The present invention relates generally to methods and systems for medical diagnostic measurement and monitoring, and specifically to radio frequency (RF)-based measurement and monitoring of the heart.
RF imaging is best known in the context of radar systems, but RF diagnostic imaging and measurement systems have also been developed for medical applications. For example, U.S. Patent Application Publication 2008/0169961, whose disclosure is incorporated herein by reference, describes computerized tomography using radar, which may be used for generating an image of living tissue.
As another example, U.S. Patent Application Publication 2009/0299175, whose disclosure is incorporated herein by reference, describes a method and apparatus for determining and tracking the location of a metallic object in a living body, using a radar detector adapted to operate on a living body. Applications described in this publication include determination of the extent of in-stent restenosis, performing therapeutic thrombolysis, and determining operational features of a metallic implant.
Yet another example is U.S. Pat. No. 5,766,208, whose disclosure is incorporated herein by reference. This patent describes a non-acoustic pulse-echo radar monitor, which is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung.
U.S. Pat. No. 4,926,868, whose disclosure is incorporated herein by reference, describes a method and apparatus for cardiac hemodynamic monitoring based on the complex field amplitudes of microwaves propagated through and scattered by thoracic cardiovascular structures, particularly the heart chambers, as a function of time during the cardiac cycle. The apparatus uses conformal microstrip antennas that operate in the UHF band. The basic measurement technique is vector network analysis of the power wave scattering parameter.
U.S. Patent Application Publication 2009/0240133, whose disclosure is incorporated herein by reference, describes a radio apparatus and method for non-invasive, thoracic radio interrogation of a subject for the collection of hemodynamic, respiratory and/or other cardiopulmonary related data. A radio transmitter transmits an unmodulated radio interrogation signal from an antenna into a subject, and a radio receiver captures, through the antenna, reflections of the transmitted radio interrogation signal returned from the subject. A Doppler component of the reflections contains the data that can be extracted from the captured reflections.
Embodiments of the present invention that are described hereinbelow provide methods and devices for assessment of cardiovascular function by transmission and detection of RF waves through the body.
There is therefore provided, in accordance with an embodiment of the present invention, diagnostic apparatus, including a plurality of antennas, which are configured to be disposed at different, respective locations on a thorax of a living body so as to direct radio frequency (RF) electromagnetic waves from different, respective directions toward a heart in the body and to output RF signals responsively to the waves that are scattered from the heart. Processing circuitry is configured to process the RF signals over time so as to provide a multi-dimensional measurement of a movement of the heart.
In some embodiments, the plurality of antennas includes at least three antennas, and the respective locations are chosen so as to at least partially surround the thorax.
In disclosed embodiments, each antenna has a front surface, which is configured to contact an outer surface of the body and includes a planar antenna element. The planar antenna element may include a conductive spiral. Additionally or alternatively, each antenna may include a ground plane behind the front surface with an electromagnetic band gap (EBG) structure between the ground plane and the front surface. Typically, a dielectric gel is applied between the antenna and the outer surface of the body.
In one embodiment, each antenna is configured to contact an outer surface of the body and, the processing circuitry is configured to receive and process an electrocardiogram signal received from the body by at least one of the antennas, in addition to the RF signals.
In a disclosed embodiment, the apparatus includes excitation circuitry, which is coupled to select different ones of the antennas to serve as transmitting and receiving antennas and to apply a RF excitation waveform at multiple different frequencies to the selected transmitting antennas, while the processing circuitry receives the RF signals from the selected receiving antennas, wherein the transmitting and receiving antennas and the different frequencies are selected according to a predetermined temporal pattern. Typically, the excitation circuitry includes a driver circuit, which is configured to generate the RF excitation waveform with a variable frequency, and a switching matrix, which is configured to select sets of the antennas in alternation, each set including at least one transmitting antenna and at least one receiving antenna, and for each selected set, to couple the driver circuit to excite the at least one transmitting antenna at a selected frequency while coupling the processing circuitry to receive the RF signals from the at least one receiving antenna.
In one embodiment, the plurality of antennas includes at least first and second antennas disposed on respective opposite sides of the thorax, so that the second antenna receives the RF electromagnetic waves transmitted by the first antenna after passage of the RF electromagnetic waves through at least one lung in the body, and the processor is configured to process the RF signals output by the second antenna so as to assess an amount of fluid accumulation in the at least one lung.
In another embodiment, the apparatus includes at least one pacing electrode, wherein the processing circuitry is configured to drive the at least one pacing electrode so as to pace the heart responsively to the measurement of the movement of the heart.
In yet another embodiment, the processing circuitry is configured to compare the measure of the movement of the heart before, during and after heart stress.
There is also provided, in accordance with an embodiment of the present invention, diagnostic apparatus, including an antenna, which is configured to be disposed on a thorax of a living body so as to direct radio frequency (RF) electromagnetic waves toward a heart in the body while sweeping the waves over multiple different frequencies and to output an ultra-wideband RF signal responsively to the waves that are scattered from the heart. Processing circuitry is configured to process the RF signal over time so as to provide a measurement of a movement of the heart.
In some embodiments, the apparatus includes a package, which contains the antenna and the processing circuitry and is configured to be affixed as a patch to an outer surface of the body. The apparatus may include a conductive element associated with the package, which is configured to receive electrocardiogram (ECG) signals from the outer surface of the body. Additionally or alternatively, the apparatus includes a wireless communication interface for communicating with a remote console.
There is additionally provided, in accordance with an embodiment of the present invention, diagnostic apparatus, including one or more antennas, which are configured to be disposed on a thorax of a living body so as to direct radio frequency (RF) electromagnetic waves through a lung in the body and to output RF signals responsively to the waves that have passed through the lung. Processing circuitry is configured to process the RF signals over time so as to measure RF path characteristic of the RF electromagnetic waves and, based on the path characteristic, to assess a fluid content of the lung.
The processing circuitry may be configured to measure a change in the path characteristic over one or more respiratory cycles of the lung, and to assess the fluid content responsively to the change.
In disclosed embodiments, the path characteristic includes an effective RF path length of the RF electromagnetic waves through the body. In some embodiments, the processing circuitry is configured to receive a measure of a physical distance traversed by the RF electromagnetic waves through the thorax, and to compare the effective RF path length to the physical distance in order to assess the amount of the fluid accumulation. In one embodiment, the one or more antennas include a transmitting antenna at a first location on a first side of the thorax, which transmits the RF electromagnetic waves through the lung, and a receiving antenna, which receives the waves that have passed through the lung at a second location on a second side of the thorax, opposite the first side, and the physical distance is measured between the first and second locations.
