METHODS AND COMPOSITIONS FOR TREATMENT OF CANCER AND OTHER ANGIOGENESIS-RELATED DISEASES

Abstract
The present invention provides nucleic acid molecules that modulate the expression of molecules in the angiopoietin/Tie2 signaling pathway. Methods of using the nucleic acid molecules are also provided.
Description
FIELD OF THE INVENTION

The present invention is in the field of molecular biology and medicine and relates to short interfering RNA (siRNA) molecules for modulating the expression of molecules in the angiopoietin/Tie2 signaling pathway.


BACKGROUND OF THE INVENTION

The angiopoietin/Tie2 signaling pathway has been implicated in several types of cancer-induced angiogenesis. Several molecules in the Ang-Tie pathway have been identified (see, e.g., Tables 1 and 13). One of them is the receptor molecule Tie2 (Tyrosine Kinase with Immunoglobulin and EGF factor homology domains, also called TIE-2, TEK or epithelial-specific protein receptor tyrosine kinase, TEK tyrosine kinase), which is expressed almost exclusively on the surface of vascular endothelial cells (ECs) (Sato et al., 1998, Int. Immunol. 10: 1217-1227). Ligands that bind to Tie2 include angiopoietin-1 and angiopoietin-2 (Yancopoulos et al., 2000, Nature 407: 242-248).









TABLE 1







Angiopoietin/Tie2 pathway gene sequence IDs.











UniGene

Gene



Sequence ID
Gene Name
Abbreviation







Hs.89640

H. sapiens receptor protein-

Hu Tie2




tyrosine kinase



Mm.14313

M. musculus Tie2

Ms Tie2



Hs.369675

H. sapiens angiopoietin 1

Hu Ang-1



Mm.309336

M. musculus angiopoietin 1

Ms Ang-1



Hs.583870

H. sapiens angiopoietin 2

Hu Ang-2



Mm.435498

M. musculus angiopoietin 2

Ms Ang-2










Accordingly, there is an urgent need for therapeutic agents targeting the Ang-Tie pathway.


SUMMARY OF THE INVENTION

One aspect of the present invention provides a nucleic acid molecule that reduces expression of an angiopoietin-1 (Ang-1), an angiopoietin-2 (Ang-2), or a tyrosine kinase with immunoglobulin and EGF factor homology domains (Tie2) gene, wherein the nucleic acid molecule comprises or targets any one of SEQ ID NOs: 1-648. The present invention also provides a nucleic acid molecule that reduces expression of an Ang-2 gene, wherein the nucleic acid molecule comprises or targets any one of SEQ ID NOs: 487, 489, 525, 526, 553, 554, 639, 640, 643, and 644. In a particular embodiment, the nucleic acid molecule is a short interfering RNA (siRNA) molecule. In a preferred embodiment, the invention provides siRNA of 25 base pairs with blunt ends.


The present invention also provides a composition comprising a nucleic acid molecule that comprises or targets any one of SEQ ID NOs: 1-648 and a pharmaceutically acceptable carrier. In one embodiment, the composition further comprises a histidine-lysine copolymer. In a further embodiment, the composition further comprises a targeting moiety. The composition may also comprise one or more additional therapeutic agents.


The present invention also provides combinations of nucleic acid molecules that target multiple disease-causing genes or target different sequences in the same gene. In one aspect, the invention provides compositions comprising a nucleic acid molecule that comprises or targets any one of SEQ ID NOs: 1-648 and further comprising one or more additional nucleic acid molecules that induce RNA interference and decrease the expression of a gene of interest. In one embodiment, the one or more additional nucleic acid molecules decrease the expression of Ang-1, Ang-2, or Tie-2.


The present invention further provides methods for reducing protein level expression of Ang-1, Ang-2, or Tie-2 genes in a cell, comprising introducing into the cell any of the nucleic acid molecules or the siRNA molecules of the invention. The present invention also provides methods of reducing angiogenesis in a subject in need thereof, comprising administering to the subject any of the nucleic acid molecules, siRNA molecules, or compositions of the invention. Additionally, the present invention provides a method of treating cancer in a subject in need thereof, comprising administering to the subject any of the nucleic acid molecules, siRNA molecules, or compositions of the invention.


These and other aspects of the present invention will become apparent upon references to the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a bar graph depicting in vitro inhibition of human Ang-2 by siRNA molecules in human umbilical vein endothelial (HUVEC) cells at 24 hours post siRNA transfection.


Human Ang-2 gene silencing activity of human Ang-2-siRNA sequences listed in Table 11 was tested in HUVEC cells. Labels #1-#48 on the x-axis correspond to the siRNA sequences numbered 1-48 in Table 11. The HUVEC cells were transfected with the Ang-2-siRNAs using a reverse transfection based high-through-put (HTP) method with 10 nM of siRNA duplex. A luciferase specific 25-mer siRNA was used as the negative control (Luc). The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). Significant inhibition of Ang-2 protein level expression in transfected HUVEC cells was observed at 24 hours post transfection with a majority of the 48 Ang-2 siRNA candidates tested.



FIG. 2 is a bar graph depicting in vitro inhibition of human Ang-2 by siRNA molecules in HUVEC cells at 48 hours post siRNA transfection.


Human Ang-2 gene silencing activity of human Ang-2-siRNA sequences listed in Table 11 was tested in HUVEC cells. Labels 1-48 on the x-axis correspond to the siRNA sequences numbered 1-48 in Table 11. The HUVEC cells were transfected with the Ang-2-siRNAs using a reverse transfection based high-through-put (HTP) method with 10 nM of siRNA duplex. A luciferase specific 25-mer siRNA was used as the negative control (Luc). The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). At 48 hours post siRNA transfection, more than 50% of the transfected HUVEC cells express less than 20% of Ang-2 protein compared to the mock control.



FIG. 3 is a bar graph depicting the percentage of inhibition of human Ang-2 by siRNA molecules in HUVEC cells at 48 hours post siRNA transfection.


Human Ang-2 gene silencing activity of human Ang-2-siRNA sequences listed in Table 11 was tested in HUVEC cells. Labels 1-48 on the x-axis correspond to the siRNA sequences numbered 1-48 in Table 11. The HUVEC cells were transfected with the Ang-2-siRNAs using a reverse transfection based high-through-put (HTP) method with 10 nM of siRNA duplex. A luciferase specific 25-mer siRNA was used as the negative control. The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). At 48 hours post transfection, the inhibition effects of Ang-2 siRNA on Ang-2 expression were more profound, with more than 50% of the Ang-2 siRNA candidates showing a greater than 80% knockdown of Ang-2 expression compared to the cells transfected with control Luc-siRNA.



FIG. 4 is a bar graph depicting the cell viability of HUVEC cells transfected with 10 nM human Ang-2 siRNA molecules at 48 hours post siRNA transfection.


The HUVEC cells were transfected with the Ang-2-siRNAs using a reverse transfection based high-through-put (HTP) method with 10 nM of siRNA duplex. Labels 2-48 on the x-axis correspond to the siRNA sequences numbered 2-48 in Table 11. A luciferase specific 25-mer siRNA was used as the negative control (Luc). The cell viability of the transfected cells was measured using a WST-1 assay kit (Roche). There was no significant cytotoxicity in the transfected HUVEC cells that associated with knockdown of Ang-2 expression.



FIG. 5 is a bar graph depicting in vitro inhibition of human Ang-2 by siRNA molecules at 2 nM in HUVEC cells at 48 hours post siRNA transfection.


Human Ang-2 gene silencing activity of human Ang-2-siRNA sequences listed in Table 11 was further confirmed in HUVEC cells. Labels on the x-axis correspond to the siRNA sequences numbers in Table 11. The HUVEC cells were transfected with the Ang-2-siRNAs using a reverse transfection based high-through-put (HTP) method with 2 nM of siRNA duplex. A control (Ctrl-) siRNA, which has a 19-nt double-stranded region with dTdT 3′-overhangs on both strands and does not has a significant homologous sequence with any known human gene, was used as the negative control. The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). At 48 hours post siRNA transfection, most of the transfected HUVEC cells express less than 16% of Ang-2 protein compared to mock control.



FIG. 6 is a bar graph depicting the percentage of inhibition of human Ang-2 by siRNA molecules at 2 nM in HUVEC cells at 48 hours post siRNA transfection


The HUVEC cells were transfected with the Ang-2-siRNAs using a reverse transfection based high-through-put (HTP) method with 2 nM of siRNA duplex. A control (Ctrl-) siRNA was used as the negative control. The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). At 48 hours post transfection, a majority of the Ang-2 siRNAs demonstrated a greater than 90% knockdown of Ang-2 expression.



FIG. 7 is a bar graph depicting the cell viability of HUVEC cells transfected with 2 nM human Ang-2 siRNA molecules at 48 hours post siRNA transfection.


The HUVEC cells were transfected with the Ang-2-siRNAs using a reverse transfection based high-through-put (HTP) method with 2 nM of siRNA duplex. Labels on the x-axis correspond to the siRNA sequence numbers in Table 11. A control (Ctrl-) siRNA, which has a 19-nt double-stranded region with dTdT 3′-overhangs on both strands and does not has a significant homologous sequence with any known human gene, was used as the negative control. The cell viability of the transfected cells was measured using a WST-1 assay kit (Roche). There was no significant cytotoxicity in the transfected HUVEC cells that associated with knockdown of Ang-2 expression.



FIG. 8 is a bar graph depicting in vitro inhibition of human Ang-2 by siRNA molecules at 0.2 nM in HUVEC cells at 48 hours post siRNA transfection.


Human Ang-2 gene silencing activity of the human Ang-2-siRNA sequences listed in Table 11 was further confirmed in HUVEC cells. The number labels on the x-axis correspond to the siRNA sequence numbers in Table 11. The HUVEC cells were transfected with the Ang-2-siRNAs using a reverse transfection based high-through-put (HTP) method with 0.2 nM of siRNA duplex. A control (Ctrl-) siRNA was used as the negative control. The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). At 48 hours post siRNA transfection, some of the transfected HUVEC cells express less than 60% of Ang-2 protein compared to mock control. siRNA sequence numbers circled were used for further experiments whose results are shown in FIGS. 9 and 10.



FIG. 9A-C shows three line graphs depicting the determination of IC50 values of the selected Ang-2 siRNA in HUVEC cells at 48 hours post siRNA transfection.


HUVEC cells were transfected with 10 dilutions of each siRNA duplex (#10 (FIG. 9A), #14 (FIG. 9B), and #31 (FIG. 9C) in Table 11). The dilutions were 0.076 pM, 0.31 pM, 1.2 pM, 4.9 pM, 19.5 pM, 78.1 pM, 312.5 pM, 1.25 nM, 5 nM, and 20 nM. The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). The cell viability of the transfected cells was measured using a WST-1 assay kit (Roche) for normalization of Ang-2 concentration. The IC50 value of each siRNA duplex in HUVEC cells at 48 hours post siRNA transfection was obtained using the GraphPad Prism program. The IC50 of Ang-2-25-10 was 0.363 nM, the IC50 of Ang-2-25-14 was 0.494 nM, and the IC50 of Ang-2-25-31 was 0.398 nM.



FIG. 10A-B shows two line graphs depicting the determination of IC50 values of the selected human/mouse Ang-2 siRNA in HUVEC cells at 48 hours post siRNA transfection.


HUVEC cells were transfected with 10 dilutions of each siRNA duplex (#25 (FIG. 10A) and #45 (FIG. 10B) in Table 11). The dilutions were 0.076 pM, 0.31 pM, 1.2 pM, 4.9 pM, 19.5 pM, 78.1 pM, 312.5 pM, 1.25 nM, 5 nM, and 20 nM. The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). The cell viability of the transfected cells was measured using a WST-1 assay kit (Roche) for normalization of Ang-2 concentration. The IC50 value of each siRNA duplex in HUVEC cells at 48 hours post siRNA transfection was obtained using the GraphPad Prism program. The IC50 of Ang-2-25-25 was 1.634 nM, and the IC50 of Ang-2-25-45 was 0.90 nM.





DETAILED DESCRIPTION OF THE INVENTION

The invention provides compositions and methods for treatment of diseases with unwanted angiogenesis, often an abnormal or excessive proliferation and growth of blood vessels. Since angiogenesis also can be a normal biological process, inhibition of unwanted angiogenesis is preferably accomplished with selectivity for a pathological tissue, which preferably requires selective delivery of therapeutic molecules to the pathological tissue using targeted nanoparticles. The present invention provides compositions and methods to control angiogenesis through selective inhibition of the Ang-Tie biochemical pathway by nucleic acid molecules that induce RNA interference (RNAi), including inhibition of Ang-Tie pathway gene expression and inhibition localized at pathological angiogenic tissues. The present invention also provides compositions of and methods for using a tissue-targeted nanoparticle composition comprising polymer conjugates and further comprising nucleic acid molecules that induce RNAi.


The invention is described here in detail, but one skilled in the art will appreciate the full extent of the invention.


Nucleic Acid Molecules for Ang/Tie2Pathway Gene Inhibition

The present invention provides nucleic acid molecules with a variety of physicochemical structures for targeting and silencing genes in the Ang/Tie2 pathway by RNAi. In one embodiment, the present invention provides nucleic acid molecules that result in a reduction in Ang-1, Ang-2, or Tie2 mRNA or protein levels of at least 50%, 60%, 70%, 80%, 85%, 90%, 95, 96, 97, 98, 99 or 100%. This reduction may result up to 24 hours, up to 36 hours, up to 48 hours, up to 60 hours, or up to 72 hours post administration of the nucleic acid molecules. The nucleic acid molecules that result in this reduction may be administered at 10 nM siRNA, 5 nM siRNA, 2 nM, 1 nM, 0.5 nM, or 0.2 nM quantities. In one embodiment, the nucleic acid molecules may have an IC50 for reducing Ang-2 protein levels of 0.75 nM or less, 0.5 nM or less, or 0.4 nM or less.


The nucleic acid molecules of the invention may be dsRNA or ssRNA. In one embodiment of the invention, the nucleic acid molecules are siRNA. The nucleic acid molecules may comprise 15-50, 15-30, 19, 20, 21, 22, 23, 24 or 25 base pairs. The nucleic acid molecules may comprise 5′- or 3′-single-stranded overhangs. In a certain embodiment, the nucleic acid molecules are blunt-ended. In a preferred embodiment, the nucleic acid molecule is a double-stranded siRNA of 25 basepairs with blunt ends. Exemplary siRNA sequences of the invention targeting Ang/Tie2 pathway genes are shown in Tables 2-10. (For all sequences listed in Tables 2-10, the position is labeled such that the “A” of the ATG codon is considered to be position 1.) siRNAs with 25 basepair double-stranded RNA with blunt ends were previously found to be some of the most potent inhibitors with the greatest duration of inhibition (WO 06/110813). Additionally, incorporation of non-naturally occurring chemical analogues may be useful in some embodiments of the invention. Such analogues include, but are not limited to, 2′-O-Methyl ribose analogues of RNA, DNA, LNA and RNA chimeric oligonucleotides, and other chemical analogues of nucleic acid oligonucleotides. In some embodiments, the siRNA targets both a human mRNA as well as the homologous or analogous mRNA in other non-human mammalian species such as primates, mice or rats.









TABLE 2







siRNA candidates for human TEK (Tie-2) gene.











siRNA Sequence (sense

SEQ ID


Start
strand/anti-sense strand)
GC %
NO:













