Methods and devices for utilizing bondable materials

Information

  • Patent Grant
  • 11246638
  • Patent Number
    11,246,638
  • Date Filed
    Monday, August 1, 2016
    7 years ago
  • Date Issued
    Tuesday, February 15, 2022
    2 years ago
Abstract
The invention primarily relates to fastening and stabilizing tissues, implants, and/or bondable materials, such as the fastening of a tissue and/or implant to a bondable material, the fastening of an implant to tissue, and/or the fastening of an implant to another implant. This may involve using an energy source to bond and/or mechanically to stabilize a tissue, an implant, a bondable material, and/or other biocompatible material. The invention may also relate to the use of an energy source to remove and/or install an implant and/or bondable material or to facilitate solidification and/or polymerization of bondable material.
Description
FIELD OF THE INVENTION

The invention relates to the fastening and stabilizing of tissues, implants, and bondable materials, such as the fastening of a tissue and/or implant to a bondable material, the fastening of an implant to tissue, and/or the fastening of an implant to another implant. This may involve using an energy source to bond and/or mechanically stabilize a tissue, an implant, a bondable material, and/or other biocompatible material. The present invention also relates to the use of an energy source to remove and/or install an implant and/or bondable material or to facilitate solidification and/or polymerization of bondable material.


BACKGROUND OF THE INVENTION

Body tissue often requires repair and stabilization to address weak or fractured bone, tom ligament or tendon, ripped muscle, or separation of soft tissue from bone. There are numerous methods to facilitate this repair and stabilization. For example, weak or fractured bones can be reinforced with bondable material, i.e. bone cement. Over time, these bondable materials may loosen due to tissue deterioration, improper installation of bondable materials, or deterioration of the bondable materials over potentially damaging to the tissue. After the bondable material is sufficiently removed using conventional methods, bondable material is reapplied to the tissue. Therefore, previous stabilization methods provided for the reapplication of bondable materials and did not utilize existing bondable materials. There is a need for an improved method to utilize existing bondable materials to stabilize tissue and implants.


In another example, bondable materials are used for the installation of implants, i.e. example bone cement. However, some implants loose stability over time. Previous stabilization methods require removal of the implant and the remaining bondable material left on the bone. After the bondable materials are removed, new bondable material is applied to the implant and/or bone. Again, this is a time consuming process, potentially damaging the surrounding tissue during the removal of the implant and remaining bondable material.


Bone plates may be positioned internal to the skin, i.e. positioned against the fractured bone, or may be positioned external to the skin with rods connecting the bone and plate. Conventional bone plates are particularly well-suited to promote healing of the fracture by compressing the fracture ends together and drawing the bone into close apposition with other fragments and the bone plate. However, one drawback with plates and screws is that with the dynamic loading placed on the plate, loosening of the screws, and loss of stored compression can result. There is a need for additional fixation devices and methods related to bone plates and other implants providing support to bone.


In addition to internal or external bone plates, surgeons sometimes use intramedullary rods to repair long bone fractures, such as fractures of the femur, radius, ulna, humerus, fibula, and tibia. The rod or nail is inserted into the medullary canal of the bone and affixed therein by screws or bolts. After complete healing of the bone at the fracture site, the rod may be removed through a hole drilled in the end of the bone. One problem associated with the use of today's intramedullary rods is that it is often difficult to treat fractures at the end of the long bone. Fastener members, such as bolts, are positioned through the cortical bone and into threaded openings in the rod. However, the number and positioning of the bolt/screw openings are limited at the tip of the rod because of the decreased surface area of the rod and the reduced strength at the tip of the rod. Fractured bone sections at the distal end of a femur, for example, may not be properly fastened to using conventional intramedullary rod stabilization techniques. Therefore, additional fixation devices and methods are required for use with intramedullary rods.


Other common methods to address weak or fractured bones use a combination of bone screws, bone plates, and intramedullary rods. Conventional methods of using bone screws required a sufficient depth within the bone to stabilize a bone plate. However, weak or fracture bones have limited purchase, as portions of the bone may be unfit for the use of bone screws. Furthermore, if an intramedullary rod has been used to stabilize the bone, the fixation area is further limited as surgeons generally avoid tapping into areas of bone with an underlying intramedullary rod. An improved method of stabilizing existing bone plates and intramedullary rods is needed.


Existing systems and techniques for repairing tissue, like the ones previously described, can be complex, time consuming, lack the characteristic of being employed with precision, be damaging to tissue, and/or fail to provide a robust fastening of tissue. Therefore, there is a need for an apparatus and method for the fastening of tissue that involves a reduction in completion time, greater strength and precision, utilization of previously implanted materials, and preservation of living tissue. There is a need for a system that utilizes of previously installed fixation devices and techniques.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:



FIG. 1 is a perspective view of an exemplary vibratory energy device;



FIG. 2 illustrates an embedding implant and end effector of the invention;



FIG. 3 illustrates an alternative view of FIG. 2;



FIG. 4 illustrates an embedding implant connected to an end effector and embedded in a bondable material;



FIG. 5 illustrates an alternative welding horn or embedding implant of the invention;



FIG. 6 illustrates an alternative configuration of the end effector of FIG. 3;



FIG. 7 illustrates a cross section through the center of a long axis of the end effector of FIG. 6;



FIG. 8 illustrates a cross section through the center of a long axis of a fastening implant;



FIG. 9 illustrates an alternative view of FIG. 8;



FIG. 10 illustrates the embedding implant embedded in bondable material and engaged with a fastening implant;



FIG. 11 illustrates an alternative configuration of the fastening implant of FIG. 9;



FIG. 12 illustrates a cross section through the center of a long axis of the fastening implant of FIG. 11;



FIG. 13 illustrates a washer for use with implants of the invention;



FIG. 14 illustrates a cross section through the center of a long axis of FIG. 13;



FIG. 15 illustrates embedding implant embedded in bondable material;



FIG. 16 illustrates the fastening implant of FIG. 11 disposed in the washer of FIG. 13 and engaged with the embedding implant of FIG. 15;



FIG. 17 illustrates the fastener of FIG. 11 bonded and/or staked to the washer of FIG. 13;



FIG. 18 illustrates alternative configurations of implant of the invention;



FIG. 19 illustrates alternative configurations of FIG. 18;



FIG. 20 illustrates an alternative configuration of an embedding implant;



FIG. 21 illustrates a cross section through the center of a long axis of FIG. 20;



FIG. 22 illustrates an alternative configuration of the embedding implant of FIG. 2;



FIG. 23 illustrates a cross section through the center of a long axis of FIG. 22;



FIG. 24 illustrates an alternative configuration of the embedding implant of FIG. 2;



FIG. 25 illustrates a cross section through the center of a long axis of FIG. 24;



FIG. 26 illustrates the use of a fastening implant and an embedding implant to secure a supporting implant;



FIG. 27 illustrates the assembled configuration of FIG. 26;



FIG. 28 illustrates devices and methods related to utilization of implants and bondable materials;



FIG. 29 illustrates alternatives for the devices and methods of FIG. 28;



FIG. 30 illustrates alternatives for the devices and methods of FIG. 29 and illustrates a method of connecting an instrument to an implant;



FIG. 31 illustrates an alternative method of connecting an instrument to an implant;



FIG. 32 illustrates the affixing an attachment to an implant;



FIG. 33 illustrates the use of a reservoir.



FIG. 34 illustrates an alternative configuration of FIG. 33.



FIG. 35 illustrates alternative types of reservoirs in an alternative type of implant.



FIG. 36 illustrates an additional alternative type of implant.



FIG. 37 illustrates fixation to previously implanted bondable material.



FIG. 38 illustrates an alternative view of FIG. 37.



FIG. 39 illustrates an alternative configuration of the instrument of FIG. 1.



FIG. 40 illustrates an exploded view of the instrument of FIG. 39.



FIG. 41 illustrates a method of utilization for the instrument of FIG. 39.



FIG. 42 illustrates an alternative configuration of a fastening implant.



FIG. 43 illustrates an alternative view of FIG. 42.



FIG. 44 illustrates an alternative configuration of an embedding implant.



FIG. 45 illustrates an alternative view of FIG. 44.



FIG. 46 illustrates an alternative configuration of a fastening implant.



FIG. 47 illustrates an alternative view of FIG. 46.



FIG. 48 illustrates an energy signal through an end effector and implant.



FIG. 49 illustrates an alternative configuration of an energy signal through an end effector and implant.



FIG. 50 illustrates an exploded view of the fastening implant of FIG. 41.



FIG. 51 illustrates the fastening implant of FIG. 50 after staking.



FIG. 52 illustrates an exploded view of an alternative type of fastening implant.



FIG. 53 illustrates an alternative view of FIG. 52.



FIG. 54 illustrates an alternative configuration of a fastening implant.



FIG. 55 illustrates the fastening implant of FIG. 54 bonded to another implant.



FIG. 56 illustrates an alternative configuration of a fastening implant or embedding implant.



FIG. 57 illustrates an expandable configuration of a fastening implant and expanding implant.



FIG. 58 illustrates an alternative view of FIG. 57.



FIG. 59 illustrates an alternative configuration of an implant, interference implant, and fastening implant.





SUMMARY

As is described in further detail below, fasteners may be embedded within solidified bondable material, for example a grouting agent such as bone cement (PMMA) or other acrylic based material. In an embodiment in accordance with the invention, an embedding fastener may be connected to an end effector of a vibratory energy generator. The embedding fastener may be adapted to enter and engage the bondable material that has been locally melted by vibratory energy, and to be securely retained therein once the bondable material has cooled and hardened.


The end effector may be provided in any of a variety of shapes, one example being an elongated rod or shaft, connectable to a hand piece at a proximal end, and operative to transmit vibratory energy at a distal end. The fastener may be adapted to connect to the distal end of the end effector, for example by mechanical interlocking, threading, twist lock configurations, friction fitting, or adhesive attachment. The mechanical connection must be operative, however, to communicate the vibratory energy from the end effector to the fastener.


The fastener is adapted to be securely retained within the bondable material or adhesive, in one embodiment, by being provided with a shaped or contoured surface upon which the adhesive may grip once hardened. A roughened or porous surface may be provided alone or in combination with a shaped surface to increase purchase in bondable material and/or facilitate an interference fit.


The fastener may further be provided with a taper at a leading end which first enters the adhesive. The taper improves performance, at least, by promoting accurate tracking and movement of the fastener into the adhesive, piercing tissue, and facilitating initial melting by concentrating vibratory energy over a smaller surface region.


In a further embodiment of the invention, the embedded bone cement fastener (also referred to as an embedding fastener or embedding implant) described above is provided with one or more radial gaps, chambers, or ports, extending from a central bore. A polymeric fastener is inserted within the central bore, and vibratory energy is applied to the polymeric fastener, whereby polymer at the interface between the embedded fastener and the polymeric fastener melts. When the polymer melts, and particularly as pressure is applied to the polymeric fastener in the direction of insertion, polymer enters the ports, flowing in a direction away from the central bore. When vibratory energy is discontinued, the polymer solidifies, and the polymer fastener is thereafter secured within the embedding fastener.


The embodiments of the present invention may be utilized with limitless fixation techniques and in conjunction with other fasteners and implants. Furthermore, the embodiments herein may assist in the installation and removal of tissue and implants. Moreover, the embodiments of the present invention may assist in the delivery of therapeutic agents and employ methods that facilitate tissue growth and repair. In addition, the embodiments herein may be used to apply vibratory energy to remove and/or install an implant in bondable material or to facilitate solidification and/or polymerization of the bondable material.


DETAILED DESCRIPTION

The invention relates to the devices and methods for the utilization of bondable materials and bondable materials, fixation and fastening of tissue to tissue, an implant to tissue, and an implant to an implant both inside and outside the body. The invention additionally relates to removing and anchoring implants to bondable materials and/or other biocompatible materials, anchoring implants using previously implanted and hardened bondable materials, and fixation using vibratory energy, mixing, solidifying, bonding, and/or mechanical interlocking of materials. The present invention also relates to the use of an energy source to install and/or remove an implant or bondable material or to facilitate the solidification and/or polymerization of a bondable material


The methods and devices disclosed herein may be used in conjunction with any medical procedure on the body. The stabilization, fastening, and/or repair of tissue or an implant may be performed in connection with any medical procedure related to a joint, bone, muscle, ligament, tendon, cartilage, capsule, organ, skin, nerve, vessel, or other body parts. For example, tissue may be stabilized during intervertebral disc surgery, kyphoplasty, knee surgery, hip surgery, organ transplant surgery, bariatric surgery, spinal surgery, anterior cruciate ligament (ACL) surgery, tendon-ligament surgery, rotator cuff surgery, capsule repair surgery, fractured bone surgery, pelvic fracture surgery, avulsion fragment surgery, shoulder surgery, hernia repair surgery, and surgery of an intrasubstance ligament tear, annulus fibrosis, fascia lata, flexor tendons, etc.


