, in a manner that can allow their targeting, internalization, release or presentation at the site of the targeted cells expressing the ASD associated biomarkers using known conjugation technology. For administration in vivo, for example, an antibody can be linked with an additional therapeutic payload, such as radionuclide, an enzyme, an immunogenic epitope, or a cytotoxic agent, including bacterial toxins (diphtheria or plant toxins, such as ricin). The in vivo half-life of an antibody or a fragment thereof can be increased by pegylation through conjugation to polyethylene glycol.


Gene Therapy


In some embodiments, gene therapy can be used as a therapeutic to modulate a peptide sequence or RNA expressed from a gene associated with a developmental disorder. Gene therapy involves the use of DNA as a pharmaceutical agent to treat disease. DNA can be used to supplement or alter genes within an individual's cells as a therapy to treat disease. Gene therapy can be used to alter the signaling or function associated with the a developmental disorder associated biomarker, have an inhibitory or stimulatory effect on the developmental disorder associated biomarkers, or have a stimulatory or inhibitory effect on the expression or activity of the a developmental disorder associated biomarkers' ligands. In one embodiment, gene therapy involves using DNA that encodes a functional, therapeutic gene in order to replace a mutated gene. Other forms involve directly correcting a mutation, or using DNA that encodes a therapeutic polypeptide drug (rather than a natural human gene) to provide treatment. DNA that encodes a therapeutic polypeptide can be packaged within a vector, which can used to introduce the DNA inside cells within the body. Once inside, the DNA becomes expressed by the cell machinery, resulting in the production of the therapeutic, which in turn can treat the subject's disease.


Gene therapy agents and other agents for testing therapeutics can include plasmids, viral vectors, artificial chromosomes and the like containing therapeutic genes or polynucleotides encoding therapeutic products, including coding sequences for small interfering RNA (siRNA), ribozymes and antisense RNA, which in certain further embodiments can comprise an operably linked promoter such as a constitutive promoter or a regulatable promoter, such as an inducible promoter (e.g., IPTG inducible), a tightly regulated promoter (e.g., a promoter that permits little or no detectable transcription in the absence of its cognate inducer or derepressor) or a tissue-specific promoter. Methodologies for preparing, testing and using these and related agents are known in the art. See, e.g., Ausubel (Ed.), Current Protocols in Molecular Biology (2007 John Wiley & Sons, NY); Rosenzweig and Nabel (Eds), Current Protocols in Human Genetics (esp. Ch. 13 therein, “Delivery Systems for Gene Therapy”, 2008 John Wiley & Sons, NY); Abell, Advances in Amino Acid Mimetics and Peptidomimetics, 1997 Elsevier, NY. In another embodiment, gene therapy agents may encompass zinc finger nuclease (ZFN) or transcription activator-like effector nuclease (TALEN) strategies, see for example: Urnov et al. (2010), Nature Reviews Genetics 11(9):636-46; Yusa et al. (2011), Nature 478(7369):391-4; Bedell et al. (2012), Nature ePub September 23, PubMed ID 23000899.


As a non-limiting example, one such embodiment contemplates introduction of a gene therapy agent for treating ASD (e.g., an engineered therapeutic virus, a therapeutic agent-carrying nanoparticle, etc.) to one or more injection sites in a subject, without the need for imaging, surgery, or histology on biopsy specimens. Of course, periodic monitoring of the circulation for leaked therapeutic agent and/or subsequent analysis of a biopsy specimen, e.g., to assess the effects of the agent on the target tissue, can also be considered. A gene therapy includes a therapeutic polynucleotide administered before, after, or at the same time as any other therapy described herein. In some embodiments, therapeutic genes may include an antisense version of a biomarker disclosed herein, a sequence of a biomarker described herein, or an inhibitor of a biomarker disclosed herein.


Methods of Treatment


Some embodiments of the present disclosure relates to methods of using pharmaceutical compositions and kits comprising agents that can inhibit a developmental disorder associated biomarker or a developmental disorder associated biomarkers to inhibit or decrease a developmental disorder progression. Another embodiment of the present disclosure provides methods, pharmaceutical compositions, and kits for the treatment of animal subjects. The term “animal subject” as used herein includes humans as well as other mammals. The term “treating” as used herein includes achieving a therapeutic benefit and/or a prophylactic benefit. By therapeutic benefit is meant eradication or amelioration of the underlying viral infection. Also, a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated a developmental disorder such that an improvement is observed in the animal subject, notwithstanding the fact that the animal subject can still be afflicted with a developmental disorder.


For embodiments where a prophylactic benefit is desired, a pharmaceutical composition of the disclosure can be administered to a subject at risk of developing a developmental disorder, or to a subject reporting one or more of the physiological symptoms of a developmental disorder, even though a screening of the condition cannot have been made. Administration can prevent a developmental disorder from developing, or it can reduce, lessen, shorten and/or otherwise ameliorate the progression of a developmental disorder, or symptoms that develop. The pharmaceutical composition can modulate or target a developmental disorder associated biomarker. Wherein, the term modulate includes inhibition of a developmental disorder associated biomarkers or alternatively activation of a developmental disorder associated biomarkers.


Reducing the activity of a developmental disorder associated biomarkers is also referred to as “inhibiting” the a developmental disorder associated biomarkers. The term “inhibits” and its grammatical conjugations, such as “inhibitory,” do not require complete inhibition, but refer to a reduction in a developmental disorder associated biomarkers' activities. In some embodiments such reduction is by at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 75%, at least 90%, and can be by at least 95% of the activity of the enzyme or other biologically important molecular process in the absence of the inhibitory effect, e.g., in the absence of an inhibitor. Conversely, the phrase “does not inhibit” and its grammatical conjugations refer to situations where there is less than 20%, less than 10%, and can be less than 5%, of reduction in enzyme or other biologically important molecular activity in the presence of the agent. Further the phrase “does not substantially inhibit” and its grammatical conjugations refer to situations where there is less than 30%, less than 20%, and in some embodiments less than 10% of reduction in enzyme or other biologically important molecular activity in the presence of the agent.


Increasing the activity a developmental disorderand/or function of polypeptides and/or nucleic acids found to be associated with one or more developmentaldisorders, is also referred to as “activating” the polypeptides and/or nucleic acids. The term “activated” and its grammatical conjugations, such as “activating,” do not require complete activation, but refer to an increase in a developmental disorder associated biomarkers' activities. In some embodiments such increase is by at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, and can be by at least 95% of the activity of the enzyme or other biologically important molecular process in the absence of the activation effect, e.g., in the absence of an activator. Conversely, the phrase “does not activate” and its grammatical conjugations refer to situations where there can be less than 20%, less than 10%, and less than 5%, of an increase in enzyme or other biologically important molecular activity in the presence of the agent. Further the phrase “does not substantially activate” and its grammatical conjugations refer to situations where there is less than 30%, less than 20%, and in some embodiments less than 10% of an increase in enzyme or other biologically important molecular activity in the presence of the agent.


The ability to reduce enzyme activity is a measure of the potency or the activity of an agent, or combination of agents, towards or against the enzyme or other biologically important molecular process. Potency can be measured by cell free, whole cell and/or in vivo assays in terms of IC50, Ki and/or ED50 values. An IC50 value represents the concentration of an agent required to inhibit enzyme activity by half (50%) under a given set of conditions. A Ki value represents the equilibrium affinity constant for the binding of an inhibiting agent to the enzyme or other relevant biomolecule. An ED50 value represents the dose of an agent required to affect a half-maximal response in a biological assay. Further details of these measures will be appreciated by those of ordinary skill in the art, and can be found in standard texts on biochemistry, enzymology, and the like.


The present disclosure also includes kits that can be used to treat developmental disorders. These kits comprise an agent or combination of agents that inhibits a developmental disorder associated biomarker or a developmental disorder associated biomarkers and in some embodiments instructions teaching the use of the kit according to the various methods and approaches described herein. Such kits can also include information, such as scientific literature references, package insert materials, clinical trial results, and/or summaries of these and the like, which indicate or establish the activities and/or advantages of the agent. Such information can be based on the results of various studies, for example, studies using experimental animals involving in vivo models and studies based on human clinical trials. Kits described herein can be provided, marketed and/or promoted to health providers, including physicians, nurses, pharmacists, formulary officials, and the like.


In some aspects a host cell can be used for testing or administering therapeutics. In some embodiments, a host cell can comprise a nucleic acid comprising expression control sequences operably-linked to a coding region. The host cell can be natural or non-natural. The non-natural host used in aspects of the method can be any cell capable of expressing a nucleic acid of the disclosure including, bacterial cells, fungal cells, insect cells, mammalian cells and plant cells. In some aspects the natural host is a mammalian tissue cell and the non-natural host is a different mammalian tissue cell. Other aspects of the method include a natural host that is a first cell normally residing in a first mammalian species and the non-natural host is a second cell normally residing in a second mammalian species. In another alternative aspect, the method uses a first cell and the second cell that are from the same tissue type. In those aspects of the method where the coding region encodes a mammalian polypeptide, the mammalian polypeptide may be a hormone. In other aspects the coding region may encode a neuropeptide, an antibody, an antimetabolite, or a polypeptide or nucleotide therapeutic.


Expression control sequences can be those nucleotide sequences, both 5′ and 3′ to a coding region, that are required for the transcription and translation of the coding region in a host organism. Regulatory sequences include a promoter, ribosome binding site, optional inducible elements and sequence elements required for efficient 3′ processing, including polyadenylation. When the structural gene has been isolated from genomic DNA, the regulatory sequences also include those intronic sequences required for splicing of the introns as part of mRNA formation in the target host.


Formulations, Routes of Administration, and Effective Doses


Yet another aspect of the present disclosure relates to formulations, routes of administration and effective doses for pharmaceutical compositions comprising an agent or combination of agents of the instant disclosure. Such pharmaceutical compositions can be used to treat a developmental disorder progression and a developmental disorder associated symptoms as described above.


Compounds of the disclosure can be administered as pharmaceutical formulations including those suitable for oral (including buccal and sub-lingual), rectal, nasal, topical, transdermal patch, pulmonary, vaginal, suppository, or parenteral (including intramuscular, intraarterial, intrathecal, intradermal, intraperitoneal, subcutaneous and intravenous) administration or in a form suitable for administration by aerosolization, inhalation or insufflation. General information on drug delivery systems can be found in Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems (Lippencott Williams & Wilkins, Baltimore Md. (1999).


In various embodiments, the pharmaceutical composition includes carriers and excipients (including but not limited to buffers, carbohydrates, mannitol, polypeptides, amino acids, antioxidants, bacteriostats, chelating agents, suspending agents, thickening agents and/or preservatives), water, oils including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like, saline solutions, aqueous dextrose and glycerol solutions, flavoring agents, coloring agents, detackifiers and other acceptable additives, adjuvants, or binders, other pharmaceutically acceptable auxiliary substances to approximate physiological conditions, such as pH buffering agents, tonicity adjusting agents, emulsifying agents, wetting agents and the like. Examples of excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. In some embodiments, the pharmaceutical preparation is substantially free of preservatives. In other embodiments, the pharmaceutical preparation can contain at least one preservative. General methodology on pharmaceutical dosage forms is found in Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems (Lippencott, Williams, & Wilkins, Baltimore Md. (1999)). It can be recognized that, while any suitable carrier known to those of ordinary skill in the art can be employed to administer the compositions of this disclosure, the type of carrier can vary depending on the mode of administration.


Compounds can also be encapsulated within liposomes using well-known technology. Biodegradable microspheres can also be employed as carriers for the pharmaceutical compositions of this disclosure. Suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268, 5,075,109, 5,928,647, 5,811,128, 5,820,883, 5,853,763, 5,814,344 and 5,942,252.


The compound can be administered in liposomes or microspheres (or microparticles). Methods for preparing liposomes and microspheres for administration to a subject are well known to those of skill in the art. U.S. Pat. No. 4,789,734, the contents of which are hereby incorporated by reference, describes methods for encapsulating biological materials in liposomes. Essentially, the material is dissolved in an aqueous solution, the appropriate phospholipids and lipids added, and along with surfactants if required, and the material dialyzed or sonicated, as necessary. A review of known methods is provided by G. Gregoriadis, Chapter 14, “Liposomes,” Drug Carriers in Biology and Medicine, pp. 2.sup.87-341 (Academic Press, 1979).


Microspheres formed of polymers or polypeptides are well known to those skilled in the art, and can be tailored for passage through the gastrointestinal tract directly into the blood stream. Alternatively, the compound can be incorporated and the microspheres, or composite of microspheres, implanted for slow release over a period of time ranging from days to months. See, for example, U.S. Pat. Nos. 4,906,474, 4,925,673 and 3,625,214, and Jein, TIPS 19:155-157 (1998), the contents of which are hereby incorporated by reference.


The concentration of drug can be adjusted, the pH of the solution buffered and the isotonicity adjusted to be compatible with intravenous injection, as is well known in the art.


The compounds of the disclosure can be formulated as a sterile solution or suspension, in suitable vehicles, well known in the art. The pharmaceutical compositions can be sterilized by conventional, well-known sterilization techniques, or can be sterile filtered. The resulting aqueous solutions can be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. Suitable formulations and additional carriers are described in Remington “The Science and Practice of Pharmacy” (20th Ed., Lippincott Williams & Wilkins, Baltimore Md.), the teachings of which are incorporated by reference in their entirety herein.


The agents or their pharmaceutically acceptable salts can be provided alone or in combination with one or more other agents or with one or more other forms. For example, a formulation can comprise one or more agents in particular proportions, depending on the relative potencies of each agent and the intended indication. For example, in compositions for targeting two different host targets, and where potencies are similar, about a 1:1 ratio of agents can be used. The two forms can be formulated together, in the same dosage unit e.g., in one cream, suppository, tablet, capsule, aerosol spray, or packet of powder to be dissolved in a beverage; or each form can be formulated in a separate unit, e.g., two creams, two suppositories, two tablets, two capsules, a tablet and a liquid for dissolving the tablet, two aerosol sprays, or a packet of powder and a liquid for dissolving the powder, etc.


The term “pharmaceutically acceptable salt” means those salts which retain the biological effectiveness and properties of the agents used in the present disclosure, and which are not biologically or otherwise undesirable. For example, a pharmaceutically acceptable salt does not interfere with the beneficial effect of an agent of the disclosure in inhibiting a developmental disorder associated biomarkers' components


Typical salts are those of the inorganic ions, such as, for example, sodium, potassium, calcium, magnesium ions, and the like. Such salts include salts with inorganic or organic acids, such as hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, sulfuric acid, methanesulfonic acid, p toluenesulfonic acid, acetic acid, fumaric acid, succinic acid, lactic acid, mandelic acid, malic acid, citric acid, tartaric acid or maleic acid. In addition, if the agent(s) contain a carboxy group or other acidic group, it can be converted into a pharmaceutically acceptable addition salt with inorganic or organic bases. Examples of suitable bases include sodium hydroxide, potassium hydroxide, ammonia, cyclohexylamine, dicyclohexyl-amine, ethanolamine, diethanolamine, triethanolamine, and the like.


A pharmaceutically acceptable ester or amide refers to those which retain biological effectiveness and properties of the agents used in the present disclosure, and which are not biologically or otherwise undesirable. For example, the ester or amide does not interfere with the beneficial effect of an agent of the disclosure in inhibiting a developmental disorder associated biomarkers' components. Typical esters include ethyl, methyl, isobutyl, ethylene glycol, and the like. Typical amides include unsubstituted amides, alkyl amides, dialkyl amides, and the like.


