Methods and compositions for treatment of concrete wash water

Information

  • Patent Grant
  • 12186938
  • Patent Number
    12,186,938
  • Date Filed
    Tuesday, May 30, 2023
    a year ago
  • Date Issued
    Tuesday, January 7, 2025
    18 days ago
Abstract
The invention provides methods and compositions for treating wash water from concrete production with carbon dioxide. The treated wash water can be reused as mix water in fresh batches of concrete.
Description
BACKGROUND OF THE INVENTIONS

Wash water, produced in the making of concrete, poses a significant problem in terms of use and/or disposal. Methods and compositions to better manage concrete wash water are needed.


SUMMARY OF THE INVENTION

In one aspect the invention provides methods.


In certain embodiments, the invention provides a method of preparing a concrete mix comprising (i) adding concrete materials to a mixer; (ii) adding mix water to the mixer, wherein the mix water comprises carbonated concrete wash water; and (iii) mixing the water and the concrete materials to produce a concrete mix. In certain embodiments, the carbonated concrete wash water comprises at least 10% of the total mix water. In certain embodiments, the carbonated concrete mix water comprises at least 40% of the total mix water. In certain embodiments, the mix water comprises a first portion of water that is not carbonated mix water and a second portion of mix water that comprises carbonated mix water, wherein the first batch of mix water is added to the concrete materials before the second batch of mix water. The first portion of water can added at a first location and the second portion of water can added at a second location, e.g., the drum of a ready-mix truck, wherein the first and second locations are different. In certain embodiments, the second portion of mix water is added at least 2 minutes after the first portion. In certain embodiments, the carbonated concrete wash water has a density of at least 1.10 g/cm3. In certain embodiments, the carbonated concrete wash water has been held for at least 1 day. In certain embodiments, the carbonated concrete wash water has been held for at least 3 days. In certain embodiments, the concrete mix is sufficiently workable for its intended use, and the carbonated wash water is of an age that the same mix made with the wash water of the same age in the same proportions would not be sufficiently workable for its intended use. In certain embodiments, the mix water comprises carbonated wash water in an amount that results in a concrete mix that is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 40, or 50%, for example 5%, stronger at a time after pouring—e.g., 1 day, 7 days, 28 days, or any combination thereof—than the same concrete mix made without carbonated wash water. In certain embodiments, the mix water comprises carbonated wash water in an amount that allows the concrete mix to contain at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 40, or 50%, for example at least 5%, less cement than, and retain a compressive strength after pouring of within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 40, or 50%, for example at least 5%, of the same concrete mix made without carbonated wash water and with the extra (normal mix) percentage cement.


In another aspect, the invention provides apparatus.


In certain embodiments, the invention provides an apparatus for carbonating wash water produced in the production of concrete in a wash water operation wherein the wash water comprises cement and/or supplementary cementitious materials (SCM), comprising (i) a source of carbon dioxide; (ii) a first conduit operably connected to the source of carbon dioxide that runs to a wash water container, wherein (a) the wash water container contains wash water from a concrete production site; (b) the conduit has one or more openings positioned to deliver carbon dioxide at or under the surface of the wash water in the container to produce carbonated wash water; (iii) a system to transport the carbonated wash water to a concrete mix operation where the carbonated wash water is used as mix water in a concrete mix. The apparatus can further include (iv) a controller that determines whether or not, and/or how, to modify delivery of carbon dioxide to the wash water, or another characteristic of the wash water operation, or both, based on the one or more characteristics of the wash water or wash water operation. The characteristic can be, e.g., at least one, at least two, at least three, at least four, at least five, or at least six, of pH of the wash water, rate of delivery of carbon dioxide to the wash water, total amount of wash water in the wash water container, temperature of the wash water, specific gravity of the wash water, concentration of one or more ions in the wash water, age of the wash water, circulation rate of the wash water, timing of the circulation of the wash water, or timing of circulation of the wash water. In certain embodiments, the apparatus may further include (v) one or more sensors that monitor one or more characteristics of the wash water and/or the carbonation of the wash water in the container, wherein the one or more sensors is operably connected to the controller and delivers information regarding the characteristic of the wash water and/or wash water operation to the controller. In certain embodiments, the apparatus includes at least one, two, three, four, five, or six of sensors for (a) pH of the wash water, (b) rate of delivery of carbon dioxide to the wash water, (c) total amount of wash water in the wash water container, (d) temperature of the wash water, (e) specific gravity of the wash water, (f) concentration of one or more ions in the wash water, (g) age of the wash water, (h) circulation rate of the wash water, (i) timing of circulation of the wash water, or any combination thereof. The apparatus may further include (iii) one or more actuators operably connected to the controller to modify delivery of carbon dioxide to the wash water, or another characteristic of the wash water operation, or both.


In certain embodiments, the invention provides an apparatus for preparing a concrete mix comprising (i) a first mixer for mixing concrete materials and water; (ii) a second mixer for mixing concrete materials and water; (iii) a first water container holding water that comprises carbonated concrete wash water; (iv) a second water container, different from the first, holding water that is not carbonated concrete wash water; (iv) a first system fluidly connecting the first water container with the second mixer and a second system fluidly connecting the second water container with the first mixer. The first and second mixers can be the same mixer; in certain embodiments, they are different mixers. In certain embodiments, the first mixer is the drum of a ready-mix truck. In certain embodiments, the apparatus further includes a controller configured to add a first amount of the water in the second water container to the first mixer at a first time and to add a second amount of the water in the first water container to the second mixer at a second time, wherein the first and second times are different and wherein the first time is before the second time.


In certain embodiments, the invention provides an apparatus for preparing a concrete mix comprising (i) a mixer for mixing concrete materials and water; (ii) a first water container holding water that comprises carbonated concrete wash water; (iii) a second water container, different from the first, holding water that is not carbonated concrete wash water; (iv) a third container, fluid connected to the first and second water containers and to the mixer, for receiving a first portion of the water in the first container and a second portion of the water in the second container, mixing them to form mixed waters, and sending a third portion of the mixed waters to the mixer.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 shows set acceleration in concrete produced with wash (grey) water at various specific gravities and ages, where the water was with and without carbon dioxide treatment. See Example 1.



FIG. 2 shows set acceleration in concrete produced with wash (grey) water produced with Ordinary Portland Cement (OPC, 50%) and supplementary cementitious materials (SCM, 50%), where the water was treated and untreated with carbon dioxide, and aged 1 or 6 days.



FIG. 3 shows workability (slump) in concrete produced with wash (grey) water produced with Ordinary Portland Cement (OPC, 50%) and supplementary cementitious materials (SCM, 50%), where the water was treated and untreated with carbon dioxide, and aged 1 or 6 days.



FIG. 4 shows set acceleration in concrete produced with wash (grey) water produced with Ordinary Portland Cement (OPC, 100%), where the water was treated and untreated with carbon dioxide, and aged 1 or 6 days.



FIG. 5 shows workability (slump) in concrete produced with wash (grey) water produced with Ordinary Portland Cement (OPC, 100%), where the water was treated and untreated with carbon dioxide, and aged 1 or 6 days.



FIG. 6 shows set acceleration in concrete produced with wash (grey) water produced with Ordinary Portland Cement (OPC, 100%), where the water was treated and untreated with carbon dioxide, and aged 1 or 6 days, in a large number of different specific gravities.



FIG. 7 shows calorimetry, as power vs. time, for concrete produced with wash (grey) water produced with Ordinary Portland Cement (OPC, 100%), where the water was treated and untreated with carbon dioxide, and for concrete prepared with potable water.



FIG. 8 shows calorimetry, as energy vs. time, for concrete produced with wash (grey) water produced with Ordinary Portland Cement (OPC, 100%), where the water was treated and untreated with carbon dioxide, and for concrete prepared with potable water.



FIG. 9 shows set acceleration in concrete produced with wash (grey) water produced with Ordinary Portland Cement (OPC, 100%), where the wash water was treated with carbon dioxide continuously, at 2 hours after preparation of wash water, or just prior to use in the concrete.



FIG. 10 shows workability (slumpP in concrete produced with wash (grey) water produced with Ordinary Portland Cement (OPC, 100%), where the wash water was treated with carbon dioxide continuously, at 2 hours after preparation of wash water, or just prior to use in the concrete.



FIG. 11 shows 24-hour compressive strengths for concrete produced with various wash waters, where the wash water was treated or not treated with carbon dioxide.



FIG. 12 shows set acceleration in concrete prepared with wash water treated or not treated with carbon dioxide and held at two different temperatures.



FIG. 13 shows strength enhancement at 7 days for concrete produced with various wash waters, where the wash water was treated or not treated with carbon dioxide.



FIG. 14 shows strength enhancement at 28 days for concrete produced with various wash waters, where the wash water was treated or not treated with carbon dioxide.



FIG. 15 shows set times for mortar cubes made with wash water treated or untreated with carbon dioxide, and sitting for 1 day or 7 days.



FIG. 16 shows set times at 1 day relative to 7 days.



FIG. 17 shows set mortar slump mortar cubes made with wash water treated or untreated with carbon dioxide, and sitting for 1 day or 7 days.



FIG. 18 shows mortar slump for water held at 7 days relative to slump for water held at 1 day.



FIG. 19 shows carbon dioxide uptake of solids in wash water relative to time of treatment with carbon dioxide.



FIG. 20 shows pH of wash water relative to time of treatment with carbon dioxide.



FIG. 21 shows one-day strength of mortar cubes made with wash water treated with carbon dioxide for various times and aged 1 day.



FIG. 22 shows 7-day strength of mortar cubes made with wash water treated with carbon dioxide for various times and aged 1 day.



FIG. 23 shows 28-day strength of mortar cubes made with wash water treated with carbon dioxide for various times and aged 1 day.



FIG. 24 shows one-day strength of mortar cubes made with wash water treated with carbon dioxide for various times and aged 7 days.



FIG. 25 shows 7-day strength of mortar cubes made with wash water treated with carbon dioxide for various times and aged 7 days.



FIG. 26 shows 28-day strength of mortar cubes made with wash water treated with carbon dioxide for various times and aged 7 days.



FIG. 27 shows slump in mortar cubes made with wash waters treated or untreated with carbon dioxide.



FIG. 28 shows 1-day compressive in mortar cubes made with wash waters treated or untreated with carbon dioxide.



FIG. 29 shows 7-day compressive in mortar cubes made with wash waters treated or untreated with carbon dioxide.



FIG. 30 shows 28-day compressive in mortar cubes made with wash waters treated or untreated with carbon dioxide.



FIG. 31 shows calcium ICP-OES analysis of filtrate of wash waters treated or untreated with carbon dioxide



FIG. 32 shows potassium ICP-OES analysis of filtrate of wash waters treated or untreated with carbon dioxide



FIG. 33 shows sodium ICP-OES analysis of filtrate of wash waters treated or untreated with carbon dioxide



FIG. 34 shows strontium ICP-OES analysis of filtrate of wash waters treated or untreated with carbon dioxide



FIG. 35 shows sulfur ICP-OES analysis of filtrate of wash waters treated or untreated with carbon dioxide



FIG. 36 shows silicon ICP-OES analysis of filtrate of wash waters treated or untreated with carbon dioxide



FIG. 37 shows CO2 treatment decreased pH of filtrate of wash waters.



FIG. 38 shows data of FIGS. 31-36 in Tabular form.



FIG. 39 shows data of FIGS. 31-36 in Tabular form.



FIG. 40 shows scanning electron micrographs (SEM) for particles in wash waters (100% OPC) treated or untreated with carbon dioxide, 250× magnification.



FIG. 41 shows scanning electron micrographs (SEM) for particles in wash waters (100% OPC) treated or untreated with carbon dioxide, 1000× magnification.



FIG. 42 shows scanning electron micrographs (SEM) for particles in wash waters (100% OPC) treated or untreated with carbon dioxide, 25,000× magnification.



FIG. 43 shows scanning electron micrographs (SEM) for particles in wash waters (75% OPC/25% slag) treated or untreated with carbon dioxide, 250× magnification.



FIG. 44 shows scanning electron micrographs (SEM) for particles in wash waters (75% OPC/25% slag) treated or untreated with carbon dioxide, 3500× magnification.



FIG. 45 shows scanning electron micrographs (SEM) for particles in wash waters (75% OPC/25% slag) treated or untreated with carbon dioxide, 25,000× magnification



FIG. 46 shows X-ray diffraction (XRD) patterns from wash waters treated or untreated with carbon dioxide.



FIG. 47 shows X-ray diffraction (XRD) patterns from wash waters treated or untreated with carbon dioxide.



FIG. 48 shows nuclear magnetic resonance (NMR) patterns from wash waters treated or untreated with carbon dioxide.



FIG. 49 shows nuclear magnetic resonance (NMR) patterns from wash waters treated or untreated with carbon dioxide.



FIG. 50 shows the results for compressive strength of mortar cubes made with one-day old wash water subject to continuous agitation, wash water solids and mortar at 25% slag/75% OPC (Cemex Cemopolis cement).



FIG. 51 shows the results for compressive strength of mortar cubes made with one-day old wash water subject to continuous agitation, wash water solids and mortar at 25% class C fly ash/75% OPC (Cemex Cemopolis cement).



FIG. 52 shows the results for compressive strength of mortar cubes made with one-day old wash water subject to continuous agitation, wash water solids and mortar at 25% class F fly ash/75% OPC (Cemex Cemopolis cement).



FIG. 53 shows the results for compressive strength of mortar cubes made with one-day old wash water subject to continuous agitation, wash water solids and mortar at 100% OPC (Cemex Cemopolis cement).



FIG. 54 shows the results for compressive strength of mortar cubes made with seven-day old wash water subject to continuous agitation, wash water solids and mortar at 100% OPC (Cemex Cemopolis cement).



FIG. 55 shows effects of untreated and carbon dioxide-treated wash water used in mortar cubes on set times of the mortar cubes.



FIG. 56 shows the effects of untreated and carbon dioxide-treated wash water aged one day used in mortar cubes on compressive strengths of the mortar cubes.



FIG. 57 shows the effects of untreated and carbon dioxide-treated wash water aged five day used in mortar cubes on compressive strengths of the mortar cubes.



FIG. 58 shows the effects of untreated and carbon dioxide-treated wash water aged one to five day used in mortar cubes on compressive strengths of the mortar cubes.





DETAILED DESCRIPTION OF THE INVENTION

Wash water, also called grey water herein, is produced as a byproduct of the concrete industry. This water, which may contain suspended solids in the form of sand, aggregate and/or cementitious materials, is generated through various steps in the cycle of producing concrete structures. Generally a large volume of concrete wash water is produced by the washing-out of concrete mixer trucks following the delivery of concrete. This water is alkaline in nature and requires specialized treatment, handling and disposal.


While this water can be suitable for reuse in the production of concrete, it has been documented that the wash water can result in negative impacts on the properties of concrete, namely set acceleration and loss of workability. Wash water is mainly a mixture of cement and, in many cases, supplementary cementitious materials (SCMs) in water. It becomes problematic as a mix water because as the cement hydrates it changes the chemistry of the water. These changes in chemistry, along with the hydration products, cause a host of issues when the water is used as mix water, such as acceleration, increased water demand, reduced 7-day strength, and the like. These issues generally worsen as the amount of cement in the water increases, and/or the water ages.


