The video game industry has seen many changes over the years. As computing power has expanded, developers of video games have likewise created game software that takes advantage of these increases in computing power. To this end, video game developers have been coding games that incorporate sophisticated operations and mathematics to produce a very realistic game experience.
Example gaming platforms, may be the Sony Playstation or Sony Playstation2 (PS2), each of which is sold in the form of a game console. As is well known, the game console is designed to connect to a monitor (usually a television) and enable user interaction through handheld controllers. The game console is designed with specialized processing hardware, including a CPU, a graphics synthesizer for processing intensive graphics operations, a vector unit for performing geometry transformations, and other glue hardware, firmware, and software. The game console is further designed with an optical disc tray for receiving game compact discs for local play through the game console. Online gaming is also possible, where a user can interactively play against or with other users over the Internet.
As game complexity continues to intrigue players, game and hardware manufacturers have continued to innovate to enable additional interactivity. In reality, however, the way in which users interact with a game has not changed dramatically over the years. Commonly, users still play computer games using hand held controllers or interact with programs using mouse pointing devices.
In view of the foregoing, there is a need for methods and systems that enable more advanced user interactivity with game play.
Broadly speaking, the present invention fills these needs by providing an apparatus and method that facilitates interactivity with a computer program. In one embodiment, the computer program is a game program, but without limitation, the apparatus and method can find applicability in any consumer electronic device that will require a user to interact therewith. The present invention simplifies user interaction experience through machine recognizable gestures based on pointing to the interface and discriminating commands based on factors including trigger cues and position determination of a hand or object under user control.
In one embodiment, a method for detecting direction when interfacing with a computer program is described. The method includes capturing an image presented in front of an image capture device. The image capture device has a capture location in a coordinate space. When a person is captured in the image, the method includes identifying a human head in the image and assigning the human head a head location in the coordinate space. The method also includes identifying an object held by the person in the image and assigning the object an object location in coordinate space. The method further includes identifying a relative position in coordinate space between the head location and the object location when viewed from the capture location. The relative position defines a pointing direction of the object when viewed by the image capture device.
In another embodiment, a method for detecting pointing direction of an object directed toward a display screen that can render graphics of a computer program is provided. The method includes capturing an image presented in front of an image capture device. The image capture device has a capture location in a coordinate space that is proximate to the display screen. When a person is captured in the image, the method includes identifying a first body part of the person in the image and assigning the first body part a first location in the coordinate space. Then the method includes identifying a second body part of the person in the image and assigning the second body part a second location in coordinate space. Once the first and second body parts are identified, the method moves to identifying a relative position in coordinate space between the first location and the second location when viewed from the capture location. The relative position defines a pointing direction of the second body part when viewed by the image capture device at the capture location that is proximate to the display screen.
In one embodiment, an apparatus for capturing image and sound during interactivity with a computer program is provided. The apparatus includes an image capture unit that is configured to capture one or more image frames. These image frames are analyzed to identify a person's head and a person's hand. Based on the relative positioning of the hand and head, the apparatus can ascertain a pointing direction, which may be translated as the pointing location on a display screen.
Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The invention, together with further advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings.
FIGS. 7 and 8A-8B illustrate examples of hand positions, when the hand positions and shapes are analyzed to determine a desired trigger or tracking response by the computer program, in accordance with one embodiment of the present invention.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order not to obscure the present invention.
In a specific example, but not limited to any brand, the game console can be a one manufactured by Sony Computer Entertainment Inc., Nintendo, Microsoft, or any other manufacturer. The image capture device 105 can be as simple as a standard web cam or can include more advanced technology. In one embodiment, the image capture device should be capable of capturing images, digitizing the images, and communicating the image data back to the computer 102. In some embodiments, the image capture device will have logic integrated therein for performing the digitizing and another embodiment the image capture device 105 will simply transmit the captured data back to the computer 102 for digitizing. In either case, the image capture device 105 is capable of capturing either color or black and white images of any object located in front of the image capture device 105.
For example purposes only, the video game is a target shooting game in which the person 112 wishes to aim at a target and earn points commensurate with his or her performance. As illustrated on the display screen 110, an image 112′ of the person 112 may also be placed on the display screen 110 during game play. Alternatively, the person's image 112′ may be omitted from the display screen, depending on the particular device under control or game being played. In this example, the user experience may be enhanced by illustrating an image 112′ of the person 112 during the target shooting exercise to present more reality during game play. A feature of the target shooting game is the ability for person 112 to point or direct an object 124 at particular interactive graphics on the display screen 110.