In some embodiments, an agent can be administered in combination with one or more other compounds, forms, and/or agents, e.g., as described above. Pharmaceutical compositions comprising combinations of a developmental disorder associated biomarkers' inhibitors with one or more other active agents can be formulated to comprise certain molar ratios. For example, molar ratios of about 99:1 to about 1:99 of a developmental disorder associated biomarkers' inhibitors to the other active agent can be used. In some subset of the embodiments, the range of molar ratios of developmental disorder associated biomarkers' inhibitors: other active agents are selected from about 80:20 to about 20:80; about 75:25 to about 25:75, about 70:30 to about 30:70, about 66:33 to about 33:66, about 60:40 to about 40:60; about 50:50; and about 90:10 to about 10:90. The molar ratio of developmental disorder associated biomarkers' inhibitors: other active agents can be about 1:9, and in some embodiments can be about 1:1. The two agents, forms and/or compounds can be formulated together, in the same dosage unit e.g., in one cream, suppository, tablet, capsule, or packet of powder to be dissolved in a beverage; or each agent, form, and/or compound can be formulated in separate units, e.g., two creams, suppositories, tablets, two capsules, a tablet and a liquid for dissolving the tablet, an aerosol spray a packet of powder and a liquid for dissolving the powder, etc.


If necessary or desirable, the agents and/or combinations of agents can be administered with still other agents. The choice of agents that can be co-administered with the agents and/or combinations of agents of the instant disclosure can depend, at least in part, on the condition being treated. Agents of particular use in the formulations of the present disclosure include, for example, any agent having a therapeutic effect for a viral infection, including, e.g., drugs used to treat inflammatory conditions. For example, in treatments for influenza, in some embodiments formulations of the instant disclosure can additionally contain one or more conventional anti-inflammatory drugs, such as an NSAID, e.g., ibuprofen, naproxen, acetaminophen, ketoprofen, or aspirin. In some alternative embodiments for the treatment of influenza formulations of the instant disclosure can additionally contain one or more conventional influenza antiviral agents, such as amantadine, rimantadine, zanamivir, and oseltamivir. In treatments for retroviral infections, such as HIV, formulations of the instant disclosure can additionally contain one or more conventional antiviral drug, such as protease inhibitors (lopinavir/ritonavir {Kaletra}, indinavir {Crixivan}, ritonavir {Norvir}, nelfinavir {Viracept}, saquinavir hard gel capsules {Invirase}, atazanavir {Reyataz}, amprenavir {Agenerase}, fosamprenavir {Telzir}, tipranavir{Aptivus}), reverse transcriptase inhibitors, including non-Nucleoside and Nucleoside/nucleotide inhibitors (AZT {zidovudine, Retrovir}, ddI {didanosine, Videx}, 3TC {lamivudine, Epivir}, d4T {stavudine, Zerit}, abacavir {Ziagen}, FTC {emtricitabine, Emtriva}, tenofovir {Viread}, efavirenz {Sustiva} and nevirapine {Viramune}), fusion inhibitors T20 {enfuvirtide, Fuzeon}, integrase inhibitors (MK-0518 and GS-9137), and maturation inhibitors (PA-457 {Bevirimat}). As another example, formulations can additionally contain one or more supplements, such as vitamin C, E or other anti-oxidants.


The agent(s) (or pharmaceutically acceptable salts, esters or amides thereof) can be administered per se or in the form of a pharmaceutical composition wherein the active agent(s) is in an admixture or mixture with one or more pharmaceutically acceptable carriers. A pharmaceutical composition, as used herein, can be any composition prepared for administration to a subject. Pharmaceutical compositions for use in accordance with the present disclosure can be formulated in conventional manner using one or more physiologically acceptable carriers, comprising excipients, diluents, and/or auxiliaries, e.g., which facilitate processing of the active agents into preparations that can be administered. Proper formulation can depend at least in part upon the route of administration chosen. The agent(s) useful in the present disclosure, or pharmaceutically acceptable salts, esters, or amides thereof, can be delivered to a subject using a number of routes or modes of administration, including oral, buccal, topical, rectal, transdermal, transmucosal, subcutaneous, intravenous, and intramuscular applications, as well as by inhalation.


For oral administration, the agents can be formulated readily by combining the active agent(s) with pharmaceutically acceptable carriers well known in the art. Such carriers enable the agents of the disclosure to be formulated as tablets, including chewable tablets, pills, dragees, capsules, lozenges, hard candy, liquids, gels, syrups, slurries, powders, suspensions, elixirs, wafers, and the like, for oral ingestion by a subject to be treated. Such formulations can comprise pharmaceutically acceptable carriers including solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents. A solid carrier can be one or more substances which can also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. In powders, the carrier generally is a finely divided solid which is a mixture with the finely divided active component. In tablets, the active component generally is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain from about one (1) to about seventy (70) percent of the active compound. Suitable carriers include but are not limited to magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. Generally, the agents of the disclosure can be included at concentration levels ranging from about 0.5%, about 5%, about 10%, about 20%, or about 30% to about 50%, about 60%, about 70%, about 80% or about 90% by weight of the total composition of oral dosage forms, in an amount sufficient to provide a desired unit of dosage.


Aqueous suspensions for oral use can contain agent(s) of this disclosure with pharmaceutically acceptable excipients, such as a suspending agent (e.g., methyl cellulose), a wetting agent (e.g., lecithin, lysolecithin and/or a long-chain fatty alcohol), as well as coloring agents, preservatives, flavoring agents, and the like.


In some embodiments, oils or non-aqueous solvents can be used to bring the agents into solution, due to, for example, the presence of large lipophilic moieties. Alternatively, emulsions, suspensions, or other preparations, for example, liposomal preparations, can be used. With respect to liposomal preparations, any known methods for preparing liposomes for treatment of a condition can be used. See, for example, Bangham et al., J. Mol. Biol. 23: 238-252 (1965) and Szoka et al., Proc. Natl Acad. Sci. USA 75: 4194-4198 (1978), incorporated herein by reference. Ligands can also be attached to the liposomes to direct these compositions to particular sites of action. Agents of this disclosure can also be integrated into foodstuffs, e.g., cream cheese, butter, salad dressing, or ice cream to facilitate solubilization, administration, and/or compliance in certain subject populations.


Pharmaceutical preparations for oral use can be obtained as a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; flavoring elements, cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl cellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone (PVP). If desired, disintegrating agents can be added, such as the cross linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. The agents can also be formulated as a sustained release preparation.


Dragee cores can be provided with suitable coatings. For this purpose, concentrated sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active agents.


Pharmaceutical preparations that can be used orally include push fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active agents can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for administration.


Other forms suitable for oral administration include liquid form preparations including emulsions, syrups, elixirs, aqueous solutions, aqueous suspensions, or solid form preparations which are intended to be converted shortly before use to liquid form preparations. Emulsions can be prepared in solutions, for example, in aqueous propylene glycol solutions or can contain emulsifying agents, for example, such as lecithin, sorbitan monooleate, or acacia. Aqueous solutions can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizers, and thickening agents. Aqueous suspensions can be prepared by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents. Suitable fillers or carriers with which the compositions can be administered include agar, alcohol, fats, lactose, starch, cellulose derivatives, polysaccharides, polyvinylpyrrolidone, silica, sterile saline and the like, or mixtures thereof used in suitable amounts. Solid form preparations include solutions, suspensions, and emulsions, and can contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.


A syrup or suspension can be made by adding the active compound to a concentrated, aqueous solution of a sugar, e.g., sucrose, to which can also be added any accessory ingredients. Such accessory ingredients can include flavoring, an agent to retard crystallization of the sugar or an agent to increase the solubility of any other ingredient, e.g., as a polyhydric alcohol, for example, glycerol or sorbitol.


When formulating compounds of the disclosure for oral administration, it can be desirable to utilize gastroretentive formulations to enhance absorption from the gastrointestinal (GI) tract. A formulation which is retained in the stomach for several hours can release compounds of the disclosure slowly and provide a sustained release that can be preferred in some embodiments of the disclosure. Disclosure of such gastro-retentive formulations are found in Klausner, E. A.; Lavy, E.; Barta, M.; Cserepes, E.; Friedman, M.; Hoffman, A. 2003 “Novel gastroretentive dosage forms: evaluation of gastroretentivity and its effect on levodopa in humans.” Pharm. Res. 20, 1466-73, Hoffman, A.; Stepensky, D.; Lavy, E.; Eyal, S. Klausner, E.; Friedman, M. 2004 “Pharmacokinetic and pharmacodynamic aspects of gastroretentive dosage forms” Int. J. Pharm. 11, 141-53, Streubel, A.; Siepmann, J.; Bodmeier, R.; 2006 “Gastroretentive drug delivery systems” Expert Opin. Drug Deliver. 3, 217-3, and Chavanpatil, M. D.; Jain, P.; Chaudhari, S.; Shear, R.; Vavia, P. R. “Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for olfoxacin” Int. J. Pharm. 2006. Expandable, floating and bioadhesive techniques can be utilized to maximize absorption of the compounds of the disclosure.


The compounds of the disclosure can be formulated for parenteral administration (e.g., by injection, for example, bolus injection or continuous infusion) and can be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions can take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, for example, solutions in aqueous polyethylene glycol.


For injectable formulations, the vehicle can be chosen from those known in art to be suitable, including aqueous solutions or oil suspensions, or emulsions, with sesame oil, corn oil, cottonseed oil, or peanut oil, as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles. The formulation can also comprise polymer compositions which are biocompatible, biodegradable, such as poly(lactic-co-glycolic) acid. These materials can be made into micro or nanospheres, loaded with drug and further coated or derivatized to provide superior sustained release performance. Vehicles suitable for periocular or intraocular injection include, for example, suspensions of therapeutic agent in injection grade water, liposomes and vehicles suitable for lipophilic substances. Other vehicles for periocular or intraocular injection are well known in the art.


In some embodiments, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition can also include a solubilizing agent and a local anesthetic such as lidocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.


When administration is by injection, the active compound can be formulated in aqueous solutions, specifically in physiologically compatible buffers such as Hanks solution, Ringer's solution, or physiological saline buffer. The solution can contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active compound can be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use. In some embodiments, the pharmaceutical composition does not comprise an adjuvant or any other substance added to enhance the immune response stimulated by the peptide. In some embodiments, the pharmaceutical composition comprises a substance that inhibits an immune response to the peptide. Methods of formulation are known in the art, for example, as disclosed in Remington's Pharmaceutical Sciences, latest edition, Mack Publishing Co., Easton P.


In addition to the formulations described previously, the agents can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation or transcutaneous delivery (for example, subcutaneously or intramuscularly), intramuscular injection or use of a transdermal patch. Thus, for example, the agents can be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.


In some embodiments, pharmaceutical compositions comprising one or more agents of the present disclosure exert local and regional effects when administered topically or injected at or near particular sites of infection. Direct topical application, e.g., of a viscous liquid, solution, suspension, dimethylsulfoxide (DMSO)-based solutions, liposomal formulations, gel, jelly, cream, lotion, ointment, suppository, foam, or aerosol spray, can be used for local administration, to produce for example, local and/or regional effects. Pharmaceutically appropriate vehicles for such formulation include, for example, lower aliphatic alcohols, polyglycols (e.g., glycerol or polyethylene glycol), esters of fatty acids, oils, fats, silicones, and the like. Such preparations can also include preservatives (e.g., p-hydroxybenzoic acid esters) and/or antioxidants (e.g., ascorbic acid and tocopherol). See also Dermatological Formulations: Percutaneous absorption, Barry (Ed.), Marcel Dekker Incl, 1983.


Pharmaceutical compositions of the present disclosure can contain a cosmetically or dermatologically acceptable carrier. Such carriers are compatible with skin, nails, mucous membranes, tissues and/or hair, and can include any conventionally used cosmetic or dermatological carrier meeting these requirements. Such carriers can be readily selected by one of ordinary skill in the art. In formulating skin ointments, an agent or combination of agents of the instant disclosure can be formulated in an oleaginous hydrocarbon base, an anhydrous absorption base, a water-in-oil absorption base, an oil-in-water water-removable base and/or a water-soluble base. Examples of such carriers and excipients include, but are not limited to, humectants (e.g., urea), glycols (e.g., propylene glycol), alcohols (e.g., ethanol), fatty acids (e.g., oleic acid), surfactants (e.g., isopropyl myristate and sodium lauryl sulfate), pyrrolidones, glycerol monolaurate, sulfoxides, terpenes (e.g., menthol), amines, amides, alkanes, alkanols, water, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.


Ointments and creams can, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions can be formulated with an aqueous or oily base and can in general also containing one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252, 4,992,445 and 5,001,139. Such patches can be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.


Lubricants which can be used to form pharmaceutical compositions and dosage forms of the disclosure include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethyl laureate, agar, or mixtures thereof. Additional lubricants include, for example, a syloid silica gel, a coagulated aerosol of synthetic silica, or mixtures thereof. A lubricant can optionally be added, in an amount of less than about 1 weight percent of the pharmaceutical composition.


The compositions according to the present disclosure can be in any form suitable for topical application, including aqueous, aqueous-alcoholic or oily solutions, lotion or serum dispersions, aqueous, anhydrous or oily gels, emulsions obtained by dispersion of a fatty phase in an aqueous phase (0/W or oil in water) or, conversely, (W/O or water in oil), microemulsions or alternatively microcapsules, microparticles or lipid vesicle dispersions of ionic and/or nonionic type. These compositions can be prepared according to conventional methods. Other than the agents of the disclosure, the amounts of the various constituents of the compositions according to the disclosure are those conventionally used in the art. These compositions in particular constitute protection, treatment or care creams, milks, lotions, gels or foams for the face, for the hands, for the body and/or for the mucous membranes, or for cleansing the skin. The compositions can also consist of solid preparations constituting soaps or cleansing bars.


Compositions of the present disclosure can also contain adjuvants common to the cosmetic and dermatological fields, such as hydrophilic or lipophilic gelling agents, hydrophilic or lipophilic active agents, preserving agents, antioxidants, solvents, fragrances, fillers, sunscreens, odor-absorbers and dyestuffs. The amounts of these various adjuvants are those conventionally used in the fields considered and, for example, are from about 0.01% to about 20% of the total weight of the composition. Depending on their nature, these adjuvants can be introduced into the fatty phase, into the aqueous phase and/or into the lipid vesicles.


In some embodiments, ocular viral infections can be effectively treated with ophthalmic solutions, suspensions, ointments or inserts comprising an agent or combination of agents of the present disclosure. Eye drops can be prepared by dissolving the active ingredient in a sterile aqueous solution such as physiological saline, buffering solution, etc., or by combining powder compositions to be dissolved before use. Other vehicles can be chosen, as is known in the art, including but not limited to: balance salt solution, saline solution, water soluble polyethers such as polyethyene glycol, polyvinyls, such as polyvinyl alcohol and povidone, cellulose derivatives such as methylcellulose and hydroxypropyl methylcellulose, petroleum derivatives such as mineral oil and white petrolatum, animal fats such as lanolin, polymers of acrylic acid such as carboxypolymethylene gel, vegetable fats such as peanut oil and polysaccharides such as dextrans, and glycosaminoglycans such as sodium hyaluronate. If desired, additives ordinarily used in the eye drops can be added. Such additives include isotonizing agents (e.g., sodium chloride, etc.), buffer agent (e.g., boric acid, sodium monohydrogen phosphate, sodium dihydrogen phosphate, etc.), preservatives (e.g., benzalkonium chloride, benzethonium chloride, chlorobutanol, etc.), thickeners (e.g., saccharide such as lactose, mannitol, maltose, etc.; e.g., hyaluronic acid or its salt such as sodium hyaluronate, potassium hyaluronate, etc.; e.g., mucopolysaccharide such as chondroitin sulfate, etc.; e.g., sodium polyacrylate, carboxyvinyl polymer, crosslinked polyacrylate, polyvinyl alcohol, polyvinyl pyrrolidone, methyl cellulose, hydroxy propyl methylcellulose, hydroxyethyl cellulose, carboxymethyl cellulose, hydroxy propyl cellulose or other agents known to those skilled in the art).


The solubility of the components of the present compositions can be enhanced by a surfactant or other appropriate co-solvent in the composition. Such cosolvents include polysorbate 20, 60, and 80, Pluronic F68, F-84 and P-103, cyclodextrin, or other agents known to those skilled in the art. Such co-solvents can be employed at a level of from about 0.01% to 2% by weight.