67
5′-GCCAUGGACUUGAUCUUGAUCAAUU-3′
40.0
1



3′-CGGUACCUGAACUAGAACUAGUUAA-5′

2





93
5′-CCUACCUCUUGUAUCUGAUGCUGAA-3′
44.0
3



3′-GGAUGGAGAACAUAGACUACGACUU-5′

4





498
5′-CCGGCAUGAAGUACCUGAUAUUCUA-3′
44.0
5



3′-GGCCGUACUUCAUGGACUAUAAGAU-5′

6





744
5′-AAGGACGUGUGAGAAGGCUUGUGAA-3′
48.0
7



3′-UUCCUGCACACUCUUCCGAACACUU-5′

8





1372
5′-CAUAACUUUGCUGUCAUCAACAUCA-3′
36.0
9



3′-GUAUUGAAACGACAGUAGUUGUAGU-5′

10





1784
5′-GCAACUUGACUUCGGUGCUACUUAA-3′
44.0
11



3′-CGUUGAACUGAAGCCACGAUGAAUU-5′

12





1975
5′-UGGACAAUAUUGGAUGGCUAUUCUA-3′
36.0
13



3′-ACCUGUUAUAACCUACCGAUAAGAU-5′

14





2609
5′-CAGGAGAACUGGAAGUUCUUUGUAA-3′
40.0
15



3′-GUCCUCUUGACCUUCAAGAAACAUU-5′

16





2655
5′-CAUCAAUCUCUUAGGAGCAUGUGAA-3′
40.0
17



3′-GUAGUUAGAGAAUCCUCGUACACUU-5′

18





3231
5′-GAAGCCUUAUGAGAGGCCAUCAUUU-3′
44.0
19



3′-CUUCGGAAUACUCUCCGGUAGUAAA-5′

20





204
5′-CCAGGAUCCGCUGGAAGUUACUCAA-3′
52.0
21



3′-GGUCCUAGGCGACCUUCAAUGAGUU-5′

22





319
5′-CGAGGAGAGGCAAUCAGGAUACGAA-3′
52.0
23



3′-GCUCCUCUCCGUUAGUCCUAUGCUU-5′

24





351
5′-GAUGCGUCAACAAGCUUCCUUCCUA-3′
48.0
25



3′-CUACGCAGUUGUUCGAAGGAAGGAU-5′

26





363
5′-AGCUUCCUUCCUACCAGCUACUUUA-3′
44.0
27



3′-UCGAAGGAAGGAUGGUCGAUGAAAU-5′

28





400
5′-GACAAGGGAGAUAACGUGAACAUAU-3′
40.0
29



3′-CUGUUCCCUCUAUUGCACUUGUAUA-5′

30





612
5′-CAGGCUGAUAGUCCGGAGAUGUGAA-3′
52.0
31



3′-GUCCGACUAUCAGGCCUCUACACUU-5′

32





660
5′-CAACCAUCUCUGUACUGCUGUAUG-3′
44.0
33



3′-GUUGGUAGAGACAUGACGACAUAC-5′

34





664
5′-CAUCUCUGUACUGCUUGUAUGAACA-3′
40.0
35



3′-GUAGAGACAUGACGAACAUACUUGU-5′

36





771
5′-GCACACGUUUGGCAGAACUUGUAAA-3′
44.0
37



3′-CGUGUGCAAACCGUCUUGAACAUUU-5′

38





805
5′-AGUGGACAAGAGGGAUGCAAGUCUU-3′
48.0
39



3′-UCACCUGUUCUCCCUACGUUCAGAA-5′

40





812
5′-AAGAGGGAUGCAAGUCUUAUGUGUU-3′
40.0
41



3′-UUCUCCCUACGUUCAGAAUACACAA-5′

42





893
5′-GCAAUGAAGCAUGCCACCCUGGUUU-3′
52.0
43



3′-CGUUACUUCGUACGGUGGGACCAAA-5′

44





1049
5′-CAAAGAUAGUGGAUUUGCCAGAUCA-3′
40.0
45



3′-GUUUCUAUCACCUAAACGGUCUAGU-5′

46





1053
5′-GAUAGUGGAUUUGCCAGAUCAUAUA-3′
36.0
47



3′-CUAUCACCUAAACGGUCUAGUAUAU-5′

48





1369
5′-GGACAUAACUUUGCUGUCAUCAACA-3′
40.0
49



3′-CCUGUAUUGAAACGACAGUAGUUGU-5′

50





1455
5′-CGUUAAUCACUAUGAGGCUUGGCAA-3′
44.0
51



3′-GCAAUUAGUGAUACUCCGAACCGUU-5′

52





1463
5′-ACUAUGAGGCUUGGCAACAUAUUCA-3′
40.0
53



3′-UGAUACUCCGAACCGUUGUAUAAGU-5′

54





1636
5′-CCAAGAGGUCUAAAUCUCCUGCCUA-3′
48.0
55



3′-GGUUCUCCAGAUUUAGAGGACGGAU-5′

56





1637
5′-CAAGAGGUCUAAAUCUCCUGCCUAA-3′
44.0
57



3′-GUUCUCCAGAUUUAGAGGACGGAUU-5′

58





1763
5′-AGCAGAAUAUUAAAGUUCCAGGCAA-3′
36.0
59



3′-UCGUCUUAUAAUUUCAAGGUCCGUU-5′

60





1781
5′-CAGGCAACUUGACUUCGGUGCUACU-3′
52.0
61



3′-GUCCGUUGAACUGAAGCCACGAUGA-5′

62





1879
5′-GAAGAUCUCACUGCUUGGACCCUUA-3′
48.0
63



3′-CUUCUAGAGUGACGAACCUGGGAAU-5′

64





1898
5′-CCCUUAGUGACAUUCUUCCUCCUCA-3′
48.0
65



3′-GGGAAUCACUGUAAGAAGGAGGAGU-5′

66





1899
5′-CCUUAGUGACAUUCUUCCUCCUCAA-3′
44.0
67



3′-GGAAUCACUGUAAGAAGGAGGAGUU-5′

68





2610
5′-AGGAGAACUGGAAGUUCUUUGUAAA-3′
36.0
69



3′-UCCUCUUGACCUUCAAGAAACAUUU-5′

70





2684
5′-GAGGCUACUUGUACCUGGCCAUUGA-3′
52.0
71



3′-CUCCGAUGAACAUGGACCGGUAACU-5′

72





2723
5′-GAAACCUUCUGGACUUCCUUCGCAA-3′
48.0
73



3′-CUUUGGAAGACCUGAAGGAAGCGUU-5′

74





3020
5′-UCGAGUCACUGAAUUACAGUGUGUA-3′
40.0
75



3′-AGCUCAGUGACUUAAUGUCACACAU-5′

76





3119
5′-GCGGGAUGACUUGUGCAGAACUCUA-3′
52.0
77



3′-CGCCCUACUGAACACGUCUUGAGAU-5′

78





3179
5′-CCCUGAACUGUGAUGAUGAGGUGUA-3′
48.0
79



3′-GGGACUUGACACUACUACUCCACAU-5′

80





3289
5′-GAGGAGCGAAAGACCUACGUGAAUA-3′
48.0
81



3′-CUCCUCGCUUUCUGGAUGCACUUAU-5′

82





72
5′-GGACUUGAUCUUGAUCAAUUCCCUA-3′
40.0
83



3′-CCUGAACUAGAACUAGUUAAGGGAU-5′

84





77
5′-UGAUCUUGAUCAAUUCCCUACCUCU-3′
40.0
85



3′-ACUAGAACUAGUUAAGGGAUGGAGA-5′

86





87
5′-CAAUUCCCUACCUCUUGUAUCUGAU-3′
40.0
87



3′-GUUAAGGGAUGGAGAACAUAGACUA-5′

88





207
5′-GGAUCCGCUGGAAGUUACUCAAGAU-3′
48.0
89



3′-CCUAGGCGACCUUCAAUGAGUUCUA-5′

90





326
5′-AGGCAAUCAGGAUACGAACCAUGAA-3′
44.0
91



3′-UCCGUUAGUCCUAUGCUUGGUACUU-5′

92





406
5′-GGAGAUAACGUGAACAUAUCUUUCA-3′
36.0
93



3′-CCUCUAUUGCACUUGUAUAGAAAGU-5′

94





571
5′-GCCAGGUAUAUAGGAGGAAACCUCU-3′
48.0
95



3′-CGGUCCAUAUAUCCUCCUUUGGAGA-5′

96





572
5′-CCAGGUAUAUAGGAGGAAACCUCUU-3′
44.0
97



3′-GGUCCAUAUAUCCUCCUUUGGAGAA-5′

98





693
5′-UGUCUGCCAUGAAGAUACUGGAGAA-3′
44.0
99



3′-ACAGACGGUACUUCUAUGACCUCUU-5′

100





774
5′-CACGUUUGGCAGAACUUGUAAAGAA-3′
40.0
101



3′-GUGCAAACCGUCUUGAACAUUUCUU-5′

102





807
5′-UGGACAAGAGGGAUGCAAGUCUUAU-3′
44.0
103



3′-ACCUGUUCUCCCUACGUUCAGAAUA-5′

104





961
5′-GAGAUGUGUGAUCGCUUCCAAGGAU-3′
48.0
105



3′-CUCUACACACUAGCGAAGGUUCCUA-5′

106





970
5′-GAUCGCUUCCAAGGAUGUCUCUGCU-3′
52.0
107



3′-CUAGCGAAGGUUCCUACAGAGACGA-5′

108





1352
5′-CAAACGUGAUUGACACUGGACAUAA-3′
40.0
109



3′-GUUUGCACUAACUGUGACCUGUAUU-5′

110





1364
5′-ACACUGGACAUAACUUUGCUGUCAU-3′
40.0
111



3′-UGUGACCUGUAUUGAAACGACAGUA-5′

112





1385
5′-UCAUCAACAUCAGCUCUGAGCCUUA-3′
44.0
113



3′-AGUAGUUGUAGUCGAGACUCGGAAU-5′

114





1388
5′-UCAACAUCAGCUCUGAGCCUUACUU-3′
44.0
115



3′-AGUUGUAGUCGAGACUCGGAAUGAA-5′

116





1389
5′-CAACAUCAGCUCUGAGCCUUACUUU-3′
44.0
117



3′-GUUGUAGUCGAGACUCGGAAUGAAA-5′

118





1436
5′-AGAAGCUUCUAUACAAACCCGUUAA-3′
36.0
119



3′-UCUUCGAAGAUAUGUUUGGGCAAUU-5′

120





1437
5′-GAAGCUUCUAUACAAACCCGUUAAU-3′
36.0
121



3′-CUUCGAAGAUAUGUUUGGGCAAUUA-5′

122





1454
5′-CCGUUAAUCACUAUGAGGCUUGGCA-3′
48.0
123



3′-GGCAAUUAGUGAUACUCCGAACCGU-5′

124





1668
5′-GACCACUCUAAAUUUGACCUGGCAA-3′
44.0
125



3′-CUGGUGAGAUUUAAACUGGACCGUU-5′

126





1791
5′-GACUUCGGUGCUACUUAACAACUUA-3′
40.0
127



3′-CUGAAGCCACGAUGAAUUGUUGAAU-5′

128





1951
5′-ACACACUCCUCGGCUGUGAUUUCUU-3′
48.0
129



3′-UGUGUGAGGAGCCGACACUAAAGAA-5′

130





2050
5′-CACGUUGAUGUGAAGAUAAAGAAUG-3′
36.0
131



3′-GUGCAACUACACUUCUAUUUCUUAC-5′

132





2061
5′-GAAGAUAAAGAAUGCCACCAUCAUU-3′
36.0
133



3′-CUUCUAUUUCUUACGGUGGUAGUAA-5′

134





2141
5′-CAGAGAACAACAUAGGGUCAAGCAA-3′
44.0
135



3′-GUCUCUUGUUGUAUCCCAGUUCGUU-5′

136





2232
5′-GAAGAUGCUGCUUAUAGCCAUCCUU-3′
44.0
137



3′-CUUCUACGACGAAUAUCGGUAGGAA-5′

138





2246
5′-UAGCCAUCCUUGGCUCUGCUGGAAU-3′
52.0
139



3′-AUCGGUAGGAACCGAGACGACCUUA-5′

140





2387
5′-UCAACUCAGGGACUCUGGCCCUAAA-3′
52.0
141



3′-AGUUGAGUCCCUGAGACCGGGAUUU-5′

142





2398
5′-ACUCUGGCCCUAAACAGGAAGGUCA-3′
52.0
143



3′-UGAGACCGGGAUUUGUCCUUCCAGU-5′

144





2603
5′-ACUUUGCAGGAGAACUGGAAGUUCU-3′
44.0
145



3′-UGAAACGUCCUCUUGACCUUCAAGA-5′

146





2608
5′-GCAGGAGAACUGGAAGUUCUUUGUA-3′
44.0
147



3′-CGUCCUCUUGACCUUCAAGAAACAU-5′

148





2618
5′-UGGAAGUUCUUUGUAAACUUGGACA-3′
36.0
149



3′-ACCUUCAAGAAACAUUUGAACCUGU-5′

150





2722
5′-GGAAACCUUCUGGACUUCCUUCGCA-3′
52.0
151



3′-CCUUUGGAAGACCUGAAGGAAGCGU-5′

152





2767
5′-GACCCAGCAUUUGCCAUDGCCAAUA-3′
48.0
153



3′-CUGGGUCGUAAACGGUAACGGUUAU-5′

154





2958
5′-CCGAGGUCAAGAGGUGUACGUGAAA-3′
52.0
155



3′-GGCUCCAGUUCUCCACAUGCACUUU-5′

156





3072
5′-UGGUGUGUUACUAUGGGAGAUUGUU-3′
40.0
157



3′-ACCACACAAUGAUACCCUCUAACAA-5′

158





3073
5′-GGUGUGUUACUAUGGGAGAUUGUUA-3′
40.0
159



3′-CCACACAAUGAUACCCUCUAACAAU-5′

160





3298
5′-AAGACCUACGUGAAUACCACGCUUU-3′
44.0
161



3′-UUCUGGAUGCACUUAUGGUGCGAAA-5′

162





3300
5′-GACCUACGUGAAUACCACGCUUUAU-3′
44.0
163



3′-CUGGAUGCACUUAUGGUGCGAAAUA-5′

164





3314
5′-CCACGCUUUAUGAGAAGUUUACUUA-3′
36.0
165



3′-GGUGCGAAAUACUCUUCAAAUGAAU-5′

166
















TABLE 3







siRNA candidates for mouse Tie2 gene.













SEQ



siRNA Sequence (sense

 ID


Start
strand/anti-sense strand)
GC %
NO:













612
5′-CAGGCUGAUUGUUCGGAGAUGUGAA-3′
48.0
171



3′-GUCCGACUAACAAGCCUCUACACUU)-5′

172





664
5′-CGUCCUUGUACUACUUGCAAGAACA-3′
44.0
173



3′-GCAGGAACAUGAUGAACGUUCUUGU-5′

174





756
5′-GAAAGCUUGUGAGCCGCACACAUUU-3′
48.0
175



3′-CUUUCGAACACUCGGCGUGUGUAAA-5′

176





812
5′-CAGAAGGAUGCAAGUCUUAUGUGUU-3′
40.0
173



3′-GUCUUCCUACGUUCAGAAUACACAA-5′

174





1032
5′-CAGGCCAAGGAUGACUCCACAGAUA-3′
52.0
175



3′-GUCCGGUUCCUACUGAGGUGUCUAU-5′

176





1049
5′-CACAGAUAGAGGAUUUGCCAGAUCA-3′
44.0
177



3′-GUGUCUAUCUCCUAAACGGUCUAGU-5′

178





1119
5′-UGGGUGGCCACUACCUACUAGUGAA-3′
52.0
179



3′-ACCCACCGGUGAUGGAUGAUCACUU-5′

180





1631
5′-CAAGAGGUCUCAGUCUCCUGCCAAA-3′
52.0
181



3′-GUUCUCCAGAGUCAGAGGACGGUUU-5′

182





1734
5′-GCGAUCCCUGCAAACAACAAGUGAU-3′
48.0
183



3′-CGCUAGGGACGUUUGUUGUUCACUA-5′

184





1760
5′-AGCAGAACAUCAAAGUGCCUGGGAA-3′
48.0
185



3′-UCGUCUUGUAGUUUCACGGACCCUU-5′

186





62 
5′-AAGGUGCCAUGGACCUGAUCUUGAU-3′
48.0
187



3′-UUCCACGGUACCUGGACUAGAACUA-5′

188





67
5′-GCCAUGGACCUGAUCUUGAUCAAUU-3′
44.0
189



3′-CGGUACCUGGACUAGAACUAGUUAA-5′

190





93
5′-CCUACCUCUUGUGUCUGAUGCCGAA-3′
52.0
191



3′-GGAUGGAGAACACAGACUACGGCUU-5′

192





162
5′-CAUCACCAUAGGAAGGGACUUUGAA-3′
44.0
193



3′-GUAGUGGUAUCCUUCCCUGAAACUU-5′

194





204
5′-CCAAGAUCCACUGGAGGUUACUCAA-3′
48.0
195



3′-GGUUCUAGGUGACCUCCAAUGAGUU-5′

196





276
5′-GGCCAGUAAGAUUAAUGGUGCUUAU-3′
40.0
197



3′-CCGGUCAUUCUAAUUACCACGAAUA-5′

198





351
5′-GAUGCGUCAACAAGCGUCCUUCCUA-3′
52.0
199



3′-CUACGCAGUUGUUCGCAGGAAGGAU-5′

200





363
5′-AGCGUCCUUCCUACCUGCUACUUUA-3′
48.0
201



3′-UCGCAGGAAGGAUGGACGAUGAAAU-5′

202





572
5′-CCAGGUACAUAGGAGGAAACCUGUU-3′
48.0
203



3′-GGUCCAUGUAUCCUCCUUUGGACAA-5′

204





654
5′-CGACUGUAGCCGUCCUUGUACUACU-3′
52.0
205



3′-GCUGACAUCGGCAGGAACAUGAUGA-5′

206





744
5′-GAGAACAUGUGAGAAAGCUUGUGAG-3′
44.0
207



3′-CUCUUGUACACUCUUUCGAACACUC-5′

208





756
5′-GAAAGCUUGUGAGCCGCACACAUUU-3′
48.0
209



3′-CUUUCGAACACUCGGCGUGUGUAAA-5′

210





770
5′-CGCACACAUUUGGCAGGACCUGUAA-3′
52.0
211



3′-GCGUGUGUAAACCGUCCUGGACAUU-5′

212





771
5′-GCACACAUUUGGCAGGACCUGUAAA-3′
48.0
213



3′-CGUGUGUAAACCGUCCUGGACAUUU-5′

214





805
5′-AGUGGACCAGAAGGAUGCAAGUCUU-3′
48.0
215



3′-UCACCUGGUCUUCCUACGUUCAGAA-5′

216





928
5′-GACUGUAAGCUCAGGUGCCACUGUA-3′
52.0
217



3′-CUGACAUUCGAGUCCACGGUGACAU-5′

218





1233
5′-CAACCGAGUCUUACCUCCUGACUCA-3′
52.0
219



3′-GUUGGAUCAGAAUGGAGGACUGAGU-5′

220





1453
5′-CCUGUCAAUCAGGCCUGGAAAUACA-3′
48.0
221



3′-GGACAGUUAGUCCGGACCUUUAUGU-5′

222





1458
5′-CAAUCAGGCCUGGAAAUACAUUGAA-3′
40.0
223



3′-GUUAGUCCGGACCUUUAUGUAACUU-5′

224





1956
5′-CACAGCUAUGGUUUCUUGGACAAUA-3′
40.0
225



3′-GUGUCGAUACCAAAGAACCUGUUAU-5′

226





2041
5′-GACCAGCACAUUGAUGUGAAGAUCA-3′
44.0
227



3′-CUGGUCGUGUAACUACACUUCUAGU-5′

228





2047
5′-CACAUUGAUGUGAAGAUCAAGAAUG-3′
36.0
229



3′-GUGUAACUACACUUCUAGUUCUUAC-5′

230





2100
5′-CCUAGAGCCAGAGACUACAUACCAU-3′
48.0
231



3′-GGAUCUCGGUCUCUGAUGUAUGGUA-5′

232





2418
5′-AAACAAUCCGGAUCCCACAAUUUAU-3′
36.0
233



3′-UUUGUUAGGCCUAGGGUGUUAAAUA-5′

234





2456
5′-GGAAUGACAUCAAGUUUCAAGACGU-3′
40.0
235



3′-CCUUACUGUAGUUCAAAGUUCUGCA-5′

236





2549
5′-CCGCCAUCAAGAGGAUGAAAGAGUA-3′
48.0
237



3′-GGCGGUAGUUCUCCUACUUUCUCAU-5′

238





2559
5′-GAGGAUGAAAGAGUAUGCCUCCAAA-3′
44.0
239



3′-CUAAUACUUUCUCAUACGGAGGUUU-5′

240





2602
5′-GCAGGAGAACUGGAGGUUCUUUGUA-3′
48.0
241



3′-CGUCCUCUUGACCUCCAAGAAACAU-5′

242





2603
5′-CAGGAGAACUGGAGGUUCUUUGUAA-3′
44.0
243



3′-GUCCUCUUGACCUCCAAGAAACAUU-5′

244





2604
5′-AGGAGAACUGGAGGUUCUUUGUAAA-3′
40.0
245



3′-UCCUCUUGACCUCCAAGAAACAUUU-5′

246





2649
5′-CAUCAAUCUCUUGGGAGCAUGUGAA-3′
44.0
247



3′-GUAGUUAGAGAACCCUCGUACACUU-5′

248





2674
5′-CACCGAGGCUAUUUGUACCUAGCUA-3′
48.0
249



3′-GUGGCUCCGAUAAACAUGGAUCGAU-5′

250





2676
5′-CCGAGGCUAUUUGUACCUAGCUAUU-3′
44.0
251



3′-GGCUCCGAUAAACAUGGAUCGAUAA-5′

252





2678
5′-GAGGCUAUUUGUACCUAGCUAUUGA-3′
40.0
253



3′-CUCCGAUAAACAUGGAUCGAUAACU-5′

254





2945
5′-GAUUGUCACGAGGUCAAGAAGUGUA-3′
44.0
255



3′-CUAACAGUGCUCCAGUUCUUCACAU-5′

256





2951
5′-CACGAGGUCAAGAAGUGUAUGUGAA-3′
44.0
257



3′-GUGCUCCAGUUCUUCACAUACACUU-5′

258





2995
5′-CCAGUGCGUUGGAUGGCAAUCGAAU-3′
52.0
259



3′-GGUCACGCAACCUACCGUUAGCUUA-5′

260





3309
5′-CACACUGUAUGAGAAGUUUACCUAU-3′
36.0
261



3′-GUGUGACAUACUCUUCAAAUGGAUA-5′

262
















TABLE 4







siRNA candidates for human/mouse TEK (Tie-2).











siRNA Sequence

SEQ



(sense strand/

ID


Start
anti-sense strand)
GC %
NO:













77
5′-UGAUCUUGAUCAAUUCCCUACCUCU-3′
40.0
263



3′-ACUAGAACUAGUUAAGGGAUGGAGA-5′

264





161
5′-CCAUCACCAUAGGAAGGGACUUUGA-3′
48.0
265



3′-GGUAGUGGUAUCCUUCCCUGAAACU-5′

266





162
5′-CAUCACCAUAGGAAGGGACUUUGAA-3′
44.0
267



3′-GUAGUGGUAUCCUUCCCUGAAACUU-5′

268





3179
5′-CCCUGAACUGUGAUGAUGAGGUGUA-3′
48.0
269



3′-GGGACUUGACACUACUACUCCACAU-5′

270
















TABLE 5







siRNA candidates for human ANGPT1.











siRNA Sequence

SEQ



(sense strand/

ID


Start
anti-sense strand)
GC %
NO:













842
5′-CAUUUAGAGACUGUGCAGAUGUAUA-3′
36.0
271



3′-GUAAAUCUCUGACACGUCUACAUAU-5′

272





978
5′-ACAACAUCGUGAAGAUGGAAGUCUA-3′
40.0
273



3′-UGUUGUAGCACUUCUACCUUCAGAU-5′

274





1003
5′-GAUUUCCAAAGAGGCUGGAAGGAAU-3′
44.0
275



3′-CUAAAGGUUUCUCCGACCUUCCUUA-5′

276





1116
5′-AAGAAUUGAGUUAAUGGACUGGGAA-3′
36.0
277



3′-UUCUUAACUCAAUUACCUGACCCUU-5′

278





1245
5′-CAGCCUGAUCUUACACGGUGCUGAU-3′
52.0
279



3′-GUCGGACUAGAAUGUGCCACGACUA-5′

280





1357
5′-CCCUCCAAUCUAAAUGGAAUGUUCU-3′
40.0
281



3′-GGGAGGUUAGAUUUACCUUACAAGA-5′

282





1358
5′-CCUCCAAUCUAAAUGGAAUGUUCUA-3
36.0
283



3′-GGAGGUUAGAUUUACCUUACAAGAU-5′

284





1443
5′-CAGUUACUCCUUACGUUCCACAACU-3′
44.0
285



3′-GUCAAUGAGGAAUGCAAGGUGUUGA-5′

286





1460
5′-CCACAACUAUGAUGAUUCGACCUUU-3′
40.0
287



3′-GGUGUUGAUACUACUAAGCUGGAAA-5′

288





1461
5′-CACAACUAUGAUGAUUCGACCUUUA-3′
36.0
289



3′-GUGUUGAUACUACUAAGCUGGAAAU-5′

290





89
5′-GGAGAAGAUAUAACCGGAUUCAACA-3′
40.0
291



3′-CCUCUUCUAUAUUGGCCUAAGUUGU-5′

292





109
5′-CAACAUGGGCAAUGUGCCUACACUU-3′
48.0
293



3′-GUUGUACCCGUUACACGGAUGUGAA-5′

294





112
5′-CAUGGGCAAUGUGCCUACACUUUCA-3′
48.0
295



3′-GUACCCGUUACACGGAUGUGAAAGU-5′

296





125
5′-CCUACACUUUCAUUCUUCCAGAACA-3′
40.0
297



3′-GGAUGUGAAAGUAAGAAGGUCUUGU-5′

298





346
5′-CAGCAGAAUGCAGUUCAGAACCACA-3′
48.0
299



3′-GUCGUCUUACGUCAAGUCUUGGUGU-5′

300





654
5′-CCUUCAAGGCUUGGUUACUCGUCAA-3′
48.0
301



3′-GGAAGUUCCGAACCAAUGAGCAGUU-5′

302





1159
5′-CAGUAUGACAGAUUCCACAUAGGAA-3′
40.0
303



3′-GUCAUACUGUCUAAGGUGUAUCCUU-5′

304





1328
5′-CAGGAGGAUGGUGGUUUGAUGCUUG-3′
52.0
305



3′-GUCCUCCUACCACCAAACUACGAAC-5′

306





95
5′-GAUAUAACCGGAUUCAACAUGGGCA-3′
44.0
307



3′-CUAUAUUGGCCUAAGUUGUACCCGU-5′

308





108
5′-UCAACAUGGGCAAUGUGCCUACACU-3′
48.0
309



3′-AGUUGUACCCGUUACACGGAUGUGA-5′

310





437
5′-CAGAUGUUGAGACCCAGGUACUAAA-3′
44.0
311



3′-GUCUACAACUCUGGGUCCAUGAUUU-5′

312





1168
5′-GACAGAUUCCACAUAGGAAAUGAAA-3′
36.0
313



3′-CUGUCUAAGGUGUAUCCUUUACUUU-5′

314





1412
5′-UGAAUGGGAUAAAGUGGCACUACUU-3′
40.0
315



3′-ACUUACCCUAUUUCACCGUGAUGAA-5′

316





1427
5′-GGCACUACUUCAAAGGGCCCAGUUA-3′
52.0
317



3′-CCGUGAUGAAGUUUCCCGGGUCAAU-5′

318





163
5′-CGUGAGAGUACGACAGACCAGUACA-3′
52.0
319



3′-GCACUCUCAUGCUGUCUGGUCAUGU-5′

320





166
5′-GAGAGUACGACAGACCAGUACAACA-3′
48.0
321



3′-CUCUCAUGCUGUCUGGUCAUGUUGU-5′

322





176
5′-CAGACCAGUACAACACAAACGCUCU-3′
48.0
323



3′-GUCUGGUCAUGUUGUGUUUGCGAGA-5′

324





213
5′-UCCACACGUGGAACCGGAUUUCUCU-3′
52.0
325



3′-AGGUGUGCACCUUGGCCUAAAGAGA-5′

326





214
5′-CCACACGUGGAACCGGAUUUCUCUU-3′
52.0
327



3′-GGUGUGCACCUUGGCCUAAAGAGAA-5′

328





250
5′-CAACAUCUGGAACAUGUGAUGGAAA-3′
40.0
329



3′-GUUGUAGACCUUGUACACUACCUUU-5′

330





336
5′-GGCCCAGAUACAGCAGAAUGCAGUU-3′
52.0
331



3′-CCGGGUCUAUGUCGUCUUACGUCAA-5′

332





339
5′-CCAGAUACAGCAGAAUGCAGUUCAG-3′
48.0
333



3′-GGUCUAUGUCGUCUUACGUCAAGUC-5′

334





341
5′-AGAUACAGCAGAAUGCAGUUCAGAA-3′
40.0
335



3′-UCUAUGUCGUCUUACGUCAAGUCUU-5′

336





351
5′-GAAUGCAGUUCAGAACCACACGGCU-3′
52.0
337



3′-CUUACGUCAAGUCUUGGUGUGCCGA-5′

338





453
5′-GGUACUAAAUCAAACUUCUCGACUU-3′
36.0
339



3′-CCAUGAUUUAGUUUGAAGAGCUGAA-5′

340





473
5′-GACUUGAGAUACAGCUGCUGGAGAA-3′
48.0
341



3′-CUGAACUCUAUGUCGACGACCUCUU-5′

342





651
5′-GAACCUUCAAGGCUUGGUUACUCGU-3′
48.0
343



3′-CUUGGAAGUUCCGAACCAAUGAGCA-5′

344





653
5′-ACCUUCAAGGCUUGGUUACUCGUCA-3′
48.0
345



3′-UGGAAGUUCCGAACCAAUGAGCAGU-5′

346





658
5′-CAAGGCUUGGUUACUCGUCAAACAU-3′
44.0
347



3′-GUUCCGAACCAAUGAGCAGUUUGUA-5′

348





660
5′-AGGCUUGGUUACUCGUCAAACAUAU-3′
40.0
349



3′-UCCGAACCAAUGAGCAGUUUGUAUA-5′

350





662
5′-GCUUGGUUACUCGUCAAACAUAUAU-3′
36.0
351



3′-CGAACCAAUGAGCAGUUUGUAUAUA-5′

352





764
5′-UGGACACAGUCCACAACCUUGUCAA-3′
48.0
353



3′-ACCUGUGUCAGGUGUUGGAACAGUU-5′

354





768
5′-CACAGUCCACAACCUUGUCAAUCUU-3′
44.0
355



3′-GUGUCAGGUGUUGGAACAGUUAGAA-5′

356





770
5′-CAGUCCACAACCUUGUCAAUCUUUG-3′
44.0
357



3′-GUCAGGUGUUGGAACAGUUAGAAAC-5′

358





774
5′-CCACAACCUUGUCAAUCUUUGCACU-3′
44.0
359



3′-GGUGUUGGAACAGUUAGAAACGUGA-5′

360





832
5′-GAAGAGAAACCAUUUAGAGACUGUG-3′
40.0
361



3′-CUUCUCUUUGGUAAAUCUCUGACAC-5′

362





840
5′-ACCAUUUAGAGACUGUGCAGAUGUA-3′
40.0
363



3′-UGGUAAAUCUCUGACACGUCUACAU-5′

364





846
5′-UAGAGACUGUGCAGAUGUAUAUCAA-3′
36.0
365



3′-AUCUCUGACACGUCUACAUAUAGUU-5′

366





991
5′-GAUGGAAGUCUAGAUUUCCAAAGAG-3′
40.0
367



3′-CUACCUUCAGAUCUAAAGGUUUCUC-5′

368





1098
5′-UCAGAGGCAGUACAUGCUAAGAAUU-3′
40.0
369



3′-AGUCUCCGUCAUGUACGAUUCUUAA-5′

370





1147
5′-CGAGCCUAUUCACAGUAUGACAGAU-3′
44.0
371



3′-GCUCGGAUAAGUGUCAUACUGUCUA-5′

372





1164
5′-UGACAGAUUCCACAUAGGAAAUGAA-3′
36.0
373



3′-ACUGUCUAAGGUGUAUCCUUUACUU-5′

374





1257
5′-ACACGGUGCUGAUUUCAGCACUAAA-3′
44.0
375



3′-UGUGCCACGACUAAAGUCGUGAUUU-5′

376





1258
5′-CACGGUGCUGAUUUCAGCACUAAAG-3′
48.0
377



3′-GUGCCACGACUAAAGUCGUGAUUUC-5′

378





−1260
5′-CGGUGCUGAUUUCAGCACUAAAGAU-3′
44.0
379



3′-GCCACGACUAAAGUCGUGAUUUCUA-5′

380





1282
5′-GAUGCUGAUAAUGACAACUGUAUGU-3′
36.0
381



3′-CUACGACUAUUACUGUUGACAUACA-5′

382





1285
5′-GCUGAUAAUGACAACUGUAUGUGCA-3′
40.0
383



3′-CGACUAUUACUGUUGACAUACACGU-5′

384





1371
5′-UGGAAUGUUCUAUACUGCGGGACAA-3′
44.0
385



3′-ACCUUACAAGAUAUGACGCCCUGUU-5′

386





1409
5′-UGAAUGGGAUAAAGUGGCACUACUU-3′
40.0
387



3′-ACUUACCCUAUUUCACCGUGAUGAA-5′

388
















TABLE 6







siRNA candidates for mouse ANGPT1.











siRNA Sequence

SEQ



(sense strand/

ID


Start
anti-sense strand)
GC %
NO:













706
5′-CAACUUAGUAGAGCUACCAACAACA-3′
40.0
389



3′-GUUGAAUCAUCUCGAUGGUUGUUGU-5′

390





845
5′-CAUUUCGAGACUGUGCAGAUGUAUA-3′
40.0
391



3′-GUAAAGCUCUGACACGUCUACAUAU-5′

392





989
5′-GGGAAGAUGGAAGCCUGGAUUUCCA-3′
52.0
393



3′-CCCUUCUACCUUCGGACCUAAAGGU-5′

394





1052
5′-CCUCUGGUGAAUAUUGGCUCGGGAA-3′
52.0
395



3′-GGAGACCACUUAUAACCGAGCCCUU-5′

396





1119
5′-GAGGAUUGAGCUGAUGGACUGGGAA-3′
52.0
397



3′-CUCCUAACUCGACUACCUGACCCUU-5′

398





1167
5′-CGACAGAUUCCACAUAGGAAAUGAA-3′
40.0
399



3′-GCUGUCUAAGGUGUAUCCUUUACUU-5′

400





1238
5′-GCAAACAGAGCAGCUUGAUCUUACA-3′
44.0
401



3′-CGUUUGUCUCGUCGAACUAGAAUGU-5′

402





1248
5′-CAGCUUGAUCUUACACGGUGCUGAU-3′
48.0
403



3′-GUCGAACUAGAAUGUGCCACGACUA-5′

404





1360
5′-CCUUCCAAUCUAAAUGGAAUGUUCU-3′
36.0
405



3′-GGAAGGUUAGAUUUACCUUACAAGA-5′

406





1427
5′-GGCACUACUUCAAAGGGCCCAGUUA-3′
52.0
407



3′-CCGUCAUGAAGUUUCCCGGGUCAAU-5′

408





109
5′-CAACAUGGGCAAUGUGCCUACACUU-3′
48.0
409



3′-GUUGUACCCGUUACACGGAUGUGAA-5′

410





112
5′-CAUGGGCAAUGUGCCUACACUUUCA-3′
48.0
411



3′-GUACCCGUUACACGGAUGUGAAAGU-5′

412





125
5′-CCUACACUUUCAUUCUUCCAGAACA-3′
40.0
413



3′-GGAUGUGAAAGUAAGAAGGUCUUGU-5′

414





339
5′-CCAGAUACAACAGAAUGCUGUUCAA-3′
40.0
415



3′-GGUCUAUGUUGUCUUACGACAAGUU-5′

416





437
5′-CAGAUGUUGAGACCCAGGUACUAAA-3′
44.0
417



3′-GUCUACAACUCUGGGUCCAUGAUUU-5′

418





453
5′-GGUACUAAAUCAAACAUCCCGACUU-3′
40.0
416



3′-CCAUGAUUUAGUUUGUAGGGCUGAA-5′

420





467
5′-CAUCCCGACUUGAAAUACAACUGCU-3′
44.0
421



3′-GUAGGGCUGAACUUUAUGUUGACGA-5′

422





473
5′-GACUUGAAAUACAACUGCUAGAGAA-3′
36.0
423



3′-CUGAACUUUAUGUUGACGAUCUCUU-5′

424





509
5′-CAUACAAGCUAGAGAAGCAACUUCU-3′
40.0
425



3′-GUAUGUUCGAUCUCUUCGUUGAAGA-5′

426





525
5′-GCAACUUCUCCAACAGACAAAUGAA-3′
40.0
427



3′-CGUUGAAGAGGUUGUCUGUUUACUU-5′

428





755
5′-UGGAGCUCAUGGACACAGUUCAUAA-3′
44.0
429



3′-ACCUCGAGUACCUGUGUCAAGUAUU-5′

430





1162
5′-CAGUACGACAGAUUCCACAUAGGAA-3′
44.0
431



3′-GUCAUGCUGUCUAAGGUGUAUCCUU-5′

432
















TABLE 7







siRNA candidates for human/mouse ANGPT1.











siRNA Sequence

SEQ



(sense strand/

ID


Start
anti-sense strand)
GC %
NO:













109
5′-CAACAUGGGCAAUGUGCCUACACUU-3′
48.0
433



3′-GUUGUACCCGUUACACGGAUGUGAA-5′

434





112
5′-CAUGGGCAAUGUGCCUACACUUUCA-3′
48.0
435



3′-GUACCCGUUACACGGAUGUGAAAGU-5′

436





125
5′-CCUACACUUUCAUUCUUCCAGAACA-3′
40.0
437



3′-GGAUGUGAAAGUAAGAAGGUCUUGU-5′

438





89
5′-GGAGAAGAUAUAACCGGAUUCAACA-3′
40.0
439



3′-CCUCUUCUAUAUUGGCCUAAGUUGU-5′

440





95
5′-GAUAUAACCGGAUUCAACAUGGGCA-3′
44.0
441



3′-CUAUAUUGGCCUAAGUUGUACCCGU-5′

442





108
5′-UCAACAUGGGCAAUGUGCCUACACU-3′
48.0
443



3′-AGUUGUACCCGUUACACGGAUGUGA-5′

444





437
5′-CAGAUGUUGAGACCCAGGUACUAAA-3′
44.0
445



3′-GUCUACAACUCUGGGUCCAUGAUUU-5′

446





1168
5′-GACAGAUUCCACAUAGGAAAUGAAA-3′
36.0
447



3′-CUGUCUAAGGUGUAUCCUUUACUUU-5′

448





1409
5′-UGAAUGGGAUAAAGUGGCACUACUU-3′
40.0
449



3′-ACUUACCCUAUUUCACCGUGAUGAA-5′

450





1412
5′-UGAAUGGGAUAAAGUGGCACUACUU-3′
40.0
451



3′-ACUUACCCUAUUUCACCGUGAUGAA-5′

452





1427
5′-GGCACUACUUCAAAGGGCCCAGUUA-3′
52.0
453



3′-CCGUGAUGAAGUUUCCCGGGUCAAU-5′

454
















TABLE 8







siRNA candidates for human ANGPT2.











siRNA Sequence

SEQ



(sense strand/

ID


Start
anti-sense strand)
GC %
NO:













812
5′-CCACUGUUGCUAAAGAAGAACAAAU-3′
36.0
455



3′-GGUGACAACGAUUUCUUCUUGUUUA-5′

456





837
5′-CAGCUUCAGAGACUGUGCUGAAGUA-3′
48.0
457



3′-GUCGAAGUCUCUGACACGACUUCAU-5′

458





871
5′-GGACACACCACAAAUGGCAUCUACA-3′
48.0
459



3′-CCUGUGUGGUGUUUACCGUAGAUGU-5′

460





888
5′-CAUCUACACGUUAACAUUCCCUAAU-3′
36.0
461



3′-GUAGAUGUGCAAUUGUAAGGGAUUA-5′

462





951
5′-UGGAGGAGGCGGGUGGACAAUUAUU-3′
52.0
463



3′-ACCUCCUCCGCCCACCUGUUAAUAA-5′

464





962
5′-GGUGGACAAUUAUUCAGCGACGUGA-3′
48.0
465



3′-CCACCUGUUAAUAAGUCGCUGCACU-5′

466





1082
5′-CGCAACUGACUAAUCAGCAACGCUA-3′
48.0
467



3′-GCGUUGACUGAUUAGUCGUUGCGAU-5′

468





1242
5′-CAGCAUCAGCCAACCAGGAAAUGAU-3′
48.0
469



3′-GUCGUAGUCGGUUGGUCCUUUACUA-5′

470





1354
5′-CCUUCCAACUUGAACGGAAUGUACU-3′
44.0
471



3′-GGAAGGUUGAACUUGCCUUACAUGA-5′

472





1390
5′-CAGAACACAAAUAAGUUCAACGGCA-3′
40.0
473



3′-GUCUUGUGUUUAUUCAAGUUGCCGU-5′

474





34
5′-GAUCUUGUCUUGGCCGCAGCCUAUA-3′
52.0
475



3′-CUAGAACAGAACCGGCGUCGGAUAU-5′

476





47
5′-CCGCAGCCUAUAACAACUUUCGGAA-3′
48.0
477



3′-GGCGUCGGAUAUUGUUGAAAGCCUU-5′

478





241
5′-CAAGUGCUGGAGAACAUCAUGGAAA-3′
44.0
479



3′-GUUCACGACCUCUUGUAGUACCUUU-5′

480





306
5′-GGACAACAUGAAGAAAGAAAUGGUA-3′
36.0
481



3′-CCUGUUGUACUUCUUUCUUUACCAU-5′

482





390
5′-CCUGUUGAACCAAACAGCUGAGCAA-3′
48.0
483



3′-GGACAACUUGGUUUGUCGACUCGUU-5′

484





425
5′-UAACUGAUGUGGAAGCCCAAGUAUU-3′
40.0
485



3′-AUUGACUACACCUUCGGGUUCAUAA-5′

486





458
5′-CCACGAGACUUGAACUUCAGCUCUU-3′
48.0
487



3′-GGUGCUCUGAACUUGAAGUCGAGAA-5′

488





877
5′-ACCACAAAUGGCAUCUACACGUUAA-3′
40.0
489



3′-UGGUGUUUACCGUAGAUGUGCAAUU-5′

490





894
5′-CACGUUAACAUUCCCUAAUUCUACA-3′
36.0
491



3′-GUGCAAUUGUAAGGGAUUAAGAUGU-5′

492





1032
5′-GGGAUUUGGUAACCCUUCAGGAGAA-3′
48.0
493



3′-CCCUAAACCAUUGGGAAGUCCUCUU-5′

494





1342
5′-GAUGCAUGUGGUCCUUCCAACUUGA-3′
48.0
495



3′-CUACGUACACCAGGAAGGUUGAACU-5′

496





1410
5′-CGGCAUUAAAUGGUACUACUGGAAA-3′
40.0
497



3′-GCCGUAAUUUACCAUGAUGACCUUU-5′

498





−59
5′-UCUGGACGUGUGUUUGCCCUCAAGU-3′
52.0
499



3′-AGACCUGCACACAAACGGGAGUUCA-5′

500





−57
5′-UGGACGUGUGUUUGCCCUCAAGUUU-3′
48.0
501



3′-ACCUGCACACAAACGGGAGUUCAAA-5′

502





−56
5′-GGACGUGUGUUUGCCCUCAAGUUUG-3′
52.0
503



3′-CCUGUAUAUAAACGGGAGUUCAAAC-5′

504





−13
5′-ACUGAAGAAAGAAUGUGGCAGAUUG-3′
40.0
505



3′-UGACUUCUUUCUUACACCGUCUAAC-5′

506





−10
5′-GAAGAAAGAAUGUGGCAGAUUGUUU-3′
36.0
507



3′-CUUCUUUCUUACACCGUCUAACAAA-5′

508





33
5′-UGAUCUUGUCUUGGCCGCAGCCUAU-3′
52.0
509



3′-ACUAGAACAGAACCGGCGUCGGAUA-5′

510





46
5′-GCCGCAGCCUAUAACAACUUUCGGA-3′
52.0
511



3′-CGGCGUCGGAUAUUGUUGAAAGCCU-5′

512





53
5′-CCUAUAACAACUUUCGGAAGAGCAU-3′
40.0
513



3′-GGAUAUUGUUGAAAGCCUUCUCGUA-5′

514





274
5′-CAGUGGCUAAUGAAGCUUGAGAAUU-3′
40.0
515



3′-GUCACCGAUUACUUCGAACUCUUAA-5′

516





275
5′-AGUGGCUAAUGAAGCUUGAGAAUUA-3′
36.0
517



3′-UCACCGAUUACUUCGAACUCUUAAU-5′

518





355
5′-AACCAGACGGCUGUGAUGAUAGAAA-3′
44.0
519



3′-UUGGUCUGCCGACACUACUAUCUUU-5′

520





357
5′-CCAGACGGCUGUGAUGAUAGAAAUA-3′
44.0
521



3′-GGUCUGCCGACACUACUAUCUUUAU-5′

522





403
5′-ACAGCUGAGCAAACGCGGAAGUUAA-3′
48.0
523



3′-UGUCGACUCGUUUGCGCCUUCAAUU-5′

524





414
5′-AACGCGGAAGUUAACUGAUGUGGAA-3′
44.0
525



3′-UUGCGCCUUCAAUUGACUACACCUU-5′

526





419
5′-GGAAGUUAACUGAUGUGGAAGCCCA-3′
48.0
527



3′-CCUUCAAUUGACUACACCUUCGGGU-5′

528





420
5′-GAAGUUAACUGAUGUGGAAGCCCAA-3′
44.0
529



3′-CUUCAAUUGACUACACCUUCGGGUU-5′

530





427
5′-ACUGAUGUGGAAGCCCAAGUAUUAA-3′
40.0
531



3′-UGACUACACCUUCGGGUUCAUAAUU-5′

532





444
5′-AGUAUUAAAUCAGACCACGAGACUU-3′
36.0
533



3′-UCAUAAUUUAGUCUGGUGCUCUGAA-5′

534





483
5′-GGAACACUCCCUCUCGACAAACAAA-3′
48.0
535



3′-CCUUGUGAGGGAGAGCUGUUUGUUU-5′

536





524
5′-UGGACCAGACCAGUGAAAUAAACAA-3′
40.0
537



3′-ACCUGGUCUGGUCACUUUAUUUGUU-5′

538





811
5′-CCCACUGUUGCUAAAGAAGAACAAA-3′
40.0
539



3′-GGGUGACAACGAUUUCUUCUUGUUU-5′

540





820
5′-GCUAAAGAAGAACAAAUCAGCUUCA-3′
36.0
541



3′-CGAUUUCUUCUUGUUUAGUCGAAGU-5′

542





876
5′-CACCACAAAUGGCAUCUACACGUUA-3′
44.0
543



3′-GUGGUGUUUACCGUAGAUGUGCAAU-5′

544





881
5′-CAAAUGGCAUCUACACGUUAACAUU-3′
36.0
545



3′-GUUUACCGUAGAUGUGCAAUUGUAA-5′

546





924
5′-GAUCAAGGCCUACUGUGACAUGGAA-3′
48.0
547



3′-CUAGUUCCGGAUGACACUGUACCUU-5′

548





953
5′-GAGGAGGCGGGUGGACAAUUAUUCA-3′
52.0
549



3′-CUCCUCCGCCCACCUGUUAAUAAGU-5′

550





980
5′-GACGUGAGGAUGGCAGCGUUGAUUU-3′
52.0
551



3′-CUGCACUCCUACCGUCGCAACUAAA-5′

552





1066
5′-GGAAAUGAGUUUGUUUCGCAACUGA-3′
40.0
553



3′-CCUUUACUCAAACAAAGCGUUGACU-5′

554





1067
5′-GAAAUGAGUUUGUUUCGCAACUGAC-3′
40.0
555



3′-CUUUACUCAAACAAAGCGUUGACUG-5′

556





1140
5′-GAAUGAGGCUUACUCAUUGUAUGAA-3′
36.0
557



3′-CUUACUCCGAAUGAGUAACAUACUU-5′

558





1144
5′-GAGGCUUACUCAUUGUAUGAACAUU-3′
36.0
559



3′-CUCCGAAUGAGUAACAUACUUGUAA-5′

560





1273
5′-ACAAAGGAUGGAGACAACGACAAAU-3′
40.0
561



3′-UGUUUCCUACCUCUGUUGCUGUUUA-5′

562





1277
5′-AGGAUGGAGACAACGACAAAUGUAU-3′
40.0
563



3′-UCCUACCUCUGUUGCUGUUUACAUA-5′

564





1283
5′-GAGACAACGACAAAUGUAUUUGCAA-3′
36.0
565



3′-CUCUGUUGCUGUUUACAUAAACGUU-5′

566





1359
5′-CAACUUGAACGGAAUGUACUAUCCA-3′
40.0
567



3′-GUUGAACUUGCCUUACAUGAUAGGU-5′

568





1392
5′-GAACACAAAUAAGUUCAACGGCAUU-3′
36.0
589



3′-CUUGUGUUUAUUCAAGUUGCCGUAA-5′

590





1421
5′-GGUACUACUGGAAAGGCUCAGGCUA-3′
52.0
591



3′-CCAUGAUGACCUUUCCGAGUCCGAU-5′

592





1423
5′-UACUACUGGAAAGGCUCAGGCUAUU-3′
44.0
593



3′-AUGAUGACCUUUCCGAGUCCGAUAA-5′

594





1429
5′-UGGAAAGGCUCAGGCUAUUCGCUCA-3′
52.0
595



3′-ACCUUUCCGAGUCCGAUAAGCGAGU-5′

596





1458
5′-CACAACCAUGAUGAUCCGACCAGCA-3′
52.0
597



3′-GUGUUGGUACUACUAGGCUGGUCGU-5′

598





1533
5′-AAGACUUAAGCCCAGUGCACUGAAA-3′
44.0
599



3′-UUCUGAAUUCGGGUCACGUGACUUU-5′

600





1620
5′-CCACAUGCUCCAGAUUAGAGCCUGU-3′
52.0
601



3′-GGUGUACGAGGUCUAAUCUCGGACA-5′

602





1621
5′-CACAUGCUCCAGAUUAGAGCCUGUA-3′
48.0
603



3′-GUGUACGAGGUCUAAUCUCGGACAU-5′

604





1623
5′-CAUGCUCCAGAUUAGAGCCUGUAAA-3′
44.0
605



3′-GUACGAGGUCUAAUCUCGGACAUUU-5′

606





1628
5′-UCCAGAUUAGAGCCUGUAAACUUUA-3′
36.0
607



3′-AGGUCUAAUCUCGGACAUUUGAAAU-5′

608
















TABLE 9







siRNA candidates for mouse ANGPT2.











siRNA Sequence

SEQ



(sense strand/

ID


Start
anti-sense strand)
GC %
NO:













474
5′-GCAGCUUCUCCAACAUUCUAUUUCU-3′
40.0
609



3′-CGUCGAAGAGGUUGUAAGAUAAAGA-5′

610





713
5′-CGGUCAACAACUCGCUCCUUCAGAA-3′
52.0
611



3′-GCCAGUUGUUGAGCGAGGAAGUCUU-5′

612





761
5′-CCGUCAACAGCUUGCUGACCAUGAU-3′
52.0
613



3′-GGCAGUUGUCGAACGACUGGUACUA-5′

614





983
5′-GAGAAGAUGGCAGUGUGGACUUCCA-3′
52.0
615



3′-CUCUUCUACCGUCACACCUGAAGGU-5′

616





1066
5′-GGCAAUGAGUUUGUCUCCCAGCUGA-3′
52.0
617



3′-CCGUUACUCAAACAGAGGGUCGACU-5′

618





1103
5′-GCUACGUGCUUAAGAUCCAGCUGAA-3′
48.0
619



3′-CGAUGCACGAAUUCUAGGUCGACUU-5′

620





1148
3′-GCGUAAGCGACAUACUAGUGAAGAU-5′
44.0
621



5′-CGCAUUCGCUGUAUGAUCACUUCUA-3′

622





1242
5′-UAGCAUCAGCCAACCAGGAAGUGAU-3′
48.0
623



3′-AUCGUAGUCGGUUGGUCCUUCACUA-5′

624





1288
5′-AAUGACAAAUGCAUCUGCAAGUGUU-3′
36.0
625



3′-UUACUGUUUACGUAGACGUUCACAA-5′

626





1354
5′-CCUUCCAACUUGAAUGGACAGUACU-3′
44.0
627



3′-GGAAGGUUGAACUUACCUGUCAUGA-5′

628





475
5′-CAGCUUCUCCAACAUUCUAUUUCUA-3′
36.0
629



3′-GUCGAAGAGGUUGUAAGAUAAAGAU-5′

630





742
5′-CAGCAUGACCUAAUGGAGACCGUCA-3′
52.0
631



3′-GUCGUACUGGAUUACCUCUGGCAGU-5′

632





801
5′-CAAGAGCUCGGUUGCUAUCCGUAAA-3′
48.0
633



3′-GUUCUCGAGCCAACGAUAGGCAUUU-5′

634





1342
5′-GACGCAUGUGGUCCUUCCAACUUGA-3′
52.0
635



3′-CUGCGUACACCAGGAAGGUUGAACU-5′

636
















TABLE 10







siRNA candidates for human/mouse ANGPT-2.











siRNA Sequence

SEQ



(sense strand/

ID


Start
anti-sense strand)
GC %
NO:













922
5′-GAGAUCAAGGCCUACUGUGACAUGG-3′
52.0
637



3′-CUCUAGUUCCGGAUGACACUGUACC-5′

638





923
5′-AGAUCAAGGCCUACUGUGACAUGGA-3′
48.0
639



3′-UCUAGUUCCGGAUGACACUGUACCU-5′

640





1447
5′-UCGCUCAAGGCCACAACCAUGAUGA-3′
52.0
641



3′-AGCGAGUUCCGGUGUUGGUACUACU-5′

642





1448
5′-CGCUCAAGGCCACAACCAUGAUGAU-3′
52.0
643



3′-GCGAGUUCCGGUGUUGGUACUACUA-5′

644





1449
5′-GCUCAAGGCCACAACCAUGAUGAUC-3′
52.0
645



3′-CGAGUUCCGGUGUUGGUACUACUAG-5′

646





1450
5′-CUCAAGGCCACAACCAUGAUGAUCC-3′
52.0
647



3′-GAGUUCCGGUGUUGGUACUACUAGG-5′

648









The present invention provides methods for inhibition of individual or combinations of genes active in the Ang-Tie pathway. In some embodiments, the present invention provides a method of inhibiting or reducing angiogenesis in a tissue associated with undesired angiogenesis comprising administering to the tissue siRNA molecules that target Tie2 so that expression of Tie2 is decreased. In some embodiments, the present invention provides a method of inhibiting or reducing angiogenesis in a tissue associated with undesired angiogenesis comprising administering to the tissue siRNA molecules that target Ang-1 so that expression of Ang-1 is decreased. In further embodiments, the invention provides a method of inhibiting or reducing angiogenesis in a tissue associated with undesired angiogenesis comprising administering to the tissue siRNA molecules that target Ang-2 so that expression of Ang-2 is decreased. In one embodiment, the tissue is a tumor.


Combined Ang/Tie2 Pathway Gene Inhibition

The compositions and methods of the present invention for inhibition of angiogenesis are based on several fundamental aspects. First, pathological angiogenesis is a complex process and results from interactions of multiple proteins which are abnormally expressed or over-expressed in diseased tissues. Second, nucleic acid agents that activate RNAi are highly selective in a sequence specific manner. Third, inhibition of angiogenesis by modulation of protein activity can be operative by many methods, including but not limited to an inhibition of protein function (antagonists), stimulation of protein function (agonists), reduction of protein expression levels, and post transcriptional modification of proteins. Importantly, it may be desirable in the treatment of disease to effectively shut down a particular biological pathway that is critical for disease progression, by simultaneously blocking functions of ligands and their receptors, simultaneously blocking receptor activity and the activity of down stream signaling proteins, and/or simultaneously blocking redundant elements of a pathway. Such methods may be used for treating angiogenesis-related diseases including those that involve the Ang/Tie2 pathway.


Although clinical studies have demonstrated remarkable therapeutic efficacies, the toxicities of higher dosage and long term safety are major concerns, due to the different origins, different manufacturing processes and different chemistry properties of the components.


To overcome these problems, aspects of the present invention provide compositions of and methods of using nucleic acid molecules, including siRNA oligonucleotides, to provide a unique advantage, i.e., to achieve combinatorial effects with a combination of nucleic acid molecules, including siRNAs, that target multiple disease causing genes or target different sequences in the same gene in the same treatment. One advantage of the compositions and methods of the present invention is that all siRNA oligonucleotides are very similar chemically, pharmacologically, and can be produced from the same source and using the same manufacturing process. Another advantage provided by the present invention is that multiple siRNA oligonucleotides can be formulated in a single preparation such as a nanoparticle preparation.


Therefore, an aspect of the present invention is to combine nucleic acid molecules, including siRNAs, so as to achieve specific and selective silencing of multiple genes in the Ang/Tie2 pathway and as a result achieve an inhibition of angiogenesis-related disease and a better clinical benefit. The present invention provides for combinations of siRNA targets including combinations of two or more targets selected from: Tie2, Ang-1 and Ang-2. The present invention also provides for combinations of siRNAs targeting one or more sequences within the same gene in the Ang/Tie2 pathway. Exemplary siRNA sequences silencing these mRNAs are listed in Tables 2-10. Such siRNA compositions may also be combined with siRNA that targets other angiogenic pathways such as the VEGF pathway, PDGF and EGF and their receptors, downstream signaling factors including RAF and AKT, and transcription factors including NFκB. Such siRNA compositions may also be combined with siRNA that target genes downstream of Tie2, Ang-1 and Ang-2.


In one embodiment a combination of siRNA inhibiting Tie2 and two of its ligands Ang-1 and Ang-2 is used. In some embodiments, a combination of siRNA molecules that target Tie2 and siRNA molecules that target Ang-1 is used so that expression of both Tie2 and Ang-1 is decreased. In some embodiments, a combination of siRNA molecules that target Tie2 and siRNA molecules that target Ang-2 is used so that expression of both Tie2 and Ang-2 is decreased. In some embodiments, a combination of siRNA molecules that target Ang-1 and siRNA molecules that target Ang-2 is used so that expression of both Ang-1 and Ang-2 is decreased.


In some embodiments, the present invention provides a method of inhibiting or reducing angiogenesis in a tissue associated with undesired angiogenesis comprising administering to the tissue siRNA molecules that target Tie2 and siRNA molecules that target Ang-1 so that expression of Tie2 and Ang-1 is decreased. In some embodiments, the present invention provides a method of inhibiting or reducing angiogenesis in a tissue associated with undesired angiogenesis comprising administering to the tissue siRNA molecules that target Tie2 and siRNA molecules that target Ang-2 so that expression of Tie2 and Ang-2 is decreased. In some embodiments, the present invention provides a method of inhibiting or reducing angiogenesis in a tissue associated with undesired angiogenesis comprising administering to the tissue siRNA molecules that target Ang-1 and siRNA molecules that target Ang-2 so that expression of Ang-1 and Ang-2 is decreased. In further embodiments, the present invention provides a method of inhibiting or reducing angiogenesis in a tissue associated with undesired angiogenesis comprising administering to the tissue siRNA molecules that target Tie2, siRNA molecules that target Ang-1 and siRNA molecules that target Ang-2 so that expression of Tie2, Ang-1 and Ang-2 is decreased. In one embodiment, the tissue is a tumor.


Another embodiment of the invention is a combination of siRNA inhibiting Tie2, Ang-1 and Ang-2, PDGF and its receptors, and EGF and its receptors. Yet another embodiment is a combination of siRNA inhibiting the Tie2, Ang-1, and Ang-2 genes and their downstream signaling genes.


The siRNA oligonucleotides can be combined as a therapeutic for the treatment of angiogenesis-related disease. In one embodiment of the present invention they can be mixed together as a cocktail and in another embodiment they can be administered sequentially by the same route or by different routes and formulations and in yet another embodiment some can be administered as a cocktail and some administered sequentially. Other combinations of siRNA and methods for their combination will be understood by one skilled in the art to achieve treatment of angiogenesis-related diseases.


Therapeutic Methods of Use

The present invention also provides methods for the treatment of angiogenesis-related diseases and conditions in a subject. In some embodiments, the present invention provides a method of treating a subject afflicted with a disease or condition associated with undesired angiogenesis comprising administering to the subject siRNA molecules that target Tie2 so that expression of Tie2 is decreased. In some embodiments, the present invention provides a method of treating a subject afflicted with a disease or condition associated with undesired angiogenesis comprising administering to the subject siRNA molecules that target Ang-1 so that expression of Ang-1 is decreased. In further embodiments, the present invention provides a method of treating a subject afflicted with a disease or condition associated with undesired angiogenesis comprising administering to the subject siRNA molecules that target Ang-2 so that expression of Ang-2 is decreased.


In some embodiments, the present invention provides a method of treating a subject afflicted with a disease or condition associated with undesired angiogenesis comprising administering to the subject siRNA molecules that target Tie2 and siRNA molecules that target Ang-1 so that expression of Tie2 and Ang-1 is decreased. In some embodiments, the present invention provides a method of treating a subject afflicted with a disease or condition associated with undesired angiogenesis comprising administering to the subject siRNA molecules that target Tie2 and siRNA molecules that target Ang-2 so that expression of Tie2 and Ang-2 is decreased. In some embodiments, the present invention provides a method of treating a subject afflicted with a disease or condition associated with undesired angiogenesis comprising administering to the subject siRNA molecules that target Ang-1 and siRNA molecules that target Ang-2 so that expression of Ang-1 and Ang-2 is decreased. In further embodiments, the present invention provides a method of treating a subject afflicted with a disease or condition associated with undesired angiogenesis comprising administering to the subject siRNA molecules that target Tie2, siRNA molecules that target Ang-1 and siRNA molecules that target Ang-2 so that expression of Tie2, Ang-1 and Ang-2 is decreased.


The present invention also provides methods for the treatment of angiogenesis-related disease in a subject, including cancer, ocular disease, arthritis, and inflammatory diseases. The angiogenesis-related diseases include, but are not limited to, carcinoma, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, colorectum, esophageal, thyroid, pancreatic, prostate and bladder carcinomas and other neoplastic diseases, such as melanoma, small cell lung cancer, non-small cell lung cancer, glioma, hepatocellular (liver) carcinoma, sarcoma, head and neck cancers, mesothelioma, biliary (cholangiocarcinoma), small bowel adenocarcinoma, pediatric malignancies and glioblastoma.


Antagonizing these molecules is expected to inhibit pathophysiological processes, and thereby act as a potent therapy for various angiogenesis-dependent diseases. Besides solid tumors and their metastases, haematologic malignancies, such as leukemias, lymphomas and multiple myeloma, are also angiogenesis-dependent. Excessive vascular growth contributes to numerous non-neoplastic disorders. These non-neoplastic angiogenesis-dependent diseases include: atherosclerosis, haemangioma, haemangioendothelioma, angiofibroma, vascular malformations (e.g. Hereditary Hemorrhagic Teleangiectasia (HHT), or Osler-Weber syndrome), warts, pyogenic granulomas, excessive hair growth, Kaposis' sarcoma, scar keloids, allergic oedema, psoriasis, dysfunctional uterine bleeding, follicular cysts, ovarian hyperstimulation, endometriosis, respiratory distress, ascites, peritoneal sclerosis in dialysis patients, adhesion formation result from abdominal surgery, obesity, rheumatoid arthritis, synovitis, osteomyelitis, pannus growth, osteophyte, hemophilic joints, inflammatory and infectious processes (e.g. hepatitis, pneumonia, glomerulonephritis), asthma, nasal polyps, liver regeneration, pulmonary hypertension, retinopathy of prematurity, diabetic retinopathy, age-related macular degeneration, leukomalacia, neovascular glaucoma, corneal graft neovascularization, trachoma, thyroiditis, thyroid enlargement, and lymphoproliferative disorders.


In one embodiment of the invention, the subject treated is a human.


Compositions and Methods of Administration

In another aspect, this invention provides compositions comprising the nucleic acid molecules, including siRNA, of the invention. The siRNA of the composition may be targeted to mRNA from the Ang-Tie pathway. The compositions may comprise the nucleic acid molecules and a pharmaceutically acceptable carrier, for example, a saline solution or a buffered saline solution.


In certain embodiments, this invention provides “naked” nucleic acid molecules or nucleic acid molecules in a vehicle which can be a naturally occurring or synthetic vector, such as a viral vector, a liposome, polylysine, or a cationic polymer. In one embodiment, the composition may comprise the siRNA of the invention and a complex-forming agent, such as a cationic polymer. The cationic polymer may be a histidine-lysine (HK) copolymer or a polyethyleneimine.


In certain embodiments, the cationic polymer is an HK copolymer. This HK copolymer is a copolymer of histidine and lysine. In certain embodiments, the HK copolymer is synthesized from any appropriate combination of polyhistidine, polylysine, histidine and/or lysine. In certain embodiments, the HK copolymer is linear. In certain preferred embodiments, the HK copolymer is branched.


In certain preferred embodiments, the branched HK copolymer comprises a polypeptide backbone. Preferably, the polypeptide backbone comprises 1-10 amino acid residues, and more preferably 2-5 amino acid residues.


In certain preferred embodiments, the polypeptide backbone consists of lysine amino acid residues.


In certain preferred embodiments, the number of branches on the branched HK copolymer is one greater than the number of backbone amino acid residues. In certain preferred embodiments, the branched HK copolymer contains 1-11 branches. In certain more preferred embodiments, the branched HK copolymer contains 2-5 branches. In certain even more preferred embodiments, the branched HK copolymer contains 4 branches.


In some embodiments, the branch of the branched HK copolymer comprises 10-100 amino acid residues. In certain preferred embodiments, the branch comprises 10-50 amino acid residues. In certain more preferred embodiments, the branch comprises 15-25 amino acid residues. In certain embodiments, the branch of the branched HK copolymer comprises at least 3 histidine amino acid residues in every subsegment of 5 amino acid residues. In certain other embodiments, the branch comprises at least 3 histidine amino acid residues in every subsegment of 4 amino acid residues. In certain other embodiments, the branch comprises at least 2 histidine amino acid residues in every subsegment of 3 amino acid residues. In certain other embodiments, the branch comprises at least 1 histidine amino acid residues in every subsegment of 2 amino acid residues.