Also, an implant may be inserted within the body and fastened to tissue with the present invention. Such implant insertion procedures include, but are not limited to, partial or total knee replacement surgery, hip replacement surgery, shoulder replacement surgery, bone fastening surgery, etc. The implant may be an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), collagen, a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal (porous or nonporous), polymer, composite, or ceramic. Collagen may provide the benefit of bolstering tissue growth. Additionally, a desiccated collagen may be used to absorb surrounding fluid, which may provide the additional benefit of applying pressure on the tissue being repaired. Other implants include breast implants, biodegradable plates, porcine or bovine patches, metallic fasteners, compliant bearing for medial compartment of the knee, nucleus pulposus prosthetic, stent, suture, suture anchor, tissue graft, tissue scaffold, biodegradable collagen scaffold, and polymeric or other biocompatible scaffold. The scaffold may include fetal cells, stem cells, embryonic cells, enzymes, and proteins.


In this application, the term “bondable” or “bondable material” is used to refer to the materials discussed herein, as well as any material, suitable for in vivo applications, which can be softened and made flowable by the application of heat (such as heat produced with vibratory energy such as ultrasonic energy), and which, when softened, may become tacky and will bond to other materials and will flow to fill available space. Thus, the material may be thermoplastic, but it may also exhibit tackiness or bonding ability when in its plastic form. Many materials suitable for in vivo applications are made of or incorporate such bondable materials. Generally speaking, the amount of heat needed to soften and make flowable should be within a temperature range that does not produce substantial thermal tissue necrosis. Alternatively stated, the amount of heat required to soften the bondable material during vibratory bonding is substantially confinable, due to the thermal properties of the bondable material, to an area of contact between the objects which are being bonded, thereby protecting living body tissue near the contact between the two objects from substantial thermal tissue necrosis. Any embodiment herein may be used with any of the materials and/or applications disclosed herein or known in the art.


The fixation and fastening system and other embodiments of the present invention contemplates the use any materials that may include or be used in conjunction with bondable materials for bonding and/or staking within the human body. Implants that may be used as fasteners may also be referred to as fastening implants. Bondable material used may include, but are not limited to, biocompatible, degradable, biodegradable, bioerodible, bioabsorbable, mechanically expandable, hydrophilic, bendable, deformable, malleable, riveting, threaded, toggling, barded, bubbled, laminated, coated, blocking, pneumatic, one-piece, multi-component, solid, hollow, polygon-shaped, pointed, self-introducing, and combinations thereof. Also, the devices may include, but are not limited to, metallic material, polymeric material, ceramic material, composite material, body tissue, synthetic tissue, hydrophilic material, expandable material, compressible material, bondable material, and combinations thereof. Bondable material may also include polymethyl methacrylate (known as “PMMA” or “bone cement”), glue, adhesive, and/or other grouting agents or acrylic materials used for fixation.


In this application, “bond”, “bonded”, and “bonding” includes, but is not limited to, attaching, engaging, connecting, binding, adhering, and/or fastening one or more materials through resistive heating, mechanical interlocking, application of force, application of grouting agents (i.e. bone cement), adhesives and/or solvents, spraying, radiofrequency, vibratory energy (i.e. ultrasound), microwave, laser, electromagnetic, electro shockwave therapy, plasma energy (hot or cold), and other suitable method described herein or known in the art.


Preferably, materials of the present invention can melt with the application of energy, becoming gel-like, tacky, and/or soft. The energy source and the technique used to bond and/or stake the material within the body can be selected to minimize or avoid damage to surrounding body tissue. Exemplary materials that may be used may include polymers, ceramics, composites, and metals, although other materials may also be suitable for use with the invention. While the present invention contemplates the use of any of these materials in any of the following embodiments, polymeric material is used in the following examples and description simply to illustrate how the invention may be used.


There are a limitless number of materials may be used for the present invention. Examples of amorphous polymers are polycarbonate (LEXAN), polystyrene, polysulfone (ULDALL), and acrylics polycarbonate (ABS and styrenes). Examples of semi-crystalline polymers include acetyl (DELRIN), nylon, polyester, polyethylene, polyether ether ketone, polypropylene, polyvinylchloride (PVC), and Caprolactam. Biodegradable semi-crystalline polymers may include polylactic acid and polyglycolic acid. Copolymers of PGA and PLA may also be used. Poly-1-lactide (PLLA) or other forms of PLA may also be used. Other polymers which may be used with the present invention, either as a thermoplastic or non-thermoplastic, are polyethylene glycol (PEG)-copolymers and D,L-lactide-co-glycolide polyesters. Some semi-crystalline materials are particularly suitable for surgical bonding and/or staking, especially vibratory bonding and staking. Examples of such materials include PAEK (polyaryletherketone), including PEEK (polyetheretherketone) and PEKK (polyetherketoneketone).


In addition to PEEK and the other polymers described herein, the implants, devices, and methods of the present invention may use keratin, a naturally occurring polymer. Keratin may be vibratory bonded or staked to itself, to other implants, or within tissue. This may be performed in the operating room or intracorporeally. Keratin may be bonded to collagen or to other known polymers. In an exemplary application, keratin may be used to fasten tissue to bone since keratin has BMP and tissue scaffold properties. It is contemplated that any of devices and methods disclosed herein may utilize keratin alone or in combination with PEEK, polylactic acid, or other polymer. Keratin may be used to make fasteners, disc replacements, joint replacement components, stents, cell scaffolds, drug reservoirs, etc. Also, joint bearing surfaces may include keratin with or without collagen or chondrocytes. The bearing surfaces may be fastened to a joint component using PEEK or PLA fasteners.


Another polymer that can be used with the present invention is a class of natural materials, called polyhydroxyalkanoates, or PHA polymers. These polymers are synthesized in nature by numerous microorganisms, and they have been recently recognized as the fifth class of naturally occurring biopolymers (along with the polyamino acids, polynucleic acids, polysaccharides, and polyisoprenoids). Unlike the other naturally occurring biological polymers, however, the PHA polymers are thermoplastic, i.e. they may be repeatedly softened with heat and hardened with cooling. As such, these polymers can be processed much like other plastics. A specific example of a PHA polymer that could be used is poly-4-hydroxybutyrate material. Such PHA polymers are available from Tepha Inc of Lexington, Mass.


Fasteners of the invention may utilize or be coated with polymethylmethacrylate (PMMA), in order to promote bonding with PMMA used in the body, or PMMA could be incorporated into polymer of the fastener, or deposited within cavities or shapes formed in the fastener surface, including threaded, roughened, porous, or nano textures. A fastener may be thus coated with PMMA, or formed entirely of PMMA, and may be heat bonded, advantageously using ultrasound, to another PMMA surface or other adhesive surface, otherwise as described herein with respect to bone cement. Although PMMA, known generally as bone cement, and other polymers may function more as a grouting agent than a cement or adhesive. The term “bondable material” is used throughout the specification for simplicity.


In accordance with the invention, metals are advantageously connected with fasteners incorporating polymeric materials. Any of a variety of metals may be used, either smooth or formed with at least portions formed of metal, or a roughened or porous surface, or formed with cavities or other shapes upon which polymeric material may mold, enter, adhere, or otherwise affix. The polymer is softened in accordance with the invention through the application of heat, including heat created using vibratory energy, to become tacky, or sufficiently softened in order to bond on a microscopic level, or a macroscopic level through adaptation to the surface structure of the metal. For use in vivo, biocompatible metals are used, including stainless steel, nitinol or other SMA (shape metal alloy), tantalum, porous tantalum, titanium, cobalt-chrome alloys, and other metals such as are known to those skilled in the art. Additional related information, including bonding polymers and metals, and polymer to polymer bonding of implant materials, may be found in U.S. Pat. No. 5,163,960 entitled “Surgical devices assembled using bondable materials”, and U.S. Pat. No. 7,104,996 entitled “Method of performing surgery”, the contents of each of which being incorporated herein by reference.


The fastening device of the present invention may include therapeutic substances to promote healing. These substances could include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein (BMP), demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, germicides, fetal cells, stem cells, enzymes, proteins, hormones, cell therapy substances, gene therapy substances, and combinations thereof. These therapeutic substances may be combined with the materials used to make the device. Alternatively, the therapeutic substances may be impregnated or coated on the device. Time-released therapeutic substances and drugs may also be incorporated into or coated on the surface of the device. The therapeutic substances may also be placed in a bioabsorbable, degradable, or biodegradable polymer layer or layers.


The therapeutic agents may also be placed within one or more cavities disposed in a fastening device of the present invention. Different agents may be disposed in different cavities of the device to specifically tailor the implant for a particular patient. Dosages of the therapeutic agent may be the same or different within each of cavities as well. The cavities may include a cover which may release the agent in a controlled or timed manner. The cover may be biodegradable or bioerodible to allow the agent to release to surrounding tissue. Examples of suitable therapeutic agents include bone growth inducing material, bone morphogenic proteins, osteoinductive materials, apatite compositions with collagen, demineralized bone powder, or any agent previously listed. U.S. patent application Ser. No. 11/549,994 entitled “Drug Eluting Implant” discloses means for delivering therapeutic agents. The above-mentioned patent application is incorporated by reference herein in its entirety.


The fastening devices of this and other embodiments of the invention may be used in combination with fasteners in the prior art. Examples of fasteners, implants, and their methods of employment may be found in U.S. Pat. Nos. 5,163,960; 5,403,348; 5,441,538; 5,464,426; 5,549,630; 5,593,425; 5,713,921; 5,718,717; 5,782,862; 5,814,072; 5,814,073; 5,845,645; 5,921,986; 5,948,002; 6,010,525; 6,045,551; 6,086,593; 6,099,531; 6,159,234; 6,368,343; 6,447,516; 6,475,230; 6,592,609; 6,635,073; and 6,719,765. Other fastener types are disclosed in U.S. patent application Ser. Nos. 12/202,210; 10/102,413; 10/228,855; 10/779,978; 10/780,444; and 10/797,685. The above cited patents and patent applications are hereby incorporated by reference in their entirety.


With reference to FIG. 1, any known energy emitting instrument may be used with the surgical system of the present invention. Instrument 100 may produce energy such as resistive heating, radiofrequency, ultrasound (vibratory), microwave, laser, electromagnetic, electro shockwave therapy, plasma energy (hot or cold), and other suitable energy disclosed herein or known in the art. FIG. 1 illustrates an exemplary handpiece or instrument 100 that may be used with the present invention. The instrument 100 may be a vibratory energy generator with a sheath 102 to cover and protect the end effector 104 and engage a fastener/implant near engagement feature 106. As will be discussed below, the instrument may be used to bond and/or mechanically interlock fasteners and other embodiments the present invention. Additional embodiments of instrument 100 are disclosed in U.S. patent application Ser. No. 12/202,210 entitled “Methods and Devices for Utilizing Thermal Energy to Bond, Stake and/or Remove Implants”, which is incorporated by reference herein.


With reference to FIGS. 2-7, end effector 104 may be utilized with anchor or embedding fastener 110. Embedding fastener 110 may also be referred to as an embedding implant. FIG. 2 illustrates end effector 104 that connects to embedding fastener 110 with distal end 108. The connection between distal end 108 and embedding fastener 110 may utilize threads, magnetism, friction, taper, ball and socket, linkage, adhesive, interlocking shapes, and other connections known in the art. Additionally, distal end 108 and embedding fastener 110 may be permanently or detachably connected.


As shown in FIG. 2, embedding fastener 110 may further be provided with a taper 114, which first enters bondable material 120 in FIG. 4. Taper 114 may improve performance, for example, by promoting accurate tracking and movement of embedding fastener 110 into bondable material 120, piercing body tissue, and facilitating initial melting by concentrating vibratory energy over a smaller surface region. Although embedding fastener 110 may be made of any material described herein or known in the art, it may be preferable to use titanium.


As discussed in further detail below, embedding fastener 110 may also have feature 112 and/or feature 116, either or both may be a surface feature, recess, or pass through a portion or the entirety of embedding fastener 110.


Referring to FIG. 3, an embodiment of end effector 104 may have proximal end 118 to the other components of instrument 100. The connection between instrument 100 and proximal end 118 may be threaded, magnetic, friction, hex, ball and socket, linkage, adhesive, and other methods disclosed herein or known in the art.


As shown in FIGS. 3-7, end effector 104 may be provided in any of a variety of shapes, one example being an elongated rod or shaft, connectable to a hand piece at a proximal end 118, and operative to transmit vibratory energy at a distal end 108. While a rod shape is shown and selected for reduced manufacturing cost, end effector 104 may have the form of box or hex channel, oval or other shape, provided it communicates vibratory energy to a distal end 108, an attached fastener, or embedding fastener 110. Additionally, feature 111 of FIG. 5 may be used on embedding fastener 110 or integrated into end effector 104 (not shown).