The compositions of the disclosure can be packaged in multidose form. Preservatives can be preferred to prevent microbial contamination during use. Suitable preservatives include: benzalkonium chloride, thimerosal, chlorobutanol, methyl paraben, propyl paraben, phenylethyl alcohol, edetate disodium, sorbic acid, Onamer M, or other agents known to those skilled in the art. In the prior art ophthalmic products, such preservatives can be employed at a level of from 0.004% to 0.02%. In the compositions of the present application the preservative, preferably benzalkonium chloride, can be employed at a level of from 0.001% to less than 0.01%, e.g. from 0.001% to 0.008%, preferably about 0.005% by weight. It has been found that a concentration of benzalkonium chloride of 0.005% can be sufficient to preserve the compositions of the present disclosure from microbial attack.


In some embodiments, developmental disorder associated symptoms of the ear can be effectively treated with otic solutions, suspensions, ointments or inserts comprising an agent or combination of agents of the present disclosure.


In some embodiments, the agents of the present disclosure are delivered in soluble rather than suspension form, which allows for more rapid and quantitative absorption to the sites of action. In general, formulations such as jellies, creams, lotions, suppositories and ointments can provide an area with more extended exposure to the agents of the present disclosure, while formulations in solution, e.g., sprays, provide more immediate, short-term exposure.


In some embodiments relating to topical/local application, the pharmaceutical compositions can include one or more penetration enhancers. For example, the formulations can comprise suitable solid or gel phase carriers or excipients that increase penetration or help delivery of agents or combinations of agents of the disclosure across a permeability barrier, e.g., the skin. Many of these penetration-enhancing compounds are known in the art of topical formulation, and include, e.g., water, alcohols (e.g., terpenes like methanol, ethanol, 2-propanol), sulfoxides (e.g., dimethyl sulfoxide, decylmethyl sulfoxide, tetradecylmethyl sulfoxide), pyrrolidones (e.g., 2-pyrrolidone, N-methyl-2-pyrrolidone, N-(2-hydroxyethyl)pyrrolidone), laurocapram, acetone, dimethylacetamide, dimethylformamide, tetrahydrofurfuryl alcohol, L-α-amino acids, anionic, cationic, amphoteric or nonionic surfactants (e.g., isopropyl myristate and sodium lauryl sulfate), fatty acids, fatty alcohols (e.g., oleic acid), amines, amides, clofibric acid amides, hexamethylene lauramide, proteolytic enzymes, α-bisabolol, d-limonene, urea and N,N-diethyl-m-toluamide, and the like. Additional examples include humectants (e.g., urea), glycols (e.g., propylene glycol and polyethylene glycol), glycerol monolaurate, alkanes, alkanols, ORGELASE, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and/or other polymers. In some embodiments, the pharmaceutical compositions can include one or more such penetration enhancers.


In some embodiments, the pharmaceutical compositions for local/topical application can include one or more antimicrobial preservatives such as quaternary ammonium compounds, organic mercurials, p-hydroxy benzoates, aromatic alcohols, chlorobutanol, and the like.


Gastrointestinal developmental disorder symptoms can be effectively treated with orally- or rectally delivered solutions, suspensions, ointments, enemas and/or suppositories comprising an agent or combination of agents of the present disclosure.


Respiratory developmental disorder symptoms can be effectively treated with aerosol solutions, suspensions or dry powders comprising an agent or combination of agents of the present disclosure. Administration by inhalation is particularly useful in treating viral infections of the lung, such as influenza. The aerosol can be administered through the respiratory system or nasal passages. For example, one skilled in the art can recognize that a composition of the present disclosure can be suspended or dissolved in an appropriate carrier, e.g., a pharmaceutically acceptable propellant, and administered directly into the lungs using a nasal spray or inhalant. For example, an aerosol formulation comprising a developmental disorder associated biomarkers' inhibitors can be dissolved, suspended or emulsified in a propellant or a mixture of solvent and propellant, e.g., for administration as a nasal spray or inhalant. Aerosol formulations can contain any acceptable propellant under pressure, such as a cosmetically or dermatologically or pharmaceutically acceptable propellant, as conventionally used in the art.


An aerosol formulation for nasal administration is generally an aqueous solution designed to be administered to the nasal passages in drops or sprays. Nasal solutions can be similar to nasal secretions in that they are generally isotonic and slightly buffered to maintain a pH of about 5.5 to about 6.5, although pH values outside of this range can additionally be used. Antimicrobial agents or preservatives can also be included in the formulation.


An aerosol formulation for inhalations and inhalants can be designed so that the agent or combination of agents of the present disclosure is carried into the respiratory tree of the subject when administered by the nasal or oral respiratory route. Inhalation solutions can be administered, for example, by a nebulizer. Inhalations or insufflations, comprising finely powdered or liquid drugs, can be delivered to the respiratory system as a pharmaceutical aerosol of a solution or suspension of the agent or combination of agents in a propellant, e.g., to aid in disbursement. Propellants can be liquefied gases, including halocarbons, for example, fluorocarbons such as fluorinated chlorinated hydrocarbons, hydrochlorofluorocarbons, and hydrochlorocarbons, as well as hydrocarbons and hydrocarbon ethers.


Halocarbon propellants useful in the present disclosure include fluorocarbon propellants in which all hydrogens are replaced with fluorine, chlorofluorocarbon propellants in which all hydrogens are replaced with chlorine and at least one fluorine, hydrogen-containing fluorocarbon propellants, and hydrogen-containing chlorofluorocarbon propellants. Halocarbon propellants are described in Johnson, U.S. Pat. No. 5,376,359; Byron et al., U.S. Pat. No. 5,190,029; and Purewal et al., U.S. Pat. No. 5,776,434. Hydrocarbon propellants useful in the disclosure include, for example, propane, isobutane, n-butane, pentane, isopentane and neopentane. A blend of hydrocarbons can also be used as a propellant. Ether propellants include, for example, dimethyl ether as well as the ethers. An aerosol formulation of the disclosure can also comprise more than one propellant. For example, the aerosol formulation can comprise more than one propellant from the same class, such as two or more fluorocarbons; or more than one, more than two, more than three propellants from different classes, such as a fluorohydrocarbon and a hydrocarbon. Pharmaceutical compositions of the present disclosure can also be dispensed with a compressed gas, e.g., an inert gas such as carbon dioxide, nitrous oxide or nitrogen.


Aerosol formulations can also include other components, for example, ethanol, isopropanol, propylene glycol, as well as surfactants or other components such as oils and detergents. These components can serve to stabilize the formulation and/or lubricate valve components.


The aerosol formulation can be packaged under pressure and can be formulated as an aerosol using solutions, suspensions, emulsions, powders and semisolid preparations. For example, a solution aerosol formulation can comprise a solution of an agent of the disclosure such as a developmental disorder associated biomarkers' inhibitors in (substantially) pure propellant or as a mixture of propellant and solvent. The solvent can be used to dissolve the agent and/or retard the evaporation of the propellant. Solvents useful in the disclosure include, for example, water, ethanol and glycols. Any combination of suitable solvents can be use, optionally combined with preservatives, antioxidants, and/or other aerosol components.


An aerosol formulation can also be a dispersion or suspension. A suspension aerosol formulation can comprise a suspension of an agent or combination of agents of the instant disclosure, e.g., a developmental disorder associated biomarkers' inhibitors, and a dispersing agent. Dispersing agents useful in the disclosure include, for example, sorbitan trioleate, oleyl alcohol, oleic acid, lecithin and corn oil. A suspension aerosol formulation can also include lubricants, preservatives, antioxidant, and/or other aerosol components.


An aerosol formulation can similarly be formulated as an emulsion. An emulsion aerosol formulation can include, for example, an alcohol such as ethanol, a surfactant, water and a propellant, as well as an agent or combination of agents of the disclosure, e.g., a developmental disorder associated biomarkers' inhibitors. The surfactant used can be nonionic, anionic or cationic. One example of an emulsion aerosol formulation comprises, for example, ethanol, surfactant, water and propellant. Another example of an emulsion aerosol formulation comprises, for example, vegetable oil, glyceryl monostearate and propane.


The compounds of the disclosure can be formulated for administration as suppositories. A low melting wax, such as a mixture of triglycerides, fatty acid glycerides, Witepsol S55 (trademark of Dynamite Nobel Chemical, Germany), or cocoa butter is first melted and the active component is dispersed homogeneously, for example, by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and to solidify.


The compounds of the disclosure can be formulated for vaginal administration. Pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate.


It is envisioned additionally, that the compounds of the disclosure can be attached releasably to biocompatible polymers for use in sustained release formulations on, in or attached to inserts for topical, intraocular, periocular, or systemic administration. The controlled release from a biocompatible polymer can be utilized with a water soluble polymer to form an instillable formulation, as well. The controlled release from a biocompatible polymer, such as for example, PLGA microspheres or nanospheres, can be utilized in a formulation suitable for intra ocular implantation or injection for sustained release administration, as well any suitable biodegradable and biocompatible polymer can be used.


In one aspect of the disclosure, the subject's carrier status of any of the genetic variation risk variants described herein, or genetic variants identified via other analysis methods within the genes or regulatory loci that are identified by the CNVs described herein, can be used to help determine whether a particular treatment modality for a developmental disorder, such as any one of the above, or a combination thereof, should be administered. The present disclosure also relates to methods of monitoring progress or effectiveness of a treatment option for a developmental disorder. The treatment option can include any of the above mentioned treatment options commonly used. This can be done based on the outcome of determination of the presence of a particular genetic variation risk variant in the individual, or by monitoring expression of genes that are associated with the variants of the present disclosure. Expression levels and/or mRNA levels can thus be determined before and during treatment to monitor its effectiveness. Alternatively, or concomitantly, the status with respect to a genetic variation, and or genotype and/or haplotype status of at least one risk variant for a developmental disorder presented herein can determined before and during treatment to monitor its effectiveness. It can also be appreciated by those skilled in the art that aberrant expression levels of a gene impacted by a CNV or other mutations found as a consequence of targeted sequencing of the CNV-identified gene can be assayed or diagnostically tested for by measuring the polypeptide expression level of said aberrantly expressed gene. In another embodiment, aberrant expression levels of a gene may result from a CNV impacting a DNA sequence (e.g., transcription factor binding site) that regulates a gene who's aberrant expression level is involved in or causes a developmental disorder, or other mutations found as a consequence of targeted sequencing of the CNV-identified gene regulatory sequence, can be assayed or diagnostically tested for by measuring the polypeptide expression level of the gene involved in or causative of a developmental disorder. In some embodiments, a specific CNV mutation within a gene, or other specific mutations found upon targeted sequencing of a CNV-identified gene found to be involved in or causative of a developmental disorder, may cause an aberrant structural change in the expressed polypeptide that results from said gene mutations and the altered polypeptide structure(s) can be assayed via various methods know to those skilled in the art.


Alternatively, biological networks or metabolic pathways related to the genes within, or associated with, the genetic variations described herein can be monitored by determining mRNA and/or polypeptide levels. This can be done for example, by monitoring expression levels of polypeptides for several genes belonging to the network and/or pathway in nucleic acid samples taken before and during treatment. Alternatively, metabolites belonging to the biological network or metabolic pathway can be determined before and during treatment. Effectiveness of the treatment is determined by comparing observed changes in expression levels/metabolite levels during treatment to corresponding data from healthy subjects.


In a further aspect, the genetic variations described herein and/or those subsequently found (e.g., via other genetic analysis methods such as sequencing) via targeted analysis of those genes initially identified by the genetic variations described herein, can be used to increase power and effectiveness of clinical trials. Thus, individuals who are carriers of at least one at-risk genetic variation can be more likely to respond to a particular treatment modality for a developmental disorder. In some embodiments, individuals who carry at-risk variants for gene(s) in a pathway and/or metabolic network for which a particular treatment is targeting are more likely to be responders to the treatment. In some embodiments, individuals who carry at-risk variants for a gene, which expression and/or function is altered by the at-risk variant, are more likely to be responders to a treatment modality targeting that gene, its expression or its gene product. This application can improve the safety of clinical trials, but can also enhance the chance that a clinical trial can demonstrate statistically significant efficacy, which can be limited to a certain sub-group of the population. Thus, one possible outcome of such a trial is that carriers of certain genetic variants are statistically significant and likely to show positive response to the therapeutic agent. Further, one or more of the genetic variations employed during clinical trials for a given therapeutic agent can be used in a companion diagnostic test that is administered to the patient prior to administration of the therapeutic agent to determine if the patient is likely to have favorable response to the therapeutic agent.


In a further aspect, the genetic variations described herein can be used for targeting the selection of pharmaceutical agents for specific individuals. The pharmaceutical agent can be any of the agents described in the above. Personalized selection of treatment modalities, lifestyle changes or combination of the two, can be realized by the utilization of the at-risk genetic variations or surrogate markers in linkage disequilibrium with the genetic variations. Thus, the knowledge of an individual's status for particular genetic variations can be useful for selection of treatment options, for example, for treatments that target genes or gene products affected by one or more of the genetic variations. Certain combinations of variants, including those described herein, but also combinations with other risk variants for a developmental disorder, can be suitable for one selection of treatment options, while other variant combinations can target other treatment options. Such combinations of variants can include one variant, two variants, three variants, or four or more variants, as needed to determine with clinically reliable accuracy the selection of treatment module.


Animal and Cell Models of Developmental Disorders


Also provided herein are engineered cells that can harbor one or more polymorphism described herein, for example, one or more genetic variations associated with a developmental disorder, for example a SNP or CNV. Such cells can be useful for studying the effect of a polymorphism on physiological function, and for identifying and/or evaluating potential therapeutic agents.


Methods are known in the art for generating cells, for example, by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell, for example, a cell of an animal. In some cases, cells can be used to generate transgenic animals using methods known in the art.


The cells are preferably mammalian cells in which an endogenous gene has been altered to include a genetic variation as described herein. Techniques such as targeted homologous recombination, can be used to insert the heterologous DNA as described in, e.g., Chappel, U.S. Pat. No. 5,272,071; WO 91/06667. In another embodiment induced pluripotent stem cells with specific disease-causing or disease-associated mutations (such as CNVs and SNVs) can be used for disease modeling and drug discovery, for example, as described in Grskovic et al. (2011) Nat. Rev. Drug. Discov. 10(12):915-29.


Autism Spectrum Disorder is not known to occur naturally in any species other than humans, although animal models which show some features of the disease. This mouse model was created by replacing the normal mouse neurologin-3 gene with a mutated neuroligin-3 gene associated with autism in humans (Südhof, M. D., et al., UT Southwestern). By doing so, a gene was created in mice similar to the human autism disease gene. While the result amounted to a very small change in their genetic makeup, it mimics the same small change occurring in some patients with human autism. This and any other models described in the literature can be used with the methods of the disclosure.


Pharmaceutical compositions suitable for use in the present disclosure include compositions wherein the active ingredients are present in an effective amount, i.e., in an amount effective to achieve therapeutic and/or prophylactic benefit in a host with at least one a developmental disorder associated symptom. The actual amount effective for a particular application can depend on the condition or conditions being treated, the condition of the subject, the formulation, and the route of administration, as well as other factors known to those of skill in the art. Determination of an effective amount of a developmental disorder associated biomarkers' inhibitors is well within the capabilities of those skilled in the art, in light of the disclosure herein, and can be determined using routine optimization techniques.


The effective amount for use in humans can be determined from animal models. For example, a dose for humans can be formulated to achieve circulating, liver, topical and/or gastrointestinal concentrations that have been found to be effective in animals. One skilled in the art can determine the effective amount for human use, especially in light of the animal model experimental data described herein. Based on animal data, and other types of similar data, those skilled in the art can determine the effective amounts of compositions of the present disclosure appropriate for humans.


The effective amount when referring to an agent or combination of agents of the disclosure can generally mean the dose ranges, modes of administration, formulations, etc., that have been recommended or approved by any of the various regulatory or advisory organizations in the medical or pharmaceutical arts (e.g., FDA, AMA) or by the manufacturer or supplier.


Further, appropriate doses for a developmental disorder associated biomarkers' inhibitors can be determined based on in vitro experimental results. For example, the in vitro potency of an agent in inhibiting a developmental disorder associated biomarkers' components, provides information useful in the development of effective in vivo dosages to achieve similar biological effects. In some embodiments, administration of agents of the present disclosure can be intermittent, for example, administration once every two days, every three days, every five days, once a week, once or twice a month, and the like. In some embodiments, the amount, forms, and/or amounts of the different forms can be varied at different times of administration.