In certain embodiments, at least 50% of the branch of the HK copolymer comprises units of the sequence KHHH. In certain preferred embodiments, at least 75% of the branch comprises units of the sequence KHHH.


In certain embodiments, the HK copolymer branch comprises an amino acid residue other than histidine or lysine. In certain preferred embodiments, the branch comprises a cysteine amino acid residue, wherein the cysteine is a N-terminal amino acid residue.


In certain embodiments, the HK copolymer has the structure (KHHHKHHHKHHHHKHHHK)4-KKK. In certain other embodiments, the HK copolymer has the structure (CKHHHKHHHKHHHHKHHHK)4-KKK.


Some suitable examples of HK copolymers can be found, for example, in U.S. Pat. Nos. 6,692,911 and 7,163,695, which are both incorporated herein by reference.


In one embodiment, the compositions of the invention may comprise the siRNA of the invention and a complex-forming agent that is used to make a nanoparticle. The nanoparticle may optionally comprise a steric polymer and/or a targeting moiety. The targeting moiety may be a peptide, an antibody, or an antigen-binding portion. The targeting moiety may serve as a means for targeting vascular endothelial cells, such as a peptide comprising the sequence Arg-Gly-Asp (RGD). Such a peptide may be cyclic or linear. In one embodiment, this peptide is RGDFK. In a certain embodiment, this peptide is cyclo (RGD-D-FK).


The nucleic acid molecules, compositions, and therapeutic methods of the invention can be used alone or in combination with other therapeutic agents and modalities including targeted therapeutics and including Ang-Tie pathway antagonists, such as monoclonal antibodies and small molecule inhibitors, and targeted therapeutics inhibiting EGF and its receptor, PDGF and its receptors, or MEK or Bcr-Abl, and other immunotherapeutic and chemotherapeutic agents, such as EGFR inhibitors VECTIBIX® (panitumumab) and TARCEVA® (erlotinib), Her-2-targeted therapy HERCEPTIN® (trastuzumab), or anti-angiogenesis drugs such as AVASTIN® (bevacizumab) and SUTENT® (sunitinib malate). The nucleic acid molecules, compositions, and methods also may be combined therapeutically with other treatment modalities including radiation, laser therapy, surgery and the like.


Methods of administration for the nucleic acids and compositions of the invention are known to those of ordinary skill in the art. Administration may be intravenous, intraperitoneal, intramuscular, intracavity, subcutaneous, cutaneous, or transdermal. In one embodiment, administration may be systemic. In a further embodiment, administration may be local. For example, the nucleic acid molecules of the invention may be delivered via direct injections into tumor tissue and directly into or near angiogenic tissue or tissue with undesirable neovasculature. For certain applications, the nucleic acid molecules and compositions may be administered with application of an electric field. In certain embodiments, this invention provides for administration of “naked” siRNA.


Preparation of Nanoparticles Containing Nucleic Acid Molecules Modulating Expression of Ang/Tie2 Pathway Genes

One embodiment of the present invention provides compositions and methods for nanoparticle preparations of anti-Ang/Tie2 pathway nucleic acid molecules, including siRNAs. The nanoparticles may comprise one or more of a histidine-lysine copolymer, polyethylene glycol, or polyethyleneimine. In one embodiment of the invention, RGD-mediated ligand-directed nanoparticles may be prepared. In one method for the manufacture of RGD-mediated tissue-targeted nanoparticles containing siRNA, the targeting ligand, an RGD-containing peptide, is conjugated to a steric polymer such as polyethylene glycol, or other polymers with similar properties. This ligand-steric polymer conjugate is further conjugated to a polycation such as polyethyleneimine or other effective material such as a histidine-lysine copolymer. The conjugation can be by covalent or non-covalent bonds and the covalent bonds can be non-cleavable or they can be cleavable such as by hydrolysis or by reducing agents. A solution comprising the polymer conjugate, or comprising a mixture of a polymer conjugate with other polymer, lipid, or micelle such as materials comprising a ligand or a steric polymer or fusogen, is mixed with a solution comprising the nucleic acid, in one embodiment an siRNA targeted against specific mRNA of interest, in desirable ratios to obtain nanoparticles that contain siRNA. Such ratios may produce nanoparticles of a desired size, stability, or other characteristics.


In one embodiment, nanoparticles are formed by layered nanoparticle self-assembly comprising mixing the polymer conjugate with excess polycation and the nucleic acid. Non-covalent electrostatic interactions between the negatively charged nucleic acid and the positively charged segment of the polymer conjugate drive the self-assembly process that leads to formation of nanoparticles. This process involves simple mixing of the solutions where one of the solutions containing the nucleic acid is added to another solution containing the polymer conjugate and excess polycation followed by or concurrently with stirring. In one embodiment, the ratio between the positively charged components and the negatively charged components in the mixture is determined by appropriately adjusting the concentrations of each solution or by adjusting the volume of solution added. In another embodiment, the two solutions are mixed under continuous flow conditions using mixing apparatus such as static mixer. In this embodiment, two or more solutions are introduced into a static mixer at rates and pressures giving a ratio of the solutions, where the streams of solutions get mixed within the static mixer. Arrangements are possible for mixers to be arranged in parallel or in series.


The present invention, thus generally described, will be understood more readily by reference to the following examples, which are provided by way of illustration and are not intended to be limiting of the present invention. The invention is illustrated by the following examples but one skilled in the art will appreciate that the invention is not limited.


Examples
Example 1
Selection of 48 Human Ang-2 siRNA Candidates for Potency Screening

To select potent human Ang-2 siRNA, 48 siRNA candidates were selected from Table 8 and Table 10 (Table 11). These siRNA were synthesized in plate-format at 20 nmol scale and used for in vitro potency screening.









TABLE 11







Human Ang-2 siRNA candidates for in vitro


screening













siRNA Sequence

SEQ




(sense strand/

ID


No.
Start
antisense strand)
GC %
NO:














1
−56
5′-GGACGUGUGUUUGCCCUCAAGUUUG-3′
52.0 
503




3′-CCUGUAUAUAAACGGGAGUUCAAAC-5′

504





2
34
5′-GAUCUUGUCUUGGCCGCAGCCUAUA-3′
52.0
475




3′-CUAGAACAGAACCGGCGUCGGAUAU-5′

476





3
47
5′-CCGCAGCCUAUAACAACUUUCGGAA-3′
48.0
477




3′-GGCGUCGGAUAUUGUUGAAAGCCUU-5′

478





4
241
5′-CAAGUGCUGGAGAACAUCAUGGAAA-3′
44.0
479




3′-GUUCACGACCUCUUGUAGUACCUUU-5′

480





5
274
5′-CAGUGGCUAAUGAAGCUUGAGAAUU-3′
40.0
515




3′-GUCACCGAUUACUUCGAACUCUUAA-5′

516





6
306
5′-GGACAACAUGAAGAAAGAAAUGGUA-3′
36.0
481




3′-CCUGUUGUACUUCUUUCUUUACCAU-5′

482





7
357
5′-CCAGACGGCUGUGAUGAUAGAAAUA-3′
44.0
521




3′-GGUCUGCCGACACUACUAUCUUUAU-5′

522





8
390
5′-CCUGUUGAACCAAACAGCUGAGCAA-3′
48.0
483




3′-GGACAACUUGGUUUGUCGACUCGUU-5′

484





9
403
5′-ACAGCUGAGCAAACGCGGAAGUUAA-3′
48.0
523




3′-UGUCGACUCGUUUGCGCCUUCAAUU-5′

524





10
414
5′-AACGCGGAAGUUAACUGAUGUGGAA-3′
44.0
525




3′-UUGCGCCUUCAAUUGACUACACCUU-5′

526





11
420
5′-GAAGUUAACUGAUGUGGAAGCCCAA-3′
44.0
529




3′-CUUCAAUUGACUACACCUUCGGGUU-5′

530





12
425
5′-UAACUGAUGUGGAAGCCCAAGUAUU-3′
40.0
485




3′-AUUGACUACACCUUCGGGUUCAUAA-5′

486





13
427
5′-ACUGAUGUGGAAGCCCAAGUAUUAA-3′
40.0
531




3′-UGACUACACCUUCGGGUUCAUAAUU-5′

532





14
458
5′-CCACGAGACUUGAACUUCAGCUCUU-3′
48.0
487




3′-GGUGCUCUGAACUUGAAGUCGAGAA-5′

488





15
483
5′-GGAACACUCCCUCUCGACAAACAAA-3′
48.0
535




3′-CCUUGUGAGGGAGAGCUGUUUGUUU-5′

536





16
524
5′-UGGACCAGACCAGUGAAAUAAACAA-3′
40.0
537




3′-ACCUGGUCUGGUCACUUUAUUUGUU-5′

538





17
812
5′-CCACUGUUGCUAAAGAAGAACAAAU-3′
36.0
455




3′-GGUGACAACGAUUUCUUCUUGUUUA-5′

456





18
820
5′-GCUAAAGAAGAACAAAUCAGCUUCA-3′
36.0
541




3′-CGAUUUCUUCUUGUUUAGUCGAAGU-5′

542





19
837
5′-CAGCUUCAGAGACUGUGCUGAAGUA-3′
48.0
457




3′-GUCGAAGUCUCUGACACGACUUCAU-5′

458





20
871
5′-GGACACACCACAAAUGGCAUCUACA-3′
48.0
459




3′-CCUGUGUGGUGUUUACCGUAGAUGU-5′

460





21
877
5′-ACCACAAAUGGCAUCUACACGUUAA-3′
40.0
489




3′-UGGUGUUUACCGUAGAUGUGCAAUU-5′

490





22
888
5′-CAUCUACACGUUAACAUUCCCUAAU-3′
36.0
461




3′-GUAGAUGUGCAAUUGUAAGGGAUUA-5′

462





23
894
5′-CACGUUAACAUUCCCUAAUUCUACA-3′
36.0
491




3′-GUGCAAUUGUAAGGGAUUAAGAUGU-5′

492





24
922
5′-GAGAUCAAGGCCUACUGUGACAUGG-3′
52.0
637




3′-CUCUAGUUCCGGAUGACACUGUACC-5′
h/m
638





25
923
5′-AGAUCAAGGCCUACUGUGACAUGGA-3′
48.0
639




3′-UCUAGUUCCGGAUGACACUGUACCU-5′
h/m
640





26
924
5′-GAUCAAGGCCUACUGUGACAUGGAA-3′
48.0
547




3′-CUAGUUCCGGAUGACACUGUACCUU-5′

548





27
951
5′-UGGAGGAGGCGGGUGGACAAUUAUU-3′
52.0
463




3′-ACCUCCUCCGCCCACCUGUUAAUAA-5′

464





28
962
5′-GGUGGACAAUUAUUCAGCGACGUGA-3′
48.0
465




3′-CCACCUGUUAAUAAGUCGCUGCACU-5′

466





29
980
5′-GACGUGAGGAUGGCAGCGUUGAUUU-3′
52.0
551




3′-CUGCACUCCUACCGUCGCAACUAAA-5′

552





30
1032
5′-GGGAUUUGGUAACCCUUCAGGAGAA-3′
48.0
493




3′-CCCUAAACCAUUGGGAAGUCCUCUU-5′

494





31
1066
5′-GGAAAUGAGUUUGUUUCGCAACUGA-3′
40.0
553




3′-CCUUUACUCAAACAAAGCGUUGACU-5′

554





32
1082
5′-CGCAACUGACUAAUCAGCAACGCUA-3′
48.0
467




3′-GCGUUGACUGAUUAGUCGUUGCGAU-5′

468





33
1140
5′-GAAUGAGGCUUACUCAUUGUAUGAA-3′
36.0
557




3′-CUUACUCCGAAUGAGUAACAUACUU-5′

558





34
1144
5′-GAGGCUUACUCAUUGUAUGAACAUU-3′
36.0
559




3′-CUCCGAAUGAGUAACAUACUUGUAA-5′

560





35
1242
5′-CAGCAUCAGCCAACCAGGAAAUGAU-3′
48.0
469




3′-GUCGUAGUCGGUUGGUCCUUUACUA-5′

470





36
1277
5′-AGGAUGGAGACAACGACAAAUGUAU-3′
40.0
563




3′-UCCUACCUCUGUUGCUGUUUACAUA-5′

564





37
1283
5′-GAGACAACGACAAAUGUAUUUGCAA-3′
36.0
565




3′-CUCUGUUGCUGUUUACAUAAACGUU-5′

566





38
1342
5′-GAUGCAUGUGGUCCUUCCAACUUGA-3′
48.0
495




3′-CUACGUACACCAGGAAGGUUGAACU-5′

496





39
1354
5′-CCUUCCAACUUGAACGGAAUGUACU-3′
44.0
471




3′-GGAAGGUUGAACUUGCCUUACAUGA-5′

472





40
1359
5′-CAACUUGAACGGAAUGUACUAUCCA-3′
40.0
567




3′-GUUGAACUUGCCUUACAUGAUAGGU-5′

568





41
1390
5′-CAGAACACAAAUAAGUUCAACGGCA-3′
40.0
473




3′-GUCUUGUGUUUAUUCAAGUUGCCGU-5′

474





42
1410
5′-CGGCAUUAAAUGGUACUACUGGAAA-3′
40.0
497




3′-GCCGUAAUUUACCAUGAUGACCUUU-5′

498





43
1421
5′-GGUACUACUGGAAAGGCUCAGGCUA-3′
52.0
571




3′-CCAUGAUGACCUUUCCGAGUCCGAU-5′

572





44
1447
5′-UCGCUCAAGGCCACAACCAUGAUGA-3′
52.0
641




3′-AGCGAGUUCCGGUGUUGGUACUACU-5′
h/m
642





45
1448
5′-CGCUCAAGGCCACAACCAUGAUGAU-3′
52.0
643




3′-GCGAGUUCCGGUGUUGGUACUACUA-5′
h/m
644





46
1449
5′-GCUCAAGGCCACAACCAUGAUGAUC-3′
52.0
645




3′-CGAGUUCCGGUGUUGGUACUACUAG-5′
h/m
646





47
1450
5′-CUCAAGGCCACAACCAUGAUGAUCC-3′
52.0
647




3′-GAGUUCCGGUGUUGGUACUACUAGG-5′
h/m
648





48
1623
5′-CAUGCUCCAGAUUAGAGCCUGUAAA-3′
44.0
605




3′-GUACGAGGUCUAAUCUCGGACAUUU-5′

606









Example 2
High-Through-Put Screening of Human Ang-2 siRNA for Their Potency in Inhibiting Ang-2 Expression in HUVEC Cells

A reverse transfection based high-through-put (HTP) method was used to screen 48 human Ang-2 siRNAs (Table 11) for their potency in inhibiting Ang-2 expression in HUVEC cells. Briefly, 10 nM of siRNA duplex was spotted onto the bottom of a 96-well plate followed by addition of 0.25 μl of Lipofectamine™ RNAiMAX (Invitrogen). A luciferase specific 25-mer siRNA was used as the negative control. The plate was incubated at room temperature for 10-20 minutes, and 7,500 HUVEC cells in 100 ul growth medium was added to each wells. The plate was mixed gently by rocking the plate back and forth, and then incubated for 24-48 hours at 37° C. in a CO2 incubator. The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). The cell viability of the transfected cells was measured using a WST-1 assay kit (Roche) for normalization of Ang-2 concentration.


Significant inhibition of Ang-2 protein level expression in transfected HUVEC cells was observed at 24 hours post transfection with a majority of the 48 Ang-2 siRNA candidates tested (FIG. 1). At 48 hours post transfection, the inhibition effects were more profound (FIG. 2), with about 50% of the Ang-2 siRNA candidates showing a greater than 80% inhibition of Ang-2 expression compared to cells transfected with control Luc-siRNA (FIG. 3). There was no cytotoxicity in the transfected HUVEC cells that associated with knockdown of Ang-2 expression (FIG. 4).


Example 3
Confirmation of Ang-2 Gene Expression Knockdown in HUVEC Cells Transfected with 2 nM Ang-2 siRNA

In a separate experiment, 38 Ang-2 siRNA candidates that demonstrated a high percentage of Ang-2 knockdown in previous HTP screening (FIG. 1-3) were further examined for their potency in inhibiting Ang-2 expression in HUVEC cells using a reverse transfection method. Briefly, 2 nM of siRNA duplex was spotted onto the bottom of a 96-well plate followed by addition of 0.25 μl of Lipofectamine™ RNAiMAX (Invitrogen). A negative control (Ctrl-) siRNA, which has a 19-nt double-stranded region with dTdT 3′-overhangs on both strands and does not has a significant homologous sequence with any known human gene, was used as the negative control. The plate was incubated at room temperature for 10-20 minutes, and 7,500 HUVEC cells in 100 μl growth medium was added to each well. The plate was mixed gently by rocking the plate back and forth, and then incubated for 48 hours at 37° C. in a CO2 incubator. The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). The cell viability of the transfected cells was measured using a WST-1 assay kit (Roche) for normalization of Ang-2 concentration.


Significant inhibition (>90%) of Ang-2 protein level expression in transfected HUVEC cells was observed at 48 hours post transfection with a majority of the 38 Ang-2 siRNA candidates tested (FIG. 5), including many siRNA candidates with a greater than 90% knockdown of Ang-2 protein level expression (FIG. 6). In addition, 3 siRNA that target both human and mouse Ang-2 also demonstrated high potency in knocking down human Ang-2 expression (FIGS. 5 and 6). Finally, there was no cytotoxicity in the transfected HUVEC cells that associated with knockdown of Ang-2 expression (FIG. 7).


Example 4
Final Selection of Ang-2 siRNA Based on Ang-2 Gene Expression Knockdown in HUVEC Cells Transfected with 0.2 nM

In another experiment, 18 Ang-2 siRNA candidates that demonstrated a higher than 94% knockdown of Ang-2 expression in a previous experiment (FIG. 6) and 3 human/mouse Ang-2 siRNA were further examined for their potency in inhibiting Ang-2 expression in HUVEC cells using a reverse transfection method with a lower dose of siRNA. Briefly, 0.2 nM of siRNA duplex was spotted onto the bottom of a 96-well plate followed by addition of 0.25 μl of Lipofectamine™ RNAiMAX (Invitrogen). A negative control (Ctrl-) siRNA, which has a 19-nt double-stranded region with dTdT 3′-overhangs on both strands and does not has a significant homologous sequence with any known human gene, was used as the negative control. The plate was incubated at room temperature for 10-20 minutes, and 7,500 HUVEC cells in 100 μl growth medium was added to each well. The plate was mixed gently by rocking the plate back and forth, and then incubated for 48 hours at 37° C. in a CO2 incubator. The effect of siRNA mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). The cell viability of the transfected cells was measured using a WST-1 assay kit (Roche) for normalization of Ang-2 concentration.


When transfected with only 0.2 nM of siRNA, significant inhibition (30-50%) of Ang-2 protein level expression in transfected HUVEC cells was observed at 48 hours post transfection with a majority of the 38 Ang-2 siRNA candidates tested (FIG. 8), including one siRNA which targets both human and mouse Ang-2.


Three Ang-2 siRNA, #10 (Ang-2-25-10), #14 (Ang-2-25-14), and #31 (Ang-2-25-31) were selected for further experiments as Ang-2 siRNA. In addition, #25 (Ang-2-25-25) and #45 (Ang-2-25-45) were selected for further experiments as human/mouse Ang-2 siRNA.


Example 5
Determination of IC50 Values of Ang-2 siRNA

Upon the confirmation of Ang-2 siRNA candidates, experiments were conducted to determine the IC50 value of Ang-2 siRNA (Ang-2-25-10, Ang-2-25-14, and Ang-2-25-31) in HUVEC cells. Briefly, 10 dilutions of each siRNA duplex were spotted onto the bottom of a 96-well plate followed by addition of 0.25 μl of Lipofectamine™ RNAiMAX (Invitrogen). The siRNA dilutions were 0.076 pM, 0.31 pM, 1.2 pM, 4.9 pM, 19.5 pM, 78.1 pM, 312.5 pM, 1.25 nM, 5 nM, and 20 nM. The plate was incubated at room temperature for 10-20 minutes, and 7,500 HUVEC cells in 100 μl growth medium was added to each well. The plate was mixed gently by rocking the plate back and forth, and then incubated for 48 hours at 37° C. in a CO2 incubator. The effect of siRNA-mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). The cell viability of the transfected cells was measured using a WST-1 assay kit (Roche) for normalization of Ang-2 concentration.