To achieve accurate pointing direction of the object 124, which in this case and for example purposes is a gun, the person 112 will hold the object 124 with his or her hand 122. The hand 122 will be directionally pointed toward the display screen 110. The image capture device 105 will at this point, analyze the digital image capture of the person 112 to determine the location of the person's 112 head 120, and the location of the person's 112 hand 122. As shown, the person's 112 hand is extended in front of his body and the image capture device will identify the object 124 when examining the captured digital image. The captured digital image will also be examined by code executed at the computer 102 to ascertain the location of the person's 112 head 120. In one embodiment, head tracking is completed with a combination of a template matching (for speed performance), coupled to a face detection code. The face detection code will essentially identify the location of the user's face by locating the user's eyes and other facial features. For additional information on head and face detection, reference may be made to co-pending U.S. patent application Ser. No. 10/663,236, entitled “METHOD AND APPARATUS FOR ADJUSTING A VIEW OF A SCENE BEING DISPLAYED ACCORDING TO TRACKED HEAD MOTION”, filed on Sep. 15, 2003.
The object 124 will, in one embodiment, have an identifier which may be color or lights (e.g., light emitting diodes “LEDs”) coupled to the object so that the program analyzing the captured digital image will easily identify the location of the object 124. Once the computer program has identified the location of the person's head 120 (H) and the location of the person's hand 122 (h), the computer program will perform computations to determine a relative angle from the image capture device position, and between the detected object 124, and the head 120.
As illustrated in
In this example, the person 112 is holding the object 124 out in front of his body at about arm's length. This distance is shown to be the approximate arm's length detect (ALD) that defines the location of the approximate place where the image capture device 105 will attempt to capture the position of the hand 122 and associated object 124. The approximate arm's length detect (ALD) can vary, depending upon the user's arm length, but generally should be provided to allow a distance relationship between the location of the head 120 and the hand 122. For instance, there should be at least a minor projection of the hand 122 in front of the person's body to point to different locations of the display screen 110.
Altitude angle=arctan((yh−yH)/(zh−zH))
In a similar manner, the azimuth angle theta of
Azimuth angle=arctan((xh−xH)/(zh−zH))
When the user moves his hand down (e.g., as captured in a later frame) as illustrated in
The tracking indicator 130 may be provided by way of a number of implementations. One implementation might be a light indicator that can be tracked by the computer program that analyzes the captured digital images, or may be in the form of a color indicator that the computer can identify quickly from the captured digital images. The hand itself may be the tracking indicator 130. In still another embodiment, the tracing indicator 130 may be provided as a reflective tape that will have different coloring or intensity depending on the angle that it might be displayed when shown to the image capture device 105. In this example, the object 104 is tracked as the user moves his hand 122 to different regions pointed to on the display screen 110.
In one embodiment, while the user moves his hand 122 relative to the head 120, the tracking indicator 130 will allow the computer program to provide a visual indicator on the display screen 110. This visual indicator on the display screen 110 will allow the user to understand where the object is currently pointing to on the display screen 110.
In another embodiment, the detection region 124a will also include a trigger indicator 132. The trigger indicator 132 may be in the form of a light that is triggered ON and OFF when the user pulls the trigger of the object 124. For instance, the detection region 124a is shown in
In another embodiment, the response by the computer program may be gradually changed, depending on the angle at which the detection region 124b is tilted. For instance, the user may immediately begin to shoot the gun (or trigger the shooting of the gun) when the tilting begins and is executed between the tilt of
An example of this interactivity may be to trigger a reloading operation to occur for a gun that is being used in a video game, or a change of gun type being used on the video game program. Once these changes are processed, the video display screen 110 will produce a different graphical animation for the user, depending upon the control being provided and detected by the image capture device.
Commands and trigger states are not limited to an ON and OFF parameters, but can be incrementally changed depending on the position of the relative state and angles of the trigger and track indicators. For example, the state of the trigger may be determined in a linear or variable state as opposed to ON or OFF. Any technique can be used to determine the relative trigger position including a resistive types used to control acceleration in remote control race tracks. The device, or gun in this example, can communicate the state of its trigger by encoding and transmitting its value in any of a multitude of ways known in the art. A variety of commands and gestures may be formulated based on the state of the trigger and the position of the device, including those based on all machine recognizable gestures.
