Methods and system of pooling secondary storage devices

Information

  • Patent Grant
  • 10191675
  • Patent Number
    10,191,675
  • Date Filed
    Wednesday, November 16, 2016
    8 years ago
  • Date Issued
    Tuesday, January 29, 2019
    5 years ago
Abstract
A system and method are provided for pooling storage devices in a virtual library for performing a storage operation. A storage management device determines a storage characteristic of a plurality of storage devices with respect to performing a storage operation. Based on a storage characteristic relating to performing the storage operation, the storage management device associates at least two storage devices in a virtual library. The storage management device may continuously monitor the virtual library and detect a change in storage characteristics of the storage devices. When changes in storage characteristics are detected, the storage management device may change associations of the storage device in the virtual library.
Description
PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference into this application under 37 CFR 1.57.


OTHER RELATED APPLICATIONS

This application is related to the following pending applications, each of which is hereby incorporated herein by reference in its entirety:


Application Ser. No. 09/610,738, titled Modular Backup And Retrieval System Used In Conjunction With A Storage Area Network, filed Jul. 6, 2000, now U.S. Pat. No. 7,035,880, issued Apr. 25, 2006;


Application Ser. No. 10/658,095, titled Dynamic Storage Device Pooling In A Computer System, filed Sep. 9, 2003, now U.S. Pat. No. 7,130,970, issued Oct. 31, 2006;


Application Ser. No. 10/819,102, titled Method And System For Controlling A Robotic Arm In A Storage Device, filed Apr. 5, 2004, and published as U.S. Publication No. 2005/0033913 A1 on Feb. 10, 2005;


Application Ser. No. 10/818,749, titled System And Method For Dynamically Performing Storage Operations In A Computer Network, filed Apr. 5, 2004, now U.S. Pat. No. 7,246,207, issued Jul. 17, 2007;


Application Ser. No. 10/877,831, titled Hierarchical System And Method For Performing Storage Operations In A Computer Network, filed Jun. 25, 2004, now U.S. Pat. No. 7,454,569, issued Nov. 18, 2008; Application Ser. No. 60/567,178, titled Hierarchical System And Method For Performing Storage Operations In A Computer Network, filed Apr. 30, 2004;


Application Ser. No. 11/120,619, titled Hierarchical Systems And Methods For Providing A Unified View Of Storage Information, filed May 2, 2005, now U.S. Pat. No. 7,343,453, issued Mar. 11, 2008;


Application Ser. No. 11/269,520, titled System And Method For Performing Multistream Storage Operations, filed Nov. 7, 2005, now U.S. Pat. No. 7,975,061, issued Jul. 5, 2011;


Application Ser. No. 11/269,512, titled System And Method To Support Single Instance Storage Operations, filed Nov. 7, 2005 and published as U.S. Publication No. 2006/0224846 A1 on Oct. 5, 2006;


Application Ser. No. 11/269,521, titled Method And System For Selectively Deleting Stored Data, filed Nov. 7, 2005, now U.S. Pat. No. 7,765,369, issued Jul. 27, 2010;


Application Ser. No. 11/269,519, titled Method And System For Grouping Storage System Components, filed Nov. 7, 2005, now U.S. Pat. No. 7,500,053, issued Mar. 3, 2009.


Application Ser. No. 11/269,515, titled Systems And Methods For Recovering Electronic Information From A Storage Medium, filed Nov. 7, 2005, now U.S. Pat. No. 7,472,238, issued Dec. 30, 2008; and


Application Ser. No. 11/269,513, titled Method And System For Monitoring A Storage Network, filed Nov. 7, 2005.


COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosures, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.


BACKGROUND OF THE INVENTION
Field of the Invention

The invention disclosed herein relates generally to data storage systems in computer networks and, more particularly, to improvements to storage management systems that allocate use of storage devices for performing storage operations.


There are many different computing architectures for storing electronic data. Individual computers typically store electronic data in volatile storage devices such as Random Access Memory (RAM) and one or more nonvolatile storage devices such as hard drives, tape drives, or optical disks, that form a part of or are directly connectable to the individual computer. In a network of computers such as a Local Area Network (LAN) or a Wide Area Network (WAN), storage of electronic data is typically accomplished via servers or storage devices accessible via the network. A storage device may be, for example, any device capable of storing and retrieving electronic data in a computer network, for example, a storage device in a computing device, such as a general-purpose computing device, a server, a legacy server, production server, a storage device used to perform a local storage operation, a storage library, tape drives, optical libraries, Redundant Arrays of Inexpensive Disks (RAID), CD-ROM jukeboxes, or other storage devices. Such storage devices may be used to perform a storage operation using removable media, such as tapes, disks, or other media. Removable media is widely utilized in performing storage operations in storage devices. In general, only one media item may be placed in a storage device storage drive for use in a storage operation. If a storage device has only one storage drive, any storage operations performed in the storage drive may cause the storage device to be unavailable for other uses. In addition, if the storage device has only one storage drive, and more than one media item may be required to perform a storage operation, a second media item may be used to replace a first media item in the storage drive. In this scenario, without a robotic arm or a person to manually swap tapes between drives, the storage operation could not be performed once the first media item has been utilized. This may cause inefficiencies in running common storage operations.


SUMMARY OF THE INVENTION

The present invention disclosed herein provides a method and system for creating a virtual library that may be used to perform storage operations.


In one embodiment of the invention, a method is provided for creating a virtual library of at least two storage devices by selecting a first storage device and a second storage device and associating the first and second storage devices in a virtual library. The storage devices may be storage devices such as a tape drive, optical drive or a hard drive. The first and second storage devices may be selected in accordance with a storage characteristic, such as storage device availability, network pathway between system components, media capacity, user preference, storage policy, or other characteristic as further described herein. The first and second storage devices satisfying the storage characteristic may be detected by a media management component, which may also determine the characteristic of the storage device and logically associate the first and second storage device in the virtual library. The media management component may include an index which can be used to store data indicating a logical association of the virtual library. The virtual library may be maintained by detecting a third storage device that satisfies the storage characteristic and substituting the third storage device for the first (or second) storage device by disassociating the first (or second) storage device with the virtual library and associating the third storage device with the virtual library.


In another embodiment, a method is provided for performing a storage operation using a virtual library of at least two storage devices by receiving a request to perform a storage operation, associating a first and second storage device in a virtual library and performing the storage operation to the virtual library. In one embodiment, the first and second storage device are determined to have a storage characteristic appropriate for the storage operation.


In another embodiment, a method for updating a virtual library of at least two storage devices may be provided by receiving a first value of a storage characteristic of a first storage device in the virtual library and detecting a change in the storage characteristic of the first storage device. A third storage device may be detected that has a storage characteristic similar to the first value and the third storage device may be substituted with the first storage device in the virtual library by disassociating the first storage device with the virtual library and associating the third storage device with the virtual library. Data indicating the association of a storage device with the virtual library may be stored in an index.


In another embodiment, a method for managing a plurality of storage devices is provided by receiving a request to perform a storage operation and a storage characteristic (related to performing the storage operation) of a storage device. A media management component may detect at least two storage devices, among a plurality of storage devices, that include the storage characteristic. The at least two storage devices are associated with a virtual library for performing storage operations. Data indicating the association of the storage devices with the virtual library may be stored in an index.


In another embodiment, a method for pooling at least two storage devices is provided in which at least two storage devices may be identified that have a common storage characteristic. The common storage characteristic may be related to performing a storage operation. The at least two storage devices may be associated with a virtual library. Data indicating the association of the storage devices with the virtual library may be stored in an index.


In another embodiment, a method for storing data using a virtual library is provided in which a request to perform a data storage operation is received and a virtual library is selected which has at least two associated storage devices that are capable of performing the data storage operation. The data storage operation is performed using the virtual library.


In another embodiment, a virtual library for performing a storage operation is provided which includes at least two storage devices. The at least two storage devices have a storage characteristic for performing a storage operation. A media management component is communicatively coupled to the at least two storage devices, and also communicatively coupled to a storage manager and an index. The media management component is programmed to coordinate performing the storage operation in the virtual library. The index includes data that indicates an association of the at least two devices with the virtual library.


In another embodiment, a method for maintaining an index for a virtual library is provided in which identifiers for two or more storage devices capable of performing a data storage operation and satisfying at least one common storage characteristic are stored in the index. Association data establishing a logical relationship of the two or more storage devices in the virtual library may also be stored in the index. The association data may be modified in response to a change in the common storage characteristic of a given one of the storage devices by disassociating the given one storage device from the virtual library and associating a third storage device satisfying the common storage characteristic with the virtual library.


In another embodiment, a system for performing a storage operation using at least two storage devices is provided in which one or more storage devices in a first computing device and one or more storage devices in a second computing device are associated with a virtual library. Each of the first and second computing devices comprises a processor which may be used to process a storage operation. The system also includes an index for storing data indicating an association of the first and second computing devices with a virtual library.


In another embodiment, a method for performing a storage operation in a computer network is provided in which a storage manager or other system component may identify a request to perform a storage operation, for example, based on a storage policy. The storage manager (or other system component, such as a virtual library controller) may select, in response to a selection criteria associated with performing the storage operation, a first computing device having a central processing unit and one or more removable media storage devices. The selection criteria may be related to one or more storage characteristics relating to performing the storage operation. The storage manager (or other system component, such as a virtual library controller) may select, in response to the selection criteria associated with performing the storage operation, a second computing device having a central processing unit and one or more removable media storage devices. One or more index entries may be created which associate the one or more storage devices of the first computing device and the one or more storage devices of the second computing device with a single logical network pathway to a network storage device in the computer network. The storage operation may be performed using the single logical network pathway.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated in the figures of the accompanying drawings which are meant to be exemplary and not limiting, in which like references are intended to refer to like or corresponding parts, and in which:



FIG. 1 is a block diagram showing a high-level view of the network architecture and components of one possible embodiment of the invention;



FIG. 1A is a block diagram showing an aspect of the network architecture and components of one possible embodiment of the invention;



FIG. 2 is a table depicting virtual libraries in one embodiment of the invention;



FIG. 3 is a user interface depicting available virtual libraries in one embodiment of the invention;



FIG. 4 is a flow diagram presenting a method of creating a virtual library in one embodiment of the invention;



FIG. 5 is a flow diagram of a method for performing a storage operation in one embodiment of the invention;



FIG. 6 is a flow diagram presenting a method for monitoring a virtual library in one embodiment of the present invention; and



FIG. 7 is a flow diagram presenting a method for performing a storage operation in another embodiment of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention relates to creating a virtual library of storage devices for performing a storage operation. A virtual library may be a logical collection of one or more storage devices. The storage devices in a virtual library may be similar or heterogeneous, and may be logically grouped together to appear, for example, from the perspective of a user or system component, to be a single device. For example, two storage devices, such as a server or other first computing device having a tape drive and a stand-alone tape library connected to or otherwise controlled by a second computing device may be configured in a virtual library and logically associated in an index.