The IC50 value of each siRNA duplex in HUVEC cells at 48 hours post siRNA transfection was obtained using the GraphPad Prism program (FIG. 9). The IC50 of Ang-2-25-10 was 0.363 nM, the IC50 of Ang-2-25-14 was 0.494 nM, and the IC50 of Ang-2-25-31 was 0.398 nM (FIG. 9 and Table 12).


Example 6
Determination of IC50 Values of Human/Mouse Ang-2 siRNA

Upon the confirmation of human/mouse Ang-2 siRNA candidates that target both human and mouse Ang-2 mRNA, experiments were conducted to determine the IC50 value of human/mouse Ang-2 siRNA (Ang-2-25-25 and Ang-2-25-45) in HUVEC cells. Briefly, 10 dilutions of each siRNA duplex were spotted onto the bottom of a 96-well plate followed by addition of 0.25 μl of Lipofectamine™ RNAiMAX (Invitrogen). The siRNA dilutions were 0.076 pM, 0.31 pM, 1.2 pM, 4.9 pM, 19.5 pM, 78.1 pM, 312.5 pM, 1.25 nM, 5 nM, and 20 nM. The plate was incubated at room temperature for 10-20 minutes, and 7,500 HUVEC cells in 100 μl growth medium was added to each well. The plate was mixed gently by rocking the plate back and forth, and then incubated for 48 hours at 37° C. in a CO2 incubator. The effect of siRNA-mediated Ang-2 knockdown was monitored by measuring the concentration of Ang-2 protein in the medium using a human Ang-2 ELISA kit (R&D). The cell viability of the transfected cells was measured using a WST-1 assay kit (Roche) for normalization of Ang-2 concentration.


The IC50 value of each siRNA duplex in HUVEC cells at 48 hours post siRNA transfection was obtained using the GraphPad Prism program (FIG. 10). The IC50 of Ang-2-25-25 was 1.634 nM, and the IC50 of Ang-2-25-45 was 0.90 nM (FIG. 10 and Table 12).









TABLE 12







IC50 of selected Ang-2-siRNA in transfected HUVEC cells









IC50 (nM)


siRNA
48 hours post-transfection











human Ang-2-25mer-siRNA#10
0.363


human Ang-2-25mer-siRNA#14
0.494


human Ang-2-25mer-siRNA#31
0.398


human&mouse Ang-2-25mer-siRNA#25
1.634


human&mouse Ang-2-25mer-siRNA#45
0.9
















TABLE 13







Ang-1, Ang-2, and Tie2 mRNA sequence table


Gene: TEK (Tie2)


Species: human


NCBI Accession No.: NM_000459


SEQ ID NO: 649


Sequence:


AGTTTCCCGCCTATGAGAGGATACCCCTATTGTTTCTGAAAATGCTGAC


CGGGACCCACACTTCCAACAAAAATTCCTCTGCCCCTACAGCAGCAGC


AAAAGCAGCAGCAGAAGCAACAGCAACAGATAAGTGTTTTGATGAATT


GCGAGATGGATAGGGCTTGAGTGCCCCCAGCCCTGCTGATACCAAATG


CCTTTAAGATACAGCCTTTCCCATCCTAATCTACAAAGGAAACAGGAA


AAAGGAACTTAAAACTCCCTGTGCTCAGACAGAAATGAGACTGTTACA


GCCTGCTTCTGTGCTGTTCCTTCTTGCCTCTAACTTGTAAACAAGACGT


AGTAGGACGATGCTAATGGAAAGTCACAAACCGCTGGGTTTTTGAAAGG


ATCCTTGGGACCTCATGCACATTTGTGGAAACTGGATGGAGAGATTTGG


GGAAGCATGGACTCTTTAGCCAGCTTAGTTCTCTGTGGAGTCAGCTTGC


TCCTTTCTGGAACTGTGGAAGGTGCCATGGACTTGATCTTGATCAATTC


CCTACCTCTTGTATCTGATGCTGAAACATCTCTCACCTGCATTGCCTCT


GGGTGGCGCCCCCATGAGCCCATCACCATAGGAAGGGACTTTGAAGCCT


TAATGAACCAGCACCAGGATCCGCTGGAAGTTACTCAAGATGTGACCA


GAGAATGGGCTAAAAAAGTTGTTTGGAAGAGAGAAAAGGCTAGTAAG


ATCAATGGTGCTTATTTCTGTGAAGGGCGAGTTCGAGGAGAGGCAATC


AGGATACGAACCATGAAGATGCGTCAACAAGCTTCCTTCCTACCAGCT


ACTTTAACTATGACTGTGGACAAGGGAGATAACGTGAACATATCTTTCA


AAAAGGTATTGATTAAAGAAGAAGATGCAGTGATTTACAAAAATGGTT


CCTTCATCCATTCAGTGCCCCGGCATGAAGTACCTGATATTCTAGAAGT


ACACCTGCCTCATGCTCAGCCCCAGGATGCTGGAGTGTACTCGGCCAG


GTATATAGGAGGAAACCTCTTCACCTCGGCCTTCACCAGGCTGATAGTC


CGGAGATGTGAAGCCCAGAAGTGGGGACCTGAATGCAACCATCTCTGT


ACTGCTTGTATGAACAATGGTGTCTGCCATGAAGATACTGGAGAATGC


ATTTGCCCTCCTGGGTTTATGGGAAGGACGTGTGAGAAGGCTTGTGAAC


TGCACACGTTTGGCAGAACTTGTAAAGAAAGGTGCAGTGGACAAGAGG


GATGCAAGTCTTATGTGTTCTGTCTCCCTGACCCCTATGGGTGTTCCTG


TGCCACAGGCTGGAAGGGTCTGCAGTGCAATGAAGCATGCCACCCTGGT


TTTTACGGGCCAGATTGTAAGCTTAGGTGCAGCTGCAACAATGGGGAG


ATGTGTGATCGCTTCCAAGGATGTCTCTGCTCTCCAGGATGGCAGGGGC


TCCAGTGTGAGAGAGAAGGCATACCGAGGATGACCCCAAAGATAGTGG


ATTTGCCAGATCATATAGAAGTAAACAGTGGTAAATTTAATCCCATTTG


CAAAGCTTCTGGCTGGCCGCTACCTACTAATGAAGAAATGACCCTGGT


GAAGCCGGATGGGACAGTGCTCCATCCAAAAGACTTTAACCATACGGA


TCATTTCTCAGTAGCCATATTCACCATCCACCGGATCCTCCCCCCTGAC


TCAGGAGTTTGGGTCTGCAGTGTGAACACAGTGGCTGGGATGGTGGAAA


AGCCCTTCAACATTTCTGTTAAAGTTCTTCCAAAGCCCCTGAATGCCCC


AAACGTGATTGACACTGGACATAACTTTGCTGTCATCAACATCAGCTCT


GAGCCTTACTTTGGGGATGGACCAATCAAATCCAAGAAGCTTCTATAC


AAACCCGTTAATCACTATGAGGCTTGGCAACATATTCAAGTGACAAAT


GAGATTGTTACACTCAACTATTTGGAACCTCGGACAGAATATGAACTCT


GTGTGCAACTGGTCCGTCGTGGAGAGGGTGGGGAAGGGCATCCTGGAC


CTGTGAGACGCTTCACAACAGCTTCTATCGGACTCCCTCCTCCAAGAGG


TCTAAATCTCCTGCCTAAAAGTCAGACCACTCTAAATTTGACCTGGCAA


CCAATATTTCCAAGCTCGGAAGATGACTTTTATGTTGAAGTGGAGAGA


AGGTCTGTGCAAAAAAGTGATCAGCAGAATATTAAAGTTCCAGGCAAC


TTGACTTCGGTGCTACTTAACAACTTACATCCCAGGGAGCAGTACGTGG


TCCGAGCTAGAGTCAACACCAAGGCCCAGGGGGAATGGAGTGAAGATC


TCACTGCTTGGACCCTTAGTGACATTCTTCCTCCTCAACCAGAAAACAT


CAAGATTTCCAACATTACACACTCCTCAGCTGTGATTTCTTGGACAATA


TTGGATGGCTATTCTATTTCTTCTATTACTATCCGTTACAAGGTTCAAG


GCAAGAATGAAGACCAGCACGTTGATGTGAAGATAAAGAATGCCACCAT


CACTCAGTATCAGCTCAAGGGCCTAGAGCCTGAAACAGCATACCAGGT


GGACATTTTTGCAGAGAACAACATAGGGTCAAGCAACCCAGCCTTTTCT


CATGAACTGGTGACCCTCCCAGAATCTCAAGCACCAGCGGACCTCGGA


GGGGGGAAGATGCTGCTTATAGCCATCCTTGGCTCTGCTGGAATGACCT


GCCTGACTGTGCTGTTGGCCTTTCTGATCATATTGCAATTGAAGAGGGC


AAATGTGCAAAGGAGAATGGCCCAAGCCTTCCAAAACGTGAGGGAAG


AACCAGCTGTGCAGTTCAACTCAGGGACTCTGGCCCTAAACAGGAAGG


TCAAAAACAACCCAGATCCTACAATTTATCCAGTGCTTGACTGGAATGA


CATCAAATTTCAAGATGTGATTGGGGAGGGCAATTTTGGCCAAGTTCTT


AAGGCGCGCATCAAGAAGGATGGGTTACGGATGGATGCTGCCATCAAA


AGAATGAAAGAATATGCCTCCAAAGATGATCACAGGGACTTTGCAGGA


GAACTGGAAGTTCTTTGTAAACTTGGACACCATCCAAACATCATCAATC


TCTTAGGAGCATGTGAACATCGAGGCTACTTGTACCTGGCCATTGAGTA


CGCGCCCCATGGAAACCTTCTGGACTTCCTTCGCAAGAGCCGTGTGCTG


GAGACGGACCCAGCATTTGCCATTGCCAATAGCACCGCGTCCACACTG


TCCTCCCAGCAGCTCCTTCACTTCGCTGCCGACGTGGCCCGGGGCATGG


ACTACTTGAGCCAAAAACAGTTTATCCACAGGGATCTGGCTGCCAGAA


ACATTTTAGTTGGTGAAAACTATGTGGCAAAAATAGCAGATTTTGGATT


GTCCCGAGGTCAAGAGGTGTATGTGAAAAAGACAATGGGAAGGCTCCC


AGTGCGCTGGATGGCCATCGAGTCACTGAATTACAGTGTGTACACAAC


CAACAGTGATGTATGGTCCTATGGTGTGTTACTATGGGAGATTGTTAGC


TTAGGAGGCACACCCTACTGCGGGATGACTTGTGCAGAACTCTACGAG


AAGCTGCCCCAGGGCTACAGACTGGAGAAGCCCCTGAACTGTGATGAT


GAGGTGTATGATCTAATGAGACAATGCTGGCGGGAGAAGCCTTATGAG


AGGCCATCATTTGCCCAGATATTGGTGTCCTTAAACAGAATGTTAGAGG


AGCGAAAGACCTACGTGAATACCACGCTTTATGAGAAGTTTACTTATGC


AGGAATTGACTGTTCTGCTGAAGAAGCGGCCTAGGACAGAACATCTGT


ATACCCTCTGTTTCCCTTTCACTGGCATGGGAGACCCTTGACACCTGCT


GAGAAAACATGCCTCTGCCAAAGGATGTGATATATAAGTGTACATATG


TGCTGTACACCTGGGACCTTCACCACTGTAGATCCCATGCATGGATCTA


TGTAGTATGCTCTGACTCTAATAGGACTGTATATACTGTTTTAAGAATG


GGCTGAAATCAGAATGCCTGTTTGTGGTTTCATATGCAATAATATATTT


TTTTAAAAATGTGGACTTCATAGGAAGGC GTGAGTACAATTAGTATAA


TGCATAACTCATTGTTGTCCTAGATATTTTGATATTTACCTTTATGTTG


AATGCTATTAAATGTTTTCCTGTGTCAAAGTAAAATATTGTTAATAAAC


CTAACAATGACCCTGATAGTACAGGTTAAGTGAGAGAACTATATGAATT


CTAACAAGTCATAGGTTAATATTTAAGACACTGAAAAATCTAAGTGATA


TAAATCAGATTCTTCTCTCTCAATTTTATCCCTCACCTGTAGCAGCCAG


TCCCGTTTCATTTAGTCATGTGACCACTCTGTCTTGTGTTTCCACAGCC


TGCAAGTCAGTCCAGGATGCTAACATCTAAAAATAGACTTAAATCTCAT


TGCTTACAAGCCTAAGAATCTTTAGAGAAGTATACATAAGTTTAGGATA


AAATAATGGGATTTTCTTTTCTTTTCTCTGGTAATATTGACTTGTATAT


TTTAAGAAATAACAGAAAGCCTGGGTGACATTTGGGAGACATGTGACAT


TTATATATTGAATTAATATCCCTACATGTATTGCACATTGTAAAAAGTT


TTAGTTTTGATGAGTTGTGAGTTTACCTTGTATACTGTAGGCACACTTT


GCACTGATATATCATGAGTGAATAAATGTCTTGCCTACTCACGTCTCAA


AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


AAAAAAAAA





Gene: TEK (Tie2)


Species: mouse


NCBI Accession No.: NM_013690


SEQ ID NO: 650


Sequence:


GAGCAGGAGCCGGAGCAGGAGCAGAAGATAAGCCTTGGATGAAGGGC


AAGATGGATAGGGCTCGCTCTGCCCCAAGCCCTGCTGATACCAAGTGC


CTTTAAGATACAGCCTTTCCCATCCTAATCTGCAAAGGAAACAGGAAA


AAGGAACTTAACCCTCCCTGTGCTCAGACAGAAATGAGACTGTTACCG


CCTGCTTCTGTGGTGTTTCTCCTTGCCGCCAACTTGTAAACAAGAGCGA


GTGGACCATGCGAGCGGGAAGTCGCAAAGTTGTGAGTTGTTGAAAGCT


TCCCAGGGACTCATGCTCATCTGTGGACGCTGGATGGGGAGATCTGGG


GAAGTATGGACTCTTTAGCCGGCTTAGTTCTCTGTGGAGTCAGCTTGCT


CCTTTATGGAGTAGTAGAAGGCGCCATGGACCTGATCTTGATCAATTCC


CTACCTCTTGTGTCTGATGCCGAAACATCCCTCACCTGCATTGCCTCTG


GGTGGCACCCCCATGAGCCCATCACCATAGGAAGGGACTTTGAAGCCT


TAATGAACCAGCACCAAGATCCACTGGAGGTTACTCAAGATGTGACCA


GAGAATGGGCGAAAAAAGTTGTTTGGAAGAGAGAAAAGGCCAGTAAG


ATTAATGGTGCTTATTTCTGTGAAGGTCGAGTTCGAGGACAGGCTATAA


GGATACGGACCATGAAGATGCGTCAACAAGCATCCTTCCTACCTGCTA


CTTTAACTATGACCGTGGACAGGGGAGATAATGTGAACATATCTTTCAA


AAAGGTGTTAATTAAAGAAGAAGATGCAGTGATTTACAAAAATGGCTC


CTTCATCCACTCAGTGCCCCGGCATGAAGTACCTGATATTTTAGAAGTT


CACTTGCCGCATGCTCAGCCCCAGGATGCTGGTGTGTACTCGGCCAGGT


ACATAGGAGGAAACCTGTTCACCTCAGCCTTCACCAGGCTGATTGTTCG


GAGATGTGAAGCTCAGAAGTGGGGGCCCGACTGTAGCCGTCCTTGTAC


TACTTGCAAGAACAATGGAGTCTGCCATGAAGATACCGGGGAATGCAT


TTGCCCTCCTGGGTTTATGGGGAGAACATGTGAGAAAGCTTGTGAGCC


GCACACATTTGGCAGGACCTGTAAAGAAAGGTGTAGTGGACCAGAAGG


ATGCAAGTCTTATGTGTTCTGTCTCCCAGACCCTTACGGGTGTTCCTGT


GCCACAGGCTGGAGGGGGTTGCAGTGCAATGAAGCATGCCCATCTGGTT


ACTACGGACCAGACTGTAAGCTCAGGTGCCACTGTACCAATGAAGAGA


TATGTGATCGGTTCCAAGGATGCCTCTGCTCTCAAGGATGGCAAGGGCT


GCAGTGTGAGAAAGAAGGCAGGCCAAGGATGACTCCACAGATAGAGG


ATTTGCCAGATCACATTGAAGTAAACAGTGGAAAATTTAACCCCATCTG


CAAAGCCTCTGGGTGGCCACTACCTACTAGTGAAGAAATGACCCTAGT


GAAGCCAGATGGGACAGTGCTCCAACCAAATGACTTCAACTATACAGA


TCGTTTCTCAGTGGCCATATTCACTGTCAACCGAGTCTTACCTCCTGAC


TCAGGAGTCTGGGTCTGCAGTGTGAACACAGTGGCTGGGATGGTGGAAA


AGCCTTTCAACATTTCCGTCAAAGTTCTTCCAGAGCCCCTGCACGCCCC


AAATGTGATTGACACTGGACATAACTTTGCTATCATCAATATCAGCTCT


GAGCCTTACTTTGGGGATGGACCCATCAAATCCAAGAAGCTTTTCTATA


AACCTGTCAATCAGGCCTGGAAATACATTGAAGTGACGAATGAGATTT


TCACTCTCAACTACTTGGAGCCGCGGACTGACTACGAGCTGTGTGTGCA


GCTGGCCCGTCCTGGAGAGGGTGGAGAAGGGCATCCTGGGCCTGTGAG


ACGATTTACAACAGCGTCTATCGGACTCCCTCCTCCAAGAGGTCTCAGT


CTCCTGCCAAAAAGCCAGACAGCTCTAAATTTGACTTGGCAACCGATAT


TTACAAACTCAGAAGATGAATTTTATGTGGAAGTCGAGAGGCGATCCC


TGCAAACAACAAGTGATCAGCAGAACATCAAAGTGCCTGGGAACCTGA


CCTCGGTGCTACTGAGCAACTTAGTCCCCAGGGAGCAGTACACAGTCC


GAGCTAGAGTCAACACCAAGGCGCAGGGGGAGTGGAGTGAAGAACTC


AGGGCCTGGACCCTTAGTGACATTCTCCCTCCTCAACCAGAAAACATCA


AGATCTCCAACATCACTGACTCCACAGCTATGGTTTCTTGGACAATAGT


GGATGGCTATTCGATTTCTTCCATCATCATCCGGTATAAGGTTCAGGGC


AAAAATGAAGACCAGCACATTGATGTGAAGATCAAGAATGCTACCGTT


ACTCAGTACCAGCTCAAGGGCCTAGAGCCAGAGACTACATACCATGTG


GATATTTTTGCTGAGAACAACATAGGATCAAGCAACCCAGCCTTTTCTC


ATGAACTGAGGACGCTTCCACATTCCCCAGCCTCTGCAGACCTCGGAG


GGGGAAAGATGCTACTCATAGCCATCCTTGGGTCGGCTGGAATGACTT


GCATCACCGTGCTGTTGGCGTTTCTGATTATGTTGCAACTGAAGAGAGC


AAATGTCCAAAGGAGAATGGCTCAGGCATTCCAGAACGTGAGAGAAG


AACCAGCTGTGCAGTTTAACTCAGGAACTCTGGCCCTTAACAGGAAGG


CCAAAAACAATCCGGATCCCACAATTTATCCTGTGCTTGACTGGAATGA


CATCAAGTTTCAAGACGTGATCGGAGAGGGCAACTTTGGCCAGGTTCT


GAAGGCACGCATCAAGAAGGATGGGTTACGGATGGATGCCGCCATCAA


GAGGATGAAAGAGTATGCCTCCAAAGATGATCACAGGGACTTCGCAGG


AGAACTGGAGGTTCTTTGTAAACTTGGACACCATCCAAACATCATTAAT


CTCTTGGGAGCATGTGAACACCGAGGCTATTTGTACCTAGCTATTGAGT


ATGCCCCGCATGGAAACCTCCTGGACTTCCTGCGTAAGAGCAGAGTGC


TAGAGACAGACCCTGCTTTTGCCATCGCCAACAGTACAGCTTCCACACT


GTCCTCCCAACAGCTTCTTCATTTTGCTGCAGATGTGGCCCGGGGGATG


GACTACTTGAGCCAGAAACAGTTTATCCACAGGGACCTGGCTGCCAGA


AACATTTTAGTTGGTGAAAACTACATAGCCAAAATAGCAGATTTTGGA


TTGTCACGAGGTCAAGAAGTGTATGTGAAAAAGACAATGGGAAGGCTC


CCAGTGCGTTGGATGGCAATCGAATCACTGAACTATAGTGTCTATACAA


CCAACAGTGATGTCTGGTCCTATGGTGTATTGCTCTGGGAGATTGTTAG


CTTAGGAGGCACCCCCTACTGCGGCATGACGTGCGCGGAGCTCTATGA


GAAGCTACCCCAGGGCTACAGGCTGGAGAAGCCCCTGAACTGTGATGA


TGAGGTGTATGATCTAATGAGACAGTGCTGGAGGGAGAAGCCTTATGA


GAGACCATCATTTGCCCAGATATTGGTGTCCTTAAACAGGATGCTGGAA


GAACGGAAGACATACGTGAACACCACACTGTATGAGAAGTTTACCTAT


GCAGGAATTGACTGCTCTGCGGAAGAAGCAGCCTAGAGCAGAACTCTT


CATGTACAACGGCCATTTCTCCTCACTGGCGCGAGAGCGCCTTGACACC


TGTACCAAGCAAGCCACCCACTGCCAAGAGATGTGATATATAAGTGTA


TATATTGTGCTGTGTTTGGGACCCTCCTCATACAGCTCGTGCGGATCTG


CAGTGTGTTCTGACTCTAATGTGACTGTATATACTGCTCGGAGTAAGAA


TGTGCTAAGATCAGAATGCCTGTTCGTGGTTTCATATAATATATTTTTC


TAAAAGCATAGATTGCACAGGAAGGTATGAGTACAAATACTGTAATGCA


TAACTTGTTATTGTCCTAGATGTGTTTGATATTTTTCCTTTACAACTGA


ATGCTATAAAAGTGTTTTGCTGTGTACACATAAGATACTGTTCGTTAAA


ATAAGCATTCCCTTGACAGCACAGGAAGAAAAGCGAGGGAAATGTATGG


ATTATATTAAATGTGGGTTACTACACAAGAGGCCGAACATTCCAAGTA


GCAGAAGAGAGGGTCTCTCAACTCTGCTCCTCACCTGCAGAAGCCAGT


TTGTTTGGCCATGTGACAATTGTCCTGTGTTTTTATAGCACCCAAATCA


TTCTAAAATATGAACATCTAAAAACTTTGCTAGGAGACTAAGAACCTTT


GGAGAGATAGATATAAGTACGGTCAAAAAACAAAACTGTGGGACTTACA


TTTATTTTCTATAGTAATCTGTTGTACATTTTAAGAAGTAAAACTAGGA


ATTTAGGAGTGATGTGTGACATTTCTGACATGGAGTTACCATCCCCACA


TGTATCACATACTGTCATATTCCCACATGTATCACACATGTATTGTAAA


ATTTTGTAGTTTTGATCACTTGTGAATTTACTGTTGATGTGGTAGCCAC


CTGCTGCAATGGTTCCTCTTGTAGGTGAATAAATGTCTTGTCTACCCAC


A





Gene: ANGPT1 (Ang-1)