Consequently, the detection of the user's hand and the orientation of the user's hand can be used to provide the interactivity necessary when analyzing the position of the user's hand relative to the user's head, and the pointing activity on a display screen. The pointing activity will allow the user to select icons, control the device under operation, shoot at graphical objects, select or scroll graphical objects, de-select graphical objects, turn ON and OFF graphical objects, disperse graphical objects, or simply interface with the graphics icons and features of a computer program being displayed on a display screen 110. However, in certain configurations, it may be desirable, that the system employing the present invention may operate with minimal or no icons on a display screen. Instead, the system may simply just recognize the gestures of the user and provide a control input to the device under operation. For example, a television or related peripheral configured or integrated with the present invention may be controlled by the present invention. Changing a channel, for example, may not necessarily involve interacting with an icon as opposed to recognizing a gesture command according to the scheme presented in the present invention.
The interactive graphics of the computer program may be associate with a computer game, but may also be associated with any other program or interface that may require interactivity by a user. For instance, the interactivity may include the selection or de-selection of objects, opening files, changing channels, recording TV shows, closing files, accessing files over a network, or interactively communicating with users by way of the internet, electronic mail or by electronic video mail, selecting a consumer electronic device, turning a device ON or OFF. Next, the operation 206 will include the capturing of an image that is presented substantially in front of the image capture device. In one embodiment, the image will include a person that is part of the captured space, and who is in front of the display screen and the capture device.
Once the image has been captured in operation 206, operation 208 will include the identification of a human head of the person that is found in the captured image. The identified human head will therefore be analyzed to ascertain the head location in the coordinate space relative to the capture location. The method then moves to operation 210 where an object held by the person in the image is identified. The object's location is identified such that the coordinate space of the object is identified relative to the coordinate space of the capture location. Having the identified head location and the identified object location in memory, at operation 212, the computer program can identify a relative position in coordinate space between the head location and the object location when viewed from the capture location reference point (e.g., coordinate (0,0,0)). As mentioned above, an azimuth angle and an altitude angle can be computed for the relative locations of the head and the hand relative to the image capture device. This relative position in coordinate space is calculated for the captured frame.
In operation 214, a pointing direction is established for the object using the relative position identified between the object location and the head location. The pointing direction is displayed on the display screen to enable interaction with the interactive graphics provided by the computer program and displayed on the display screen.
The method moves to operation 254 where a display screen is provided for rendering interactive graphics of the computer program. The interactive graphics may be a computer game or may be any other program as defined above. In operation 256, an image is captured in front of the image capture device and a person is captured in the image. The captured image may be that of a digital frame of video. In one embodiment, the digital frame of video may be a JPEG frame or may be part of a compressed video frame (e.g., MPEG or the like).
Next, the operation moves to the identification of a human head of the person in the captured image in operation 258. The human head is analyzed on the captured image to determine a head location and the coordinate space relative to the image capture device. In operation 260, the method moves to the identification of an object held by the person in the image and determining an object location in the coordinate space. In operation 262, a relative position is identified in the coordinate space between the head location and the object location when viewed from the capture location of the capture device. The relative position will include a calculation of an azimuth angle and an altitude angle relative to the image capture device.
In operation 264, during execution of the computer program, the operations identified as A, B, C and D corresponding to operations 256, 258, 260, and 262 will be performed iteratively and continuously, depending on a rate desired for the performance of a computer program. For instance, the execution of operations A through D will occur at the rate of one time for each frame that is captured or only after a certain number of frames are captured. The rate at which operations A through D are performed will therefore depend on the specific environment and the need for accurate detection of the pointer location and the select ability of interactive objects on the display screen. If the display screen is processing a video game that has objects that are moving at rapid rates, the tracking operation may require that operations A through D be performed for each frame that is displayed on the video display screen.
In operation 266, the method indicates a continual update of the point and direction of the object using the relative position. The pointing direction is displayed on the display screen to enable interaction with the interactive graphics of the computer program. It should again be understood that the pointing direction can be to enable a user to select icons, de-select icons, move icons, open objects, open files, save files, move files, and interact with files that may be part of a file database, or part of a graphical user interface on a computer desktop or the like.