Another virtual library may include two separate storage devices having robotic arms, and data indicating the logical association of the two storage devices may be stored in an index. The index may indicate that the storage devices in a virtual library (e.g.—the tape drive in the first storage device and the one or more drives of the tape library of the second computing device) are represented by and accessed via a single common logical network pathway, for example g:/virtual library 1. Thus, from the perspective of other components in a storage management system, virtual library components have one logical network pathway and appear to be a single device. Such other storage management system components may perform storage operations using the virtual library via the single logical network pathway.


The configuration of and devices used in a virtual library may vary. For example, a virtual library may include one or more storage devices in one computing device, such as a hard drive, and one or more storage devices in another computing device, such as a server. By combining more than one storage device in a virtual library, drives in each of the storage devices may be used to perform storage operations, for example, by tape spanning across more than one tape drive, streaming data to more than one drive, etc.


Embodiments of the invention are now described with reference to the drawings. An embodiment of the system of the present invention is shown in FIG. 1. As shown, a system 35 may include client 20, a data store 30, a data agent 40, storage manager component 50, storage manager component index 52, a jobs agent 55, media management components 60 and 70, media management component indexes 62 and 72, and virtual library controllers 75 and 85. Each component may be communicatively coupled to storage devices 120, 130, 140, 150 and 160 via media management components 60 and 70. Although FIG. 1 depicts a system having two media management components 60 and 70, the invention may include one or a plurality of media management components providing communication between system components and storage devices.


Client 20 may include at least one attached data store 30. Data store 30 may be any memory device or local data storage device known in the art, such as a hard drive, CD-ROM drive, tape drive, RAM, or other types of magnetic, optical, digital and/or analog local storage. Client 20 includes at least one data agent 40, which may be a software module that is generally responsible for performing storage operations for data of client 20, e.g., on data stored in data store 30 or other memory location. Storage operations include, but are not limited to, creation, storage, retrieval, migration, deletion, and tracking of electronic data including primary or production volume data, as well as secondary volume data, primary copies, secondary copies, auxiliary copies, snapshot copies, backup copies, incremental copies, differential copies, synthetic copies, HSM copies, archive copies, Information Lifecycle Management (“ILM”) copies, and other types of copies and versions of electronic data. System 35 includes at least one, and typically a plurality of data agents 40 for each client. Each data agent 40 is intended to perform a storage operation relating to data associated with a different application. For example, client 20 may have different individual data agents 40 designed to handle MICROSOFT EXCHANGE data, LOTUS NOTES data, MICROSOFT WINDOWS file system data, MICROSOFT ACTIVE DIRECTORY OBJECTS data, and other types of data known in the art.


The storage manager 50 is generally a software module or application that coordinates and controls system components, for example, the storage manager 50 manages and controls storage operations performed by the system 35. The storage manager 50 may communicate with all components of the system 35 including client 20, data agent 40, media management components 60 and 70, and storage devices 120, 130, 140, 150 and 160 to initiate and manage system storage operations. The storage manager 50 may have an index 52, further described herein, for storing data related to storage operations.


The media management components 60 and 70 are generally a software module that conducts data, as directed by the storage manager 50, between the client 20 and storage devices 120, 130, 140, 150 and 160. These storage devices 120, 130, 140, 150 and 160 can be storage devices such as a tape library, a hard drive, a magnetic media storage device, an optical media storage device, or other storage device. The media management components 60 and 70 are communicatively coupled with and control the storage devices 120, 130, 140, 150 and 160. For example, the media management components 60 and 70 might instruct a storage device 120, 130, 140, 150 and 160 to perform a storage operation. The media management components 60 and 70 generally communicate with the storage device 120, 130, 140, 150 and 160 directly via a local bus such as a SCSI adaptor, or via a network pathway such as a LAN, WAN, etc.


Each media management component 60, 70 maintains an index cache 62, 72 which stores index data that the system 35 generates during storage operations as further described herein. For example, storage operations for MICROSOFT EXCHANGE data generate index data. Media management component index data includes, for example, logical network pathways of virtual libraries, information associating one or more devices of a virtual library, information regarding the location of the stored data on a particular media, the location of the particular media, such as in a storage device in a current or previous configuration of a virtual library, information regarding the content of the data stored such as, file names, sizes, creation dates, formats, application types, and other file-related criteria, information regarding one or more clients associated with the data stored, information regarding one or more storage policies, storage criteria, or storage preferences associated with the data stored, compression information, retention-related information, encryption-related information, stream-related information, and other types of information. Thus, a media management component index 62, 72 (or storage manager index 52) may be consulted in connection with performing a storage operation on a particular data item to identify the media to which the data is written, the storage device in which the media is located, a current or previous configuration of a virtual library that includes the storage device, or other information relating to performing the storage operation. Index data thus provides the system 35 with an efficient mechanism for performing storage operations including locating user files for recovery operations and for managing and tracking stored data. In some embodiments, a storage manager index 52 may contain the same information stored in a media management component index 62, 72, or the media management component index 62, 72 information may instead be stored in a storage manager index 52.


The system 35 generally maintains two copies of the media management component index data regarding particular stored data. A first copy is generally stored with the data copied to a storage device 120, 130, 140, 150, or 160. Thus, a tape may contain the stored data as well as index information related to the stored data. In the event of a system restore, the index data stored with the stored data can be used to rebuild a media management component index 62, 72 or other index useful in performing storage operations. In addition, the media management component 60, 70 that controls the storage operation also generally writes an additional copy of the index data to its index cache 62, 72. The data in the media management component index cache 62, 72 is generally stored on faster media, such as magnetic media, and is thus readily available to the system 35 for use in storage operations and other activities without having to be retrieved from a storage device 120, 130, 140, 150, or 160.


The storage manager 50 also maintains an index cache 52, database, or other data structure. Storage manager index data may be used to indicate, track, and associate logical relationships and associations between components of the system 35, such as virtual libraries and virtual library components, user preferences, management tasks, and other useful data. Some of this information may be stored in a media management component index 62 or other local data store according to some embodiments. For example, the storage manager 50 might use its index cache 52 to track storage devices 120, 130, 140, 150, or 160, logical associations between media management components 60, 70 and the storage devices 120, 130, 140, 150, or 160, and logical associations of virtual libraries 100, 110. In another example, index data may be used to track client data including client archive files, storage policies and sub-client with one or more pointers to an associated virtual library. Some of the index data relating to the logical association of the virtual libraries 100, 110 may be information relating to the virtual library and the individual storage devices associated with the virtual library, such as the logical network pathways or addresses of the storage devices, current, previous and future virtual library configurations, storage characteristics of storage devices in a virtual library, storage operations performed in a previous or current configuration of a virtual library, or other information. The storage manager 50 may also use its index cache 52 to track the status of storage operations performed (and to be performed) using a virtual library, storage patterns associated with the system components such as media use, storage growth, network bandwidth, service level agreement (“SLA”) compliance levels, data protection levels, storage policy information, storage criteria associated with user preferences, retention criteria, storage operation preferences, and other storage-related information.


Index caches 52 and 62, 72 typically reside on its corresponding storage component's hard disk or other fixed storage device. For example, the jobs agent 55 of a storage manager component 50 may retrieve storage manager index 52 data regarding a storage policy and storage operation to be performed or scheduled for a particular client 20. The jobs agent 55, either directly or via another system module, communicates with the data agent 40 at the client 20 regarding the storage operation. Jobs agent 55 may also retrieve from the index cache 52 a storage policy associated with the client 20 and uses information from the storage policy to communicate to the data agent 40 one or more media management components 60, 70 associated with performing storage operations for that particular client 20 as well as other information regarding the storage operation to be performed such as retention criteria, encryption criteria, streaming criteria, etc. The data agent 40 then packages or otherwise manipulates the client data stored in the client data store 52 in accordance with the storage policy information and/or according to a user preference, and communicates this client data to the appropriate media management component(s) 60, 70 for processing. The media management component(s) 60, 70 store the data according to storage preferences associated with the storage policy including storing the generated index data with the stored data, as well as storing a copy of the generated index data in the media management component index cache 62, 72.


A storage policy is generally a data structure or other information which includes a set of preferences and other storage criteria for performing a storage operation. The preferences and storage criteria may include, but are not limited to: a storage location, relationships between system components, network pathway to utilize, retention policies, data characteristics, compression or encryption requirements, preferred system components to utilize in a storage operation, and other criteria relating to a storage operation. A storage policy may be stored to a storage manager index, to archive media as metadata for use in restore operations or other storage operations, or to other locations or components of the system.


In general, system 35 may include many configurations of virtual libraries, e.g., 100 and 110, each of which may be configured, managed and controlled by a media management components 60, 70. Libraries 100 and 110 depict storage devices arranged in virtual libraries. For example, library 100 includes each of the storage devices SD1-SDn depicted in FIG. 1, namely 120, 130, 140, 150 and 160. Library 110 includes storage devices SD2, SD3 and SDn, or 130, 140 and 160, respectively. Each virtual library may be a logical grouping of physical storage devices in a network. A virtual library can also include system components other than a storage device, e.g., client, a server, a media management component, other storage device, or other system component. A virtual library generally comprises a one or more storage devices that are logically associated, pooled, or otherwise grouped in a library. As explained herein, storage devices included in the virtual library may be any type of storage device, such as a storage device in a computing device, such as a general-purpose computing device, a server, a legacy server, production server, a storage device used to perform a local storage operation, a storage library, tape drives, optical libraries, Redundant Arrays of Inexpensive Disks (RAID), CD-ROM jukeboxes, or other storage device. The storage devices grouped in the virtual library are logically associated in an index. For example, the storage devices in the virtual library may be assigned one logical network pathway, which is stored in the index. Thus, a system component that consults the index for a storage library may obtain a single logical network pathway for a virtual library which may comprise one or more individual storage devices. The virtual library appears from the perspective of the system, a user, or administrator to be a single library, which has, for example, multiple drives. In reality, the virtual library may include several individual storage devices, typically each having a different logical network pathway, and each of which may have only one storage drive. In some embodiments, a virtual library controller 75 directs scheduling, actual (rather than virtual) data path selection, and transfer of electronic information between clients 20 and components of a virtual library 120, 130, 140, 150 and 160. For example, while a virtual library 120, 130, 140, 150 and 160 may logically appear as a single drive or storage device to the system, a virtual library controller 75 may select actual data paths for transfer of electronic information to and from the various individual storage device components of the virtual library 120, 130, 140, 150 and 160.


In one example of a virtual library, a screen or other user interface may present a list of system components including a logical entry for a virtual library that includes drives A, B and C, each of which drive may be located in a separate storage device, associated together in a library. In addition, each of drives A, B and C can also be presented individually. Configuring the storage devices 120, 130, 140, 150 and 160 in a virtual library provides, among other advantages, the ability to perform storage operations which may exceed the capacity of one storage device by sharing the storage operation across more than one storage device, e.g., data can be streamed across several storage devices 120, 130, 140, 150 and 160.