Alternatively, the one or more antennas include at least one antenna that is configured to direct the RF electromagnetic waves through the lung toward a heart in the body, and to output the RF signals responsively to the RF electromagnetic waves reflected from the heart. The apparatus may include an ultrasonic transducer, which is adjacent to the at least one antenna and is configured to direct ultrasonic waves toward the heart and receive the ultrasonic waves reflected from the heart so as to provide a measure of the physical distance.
Additionally or alternatively, the path characteristic includes an amplitude of the RF signals.
There is further provided, in accordance with an embodiment of the present invention, diagnostic apparatus, including an antenna unit, which has a front surface configured to be brought into contact with an outer surface of a living body. The antenna unit includes a planar antenna element, which is configured to direct radio frequency (RF) electromagnetic waves from the front surface into the body and to output RF signals responsively to the waves that are scattered from within the body, and a conductive element, which is configured to receive electrocardiogram (ECG) signals from the outer surface of the body. A cable is connected to the antenna unit so as to communicate with the planar antenna element and the conductive element. Processing circuitry is connected to the cable so as to receive and process the RF and ECG signals.
Typically, the apparatus includes a diplexer coupled between the cable and the processing circuitry for separating the RF signals from the ECG signals.
The antenna unit may include an adhesive patch for attachment to the body. Alternatively, the antenna unit may be configured to be worn on the body as part of a garment.
In a disclosed embodiment, the antenna unit is coated with metal and electrolytes.
There is moreover provided, in accordance with an embodiment of the present invention, diagnostic apparatus, including an antenna unit, which has a front surface configured to be brought into contact with an outer surface of a living body. The antenna unit includes a planar antenna element, which is formed on the front surface and is configured to direct radio frequency (RF) electromagnetic waves into the body and to output RF signals responsively to the waves that are scattered from within the body, with a ground plane behind the front surface and an electromagnetic band gap (EBG) structure between the ground plane and the front surface. Processing circuitry is coupled to the antenna unit so as to receive and process the RF signals.
There is furthermore provided, in accordance with an embodiment of the present invention, therapeutic apparatus, including at least one pacing electrode, configured to apply a pacing signal to a heart in a living body. One or more antennas are configured to be disposed on a thorax of the body so as to direct radio frequency (RF) electromagnetic waves toward the heart and to output RF signals responsively to the waves that are scattered from the heart. Processing circuitry is configured to process the RF signals over time so as to measure a movement of the heart and to drive the at least one pacing electrode so as to pace the heart responsively to the measured movement.
There is also provided, in accordance with an embodiment of the present invention, a method for diagnosis, including directing radio frequency (RF) electromagnetic waves from a plurality of antennas, which are disposed at different, respective locations on a thorax of a living body, toward a heart in the body from different, respective directions, and outputting RF signals responsively to the waves that are scattered from the heart. The RF signals are processed over time so as to provide a multi-dimensional measurement of a movement of the heart.
There is additionally provided, in accordance with an embodiment of the present invention, a method for diagnosis, including directing radio frequency (RF) electromagnetic waves from an antenna, which is disposed on a thorax of a living body, toward a heart in the body while sweeping the waves over multiple different frequencies, and outputting an ultra-wideband RF signal responsively to the waves that are scattered from the heart. The RF signal is processed over time so as to provide a measurement of a movement of the heart.
There is further provided, in accordance with an embodiment of the present invention, a method for diagnosis, including directing radio frequency (RF) electromagnetic waves from one or more antennas disposed on a thorax of a living body so that the waves pass through a lung in the body, and outputting RF signals responsively to the waves that have passed through the lung. The RF signals are processed over time so as to measure a RF path characteristic of the RF electromagnetic waves and, based on the path characteristic, to assess a fluid content of the lung.
There is moreover provided, in accordance with an embodiment of the present invention, a method for diagnosis, including bringing a front surface of an antenna unit into contact with an outer surface of a living body. The antenna unit included a planar antenna element and a conductive element, which is configured to receive electrocardiogram (ECG) signals from the outer surface of the body. The planar antenna element is driven to direct radio frequency (RF) electromagnetic waves from the front surface into the body and to output RF signals responsively to the waves that are scattered from within the body. Both the RF and the ECG signals from the antenna unit are received and processed.
There is furthermore provided, in accordance with an embodiment of the present invention, a therapeutic method, including directing radio frequency (RF) electromagnetic waves toward a heart in a living body from one or more antennas disposed on a thorax of the body, and outputting RF signals responsively to the waves that are scattered from the heart. The RF signals are processed over time so as to measure a movement of the heart, and the heart is paced responsively to the measured movement.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
PCT Patent Application PCT/IB2009/055438, whose disclosure is incorporated herein by reference, describes the use of radar imaging techniques to identify and locate features in the body, based on the difference in their complex dielectric constant relative to the dielectric constant of the surrounding tissue. In the disclosed embodiments, an array of antennas (also referred to as antenna elements) directs RF electromagnetic waves toward the heart and receives the waves that are scattered from within the body. Excitation circuitry applies a RF excitation waveform at multiple different frequencies to different transmitting antennas in the array. Processing circuitry receives and processes signals from different receiving antenna elements in order to locate a feature or features of interest, and possibly to track the movement of such features over the course of the heart cycle. The selection of transmitting and receiving antennas, as well as the selection of excitation frequency, follows a predetermined temporal pattern, which may be implemented by a switching matrix connected to the antenna elements.
As a result of this scheme of excitation and reception, the processing circuitry receives and processes signals from multiple spatial channels (corresponding to different pairs of antennas) at multiple different frequencies for each channel. Taken together in the time domain, these multi-frequency signals are equivalent to short pulses of RF energy. To reconstruct a three-dimensional (3D) image of the interior of the body and find the location of a feature or features, the processing circuitry applies a spatial transform to the set of received signals. The transform may, for example, comprise an inverse spherical Radon transform or an algebraic approximation of such a transform.
Embodiments of the present invention that are described hereinbelow apply techniques similar to those described in PCT/IB2009/055438 for purposes of cardiovascular diagnosis and therapy. In one embodiment, multiple antennas are disposed at different, respective locations on the thorax of a patient, typically surrounding all or at least a part of the thorax. The antennas direct RF waves from different, respective directions toward the heart and output RF signals in response to the scattered waves that they receive. The RF signals received over time are processed so as to provide a multi-dimensional (two- or even three-dimensional) measurement of movement of the heart. This approach can give a picture of heart wall movement that resembles the sort of information provided by cardiac ultrasound imaging, but does not require the active involvement of an expert operator and can even be carried out over a long period while the patient is ambulatory.
Heart wall motion measured by embodiments of the present invention provides detailed diagnostic information regarding functioning of the heart muscle. For example, the heart motion information is useful in diagnosis and monitoring of cardiac ischemia and heart failures, and can also give an indication of cardiac performance, such as chamber volume or ejection fraction. The information provided by embodiments of the present invention can be used in diagnosis, as well as prediction, of ischemic disease and/or ischemic events, such as acute myocardial infarction. The heart wall motion may be compared before, during and after heart stress caused by physical exercise or by medication, in a manner similar to ECG-based stress testing.