These and additional aspects of the present invention may be implemented by one or more processors which execute software instructions. According to one embodiment of the present invention, a single processor executes both input image processing and output image processing. However, as shown in the figures and for ease of description, the processing operations are shown as being divided between an input image processor 302 and an output image processor 304. It should be noted that the invention is in no way to be interpreted as limited to any special processor configuration, such as more than one processor. The multiple processing blocks shown in
IOP bus 428 couples CPU 424 to various input/output devices and other busses or device. IOP bus 428 is connected to input/output processor memory 430, controller 432, memory card 434, Universal Serial Bus (USB) port 436, IEEE1394 (also known as a Firewire interface) port 438, and bus 450. Bus 450 couples several other system components to CPU 424, including operating system (“OS”) ROM 440, flash memory 442, sound processing unit (“SPU”) 444, optical disc controlling 4, and hard disk drive (“HDD”) 448. In one aspect of this embodiment, the video capture device can be directly connected to IOP bus 428 for transmission therethrough to CPU 424; where, data from the video capture device can be used to change or update the values used to generate the graphics images in GPU 426. Moreover, embodiments of the present invention can use a variety of image processing configurations and techniques, such as those described in U.S. patent application Ser. No. 10/365,120 filed Feb. 11, 2003, and entitled METHOD AND APPARATUS FOR REAL TIME MOTION CAPTURE, which is hereby incorporated by reference in its entirety. The computer processing system may run on a CELL™ processor.
Programs or computer instructions embodying aspects of the present invention can be provided by several different methods. For example, the user input method for interaction with graphical images can be provided in the form of a program stored in HDD 448, flash memory 442, OS ROM 240, or on memory card 432. Alternatively, the program can be downloaded to the processing unit through one or more input ports coupled to CPU 424. The program modules defining the input method can be provided with the game or application program that is executed by CPU 424 and displayed on display device 427 or they may be provided separately from the application program, such as for execution from local main memory 420.
In still another embodiment, the program may be executed partially on a server connected to the internet and partially on the local computer (e.g., game console, desktop, laptop, or wireless hand held device). Still further, the execution can be entirely on a remote server or processing machine, which provides the execution results to the local display screen. In this case, the local display or system should have minimal processing capabilities to receive the data over the network (e.g., like the Internet) and render the graphical data on the screen. The user's input, by way of the capture device can be communicated back to the server and then the response represented on the screen.
Recent advances in three-dimensional imagery have opened the door for increased possibilities in real-time interactive computer animation. In particular, new “depth cameras” provide the ability to capture and map the third-dimension in addition to normal two-dimensional video imagery. With the new depth data, embodiments of the present invention allow the placement of computer-generated objects in various positions within a video scene in real-time, including behind other objects.
Moreover, embodiments of the present invention provide real-time interactive gaming experiences for users. For example, users can interact with various computer-generated objects in real-time. Furthermore, video scenes can be altered in real-time to enhance the user's game experience. For example, computer generated costumes can be inserted over the user's clothing, and computer generated light sources can be utilized to project virtual shadows within a video scene. Hence, using the embodiments of the present invention and a depth camera, users can experience an interactive game environment within their own living room.
As mentioned above, the depth camera 502 provides the ability to capture and map the third-dimension in addition to normal two-dimensional video imagery.
However, unlike a conventional camera, a depth camera also captures depth values for the scene.
In operation, a z-value is captured for each pixel of the scene. Each z-value represents a distance from the camera to a particular object in the scene corresponding to the related pixel. For example, in
Embodiments of the present invention also contemplate distributed image processing configurations. For example, the invention is not limited to the captured image and display image processing taking place in one or even two locations, such as in the CPU or in the CPU and one other element. For example, the input image processing can just as readily take place in an associated CPU, processor or device that can perform processing; essentially all of image processing can be distributed throughout the interconnected system. Thus, the present invention is not limited to any specific image processing hardware circuitry and/or software. The embodiments described herein are also not limited to any specific combination of general hardware circuitry and/or software, nor to any particular source for the instructions executed by processing components.