A person of skill in the art would be able to monitor in a subject the effect of administration of a particular agent. Other techniques would be apparent to one of skill in the art, wherein the active ingredients are present in an effective amount, for example, in an amount effective to achieve therapeutic and/or prophylactic benefit in a host with at least one a developmental disorder associated symptom. The actual amount effective for a particular application can depend on the condition or conditions being treated, the condition of the subject, the formulation, and the route of administration, as well as other factors known to those of skill in the art. Determination of an effective amount of a developmental disorder associated biomarkers' inhibitors is well within the capabilities of those skilled in the art, in light of the disclosure herein, and can be determined using routine optimization techniques.


Further, appropriate doses for a developmental disorder associated biomarkers' inhibitors can be determined based on in vitro experimental results. For example, the in vitro potency of an agent in inhibiting a developmental disorder associated biomarkers' components can provide information useful in the development of effective in vivo dosages to achieve similar biological effects.


Kits


Kits useful in the methods of the disclosure comprise components useful in any of the methods described herein, including for example, primers for nucleic acid amplification, hybridization probes for detecting genetic variation, or other marker detection, restriction enzymes, nucleic acid probes, optionally labeled with suitable labels, allele-specific oligonucleotides, antibodies that bind to an altered polypeptide encoded by a nucleic acid of the disclosure as described herein or to a wild type polypeptide encoded by a nucleic acid of the disclosure as described herein, means for amplification of genetic variations or fragments thereof, means for analyzing the nucleic acid sequence of nucleic acids comprising genetic variations as described herein, means for analyzing the amino acid sequence of a polypeptide encoded by a genetic variation, or a nucleic acid associated with a genetic variation, etc. The kits can for example, include necessary buffers, nucleic acid primers for amplifying nucleic acids, and reagents for allele-specific detection of the fragments amplified using such primers and necessary enzymes (e.g., DNA polymerase). Additionally, kits can provide reagents for assays to be used in combination with the methods of the present disclosure, for example, reagents for use with other screening assays for a developmental disorder.


In some embodiments, the disclosure pertains to a kit for assaying a nucleic acid sample from a subject to detect the presence of a genetic variation, wherein the kit comprises reagents necessary for selectively detecting at least one particular genetic variation in the genome of the individual. In some embodiments, the disclosure pertains to a kit for assaying a nucleic acid sample from a subject to detect the presence of at least particular allele of at least one polymorphism associated with a genetic variation in the genome of the subject. In some embodiments, the reagents comprise at least one contiguous oligonucleotide that hybridizes to a fragment of the genome of the individual comprising at least genetic variation. In some embodiments, the reagents comprise at least one pair of oligonucleotides that hybridize to opposite strands of a genomic segment obtained from a subject, wherein each oligonucleotide primer pair is designed to selectively amplify a fragment of the genome of the individual that includes at least one genetic variation, or a fragment of a genetic variation. Such oligonucleotides or nucleic acids can be designed using the methods described herein. In some embodiments, the kit comprises one or more labeled nucleic acids capable of allele-specific detection of one or more specific polymorphic markers or haplotypes with a genetic variation, and reagents for detection of the label. In some embodiments, a kit for detecting SNP markers can comprise a detection oligonucleotide probe, that hybridizes to a segment of template DNA containing a SNP polymorphisms to be detected, an enhancer oligonucleotide probe, detection probe, primer and/or an endonuclease, for example, as described by Kutyavin et al. (Nucleic Acid Res. 34:e128 (2006)).


In some embodiments, the DNA template is amplified by any means of the present disclosure, prior to assessment for the presence of specific genetic variations as described herein. Standard methods well known to the skilled person for performing these methods can be utilized, and are within scope of the disclosure. In one such embodiment, reagents for performing these methods can be included in the reagent kit.


In a further aspect of the present disclosure, a pharmaceutical pack (kit) is provided, the pack comprising a therapeutic agent and a set of instructions for administration of the therapeutic agent to humans screened for one or more variants of the present disclosure, as disclosed herein. The therapeutic agent can be a small molecule drug, an antibody, a peptide, an antisense or RNAi molecule, or other therapeutic molecules as described herein. In some embodiments, an individual identified as a carrier of at least one variant of the present disclosure is instructed to take a prescribed dose of the therapeutic agent. In one such embodiment, an individual identified as a carrier of at least one variant of the present disclosure is instructed to take a prescribed dose of the therapeutic agent. In some embodiments, an individual identified as a non-carrier of at least one variant of the present disclosure is instructed to take a prescribed dose of the therapeutic agent.


Also provided herein are articles of manufacture, comprising a probe that hybridizes with a region of human chromosome as described herein and can be used to detect a polymorphism described herein. For example, any of the probes for detecting polymorphisms described herein can be combined with packaging material to generate articles of manufacture or kits. The kit can include one or more other elements including: instructions for use; and other reagents such as a label or an agent useful for attaching a label to the probe. Instructions for use can include instructions for screening applications of the probe for making a diagnosis, prognosis, or theranosis to a developmental disorder in a method described herein. Other instructions can include instructions for attaching a label to the probe, instructions for performing in situ analysis with the probe, and/or instructions for obtaining a nucleic acid sample to be analyzed from a subject. In some cases, the kit can include a labeled probe that hybridizes to a region of human chromosome as described herein.


The kit can also include one or more additional reference or control probes that hybridize to the same chromosome or another chromosome or portion thereof that can have an abnormality associated with a particular endophenotype. A kit that includes additional probes can further include labels, e.g., one or more of the same or different labels for the probes. In other embodiments, the additional probe or probes provided with the kit can be a labeled probe or probes. When the kit further includes one or more additional probe or probes, the kit can further provide instructions for the use of the additional probe or probes. Kits for use in self-testing can also be provided. Such test kits can include devices and instructions that a subject can use to obtain a nucleic acid sample (e.g., buccal cells, blood) without the aid of a health care provider. For example, buccal cells can be obtained using a buccal swab or brush, or using mouthwash.


Kits as provided herein can also include a mailer (e.g., a postage paid envelope or mailing pack) that can be used to return the nucleic acid sample for analysis, e.g., to a laboratory. The kit can include one or more containers for the nucleic acid sample, or the nucleic acid sample can be in a standard blood collection vial. The kit can also include one or more of an informed consent form, a test requisition form, and instructions on how to use the kit in a method described herein. Methods for using such kits are also included herein. One or more of the forms (e.g., the test requisition form) and the container holding the nucleic acid sample can be coded, for example, with a bar code for identifying the subject who provided the nucleic acid sample.


In some embodiments, an in vitro screening test can comprise one or more devices, tools, and equipment configured to collect a nucleic acid sample from an individual. In some embodiments of an in vitro screening test, tools to collect a nucleic acid sample can include one or more of a swab, a scalpel, a syringe, a scraper, a container, and other devices and reagents designed to facilitate the collection, storage, and transport of a nucleic acid sample. In some embodiments, an in vitro screening test can include reagents or solutions for collecting, stabilizing, storing, and processing a nucleic acid sample.


Such reagents and solutions for nucleotide collecting, stabilizing, storing, and processing are well known by those of skill in the art and can be indicated by specific methods used by an in vitro screening test as described herein. In some embodiments, an in vitro screening test as disclosed herein, can comprise a microarray apparatus and reagents, a flow cell apparatus and reagents, a multiplex nucleotide sequencer and reagents, and additional hardware and software necessary to assay a nucleic acid sample for certain genetic markers and to detect and visualize certain genetic markers.


The present disclosure further relates to kits for using antibodies in the methods described herein. This includes, but is not limited to, kits for detecting the presence of a variant polypeptide in a test nucleic acid sample. One preferred embodiment comprises antibodies such as a labeled or labelable antibody and a compound or agent for detecting variant polypeptides in a nucleic acid sample, means for determining the amount or the presence and/or absence of variant polypeptide in the nucleic acid sample, and means for comparing the amount of variant polypeptide in the nucleic acid sample with a standard, as well as instructions for use of the kit. In certain embodiments, the kit further comprises a set of instructions for using the reagents comprising the kit.


Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The following references contain embodiments of the methods and compositions that can be used herein: The Merck Manual of Diagnosis and Therapy, 18th Edition, published by Merck Research Laboratories, 2006 (ISBN 0-911910-18-2); Benjamin Lewin, Genes IX, published by Jones & Bartlett Publishing, 2007 (ISBN-13: 9780763740634); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9); and Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8).


Standard procedures of the present disclosure are described, e.g., in Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA (1982); Sambrook et al., Molecular Cloning: A Laboratory Manual (2 ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA (1989); Davis et al., Basic Methods in Molecular Biology, Elsevier Science Publishing, Inc., New York, USA (1986); or Methods in Enzymology: Guide to Molecular Cloning Techniques Vol. 152, S. L. Berger and A. R. Kimmerl (eds.), Academic Press Inc., San Diego, USA (1987)). Current Protocols in Molecular Biology (CPMB) (Fred M. Ausubel, et al. ed., John Wiley and Sons, Inc.), Current Protocols in Protein Science (CPPS) (John E. Coligan, et. al., ed., John Wiley and Sons, Inc.), Current Protocols in Immunology (CPI) (John E. Coligan, et. al., ed. John Wiley and Sons, Inc.), Current Protocols in Cell Biology (CPCB) (Juan S. Bonifacino et. al. ed., John Wiley and Sons, Inc.), Culture of Animal Cells: A Manual of Basic Technique by R. Ian Freshney, Publisher: Wiley-Liss; 5th edition (2005), and Animal Cell Culture Methods (Methods in Cell Biology, Vol. 57, Jennie P. Mather and David Barnes editors, Academic Press, 1st edition, 1998), which are all incorporated by reference herein in their entireties.


It should be understood that the following examples should not be construed as being limiting to the particular methodology, protocols, and compositions, etc., described herein and, as such, can vary. The following terms used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the embodiments disclosed herein.


Disclosed herein are molecules, materials, compositions, and components that can be used for, can be used in conjunction with, can be used in preparation for, or are products of methods and compositions disclosed herein. It is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed and while specific reference of each various individual and collective combinations and permutation of these molecules and compounds cannot be explicitly disclosed, each is specifically contemplated and described herein. For example, if a nucleotide or nucleic acid is disclosed and discussed and a number of modifications that can be made to a number of molecules including the nucleotide or nucleic acid are discussed, each and every combination and permutation of nucleotide or nucleic acid and the modifications that are possible are specifically contemplated unless specifically indicated to the contrary. This concept applies to all aspects of this application including, but not limited to, steps in methods of making and using the disclosed molecules and compositions. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods, and that each such combination is specifically contemplated and should be considered disclosed.


Those skilled in the art can recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the method and compositions described herein. Such equivalents are intended to be encompassed by the following claims.


It is understood that the disclosed methods and compositions are not limited to the particular methodology, protocols, and reagents described as these can vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present disclosure which can be limited only by the appended claims.


Unless defined otherwise, all technical and scientific terms used herein have the meanings that would be commonly understood by one of skill in the art in the context of the present specification.


It should be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to “a nucleotide” includes a plurality of such nucleotides; reference to “the nucleotide” is a reference to one or more nucleotides and equivalents thereof known to those skilled in the art, and so forth.


The term “and/or” shall in the present context be understood to indicate that either or both of the items connected by it are involved. While preferred embodiments of the present disclosure have been shown and described herein, it can be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions can now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein can be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.


EXAMPLES
Example 1

In the present study, the Agilent 1M CGH array was used to detect novel, rare CNVs in a total of 1687 individuals in 2 cohorts:


1. 1,005 Normal individuals (Normal Variation Engine—NVE);


2. 682 ASD cases (ASD).


The Normal DNA samples were from apparently healthy Caucasian donors >45 years old. Health history information was documented at the time of consent via a questionnaire filled out by the donor. This information was used to select 1,000 Normals based on the following attributes: BMI between 15-35, blood glucose level <125 mg/dL, total cholesterol level between 100-300, systolic blood pressure between 100-150, and no major neurodegenerative diseases or psychiatric disorders (alcoholism, mental illness, depression, dementia, Alzheimer's disease, and Parkinson's disease).


For the ASD samples, Reference DNA samples were labeled with Cy3 and test subject cases with Cy5. After labeling, samples were combined and co-hybridized to Agilent 1M feature oligonucleotide microarrays, design ID 021529 (Agilent Product Number G4447A) using standard conditions (array Comparative Genomic Hybridization—aCGH). Post-hybridization, arrays were scanned at 3 μm resolution, using Agilent's DNA microarray scanner, generating tiff images for later analysis. All hybridizations were sex-matched; reference samples were pools of 50 male and 50 female samples, respectively. Genomic DNA for the reference pools was isolated from cell lines.


Genomic DNA samples from individuals within the Normal cohort (‘test’ subjects) were hybridized against a single, sex-matched reference individual as follows. Reference DNA samples were labeled with Cy5 and Test subject DNA samples were labeled with Cy3. After labeling, samples were combined and co-hybridized to Agilent 1M feature oligonucleotide microarrays, design ID 021529 (Agilent Product Number G4447A) using standard conditions (array Comparative Genomic Hybridization—aCGH). Post-hybridization, arrays were scanned at 2 μm resolution, using Agilent's DNA microarray scanner, generating tiff images for later analysis.


All tiff images were analyzed using Agilent Feature Extraction (FE) software, with the following settings:


Human Genome Freeze:hg18:NCBI36:Mar2006


FE version: 10.7.3.1


Grid/design file: 021529_D_F_20091001


Protocol: CGH_107_Sep09


This procedure generated a variety of output files, one of which was a text-tab delimited file, containing ˜1,000,000 rows of data, each corresponding to a specific feature on the array. This *.txt file was used to perform CNV calling using DNAcopy, an open source software package implemented in R via BioConductor. Losses or gains were determined according to a threshold log 2 ratio, which was set at −/+0.35. In other words, all losses with a log 2 ratio value ≤−0.35 were counted, as were all gains with a log 2 ratio≥+0.35. Log 2 ratio values were determined according to Cy3/Cy5 (Test/Reference). The minimum probe number to call a CNV was set at 2 (2 consecutive probes were sufficient to call a CNV). A CNV list was thus generated for each individual in the 2 cohorts.


There were a total of 162,316 CNVs in the NVE cohort of 1,005 individuals. Using custom scripts, these CNVs (many of which appeared in multiple individuals) were ‘merged’ into a master list (NVE-master) of non-redundant CNV-subregions, according to the presence or absence of the CNV-subregion in individuals within the cohort. Using this approach, the NVE-master list has 14,693 distinct CNV-subregions, some of which are uniquely present in a single individual and some of which are present in multiple individuals. For example, consider 3 individuals within the NVE cohort with the following hypothetical CNVs:


Chr1:1-100,000;


Chr1:10,001-100,000;


Chr1:1-89,999;


In the master list, these would be merged into 3 distinct CNV subregions, as follows:



















CNV-subregion 1
Chr1:1-10,000
Patients A, C



CNV-subregion 2
Chr1:10,001-89,999
Patients A, B, C



CNV-subregion 3
Chr 90,000:1-100,000
Patients A, B










There were a total of 72,183 CNVs in the ASD cohort of 682 individuals. Using custom scripts, these CNVs (many of which appeared in multiple individuals) were ‘merged’ into a master list (ASD-master) of non-redundant CNV-subregions, according to the presence or absence of the CNV-subregion in individuals within the cohort. Using this approach, the ASD-master list has 13,914 distinct CNV-subregions, some of which are uniquely present in a single individual and some of which are present in multiple individuals.


CNV-subregions of interest were obtained after:


1. Annotation using custom designed scripts in order to attach to each CNV region relevant information regarding overlap with known genes, exons and CNVs generated by a study from the Sanger institute (www.sanger.ac.uk/research/areas/humangenetics/cnv/highresdiscovery)


2. A calculation of the odds ratio (OR) for each CNV-subregion.


The OR for each subregion was calculated according to the following formula:

OR=(ASD/(682−ASD))/(NVE/(1005−NVE))

where: ASD=number of ASD individuals with CNV-subregion of interest, and NVE=number of NVE individuals with CNV-subregion of interest


As an illustrative example, consider the CNV subregion chr1: 750052-770858 (first row of Table 2), which is found in 1 individual in the NVE cohort and 6 individuals in the ASD cohort.