As yet another example, the heart wall motion information provided by embodiments of the present invention may be used in place of ultrasonic imaging data in analyzing and diagnosing cardiac mechanical function. For instance, radar-based measurements may be used instead of the Doppler imaging techniques described by Larsson et al., in “State Diagrams of the Heart—a New Approach to Describing Cardiac Mechanics,” Cardiovascular Ultrasound 7:22 (2009), which is incorporated herein by reference.
Additionally or alternatively, embodiments of the present invention can be used in long-term monitoring of heart conditions, and particularly as an ambulatory monitor for the detection of “silent ischemias” in coronary artery disease. Heart wall motion monitoring of this sort can thus be used as a diagnostic tool in addition to or instead of conventional stress testing or Holter monitoring.
The heart motion information provided by embodiments of the present invention may also be used for therapeutic purposes. For example, in one embodiment, a pacemaker is driven to pace the heart based on this sort of measurement, as an addition to other parameters, so that the amplitude and timing of the pacing signal give an optimal result in terms of the actual profile of contraction of the heart muscle. This sort of approach can be particularly useful in cardiac resynchronization therapy.
In some embodiments, these RF-based techniques are used to assess fluid accumulation in the lungs, typically for diagnosis and follow-up of pulmonary edema or lung congestion. In these embodiments, one or more antennas on the thorax direct RF waves through one (or both) of the lungs and output RF signals in response to the waves that have passed through the lung. The RF signals are processed over time in order to measure a path characteristic of the RF waves passing through the body, such as the effective RF path length of the RF waves. The RF path length, as opposed to the actual, physical distance, is defined by the length of time required for the waves to pass through the chest (either directly, from one side to the other, or by reflection from the heart and return to an antenna). This path length depends on the dielectric constant of the tissue along the path. When there is fluid in the lungs, the dielectric constant is greater (relative to normal, air-filled lungs), and the RF path length increases accordingly. This RF path length may thus be used to assess the fluid content of the lung.
In some embodiments, monitoring information is sent from a local controller attached to the antennas on the patient's body to a center where is the information can be accessed by a referring physician, experts, technicians, and/or the patient himself. The data may flow via a local gateway device, such as a cell-phone or personal computer, via a network, such as the Internet or telephone network, to the center, where it is stored.
Various types of antennas may be used in implementing embodiments of the present invention, including the sort of cavity-backed antenna that is described in PCT/IB2009/055438. Alternatively, some embodiments of the present invention use a planar antenna comprising a conductive spiral, which is formed on the front surface of the antenna. The antenna is backed by an in-phase reflective structure based on an electromagnetic band gap (EBG) structure between the antenna ground plane and the front surface. This design provides a flat, possibly flexible antenna, which can be fixed to the body surface by a gel or other adhesive. (Suitable types of gels for this purpose are described in PCT/IB2009/055438.) The antenna may also comprise a conductive element, which receives electrocardiogram (ECG) signals from the body surface along with the RF signals output by the antenna itself. The antenna thus performs two complementary measurements simultaneously and obviates the need for separate ECG electrodes.
In one embodiment, the antenna is part of a self-contained patch that also includes radar processing circuits and a power source. The patch may also include a transmitter, such as a wireless unit, for transmission of data to a monitor or gateway.
Typically, for good RF coupling, antennas 24, 26, 28, 30, 32 are fixed to the skin of the torso. For this purpose, the antennas may have the form of adhesive patches, as described in greater detail with reference to
Antennas 24, 26, 28, 30, 32 are connected by cables 38 to a control console 40. The console comprises a front end 42, which drives the antennas to direct RF electromagnetic waves from different, respective directions toward heart 22. In response to the waves that are scattered from the heart (and from other features in the body), the antennas output RF signals. Front end 42 receives these signals via cables 38, filters and digitizes the signals, and passes the resulting digital samples to processing circuitry 44. This processing circuitry processes the RF signals over time so as to provide a multi-dimensional measurement of movement of the heart, as shown and described below. Typically, processing circuitry 44 comprises a general-purpose computer processor, which is programmed in software to carry out the functions described herein. Additionally or alternatively, processing circuitry 44 may comprise dedicated or programmable hardware logic circuits.
In the pictured embodiment, processing circuitry 44 drives a display 46 to show a measurement of the movement of the heart, either graphically or numerically, or both. Additionally or alternatively, the processing circuitry may make other measurements based on the RF signals, such as measuring the amount of fluid accumulated in lungs 36, as described in greater detail hereinbelow. Further additionally or alternatively, front end 42 may receive ECG signals from the antennas on the body surface, and processor 44 may process and output ECG information in addition to measurement of heart motion. The combination of ECG and motion measurement in a single unit is efficient and useful in providing a complete picture of heart function, both electrical and mechanical.
In some embodiments, it is useful to know the precise locations, and possibly also the orientations, of the antennas. For this purpose, antennas 24 and 30 are shown in the figure as comprising position sensors 48. (The other antennas may also comprise position sensors, but these sensors are omitted from the figures for the sake of simplicity.) Various types of position sensors that are known in the art, such as magnetic, ultrasonic, optical or even mechanical position sensors, may be used for this purpose. PCT/IB2009/055438 includes further details of such position sensors and their integration in a radar-based measurement system.
A graphical window 54 gives a two-dimensional (2D) view of the measured heart motion and also enables the user to choose the points whose motion is to be shown by traces 50. Alternatively, given a sufficient number of measurement points around the heart, window 54 may show a real-time three-dimensional (3D) representation of heart wall motion.
Display 46 may optionally include other information and user interface features. For example, a parameter window 56 may show parameters derived from the measurements made by system 20, such as cardiovascular and/or respiratory parameters, in either graphical or numerical form (or both). A status window 58 shows the current status of each of the antennas. This window may indicate, for example, an antenna that is not properly attached to the body (based on measurement of impedance between the antenna and the skin or on characteristics of the RF signals from the antenna), so that the operator can correct the situation. A control window 60 displays status messages and operational buttons to turn system functions on and off.
Front end 42 comprises a RF generator 70, which serves as a driver circuit to generate signals at multiple different frequencies for exciting the transmitting antennas. A RF digitizer 72 demodulates and digitizes the signals received by the receiving antennas. Typically, the signals are in the range of about 400 MHz to about 4 GHz, although higher and lower frequencies outside this range may also be used. An I/Q cancellation unit 74 performs signal conditioning functions, including amplification of the outgoing and the incoming signals and cancellation of background components in the received signals. The background cancellation functions of unit 74 are controlled by an I/Q controller 76, as is described in greater detail hereinbelow.