In an additional embodiment, embedding fastener 110 is adapted to connect to distal end 108 of end effector 104 by mechanical interlocking, as by a bore in embedding fastener 110, sized to receive distal end 108 of end effector 104, optionally provided with internal or external threading (not shown), wherein post 108 has mating threads. Additionally, the connection may be threaded, magnetic, friction, hex, ball and socket, linkage, adhesive, and other methods disclosed herein or known in the art. Similarly, a bore or aperture may be provided in end effector 104, mateable with a post or projection on embedding fastener 110. Other mechanical connections are contemplated, including twist lock configurations, friction fitting, or adhesive attachment. The mechanical connection should preferably be operative to communicate vibratory energy from end effector 104 to embedding fastener 110, as by a firm mechanical connection.


As shown in an embodiment of FIG. 4, embedding fastener 110 may be adapted to be securely retained within bondable material 120 by being provided with a shaped or contoured surface upon which the softened bondable may adhere. A roughened or porous surface may be provided alone or in combination with shaped surface thereby providing for increased purchase in bondable material 120.


With reference to FIG. 4, embedding fastener 110 may be embedded within solidified bone bondable material 120, for example PMMA, acrylic based adhesive, or other bondable materials. In the present invention, embedding fastener 110 is connected to end effector 104 of an embodiment of instrument 100, such as a vibratory energy generator as shown in FIG. 1. Embedding fastener 110 is adapted to enter and engage bondable material 120 or bondable material 120 that has been locally melted by vibratory energy (as shown in FIG. 4), through contact between embedding fastener 110 and bondable material 120 during operation of instrument 100. Embedding fastener 110 is securely retained by bondable material 120 once the latter has hardened. Although the embodiment in FIG. 4 may be used under a limitless number of configurations and settings, Table 1 is being set forth with operative examples:









TABLE 1







Titanium Embedding Fastener Bonded into PMMA


Embedding Fastener Type: Shown in FIG. 20


Instrument: Handpiece SN0105 with tuning of 39,000-45,000 Hz


System Settings:


Sample 1: 40,850 Hz, 1OOW, 2.0 sec weld time


Sample 2: 40,750 Hz, 75 W, 1.5 sec weld time


Sample 3: 40,800 Hz, 75 W, 1.0 sec weld time


Sample 4: 40,750 Hz, 75 W, 1.0 sec weld time














Force



Test Sample
Power

Applied to
Deformation


Number
(watts)
Time (sec)
Break (lbs.)
Depth (inches)





1
63
2.56
46.7
0.116


2
48
2.01
61.9
0.119


3
48
1.58
32.5
0.109


4
48
1.47
31.5
0.098









Once anchored, end effector 104 and embedding fastener 110, embedded in bondable material 120, may remain connected. Alternatively, end effector 104 may be removed and another fastener of a similar or different design may be connected to an implanted embedding fastener 110 as shown in FIGS. 8-10. In a further embodiment, fastener 124 such as described in the incorporated patents and applications may be fastened to an implanted or installed embedding fastener 110. Fastener 124 may have fastener bore 128 as shown in FIGS. 8-9. Referring to FIG. 10, a bondable insert 134 may be secured into fastener bore 128. Bondable insert 134 may be secured by press fitting, threading, or bonding to fastener bore 128 and/or embedding fastener 110. The fastener 124 may be utilized as detailed in U.S. patent application Ser. No. 12/202,210, which has been incorporated by reference herein. In further embodiments, any fastener described in the related references cited in paragraph [0001] or discussed herein may be fastened to the embedding fastener 110, then secured in its respective manner.


In an additional embodiment, embedding fastener 110 may be used to remove an implant and/or bondable material 120. For example, the ability of conventional medical tools to remove a previously installed implant or bone cement may be limited. Embedding fastener 110 may be used to obtain additional fixation. Once embedding fastener 100 is secured to the implant and/or bondable material 120, force and/or vibratory energy may be used to remove the implant and/or bondable material 120.



FIGS. 11-17 show an additional embodiment for use with an implanted embedding fastener 110. Fastener 136 is show in FIGS. 11-12 and washer 146 is shown in FIGS. 13-14. Although fastener 136 and washer 146 may be made of any material disclosed herein or known in the art, it may be preferable to use PEEK. After embedding fastener 110 has been secured with respect to bondable material 120, fastener 136 may be engaged into embedding fastener 110. In another embodiment, washer 146 may be used in conjunction with fastener 136 as shown in FIGS. 15-17. Additionally, fastener 136 may be bonded to embedding fastener 110 and/or washer 146.


Referring to FIGS. 18-19, fastener 136, washer 146, and/or tissue implant 154 may be used to secure soft tissue 152 to hard tissue 156, for example to secure the rotator cuff tissue to the proximal humerus or for any other procedure disclosed herein. Additionally, washer 146 and/or tissue implant 154 could be made of collagen or other materials that promote tissue growth.


With reference to FIGS. 20-25, embedding fastener 110 may be provided with channel 112. For example, channel 112A, 112B, 112C, and/or 116 may be used. Channel 112 may extend through the surface of embedding fastener 110 to facilitate the bonding of embedding fastener 110 to bondable material 120, fastener 136, and/or any fastener disclosed herein. Channel 112 may provide a path for softened and/or molten bondable material to be displaced, providing room for entry of embedding fastener 110. Channel 116 may also include radial gaps, chambers, or ports. To accommodate for embedding fastener 110 displacing a substantial amount of material, channels may be extended along the entire length of embedding fastener 110, and may further extend along end effector 104. Channel 116 may be further operative to reduce the possibility of rotation of fastener 110 within bondable material 120. Channel 116 is thus disposed to extend into bondable material 120 after insertion, and may extend to the face of embedding fastener 110. Additionally, embedding fastener 110 may have feature 158 to help attach and remove it from end effector 104.


In an embodiment shown in FIGS. 26-27, implant 162 may be coated in bondable material 164 and implanted in body tissue 160. For example, a metal rod coated with bone cement may be placed in the intramedullary canal of a bone. In an embodiment, support 168 may be placed in a location to facilitate stabilization. Support 168 and/or washer 146 may be referred to as a supporting implant. One or more holes may be formed in body tissue 160 and up to or into bondable material 164 to coincide with the holes in support 168. Embedding fastener 110 may be placed through the holes in body tissue 160 and secured to and/or bonded to bondable material 164 as discussed herein. Then, one or more of fastener 136 are secured to and/or bonded to the one or more embedding fastener 110, thereby securing support 168 relative to body tissue 160.


Referring to FIG. 28, implant 162 may be installed in a body tissue 160 with bondable material 164, for example bone cement. Bondable material 164 may be any material described herein or known in the art. Implant 162 may require stabilization because implant 162 has become loose and/or requires stabilization due to tissue defect 166, for example a periprosthetic fracture. Tissue defect 166 may include, but is not limited to, damaged, deformed, and/or diseased bone, muscle, ligament, tendon, cartilage, capsule, organ, skin, nerve, vessel, or other body part. For example, a femur may be fractured or contain osteoporosis. Support 168 is fixed to body tissue 160 with fastener 170 to provide stabilization. Support 168 may be an internal bone plate, an external bone plate, a spinal plate, a wedge, a cushion, a pad, or other biocompatible support used for stabilization of tissue and/or implants. Fastener 170 may be any fastener described herein or any other biocompatible fastener known in the art.


In an embodiment, implant 162 has been previously installed and requires stabilization. One or more holes are formed through body tissue 160 and up to or into bondable material 164. Embedding fastener 110 is inserted through a hole and bonded to bondable material 164 by utilizing instrument 100 described above. Fastener 170 engages embedding fastener 110 to secure support 168 to body tissue 160. The head of fastener 170 may be deformed and/or bonded to support 168 to reduce loosening of fastener 170.


Embedding fastener 110 can also be bonded to bondable material 164C/D that is within or on the surface of body tissue 160. For example, bondable material may have been used to repair tissue defect 166. Bondable material 164 may be within or on the surface of body tissue 160. A hole is formed up to or into the bondable material 164. Embedding fastener 110 is bonded into bondable material 164. Fastener 170 passes through support 168 and into engagement with embedding fastener 110 to secure support 168 relative to body tissue 160.


In another embodiment, embedding fastener 110A/B can be bonded to and/or into implant 162. The procedure is performed as described above, except the embedding fastener 110 may be bonded directly to implant 162.


In another embodiment, bondable material 164 may asymmetrically cover all or a portion of implant 162. The thickness of bondable material 164 could vary in the radial direction or along the length of implant 162. An asymmetrically coated implant 162 may provide additional purchase for fastener 136 or indication of orientation or position of implant 162.


In an additional embodiment, indirect visualization may be used to identify and/or change the orientation or position of implant 162 or fastener 136. Examples of indirect visualization may include endoscopic guidance, computer assisted navigation, magnetic resonance imaging (MM), CT scan, ultrasound, fluoroscopy, X-ray, or other visualization technique disclosed in any of the references incorporated herein. Asymmetric coating, radiopaque markers, or other features identifiable with indirect visualization may be used to identify and/or adjust orientation or position. Indirect visualization may also be used to align fastener 136 with holes in implant 162 or bondable material 164. The holes may be predrilled in implant 162 or bondable material 164 or may be drilled after installation of 162. Indirect visualization may be used to create a hole or holes in tissue to align with holes in implant 162 or bondable material 164.


For example, an intramedullary rod could be asymmetrically coated with PEEK. The intramedullary rod could have predrilled holes in the PEEK coating. After the rod is installed in the intramedullary canal of the tibia, the orientation of the rod may be determined using indirect visualization to locate the area with a thicker coating. The orientation of the rod may be adjusted to the appropriate location for holes to be made through the tissue.


With further reference to FIG. 28-29, various types of fastening devices are used to position support 168 along body tissue 160. Alternatively, support 168 may be positioned upon the surface of the skin, or at any point between the tissue surface and the skin, according to the requirements of the surgical procedure. Further, support 168 may be placed within the bone, for example in an intramedullary canal.


Referring to FIG. 29, fastener 170 may be used in intramedullary, percutaneous, and/or retrograde approaches. Fastener 170 may be bonded to bondable material 164, or a surface of implant 162. The head of fastener 170 may be provided, or may be formed using vibratory energy. A head may also be formed on the distal end of fastener 170. Fasteners 170E are shown to be bonded into the bondable material 164. Fastener 170F is shown to be bonded at the distal end and/or to bondable material 164 within the body tissue and is placed through tissue defect 166. Fasteners 170G are shown passing directly through body tissue 160, which may be fastener 170T and sleeve 171T in FIGS. 52-53 and as described below. Additional embodiments of fastener 170 are disclosed in U.S. patent application Ser. No. 12/202,210 entitled “Methods and Devices for Utilizing Thermal Energy to Bond, Stake and/or Remove Implants”, which is incorporated by reference herein.


Additionally, cerclage wire 172 may be employed as known in the art, to provide further stabilization, in combination with fastener 170. For example, cerclage wire 172A may be bonded to support 168. Bondable material 164E could be used to affix cerclage wire 172A to support 168. In another example, cerclage wire 172B may be tied around support 168. Also, cerclage wire 172C may be fastened using a mechanical or bonded crimp 174. In additional example, cerclage wire 172D may be fastened to the side of support 168 or between support 168 and body tissue 160.


Referring to FIG. 30, end effector 104 of instrument 100 may be connected into implant 162 at recess 180. This connection may be threaded, magnetic, friction, hex, ball and socket, linkage, adhesive, and other connections suitable for transferring vibratory energy as disclosed herein or known in the art. Also, other vibratory energy devices as disclosed herein or known in the art may be utilized.



FIG. 30 also shows additional methods of stabilizing a loose implant and/or facilitating the solidification and/or polymerization of bondable material 164. For example, fastener 170H may be a metal and/or polymer fastener, which may be affixed to the bondable material 164 and/or implant 162 to stabilize implant 162. In another example, fastener 170I may be metal coated with bondable material. Upon the application of vibratory energy and/or heat, distal end 182A deforms thereby stabilizing the gap between implant 162 and body tissue 160. In an additional example, fastener 170J may be made of bondable material. Upon the application of vibratory energy and/or heat, distal end 182B deforms, thereby stabilizing the gap between implant 162 and body tissue 160.


Referring to FIG. 31, end effector 104 of instrument 100 may be connected into implant 162 with coupler 184 to stabilize previously hardened and/or polymerized bondable material 164 or to facilitate solidification and/or polymerization of bondable material 164. This connection may be threaded, magnetic, friction, hex, ball and socket, linkage, adhesive, and other connections suitable for transferring vibratory energy as disclosed herein or known in the art. Also, other vibratory energy devices disclosed herein or known in the art may be utilized.


Referring to FIG. 32, attachment 186 may be attached and/or bonded to implant 162. Attachment 186 may be made from any material described herein (i.e. collagen, graft, or growth promoter) or any other material known in the art, preferably to promote healing and/or contain bondable material 164. For example, vibratory energy may be used to bond attachment 186 to implant 162. In another example, fastener 170 may secure attachment 186 to implant 162. In an additional example, vibratory energy may be used to bond fastener 170 to attachment 186.