The methods and compositions of the invention utilize the application of CO2 to concrete wash water to improve its properties for reuse in the production of concrete. Thus, wash water that has a cement content (e.g., specific gravity) and/or that has aged to a degree that would normally not allow its use as mix water can, after application of carbon dioxide, be so used.


Without being bound by theory, it is thought that by carbonating wash water, several results may be achieved that are beneficial in terms of using the water as part or all of mix water for subsequent batches of concrete:

    • 1) Maintain a pH of ˜7. This effectively dissolves the cement due to the acidity of CO2. This helps deliver a grey water of consistent chemistry and removes the “ageing effects”.
    • 2) Precipitate any insoluble carbonates: CO2 actively forms carbonate reaction products with many ions. This removes certain species from solution, such as calcium, aluminum, magnesium and others. This is another step that helps provide a grey water of consistent chemistry.
    • 3) Change solubility of cement ions: The solubilities of many ions depend on pH. By maintaining the pH at ˜7 with CO2 the nature of the water chemistry is changed, potentially in a favorable direction.
    • 4) Shut down pozzolanic reactions: By maintaining the pH around 7 no Ca(OH)2 is available to react with slag and/or fly ash in the grey water. This can mean that these SCMs are unaltered through the treatment and reuse of the grey water, thus reducing the impact of the grey water substantially,
    • 5) Reduce amount of anions behind: The formation of carbonate precipitates using CO2 is advantageous over other common acids, like HCl or H2SO4 whose anions, if left soluble in the treated water, can adversely impact the chemistry of the grey water for concrete batching.
    • 6) Cause retardation: By saturating the grey water with CO2/HCO3-retardation can be achieved when used as batch water.
    • 7) Nature of precipitates: The process may potentially be altered to form precipitates that have less effects on the water demand of concrete prepared with grey water. In particular, conditions of carbonation may be used that produce nanocrystalline carbonates, such as nanocrystalline calcium carbonate, that are known to be beneficial when used in concrete products.


In certain embodiments, the invention provides a method of providing a mix water for a batch of concrete, where the mix water comprises wash water from one or more previous batches of concrete that has be exposed to carbon dioxide in an amount above atmospheric concentrations of carbon dioxide, to carbonate the wash water (“carbonated wash water.”. The mix water may contain at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, or 99.5% carbonated wash water. Alternatively or additionally, the mix water may contain no more than 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.5, or 100% carbonated wash water. In certain embodiments, the mix water is 100% carbonated wash water. In certain embodiments, the mix water is 1-100% carbonated wash water. In certain embodiments, the mix water is 1-80% carbonated wash water. In certain embodiments, the mix water is 1-50% carbonated wash water. In certain embodiments, the mix water is 1-30% carbonated wash water. In certain embodiments, the mix water is 10-100% carbonated wash water. In certain embodiments, the mix water is 20-100% carbonated wash water. In certain embodiments, the mix water is 50-100% carbonated wash water. In certain embodiments, the mix water is 70-100% carbonated wash water. In certain embodiments, the mix water is 90-100% carbonated wash water.


In certain embodiments, a first portion of mix water that is plain water, e.g., not wash or other water that has been carbonated, such as plain water as normally used in concrete mixes, is mixed with concrete materials, such as cement, aggregate, and the like, and then a second portion of mix water that comprises carbonated water, which can be carbonated plain water or, e.g., carbonated wash water is added. The first portion of water may be such that an acceptable level of mixing is achieved, e.g., mixing without clumps or without substantial amounts of clumps. For example, the first portion of mix water that is plain water may be 1-90%, or 1-80%, or 1-75%, or 1-70%, or 1-65%, or 1-60%, or 1-55%, or 1-50%, or 1-45%, or 1-40%, or 1-30%, or 1-20%, or 1-10% of the total mix water used in the concrete mix, while the remainder of the mix water used in the concrete mix is the second portion, i.e., carbonated mix water. The first portion of water may be added at one location and the second portion at a second location. For example, in a ready mix operation, the first portion may be added to concrete materials which are mixed, then the mixed materials are transferred to a drum of a ready-mix truck, where the second portion of water is added to achieve carbonation of the concrete in the drum of the ready-mix truck. However, it is also possible that both the first and the second locations are the same location, e.g., a mixer prior to deposit into a ready-mix truck, or the drum of the ready-mix truck. The second portion of water may be added at any suitable time after the addition of the first portion. In general, the second portion of water is added at least after the first portion and the concrete materials have mixed sufficiently to achieve mixing without clumps or without substantial amounts of clumps. In certain embodiments, the second portion of water is added at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 40, 50, or 60 minutes after the first portion of water.


The wash water may be carbonated at any suitable time, for example, right after its production, at some time after production, or just before use in the concrete, or any combination thereof. For example, in certain embodiments, carbonation of wash water can commence no later than 1, 2, 5, 10, 20, 30, 40, 60, 80, 100, 120, 150, 180, 240, 300, 360, 420, or 480 minutes after formation of the wash water, and/or no sooner than 2, 5, 10, 20, 30, 40, 60, 80, 100, 120, 150, 180, 240, 300, 360, 420, 480, or 540 minutes after formation of the wash water. The carbonation can continue for any suitable period of time, for example, in certain embodiments wash water is continuously exposed to carbon dioxide for a period of time after carbonation commences. Alternatively or additionally, wash water can be carbonated just before its use as mix water, for example, no more than 1, 2, 5, 10, 20, 30, 40, 60, 80, 100, 120, 150, 180, 240, 300, 360, 420, or 480 minutes before its use as mix water (e.g., before contacting the concrete mixture), and/or no sooner than 2, 5, 10, 20, 30, 40, 60, 80, 100, 120, 150, 180, 240, 300, 360, 420, 480, or 540 minutes before its use as mix water.


In certain embodiments, the wash water is circulated before its use as a mix water. For example, part or all of the wash water that is carbonated may be circulated (e.g., run through one or more loops to, e.g., aid in mixing and/or reactions, or agitated, or stirred, or the like). This circulation may occur continuously or intermittently as the water is held prior to use. In certain embodiments the wash water is circulated for at least 5, 10, 20, 50, 70, 80, 90, 95, or 99% of the time it is held prior to use as mix water.


It will be appreciated that many different wash waters are typically combined and held, for example, in a holding tank, until use or disposal. Carbonation of wash water may occur before, during, or after its placement in a holding tank, or any combination thereof. Some or all of the wash water from a given operation may be carbonated. It is also possible that wash water from one batch of concrete may be carbonated then used directly in a subsequent batch, without storage.


Any suitable method or combination of methods may be used to carbonate the wash water. The wash water may be held in a container and exposed to a carbon dioxide atmosphere while mixing. Carbon dioxide may be bubbled through mix water by any suitable method; for example, by use of bubbling mats, or alternatively or additionally, by introduction of carbon dioxide via a conduit with one or a plurality of openings beneath the surface of the wash water. The conduit may be positioned to be above the sludge that settles in the tank and, in certain embodiments, regulated so as to not significantly impede settling. Catalysts may also be used to accelerate one or more reactions in the carbonating wash water.


In certain cases, mix water, e.g., wash water may be treated with carbon dioxide in such a manner that the carbon dioxide content of the water increases beyond normal saturation, for example, at least 10, 20, 30, 40, 50, 70, 100, 150, 200, or 300% beyond normal saturation, compared to the same water under the same conditions that is normally saturated with carbon dioxide. Normal saturation is, e.g., the saturation achieved by, e.g., bubbling carbon dioxide through the water, e.g., wash water, until saturation is achieved, without using manipulation of the water beyond the contact with the carbon dioxide gas. For methods of treating water to increase carbon dioxide concentration beyond normal saturation levels, see, e.g., U.S. Patent Application Publication No. 2015/0202579.


In certain embodiments, the invention allows the use of wash water substantially “as is,” that is, without settling to remove solids. Carbonation of the wash water permits its use as mix water, even at high specific gravities.


This technology can allow the use of grey water as mix water, where the grey water is at specific gravities of at least 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.20, 1.22, 1.25, 1.30, 1.35, 1.40, or 1.50, and/or not more than 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.20, 1.22, 1.25, 1.30, 1.35, 1.40, 1.50 or 1.60; e.g., 1.0-1.2, or 1.0 to 1.3, or 1.0 to 1.18, or 1.0 to 1.16, or 1.0 to 1.15, or 1.0 to 1.14, or 1.0 to 1.13, or 1.0 to 1.12, or 1.0 to 1.10, or 1.0 to 1.09, or 1.0 to 1.08, or 1.0 to 1.07, or 1.0 to 1.06, or 1.0 to 1.05, or 1.0 to 1.04, or 1.0 to 1.03, or 1.0 to 1.02, 1.01-1.2, or 1.01 to 1.3, or 1.01 to 1.18, or 1.01 to 1.16, or 1.01 to 1.15, or 1.01 to 1.14, or 1.01 to 1.13, or 1.01 to 1.12, or 1.01 to 1.10, or 1.01 to 1.09, or 1.01 to 1.08, or 1.01 to 1.07, or 1.01 to 1.06, or 1.01 to 1.05, or 1.01 to 1.04, or 1.01 to 1.03, or 1.01 to 1.02, or 1.02-1.2, or 1.02 to 1.3, or 1.02 to 1.18, or 1.02 to 1.16, or 1.02 to 1.15, or 1.02 to 1.14, or 1.02 to 1.13, or 1.02 to 1.12, or 1.02 to 1.10, or 1.02 to 1.09, or 1.02 to 1.08, or 1.02 to 1.07, or 1.02 to 1.06, or 1.02 to 1.05, or 1.02 to 1.04, or 1.02 to 1.03, or 1.03-1.2, or 1.03 to 1.3, or 1.03 to 1.18, or 1.03 to 1.16, or 1.03 to 1.15, or 1.03 to 1.14, or 1.03 to 1.13, or 1.03 to 1.12, or 1.03 to 1.10, or 1.03 to 1.09, or 1.03 to 1.08, or 1.03 to 1.07, or 1.03 to 1.06, or 1.03 to 1.05, or 1.03 to 1.04, or 1.05-1.2, or 1.05 to 1.3, or 1.05 to 1.18, or 1.05 to 1.16, or 1.05 to 1.15, or 1.05 to 1.14, or 1.05 to 1.13, or 1.05 to 1.12, or 1.05 to 1.10, or 1.05 to 1.09, or 1.05 to 1.08, or 1.05 to 1.07, or 1.05 to 1.06. In certain embodiments the methods and compositions of the invention allow the use of grey (wash) water as mix water, where the grey water has a specific gravity of at least 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, or 1.20.


The use of wash water in a concrete mix, especially carbonated wash water, often results in enhanced strength of the resulting concrete composition at one or more times after pouring, for example, an increase in compressive strength, when compared to the same concrete mix without carbonated wash water, of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, or 25% at 1-day, 7-days, and/or 28-days. This increase in early strength often allows the use of less cement in a mix that incorporates carbonated wash water than would be used in the same mix that did not incorporate carbonated wash water; for example, the use of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 25, 30, 35, or 40% less cement in the mix where the mix retains a compressive strength at a time after pouring, e.g., at 1, 7, and/or 28-days, that is within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 40, or 50% of the compressive strength of the mix that did not incorporate carbonated wash water, e.g., within 5%, or within 7%, or within 10%.


In addition, the carbonation of wash water can allow the use of wash water at certain ages that would otherwise not be feasible, e.g., wash water that has aged at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, or 15 days. Wash water that has been carbonated may be used in concrete at an age where it would otherwise produce a concrete mix without sufficient workability to be used.


The CO2 treatment produces carbonate reaction products that likely contain some amount of nano-structured material. Of the carbonated products in the wash water, e.g., calcium carbonate, at least 1, 2, 5, 7, 10, 12, 15, 20, 25, 30, 25, 40, 45, 50, 60, 70, 80, or 90% may be present as nano-structured materials, and/or not more than 5, 7, 10, 12, 15, 20, 25, 30, 25, 40, 45, 50, 60, 70, 80, 90, 95, or 100% may be present as nano-structured material. A “nano-structured material,” as that term used herein, includes a solid product of reaction of a wash water component with carbon dioxide whose longest dimension is no more than 500 nm, in certain embodiments no more than 400 nm, in certain embodiment no more than 300 nm, and in certain embodiments no more than 100 nm.


The CO2 treatment has the further benefit of sequestering carbon dioxide, as the carbon dioxide reacts with components of the wash water (typically cement or supplementary cementitious material), as well as being present as dissolved carbon dioxide/carbonic acid/bicarbonate which, when the wash water is added to a fresh concrete mix, further reacts with the cement in the mix to produce further carbon dioxide-sequestering products. In certain embodiments, the carbon dioxide added to the wash water results in products in the wash water that account for at least 1, 2, 5, 7, 10, 12, 15, 20, 25, 30, 25, 40, 45, 50, 60, 70, 80, or 90% carbon dioxide by weigh cement (bwc) in the wash water, and/or not more than 5, 7, 10, 12, 15, 20, 25, 30, 25, 40, 45, 50, 60, 70, 80, 90, 95, or 100% carbon dioxide by weigh cement (bwc) in the wash water.


Embodiments include applying CO2 immediately after the wash water is generated, in a tank, and/or as the grey water is being loaded for batching.


Alternatively or additionally, carbonation of grey (wash) water can allow use of aged wash water as mix water, for example, wash water that has aged at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 days.


The source of the carbon dioxide can be any suitable source. In certain embodiments, some or all of the carbon dioxide is recovered from a cement kiln operation, for example, one or more cement kiln operations in proximity to the concrete production facility, e.g., one or more cement kiln operations that produce cement used in the concrete production facility.


Compositions of the invention include an apparatus for carbonating concrete wash water in a wash water operation that includes a source of carbon dioxide operably connected to a conduit that runs to a wash water container containing wash water from a concrete production site, where one or more openings of the conduit are positioned to deliver carbon dioxide at or under the surface of wash water in the container, or both, and a system to transport the carbonated wash water to a concrete mix operation where the carbonated wash water is used as mix water in a concrete mix, e.g. a second conduit that can be positioned to remove carbonated wash water from the wash water container and transport it to a concrete mix operation, where the carbonated wash water is used as part or all of mix water for concrete batches. Generally, the carbon dioxide will be delivered directly to the wash water tank as described elsewhere herein, though in some embodiments carbonation may occur outside the tank and the carbonated water returned to the tank. The apparatus may further include a controller that determines whether or not to modify the delivery of carbon dioxide based at least in part on one or more characteristics of the wash water or wash water operation. The characteristics may include one or more of pH of the wash water, rate of delivery of carbon dioxide to the wash water, total amount of wash water in the wash water container, temperature of the wash water, specific gravity of the wash water, concentration of one or more ions in the wash water, age of the wash water, circulation rate of the wash water, timing of circulation of the wash water, or any combination thereof. One or more sensors may be used for monitoring one or more characteristics of the wash water; additionally, or alternatively, manual measurements may be made periodically, e.g., manual measurements of specific gravity, pH, or the like. The apparatus may further comprise one or more actuators operably connected to the controller to modify delivery of carbon dioxide to the wash water, or another characteristic of the wash water, or both. The apparatus may include a system for moving the wash water, such as by circulating or agitating the wash water, either continuously or intermittently. The composition may further include a delivery system for delivering carbon dioxide to the source of carbon dioxide, where some or all of the carbon dioxide is derived from a cement kiln operation in proximity to the concrete production site, for example, a cement kiln operation that produces some or all of cement used in the concrete production site.