Switching matrix 78 selects different sets of the antennas to transmit and receive signals at different, respective times and frequencies, in a predetermined temporal pattern. Typically, the sets comprise pairs of antennas—one transmitting and one receiving. Alternatively, the switching matrix may select a set consisting of a single monostatic antenna, which both transmits and receives. Further alternatively, other antenna groupings may also be used. The structure and operation of a switching matrix of this sort are described in detail in PCT/IB2009/055438. Switching matrix 78 and RF generator 70 together serve as excitation circuitry and generate a temporal excitation pattern comprising a sequence of measurement frames, wherein each frame typically defines a sweep of the excitation signal both in frequency and over spatial channels (antennas or antenna pairs). The beginning of each frame is triggered by a trigger controller 80, which also provides a clock input to the other components of front end 42.
The sweep over multiple different frequencies creates, in effect, an ultra-wideband signal, which is equivalent, in the signal processing domain, to a very short radar pulse. The use of this sort of ultra-wideband signal enables system 20 to measure path length and heart wall range more accurately and robustly than can generally be achieved using narrowband methods that are known in the art. Although system 20 is shown and described as comprising multiple antennas at different locations on the patient's thorax, the ultra-wideband approach described here may alternatively be used advantageously in measurements of heart wall movement using only a single antenna.
The functions of I/Q cancellation unit 74 are also described in detail in PCT/IB2009/055438. Briefly, unit 74 modifies the phase and amplitude of the sampled signals from RF digitizer 72, under the control of I/Q controller 76, so as to generate an anti-phased signal matching a background component that is to be canceled. This background component may, for example, be a constant and/or slowly-varying part of the incoming signals, which is canceled in order to enhance the time-varying signal component that is due to heart motion. The I/Q cancellation unit generates a signal that is equal in amplitude to the background component but 180° out of phase and adds this anti-phased signal to the received signal from switching matrix 78 and digitizer 72. The I/Q cancellation unit thus cancels the background component without degrading the actual radar signal from the body.
Processing circuitry 44 collects samples of the received signals, following background cancellation, and processes the samples to identify and locate reflecting volumes within the thorax that correspond to points on the heart surface. One method that may be used for this purpose is the inverse spherical Radon transform. More specifically, PCT/IB2009/055438 describes a first-order approximation of the inverse spherical Radon transform, which can be applied efficiently and effectively to the sampled RF signals.
Alternatively, processing circuitry 44 may apply other transform techniques. For example, the processing circuitry may compute a frequency response vector for each pair of antennas, and may then apply a window function, such as a Kaiser window, to each vector and transform the windowed frequency data to the time domain using an inverse Fast Fourier Transform (FFT). A time-domain filter, such as a Kalman filter, may be applied to the transformed data in order to model the location and motion of the heart wall. The processing circuitry may correlate location and motion data between different antenna pairs, as well as correlating the motion with ECG measurements. Additionally or alternatively, circuitry 44 may perform ECG-gated or ECG-phased background subtraction, wherein the subtracted background signal is computed as a combination of the different phases in the heartbeat.
In estimating the heart wall location, circuitry 44 may treat the returned signal as a superposition of a number of point reflectors, each moving and scintillating at a predefined rate and in a predefined manner. The locations of the point reflectors are estimated using optimization techniques, such as a modified simplex technique. The estimated locations are then used to calculate path length and amplitude and thereby to calculate heart wall movement and/or liquid content of the lungs.
Further additionally or alternatively, processing circuitry 44 may receive and process other physiological parameters in conjunction with the RF signals. For example, the processing circuitry may receive breathing information, as well as data concerning patient posture, patient weight, and blood pressure.
Antenna unit 82 comprises a front surface 84 in the form of a planar printed circuit board (PCB), on which a conductive spiral 86 is printed to serve as the radiating element of the antenna, using methods of printed circuit fabrication that are known in the art. The front surface is made of suitable biocompatible materials in order to be brought into contact with the body surface. (A layer of gel may be applied between front surface 84 and the body surface, as explained above.) A rear element 88 of the antenna, behind the front surface, serves as a reflective structure. Element 88 comprises a ground plane 90 and a periodic structure that create an electromagnetic band gap (EBG) between the ground plane and the front surface. Details of the theory and design of this sort of antenna are provided by Bell et al., in “A Low-Profile Archimedean Spiral Antenna Using an EBG Ground Plane,” IEEE Antennas and Wireless Propagation Letters 3, pages 223-226 (2004), which is incorporated herein by reference.
The EBG structure in antenna unit 82 is made up of a periodic mesh of conductive patches 92, which are connected to ground plane 90 by vias 94 through a thin dielectric layer (omitted from the figure for visual clarity). The periodic mesh of rear element 88 can have Cartesian or cylindrical symmetry. Since different frequencies exhibit different power densities at different locations on the rear element surface, the components of the EBG structure can have variable dimension to reflect the different frequencies accordingly. For the frequency range mentioned above (400 MHz to 4 GHz), the PCB making up front surface 84 may be 1.6 mm thick, for example, while patches 92 are spaced 1.6 mm from ground plane 90 and contact the rear side of the front surface PCB when assembled. The thickness of front surface 84 and the height of the EBG (as defined by vias 94) can be optimized for the target VSWR performance, front lobe pattern and gain. Under these conditions, the mesh of patches 92 creates an array of cavities having a parallel resonant response that mimics a perfect magnetic conductor in the specified frequency range. The EBG structure thus reflects the backward wave from spiral 86 in phase with the forward beam, thereby constructively adding to the main forward beam from the antenna.
A flexible backing 96 covers the rear side of rear element 88. Backing 96 extends over the edges of the front surface and rear element in order to facilitate secure attachment of antenna unit 82 to the body surface. For this purpose, backing 96 may comprise an adhesive margin 98. Backing 96 may comprise a conductive element for receiving ECG signals from the body surface. Alternatively, front surface 84 may contain such a conductive element (not shown) alongside spiral 86, or the conductive spiral itself may serve to pick up the ECG signals. Additionally or alternatively, the antenna can be coated with metal and electrolytes to enable ECG measurement without affecting RF performance. A RF connector 100 connects antenna unit 82 to cable 38. This connector conveys the RF excitation signal to spiral 86 and returns both RF and ECG signals from the antenna unit to the cable.
Referring back to
The depressed portions of both plots between marks 260 and 290 on the horizontal scale correspond to a period of inhalation during the respiratory cycle. This depression in
For a lung with a high fluid content, the average dielectric constant will typically be higher than a healthy lung, and the path delay of RF waves traversing the lung will therefore be greater. The overall amplitude may also be greater due to reduced reflections as the waves traverse the lungs. On the other hand, the difference between air-filled and empty lungs over the respiratory cycle is expected to be smaller in both delay and amplitude than the differences shown in
In order to quantify the assessment of fluid accumulation, the actual physical distance traversed by the RF waves passing through the lung may be measured, and a relation (such as a ratio) may be computed between the effective RF path length and the physical distance. For example, referring back to
Processing circuitry 44 computes the relation between the physical distance traversed by the ultrasonic waves and the effective path length traversed by the RF waves. Variations in this relation among different patients and among measurements at different points in time for a given patient are indicative of the amount of fluid in the lung.