Referring to FIGS. 33-34, implant 162 may be manufactured with reservoir 192 or reservoir 192 may be formed during or after implantation. Additionally, therapeutic substance 194 may be incorporated in reservoir 192 of implant 162, impregnated in implant 162, or coated on or in implant 162. As shown in FIG. 33, reservoir 192 may be located in implant 162. Alternatively, reservoir 194 may be formed in body tissue 160, as shown in FIG. 34. Cap 188 may be made of bondable material. Additionally, cap 188 may be attached and/or bonded to enclose reservoir 192. Implant 162, cap 188, and/or body tissue 160 may contain attachment feature 190 and/or attachment recess 196 to facilitate mechanical attachment and/or bonding with end effector 104. Additionally, implant 162, cap 188, and/or bondable material 164 may be porous to facilitate the delivery of therapeutic substance 194.


Referring to FIG. 35, therapeutic substance 194 may be contained in implant 198, for example drugs or antibiotics contained in an acetabular cup. Implant 198 may be manufactured with reservoir 192A and/or reservoir 192B or the reservoirs may be formed during implantation. Any combination of one or more reservoir 192A and/or reservoir 192 may be used. Cap 188 may be coated with bondable material. Additionally, any of caps 188A-D may be attached and/or bonded to enclose reservoir 192A or 192B, which may provide the potential benefit of multiple release times for therapeutic substance 194 Caps 188A-D may contain attachment features 190A-D to facilitate mechanical attachment and/or bonding. Additionally, implant 198 and/or any of caps 188A-D may be porous to facilitate the delivery of therapeutic substance 194.


Referring to FIG. 36, fastener 170 may be used to stabilize implant 162, for example a tibial component of a total knee arthroplasty (TKA). In an embodiment, fastener 170K may be bonded to bondable material 164 on the underside of the implant or bonded directly to implant 164. In another embodiment, fastener 170L may be bonded to the portion of implant 162 that is within body tissue 160. In an additional embodiment, fastener 170 may be used to secure tissue graft 202 to implant 162 and/or body tissue 160. For example, tissue graft 202 may be an allograft. Any embodiment of fastener 170 that has been described herein or known in the art may be used.


Referring to FIGS. 37-38, bondable material 164 may be utilized to stabilize body tissue 160. For example, bone cement in previously performed kyphoplasty may become loose and require additional stabilization. In this example, the fasteners may utilize the previously implanted bone cement to stabilize the spine instead of removing and reapplying bone cement. In an embodiment, body tissue 160 has been previously implanted with bondable material 164. Fastener 170N is passed through support 168 and bonded to bondable material 164. As shown in FIG. 37, one or more fastener 170 is passed through support 168 and secured and/or bonded to surrounding tissue 200. Fasteners 170M, 170N, and 170P may be any embodiment disclosed herein or known in the art. Additionally, fasteners 170M, 170N, and 170P may be used with embedding fastener 110 as described above. Also in these embodiments, vibratory energy may be used to stabilize previously hardened and/or polymerized bondable material or to facilitate the solidification and/or polymerization of bondable material.


Referring to FIGS. 39-41 and 50-51, an additional embodiment of instrument 100 includes guide sheath 102, spring 204, and/or force regulator 206. In an embodiment in FIG. 41, guide sheath 102 may align washer 146 when the tip of end effector 104 is placed in contact with fastener 136. As fastener 138 is staked and the tip of fastener 136 is shaped with the application of vibratory energy, such as ultrasonic energy, guide sheath 102 may allow end effector 104 to advance while applying force to washer 146, support 168, body tissue 160, and/or bondable material 164 (not shown in FIG. 41). In a further embodiment in FIG. 41, guide sheath 102 may hold, guide, align, and/or deliver washer 146, fastener 136, or other fasteners referenced herein or known in the art. In an additional embodiment, regulating sheath 206 may have a spring 204, for example any spring, cushion, or other material or device known in the art for spring/damping applications. Additionally, instrument 100 may have regulating tab 206 for manually applying and/or regulating the movement of guide sheath 102. Although the embodiment in FIG. 41 may be used under a limitless number of configurations and settings, Table 2 is being set forth with operative examples:









TABLE 2







Polycarbonate Fastener Bonding


Instrument: Handpiece P05 with tuning of 39,000-45,000 Hz


System Settings: 39,500 Hz, SOW, 1.0 sec weld time













Energy
Force
Deformation


Test Sample
Power
Application
Applied to
Depth


Number
(watts)
Time (sec)
Break (lbs.)
(inches)














1
30
1.69
93.2
0.115


2
28
1.68
86.4
0.110


3
31
1.78
98.2
0.111


4
27
1.80
91.3
0.108


5
31
1.69
109.2
0.109









In additional embodiments, frequency may preferably be between 20 to 80 khz, power may preferably be between 5 to 200 watts, and energy application time may be preferably between from 0.1 to 5 seconds.


In an embodiment, a sensor may be included in instrument 100. For example, a force, pressure, or temperature sensor may be used to measure bonding and/or staking. In another example, a visual and/or audio indicator may be operatively connected to the sensor, which may be used to indicate a proper bond/stake. In another embodiment, a visual and/or audio indicator may be connected to instrument 100 or the energy generator, which may be used to illustrate and/or teach proper technique during bonding and/or surgery. In another example, the visual and/or audio indicator may indicate completion of a proper bond/stake, over/under application of force, or expiration of desired energy application time.


In another embodiment, a vacuum may be operatively connected to 100. For example, the vacuum may be communicatively connected between the guide sheath 102 and end effector 104, which may be used for the removal of debris from instrument 100.


Referring to FIGS. 42-43, an additional embodiment of fastener 170 may include one or more feature 208. Feature 208 may increase or decrease the transfer of energy across fastener 170. Feature 208 may pass into the surface or through fastener 170. Feature 208 may be on any surface or surfaces of fastener 170 and/or contain therapeutic substances. Fastener 170 may include effector interface 210, preferably for engagement with end effector 104.


Referring to FIGS. 44-45, embedding fastener 110 may also include thread 212. Embedding fastener 110 may be screwed and/or engaged into bondable material, tissue, and/or any other material disclosed herein, preferably by engaging interface 214 with a screw driver or other tool. Embedding fastener 110 may include an interface 214 which may be radiused, chamfered, funnel-shaped, threaded, or any other shape, for example square, rectangular, circular, elliptical, triangular, hexagonal, or asymmetrical shape. Embedding fastener 110 may be made of any metal, polymer, or other material disclosed herein.


Referring to FIGS. 46-47, fastener 170 may include effector interface 216. Preferably for engagement with end effector 104, effector interface 216 may be radiused, chamfered, funnel-shaped, threaded, or any other shape, for example square, rectangular, circular, elliptical, triangular, hexagonal, or asymmetrical shape.


Referring to FIGS. 48-49, instrument 100 may include end effector 104 dimensioned and configured for a point of maximum displacement at or near the middle of fastener 170 at or near point 218B (FIG. 49). In another embodiment, it may be preferable for instrument 100 to include end effector 104 dimensioned and configured for a point of maximum displacement at or near the end of fastener 170 at or near point 218A (FIG. 48). For most applications, a point of maximum displacement at or near point 218B is preferred. Fastener 170 may be threaded or have an interference fit with end effector 104.


A point of maximum displacement along end effector 104 may occur at increments of about half its wavelength, which may be determined by the ratio of the speed of sound through the material of end effector 104 to the frequency of the wave propagated through end effector 104. The end effector 104 may be made of titanium or any material disclosed herein. For example, at a frequency of 20 khz, points of maximum displacement along end effector 104 made of titanium may be in increments of about 4 to 6 inches, preferably 4.8 to 5.1 inches. For example, at a frequency of 40 khz, points of maximum displacement along end effector 104 made of titanium may be in increments of about 2 to 3 inches, preferably 2.4 to 2.5 inches


A point of maximum displacement along fastener 170 may also occur at increments of about half its wavelength. Fastener 170 may be made of PEEK, PLLA, or any material disclosed herein. As an example for PEEK, at a frequency of 20 khz, points of maximum displacement along end effector 104 may be in increments of about 1 to 2 inches, preferably 1.6 to 1.7 inches. As another example for PEEK, at a frequency of 40 khz, points of maximum displacement along end effector 104 may be in increments of about 0.5 to 1 inch, preferably 0.8 inches. As an example for PLLA, as an example at a frequency of 20 khz, points of maximum displacement along end effector 104 may be in increments of about 1 to 2 inches, preferably 1.3 to 1.4 inches. As an example for PLLA, as an example at a frequency of 40 khz, points of maximum displacement along end effector 104 may be in increments of about 0.5 to 1 inch, preferably 0.7 inches.


To optimize bonding and/or reduce the stress applied, the desired point of bonding on fastener 170 should be at or near a point of maximum displacement. For example, the desired point of bonding on fastener 170 may be along half its length or at its tip (see 218A of FIG. 48). If the desired point of bonding is at a point of minimal or zero displacement (see 218B of FIG. 49), bonding may be difficult. To facilitate bonding, it may be preferable to increase power or amplitude of the signal, thereby increasing energy applied to fastener 170.


Referring to FIGS. 52-53, fastener 170T may be used with sleeve 171T, potentially to contain and/or release therapeutic substances into a body. Fastener 170T may engage with sleeve 171T by mechanical interlock, thread, or vibratory energy bond. End effector 104 may engage with fastener 170T for vibratory energy bonding. Any fastener 170 disclosed herein may have energy director 222 to facilitate bonding by directing energy to the desired location of bonding.


Referring to FIGS. 54-55, fastener 170U may have energy director 224. Energy director 224 may facilitate bonding with implant 162, especially if a portion or the entirety of implant 162 includes a porous material. For example, implant 162 may include a porous metal. End effector 104 may engage with fastener 170U for vibratory energy bonding.


Referring to FIG. 56, fastener 170F may be embedded into a bondable material with its leading end and stabilize a support 168 (i.e. plate) with its trailing end. End effector 104 may engage with fastener 170F, preferably near the trailing end, for vibratory energy bonding. Fastener 170F may include any material disclosed herein, but preferably titanium or titanium with at least a portion coated with PEEK or PLLA.


Referring to FIGS. 57-58, fastener 170W may be used with, preferably disposed within, expanding anchor 226. End effector 104 may engage with fastener 170W, preferably near the trailing end, for vibratory energy bonding. A hole in tissue and/or bondable material may be formed or drilled into body tissue 160 prior to or during the implantation of fastener 170W and expanding anchor 226. Fastener 170W and expanding anchor 226 may pass into body tissue 160, for example in the configuration shown in FIG. 57. Fastener 170W may be retracted into expanding anchor 226, preferably after being positioned in body tissue 160. Expanding anchor 226 may expand outwards (shown in FIG. 58), thereby engaging and/or exerting a radially outward force on body tissue 160. Preferably after fastener 170W and expanding anchor 226 are in an expanded condition, vibratory energy may be applied to fastener 170W, preferably near the trailing end, to bond fastener 170W and expanding anchor 226 together. In another embodiment, fastener 170W and/or expanding anchor 226 may be configured to bond into a bondable material. After fastener 170W and expanding anchor 226 have been stabilized in the expanded configuration, the excess length of the trailing end of fastener 170W may be removed to be substantially flush with the trailing end of expanding anchor 226.


Referring to FIG. 59, fastener 170 may be used to increase interference between body tissue 160 and implant 198. Fastener 170 may be an interference screw and/or used in conjunction with interference implant 228 to position and/or stabilize implant 198. Fastener 170 may pass through all or a portion of implant 198. In additional embodiments, fastener 170 may stabilize body tissue 160 (i.e. ACL graft) against the side of a hole in body tissue 160 (i.e. bone) (not shown), stabilize body tissue 160 (i.e. soft tissue) to another body tissue 160 (i.e. bone), or stabilize interference implant 228 (or tissue graft 202) to body tissue 160 (i.e. bone) and/or implant 198 (FIG. 59). In another embodiment, fastener 170 may be part or entirely made of a biodegradable and/or bondable material. In an embodiment, fastener 170 may have a snap that would overlay part of implant 198 for interference. In another embodiment, implant 198 may include porous surface 230 (FIG. 59) or a coating of bondable material. In another example, implant 198 may be bonded with vibratory energy, hydrophilic, and/or mechanically expandable against body tissue 160 (i.e. bone), which may allow the implant to sequentially expand and provide interference against body tissue 160 (i.e. bone) or another implant.


In an embodiment related to hip (or shoulder) resurfacing, implant 198 may be an acetabular component or cup (or glenoid component), which is commonly stabilized using screws through its center. To replace the use of these screws or to provide additional stabilization, implant 198 may be stabilized by positioning fastener 170 between implant 198 and body tissue 160 (i.e. acetabulum or glenoid), which may urge implant 198 to the desired position and/or enhance interference with body tissue 160. In an embodiment, implant 198 may be free of holes, as fastener 170 may provide the majority of interference.


There are many different features to the present invention and its contemplated that these features may be used together or separately. Thus, the invention should not be limited to any particular combination of features or to a particular application of the invention. Further, it should be understood that variations and modifications within the spirit and scope of the invention may occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention.