With the above embodiments in mind, it should be understood that the invention may employ various computer-implemented operations involving data stored in computer systems. These operations include operations requiring physical manipulation of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. Further, the manipulations performed are often referred to in terms, such as producing, identifying, determining, or comparing.
The above described invention may be practiced with other computer system configurations including hand-held devices, microprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers and the like. The invention may also be practiced in distributing computing environments where tasks are performed by remote processing devices that are linked through a communications network.
The invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can be thereafter read by a computer system, including an electromagnetic wave carrier. Examples of the computer readable medium include hard drives, network attached storage (NAS), read-only memory, random-access memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical and non-optical data storage devices. The computer readable medium can also be distributed over a network coupled computer system so that the computer readable code is stored and executed in a distributed fashion.
Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
This application is a continuation in part (CIP) of U.S. patent application Ser. No. 10/663,236, entitled “METHOD AND APPARATUS FOR ADJUSTING A VIEW OF A SCENE BEING DISPLAYED ACCORDING TO TRACKED HEAD MOTION”, filed on Sep. 15, 2003, is hereby incorporated by reference. This application is also a continuation in part (CIP) of U.S. patent application Ser. No. 10/759,782, entitled “METHOD AND APPARATUS FOR LIGHT INPUT DEVICE”, filed on Jan. 16, 2004, and is hereby incorporated by reference. This application is related to U.S. patent application Ser. No. 11/302,511, filed Dec. 12, 2005, entitled “METHODS AND SYSTEMS FOR ENABLING DEPTH AND DIRECTION DETECTION WHEN INTERFACING WITH A COMPUTER PROGRAM” to inventors Richard L. Marks and Hrishikesh R. Deshpande, which is filed on the same date as the instant application and is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3943277 | Everly et al. | Mar 1976 | A |
4263504 | Thomas | Apr 1981 | A |
4313227 | Eder | Jan 1982 | A |
4558864 | Medwedeff | Dec 1985 | A |
4565999 | King et al. | Jan 1986 | A |
4802227 | Elko et al. | Jan 1989 | A |
4823001 | Kobayashi et al. | Apr 1989 | A |
4843568 | Krueger et al. | Jun 1989 | A |
5034986 | Karmann et al. | Jul 1991 | A |
5055840 | Bartlett | Oct 1991 | A |
5111401 | Everett et al. | May 1992 | A |
5144594 | Gilchrist | Sep 1992 | A |
5260556 | Lake et al. | Nov 1993 | A |
5297061 | Dementhon et al. | Mar 1994 | A |
5335011 | Addeo et al. | Aug 1994 | A |
5426450 | Drumm | Jun 1995 | A |
5455685 | Mori | Oct 1995 | A |
5517333 | Tamura et al. | May 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5543818 | Scott | Aug 1996 | A |
5557684 | Wang et al. | Sep 1996 | A |
5563988 | Maes et al. | Oct 1996 | A |
5568928 | Munson et al. | Oct 1996 | A |
5581276 | Cipolla et al. | Dec 1996 | A |
5583478 | Renzi | Dec 1996 | A |