Mechanical sensing of cardiac activity has been proposed for use in cardiac stimulation therapy, such as optimizing timing intervals during cardiac pacing. Detection of peak endocardial wall motion in the apex of the right ventricle for optimizing AV intervals has been validated clinically. Systems and methods for using cardiac wall motion sensor signals to provide hemodynamically-optimal values for heart rate and AV interval have been described, for example, in U.S. Pat. No. 5,549,650, whose disclosure is incorporated herein by reference. A cardiac stimulating system designed to automatically optimize both the pacing mode and one or more pacing cycle parameters in a way that results in optimization of a cardiac performance parameter, such as heart accelerations, is generally described in U.S. Pat. No. 5,540,727, whose disclosure is also incorporated herein by reference.
As noted above, antenna 26 may also be used in assessing the fluid content of the lungs. The level of fluid content may then be used in adjusting the pacing regime of electrodes 124, as described, for example, in U.S. Pat. No. 7,191,000, whose disclosure is incorporated herein by reference.
Patch unit 130 comprises a flat antenna 132, which may be of one of the types described above. A transceiver 136 generates driving signals for transmission by antenna 132 and filters and digitizes the reflected signals that the antenna receives from the patient's body. An active background cancellation circuit 134 cancels background components from the reflected signals, in a manner similar to that of I/Q cancellation unit 74, shown in
Patch unit 130 also comprises an ECG electrode 140, in electrical contact with the patient's skin, and an ECG acquisition circuit 150, which filters and digitizes the ECG signals for input to processor 138.
Patch unit 130 may comprise a user interface, such as one or more indicator LEDs 146, which signal the operational state of the patch (on/off, and possibly parameters such as battery level, quality of skin contact or signal strength). Alternatively or additionally, the user interface may comprise a more informative display, such as a LCD, as well as user controls, such as on/off and adjustment buttons.
A communication interface 148 communicates with a remote console (not shown), in order to transmit radar and ECG measurement data and possibly to receive operational commands. The communication interface typically comprises a wireless link, such as a Bluetooth™ or WiFi link. The console may be located in proximity to the patient's location and may thus receive data from interface 148 directly. Alternatively, interface 148 may communicate with a local gateway, such as a personal computer or smart phone, which communicates with the console over a network, such as the Internet or a telephone network. In this sort of embodiment, for example, the console may comprise a server, which stores the data for subsequent viewing and analysis by a physician or other expert. This sort of system configuration is particularly useful for extended ambulatory monitoring.
It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
This application is a continuation of U.S. patent application Ser. No. 15/422,416 filed Feb. 1, 2017, titled “Methods and Systems for Determining Fluid Content of Tissue”, which is a divisional application of U.S. patent application Ser. No. 14/621,252, filed Feb. 12, 2015, titled “Methods and Systems for Determining Fluid Content of Tissue,” (issued as U.S. Pat. No. 9,572,512), which is a continuation of U.S. patent application Ser. No. 12/759,715, filed Apr. 14, 2010, titled “Methods and Systems for Determining Fluid Content of Tissue,” (issued as U.S. Pat. No. 8,989,837), which is a continuation-in-part of PCT patent application PCT/IB2009/055438, filed Dec. 1, 2009. The disclosures of each of the above applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4240445 | Iskander et al. | Dec 1980 | A |
4344440 | Aaby et al. | Aug 1982 | A |
4557272 | Carr | Dec 1985 | A |
4632128 | Paglione et al. | Dec 1986 | A |
4640280 | Sterzer | Feb 1987 | A |
4641659 | Sepponen | Feb 1987 | A |
4774961 | Carr | Oct 1988 | A |
4825880 | Stauffer et al. | May 1989 | A |
4926868 | Larsen | May 1990 | A |
4945914 | Allen | Aug 1990 | A |
4958638 | Sharpe | Sep 1990 | A |
4986870 | Frohlich | Jan 1991 | A |
5003622 | Ma et al. | Mar 1991 | A |
5109855 | Guner | May 1992 | A |
5394882 | Mawhinney | Mar 1995 | A |
5404877 | Nolan | Apr 1995 | A |
5474574 | Payne et al. | Dec 1995 | A |
5540727 | Tockman et al. | Jul 1996 | A |
5549650 | Bornzin et al. | Aug 1996 | A |
5668555 | Starr | Sep 1997 | A |
5704355 | Bridges | Jan 1998 | A |
5766208 | McEwan | Jun 1998 | A |
5807257 | Bridges | Sep 1998 | A |
5829437 | Bridges | Nov 1998 | A |
5841288 | Meaney et al. | Nov 1998 | A |
5865177 | Segawa | Feb 1999 | A |
5967986 | Cimochowski et al. | Oct 1999 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6061589 | Bridges et al. | May 2000 | A |
6064903 | Riechers et al. | May 2000 | A |
6093141 | Mosseri et al. | Jul 2000 | A |
6144344 | Kim | Nov 2000 | A |
6161036 | Matsumara et al. | Dec 2000 | A |
6193669 | Degany et al. | Feb 2001 | B1 |
6208286 | Rostislavovich et al. | Mar 2001 | B1 |
6233479 | Haddad et al. | May 2001 | B1 |
6267723 | Matsumura et al. | Jul 2001 | B1 |
6330479 | Stauffer | Dec 2001 | B1 |
6409662 | Lloyd et al. | Jun 2002 | B1 |
6454711 | Haddad | Sep 2002 | B1 |