EXAMPLES
Example 1

Samples of grey (wash) water were prepared in the lab. Lab grey water was made by mixing cement with potable water. Specific gravity (SG) range of lab grey water was 1.025 to 1.100. Grey water was allowed to age for either 1 or 4 days before being used as mix water in the preparation of mortar samples. Set time of mortar was measured via penetrometer as per ASTM C403.


Set time. In FIG. 1, Acceleration is plotted relative to the set time for a sample made with potable water (SG=1.000). Both SG and age of grey water have large accelerating effect on mortar initial set.


A CO2 treatment was applied to grey water samples in same age and SG range as previous set. As with untreated samples, acceleration is plotted relative to the set time for a sample made with potable water (SG=1.000) (FIG. 1).


Treatment of the grey water with CO2 resulted in two main improvements: 1) Reduced acceleration: the amount of initial set acceleration was greatly reduced by the CO2 treatment of the grey water; and 2) Reduction in age effects: the set time acceleration was not significantly influenced by aging of the CO2 treated grey water samples


The reduction in acceleration and age effects helps address two of the primary obstacles associated with grey water reuse. First, the CO2 treatment opens the potential to correlate impacts of the grey water directly to the SG value of the sample regardless of age, and second, the reduction in the scale of the acceleration allows for simple modifications to admixture loadings to fine-tune set time.


Example 2

This Example demonstrates that treatment of concrete wash water (grey water) with carbon dioxide improves set, workability, and other characteristics of concrete made using the wash water, and allows the use of wash water at higher specific gravity than the typical maximum allowed.


In a first set of tests, samples of wash water were produced in the lab by adding known amounts of cementitious materials to potable water sources. The samples of wash water were allowed to age for up to 6 days before being used as mix water in the preparation of mortar samples. Certain samples were subjected to CO2 treatment, which included vigorous mixing and aging of the wash water under a CO2 atmosphere. Typically the exposure to CO2 was initiated in the timeframe of 30-120 minutes after preparation of the wash water and continued until the wash water was used for mortar preparation. Variations on the CO2 treatment were deployed wherein a sample of wash water was only exposed to CO2 once: either directly before use as mix water or in the time frame of 30-120 minutes after the wash water was prepared. The CO2 treatments presented would result in CO2 uptake on the order of 10-40% by weight of cement.


The proportions and properties of wash water prepared for this study are presented in Table 1, below. The density of cement was taken as 3.15 g/mL while the density of slag and class F fly ash were both taken as 2.2 g/mL. Grey water samples were prepared at additional specific gravity values using the same logic presented within this table.









TABLE 1







Compositions of Wash Waters used in the Example














Mass
Mass
Mass
Mass
Final
Final


Wash
of
of
of
of
Mixture
Mixture


Water
water
cement
slag
fly ash
Density
Specific


Type
(g)
(g)
(g)
(g)
(g/mL)
Gravity

















100%
OPC
267.5
40
0
0
1.10
1.10


100%
OPC
267.5
65
0
0
1.15
1.15


100%
OPC
267.5
85
0
0
1.20
1.20


50%
SCMs
267.5
23
14
9
1.10
1.10


50%
SCMs
267.5
35
21
14
1.15
1.15


50%
SCMs
267.5
49
29
20
1.20
1.20









The concrete wash water samples produced in the lab were used to produce mortar samples and assessed for their impact on fresh properties. The wash water samples were used to prepare mortar samples by combining with 1350 g sand and 535 g of cement in a bench-top paddle style mixer. Set time was measured in accordance with ASTM C403 using the penetrometer method. Calorimetry was collect using a Calmetrix iCa18000. Set time and slump results were compared to mortar samples prepared with potable water


Set and Workability. All statements apply to both EF50 and 100% OPC grey water compositions


Set time. In all cases the CO2 treatment greatly reduced the acceleration caused by increases solid contents in the wash water (FIGS. 2, 4 and 6). In addition, in all cases the CO2 treatment greatly reduced the acceleration caused by increases aging of the wash water (FIG. 2).


Workability. In all cases the CO2 treatment greatly reduced the loss of workability caused by increases aging of the wash water (FIGS. 3 and 5).


Calorimetry. The CO2 treatment has a marked impact on the hydration of cement in mortars prepared with grey water, returning the onset and intensity of features to the same region as the control sample made with potable water. FIGS. 7-8 are representative calorimetry curves as observed from the previously presented experiments. In all cases the grey water was prepared with 100% OPC to have a specific gravity of 1.1 and aged for 1 day. The curves presented compare the calorimetry response for three cases: 100% OPC grey water without CO2 treatment; 100% OPC grey water with CO2 treatment; a control produced with potable water. From both power (FIG. 7) and energy (FIG. 8) perspective it can be observed that the CO2 treatment allows the hydration of cement in the mortar samples to proceed normally: when using the CO2 treatment the onset and intensity of features is in-line with those observed for the control produced with potable water


Carbon Dioxide Exposure Variables.


In a second set of tests, three different modes of CO2 exposure were tested: Continuous—the grey water was exposed to CO2 starting at approximately 2 hours after mixing until use; Treatment at 2 hours—the grey water was exposed to CO2 once at approximately 2 hours after mixing and untreated until use as mix water; Treatment before use—the grey water was untreated until approximately 15 minutes before use. These three variations were meant to mimic timeframes when CO2 could foreseeably be applied to grey water in an industrial setting. The choice of 2 hours was meant to begin the CO2 treatment after the grey water had been prepared, but before any significant cement hydration had occurred. In practice this timeframe could be anywhere from 15-180 minutes.


Continuous treatment offered the best improvement of set time after 1 day of aging while CO2 treatment before use offered the best improvement after 6 days of aging (FIG. 9). In general treatment at 2 hours provided the best slump impact (FIG. 10).


Strength Assessment. See FIG. 11


Sample of grey water were used to prepare 2″×2″×2″ mortar cubes for assessment of compressive strength development. All grey water was aged for 1 day and prepared at a specific gravity of 1.1. Compressive strength tests were performed at 24 hours after mixing. The samples were prepared as follows: A control made with potable water; EF50 grey water without CO2 treatment; EF50 grey water with CO2 treatment; 100% OPC grey water without CO2 treatment; 100% OPC grey water with CO2 treatment; Control with additional EF50 powder; Control with additional 100% OPC powder. Where the additional solids in the grey water are cementitious in nature samples 6 and 7 were prepared with the same amount of solids as in the grey water. In all cases this was introduced as additional anhydrous binder.


In all cases the samples performance was equivalent or better than a control produced with potable water (FIG. 11). There was also a strength enhancement at later time points, for example, 7 and/or 28 days. See FIGS. 13 (Washwater of 100% OPC, SG 1.1) and 14 (Washwater 50% cement, 30% slag, 20% class F fly ash).


Cooling. Samples of grey water with two different compositions (EF50 and 100% OPC) were prepared at a specific gravity of 1.1 and stored at one of two temperatures: Low temperature=40° F.; Room temperature=approximately 65° F. A combination of cooling and CO2 treatment provided a synergistic improvement in mortar set time, see FIG. 12.


Example 3

Binder powder was added to samples of water and allowed to age either 1 or 7 days. The binder powder for a given water sample matched the composition of the binder for the mortar later produced from the water; e.g., if the mortar were to be made with 100% OPC, binder powder for wash water was 100% OPC; if the mortar were to be made with 75/25 OPC/class F fly ash, a 75/25 OPC/class F fly ash was used. Water was either left untreated, or treated with CO2 consistently over the aging period. An excess of CO2 was supplied to allow thorough carbonation. Following aging of the mix water mortar samples were prepared according to the following recipe: 1350 g EN Sand, 535 g cement. Set time was measured from calorimetry as the thermal indicator of set (the hydration time to reach a thermal power of 50% of the maximum value of the main hydration peak, ASTM C1679).


The results are shown in FIGS. 15-18 and TABLE 2. 15 different batches were aggregated for each condition, and results are shown as BOX PLOTS showing 1st quartile, median, and 3rd quartile. Whiskers show max and min. FIG. 15 shows set time relative to a potable water control with the same binder composition and w/b. Set time is reduced in untreated water (average 73% to 71%). Set time is improved to neutral if CO2 treatment is used (Average is 98% at 1 day, 91% at 7 days). FIG. 16 shows set time at 7 days relative to set time at 1 day. Water aging did not have a large effect on set time for either case (decline in average by 2% for untreated and 6% in CO2 treated water). FIG. 17 shows mortar slump (workability) relative to a potable water control with the same binder composition and w/b. Slump was compromised when using wash water, and became worse with age if the water was not treated. The average declined from 62% to 32% in the untreated water, and 63% to 51% in the treated water; thus, carbon dioxide treatment mitigated the further decrease in slump in aging wash water compared to untreated. FIG. 18 shows mortar slump at 7 days relative to mortar slump at 1 day. Workability was worse for 7 day wash water than 1 day was water if it is untreated, but, as noted, there was small to no change observed if CO2 treatment was applied. The results are also summarized in TABLE 2.









TABLE 2





Effect of CO2 treatment of wash water on set time and workability
















Slump Summary vs Potable



Water Reference
















CO2
CO2
Relative Change



Untreated
Untreated
Treated
Treated
in Slump














Aged
Aged
Aged 1
Aged 7

CO2


Metric
1 Day
7 Days
Day
Days
Untreated
Treated





Average
62%
32%
63%
51%
−29%
−11%


Median
60%
32%
64%
52%
−29%
 −5%


Min
43%
14%
40%
 0%
−50%
−50%


Max
83%
54%
79%
88%
 0%
 9%


1st
52%
27%
56%
43%
−37%
−18%


Quartile








3rd
70%
35%
73%
66%
−22%
 2%


Quartile













Set Time Summary vs Potable




Water Reference
















CO2
CO2
Relative Change



Untreated
Untreated
Treated
Treated
in Set Time














Aged
Aged
Aged 1
Aged 7

CO2


Metric
1 Day
7 Days
Day
Days
Untreated
Treated





Average
73%
71%
 98%
91%
−2%
−6%


Median
73%
71%
102%
96%
−1%
−5%


Min
64%
61%
 67%
58%
−11% 
−19% 


Max
90%
85%
116%
110% 
 8%
 3%


1st
67%
68%
 90%
86%
−5%
−13% 


Quartile








3rd
77%
75%
112%
101% 
 2%
−1%


Quartile









Example 4

This Example describes the effects of duration of exposure of wash water to carbon dioxide.


Binder powder was added to samples of water to create simulated wash water at specific gravity of 1.1. The water samples were mixed for varying durations, starting about 30 minutes after they were first produced. The water was either left untreated, or treated with CO2 consistently over the mixing period. An excess of CO2 was supplied to allow thorough carbonation. The pH of the water and CO2 uptake of the solids was measured. Water samples were allowed to age either 1 or 7 days. Following aging of the mix water mortar samples were prepared according to the standard recipe. 1350 g EN Sand, 535 g cement.


As expected, CO2 uptake of wash water solids increased with treatment time (FIG. 19), with a corresponding decrease in the pH of the wash water (FIG. 20). One-day (FIG. 21), 7-day (FIG. 22), and 28-day strength (FIG. 23) were all increased in mortar cubes made with wash water aged 1 day that had been treated with carbon dioxide compared to cubes made with untreated wash water. One-day (FIG. 24) and 7-day strength (FIG. 25) were increased in mortar cubes made with wash water aged 7 days that had been treated with carbon dioxide compared to cubes made with untreated wash water; 28-day strength decreased for cubes made with wash water with lower carbon dioxide uptake but increased for those made with wash water with higher carbon dioxide uptake (FIG. 26).


Example 5

Cemex Demopolis cement was used as wash water solids (100% cement), added to potable water until specific gravity 1.10, then aged 1 or 7 days, with and without CO2 treatment. Control mortar cubes were produced using potable water, reference cubes were produced using potable water and additional cement equivalent to the solids contained within the wash water.



FIG. 27 shows that adding more cement to the control reduced the workability (slump). If that same amount of cement was present in one day old wash water the workability was reduced by about 50%. If the wash water was untreated and used at 7 days aging then the workability decreased further, but if treated with CO2 the performance at 7 days aging was no worse than at 1 day. FIGS. 28-30 show 1-, 7-, and 28-day compressive strengths for mortar cubes made with the wash waters. In sum, in 5 of 6 comparisons (two of the one day wash water samples and all three of the 7 day wash water samples) mortar the wash water treated with CO2 was stronger than a mortar made with an equivalent amount of extra cement. Samples made with CO2 treated wash water were equivalent or better strength than those with the untreated wash water at any sample age and any wash water age.


Example 6

Lab wash water samples were produced through additions of neat cement and slag into potable water. After aging for 1 or 7 days the solids and liquids were separated via suction filtration for further analysis. Solids were rinsed with isopropyl alcohol to remove any residual water and allowed to dry. Dried solids were submitted for analysis via X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). Filtrate was passed through a 0.20 μm filter and submitted for chemical analysis via ICP-OES.


ICP-OES Analysis of filtrate passing 0.20 μm filter shows distinct changes in ions concentrations depending on the water treatment. The following ions were found to be present in lower concentrations following CO2 treatment of the lab-produced wash water: Calcium, Potassium, Sodium, Strontium (FIGS. 31-34). The following ions were found to be present in greater concentrations following CO2 treatment of the lab-produced wash water: Sulfur, Silicon (FIGS. 35 and 36). The CO2 treatment was found to decrease the pH of wash water filtrate (FIG. 37). Data are shown in tabular form in FIGS. 38 and 39.


SEM. For 100% OPC wash water, at 250 magnification (FIG. 40): Hexagonal particles in untreated cases characteristic of portlandite. At 1000 magnification (FIG. 41): Untreated WW: Observe needle morphology at 1 days and presence of at 7 days suggests ongoing precipitation and growth of hydration products. At 25,000 magnification (FIG. 42): Untreated WW: mixture of fuzzy and needle-like hydration products characteristic of normal cement hydration. Features mature and become larger by 7-days, hence less detail at 25 k magnification in 7-day versus 1-day. CO2 Treated WW: Abundance of small box-like products characteristic of calcite observable at 25 k mag. Microstructure of CO2 treated case appears generally the same between 1 and 7 days of aging.


