The present invention relates to optimization of hardware used in data processing.
Data processing requires the optimization of the available resources, as well as the power consumption of the circuits involved in data processing. This is the case in particular when reconfigurable processors are used.
Reconfigurable architecture includes modules (VPU) having a configurable function and/or interconnection, in particular integrated modules having a plurality of unidimensionally or multidimensionally positioned arithmetic and/or logic and/or analog and/or storage and/or internally/externally interconnecting modules, which are connected to one another either directly or via a bus system.
These generic modules include in particular systolic arrays, neural networks, multiprocessor systems, processors having a plurality of arithmetic units and/or logic cells and/or communication/peripheral cells (IO), interconnecting and networking modules such as crossbar switches, as well as known modules of the type FPGA, DPGA, Chameleon, XPUTER, etc. Reference is also made in particular in this context to the following patents and patent applications of the same applicant:
P 44 16 881.0-53, DE 197 81 412.3, DE 197 81 483.2, DE 196 54 846.2-53, DE 196 54 593.5-53, DE 197 04 044.6-53, DE 198 80 129.7, DE 198 61 088.2-53, DE 199 80 312.9, PCT/DE 00/01869, DE 100 36 627.9-33, DE 100 28 397.7, DE 101 10 530.4, DE 101 11 014.6, POT/EP 00/10516, EP 01 102 674.7, PCT/DE 97/02949(PACT02/PCT), POT/DE 97/02998 (PACT04/PCT), PCT/DE 97/02999 (PACT05/PCT), PCT/DE 98/00334 (PACT08/PCT), PCT/DE 99/00504 (PACT10b/PCT), PCT/DE 99/00505 (PACT10c/PCT), DE 101 39 170.6 (PACT11), DE 101 42 903.7 (PACT11a), DE 101 44 732.9 (PACT11b), DE 101 45 792.8, (PACT11c), DE 101 54 260.7 (PACT11d), DE 102 07 225.6 (PACT11e), PCT/DE 00/01869 (PACT13/PCT), DE 101 42 904.5 (PACT21), DE 101 44 733.7 (PACT21a), DE 101 54 259.3 (PACT21b), DE 102 07 226.4 (PACT21c), PCT/DE 00/01869 (PACT13/PCT), DE 101 10 530.4 (PACT18), DE 101 11 014.6 (PACT18a), DE 101 46 132.1 (PACT18II), DE 102 02 044.2 (PACT19), DE 102 02 175.9 (PACT19a), DE 101 35 210.7 (PACT25), DE 101 35 211.5 (PACT25a), DE 101 42 231.8 (PACT25aII), (PACT25b). The entire contents of these documents are hereby included for the purpose of disclosure.
The above-mentioned architecture is used as an example to illustrate the present invention and is referred to hereinafter as VPU. The architecture includes an arbitrary number of arithmetic, logic (including memory) and/or memory cells and/or networking cells and/or communication/peripheral (TO) cells (PAEs—Processing Array Elements) which may be positioned to form a unidimensional or multidimensional matrix (PA); the matrix may have different cells of any desired configuration. Bus systems are also understood here as cells. A configuration unit (CT) which affects the interconnection and function of the PA through configuration is assigned to the entire matrix or parts thereof. The configuration of a VPU is determined by writing configuration words into configuration registers. Each configuration word determines a subfunction. PAEs may require a plurality of configuration words for their configuration, e.g., one/or more words for the interconnection of the PAE, one/or more words for the clock determination and one/or more words for the selection, of an ALU function, etc.
Generally, a processor which is operated at a higher clock frequency requires more power. Thus, the cooling requirements in modern processors increase substantially as the clock frequency increases. Moreover, additional power must be supplied which is critical in mobile applications in particular.
To determine the clock frequency for a microprocessor based on the state is known. Such technologies are known from the area of mobile computers. However, probleMs arise in the overall speed with which certain applications are carried out.
An object of the present invention is to provide a novel method for commercial application.
In an example embodiment of the present invention, the power consumption may be reduced and/or optimized in VPU technology. As far as different methods are addressed in the following, it should be pointed out that they provide advantages, either individually or in combination.
In a data processing unit (VPU) according to a first aspect of the present invention, by using a field of clocked logic cells (PAEs) which is operable in different configuration states and a clock preselecting means for preselecting logic cell clocking, the clock preselecting means is designed in such a way that, depending on the state, a first clock is preselected at least at a first cell (PAE) and an additional clock is preselected at least at an additional cell (PAE).
It is therefore suggested to operate different cells using different clocking. As a rule, the additional clock corresponds to the first clock; the former is thus situated in a defined phase angle to the latter. In order to achieve optimum data processing results, in particular with regard to the required data processing time, as well as the power consumption of the entire data processing unit, it is suggested that clocking takes place depending on the state, which means that no clock is preselected jointly for all cells based on a certain state, but rather an appropriate clock is assigned to each cell based on the state.
Furthermore, it is suggested that the clocking be designed to be totally configurable, so that one calibration (configuration) mutually influences the clocking of the total number of cells.
It is possible and desired that the clock preselecting means is designed in such a way that it receives the setpoint clock for at least one first cell from a unit which preselects configuration states. This makes it possible to select the clocking of the cell based on its configuration as soon as this configuration is determined. This has the advantage that configuration may take place free of problems.
The unit preselecting configuration states may be a compiling unit, which means that required or desired clocking of the cell is already determined during the compiling of the program. If the compiling unit preselects the configuration states, then the cell configuration preselecting unit may convey clocking for cell configuration to a cell to be configured. This is advantageous since it is possible to merely add clock-determining information to the configuration word or the configuration instruction with which the configuration of a cell is determined, without additional measures being required such as the implementation of clock-assigning buses which separately transmit the clock-determining signals, or the like; it should be noted that this is possible in principle.
It may also be provided that the clock preselecting means is designed in such a way that it receives the setpoint clock or a clock-influencing signal from one of the other logic cells, in particular a configurable logic cell. This is particularly advantageous if a first logic cell awaits an input signal from an external unit and not until arrival of such signals are the cells to be activated which process subsequently arriving signals. This makes it possible to implement a logic field sleeping mode in which only one or a plurality of cells are activated, if necessary, on a very low level, i.e., very slow clocking, and the remaining field is clocked extremely slowly. The clock frequencies required in the remaining field are dependent on physically necessary clocking which is required for the preservation of memory contents or the like.
It is also advantageous to receive a clock-influencing signal from another logic cell if, using one logic cell, one or a series of a plurality of different arithmetic and/or logical operations may be executed which, at least in part, require a different number of clock cycles, but this may not be determined in advance by the compiling unit. Also in such a case, the subsequent cells do not need to be operated at a high clock frequency if they are appropriately clocked down by corresponding signals which indicate the state of the cell participating in a processing sequence.
In a preferred variant, the clock preselecting means includes a central clock preselecting unit, e.g., a central clock generator, whose clock is transmitted to the individual cells via a clock line, as well as a local clock-generating unit for generating a local clock from and/or in response to the central clock transmitted via the clock line. In a possible embodiment, clocking of the central clock preselecting unit may be set or influenced by a configuration. The local clock-generating unit is preferably implemented by using a frequency divider and/or a frequency multiplier, and the frequency divider ratio is preferably determined by the preselections of the clock preselecting means according to the clock determination based on the state.
In a preferred variant, the logic cells or at least some of the logic cells include at least one ALU and/or are formed by such. It is possible and preferred if some of the logic cells contain at least one memory unit and/or register unit which may be assigned to the remaining logic cells. In particular, this unit may be provided for data to be processed and/or for configurations of the cell.
It is possible that a plurality of logic cells are identical and are operated using different clocking corresponding to their particular configuration. It is possible in particular that all logic cells are identical.
A method is also provided for operating a field of clocked logic cells which may be set into different'configuration states, a first state being determined, at least temporarily, for at least one first cell, a clock which is to be assigned to the first cell being determined dependent on the first state and the cell being operated using this clock; a second state is determined for at least one additional cell, a second clock which is to be assigned to the second cell being determined dependent on the second state and the second cell being operated using the second clock which differs from the first clock.
As mentioned above, clocking may be preselected together with the configuration. The state is then the configuration state and/or is at least determined by it.
In known and configurable logic cells, cells are typically combined in groups for executing complex operations. If individual cells execute suboperations which run in fewer clock cycles as is the case with those cells which are [engaged] in particularly drawn-out suboperations of the complex total operations executed by the group, it is preferred if these cells are operated at different clock rates, namely in such a way that the cells for less complex operations, thus operations which run in fewer clock cycles, are clocked slower than the other cells; it is preferred in particular if the cells of one group are clocked collectively in such a way that the number of blank cycles within the group is minimized. An alternative and/or an addition to this lies in the fact of temporarily changing the use of cells burdened with less complex tasks for a certain number of clock cycles, thus changing the use during a fixed number of clock cycles.
In particular, the case may occur that the maximum clock cycle rate of PAEs and/or PAE groups is limited by their function and in particular by their interconnection. The propagation time of signals via bus systems plays an increasingly frequency-limiting role, in particular in advancing semiconductor technology. Henceforth, the method allows slower clocking of such PAEs and/or PAE groups, while other PAEs and/or PAE groups operate at a different and; if needed, higher frequency. It is suggested in a simplified embodiment to make the clock rate of the entire reconfigurable module (VPU) dependent on the maximum clock rate of the slowest PAE and/or PAE group. In other words, the central clock preselecting unit may be configured in such away that the highest mutual operating clock of all PAEs and/or PAE groups (in other words the smallest common denominator of all maximum clock rates) is globally generated for all PAEs.
The above-described method is particularly advantageous if the cells of the group process data sequentially, i.e., the result determined by one cell is passed on to one or multiple cells which are subsequently processing data.
It should be noted that in addition to prioritizing tasks within the cell field for clock preselection, the condition of a power source may also be included in cell clocking determination. Clocking may be reduced overall in the case of a drop in supply voltage, in particular in mobile applications. Clocking-down for preventing an overtemperature by responding to a temperature sensor signal or the like is equally possible. It is also possible for the user to preset the clock preselection. Different parameters may jointly establish the clock-determining state.
It was mentioned above that it is possible to perform time division multiplexing for carrying out multiple configurations on the same PAE. A preferred and enhanced design makes particularly resource-saving time division multiplexing for carrying out multiple configurations on the same PAE possible; the design may have advantages independently from the different clocking of individual cells, e.g., when latencies have to be taken into account which occur in the signal transmission of digital data via a bus, such as configuration data, data to be processed, or the like. These problems are particularly serious when reconfigurable modules, having reconfigurable units which are located in part comparatively far apart from one another, are to be operated at high clock frequencies. The problem arises here that due to the special configuration of VPUs, a plurality of arbitrary PAEs is connected via buses and considerable data transmission traffic exists via the buses. The switching frequency of transistors is expected to further increase in modern and above all in future silicon technologies, while the signal transmission via buses is to increasingly become a performance-limiting factor. It is therefore suggested to decouple the data rate or frequency on the buses vis-a-vis the operating frequency of the data-processing PAEs.
A particularly simple embodiment, preferred for simple implementations, operates in such a way that the clock rate of a VPU is only globally settable. In other words, a settable clock may be preselected for all PAEs or it may be configured by a higher-level configuration unit (CT). All parameters which have an effect on clocking determine this one global clock. Such parameters may be, for example, a temperature determination, a power reserve measurement of batteries, etc.
A determining parameter may be in particular the maximum operating frequency of the slowest configuration which results as a function of a PAE configuration or a configuration of a group of PAEs. Since different configurations may include different numbers of PAEs over stretches of bus connections of different lengths, it was realized, in particular in bus signal transmission-limiting applications, that configurations may have different maximum frequencies. Configurations may have different maximum frequencies, as is known from FPGAs, for example, which depend on the particular function of the PAEs and in particular on the lengths of bus connections. The slowest configuration then ensures that the proper operation of this configuration is also ensured, and simultaneously reduces the power demand of all other configurations which is advantageous in particular when different portions of the data processing such as through the other configurations, which would possibly run at higher clock frequencies, are not needed prior to the slowest configuration. Also in cases where it must be absolutely ensured that proper operation takes place, the possibly only negligible performance loss occurring by clocking-down other configurations, which could run faster per se, is often acceptable.
In an optimized embodiment, the frequency is adapted only to the configurations which are currently carried out on a VPU, in other words, the global frequency may be reset/reconfigured with each configuration.
In an enhanced embodiment, the clock may then be configured globally, as well as, as described above, individually for each configurable element.
It should be noted that different variants are possible, individually or in combination. In order to show a detailed example, it is assumed in the following, without this necessarily being the case, that the clock may be controlled individually in each PAE. This offers the following possibilities, for example:
a) Controlled Enabling and Disabling of the Clock
It is preferred that the processing clock of PAEs is disabled, i.e., the PAEs operate only in case of need; clock enabling, i.e., activating the PAE, may take place, for example, under at least one of the following conditions, namely when valid data is present; when the result of the previous computation is approved; due to one or more trigger signals; due to an expected or valid timing mark, compare DE 101 10 530.4 (PACT18).
In order to cause clock enabling, each individual condition may be used either individually or in combination with other conditions, clock enabling being computed based on the logical combination of conditions. It should be noted that it is possible to put the PAEs into a power-saving operating mode while a clock is disabled, for example, through additionally partly switched-off or reduced power supply, or, should it be necessary because of other reasons, through extremely reduced sleeping clocks.
b) Different Frequencies Per PAE
Technologies for controlling sequences in VPUs are known from PCT/DE 97/0294.9 (PACT02/PCT), PCT/DE 97/02998 (PACT04/PCT), and PCT/DE 00/01869 (PACT13/PCT). Special sequencers (SWTs) which control a large number of PARS and which are responsible for their (re)configuration are configured in PCT/DE 97/02998 (PACT04/PCT). The (re)configuration is controlled by using status signals which are generated by the PAEs (triggers) and passed on to the SWTs, namely in that the SWT responds to the triggers, making the particular continuation of a sequence dependent on the triggers.
A small memory for their configuration is assigned to each individual PAE in PCT/DE 97/02949 (PACT02/PCT). A sequencer passes through the memory and addresses the individual configurations. The sequencer is controlled by triggers and/or by the status of its PAE (into which it may be integrated, for example).
During data processing, it is now possible that different sequencers in different PAEs have to carry out a different number of operations per transmitted data packet (compare DE 101 39 170.6 (PACT11), DE 101 42 903.7 (PACT11a), DE 101 44 732.9 (PACT11b), DE 101 45 792.8 (PACT11c), DE 101 54 260.7 (PACT11d), DE 102 07 225.6 (PACT11e), PCT/DE 00/01869 (PACT13/PCT)). This is described using a configuration as an example in which 3 sequencers are involved in processing a data packet, requiring a different number of operations for data packet processing. Example:
In order to obtain an optimum operation/power consumption ratio, the individual sequencers would have to be clocked as follows:
Fmax=FSeq2/4=FSeq12=FSeq3
or at a maximum operating frequency of, for example, 100 MHz: Fseq1=50 MHz, Fseq2=25 MHz, FSeq3=100 MHz.
It is suggested in particular to use different clock sources for each PAE and/or group of PAEs. For example, different techniques may be used for this purpose, either individually or jointly:
1) Clock dividers, individually programmable per PAE, which enable an individually configurable divider ratio based on one or more mutual base clocks.
2) Clock multipliers (PLLs), individually programmable per PAE, which enable an individually configurable divider ratio based on one or more mutual base clocks.
3) Deriving the particular PAE clock from the data stream of the particular data to be processed, e.g., by oversampling.
An exemplary embodiment having different algorithms is illustrated in
c) Configuration Clock
Optimization of the power consumption is also favored in that the circuit components, necessary for executing a configuration, are clocked selectively, i.e., it is suggested to clock each PAE addressed and/or to completely disable the clock of those circuit components necessary for executing a configuration or a reconfiguration when no configuration or reconfiguration is being executed and/or to use static registers.
In particular example embodiments, the operating frequency of the PAEs or groups of PAEs may be made dependent on different and/or additional factors. The following is listed below as an example:
1. Temperature Measurement
If the operating temperature reaches certain threshold values, the operating clock is reduced correspondingly. The reduction may take place selectively by initially operating those PAEs on a lower clock which represent the most irrelevant performance loss.
In a particularly preferred embodiment, multiple temperature measurements may be performed in different regions and clocking may be adapted locally.
2. Buffer Filling Levels
IO-FIFOs (input-output-first-in-first-out-circuits) which decouple peripheral data transmissions from data processing within a VPU are described in DE 102 06 653.1 (PACT15), DE 102 07 224.8 (PACT15a), (PACT15b). One buffer for input data (input buffer) and/or one buffer for output data (output buffer) may be implemented, for example. A particularly efficient variable for determining the clock frequency may, for example, be determined from the filling level of the particular data buffers. The following effects and measures may occur, for example:
Depending on the application and the system, suitable combinations may be implemented accordingly.
It should be pointed out that such a clock frequency determination is implementable if a filling level determination means for a buffer, in particular an input and/or output buffer, alternatively also an intermediate buffer within a VPU array, is provided and if this filling level determination means is connected to a clock preselecting means for preselecting logic cell clocking so that this clock preselecting means is able to change the logic cell clocking in response to the buffer filling level.
3. Battery Charge State
It is imperative to be careful with the power supply, e.g., a battery, for mobile units. Depending on the power reserve, which may be determined based on the existing methods according to the related art, the frequency of PAEs and/or groups of PAEs is determined and is reduced in particular when the power reserve is low.
Besides or in addition to optimizing data processing clocking it is also possible to accomplish an optimization of the data transmission with respect to the relationship between data transmission and data processing.
In a particular embodiment, the clock controls of PAEs described may be enhanced in such a way that, by using a sequencer-like activation and a suitable register set, for example, multiple, preferably different, configuration words may be executed successively in multiple clocks. A sequencer, sequentially processing a number of configuration inputs, may be additionally assigned to the configuration registers and/or to a configuration memory which is possibly also decoupled and implemented separately (compare DE 102 06 653.1 (PACT15), DE 102 07 224.8 (PACT15a, PACT15b). The sequencer may be designed as a microcontroller. In particular, the sequencer may be programmable/configurable in its function such as Altera's module EPS448 (ALTERA Data Book 1993). Possible embodiments of such PAEs are described, for example, in the following patent applications which are included in their entirety for the purpose of disclosure: PCT/DE 97/02949 (PACT02/PCT), PCT/DE 97/02998 (PACT04/PCT), PCT/DE 00/01869 (PACT13/PCT), DE 101 10 530.4 (PACT18), DE 102 06 653.1 (PACT15), DE 102 07 224.8 (PACT15a, PACT15b).
For the following, it is initially assumed that multiple configuration words are combined into one configuration (PACKEDCONF) and are configured on a PAE. The PACKEDCONF is processed in such a way that the individualconfiguration words are executed in chronological succession. The data exchange and/or status exchange between the individual timed configurations takes place via a suitable data feedback in the PAEs; for example by using a suitable register set and/or another data exchange and/or status/exchange means such as suitable memories and the like.
This method allows a different timing for PAEs and bus systems. While PAEs process data at very high clock rates, for example, operands and/or results are transmitted via a bus at only a fraction of the clock rate of the PAEs. The transmission time via a bus may be correspondingly longer.
It is preferred if not only the PAEs or other logic units in a configurable and/or reconfigurable module are clockable at a different rate, but also if different clocking is provided for parts of a bus system. It is possible here to provide multiple buses in parallel whose speed is clocked differently, i.e., a bus which is clocked particularly high for providing a high-performance connection, parallel to a bus which is clocked lower for providing a power-saving connection. The connection crocked high may be used when longer signal paths have to be compensated, or when PAEs, positioned close together, operate at a high frequency and therefore also have to exchange data at a high frequency in order to provide a good transmission here over short distances in which the latency plays a minor role at best. Therefore, it is suggested in a possible embodiment that a number of PAEs, positioned together locally and combined in a group, operate at a high frequency and possibly also sequentially and that local and correspondingly short bus systems are clocked high corresponding to the data processing rate of the group, while the bus systems, inputting the operands and outputting the results, have slower clock and data transmission rates. For the purpose of optimizing the power consumption, it would be alternatively possible to implement slow clocking and to supply data at a high speed, e.g., when a large quantity of inflowing data may be processed with only a minor operational effort, thus at low clock rates.
In addition to the possibility of providing bus systems which are clocked using different frequencies it is also possible to provide multiple bus systems which are operable independently from one another and to then apply the PAEs in a multiplex-like manner as required. This alone makes it possible to operate reconfigurable modules particularly efficiently in resource multiplexing, independently from the still existing possibility of differently clocking different bus systems or different bus system parts. It is possible here to assign different configurations to different resources according to different multiplexing methods.
According to PCT/DE 00/01869 (PACT13/PCT), a group of PAEs may be designed as a processor in particular.
In the following embodiments, for example, different configurations are assigned to data-processing PAEs using time-division multiplexing, while bus systems are assigned to the different configurations using space-division multiplexing.