Storage manager 50 or media management components 60, 70 may configure, manage and control the virtual libraries 100, 110. Both of the storage manager 50 and media management components 60, 70 may configure, manage and control the virtual libraries 100, 110. Each of the storage manager 50 and media management components 60, 70 may configure the virtual libraries 100, 110 as a single logical entity by associating the drives of the virtual library by providing a single logical network pathway for the virtual library. Each of the associated drives in the virtual library may be accessed via the single logical network pathway. Association of drives or storage devices or other components in a virtual library may be achieved by creating a table, such as in index 52, 62 and 72, which includes a virtual library identifier and information about the storage devices or components associated in the virtual library, such as a single logical network address.


Referring to FIG. 1A, a virtual library 170, 172 may also be provided in other storage management system architectures, for example, without a storage manager or media management component. As shown, a virtual library controller 75, in communication with a client, may manage client 20 storage operations to a virtual library 170, 172. The virtual library controller 75 may be a software module that may be a component of a client 20, or communicatively coupled to and separate from the client 20. The virtual library controller 75 generally communicates with a virtual library agent 126, 128, 136 and 138 to provide storage operation instructions. For example, the virtual library controller 75 may direct, manage and configure one or more virtual libraries 170, 172 by communicating with a virtual library agent 126, 128, 136, 138 for a storage device 120, 130 or computing device 125, 135. Each storage device 120, 130 or computer device 125, 135 may have its own virtual library agent 126, 128, 136, 138 for logically associating components in the virtual library and performing storage operations in the virtual library. Information relating to the virtual libraries 170, 172, such as identifiers for each of the components of a virtual library, such as SD1120, CD 1125, and SD2130 (and respective drives) of virtual library 170 and SD2130 and CD2135 of virtual library 172, and a logical network pathway for the virtual library 170, 172 may be stored in VLC index 77.


One example of a table that may be stored in a database or in an index that includes virtual library information is depicted in FIG. 2. As shown in table 175, Virtual Library 1180 includes storage devices 120, 130, 140, 150 and 160 and Virtual Library n 190 includes storage devices 130, 140 and 160. Virtual Library 1180 is shown having a logical network pathway at F:/Virtual Lib 1. Thus, a system component communicating with or performing a storage operation to Virtual Library 1180 may use an F drive pathway. Virtual Library n 190 is shown having a logical network pathway at G:/Virtual Lib n, and correspondingly, may be accessed via a G drive pathway. As shown, the individual components included in Virtual Libraries 180, 190 may be located at other drives as listed in areas 182 and 192 of the table 175. Areas 182, 192 include index entries for logical network pathways of components of a virtual library. The logical network pathway information for a virtual library may be obtained by a virtual library controller, storage manager, or other system component and translated into the actual network pathways to each of the storage devices included in the virtual library. For example, Virtual Library 1180 accessed via logical network pathway F:/Virtual Lib 1 may be translated into network pathways e:/ for storage device 120, h:/ for storage device 130, etc. Table 175 can be updated as necessary to provide information about virtual libraries such as current and previous configurations. One skilled in the art may recognize other ways to map index entries for virtual library configurations and logical network pathways, which may also be used.


Referring again to FIG. 1, virtual library controller 75 or 85 of the media management components 60, 70 may communicate directly with the storage devices 120, 130, 140, 150 or 160 in a virtual library 100, 110. Virtual library controller 75, 85 may be a software module or component of the media management component 60, 70 that communicates with virtual library agent 128, 138, 148, 158, or 168, for example, providing instructions relating to a storage operation. Virtual library agent 128, 138, 148, 158, or 168 may be a software module or component associated with a storage device 120, 130, 140, 150 or 160, that may be a separate component, or part of the storage device 120, 130, 140, 150 or 160, and that works together with virtual library controller 75, 85 to command and control a virtual library 100, 110 to facilitate storage operations. For example, when a media management component 60, 70 communicates with a virtual library 100, 110, the media management components 60, 70 may communicate its instructions to a virtual library agent 128, 138, 148, 158, or 168 associated with storage devices 120, 130, 140, 150 or 160 of virtual library 100, 110, such as by sending the virtual library agent 128, 138, 148, 158 and 168 streams of data related to a storage operation. The virtual library controllers 75, 85 may also be programmed to regularly, or in accordance with a storage policy or storage preference, monitor virtual libraries 100, 110 and storage devices 120, 130, 140, 150 or 160 to determine storage characteristics of components associated in a virtual library 100, 110. For example, a virtual library controller 75, 85 may detect a change in the availability of a storage device, the capacity of media in a drive, network pathways, or other storage characteristic, further described herein.


Each storage device in the virtual library 100, 110 may include at least one drive, such as the tape drives (SD1T1 and SD1T2, labeled 122 and 124, respectively) shown in SD1120. For example, a storage device may be a server with a single drive, or a hard drive, single tape drive, a tape library with or without a robotic arm, or other storage device. Each storage device may be grouped together with similar or heterogeneous components in a virtual library 100, 110. Data indicating an association of the virtual library 100, 110 components and a respective logical network pathway is stored in an index 52, 62, or 72 used to represent logical a storage location to a user or system component. The virtual library 100, 110, thus generally appears from the perspective of a user or system component to be a single storage device such as a library having one or more drives. In reality, the virtual library 100, 110 comprises one or more storage devices grouped in a virtual arrangement. Data relating to the associations of each virtual library 100, 110 may be stored, for example, in the media management component index 62, 72, or in the storage manager index 52.


Referring to FIG. 3, there is shown an example of a graphical user interface 200. Storage resources, such as available libraries 210 may be presented to a user, including virtual libraries: library 1, library 2 and library n, labeled 220, 230 and 260, respectively. The virtual libraries may be made available via one or more servers. The available drives of each storage device, such as tape drives shown as SD1T1, SD1T2 and SDnTn, 240, 250 and 270, respectively may also be presented to a user. Storage operations can be performed utilizing any of the available libraries 210, such as 220, 230 or 260. Alternatively, storage operations can be performed directly to an available drive, such as 240, 250 or 270.


Components of the system 35 may reside and execute on the same computer. A client component such as a data agent 40, a media management component 60, 70, or a storage manager 50 coordinates and directs storage operations as further described in application Ser. No. 09/610,738. This client component can function independently or together with other similar client components.


A method for creating a virtual library is described in connection with the flow diagram of FIG. 4. The method could use, for example, the system architecture shown in FIG. 1, or other storage manager system architecture. A user may initiate the process for creating a virtual library by making a request to a storage manager. Alternatively, a virtual library may be created automatically without a user request. For example, a storage manager may automatically initiate creation of a virtual library in accordance with a storage policy, storage operation template, a storage preference, or other selection criteria, condition, or characteristic. Thus, the storage manager (or media management component or other system component) may receive a storage policy which indicates that a particular storage operation is to be performed at a particular time or frequency interval and that the storage operation will likely require a certain storage characteristic or selection criteria, such as media capacity, network pathway, component availability, network bandwidth or other network performance criteria, number of streams, media type, schedule, or other characteristic. The storage manager may monitor system components and resources to determine a particular configuration of storage devices, e.g., in a virtual library, which satisfy the storage characteristic and may be capable of performing the storage operation.


Storage devices may be scanned to detect availability, step 300. A storage manager may be programmed to scan (or direct the scanning of) system components for available storage devices periodically, upon a request to perform a storage operation, or prior to a request to perform a storage operation. The availability of storage devices may be obtained by querying a media management component or storage manager or a virtual library controller and virtual library agent. The media management component or storage manager may consult its index data or the virtual library controller and virtual library agent to determine which storage devices are available and which storage devices are not available. Alternatively, a storage manager or media management component may perform a test read or write operation in a storage device drive to determine media capacity, or other indication of availability of a storage device. For example, the system may write or read a small quantity of data to or from one or more storage devices associated with a virtual library. In some instances, a storage device may be unavailable for one or more reasons, such as the storage device is offline, is damaged, no longer contains media, a logical network pathway is inaccessible, a media or tape is full, a storage device may be in use in another storage operation, or other reason. A threshold may be specified having a minimum availability requirement for example, that a storage device must not be in use for another storage operation, that a certain quantity of network bandwidth be available for a storage operation using the virtual library component, etc.


Characteristics of the available storage devices are identified, step 310, by communicating information regarding the available storage devices between the media management component and storage device, or via system components including a virtual library controller, media management component, or virtual library agent. Characteristics of a storage device may include, for example, media capacity, network pathway, storage capacity, streaming ability, processor capacity or speed of a storage device, ability to run storage operations in parallel, authorization, security requirements or permissions of a storage device, present or scheduled future uses of the storage device, storage policies, schedules or preferences associated with a storage device or client, user preferences or other metrics or storage criteria. A characteristic relating to media capacity may be a required volume of media to perform a storage operation. A characteristic relating to network pathways may include pathways between a media management component, client, storage device or other storage component, and indications of bottlenecks or network congestion, which may affect performance of a storage operation. A storage capacity characteristic of a storage device may relate to a capacity of media or drives a storage device. Streaming ability is a characteristic of a storage device which may refer to the ability of a storage device to perform a storage operation by streaming data using one or more data streams, e.g., across one or more drives to one or more media items. Characteristics relating to processor capacity or speed of a storage device can indicate the relative speed in which a storage operation can be performed by a storage device and also a volume of data that can be handled by a processor or simply a certain processor speed of a computing device associated with a component of a virtual library. Some storage devices have a characteristic which allows it to perform storage operations in parallel, for example, as further described in patent application Ser. No. 10/818,749. Characteristics relating to security, permissions and authorization may limit or open up a storage device to perform certain secure storage operations. Scheduling characteristics of a storage operation, such as present or future uses of a storage device may indicate that a storage device is available at discrete times and unavailable at other times to perform storage operations. A storage policy characteristic of a storage device may be that a particular storage policy for a particular client may be set to perform storage operation at a particular or associated storage device. Other characteristics of a storage device may be various preferences, metrics or storage criteria. Such storage device characteristics may be used to select a storage device or other component for a virtual library based on a criteria to perform storage operation which may require a particular characteristic.


Indications of the characteristics or availability of a storage device may be presented to a user, step 320. A screen may be automatically generated by a client GUI based on information received from a media management component index. The screen may provide a user with views of available virtual libraries, storage devices, or drives and the characteristics of each. A storage manager and/or a media management component may also generate library profile information, which generally includes information about the library devices, and may include additional information, such as media capacity, logical or real network pathway to the library, or other characteristic. Such a screen may be similar to the graphical user interface depicted in FIG. 3 with indication information added in reference to each of Lib 1, Lib 2, SD1T1, SD1T2, or Lib n, numbered 220, 230, 240, 250, 260, respectively, such as a storage device characteristic, as further described herein.