For 75% OPC+25% Slag wash water: At 250 magnification (FIG. 43): Hexagonal particles in untreated cases characteristic of portlandite. Large, faceted, unreacted particles characteristic of slag At 3500 magnification (FIG. 44): Untreated WW: Observe of fuzzy/needle morphology at 1 days which becomes more smooth by 7 days. Additional smaller plat-like morphologies observable at 7 days. Suggests ongoing maturation of the reaction products. At 25,000 magnification (FIG. 45): Untreated WW: mixture of fuzzy and needle-like hydration products characteristic of normal cement hydration. Features mature and become larger by 7-days, hence less detail at 25 k magnification in 7-day versus 1-day. CO2 Treated WW: Abundance of small box-like products characteristic of calcite observable at 25 k mag. Microstructure of CO2 treated case appears generally the same between 1 and 7 days of aging.


XRD: Untreated WW—Large contribution in the XRD pattern from Ca(OH)2 with smaller contributions from various calcium silicates and hydration product. CO2 treated Wash Water—Large contribution in the XRD pattern from CaCO3 with smaller contributions from various calcium silicates and hydration products. No contribution from Ca(OH)2. All CaCO3 is present as calcite, as indicated by large contribution at ˜29° All Ca(OH)2 is present as portlandite, as indicated by large contribution at ˜18°. See FIGS. 46 and 47.


NMR (FIGS. 48 and 49): Silicon: Silicon is present in cement and slag. Unreacted cement phases present in all samples, giving peaks around −70 ppm. Unreacted slag phases are present in all samples, giving peaks around −75 ppm. As the silicates react the silicon signal shifts to more negative values due to polymerization. Untreated WW: Silicon environment in untreated WW changes giving more contribution to signal from −75 to −90, increasing with age. This suggests a microstructure that is changing with time. CO2 Treated WW: Silicon environment in CO2 treated WW changes dramatically, giving more contribution to signal from −80 to −120, centered around −100


CO2 treated silicon environment displays less change from 1-7 days as compared to untreated case. This suggests different levels of Si polymerization in the CO2 treated case and less “change” from 1-7 days in the CO2 treated case.


Aluminum: Aluminum is present in cement and slag. Untreated WW: Al environment in untreated WW produces sharp peak around 10 ppm that changes with sample age. Some signal from unreacted cement Al is visible at 1 day in the 100% OPC case. This suggests a microstructure that is changing with time. CO2 Treated WW: CO2 treatment completely modifies Al environment. CO2 treated Al environment displays less change from 1-7 days as compared to untreated case. This suggests different Al local environment in the CO2 treated case compared to the untreated case. The untreated case has Al in normal hydration products, like ettringite, while the CO2 treatment seems to incorporate Al ions into amorphous C-A-S-H phases. The CO2 treated case demonstrates less “change” in the Al local environment from 1-7 days.


Example 7

Various wash waters that matched the corresponding mortar mix were either untreated or subject to continuous agitation, with and without carbon dioxide treatment, and the performance of mortar cubes made with the wash water, as described elsewhere herein, was measured.



FIG. 50 shows the results for compressive strength of mortar cubes made with one-day old wash water subject to continuous agitation, wash water solids and mortar at 25% slag/75% OPC (Cemex Cemopolis cement). Wash water increased strength compared to control (potable), and carbon dioxide-treated wash water increased strength even more. Slumps were control: 108, Untreated wash water: 45; CO2-treated wash water, 45 (all slumps in mm).



FIG. 51 shows the results for compressive strength of mortar cubes made with one-day old wash water subject to continuous agitation, wash water solids and mortar at 25% class C fly ash/75% OPC (Cemex Cemopolis cement). Wash water increased strength, Untreated wash water was better than CO2 treated wash water at 1 and 7 days, but only the CO2 treated water imparted a strength benefit at 28 days. Slumps were control: 125, Untreated wash water: 90; CO2-treated wash water, 90.



FIG. 52 shows the results for compressive strength of mortar cubes made with one-day old wash water subject to continuous agitation, wash water solids and mortar at 25% class F fly ash/75% OPC (Cemex Cemopolis cement). Wash water increased strength, Untreated wash water was better than CO2 treated wash water at 1 and 7 days, but both showed equal benefit at 28 days. Slumps were control: 118, Untreated wash water: 70; CO2-treated wash water, 90.



FIG. 53 shows the results for compressive strength of mortar cubes made with one-day old wash water subject to continuous agitation, wash water solids and mortar at 100% OPC (Cemex Cemopolis cement). Reference was extra cement equivalent to the mass of the suspended solids in the wash water. Increased cement improved early but not late strength. CO2 wash water was better than untreated wash water at all ages. CO2 wash water was better than extra cement addition at all ages Slumps were control: 110, Reference with cement: 100; Untreated wash water: 55; CO2-treated wash water, 50.



FIG. 54 shows the results for compressive strength of mortar cubes made with seven-day old wash water subject to continuous agitation, wash water solids and mortar at 100% OPC (Cemex Cemopolis cement). Reference was extra cement equivalent to the mass of the suspended solids in the wash water. Increased cement improved early but not late strength. CO2 wash water was equivalent to or better than untreated wash water at all ages. CO2 wash water was better than extra cement addition at later ages, and better than potable water control at 1 and 28 days. Slumps were control: 110, Reference with cement: 100; Untreated wash water: 30; CO2-treated wash water, 60.


Example 8

Lab scale concrete production compared concrete batches made with potable water, untreated wash water and wash water treated with carbon dioxide. The wash water was used at two ages (1 day and 5 days old). The sample production included three different control batches, each at a different w/c. This allows for interpretations of compressive strength if there is a variation in w/b among the test batches.









TABLE 3







Description of water in batches












Sample
Mix water
Water Age
Batch






Control L, w/b = 0.56
Potable water
n/a
1



Control M, w/b = 0.67
Potable water
n/a
4



Control H, w/b = 0.75
Potable water
n/a
7



Reference UT1
Untreated
1 day
2



Reference UT5
Untreated
5 day
6



CO2-1
CO2 treated
1 day
3



CO2-5
CO2 treated
5 day
5









The wash water was sourced from a ready mixed truck through washing it after it had emptied its load. The collected wash water was sieved past a 80 μm screen and then was bottled (2 L plastic bottles). If appropriate, the wash waster was carbonated in the same manner as wash water for the mortar testing (given an excess of CO2 achieved through periodic topping up and under agitation). The specific gravity of the wash water during carbonation was between 1.20 and 1.25. When used in concrete the water was diluted to a specific gravity of about ˜1.08.


The batches were produced with a total binder loading of 307 kg/m3 including the cement, fly ash, and solids contained within the wash water. The batches with lower and higher w/b ratios deviated from this binder loading. In terms of w/b the binder fraction included the cement, fly ash and solids contained in the wash water. The binder batches was 80% cement and 20% fly ash. Batch comparisons are made relative to the baseline of the Control M batch.









TABLE 4







Concrete mix designs in kg/m3















Control
Control
Control
UTWW
UTWW
CO2WW
CO2WW



L
M
H
1
5
1
5

















Cement
258
246
221
231
231
231
231


Fly Ash
64
61
55
58
58
58
58


WW Solids
0
0
0
17
18
18
18


Total Binder
322
307
276
306
307
307
307


Sand
847
822
882
822
822
822
822


Stone
1025
995
964
995
995
995
995


Batch Water
181
207
207
211
207
207
207


Rel % cement
105%
100%
90%
94%
94%
94%
94%


Rel % fly ash
105%
100%
90%
94%
94%
94%
94%


Rel % binder
105%
100%
90%
100% 
100% 
100% 
100% 









The wash water batches included less cement and fly ash (each reduced 6%) in a proportion equivalent to the suspended solids contained within the wash water.


The fresh properties were measured and compared relative to the Control M batch.









TABLE 5







Concrete fresh properties















Control
Control
Control
UTWW
UTWW
CO2WW
CO2WW



L
M
H
1
5
1
5





Temperature
   20.1
   20.3
   19.4
   19.8
   19
   19.7
   19.8


(° C.)









Slump (in)
   6.0
   6.5
   5.0
   6.0
   4.5
   6.0
   6.0


Air (%)
 1.8%
 1.5%
1.1% 
 1.6%
1.1% 
 1.6%
1.2% 


Unit Mass
2410
2373
2381
2373
2390
2376
2373


(kg/m3)









Norm Unit Mass
2454
2409
2408
2411
2416
2414
2402


(kg/m3)









Rel. slump
 92%
100%
77%
 92%
69%
 92%
92%


Relative air
120%
100%
73%
107%
73%
107%
80%


Rel. unit mass
101%
100%
100% 
100%
101% 
100%
100% 









The effects of various treatments on set acceleration of mortar cubes made with the wash waters are shown in FIG. 55. The CO2 reduced the set acceleration. The CO2 reduced the Initial set acceleration by 48% for 1 day wash water, and 64% for 5 day old wash water. The CO2 reduced the Final set acceleration by 39% for 1 day wash water, and 66% for 5 day old wash water.


The effects of various treatments on strength of mortar cubes made with the wash waters are shown in FIGS. 56-58. Concrete was an average of 3 specimens in all cases. FIG. 56 shows that for 1 day old wash water the concrete performs equivalent to the control at 28 days. There is 6 percent less binder in the wash water mix designs, so the corresponding amount of wash water solids contributes to the concrete strength. FIG. 57 shows the strength of concrete produced with untreated wash water aged 5 days is 13 to 17% lower than the control concrete (13% lower at 28 days). If the wash water is treated with CO2 the performance relative to the control is only 2 to 7% lower (2% lower at 28 days CO2 improves the strength of concrete produced with 5 day old wash water. FIG. 58 shows increasing the age of the wash water from 1 to 5 days meant the concrete produced with untreated water showed a strength decrease of 12-15%. If the wash water was treated with CO2 the strength with 5 day old wash water was only 2-3% less than with 1 day old wash water.


It appeared that the air content may have been impacted by the wash water. While there was no apparent impact when using 1 old day wash water, both the batches of concrete made with 5 day old wash water (both untreated and CO2 treated) had an air content about 20 to 30% lower than the control. Unit mass and normalized unit mass (normalized for air differences) were consistent among the batches.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method of preparing a concrete mix comprising (i) adding concrete materials to a mixer;(ii) adding mix water to the mixer, wherein the mix water comprises carbonated concrete wash water, wherein the carbonated wash water is produced by exposing concrete wash water to carbon dioxide while moving the wash water to prevent settling of solids; and(iii) mixing the water and the concrete materials to produce a concrete mix.
  • 2. The method of claim 1 wherein the carbonated concrete wash water comprises at least 10% of the total mix water.
  • 3. The method of claim 1 wherein the carbonated concrete wash water has a density of at least 1.10 g/cm3.
  • 4. The method of claim 1 wherein the carbonated concrete wash water has been held for at least 1 day.
  • 5. The method of claim 1 wherein the carbonated concrete wash water has been held for at least 3 days.
  • 6. The method of claim 1 wherein the concrete mix is sufficiently workable for its intended use, and the carbonated wash water is of an age that the same mix made with the wash water of the same age in the same proportions would not be sufficiently workable for its intended use.
  • 7. The method of claim 1 wherein the mix water comprises carbonated wash water in an amount that results in a concrete mix that is at least 5% stronger, as measured by compressive strength, at a time after pouring than the same concrete mix made without carbonated wash water.
  • 8. The method of claim 7 wherein the time after pouring is 1 day, 7 days, 28 days, or any combination thereof.
  • 9. The method of claim 1 wherein the mix water comprises carbonated wash water in an amount that allows the concrete mix to contain at least 5% less cement than, and retain a compressive strength after pouring of within 5% of, the same concrete mix made without carbonated wash water and with the extra 5% cement.
  • 10. The method of claim 1 wherein the concrete wash water is moved to prevent settling of solids by agitation, circulation, or a combination thereof.
  • 11. The method of claim 10 wherein the wash water is moved to prevent settling of solids by circulation.
  • 12. The method of claim 11 wherein the wash water is circulated in a loop operably connected to a holding tank for the wash water.
  • 13. The method of claim 1 wherein the carbonated wash water comprises 1-20% carbon dioxide by weight cement (bwc).
  • 14. The method of claim 1 wherein the carbonated wash water comprises 1-10% carbon dioxide bwc.
  • 15. The method of claim 1 wherein the carbonated wash water comprises carbonate reaction products comprising nano-structured material.
  • 16. The method of claim 15 wherein the nano-structured material is a solid product of reaction of a wash water component with carbon dioxide, whose longest dimension is no more than 300 nm.
  • 17. The method of claim 15 wherein the nano-structured material is a solid product of reaction of a wash water component with carbon dioxide, whose longest dimension is no more than 100 nm.
CROSS-REFERENCE

This application is a continuation of U.S. application Ser. No. 16/155,013, filed on Oct. 9, 2018, which is a continuation of PCT Application No. PCT/CA2017/050445, filed on Apr. 11, 2017, which claims the benefit of U.S. Provisional Application No. 62/321,013, filed Apr. 11, 2016, the contents of which are incorporated herein by reference in their entireties.