In the assignment of resources, i.e., the assignment of tasks to PAEs or a group of PAEs to be carried out by the compiler or a similar unit, the given field may then be considered as a field of the n-fold variable and code sections may be transferred to this field of resources, which is virtually scaled up by the factor n, without the occurrence of problems, particularly when code sections are transferred in such a way that no interdependent code sections have to be configured into a RAE which is used in a multiplex-like manner.
In the previous approach, a PACKEDCONF was composed of at least one configuration word or a bundle of configuration words for PAEs which belong to one single application. In other words, only configuration words which belong together were combined in the PACKEDCONF.
In an enhanced embodiment, at least one or more configuration words per each different configuration are entered into a PACKEDCONF in such a way that the configuration word or words which belong together in a configuration are combined in a configuration group and the configuration groups thus created are combined in the PACKEDCONF.
The individual configuration groups may be executed in chronological succession, thus in time-division multiplexing by a timeslice-like assignment. This results in time division multiplexing of different configuration groups on one PAE. As described above, the configuration word or the configuration words within a configuration group may also be executed in chronological succession.
Multiplexers which select one of the configuration groups are assigned to the configuration registers and/or to a configuration memory, which is possibly also decoupled and implemented separately (compare DE 102 06 653.1 (PACT15), DE 102 07 224.8 (PACT15a, PACT 15b)). In an enhanced embodiment, a sequencer (as described above) may be additionally assigned which makes the sequential processing of configuration words within configuration groups possible.
Using the multiplexers and the optional sequencer, a resource (PAE) may be assigned to multiple different configurations in a time-division multiplex method. Among one another, different resources may synchronize the particular configuration group to be applied, for example by transmitting a configuration group number or a pointer.
The execution of the configuration groups may take place linearly in succession and/or cyclically, with a priority being observed. It should be noted here in particular that different sequences may be processed in a single processor element and that different bus systems may be provided at the same time so that no time is wasted in establishing a bus connection which may take some time due to the long transmission paths. If a PAR assigns its first configuration to a first bus system and, on execution of the first configuration, couples the same to the bus system, then it may, in a second configuration, couple a different or partially different bus system to the former if spacial multiplexing for the bus system is possible.
The execution of a configuration group, each configuration group being composed of one or more configuration words, may be made dependent on the reception of an execution release via data and/or triggers and/or an execution release condition.
If the execute release (condition) for a configuration group is not given, the execute release (condition) may either be awaited, or the execution of a subsequent configuration group may be continued. The PAEs preferably go into a power-saving operating mode during the wait for an execute release (condition), for example with a disabled clock (gated clock) and/or partially disabled or reduced power supply. If a configuration group cannot be activated, then, as mentioned above, the PAEs preferably also go into a power-saving mode. The storage of the PACKEDCONF may take place by using a ring-type memory or other memory or register means, the use of a ring-type memory resulting in the fact that after the execution of the last input, the execution of the first input may be started again (compare PCT/DE 97/02998 (PACT04/PCT)). It should be noted that it is also possible to skip to a particular execution directly and/or indirectly and/or conditionally within the PACKEDCONF and/or a configuration group.
In a preferred method, PAEs may be designed for processing of configurations in a corresponding time-division multiplexing method. The number of bus systems between the PAEs is increased such that sufficient resources are available for a sufficient number of configuration groups. In other words, the data-processing PAEs operate in a time-division multiplex method, while the data-transmitting and/or data-storing resources are adequately available.
This represents a type of space division multiplexing, a first bus system being assigned to a first temporarily processed configuration, and a second bus system being assigned to an additional configuration; the second bus system runs or is routed specially separated from the first bus system.
It is possible at the same time and/or alternatively that the bus systems are also entirely or partially operated in time-division multiplexing and that multiple configuration groups share one bus system. It may be provided here that each configuration group transmits its data as a data packet, for example, a configuration group ID being assigned to the data packet (compare APID in DE 102 06 653.1 (PACT15); DE 102 07 224.8 (PACT 15a, PACT 15b)). Subsequently it may be provided to store and sort the particular data packets transmitted based on their assigned identification data, namely between different buses if required and for coordinating the IDs.
In an enhanced method, memory sources may also be run in a time-division multiplex, e.g., by implementing multiple segments and/or, at a change of the configuration group, by writing the particular memory/memories as described in PCT/DE 97/02998 (PACT04/PCT) and/or PCT/DE 00/01869 (PACT13/PCT) into a different or even external memory or by loading from the same. In particular the methods as described in DE 102 06 653.1 (PACT15), DE 102 07 224.8 (PACT15a, PACT15b) may be used (e.g., MMU paging and/or APID).
The adaptation of the operating voltage to the clock should be noted as a further possibility for conserving resources.
Semiconductor processes typically allow higher clock frequencies when they are operated at higher operating voltages. However, this causes substantially higher power consumption and may also reduce the service life of a semiconductor.
An optimum compromise may be achieved in that the voltage supply is made dependent on the clock frequency. Low clock frequencies may be operated at a low supply voltage, for example. With increasing clock frequencies, the supply voltage is also increased (preferably up to a defined maximum).
a shows a 3×3 field of configurable cells.
b shows a table indicating numbers of clock cycles and clock rates for the cells of
a shows an example of the transmission of data on a data bus.
a shows example bus transmission in accordance with
The present invention, as an example, is explained in greater detail below with reference to the Figures. It should be noted that this exemplary description is not limiting and that in isolated cases and in different figures identical or similar units may be denoted using different reference numbers.
As an example,
According to
Furthermore, a multiplexer 0213 for selecting different configurations and/or configuration groups may optionally be integrated dependent on 0212. Furthermore, the multiplexer may optionally be activated by a sequencer 0214 in order to make sequential data processing possible. In particular, intermediate results may be managed in data memory 0207.
While the general configuration of the cell was described in part in the applicant's applications described above, the presently described clock dividing system, the associated circuit, and the optimization of its operation are at least novel and it should be pointed out that these facts may and shall be associated with the required hardware changes.
The entire system and in particular configuration unit 0103 is designed in such a way that, together with a configuring signal with which a configuration word is fed via configuration line 0103a via configuration word extractor 0209 to data processing unit 0206 or upstream and/or downstream and/or associated memory 0208, a clock dividing/multiplying signal may also be transmitted which is extracted by configuration word extractor 0209 and transmitted to frequency divider/multiplier 0210, so that, as a response, 0210 may clock data processing unit 0206 and possibly also other units. It should be pointed out that, as a response to an input signal to the cell, there are also other possibilities instead of unit 0209 to vary clocking of an individual data processing unit 0206 with reference to a central clock unit 0104, via data bus monitoring circuit 0212, for example.
Described only as an example with reference to
For example, a 3×3 field of reconfigurable cells is configured in such a way, according to
If the processor unit having the separately clockable reconfigurable logic cells is operated in an application where the voltage may drop, e.g., due to exhausting voltage supply capacities, it may be provided that, at a drop in the supply voltage, the entire frequency is reduced to a critical value U1; all cells are subsequently clocked slower by one half so that division cell 0102h too runs only at 128 MHz, while cell 0102d is clocked at 4 MHz. Cell 0102a, executing a query of the mouse pointer having a lower priority, is no longer clocked at 8 MHz as previously but rather at 2 MHz, i.e., depending on the prioritization, different slowdowns according to the importance of the task are assigned to the respective groups at a voltage drop or under other circumstances.
If, for other reasons, the temperature still rises, the heat generation in the logic cell field may be further reduced by an additional clock rate reduction for the logic cells, as is indicated in the last row of
This makes it possible to optimally operate a processor field energy-efficiently; the cooling capacity required is reduced and it is clear that, since as a rule not all cells may and/or must be permanently operated at the highest clock frequency, heat sinks and the like may be dimensioned appropriately smaller which in turn offers additional cost advantages.
It should be noted that in addition to the query regarding a supply voltage, a temperature, the prioritization of computations, and the like, other conditions may determine the clock. For example, a hardware switch or a software switch may be provided with which the user indicates that only low clocking or higher clocking is desired. This makes an even more economical and targeted handling of the available power possible. It may be provided in particular that, at the user's request or at an external request, the central clock rate in total may be reduced; the clock divider ratios within the cell array, however, are not changed in order to avoid the requirement of reconfiguring all cells, e.g., at an extreme temperature rise. Moreover, it should be pointed out that a hysteresis characteristic may be provided in determining the clock rates, when a temperature-sensitive change of the clock frequencies is to be performed, for example.
The data transmission occurring on data bus 0205a/b is illustrated in
In order to execute op1, operands is mist be available via 0205a (0601); the data transmissions for the remaining cycles may be undefined in principle.
Thereafter, 0205a may preferably transmit the subsequent operands (0602) for which the execution time of op2, op3, op4, op5 is available, thus creating a temporal decoupling, allowing the use of slower and/or, in particular, longer bus systems.
During the execution of op2, op3, op4, op5, data of other configurations may alternatively (0603) be transmitted via the same bus system 0205a using a time-division multiplex method.
Following op5, result oa is applied to bus 0205b (0601); the data transmissions for the remaining cycles may be undefined in principle.
The time prior to op5, i.e., during the execution of op1, op2, op3, op4, may be used for transmitting the previous result (0602). This again creates a temporal decoupling, allowing the use of slower and/or, in particular, longer bus-systems.
During the execution of op1, op2, op3, op4, data of other configurations may alternatively (0603) be transmitted via the same bus system 0205b using a time-division multiplex method. For clock multiplication, 0210 may use a PLL. A PLL may be used in particular in such a way that the operating clock of the PAE for executing op1, op2, op3, op4, op5 is five times that of the bus clock. In this case, the PAE may act as a PAE without a sequencer having only one (unicyclical) configuration and the same clock as the bus clock.
One configuration group may contain multiple configuration words (ga={ka1, ka2}, gb={kb1}, gc={kc1, kc2, kc3}). The configuration words may be executed sequentially in 0214 using a sequencer.
a shows the bus transmissions according to the example in
In addition, a possible bus transmission using a time-division multiplex for the bus systems is illustrated in 0704. The input data of all groups is transmitted via an input bus system and the output data of all groups is transmitted via an output bus system. The undefined intermediate cycles are either unused or are free for other data transmissions.
Number | Date | Country | Kind |
---|---|---|---|
101 10 530 | Mar 2001 | DE | national |
101 11 014 | Mar 2001 | DE | national |
PCT/EP01/06703 | Jun 2001 | WO | international |
101 29 237 | Jun 2001 | DE | national |
01115021 | Jun 2001 | EP | regional |
101 35 210 | Jul 2001 | DE | national |
101 35 211 | Jul 2001 | DE | national |
PCT/EP01/08534 | Jul 2001 | WO | international |
101 39 170 | Aug 2001 | DE | national |
101 42 231 | Aug 2001 | DE | national |
101 42 894 | Sep 2001 | DE | national |
101 42 903 | Sep 2001 | DE | national |
101 44 732 | Sep 2001 | DE | national |
101 42 904 | Sep 2001 | DE | national |
101 45 792 | Sep 2001 | DE | national |
101 45 795 | Sep 2001 | DE | national |
101 46 132 | Sep 2001 | DE | national |
PCT/EP01/11299 | Sep 2001 | WO | international |
101 54 259 | Nov 2001 | DE | national |
101 54 260 | Nov 2001 | DE | national |
101 44 733 | Nov 2001 | DE | national |
01129923 | Dec 2001 | EP | regional |
02001331 | Jan 2002 | EP | regional |
102 02 044 | Jan 2002 | DE | national |
102 02 175 | Jan 2002 | DE | national |
102 06 653 | Feb 2002 | DE | national |
102 06 856 | Feb 2002 | DE | national |
102 06 857 | Feb 2002 | DE | national |
102 07 224 | Feb 2002 | DE | national |
102 07 225 | Feb 2002 | DE | national |
102 07 226 | Feb 2002 | DE | national |
102 08 434 | Feb 2002 | DE | national |
102 08 435 | Feb 2002 | DE | national |
This application is a continuation of U.S. patent application Ser. No. 12/570,984, filed on Sep. 30, 2009, now U.S. Pat. No. 8,312,301, which is a continuation of U.S. patent application. Ser. No. 12/257,075, filed on Oct. 23, 2008, now U.S. Pat. No. 8,099,618, which is a divisional of U.S. patent application Ser. No. 10/469,909, filed on Sep. 21, 2004, now U.S. Pat. No. 7,444,531, which is a national phase of int. patent application Ser. No. PCT/EP02/02402, filed on Mar. 5, 2002, which claims priority to German Patent Application Serial No. DE 101 10 530.4, filed on Mar. 5, 2001, the entire contents of each of which are expressly incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
3473160 | Wahlstrom et al. | Oct 1969 | A |
3531662 | Spandorfer et al. | Sep 1970 | A |
3564506 | Bcc et al. | Feb 1971 | A |
3681578 | Stevens | Aug 1972 | A |
3753008 | Guarnaschelli | Aug 1973 | A |
3754211 | Rocher et al. | Aug 1973 | A |
3855577 | Vandierendonck | Dec 1974 | A |
3956589 | Weathers et al. | May 1976 | A |
4020469 | Manning | Apr 1977 | A |
4151611 | Sugawara et al. | Apr 1979 | A |
4233667 | Devine et al. | Nov 1980 | A |
4414547 | Knapp et al. | Nov 1983 | A |
4498134 | Hansen et al. | Feb 1985 | A |
4498172 | Bhavsar | Feb 1985 | A |
4566102 | Hefner | Jan 1986 | A |
4571736 | Agrawal et al. | Feb 1986 | A |
4590583 | Miller | May 1986 | A |
4591979 | Iwashita | May 1986 | A |
4594682 | Drimak | Jun 1986 | A |
4623997 | Tulpule | Nov 1986 | A |
4642487 | Carter | Feb 1987 | A |
4646300 | Goodman et al. | Feb 1987 | A |
4663706 | Allen et al. | May 1987 | A |
4667190 | Fant et al. | May 1987 | A |
4682284 | Schrofer | Jul 1987 | A |
4686386 | Tadao | Aug 1987 | A |
4700187 | Furtek | Oct 1987 | A |
4706216 | Carter | Nov 1987 | A |
4720778 | Hall et al. | Jan 1988 | A |
4720780 | Dolecek | Jan 1988 | A |
4722084 | Morton | Jan 1988 | A |
4724307 | Dutton et al. | Feb 1988 | A |
4739474 | Holsztynski | Apr 1988 | A |
4748580 | Ashton et al. | May 1988 | A |
4758985 | Carter | Jul 1988 | A |
4760525 | Webb | Jul 1988 | A |
4761755 | Ardini et al. | Aug 1988 | A |
4768196 | Jou et al. | Aug 1988 | A |
4786904 | Graham, III et al. | Nov 1988 | A |
4791603 | Henry | Dec 1988 | A |
4811214 | Nosenchuck et al. | Mar 1989 | A |
4852043 | Guest | Jul 1989 | A |
4852048 | Morton | Jul 1989 | A |
4860201 | Stolfo et al. | Aug 1989 | A |
4870302 | Freeman | Sep 1989 | A |
4873666 | Lefebvre et al. | Oct 1989 | A |
4882687 | Gordon | Nov 1989 | A |
4884231 | Mor et al. | Nov 1989 | A |
4891810 | de Corlieu et al. | Jan 1990 | A |
4901268 | Judd | Feb 1990 | A |
4910665 | Mattheyses et al. | Mar 1990 | A |
4918440 | Furtek | Apr 1990 | A |