5586231 | Florent et al. | Dec 1996 | A |
5611000 | Szeliski et al. | Mar 1997 | A |
5616078 | Oh | Apr 1997 | A |
5638228 | Thomas, III | Jun 1997 | A |
5649021 | Matey et al. | Jul 1997 | A |
5677710 | Thompson-Rohrlich | Oct 1997 | A |
5706364 | Kopec et al. | Jan 1998 | A |
5768415 | Jagadish et al. | Jun 1998 | A |
5796354 | Cartabiano et al. | Aug 1998 | A |
5818424 | Korth | Oct 1998 | A |
5846086 | Bizzi et al. | Dec 1998 | A |
5850222 | Cone | Dec 1998 | A |
5850473 | Andersson | Dec 1998 | A |
5870100 | DeFreitas | Feb 1999 | A |
5883616 | Koizumi et al. | Mar 1999 | A |
5889672 | Schuler et al. | Mar 1999 | A |
5900863 | Numazaki | May 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5914723 | Gajewska | Jun 1999 | A |
5917493 | Tan et al. | Jun 1999 | A |
5917936 | Katto | Jun 1999 | A |
5923318 | Zhai et al. | Jul 1999 | A |
5929444 | Leichner | Jul 1999 | A |
5930383 | Netzer | Jul 1999 | A |
5963250 | Parker et al. | Oct 1999 | A |
5993314 | Dannenberg et al. | Nov 1999 | A |
6009210 | Kang | Dec 1999 | A |
6014167 | Suito et al. | Jan 2000 | A |
6021219 | Andersson et al. | Feb 2000 | A |
6031934 | Ahmad et al. | Feb 2000 | A |
6037942 | Millington | Mar 2000 | A |
6044181 | Szeliski et al. | Mar 2000 | A |
6049619 | Anandan et al. | Apr 2000 | A |
6056640 | Schaaij | May 2000 | A |
6057909 | Yahav et al. | May 2000 | A |
6061055 | Marks | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6075895 | Qiao et al. | Jun 2000 | A |
6091905 | Yahav et al. | Jul 2000 | A |
6097369 | Wambach | Aug 2000 | A |
6100517 | Yahav et al. | Aug 2000 | A |
6100895 | Miura et al. | Aug 2000 | A |
6101289 | Kellner | Aug 2000 | A |
6115052 | Freeman et al. | Sep 2000 | A |
6134346 | Berman et al. | Oct 2000 | A |
6151009 | Kanade et al. | Nov 2000 | A |
6160540 | Fishkin et al. | Dec 2000 | A |
6173059 | Huang et al. | Jan 2001 | B1 |
6184863 | Sibert et al. | Feb 2001 | B1 |
6191773 | Maruno et al. | Feb 2001 | B1 |
6195104 | Lyons | Feb 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6243074 | Fishkin et al. | Jun 2001 | B1 |
6243491 | Anderson | Jun 2001 | B1 |
6275213 | Tremblay et al. | Aug 2001 | B1 |
6281930 | Parker et al. | Aug 2001 | B1 |
6297838 | Chang et al. | Oct 2001 | B1 |
6304267 | Sata | Oct 2001 | B1 |
6307549 | King et al. | Oct 2001 | B1 |
6307568 | Rom | Oct 2001 | B1 |
6323839 | Fukuda et al. | Nov 2001 | B1 |
6323942 | Bamji | Nov 2001 | B1 |
6326901 | Gonzales | Dec 2001 | B1 |
6327073 | Yahav et al. | Dec 2001 | B1 |
6331911 | Manassen et al. | Dec 2001 | B1 |
6346929 | Fukushima et al. | Feb 2002 | B1 |
6351661 | Cosman | Feb 2002 | B1 |
6371849 | Togami | Apr 2002 | B1 |
6392644 | Miyata et al. | May 2002 | B1 |
6393142 | Swain et al. | May 2002 | B1 |
6394897 | Togami | May 2002 | B1 |
6400374 | Lanier | Jun 2002 | B2 |
6411392 | Bender et al. | Jun 2002 | B1 |
6411744 | Edwards | Jun 2002 | B1 |
6417836 | Kumar et al. | Jul 2002 | B1 |
6441825 | Peters | Aug 2002 | B1 |
6473516 | Kawaguchi et al. | Oct 2002 | B1 |
6513160 | Dureau | Jan 2003 | B2 |
6542927 | Rhoads | Apr 2003 | B2 |
6545706 | Edwards et al. | Apr 2003 | B1 |
6556704 | Chen | Apr 2003 | B1 |
6577748 | Chang | Jun 2003 | B2 |
6580414 | Wergen et al. | Jun 2003 | B1 |
6580415 | Kato et al. | Jun 2003 | B1 |