Alternatively, a system component, such as a storage manager, may consult the indications of storage characteristics or availability without user input. For example, in place of user input, a storage manager may have a template for creating a virtual library that sets advantageous characteristics of a storage device, e.g. capacity, bandwidth, streaming capability, availability, future scheduled uses, including duration of future scheduled uses and network pathways for scheduled operations, and other characteristics as further described herein. For example, in a template for performing a copy operation, a characteristic may be set for a template that a storage device should have no scheduled uses daily between 2:30 am and 3:30 am and have at least two drives which are capable of performing a read or write operation on media having a particular capacity. Thus, the template may establish a minimum resource threshold required for a storage device to be included in a virtual library and storage devices meeting or exceeding the threshold are indicated as available. Alternatively the template sets forth that all available devices having a particular characteristic may be associated in a virtual library.


Based on the storage characteristics, storage devices may be selected for association in a virtual library, step 330. A user may select storage devices to associate in a virtual library. Or, alternatively, a storage manager or other virtual library controller, may select storage devices based on a template and storage characteristics. Selected storage devices may be associated with a virtual library, step 340. In general, a decision to select storage devices for association may be based on the indications of availability or characteristics. For example, a storage device may be selected because it has appropriate media capacity, less congested network pathway or other characteristic, e.g., as further described herein. Selection of a storage device to be included in a virtual library may cause an instruction to be communicated to the applicable media management component to associate a storage device with a virtual library. When a storage device is associated with a virtual library, a media management component updates index data relating to the storage device with a logical network pathway for the virtual library. The virtual library controller and virtual library agent may also receive the association instruction from a media management component and store the association data. The virtual library controller and virtual library agent may use the association data to direct and facilitate storage operations in an appropriate virtual library.


The virtual library is created, step 350, by associating the storage devices in the virtual library. Data relating to the association of the storage device in a virtual library and which indicates a logical network pathway for the virtual library may be stored to a media management component index or other index in a table, such as the table depicted in FIG. 2. In general, when a virtual library is created, a default storage policy may be applied to or used by the virtual library. Data relating to the default storage policy may be stored to the index.


A virtual library may be used to perform a storage operation, for example, as described in reference with FIG. 5. A request is received to perform a storage operation, step 400. In general, the request may be initiated by a user or automatically without user input according to a storage schedule, a storage policy, a user preference, or other initiator or criteria.


When a request is received by a system to perform a storage operation, components of a specified virtual library may be checked by identifying devices in the virtual library, and identifying media to handle in a storage operation. For example, a system component may verify whether one or more storage devices are available in a virtual library, step 410. In general, a media management component verifies whether a storage device may be available in a virtual library by consulting its index data to identify the storage devices associated in a virtual library. Availability of the storage device includes determining, for example, whether a storage device is online, whether the storage device is functioning or powered on, or other indicator of availability. The storage manager may consult its index to determine which media management component is associated with the storage device, or enabled to manage and control the storage device in performing the storage operation, and communicates via the media management component to determine availability of a storage device. The media management component then checks to determine whether the storage device storage characteristics satisfy a criteria, step 420. Storage characteristics include for example, requirements for performing a particular storage operation, the specifications of the storage device, or other characteristics, as further described herein.


Determining whether the storage device satisfies a storage criteria can include, for example, determining a storage characteristic of the storage device, such as checking each of the available storage devices to determine whether there is adequate media capacity, such as sufficient disk or tape space, e.g., a tape less than half written to or between half written to and full. If a tape is less than half full and the media required for a storage operation is half of a tape, there is adequate media to perform the storage operation. If the tape is between half full and full and the media required for a storage operation is at least half a tape, there is inadequate media to perform the storage operation. Other characteristics may also be considered in this step, including characteristics further described herein: network pathway between the media management component, client, storage device or other storage component, e.g. whether the network pathway is currently congested, likelihood of congestion in a future scheduled storage operation, bandwidth necessary for a storage operation, processor capacity and speed of the storage device, ability of the storage device to run storage operations in parallel with other storage devices in the network, authorization or security requirements or permissions of the storage device, present or scheduled future uses of the storage device, such as present or future storage operations scheduled which utilize the storage device, storage policies, schedules, or preferences associated with the storage device or client, user preferences, other metric, storage criteria, or characteristic. These characteristics may be used to predict availability of storage components as necessary for a storage operation and to provide a comparison of efficiency of components or resources used in performing storage operations.


If the available storage devices do not satisfy the storage criteria, the storage operation fails, or the situation may be remedied, step 430. For example, if one or more storage devices do not satisfy the storage criteria because there may be insufficient free or available storage media in the storage devices, the storage manager or media management component will communicate instructions to an administrator or system user, via email, pager, warning message, etc., to change the storage media in the storage devices. Alternatively, the media management component may query the available storage devices to determine whether a partial storage operation can be performed on the available storage devices that do not otherwise satisfy each of the storage criteria. For example, a storage operation can be performed in parts so that a portion of the storage operation is allocated to a first virtual library and another portion to a second or nth virtual library, storage device or other system component. Alternatively, a storage operation may be performed in which one or more tapes in separate drives or separate storage devices, are used in a tape-spanning configuration to perform a storage operation. In another example, a storage manager may predict storage criteria requirements to perform the storage operation and identify other storage device(s) that may perform the storage operation and dynamically allocate and associate such storage devices to the virtual library.


If the storage manager or media management component determines that there are available storage devices and media which satisfy the storage criteria, the available storage devices may be associated, or pooled with a virtual library, step 440. The association of the storage device with a virtual library may be accomplished by storing data indicating the association of the virtual library in an index, such as data indicating a logical network pathway of a virtual library. Even though the storage devices associated in a virtual library may be physical devices that are separate geographically or mechanically, from a user's and system perspective these devices are associated with a single logical network pathway and thus appear to be a single storage device, such as a storage library and not a collection of individual storage devices.


Storage devices are associated in a virtual library, such as Library 1, shown in FIG. 1, which may be used to perform a storage operation, step 450. Configuring the storage devices in a virtual library provides the ability to perform storage operations which may exceed the capacity at one storage device by sharing the storage operation across more than one individual storage device and streaming data across several storage devices. This configuration of the virtual library can be used for load balancing, e.g., performing storage operations using more than on storage device, media spanning, e.g., performing storage operations storing electronic data across more than one piece of media or drive, and other high data volume storage operations.


A method for creating a virtual library described herein may be initiated at the time a request for a storage operation is received, or alternatively, the method is initiated at other times, such as when a storage manager regularly checks and maintains system resources to determine whether system components are available for storage operations. For example, a storage manager may create one or more virtual libraries in advance of a request for performing a storage operation in accordance with predicting resource requirements for performing storage operations according to storage policies, schedules jobs, storage preferences, etc, and determining available resources to perform the storage operations. The system check can be triggered by user preferences, storage policy, user instructions, or in accordance with storage system readiness verification, further described in provisional application Ser. No. 60/626,076 titled SYSTEM AND METHOD FOR PERFORMING STORAGE OPERATIONS IN A COMPUTER NETWORK, filed Nov. 8, 2004.


A virtual library may be monitored, maintained and updated according to the method depicted in FIG. 6. System components may be monitored or maintained in accordance with a storage policy, step 500, to determine system health, capacity of system components, or other aspects of the system. For example, a storage manager, media management component, virtual library controller or other system component may monitor availability of storage devices, virtual libraries and other system components and check storage policies and schedules to determine whether there are adequate system resources to perform future scheduled storage jobs. Monitoring of the system can be active and dynamic, e.g. initiated in accordance with a monitoring schedule set according to storage policies, such as by full time virtual library agents performing heartbeat assessments or constant monitoring of system components, job schedules, storage preference, storage policy, or passively initiated, e.g., by user request. Reports of system resources can be generated based on information obtained in monitoring and delivered to an administrator or user by email, pager or other message.


In a virtual library monitoring operation, a storage manager, media management component, virtual library controller or other monitoring component verifies storage devices and virtual libraries. For example, a virtual library controller detects whether there have been any changes in a characteristic of a storage device in a virtual library, step 510. A change in a characteristic may be detected by a media management component that communicates with a storage device, for example, via a virtual library agent or virtual library controller. In the event that a characteristic of a storage device changes, data relating to the change in characteristic may be communicated to the virtual library agent associated with the storage device and communicated to the virtual library controller, storage manager, or media management component. Alternatively, a storage device, virtual library controller or other system component can report to the media management component that a storage device is unavailable according to a threshold range of unavailability. Changes in characteristics can include, for example, scheduled storage operations, media capacity, availability, network pathway, or other characteristics. Some changes in characteristics are immaterial with respect to system resource requirements, e.g., a storage device may be scheduled for maintenance and taken offline for 30 minutes during a time period in which no storage operations are scheduled, a media change has occurred which increases the capacity of the media, or other change in characteristic which either improves the general characteristics of the storage device, or which may not adversely impact future storage operations. Such changes may be considered to be above a minimum threshold requirement for a storage characteristic for performing a storage operation. Some changes, however, may be material to system resource requirements necessary for a particular storage operation, such as failure of a storage device, scheduling conflicts, such as a future storage operation schedule that entirely utilizes all of the storage device media capacity or that is scheduled for the same time, or other characteristic that worsens the general characteristics of the storage device, or which will significantly impact a future storage operation. Such material changes may not satisfy or meet a minimum storage characteristic or criteria requirement threshold. A characteristic threshold between a material and immaterial difference may be set forth such that storage devices having characteristics exceeding the threshold are considered to be available and appropriate for performing a particular storage operation. In general, a difference between a material and immaterial characteristic may be relative and may be related to general requirements for storage operations, or set forth in threshold ranges for storage characteristic requirements.


A change in a characteristic may be determined to satisfy the threshold characteristic, step 520. If the changed characteristic is determined to fall above a threshold the system monitor or check routine exits, step 530. In the event that there may be a change in a storage device characteristic that is not significant, there is generally no need to update the virtual library, thus the update check is completed and the existing virtual library configuration is maintained. If a changed characteristic is determined to because the characteristic to fail to meet the threshold, other storage devices are scanned to determine whether another storage device may be available to be substituted into a virtual library for an unavailable storage device, step 540. If the changed characteristic is significant, the virtual library generally must be updated by changing a virtual library configuration.


Availability of an alternate storage device is detected, step 540, by consulting a storage manager index, media management component index or other index, or by communicating with a virtual library or storage devices. A storage manager or media management component determines whether an alternate storage device is available based on satisfying a criteria requirement, step 550. If the storage device is not available, the update fails, step 560 or supplies an error message, such as an email, page or other warning message to a user or system administrator. If a storage device is determined to be available, the storage manager or the media management component updates the configuration and association of devices with the virtual library to include the available alternate storage device, step 570, and data relating to the update is stored to the media management index, storage manager index or other index.