4939641 | Schwartz et al. | Jul 1990 | A |
4959781 | Rubenstein et al. | Sep 1990 | A |
4967340 | Dawes | Oct 1990 | A |
4972314 | Getzinger et al. | Nov 1990 | A |
4992933 | Taylor | Feb 1991 | A |
5010401 | Murakami et al. | Apr 1991 | A |
5014193 | Garner et al. | May 1991 | A |
5015884 | Agrawal et al. | May 1991 | A |
5021947 | Campbell et al. | Jun 1991 | A |
5023775 | Poret | Jun 1991 | A |
5031179 | Yoshida et al. | Jul 1991 | A |
5034914 | Osterlund | Jul 1991 | A |
5036473 | Butts et al. | Jul 1991 | A |
5036493 | Nielsen | Jul 1991 | A |
5041924 | Blackborow et al. | Aug 1991 | A |
5043978 | Nagler et al. | Aug 1991 | A |
5047924 | Fujioka et al. | Sep 1991 | A |
5055997 | Sluijter et al. | Oct 1991 | A |
5065308 | Evans | Nov 1991 | A |
5070475 | Normoyle et al. | Dec 1991 | A |
5072178 | Matsumoto | Dec 1991 | A |
5076482 | Kozyrski et al. | Dec 1991 | A |
5081375 | Pickett et al. | Jan 1992 | A |
5081575 | Hiller et al. | Jan 1992 | A |
5099447 | Myszewski | Mar 1992 | A |
5103311 | Sluijter et al. | Apr 1992 | A |
5109503 | Cruickshank et al. | Apr 1992 | A |
5113498 | Evan et al. | May 1992 | A |
5115510 | Okamoto et al. | May 1992 | A |
5119290 | Loo et al. | Jun 1992 | A |
5123109 | Hillis | Jun 1992 | A |
5128559 | Steele | Jul 1992 | A |
5142469 | Weisenborn | Aug 1992 | A |
5144166 | Camarota et al. | Sep 1992 | A |
5193202 | Jackson et al. | Mar 1993 | A |
5203005 | Horst | Apr 1993 | A |
5204935 | Mihara et al. | Apr 1993 | A |
5208491 | Ebeling et al. | May 1993 | A |
5212716 | Ferraiolo et al. | May 1993 | A |
5212777 | Gove et al. | May 1993 | A |
5218302 | Loewe et al. | Jun 1993 | A |
5226122 | Thayer et al. | Jul 1993 | A |
RE34363 | Freeman | Aug 1993 | E |
5233539 | Agrawal et al. | Aug 1993 | A |
5237686 | Asano et al. | Aug 1993 | A |
5243238 | Kean | Sep 1993 | A |
5245227 | Furtek et al. | Sep 1993 | A |
5245616 | Olson | Sep 1993 | A |
5247689 | Ewert | Sep 1993 | A |
RE34444 | Kaplinsky | Nov 1993 | E |
5274593 | Proebsting | Dec 1993 | A |
5276836 | Fukumaru et al. | Jan 1994 | A |
5287472 | Horst | Feb 1994 | A |
5287511 | Robinson et al. | Feb 1994 | A |
5287532 | Hunt | Feb 1994 | A |
5296759 | Sutherland et al. | Mar 1994 | A |
5298805 | Garverick et al. | Mar 1994 | A |
5301284 | Estes et al. | Apr 1994 | A |
5301344 | Kolchinsky | Apr 1994 | A |
5303172 | Magar et al. | Apr 1994 | A |
5311079 | Ditlow et al. | May 1994 | A |
5327125 | Iwase et al. | Jul 1994 | A |
5336950 | Popli et al. | Aug 1994 | A |
5343406 | Freeman et al. | Aug 1994 | A |
5347639 | Rechtschaffen et al. | Sep 1994 | A |
5349193 | Mott et al. | Sep 1994 | A |
5353432 | Richek et al. | Oct 1994 | A |
5355508 | Kan | Oct 1994 | A |
5357152 | Jennings, III et al. | Oct 1994 | A |
5361373 | Gilson | Nov 1994 | A |
5365125 | Goetting et al. | Nov 1994 | A |
5379444 | Mumme | Jan 1995 | A |
5386154 | Goetting et al. | Jan 1995 | A |
5386155 | Steele et al. | Jan 1995 | A |
5386518 | Reagle et al. | Jan 1995 | A |
5392437 | Matter et al. | Feb 1995 | A |
5394030 | Jennings, III et al. | Feb 1995 | A |
5408129 | Farmwald et al. | Apr 1995 | A |
5408643 | Katayose | Apr 1995 | A |
5410723 | Schmidt et al. | Apr 1995 | A |
5412795 | Larson | May 1995 | A |
5418952 | Morley et al. | May 1995 | A |
5418953 | Hunt et al. | May 1995 | A |
5421019 | Holsztynski et al. | May 1995 | A |
5422823 | Agrawal et al. | Jun 1995 | A |
5425036 | Liu et al. | Jun 1995 | A |
5426378 | Ong | Jun 1995 | A |
5428526 | Flood et al. | Jun 1995 | A |
5430687 | Hung et al. | Jul 1995 | A |
5435000 | Boothroyd et al. | Jul 1995 | A |
5440245 | Galbraith et al. | Aug 1995 | A |
5440538 | Olsen et al. | Aug 1995 | A |
5440711 | Sugimoto | Aug 1995 | A |
5442790 | Nosenchuck | Aug 1995 | A |
5444394 | Watson et al. | Aug 1995 | A |
5448186 | Kawata | Sep 1995 | A |
5448496 | Butts et al. | Sep 1995 | A |
5450022 | New | Sep 1995 | A |
5455525 | Ho et al. | Oct 1995 | A |
5457644 | McCollum | Oct 1995 | A |
5465375 | Thepaut et al. | Nov 1995 | A |
5469003 | Kean | Nov 1995 | A |
5473266 | Ahanin et al. | Dec 1995 | A |
5473267 | Stansfield | Dec 1995 | A |
5475583 | Bock et al. | Dec 1995 | A |
5475803 | Stearns et al. | Dec 1995 | A |
5475856 | Kogge | Dec 1995 | A |
5477525 | Okabe | Dec 1995 | A |
5483620 | Pechanek et al. | Jan 1996 | A |
5485103 | Pedersen et al. | Jan 1996 | A |
5485104 | Agrawal et al. | Jan 1996 | A |
5488582 | Camarota | Jan 1996 | A |
5489857 | Agrawal et al. | Feb 1996 | A |
5491353 | Kean | Feb 1996 | A |
5493239 | Zlotnick | Feb 1996 | A |
5493663 | Parikh | Feb 1996 | A |
5497498 | Taylor | Mar 1996 | A |
5500609 | Kean | Mar 1996 | A |
5502838 | Kikinis | Mar 1996 | A |
5504439 | Tavana | Apr 1996 | A |
5506998 | Kato et al. | Apr 1996 | A |
5510730 | El Gamal et al. | Apr 1996 | A |
5511173 | Yamaura et al. | Apr 1996 | A |
5513366 | Agarwal et al. | Apr 1996 | A |
5521837 | Frankle et al. | May 1996 | A |
5522083 | Gove et al. | May 1996 | A |
5525971 | Flynn | Jun 1996 | A |
5530873 | Takano | Jun 1996 | A |
5530946 | Bouvier et al. | Jun 1996 | A |
5532693 | Winters et al. | Jul 1996 | A |
5532957 | Malhi | Jul 1996 | A |
5535406 | Kolchinsky | Jul 1996 | A |
5537057 | Leong et al. | Jul 1996 | A |
5537580 | Giomi et al. | Jul 1996 | A |
5537601 | Kimura et al. | Jul 1996 | A |
5541530 | Cliff et al. | Jul 1996 | A |
5544336 | Kato et al. | Aug 1996 | A |
5548773 | Kemeny et al. | Aug 1996 | A |
5550782 | Cliff et al. | Aug 1996 | A |
5555434 | Carlstedt | Sep 1996 | A |
5559450 | Ngai et al. | Sep 1996 | A |
5561738 | Kinerk et al. | Oct 1996 | A |
5568624 | Sites et al. | Oct 1996 | A |
5570040 | Lytle et al. | Oct 1996 | A |
5572710 | Asano et al. | Nov 1996 | A |
5574927 | Scantlin | Nov 1996 | A |
5574930 | Halverson, Jr. et al. | Nov 1996 | A |
5581731 | King et al. | Dec 1996 | A |
5581734 | DiBrino et al. | Dec 1996 | A |
5583450 | Trimberger et al. | Dec 1996 | A |
5584013 | Cheong et al. | Dec 1996 | A |
5586044 | Agrawal et al. | Dec 1996 | A |
5587921 | Agrawal et al. | Dec 1996 | A |
5588152 | Dapp et al. | Dec 1996 | A |
5590345 | Barker et al. | Dec 1996 | A |
5590348 | Phillips et al. | Dec 1996 | A |
5596742 | Agarwal et al. | Jan 1997 | A |
5596743 | Bhat et al. | Jan 1997 | A |
5600265 | El Gamal et al. | Feb 1997 | A |
5600597 | Kean et al. | Feb 1997 | A |
5600845 | Gilson | Feb 1997 | A |
5602999 | Hyatt | Feb 1997 | A |
5603005 | Bauman et al. | Feb 1997 | A |
5606698 | Powell | Feb 1997 | A |
5608342 | Trimberger | Mar 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5617547 | Feeney et al. | Apr 1997 | A |
5617577 | Barker et al. | Apr 1997 | A |
5619720 | Garde et al. | Apr 1997 | A |
5625806 | Kromer | Apr 1997 | A |
5625836 | Barker et al. | Apr 1997 | A |
5627992 | Baror | May 1997 | A |
5631578 | Clinton et al. | May 1997 | A |
5634131 | Matter et al. | May 1997 | A |
5635851 | Tavana | Jun 1997 | A |
5642058 | Trimberger et al. | Jun 1997 | A |
5646544 | Iadanza | Jul 1997 | A |
5646545 | Trimberger et al. | Jul 1997 | A |
5646546 | Bertolet et al. | Jul 1997 | A |
5649176 | Selvidge et al. | Jul 1997 | A |
5649179 | Steenstra et al. | Jul 1997 | A |
5652529 | Gould et al. | Jul 1997 | A |
5652894 | Hu et al. | Jul 1997 | A |
5655069 | Ogawara et al. | Aug 1997 | A |
5655124 | Lin | Aug 1997 | A |
5656950 | Duong et al. | Aug 1997 | A |
5657330 | Matsumoto | Aug 1997 | A |
5659785 | Pechanek et al. | Aug 1997 | A |
5659797 | Zandveld et al. | Aug 1997 | A |
5671432 | Bertolet et al. | Sep 1997 | A |
5675262 | Duong et al. | Oct 1997 | A |
5675743 | Mavity | Oct 1997 | A |
5675757 | Davidson et al. | Oct 1997 | A |
5675777 | Glickman | Oct 1997 | A |
5677909 | Heide | Oct 1997 | A |
5680583 | Kuijsten | Oct 1997 | A |
5682491 | Pechanek et al. | Oct 1997 | A |
5682544 | Pechanek et al. | Oct 1997 | A |
5687325 | Chang | Nov 1997 | A |
5694602 | Smith | Dec 1997 | A |
5696791 | Yeung | Dec 1997 | A |
5696976 | Nizar et al. | Dec 1997 | A |
5701091 | Kean | Dec 1997 | A |
5705938 | Kean | Jan 1998 | A |
5706482 | Matsushima et al. | Jan 1998 | A |
5713037 | Wilkinson et al. | Jan 1998 | A |
5715476 | Kundu et al. | Feb 1998 | A |
5717890 | Ichida et al. | Feb 1998 | A |
5717943 | Barker et al. | Feb 1998 | A |
5727229 | Kan et al. | Mar 1998 | A |
5732209 | Vigil et al. | Mar 1998 | A |
5734869 | Chen | Mar 1998 | A |
5734921 | Dapp et al. | Mar 1998 | A |
5737516 | Circello et al. | Apr 1998 | A |
5737565 | Mayfield | Apr 1998 | A |
5742180 | DeHon et al. | Apr 1998 | A |
5745734 | Craft et al. | Apr 1998 | A |
5748872 | Norman | May 1998 | A |
5748979 | Trimberger | May 1998 | A |
5752035 | Trimberger | May 1998 | A |
5754459 | Telikepalli | May 1998 | A |
5754820 | Yamagami | May 1998 | A |
5754827 | Barbier et al. | May 1998 | A |
5754871 | Wilkinson et al. | May 1998 | A |
5754876 | Tamaki et al. | May 1998 | A |
5760602 | Tan | Jun 1998 | A |
5761484 | Agarwal et al. | Jun 1998 | A |
5768629 | Wise et al. | Jun 1998 | A |
5773994 | Jones | Jun 1998 | A |
5774704 | Williams | Jun 1998 | A |
5778237 | Yamamoto et al. | Jul 1998 | A |
5778439 | Trimberger et al. | Jul 1998 | A |
5781756 | Hung | Jul 1998 | A |
5784313 | Trimberger et al. | Jul 1998 | A |
5784630 | Saito et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5794059 | Barker et al. | Aug 1998 | A |
5794062 | Baxter | Aug 1998 | A |
5801547 | Kean | Sep 1998 | A |
5801715 | Norman | Sep 1998 | A |
5801958 | Dangelo et al. | Sep 1998 | A |
5802290 | Casselman | Sep 1998 | A |
5804986 | Jones | Sep 1998 | A |
5805477 | Perner | Sep 1998 | A |
5815004 | Trimberger et al. | Sep 1998 | A |
5815715 | Kuçukçakar | Sep 1998 | A |
5815726 | Cliff | Sep 1998 | A |
5821774 | Veytsman et al. | Oct 1998 | A |
5828229 | Cliff et al. | Oct 1998 | A |
5828858 | Athanas et al. | Oct 1998 | A |
5831448 | Kean | Nov 1998 | A |
5832288 | Wong | Nov 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5838988 | Panwar et al. | Nov 1998 | A |
5841973 | Kessler et al. | Nov 1998 | A |
5844422 | Trimberger et al. | Dec 1998 | A |
5844888 | Markkula, Jr. et al. | Dec 1998 | A |
5848238 | Shimomura et al. | Dec 1998 | A |
5854918 | Baxter | Dec 1998 | A |
5857097 | Henzinger et al. | Jan 1999 | A |
5857109 | Taylor | Jan 1999 | A |
5859544 | Norman | Jan 1999 | A |
5860119 | Dockser | Jan 1999 | A |
5862403 | Kanai et al. | Jan 1999 | A |
5867691 | Shiraishi | Feb 1999 | A |
5867723 | Chin et al. | Feb 1999 | A |
5870620 | Kadosumi et al. | Feb 1999 | A |
5884075 | Hester et al. | Mar 1999 | A |
5887162 | Williams et al. | Mar 1999 | A |
5887165 | Martel et al. | Mar 1999 | A |
5889533 | Lee | Mar 1999 | A |
5889982 | Rodgers et al. | Mar 1999 | A |
5892370 | Eaton et al. | Apr 1999 | A |
5892961 | Trimberger | Apr 1999 | A |
5892962 | Cloutier | Apr 1999 | A |
5894565 | Furtek et al. | Apr 1999 | A |
5895487 | Boyd et al. | Apr 1999 | A |
5898602 | Rothman et al. | Apr 1999 | A |
5901279 | Davis, III | May 1999 | A |
5913925 | Kahle et al. | Jun 1999 | A |
5915099 | Takata et al. | Jun 1999 | A |
5915123 | Mirsky et al. | Jun 1999 | A |
5924119 | Sindhu et al. | Jul 1999 | A |
5926638 | Inoue | Jul 1999 | A |
5933023 | Young | Aug 1999 | A |
5933642 | Greenbaum et al. | Aug 1999 | A |
5936424 | Young et al. | Aug 1999 | A |
5943242 | Vorbach et al. | Aug 1999 | A |
5956518 | DeHon et al. | Sep 1999 | A |
5960193 | Guttag et al. | Sep 1999 | A |
5960200 | Eager et al. | Sep 1999 | A |
5966143 | Breternitz, Jr. | Oct 1999 | A |
5966534 | Cooke et al. | Oct 1999 | A |
5970254 | Cooke et al. | Oct 1999 | A |
5978260 | Trimberger et al. | Nov 1999 | A |
5978583 | Ekanadham et al. | Nov 1999 | A |
5996048 | Cherabuddi et al. | Nov 1999 | A |
5996083 | Gupta et al. | Nov 1999 | A |
5999990 | Sharrit et al. | Dec 1999 | A |
6003143 | Kim et al. | Dec 1999 | A |
6011407 | New | Jan 2000 | A |
6014509 | Furtek et al. | Jan 2000 | A |
6020758 | Patel et al. | Feb 2000 | A |
6020760 | Sample et al. | Feb 2000 | A |
6021490 | Vorbach et al. | Feb 2000 | A |
6023564 | Trimberger | Feb 2000 | A |
6023742 | Ebeling et al. | Feb 2000 | A |
6026478 | Dowling | Feb 2000 | A |
6026481 | New et al. | Feb 2000 | A |
6034538 | Abramovici | Mar 2000 | A |
6035371 | Magloire | Mar 2000 | A |
6038650 | Vorbach et al. | Mar 2000 | A |
6038656 | Martin et al. | Mar 2000 | A |
6044030 | Zheng et al. | Mar 2000 | A |
6045585 | Blainey | Apr 2000 | A |
6047115 | Mohan et al. | Apr 2000 | A |
6049222 | Lawman | Apr 2000 | A |
6049866 | Earl | Apr 2000 | A |
6052524 | Pauna | Apr 2000 | A |
6052773 | DeHon et al. | Apr 2000 | A |
6054873 | Laramie | Apr 2000 | A |
6055619 | North et al. | Apr 2000 | A |
6058266 | Megiddo et al. | May 2000 | A |
6058469 | Baxter | May 2000 | A |
6064819 | Franssen et al. | May 2000 | A |
6072348 | New et al. | Jun 2000 | A |
6075935 | Ussery et al. | Jun 2000 | A |
6076157 | Borkenhagen et al. | Jun 2000 | A |
6077315 | Greenbaum et al. | Jun 2000 | A |
6078736 | Guccione | Jun 2000 | A |
6081903 | Vorbach et al. | Jun 2000 | A |
6084429 | Trimberger | Jul 2000 | A |
6085317 | Smith | Jul 2000 | A |
6086628 | Dave et al. | Jul 2000 | A |
6088795 | Vorbach et al. | Jul 2000 | A |
6092174 | Roussakov | Jul 2000 | A |
RE36839 | Simmons et al. | Aug 2000 | E |
6096091 | Hartmann | Aug 2000 | A |
6105105 | Trimberger et al. | Aug 2000 | A |
6105106 | Manning | Aug 2000 | A |
6108760 | Mirsky et al. | Aug 2000 | A |
6118724 | Higginbottom | Sep 2000 | A |
6119181 | Vorbach et al. | Sep 2000 | A |
6122719 | Mirsky et al. | Sep 2000 | A |
6125072 | Wu | Sep 2000 | A |
6125408 | McGee et al. | Sep 2000 | A |
6127908 | Bozler et al. | Oct 2000 | A |
6128720 | Pechanek et al. | Oct 2000 | A |
6134166 | Lytle et al. | Oct 2000 | A |
6137307 | Iwanczuk et al. | Oct 2000 | A |
6145072 | Shams et al. | Nov 2000 | A |
6150837 | Beal et al. | Nov 2000 | A |
6150839 | New et al. | Nov 2000 | A |
6154048 | Iwanczuk et al. | Nov 2000 | A |
6154049 | New | Nov 2000 | A |
6154826 | Wulf et al. | Nov 2000 | A |
6157214 | Marshall | Dec 2000 | A |
6170051 | Dowling | Jan 2001 | B1 |
6172520 | Lawman et al. | Jan 2001 | B1 |
6173419 | Barnett | Jan 2001 | B1 |
6173434 | Wirthlin et al. | Jan 2001 | B1 |
6178494 | Casselman | Jan 2001 | B1 |
6185256 | Saito et al. | Feb 2001 | B1 |
6185731 | Maeda et al. | Feb 2001 | B1 |
6188240 | Nakaya | Feb 2001 | B1 |
6188650 | Hamada et al. | Feb 2001 | B1 |
6191614 | Schultz et al. | Feb 2001 | B1 |
6198304 | Sasaki | Mar 2001 | B1 |
6201406 | Iwanczuk et al. | Mar 2001 | B1 |
6202163 | Gabzdyl et al. | Mar 2001 | B1 |
6202182 | Abramovici et al. | Mar 2001 | B1 |
6204687 | Schultz et al. | Mar 2001 | B1 |
6211697 | Lien et al. | Apr 2001 | B1 |
6212544 | Borkenhagen et al. | Apr 2001 | B1 |
6212650 | Guccione | Apr 2001 | B1 |
6215326 | Jefferson et al. | Apr 2001 | B1 |
6216223 | Revilla et al. | Apr 2001 | B1 |
6219833 | Solomon et al. | Apr 2001 | B1 |
RE37195 | Kean | May 2001 | E |
6230307 | Davis et al. | May 2001 | B1 |
6240502 | Panwar et al. | May 2001 | B1 |
6243808 | Wang | Jun 2001 | B1 |
6247036 | Landers et al. | Jun 2001 | B1 |
6247147 | Beenstra et al. | Jun 2001 | B1 |
6249756 | Bunton et al. | Jun 2001 | B1 |
6252792 | Marshall et al. | Jun 2001 | B1 |
6256724 | Hocevar et al. | Jul 2001 | B1 |
6260114 | Schug | Jul 2001 | B1 |
6260179 | Ohsawa et al. | Jul 2001 | B1 |
6262908 | Marshall et al. | Jul 2001 | B1 |
6263430 | Trimberger et al. | Jul 2001 | B1 |
6266760 | DeHon et al. | Jul 2001 | B1 |
6279077 | Nasserbakht et al. | Aug 2001 | B1 |
6282627 | Wong et al. | Aug 2001 | B1 |
6282701 | Wygodny et al. | Aug 2001 | B1 |
6285624 | Chen | Sep 2001 | B1 |
6286134 | Click, Jr. et al. | Sep 2001 | B1 |
6288566 | Hanrahan et al. | Sep 2001 | B1 |
6289369 | Sundaresan | Sep 2001 | B1 |
6289440 | Casselman | Sep 2001 | B1 |
6298043 | Mauger et al. | Oct 2001 | B1 |
6298396 | Loyer et al. | Oct 2001 | B1 |
6298472 | Phillips et al. | Oct 2001 | B1 |
6301706 | Maslennikov et al. | Oct 2001 | B1 |
6311200 | Hanrahan et al. | Oct 2001 | B1 |
6311265 | Beckerle et al. | Oct 2001 | B1 |
6321298 | Hubis | Nov 2001 | B1 |
6321366 | Tseng et al. | Nov 2001 | B1 |
6321373 | Ekanadham et al. | Nov 2001 | B1 |
6338106 | Vorbach et al. | Jan 2002 | B1 |
6339424 | Ishikawa et al. | Jan 2002 | B1 |
6339840 | Kothari et al. | Jan 2002 | B1 |
6341318 | Dakhil | Jan 2002 | B1 |
6347346 | Taylor | Feb 2002 | B1 |
6349346 | Hanrahan et al. | Feb 2002 | B1 |
6353841 | Marshall et al. | Mar 2002 | B1 |
6362650 | New et al. | Mar 2002 | B1 |
6370596 | Dakhil | Apr 2002 | B1 |
6373779 | Pang et al. | Apr 2002 | B1 |
6374286 | Gee | Apr 2002 | B1 |
6378068 | Foster et al. | Apr 2002 | B1 |
6381624 | Colon-Bonet et al. | Apr 2002 | B1 |
6389379 | Lin et al. | May 2002 | B1 |
6389579 | Phillips et al. | May 2002 | B1 |
6392912 | Hanrahan et al. | May 2002 | B1 |
6400601 | Sudo et al. | Jun 2002 | B1 |
6404224 | Azegami et al. | Jun 2002 | B1 |
6405185 | Pechanek et al. | Jun 2002 | B1 |
6405299 | Vorbach et al. | Jun 2002 | B1 |
6421808 | McGeer | Jul 2002 | B1 |
6421809 | Wuytack et al. | Jul 2002 | B1 |
6421817 | Mohan et al. | Jul 2002 | B1 |
6425054 | Nguyen | Jul 2002 | B1 |
6425068 | Vorbach | Jul 2002 | B1 |
6426649 | Fu et al. | Jul 2002 | B1 |
6427156 | Chapman et al. | Jul 2002 | B1 |
6430309 | Pressman et al. | Aug 2002 | B1 |
6434642 | Camilleri et al. | Aug 2002 | B1 |
6434672 | Gaither | Aug 2002 | B1 |
6434695 | Esfahani et al. | Aug 2002 | B1 |
6434699 | Jones et al. | Aug 2002 | B1 |
6437441 | Yamamoto | Aug 2002 | B1 |
6438747 | Schreiber et al. | Aug 2002 | B1 |
6449283 | Chao et al. | Sep 2002 | B1 |
6456628 | Greim et al. | Sep 2002 | B1 |
6457116 | Mirsky et al. | Sep 2002 | B1 |
6476634 | Bilski | Nov 2002 | B1 |
6477643 | Vorbach et al. | Nov 2002 | B1 |