6471655 | Baura | Oct 2002 | B1 |
6480733 | Turcott | Nov 2002 | B1 |
6526318 | Ansarinia | Feb 2003 | B1 |
6592518 | Denker et al. | Jul 2003 | B2 |
6604404 | Paltieli et al. | Aug 2003 | B2 |
6729336 | Da Silva et al. | May 2004 | B2 |
6730033 | Yao et al. | May 2004 | B2 |
6755856 | Fierens et al. | Jun 2004 | B2 |
6933811 | Enokihara et al. | Aug 2005 | B2 |
6940457 | Lee et al. | Sep 2005 | B2 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7122012 | Bouton et al. | Oct 2006 | B2 |
7130681 | Gebhardt et al. | Oct 2006 | B2 |
7184824 | Hashimshony | Feb 2007 | B2 |
7191000 | Zhu et al. | Mar 2007 | B2 |
7197356 | Carr | Mar 2007 | B2 |
7266407 | Li et al. | Sep 2007 | B2 |
7267651 | Nelson | Sep 2007 | B2 |
7272431 | McGrath | Sep 2007 | B2 |
7280863 | Shachar | Oct 2007 | B2 |
7454242 | Fear et al. | Nov 2008 | B2 |
7474918 | Frants et al. | Jan 2009 | B2 |
7479790 | Choi | Jan 2009 | B2 |
7493154 | Bonner et al. | Feb 2009 | B2 |
7529398 | Zwirn et al. | May 2009 | B2 |
7570063 | Van Veen et al. | Aug 2009 | B2 |
7591792 | Bouton | Sep 2009 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
7719280 | Lagae et al. | May 2010 | B2 |
7747302 | Milledge et al. | Jun 2010 | B2 |
7868627 | Turkovskyi | Jan 2011 | B2 |
8032211 | Hashimshony et al. | Oct 2011 | B2 |
8211040 | Kojima et al. | Jul 2012 | B2 |
8295920 | Bouton et al. | Oct 2012 | B2 |
8352015 | Bernstein et al. | Jan 2013 | B2 |
8473054 | Pillai et al. | Jun 2013 | B2 |
8682399 | Rabu | Mar 2014 | B2 |
8882759 | Manley et al. | Nov 2014 | B2 |
8938292 | Hettrick et al. | Jan 2015 | B2 |
8983592 | Belalcazar | Mar 2015 | B2 |
8989837 | Weinstein et al. | Mar 2015 | B2 |
9220420 | Weinstein et al. | Dec 2015 | B2 |
9265438 | Weinstein et al. | Feb 2016 | B2 |
9572512 | Weinstein et al. | Feb 2017 | B2 |
9629561 | Weinstein et al. | Apr 2017 | B2 |
9788752 | Weinstein et al. | Oct 2017 | B2 |
10136833 | Weinstein et al. | Nov 2018 | B2 |
10660609 | Weinstein et al. | May 2020 | B2 |
10680324 | Weinstein et al. | Jun 2020 | B2 |
20020032386 | Sackner et al. | Mar 2002 | A1 |
20020045836 | Alkawwas | Apr 2002 | A1 |
20020049394 | Roy et al. | Apr 2002 | A1 |
20020050954 | Jeong-Kun et al. | May 2002 | A1 |
20020147405 | Denker et al. | Oct 2002 | A1 |
20020151816 | Rich et al. | Oct 2002 | A1 |
20030036713 | Bouton et al. | Feb 2003 | A1 |
20030088180 | Van Veen et al. | May 2003 | A1 |
20030100815 | Da Silva et al. | May 2003 | A1 |
20030199770 | Chen et al. | Oct 2003 | A1 |
20030219598 | Sakurai | Nov 2003 | A1 |
20040015087 | Boric-Lubecke et al. | Jan 2004 | A1 |
20040073081 | Schramm | Apr 2004 | A1 |
20040077943 | Meaney et al. | Apr 2004 | A1 |
20040077952 | Rafter et al. | Apr 2004 | A1 |
20040249257 | Tupin et al. | Dec 2004 | A1 |
20040254457 | van der Weide | Dec 2004 | A1 |
20040261721 | Steger | Dec 2004 | A1 |
20050038503 | Greenhalgh et al. | Feb 2005 | A1 |
20050107693 | Fear et al. | May 2005 | A1 |
20050192488 | Bryenton | Sep 2005 | A1 |
20050245816 | Candidas et al. | Nov 2005 | A1 |
20060004269 | Caduff et al. | Jan 2006 | A9 |
20060009813 | Taylor et al. | Jan 2006 | A1 |
20060025661 | Sweeney et al. | Feb 2006 | A1 |
20060101917 | Merkel | May 2006 | A1 |
20060265034 | Aknine et al. | Nov 2006 | A1 |
20070016032 | Aknine | Jan 2007 | A1 |
20070016050 | Moehring et al. | Jan 2007 | A1 |
20070055123 | Takiguchi | Mar 2007 | A1 |
20070100385 | Rawat | May 2007 | A1 |
20070123770 | Bouton et al. | May 2007 | A1 |
20070123778 | Kantorovich | May 2007 | A1 |
20070135721 | Zdeblick | Jun 2007 | A1 |
20070152812 | Wong et al. | Jul 2007 | A1 |
20070156057 | Cho et al. | Jul 2007 | A1 |
20070162090 | Penner | Jul 2007 | A1 |
20070191733 | Gianchandani et al. | Aug 2007 | A1 |
20070263907 | McMakin et al. | Nov 2007 | A1 |
20080027313 | Shachar | Jan 2008 | A1 |
20080030284 | Tanaka et al. | Feb 2008 | A1 |
20080036668 | White et al. | Feb 2008 | A1 |
20080097199 | Mullen | Apr 2008 | A1 |
20080129511 | Yuen et al. | Jun 2008 | A1 |
20080139934 | McMorrow et al. | Jun 2008 | A1 |
20080167566 | Kamil et al. | Jul 2008 | A1 |
20080169961 | Steinway et al. | Jul 2008 | A1 |
20080183247 | Harding | Jul 2008 | A1 |
20080200802 | Bahavaraju et al. | Aug 2008 | A1 |
20080224688 | Rubinsky et al. | Sep 2008 | A1 |
20080269589 | Thijs et al. | Oct 2008 | A1 |
20080283282 | Kawasaki et al. | Nov 2008 | A1 |
20080294036 | Hoi et al. | Nov 2008 | A1 |
20080316124 | Hook | Dec 2008 | A1 |
20080319301 | Busse | Dec 2008 | A1 |
20090021720 | Hecker | Jan 2009 | A1 |
20090048500 | Corn | Feb 2009 | A1 |
20090076350 | Bly et al. | Mar 2009 | A1 |
20090153412 | Chiang et al. | Jun 2009 | A1 |
20090187109 | Hashimshony | Jul 2009 | A1 |
20090203972 | Heneghan et al. | Aug 2009 | A1 |
20090227882 | Foo | Sep 2009 | A1 |
20090240132 | Friedman | Sep 2009 | A1 |
20090240133 | Friedman | Sep 2009 | A1 |
20090248450 | Fernandez | Oct 2009 | A1 |
20090262028 | Mumbru et al. | Oct 2009 | A1 |
20090281412 | Boyden et al. | Nov 2009 | A1 |
20090299175 | Bernstein et al. | Dec 2009 | A1 |
20090312615 | Caduff et al. | Dec 2009 | A1 |
20090322636 | Brigham et al. | Dec 2009 | A1 |
20100052992 | Okamura et al. | Mar 2010 | A1 |
20100056907 | Rappaport et al. | Mar 2010 | A1 |
20100076315 | Erkamp et al. | Mar 2010 | A1 |
20100081895 | Zand | Apr 2010 | A1 |
20100106223 | Grevious | Apr 2010 | A1 |
20100152600 | Droitcour et al. | Jun 2010 | A1 |
20100256462 | Rappaport et al. | Oct 2010 | A1 |