Species: human


NCBI Accession No.: NM_001146


SEQ ID NO: 651


Sequence:


GGGGCACACTCATGCATTCCTGTCAAGTCATCTTGTGAAAGGCTGCCTG


CTTCCAGCTTGGCTTGGATGTGCAACCTTAATAAAACTCACTGAGGTCT


GGGAGAAAATAGCAGATCTGCAGCAGATAGGGTAGAGGAAAGGGTCT


AGAATATGTACACGCAGCTGACTCAGGCAGGCTCCATGCTGAACGGTC


ACACAGAGAGGAAACAATAAATCTCAGCTACTATGCAATAAATATCTC


AAGTTTTAACGAAGAAAAACATCATTGCAGTGAAATAAAAAATTTTAA


AATTTTAGAACAAAGCTAACAAATGGCTAGTTTTCTATGATTCTTCTTC


AAACGCTTTCTTTGAGGGGGAAAGAGTCAAACAAACAAGCAGTTTTAC


CTGAAATAAAGAACTAGTTTTAGAGGTCAGAAGAAAGGAGCAAGTTTT


GCGAGAGGCACGGAAGGAGTGTGCTGGCAGTACAATGACAGTTTTCCT


TTCCTTTGCTTTCCTCGCTGCCATTCTGACTCACATAGGGTGCAGCAAT


CAGCGCCGAAGTCCAGAAAACAGTGGGAGAAGATATAACCGGATTCAA


CATGGGCAATGTGCCTACACTTTCATTCTTCCAGAACACGATGGCAACT


GTCGTGAGAGTACGACAGACCAGTACAACACAAACGCTCTGCAGAGAG


ATGCTCCACACGTGGAACCGGATTTCTCTTCCCAGAAACTTCAACATCT


GGAACATGTGATGGAAAATTATACTCAGTGGCTGCAAAAACTTGAGAA


TTACATTGTGGAAAACATGAAGTCGGAGATGGCCCAGATACAGCAGAA


TGCAGTTCAGAACCACACGGCTACCATGCTGGAGATAGGAACCAGCCT


CCTCTCTCAGACTGCAGAGCAGACCAGAAAGCTGACAGATGTTGAGAC


CCAGGTACTAAATCAAACTTCTCGACTTGAGATACAGCTGCTGGAGAA


TTCATTATCCACCTACAAGCTAGAGAAGCAACTTCTTCAACAGACAAAT


GAAATCTTGAAGATCCATGAAAAAAACAGTTTATTAGAACATAAAATC


TTAGAAATGGAAGGAAAACACAAGGAAGAGTTGGACACCTTAAAGGA


AGAGAAAGAGAACCTTCAAGGCTTGGTTACTCGTCAAACATATATAAT


CCAGGAGCTGGAAAAGCAATTAAACAGAGCTACCACCAACAACAGTGT


CCTTCAGAAGCAGCAACTGGAGCTGATGGACACAGTCCACAACCTTGT


CAATCTTTGCACTAAAGAAGGTGTTTTACTAAAGGGAGGAAAAAGAGA


GGAAGAGAAACCATTTAGAGACTGTGCAGATGTATATCAAGCTGGTTT


TAATAAAAGTGGAATCTACACTATTTATATTAATAATATGCCAGAACCC


AAAAAGGTGTTTTGCAATATGGATGTCAATGGGGGAGGTTGGACTGTA


ATACAACATCGTGAAGATGGAAGTCTAGATTTCCAAAGAGGCTGGAAG


GAATATAAAATGGGTTTTGGAAATCCCTCCGGTGAATATTGGCTGGGG


AATGAGTTTATTTTTGCCATTACCAGTCAGAGGCAGTACATGCTAAGAA


TTGAGTTAATGGACTGGGAAGGGAACCGAGCCTATTCACAGTATGACA


GATTCCACATAGGAAATGAAAAGCAAAACTATAGGTTGTATTTAAAAG


GTCACACTGGGACAGCAGGAAAACAGAGCAGCCTGATCTTACACGGTG


CTGATTTCAGCACTAAAGATGCTGATAATGACAACTGTATGTGCAAATG


TGCCCTCATGTTAACAGGAGGATGGTGGTTTGATGCTTGTGGCCCCTCC


AATCTAAATGGAATGTTCTATACTGCGGGACAAAACCATGGAAAACTG


AATGGGATAAAGTGGCACTACTTCAAAGGGCCCAGTTACTCCTTACGTT


CCACAACTATGATGATTCGACCTTTAGATTTTTGAAAGCGCAATGTCAG


AAGCGATTATGAAAGCAACAAAGAAATCCGGAGAAGCTGCCAGGTGA


GAAACTGTTTGAAAACTTCAGAAGCAAACAATATTGTCTCCCTTCCAGC


AATAAGTGGTAGTTATGTGAAGTCACCAAGGTTCTTGACCGTGAATCTG


GAGCCGTTTGAGTTCACAAGAGTCTCTACTTGGGGTGACAGTGCTCACG


TGGCTCGACTATAGAAAACTCCACTGACTGTCGGGCTTTAAAAAGGGA


AGAAACTGCTGAGCTTGCTGTGCTTCAAACTACTACTGGACCTTATTTT


GGAACTATGGTAGCCAGATGATAAATATGGTTAATTTCATGTAAAACA


GAAAAAAAGAGTGAAAAAGAGAATATACATGAAGAATAGAAACAAGC


CTGCCATAATCCTTTGGAAAAGATGTATTATACCAGTGAAAAGGTGTTA


TATCTATGCAAACCTACTAACAAATTATACTGTTGCACAATTTTGATAA


AAATTTAGAACAGCATTGTCCTCTGAGTTGGTTAAATGTTAATGGATTT


CAGAAGCCTAATTCCAGTATCATACTTACTAGTTGATTTCTGCTTACCC


ATCTTCAAATGAAAATTCCATTTTTGTAAGCCATAATGAACTGTAGTAC


ATGGACAATAAGTGTGTGGTAGAAACAAACTCCATTACTCTGATTTTTG


ATACAGTTTTCAGAAAAAGAAATGAACATAATCAAGTAAGGATGTATG


TGGTGAAAACTTACCACCCCCATACTATGGTTTTCATTTACTCTAAAAA


CTGATTGAATGATATATAAATATATTTATAGCCTGAGTAAAGTTAAAAG


AATGTAAAATATATCATCAAGTTCTTAAAATAATATACATGCATTTAAT


ATTTCCTTTGATATTATACAGGAAAGCAATATTTTGGAGTATGTTAAGT


TGAAGTAAAAGCAAGTACTCTGGAGCAGTTCATTTTACAGTATCTACTT


GCATGTGTATACATACATGTAACTTCATTATTTTAAAAATATTTTTAGA


ACTCCAATACTCACCCTGTTATGTCTTGCTAATTTAAATTTTGCTAATT


AACTGAAACATGCTTACCAGATTCACACTGTTCCAGTGTCTATAAAAGA


AACACTTTGAAGTCTATAAAAAATAAAATAATTATAAATATCATTGTAC


ATAGCATGTTTATATCTGCAAAAAACCTAATAGCTAATTAATCTGGAAT


ATGCAACATTGTCCTTAATTGATGCAAATAACACAAATGCTCAAAGAAA


TCTACTATATCCCTTAATGAAATACATCATTCTTCATATATTTCTCCTT


CAGTCCATTCCCTTAGGCAATTTTTAATTTTTAAAAATTATTATCAGGG


GAGAAAAATTGGCAAAACTATTATATGTAAGGGAAATATATACAAAAAG


AAAATTAATCATAGTCACCTGACTAAGAAATTCTGACTGCTAGTTGCCA


TAAATAACTCAATGGAAATATTCCTATGGGATAATGTATTTTAAGTGAA


TTTTTGGGGTGCTTGAAGTTACTGCATTATTTTATCAAGAAGTCTTCTC


TGCCTGTAAGTGTCCAAGGTTATGACAGTAAACAGTTTTTATTAAAACA


TGAGTCACTATGGGATGAGAAAATTGAAATAAAGCTACTGGGCCTCCTC


TCATAAAAGAGACAGTTGTTGGCAAGGTAGCAATACCAGTTTCAAACT


TGGTGACTTGATCCACTATGCCTTAATGGTTTCCTCCATTTGAGAAAAT


AAAGCTATTCACATTGTTAAGAAAAATACTTTTTAAAGTTTACCATCAA


GTCTTTTTTATATTTATGTGTCTGTATTCTACCCCTTTTTGCCTTACAA


GTGATATTTGCAGGTATTATACCATTTTTCTATTCTTGGTGGCTTCTTC


ATAGCAGGTAAGCCTCTCCTTCTAAAAACTTCTCAACTGTTTTCATTTA


AGGGAAAGAAAATGAGTATTTTGTCCTTTTGTGTTCCTACAGACACTTT


CTTAAACCAGTTTTTGGATAAAGAATACTATTTCCAAACTCATATTACA


AAAACAAAATAAAATAATAAAAAAAGAAAGCATGATATTTACTGTTTTG


TTGTCTGGGTTTGAGAAATGAAATATTGTTTCCAATTATTTATAATAAA


TCAGTATAAAATGTTTTATGATTGTTATGTGTATTATGTAATACGTACA


TGTTTATGGCAATTTAACATGTGTATTCTTTTAATTGTTTCAGAATAGG


ATAATTAGGTATTCGAATTTTGTCTTTAAAATTCATGTGGTTTCTATGC


AAAGTTCTTCATATCATCACAACATTATTTGATTTAAATAAAATTGAAA


GTAATATTTGTGCAA





Gene: Angptl (Ang-1)


Species: mouse


NCBI Accession No.: NM_009640


SEQ ID NO: 652


Sequence:


GGAAAGGGGCTAGAATATGTACTCGCAGCTGACGCGGGCAGGCTCCAC


GCTGAACGGTTACACAGAGAGGAAACAATAAATCTAAGCTACTATTGC


AATAAATATCTCAAGTTTTAACGAAGGAAACTATCATTACAGTTAAAAT


TTTTTAAAGTAACGCTTTTTTAGAACAAAGCTAACAAATGGCTAGTTTT


CTGTGGATCTTCTTCAAACGCTTTCTTTAACGGGGAAAGAGTCAAACAA


GCAGTTTTACCTGAAATAAAGAACTAGTTTAAAGGTCAGAAGAGAAGA


GCAAGCTTTGCAGGAGGCACGGAAGGCAAGCGCTGGCAGTACAATGAC


AGTTTTCCTTTCCTTTGCATTCTTCGCTGCCATTCTGACTCACATAGGG


TGCAGCAACCAGCGCCGAAATCCAGAAAACGGAGGGAGAAGATATAAC


CGGATTCAACATGGGCAATGTGCCTACACTTTCATTCTTCCAGAACACG


ACGGGAACTGCCGTGAGAGTGCGACAGAGCAGTACAACACCAACGCTC


TGCAAAGGGATGCTCCACACGTGGAGCCGGATTTCTCTTCCCAGAAACT


TCAGCATCTGGAGCATGTGATGGAAAATTATACTCAGTGGCTGCAAAA


ACTTGAGAATTACATTGTGGAAAATATGAAGTCGGAGATGGCCCAGAT


ACAACAGAATGCTGTTCAAAACCACACGGCCACCATGCTTGAGATAGG


AACCAGTCTCTTATCTCAGACTGCAGAGCAGACCCGAAAGCTGACAGA


TGTTGAGACCCAGGTACTAAATCAAACATCCCGACTTGAAATACAACT


GCTAGAGAATTCATTATCAACATACAAGCTAGAGAAGCAACTTCTCCA


ACAGACAAATGAAATTCTGAAGATTCACGAAAAAAACAGTTTACTAGA


GCACAAAATCTTAGAAATGGAGGGAAAACACAAAGAAGAATTGGACA


CCTTGAAGGAGGAGAAAGAAAACCTTCAAGGCTTGGTTTCTCGTCAGA


CATTCATCATCCAGGAGTTGGAGAAGCAACTTAGTAGAGCTACCAACA


ACAACAGCATCCTGCAGAAGCAACAACTGGAGCTCATGGACACAGTTC


ATAACCTTATCAGCCTTTGCACTAAAGAAGGTGTTTTGCTAAAGGGAGG


AAAAAGAGAAGAAGAGAAACCATTTCGAGACTGTGCAGATGTATATCA


AGCTGGTTTTAATAAAAGTGGAATCTACACTATTTATTTTAATAATATG


CCAGAACCCAAAAAGGTATTTTGCAATATGGATGTGAATGGGGGAGGT


TGGACAGTAATACAACACCGGGAAGATGGAAGCCTGGATTTCCAGAGG


GGCTGGAAGGAGTATAAAATGGGTTTTGGGAATCCCTCTGGTGAATAT


TGGCTTGGGAACGAGTTCATTTTTGCAATAACCAGTCAGAGGCAGTAC


ATGCTGAGGATTGAGCTGATGGACTGGGAAGGGAACCGAGCCTACTCA


CAGTACGACAGATTCCACATAGGAAATGAAAAGCAGAACTATAGGTTA


TATTTAAAAGGTCACACAGGGACAGCAGGCAAACAGAGCAGCTTGATC


TTACACGGTGCCGATTTCAGCACGAAGGATGCTGATAACGACAACTGT


ATGTGCAAATGCGCTCTCATGCTAACAGGAGGTTGGTGGTTCGATGCCT


GTGGCCCTTCCAATCTAAATGGAATGTTCTACACTGCGGGACAAAATCA


TGGAAAACTGAATGGGATAAAGTGGCACTACTTCAAAGGGCCCAGTTA


CTCCTTACGTTCCACCACCATGATGATCCGGCCCTTGGACTTTTGAAGG


TGCTCTGCCAGTATTAGAAAGCTGCAAAGAAAGCTGGGCATGTTCCCA


GATGAGAAGCTAGTCAGAGGCTTCAGAAACAACCAACATTGTCTCCAT


TCCAGCAGCAAGTGGTTATGTCATGTCACCTGGGTTTGGAGCCTTCTGA


GGTCAACAGAATCGCCACTTGGGTCCAGAGAATGCCACTCACAATCAT


GTTTAAAAGGGAAGAAACTTCTCAGCTTGCTGCACTTCAAAGTGCTACT


GGATCACATTCTGAACTTATAACATCCTGATGCTGAATGCAACTTGTTT


CATGTAAAAGCAAAAGAAGAAGAAACAGCAAATGGGAACAGGCTTTC


CAGAATCTGTTGAAGATGGATTGTGGAGGTGACCTGGTATCACTGTAG


GAAATCCTGCTAACAATACATCACTGCCCAAAAGAGACATAAAGAAAA


GTTTTGTCTACTGAGTTGGCTAAAAGTTAGTGGAGTTCACCTGCCCATT


TCCAGTATCATATTTACTAGCTGATTTCAGGTTTCCTGTGTTCAAATGT


AAACTCTGTTCTTGTAAGCCATGATACAATATAGTACATGGAGGATAAG


AGTTGGGGGTAGAAGGTGCCTAAAGACTCTTGAGTTTCTGGGGATTCA


GTTTTCAAAAGATATAAAATATAATCAAGAATGGATAAAACAGGTGAA


AATCACACTCATGCTACAGTGTTC CTTTACATGAAATTTGATTAACTG


ATCCACAAGAATGTTTAGAGCCTGAGTATATATAAAGACTGGAAGTGTT


ATCACCCAGTTCTCAAAACAATAAGCAGGCAGTTAACATTCTCATTGAC


AGTATGTAGGAGAGCAATATGTGGAGTACTTGAGTTGGAACAGCCCAT


TGTACAGATCTTGCATGTATTTGCATATGTATGGCATTATTATTTTTAA


AGTGTTCGTAGGCCTTCAATTCTTCATACAGATTTTTCATGCTAATTTA


ATTTTTGTTAATTAACTGCAATGTACTTACTAAATATATCCTACTCCAG


TTTTTTATGAGTTATACTTTAAAGTCTACAAATAATAGAAGAATTTTAA


ATATCATTGTACATAATATCTTATACCTGTCCATGCTAAACTCAATAAT


TGTTTAGTCTGGAATATATGATGCTGTCCACAACTGATGACTATAAATA


TGATTGTTTAAAGACAGTTACCATACTATTGATTAAATATATTACTCTG


CATAGTTTTTCTCCTCCAGGATCTGTTTCTTCAAGCAATTTCTACCTTG


TAAAATAATGGTAGTAGAGAAAATTGACATAACTCCTTGTACAAAAGAA


TTATAGAAAAAATTACAGTCATTTGACTAGGAAGTTTCTGATTGTTAGC


TGCTATAAGTGCCTTAGTTAAGATGCCCCTGTGTTATAATATGTAGTAA


ATGAAGTTTTGGACACAGGATTCTGTGATAACCTGATGTGACTGCAGTA


TTCTATCAAGTTCTCTTTGTTGTTAAATGTTCAAGGTTATAGTAGAAAA


AAAACATTCAATCAAACACAATTTGCCATGAAAGGAGAGAACTAAATGT


AGGCACCAGTTCTGTTTTCTCAGAGAAGGAGAAGACTTTCTGGGACGTA


CATGTACCAAAATATAAATCTTGATAACCGCAGCCACAAAGCCTTAGTG


ACTTTCCTCTACCTGGTAAGACAGAGCTCTTCATGCTTTTAAGAAAAGA


TTCTGAATGCTTCCCACCACATCTTTCTTATATTTATATGTGTTCATAA


AGTACTATTTTGCCTTACAAGAGGTATGTGCCGACATTACAGGATTTTT


CTACTATAGTGACTCCTTCACAGCTTTCTTAAGCCTAGCCCTCTAAAAG


CTTCCTTCTCATTTAGATGAAAGAAAATGAGTATTTTTGTGATTCTGGT


GATTGTGGTGGTTGTTGTTGTTGTTGTTGTTGTTCCCACAGATGTTCGA


AAACTCATCTTGGGTAAATTGTTTTTCAATCCACATTACAAAAATAAAG


CGAAACAAGGAGAAAAAAAAGCATGGAATTTACTGATTTGTTATGTGGG


TTTGAAAAATAAGATATTGTTTTCAGTTATTTATAATAAAGCAGTATAA


TGTGTACATTGTATAATGCCAACATGTGTGTAGCAATTTGATACGCATA


GCTTTTTGCATTTAATTAATGCAGGGCAGAAAAATTAGATAACTCGAAC


TTTGTCTTGAAGTTTCTATTTCAATAAAAGCTGTGTCATTTCTATGAAA


A





Gene: ANGPT2 (Ang-2)