US Referenced Citations (332)
Number Name Date Kind
128980 Rowland Jul 1872 A
170594 Richardson Nov 1875 A
461888 Richardson Oct 1891 A
1932150 Tada Oct 1933 A
2254016 Melton et al. Aug 1941 A
2259830 Osborne Oct 1941 A
2329940 Ponzer Sep 1943 A
2496895 Staley Feb 1950 A
2498513 Cuypers Feb 1950 A
2603352 Tromp Jul 1952 A
3002248 Willson Oct 1961 A
3184037 Greaves et al. May 1965 A
3356779 Schulze Dec 1967 A
3358342 Spence Dec 1967 A
3442498 Noah May 1969 A
3468993 Knud Sep 1969 A
3492385 Branko Jan 1970 A
3667242 Kilburn Jun 1972 A
3752314 Brown et al. Aug 1973 A
3757631 McManus et al. Sep 1973 A
3917236 Hanson Nov 1975 A
3957203 Bullard May 1976 A
3976445 Douglas et al. Aug 1976 A
4068755 Parkes et al. Jan 1978 A
4069063 Ball Jan 1978 A
4076782 Yazawa et al. Feb 1978 A
4093690 Murray Jun 1978 A
4117060 Murray Sep 1978 A
4257710 Delcoigne et al. Mar 1981 A
4266921 Murray May 1981 A
4275836 Egger Jun 1981 A
4350567 Moorehead et al. Sep 1982 A
4362679 Malinowski Dec 1982 A
4375755 Barbini et al. Mar 1983 A
4420868 McEwen et al. Dec 1983 A
4427610 Murray Jan 1984 A
4436498 Murray Mar 1984 A
4526534 Wollmann Jul 1985 A
4588299 Brown et al. May 1986 A
4609303 Shumaker Sep 1986 A
4613472 Svanholm Sep 1986 A
4746481 Schmidt May 1988 A
4772439 Trevino-Gonzalez Sep 1988 A
4789244 Dunton et al. Dec 1988 A
4846580 Oury Jul 1989 A
4881347 Mario et al. Nov 1989 A
4917587 Alpar et al. Apr 1990 A
4944595 Hodson Jul 1990 A
5051217 Alpar et al. Sep 1991 A
5141363 Stephens Aug 1992 A
5158996 Valenti Oct 1992 A
5162402 Ogawa et al. Nov 1992 A
5203919 Bobrowski et al. Apr 1993 A
5220732 Lee Jun 1993 A
5232496 Jennings et al. Aug 1993 A
5244498 Steinke Sep 1993 A
5257464 Trevino-Gonzales Nov 1993 A
5298475 Shibata et al. Mar 1994 A
5352035 Macaulay et al. Oct 1994 A
5356579 Jennings et al. Oct 1994 A
5358566 Tanaka et al. Oct 1994 A
5360660 Nohlgren Nov 1994 A
5393343 Darwin et al. Feb 1995 A
5419632 Stephens May 1995 A
5427617 Bobrowski et al. Jun 1995 A
5451104 Kleen et al. Sep 1995 A
5453123 Burge et al. Sep 1995 A
5458470 Mannhart et al. Oct 1995 A
5494516 Drs et al. Feb 1996 A
5505987 Jennings et al. Apr 1996 A
5518540 Jones, Jr. May 1996 A
5583183 Darwin et al. Dec 1996 A
5609681 Drs et al. Mar 1997 A
5612396 Valenti et al. Mar 1997 A
5624493 Wagh Apr 1997 A
5633298 Arfaei et al. May 1997 A
5643978 Darwin et al. Jul 1997 A
5650562 Jones, Jr. Jul 1997 A
5660626 Ohta et al. Aug 1997 A
5661206 Tanaka et al. Aug 1997 A
5665158 Darwin et al. Sep 1997 A
5667298 Musil et al. Sep 1997 A
5668195 Leikauf Sep 1997 A
5669968 Kobori et al. Sep 1997 A
5674929 Melbye Oct 1997 A
5676905 Andersen et al. Oct 1997 A
5690729 Jones, Jr. Nov 1997 A
5703174 Arfaei et al. Dec 1997 A
5725657 Darwin et al. Mar 1998 A
5728207 Arfaei et al. Mar 1998 A
5744078 Soroushian et al. Apr 1998 A
5752768 Assh May 1998 A
5753744 Darwin et al. May 1998 A
5798425 Albrecht et al. Aug 1998 A
5800752 Charlebois Sep 1998 A
5803596 Stephens Sep 1998 A
5804175 Ronin et al. Sep 1998 A
5840114 Jeknavorian et al. Nov 1998 A
5873653 Paetzold Feb 1999 A
5882190 Doumet Mar 1999 A
5885478 Montgomery et al. Mar 1999 A
5912284 Hirata et al. Jun 1999 A
5916246 Viegas et al. Jun 1999 A
5935317 Soroushian et al. Aug 1999 A
5947600 Maeda et al. Sep 1999 A
5965201 Jones, Jr. Oct 1999 A
6008275 Moreau et al. Dec 1999 A
6023941 Rhoades Feb 2000 A
6042258 Hines et al. Mar 2000 A
6042259 Hines et al. Mar 2000 A
6063184 Leikauf et al. May 2000 A
6066262 Montgomery et al. May 2000 A
6113684 Kunbargi Sep 2000 A
6136950 Vickers, Jr. et al. Oct 2000 A
6187841 Tanaka et al. Feb 2001 B1
6264736 Knopf et al. Jul 2001 B1
6267814 Bury et al. Jul 2001 B1
6284867 Vickers, Jr. et al. Sep 2001 B1
6290770 Moreau et al. Sep 2001 B1
6310143 Vickers, Jr. et al. Oct 2001 B1
6318193 Brock et al. Nov 2001 B1
6334895 Bland Jan 2002 B1
6372157 Krill, Jr. et al. Apr 2002 B1
6387174 Knopf et al. May 2002 B2
6418948 Harmon Jul 2002 B1
6451105 Turpin, Jr. Sep 2002 B1
6463958 Schwing Oct 2002 B1
6517631 Bland Feb 2003 B2
6648551 Taylor Nov 2003 B1
6682655 Beckham et al. Jan 2004 B2
6871667 Schwing et al. Mar 2005 B2
6890497 Rau et al. May 2005 B2
6936098 Ronin Aug 2005 B2
6960311 Mirsky et al. Nov 2005 B1
6997045 Wallevik et al. Feb 2006 B2
7003965 Auer et al. Feb 2006 B2
7201018 Gershtein et al. Apr 2007 B2
7390444 Ramme et al. Jun 2008 B2
7399378 Edwards et al. Jul 2008 B2
7419051 Damkjaer et al. Sep 2008 B2
7549493 Jones Jun 2009 B1
7588661 Edwards et al. Sep 2009 B2
7635434 Mickelson et al. Dec 2009 B2
7704349 Edwards et al. Apr 2010 B2
7735274 Constantz et al. Jun 2010 B2
7736430 Barron et al. Jun 2010 B2
7771684 Constantz et al. Aug 2010 B2
7815880 Constantz et al. Oct 2010 B2
7879146 Raki et al. Feb 2011 B2
7906086 Comrie Mar 2011 B2
7914685 Constantz et al. Mar 2011 B2
7922809 Constantz et al. Apr 2011 B1
7950841 Klein et al. May 2011 B2
7966250 Constantz et al. Jun 2011 B2
8006446 Constantz et al. Aug 2011 B2
8043426 Mohamed et al. Oct 2011 B2
8105558 Comrie Jan 2012 B2
8114214 Constantz et al. Feb 2012 B2
8114367 Riman et al. Feb 2012 B2
8118473 Compton et al. Feb 2012 B2
8137455 Constantz et al. Mar 2012 B1
8157009 Patil et al. Apr 2012 B2
8177909 Constantz et al. May 2012 B2
8192542 Virtanen Jun 2012 B2
8235576 Klein et al. Aug 2012 B2
8272205 Estes et al. Sep 2012 B2
8287173 Khouri Oct 2012 B2
8311678 Koehler et al. Nov 2012 B2
8313802 Riman et al. Nov 2012 B2
8333944 Constantz et al. Dec 2012 B2
8470275 Constantz et al. Jun 2013 B2
8491858 Seeker et al. Jul 2013 B2
8503596 Sheets Aug 2013 B2
8518176 Silva et al. Aug 2013 B2
8584864 Lee et al. Nov 2013 B2
8708547 Bilger Apr 2014 B2
8709960 Riman et al. Apr 2014 B2
8721784 Riman et al. May 2014 B2
8746954 Cooley et al. Jun 2014 B2
8845940 Niven et al. Sep 2014 B2
8989905 Sostaric et al. Mar 2015 B2
9028607 Ramme May 2015 B2
9061940 Chen et al. Jun 2015 B2
9108803 Till Aug 2015 B2
9108883 Forgeron et al. Aug 2015 B2
9376345 Forgeron et al. Jun 2016 B2
9388072 Niven et al. Jul 2016 B1
9429558 Boncan et al. Aug 2016 B2
9448094 Downie et al. Sep 2016 B2
9463580 Forgeron et al. Oct 2016 B2
9492945 Niven et al. Nov 2016 B2
9738562 Monkman et al. Aug 2017 B2
9758437 Forgeron et al. Sep 2017 B2
9790131 Lee et al. Oct 2017 B2
10246379 Niven et al. Apr 2019 B2
10350787 Forgeron et al. Jul 2019 B2
10392305 Wang et al. Aug 2019 B2
10570064 Monkman et al. Feb 2020 B2
10654191 Niven et al. May 2020 B2
10683237 Lee et al. Jun 2020 B2
10927042 Monkman et al. Feb 2021 B2
11072091 Falco Jul 2021 B1
11090700 Camell Aug 2021 B1
11660779 Monkman May 2023 B2
11773019 Monkman et al. Oct 2023 B2
11773031 Forgeron et al. Oct 2023 B2
11878948 Monkman et al. Jan 2024 B2
11958212 Monkman et al. Apr 2024 B2
20020019459 Albrecht et al. Feb 2002 A1
20020047225 Bruning et al. Apr 2002 A1
20020179119 Harmon Dec 2002 A1
20030070448 Gasteyer et al. Apr 2003 A1
20030122273 Fifield Jul 2003 A1
20050131600 Quigley et al. Jun 2005 A1
20050219938 Rigaudon et al. Oct 2005 A1
20050219939 Christenson et al. Oct 2005 A1
20070114178 Coppola et al. May 2007 A1
20070170119 Mickelson et al. Jul 2007 A1
20070171764 Klein et al. Jul 2007 A1
20070185636 Cooley et al. Aug 2007 A1
20070215353 Barron et al. Sep 2007 A1
20080092957 Rosaen Apr 2008 A1
20080174041 Firedman et al. Jul 2008 A1
20080183523 Dikeman Jul 2008 A1
20080202389 Hojaji et al. Aug 2008 A1
20080245274 Ramme Oct 2008 A1
20080264872 Konishi et al. Oct 2008 A1
20080275149 Ladely et al. Nov 2008 A1
20080308133 Grubb et al. Dec 2008 A1
20080316856 Cooley et al. Dec 2008 A1
20090044832 Leonardich et al. Feb 2009 A1
20090093328 Dickinger et al. Apr 2009 A1
20090103392 Bilger Apr 2009 A1
20090143211 Riman et al. Jun 2009 A1
20090292572 Alden et al. Nov 2009 A1
20090294079 Edwards et al. Dec 2009 A1
20100086983 Gellett et al. Apr 2010 A1
20100132556 Constantz et al. Jun 2010 A1
20100239487 Constantz et al. Sep 2010 A1
20100246312 Welker et al. Sep 2010 A1
20110023659 Nguyên et al. Feb 2011 A1
20110067600 Constantz et al. Mar 2011 A1
20110165400 Quaghebeur et al. Jul 2011 A1
20110198369 Klein et al. Aug 2011 A1
20110249527 Seiler et al. Oct 2011 A1
20110262328 Wijmans et al. Oct 2011 A1
20110277670 Self et al. Nov 2011 A1
20110281333 Brown et al. Nov 2011 A1
20110289901 Estes et al. Dec 2011 A1
20110303551 Gilliam et al. Dec 2011 A1
20110320040 Koehler et al. Dec 2011 A1
20120031303 Constantz et al. Feb 2012 A1
20120111236 Constantz et al. May 2012 A1
20120152153 Gong et al. Jun 2012 A1
20120153153 Chang et al. Jun 2012 A1
20120238006 Gartner et al. Sep 2012 A1
20120290208 Jiang et al. Nov 2012 A1
20120298011 Silva et al. Nov 2012 A1
20120312194 Riman et al. Dec 2012 A1
20130025317 Terrien et al. Jan 2013 A1
20130036945 Constantz et al. Feb 2013 A1
20130122267 Riman et al. May 2013 A1
20130125791 Fried et al. May 2013 A1
20130139727 Constantz et al. Jun 2013 A1
20130167756 Chen et al. Jul 2013 A1
20130104778 Lisowski et al. Sep 2013 A1
20130284073 Gartner Oct 2013 A1
20130305953 Fridman Nov 2013 A1
20140034452 Lee et al. Feb 2014 A1
20140050611 Warren et al. Feb 2014 A1
20140069302 Saastamoinen et al. Mar 2014 A1
20140083514 Ding Mar 2014 A1
20140090415 Reddy et al. Apr 2014 A1
20140096704 Rademan et al. Apr 2014 A1
20140104972 Roberts et al. Apr 2014 A1
20140107844 Koehler et al. Apr 2014 A1
20140116295 Niven et al. May 2014 A1
20140127450 Riman et al. May 2014 A1
20140197563 Niven et al. Jul 2014 A1
20140208782 Joensson et al. Jul 2014 A1
20140212941 Lee Jul 2014 A1
20140216303 Lee et al. Aug 2014 A1
20140327168 Niven et al. Nov 2014 A1
20140373755 Forgeron et al. Dec 2014 A1
20150023127 Chon et al. Jan 2015 A1
20150069656 Bowers et al. Mar 2015 A1
20150197447 Forgeron et al. Jul 2015 A1
20150202579 Richardson et al. Jul 2015 A1
20150232381 Niven et al. Aug 2015 A1
20150247212 Sakaguchi et al. Sep 2015 A1
20150274537 Myers et al. Oct 2015 A1
20150298351 Beaupré Oct 2015 A1
20150345034 Sundara et al. Dec 2015 A1
20150355049 Ait Abdelmalek et al. Dec 2015 A1
20160001462 Forgeron et al. Jan 2016 A1
20160046532 Juilland et al. Feb 2016 A1
20160107939 Monkman et al. Apr 2016 A1
20160185662 Niven et al. Jun 2016 A9
20160272542 Monkman et al. Sep 2016 A1
20160280598 Wang et al. Sep 2016 A1
20160280610 Forgeron et al. Sep 2016 A1
20160340253 Forgeron et al. Nov 2016 A1
20160355441 Tregger et al. Dec 2016 A1
20160355442 Niven et al. Dec 2016 A1
20170015598 Monkman et al. Jan 2017 A1
20170028586 Jordan et al. Feb 2017 A1
20170036372 Sandberg et al. Feb 2017 A1
20170043499 Forgeron et al. Feb 2017 A1
20170158549 Yamada et al. Jun 2017 A1
20170158569 Lee et al. Jun 2017 A1
20170165870 Niven et al. Jun 2017 A1
20170217047 Leon et al. Aug 2017 A1
20170252714 Bennett et al. Sep 2017 A1
20170283293 Shin et al. Oct 2017 A1
20180022654 Forgeron et al. Jan 2018 A1
20180029934 Monkman et al. Feb 2018 A1
20180118622 Monkman et al. May 2018 A1
20180252444 Nelson et al. Sep 2018 A1
20180258000 Lee et al. Sep 2018 A1
20190077045 Monkman et al. Mar 2019 A1
20190168416 Monkman et al. Jun 2019 A1
20200124054 Nagase et al. Apr 2020 A1
20200165170 Niven et al. May 2020 A1
20200223760 Monkman et al. Jul 2020 A1
20200282595 Monkman et al. Sep 2020 A1
20220001578 Forgeron et al. Jan 2022 A1
20220013196 Monkman et al. Jan 2022 A1
20220065527 Forgeron et al. Mar 2022 A1
20220194852 Thomas et al. Jun 2022 A1
20240116813 Monkman et al. Apr 2024 A1
20240124366 Forgeron et al. Apr 2024 A1
20240360035 Thomas et al. Oct 2024 A1
Foreign Referenced Citations (239)
Number Date Country
2397377 Oct 1978 AU
504446 Oct 1979 AU
2017249444 Nov 2018 AU
970935 Jul 1975 CA
1045073 Dec 1978 CA
1072440 Feb 1980 CA
1185078 Apr 1985 CA
20272106 Apr 1991 CA
2343021 Mar 2000 CA
2362631 Aug 2000 CA
2598583 Sep 2006 CA
2646462 Sep 2007 CA
2630226 Oct 2008 CA
2659447 Dec 2008 CA
2703343 Apr 2009 CA
2705857 May 2009 CA
2670049 Nov 2009 CA
2668249 Dec 2009 CA
2778508 Jun 2011 CA
2785143 Jul 2011 CA
2501329 Jun 2012 CA
2829320 Sep 2012 CA
2837832 Dec 2012 CA
2943791 Oct 2015 CA
3019860 Oct 2017 CA
3068082 Dec 2018 CA
2055815 Apr 1990 CN
1114007 Dec 1995 CN
1267632 Sep 2000 CN
2445047 Aug 2001 CN
1357506 Jul 2002 CN
2575406 Sep 2003 CN
2700294 May 2005 CN
2702958 Jun 2005 CN
2748574 Dec 2005 CN
1735468 Feb 2006 CN
1916332 Feb 2007 CN