Claims
  • 1. A method of utilizing a bondable material to secure a fastener, said method comprising: engaging an end effector with at least a trailing end of the fastener;positioning a leading end feature of the fastener in direct contact with a surface of the bondable material, wherein the bondable material is in a fixed position;applying energy to the fastener to heat and melt at least a portion of the bondable material in contact with the leading end feature of the fastener;applying force to the fastener during the application of energy to the fastener to form an opening through the surface of the bondable material and embed at least a portion of the fastener within the bondable material to secure the fastener within the bondable material; anddisengaging the end effector from the trailing end of the fastener.
  • 2. The method of claim 1 further comprising retaining force on the fastener after the application of energy to allow the bondable material to cool and harden.
  • 3. The method of claim 1 wherein at least a portion of the fastener is mechanically interlocked within the bondable material.
  • 4. The method of claim 1 wherein the bondable material is a solidified polymer before the application of energy.
  • 5. The method of claim 1 wherein at least a portion of the bondable material flows into at least one surface feature of the fastener to secure the the fastener to the bondable material.
  • 6. The method of claim 1 wherein leading end feature of the fastener is a taper.
  • 7. The method of claim 1 wherein at least a portion of the fastener comprises at least one of titanium, stainless steel, and cobalt-chrome alloy.
  • 8. The method of claim 1 wherein the fastener is internally threaded.
  • 9. The method of claim 8 further comprising securing a second fastener having external threads to the fastener embedded in the bondable material.
  • 10. The method of claim 1 wherein the fastener includes at least a portion of titanium and at least a portion of a polymer.
  • 11. The method of claim 1 wherein the energy is at least one of vibratory energy, ultrasonic energy, radiofrequency energy, microwave energy, laser energy, electromagnetic energy, and resistive heating.
  • 12. The method of claim 1 wherein the fastener remains solid when embedded within the bondable material.
  • 13. The method of claim 1 wherein the bondable material is bone cement.
  • 14. The method of claim 1 wherein the fastening implant is positioned relative to a supporting element.
  • 15. A method of securing a fastener in a bondable material, said method comprising: positioning a leading end of a fastener in direct contact with a portion of the bondable material, wherein the bondable material is in a fixed position;applying ultrasonic energy to the fastener to melt the portion of the bondable material in contact with the leading end of the fastener; andapplying force to the fastener during the application of energy to the fastener to form an opening in the bondable material and embed at least a portion of the fastener within the bondable material.
  • 16. The method of claim 15 wherein the fastener is mechanically interlocked within the bondable material.
  • 17. The method of claim 15 further comprising retaining force on the fastener after the application of ultrasonic energy to allow the bondable material to cool and harden.
  • 18. The method of claim 15 wherein the fastener is internally threaded.
  • 19. The method of claim 18 further comprising securing a second fastener having external threads to the fastener embedded in the bondable.
  • 20. The method of claim 15 wherein the fastener is engaged with an end effector prior to the application of ultrasonic energy and the end effector is disengaged from the fastener after the fastener is embedded within in a hole in the bondable material.
CROSS REFERENCE TO RELATED APPLICATIONS

This non-provisional application is a continuation of U.S. patent application Ser. No. 12/711,540 filed Feb. 24, 2010, which is based upon and herein claims priority to U.S. Provisional No. 61/155,133 filed Feb. 24, 2009. This application is related to U.S. patent application Ser. No. 12/202,210 filed Aug. 28, 2008, U.S. patent application Ser. No. 11/689,670 filed Mar. 22, 2007, U.S. patent application Ser. No. 11/671,556 filed Feb. 6, 2007, and U.S. patent application Ser. No. 11/416,618 filed May 3, 2006, the entire contents of each are hereby expressly incorporated by reference into this disclosure as if set forth fully herein.