20100265159 | Ando et al. | Oct 2010 | A1 |
20100312301 | Stahmann | Dec 2010 | A1 |
20100321253 | Ayala Vazquez et al. | Dec 2010 | A1 |
20100332173 | Watson et al. | Dec 2010 | A1 |
20110004076 | Janna et al. | Jan 2011 | A1 |
20110009754 | Wenzel et al. | Jan 2011 | A1 |
20110022325 | Craddock et al. | Jan 2011 | A1 |
20110040176 | Razansky et al. | Feb 2011 | A1 |
20110060215 | Tupin et al. | Mar 2011 | A1 |
20110068995 | Baliarda et al. | Mar 2011 | A1 |
20110125207 | Nabutovsky et al. | May 2011 | A1 |
20110130800 | Weinstein et al. | Jun 2011 | A1 |
20110257555 | Banet et al. | Oct 2011 | A1 |
20120029323 | Zhao | Feb 2012 | A1 |
20120065514 | Naghavi et al. | Mar 2012 | A1 |
20120068906 | Asher et al. | Mar 2012 | A1 |
20120098706 | Lin et al. | Apr 2012 | A1 |
20120104103 | Manzi | May 2012 | A1 |
20120330151 | Weinstein et al. | Dec 2012 | A1 |
20130041268 | Rimoldi et al. | Feb 2013 | A1 |
20130069780 | Tran et al. | Mar 2013 | A1 |
20130090566 | Muhlsteff et al. | Apr 2013 | A1 |
20130123614 | Bernstein et al. | May 2013 | A1 |
20130184573 | Pahlevan et al. | Jul 2013 | A1 |
20130190646 | Weinstein et al. | Jul 2013 | A1 |
20130225989 | Saroka et al. | Aug 2013 | A1 |
20130231550 | Weinstein et al. | Sep 2013 | A1 |
20130297344 | Cosentino et al. | Nov 2013 | A1 |
20130310700 | Wiard et al. | Nov 2013 | A1 |
20140046690 | Gunderson et al. | Feb 2014 | A1 |
20140081159 | Tao et al. | Mar 2014 | A1 |
20140128032 | Muthukumar | May 2014 | A1 |
20140163425 | Tran | Jun 2014 | A1 |
20140288436 | Venkatraman et al. | Sep 2014 | A1 |
20150025333 | Weinstein et al. | Jan 2015 | A1 |
20150150477 | Weinstein et al. | Jun 2015 | A1 |
20150164349 | Gopalakrishnan et al. | Jun 2015 | A1 |
20150335310 | Bernstein et al. | Nov 2015 | A1 |
20160073924 | Weinstein et al. | Mar 2016 | A1 |
20160198957 | Arditi et al. | Jul 2016 | A1 |
20160198976 | Weinstein et al. | Jul 2016 | A1 |
20160213321 | Weinstein et al. | Jul 2016 | A1 |
20160317054 | Weinstein et al. | Nov 2016 | A1 |
20160345845 | Ravid et al. | Dec 2016 | A1 |
20170035327 | Yuen et al. | Feb 2017 | A1 |
20170135598 | Weinstein et al. | May 2017 | A1 |
20170238966 | Weinstein et al. | Aug 2017 | A1 |
20170296093 | Weinstein et al. | Oct 2017 | A1 |
20190046038 | Weinstein et al. | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
101032400 | Sep 2007 | CN |
101516437 | Aug 2009 | CN |
10008886 | Sep 2001 | DE |
1834588 | Sep 2007 | EP |
2506917 | Oct 2012 | EP |
10-137193 | May 1998 | JP |
2000-235006 | Aug 2000 | JP |
2001-525925 | Dec 2001 | JP |
2004-526488 | Sep 2004 | JP |
2006-208070 | Aug 2006 | JP |
2006-319767 | Nov 2006 | JP |
2007-061359 | Mar 2007 | JP |
2008-515548 | May 2008 | JP |
2008-148141 | Jun 2008 | JP |
2008-518706 | Jun 2008 | JP |
2008-530546 | Jul 2008 | JP |
2008-542759 | Nov 2008 | JP |
2009-514619 | Apr 2009 | JP |
2009-522034 | Jun 2009 | JP |
2010-512190 | Apr 2010 | JP |
2010-537766 | Dec 2010 | JP |
2011-507583 | Mar 2011 | JP |
2011-524213 | Sep 2011 | JP |
WO 2003009752 | Feb 2003 | WO |
WO 2006127719 | Nov 2006 | WO |
WO 2006130798 | Dec 2006 | WO |
WO 2007017861 | Feb 2007 | WO |
WO 2008070856 | Jun 2008 | WO |
WO 2008148040 | Dec 2008 | WO |
WO 2009031149 | Mar 2009 | WO |
WO 2009031150 | Mar 2009 | WO |
WO 2009060182 | May 2009 | WO |
WO 2009081331 | Jul 2009 | WO |
WO 2009152625 | Dec 2009 | WO |
WO 2011067623 | Jun 2011 | WO |
WO 2011067685 | Jun 2011 | WO |
WO 2011141915 | Nov 2011 | WO |
WO 2012011065 | Jan 2012 | WO |
WO 2012011066 | Jan 2012 | WO |
WO 2013118121 | Aug 2013 | WO |
WO 2013121290 | Aug 2013 | WO |
WO 2015118544 | Aug 2015 | WO |
Entry |
---|
Alekseev, S. I., et al. “Human Skin permittivity determined by millimeter wave reflection measurements”, Bioelectromagnetics, vol. 28, No. 5, Jul. 1, 2007, pp. 331-339. |
Ascension Technology Corporation, “TrakSTAR Adds Versatility to Ascension's New Product Line: Desktop Model Joins driveBAY Tracker for Fast Guidance of Miniaturized Sensor”, USA, Apr. 7, 2008. |
Bell et al., “A Low-Profile Achimedean Spiral Antenna Using an EBG Ground Plane”, IEEE Antennas and Wireless Propagation Letters 3, pp. 223-226 (2004). |
Beyer-Enke et al., Intra-arterial Doppler flowmetry in the superficial femoral artery following angioplasty., 2000, European Radiology, vol. 10, No. 4, p. 642-649. |
Claron Technology Inc., “MicronTracker 3:A New Generation of Optical Trackers”, Canada, 2009. |
Czum et al., “The Vascular Diagnostic Laboratory”, The Heart & Vascular Institute Newsletter, vol. 1, USA, Winter, 2001. |
Extended Search Report for European Application No. 11809360.8, dated, Mar. 11, 2014. |
Ghosh, et al., Immediate Evaluation of Angioplasty and Stenting Results in Supra-Aortic Arteries by Use of a Doppler-Tipped Guidewire, Aug. 2004, American Journal of Neuroradiology, vol. 25, p. 1172-1176. |
Gentili et al., “A Versatile Microwave Plethysmograph for the Monitoring of Physiological Parameters”, IEEE Transactions on Biomedical Engineering, IEEE Service Center, Pitscataway, NJ, US, vol. 49, No. 10, Oct. 1, 2002. |
Haude et al., Intracoronary Doppler- and Quantitative Coronary Angiography-Derived Predictors of Major Adverse Cardiac Events After Stent Implantation, Mar. 6, 2001, Circulation, vol. 103(9), p. 1212-1217. |
Immersion Corporation, “Immersion Introduces New 3D Digitizing Product-MicroScribe G2; Faster Data Transfer, USB Compatibility, New Industrial Design”, Press Release, San Jose, USA, Jul. 1, 2002. |