The OR calculated was (6/(682−6))/(1/(1005−1))=8.91.


By convention, if NVE=0, it is set to 1, in order to avoid dealing with infinities. This has the effect of artificially lowering OR values in cases where none are seen in the NVE. When calculating OR values for identical CNV-subregions, gains and losses are combined.


CNV-subregions/genes that fulfill one of the following criteria were determined:


1. Genic (distinct CNV-subregions); OR>6


2. Exon+ve, ASD>4, NVE<2, no Sanger filter applied


3. Exon+ve, 5>ASD>1, Normals<2, Sanger filter−ve


4. Intron+ve, ASD>4, Normals<2, no Sanger filter applied


5. MTRNR2L family


6. High OR intergenic (OR>30)


The number of ASD candidate CNV-subregions, irrespective of category (genic or non-genic), may increase or decrease as additional ASD cohorts are analyzed A variety of CNVs may cause a pathogenic effect in affected patients that have at least one CNV from one of these categories. For example, CNVs can be non-overlapping (distinct CNVs) but all impact the same gene (category 1). In other patients with a neurodevelopment disorder, the CNVs may be overlapping and/or non-overlapping, impact an exon, and they affect 5 or more cases but only 0 or 1 Normal subjects and no filter of Sanger CNVs is applied due to the relatively high OR value (>7) for this category. In category 3, the CNVs may be overlapping and/or non-overlapping, impact an exon, and they affect <5 cases but only 0 or 1 Normal subjects and no Sanger CNVs overlap, which enables identification of rarer CNVs in cases with a neurodevelopmental disorder but with the stringency of Sanger CNVs that are presumed to be relatively common in the general population. Category 4 is equivalent to category 2 except that the CNVs impact an intron as it is appreciated by those skilled in the art that genetic variants (such as CNVs) impacting introns can be pathogenic (e.g., such variants can result in alternatively spliced mRNAs or loss of a microRNA binding site, which may deleteriously impact the resulting protein's structure or expression level). Category 5 corresponds to CNVs that impact the MTRNR2L gene family, which are also known as humanins (Matsuoka M, et al. Humanin and the receptors for humanin. Mol Neurobiol. 2010 February; 41(1):22-8; Bodzioch M, et al. Evidence for potential functionality of nuclearly-encoded humanin isoforms. Genomics. 2009 October; 94(4):247-56; Maftei M, et al. Interaction structure of the complex between neuroprotective factor humanin and Alzheimer's 3-amyloid peptide revealed by affinity mass spectrometry and molecular modeling. J Pept Sci. 2012 June; 18(6):373-82; Arakawa T, et al. Advances in characterization of neuroprotective peptide, humanin. Curr Med Chem. 2011; 18(36):5554-63; Zapala B, et al. Humanins, the neuroprotective and cytoprotective peptides with antiapoptotic and anti-inflammatory properties. Pharmacol Rep. 2010 September-October; 62(5):767-77.


While humanins may have neuroprotective properties for Alzheimer's disease, it is not established in neurodevelopment disorders; however, recently links have been established between the Alzheimer's gene APP and neurodevelopmental disorders such as autism (Westmark C J. What's hAPPening at synapses? The role of amyloid β-protein precursor and β-amyloid in neurological disorders. Mol Psychiatry. 2012 Aug. 28). Category 6 CNVs are those that occur within intergenic regions but with high OR (>30) as it is well known by those skilled in the art that gene regulatory regions often reside in adjacent regions of genes such as have been experimentally determined and annotated in the ENCODE project (ENCODE Project Consortium, Bernstein B E, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep. 6; 489(7414):57-74).


Example 2

Some pathway analysis software will be used to identify whether the candidate gene will be a drug target, which may be FDA-approved or in clinical trials. Such information will assist in the design of clinical trials (e.g., patient stratification for genetic subtypes) or will be used to facilitate clinical trials that are in progress, thereby reducing the attrition rate (failure to receive FDA approval) and reducing the time and cost of drug development. When a candidate ASD gene is identified as a known drug target of an FDA-approved therapeutic, the drug can be repurposed and approved for use in a new indication (e.g., a cancer or anti-inflammatory agent may be beneficial to ASD patients as well). Those skilled in the art will recognize that Phase II and III failures may be rescued with additional clinical trial data that accounts for genetic subtypes, particularly when the drug fails for lack of efficacy. For example, if a drug will be designed or established to target a particular gene defect (e.g., use of an RNAi therapeutic to decrease aberrant overexpression of the gene that is caused by a CNV or other type of genetic variant), it will be expected that only ASD patients with that particular genetic subtype will benefit from the targeted therapy.


Example 3


FIG. 1 represents an example of group 1 (Genic (distinct CNV-subregions); OR>6). There are 10 ASD cases and 0 NVE subjects affected by non-overlapping and overlapping CNV-subregions. The CNV are gains (log 2 ratio>0.35) or losses (log 2 ratio<−0.35) and affect the gene NRG1 on chromosome 8. The calculated odds ratio (OR) for this CNV-subregion is 14.94.


In the figure, three tracks of information are shown, from top to bottom: 1) RefSeq gene annotation showing the genome location (x-axis) of genes demarcated in light gray (introns) and dark gray (exons) and with multiple entries depicted if multiple transcript variants are annotated that correspond to the gene; 2) size and genome location (x-axis) for normal CNVs annotated for greater than 1,000 unaffected/normal individuals, with CNVs demarcated by dark gray bars and the y-axis corresponds to the number of individuals in the normal cohort found to have the CNV; 3) array CGH data (black dots correspond to the probes on the microarray) for an ASD case with a CNV wherein the y-axis is the log 2 ratio value of the test (ASD case) and reference (healthy control) genomic DNAs and the x-axis corresponds to the genome location of the probes and CNVs, which are depicted as line segments shifted positively (copy number gain) or negatively (copy number loss) relative to the baseline (log 2 ratio=0).


Example 4


FIG. 2 represents an example of group 2 (Exon+ve, ASD>4, Normals<2, no Sanger filter applied). There are 34 ASD cases in total (31 with an identical loss) and 1 NVE subject affected by overlapping CNV-subregions that impact an exon. The CNV are a gain (log 2 ratio>0.35) or losses (log 2 ratio<−0.35) and affect the gene MIDN on chromosome 19. The calculated odds ratio (OR) for this CNV-subregion is 52.68.


In the figure, three tracks of information are shown, from top to bottom: 1) RefSeq gene annotation showing the genome location (x-axis) of genes demarcated in light gray (introns) and dark gray (exons) and with multiple entries depicted if multiple transcript variants are annotated that correspond to the gene; 2) size and genome location (x-axis) for normal CNVs annotated for greater than 1,000 unaffected/normal indivduals, with CNVs demarcated by dark gray bars and the y-axis corresponds to the number of individuals in the normal cohort found to have the CNV; 3) array CGH data (black dots correspond to the probes on the microarray) for an ASD case with a CNV wherein the y-axis is the log 2 ratio value of the test (ASD case) and reference (healthy control) genomic DNAs and the x-axis corresponds to the genome location of the probes and CNVs, which are depicted as line segments shifted positively (copy number gain) or negatively (copy number loss) relative to the baseline (log 2 ratio=0).


Example 5


FIG. 3 represents an example of group 3 (Exon+ve, 5>ASD>1, Normals<2, Sanger−ve). There are 4 ASD cases in total and 1 NVE subject affected by an overlapping CNV-subregion that impacts an exon. The CNV are losses (log 2 ratio<−0.35) and affect the gene PTGER3 on chromosome 1 and no Sanger CNVs overlap this CNV (Sanger−ve). The calculated odds ratio (OR) for this CNV-subregion is 5.92.


In the figure, three tracks of information are shown, from top to bottom: 1) RefSeq gene annotation showing the genome location (x-axis) of genes demarcated in light gray (introns) and dark gray (exons) and with multiple entries depicted if multiple transcript variants are annotated that correspond to the gene; 2) size and genome location (x-axis) for normal CNVs annotated for greater than 1,000 unaffected/normal indivduals, with CNVs demarcated by dark gray bars and the y-axis corresponds to the number of individuals in the normal cohort found to have the CNV; 3) array CGH data (black dots correspond to the probes on the microarray) for an ASD case with a CNV wherein the y-axis is the log 2 ratio value of the test (ASD case) and reference (healthy control) genomic DNAs and the x-axis corresponds to the genome location of the probes and CNVs, which are depicted as line segments shifted positively (copy number gain) or negatively (copy number loss) relative to the baseline (log 2 ratio=0).


Example 6


FIG. 4 represents an example of group 4 (Intron+ve, ASD>4, Normals<2, no Sanger filter applied). There are 8 ASD cases in total (3 cases impact an identical CNV loss) and 0 NVE subjects affected by an overlapping CNV-subregion that impacts an intron. The CNV are losses (log 2 ratio<−0.35) or a gain (log 2 ratio>0.35) and affect the gene CALN1 on chromosome 7. The calculated odds ratio (OR) for this CNV-subregion is 11.92.


In the figure, three tracks of information are shown, from top to bottom: 1) RefSeq gene annotation showing the genome location (x-axis) of genes demarcated in light gray (introns) and dark gray (exons) and with multiple entries depicted if multiple transcript variants are annotated that correspond to the gene; 2) size and genome location (x-axis) for normal CNVs annotated for greater than 1,000 unaffected/normal indivduals, with CNVs demarcated by dark gray bars and the y-axis corresponds to the number of individuals in the normal cohort found to have the CNV; 3) array CGH data (black dots correspond to the probes on the microarray) for an ASD case with a CNV wherein the y-axis is the log 2 ratio value of the test (ASD case) and reference (healthy control) genomic DNAs and the x-axis corresponds to the genome location of the probes and CNVs, which are depicted as line segments shifted positively (copy number gain) or negatively (copy number loss) relative to the baseline (log 2 ratio=0).


Example 7


FIG. 5 represents an example of group 5 (MTRNR2L_family). There is 1 ASD case and 0 NVE subjects that impact an exon of an MTRNR2L gene family member. The CNV gain (log 2 ratio>0.35) is 1.7 Mb in size and its left breakpoint disrupts MTRNR2L4 and its right breakpoint disrupts ALG1 on chromosome 16. The calculated odds ratio (OR) for this CNV-subregion is 1.47.


The top panel shows the complete CNV, which impacts several genes. The lower left panel is an expanded view of the left breakpoint depicting disruption of MTRNR2L4. The lower right panel is an expanded view of the right breakpoint depicting disruption of ALG1. One or both genes may be causative of the patient's autistic phenotype.


In the figure, three tracks of information are shown, from top to bottom: 1) RefSeq gene annotation showing the genome location (x-axis) of genes demarcated in light gray (introns) and dark gray (exons) and with multiple entries depicted if multiple transcript variants are annotated that correspond to the gene; 2) size and genome location (x-axis) for normal CNVs annotated for greater than 1,000 unaffected/normal indivduals, with CNVs demarcated by dark gray bars and the y-axis corresponds to the number of individuals in the normal cohort found to have the CNV; 3) array CGH data (black dots correspond to the probes on the microarray) for an ASD case with a CNV wherein the y-axis is the log 2 ratio value of the test (ASD case) and reference (healthy control) genomic DNAs and the x-axis corresponds to the genome location of the probes and CNVs, which are depicted as line segments shifted positively (copy number gain) or negatively (copy number loss) relative to the baseline (log 2 ratio=0).


Example 8


FIG. 6 represents an example of group 6 (High OR intergenic (OR>30)). There are 20 ASD cases in total (5 representative cases are depicted) and 0 NVE subjects affected by an overlapping CNV-subregion that impacts an intergenic region (adjacent to SDC1). The CNV are losses (log 2 ratio<−0.35) on chromosome 2. The calculated odds ratio (OR) for this CNV-subregion is 30.33.


In the figure, three tracks of information are shown, from top to bottom: 1) RefSeq gene annotation showing the genome location (x-axis) of genes demarcated in light gray (introns) and dark gray (exons) and with multiple entries depicted if multiple transcript variants are annotated that correspond to the gene; 2) size and genome location (x-axis) for normal CNVs annotated for greater than 1,000 unaffected/normal indivduals, with CNVs demarcated by dark gray bars and the y-axis corresponds to the number of individuals in the normal cohort found to have the CNV; 3) array CGH data (black dots correspond to the probes on the microarray) for an ASD case with a CNV wherein the y-axis is the log 2 ratio value of the test (ASD case) and reference (healthy control) genomic DNAs and the x-axis corresponds to the genome location of the probes and CNVs, which are depicted as line segments shifted positively (copy number gain) or negatively (copy number loss) relative to the baseline (log 2 ratio=0).


Example 9
Example of Sequence Data

The sequence file ASD_ST25.txt contains genomic sequence information for (in the following order):


A. All distinct CNVs listed in Table 1 (SEQ_IDs 1-883);


The full genomic extent of the transcripts listed in Table 4 (SEQ_IDs 884-1,690);


Example of Sequences Submitted:


Sequence Entry Starts:










SEQ_ID 1 = 1,337 bp loss/gain in an exon of MIDN, as listed in Table 1:



<210> 1





<211> 1337





<212> DNA





<213> Homo sapiens





<400> 1












ggaacgttga tacattataa cttttttttc ttgttacttt cacccccaga tcctccgagc
60






ggcggcgacg gctgttgcta agggagggga cgcgcgagga agcgcgaccc gggcggcaga
120





cggcacccag cgccaccagc cgagcggcgc cccctcccca ggacccttaa ccgcgccgcg
180





tcccggtcgc gcccgccgcc ctttgaagga gaagcaagtg ccgtccccac ccccggaagg
240





cgcccccagg agccggagcg acctcggagc gccactcgga ttttggattt cggtctcgca
300





ttccgcggcc gggactttct cgaggaggac gcgcgctgct ccgcgccccc gagtgcccgg
360





aggacccggc atccggggag cctctcgccc ctgtcccgga ggcgcggcga ggattggcgg
420





cgcccgccgc ccccagcccc ccagcgcgcg ccggggatgg agccgcagcc cggcggcgcc
480





cggagctgcc ggcgcggggc ccccggcggc gcctgcgagc tgggcccggc ggccgaggcg
540





gcgcccatga gcctcgccat ccacagcacc acgggcaccc gctacgacct ggccgtgccg
600





cccgacgaga cggtggaggg gctgcgcaag cggttgtccc agcgcctcaa agtgcccaag
660





gagcgcctgg ctcttctcca caaagacacg taggtaccgc gcgcccccgg ccggccgccc
720





cctcgggccc cggcccccgg gcgggaacaa agagcgcgcc gcgcggggaa ggcagggggc
780





ggccagacag ggggcggggg cgcgccgcgc gctctcgggc gccctctgct cggcctcgcc
840





tgcctcggcc ccctcccccg cccggggtcg ccgcacaaag gcggctgcga gggcgtcccg
900





ggccgggctt cggcggcccc ccttgggggc gggcaggaat cccagggcgt tgcgggggtc
960





ccggctgcgg gtgtgggggc cgccaccgcc ccctcccgcc tgcgtccgcg ccggcttccg
1020





catctgctcg gcggcctcct ctgcgtctgg ctgtctcccc ccacttgcgt ctctctcccc
1080





ccctttgttc tcgcctccga gcgctccccg cagcctcccc tcccccctgg tatttaaatc
1140





gcctgcaggc ccggagccct ccccccgcgg gcctccgggg acacgcagtg tccatcccag
1200





tggaggggcc catcggggga ggggcggagg gggagggtct cctttgtctg cgcggcggcg
1260





gccgcctgcg ccggggaggg aggaggaggg ggagcccggc ccggcgcaac ccccagggcc
1320





tctcctcggg ccgaaac
1337







Sequence Entry Ends.