2893360 Apr 2007 CN
2913278 Jun 2007 CN
200961340 Oct 2007 CN
101099596 Jan 2008 CN
101319512 Dec 2008 CN
101538813 Sep 2009 CN
101551001 Oct 2009 CN
201325866 Oct 2009 CN
101844826 Sep 2010 CN
203357623 Dec 2013 CN
105102370 Nov 2015 CN
104045251 Jun 2016 CN
105174766 May 2017 CN
107814530 Mar 2018 CN
107935507 Apr 2018 CN
106746828 May 2019 CN
110590260 Dec 2019 CN
1817001 Nov 1970 DE
3139107 Apr 1983 DE
19506411 Aug 1996 DE
20305552 Oct 2003 DE
0047675 Mar 1982 EP
0218189 Apr 1987 EP
0151164 May 1988 EP
0218189 May 1988 EP
0629597 Dec 1994 EP
0639650 Feb 1995 EP
0573524 May 1996 EP
0701503 Aug 2000 EP
1429096 Jun 2004 EP
1785245 May 2007 EP
2012149 Jan 2009 EP
2012150 Jan 2009 EP
2039589 Mar 2009 EP
2040135 Mar 2009 EP
2042326 Apr 2009 EP
2043169 Apr 2009 EP
2048525 Apr 2009 EP
2096496 Sep 2009 EP
2098362 Sep 2009 EP
2116841 Nov 2009 EP
2123700 Nov 2009 EP
2123942 Apr 2011 EP
2123465 Jul 2011 EP
2042317 Aug 2011 EP
2162639 Sep 2011 EP
2162640 Sep 2011 EP
2042535 Oct 2011 EP
2042324 Jun 2012 EP
2039393 Aug 2012 EP
1749629 May 2013 EP
2123441 Jul 2013 EP
2107000 Sep 2013 EP
2031010 Apr 2014 EP
2123808 May 2014 EP
2036952 Apr 2016 EP
3013544 May 2016 EP
2387551 Jul 2016 EP
1985754 Aug 2016 EP
3081842 Oct 2016 EP
3129126 Feb 2017 EP
3442761 Feb 2019 EP
2140302 Feb 2000 ES
1259819 Apr 1961 FR
2121975 Aug 1972 FR
2261815 Mar 1976 FR
2503135 Oct 1982 FR
2513932 Apr 1983 FR
2735804 Dec 1996 FR
2805532 Aug 2001 FR
2969997 Mar 2015 FR
217791 Jun 1924 GB
574724 Jan 1946 GB
644615 Oct 1950 GB
851222 Oct 1960 GB
1167927 Oct 1969 GB
1199069 Jul 1970 GB
1337014 Nov 1973 GB
1460284 Dec 1976 GB
1549633 Aug 1979 GB
2106886 Apr 1983 GB
2192392 Jan 1988 GB
2246523 Feb 1992 GB
2300631 Nov 1996 GB
2302090 Jan 1997 GB
2392502 Mar 2004 GB
2467005 Jul 2010 GB
S56115423 Sep 1981 JP
S5850197 Mar 1983 JP
S60187354 Sep 1985 JP
S6150654 Mar 1986 JP
S62122710 Jun 1987 JP
S6426403 Jan 1989 JP
H0218368 Jan 1990 JP
H0254504 Apr 1990 JP
H05117012 Apr 1993 JP
H05116135 May 1993 JP
5238791 Sep 1993 JP
H0624329 Feb 1994 JP
H06144944 May 1994 JP
H06263562 Sep 1994 JP
H0748186 Feb 1995 JP
H07275899 Oct 1995 JP
H0835281 Feb 1996 JP
H0960103 Mar 1997 JP
H09124099 May 1997 JP
H10194798 Jul 1998 JP
1999324324 Nov 1999 JP
H11303398 Nov 1999 JP
H11324324 Nov 1999 JP
2000203964 Jul 2000 JP
2000247711 Sep 2000 JP
2000281467 Oct 2000 JP
2001026418 Jan 2001 JP
2001170659 Jun 2001 JP
2002012480 Jan 2002 JP
2002127122 May 2002 JP
3311436 Jun 2002 JP
2003206122 Jul 2003 JP
2003326232 Nov 2003 JP
2005023692 Jan 2005 JP
2005273720 Oct 2005 JP
2007326881 Dec 2007 JP
2008096409 Apr 2008 JP
3147769 Jan 2009 JP
2009115209 May 2009 JP
2009136770 Jun 2009 JP
4313352 Aug 2009 JP
2010125386 Jun 2010 JP
2010227741 Oct 2010 JP
2011073891 Apr 2011 JP
2014213479 Nov 2014 JP
2017070891 Apr 2017 JP
2017074552 Apr 2017 JP
2020524103 Aug 2020 JP
20020006222 Jan 2002 KR
20020042569 Jun 2002 KR
20020090354 Dec 2002 KR
20030004243 Jan 2003 KR
20060010678 Feb 2006 KR
20060064557 Jun 2006 KR
100766364 Oct 2007 KR
100950009 Mar 2010 KR
20110048266 May 2011 KR
2018012464 Aug 2019 MX
2019015651 Dec 2019 MX
183790 Sep 1980 NZ
2168412 Jun 2001 RU
2212125 Sep 2003 RU
2351469 Apr 2009 RU
8002613 Mar 1982 SE
451067 Aug 1987 SE
11201810010 Dec 2018 SG
11201912759 Jan 2020 SG
1031728 Jul 1983 SU
I257330 Jul 2006 TW
WO-7900473 Jul 1979 WO
WO-8500587 Feb 1985 WO
WO-9105644 May 1991 WO
WO-9215753 Sep 1992 WO
WO-9319347 Sep 1993 WO
WO-9427797 Dec 1994 WO
WO-2001064348 Sep 2001 WO
WO-0190020 Nov 2001 WO
WO-2004033793 Apr 2004 WO
WO-2004074733 Sep 2004 WO
WO-2005025768 Mar 2005 WO
WO-2006040503 Apr 2006 WO
WO-2006100550 Sep 2006 WO
WO-2006100693 Sep 2006 WO
2008057275 May 2008 WO
WO-2008149389 Dec 2008 WO
WO-2008149390 Dec 2008 WO
WO-2009078430 Jun 2009 WO
2009089906 Jul 2009 WO
WO-2009132692 Nov 2009 WO
2010048457 Apr 2010 WO
WO-2010074811 Jul 2010 WO
2010110563 Sep 2010 WO
2012081486 Jun 2012 WO
WO-2012079173 Jun 2012 WO
WO-2013011092 Jan 2013 WO
WO-2014021884 Feb 2014 WO
WO-2014026794 Feb 2014 WO
WO-2014063242 May 2014 WO
2014121198 Aug 2014 WO
2014154741 Oct 2014 WO
2014205577 Dec 2014 WO
WO-2015123769 Aug 2015 WO
WO-2015154174 Oct 2015 WO
WO-2015154162 Oct 2015 WO
WO-2016041054 Mar 2016 WO
2016082030 Jun 2016 WO
WO-2016082030 Jun 2016 WO
WO-20116082030 Jun 2016 WO
WO-2017000075 Jan 2017 WO
WO-2017041176 Mar 2017 WO
2017177324 Oct 2017 WO
WO-2018232507 Dec 2018 WO
2019068178 Apr 2019 WO
2021028581 Feb 2021 WO
2021250640 Dec 2021 WO
Non-Patent Literature Citations (302)
Entry
Dorbain “Nova Scotia-based CarbonCure garners $3.5 min in Series B funds,” Reuters PE HUB, Dec. 11, 2013, 6 pages, found at http://www.pehub.com/2013/12/nova-scotia-based-carboncure-garners-3-5-min-in-series-b-funds/ (Year: 2013).
Estes-Haselbach, The greenest concrete mixer—carbon sequestration in freshly mixed concrete, Sep. 25, 2012 (Year: 2012).
European search report and search opinion dated Jan. 14, 2015 for EP 11849437.6 (Year: 2015).
Fernandez-Bertos, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials B112. 2004; 193-205 (Year: 2004).
Fluid Hole and Size. Newton: Ask a Scientist. Jan. 24, 2005. Retrieved from http://www.newton.dep.anl.gov/asksci/eng99/eng99365.htm on Jul. 13, 2013 (Year: 2005).
Freedman, S. Carbonation Treatment of Concrete Masonry Units. Modern Concrete. 1969; 33(5):33-6 (Year: 1969).
Gager, “Trumbull Corp.: Charleroi Lock & Dam,” Construction Today, 2010, [retrieved on May 25, 2010,]. Retrieved from http://www.constriction-today.com/cms1/content/view/1909/104/, 2 pages. (Year: 2010).
EP17781677.4 Extended European Search Report dated Nov. 12, 2019.
U.S. Appl. No. 15/304,208 Office Action dated Oct. 25, 2019.
U.S. Appl. No. 15/650,524 Office Action dated Sep. 17, 2019.
Cheung et al. Impact of admixtures on the hydration kinetics of Portland cement. Cement and Concrete Research 41:1289-1309 (2011).
Co-pending U.S. Appl. No. 16/249,012, filed on Jan. 16, 2019.
Cornerstone Custom Concrete, LLC. “How Much Does Concrete Weigh?” Retrieved Jul. 15, 2019, <web.archive.org/web/20130124160823/http://www.minneapolis-concrete.com/how-much-does-concrete-weight.html>, One page (Year:2013).
Lobo et al. Recycled Water in Ready Mixed Concrete Operations, Concrete in Focus, Spring 2003 (2003), 10 pages.
“MB-AETM 90: Air-Entraining Admixture” BASF, Product Data (Apr. 2011) 2 pages, found at http://www.basf-admixtures.com/en/products/airentraining/mbae_90/Pages/default.aspx
EP14746909.2 Summons to Attend Oral Proceedings dated Jun. 19, 2019.
U.S. Appl. No. 15/304,208 Office Action dated Jan. 24, 2019.
U.S. Appl. No. 15/170,018 Notice of Allowance dated Dec. 19, 2018.
U.S. Appl. No. 15/240,954 Ex Parte Quayle Office action dated Feb. 5, 2019.
U.S. Appl. No. 15/240,954 Notice of Allowance dated Mar. 5, 2019.
U.S. Appl. No. 15/284,186 Office Action dated Jun. 14, 2019.
U.S. Appl. No. 15/828,240 Office Action dated Jul. 22, 2019.
Google Patents Translation of EP1785245 pp. 1-2, Retrieved Jul. 17, 2019. (Year:2007).
Tri-Cast literature, Dry cast machine, Besser Company, Sioux Iowa, USA (Jun. 2009).
Co-pending U.S. Appl. No. 15/911,573, filed on Mar. 5, 2018.
Co-pending U.S. Appl. No. 15/649,339, filed on Jul. 13, 2017.
Co-pending U.S. Appl. No. 62/083,784, filed on Nov. 24, 2014.
Co-pending U.S. Appl. No. 62/085,024, filed on Dec. 1, 2014.
Co-pending U.S. Appl. No. 62/146,103, filed on Apr. 10, 2015.
Co-pending U.S. Appl. No. 62/160,350, filed on May 12, 2015.
Co-pending U.S. Appl. No. 62/165,670, filed on May 22, 2015.
Co-pending U.S. Appl. No. 62/215,481, filed on Sep. 8, 2015.
Co-pending U.S. Appl. No. 62/240,843, filed on Oct. 13, 2015.
Co-pending U.S. Appl. No. 62/321,013, filed on Apr. 11, 2016.
Co-pending U.S. Appl. No. 62/522,510, filed on Jun. 20, 2017.
Co-pending U.S. Appl. No. 62/554,830, filed on Sep. 6, 2017.
Co-pending U.S. Appl. No. 62/558,173, filed on Sep. 13, 2017.
Co-pending U.S. Appl. No. 62/559,771, filed on Sep. 18, 2017.
Co-pending U.S. Appl. No. 62/560,311, filed on Sep. 19, 2017.
Co-pending U.S. Appl. No. 62/570,452, filed on Oct. 10, 2017.
Co-pending U.S. Appl. No. 62/573,109, filed on Oct. 16, 2017.
Co-pending U.S. Appl. No. 62/652,385, filed on Apr. 4, 2018.
Co-pending U.S. Appl. No. 62/675,615, filed on May 23, 2018.
Co-pending U.S. Appl. No. 61/423,354, filed on Sep. 15, 2010.
Co-pending U.S. Appl. No. 61/760,319, filed on Feb. 4, 2013
Co-pending U.S. Appl. No. 61/976,360, filed on Apr. 7, 2014.
Co-pending U.S. Appl. No. 61/980,505, filed on Apr. 16, 2014.
EP15862209.2 Partial Supplementary European Search Report dated Jun. 20, 2018.
European search report dated Nov. 7, 2017 for EP Application No. 15776706.
European search report with written opinion dated Nov. 14, 2017 for EP Application No. 15777459.
European search report with written opinion dated Nov. 29, 2017 for EP15780122.
Le et al. Hardened properties of high-performance printing concrete. Cement and Concrete Research, vol. 42, No. 3. Mar. 31, 2012, pp. 558-566.
Mass. Premixed Cement Paste. Concrete International 11(11):82-85 (Nov. 1, 1989).
Office action dated Oct. 19, 2017 for U.S. Appl. No. 15/228,964.
PCT Application No. PCT/CA2014/050611 as filed Jun. 25, 2014.
Younsi, et al. Performance-based design and carbonation of concrete with high fly ash content. Cement and Concrete Composites, Elsevier Applied Science, Barking, GB, vol. 33, No. 1, Jul. 14, 2011, pp. 993-1000.
Co-pending U.S. Appl. No. 15/650,524, filed on Jul. 14, 2017.
Co-pending U.S. Appl. No. 15/659,334, filed on Jul. 25, 2017.
European search report with written opinion dated Feb. 2, 2017 for EP2951122.
European search report with written opinion dated Jan. 20, 2017 for EP14818442.
International search report with written opinion dated Jun. 15, 2017 for PCT/CA2017/050445.
International search report with written opinion dated Jul. 3, 2016 for PCT/CA2015/050195.
Notice of allowance dated Apr. 14, 2017 for U.S. Appl. No. 15/157,205.
Notice of allowance dated Apr. 24, 2017 for U.S. Appl. No. 15/161,927.
Notice of allowance dated Jun. 15, 2017 for U.S. Appl. No. 15/157,205.
Notice of allowance dated Jun. 22, 2017 for U.S. Appl. No. 15/161,927.
Notice of allowance dated Jun. 30, 2017 for U.S. Appl. No. 15/434,429.
Notice of allowance dated Jul. 28, 2017 for U.S. Appl. No. 15/434,429.
Notice of allowance dated Aug. 2, 2017 for U.S. Appl. No. 15/161,927.
Office action dated Feb. 27, 2017 for U.S. Appl. No. 14/171,350.
Office action dated Mar. 7, 2017 for U.S. Appl. No. 15/434,429.
Office action dated Mar. 14, 2017 for U.S. Appl. No. 15/228,964.
Office action dated May 10, 2017 for U.S. Appl. No. 13/994,681.
Office action dated Jul. 3, 2017 for U.S. Appl. No. 14/171,350
Yelton, R. Treating Process Water the Concrete Producer. pp. 441-443, Jun. 1, 1997.
Co-pending U.S. Appl. No. 15/284,186, filed on Oct. 3, 2016.
International Search Report with Written Opinion dated Aug. 30, 2016 for International application No. PCT/CA2016/050773.
International Search Report with Written Opinion dated Oct. 19, 2016 for International Application No. PCT/CA2016/051062.
Kim, et al. Properties of cement-based mortars substituted by carbonated fly ash and carbonated under supercritical conditions. UAER. 9(24).25525-25534 (2014).
Notice of Allowance dated Dec. 21, 2016 for U.S. Appl. No. 15/161,927.
Office Action dated Nov. 3, 2016 for U.S. Appl. No. 15/161,927.
Office Action dated Dec. 29, 2016 for U.S. Appl. No. 15/157,205.
Office Action dated Dec. 30, 2016 for U.S. Appl. No. 13/994,681.
Abanades, et al. Conversion limits in the reaction of CO2 with lime. Energy and Fuels. 2003; 17(2):308-315.
Author Unknown, “Splicing Solution,” Quarry Management, Oct. 2002, 3 pages.
Bhatia, et al. Effect of the Product Layer on the kinetics of the CO2-lime reaction. AlChE Journal. 1983; 29(1):79-86.
Chang, et al. The experimental investigation of concrete carbonation depth, Cement and Concrete Research. 2006; 36(9):1760-1767.
Chen, et al. On the kinetics of Portland cement hydration in the presence of selected chemical admixtures. Advances in Cement Research. 1993; 5(17):9-13.
“Clear Edge Filtration—Screen and Filter, Process Belts, and Screen Print,” Mining-Techology.com, no date, [retrieved on May 25, 2010]. Retrieved from: http/www.mining-technology.com/filtering/clear-edge/, 2 pages.