6480937 | Vorbach et al. | Nov 2002 | B1 |
6480954 | Trimberger et al. | Nov 2002 | B2 |
6483343 | Faith et al. | Nov 2002 | B1 |
6487709 | Keller et al. | Nov 2002 | B1 |
6490695 | Zagorski et al. | Dec 2002 | B1 |
6496740 | Robertson et al. | Dec 2002 | B1 |
6496902 | Faanes et al. | Dec 2002 | B1 |
6496971 | Lesea et al. | Dec 2002 | B1 |
6504398 | Lien et al. | Jan 2003 | B1 |
6507898 | Gibson et al. | Jan 2003 | B1 |
6507947 | Schreiber et al. | Jan 2003 | B1 |
6512804 | Johnson et al. | Jan 2003 | B1 |
6513077 | Vorbach et al. | Jan 2003 | B2 |
6516382 | Manning | Feb 2003 | B2 |
6518787 | Allegrucci et al. | Feb 2003 | B1 |
6519674 | Lam et al. | Feb 2003 | B1 |
6523107 | Stansfield et al. | Feb 2003 | B1 |
6525678 | Veenstra et al. | Feb 2003 | B1 |
6526461 | Cliff | Feb 2003 | B1 |
6526520 | Vorbach et al. | Feb 2003 | B1 |
6538468 | Moore | Mar 2003 | B1 |
6538470 | Langhammer et al. | Mar 2003 | B1 |
6539415 | Mercs | Mar 2003 | B1 |
6539438 | Ledzius et al. | Mar 2003 | B1 |
6539477 | Seawright | Mar 2003 | B1 |
6542394 | Marshall et al. | Apr 2003 | B2 |
6542844 | Hanna | Apr 2003 | B1 |
6542998 | Vorbach | Apr 2003 | B1 |
6553395 | Marshall et al. | Apr 2003 | B2 |
6553479 | Mirsky et al. | Apr 2003 | B2 |
6567834 | Marshall et al. | May 2003 | B1 |
6571381 | Vorbach et al. | May 2003 | B1 |
6587939 | Takano | Jul 2003 | B1 |
6598128 | Yoshioka et al. | Jul 2003 | B1 |
6606704 | Adiletta et al. | Aug 2003 | B1 |
6624819 | Lewis | Sep 2003 | B1 |
6625631 | Ruehle | Sep 2003 | B2 |
6631487 | Abramovici et al. | Oct 2003 | B1 |
6633181 | Rupp | Oct 2003 | B1 |
6657457 | Hanrahan et al. | Dec 2003 | B1 |
6658564 | Smith et al. | Dec 2003 | B1 |
6665758 | Frazier et al. | Dec 2003 | B1 |
6665865 | Ruf | Dec 2003 | B1 |
6668237 | Guccione et al. | Dec 2003 | B1 |
6681388 | Sato et al. | Jan 2004 | B1 |
6687788 | Vorbach et al. | Feb 2004 | B2 |
6694434 | McGee et al. | Feb 2004 | B1 |
6697979 | Vorbach et al. | Feb 2004 | B1 |
6704816 | Burke | Mar 2004 | B1 |
6708223 | Wang et al. | Mar 2004 | B1 |
6708325 | Cooke et al. | Mar 2004 | B2 |
6717436 | Kress et al. | Apr 2004 | B2 |
6721830 | Vorbach et al. | Apr 2004 | B2 |
6725334 | Barroso et al. | Apr 2004 | B2 |
6728871 | Vorbach et al. | Apr 2004 | B1 |
6745317 | Mirsky et al. | Jun 2004 | B1 |
6748440 | Lisitsa et al. | Jun 2004 | B1 |
6751722 | Mirsky et al. | Jun 2004 | B2 |
6754805 | Juan | Jun 2004 | B1 |
6757847 | Farkash et al. | Jun 2004 | B1 |
6757892 | Gokhale et al. | Jun 2004 | B1 |
6782445 | Olgiati et al. | Aug 2004 | B1 |
6785826 | Durham et al. | Aug 2004 | B1 |
6802026 | Patterson et al. | Oct 2004 | B1 |
6803787 | Wicker, Jr. | Oct 2004 | B1 |
6820188 | Stansfield et al. | Nov 2004 | B2 |
6829697 | Davis et al. | Dec 2004 | B1 |
6836842 | Guccione et al. | Dec 2004 | B1 |
6847370 | Baldwin et al. | Jan 2005 | B2 |
6859869 | Vorbach | Feb 2005 | B1 |
6868476 | Rosenbluth | Mar 2005 | B2 |
6871341 | Shyr | Mar 2005 | B1 |
6874108 | Abramovici et al. | Mar 2005 | B1 |
6886092 | Douglass et al. | Apr 2005 | B1 |
6901502 | Yano et al. | May 2005 | B2 |
6928523 | Yamada | Aug 2005 | B2 |
6957306 | So et al. | Oct 2005 | B2 |
6961924 | Bates et al. | Nov 2005 | B2 |
6975138 | Pani et al. | Dec 2005 | B2 |
6977649 | Baldwin et al. | Dec 2005 | B1 |
7000161 | Allen et al. | Feb 2006 | B1 |
7007096 | Lisitsa et al. | Feb 2006 | B1 |
7010667 | Vorbach | Mar 2006 | B2 |
7010687 | Ichimura | Mar 2006 | B2 |
7028107 | Vorbach et al. | Apr 2006 | B2 |
7036114 | McWilliams et al. | Apr 2006 | B2 |
7038952 | Zack et al. | May 2006 | B1 |
7043416 | Lin | May 2006 | B1 |
7144152 | Rusu et al. | Dec 2006 | B2 |
7155708 | Hammes et al. | Dec 2006 | B2 |
7164422 | Wholey et al. | Jan 2007 | B1 |
7210129 | May et al. | Apr 2007 | B2 |
7216204 | Rosenbluth | May 2007 | B2 |
7237087 | Vorbach et al. | Jun 2007 | B2 |
7249351 | Songer et al. | Jul 2007 | B1 |
7254649 | Subramanian et al. | Aug 2007 | B2 |
7266725 | Vorbach et al. | Sep 2007 | B2 |
7340596 | Crosland et al. | Mar 2008 | B1 |
7346644 | Langhammer et al. | Mar 2008 | B1 |
7350178 | Crosland et al. | Mar 2008 | B1 |
7382156 | Pani et al. | Jun 2008 | B2 |
7455450 | Liu et al. | Nov 2008 | B2 |
7595659 | Vorbach et al. | Sep 2009 | B2 |
7650448 | Vorbach et al. | Jan 2010 | B2 |
7657877 | Vorbach et al. | Feb 2010 | B2 |
7759968 | Hussein et al. | Jul 2010 | B1 |
7873811 | Wolinski et al. | Jan 2011 | B1 |
7971051 | Paul et al. | Jun 2011 | B2 |
20010001860 | Bieu | May 2001 | A1 |
20010003834 | Shimonishi | Jun 2001 | A1 |
20010010074 | Nishihara et al. | Jul 2001 | A1 |
20010018733 | Fujii et al. | Aug 2001 | A1 |
20020004916 | Marchand et al. | Jan 2002 | A1 |
20020010853 | Trimberger et al. | Jan 2002 | A1 |
20020013861 | Adiletta et al. | Jan 2002 | A1 |
20020032305 | Barry | Mar 2002 | A1 |
20020038414 | Taylor | Mar 2002 | A1 |
20020045952 | Blemel | Apr 2002 | A1 |
20020051482 | Lomp | May 2002 | A1 |
20020073282 | Chauvel et al. | Jun 2002 | A1 |
20020083308 | Pereira et al. | Jun 2002 | A1 |
20020099759 | Gootherts | Jul 2002 | A1 |
20020103839 | Ozawa | Aug 2002 | A1 |
20020124238 | Metzgen | Sep 2002 | A1 |
20020138716 | Master et al. | Sep 2002 | A1 |
20020143505 | Drusinsky | Oct 2002 | A1 |
20020144229 | Hanrahan | Oct 2002 | A1 |
20020147932 | Brock et al. | Oct 2002 | A1 |
20020152060 | Tseng | Oct 2002 | A1 |
20020156962 | Chopra et al. | Oct 2002 | A1 |
20020162097 | Meribout | Oct 2002 | A1 |
20020165886 | Lam | Nov 2002 | A1 |
20030001615 | Sueyoshi et al. | Jan 2003 | A1 |
20030014743 | Cooke et al. | Jan 2003 | A1 |
20030046607 | May et al. | Mar 2003 | A1 |
20030052711 | Taylor | Mar 2003 | A1 |
20030055861 | Lai et al. | Mar 2003 | A1 |
20030056062 | Prabhu | Mar 2003 | A1 |
20030056085 | Vorbach | Mar 2003 | A1 |
20030056091 | Greenberg | Mar 2003 | A1 |
20030056202 | May et al. | Mar 2003 | A1 |
20030061542 | Bates et al. | Mar 2003 | A1 |
20030062922 | Douglass et al. | Apr 2003 | A1 |
20030070059 | Dally et al. | Apr 2003 | A1 |
20030086300 | Noyes et al. | May 2003 | A1 |
20030093662 | Vorbach et al. | May 2003 | A1 |
20030097513 | Vorbach et al. | May 2003 | A1 |
20030123579 | Safavi et al. | Jul 2003 | A1 |
20030135686 | Vorbach et al. | Jul 2003 | A1 |
20030154349 | Berg et al. | Aug 2003 | A1 |
20030192032 | Andrade et al. | Oct 2003 | A1 |
20030226056 | Yip et al. | Dec 2003 | A1 |
20040015899 | May et al. | Jan 2004 | A1 |
20040025005 | Vorbach et al. | Feb 2004 | A1 |
20040039880 | Pentkovski et al. | Feb 2004 | A1 |
20040078548 | Claydon et al. | Apr 2004 | A1 |
20040088689 | Hammes | May 2004 | A1 |
20040088691 | Hammes et al. | May 2004 | A1 |
20040168099 | Vorbach et al. | Aug 2004 | A1 |
20040199688 | Vorbach et al. | Oct 2004 | A1 |
20050066213 | Vorbach et al. | Mar 2005 | A1 |
20050091468 | Morita et al. | Apr 2005 | A1 |
20050144210 | Simkins et al. | Jun 2005 | A1 |
20050144212 | Simkins et al. | Jun 2005 | A1 |
20050144215 | Simkins et al. | Jun 2005 | A1 |
20060036988 | Allen et al. | Feb 2006 | A1 |
20060095716 | Ramesh | May 2006 | A1 |
20060230094 | Simkins et al. | Oct 2006 | A1 |
20060230096 | Thendean et al. | Oct 2006 | A1 |
20070050603 | Vorbach et al. | Mar 2007 | A1 |
20070083730 | Vorbach et al. | Apr 2007 | A1 |
20070143577 | Smith | Jun 2007 | A1 |
20080313383 | Morita et al. | Dec 2008 | A1 |
20090085603 | Paul et al. | Apr 2009 | A1 |
20090193384 | Sima et al. | Jul 2009 | A1 |
20100306602 | Kamiya et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
42 21 278 | Jan 1994 | DE |
44 16 881 | Nov 1994 | DE |
4416881 | Nov 1994 | DE |
38 55 673 | Nov 1996 | DE |
196 51 075 | Jun 1998 | DE |
196 54 593 | Jul 1998 | DE |
196 54 595 | Jul 1998 | DE |
196 54 846 | Jul 1998 | DE |
197 04 044 | Aug 1998 | DE |
197 04 728 | Aug 1998 | DE |
197 04 742 | Sep 1998 | DE |
198 22 776 | Mar 1999 | DE |
198 07 872 | Aug 1999 | DE |
198 61 088 | Feb 2000 | DE |
199 26 538 | Dec 2000 | DE |
100 28 397 | Dec 2001 | DE |
100 36 627 | Feb 2002 | DE |
101 29 237 | Apr 2002 | DE |
102 04 044 | Aug 2003 | DE |
0 208 457 | Jan 1987 | EP |
0 221 360 | May 1987 | EP |
0 398 552 | Nov 1990 | EP |
0 428 327 | May 1991 | EP |
0 463 721 | Jan 1992 | EP |
0 477 809 | Apr 1992 | EP |
0 485 690 | May 1992 | EP |
0 497 029 | Aug 1992 | EP |
0 539 595 | May 1993 | EP |
0 638 867 | Aug 1994 | EP |
0 628 917 | Dec 1994 | EP |
0 678 985 | Oct 1995 | EP |
0 686 915 | Dec 1995 | EP |
0 696 001 | Feb 1996 | EP |
0 707 269 | Apr 1996 | EP |
0 726 532 | Aug 1996 | EP |
0 735 685 | Oct 1996 | EP |
0 746 106 | Dec 1996 | EP |
0 748 051 | Dec 1996 | EP |
0 926 594 | Jun 1999 | EP |
1 061 439 | Dec 2000 | EP |
1 115 204 | Jul 2001 | EP |
1 146 432 | Oct 2001 | EP |
1 669 885 | Jun 2006 | EP |
2 752 466 | Feb 1998 | FR |
2 104 438 | Mar 1997 | GB |
8-221164 | Aug 1946 | JP |
58-058672 | Apr 1983 | JP |
1044571 | Feb 1989 | JP |
1-229378 | Sep 1989 | JP |
2-130023 | May 1990 | JP |
2-226423 | Sep 1990 | JP |
5-265705 | Oct 1993 | JP |
5-276007 | Oct 1993 | JP |
5-509184 | Dec 1993 | JP |
6-266605 | Sep 1994 | JP |
7-086921 | Mar 1995 | JP |
7-154242 | Jun 1995 | JP |
8-148989 | Jun 1995 | JP |
7-182160 | Jul 1995 | JP |
7-182167 | Jul 1995 | JP |
8-044581 | Feb 1996 | JP |
8-069447 | Mar 1996 | JP |
8-101761 | Apr 1996 | JP |
8-102492 | Apr 1996 | JP |
8-106443 | Apr 1996 | JP |
8-250685 | Sep 1996 | JP |
9-027745 | Jan 1997 | JP |
9-237284 | Sep 1997 | JP |
9-294069 | Nov 1997 | JP |
11-046187 | Feb 1999 | JP |
11-184718 | Jul 1999 | JP |
11-307725 | Nov 1999 | JP |
2000-076066 | Mar 2000 | JP |
2000-181566 | Jun 2000 | JP |
2000-201066 | Jul 2000 | JP |
2000-311156 | Nov 2000 | JP |
2001-500682 | Jan 2001 | JP |
2001-167066 | Jun 2001 | JP |
2001-510650 | Jul 2001 | JP |
2001-236221 | Aug 2001 | JP |
2002-0033457 | Jan 2002 | JP |
3-961028 | Aug 2007 | JP |
WO9004835 | May 1990 | WO |
WO9011648 | Oct 1990 | WO |
WO9201987 | Feb 1992 | WO |
WO9311503 | Jun 1993 | WO |
WO9406077 | Mar 1994 | WO |
WO9408399 | Apr 1994 | WO |
WO9526001 | Sep 1995 | WO |
W09528671 | Oct 1995 | WO |
WO9810517 | Mar 1998 | WO |
WO9826356 | Jun 1998 | WO |
WO9828697 | Jul 1998 | WO |
WO9829952 | Jul 1998 | WO |
WO9831102 | Jul 1998 | WO |
WO9835294 | Aug 1998 | WO |
WO9835299 | Aug 1998 | WO |
WO9900731 | Jan 1999 | WO |
WO9900739 | Jan 1999 | WO |
WO9912111 | Mar 1999 | WO |
WO9932975 | Jul 1999 | WO |
WO9940522 | Aug 1999 | WO |
WO9944120 | Sep 1999 | WO |
WO9944147 | Sep 1999 | WO |
WO0017771 | Mar 2000 | WO |
WO0038087 | Jun 2000 | WO |
WO0045282 | Aug 2000 | WO |
WO0049496 | Aug 2000 | WO |
WO0077652 | Dec 2000 | WO |
WO0155917 | Aug 2001 | WO |
WO0213000 | Feb 2002 | WO |
WO0229600 | Apr 2002 | WO |
WO0250665 | Jun 2002 | WO |
WO02071196 | Sep 2002 | WO |
WO02071248 | Sep 2002 | WO |
WO02071249 | Sep 2002 | WO |
WO02103532 | Dec 2002 | WO |
WO03017095 | Feb 2003 | WO |
WO03023616 | Mar 2003 | WO |
WO03025781 | Mar 2003 | WO |
WO03036507 | May 2003 | WO |
WO 03091875 | Nov 2003 | WO |
WO2004053718 | Jun 2004 | WO |
WO2004114128 | Dec 2004 | WO |
WO2005045692 | May 2005 | WO |
WO 2007030395 | Mar 2007 | WO |
Entry |
---|
Agarwal, A., et al., “APRIL: A Processor Architecture for Multiprocessing,” Laboratory for Computer Science, MIT, Cambridge, MA, IEEE 1990, pp. 104-114. |
Almasi and Gottlieb, Highly Parallel Computing, The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1989, 3 pages (Fig. 4.1). |
Advanced RISC Machines Ltd (ARM), “AMBA—Advanced Microcontroller Bus Architecture Specification,” (Document No. ARM IHI 0001C), Sep. 1995, 72 pages. |
Alfke, Peter; New, Bernie, Xilinx Application Note, “Additional XC3000 Data,” XAPP 024.000, 1994, pp. 8-11 through 8-20. |
Alfke, Peter; New, Bernie, Xilinx Application Note, “Adders, Subtracters and Accumulators in XC3000,” XAPP 022.000, 1994, pp. 8-98 through 8-104. |
Alfke, Peter, Xilinx Application Note, “Megabit FIFO in Two Chips: One LCA Device and One DRAM,” XAPP 030.000, 1994, pp. 8-148 through 8-150. |
Alfke, Peter, Xilinx Application Note, “Dynamic Reconfiguration,” XAPP 093, Nov. 10, 1997, pp. 13-45 through 13-46. |
Alfke, Peter; New, Bernie, Xilinx Application Note, “Implementing State Machines in LCA Devices,” XAPP 027.001, 1994, pp. 8-169 through 8-172. |
Algotronix, Ltd., CAL64K Preliminary Data Sheet, Apr. 1989, pp. 1-24. |
Algotronix, Ltd., CAL4096 Datasheet, 1992, pp. 1-53. |
Algotronix, Ltd., CHS2x4 User Manual, “CHA2x4 Custom Computer,” 1991, pp. 1-38. |
Allaire, Bill; Fischer, Bud, Xilinx Application Note, “Block Adaptive Filter,” XAPP 055, Aug. 15, 1996 (Version 1.0), pp. 1-10. |
Altera Application Note (73), “Implementing FIR Filters in FLEX Devices,” Altera Corporation, Feb. 1998, ver. 1.01, pp. 1-23. |
Athanas, P. (Thesis), “An adaptive machine architecture and compiler for dynamic processor reconfiguration,” Brown University 1992, pp. 1-157. |
Berkeley Design Technology, Inc., Buyer's Guide to DSP Processors, 1995, Fremont, CA., pp. 673-698. |
Bittner, R. et al., “Colt: An Experiment in Wormhole Run-Time Reconfiguration,” Bradley Department of Electrical and Computer Engineering, Blacksburg, VA, SPIE—International Society for Optical Engineering, vol. 2914/187, Nov. 1996, Boston, MA, pp. 187-194. |
Camilleri, Nick; Lockhard, Chris, Xilinx Application Note, “Improving XC4000 Design Performance,” XAPP 043.000, 1994, pp. 8-21 through 8-35. |
Cartier, Lois, Xilinx Application Note, “System Design with New XC4000EX I/O Features,” Feb. 21, 1996, pp. 1-8. |
Chen, D., (Thesis) “Programmable arithmetic devices for high speed digital signal processing,” U. California Berkeley 1992, pp. 1-175. |
Churcher, S., et al., “The XC6200 FastMap TM Processor Interface,” Xilinx, Inc., Aug. 1995, pp. 1-8. |
Cowie, Beth, Xilinx Application Note, “High Performance, Low Area, Interpolator Design for the XC6200,” XAPP 081, May 7, 1997 (Version 1.0), pp. 1-10. |
Duncan, Ann, Xilinx Application Note, “A32x16 Reconfigurable Correlator for the XC6200,” XAPP 084, Jul. 25, 1997 (Version 1.0), pp. 1-14. |
Ebeling, C., et al., “RaPiD—Reconfigurable Pipelined Datapath,” Dept. of Computer Science and Engineering, U. Washington, 1996, pp. 126-135. |
Epstein, D., “IBM Extends DSP Performance with Mfast—Powerful Chip Uses Mesh Architecture to Accelerate Graphics, Video,” 1995 MicroDesign Resources, vol. 9, No. 16, Dec. 4, 1995, pp. 231-236. |
Fawcett, B., “New SRAM-Based FPGA Architectures Address New Applications,” Xilinx, Inc. San Jose, CA, Nov. 1995, pp. 231-236. |
Goslin, G; Newgard, D, Xilinx Application Note, “16-Tap, 8-Bit FIR Filter Applications Guide,” Nov. 21, 1994, pp. 1-5. |
Iwanczuk, Roman, Xilinx Application Note, “Using the XC4000 RAM Capability,” XAPP 031.000, 1994, pp. 8-127 through 8-138. |
Knapp, Steven, “Using Programmable Logic to Accelerate DSP Functions,” Xilinx, Inc., 1995, pp. 1-8. |
New, Bernie, Xilinx Application Note, “Accelerating Loadable Counters in SC4000,” XAPP 023.001, 1994, pp. 8-82 through 8-85. |
New, Bernie, Xilinx Application Note, “Boundary Scan Emulator for XC3000,” XAPP 007.001, 1994, pp. 8-53 through 8-59. |
New, Bernie, Xilinx Application Note, “Ultra-Fast Synchronous Counters,” XAPP 014.001, 1994, pp. 8-78 through 8-81. |
New, Bernie, Xilinx Application Note, “Using the Dedicated Carry Logic in XC4000,” XAPP 013.001, 1994, pp. 8-105 through 8-115. |
New, Bernie, Xilinx Application Note, “Complex Digital Waveform Generator,” XAPP 008.002, 1994, pp. 8-163 through 8-164. |
New, Bernie, Xilinx Application Note, “Bus-Structured Serial Input-Output Device,” XAPP 010.001, 1994, pp. 8-181 through 8-182. |
Ridgeway, David, Xilinx Application Note, “Designing Complex 2-Dimensional Convolution Filters,” XAPP 037.000, 1994, pp. 8-175 through 8-177. |
Rowson, J., et al., “Second-generation compilers optimize semicustom circuits,” Electronic Design, Feb. 19, 1987, pp. 92-96. |
Schewel, J., “A Hardware/Software Co-Design System using Configurable Computing Technology,” Virtual Computer Corporation, Reseda, CA, IEEE 1998, pp. 620-625. |
Segers, Dennis, Xilinx Memorandum, “MIKE—Product Description and MRD,” Jun. 8, 1994, pp. 1-29. |
Texas Instruments, “TMS320C8x System—Level Synopsis,” Sep. 1995, 75 pages. |
Texas Instruments, “TMS320C80 Digital Signal Processor,” Data Sheet, Digital Signal Processing Solutions 1997, 171 pages. |
Texas Instruments, “TMS320C80 (MVP) Parallel Processor,” User's Guide, Digital Signal Processing Products 1995, 73 pages. |
Trainor, D.W., et al., “Implementation of the 2D DCT Using a Xilinx XC6264 FPGA,” 1997, IEEE Workshop of Signal Processing Systems SiPS 97, pp. 541-550. |
Trimberger, S, (Ed.) et al., “Field-Programmable Gate Array Technology,” 1994, Kluwer Academic Press, pp. 1-258 (and the Title Page, Table of Contents, and Preface) [274 pages total]. |
Trimberger, S., “A Reprogrammable Gate Array and Applications,” IEEE 1993, Proceedings of the IEEE, vol. 81, No. 7, Jul. 1993, pp. 1030-1041. |
Trimberger, S., et al., “A Time-Multiplexed FPGA,” Xilinx, Inc., 1997 IEEE, pp. 22-28. |
Ujvari, Dan, Xilinx Application Note, “Digital Mixer in an XC7272,” XAPP 035.002, 1994, p. 1. |
Veendrick, H., et al., “A 1.5 GiPS video signal processor (VSP),” Philips Research Laboratories, The Netherlands, IEEE 1994 Custom Integrated Circuits Conference, pp. 95-98. |
Wilkie, Bill, Xilinx Application Note, “Interfacing XC6200 to Microprocessors (TMS320C50 Example),” XAPP 064, Oct. 9, 1996 (Version 1.1), pp. 1-9. |
Wilkie, Bill, Xilinx Application Note, “Interfacing XC6200 to Microprocessors (MC68020 Example),” XAPP 063, Oct. 9, 1996 (Version 1.1), pp. 1-8. |
XCELL, Issue 18, Third Quarter 1995, “Introducing three new FPGA Families!”; “Introducing the XC6200 FPGA Architecture: The First FPGA Architecture Optimized for Coprocessing in Embedded System Applications,” 40 pages. |