Example 10
Example of Sequence Data

Example of Sequences Submitted:


Sequence Entry Starts:










SEQ_ID 1168 = Transcript NM_019103, corresponding to gene ZMAT5, as



described in Table 4:


<210> 1668





<211> 36025





<212> DNA





<213> Homo sapiens





<400> 1668












tgtggtgaca gactttcttt ataaacattt ggaagttttc tcccccatct tcttaagaag
60






caggggggca ggtggaggag agtgagggga gagctgcccg gtgcagaccc aggacgaggg
120





ctgcacttgg tgtggccgtg tcctgagcct cagtgaggct gggcagatgg tctcggagcc
180





. . . (sequence truncated for brevity)






caagaaatgg tgcgtcccgc cgcagggcgt acgcacagag aaggaagtgt tcaagtcttc
35940





cagtgcggag aaaagagact aggactcgcc cctcgacgtc tcgcggaagg tacctggctc
36000





cccggtggct gcagctccgg gctcc
36025







Sequence Entry Ends.

Claims
  • 1. A method of hybridizing a nucleic acid probe comprising: (a) hybridizing the nucleic acid probe to a polynucleic acid from a human subject by nucleic acid hybridization or microarray analysis, wherein the human subject has Autism Spectrum Disorder; and(b) detecting a genetic variation in the polynucleic acid by the nucleic acid hybridization or microarray analysis, wherein the genetic variation is a CNV, wherein the CNV is the loss of SEQ ID NO 592, SEQ ID NO 593, or the complements thereof, in the ATXN2 gene.
  • 2. A method of synthesizing a nucleic acid product comprising: (a) synthesizing the nucleic acid product from a polynucleic acid from a human subject by PCR or sequencing, wherein the human subject has Autism Spectrum Disorder; and(b) detecting a genetic variation in the polynucleic acid by the PCR or sequencing, wherein the genetic variation is a CNV, wherein the CNV is the loss of SEQ ID NO 592, SEQ ID NO 593, or the complements thereof, in the ATXN2 gene.
  • 3. The method of claim 1 or 2, wherein the CNV is loss of SEQ ID NO: 593 or the complement thereof.
  • 4. The method of claim 2, wherein the nucleic acid product synthesized from the polynucleic acid is cDNA.
  • 5. The method of claim 1 or 2, wherein the polynucleic acid comprises a nucleic acid from blood, saliva, urine, serum, tears, skin, tissue, or hair from the human subject.
  • 6. The method of claim 1 or 2 further comprising purifying the polynucleic acid.
  • 7. The method of claim 1, wherein the microarray analysis is selected from the group consisting of a Comparative Genomic Hybridization (CGH) array analysis and an SNP array analysis.
  • 8. The method of claim 2, wherein the sequencing is a high-throughput sequencing method.
  • 9. The method of claim 1 or 2, wherein the whole genome or whole exome of the subject is analyzed.
  • 10. The method of claim 1 or 2, wherein the CNV is loss of SEQ ID NO: 592 or the complement thereof.
CROSS REFERENCE

This application claims benefit of U.S. Provisional Application No. 61/744,463, filed Sep. 27, 2012, which application is incorporated herein by reference in its entirety.