US Referenced Citations (836)
Number Name Date Kind
319296 Molesworth Jun 1885 A
668878 Jensen Feb 1901 A
668879 Miller Feb 1901 A
702789 Gibson Jun 1902 A
862712 Collins Aug 1907 A
2121193 Hanicke Dec 1932 A
2187852 Friddle Aug 1936 A
2178840 Lorenian Nov 1936 A
2199025 Conn Apr 1940 A
2235419 Callahan Mar 1941 A
2248054 Becker Jul 1941 A
2270188 Longfellow Jan 1942 A
2518276 Braward Aug 1950 A
2557669 Lloyd Jun 1951 A
2566499 Richter Sep 1951 A
2621653 Briggs Dec 1952 A
2725053 Bambara Nov 1955 A
2830587 Everett Apr 1958 A
3204635 Voss Sep 1965 A
3347234 Voss Oct 1967 A
3367809 Soloff Feb 1968 A
3391690 Armao Jul 1968 A
3477429 Sampson Nov 1969 A
3513848 Winston May 1970 A
3518993 Blake Jul 1970 A
3577991 Wilkinson May 1971 A
3596292 Erb Aug 1971 A
3608539 Miller Sep 1971 A
3625220 Engelsher Dec 1971 A
3648705 Lary Mar 1972 A
3653388 Tenckhoff Apr 1972 A
3656476 Swinney Apr 1972 A
3657056 Winston Apr 1972 A
3678980 Putshall Jul 1972 A
3709218 Halloran Jan 1973 A
3711347 Wagner Jan 1973 A
3760808 Pleuer Sep 1973 A
3788318 Kim Jan 1974 A
3789852 Kim Feb 1974 A
3802438 Wolvek Apr 1974 A
3807394 Attenborough Apr 1974 A
3809075 Matles May 1974 A
3811449 Pravlee May 1974 A
3825010 McDonald Jul 1974 A
3833003 Taricco Sep 1974 A
3835849 McGuire Sep 1974 A
3842824 Neurfeld Oct 1974 A
3857396 Hardwick Dec 1974 A
3867932 Huene Feb 1975 A
3875652 Arnold Apr 1975 A
3888405 Jones et al. Jun 1975 A
3898992 Balamuth Aug 1975 A
3918442 Nikolaev Nov 1975 A
3968800 Vilasi Jul 1976 A
4023559 Gaskell May 1977 A
4064566 Fletcher Dec 1977 A
4089071 Kainberz May 1978 A
4156574 Boben May 1979 A
4164794 Spector Aug 1979 A
4171544 Hench Oct 1979 A
4183102 Guiset Jan 1980 A
4199864 Ashman Apr 1980 A
4200939 Oser May 1980 A
4210148 Stivala Jul 1980 A
4213816 Morris Jul 1980 A
4235233 Mouwen Nov 1980 A
4235238 Ogiu Nov 1980 A
4257411 Cho Mar 1981 A
4265231 Scheller May 1981 A
4281649 Derweduwen Aug 1981 A
4291698 Fuchs Sep 1981 A
4309488 Heide Jan 1982 A
4320762 Bentov Mar 1982 A
4351069 Ballintyn Sep 1982 A
4364381 Sher Dec 1982 A
4365356 Broemer Dec 1982 A
4388921 Sutter Jun 1983 A
4395798 McVey Aug 1983 A
4409974 Freedland Oct 1983 A
4414166 Charlson Nov 1983 A
4437191 Van Der Zel Mar 1984 A
4437362 Hurst Mar 1984 A
4444180 Schneider Apr 1984 A
4448194 DiGiovanni May 1984 A
4456005 Lichty Jun 1984 A
4461281 Carson Jul 1984 A
4493317 Klaue Jan 1985 A
4495664 Blanquaert Jan 1985 A
4501031 McDaniel Feb 1985 A
4504268 Herlitze Mar 1985 A
4506681 Mundell Mar 1985 A
4514125 Stol Apr 1985 A
4526173 Sheehan Jul 1985 A
4532926 D'Holla Aug 1985 A
4535772 Sheehan Aug 1985 A
4547327 Bruins Oct 1985 A
4556350 Bernhardt Dec 1985 A
4566138 Lewis Jan 1986 A
4589868 Dretler May 1986 A
4590928 Hunt May 1986 A
4597379 Kihn Jul 1986 A
4599085 Riess Jul 1986 A
4601893 Cardinal Jul 1986 A
4606335 Nedeen Aug 1986 A
4621640 Mulhollan Nov 1986 A
4630609 Chin Dec 1986 A
4632101 Freedland Dec 1986 A
4645503 Lin Feb 1987 A
4653487 Maale Mar 1987 A
4657460 Bien Apr 1987 A
4659268 Del Mundo Apr 1987 A
4662063 Collins May 1987 A
4662068 Polonsky May 1987 A
4662887 Turner May 1987 A
4669473 Richards Jun 1987 A
4685458 Leckrone Aug 1987 A
4691741 Affa et al. Sep 1987 A
4705040 Mueller Nov 1987 A
4706670 Andersen Nov 1987 A
4708139 Dunbar Nov 1987 A
4713077 Small Dec 1987 A
4716901 Jackson Jan 1988 A
4718909 Brown Jan 1988 A
4722331 Fox Feb 1988 A
4722948 Sanderson Feb 1988 A
4724584 Kasai Feb 1988 A
4738255 Goble Apr 1988 A
4739751 Sapega Apr 1988 A
4741330 Hayhurst May 1988 A
4749585 Greco Jun 1988 A
4750492 Jacobs Jun 1988 A
4768507 Fischell Sep 1988 A
4772286 Goble Sep 1988 A
4773406 Spector et al. Sep 1988 A
4766328 Frey Oct 1988 A
4776738 Winston Oct 1988 A
4776851 Bruchman Oct 1988 A
4781182 Purnell Nov 1988 A
4790303 Steffee Dec 1988 A
4792336 Hiavacek Dec 1988 A
4817591 Klalue Apr 1989 A
4822224 Carl Apr 1989 A
4823794 Pierce Apr 1989 A
4832025 Coates May 1989 A
4832026 Jones May 1989 A
4834752 Van Kampen May 1989 A
4841960 Garner Jun 1989 A
4843112 Gerhart Jun 1989 A
4846812 Walker Jul 1989 A
4862882 Venturi Sep 1989 A
4869242 Galluzzo Sep 1989 A
4870957 Goble Oct 1989 A
4883048 Purnell Nov 1989 A
4890612 Kensey Jan 1990 A
4895148 Bays Jan 1990 A
4898156 Gattuma Feb 1990 A
4899729 Gill Feb 1990 A
4899744 Fujitsuka Feb 1990 A
4901721 Hakki Feb 1990 A
4911718 Lee et al. Mar 1990 A
4919194 Gery et al. Apr 1990 A
4921479 Grayzel May 1990 A
4922897 Sapega May 1990 A
4924866 Yoon May 1990 A
4932960 Green Jun 1990 A
4935026 Drews Jun 1990 A
4935028 Drews Jun 1990 A
4945625 Winston Aug 1990 A
4946468 Libarid Aug 1990 A
4954126 Wallsten Sep 1990 A
4955910 Bolesky Sep 1990 A
4957498 Caspari Sep 1990 A
4961741 Hayhurst Oct 1990 A
4963151 Ducheyne Oct 1990 A
4966583 Debbas Oct 1990 A
4968315 Gattuma Nov 1990 A
4969888 Scholten Nov 1990 A
4969892 Burton Nov 1990 A
4990161 Kampner Feb 1991 A
4994071 MacGregor Feb 1991 A
4997445 Hodorek Mar 1991 A
4998539 Delsanti Mar 1991 A
5002550 Li Mar 1991 A
5002563 Pyka Mar 1991 A
5009652 Morgan Apr 1991 A
5009663 Broome Apr 1991 A
5009664 Sievers Apr 1991 A
5013316 Goble May 1991 A
5019090 Pinchuk May 1991 A
5021059 Kensey Jun 1991 A
5046513 Gattuma Jun 1991 A
5035713 Friis Jul 1991 A
5037404 Gold Aug 1991 A
5037422 Hayhurst Aug 1991 A
5041093 Chu Aug 1991 A
5041114 Chapman Aug 1991 A
5041129 Hayhurst Aug 1991 A
5047055 Bao Sep 1991 A
5051049 Wills Sep 1991 A
5053046 Janese Oct 1991 A
5053047 Kuslich Oct 1991 A
5059193 Kuslich Oct 1991 A
5059260 Winters Oct 1991 A
5061274 Kensey Oct 1991 A
5061286 Lyle Oct 1991 A
5069674 Fearnot Dec 1991 A
5078744 Hayhurst Jan 1992 A
5078745 Rhenter Jan 1992 A
5084050 Draenert Jan 1992 A
5084051 Tormala Jan 1992 A
5085660 Lin Feb 1992 A
5085661 Moss Feb 1992 A
5098433 Freedland Mar 1992 A
5098434 Serbousek Mar 1992 A
5098436 Ferrante Mar 1992 A
5100405 McLaren Mar 1992 A
5100417 Derier Mar 1992 A
5102417 Palmaz Apr 1992 A
5102421 Anspach Apr 1992 A
5108399 Eitenmuller Apr 1992 A
5120175 Arbegast Jun 1992 A
5123520 Schmid Jun 1992 A
5123914 Cope Jun 1992 A
5123941 Lauren Jun 1992 A
5133732 Wiktor Jul 1992 A
RE34021 Mueller Aug 1992 E
5141520 Goble Aug 1992 A
5147362 Goble Sep 1992 A
5154720 Trott Oct 1992 A
5156613 Sawyer Oct 1992 A
5156616 Meadows Oct 1992 A
5158566 Pianetti Oct 1992 A
5158934 Ammann Oct 1992 A
5163960 Bonutti Nov 1992 A
5171251 Bregen Dec 1992 A
5176682 Chow Jan 1993 A
5179964 Cook Jan 1993 A
5180388 DiCarlo Jan 1993 A
5183464 Dubrul Feb 1993 A
5192287 Fournier Mar 1993 A
5192326 Bao Mar 1993 A
5197166 Meier Mar 1993 A
5197971 Bonutti Mar 1993 A
5203784 Ross Apr 1993 A
5203787 Noblitt Apr 1993 A
5208950 Merritt May 1993 A
5209776 Bass May 1993 A
5217493 Raad Jun 1993 A
5219359 McQuilkin Jun 1993 A
5226899 Lee Jul 1993 A
5234006 Eaton Aug 1993 A
5234425 Fogarty Aug 1993 A
5236438 Wilk Aug 1993 A
5236445 Hayhurst Aug 1993 A
5242902 Murphy Sep 1993 A
5254113 Wilk Oct 1993 A
5258007 Spetzler Nov 1993 A
5258015 Li Nov 1993 A
5258016 Dipoto Nov 1993 A
5266325 Kuzma Nov 1993 A
5269783 Sander Dec 1993 A
5269785 Bonutti Dec 1993 A
5269809 Hayhurst Dec 1993 A
5281235 Habermeyer Jan 1994 A
5282832 Toso Feb 1994 A
5290281 Tschakaloff Mar 1994 A
5304119 Balaban Apr 1994 A
5306280 Bregen Apr 1994 A
5306301 Graf Apr 1994 A
5306309 Wagner et al. Apr 1994 A
5315741 Dubberke May 1994 A
5318570 Hood Jun 1994 A
5318588 Horzewski Jun 1994 A
5320611 Bonutti Jun 1994 A
5324308 Pierce Jun 1994 A
5328480 Melker Jul 1994 A
5329846 Bonutti Jul 1994 A
5329924 Bonutti Jul 1994 A
5330468 Burkhart Jul 1994 A
5330476 Hiot Jul 1994 A
5330486 Wilkinson Jul 1994 A
5336231 Adair Aug 1994 A
5336240 Metzler Aug 1994 A
5339799 Kami Aug 1994 A
5349956 Bonutti Sep 1994 A
5352229 Goble Oct 1994 A
5354298 Lee Oct 1994 A
5354302 Ko Oct 1994 A
5366480 Corriveaau Nov 1994 A
5370646 Reese Dec 1994 A
5370660 Weinstein Dec 1994 A
5372146 Branch Dec 1994 A
5374235 Ahrens Dec 1994 A
5376126 Lin Dec 1994 A
5382254 McGarry Jan 1995 A
5383883 Wilk Jan 1995 A
5383905 Golds Jan 1995 A
5391173 Wilk Feb 1995 A
5395308 Fox Mar 1995 A
5397311 Walker Mar 1995 A
5400805 Warren Mar 1995 A
5403312 Yates Apr 1995 A
5403348 Bonutti Apr 1995 A
5405359 Pierce Apr 1995 A
5411523 Goble May 1995 A
5413585 Pagedas May 1995 A
5417691 Hayhurst May 1995 A
5417701 Holmes May 1995 A
5417712 Whittaker May 1995 A
5423796 Skikhman Jun 1995 A
5431670 Holmes Jul 1995 A
5439470 Li Aug 1995 A
5441538 Bonutti Aug 1995 A
5443512 Parr Aug 1995 A
5447503 Miller Sep 1995 A
5449372 Schmaltz Sep 1995 A
5449382 Dayton Sep 1995 A
5451235 Lock Sep 1995 A
5453090 Martinez Sep 1995 A
5456722 McLeod Oct 1995 A
5458653 Davison Oct 1995 A
5462561 Voda Oct 1995 A
5464424 O'Donnell Nov 1995 A
5464426 Bonutti Nov 1995 A
5464427 Curtis Nov 1995 A
5470337 Moss Nov 1995 A
5472444 Huebner Dec 1995 A
5474554 Ku Dec 1995 A
5478351 Meade Dec 1995 A
5478353 Yoon Dec 1995 A
5480403 Lee Jan 1996 A
5486197 Le Jan 1996 A
5487844 Fujita Jan 1996 A
5488958 Topel Feb 1996 A
5496292 Burnham Mar 1996 A
5496335 Thomason Mar 1996 A
5496348 Bonutti Mar 1996 A
5499382 Nusinov et al. Mar 1996 A
5500000 Feagin Mar 1996 A
5501700 Hirata Mar 1996 A
5504977 Weppner Apr 1996 A
5505735 Li Apr 1996 A
5507754 Green Apr 1996 A
5522844 Johnson Jun 1996 A
5522845 Wenstrom Jun 1996 A
5522846 Bonutti Jun 1996 A
5527341 Gogolewski Jun 1996 A
5527342 Pietrzak Jun 1996 A
5527343 Bonutti Jun 1996 A
5529075 Clark Jun 1996 A
5531759 Kensey Jul 1996 A
5534012 Bonutti Jul 1996 A
5534028 Bao Jul 1996 A
5540718 Bartlett Jul 1996 A
5542423 Bonutti Aug 1996 A
5545178 Kensey Aug 1996 A
5545180 Le Aug 1996 A
5545206 Carson Aug 1996 A
5549630 Bonutti Aug 1996 A
5549631 Bonutti Aug 1996 A
5556402 Xu Sep 1996 A
5569252 Justin Oct 1996 A
5569305 Bonutti Oct 1996 A
5569306 Thal Oct 1996 A
5571190 Ulrich et al. Nov 1996 A
5573517 Bonutti Nov 1996 A
5573538 Laboureau Nov 1996 A
5573542 Stevens Nov 1996 A
5575801 Habermeyer Nov 1996 A
5580344 Hasson Dec 1996 A
5584835 Greenfield Dec 1996 A
5584860 Goble Dec 1996 A
5584862 Bonutti Dec 1996 A
5591206 Moufarrege Jan 1997 A
5593422 Moufarrege Jan 1997 A
5593425 Bonutti Jan 1997 A
5593625 Riebel Jan 1997 A
5601557 Hayhurst Feb 1997 A
5601558 Torrie Feb 1997 A
5601595 Schwartz Feb 1997 A
5607427 Tschakaloff Mar 1997 A
5609595 Jennig Mar 1997 A
5618314 Harwin Apr 1997 A
5620461 Muijs Van De Moer Apr 1997 A
5626612 Bartlett May 1997 A
5626614 Hart May 1997 A
5626718 Philippe May 1997 A
5628751 Sander May 1997 A
5630824 Hart May 1997 A
5634926 Jobe Jun 1997 A
5635784 Seale Jun 1997 A
5643274 Sander Jul 1997 A
5643293 Kogasaka Jul 1997 A
5643295 Yoon Jul 1997 A
5643321 McDevitt Jul 1997 A
5645553 Kolesa Jul 1997 A
5645597 Krapiva Jul 1997 A
5645599 Samani Jul 1997 A
5649955 Hashimoto Jul 1997 A
5649963 McDevitt Jul 1997 A
5651377 O'Donnell Jul 1997 A
5658313 Thal Aug 1997 A
5660225 Saffran Aug 1997 A
5662658 Wenstrom Sep 1997 A
5665089 Dall Sep 1997 A
5665109 Yoon Sep 1997 A
5667513 Torrie Sep 1997 A
5669917 Sauer Sep 1997 A
5674240 Bonutti Oct 1997 A
5681310 Yuan Oct 1997 A
5681333 Burkhart Oct 1997 A