Xilinx Application Note, Advanced Product Specification, “XC6200 Field Programmable Gate Arrays,” Jun. 1, 1996 (Version 1.0), pp. 4-253-4-286. |
Xilinx Application Note, “A Fast Constant Coefficient Multiplier for the XC6200,” XAPP 082, Aug. 24, 1997 (Version 1.0), pp. 1-5. |
Xilinx Technical Data, “XC5200 Logic Cell Array Family,” Preliminary (v1.0), Apr. 1995, pp. 1-43. |
Xilinx Data Book, “The Programmable Logic Data Book,” 1996, 909 pages. |
Xilinx, Series 6000 User's Guide, Jun. 26, 1997, 223 pages. |
Yeung, K., (Thesis) “A Data-Driven Multiprocessor Architecture for High Throughput Digital Signal Processing,” Electronics Research Laboratory, U. California Berkeley, Jul. 10, 1995, pp. 1-153. |
Yeung, L., et al., “A 2.4GOPS Data-Driven Reconfigurable Multiprocessor IC for DSP,” Dept. of EECS, U. California Berkeley, 1995 IEEE International Solid State Circuits Conference, pp. 108-110. |
ZILOG Preliminary Product Specification, “Z86C95 CMOS Z8 Digital Signal Processor,” 1992, pp. 1-82. |
ZILOG Preliminary Product Specification, “Z89120 Z89920 (ROMless) 16-Bit Mixed Signal Processor,” 1992, pp. 1-82. |
Defendants' Invalidity Contentions in PACT XPP Technologies, AG v. XILINX, Inc., et al., (E.D. Texas Dec. 28, 2007) (No. 2:07cv563), including Exhibits A through K in separate PDF files. |
Microsoft Press Computer Dictionary, Third Edition, Redmond, WA, 1997, 3 pages. |
Microsoft Press Computer Dictionary, Second Edition, Redmond, WA, 1994, 3 pages. |
A Dictionary of Computing, Fourth Edition, Oxford University Press, 1997, 4 pages. |
Communications Standard Dictionary, Third Edition, Martin Weik (Ed.), Chapman & Hall, 1996, 3 pages. |
Dictionary of Communications Technology, Terms Definitions and Abbreviations, Second Edition, Gilbert Held (Ed.), John Wiley & Sons, England, 1995, 5 pages. |
The Random House College Dictionary, Revised Edition, Random House, Inc., 1984, 14 pages. |
The Random House College Dictionary, Revised Edition, Random House, Inc., 1984, 7 pages. |
Random House Webster's College Dictionary with CD-ROM, Random House, 2001, 7 pages. |
Random House Webster's College Dictionary with CD-ROM, Random House, 2001, 4 pages. |
Random House Personal Computer Dictionary, Second Edition, Philip E. Margolis (Ed.), Random House, New York, 1996, 5 pages. |
The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition, 1996, 36 pages. |
The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition, 1996, 8 pages. |
McGraw-Hill Electronics Dictionary, Sixth Edition, Neil Sclater et al. (Ed.), McGraw-Hill, 1997, 3 pages. |
Modern Dictionary of Electronics, Sixth Edition, Rudolf Graf (Ed.), Newnes (Butterwoth-Heinemann), 1997, 5 pages. |
The American Heritage Dictionary, Fourth Edition, Dell (Houghton-Mifflin), 2001, 5 pages. |
The American Heritage Dictionary, Second College Edition, Houghton Mifflin, 1982, 23 pages. |
The American Heritage Dictionary, Second College Edition, Houghton Mifflin, 1982, 8 pages. |
The American Heritage Dictionary, Third Edition, Dell Publishing (Bantam Doubleday Dell Publishing Group, Inc.), 1994, 4 pages. |
The American Heritage Dictionary, Fourth Edition, Dell/Houghton Mifflin 2001, 5 pages. |
Webster's New Collegiate Dictionary, Merriam Co., 1981, 5 pages. |
Webster's New Collegiate Dictionary, Merriam Co., 1981, 4 pages. |
The Oxford American Dictionary and Language Guide, Oxford University Press, 1999, 5 pages. |
The Oxford Duden German Dictionary, Edited by the Dudenredaktion and the German Section of the Oxford University Press, W. Scholze-Stuhenrecht et al. (Eds), Clarendon Press, Oxford, 1990, 7 pages. |
Oxford Dictionary of Computing, Oxford University Press, 2008, 4 pages. |
Modern Dictionary of Electronics, Sixth Edition Revised and Updated, Rudolf F. Graf (Ed.), Butterworth-Heinemann, 1997, 7 pages. |
Modern Dictionary of Electronics, Sixth Edition Revised and Updated, Rudolf F. Graf (Ed.), Butterworth-Heinemann, 1997, 5 pages. |
Garner's Modern American Usage, Bryan A. Garner (Ed.), Oxford University Press, 2003, 3 pages. |
The New Fowler's Modern English Usage, R.W. Burchfield (Ed.) , Oxford University Press, 2000, 3 pages. |
Wikipedia, the free encyclopedia, “Granularity,” at http://en.wikipedia.org/wiki/Granularity, Jun. 18, 2010, 4 pages. |
Wordsmyth, The Premier Educational Dictionary—Thesaurus, at http://www.wordsmyth.net, “communication,” Jun. 18, 2010, 1 page. |
Yahoo! Education, “affect,” at http://education.yaboo.com/reference/dictionary/entry/affect, Jun. 18, 2010, 2 pages. |
mPulse Living Language, “high-level,” at http://www.macmillandictionary.com/dictionary/american/high-level, Jun. 18, 2010, 1 page. |
MSN Encarta, “regroup,” at http://encarta.msn.com/encnet/features/dictionary/Dictionary/Results.aspx?lextype=3&search=regroup, Jun. 17, 2010, 2 pages. |
MSN Encarta, “synchronize,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=synchronize, Jun. 17, 2010, 2 pages. |
MSN Encarta, “pattern,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=pattern, Jun. 17, 2010, 2 pages. |
MSN Encarta, “dimension,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResutls.aspx?lextype=3&search=dimension, Jun. 17, 2010, 2 pages. |
MSN Encarta, “communication,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=communication, Jun. 17, 2010, 2 pages. |
MSN Encarta, “arrangement,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=arrangement, Jun. 17, 2010, 2 pages. |
MSN Encarta, “vector,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?textype=3&search=vector, Jul. 30, 2010, 2 pages. |
Dictionary.com, “address,” at http://dictionary.reference.com/browse/address, Jun. 18, 2010, 4 pages. |
P.R . 4-3 Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D., Texas, 2:07-cv-00563-CE, Jul. 19, 2010, pp. 1-50. |
Order Granting Joint Motion for Leave to File an Amended Joint Claim Construction and Prehearing Statement and Joint Motion to File an Amended Joint Claim Construction and Prehearing Statement Pursuant to Local Patent Rule 4-3, and Exhibit A: P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 2, 2010, 72 pages. |
P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 3, 2010, pp. 1-65. |
Exhibit A—P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D., Texas, 2:07-cv-00563-CE, Aug. 2, 2010, pp. 1-66. |
PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-55. |
Declaration of Harry L. (Nick) Tredennick in Support of PACT's Claim Constructions, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-87. |
Transcript of Harry (Nick) L. Tredennick III, Ph.D., Oct. 11, 2010, vol. 1, Exhibit 16 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-3. |
Agreed and Disputed Terms, Exhibit 17 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-16. |
Oral Videotaped Deposition—Joseph McAlexander dated Oct. 12, 2010, vol. 1, Exhibit 18 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-17. |
Expert Report of Joe McAlexander Re Claim Construction dated Sep. 27, 2010, Exhibit 19 of PACT's Opening Claim Construction Brief, PACT XPP Technologies AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-112. |
Documents from File History of U.S. Appl. No. 09/290,342 (filed Apr. 12, 1999), Exhibit 20 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-37. |
Amendment from File History of U.S. Appl. No. 10/156,397 (filed May 28, 2002), Exhibit 25 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-12. |
Documents from File History U.S. Appl. No. 09/329,132 (filed Jun. 9, 1999), Exhibit 27 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-36. |
Amendment from File History of U.S. Appl. No. 10/791,501 (filed Mar. 1, 2004), Exhibit 39 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-9. |
Amendment from File History of U.S. Appl. No. 10/265,846 (filed Oct. 7, 2002), Exhibit 40 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-12. |
Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-55. |
Declaration of Aaron Taggart in Support of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief (Exhibit A), PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-5. |
Oral Videotaped Deposition Joseph McAlexander (Oct. 12, 2010), Exhibit I of of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-9. |
Expert Report of Joe McAlexander re Claim Construction, Exhibit 2 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-137. |
Documents from File History of U.S. Appl. No. 09/290,342 (filed Apr. 12, 1999), Exhibit 6 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-181. |
Transcript of Harry (Nick) L. Tredennick III, Ph.D., Oct. 11, 2010, vol. 1, Exhibit 7 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-28. |
Amendment, Response from File History of U.S. Appl. No. 10/156,397 (filed May 28, 2002), Exhibit 15 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-137. |
Application from File History of U.S. Appl. No. 08/544,435 (filed Nov. 17, 1995), Exhibit 20 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-102. |
Documents from File History of U.S. Appl. No. 09/329,132 (filed Jun. 9, 1999), Exhibit 24 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-13. |
Documents from File History of U.S. Appl. No. 10/791,501 (filed Mar. 1, 2004), Exhibit 25 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-14. |
Amendment from File History of U.S. Appl. No. 11/246,617 (filed Oct. 7, 2005), Exhibit 26 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-9. |
Documents from File History of U.S. Appl. No. 08/947,254 (filed Oct. 8, 1997), Exhibit 27 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-38. |
Documents from File History of U.S. Appl. No. 08/947,254 (filed Oct. 8, 1997), specifically, German priority application specification [English translation provided], Exhibit 33 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, 54 pages [including English translation]. |
Documents from File History of U.S. Appl. No. 09/335,974 (filed Jun. 18, 1999), Exhibit 28 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc, et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2910, pp. 1-32. |
Documents from File History of U.S. Patent Reexamination Control No. 90/010,450 (filed Mar. 27, 2009), Exhibit 30 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc, et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-71. |
Documents from File History of U.S. Appl. No. 10/265,846 (filed Oct. 7, 2002), Exhibit 32 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-23. |
PACT's Claim Construction Reply Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jan. 7, 2011, pp. 1-20. |
Defendants Xilinx, Inc. and Avnet, Inc.'s Claim Construction Surreply Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jan. 18, 2011, 142 pages. |
Markman Hearing Minutes and Attorney Sign-In Sheet, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Feb. 22, 2011, 3 pages; and court transcript, 245 pages. |
Memorandum Opinion and Order, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jun. 17, 2011, pp. 1-71. |
Atmel Corporation, Atmel 5-K-50K Gates Coprocessor FPGA and FreeRAM, (www.atmel.com), Apr. 2002, pp. 1-68. |
Glaskowsky, Peter N., “PACT Debuts Extreme Processor; Reconfigurable ALU Array Is Very Powerful—and Very Complex,” The Insider's Guide to Microprocessor Hardware, MicroDesign Resources—Micoprocessor Report, Oct. 9, 2000 (www.MPRonline.com), 6 pages. |
Glaskowsky, Peter N., “Analysis' Choice Nominees Named: Our Picks for 2002's Most Important Products and Technologies,” The Insider's Guide to Microprocessor Hardware, MicroDesign Resources—Micoprocessor Report, Dec. 9, 2002 (www.MPRonline.com), 4 pages. |
Lattice Semiconductor Corporation, “ispLSI 2000E, 2000VE and 2000 VL Family Architectural Description,” Oct. 2001, pp. 1-88. |
Olukotun, K. et al., “Rationale, Design and Performance of the Hydra Multiprocessor,” Computer Systems Laboratory, Stanford University, CA, Nov. 1994, pp. 1-19. |
PACT Corporate Backgrounder, PACT company release, Oct. 2008, 4 pages. |
Page, Ian., “Reconfigurable processor architectures,” Oxford University Computing Laboratory, Oxford UK, Elsevier Science B.V., Microprocessors and Microsystems 20 (1996) pp. 185-196. |
Singh, Hartej et al,, “Morpho-Sys: A Reconfigurable Architecture for Multimedia Applications,” Univ. of California, Irvine, CA and Federal University of Rio de Janiero, Brazil, IEEE Transactions on Computers, Circuit Design 1998 at http://www.eng.uci.edu/morphosys/docs/sbcci98.html, 10 pages. |
Theodoridis, G. et al., “Chapter 2—A Survey of Coarse-Grain Reconfigurable Architectures and Cad Tools, Basic Definitions, Critical Design Issues and Existing Coarse-grain Reconfigurable Systems,” from S. Vassiliadis, and D. Soudris (eds.) Fine- and Coarse-Grained Rerconfigurable Computing, Springer 2007, pp. 89-149. |
Weinhardt, Markus et al., “Using Function Folding to Improve Silicon Efficiency of Reconfigurable Arithmetic Arrays,” PACT XPP Technologies AG, Munich, Germany, IEEE 2004, pp. 239-245. |
Xilinx, XC6200 Field Programmable Gate Arrays, Advance Product Specification, Jun. 1, 1996 (Version 1.0), pp. 4-255 through 4-286. |
Xilinx, Virtex-II Platform FPGA User Guide, UG002 (V2.1) Mar. 28, 2007, pp. 1-502 [Parts 1-3]. |
Xilinx, XC4000E and SC4000X Serial Field Programmable Gate Arrays, Product Specification (Version 1.6), May 14, 1999, pp. 1-107. |
U.S. Reexamination Application Control No. 90/010,979, Vorbach et al., filed May 4, 2010. |
U.S. Reexamination Application Control No. 90/011,087, Vorbach et al., filed Jul. 8, 2010. |
U.S. Reexamination Application Control No. 90/010,450, Vorbach et al. filed Mar. 27, 2009. |
U.S. Appl. No. 60/109,417, Jefferson et al., filed Nov. 18, 1998. |
Abnous et al., “Ultra-Low-Power Domain-Specific Multimedia Processors,” U.C. Berkeley, 1996 IEEE, pp. 461-470. |
Abnous, A., et al., “The Pleiades Architecture,” Chapter I of The Application of Programmable DSPs in Mobile Communications, A. Gatherer and A. Auslander, Ed., Wiley, 2002, pp. 1-33. |
Ade, et al., “Minimum Memory Buffers in DSP Applications,” Electronics Letters, vol. 30, No. 6, Mar. 17, 1994, pp. 469-471. |
Advanced RISC Machines, “Introduction to AMBA,” Oct. 1996, Section 1, pp. 1-7. |
ARM, “The Architecture for the Digital World,” http://www.amr.com/products/ Mar. 18, 2009, 3 pages. |
ARM, “The Architecture for the Digital World; Milestones,” http://www.arm.com/aboutarm/milestones.html Mar. 18, 2009, 5 pages. |
ARM Limited, “ARM Architecture Reference Manual,” Dec. 6, 2000, pp. A10-6-A10-7. |
Albaharna, O.T. et al., “On the Viability of FPGA-Based Integrated Coprocessors,” Dept. of Electrical and Electronic Engineering, Imperial College of Science, London, 1999 IEEE, pp. 206-215. |
Alippi, et al., “Determining the Optimum Extended Instruction Set Architecture for Application Specific Reconfigurable VLIW CPUs,” IEEE, 2001, pp. 50-56. |
Altera, “Implementing High-Speed Search Applications with Altera CAM,” Jul. 2001, Ver. 2.1, Application Note 119, 50 pages. |
Altera, “Flex 8000 Programmable Logic Device Family,” Altera Corporation Data Sheet, Jan. 2003, pp. 1-62. |
Altera, “Flex 10K Embedded Programmable Logic Device Family,” Altera Corporation Data Sheet, Jan. 2003, pp. 1-128. |
Altera, “APEX 20K Programmable Logic Device Family,” Altera Corporation Data Sheet, Mar. 2004, ver. 5.1, pp. 1-117. |
Altera, “2. TriMatrix Embedded Memory Blocks in Stratix & Stratix GX Devices,” Altera Corporation, Jul. 2005, 28 pages. |
Altera, “APEX II Programmable Logic Device Family,” Altera Corporation Data Sheet, Aug. 2002, Ver. 3.0, 99 pages. |
Arabi, et al., “PLD Integrates Dedicated High-speed Data Buffering, Complex State machine, and Fast Decode Array,” conference record on WESCON '93, Sep. 28, 1993, pp. 432-436. |
Asari, K. et al., “FeRAM circuit technology for system on a chip,” Proceedings First NASA/DoD Workshop on Evolvable Hardware (1999), pp. 193-197. |
Athanas, “A Functional Reconfigurable Architecture and Compiler for Adoptive Computing,” IEEE 1993, pp. 49-55. |
Athanas, et al., “An Adaptive Hardware Machine Architecture and Compiler for Dynamic Processor Recongifugation,” IEEE, Laboratory for Engineering man/Machine Systems Division of Engineering, Box D, Brown University, Providence, Rhode Island, 1991, pp. 397-400. |
Athanas et al., “Processor Reconfiguration Through Instruction-Set Metamorphosis,” 1993, IEEE Computers, pp. 11-18. |
Atmel, 5-K-50K Gates Coprocessor FPGA with Free Ram, Data Sheet, Jul. 2006, 55 pages. |
Atmel, FPGA-based FIR Filter Application Note, Sep. 1999, 10 pages. |
Atmel, “An Introduction to DSP Applications using the AT40K FPGA,” FPGA Application Engineering, San Jose, CA, Apr. 2004, 15 pages. |
Atmel, Configurable Logic Design & Application Book, Atmel Corporation, 1995, pp. 2-19 through 2-25. |
Atmel, Field Programmable Gate Array Configuration Guide, AT6000 Series Configuration Data Sheet, Sep. 1999, pp. 1-20. |
Bacon, D. et al., “Compiler Transformations for High-Performance Computing,” ACM Computing Surveys, 26(4):325-420 (1994). |
Bakkes, P.J., et al., “Mixing Fixed and Reconfigurable Logic for Array Processing,” Dept. of Electrical and Electronic Engineering, University of Stellenbosch, South Africa, 1996 IEEE, pp. 118-125. |
Ballagh et al., “Java Debug Hardware Models Using JBits,” 8th Reconfigurable Architectures Workshop, 2001, 8 pages. |
Baumgarte, V. et al., “PACT XPP—A Self-reconfigurable Data Processing Architecture,” PACT Info. GmbH, Munchen Germany, 2001, 7 pages. |
Beck et al., “From control flow to data flow,” TR 89-1050, Oct. 1989, Dept. of Computer Science, Cornell University, Ithaca, NY, pp. 1-25. |
Becker, J., “A Partitioning Compiler for Computers with Xputer-based Accelerators,” 1997, Kaiserslautern University, 326 pp. |