US Referenced Citations (130)
Number Name Date Kind
3625214 Higuchi et al. Dec 1971 A
4683195 Mullis et al. Jul 1987 A
4789734 Pierschbacher Dec 1988 A
4897268 Tice et al. Jan 1990 A
4906474 Langer et al. Mar 1990 A
4925673 Steiner et al. May 1990 A
4992445 Lawter et al. Feb 1991 A
5001139 Lawter et al. Mar 1991 A
5023252 Hseih Jun 1991 A
5075109 Tice et al. Dec 1991 A
5143854 Pirrung et al. Sep 1992 A
5190029 Byron et al. Mar 1993 A
5223409 Ladner et al. Jun 1993 A
5272071 Chappel Dec 1993 A
5288514 Ellman Feb 1994 A
5376359 Johnson Dec 1994 A
5384261 Winkler et al. Jan 1995 A
5424186 Fodor et al. Jun 1995 A
5445934 Fodor et al. Aug 1995 A
5451683 Barrett et al. Sep 1995 A
5510270 Fodor et al. Apr 1996 A
5527681 Holmes et al. Jun 1996 A
5665549 Pinkel et al. Sep 1997 A
5700637 Southern Dec 1997 A
5744305 Fodor et al. Apr 1998 A
5776434 Purewal et al. Jul 1998 A
5811128 Tice et al. Sep 1998 A
5814344 Tice et al. Sep 1998 A
5820883 Tice et al. Oct 1998 A
5837832 Chee et al. Nov 1998 A
5853763 Tice et al. Dec 1998 A
5858659 Sapolsky et al. Jan 1999 A
5928647 Rock Jul 1999 A
5942252 Tice et al. Aug 1999 A
5945334 Besemer et al. Aug 1999 A
6040138 Lockhart et al. Mar 2000 A
6054270 Southern Apr 2000 A
6146834 Schaad et al. Nov 2000 A
6207392 Weiss et al. Mar 2001 B1
6210878 Pinkel et al. Apr 2001 B1
6251607 Tsen et al. Jun 2001 B1
6300063 Lipshutz et al. Oct 2001 B1
6423499 Song et al. Jul 2002 B1
6429027 Chee et al. Aug 2002 B1
6733977 Besemer et al. May 2004 B2
6858394 Chee et al. Feb 2005 B1
6858412 Willis et al. Feb 2005 B2
6892141 Nakae et al. May 2005 B1
6916621 Shah Jul 2005 B2
6951761 Star et al. Oct 2005 B2
6969589 Patil et al. Nov 2005 B2
6977148 Dean et al. Dec 2005 B2
7011949 Amorese et al. Mar 2006 B2
7014997 Knoll et al. Mar 2006 B2
7030231 Craik et al. Apr 2006 B1
7034144 Van Dongen et al. Apr 2006 B2
7364858 Barany et al. Apr 2008 B2
7424368 Huang et al. Sep 2008 B2
7702468 Chinitz et al. Apr 2010 B2
7957913 Chinitz et al. Jun 2011 B2
7998744 Stevenson et al. Aug 2011 B2
8367417 Stevenson et al. Feb 2013 B2
8655599 Chinitz et al. Feb 2014 B2
8862410 Hatchwell et al. Oct 2014 B2
20020012921 Vincent, Jr. Jan 2002 A1
20020012930 Rothberg et al. Jan 2002 A1
20030023070 Ni et al. Jan 2003 A1
20030049663 Wigler et al. Mar 2003 A1
20030068629 Rothberg et al. Apr 2003 A1
20030082606 Lebo et al. May 2003 A1
20030100102 Rothberg et al. May 2003 A1
20030148344 Rothberg et al. Aug 2003 A1
20030207295 Gunderson et al. Nov 2003 A1
20030215821 Gunderson et al. Nov 2003 A1
20040018491 Gunderson et al. Jan 2004 A1
20040137473 Wigler et al. Jul 2004 A1
20040157243 Huang et al. Aug 2004 A1
20040197774 Wigler et al. Oct 2004 A1
20040248161 Rothberg et al. Dec 2004 A1
20050032095 Wigler et al. Feb 2005 A1
20050037393 Gunderson et al. Feb 2005 A1
20050037414 Lee et al. Feb 2005 A1
20050079510 Berka et al. Apr 2005 A1
20050100893 Gunderson et al. May 2005 A1
20050100932 Lapidus et al. May 2005 A1
20050112595 Zhao et al. May 2005 A1
20050124022 Srinivasan et al. Jun 2005 A1
20050196799 Wigler et al. Sep 2005 A1
20050233339 Barrett et al. Oct 2005 A1
20050266444 Wigler et al. Dec 2005 A1
20050282196 Costa Dec 2005 A1
20060012784 Ulmer Jan 2006 A1
20060012793 Harris Jan 2006 A1
20060024678 Buzby Feb 2006 A1
20060024711 Lapidus et al. Feb 2006 A1
20060063168 Albertson et al. Mar 2006 A1
20060078909 Srinivasan et al. Apr 2006 A1
20060134674 Huang et al. Jun 2006 A1
20070141577 Moore Jun 2007 A1
20070207481 Wigler et al. Sep 2007 A1
20070259351 Chinitz et al. Nov 2007 A1
20080131887 Stephan et al. Jun 2008 A1
20090026082 Rothberg et al. Jan 2009 A1
20090098547 Ghosh Apr 2009 A1
20090127589 Rothberg et al. May 2009 A1
20090304653 Messier Dec 2009 A1
20100003685 Aasly et al. Jan 2010 A1
20100028931 Eggan et al. Feb 2010 A1
20100035252 Rothberg et al. Feb 2010 A1
20100120046 Brennan et al. May 2010 A1
20100137143 Rothberg et al. Jun 2010 A1
20100167286 Reijo Pera et al. Jul 2010 A1
20100188073 Rothberg et al. Jul 2010 A1
20100197507 Rothberg et al. Aug 2010 A1
20100227768 Wigler et al. Sep 2010 A1
20100248236 Chinitz et al. Sep 2010 A1
20110021366 Chinitz et al. Jan 2011 A1
20110111014 Langston May 2011 A1
20110130337 Eriksson et al. Jun 2011 A1
20110264376 Chinitz et al. Oct 2011 A1
20110311512 Hakonarson et al. Dec 2011 A1
20120059594 Hatchwell et al. Mar 2012 A1
20120100995 Scherer et al. Apr 2012 A1
20130316911 Scherer Nov 2013 A1
20140088882 Chinitz et al. Mar 2014 A1
20140155271 Hatchwell et al. Jun 2014 A1
20140161721 Hatchwell et al. Jun 2014 A1
20140162933 Hatchwell et al. Jun 2014 A1
20150051086 Hatchwell et al. Feb 2015 A1
20160019336 Chinitz et al. Jan 2016 A1
Foreign Referenced Citations (51)
Number Date Country
1733937 Feb 2006 CN
101148684 Mar 2008 CN
101403008 Apr 2009 CN
0373203 Aug 1994 EP
0619321 Oct 1994 EP
2009-0080105 Jul 2009 KR
2011-0114664 Oct 2011 KR
WO 9002809 Mar 1990 WO
WO 9106667 May 1991 WO
WO 9117271 Nov 1991 WO
WO 9201047 Jan 1992 WO
WO 9209690 Jun 1992 WO
WO 9210092 Jun 1992 WO
WO 9215679 Sep 1992 WO
WO 9218619 Oct 1992 WO
WO 9220791 Nov 1992 WO
WO 9209690 Dec 1992 WO
WO 9301288 Jan 1993 WO
WO 9322684 Nov 1993 WO
WO 9511995 May 1995 WO
WO 9820019 May 1998 WO
WO 02099129 Dec 2002 WO
WO 03048318 Jun 2003 WO
WO 2004018633 Mar 2004 WO
WO 2004044225 May 2004 WO
WO 2004075010 Sep 2004 WO
WO 2005042763 May 2005 WO
WO 2005068664 Jul 2005 WO
WO 2005108997 Nov 2005 WO
WO 2004044225 Apr 2006 WO
WO 2006050475 May 2006 WO
WO 2007070640 Jun 2007 WO
WO 2007070640 Aug 2007 WO
WO 2007129000 Nov 2007 WO
WO 2007131135 Nov 2007 WO
WO 2008016374 Feb 2008 WO
WO 2007129000 Mar 2008 WO
WO 2007131135 Nov 2008 WO
WO 2009043178 Apr 2009 WO
WO 2009073764 Jun 2009 WO
WO 2010036353 Apr 2010 WO
WO 2010056897 May 2010 WO
WO 2011012672 Feb 2011 WO
WO 2011035012 Mar 2011 WO
WO 2011112961 Sep 2011 WO
WO 2012023519 Mar 2012 WO
WO 2012027491 Mar 2012 WO
WO 2012047234 Apr 2012 WO
WO 2013071119 May 2013 WO
WO-2013067451 May 2013 WO
WO 2014043519 Mar 2014 WO
Non-Patent Literature Citations (293)
Entry
GeneCards output for ATXN2 gene, from www.genecards.ord, pritned on May 20, 2015, pp. 1-13.
Human Genome CGH Microarrays—Details & Specifications, six printed pages from www.agilent.com, printed on May 20, 2015.
McInnes et al. Molecular Autism 2010, 1:5, pp. 1-12.
Lucentini, J. The Scientist, Dec. 20, 2004, p. 20.
Juppner H, Bone vol. 17, No. 2, Supplement, Aug. 1995:39S-42S.
Pennisi E. Science; Sep. 18, 1998; 281, 5384, pp. 1787-1789.
Ching H. C. et al. International Journal of Oncology 39: 621-633, 2011.
Pinto D. et al, Nature vol. 466 Jul. 15, 2010, p. 368-372. (Year: 2010).
Kaminsky E.B. et al. Genet Med. Sep. 2011;13(9):777-84 (Published online ahead of print Aug. 12, 2011) (Year: 2011).
Copy Number Variants summarry for 12q23.3-q24.13 from gene.sfari.org/database/cnv/, two pages printed on Dec. 2, 2017. (Year: 2017).
U.S. Appl. No. 14/090,932, filed Nov. 26, 2013, Chinitz et al.
De Krom, et al. A common variant in DRD3 receptor is associated with autism spectrum disorder. Biol Psychiatry. Apr. 1, 2009;65(7):625-30. doi: 10.1016/j.biopsych.2008.09.035. Epub Dec. 5, 2008.
International search report and written opinion dated Jan. 15, 2014 for PCT/US2013/062346.
Knight, et al. A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. Am J Hum Genet. Dec. 2009;85(6):833-46. doi: 10.1016/j.ajhg.2009.11.003.
NCBI GenBank accession No. NG_12385.1. Mar. 27, 2012.
Bremer, et al. Copy number variation characteristics in subpopulations of patients with autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet. Mar. 2011;156(2):115-24. doi: 10.1002/ajmg.b.31142. Epub Dec. 8, 2010.
European search report and opinion dated Feb. 11, 2015 for EP Application No. 12839712.2.
Griswold, et al. A de novo 1.5 Mb microdeletion on chromosome 14q23.2-23.3 in a patient with autism and spherocytosis. Autism Res. Jun. 2011;4(3):221-7. doi: 10.1002/aur.186. Epub Feb. 28, 2011.
Marshall, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. Feb. 2008;82(2):477-88. doi: 10.1016/j.ajhg.2007.12.009. Epub Jan. 17, 2008.
Pinto, et al. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol. May 8, 2011;29(6):512-20. doi: 10.1038/nbt.1852.
Sudhof. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. Oct. 16, 2008;455(7215):903-11. doi: 10.1038/nature07456.
U.S. Appl. No. 13/648,874, filed Oct. 10, 2012, Scherer.
U.S. Appl. No. 13/763,550, filed Feb. 8, 2013, Hatchwell et al.
Agami, R. RNAi and related mechanisms and their potential use for therapy. Curr Opin Chem Biol. Dec. 2002;6(6):829-34.
Aitman, et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature. Feb. 16, 2006;439(7078):851-5.
Albertson, et al. Profiling breast cancer by array CGH. Breast Cancer Res Treat. Apr. 2003;78(3):289-98.
Altschul, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. Sep. 1, 1997;25(17):3389-402.
Amarzguioui, et al. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett. Oct. 31, 2005;579(26):5974-81. Epub Sep. 20, 2005.
Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems (Lippencott Williams & Wilkins, Baltimore Md. (1999).
Arakawa, et al. Advances in characterization of neuroprotective peptide, humanin. Curr Med Chem. 2011;18(36):5554-63.
Ausubel (Ed.), Current Protocols in Molecular Biology (2007 John Wiley & Sons, NY).
Bailey, et al. Analysis of Segmental Duplications and Genome Assembly in the Mouse. Genome Res. 2004; 14:789-801.
Bakkaloglu, et al. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet. Jan. 2008;82(1):165-73.
Bangham, et al. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. Aug. 1965;13(1):238-52.
Bedell, et al. In vivo genome editing using a high-efficiency TALEN system. Nature. Sep. 23, 2012. doi: 10.1038/nature11537. [Epub ahead of print].
Bennett, C. Efficiency of antisense oligonucleotide drug discovery. Antisense Nucleic Acid Drug Dev. Jun. 2002;12(3):215-24.
Berkel, et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet. Jun. 2010;42(6):489-91. Epub May 16, 2010.
Bernstein, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. Jan. 18, 2001;409(6818):363-6.
Bier, et al. DNA microarrays. Adv Biochem Eng Biotechnol. 2008;109:433-53.
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. Mar. 2001;69(3):89-95.
Bochukova, et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature. Feb. 4, 2010;463(7281):666-70. Epub Dec. 6, 2009.
Bodmer, et al. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet. Jun. 2008;40(6):695-701.
Bodzioch, et al. Evidence for potential functionality of nuclearly-encoded humanin isoforms. Genomics. Oct. 2009;94(4):247-56. Epub May 27, 2009.
Bosher, et al. RNA interference: genetic wand and genetic watchdog. Nat Cell Biol. Feb. 2000;2(2):E31-6.
Brummelkamp, et al. A system for stable expression of short interfering RNAs in mammalian cells. Science. Apr. 19, 2002;296(5567):550-3. Epub Mar. 21, 2002.
Bult, et al. The Mouse genome Database (MGD): mouse biology and model systems. Nucleic Acids Research. 2008; 36 Database Issue: D724-D728. doi:10.1093/nar/gkm961.
Chavanpatil, et al. Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. Int J Pharm. Jun. 19, 2006;316(1-2):86-92. Epub Mar. 29, 2006.
Chen, et al. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. Feb. 2007;8(2):93-103.
Chen, H. Clinical development of antisense oligonucleotides as anti-cancer therapeutics. Methods Mol Med. 2003;75:621-36.
Chi, et al. Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci U S A. May 27, 2003;100(11):6343-6. Epub May 2, 2003.
Conrad, et al. Origins and functional impact of copy number variation in the human genome. Nature. Apr. 1, 2010;464(7289):704-12. Epub Oct. 7, 2009.
Cronin, et al. Analysis of genome-wide copy number variation in Irish and Dutch ALS populations. Hum Mol Genet. Nov. 1, 2008;17(21):3392-8. Epub Aug. 7, 2008.
Culture of Animal Cells: A Manual of Basic Technique by R. Ian Freshney, Publisher: Wiley-Liss; 5th edition (2005).
Dias, et al. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. Mar. 2002;1(5):347-55.
Dibbens, et al. Familial and sporadic 15q13.3 microdeletions in Idiopathic Generalized Epilepsy: Precedent for Disorders with Complex Inheritance. Hum Mol Genet. Jul. 10, 2009. [Epub ahead of print].
Elbashir, et al. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. Jan. 15, 2001;15(2):188-200.
Encode project consortium, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. Sep. 6, 2012;489(7414):57-74. doi: 10.1038/nature11247.
Estivill, et al. Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet. Oct. 2007;3(10):1787-99.
Fan, et al. Illumina universal bead arrays. Methods Enzymol. 2006;410:57-73.
Fernandez, et al. Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Addendum. Am J Hum Genet. Jun. 2008;82(6):1385.
Fernandez, et al. Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am J Hum Genet. Jun. 2004;74(6):1286-93.
Fire, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. Feb. 19, 1998;391(6669):806-11.
Freeman, et al. Copy number variation: new insights in genome diversity. Genome Res. Aug. 2006;16(8):949-61. Epub Jun. 29, 2006.
Galfre. et al. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977; 266:550-52.
Gatto, et al. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. Frontiers in Synaptic Neuroscience. Jun. 2010; 2(4):1-19.
Gilling, et al. Breakpoint cloning and haplotype analysis indicate a single origin of the common Inv(10)(p11.2q21.2) mutation among northern Europeans. Am. J. Hum. Genet. 2006; 78(5):878-83.
Glessner, et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. May 28, 2009;459(7246):569-73. Epub Apr. 28, 2009.
Goldstein. Common genetic variation and human traits. N Engl J Med. Apr. 23, 2009;360(17):1696-8. Epub Apr. 15, 2009.
Gregoriadis. Chapter 14, “Liposomes,” Drug Carriers in Biology and Medicine, pp. 2.sup.87-341 (Academic Press, 1979).
Gribble, et al. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J. Med. Genet. 2005; 42:8-16.
Griffiths, et al. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. Feb. 1993;12(2):725-34.
Grskovic, et al. Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. Nov. 11, 2011;10(12):915-29. doi: 10.1038/nrd3577.
Harada, et al. Subtelomere specific microarray based comparative genomic hybridisation: a rapid detection system for cryptic rearrangements in idiopathic mental retardation. J. Med. Genet. 2004; 41:130-136.
Hatchwell, et al. High rate of submicroscopic human genomic polymorphism detected by array CGH. Proceedings of XIX International Genetics Congress. Melbourne, Australia. Abstracts and Posters. 2003; 1.E.0092. pp. 168 and 319.
Hay, et al. Bacteriophage cloning and Escherichia coli expression of a human IgM Fab. Hum Antibodies Hybridomas. Apr. 1992;3(2):81-5.
Helbig, et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet. Feb. 2009;41(2):160-2. Epub Jan. 11, 2009.
Hicks et al., “Novel patterns of genome rearrangement and their association with survival in breast cancer,” Genome Res 16:1465-1479, 2006.
Hoffman, et al. Pharmacokinetic and pharmacodynamic aspects of gastroretentive dosage forms. Int J Pharm. Jun. 11, 2004;277(1-2):141-53.
Hoheisel, J. Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet. Mar. 2006;7(3):200-10.
Huang, et al. Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum Genomics. May 2004;1(4):287-99.
Hunter, C. Genetics: a touch of elegance with RNAi. Curr Biol. Jun. 17, 1999;9(12):R440-2.
Huse, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science. Dec. 8, 1989;246(4935):1275-81.
Hutvagner, et al. A microRNA in a multiple-turnover RNAi enzyme complex. Science. Sep. 20, 2002;297(5589):2056-60. Epub Aug. 1, 2002.
Iafrate, et al. Detection of large-scale variation in the human genome. Nature Genet. 2004; 36:949-51.
International search report and written opinion dated Apr. 9, 2012 for PCT/US2011/001363.
International search report and written opinion dated Jun. 21, 2013 for PCT/IB2012/002498.
International search report and written opinion dated Jul. 3, 2013 for PCT/IB2012/002498.
International Search Report dated Sep. 11, 2008 for PCT Application No. US2007/68183.
Itsara, et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet. Feb. 2009;84(2):148-61. Epub Jan. 22, 2009.
Jorde, et al. Population genomics: a bridge from evolutionary history to genetic medicine. Hum. Mol. Genet. 2001; 10(20):2199-2207.
Kallioniemi, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. Oct. 30, 1992;258(5083):818-21.
Karlin, et al. Applications and statistics for multiple high-scoring segments in molecular sequences. Proc Natl Acad Sci U S A. Jun. 15, 1993;90(12):5873-7.
Ketting, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. Oct. 15, 2001;15(20):2654-9.
Kim, et al. Strategies for silencing human disease using RNA interference. Nat Rev Genet. Mar. 2007;8(3):173-84.
Kim, et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. Feb. 2005;23(2):222-6. Epub Dec. 26, 2004.
Kimchi-Sarfaty, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. Jan. 26, 2007;315(5811):525-8. Epub Dec. 21, 2006.
Klausner, et al. Novel gastroretentive dosage forms: evaluation of gastroretentivity and its effect on levodopa absorption in humans. Pharm Res. Sep. 2003;20(9):1466-73.
Klein, et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A. Apr. 13, 1999;96(8):4494-9.
Kohler, et al. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. Aug. 7, 1975;256(5517):495-7.
Kozbor, et al. The production of monoclonal antibodies from human lymphocytes. Immunol. Today. 1983; 4(3): 72-79.
Kraus, et al. Detection and isolation of novel protein-tyrosine kinase genes employing reduced stringency hybridization. Methods Enzymol. 1991;200:546-56.
Kumar, et al. A de novo 1p34.2 microdeletion identifies the synaptic vesicle gene RIMS3 as a novel candidate for autism. J Med Genet. Jun. 21, 2009. [Epub ahead of print].
Kumar, et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet. Feb. 15, 2008;17(4):628-38. Epub Dec. 21, 2007.
Kurreck, J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem. Apr. 2003;270(8):1628-44.
Kutyavin, et al. A novel endonuclease IV post-PCR genotyping system. Nucleic Acids Res. 2006;34(19):e128. Epub Sep. 29, 2006.
Lavery, et al. Antisense and RNAi: powerful tools in drug target discovery and validation. Curr Opin Drug Discov Devel. Jul. 2003;6(4):561-9.
Lerner, E. How to make a hybridoma. Yale J Biol Med. Sep.-Oct. 1981;54(5):387-402.
Maftei, et al. Interaction structure of the complex between neuroprotective factor humanin and Alzheimer's β-amyloid peptide revealed by affinity mass spectrometry and molecular modeling. J Pept Sci. Jun. 2012;18(6):373-82. doi: 10.1002/psc.2404. Epub Apr. 20, 2012.
Maniatis, et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA (1982).
Manolio, et al.Finding the missing heritability of complex diseases. Nature. Oct. 8, 2009;461(7265):747-53.
Margulies, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. Sep. 15, 2005;437(7057):376-80. Epub Jul. 31, 2005.
Marques, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol. May 2006;24(5):559-65. Epub Apr. 30, 2006.
Martinez, et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell. Sep. 6, 2002;110(5):563-74.
Mast, et al. Invader assay for single-nucleotide polymorphism genotyping and gene copy number evaluation. Methods Mol Biol. 2006;335:173-86. Abstract only.
Matsuoka, et al. Humanin and the receptors for humanin. Mol Neurobiol. Feb. 2010;41(1):22-8. Epub Dec. 9, 2009.
McCarroll, et al. Copy-number variation and association studies of human disease. Nat Genet. Jul. 2007;39(7 Suppl):S37-42.
McCarthy, et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet. Nov. 2009;41(11):1223-7. Epub Oct. 25, 2009.
McManus, et al. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. Oct. 2002;3(10):737-47.
Mockler, et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics. Jan. 2005;85(1):1-15.
Nielsen, et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. Dec. 6, 1991;254(5037):1497-500.
Nord, et al. Accurate and exact CNV identification from targeted high-throughput sequence data. BMC Genomics. Apr. 12, 2011;12:184.
Nykanen, et al. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell. Nov. 2, 2001;107(3):309-21.