International Preliminary Report on Patentability, dated Jan. 31, 2013, for International Application No. PCT/IB2011/053246, 22 pages. |
International Preliminary Report on Patentability, dated Aug. 19, 2014 for International Application No. PCT/IB2013/000663 filed Feb. 15, 2013. |
International Preliminary Report on Patentability, dated Jun. 5, 2012, for International Application No. PCT/IB2010/054861. |
International Preliminary Report on Patentability, dated Jan. 22, 2013, for International Application No. PCT/IB2011/053244, 6 pages. |
International Preliminary Report on Patentability, dated Jun. 5, 2012, for International Application No. PCT/IB2009/055438. |
International Search Report and Written Opinion of the International Searching Authority, dated Dec. 2, 2011, for International Application No. PCT/IB2011/053244, 7 pages. |
International Search Report and Written Opinion, dated Dec. 13, 2011, for International Application No. PCT/IB2011/053246, 24 pages. |
International Search Report and Written Opinion, dated Feb. 26, 2015, for International Application No. PCT/IL2014/050937. |
International Search Report and Written Opinion, dated Jul. 20, 2010, for International Application No. PCT/IB2009/055438. |
International Search Report and Written Opinion, dated Nov. 26, 2013 for International Application No. PCT/IB2013/000663 filed Feb. 15, 2013. |
International Search Report, dated Apr. 5, 2011, for International Application No. PCT/IB2010/054861. |
International Search Report and Written Opinion, dated Nov. 28, 2018 for International Application No. PCT/IL2018/050808 filed Jul. 20, 2018. |
Kantarci et al., Follow-Up of Extracranial Vertebral Artery Stents with Doppler Sonography., Sep. 2006, American Journal of Roentgenology, vol. 187, p. 779-787. |
Lal et al., “Duplex ultrasound velocity criteria for the stented carotid artery”, Journal of Vascular Surgery, vol. 47, No. 1, pp. 63-73, Jan. 2008. |
Larsson et al., “State Diagrams of the Heart—a New Approach to Describing Cardiac Mechanics”, Cardiovascular Ultrasound 7:22 (2009). |
Liang, Jing et al., Microstrip Patch Antennas on Tunable Electromagnetic Band-Gap Substrates, IEEE Transactions on Antennas and Propagation, vol. 57, No. 6, Jun. 2009. |
Lin, J.C. et al., “Microwave Imaging of Cerebral Edema”, Proceedings of the IEEE, IEEE, NY, US, vol. 70, No. 5; May 1, 1982, pp. 523-524. |
Lin et al., “Enhanced performances of a compact conical pattern annular-ring patch antenna using a slotted ground plane,” Microwave Conference, 2001. APMC 2001.2001 Asia-Pacific Dec. 3-6, 201, IEEE, vol. 3, Dec. 3, 2001, pp. 1036-1039. |
Matsugatani et al., “Surface Wave Distribution Over Electromagnetic Bandgap (EBG) and EBG Reflective Shield for Patch Antenna,” IEICE Transactions on Electronics, vol. E88-C, No. 12, Dec. 1, 2005, pp. 2341-2349. |
Miura et al. “Time Domain Reflectometry: Measurement of Free Water in Normal Lung and Pulmonary Edema,” American Journal of Physiology—Lung Physiology 276:1 (1999), pp. L207-L212. |
Notice of Reasons for Rejection, dated Apr. 17, 2015, for JP 2013-520273. |
Notice of Reasons for Rejection, dated Apr. 28, 2014, for JP 2012-541588. |
Notice of Reasons for Rejection, dated Mar. 31, 2015, for JP 2012-541588. |
Partial Supplementary Search Report, dated Oct. 19, 2015, for EP Application No. 13748671.8. |
Paulson, Christine N., et al. “Ultra-wideband radar methods and techniques of medical sensing and imaging” Proceedings of Spie, vol. 6007, Nov. 9, 2005, p. 60070L. |
Pedersen, P.C., et al., “Microwave Reflection and Transmission Measurements for Pulmonary Diagnosis and Monitoring”, IEEE Transactions on Biomedical Engineering, IEEE Service Center, Piscataway, NJ, US, vol. BME-19, No. 1, Jan. 1, 1978; pp. 40-48. |
Polhemus, “Fastrak: The Fast and Easy Digital Tracker”, USA, 2008. |
Ringer et al., Follow-up of Stented Carotid Arteries by Doppler Ultrasound, Sep. 2002, Neurosurgery, vol. 51, No. 3, p. 639-643. |
Supplementary European Search Report and European Search Opinion, dated Jun. 13, 2013, for European Application No. 09851811.1. |
Supplementary European Search Report and European Search Opinion, dated Mar. 11, 2014, for European Application No. 11809359.1. |
Supplementary European Search Report and Search Opinion, dated Dec. 4, 2014, for EP Application No. 10834292.4. |
Supplementary European Search Report, dated Mar. 7, 2016, for EP Application No. 13748671.8. |
Written Opinion for International Application No. PCT/IB2010/054861 dated Apr. 5, 2011. |
Yang et al., “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Transactions on Antennas and Propagation, vol. 51, No. 10, Oct. 1, 2003, pp. 2691-2703. |
Yang, F. et al. “Enhancement of Printed Dipole Antennas Characteristics Using Semi-EBG Ground Plane”, Journal of Electromagnetic Waves and Application, U.S., Taylor & Francis, Apr. 3, 2006, vol. 8, pp. 993-1006. |
Zhang et al., “Planar artificial magnetic conductors and patch antennas,” IEEE Transactions on Antennasand Propagation, vol. 51, No. 10, Oct. 1, 2003, pp. 2704-2712. |
Number | Date | Country | |
---|---|---|---|
20200297309 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14621252 | Feb 2015 | US |
Child | 15422416 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15422416 | Feb 2017 | US |
Child | 16858374 | US | |
Parent | 12759715 | Apr 2010 | US |
Child | 14621252 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2009/055438 | Dec 2009 | US |
Child | 12759715 | US |