Co-pending U.S. Appl. No. 15/170,018, filed on Jun. 1, 2016.
Co-pending U.S. Appl. No. 15/184,219, filed on Jun. 16, 2016.
Co-pending U.S. Appl. No. 15/228,964, filed on Aug. 4, 2016.
Co-pending U.S. Appl. No. 15/240,954, filed on Aug. 18, 2016.
Co-pending U.S. Appl. No. 62/096,018, filed on Dec. 23, 2014.
Co-pending U.S. Appl. No. 61/839,312, filed on Jun. 25, 2013.
Co-pending U.S. Appl. No. 61/647,254, filed on Jul. 17, 2013.
Co-pending U.S. Appl. No. 61/879,049, filed on Sep. 17, 2013.
Co-pending U.S. Appl. No. 61/925,100, filed on Jan. 8, 2014.
Co-pending U.S. Appl. No. 61/938,063, filed on Feb. 10, 2014.
Co-pending U.S. Appl. No. 61/941,222, filed on Feb. 18, 2014.
Co-pending U.S. Appl. No. 61/992,089, filed on May 12, 2014.
Dewaele, at al. Permeability and porosity changes associated with cement grout carbonation, Cement and Concrete Research. 1991; 21(4):441-454.
“Glenium® 3400 NV: High-Range Water-Reducing Admixture,” BASF, Product Data, Jun. 2010, 2 pages.
Goodbrake, et al. Reaction of Hydraulic Calcium Silicates with Carbon Dioxide and Water, Journal of the American Ceramic Society. 1979; 62(9-10):488-491.
Goto, et al. Calcium Silicate Carbonation Products. Journal of the American Ceramic Society, 1995; 78(11):2867-2872.
Goto, Some minerato-chemical problems concerning calcite and aragonite, with special reference to the genesis of aragonite. Contribution from the department of geolegy and mineralogy. Faculty of Science, Hokkaido University, 1961, http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/35923/1/10(4)_571-640.pdf.
Hession, et al. Flow of two—phase carbon dioxide through orifices. AlChE Journal 4.2 (1958):207-210.
Huijgen, et al. Mineral CO2 sequestration by steel slag carbonation. Environmental Scence and Technology. 2005; 39(24):9676-9682.
Huntzinger, et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol. Mar. 15, 2009:43(6):1986-92.
Hurst, Canadian cement plant becomes first to capture CO2 in algae, Earth and Industry Pond Biofuels press release. Mar. 19, 2010.
Iizuka, et al Development of a new CO2 sequestration process utilizing the carbonation of waste cement. Industrial & Engineering Chemistry Research. 2004; (43)24:7880-7887.
International search report and written opinion dated Jan. 25, 2016 for PCT application No. PCTCA2015/051220.
International search report and written opinion dated Mar. 6, 2012 for PCT Application No. CA2011/050774.
International Search report and written opinion dated May 4, 2015 for PCT/CA2015/050118.
International search report and written opinion dated Jul. 16, 2015 for PCT Application No. PCT/CA2015/000158.
International search report and written opinion dated Jul. 16, 2015 for PCT Application No. PCT/CA2015/050318
International search report and written opinion dated Jul. 18, 2013 for PCT Application No. CA2013/050190.
International search report with written opinion dated Sep. 18, 2014 for PCT/CA2014/050611.
International search report dated May 16, 2014 for PCT application No. PCT/US14/14447.
Kashef-Haghighi, et al. Accelerated Concrete Carbonation, a CO2 Sequestration Technology, 8th World Congress of Chemical Engineering WCCE8. Aug. 24, 2009.
Kashef-Haghighi, et al. CO2 sequestration in concrete through accelerated carbonation curing in a flow-through reactor. Ind. Eng. Chem. Res. 2010; 49:1143-1149.
Kawashima et al. Dispersion of CaCO3 Nanoparticles by Sanication and Surfactant Treatment for Application in Fly Ash Cement Systems. Materials and Structures, May 28, 2013. DOI 10:1617/S11527-013-0110-9.
Lange, et al. Preliminary investigation into the effects of carbonation on cement-solidified hazardous wastes, Environmental Science and Technology. 1996; 30(1):25-30.
Logan, C. Carbon dioxide absorption and durability of carbonation cured cement and concrete compacts. Thesis Department of Civil Engineering, McGill University Montreal, QC, Canada 2006
Lomboy, et al. Atom Probe Tomography for Nanomodified Portland Cement. Nanotechnology in Construction, Springer International Publishing, 2015, 79-86.
“MB-AETM 90: Air-Entraining Admixture” BASF, Product Data, Apr. 11, 2 pages, found at http://www.basf-admixtures.com/en/products/airentraining/mbae_90/Pages/default.aspx.
MEHTA, “Concrete Carbonation”, Materials World Magazine, Oct. 1, 2008 [Retrieved on Jul. 13, 2013] Retrieved from http://www.iorn3.org/news/concrete-carbonation.
Monkman, et al. Assessing the Carbonation Behavior of Cementitious Materials. J. Mater. Civ. Eng. 2006, 18(6),768-776.
Monkman, et al. Carbonated Ladle Slag Fines for Carbon Uptake and Sand Substitute, Journal of Materials in Civil Engineering. Nov. 2009:657-665.
Monkman, et al. Carbonation Curing of Slag-Cement Concrete for Binding CO2 and Improving Performance. Journal of Materials in Civil Engineering. Apr. 2010; 296-304.
Monkman, et al. Integration of carbon sequestration into curing process of precast concrete, Can. J. Civ. Eng. 2010;302-310.
Monkman, G. S. Investigating Carbon Dioxide Sequestration in Fresh Ready Mixed Concrete. International Symposium on Environmentally Friendly Concrete—ECO-Crete Aug. 13-15, 2014, Reykjavik, Iceland.
Monkman, S. Maximizing carbon uptake and performance gain in slag-containing concretes through early carbonation. Thesis Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, QC, Canada, 2008.
Niven, et al. Carbon Dioxide Uptake Rate and Extent during Accelerated Curing of Concrete. International Congress on the Chemistry of Cement 2007, ICCC 2007.
Niven. Industrial pilot study examining the application of precast concrete carbonation curing. Cardon Sense Solutions Inc. Halifax, Canada. ACEME 2008.
Niven. Physiochemical investigation of CO2 accelerated concrete curing as a greenhosue gas mitigation technology, These from the Department of Civil Engineering and Applied Mechanics, McGill University, Montreal Canada. Oct. 2006.
Notice of allowance dated Feb. 26, 2016 for U.S. Appl. No. 14/642,536.
Notice of allowance dated Mar. 29, 2016 for U.S. Appl. No. 14/701,456.
Notice of allowance dated Apr. 22, 2014 for U.S. Appl. No. 13/660,447.
Notice of allowance dated Apr. 24, 2015 for U.S. Appl. No. 14/249,308.
Notice of allowance dated Apr. 25, 2016 for U.S. Appl. No. 14/642,536.
Notice of allowance dated May 6, 2016 for U.S. Appl. No. 14/796,751.
Notice of allowance dated May 11, 2016 for U.S. Appl. No. 14/701,456.
Notice of allowance dated Jun. 24, 2015 for U.S. Appl. No. 14/249,308.
Notice of allowance dated Jul. 5, 2016 for U.S. Appl. No. 14/282,965.
Notice of allowance dated Aug. 5, 2016 for U.S. Appl. No. 14/796,751.
Notice of allowance dated Aug. 16, 2016 for U.S. Appl. No. 14/796,751.
Notice of allowance dated Sep. 14, 2016 for U.S. Appl. No. 14/796,751.
Notices of allowance dated Mar. 3, 2016 and Mar. 17, 2016 for U.S. Appl. No. 14/701,456.
Office action dated Jan. 25, 2016 for U.S. Appl. No. 14/701,456.
Office action dated Mar. 7, 2016 for U.S. Appl. No. 14/796,751.
Office action dated Mar. 10, 2015 for U.S. Appl. No. 14/249,308.
Office action dated Mar. 28, 2013 for U.S. Appl. No. 13/660,447.
Office action dated Apr. 26, 2016 for U.S. Appl. No. 14/950,288.
Office action dated Jun. 16, 2016 for U.S. Appl. No. 13/994,681.
Office action dated Jul. 15, 2013 for U.S. Appl. No. 13/660,447.
Office action dated Jul. 30, 2015 for U.S. Appl. No. 14/282,965.
Office action dated Aug. 12, 2016 for U.S. Appl. No. 14/950,288.
Office action dated Aug. 14, 2015 for U.S. Appl. No. 14/701,456.
Office action dated Aug. 18, 2015 for U.S. Appl. No. 14/642,536.
Office action dated Aug. 22, 2016 for U.S. Appl. No. 15/161,927.
Office action dated Sep. 2, 2016 for U.S. Appl. No. 15/228,964.
Office action dated Aug. 28, 2016 for U.S. Appl. No. 15/157,205.
Office action dated Oct. 5, 2015 for U.S. Appl. No. 14/701,456.
Office action dated Dec. 2, 2015 for U.S. Appl. No. 14/282,965.
Office action dated Dec. 7, 2015 for U.S. Appl. No. 14/796,751.
Papadakis, et al. A reaction engineering approach to the problem of concrete carbonation, AlChE Journal, 1989; 35(10):1639-1650.
Papadakis, et al. Fundamental Modeling and Experimental investigation of Concrete Carbonation, ACI Materials Journal, 1991; 88(4):363-373.
Phipps and MacDonald Sustainability Leads to Durability in the New I-35W Bridge, Concrete international Feb. 2009, vol. 31 Issue 2, p. 27-32.
“Pozzolith® 200N: Water-Reducing Admixture,” BASF, Product Data, Sep. 2010, 2 pages, found at http://www.basf-admixtures.com/en/products/waterreducingretarding/pozzolith200n/PAges/default.aspx.
“Pozzolith® 322 N: Water-Reducing Admixture,” BASF, Product Data, Mar. 2007, 2 pages.
Preliminary Amendment dated Nov. 1, 2013 for U.S. Appl. No. 13/994,681.
Reardon, et al. High pressure carbonation of cementitious grout. Cement and Concrete Research. 1989; 19(3):385-399.
Sato, et al. Effect of Nano-CaCO3 on Hydration of Cement Containing Supplementary Cementitious Materials, Institute for Research in Construction, National Research Council Canada, Oct. 2010.
Sato, et al. Seeding effect of nano-CaCO3 on the hidration of tricalcium silicate Transportation Research Record. 2010; 2141:61-67.
Shao, et al. A new CO2 sequestration process via concrete products production. Department of civil engineering, McGill University, Montreal, Canada, 2007.
Shao, et al. CO2 sequestration using calcium-silicate concrete. Canadian Journal of Civial Engineering, 2006;(33)6:776-784.
Shao, et al. Market analysis of CO2 sequestration in concrete building products. Second International Conference on Sustainable Construction Materials and Technologies. Jun. 28-30, 2010.
Shao, et al. Recycling carbon dioxide into concrete: a feasibility study, Concrete Sustainability Conference. 2010.
Shi, et al. Studies on some factors affecting CO2 curing of lightweight concrete products Resources, Conservation and Recycling, 2006; (52)8-9:1087-1092.
Shideler, J. Investigation of the moisture-volume stability of concrete masonry units. Portland Cement Association. 1995. (D3).
Shih, et al. Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature, Industrial and Engineering Chemistry Research. 1999; 38(4):1316-1322.
Sorochkin, et al. Study of the possibility of using carbon dioxide for accelerating the hardening of products made from Portland Cement. J. Appl. Chem. USSR. 1975; 48:1271-1274.
Steinour, H. Some effects of carbon dioxide on mortars and concrete-discussion. Journal of the American Concrete Institute. 1959; 30:905-907.
Technology Roadmap: Cement International Energy Agency. 12-2009 [Retrieved on Jul. 13, 2013]. Retrieved from http://www.iea.org/publications/freepublications/publication/name,3861,en.html.
Teir, et al. Carbonation of Finnish magnesium silicated for CO2 sequestration. Fifth Annual Conference on Carbon Capture and Sequestration. May 8-11, 2006. National Energy Technology Labratory, Department of Energy, USA.
The Vince Hagan Co., “Stationary, Radial Stacking, and Wet Belt Converyors—Product Brochure,” 4 pages.
Toennies, et al. Artificial carbonation of concrete masonry units. American Concrete Institute Journal. 1960; 31(8):737-755.
Tri-Cast literature, Besser Company Sioux, Iowa, USA.
U.S. Appl. No. 13/660,447, filed Oct. 25, 2012.
U.S. Appl. No. 13/994,681, filed Jun. 14, 2013.
U.S. Appl. No. 14/249,308, filed Apr. 9, 2014.
U.S. Appl. No. 14/282,965, filed May 20, 2014.
U.S. Appl. No. 14/642,536, filed Mar. 9, 2015.
U.S. Appl. No. 14/701,456, Filed Apr. 30, 2015.
U.S. Appl. No. 14/796,751, Filed Jul. 10, 2015.
U.S. Appl. No. 14/950,288, filed Nov. 24, 2015.
U.S. Appl. No. 61/839,312, filed Jun. 25, 2013.
U.S. Appl. No. 61/847,254, filed Jul. 17, 2013.
U.S. Appl. No. 61/879,049, filed Sep. 17, 2013.
U.S. Appl. No. 61/925,100, filed Jan. 8, 2014.
U.S. Appl. No. 61/938,063, filed Feb. 10, 2014.
U.S. Appl. No. 61/941,222, filed Feb. 18, 2014.
U.S. Appl. No. 61/976,360, filed Apr. 7, 2014.
U.S. Appl. No. 61/980,505, filed Apr. 16, 2014.
Van Balen, K. Carbonation reaction of lime, kinetics at ambient temperature. Cement and Concrete Research. 2005; 35(4):647-657.
Venhuis, et al. Vacuum method for carbonation of cementitious wasteforms. Environ Sci Technol. Oct. 15, 2001;35(20):4120-5.