Office action dated Jan. 6, 2011 for U.S. Appl. No. 12/707,561.
Office action dated Apr. 3, 2013 for U.S. Appl. No. 13/095,722.
Office action dated Jul. 17, 2013 for U.S. Appl. No. 12/449,566.
Office action dated Sep. 13, 2012 for Chinese Application No. 200780015873.8.
Office action dated Nov. 18, 2013 for U.S. Appl. No. 13/196,882.
Office action dated Dec. 16, 2008 for U.S. Appl. No. 11/421,348.
Office action dated Jun. 14, 2010 for UK Application No. GB0822081.6.
Office action dated Jun. 2, 2009 for U.S. Appl. No. 11/421,348.
Ozelius, et al. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N Engl J Med. Jan. 26, 2006;354(4):424-5.
Pang, et al. Towards a comprehensive structural variation map of an individual human genome. Genome Biol. 2010;11(5):R52. Epub May 19, 2010.
Peltz, et al. Targeting post-transcriptional control for drug discovery. RNA Biol. Jul.-Aug. 2009;6(3):329-34. Epub Jul. 7, 2009.
Perkel, J. SNP genotyping: six technologies that keyed a revolution. Nature Methods. 2008; 5:447-453.
Pinkel, et al. Comparative genomic hybridization. Annu. Rev. Genomics Hum. Genet. 2005; 6:331-54.
Pinkel, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. Oct. 1998;20(2):207-11.
Pinto, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. Jul. 15, 2010;466(7304):368-72. Epub Jun. 9, 2010.
Plasterk, et al. The silence of the genes. Curr Opin Genet Dev. Oct. 2000;10(5):562-7.
Pollack, et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl. Acad. Sci. 2002; 99(20):12963-68.
Provost, et al. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. Nov. 1, 2002;21(21):5864-74.
Ramsey, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. Nov. 3, 2011;365(18):1663-72.
Raqoussis, et al. Affymetrix GeneChip system: moving from research to the clinic. Expert Rev Mol Diagn. Mar. 2006;6(2):145-52.
Redon, et al. Global variation in copy number in the human genome. Nature. Nov. 23, 2006;444(7118):444-54.
Rees, et al. Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem. Jul. 4, 2003;278(27):24688-96. Epub Apr. 8, 2003.
Remington “The Science and Practice of Pharmacy” (20th Ed., Lippincott Williams & Wilkins, Baltimore MD).
Reynold, et al. Rational siRNA design for RNA interference. Nat Biotechnol. Mar. 2004;22(3):326-30. Epub Feb. 1, 2004.
Risch, et al. A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet. Aug. 1999;65(2):493-507.
Rodriguez-Revenga, et al. Structural variation in the human genome: the impact of copy number variants on clinical diagnosis. Genet Med. Sep. 2007;9(9):600-6.
Roohi, et al. Disruption of contactin 4 in three subjects with autism spectrum disorder. J Med Genet. Mar. 2009;46(3):176-82.
Saha, et al. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell. Dec. 4, 2009;5(6):584-95.
Sambrook et al., Molecular Cloning: A Laboratory Manual (2 ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA (1989).
Schule, et al. Can cellular models revolutionize drug discovery in Parkinson's disease? Biochim Biophys Acta. Nov. 2009;1792(11):1043-51. Epub Sep. 3, 2009.
Schwarz, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell. Oct. 17, 2003;115(2):199-208.
Sebat, et al. Large-scale copy number polymorphism in the human genome. Science. 2004; 305(5683):525-8.
Sebat, et al. Strong association of de novo copy number mutations with autism. Science. Apr. 20, 2007;316(5823):445-9.
Sharp, P. RNA interference—2001. Genes Dev. Mar. 1, 2001;15(5):485-90.
Shi, Y. Mammalian RNAi for the masses. Trends Genet. Jan. 2003;19(1):9-12.
Shuey, et al. RNAi: gene-silencing in therapeutic intervention. Drug Discov Today. Oct. 15, 2002;7(20):1040-6.
Siolas, et al. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol. Feb. 2005;23(2):227-31. Epub Dec. 26, 2004.
Smith, et al. A high-density admixture map for disease gene discovery in african americans. Am J Hum Genet. May 2004;74(5):1001-13. Epub Apr. 14, 2004.
Snijders, et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet. Nov. 2001;29(3):263-4.
Snijders, et al. BAC microarray-based comparative genomic hybridization. Methods Mol Biol. 2004;256:39-56.
Snijders, et al. Mapping segmental and sequence variations among laboratory mice using BAC array CGH. Genome Res. Feb. 2005;15(2):302-11.
Soni, et al. Progress toward ultrafast DNA sequencing using solid-state nanopores. Clin Chem. Nov. 2007;53(11):1996-2001. Epub Sep. 21, 2007.
Stefansson, et al. Large recurrent microdeletions associated with schizophrenia. Nature. Sep. 11, 2008;455(7210):232-6.
Stephens, et al. Antisense oligonucleotide therapy in cancer. Curr Opin Mol Ther. Apr. 2003;5(2):118-22.
Streubel, et al. Gastroretentive drug delivery systems. Expert Opin Drug Deliv. Mar. 2006;3(2):217-33.
Summary of NRSP-8 Accomplishments: 2003-2008. Available at http://www.lgu.umd.edu/lgu_v2/pages/attachs/9956_Attach1%20%202003-08%20ACCOMPLISHMENTS.doc. Published on Feb. 9, 2008. (6 pages).
Szoka, et al. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. Sep. 1978;75(9):4194-8.
Tabara, et al. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell. Jun. 28, 2002;109(7):861-71.
Tabuchi, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science. Oct. 5, 2007;318(5847):71-6. Epub Sep. 6, 2007.
Teo, et al. Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics. Aug. 31, 2012.
The International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. Sep. 11, 2008;455(7210):237-41. Epub Jul. 30, 2008.
The Merck Manual of Diagnosis and Therapy, 18th Edition, published by Merck Research Laboratories, 2006 (ISBN 0-911910-18-2).
Thompson. Applications of antisense and siRNAs during preclinical drug development. Drug Discov Today. Sep. 1, 2002;7(17):912-7.
Urnov, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. Sep. 2010;11(9):636-46.
Van Goor, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A. Nov. 15, 2011;108(46):18843-8. Epub Oct. 5, 2011.
Van Goor, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A. Nov. 3, 2009;106(44):18825-30. Epub Oct. 21, 2009.
Veensra-Vanderweele, et al. Networking in autism: leveraging genetic, biomarker and model system findings in the search for new treatments. Neuropsychopharmacology. Jan. 2012;37(1):196-212. doi: 10.1038/npp.2011.185. Epub Sep. 21, 2011.
Vickers, et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem. Feb. 28, 2003;278(9):7108-18. Epub Dec. 23, 2002.
Vissers, et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am. J. Hum. Genet. 2003; 73:1261-70.
Vissers, et al. Identification of disease genes by whole genome CGH arrays. Hum Mol Genet. Oct. 15, 2005;14 Spec No. 2:R215-223.
Walsh, et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci U S A. Jul. 13, 2010;107(28):12629-33. Epub Jun. 28, 2010.
Walsh, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. Mar. 22, 2006;295(12):1379-88.
Walters, et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature. Feb. 4, 2010;463(7281):671-5.
Wang, et al. Antisense anticancer oligonucleotide therapeutics. Curr Cancer Drug Targets. Nov. 2001;1(3):177-96.
Weiss, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. Feb. 14, 2008;358(7):667-75.
Westmark, C. What's hAPPening at synapses? The role of amyloid β-protein precursor and β-amyloid in neurological disorders. Mol Psychiatry. Aug. 28, 2012. doi: 10.1038/mp.2012.122.
Wilson, et al. DNA copy-number analysis in bipolar disorder and schizophrenia reveals aberrations in genes involved in glutamate signaling. Hum Mol Genet. Mar. 1, 2006;15(5):743-9. Epub Jan. 24, 2006.
Xia, et al. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol. Oct. 2002;20(10):1006-10. Epub Sep. 16, 2002.
Xie, et al. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. Mar. 6, 2009;10:80.
Yusa, et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. Oct. 12, 2011;478(7369):391-4. doi: 10.1038/nature10424.
Zapala, et al. Humanins, the neuroprotective and cytoprotective peptides with antiapoptotic and anti-inflammatory properties. Pharmacol Rep. Sep.-Oct. 2010;62(5):767-77.
Zhang, et al. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-81.
Zhang, et al. Detection of copy number variation from array intensity and sequencing read depth using a stepwise Bayesian model. BMC Bioinformatics. Oct. 31, 2010;11:539.
Betancur, et al. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci. Jul. 2009;32(7):402-12. doi: 10.1016/j.tins.2009.04.003. Epub Jun. 21, 2009.
Office action dated Dec. 16, 2014 for U.S. Appl. No. 12/449,566.
U.S. Appl. No. 14/449,217, filed Aug. 1, 2014, Hatchwell et al.
Notice of allowance dated Jul. 25, 2014 for U.S. Appl. No. 13/196,882.
Office action dated May 28, 2014 for U.S. Appl. No. 12/449,566.
U.S. Appl. No. 14/806,131, filed Jul. 22, 2015, Chinitz et al.
Abravaya, et al. Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Research. 1995;23(4):675-682.
Bernard, et al. Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours. EMBO J. 1983;2(12):2375-83.
Dijkhuizen, et al. FISH and array-CGH analysis of a complex chromosome 3 aberration suggests that loss of CNTN4 and CRBN contributes to mental retardation in 3pter deletions. Am J Med Genet A. Nov. 15, 2006;140(22):2482-7.
Fernandez, et al. Gene Discovery in Developmental Neuropsychiatric Disorders: Clues from Chromosomal Rearrangements. Yale Journal of Biology and Medicine, vol. 78 (2005), pp. 95-130. on p. 103. Abstract.
Gelmann, et al. Identification of reciprocal translocation sites within the c-myc oncogene and immunoglobulin mu locus in a Burkitt lymphoma. Nature. Dec. 22, 1983-Jan. 4, 1984;306(5945):799-803.
Guatelli, et al. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A. Mar. 1990;87(5):1874-8.
Kwoh, et al. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci U S A. Feb. 1989;86(4):1173-7.
Landegren, et al. A ligase-mediated gene detection technique. Science. Aug. 26, 1988;241(4869):1077-80.
Lizardi, et al. Exponential amplification of recombinant-RNA hybridization probes. Nature Biotechnology 6.10 (1988): 1197-1202.
Mohapatra, et al. Analyses of brain tumor cell lines confirm a simple model of relationships among fluorescence in situ hybridization, DNA index, and comparative genomic hybridization. Genes Chromosomes Cancer. Dec. 1997;20(4):311-9.
Nakazawa, et al. UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc Natl Acad Sci U S A. Jan. 4, 1994;91(1):360-4.
Office action dated Sep. 2, 2015 for U.S. Appl. No. 12/449,566.
Petrini, et al. The immunoglobulin heavy chain switch: structural features of gamma 1 recombinant switch regions. J Immunol Mar. 15, 1987;138(6):1940-6.
Saiki, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. Jan. 29, 1988;239(4839):487-91.
European search report dated Oct. 14, 2015 for EP Application No. 13746934.2.
Calvo, et al. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet. Oct. 2010;42(10):851-8. Epub Sep. 5, 2010.
Gagneux, et al. Genetic differences between humans and great apes. Mol Phylogenet Evol. Jan. 2001;18(1):2-13.
GeneCards output for DIAPH2 gene, from www.genecards.ord, printed on Jun. 11, 2015, pp. 1-11.
GPHN Gene—GeneCards output. pp. 1-14. Printed on Jul. 2, 2015 from www.genecards.org.
Hattersley, et al. What makes a good genetic association study? Lancet. Oct. 8, 2005;366(9493):1315-23.
Hegele. SNP judgments and freedom of association. Arterioscler Thromb Vasc Biol. Jul. 1, 2002;22(7):1058-61.
Hirschhorn, et al. A comprehensive review of genetic association studies. Genet Med. Mar.-Apr. 2002;4(2):45-61.
International search report and written opinion dated Jan. 20, 2014 for PCT/US2013/059739.
International search report and written opinion dated Apr. 22, 2013 for PCT/US2012/063451.
Mummidi, et al. Evolution of human and non-human primate CC chemokine receptor 5 gene and mRNA. Potential roles for haplotype and mRNA diversity, differential haplotype-specific transcriptional activity, and altered transcription factor binding to polymorphic nucleotides in the pathogenesis of HIV-1 and simian immunodeficiency virus. J Biol Chem. Jun. 23, 2000;275(25):18946-61.
Nalls, et al. Extended tracts of homozygosity identify novel candidate genes associated with late-onset Alzheimer's disease. Neurogenetics. Jul. 2009;10(3):183-90. doi: 10.1007/s10048-009-0182-4. Epub Mar. 7, 2009.
Nalls, et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet. Feb. 19, 2011;377(9766):641-9. doi: 10.1016/S0140-6736(10)62345-8. Epub Feb. 1, 2011.
NCBI GenBank accession No. NM_207303.1. Apr. 20, 2004.
NCBI. GenBank accession No. AL390798.3. Human chromosome 14 DNA sequence BAC R-21O19 of library RPCI-11 from chromosome 14 of Homo sapiens (Human), complete sequence. Apr. 28, 2011.
Office action dated Jun. 23, 2015 for U.S. Appl. No. 13/763,550.
Office action dated Jun. 29, 2015 for U.S. Appl. No. 14/026,642.
Office action dated Jul. 9, 2015 for U.S. Appl. No. 13/648,874.
Office action dated Aug. 4, 2015 for U.S. Appl. No. 13/668,049.
Office action dated Oct. 3, 2014 for U.S. Appl. No. 13/668,049.
Schapira, et al. Mitochondrial complex I deficiency in Parkinson's disease. Lancet. Jun. 3, 1989;1(8649):1269.
Schapira. Causes of neuronal death in Parkinson's disease. Adv Neurol. 2001;86:155-62.
Schapira. Mitochondrial complex I deficiency in Parkinson's disease. Adv Neurol. 1993;60:288-91.
Simon-Sanchez, et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet. Dec. 2009;41(12):1308-12. doi: 10.1038/ng.487. Epub Nov. 15, 2009. with supplemental information.
Stark, et al. De novo 325 kb microdeletion in chromosome band 10q25.3 including ATRNL1 in a boy with cognitive impairment, autism and dysmorphic features. Eur J Med Genet. Sep.-Oct. 2010;53(5):337-9. doi: 10.1016/j.ejmg.2010.07.009. Epub Jul. 27, 2010.
Thorpe, et al. Improved antitumor effects of immunotoxins prepared with deglycosylated ricin A-chain and hindered disulfide linkages. Cancer Res. Nov. 15, 1988;48(22):6396-403.
Vaughan, et al. Genetics of Parkinsonism: a review. Ann Hum Genet. Mar. 2001;65(Pt 2):111-26.
Walker, et al. Genetic analysis of attractin homologs. Genesis. 2007; 45(12):744-756.
Daruwala, et al. A versatile statistical analysis algorithm to detect genome copy number variation. Proc Natl Acad Sci U S A. Nov. 16, 2004;101(46):16292-7. Epub Nov. 8, 2004.
European search report and opinion dated Feb. 27, 2015 for EP Application No. 11814903.8.
European search report and opinion dated Jun. 9, 2015 for EP Application No. 12846660.4.
Alexander Zimprich, et al., A mutation in, encoding a subunit of the retromer complex, causes late-onset parkinson disease, American journal of human genetics, American society of human genetics. Jun. 2011; 89(1):168-175.
Carles Vilario-Guell, et al., Mutations in Parkinson disease, American journal of human genetics, american society of human genetics. Jun. 2011; 89(1):162-167.
Co-pending U.S. Appl. No. 15/279,012, filed Sep. 28, 2016.
Corti, et al. What Genetics tells us about the causes and mechanisms of parkinson's disease. Physiological reviews.Oct. 2011; 91(4): 1161-1218.
European Search Report dated Sep. 2, 2016 for European Application No. 13836501.0.
“Introducing Genome-Wide SNP Array 6.0 Pure performance & Genetic Power.” May 21, 2008. Available at http://www.genehk.com/news/doc/Genomics_genome-wide Human SNP Array 6.0.pdf. Accessed on Dec. 22, 2016.
Kumar Kishore, et al., Genetics of parkinson disease and other movement disorders, Current opinion in neurology, Aug. 2012; 25(4):466-474.
Latchman, et al. Viral vectors for gene therapy in Parkinson's disease. Rev Neurosci. 2001;12(1):69-78.
Lucentini, et al. Gene association studies typically wrong. Reproducible gene-disease associations are few and far between. The Scientist. 2004; 18(24):20.
Office Action dated Feb. 24, 2016 for U.S. Appl. No. 14/039,770.
Office Action dated May 27, 2015 for U.S. Appl. No. 14/039,770.
UK Parkinson's Disease Consortium et al., Dissection of the genetics of parkinson's disease identifies an additional association 5′ of SNCA and multiple associated haplotypes at 17q21. Human Molecular genetics. Jan. 15, 2011; 20(2): 345-353.
Office Action dated Sep. 15, 2016 for U.S. Appl. No. 13/763,550.
Office Action dated Oct. 19, 2016 for European Application No. 12846660.4.
Office Action dated Dec. 6, 2016 for U.S. Appl. No. 14/026,642.
Office action dated Feb. 9, 2011 for UK Application No. GB0822081.6.
Paisan-Ruiz Coro, et al., Parkinson's disease and low frequency alleles foung together throughout LRRK2, Annals of human genetics. Jul. 2009. 73(4). 391-403.
Crespi, et al. Association testing of copy number variants in schizophrenia and autism spectrum disorders. J Neurodev Disord. May 30, 2012;4(1):15. doi: 10.1186/1866-1955-4-15.
European search report dated Apr. 11, 2016 for EP Application No. 13840476.9.
Guilmatre, et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry. Sep. 2009;66(9):947-56. doi: 10.1001/archgenpsychiatry.2009.80.
He, et al. Analysis of de novo copy number variations in a family affected with autism spectrum disorders using high-resolution array-based comparative genomic hybridization. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. Jun. 2012;29(3):266-9. doi: 10.3760/cma.j.issn.1003-9406.2012.03.004. English abstract only.
Office action dated Feb. 25, 2016 for U.S. Appl. No. 13/648,874.
Office action dated Feb. 29, 2016 for U.S. Appl. No. 14/026,642.
Office action dated Mar. 1, 2016 for U.S. Appl. No. 13/763,550.
Office action dated May 17, 2016 for U.S. Appl. No. 14/090,932.
Office action dated Jun. 28, 2016 for U.S. Appl. No. 12/449,566.
O'Keefe, et al. High-resolution genomic arrays facilitate detection of novel cryptic chromosomal lesions in myelodysplastic syndromes. Exp Hematol. Feb. 2007;35(2):240-51.
Prasad, et al. A discovery resource of rare copy number variations in individuals with autism spectrum disorder. G3 (Bethesda). Dec. 2012;2(12):1665-85. doi: 10.1534/g3.112.004689. Epub Dec. 1, 2012.
Tam, et al. The role of DNA copy number variation in schizophrenia. Biol Psychiatry. Dec. 1, 2009;66(11):1005-12. doi: 10.1016/j.biopsych.2009.07.027. Epub Sep. 12, 2009.
Ziats, et al. Expression profiling of autism candidate genes during human brain development implicates central immune signaling pathways. PLoS One. 2011;6(9):e24691. doi: 10.1371/journal.pone.0024691. Epub Sep. 15, 2011.
Liu, Qing-Rong, et al. “Addiction molecular genetics: 639,401 SNP whole genome association identifies many “cell adhesion” genes.” American Journal of Medical Genetics Part B: Neuropsychiatric Genetics val. 141 (2006): pp. 918-925.
Office Action dated Apr. 13, 2017 for U.S. Appl. No. 13/648,874.
Office Action dated May 25, 2017 for U.S. Appl. No. 13/763,550.
Office Action dated Aug. 11, 2017 for U.S. Appl. No. 14/026,642.
Purcell et al. “Postmortem brain abnormalities of the glutamate neurotransmitter system in autism” (Neurology, vol. 57 (2001) pp. 1618-1628).
Zeng, Li, et al. “A novel splice variant of the cell adhesion molecule contactin 4 (CNTN4) is mainly expressed in human brain.” Journal of human genetics val. 47 (2002): pp. 497-499.
Langston, et al., Multisystem Lewy body disease and the other parkinsonian disorders. Nature Genetics. Dec. 2015; 47(12):1378-1385.
Poewe, et al., Parkinson disease. Nature Review:Disease Primers. Mar. 23, 2017.vol. 3, Article 17013: 1-21.
CNV: 14q23.3 summary output from https://gene.sfari.org/database/cnv/14q23.3 Nov. 30, 2017, pp. 1-3. (year: 2017).
Office Action dated Oct. 10, 2017 for U.S. Appl. No. 14/449,217.
Office Action dated Oct. 13, 2017 for U.S. Appl. No. 14/806,131.
Office Action dated Dec. 5, 2017 for U.S. Appl. No. 13/648,874.
Office Action dated Dec. 11, 2017 for U.S. Appl. No. 13/763,550.
Office Action dated Dec. 29, 2017 for U.S. Appl. No. 13/668,049.
Sanders, et al., Multiple Recurrent De Novo CNVs, including duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism. Neuron. Jun. 9, 2011; 70: 863-885.
NCBI SNP Database rs201412882, ss491686165, Mar. 6, 2012 (National Library of Medicine, NIH, Bethesda, MD, USA).
Notice of Allowance dated Jan. 11, 2018 for U.S. Appl. No. 14/026,642.
Related Publications (1)
Number Date Country
20140162894 A1 Jun 2014 US
Provisional Applications (1)
Number Date Country
61744463 Sep 2012 US