Index data stored in the storage manager index or media management component index maintains information, including point-in-time information about current, future and previous virtual library configurations, media, and component associations. Since virtual library configurations can change, in the event that a storage operation such as a data restore operation is performed after a change in a virtual library configuration, the storage device in which the data to be restored is located may need be to be identified. Referring to FIG. 7 which depicts a flowchart for determining a virtual library association, a storage operation request, such as a data restore request is received, step 600. Such request may be initiated by a user's input, according to storage policies, or other initiator. Information about the data relating to the storage operation, such as information about data to be restored, is also received, such as a data type, data identifier or other information. A storage manager index, media management component index or other index may be consulted to determine a virtual library associated with the data requested in the storage operation request, step 610. In general, index data relating to a virtual library configuration is stored for current virtual library configurations and previous virtual library configurations to track data locations and other information relating to virtual libraries. An indication of the virtual library including the data with the storage operation request may be presented to a user, step 620. The indication may be presented in a graphical user interface, such as the screen depicted in FIG. 2. The virtual library indication may be presented to the user so that the user may view information relating to the location of data to be restored, such as a previous and present virtual library configuration, however, this step is optional. In general, the system will perform the storage request, step 630, without input from the user with respect to the location of the data in a virtual library.


Systems and modules described herein may comprise software, firmware, hardware, or any combination(s) of software, firmware, or hardware suitable for the purposes described herein. Software and other modules may reside on servers, workstations, personal computers, computerized tablets, PDAs, and other devices suitable for the purposes described herein. Software and other modules may be accessible via local memory, via a network, via a browser or other application in an ASP context, or via other means suitable for the purposes described herein. Data structures described herein may comprise computer files, variables, programming arrays, programming structures, or any electronic information storage schemes or methods, or any combinations thereof, suitable for the purposes described herein. User interface elements described herein may comprise elements from graphical user interfaces, command line interfaces, and other interfaces suitable for the purposes described herein. Screenshots presented and described herein can be displayed differently as known in the art to input, access, change, manipulate, modify, alter, and work with information.


While the invention has been described and illustrated in connection with preferred embodiments, many variations and modifications as will be evident to those skilled in this art may be made without departing from the spirit and scope of the invention, and the invention is thus not to be limited to the precise details of methodology or construction set forth above as such variations and modification are intended to be included within the scope of the invention.