Weber, et al. Find carbon dioxide gas under pressure an efficient curing agent for cast stone, Concrete, Jul. 1941; 33-34.
Young, et al. Accelerated Curing of Compacted Calcium Silicate Mortars on Exposure to CO2, Journal of the American Ceramic Society, 1974; 57(9):394-397.
Australian Patent Office; Examination Report for European Application No. 2022201059 dated May 22, 2023; 4 pages.
Mexican Patent Office, Application No. MX/a/2017/006746 office action dated May 12, 2023, 8 pages [CCT-012.MX].
Monkman, Sean G. Investigating carbon dioxide sequestration in fresh ready mixed concrete, Eco-Crete, Internationalsymposium on Sustainability Aug. 13, 2014, 22 pages.
Morocco Patent Application No.: 53762 Search Report with Opinion on Patentability, dated Jul. 1, 2022, 4 pages.
Office Action for Chilean Application No. 03376-2020 dated Nov. 18, 2021, 34 pages.
Ozcan et al., “Process integration of a Ca-looping carbon capture process in a cement plant”, International Journal of Greenhouse Gas Control, 2013, vol. 19, pp. 530-540. https://doi.org/10.1016/j.ijggc.2013.10.009).
Republic of Columbia [translation]; First Exam Report for No. NC2021/0009084, dated Aug. 5, 2022, 13 pages.
Shi et al. “Performance Enhancement of Recycled Concrete Aggregate—A Review,” Journal of Cleaner Production, 112, pp. 466-472 (2006).
Singapore Patent Office, Examination Report for SG1120220343R, dated Jun. 7, 2023, 5 pages.
Singapore Patent Office, Search Report for SG11202203433R, dated May 15, 2023, 2 pages.
Singapore, First Written Opinion, issued by the Intellectual Property Office of Singapore, dated Mar. 3, 2020, for Singapore patent application No. 11201810010P, 8 pages.
Singapore, Invitation to Respond to Written Opinion for Application No. 11221062015, dated Oct. 18, 2022, 2 pages.
Singapore, Written Opinion for Application No. 1122106201S, dated Oct. 18, 2022, 8 pages.
Summons to Attend Oral Proceedings for EP 15777459.7 mailed Aug. 27, 2021, 7 pages.
Zhan et al. “Carbonation Treatment of Recycled Concrete Aggregate: Effect on Transport Properties and Steel Corrosion of Recycled Aggregate Concrete,” Cement and Concrete Composites, 104, pp. 1-8 (Apr. 7, 2019).
ASTM International, “Standard Test Method for Slump of Hydraulic-Cement Concrete,” Designation: C143/C143M—15a, Revised 5.1.1., Dec. 15, 2015, 4 pages.
Canadian Intellectual Property Office, Canadian Office Action for Application No.: 2,943,791 dated Apr. 22, 2021, 3 pages.
Canadian Intellectual Property Office, Canadian Office Action for Application No.: 2,943,791 dated May 27, 2022, 3 pages.
Canadian Intellectual Property Office, Canadian Office Action for Application No.: 2,943,791 dated Nov. 25, 2021, 4 pages.
Canadian Intellectual Property Office, Canadian Office Action for Application No.: 2,945,060, dated Jan. 20, 2022, 4 pages.
Canadian Intellectual Property Office, Canadian Office Action for Application No.: 2,979,471 dated Jul. 10, 2020, 3 pages.
Canadian Intellectual Property Office, Canadian Office Action for Application No.: 3,120,472 dated Apr. 22, 2022, 3 pages.
Canadian Intellectual Property Office, Canadian Office Action for Application No.: 3,120,472 dated Oct. 12, 2022, 4 pages.
Canadian Office Action for Application No. 3,019,860 dated Mar. 2, 2023, 3 pages [CCT-016CA].
Canadian Patent Office, Examination Search Report for CA 2,968,246, dated Aug. 18, 2022, 3 pages.
Chile Patent Office, First Office Action and Translation for Application No. 3376-2020, dated Nov. 18, 2021, 34 Pages.
Chile Patent Office, First Office Action for Application No. 3804-2019, dated Mar. 30, 2021, 24 Pages.
Chile Patent Office, Second Examination Report with English Transmittal for Application No. 3376-2020, dated May 16, 2022, 21 Pages.
Chinese International Search Report for Application No. 2019800306982, dated Mar. 25, 2022, 2 pages.
Corrected First Office Action for Chilean Application No. 3804-2019, mailed Aug. 31, 2021, 51 pages.
Deng, H. et al. “Calcium Carbonate Crystallization Controlled by Functional Groups: A Mini-review.,” Frontiers of Materials Science 7, pp. 62-68 (2013); https://doi.org/10.1007/s11706-013-0191-y.
European Communication for European Application No. 17781677.4, dated May 9, 2022, 5 pages.
Examination Report and translation for Brazilian Application No. 112017010897-6 dated Nov. 23, 2021; 7 pages.
Examination Report for Australian Application No. 2017249444 mailed Jul. 28, 2021, 6 pages.
Examination Report for Australian Application No. 2018288555 mailed Feb. 20, 2021, 5 pages.
Examination Report for Australian Application No. 2018288555 mailed Aug. 9, 2021, 5 pages.
Examination Report for Canadian Application No. 2945060 mailed Apr. 19, 2021, 3 pages.
Examination Report for Canadian Application No. 2968246 mailed Oct. 22, 2021, 4 pages.
Examination Report for EP 15777459.7 mailed Apr. 17, 2020, 7 pages.
Examination Report for European Application No. 17781677.4 dated May 9, 2022; 5 pages.
Examination Report for Indian Application No. 201817042016 mailed Mar. 4, 2021, 5 pages.
Examination Report for Indian Application No. 201917054847 mailed Apr. 20, 2021, 7 pages.
Examination Report for Japanese Application No. JP 2019-571536 mailed Aug. 26, 2021, 86 pages.
Examination Report for Singapore Application No. 11201912759R mailed Dec. 18, 2021, 5 pages.
Extended European Search Report dated Aug. 18, 2020, for European patent application No. 19207508.3, 9 pages.
Extended European Search Report dated Oct. 8, 2018, for European patent application No. EP15862209.2, 10 pages.
Extended European Search Report for EP 19894565.1, Date Aug. 3, 2022.
Extended European Search Report for European Application No. 18820477.0 mailed Feb. 5, 2021, 11 pages.
Ghacham, “Valorization of waste concrete through CO2 mineral carbonation: optimizing parameter and improving reactivity using concrete separation”. Journal of Cleaner Production, 2019, vol. 166, pp. 1-10.
Ho et al., “CO2 Utilization via Direct Aqueous Carbonation of Synthesized Concrete Fines under Atmospheric Pressure”. ACS Omega, Jun. 22, 2020 (Jun. 22, 2020), vol. 5, pp. 15877-15890.
India, Examination Report for Application No. 202127030664 dated Dec. 15, 2022, 7 pages.
Indonesia Application No. P00202105311 Substantive Examination Results Stage I dated Jan. 11, 2023, 8 pages.
International Search Report and Written Opinion dated Jan. 13, 2021 for PCT Application No. PCT/US20/54625, 6 pages.
International Search Report and Written Opinion dated Oct. 19, 2021 for PCT Application No. PCT/US21/40764, 11 pages.
International Search Report and Written Opinion dated May 14, 2020 for PCT application No. PCT/US2019/066407, 11 pages.
International Search Report and Written Opinion dated Jul. 22, 2020 for PCT/IB2020/053953, 12 pages.
International Search Report and Written Opinion dated Mar. 29, 2022 for PCT Application No. PCT/IB2021/000718.
International Search Report and Written Opinion dated Aug. 25, 2021 for PCT Application No. PCT/IB2021/055223.
International Search Report and Written Opinion dated Sep. 6, 2018 for PCT/CA2018/050750, 13 pages.
Japanese Patent Application No.: 2019-571536, Notice of Reasons for Rejection, (Translation) dated Jun. 8, 2022, 5 pages.
Liang et al., “Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared concrete: A review”. Cement and Concrete Composites, Nov. 1, 2019 (Jan. 11, 2019), vol. 105, pp. 1-14 * Abstract;* Section 1.0; * Section 2.2.4; * Fig. 4(d).
Liu, J. et al., “Development of a Co2 solidification method for recycling autoclaved lightweight concrete waste”, Journal of Materials Science Letters 20, 2001, pp. 1791-1794.
Lu et al., “Carbon Dioxide Sequestration on Recycled Aggregates,” Carbon Dioxide Sequestration in Cementitious Construction Materials, Woodhead Publishing Series in Civil and Structural Engineering, 2018, pp. 247-277.
Lu et al., “Effects of Carbonated Hardened Cement Paste Powder on Hydration and Microstructure of Portland Cement,” Construction and Building Materials, 186, pp. 699-708 (2018).
Mexican Office Action for Application No. MX/a/2017/006746 dated Dec. 1, 2022, 5 pages [Translation].
Columbian Second Office Action for Application No. NC2021/0009084, dated Apr. 8, 2024.
European Patent Office Supplemental European Search Report and Rule 70 for Application No. 20794190.7 dated May 4, 2023, dated of competition Apr. 25, 2023, 10 pages.
European Patent Office, Communication pursuant to Rules 70(2) and 70a(2), p. 1, dated Jun. 27, 2024.
European Patent Office, Examination Report Extended for EP 19894565.1, Date Jun. 6, 2024.
European Patent Office, Partial Search Report, EP Application No. 24156817.9, pp. 1-12, dated Aug. 8, 2024.
European Patent Office, Supplementary European Search Report and Search Opinion (SESR), EP 21838519.3, p. 2, date Jun. 13, 2024.
European Patent Office, Supplementary European Search Report and Search Opinion, European Application No. 21822959.9, p. 2, date Jun. 13, 2024.
Intellectual Property Office of Singapore, Substantive Examination and Written Opinion, Singapore Patent Application No. 10202010009X, pp. 1-13, dated Aug. 22, 2024.
International Search Report and Written Opinion for PCT/US23/029354, pp. 1-25, dated Feb. 1, 2024.
Israeli Patent Office, Office Action for Application No. 283905, pp. 1-7 dated Jul. 1, 2024.
Japan Patent Office, Japanese Office Action for Application No. 2020-551893, pp. 1-10 dated Sep. 26, 2023, [Translation].
Japan Patent Office, Japanese Office Action regarding Patent Application No. 2020-551893, pp. 1-14, (Translation); Jun. 25, 2024.
Japanese Patent Application No. 2019-571536, Notice of Reasons for Rejection, (Translation) dated Jun. 8, 2022, 20 pages.
Malaysian Patent Office, Substantive Examination and Search Report, Malaysian Patent Application No. PI2021003227, pp. 1-3, dated Mar. 13, 2024.
Mexican Institute of Industrial Property (IMPI), First Office Action, Mexican Patent Application No. MX/a/2021/006988, [Translation], pp. 1-7, dated Jul. 16, 2024.
Mexican Patent Office, Office Action for Application No. MX/a/2018/012464, dated Jul. 20, 2023, 8 pages.
Mexican Patent Office, Office Action for Application No. MX/a/2024/000011, dated Jan. 25, 2024, 13 pages.
Monkman et al., The Durability of Concrete Produced Using CO2 as an Admixture, pp. 1-10, date: Aug. 2016, Fourth 1-3 International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA, Retrieved from the internet: URL:https:1/www.researchgate.net/publication/343117870.
Saudi Authority for Intellectual Property Office, First Examination Report, Application No. 522432205, pp. 1-12, dated Jul. 25, 2024.
Supplemental European Search Report for EP 20874721.2 dated Oct. 27, 2023, 10 pages.
Vietnam Patent Office, Substantive Examination for Application No. 1-2021-03941 dated Oct. 18, 2023, 3 pages [Translation].
Zhang et al. “Influence of carbonated recycled concrete aggregate on properties of cement mortar,” ScienceDirect Construction and Building Materials 98 (2015) 1-7; http://dx.doi.org/10.1016/j.conbuildmat.2015.08.087.
Zhang et al. “Performance Enhancement of Recycled Concrete Aggregates through Carbonation,” ResearchGate Journal of Materials in Civil Engineering · Mar. 2015, 8 pages.
Canadian Intellectual Property Office Office Action for CA Application No. 3,068,082, dated Sep. 3, 2024, 7 pages.
European Patent Office—Extended European Search Report from Application No. 24156817.9 dated Nov. 12, 2024, 12 pages.
European Patent Office Extended European Search Report for EP Application No. 218854.4.7, dated Sep. 20, 2024, 8 pages.
Kaliyavaradhan Senthil Kumar et al: “Valorization of waste powders from cement-concrete life cycle: A pathway to circular future”, Journal of Cleaner Production, Elsevier, Amsterdam, NL, vol. 268, May 22, 2020, 25 pages.
UAE Patent Office—English Translation of First Office Action Summary and Search Report, dated Oct. 4, 2024, 9 pages.
Related Publications (1)
Number Date Country
20240100737 A1 Mar 2024 US
Provisional Applications (1)
Number Date Country
62321013 Apr 2016 US
Continuations (2)
Number Date Country
Parent 16155013 Oct 2018 US
Child 18203599 US
Parent PCT/CA2017/050445 Apr 2017 WO
Child 16155013 US