Becker, J. et al., “Architecture, Memory and Interface Technology Integration of an Industrial/Academic Configurable System-on-Chip (CSoC),” IEEE Computer Society Annual Workshop on VLSI (WVLSI 2003), (Feb. 2003), 6 pages. |
Becker, J., “Configurable Systems-on-Chip (CSoC),” (Invited Tutorial), Proc. of 9th Proc. of XV Brazilian Symposium on Integrated Circuit, Design (SBCCI 2002), (Sep. 2002), 6 pages. |
Becker et al., “Automatic Parallelism Exploitation for FPL-Based Accelerators,” 1998, Proc. 31st Annual Hawaii International Conference on System Sciences, pp. 169-178. |
Becker, J. et al., “Parallelization in Co-compilation for Configurable Accelerators—a Host/accelerator Partitioning Compilation Method,” Proceedings of Asia and South Pacific Design Automation Conference, Yokohama, Japan, Feb. 10-13, 1998, 11 pages. |
Bellows et al., “Designing Run-Time Reconfigurable Systems with JHDL,” Journal of VLSI Signal Processing 28, Kluwer Academic Publishers, The Netherlands, 2001, pp. 29-45. |
Bittner, “Wormhole Run-time Reconfiguration: Conceptualization and VLSI Design of a High Performance Computing System,” Dissertation, Jan. 23, 1997, pp. I-XX, 1-415. |
“BlueGene/L—Hardware Architecture Overview,” BlueGene/L design team, IBM Research, Oct. 17, 2003 slide presentation, pp. 1-23. |
“BlueGene/L: the next generation of scalable supercomputer,” Kissel et al., Lawrence Livermore National Laboratory, Livermore, California, Nov. 18, 2002, 29 pages. |
BlueGene Project Update, Jan. 2002, IBM slide presentation, 20 pages. |
BlueGene/L, “An Overview of the BlueGene/L Supercomputer,” The BlueGene/L Team, IBM and Lawrence Livermore National Laboratory, 2002 IEEE. pp. 1-22. |
Bolsens, Ivo (CTO Xilinx), “FPGA, a history of interconnect,” Xilinx slide presentation, posted on the internet Oct. 30, 2008 at http://www.docstoc.com/docs/2198008/FPGA-a-history-of-interconnect, 32 pages. |
Bondalapati et al., “Reconfigurable Meshes: Theory and Practice,” Dept. of Electrical Engineering-Systems, Univ. of Southern California, Apr. 1997, Reconfigurable Architectures Workshop, International Parallel Processing Symposium, 15 pages. |
Bratt, A, “Motorola field programmable analogue arrays, present hardware and future trends,” Motorola Programmable Technology Centre, Gadbrook Business Centre, Northwich, Cheshire, 1998, The Institute of Electrical Engineers, IEE. Savoy Place, London, pp. 1-5. |
Cadambi, et al., “Managing Pipeline-reconfigurable FPGAs,” ACM, 1998, pp. 55-64. |
Callahan, et al., “The Garp Architecture and C Compiler,” Computer, Apr. 2000, pp. 62-69. |
Cardoso, J.M.P., et al., “A novel algorithm combining temporal partitioning and sharing of functional units,” University of Algarve, Faro, Portugal, 2001 IEEE, pp. 1-10. |
Cardoso, Joao M.P., and Markus Weinhardt, “XPP-VC: A C Compiler with Temporal Partitioning for the PACT-XPP Architecture,” Field-Programmable Logic and Applications. Reconfigurable Computing is Going Mainstream, 12th International Conference FPL 2002, Proceedings (Lecture Notes in Computer Science, vol. 2438) Springer-Verlag Berlin, Germany, 2002, pp. 864-874. |
Cardoso, J.M.P., “Compilation of Java™ Algorithms onto Reconfigurable Computing Systems with Exploitation of Operation-Level Parallelism,” Ph.D. Thesis, Universidade Tecnica de Lisboa (UTL), Lisbon, Portugal Oct. 2000 (Table of Contents and English Abstract only). |
Cardoso, J.M.P., et al., “Compilation and Temporal Partitioning for a Coarse-Grain Reconfigurable Architecture,” New Algorithms, Architectures and Applications for Reconfigurable Computing, Lysacht, P. & Rosentiel, W. eds., (2005) pp. 105-115. |
Cardoso, J.M.P., et al., “Macro-Based Hardware Compilation of Java™ Bytecodes into a Dynamic Reconfigurable Computing System,” IEEE, Apr. 21, 1999, pp. 2-11. |
Chaudhry, G.M. et al., “Separated caches and buses for multiprocessor system,” Circuits and Systems, 1993; Proceedings of the 36th Midwest Symposium on Detroit, MI, USA, Aug. 16-18, 1993, New York, NY IEEE, Aug. 16, 1993, pp. 1113-1116, XP010119918 ISBN: 0-7803-1760-2. |
Chen et al., “A reconfigurable multiprocessor IC for rapid prototyping of algorithmic-specific high-speed DSP data paths,” IEEE Journal of Solid-State Circuits, vol. 27, No. 12, Dec. 1992, pp. 1895-1904. |
Cherbaka, Mark F., “Verification and Configuration of a Run-time Reconfigurable Custom Computing Integrated Circuit for DSP Applications,” Thesis: Virginia Polytechnic Institute and State University, Jul. 8, 1996, 106 pages. |
Clearspeed, CSX Processor Architecture, Whitepaper, PN-1110-0702, 2007, pp. 1-15, www.clearspeed.com. |
Clearspeed, CSX Processor Architecture, Whitepaper, PN-1110-0306, 2006, pp. 1-14, www.clearspeed.com. |
Coelho, F., “Compiling dynamic mappings with array copies,” Jul. 1997, 12 pages, http://delivery.acm.org/10.1145/270000/263786/p168-coelho.pdf. |
Compton, K., et al., “Configurable Computing: A Survey of Systems and Software,” Northwestern University, Dept. of ECE, Technical Report, 1999, (XP-002315148), 39 pages. |
Cong et al., “Structural Gate Decomposition for Depth-Optimal Technology Mapping in LUT-Based FPGA Designs,” Univ. of California, ACM Transactions on Design Automation of Electronic Systems, vol. 5, No. 2, Apr. 2000, pp. 193-225. |
Cook, Jeffrey J., “The Amalgam Compiler Infrastructure,” Thesis at the University of Illinois at Urbana-Champaign (2004) Chapter 7 & Appendix G. |
Cronquist, D., et al., “Architecture Design of Reconfigurable Pipelined Datapaths,” Department of Computer Science and Engineering, University of Washington, Seattle, WA, Proceedings of the 20th Anniversary Conference on Advanced Research in VSLI, 1999, pp. 1-15. |
Culler, D.E; Singh, J.P., “Parallel Computer Architecture,” pp. 434-437, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559. |
Culler, D.E; Singh, J.P., “Parallel Computer Architecture,” p. 17, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559. |
DeHon, A., “DPGA Utilization and Application,” MIT Artificial Intelligence Laboratory, Proceedings of the Fourth International ACM Symposium on Field-Programmable Gate Arrays (FPGA 1996), IEEE Computer Society, pp. 1-7. |
DeHon, Andre, “Reconfigurable Architectures for General-Purpose Computing,” Massachusetts Institute of Technology, Technical Report AITR-1586, Oct. 1996, XP002445054, Cambridge, MA, pp. 1-353. |
Del Corso et al., “Microcomputer Buses and Links,” Academic Press Inc. Ltd., 1986, pp. 138-143, 277-285. |
Diniz, P., et al., “Automatic Synthesis of Data Storage and Control Structures for FPGA-based Computing Engines,” 2000, IEEE, pp. 91-100. |
Diniz, P., et al., “A behavioral synthesis estimation interface for configurable computing,” University of Southern California, Marina Del Rey, CA, 2001 IEEE, pp. 1-2. |
Donandt, “Improving Response Time of Programmable Logic Controllers by use of a Boolean Coprocessor,” AEG Research Institute Berlin, IEEE, 1989, pp. 4-167-4-169. |
Dutt, et al., “If Software is King for Systems-in-Silicon, What's New in Compilers?” IEEE, 1997, pp. 322-325. |
Ebeling, C., et al., “Mapping Applications to the RaPiD Configurable Architecture,” Department of Computer Science and Engineering, University of Washington, Seattle, WA, FPGAs for Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium, Publication Date: Apr. 16-18, 1997, 10 pages. |
Equator, Pixels to Packets, Enabling Multi-Format High Definition Video, Equator Technologies BSP-15 Product Brief, www.equator.com, 2001, 4 pages. |
Fawcett, B.K., “Map, Place and Route: The Key to High-Density PLD Implementation,” Wescon Conference, IEEE Center (Nov. 7, 1995) pp. 292-297. |
Ferrante, J., et al., “The Program Dependence Graph and its Use in Optimization ACM Transactions on Programming Languages and Systems,” Jul. 1987, USA, [online] Bd. 9, Nr., 3, pp. 319-349, XP002156651 ISSN: 0164-0935 ACM Digital Library. |
Fineberg, S, et al., “Experimental Analysis of a Mixed-Mode Parallel Architecture Using Bitonic Sequence Sorting,” Journal of Parallel and Distributed Computing, vol. 11, No. 3, Mar. 1991, pp. 239-251. |
FOLDOC, The Free On-Line Dictionary of Computing, “handshaking,” online Jan. 13, 1995, retrieved from Internet Jan. 23, 2011 at http://foldoc.org/handshake. |
Fornaciari, et al., System-level power evaluation metrics, 1997 Proceedings of the 2nd Annual IEEE International Conference on Innovative Systems in Silicon, New York, NY, Oct. 1997, pp. 323-330. |
Forstner, “Wer Zuerst Kommt, Mahlt Zuerst!: Teil 3: Einsatzgebiete und Anwendungbeispicle von FIFO-Speichern,” Elektronik, Aug. 2000, pp. 104-109. |
Franklin, Manoj, et al., “A Fill-Unit Approach to Multiple Instruction Issue,” Proceedings of the Annual International Symposium on Microarchitecture, Nov. 1994, pp. 162-171. |
Freescale Slide Presentation, An Introduction to Motorola's RCF (Reconfigurable Compute Fabric) Technology, Presented by Frank David, Launched by Freescale Semiconductor, Inc., 2004, 39 pages. |
Galanis, M.D. et al., “Accelerating Applications by Mapping Critical Kernels on Coarse-Grain Reconfigurable Hardware in Hybrid Systems,” Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2005, 2 pages. |
Genius, D., et al., “A Case for Array Merging in Memory Hierarchies,” Proceedings of the 9th International Workshop on Compilers for Parallel Computers, CPC'01 (Jun. 2001), 10 pages. |
Gokhale, M.B., et al., “Automatic Allocation of Arrays to Memories in FPGA processors with Multiple Memory Banks,” Field-Programmable Custom Computing Machines, 1999, IEEE, pp. 63-69. |
Guccione et al., “JBits: Java based interface for reconfigurable computing,” Xilinx, Inc., San Jose, CA, 1999, 9 pages. |
Guo, Z. et al., “A Compiler Intermediate Representation for Reconfigurable Fabrics,” University of California, Riverside, Dept. of Electrical Engineering, IEEE 2006, 4 pages. |
Gwennap, Linley, “P6 Underscores Intel's Lead,” Microprocessor Report, vol. 9., No. 2, Feb. 16, 1995 (MicroDesign Resources), p. 1 and pp. 6-15. |
Gwennap, Linley, “Intel's P6 Bus Designed for Multiprocessing,” Microprocessor Report, vol. 9, No. 7 (MicroDesign Resources), May 30, 1995, p. 1 and pp. 6-10. |
Hammes, Jeff, et al., “Cameron: High Level Language Compilation for Reconfigurable Systems,” Department of Computer Science, Colorado State University, Conference on Parallel Architectures and Compilation Techniques, Oct. 12-16, 1999, 9 pages. |
Hartenstein, R. et al., “A new FPGA architecture for word-oriented datapaths,” Proc. FPL'94, Springer LNCS, Sep. 1994, pp. 144-155. |
Hartenstein, R., “Coarse grain reconfigurable architectures,” Design Automation Conference, 2001, Proceedings of the ASP-DAC 2001 Asia and South Pacific, Jan. 30-Feb. 2, 2001, IEEE Jan. 30, 2001, pp. 564-569. |
Hartenstein et al., “Parallelizing Compilation for a Novel Data-Parallel Architecture,” 1995, PCAT-94, Parallel Computing: Technology and Practice, 13 pp. |
Hartenstein et al., “A Two-Level Co-Design Framework for Xputer-based Data-driven Reconfigurable Accelerators,” 1997, Proceedings of the Thirtieth Annual Hawaii International Conference on System Sciences, 10 pp. |
Hastie et al., “The implementation of hardware subroutines on field programmable gate arrays,” Custom Integrated Circuits Conference, 1990, Proceedings of the IEEE 1990, May 16, 1990, pp. 31.3.1-31.4.3 (3 pages). |
Hauck, “The Roles of FPGAs in Reprogrammable Systems,” IEEE, Apr. 1995, pp. 615-638. |
Hauser, J.R., et al., “Garp: A MIPS Processor with a Reconfigurable Coprocessor,” University of California, Berkeley, IEEE, Apr. 1997, pp. 12-23. |
Hauser, John Reid, (Dissertation) “Augmenting A Microprocessor with Reconfigurable Hardware,” University of California, Berkeley, Fall 2000, 255 pages. (submitted in 3 PDFs, Parts 1-3). |
Hauser, John R., “The Garp Architecture,” University of California at Berkeley, Computer Science Division, Oct. 1997, pp. 1-55. |
Hedge, S.J., “3D WASP Devices for On-line Signal and Data Processing,” 1994, International Conference on Wafer Scale Integration, pp. 11-21. |
Hendrich, N., et al., “Silicon Compilation and Rapid Prototyping of Microprogrammed VLSI-Circuits with MIMOLA and SOLO 1400,” Microprocessing & Microprogramming (Sep. 1992) vol. 35(1-5), pp. 287-294. |
Huang, Libo et al., “A New Architecture for Multiple-Precision Floating-Point Multiply-Add Fused Unit Design,” School of Computer National University of Defense Technology, China, IEEE 2007, 8 pages. |
Hwang, K., “Advanced Computer Architecture—Parallelism, Scalability, Programmability,” 1993, McGraw-Hill, Inc., pp. 348-355. |
Hwang, K., “Computer Architecture and Parallel Processing,” Data Flow Computers and VLSI Computations, XP-002418655, 1985 McGraw-Hill, Chapter 10, pp. 732-807. |
Hwang, L., et al., “Min-cut Replication in Partitioned Networks,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, [online] Bd. 14, Nr. 1, Jan. 1995, pp. 96-106, XP00053228 USA ISSN: 0278-0070 IEEE Xplore. |
IBM Technical Disclosure Bulletin, IBM Corp., New York, XP000424878, Bd. 36, Nr. 11, Nov. 1, 1993, pp. 335-336. |
“IEEE Standard Test Access Port and Boundary-Scan Architecture,” IEEE Std. 1149.1-1990, 1993, pp. 1-127. |
IMEC, “ADRES multimedia processor & 3MF multimedia platform,” Transferable IP , IMEC Technology Description, (Applicants believe the date to be Oct. 2005), 3 pages. |
Intel, “Pentium Pro Family Developer's Manual, vol. 3: Operating System Writer's Guide,” Intel Corporation, Dec. 1995, [submitted in 4 PDF files: Part I, Part II, Part III and Part IV], 458 pages. |
Intel, Intel MXP5800/MXP5400 Digital Media Processors, Architecture Overview, Jun. 2004, Revision 2.4, pp. 1-24. |
Inside DSP, “Ambric Discloses Massively Parallel Architecture,” Aug. 23, 2006, http://www.insidedsp.com/Articles/tabid/64/articleType/ArticleView/articleId/155/Default.aspx, 2 pages. |
Iseli, C., et al. “A C++ Compiler for FPGA Custom Execution Units Synthesis,” IEEE, 1995, pp. 173-179. |
Isshiki, Tsuyoshi, et al., “Bit-Serial Pipeline Synthesis for Multi-FPGA Systems with C++ Design Capture,” 1996 IEEE, pp. 38-47. |
Jacob, J., et al., “Memory Interfacing and Instruction Specification for Reconfigurable Processors,” ACM Feb. 1999, pp. 145-154. |
Janssen et al., “A Specification Invariant Technique for Regularity Improvement between Flow-Graph Clusters,” Mar. 1996, 6 pages, http://delivery.acm.org/10.1145/790000/787534/74230138.pdf. |
Jantsch, Axel et al., “A Case Study on Hardware/Software Partitioning,” Royal Institute of Technology, Kista, Sweden, Apr. 10, 1994, IEEE, pp. 111-118. |
Jantsch, Axel et al., “Hardware/Software Partitioning and Minimizing Memory Interface Traffic,” Electronic System Design Laboratory, Royal Institute of Technology, ESDLab, Electrum 229, S-16440 Kista, Sweden (Apr. 1994), pp. 226-231. |
Jo, Manhwee et al., “Implementation of Floating-Point Operations for 3D Graphics on a Coarse-Grained Reconfigurable Architecture,” Design Automation Laboratory, School of EE/CS, Seoul National University, Korea, IEEE 2007, pp. 127-130. |
John, L., et al., “A Dynamically Reconfigurable Interconnect for Array Processors,” vol. 6, No. 1, Mar. 1998, IEEE, pp. 150-157. |
Kanter, David, “NVIDIA's GT200: Inside a Parallel Processor,” http://www.realworldtech.com/page.cfm?ArticteID=RWT090989195242&p=1, Sep. 8, 2008, 27 pages. |
Kastrup, B., “Automatic Hardware Synthesis for a Hybrid Reconfigurable CPU Featuring Philips CPLDs,” Proceedings of the PACT Workshop on Reconfigurable Computing, 1998, pp. 5-10. |
Kaul, M., et al., “An automated temporal partitioning and loop fission approach of FPGA based reconfigurable synthesis of DSP applications,” University of Cincinnati, Cincinnati, OH, ACM 1999, pp. 616-622. |
Kean, T.A., “Configurable Logic: A Dynamically Programmable Cellular Architecture and its VLSI Implementation,” University of Edinburgh (Dissertation) 1988, pp. 1-286. [in two PDFs, Pt. 1 and Pt.2.]. |
Kean, T., et al., “A Fast Constant Coefficient Multiplier for the XC6200,” Xilinx, Inc., Lecture Notes in Computer Science, vol. 1142, Proceedings of the 6th International Workshop of Field-Programmable Logic, 1996, 7 pages. |
Kim et al., “A Reconfigurable Multifunction Computing Cache Architecture,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems vol. 9, Issue 4, Aug. 2001 pp. 509-523. |
Knittel, Gunter, “A PCI-compatible FPGA-Coprocessor for 2D/3D Image Processing,” University of Turgingen, Germany, 1996 IEEE, pp. 136-145. |
Koch, A., et al., “Practical Experiences with the SPARXIL Co-Processor,” 1998, IEEE, pp. 394-398. |
Koch, Andreas et al., “High-Level-Language Compilation for Reconfigurable Computers,” Proceedings of European Workshop on Reconfigurable Communication-Centric SOCS (Jun. 2005) 8 pages. |
Koren et al., “A data-driven VLSI array for arbitrary algorithms,” IEEE Computer Society, Long Beach, CA vol. 21, No. 10, Oct. 1, 1988, pp. 30-34. |
Kung, “Deadlock Avoidance for Systolic Communication,” 1988 Conference Proceedings of the 15th Annual International Symposium on Computer Architecture, May 30, 1998, pp. 252-260. |
Lange, H. et al., “Memory access schemes for configurable processors,” Field-Programmable Logic and Applications, International Workshop, FPL, Aug. 27, 2000, pp. 615-625, XP02283963. |
Larsen, S., et al., “Increasing and Detecting Memory Address Congruence,” Proceedings of the 2002 IEEE International Conference on Parallel Architectures and Compilation Techniques (PACT'02), pp. 1-12 (Sep. 2002). |
Lee et al., “A new distribution network based on controlled switching elements and its applications,” IEEE/ACT Trans. of Networking, vol. 3, No. 1, pp. 70-81, Feb. 1995. |
Lee, Jong-eun, et al., “Reconfigurable ALU Array Architecture with Conditional Execution,” International Soc. Design Conference (ISOOC) [online] Oct. 25, 2004, Seoul, Korea, 5 pages. |