5681351 Jamiolkowski Oct 1997 A
5681352 Clancy Oct 1997 A
5685820 Riek Nov 1997 A
5688283 Knapp Nov 1997 A
5690654 Ovil Nov 1997 A
5690655 Hart Nov 1997 A
5690676 Dipoto Nov 1997 A
5693055 Zahiri Dec 1997 A
5697950 Fucci Dec 1997 A
5702397 Gonie Dec 1997 A
5702462 Oberlander Dec 1997 A
5707395 Li Jan 1998 A
5713903 Sander Feb 1998 A
5713921 Bonutti Feb 1998 A
5718717 Bonutti Feb 1998 A
5720747 Burke Feb 1998 A
5725541 Anspach Mar 1998 A
5725556 Moser Mar 1998 A
5725582 Bevan Mar 1998 A
5730747 Ek Mar 1998 A
5733306 Bonutti Mar 1998 A
5720753 Sander Apr 1998 A
5735875 Bonutti Apr 1998 A
5735877 Pagedas Apr 1998 A
5735899 Schwartz Apr 1998 A
5741282 Anspach Apr 1998 A
5752952 Adamson May 1998 A
5752974 Rhee May 1998 A
5755809 Cohen May 1998 A
5762458 Wang Jun 1998 A
5766221 Benderev Jun 1998 A
5769894 Ferragamo Jun 1998 A
5772672 Toy Jun 1998 A
5776151 Chan Jul 1998 A
5779706 Tschakaloff Jul 1998 A
5782862 Bonutti Jul 1998 A
5785713 Jobe Jul 1998 A
5792096 Rentmeester Aug 1998 A
5797931 Bito Aug 1998 A
5800537 Bell Sep 1998 A
5807403 Beyar Sep 1998 A
5810849 Kontos Sep 1998 A
5810853 Yoon Sep 1998 A
5810884 Kim Sep 1998 A
5814072 Bonutti Sep 1998 A
5814073 Bonutti Sep 1998 A
5817107 Schaller Oct 1998 A
5823994 Sharkey Oct 1998 A
5824009 Fukuda Oct 1998 A
5830125 Scribner Nov 1998 A
5836897 Sakural Nov 1998 A
5839899 Robinson Nov 1998 A
5843178 Vanney Dec 1998 A
5845645 Bonutti Dec 1998 A
5851185 Berns Dec 1998 A
5865834 McGuire Feb 1999 A
5866634 Tokushige Feb 1999 A
5868749 Reed Feb 1999 A
5874235 Chan Feb 1999 A
5879372 Bartlett Mar 1999 A
5891166 Schervinsky Apr 1999 A
5891168 Thal Apr 1999 A
5893880 Egan Apr 1999 A
5897574 Bonutti Apr 1999 A
5899911 Carter May 1999 A
5899921 Caspari May 1999 A
5906579 Salm May 1999 A
5906625 Bito May 1999 A
5908429 Yoon Jun 1999 A
5911721 Nicholson Jun 1999 A
5918604 Whelan Jul 1999 A
5919193 Slavitt Jul 1999 A
5919208 Valenti Jul 1999 A
5919215 Wiklund Jul 1999 A
5921986 Bonutti Jul 1999 A
5925064 Meyers Jul 1999 A
5928244 Tovey Jul 1999 A
5928267 Bonutti Jul 1999 A
5931838 Vito Aug 1999 A
5931869 Boucher Aug 1999 A
5940942 Fong Aug 1999 A
5941900 Bonutti Aug 1999 A
5945002 Bonutti Sep 1999 A
5947982 Duran Sep 1999 A
5948000 Larsen Sep 1999 A
5948001 Larsen Sep 1999 A
5948002 Bonutti Sep 1999 A
5951590 Goldfarb Sep 1999 A
5957953 Dipoto Sep 1999 A
5961499 Bonutti Oct 1999 A
5961521 Roger Oct 1999 A
5961554 Janson Oct 1999 A
5964765 Fenton Oct 1999 A
5964769 Wagner Oct 1999 A
5968046 Castleman Oct 1999 A
5968047 Reed Oct 1999 A
5980520 Vacaillie Nov 1999 A
5980559 Bonutti Nov 1999 A
5984929 Bashiri Nov 1999 A
5989282 Bonutti Nov 1999 A
5993458 Vaitekunas Nov 1999 A
5993477 Vaitekunas Nov 1999 A
6007567 Bonutti Dec 1999 A
6007580 Lehto Dec 1999 A
6010525 Bonutti Jan 2000 A
6010526 Sandstrom Jan 2000 A
6017321 Boone Jan 2000 A
6033429 Magovern Mar 2000 A
6033430 Bonutti Mar 2000 A
6045551 Bonutti Apr 2000 A
6050998 Fletcher Apr 2000 A
6056751 Fenton, Jr. May 2000 A
6056772 Bonutti May 2000 A
6056773 Bonutti May 2000 A
6059797 Mears May 2000 A
6059817 Bonutti May 2000 A
6059827 Fenton May 2000 A
6063095 Wang May 2000 A
6066151 Miyawaki May 2000 A
6066160 Colvin May 2000 A
6066166 Bischoff May 2000 A
6068637 Popov May 2000 A
6077277 Mollenauer Jun 2000 A
6077292 Bonutti Jun 2000 A
6080161 Eaves, III Jun 2000 A
6083522 Chu Jul 2000 A
6086593 Bonutti Jul 2000 A
6086608 Ek Jul 2000 A
6090072 Kratoska Jul 2000 A
6099531 Bonutti Aug 2000 A
6099537 Sugai Aug 2000 A
6099550 Yoon Aug 2000 A
6099552 Adams Aug 2000 A
6102850 Wang Aug 2000 A
6106545 Egan Aug 2000 A
6117160 Bonutti Sep 2000 A
6120536 Ding Sep 2000 A
6125574 Ganaja Oct 2000 A
6126677 Ganaja Oct 2000 A
6139320 Hahn Oct 2000 A
RE36974 Bonutti Nov 2000 E
6149669 Li Nov 2000 A
6152949 Bonutti Nov 2000 A
6155756 Mericle Dec 2000 A
6159224 Yoon Dec 2000 A
6159234 Bonutti Dec 2000 A
6171307 Orlich Jan 2001 B1
6174324 Egan Jan 2001 B1
6179840 Bowman Jan 2001 B1
6179850 Goradia Jan 2001 B1
6187008 Hamman Feb 2001 B1
6190400 Van De Moer Feb 2001 B1
6190401 Green Feb 2001 B1
6200322 Branch Mar 2001 B1
6214049 Gayer et al. Apr 2001 B1
6217591 Egan Apr 2001 B1
6224593 Ryan May 2001 B1
6224630 Bao May 2001 B1
6228086 Wahl May 2001 B1
6231592 Bonutti May 2001 B1
6238395 Bonutti May 2001 B1
6238396 Lombardo May 2001 B1
6258091 Sevrain Jul 2001 B1
6264675 Brotz Jul 2001 B1
6267761 Ryan Jul 2001 B1
6273717 Hahn Aug 2001 B1
6280474 Cassidy Aug 2001 B1
6286746 Egan Sep 2001 B1
6287325 Bonutti Sep 2001 B1
6293961 Schwartz Sep 2001 B2
6306159 Schwartz Oct 2001 B1
6309405 Bonutti Oct 2001 B1
6312448 Bonutti Nov 2001 B1
6338730 Bonutti Jan 2002 B1
6340365 Dittrich Jan 2002 B2
6348056 Bates Feb 2002 B1
6358271 Egan Mar 2002 B1
6364897 Bonutti Apr 2002 B1
6368325 McKinley Apr 2002 B1
6368343 Bonutti Apr 2002 B1
6371957 Amrein Apr 2002 B1
6409742 Fulton Jun 2002 B1
6409768 Tepic et al. Jun 2002 B1
6419704 Ferree Jul 2002 B1
6423088 Fenton Jul 2002 B1
6425919 Lambrecht Jul 2002 B1
6428562 Bonutti Aug 2002 B2
6432115 Mollenauer Aug 2002 B1
6447516 Bonutti Sep 2002 B1
6450985 Schoelling Sep 2002 B1
6461360 Adams Oct 2002 B1
6475230 Bonutti Nov 2002 B1
6488196 Fenton Dec 2002 B1
6500195 Bonutti Dec 2002 B2
6503259 Huxel Jan 2003 B2
6530933 Yeung Mar 2003 B1
6535764 Imran Mar 2003 B2
6544267 Cole Apr 2003 B1
6545390 Hahn Apr 2003 B1
6547792 Tsuji Apr 2003 B1
6551304 Whalen Apr 2003 B1
6554852 Oberlander Apr 2003 B1
6527774 Lieberman May 2003 B2
6558390 Cragg May 2003 B2
6568313 Fukui May 2003 B2
6569187 Bonutti May 2003 B1
6572635 Bonutti Jun 2003 B1
D477776 Pontaoe Jul 2003 S
6557426 Reinemann Jul 2003 B2
6585750 Bonutti Jul 2003 B2
6585764 Wright Jul 2003 B2
6592609 Bonutti Jul 2003 B1
6594517 Nevo Jul 2003 B1
6605090 Trieu Aug 2003 B1
6610080 Morgan Aug 2003 B2
6618910 Pontaoe Sep 2003 B1
6623486 Weaver Sep 2003 B1
6623487 Goshert Sep 2003 B1
6626944 Taylor Sep 2003 B1
6632245 Kim Oct 2003 B2
6635073 Bonutti Oct 2003 B2
6638279 Bonutti Oct 2003 B2
6641592 Sauer Nov 2003 B1
6645227 Fallin Nov 2003 B2
6652585 Lange Nov 2003 B2
6666877 Morgan Dec 2003 B2
6669705 Westhaver Dec 2003 B2
6679888 Green Jan 2004 B2
6685750 Plos Feb 2004 B1
6699240 Francischelli Mar 2004 B2
6702821 Bonutti Mar 2004 B2
6705179 Mohtasham Mar 2004 B1
6709436 Hover Mar 2004 B1
6709457 Otte Mar 2004 B1
6719765 Bonutti Apr 2004 B2
6719797 Ferree Apr 2004 B1
6722552 Fenton Apr 2004 B2
6733531 Trieu May 2004 B1
6764514 Li Jul 2004 B1
6770078 Bonutti Aug 2004 B2
6780198 Gregoire Aug 2004 B1
6786989 Torriani Sep 2004 B2
6796003 Marvel Sep 2004 B1
6818010 Eichhorn Nov 2004 B2
6823871 Schmieding Nov 2004 B2
6860885 Bonutti Mar 2005 B2
6878167 Ferree Apr 2005 B2
6890334 Fenton May 2005 B2
6899722 Bonutti May 2005 B2
6913666 Aeschlimann Jul 2005 B1
6916321 TenHuisen Jul 2005 B2
6921264 Mayer Jul 2005 B2
6923824 Morgan Aug 2005 B2
6932835 Bonutti Aug 2005 B2
6942684 Bonutti Sep 2005 B2
6944111 Nakamura Sep 2005 B2
6955540 Mayer Oct 2005 B2
6955683 Bonutti Oct 2005 B2
6958077 Suddaby Oct 2005 B2
6981983 Rosenblatt Jan 2006 B1
6997940 Bonutti Feb 2006 B2
7001411 Dean Feb 2006 B1
7004959 Bonutti Feb 2006 B2
7008226 Mayer Mar 2006 B2
7018380 Dole Mar 2006 B2
7033379 Jeterson Apr 2006 B2
7048755 Bonutti May 2006 B2
7066960 Dickman Jun 2006 B1
7087073 Bonutti Aug 2006 B2
7094251 Bonutti Aug 2006 B2
7104996 Bonutti Sep 2006 B2
7128761 Kuras et al. Oct 2006 B2
7128763 Blatt Oct 2006 B1
7147652 Bonutti Dec 2006 B2
7160405 Aeschlimann Jan 2007 B2
7179259 Gibbs Feb 2007 B1
7192448 Ferree Mar 2007 B2
7217279 Reese May 2007 B2
7217290 Bonutti May 2007 B2
7241297 Shaolian Jul 2007 B2
7250051 Francischelli Jul 2007 B2
7252685 Bindseil Aug 2007 B2
7273497 Ferree Sep 2007 B2
7329263 Bonutti Feb 2008 B2
7335205 Aeschlimann Feb 2008 B2
7429266 Bonutti Sep 2008 B2
7445634 Trieu Nov 2008 B2
7481825 Bonutti Jan 2009 B2
7481831 Bonutti Jan 2009 B2
7510895 Raterman Mar 2009 B2
7632272 Munro et al. Dec 2009 B2
7854750 Bonutti Dec 2010 B2
7879072 Bonutti Feb 2011 B2
7891691 Bearey Feb 2011 B2
7967820 Bonutti Jun 2011 B2
8128669 Bonutti Mar 2012 B2
8140982 Hamilton Mar 2012 B2
8147514 Bonutti Apr 2012 B2
8162977 Bonutti Apr 2012 B2
20010002440 Bonutti May 2001 A1
20010009250 Herman Jul 2001 A1
20010041916 Bonutti Nov 2001 A1
20020016593 Hearn Feb 2002 A1
20020016633 Lin Feb 2002 A1
20020019649 Sikora Feb 2002 A1
20020026244 Trieu Feb 2002 A1
20020029083 Zucherman Mar 2002 A1
20020029084 Paul Mar 2002 A1
20020045902 Bonutti Apr 2002 A1
20020062153 Paul May 2002 A1
20020082529 Suorsa Jun 2002 A1
20020099379 Adam Jul 2002 A1
20020103495 Dole Aug 2002 A1
20020120336 Santilli Aug 2002 A1
20020123750 Eisermann Sep 2002 A1
20020183762 Anderson Dec 2002 A1
20020188301 Dallara Dec 2002 A1
20030009224 Kuras Jan 2003 A1
20030039196 Nakamura Feb 2003 A1
20030040758 Wang Feb 2003 A1
20030065361 Dreyfuss Apr 2003 A1
20030105474 Bonutti Jun 2003 A1
20030158582 Bonutti Aug 2003 A1
20030118518 Hahn Sep 2003 A1
20030167072 Oberlander Sep 2003 A1
20030181800 Bonutti Sep 2003 A1
20030187506 Ross et al. Oct 2003 A1
20030195530 Thill Oct 2003 A1
20030195565 Bonutti Oct 2003 A1
20030204204 Bonutti Oct 2003 A1
20030216742 Wetzler Nov 2003 A1
20030225438 Bonutti Dec 2003 A1
20030229361 Jackson Dec 2003 A1
20040010287 Bonutti Jan 2004 A1
20040030341 Aeschlimann Feb 2004 A1
20040034357 Beane Feb 2004 A1
20040068320 Robie et al. Apr 2004 A1
20040097939 Bonutti May 2004 A1
20040098050 Foerster May 2004 A1
20040138703 Alleyne Jul 2004 A1
20040143334 Ferree Jul 2004 A1
20040167548 Bonutti Aug 2004 A1
20040220616 Bonutti Nov 2004 A1
20040225325 Bonutti Nov 2004 A1
20040225371 Roger Nov 2004 A1
20040230223 Bonutti Nov 2004 A1
20040236374 Bonutti Nov 2004 A1
20040243241 Istephanous et al. Dec 2004 A1
20050033366 Cole Feb 2005 A1
20050038514 Helm Feb 2005 A1
20050043796 Grant Feb 2005 A1
20050071012 Serhan Mar 2005 A1
20050085817 Ringeisen Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050096699 Wixey May 2005 A1
20050113928 Cragg May 2005 A1
20050126680 Aeschlimann Jun 2005 A1
20050143826 Zucherman Jun 2005 A1
20050240227 Bonutti Jun 2005 A1
20050149024 Ferrante Jul 2005 A1
20050149029 Bonutti Jul 2005 A1
20050177162 McLeod et al. Aug 2005 A1
20050203521 Bonutti Sep 2005 A1
20050216008 Zwirnmann et al. Sep 2005 A1
20050216059 Bonutti Sep 2005 A1
20050216087 Zucherman Sep 2005 A1
20050222620 Bonutti Oct 2005 A1
20050234019 Gall Oct 2005 A1
20050246021 Ringeisen Nov 2005 A1
20050261684 Shaolian Nov 2005 A1
20050267481 Carl Dec 2005 A1
20050267534 Bonutti Dec 2005 A1
20060009855 Goble Jan 2006 A1
20060015101 Warburton Jan 2006 A1
20060015108 Bonutti Jan 2006 A1
20060024357 Carpenter Feb 2006 A1
20060026244 Watson Feb 2006 A1
20060064095 Senn Mar 2006 A1
20060089646 Bonutti Apr 2006 A1
20060122600 Cole Jun 2006 A1
20060122704 Vresilovic Jun 2006 A1
20060142799 Bonutti Jun 2006 A1
20060167495 Bonutti Jul 2006 A1
20060200199 Bonutti Sep 2006 A1
20060212073 Bonutti Sep 2006 A1
20060217765 Bonutti Sep 2006 A1
20060229623 Bonutti Oct 2006 A1
20060229715 Istephanous et al. Oct 2006 A1