Claims
  • 1. A method for grouping storage devices in a virtual library comprising: storing with computer hardware comprising one or more computer processors, primary data on a plurality of primary storage devices in a primary storage system and storing at least one or more secondary copies of the primary data on one or more secondary storage devices in a secondary storage system;creating a virtual library that is associated with a logical network pathway, the virtual library comprising a first configuration of a first group of the secondary storage devices, the first group of the secondary storage devices comprise at least first and second secondary storage devices, wherein the first and second secondary storage devices are accessible with the logical network pathway associated with the virtual library;storing at least first and second storage policies in a storage policy data structure, the first storage policy comprising at least a first set of future scheduled secondary storage operations and the second storage policy comprising at least a second set of future scheduled secondary storage operations;automatically determining when the first set of future scheduled secondary storage operations and a when the second set of future scheduled secondary storage operations will occur;automatically determining the first group of the secondary storage devices in the virtual library have insufficient capacity for the first set future scheduled secondary storage operations;automatically determining availability of a third secondary storage device based at least in part on the amount of capacity needed for the future scheduled secondary storage operations, and based at least in part on whether the first set of future scheduled storage operations on the third secondary storage device will conflict with the second set of future scheduled operations associated with the second storage policy; andautomatically associating, without the need of user intervention, the third secondary storage device with the virtual library wherein the third secondary storage device is accessible with the logical network pathway associated with the virtual library, the virtual library comprising a second configuration of a second group of secondary storage devices.
  • 2. The method of claim 1, further comprising disassociating the first secondary storage device with the second group of secondary storage devices.
  • 3. The method of claim 2 wherein disassociating the first secondary storage device from the second group of secondary storage devices comprises updating an index with data indicating a disassociation.
  • 4. The method of claim 1, further comprising: detecting a change in the characteristic of the first secondary storage device that causes the first secondary storage device to not satisfy a storage characteristic threshold;identifying that a fourth secondary storage device has a storage characteristic satisfying the storage characteristic threshold;disassociating the first secondary storage device; andassociating the fourth secondary physical storage device with the second group of secondary storage devices.
  • 5. The method of claim 1 further comprising receiving a first request for data and a second request for data stored on the secondary storage devices and automatically determining that the first request is associated with data stored on the first configuration of the virtual library and the second request is associated with data stored on the second configuration of the virtual library.
  • 6. The method of claim 1 wherein determining the availability of the third secondary storage device is based at least in part on the likelihood of network congestion associated with the future scheduled secondary storage operations.
  • 7. The method of claim 1 wherein determining the availability of the third secondary storage device is based at least in part on capacity of the third secondary storage device.
  • 8. The method of claim 1 wherein the third secondary storage device continues to be associated with a third group of secondary storage devices.
  • 9. The method of claim 1 wherein the future scheduled secondary storage operations are stored in an index associated with at least one media management component.
  • 10. The method of claim 1 wherein the future scheduled secondary storage operations are stored in association with a storage policy.
  • 11. A system that groups storage devices in a virtual library comprising: a primary storage system comprising a plurality of primary storage devices that store primary data;a secondary storage system comprising one or more secondary storage devices, the secondary storage system stores at least one or more secondary copies of the primary data;a virtual library that is associated with a logical network pathway, the virtual library comprising a first configuration of a first group of the secondary storage devices, the first group of the secondary storage devices comprise at least first and second secondary storage devices, wherein the first and second secondary storage devices are accessible with the logical network pathway associated with the virtual library;at least first and second storage policies stored in a storage policy data structure, the first storage policy comprising at least a first set of future scheduled secondary storage operations and the second storage policy comprising at least a second set of future scheduled secondary storage operations;a media management component comprising at least computer hardware, the media management component automatically determines when the first set of future scheduled secondary storage operations and when the second set of future scheduled secondary storage operations will occur;the media management component automatically determines the first group of the secondary storage devices in the virtual library have insufficient capacity for the first set future scheduled secondary storage operations;the media management component automatically determines availability of a third secondary storage device based at least in part on the amount of capacity needed for the future scheduled secondary storage operations, and based at least in part on whether the first set of future scheduled storage operations on the third secondary storage device will conflict with the second set of future scheduled operations associated with the second storage policy; andthe media management component automatically associates, without the need of user intervention, the third secondary storage device with the virtual library wherein the third secondary storage device is accessible with the logical network pathway associated with the virtual library, the virtual library comprising a second configuration of a second group of secondary storage devices.
  • 12. The system of claim 11, wherein the at least one media management component disassociates the first secondary storage device with the second group of secondary storage devices.
  • 13. The system of claim 12 wherein disassociating the first secondary storage device from the second group of secondary storage devices comprises updating an index with data indicating a disassociation.
  • 14. The system of claim 11 wherein the media management component: detects a change in the characteristic of the first secondary storage device that causes the first secondary storage device to not satisfy a storage characteristic threshold;identifies that a fourth secondary storage device has a storage characteristic satisfying the storage characteristic threshold;disassociates the first secondary storage device from the second group of secondary storage devices; andassociates the fourth secondary storage device with the second group of storage devices.
  • 15. The system of claim 11 wherein the media management component receives a first request for data and a second request for data stored on the secondary storage devices and automatically determines that the first request is associated with data stored on a first configuration of the virtual library and the second request is associated with data stored on the second configuration of the virtual library.
  • 16. The system of claim 11 wherein determining the availability of the third secondary storage device is based at least in part on the likelihood of network congestion associated with the future scheduled storage operations.
  • 17. The system of claim 11 wherein determining the availability of the third secondary storage device is based at least in part on capacity of the third secondary storage device.
  • 18. The system of claim 11 wherein the third secondary storage device continues to be associated with a third group of secondary storage devices.
  • 19. The system of claim 11 wherein the future scheduled storage operations are stored in an index associated with the at least one media management component.
  • 20. The system of claim 11 wherein the future scheduled storage operations are stored in association with a storage policy.
US Referenced Citations (537)
Number Name Date Kind
4686620 Ng Aug 1987 A
4995035 Cole et al. Feb 1991 A
5005122 Griffin et al. Apr 1991 A
5093912 Dong et al. Mar 1992 A
5133065 Cheffetz et al. Jul 1992 A
5193154 Kitajima et al. Mar 1993 A
5212772 Masters May 1993 A
5226157 Nakano et al. Jul 1993 A
5239647 Anglin et al. Aug 1993 A
5241668 Eastridge et al. Aug 1993 A
5241670 Eastridge et al. Aug 1993 A
5265159 Kung Nov 1993 A
5276860 Fortier et al. Jan 1994 A
5276867 Kenley et al. Jan 1994 A
5287500 Stoppani, Jr. Feb 1994 A
5301310 Isman et al. Apr 1994 A
5321816 Rogan et al. Jun 1994 A
5333315 Saether et al. Jul 1994 A
5347653 Flynn et al. Sep 1994 A
5388243 Glider et al. Feb 1995 A
5410700 Fecteau et al. Apr 1995 A
5412668 Dewey May 1995 A
5448724 Hayashi et al. Sep 1995 A
5455926 Keele et al. Oct 1995 A
5465359 Allen et al. Nov 1995 A
5491810 Allen Feb 1996 A
5495457 Takagi et al. Feb 1996 A
5495607 Pisello et al. Feb 1996 A
5499364 Klein et al. Mar 1996 A
5504873 Martin et al. Apr 1996 A
5506986 Healy Apr 1996 A
5544345 Carpenter et al. Aug 1996 A
5544347 Yanai et al. Aug 1996 A
5548521 Krayer et al. Aug 1996 A
5559957 Balk Sep 1996 A
5608865 Midgely et al. Mar 1997 A
5619644 Crockett et al. Apr 1997 A
5633999 Clowes et al. May 1997 A
5638509 Dunphy et al. Jun 1997 A
5659743 Adams et al. Aug 1997 A
5673381 Huai et al. Sep 1997 A
5677900 Nishida et al. Oct 1997 A
5699361 Ding et al. Dec 1997 A
5729743 Squibb Mar 1998 A
5737747 Vishlitsky et al. Apr 1998 A
5751997 Kullick et al. May 1998 A
5758359 Saxon May 1998 A
5761677 Senator et al. Jun 1998 A
5764972 Crouse et al. Jun 1998 A
5778395 Whiting et al. Jul 1998 A
5790775 Marks et al. Aug 1998 A
5812398 Nielsen Sep 1998 A
5813008 Benson et al. Sep 1998 A
5813009 Johnson et al. Sep 1998 A
5813017 Morris Sep 1998 A
5815662 Ong Sep 1998 A
5829023 Bishop Oct 1998 A
5829046 Tzelnic et al. Oct 1998 A
5832522 Blickenstaff et al. Nov 1998 A
5860068 Cook Jan 1999 A
5875478 Blumenau Feb 1999 A
5875481 Ashton et al. Feb 1999 A
5887134 Ebrahim Mar 1999 A
5890159 Sealby et al. Mar 1999 A
5893139 Kamiyama et al. Apr 1999 A
5898593 Baca et al. Apr 1999 A
5901327 Ofek May 1999 A
5924102 Perks Jul 1999 A
5950205 Aviani, Jr. Sep 1999 A
5958005 Thorne et al. Sep 1999 A
5974563 Beeler, Jr. Oct 1999 A