Lee, R. B., et al., “Multimedia extensions for general-purpose processors,” IEEE Workshop on Signal Processing Systems, SIPS 97—Design and Implementation (1997), pp. 9-23. |
Lee, Ming-Hau et al., “Design and Implementation of the MorphoSys Reconfigurable Computing Processors,” The Journal of VLSI Signal Processing, Kluwer Academic Publishers, BO, vol. 24, No. 2-3, Mar. 2, 2000, pp. 1-29. |
Li et al., “Hardware-Software Co-Design of Embedded Reconfigurable Architectures,” Los Angeles, CA, 2000 ACM, pp, 507-512. |
Li, Zhiyuan, et al., “Configuration prefetching techniques for partial reconfigurable coprocessor with relocation and defragmentation,” International Symposium on Field Programmable Gate Arrays, Feb. 1, 2002, pp. 187-195. |
Ling, X., “WASMII: An MPLD with Data-Driven Control on a Virtual Hardware,” Journal of Supercomputing, Kluwer Acdemic Publishers, Dordrecht, Netherlands, 1995, pp. 253-276. |
Ling et al., “WASMII: A Multifunction Programmable Logic Device (MPLD) with Data Driven Control,” The Transactions of the Institute of Electronics, Information and Communication Engineers, Apr. 25, 1994, vol. J77-D-1, Nr. 4, pp. 309-317. [This reference is in Chinese, but should be comparable in content to the Ling et al. reference above.]. |
Mano, M.M., “Digital Design,” by Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632, 1984, pp. 119-125, 154-161. |
Margolus, N., “An FPGA architecture for DRAM-based systolic computations,” Boston University Center for Computational Science and MIT Artificial Intelligence Laboratory, IEEE 1997, pp. 2-11. |
Marshall et al., “A Reconfigurable Arithmetic Array for Multimedia Applications,” FPGA '99 Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays, 10 pages. |
Maxfield,C., “Logic that Mutates While-U-Wait,” EDN (Bur. Ed) (USA), EDN (European Edition), Nov. 7, 1996, Cahners Publishing, USA, pp. 137-140, 142. |
Mei, Bingfeng, “A Coarse-Grained Reconfigurable Architecture Template and Its Compilation Techniques,” Katholeike Universiteit Leuven, PhD Thesis, Jan. 2005, IMEC vzw, Universitair Micro-Electronica Centrum, Belgium, pp. 1-195 (and Table of Contents). |
Mei, Bingfeng et al., “Design and Optimization of Dynamically Reconfigurable Embedded Systems,” IMEC vzw, 2003, Belgium, 7 pages, http://www.imec.bc/reconfigurable/pdf/ICERSA—01—design.pdf. |
Mei, Bingfeng et al., “Adres: An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix,” Proc. Field-Programmable Logic and Applications (FPL 03), Springer, 2003, pp. 61-70. |
Melvin, Stephen et al., “Hardware Support for Large Atomic Units in Dynamically Scheduled Machines,” Computer Science Division, University of California, Berkeley, IEEE (1988), pp. 60-63. |
Microsoft Press Computer Dictionary, Second Edition, 1994, Microsoft Press, ISBN 1-55615-597-2, p. 10. |
Miller, M.J., et al., “High-Speed FIFOs Contend with Widely Differing Data Rates: Dual-port RAM Buffer and Dual-pointer System Provide Rapid, High-density Data Storage and Reduce Overhead,” Computer Design, Sep. 1, 1985, pp. 83-86. |
Mirsky, E. DeHon, “MATRIX: A Reconfigurable Computing Architecture with Configurable Instruction Distribution and Deployable Resources,” Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, 1996, pp. 157-166. |
Miyamori, T., et al., “REMARC: Reconfigurable Multimedia Array Coprocessor,” Computer Systems Laboratory, Stanford University, IEICE Transactions on Information and Systems E Series D, 1999; (abstract): Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays, p. 261, Feb. 22-25, 1998, Monterey, California, United States, pp. 1-12. |
Moraes, F., et al., “A Physical Synthesis Design Flow Based on Virtual Components,” XV Conference on Design of Circuits and Integrated Systems (Nov. 2000) 6 pages. |
Muchnick, S., “Advanced Compiler Design and Implementation,” (Morgan Kaufmann 1997), Table of Contents, 11 pages. |
Murphy, C., “Virtual Hardware Using Dynamic Reconfigurable Field Programmable Gate Arrays,” Engineering Development Centre, Liverpool John Moores University, UK, GERI Annual Research Symposium 2005, 8 pages. |
Myers, G. “Advances in Computer Architecture,” Wiley-Interscience Publication, 2nd ed., John Wiley & Sons, Inc., 1978, pp. 463-494. |
Nageldinger, U., “Design-Space Exploration for Coarse Grained Reconfigurable Architectures,” (Dissertation) Universitaet Kaiserslautern, 2000, Chapter 2, pp. 19-45. |
Neumann, T., et al, “A Generic Library for Adaptive Computing Environments,” Field Programmable Logic and Applications, 11th International Conference, FPL 2001, Proceedings (Lecture Notes in Computer Science, vol. 2147) (2001) pp. 503-512. |
Newton, Harry, “Newton's Telecom Dictionary,” Ninteenth Edition, 2003, CMP Books, p. 40. |
Nilsson, et al., “The Scalable Tree Protocol—A Cache Coherence Approaches for Large-Scale Multiprocessors,” IEEE, pp. 498-506, Dec. 1992. |
Norman, R.S., “Hyperchip Business Summary, The Opportunity,” Jan. 31, 2000, pp. 1-3. |
Ohmsha, “Information Processing Handbook,” edited by the Information Processing Society of Japan, pp. 376, Dec. 21, 1998. |
Olukotun, K., “The Case for a Single-Chip Microprocessor,” ACM Sigplan Notices, ACM, Association for Computing Machinery, New York, vol. 31, No. 9, Sep. 1996 pp. 2-11. |
Ozawa, Motokazu et al., “A Cascade ALU Architecture for Asynchronous Super-Scalar Processors,” IEICE Transactions on Electronics, Electronics Society, Tokyo, Japan, vol. E84-C, No. 2, Feb. 2001, pp. 229-237. |
PACT Corporation, “The XPP Communication System,” Technical Report 15 (2000), pp. 1-16. |
Parhami, B., “Parallel Counters for Signed Binary Signals,” Signals, Systems and Computers, 1989, Twenty-Third Asilonnar Conference, vol. 1, pp. 513-516. |
PCI Local Bus Specification, Production Version, Revision 2.1, Portland, OR, Jun. 1, 1995, pp. 1-281. |
Piutrowski, A., “IEC-BUS, Die Funktionsweise des IEC-Bus unde seine Anwendung in Geräten und Systemen,” 1987, Franzis-Verlag GmbH, München, pp. 20-25. [English Abstract Provided]. |
Pirsch, P. et al., “VLSI implementations of image and video multimedia processing systems,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, No. 7, Nov. 1998, pp. 878-891. |
Pistorius et al., “Generation of Very Large Circuits to Benchmark the Partitioning of FPGAs,” Monterey, CA, ACM 1999, pp. 67-73. |
Price et al., “Debug of Reconfigurable Systems,” Xilinx, Inc., San Jose, CA, Proceedings of SPIE, 2000, pp. 181-187. |
Quenot, G.M., et al., “A Reconfigurable Compute Engine for Real-Time Vision Automata Prototyping,” Laboratoire Systeme de Perception, DGA/Etablissement Technique Central de l'Armement, France, 1994 IEEE, pp. 91-100. |
Ramanathan et al., “Reconfigurable Filter Coprocessor Architecture for DSP Applications,” Journal of VLSI Signal Processing, 2000, vol. 26, pp. 333-359. |
Rehmouni et al.., “Formulation and evaluation of scheduling techniques for control flow graphs,” Dec. 1995, 6 pages, http://delivery.acm.org/10.1145/230000/224352/p386-rahmouni.pdf. |
Razdan et al., A High-Performance Microarchitecture with Hardware-Programmable Functional Units, Micro-27, Proceedings of the 27th Annual International Symposium on Microarchitecture, IEEE Computer Society and Association for Computing Machinery, Nov. 30-Dec. 2, 1994, pp. 172-180. |
Rotenberg, Eric., et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction Fetching,” Proceedings of the 29th Annual International Symposium on Microarchitecture, Paris, France, IEEE (1996), 12 pages. |
Ryo, A., “Auszug aus Handbuch der Informationsverarbeitung,” ed. Information Processing Society of Japan, Information Processing Handbook, New Edition, Software Information Center, Ohmsha, Dec. 1998, 4 pages. [Translation provided]. |
Saleeba, Z.M.G., “A Self-Reconfiguring Computer System,” Department of Computer Science, Monash University (Dissertation) 1998, pp. 1-306. |
Saleeba, M. “A Self-Contained Dynamically Reconfigurable Processor Architecture,” Sixteenth Australian Computer Science Conference, ASCS-16, QLD, Australia, Feb. 1993, pp. 59-70. |
Salefski, B. et al., “Re-configurable computing in wireless,” Annual ACM IEEE Design Automation Conference: Proceedings of the 38th conference on Design automation (2001) pp. 178-183. |
Schmidt, H. et al., “Behavioral synthesis for FGPA-based computing,” Carnegie Mellon University, Pittsburgh, PA, 1994 IEEE, pp. 125-132. |
Schmidt, U. et al., “Datawave: A Single-Chip Multiprocessor for Video Applications,” IEEE Micro, vol. 11, No. 3, May/Jun. 1991, pp. 22-25, 88-94. |
Schmit, et al., “Hidden Markov Modeling and Fuzzy Controllers in FPGAs, FPGAs for Custom Computing Machines,” 1995; Proceedings, IEEE Symposium in Napa Valley, CA, Apr. 1995, pp. 214-221. |
Schönfeld, M., et al., “The LISA Design Environment for the Synthesis of Array Processors Including Memories for the Data Transfer and Fault Tolerance by Reconfiguration and Coding Techniques,” J. VLSI Signal Processing Systems for Signal, Image, and Video Technology, ( Oct. 1, 1995) vol. 11(1/2), pp. 51-74. |
Shanley, Tom. Pentium Pro and Pentium II System Architecture, MindShare, Inc., Addition Wesley, 1998, Second Edition, pp. 11-17; Chapter 7; Chapter 10; pp. 209-211, and p. 394. |
Shin, D., et al., “C-based Interactive RTL Design Methodology,” Technical Report CECS-03-42 (Dec. 2003) pp. 1-16. |
Shirazi, et al., “Quantitative analysis of floating point arithmetic on FPGA based custom computing machines,” IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society Press, Apr. 19-21, 1995, pp. 155-162. |
Short, Kenneth L., Microprocessors and Programmed Logic, Prentice Hall, Inc., New Jersey 1981, p. 34. |
Shoup, Richard, “Programmable Cellular Logic Arrays,” Dissertation, Computer Science Department, Carnegie-Mellon University, Mar. 1970, 193 pages. |
Siemers, C., “Rechenfabrik Ansaetze Fuer Extrem Parallele Prozessoren,” Verlag Heinze Heise GmbH., Hannover, DE No. 15, Jul. 16, 2001, pp. 170-179. |
Siemers et al., “The .>S<puter: A Novel Micoarchitecture Model for Execution inside Superscalar and VLIW Processors Using Reconfigurable Hardware,” Australian Computer Science Communications, vol. 20, No. 4, Computer Architecture, Proceedings of the 3rd Australian Computer Architecture Conference, Perth, John Morris, Ed., Feb. 2-3, 1998, pp. 169-178. |
Simunic, et al., Source Code Optimization and Profiling of Energy Consumation in Embedded Systems, Proceedings of the 13th International Symposium on System Synthesis, Sep. 2000, pp. 193-198. |
Singh, H. et al., “MorphoSys: An Integrated Reconfigurable System for Data-Parallel Computation-Intensive Applications,” University of California, Irvine, CA. and Federal University of Rio de Janeiro, Brazil, 2000, IEEE Transactions on Computers, pp. 1-35; also published in IEEE Transactions on Computers, vol. 49, No. 5, May 2000, pp. 465-481. |
Sinha et al., “System-dependence-graph-based slicing of programs with arbitrary interprocedural control flow,” May 1999, 10 pages, http://delivery.acm.org/10.1145/310000/203675/p432-sinha.pdf. |
Skokan, Z.E., “Programmable logic machine (A programmable cell array),” IEEE Journal of Solid-State Circuits, vol. 18, Issue 5, Oct. 1983, pp. 572-578. |
Sondervan, J., “Retiming and logic synthesis,” Electronic Engineering (Jan. 1993) vol. 65(793), pp. 33, 35-36. |
Soni, M., “VLSI Implementation of a Wormhole Run-time Reconfigurable Processor,” Jun. 2001, (Masters Thesis)Virginia Polytechnic Institute and State University, 88 pages. |
Stallings, William, “Data & Computer Communications,” Sixth Edition, Jun. 2000, Prentice-Hall, Inc., ISBN 0-084370-9, pp. 195-196. |
Sueyoshi, T, “Present Status and Problems of the Reconfigurable Computing Systems Toward the Computer Evolution,” Department of Artificial Intelligence, Kyushi Institute of Technology, Fukuoka, Japan; Institute of Electronics, Information and Communication Engineers, vol. 96, No. 426, IEICE Technical Report (1996), pp. 111-119 [English Abstract Only]. |
Sundararajan et al., “Testing FPGA Devices Using JBits,” Proc. MAPLD 2001, Maryland, USA, Katz (ed.), NASA, CA, 8 pages. |
Sutton et al., “A Multiprocessor DSP System Using PADDI-2,” U.C. Berkeley, 1998 ACM, pp. 62-65. |
Tau, E., et al., “A First Generation DPGA Implementation,” FPD'95, pp. 138-143. |
Tenca, A.F., et al., “A Variable Long-Precision Arithmetic Unit Design for Reconfigurable Coprocessor Architectures,” University of California, Los Angeles, 1998, pp. 216-225. |
The XPP White Paper, Release 2.1, PACT—A Technical Perspective, Mar. 27, 2002, pp. 1-27. |
TMS320C54X DSP: CPU and Peripherals, Texas Instruments, 1996, 25 pages. |
TMS320C54x DSP: Mnemonic Instruction Set, Texas Instruments, 1996, 342 pages. |
Translation of DE 101 39 170, filed Aug. 16, 2001, by examiner in related case using Google Translate, 10 pages. |
Tsutsui, A., et al., “YARDS: FPGA/MPU Hybrid Architecture for Telecommunication Data Processing,” NTT Optical Network Systems Laboratories, Japan, 1997 ACM, pp. 93-99. |
Vasell et al., “The Function Processor: A Data-Driven Processor Array for Irregular Computations,” Chalmers University of Technology, Sweden, 1992, pp. 1-21. |
Venkatachalam et al., “A highly flexible, distributed multiprocessor architecture for network processing,” Computer Networks, The International Journal of Computer and Telecommunications Networking, vol. 41, No. 5, Apr. 5, 2003, pp. 563-568. |
Villasenor, et al., “Configurable Computing Solutions for Automatic Target Recognition,” IEEE, 1996 pp. 70-79. |
Villasenor, et al., “Configurable Computing,” Scientific American, vol. 276, No. 6, Jun. 1997, pp. 66-71. |
Villasenor, et al., “Express Letters Video Communications Using Rapidly Reconfigurable Hardware,” IEEE Transactions on Circuits and Systems for Video Technology, IEEE, Inc., NY, Dec. 1995, pp. 565-567. |
Wada, et al., “A Performance Evaluation of Tree-based Coherent Distributed Shared Memory,” Proceedings of the Pacific RIM Conference on Communications, Comput and Signal Processing, Victoria, May 19-21, 1993, pp. 390-393. |
Waingold, E., et al., “Baring it all to software: Raw machines,” IEEE Computer, Sep. 1997, at 86-93. |
Webster's Ninth New Collegiate Dictionary, Merriam-Webster, Inc., 1990, p. 332 (definition of “dedicated”). |
Weinhardt, M., “Compilation Methods for Structure-programmable Computers,” dissertation, ISBN 3-89722-011-3, 1997. [Table of Contents and English Abstract Provided]. |
Weinhardt, Markus et al., “Pipeline Vectorization for Reconfigurable Systems,” 1999, IEEE, pp. 52-62. |
Weinhardt, Markus et al., “Pipeline Veetorization,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, No. 2, Feb. 2001, pp. 234-248. |
Weinhardt, Markus et al., “Memory Access Optimization for Reconfigurable Systems,” IEEE Proceedings Computers and Digital Techniques, 48(3) (May 2001) pp. 1-16. |
Wittig, et al., “OneChip: An FPGA Processor with Reconfigurable Logic,” IEEE, 1996, pp. 126-135. |
Wolfe, M. et al., “High Performance Compilers for Parallel Computing,” (Addison-Wesley 1996) Table of Contents, 11 pages. |
Wu, et al., “A New Cache Directory Scheme,” IEEE, pp. 466-472, Jun. 1996. |
Xilinx, “Logic Cell Array Families: XC4000, XC4000A and XC4000H,” 1994, product description, pp. 2-7, 2-9, 2-14, 2-15, 8-16, and 9-14. |
Xilinx, “The Programmable Logic Data Book,” 1994, Section 2, pp. 1-231, Section 8, pp. 1, 23-25, 29, 45-52, 169-172. |
Xilinx, “Spartan and SpartanXL Families Field Programmable Gate Arrays,” Jan. 1999, Xilinx, pp. 4-3 through 4-70. |
Xilinx, “XC6200 Field Programmable Gate Arrays,” Apr. 24, 1997, Xilinx product description, pp. 1-73. |
Xilinx, “XC3000 Series Field Programmable Gate Arrays,” Nov. 6, 1998, Xilinx product description, pp. 1-76. |
Xilinx, “XC4000E and XC4000X Series Field Programmable Gate Arrays,” May 14, 1999, Xilinx product description, pp. 1-68. |
Xilinx, “Virtex-E 1.8 V Extended Memory Field Programmable Gate Arrays,” (v1.5) Jul. 17, 2002, Xilinx Production Product Specification, pp. 1-118. |
Xilinx, “Virtex-E 1.8 V Extended Memory Field Programmable Gate Arrays,” (v2.2) Sep. 10, 2002, Xilinx Production Product Specification, pp. 1-52. |
Xilinx, “Virtex-II and Virtex-II Pro X FPGA User Guide,” Mar. 28, 2007, Xilinx user guide, pp. 1-559. |
Xilinx, “Virtex-II and Virtex-II Pro X FPGA Platform FPGAs: Complete Data Sheet,” (v4.6) Mar. 5, 2007, pp. 1-302. |
Xilinx, “Virtex-II Platform FPGAs: Complete Data Sheet,” (v3.5) Nov. 5, 2007, pp. 1-226. |
Xilinx, White Paper 370: (Virtex-6 and Spartan-6 FPGA Families) “Reducing Switching Power with Intelligent Clock Gating,” Frederic Rivoallon, May 3, 2010, pp. 1-5. |
Xilinx, White Paper 298: (Spartan-6 and Virtex-6 Devices) “Power Consumption at 40 and 50 nm,” Matt Klein, Apr. 13, 2009, pp. 1-21. |
Xu, H. et al., “Parallel QR Factorization on a Block Data Flow Architecture,” Conference Proceeding Article, Mar. 1, 1992, pp. 332-336. |
Ye, Z.A. et al., “A C-Compiler for a Processor With a Reconfigurable Functional Unit,” FPGA 2000 ACM/SIGNA International Symposium on Field Programmable Gate Arrays, Monterey, CA Feb. 9-11, 2000, pp. 95-100. |
Yeung, A. et al., “A data-driven architecture for rapid prototyping of high throughput DSP algorithms,” Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA, Proceedings VLSI Signal Processing Workshop, IEEE Press, pp. 225-234, Napa, Oct. 1992. |
Yeung, A. et al., “A reconfigurable data-driven multiprocessor architecture for rapid prototyping of high throughput DSP algorithms,” Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA, pp. 169-178, IEEE 1993. |