20060235470 Bonutti Oct 2006 A1
20060241695 Bonutti Oct 2006 A1
20060264950 Nelson Nov 2006 A1
20060265009 Bonutti Nov 2006 A1
20060265011 Bonutti Nov 2006 A1
20070032825 Bonutti Feb 2007 A1
20070088362 Bonutti Apr 2007 A1
20070118129 Fraser May 2007 A1
20070123878 Shaver May 2007 A1
20070198555 Friedman Aug 2007 A1
20070265561 Yeung Nov 2007 A1
20070270833 Bonutti Nov 2007 A1
20080021474 Bonutti Jan 2008 A1
20080039845 Bonutti Feb 2008 A1
20080039873 Bonutti Feb 2008 A1
20080046090 Paul Feb 2008 A1
20080097448 Binder Apr 2008 A1
20080108897 Bonutti May 2008 A1
20080108916 Bonutti May 2008 A1
20080114399 Bonutti May 2008 A1
20080132950 Lange Jun 2008 A1
20080140116 Bonutti Jun 2008 A1
20080140117 Bonutti Jun 2008 A1
20080195145 Bonutti Aug 2008 A1
20080269753 Cannestra Oct 2008 A1
20080269808 Gall Oct 2008 A1
20090024161 Bonutti Jan 2009 A1
20090093684 Schorer Apr 2009 A1
20090138014 Bonutti May 2009 A1
20090194969 Bearey Aug 2009 A1
20100211120 Bonutti Feb 2010 A1
20110060375 Bonutti Mar 2011 A1
20110295253 Bonutti Dec 2011 A1
20120165841 Bonutti Jun 2012 A1
20120191140 Bonutti Jul 2012 A1
20120197316 Mayer Aug 2012 A1
20120215233 Bonutti Aug 2012 A1
Foreign Referenced Citations (38)
Number Date Country
2641580 Aug 2007 CA
2680827 Sep 2008 CA
2698057 Mar 2009 CA
1903316 Oct 1964 DE
3517204 Nov 1986 DE
3722538 Jan 1989 DE
9002844 Jan 1991 DE
0784454 May 1996 EP
0773004 May 1997 EP
1614525 Jan 2006 EP
1988837 Aug 2007 EP
2134294 Dec 2009 EP
2717368 Mar 1994 FR
2696338 Apr 1994 FR
2728779 Jan 1995 FR
2736257 Jul 1995 FR
2750031 Jun 1996 FR
2771621 Nov 1997 FR
2785171 Oct 1998 FR
2093701 Sep 1982 GB
2306110 Apr 1997 GB
8140982 Jun 1996 JP
184396 Jul 1966 SU
199112779 Sep 1991 WO
199323094 Nov 1993 WO
1994008642 Apr 1994 WO
199516398 Jun 1995 WO
199531941 Nov 1995 WO
1996014802 Nov 1996 WO
1997012779 Apr 1997 WO
1997049347 Dec 1997 WO
1998011838 Mar 1998 WO
1998026720 Jun 1998 WO
2002053011 Jul 2002 WO
2007092869 Aug 2007 WO
2008116203 Sep 2008 WO
2009029908 Mar 2009 WO
2010099222 Feb 2010 WO
Non-Patent Literature Citations (72)
Entry
Enabling Local Drug Delivery-Implant Device Combination Therapies, Surmodics, Inc., (c) 2003.
Stent Based Delivery of Sirolimus Reduces Neointimal Formation in a Porcine Coronary Model, Takeshi Suzuki, American Heart Association, Inc. (c) 2001.
Why Tie a Knot When You Can Use Y-Knot48 , Innovasive Devices Inc., (c) 1998.
Ask Oxford projection, compact oxford english dicitionary: projection, Mar. 30, 2009.
Ask Oxford projection, compact oxford english dicitionary: slit, Mar. 30, 2009.
Non-Final Office Action dated Jul. 22, 2015 relating to U.S. Appl. No. 12/711,540, 9 pages.
Final Office Action dated Dec. 22, 2014 relating to U.S. Appl. No. 12/711,540, 5 pages.
Non-Final Office Action dated Mar. 11, 2014 relating to U.S. Appl. No. 12/711,540, 12 pages.
Final Office Action dated May 13, 2013 relating to U.S. Appl. No. 12/711,540, 6 pages.
Non-Final Office Action dated Jul. 12, 2012 relating to U.S. Appl. No. 12/711,540, 5 pages.
510k, Modified Mitek 3.5mm Absorbable Suture Anchor System, Jun. 9, 1997, K970896.
510K, Summary for Arthrex Inc.'s Bio-Interference Screw, Sep. 9, 1997, K971358.
510k, Surgicraft Bone Tie, Sep. 25, 1998, K982719.
Karlsson et al, Repair of Bankart lesions with a suture anchor in recurrent dislocation of the shoulder, Scand. j. of Med & Science in Sports, 1995, 5:170-174.
Madjar et al, Minimally Invasive Pervaginam Procedures, for the Treatment of Female Stress Incontinence . . . , Artificial Organs, 22 (10) 879-885, 1998.
Nowak et al, Comparative Study of Fixation Techniques in the Open Bankart Operation Using Either a Cannulated Screw or Suture-Anchors, Acta Orthopcedica Belgica, vol. 64—Feb. 1998.
Packer et al, Repair of Acute Scapho-Lunate Dissociation Facilitated by the “Tag”* Suture Anchor, Journal of Hand Surgery (British and European Volume, 1994) 19B: 5: 563-564.
Richmond, Modificatio of the Bankart reconstruction with a suture anchor, Am J Sports Med, vol. 19, No. 4, p. 343-346, 1991.
Shea et al, Technical Note: Arthroscopic Rotator Cuff Repair Using a Transhumeral Approach to Fixation, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 14, No. 1 (Jan.-Feb. 1998): pp. 118-122.
Tfix, Acufex just tied the knot., Am. J. Sports Med., vol. 22, No. 3, May-Jun. 1994.
Wong et al, Case Report: Proper Insertion Angle is Essential to Prevent Intra-Articular Protrusion of a Knotless Suture Anchor in Shoulder Rotator Cuff Repair, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 26, No. 2 (Feb. 2010),: pp. 286-290.
Cobb et al, Late Correction of Malunited Intercondylar Humeral Fractures Intra-Articular Osteotomy and Tricortical Bone Grafting, J BoneJointSurg [Br] 1994; 76-B:622-6.
Fellinger, et al, Radial avulsion of the triangular fibrocartilage complex in acute wrist trauma: a new technique for arthroscopic repair, Jun. 1997, Arthroscopy vol. 13 No. 3 p. 370-4.
Hecker et al , Pull-out strength of suture anchors for rotator cuff and Bankart lesion repairs, Nov.-Dec. 1993 , The American Journal of Sports Medicine, vol. 21 No. 6 p. 874-9.
Hernigou et al , Proximal Tibial Osteotomy for Osteoarthritis with Varus Deformity a Ten to Thirteen-Year Follow-Up Study, J Bone Joint Surg, vol. 69-A, No. 3. Mar. 1987, p. 332-354.
Ibarra et al, Glenoid Replacement in Total Shoulder Arthroplasty, The Orthopedic Clinics of Northamerica: Total Shoulder Arthroplasty, vol. 29 No. 3, Jul. 1998 p. 403-413.
Mosca et al, Calcaneal Lengthening for Valgus Deformity of the Hindfoot: Results in Children Who Had Severe, Symptomatic Flatfoot and Skewfoot, J Bone Joint Surg,, 1195—p. 499-512.
Murphycet al , Radial Opening Wedge Osteotomy in Madelung's Deformity, J. Hand Surg, vol. 21 A No. 6 Nov. 1996, p. 1035-44.
Biomet, Stanmore Modular Hip, J. Bone Joint Surg., vol. 76-B : No. Two, Mar. 1994.
Petition for Inter Partes Review of U.S. Pat. No. 5,980,559, IPR 2013-00603, Filing Date Sep. 24, 2013.
Declaration of David Kaplan, Ph.D. Regarding U.S. Pat. No. 5,980,559, IPR 2013-00603, Sep. 24, 2013.
Petition for Inter Partes Review of U.S. Pat. No. 7,087,073, IPR 2013-00604, Filing Date Sep. 24, 2013.
Declaration of Wayne J. Sebastianelli, MD Regarding U.S. Pat. No. 7,087,073, Sep. 24, 2013, IPR 2013-00604.
Petition for Inter Partes Review of U.S. Pat. No. 6,500,195, IPR 2013-00624, Filing Date Oct. 2, 2013.
Declaration of Dr. Philip Hardy in Support of Petition for Inter Partes Review of U.S. Pat. No. 6,500,195, IPR 2013-00624, Sep. 25, 2013.
Petition for Inter Partes Review of U.S. Pat. No. 5,527,343, IPR 2013-00628, Filing Date Sep. 26, 2013, Sep. 25, 2013.
Declaration of Dr. Philip Hardy in Support of Petition for Inter Partes Review of U.S. Pat. No. 5,527,343, IPR 2013-00628, Sep. 25, 2013.
Corrected Petition for Inter Partes Review of U.S. Pat. No. 5,921,986, IPR 2013-00631, Filing Date Sep. 27, 2013.
Expert Declaration of Steve E. Jordan, MD, For Inter Partes Review of U.S. Pat. No. 5,921,986, IPR 2013-00631, Sep. 24, 2013.
Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,147,514, IPR 2013-00632, Filing Date Sep. 27, 2013.
Declaration of Steve Jordan for U.S. Pat. No. 8,147,514, from IPR 2013-00632, dated Sep. 23, 2013 (exhibit 1009).
Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,147,514, IPR 2013-00633, Filing Date Sep. 27, 2013.
Declaration of Steve Jordan for U.S. Pat. No. 8,147,514, from IPR 2013-00633, dated Sep. 23, 2013 (exhibit 1006).
Flory, Principles of Polymer Chemistry, 1953, selected pages (cited in IPR 2013-00603, exhibit 1012).
Grizzi, Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence, Biomaterials, 1995, vol. 16, No. 4, p. 305-11 (IPR 2013-00603, exhibit 1006).
Gopferich, Mechanisms of polymer degradation and erosion, Biomaterials, 1996, vol. 17, No. 2, p. 103-114 (cited in IPR 2013-00603, exhibit 1013).
Gao et el, Swelling of Hydroxypropyl Methylcellulose Matrix Tablets . . . , J. of Pharmaceutical Sciences, vol. 85, No. 7, Jul. 1996, p. 732-740.
Linvatec, Impact Suture Anchor brochure, 2004 (cited in IPR 2013-00628, exhibit 1010).
Seitz et al, Repair of the Tibiofibular Syndesmosis with a Flexible Implant, J. of Orthopaedic Trauma, vol. 5, No. 1, p. 78-82, 1991 (cited in IPR 2013-00631, exhibit 1007) (cited in 2013-00632).
Translation of FR2696338 with translator's certificate dated Sep. 17, 2013 (cited in IPR 2013-00631, 2013-00632).
Translation of DE9002844.9 with translator's certificate dated Sep. 26, 2013 (cited in IPR 2013-00631, 2013-00632).
Declaration of Steve Jordan for U.S. Pat. No. 5,921,986, from IPR 2013-00632, dated Sep. 24, 2013 (exhibit 1010).
Declaration of Steve Jordan for U.S. Pat. No. 5,921,986, from IPR 2013-00633, dated Sep. 24, 2013 (exhibit 1007).
Declaration of Dr. Steve E. Jordan for U.S. Pat. No. 8,147,514, from IPR 2013-00631, dated Sep. 23, 2013.
The Search for the Holy Grail: A Centrury of Anterior Cruciate Ligament Reconstruction, R. John Naranja, American Journal of Orthopedics, Nov. 1997.
Femoral Bone Plug Recession in Endoscope Anterior Cruciate Ligament Reconstruction, David E. Taylor, Arthroscopy fhe Journal of Arthroscopic and Related Surgery, Aug. 1996.
Meniscus Replacement with Bone Anchors: A Surgical Technique, Arthroscopy: The Journal of Arcioscopic and Related Surgery, 1994.
Problem Solving Report Question No. 1014984.066, Ultrasonic Welding, (c) 1999.
Dukane Guide to Ultrasound Plastic Assembly, Ultrasonic Division Publication, (c) 1995.
Branson, Polymers: Characteristics and Compatibility for Ultrasonic Assembly, Applied Technologies Group, Publication unknown.
Arthrex, Protect your graft, Am J Sports Med, vol. 22, No. 4, Jul.-Aug. 1994.
Barrett et al., T-Fix endoscopic meniscal repair technique and approach to different types of tears, Apr. 95, Arthroscopy 2 vol 11 No 2 p. 245-51.
Cope, Suture Anchor for Visceral Drainage, AJR, vol. 148 p. 160-162, Jan. 1986.
Gabriel, Arthroscopic Fixation Devices, Wiley Enc. of Biomed Eng., 2006.
Innovasive, We've got you covered, Am J Sports Med, vol. 26, No. 1, Jan.-Feb. 1998.
510k—TranSet Fracture Fixation System, Feb. 24, 2004, k033717.
510k—Linvatec Biomaterials modification of Duet and impact Suture Anchor, Nov. 19, 2004, k042966.
510K, arthrex pushlock, Jun. 29, 2005, K051219.
510K, mitek micro anchor, Nov. 6, 1996, K962511.
510K, Multitak Suture System, Jan. 10, 1997, K964324.
Non-Final Office action for U.S. Appl. No. 15/436,168, dated Jun. 4, 2018, 12 pages.
Textured Surface Technology, Branson Technolog, Branson Ultrasonics Corp., (c) 1992.
Related Publications (1)
Number Date Country
20160346025 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
61155133 Feb 2009 US
Continuations (1)
Number Date Country
Parent 12711540 Feb 2010 US
Child 15224823 US
Continuation in Parts (4)
Number Date Country
Parent 12202210 Aug 2008 US
Child 12711540 US
Parent 11689670 Mar 2007 US
Child 12202210 US
Parent 11671556 Feb 2007 US
Child 11689670 US
Parent 11416618 May 2006 US
Child 11671556 US