Species: mouse


NCBI Accession No.: NM_009640


SEQ ID NO: 653


Sequence:


AAAGTGATTGATTCGGATACTGACACTGTAGGATCTGGGGAGAGAGGA


ACAAAGGACCGTGAAAGCTGCTCTGTAAAAGCTGACACAGCCCTCCCA


AGTGAGCAGGACTGTTCTTCCCACTGCAATCTGACAGTTTACTGCATGC


CTGGAGAGAACACAGCAGTAAAAACCAGGTTTGCTACTGGAAAAAGA


GGAAAGAGAAGACTTTCATTGACGGACCCAGCCATGGCAGCGTAGCAG


CCCTGCGTTTTAGACGGCAGCAGCTCGGGACTCTGGACGTGTGTTTGCC


CTCAAGTTTGCTAAGCTGCTGGTTTATTACTGAAGAAAGAATGTGGCAG


ATTGTTTTCTTTACTCTGAGCTGTGATCTTGTCTTGGCCGCAGCCTATA


ACAACTTTCGGAAGAGCATGGACAGCATAGGAAAGAAGCAATATCAGGT


CCAGCATGGGTCCTGCAGCTACACTTTCCTCCTGCCAGAGATGGACAAC


TGCCGCTCTTCCTCCAGCCCCTACGTGTCCAATGCTGTGCAGAGGGACG


CGCCGCTCGAATACGATGACTCGGTGCAGAGGCTGCAAGTGCTGGAGA


ACATCATGGAAAACAACACTCAGTGGCTAATGAAGCTTGAGAATTATA


TCCAGGACAACATGAAGAAAGAAATGGTAGAGATACAGCAGAATGCA


GTACAGAACCAGACGGCTGTGATGATAGAAATAGGGACAAACCTGTTG


AACCAAACAGCGGAGCAAACGCGGAAGTTAACTGATGTGGAAGCCCA


AGTATTAAATCAGACCACGAGACTTGAACTTCAGCTCTTGGAACACTCC


CTCTCGACAAACAAATTGGAAAAACAGATTTTGGACCAGACCAGTGAA


ATAAACAAATTGCAAGATAAGAACAGTTTCCTAGAAAAGAAGGTGCTA


GCTATGGAAGACAAGCACATCATCCAACTACAGTCAATAAAAGAAGAG


AAAGATCAGCTACAGGTGTTAGTATCCAAGCAAAATTCCATCATTGAA


GAACTAGAAAAAAAAATAGTGACTGCCACGGTGAATAATTCAGTTCTT


CAGAAGCAGCAACATGATCTCATGGAGACAGTTAATAACTTACTGACT


ATGATGTCCACATCAAACTCAGCTAAGGACCCCACTGTTGCTAAAGAA


GAACAAATCAGCTTCAGAGACTGTGCTGAAGTATTCAAATCAGGACAC


ACCACGAATGGCATCTACACGTTAACATTCCCTAATTCTACAGAAGAG


ATCAAGGCCTACTGTGACATGGAAGCTGGAGGAGGCGGGTGGACAATT


ATTCAGCGACGTGAGGATGGCAGCGTTGATTTTCAGAGGACTTGGAAA


GAATATAAAGTGGGATTTGGTAACCCTTCAGGAGAATATTGGCTGGGA


AATGAGTTTGTTTCGCAACTGACTAATCAGCAACGCTATGTGCTTAAAA


TACACCTTAAAGACTGGGAAGGGAATGAGGCTTACTCATTGTATGAAC


ATTTCTATCTCTCAAGTGAAGAACTCAATTATAGGATTCACCTTAAAGG


ACTTACAGGGACAGCCGGCAAAATAAGCAGCATCAGCCAACCAGGAA


ATGATTTTAGCACAAAGGATGGAGACAACGACAAATGTATTTGCAAAT


GTTCACAAATGCTAACAGGAGGCTGGTGGTTTGATGCATGTGGTCCTTC


CAACTTGAACGGAATGTACTATCCACAGAGGCAGAACACAAATAAGTT


CAACGGCATTAAATGGTACTACTGGAAAGGCTCAGGCTATTCGCTCAA


GGCCACAACCATGATGATCCGACCAGCAGATTTCTAAACATCCCAGTC


CACCTGAGGAACTGTCTCGAACTATTTTCAAAGACTTAAGCCCAGTGCA


CTGAAAGTCACGGCTGCGCACTGTGTCCTCTTCCACCACAGAGGGCGTG


TGCTCGGTGCTGACGGGACCCACATGCTCCAGATTAGAGCCTGTAAACT


TTATCACTTAAACTTGCATCACTTAACGGACCAAAGCAAGACCCTAAAC


ATCCATAATTGTGATTAGACAGAACACCTATGCAAAGATGAACCCGAG


GCTGAGAATCAGACTGACAGTTTACAGACGCTGCTGTCACAACCAAGA


ATGTTATGTGCAAGTTTATCAGTAAATAACTGGAAAACAGAACACTTAT


GTTATACAATACAGATCATCTTGGAACTGCATTCTTCTGAGCACTGTTT


ATACACTGTGTAAATACCCATATGTCCTGAATTCACCATCACTATCACA


ATTAAAAGGAAGAAAAAAACTCTCTAAGCCATAAAAAGACATATTCAG


GGATATTCTGAGAAGGGGTTACTAGAAGTTTAATATTTGGAAAAACAG


TTAGTGCATTTTTACTCCATCTCTTAGGTGCTTTAAATTTTTATTTCAA


AAACAGCGTATTTACATTTATGTTGACAGCTTAGTTATAAGTTAATGCT


CAAATACGTATTTCAAATTTATATGGTAGAAACTTCCAGAATCTCTGAA


ATTATCAACAGAAACGTGCCATTTTAGTTTATATGCAGACCGTACTATT


TTTTTCTGCCTGATTGTTAAATATGAAGGTATTTTTAGTAATTAAATAT


AACTTATTAGGGGATATGCCTATGTTTAACTTTTATGATAATATTTACA


ATTTTATAATTTGTTTCCAAAAGACCTAATTGTGCCTTGTGATAAGGAA


ACTTCTTACTTTTAATGATGAGGAAAATTATACATTTCATTCTATGACA


AAGAAACTTTACTATCTTCTCACTATTCTAAAACAGAGGTCTGTTTTCT


TTCCTAGTAAGATATATTTTTATAGAACTAGACTACAATTTAATTTCTG


GTTGAGAAAAGCCTTCTATTTAAGAAATTTACAAAGCTATATGTCTCAA


GATTCACCCTTAAATTTACTTAAGGAAAAAAATAATTGACACTAGTAAG


TTTTTTTATGTCAATCAGCAAACTGAAAAAAAAAAAAGGGTTTCAAAGT


GCAAAAACAAAATCTGATGTTCATAATATATTTAAATATTTACCAAAAA


TTTGAGAACACAGGGCTGGGCGCAGTGGCTCACACCTATAATCCCAGTA


CATTGGTAGGCAAGGTGGGCAGATCACCTGAGGTCAGGAGTTCAAGACC


AGCCTGGACAACATGGTGAAACCCTGTCTCTACTAAATAATACAAAAAT


TAGCCAGGCGTGCTGGCGGGCACCTGTAATCCCAGCTACTCGGGAGGC


TGAGGCAGGGAGAATTGCTTGCACCAGGGAGGTAGAGGTTGCAGTGAG


CCAAGATCGCACCACTGCACTCCAGCCGGGGCAACAGAGCAAGACTCC


ATCTCAAAAAAAAAAAAAAAAAAAGAAAGAAAAGAAAATTTGAGAAC


ACAGCTTTATACTCGGGACTACAAAACCATAAACTCCTGGAGTTTTAAC


TCCTTTTGAAATTTTCATAGTACAATTAATACTAATGAACATTTGTGTA


AAGCTTTATAATTTAAAGGCAATTTCTCATATATTCTTTTCTGAATCAT


TTGCAAGGAAGTTCAGAGTCCAGTCTGTAACTAGCATCTACTATATGTC


TGTCTTCACCTTACAGTGTTCTACCATTATTTTTTCTTTATTCCATTTC


AAAATCTAATTTATTTTACCCCAACTTCTCCCCACCACTTGACGTAGTT


TTAGAACACACAGGTGTTGCTACATATTTGGAGTCAATGATGGACTCTG


GCAAAGTCAAGGCTCTGTTTTATTTCCACCAAGGTGCACTTTTCCAACA


ACTATTTAACTAGTTAAGAACCTCCCTATCTTAGAACTGTATCTACTTT


ATATTTAAGAAGGTTTTATGAATTCAACAACGGTATCATGGCCTTGTAT


CAAGTTGAAAAACAACTGAAAATAAGAAAATTTCACAGCCTCGAAAGAC


AACAACAAGTTTCTAGGATATCTCAATGACAAGAGTGATGGATACTTAG


GTAGGGAAACGCTAATGCAGGAAAAACTGGCAACAACACAATTTATATC


AATTCTCTTTGTAGGCAGGTGATAAAAAATTCAAGGACAAATCTCATTA


TGTCATTGTGCATCATATATAATCTCTTATGAGCGAGAATGGGGGGAAT


TTGTGTTTTTACTTTACACTTCAATTCCTTACACGGTATTTCAAACAAA


CAGTTTTGCTGAGAGGAGCTTTTGTCTCTCCTTAAGAAAATGTTTATAA


AGCTGAAAGGAAATCAAACAGTAATCTTAAAAATGAAAACAAAACAACC


CAACAACCTAGATAACTACAGTGATCAGGGAGCACAGTTCAACTCCTTG


TTATGTTTTAGTCATATGGCCTACTCAAACAGCTAAATAACAACACCAG


TGGCAGATAAAAATCACCATTTATCTTTCAGCTATTAATCTTTTGAATG


AATAAACTGTGACAAACAAATTAACATTTTTGAACATGAAAGGCAACT


TCTGCACAATCCTGTATCCAAGCAAACTTTAAATTATCCACTTAATTAT


TACTTAATCTTAAAAAAAATTAGAACCCAGAACTTTTCAATGAAGCATT


TGAAAGTTGAAGTGGAATTTAGGAAAGCCATAAAAATATAAATACTGT


TATCACAGCACCAGCAAGCCATAATCTTTATACCTATCAGTTCTATTTC


TATTAACAGTAAAAACATTAAGCAAGATATAAGACTACCTGCCCAAGA


ATTCAGTCTTTTTTCATTTTTGTTTTTCTCAGTTCTGAGGATGTTAATC


GTCAAATTTTCTTTGGACTGCATTCCTCACTACTTTTTGCACAATGGTC


TCACGTTCTCACATTTGTTCTCGCGAATAAATTGATAAAAGGTGTTAAG


TTCTGTGAATGTCTTTTTAATTATGGGCATAATTGTGCTTGACTGGATA


AAAACTTAAGTCCACCCTTATGTTTATAATAATTTCTTGAGAACAGCAA


ACTGCATTTACCATCGTAAAACAACATCTGACTTACGGGAGCTGCAGGG


AAGTGGTGAGACAGTTCGAACGGCTCCTCAGAAATCCAGTGACCCAATT


CTAAAGACCATAGCACCTGCAAGTGACACAACAAGCAGATTTATTATAC


ATTTATTAGCCTTAGCAGGCAATAAACCAAGAATCACTTTGAAGACAC


AGCAAAAAGTGATACACTCCGCAGATCTGAAATAGATGTGTTCTCAGA


CAACAAAGTCCCTTCAGAATCTTCATGTTGCATAAATGTTATGAATATT


AATAAAAAGTTGATTGAGAAAAA





Gene: Angpt2 (Ang-2)


Species: mouse


NCBI Accession No.: NM_007426


SEQ ID NO: 654


Sequence:


GATACTGACACTGTAGACTCAGGGGAGAAACAAAGAGTCCGTGCAGAC


CTCTGGAGTGAGCAGGGCTGCTCCTTCCTCTCAGGACAGCTCCGAGTGT


GCCGGGGAGAAGAGAAGAGAAGAGACAGGCACTGGGAAAGAGCCTGC


TGCGGGACGGAGAAGGCTCTCACTGATGGACTTATTCACACGGCACAG


CCCTGTGCCTTAGACAGCAGCTGAGAGCTCAGGACGCAAGTTTGCTGA


ACTCACAGTTTAGAACCCAAAAAGAGAGAGAGAATGTGGCAGATCATT


TTCCTAACTTTTGGCTGGGATCTTGTCTTGGCCTCAGCCTACAGTAACT


TTAGGAAGAGCGTGGACAGCACAGGCAGAAGGCAGTACCAGGTCCAGA


ACGGACCCTGCAGCTACACGTTCCTGCTGCCGGAGACCGACAGCTGCC


GATCTTCCTCCAGCCCCTACATGTCCAATGCCGTGCAGAGGGATGCACC


CCTCGACTACGACGACTCAGTGCAAAGGCTGCAGGTGCTGGAGAACAT


TCTAGAGAACAACACACAGTGGCTGATGAAGCTGGAGAATTACATTCA


GGACAACATGAAGAAGGAGATGGTGGAGATCCAACAGAATGTGGTGC


AGAACCAGACAGCTGTGATGATAGAGATTGGAACCAGCTTGCTGAACC


AGACAGCAGCACAAACTCGGAAACTGACTGATGTGGAAGCCCAAGTAC


TAAACCAGACGACAAGACTCGAGCTGCAGCTTCTCCAACATTCTATTTC


TACCAACAAATTGGAAAAGCAGATTTTGGATCAGACCAGTGAAATAAA


CAAGCTACAAAATAAGAACAGCTTCCTAGAACAGAAAGTTCTGGACAT


GGAGGGCAAGCACAGCGAGCAGCTACAGTCCATGAAGGAGCAGAAGG


ACGAGCTCCAGGTGCTGGTGTCCAAGCAGAGCTCTGTCATTGACGAGC


TGGAGAAGAAGCTGGTGACAGCCACGGTCAACAACTCGCTCCTTCAGA


AGCAGCAGCATGACCTAATGGAGACCGTCAACAGCTTGCTGACCATGA


TGTCATCACCCAACTCCAAGAGCTCGGTTGCTATCCGTAAAGAAGAGC


AAACCACCTTCAGAGACTGTGCGGAAATCTTCAAGTCAGGACTCACCA


CCAGTGGCATCTACACACTGACCTTCCCCAACTCCACAGAGGAGATCA


AGGCCTACTGTGACATGGACGTGGGTGGAGGAGGGTGGACAGTCATCC


AACACCGAGAAGATGGCAGTGTGGACTTCCAGAGGACGTGGAAAGAA


TACAAAGAGGGCTTCGGGAGCCCTCTGGGAGAGTACTGGCTGGGCAAT


GAGTTTGTCTCCCAGCTGACCGGTCAGCACCGCTACGTGCTTAAGATCC


AGCTGAAGGACTGGGAAGGCAACGAGGCGCATTCGCTGTATGATCACT


TCTACCTCGCTGGTGAAGAGTCCAACTACAGGATTCACCTTACAGGACT


CACGGGGACCGCGGGCAAAATAAGTAGCATCAGCCAACCAGGAAGTG


ATTTTAGCACAAAGGATTCGGACAATGACAAATGCATCTGCAAGTGTT


CCCAGATGCTCTCAGGAGGCTGGTGGTTTGACGCATGTGGTCCTTCCAA


CTTGAATGGACAGTACTACCCACAAAAACAGAATACAAATAAGTTTAA


CGGTATCAAGTGGTACTACTGGAAGGGGTCCGGCTACTCGCTCAAGGC


CACAACCATGATGATCCGGCCAGCAGATTTCTAAATGCCTGCCTACACT


ACCAGAAGAACTTGCTGCATCCAAAGATTAACTCCAAGGCACTGAGAG


ACACCAATGCATAGCAGCCCCTTTCCACATCAGGAAGTGCTCCTGGGG


GTGGGGAGGGTCTGTGTGTACCAGACTGAAGCGCATCACTTAAGCCTG


CACCGCTAACCAACCAAAGGCACTGCAGTCTGGAGAAACACTTCTGGG


AAGGTTGTGGCTGAGGATCAGAAGGACAGCGTGCAGACTCTGTCACAG


GGAAGAATGTTCCGTGGGAGTTCAGCAGTAAATAACTGGAAAACAGAA


CACTTAGATGGTGCAGATAAATCTTGGGACCACATTCCTCTAAGCACGG


TTTCTAGAGTGAATACATTCACAGCTCGGCTGTCACAATGACAAGGCCG


TGTCCTCGCACTGTGGCAGCCAGTATCCAGGGACTTCTAAGTGGTGGGC


ACAGGTTATCATCTGGAGAAGCACACATTCATTGTTTTCCTCTTGGGTG


CTTTACATGTTCATTTGAAAACAACACATTTACCTATCTTGATGGCTTA


GTTTTTAATGGCTGGCTACTATTTACTATATGGCAAAAATGCCCACATC


TCTGGAATAACCACCAAATAAGCGCCATGTTGGTGAATGCGGAGACTG


TACTATTTTGTTTTCTTCCTGGCTGTTAAATATGAAGGTATTTTTAGTA


ATTAAATATAAGTTATT








Claims
  • 1. A nucleic acid molecule that reduces expression of an angiopoietin-1 (Ang-1), an angiopoietin-2 (Ang-2), or a tyrosine kinase with immunoglobulin and EGF factor homology domains (Tie2) gene, wherein the nucleic acid molecule comprises or targets any one of SEQ ID NOs: 1-648.
  • 2. A nucleic acid molecule that reduces expression of an Ang-2 gene, wherein the nucleic acid molecule comprises or targets any one of SEQ ID NOs: 487, 489, 525, 526, 553, 554, 639, 640, 643, and 644.
  • 3. The nucleic acid molecule of claim 1, wherein the nucleic acid molecule is a short interfering RNA (siRNA) molecule.
  • 4. The siRNA molecule of claim 3, wherein the siRNA molecule is a 25-basepair blunt-ended siRNA molecule.
  • 5. A composition comprising the nucleic acid molecule of claim 1.
  • 6. The composition of claim 5, further comprising a pharmaceutically acceptable carrier.
  • 7. The composition of claim 5, further comprising a nanoparticle.
  • 8. The composition of claim 7, further comprising a histidine-lysine copolymer.
  • 9. The composition of claim 7, further comprising a targeting moiety.
  • 10. The composition of claim 5, further comprising one or more additional therapeutic agents.
  • 11. The composition of claim 5, further comprising one or more additional nucleic acid molecules that induce RNA interference and decrease the expression of a gene of interest.
  • 12. The composition of claim 11, wherein the one or more additional nucleic acid molecules decrease the expression of Ang-1, Ang-2, or Tie-2.
  • 13. A method for reducing protein level expression of Ang-1, Ang-2, or Tie-2 genes in a cell, comprising introducing into the cell the nucleic acid molecule of claim 1.
  • 14. A method of reducing angiogenesis in a subject in need thereof, comprising administering to the subject the nucleic acid molecule of claim 1.
  • 15. A method of treating cancer in a subject in need thereof, comprising administering to the subject the nucleic acid molecule of claim 1.
  • 16. A method for reducing protein level expression of Ang-1, Ang-2, or Tie-2 genes in a cell, comprising introducing into the cell the nucleic acid molecule of claim 2.
  • 17. A method of reducing angiogenesis in a subject in need thereof, comprising administering to the subject the nucleic acid molecule of claim 2.
  • 18. A method of treating cancer in a subject in need thereof, comprising administering to the subject the nucleic acid molecule of claim 2.
  • 19. The nucleic acid molecule of claim 1, wherein the nucleic acid molecule comprises at least one chemical analogue of a nucleotide.
  • 20. The nucleic acid molecule of claim 2, wherein the nucleic acid molecule comprises at least one chemical analogue of a nucleotide.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) from U.S. provisional application 60/958,519, filed Jul. 6, 2007, U.S. provisional application 60/966,085, filed Aug. 24, 2007 and U.S. provisional application 61/131,876, filed Jun. 12, 2008.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US08/08232 7/3/2008 WO 00 1/6/2010
Provisional Applications (3)
Number Date Country
60958519 Jul 2007 US
60966085 Aug 2007 US
61131876 Jun 2008 US