Zhang, et al., “Architectural Evaluation of Flexible Digital Signal Processing for Wireless Receivers, Signals, Systems and Computers,” 2000; Conference Record of the Thirty-Fourth Asilornar Conference, Bd. 1, Oct. 29, 2000, pp. 78-83. |
Zhang, et al., “A I-V Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital Signal Processing,” IEEE Journal of Solid-State Circuits, vol. 35, No. 11, Nov. 2000, pp. 1697-1704. |
Zhang et al., “Abstract: Low-Power Heterogeneous Reconfigurable Digital Signal Processors with Energy-Efficient Interconnect Network,” U.C. Berkeley (2004), pp. 1-120. |
Zima, H. et al., “Supercompilers for parallel and vector computers,” (Addison-Wesley 1991) Table of Contents, 5 pages. |
Zucker, Daniel F., “A Comparison of Hardware Prefetching Techniques for Multimedia Benchmarks,” Technical Report: CSL-TR-95-683, Dec. 1995, 26 pages. |
Xilinx, Inc.'s and Avnet, Inc.'s Disclosure Pursuant to P.R. 4-2; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, 4 pages. |
Xilinx, Inc.'s and Avnet, Inc.'s Disclosure Pursuant to P.R. 4-1; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, 9 pages. |
Defendant's Claim Construction Chart for P.R. 4-2 Constructions and Extrinsic Evidence for Terms Proposed by Defendants, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-19. |
PACT's P.R. 4-1 List of Claim Terms for Construction, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-7. |
PACT's P.R. 4-2 Preliminary Claim Constructions and Extrinsic Evidence, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-16, and Exhibits re Extrinsic Evidence Parts in seven (7) separate additional PDF files (Parts 1-7). |
Xilinx, Inc., “The Programmable Logic Data Book (1994)”, Xilinx, Inc. (1994). |
Xilinx, Inc., “The Programmable Logic Data Book (1996)”, Xilinx, Inc. (Jan. 1996). |
Churcher, Stephen et al., “The XC6200 FastMap Processor Interface”, FPL (Aug. 1995). |
Texas Instruments Incorporated, “TMS320C80 (MVP) Parallel Processor User's Guide”, Texas Instruments Incorporated (1995). |
Texas Instruments Incorporated, “TMS320C8x System-Level Synopsis”, Texas Instruments Incorporated (Sep. 1995). |
Xilinx, Inc., “XC6200 Field Programmable Gate Arrays, Advance Product Specification, v. 1.0, Jun. 1, 1996”, Xilinx, Inc. (Jun. 1, 1996). |
Xilinx, Inc., “Xilinx XC6200 Field Programmable Gate Arrays, Product Specification, v.1.10, Apr. 24, 1997”, Xilinx, Inc. (Apr. 24, 1997). |
Altera Corporation, “Programmable Peripheral Interface Adapter a8255, Sep. 1996, ver. 1”, Altera Corporation, Sep. 1996, ver. 1. |
Altera Corporation, “Universal Asynchronous Receiver/Transmitter a16450, Sep. 1996, ver. 1”, Altera Corporation, Sep. 1996, ver. 1. |
Altera Corporation, “Asynchronous Communications Interface Adapter a6850, Sep. 1996, ver. 1”, Altera Corporation, Sep. 1996, ver. 1. |
Schmit, Herman et al., “Behavioral Synthesis for FPGA-based Computing”, IEEE (1994). |
Allaire, Bill and Knapp, Steve, “A Plug and Play Interface Using Xilinx FPGAs”, Xilinx, Inc. (May 1995). |
Goslin, Greg and Newgard, Bruce, “16-Tap, 8-Bit FIR Filter Applications Guide”, Xilinx Application Note v. 1.01 (Nov. 21, 1994). |
Veendrick, H., “A 1.5 GIPS Video Signal Processor (VSP)”, IEEE 1994 Custom Integrated Circuits Conference (1994). |
Yeung, Alfred K. And Rabaey, Jan M., “A 2.4GOPS Data-Driven Reconfigurable Multiprocessor IC for DSP”, IEEE International Solid-State Circuits Conference (1995). |
Duncan, Ann, “A 32x16 Reconfigurable Correlator for the XC6200”, Xilinx Application Note, XAPP 084, v. 1.0 (Jul. 25, 1997). |
Yeung, Kwok Wah, “A Data-Driven Multiprocessor Architecture for High Throughput Digital Signal Processing”, U.C. Berkeley (Jul. 10, 1995). |
Koren, Israel et al., “A Data-Driven VLSI Array for Arbitrary Algorithms”, IEEE (1988). |
Xilinx, Inc., “A Fast Constant Coefficient Multiplier”, Xilinx, Inc., Xilinx Application Note, XAPP 082, v. 1.0 (Aug. 24, 1997). |
Sutton, Roy A. et al., “A Multiprocessor DSP System Using PADDI-2”, U.C. Berkeley (1998). |
Chen, Dev C. And Rabaey, Jan M., “A Reconfigurable Multiprocessor IC for Rapid Prototyping of Algorithmic-Specific . High-speed DSP Data Paths”, IEEE Journal of Solid State Circuits (Dec. 1992). |
Minnick, Robert, “A Survey of Microcellular Research”, J. Of the Association for Computing Machinery, vol. 14, No. 2 (Apr. 1967). |
Trimberger, Steve et al. , “A Time-Multiplexed FPGA”, IEEE (1997). |
New, Bernie, “Accelerating Loadable Counters in XC4000”, Xilinx Application Note, XAPP 023.001 (1994). |
Athanas, Peter, “An Adaptive Machine Architecture and Compiler for Dynamic Processor Reconfiguration”, Brown University (May 1992). |
Atmel Corporation, “Application Note AT6000 Series Configuration”, Published in May 1993. |
Agarwal, Anant et al., “April: A Processor Architecture for Multiprocessing”, IEEE (1990). |
Allaire, Bill and Fischer, Bud, “Block Adaptive Filter”, Xilinx Application Note, XAPP 055, v. 1.0 (Aug. 15, 1996). |
Bittner, Jr., Ray a. et al., “Colt: an Experiment in Wormhole Run-Time Reconfiguration”, Proc. Of SPIE, vol. 2914 (Oct. 21, 1996). |
New, Bernie, “Complex Digital Waveform Generator”, Xilinx Application Note, XAPP 008.002 (1994). |
Alike, Peter, “Dynamic Reconfiguration”, Xilinx Application Note, XAPP 093, v. 1.1 (Nov. 10, 1997). |
Canadian Microelectronics Corp, “Field-Programmable Devices”, 1994 Canadian Workshop on Field-Programmable Devices, Jun. 13-16, 1994, Kingston, Ontario. |
S. Brown et al., Published by Kluwer Academic Publishers, “Field Programmable Gate Arrays”, Atmel Corporation, 1992. |
Atmel Corporation, “Field Programmable Gate Arrays, AT6000 Series”, Atmel Corporation, 1993. |
International Society for Optical Engineering, “Field Programmable Gate Arrays (FPGAs) for Fast Board Development and Reconfigurable Computing”, International Society for Optical Engineering, vol. 2607, Oct. 25-26, 1995. |
Trimberger, Stephen M., “Field-Programmable Gate Array Technology”, Kluwer Academic Publishers (1994). |
Hartenstein, Reiner Servit, Michal (Eds.), “Field-Programmable Logic —Architectures, Synthesis and Applications”, 4th Intl Workshop on Field-Programmable Logic and Applications, FPL '94, Prague, Czech Republic, Sep. 7-9, 1994. |
IEEE Computer Society, “FPGAs for Custom Computing Machines”, FCCM '93, IEEE Computer Society, Apr. 5-7, 1993. |
Cowie, Beth, “High Performance, Low Area, Interpolator Design for the XC6200”, Xilinx Application Note, XAPP 081, v. 1.0 (May 7, 1997). |
IEEE Computer Society Technical Committee on Computer Architecture, “IEEE Symposium on FPGAs for Custom Computing Machines”, IEEE Computer Society Technical Committee on Computer Architecture, Apr. 19-21, 1995. |
B. Schoner, C. Jones and J. Villasenor, “Issues in wireless video coding using run-time-reconfigurable FPGAs”, Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines (Apr. 19, 1995). |
Moore, Will and Luk, Wayne, “More FPGAs”, Abingdon EE&CS Books (1994). |
Fawcett, Bradly K., “New SRAM-Based FPGA Architectures Address New Applications”, IEEE (Nov. 1995). |
Department of Electrical and Computer Engineering, The University of Toronto, “Proceedings of the 4th Canadian Workshop on Field-Programmable Devices”, Proceedings of the 4th Canadian Workshop on Field-Programmable Devices, Department of Electrical and Computer Engineering, the University of Toronto, May 13-14, 1996. |
Chen, Devereaux C., “Programmable Arithmetic Devices for High Speed Digital Signal Processing”, U.C. Berkeley (1992). |
Vasell, Jasper, et al., “The Function Processor: A Data-Driven Processor Array for Irregular Computations”, Future Generations Computer Systems, vol. 8, Issue 4 (Sep. 1992). |
T. Korpiharju, J. Viitanen, H. Kiminkinen, J. Takala, K. Kaski, “TUTCA configurable logic cell array architecture”, IEEE (1991). |
New, Bernie, “Ultra-Fast Synchronous Counters”, Xilinx Application Note, XAPP 014.001 (1994). |
Bolotski, Michael, DeHon, André, and Knight, Thomas , “Unifying FPGAs and SIMD Arrays”, 2nd International Workshop on Field-Programmable Gate Arrays, Feb. 13-15, 1994. |
Knapp, Steven K., “Using Programmable Logic to Accelerate DSP Functions”, Xilinx, Inc. (1995). |
New, Bernie, “Using the Dedicated Carry Logic in XC4000”, Xilinx Application Note, XAPP 013.001 (1994). |
lwanczuk, Roman, “Using the XC4000 RAM Capability”, Xilinx Application Note, XAPP 031.000 (1994). |
“IEEE Workshop on FPGAs for Custom Computing Machines”, IEEE Computer Society Technical Committee on Computer Architecture, Apr. 10-13, 1994. |
Nobuyuki Yamashita, et.al., “A 3.84 GIPS Integrated Memory Array Processor with 64 Processing Elements and a 2-Mb SRAM”, IEEE Journal of Solid-State Circuits, vol. 29, Nov. 1994. |
Athanas, Peter, “FUN with the XC6200, Presentation at Cornell University”, Cornell University (Oct. 1996). |
Achour, C., “A Multiprocessor Implementation of a Wavelet Transforms”, Proceedings on the 4th Canadian Workshop on Field-Programmable Devices, May 13-14, 1996. |
Electronic Engineering Times, “Altera ships 100,000-gate EPLD”, Electronic Engineering Times, Issue 917, Sep. 2-20, 1996. |
Altera Corporation, “Chipdata, Database Information for z1120a”, Altera Corporation, Sep. 11, 2012. |
Altera Corporation, “Embedded Programmable Logic Family Data Sheet”, Altera Corporation, Jul. 1995, ver. 1. |
Altera Corporation, “FLEX 10K 100,000-Gate Embedded Array Programmable Logic Family”, Altera Advantage News & Views, Newsletter for Altera Customers, Second Quarter, May 1995. |
Altera Corporation, “Implementing Multipliers in FLEX 10K Devices”, Altera Corporation, Mar. 1996, ver. 1, Application Note 53. |
Intel 82375EB/82375SB PCI-EISA Bridge (PCEB) Advance Information, Xilinx Application Note, XAPP 063, v. 1.1 (Oct 9, 1996). |
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society Technical Committee on Computer Architecture, Apr. 19, 1995. |
Proceedings of the Parallel Systems Fair, The International Parallel Processing Symposium, IEEE Computer Society Technical Committee for Parallel Processing, Apr. 27, 1994. |
Proceedings of the Workshop on Reconfigurable Architectures, 8th International Parallel Processing Symposium, IEEE Computer Society, Apr. 26, 1994. |
The Programmable Logic Conference & Exhibit Proceedings, Electronic Engineering Times, Apr. 25-27, 1995. |
Britton, Barry K. et al., “Optimized Reconfigurable Cell Array Architecture for High-Performance Field Programmable Gate Arrays”, IEEE Custom Integrated Circuits Conference 1993. |
Landers, George, “Special Purpose Processor Speeds up DSP Functions, Reconfigurable Arithmetic Datapath Device”, Professional Program Proceedings, Electro Apr. 30-May 2, 1996. |
Proceedings of the Third Workshop on Reconfigurable Architectures, at Sheraton Waikiki Hotel, Honolulu, Hawai, Apr. 15, 1996. |
Proceedings of the Third Workshop on Reconfigurable Architectures, at Sheraton Waikiki Hotel, Honolulu, Hawaii, Apr. 15, 1996. |
Atmel Corporation, “Configurable Logic Design and Application Book 1993-1994-PLD, PFGA, Gate Array”, 1993. |
Atmel Corporation, “Configurable Logic Design and Application Book 1994-1995-PLD, PFGA, Gate Array”, 1994. |
N. Wirth, “An Extension-Board with an FPGA for Experimental Circuit Design”, ETH Zurich, Department Informatik, Jul. 1993. |
F. Furtek et al. “Labyrinth: A Homogeneous Computational Medium”, IEEE 1990 Custom Integrated Circuits Conference, 1990. |
Altera Corporation, “Altera 1998 Data Book”, Altera Corporation (Jan. 1998). |
Altera Corporation, “FLEX 10K-Embedded Programmable Logic Family”, Data Sheet, ver.3.13, Oct. 1998. |
Altera Corporation, “Implementing RAM Functions in FLEX 10K Devices”, Application Note 52, Ver. 1, Nov. 1995. |
Altera Corporation, “Altera 1993 Data Book”, Altera Corporation (Aug. 1993). |
Altera Corporation, “Altera 1995 Data Book”, Altera Corporation (Mar. 1995). |
Altera Corporation, “User-Configurable Microprocessor Peripheral EPB1400”, Rev. 1.0, 1987. |
Altera Corporation, “EPB2001-Card Interface Chip for PS/2 Micro Channel”, Data Sheet, Dec. 1989. |
Altera Corporation, “FLEX 8000 Handbook”, May 1994. |
File History of U.S. Appl. No. 08/388,230. |
File History of U.S. Provisional Appl. No. 60/010,317. |
File History of U.S. Provisional Appl. No. 60/022,131. |
Chan, Pak K., “A Field-Programmable Prototyping Board: XC4000 BORG User's Guide”, University of California, Santa Cruz (Apr. 1994). |
Schewel, John, “A Hardware/Software Co-Design System Using Configurable Computing Technology”. |
Hartenstein, Reiner W. et al., “A New FPGA Architecture for Word-Oriented Datapaths”, Lecture Notes in Computer Science, vol. 849 (1994). |
Knittel, Guntar, “A PCI-Compatible FPGA-Coprocessor for 2D/3D Image Processing”, IEEE 1996. |
Schue, Rick, “A Simple DRAM Controller for 25/16 MHz i960® CA/CF Microprocessors”, Intel Corporation, Application Note Ap•704 (Feb. 20, 1995). |
Alfke, Peter and New, Bernie, “Additional XC3000 Data”, Xilinx, Inc., Xilinx Application Note, XAPP024.000 (1994). |
Altera Corporation, “Altera 1996 Data Book”, Altera Corporation (Jun. 1996). |
Altera Corporation, “Altera Applications Handbook”, Altera Corporation (Apr. 1992). |
Electronic Engineering, “Altera puts memory into its FLEX PLDs”, Electronic Engineering Times, Issue 840, Mar. 20, 1995. |
Arm, “AMBA: Advanced Microcontroller Bus Architecture Specification”, Advanced RISC Machines, Ltd., Document No. ARM IHI 0001C, Sep. 1995. |
Margolus, Norman, “An FPGA architecture for DRAM-based systolic computations”, The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (Apr. 16, 1997). |
Krishnamohan, K., “Applying Rambus Technology to Desktop Computer Main Memory Subsystems, Version 1.0”, Rambus Inc. (Mar. 1992). |
New, Bernie, “Boundary-Scan Emulator for XC3000”, Xilinx, Inc., Xilinx Application Note, XAPP007.001 (1994). |
New, Bernie, “Bus-Structured Serial Input/Output Device”, Xilinx Application Note, XAPP010.001 (1994). |
Berkeley Design Technology Group, “Buyer's Guide to DSP Processors”, Berkeley Design Technology Group (1995). |
Algotronix, Ltd., “CAL 4096 Datasheet”, Algotronix, Ltd. (1992). |
Algotronix, Ltd., “CAL 64K Datasheet”, Algotronix, Ltd. (Apr. 6, 1989). |
Algotronix, Ltd., “CHS2x4 User Manual”, Algotronix, Ltd. (1991). |
Altera Corporation, “ClockLock & ClockBoost Circuitry for High-Density PLDS”, The Altera Advantage News & Views, Newsletter for Altera Customers, Third Quarter, Aug. 1996. |
Altera Corporation, “Configuring FLEX 10K Devices”, Altera Corporation, Dec. 1995, ver. 1, Application Note 59. |
Schmidt, Ulrich, and Knut, Cesar, “Datawave: A Single-Chip Multiprocessor for Video Applications”, IEEE Micro (1991). |
Electronic Design, “Embedded Configurable Memory and Logic Boost FPGA Functionality”, Electronic Design, vol. 43, No. 14, Jul. 10, 1995. |
Xilinix, Inc., “Fully Compliant PCI Interface in an XC3164A-2 FPGA”, Xilinix, Inc. Application Note (Jan. 1995). |
Epstein, Dave, “IBM Extends DSP Performance with Mfast”, Microprocessor Reports, vol. 9, No. 16 (Dec. 4, 1995). |
IEEE, “IEEE Standard Test Access Port and Boundary-Scan Architecture”, IEEE Std 1149.1 Approved Feb. 15, 1990. |
Alfke, Peter and New, Bernie, “Implementing State Machines in LCA Devices”, Xilinx, Inc., Xilinx Application Note, XAPP027.001 (1994). |
Camilleri, Nick, and Lockhard, Chris, “Improving XC4000 Design Performance”, Xilinx Application Note, XAPP043.000 (1994). |
Intel Corporation, “Intel 82375EB/82375SB PCI-EISA Bridge (PCEB) Advance Information”, Intel Corporation (Mar. 1996). |
Wilkie, Bill, “Interfacing XC6200 to Microprocessors (MC68020 Example)”, Xilinx Application Note, XAPP 063, v. 1.1 (Oct. 9, 1996). |
Wilkie, Bill, “Interfacing XC6200 to Microprocessors (TMS320C50 Example)”, Xilinx Application Note, XAPP064 (Oct. 9, 1996). |
Xcell, “Introducing the XC6200 FPGA Architecture: The First FPGA Architecture Optimized for Coprocessing in Embedded System Applications”, Xcell, Iss. 18, 3d Quarter, 1995. |
Altera Corporation, “JTAG Boundary —Scan Testing in Altera Devices”, Altera Corporation, Nov. 1995, ver. 3, Application Note 39. |
Margolus, Norman, “Large-scale logic-array computation”, Boston University Center for Computational Science, SPIE vol. 2914 (May 1996). |
Alfke, Peter, “Megabit FIFO in Two Chips: One LCA Device and One DRAM”, Xilinx Application Note, XAPP030.000 (1994). |
del Corso, D. et al., “Microcomputer Buses and Links”, Academic Press (1996). |
Bakkes, P.J. and du Plessis, J.J., “Mixed Fixed and Reconfigurable Logic for Array Processing”, IEEE (1996). |
Altera Corporation , “PCI Bus Applications in Altera Devices”, Altera Corporation, Apr. 1995, ver. 1, Application Note 41. |
Altera Corporation, “PCI Bus Target Megafunction”, Altera Corporation, Solution Brief 6, ver. 1, Nov. 1996. |
Altera Corporation, “PCI Compliance of Altera Devices”, Altera Corporation, May 1995, ver. 2, Application Brief 140. |
Sig , “PCI Local Bus Specification”, PCI Special Interest Group, Production Version, Revision 2.1 (Jun. 1, 1995). |
Rambus Inc., “Rambus Architectural Overview”, Rambus Inc. (1992). |
Rambus Inc., “Rambus FPGA Proposal”, Rambus Inc. (Jan. 4, 1994). |
Rambus Inc., “Rambus Product Catalog”, Rambus Inc. (1993). |
Xilinx, Inc., “Series 6000 User Guide”, Xilinx, Inc. (1997). |
Cartier, Lois, “System Design with New XC4000EX I/O Features”, Xilinx Application Note, XAPP056 (Feb. 21, 1996). |
Xilinx, Inc., “Technical Data-XC5200 Logic Cell Array Family, Preliminary, v.1.0”, Xilinx, Inc., (Apr. 1995). |
Xilinx, Inc., “The Programmable Logic Data Book (1993)”, Xilinx, Inc. (1993). |
Number | Date | Country | |
---|---|---|---|
20130042137 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10469909 | US | |
Child | 12257075 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12570984 | Sep 2009 | US |
Child | 13653639 | US | |
Parent | 12257075 | Oct 2008 | US |
Child | 12570984 | US |