5978577 Rierden et al. Nov 1999 A
6021415 Cannon et al. Feb 2000 A
6023705 Bellinger et al. Feb 2000 A
6026398 Brown et al. Feb 2000 A
6026414 Anglin Feb 2000 A
6035306 Lowenthal et al. Mar 2000 A
6052735 Ulrich et al. Apr 2000 A
6076148 Kedem Jun 2000 A
6078990 Frazier Jun 2000 A
6081812 Boggs et al. Jun 2000 A
6088694 Burns et al. Jul 2000 A
6094416 Ying Jul 2000 A
6105122 Muller et al. Aug 2000 A
6105136 Cromer et al. Aug 2000 A
6119209 Bauman Sep 2000 A
6128750 Espy et al. Oct 2000 A
6131095 Low et al. Oct 2000 A
6131099 Johnson et al. Oct 2000 A
6131147 Takagi Oct 2000 A
6131190 Sidwell Oct 2000 A
6137864 Yaker Oct 2000 A
6148349 Chow et al. Nov 2000 A
6148412 Cannon et al. Nov 2000 A
6149316 Harari et al. Nov 2000 A
6154738 Call Nov 2000 A
6154787 Urevig et al. Nov 2000 A
6154852 Amundson et al. Nov 2000 A
6161111 Mutalik et al. Dec 2000 A
6167402 Yeager Dec 2000 A
6175829 Li et al. Jan 2001 B1
6195794 Buxton Feb 2001 B1
6212512 Barney et al. Apr 2001 B1
6223205 Harchol-Balter et al. Apr 2001 B1
6246882 Lachance Jun 2001 B1
6247077 Muller et al. Jun 2001 B1
6256740 Muller et al. Jul 2001 B1
6260069 Anglin Jul 2001 B1
6266678 McDevitt et al. Jul 2001 B1
6266784 Hsiao et al. Jul 2001 B1
6269382 Cabrera et al. Jul 2001 B1
6269431 Dunham Jul 2001 B1
6275953 Vahalia et al. Aug 2001 B1
6295541 Bodnar Sep 2001 B1
6301592 Aoyama et al. Oct 2001 B1
6304880 Kishi Oct 2001 B1
6308245 Johnson et al. Oct 2001 B1
6324581 Xu et al. Nov 2001 B1
6328766 Long Dec 2001 B1
6330570 Crighton Dec 2001 B1
6330572 Sitka Dec 2001 B1
6330642 Carteau Dec 2001 B1
6338006 Jesionowski et al. Jan 2002 B1
6343324 Hubis et al. Jan 2002 B1
6343342 Carlson Jan 2002 B1
6350199 Williams et al. Feb 2002 B1
RE37601 Eastridge et al. Mar 2002 E
6353878 Dunham Mar 2002 B1
6356801 Goodman et al. Mar 2002 B1
6356901 MacLeod et al. Mar 2002 B1
6366900 Hu Apr 2002 B1
6374266 Shnelvar Apr 2002 B1
6374336 Peters et al. Apr 2002 B1
6385673 DeMoney May 2002 B1
6389432 Pothapragada et al. May 2002 B1
6411571 Mitsunari et al. Jun 2002 B1
6418441 Call Jul 2002 B1
6418478 Ignatius et al. Jul 2002 B1
6421711 Blumenau et al. Jul 2002 B1
6434682 Ashton et al. Aug 2002 B1
6438586 Hass et al. Aug 2002 B1
6457017 Watkins et al. Sep 2002 B2
6484166 Maynard Nov 2002 B1
6487561 Ofek et al. Nov 2002 B1
6487644 Huebsch et al. Nov 2002 B1
6490666 Cabrera et al. Dec 2002 B1
6496744 Cook Dec 2002 B1
6505307 Stell et al. Jan 2003 B1
6519679 Devireddy et al. Feb 2003 B2
6538669 Lagueux, Jr. et al. Mar 2003 B1
6542909 Tamer et al. Apr 2003 B1
6542972 Ignatius et al. Apr 2003 B2
6564228 O'Connor May 2003 B1
6571310 Ottesen et al. May 2003 B1
6581143 Gagne et al. Jun 2003 B2
6594698 Chow et al. Jul 2003 B1
6615349 Hair Sep 2003 B1
6631442 Blumenau Oct 2003 B1
6631493 Ottesen et al. Oct 2003 B2
6647396 Parnell et al. Nov 2003 B2
6658436 Oshinsky et al. Dec 2003 B2
6658526 Nguyen et al. Dec 2003 B2
6662281 Ballard et al. Dec 2003 B2
6665740 Mason et al. Dec 2003 B1
6669832 Saito et al. Dec 2003 B1
6674924 Wright et al. Jan 2004 B2
6704839 Butterworth et al. Mar 2004 B2
6711632 Chow et al. Mar 2004 B1
6721334 Ketcham Apr 2004 B1
6732124 Koseki et al. May 2004 B1
6732293 Schneider May 2004 B1
6757794 Cabrera et al. Jun 2004 B2
6763351 Subramaniam et al. Jul 2004 B1
6763438 Ogawa et al. Jul 2004 B2
6771595 Gilbert et al. Aug 2004 B1
6785078 Basham et al. Aug 2004 B2
6789161 Blendermann et al. Sep 2004 B1
6791910 James et al. Sep 2004 B1
6799255 Blumenau et al. Sep 2004 B1
6802025 Thomas et al. Oct 2004 B1
6820035 Zahavi Nov 2004 B1
6832186 Margulieux Dec 2004 B1
6851031 Trimmer et al. Feb 2005 B2
6859758 Prabhakaran et al. Feb 2005 B1
6862622 Jorgensen Mar 2005 B2
6871163 Hiller et al. Mar 2005 B2
6880052 Lubbers et al. Apr 2005 B2
6886020 Zahavi et al. Apr 2005 B1
6909356 Brown et al. Jun 2005 B2
6912627 Matsunami et al. Jun 2005 B2
6912645 Dorward et al. Jun 2005 B2
6922687 Vernon Jul 2005 B2
6934879 Misra et al. Aug 2005 B2
6941370 Boies et al. Sep 2005 B2
6941396 Thorpe et al. Sep 2005 B1
6950723 Gallo et al. Sep 2005 B2
6952758 Chron et al. Oct 2005 B2
6965968 Touboul et al. Nov 2005 B1
6968351 Butterworth Nov 2005 B2
6968479 Wyatt et al. Nov 2005 B2
6972918 Kokami et al. Dec 2005 B2
6973369 Trimmer et al. Dec 2005 B2
6973553 Archibald, Jr. et al. Dec 2005 B1
6983277 Yamaguchi et al. Jan 2006 B2
6983322 Tripp et al. Jan 2006 B1
6983351 Gibble et al. Jan 2006 B2
6993625 Ogawa et al. Jan 2006 B2
7003519 Biettron et al. Feb 2006 B1
7003641 Prahlad et al. Feb 2006 B2
7006435 Davies et al. Feb 2006 B1
7010387 Lantry et al. Mar 2006 B2
7012529 Sajkowsky Mar 2006 B2
7013372 Achiwa et al. Mar 2006 B2
7034683 Ghazarian Apr 2006 B2
7035880 Crescenti et al. Apr 2006 B1
7039827 Meyer et al. May 2006 B2
7058649 Ough et al. Jun 2006 B2
7062761 Slavin et al. Jun 2006 B2
7069380 Ogawa et al. Jun 2006 B2
7069466 Trimmer et al. Jun 2006 B2
7082441 Zahavi et al. Jul 2006 B1
7085786 Carlson et al. Aug 2006 B2
7085904 Mizuno et al. Aug 2006 B2
7093089 De Brebisson Aug 2006 B2
7096269 Yamagami Aug 2006 B2
7096315 Takeda et al. Aug 2006 B2
7103619 Rajpurkar et al. Sep 2006 B1
7103731 Gibble et al. Sep 2006 B2
7103740 Colgrove et al. Sep 2006 B1
7107298 Prahlad et al. Sep 2006 B2
7107395 Ofek et al. Sep 2006 B1
7117246 Christenson et al. Oct 2006 B2
7118034 Baldassari et al. Oct 2006 B2
7120757 Tsuge Oct 2006 B2
7120823 Foster et al. Oct 2006 B2
7130970 Devassy et al. Oct 2006 B2
7136720 Deckers Nov 2006 B2
7146377 Nowicki et al. Dec 2006 B2
7155465 Lee et al. Dec 2006 B2
7155486 Aoshima et al. Dec 2006 B2
7155633 Tuma et al. Dec 2006 B2
7159110 Douceur et al. Jan 2007 B2
7162496 Amarendran et al. Jan 2007 B2
7162604 Nourmohamadian et al. Jan 2007 B1
7162693 Yamanaka et al. Jan 2007 B2
7173929 Testardi Feb 2007 B1
7174433 Kottomtharayil et al. Feb 2007 B2
7181578 Guha et al. Feb 2007 B1
7191283 Amemiya et al. Mar 2007 B2
7197490 English Mar 2007 B1
7200621 Beck et al. Apr 2007 B2
7203944 Van Rietschote et al. Apr 2007 B1
7209949 Mousseau et al. Apr 2007 B2
7213118 Goodman et al. May 2007 B2
7216244 Amano May 2007 B2
7222172 Arakawa et al. May 2007 B2
7246140 Therrien et al. Jul 2007 B2
7246207 Kottomtharayil et al. Jul 2007 B2
7246258 Chen et al. Jul 2007 B2
7246272 Cabezas et al. Jul 2007 B2
7249347 Chang et al. Jul 2007 B2
7249357 Landman et al. Jul 2007 B2
7251218 Jorgensen Jul 2007 B2
7251708 Justiss et al. Jul 2007 B1
7257257 Anderson et al. Aug 2007 B2
7269612 Devarakonda et al. Sep 2007 B2
7272606 Borthakur et al. Sep 2007 B2
7275063 Horn Sep 2007 B2
7277246 Barbian et al. Oct 2007 B2
7277953 Wils et al. Oct 2007 B2
7278142 Bandhole et al. Oct 2007 B2
7281032 Kodama Oct 2007 B2
7287047 Kavuri Oct 2007 B2
7287252 Bussiere et al. Oct 2007 B2
7293133 Colgrove et al. Nov 2007 B1
7302540 Holdman et al. Nov 2007 B1
7315807 Lavallee et al. Jan 2008 B1
7330997 Odom Feb 2008 B1
7343356 Prahlad et al. Mar 2008 B2
7343453 Prahlad et al. Mar 2008 B2
7343459 Prahlad et al. Mar 2008 B2
7346623 Prahlad et al. Mar 2008 B2
7346751 Prahlad et al. Mar 2008 B2
7359917 Winter et al. Apr 2008 B2
7379850 Sprogis et al. May 2008 B2
7380014 LeCroy et al. May 2008 B2
7380019 Shiga et al. May 2008 B2
7380072 Kottomtharayil et al. May 2008 B2
7383462 Osaki et al. Jun 2008 B2
7395282 Crescenti et al. Jul 2008 B1
7395387 Berkowitz et al. Jul 2008 B2
7401728 Markham et al. Jul 2008 B2
7409509 Devassy et al. Aug 2008 B2
7421312 Trossell Sep 2008 B2
7421511 Shiga et al. Sep 2008 B2
7426537 Lee et al. Sep 2008 B2
7434090 Hartung et al. Oct 2008 B2
7447149 Beesley et al. Nov 2008 B1
7447907 Hart, III et al. Nov 2008 B2
7448079 Tremain Nov 2008 B2
7451283 Chen et al. Nov 2008 B2
7454569 Kavuri et al. Nov 2008 B2
7467167 Patterson Dec 2008 B2
7472238 Gokhale Dec 2008 B1
7484054 Kottomtharayil et al. Jan 2009 B2
7490207 Amarendran Feb 2009 B2
7496492 Dai Feb 2009 B2
7500053 Kavuri et al. Mar 2009 B1
7500150 Sharma et al. Mar 2009 B2
7509443 Matsuo et al. Mar 2009 B2
7519726 Palliyll et al. Apr 2009 B2
7523483 Dogan Apr 2009 B2
7529748 Wen et al. May 2009 B2
7529782 Prahlad et al. May 2009 B2
7536291 Retnamma et al. May 2009 B1
7539702 Deshmukh et al. May 2009 B2
7539783 Kochunni et al. May 2009 B2
7552294 Justiss Jun 2009 B1
7565340 Herlocker et al. Jul 2009 B2
7581011 Teng Aug 2009 B2
7584227 Gokhale et al. Sep 2009 B2
7584298 Klinker et al. Sep 2009 B2
7587749 Leser et al. Sep 2009 B2
7596586 Gokhale et al. Sep 2009 B2
7603518 Kottomtharayil Oct 2009 B2
7613748 Brockway et al. Nov 2009 B2
7617392 Hair Nov 2009 B2
7627598 Burke Dec 2009 B1
7627617 Kavuri et al. Dec 2009 B2
7631194 Wahlert et al. Dec 2009 B2
7644245 Prahlad et al. Jan 2010 B2
7657666 Kottomtharayil et al. Feb 2010 B2
7659820 Schnee et al. Feb 2010 B2
7660812 Findlay et al. Feb 2010 B2
7680843 Panchbudhe et al. Mar 2010 B1
7685126 Patel Mar 2010 B2
7689510 Lamkin et al. Mar 2010 B2
7702659 Ban et al. Apr 2010 B2
7702831 Ma et al. Apr 2010 B2
7707060 Chainer et al. Apr 2010 B2
7712094 Shapiro May 2010 B2
7720817 Stager et al. May 2010 B2
7739450 Kottomtharayil Jun 2010 B2
7739459 Kottomtharayil et al. Jun 2010 B2
7748610 Bell et al. Jul 2010 B2
7751628 Reisman Jul 2010 B1
7765167 Prahlad et al. Jul 2010 B2
7765369 Prahlad et al. Jul 2010 B1
7769961 Kottomtharayil et al. Aug 2010 B2
7805416 Compton et al. Sep 2010 B1
7809699 Passmore et al. Oct 2010 B2
7809914 Kottomtharayil et al. Oct 2010 B2
7818417 Ginis et al. Oct 2010 B2
7822715 Petruzzo Oct 2010 B2
7827363 Devassy et al. Nov 2010 B2
7831553 Prahlad et al. Nov 2010 B2
7831566 Kavuri et al. Nov 2010 B2
7840537 Gokhale et al. Nov 2010 B2
7849266 Kavuri et al. Dec 2010 B2
7861011 Kottomtharayil et al. Dec 2010 B2
7873802 Gokhale et al. Jan 2011 B2
7877351 Crescenti et al. Jan 2011 B2
7877362 Gokhale et al. Jan 2011 B2
7889847 Gainsboro Feb 2011 B2
7890796 Pawar et al. Feb 2011 B2
7904350 Ayala et al. Mar 2011 B2
7917473 Kavuri et al. Mar 2011 B2
7917695 Ulrich et al. Mar 2011 B2
7934071 Abe et al. Apr 2011 B2
7937365 Prahlad et al. May 2011 B2
7937393 Prahlad et al. May 2011 B2
7945810 Soran et al. May 2011 B2
7949512 Retnamma et al. May 2011 B2
7953802 Mousseau et al. May 2011 B2
7958307 Kavuri et al. Jun 2011 B2
7962714 Amarendran et al. Jun 2011 B2
7969306 Ebert et al. Jun 2011 B2
7975061 Gokhale et al. Jul 2011 B1
7987319 Kottomtharayil Jul 2011 B2
8032718 Kottomtharayil et al. Oct 2011 B2
8040727 Harari Oct 2011 B1
8041905 Devassy et al. Oct 2011 B2
8051043 Young Nov 2011 B2
8074042 Kottomtharayil et al. Dec 2011 B2
8140786 Bunte et al. Mar 2012 B2
8161318 D'Souza et al. Apr 2012 B2
8166263 Prahlad et al. Apr 2012 B2
8176268 Kottomtharayil et al. May 2012 B2
8219524 Gokhale Jul 2012 B2
8230195 Amarendran et al. Jul 2012 B2
8291177 Devassy et al. Oct 2012 B2
8341359 Kottomtharayil et al. Dec 2012 B2
8364914 Kottomtharayil et al. Jan 2013 B2
8402244 Kottomtharayil et al. Mar 2013 B2
8443142 Kavuri et al. May 2013 B2
8510516 Kottomtharayil et al. Aug 2013 B2
8661216 Kavuri et al. Feb 2014 B2
8688931 Kottomtharayil et al. Apr 2014 B2
8799613 Kottomtharayil et al. Aug 2014 B2
8892826 Kottomtharayil et al. Nov 2014 B2
9021213 Kottomtharayil et al. Apr 2015 B2
9201917 Kottomtharayil et al. Dec 2015 B2
9251190 Kottomtharayil et al. Feb 2016 B2
9507525 Kottomtharayil et al. Nov 2016 B2
9940043 Kottomtharayil et al. Apr 2018 B2
20020010661 Waddington et al. Jan 2002 A1
20020029281 Zeidner et al. Mar 2002 A1
20020032613 Buettgenbach et al. Mar 2002 A1
20020040405 Gold Apr 2002 A1
20020049778 Bell et al. Apr 2002 A1
20020069324 Gerasimov et al. Jun 2002 A1
20020107877 Whiting et al. Aug 2002 A1
20020122543 Rowen Sep 2002 A1
20020157113 Allegrezza Oct 2002 A1
20020188592 Leonhardt et al. Dec 2002 A1
20020194340 Ebstyne et al. Dec 2002 A1
20030016609 Rushton et al. Jan 2003 A1
20030014433 Teloh et al. Mar 2003 A1
20030055671 Nassar Mar 2003 A1
20030061491 Jaskiewicz et al. Mar 2003 A1
20030065759 Britt et al. Apr 2003 A1
20030099237 Mitra et al. May 2003 A1
20030101155 Gokhale et al. May 2003 A1
20030126361 Slater et al. Jul 2003 A1
20030134619 Phillips et al. Jul 2003 A1
20030169733 Gurkowski et al. Sep 2003 A1
20030204700 Biessener et al. Oct 2003 A1
20030220901 Carr et al. Nov 2003 A1
20040010523 Wu et al. Jan 2004 A1
20040044855 Carlson et al. Mar 2004 A1
20040054607 Waddington et al. Mar 2004 A1
20040073677 Honma et al. Apr 2004 A1
20040073716 Boom et al. Apr 2004 A1
20040083202 Mu et al. Apr 2004 A1
20040088432 Hubbard et al. May 2004 A1
20040098363 Anglin et al. May 2004 A1
20040098547 Ofek et al. May 2004 A1
20040107199 Dairymple et al. Jun 2004 A1
20040122832 Callahan et al. Jun 2004 A1
20040153719 Achiwa et al. Aug 2004 A1
20040186847 Rappaport et al. Sep 2004 A1
20040193397 Lumb et al. Sep 2004 A1
20040193953 Callahan et al. Sep 2004 A1
20040204949 Shaji et al. Oct 2004 A1
20050008163 Leser et al. Jan 2005 A1
20050021524 Oliver Jan 2005 A1
20050033756 Kottomtharayil et al. Feb 2005 A1
20050033913 Kottomtharayil et al. Feb 2005 A1
20050039069 Prahlad et al. Feb 2005 A1
20050044114 Kottomtharayil et al. Feb 2005 A1
20050044226 McDermott et al. Feb 2005 A1
20050076264 Rowan et al. Apr 2005 A1
20050080992 Massey et al. Apr 2005 A1
20050102203 Keong May 2005 A1
20050114477 Willging et al. May 2005 A1
20050125807 Brady et al. Jun 2005 A1
20050166011 Burnett et al. Jul 2005 A1
20050172093 Jain Aug 2005 A1
20050174869 Kottomtharayil et al. Aug 2005 A1
20050177828 Graham et al. Aug 2005 A1
20050210304 Hartung et al. Sep 2005 A1
20050216534 Ikezawa et al. Sep 2005 A1
20050246342 Vernon Nov 2005 A1
20050246398 Barzilai et al. Nov 2005 A1
20050246568 Davies Nov 2005 A1
20050256972 Cochran et al. Nov 2005 A1
20050262296 Peake Nov 2005 A1
20050278299 Yamada et al. Dec 2005 A1
20060004639 O'Keefe Jan 2006 A1
20060004675 Bennett et al. Jan 2006 A1
20060005048 Osaki et al. Jan 2006 A1
20060010227 Atluri Jan 2006 A1
20060011720 Call Jan 2006 A1
20060020569 Goodman et al. Jan 2006 A1
20060044674 Martin et al. Mar 2006 A1
20060075007 Anderson et al. Apr 2006 A1
20060095385 Atkinson et al. May 2006 A1
20060100912 Kumar et al. May 2006 A1
20060161879 Lubrecht et al. Jul 2006 A1
20060169769 Boyarsky et al. Aug 2006 A1
20060224846 Amarendran et al. Oct 2006 A1
20060248165 Sridhar et al. Nov 2006 A1
20060282194 Schaefer et al. Dec 2006 A1
20060285172 Hull et al. Dec 2006 A1
20060288044 Kashiwagi et al. Dec 2006 A1
20070061266 Moore et al. Mar 2007 A1
20070130105 Papatia Jun 2007 A1
20070156897 Lim Jul 2007 A1
20070185912 Gupta et al. Aug 2007 A1
20070198722 Kottomtharayil et al. Aug 2007 A1
20070198802 Kavuri Aug 2007 A1
20070288536 Sen et al. Dec 2007 A1
20080059515 Fulton Mar 2008 A1
20080059704 Kavuri Mar 2008 A1
20080141242 Shapiro Jun 2008 A1
20080229037 Bunte et al. Sep 2008 A1
20080243420 Gokhale et al. Oct 2008 A1
20080243754 Gokhale et al. Oct 2008 A1
20080243795 Prahlad et al. Oct 2008 A1
20080243870 Muller et al. Oct 2008 A1
20080243914 Prahlad et al. Oct 2008 A1
20080243957 Prahlad et al. Oct 2008 A1
20080243958 Prahlad et al. Oct 2008 A1
20080244177 Crescenti et al. Oct 2008 A1
20080249656 Gokhale et al. Oct 2008 A1
20080250076 Muller et al. Oct 2008 A1
20080256269 Ookubo Oct 2008 A1
20080320319 Muller et al. Dec 2008 A1
20090063765 Kottomtharayil et al. Mar 2009 A1
20090113056 Tameshige et al. Apr 2009 A1
20090271541 Aoki et al. Oct 2009 A1
20090313448 Gokhale et al. Dec 2009 A1
20090319534 Gokhale Dec 2009 A1
20090319585 Gokhale Dec 2009 A1
20100017184 Retnamma et al. Jan 2010 A1
20100030528 Smith et al. Feb 2010 A1
20100070466 Prahlad et al. Mar 2010 A1
20100070474 Lad Mar 2010 A1
20100070726 Ngo et al. Mar 2010 A1
20100082672 Kottomtharayil et al. Apr 2010 A1
20100131467 Prahlad et al. May 2010 A1
20100138393 Crescenti et al. Jun 2010 A1
20100287234 Kottomtharayil et al. Nov 2010 A1
20100293112 Prahlad et al. Nov 2010 A1
20110010440 Kottomtharayil et al. Jan 2011 A1
20110040799 Devassy et al. Feb 2011 A1
20110087807 Kottomtharayil et al. Apr 2011 A1
20110093672 Gokhale et al. Apr 2011 A1
20110213755 Kavuri et al. Sep 2011 A1
20110231852 Gokhale et al. Sep 2011 A1
20110270859 Kottomtharayil Nov 2011 A1
20120059985 Devassy et al. Mar 2012 A1
20120084523 Littlefield et al. Apr 2012 A1
20120265732 Gokhale et al. Oct 2012 A1
20120265936 Kottomtharayil Oct 2012 A1
20150026401 Kottomtharayil et al. Jan 2015 A1
20160147469 Kottomtharayil et al. May 2016 A1
Foreign Referenced Citations (23)
Number Date Country
0259912 Mar 1988 EP
0405926 Jan 1991 EP
0467546 Jan 1992 EP
0620553 Oct 1994 EP
0757317 Feb 1997 EP
0774715 May 1997 EP
0809184 Nov 1997 EP
0899662 Mar 1999 EP
0981090 Feb 2000 EP
1174795 Jan 2002 EP
1115064 Dec 2004 EP
2366048 Feb 2002 GB
7254204 Oct 1995 JP
9044381 Feb 1997 JP
9081424 Mar 1997 JP
WO 9114229 Sep 1991 WO
WO 1995013580 May 1995 WO
WO 1999012098 Mar 1999 WO
WO 1999014692 Mar 1999 WO
WO 1999017204 Apr 1999 WO
WO 2004090788 Oct 2004 WO
WO 2005024573 Mar 2005 WO
WO 2005055093 Jun 2005 WO
Non-Patent Literature Citations (52)
Entry
U.S. Appl. No. 09/609,977, filed Jul. 5, 2000, Prahlad.
U.S. Appl. No. 10/655,764, filed Sep. 5, 2003, Nourmohamadian.
U.S. Appl. No. 11/269,513, filed Nov. 7, 2005, Prahlad.
U.S. Appl. No. 13/534,070, filed Jun. 27, 2012, Kottomtharayil et al.
U.S. Appl. No. 13/963,693, filed Aug. 9, 2013, Kottomtharayil et al.
Allen, “Probability, Statistics and Queuing Theory”, 1978, p. 370, col. 19, Lines 3-33, 1 page.
Armstead et al., “Implementation of a Campus-Wide Distributed Mass Storage Service: The Dream vs. Reality,” IEEE, 1995, pp. 190-199.
Arneson, “Development of Omniserver; Mass Storage Systems,” Control Data Corporation, 1990, pp. 88-93.
Arneson, “Mass Storage Archiving in Network Environments” IEEE, 1998, pp. 45-50.
Ashton, et al., “Two Decades of policy-based storage management for the IBM mainframe computer”, www.research.ibm.com, 19 pages, published Apr. 10, 2003, printed Jan. 3, 2009., www.research.ibm.com, Apr. 10, 2003, pp. 19.
Cabrera, et al. “ADSM: A Multi-Platform, Scalable, Back-up and Archive Mass Storage System,” Digest of Papers, Compcon '95, Proceedings of the 40th IEEE Computer Society International Conference, Mar. 5, 1995-Mar. 9, 1995, pp. 420-427, San Francisco, CA.
Campbell, “Linux and Windows No. 4.0: Basic Administration—Part III”, internet publication, Oct. 5, 2000, retrieved from the internet.
Carrington, “Backups Using the “at” Command”, internet publication, May 4, 1999, retrieved from the internet.
Commvault Systems, Inc., Continuous Data Replicator 7.0, Product Data Sheet, 2007, in 6 pages.
Cook, “ntbackup: eject tape at end of backup?”, internet publication, Oct. 18, 2000, retrieved from the internet.
Eitel, “Backup and Storage Management in Distributed Heterogeneous Environments,” IEEE, 1994, pp. 124-126.
Farley, “Building Storage Networks,” pp. 328-331, Osborne/McGraw-Hill, 2000.
Gait, “The Optical File Cabinet: A Random-Access File system for Write-Once Optical Disks,” IEEE Computer, vol. 21, No. 6, pp. 11-22 (1988).
Gibson, “Network Attached Storage Architecture,” pp. 37-45, ACM, Nov. 2000.
Gonzalez-Seco, “A Genetic Algorithm as the Learning Procedure for Neural Networks”, International Joint Conference on Neural Networks, Jun. 1992, 356 pages.
http://en.wikipedia.org/wiki/Naive_Bayes_classifier, printed on Jun. 1, 2010, in 7 pages.
Jander, “Launching Storage-Area Net,” Data Communications, US, McGraw Hill, NY, vol. 27, No. 4(Mar. 21, 1998), pp. 64-72.
MDM, Automatically eject tape:, internet publication, Jun. 7, 1999, retrieved from the internet.
Recycle Bin (Windows), Aug. 2007, Wikipedia, pp. 1-3.
Rosenblum et al., “The Design and Implementation of a Log-Structure File System,” Operating Systems Review SIGOPS, vol. 25, No. 5, New York, US, pp. 1-15 (May 1991).
Savill, Windows NT FAQ Single File Version: internet publication, 2000, retrieved from the internet.
Szor, The Art of Virus Research and Defense, Symantec Press (2005) ISBN 0-321-30454-3, Part 1.
Szor, The Art of Virus Research and Defense, Symantec Press (2005) ISBN 0-321-30454-3, Part 2.
Witten et al., Data Mining: Practical Machine Learning Tools and Techniques, Ian H. Witten & Eibe Frank, Elsevier (2005) ISBN 0-12-088407-0, Part 1.
Witten et al., Data Mining: Practical Machine Learning Tools and Techniques, Ian H. Witten & Eibe Frank, Elsevier (2005) ISBN 0-12-088407-0, Part 2.
International Search Report and Written Opinion dated Nov. 13, 2009, PCT/US2007/081681, in 8 pages.
International Search Report and Preliminary Report on Patentability dated Dec. 3, 2003, PCT/US2003/028319 in 5 pages.
Great Britain Office Action dated Mar. 8, 2006, Application No. GB/0507268.1, in 3 pages.
Indian Office Action dated May 29, 2008, Application No. 60/CHENP/2005-AR.
Canadian Office Action dated May 30, 2008, Application No. CA2498174, in 3 pages.
Canadian Office Action dated Feb. 9, 2009, Application No. CA2498174, in 2 pages.
International Search Report and Preliminary Report on Patentability dated Sep. 22, 2004, PCT/US2004/010504, in 6 pages.
International Search Report dated Sep. 20, 2004, PCT/US2004/010503, in 2 pages.
Written Opinion dated Mar. 1, 2007, International Application No. PCT/US05/40606, 5 pages.
International Search Report from International Application No. PCT/US05/40656, dated Mar. 1, 2007; 1 page.
Office Action in Canadian Application No. 2,587,055 dated Mar. 14, 2013, in 2 pages.
Office Action in Canadian Application No. 2,587,055 dated Mar. 18, 2014, in 2 pages.
Great Britain Office Action dated Nov. 2, 2007, Application No. GB/07071772, in 3 pages.
Great Britain Office Action dated Apr. 4, 2008, Application No. GB/07071772, in 2 pages.
First Examination Report in EU Application No. 04 758 913.0-2413 dated Nov. 21, 2008, in 6 pages.
Second Examination Report in EU Application 04 758 913.0-2413 dated May 26, 2010, in 7 pages.
First Examination in Australian Appl. No. 2004227949 dated Apr. 17, 2009, in 2 pages.
First Examination Report in Indian Appl. No. 2508/CHENP/2005 dated Feb. 15, 2008, in 2 pages.
Second Office Action in Canadian Application No. 2,520,498 dated Jun. 8, 2010, in 2 pages.
First Office Action in Canadian Application No. 2,520,498 dated Nov. 17, 2008, in 2 pages.
Office Action in Canadian Application No. 2,520,498 dated Jun. 15, 2011, in 2 pages.
Office Action in Israeli Application No. 171121 dated Feb. 13, 2011, in 5 pages.
Related Publications (1)
Number Date Country
20170060458 A1 Mar 2017 US
Provisional Applications (2)
Number Date Country
60626076 Nov 2004 US
60625746 Nov 2004 US
Continuations (5)
Number Date Country
Parent 14449985 Aug 2014 US
Child 15353546 US
Parent 13786182 Mar 2013 US
Child 14449985 US
Parent 13310361 Dec 2011 US
Child 13786182 US
Parent 12896563 Oct 2010 US
Child 13310361 US
Parent 11269514 Nov 2005 US
Child 12896563 US