6587573 | Stam et al. | Jul 2003 | B1 |
6593956 | Potts et al. | Jul 2003 | B1 |
6595642 | Wirth | Jul 2003 | B2 |
6621938 | Tanaka et al. | Sep 2003 | B1 |
6628265 | Hwang | Sep 2003 | B2 |
6661914 | Dufour | Dec 2003 | B2 |
6674415 | Nakamura et al. | Jan 2004 | B2 |
6677967 | Swano et al. | Jan 2004 | B2 |
6677987 | Girod | Jan 2004 | B1 |
6709108 | Levine et al. | Mar 2004 | B2 |
6720949 | Pryor et al. | Apr 2004 | B1 |
6751338 | Wallack | Jun 2004 | B1 |
6753849 | Curran et al. | Jun 2004 | B1 |
6769769 | Podlleanu et al. | Aug 2004 | B2 |
6772057 | Breed et al. | Aug 2004 | B2 |
6774939 | Peng | Aug 2004 | B1 |
6785329 | Pan et al. | Aug 2004 | B1 |
6789967 | Forester | Sep 2004 | B1 |
6795068 | Marks | Sep 2004 | B1 |
6809776 | Simpson et al. | Oct 2004 | B1 |
6819318 | Geng | Nov 2004 | B1 |
6847311 | Li | Jan 2005 | B2 |
6881147 | Naghi et al. | Apr 2005 | B2 |
6917688 | Yu et al. | Jul 2005 | B2 |
6919824 | Lee | Jul 2005 | B2 |
6924787 | Kramer et al. | Aug 2005 | B2 |
6931125 | Smallwood | Aug 2005 | B2 |
6943776 | Ehrenburg | Sep 2005 | B2 |
6947576 | Stam et al. | Sep 2005 | B2 |
6951515 | Ohshima et al. | Oct 2005 | B2 |
6952198 | Hansen | Oct 2005 | B2 |
6970183 | Monroe | Nov 2005 | B1 |
7016411 | Azuma et al. | Mar 2006 | B2 |
7039199 | Rui | May 2006 | B2 |
7039253 | Matsuoka et al. | May 2006 | B2 |
7042440 | Pryor et al. | May 2006 | B2 |
7054452 | Ukita | May 2006 | B2 |
7059962 | Watashiba | Jun 2006 | B2 |
7061507 | Tuomi et al. | Jun 2006 | B1 |
7098891 | Pryor | Aug 2006 | B1 |
7102615 | Marks | Sep 2006 | B2 |
7106366 | Parker et al. | Sep 2006 | B2 |
7116330 | Marshall et al. | Oct 2006 | B2 |
7139767 | Taylor et al. | Nov 2006 | B1 |
7148922 | Shimada | Dec 2006 | B2 |
7161634 | Long | Jan 2007 | B2 |
7164413 | Davis et al. | Jan 2007 | B2 |
7183929 | Antebi et al. | Feb 2007 | B1 |
7212308 | Morgan | May 2007 | B2 |
7224384 | Iddan et al. | May 2007 | B1 |
7227526 | Hildreth et al. | Jun 2007 | B2 |
7227976 | Jung et al. | Jun 2007 | B1 |
7245273 | Eberl et al. | Jul 2007 | B2 |
7259375 | Tichit et al. | Aug 2007 | B2 |
7274305 | Lutrell | Sep 2007 | B1 |
7283679 | Okada et al. | Oct 2007 | B2 |
7301530 | Lee et al. | Nov 2007 | B2 |
7305114 | Wolff et al. | Dec 2007 | B2 |
7346387 | Wachter et al. | Mar 2008 | B1 |
7364297 | Goldfain et al. | Apr 2008 | B2 |
7379559 | Wallace et al. | May 2008 | B2 |
7446650 | Schofield et al. | Nov 2008 | B2 |
20010056477 | McTernan et al. | Dec 2001 | A1 |
20020085097 | Colmenarez et al. | Jul 2002 | A1 |
20020110273 | Dufour | Aug 2002 | A1 |
20020134151 | Naruoka et al. | Sep 2002 | A1 |
20020158873 | Williamson | Oct 2002 | A1 |
20030020718 | Marshall et al. | Jan 2003 | A1 |
20030032466 | Watashiba | Feb 2003 | A1 |
20030032484 | Ohshima et al. | Feb 2003 | A1 |
20030093591 | Hohl | May 2003 | A1 |
20030100363 | Ali | May 2003 | A1 |
20030123705 | Stam et al. | Jul 2003 | A1 |
20030160862 | Charlier et al. | Aug 2003 | A1 |
20040001082 | Said | Jan 2004 | A1 |
20040017355 | Shim | Jan 2004 | A1 |
20040046736 | Pryor et al. | Mar 2004 | A1 |
20040063480 | Wang | Apr 2004 | A1 |
20040063481 | Wang | Apr 2004 | A1 |
20040070565 | Nayar et al. | Apr 2004 | A1 |
20040087366 | Shum et al. | May 2004 | A1 |
20040095327 | Lo | May 2004 | A1 |
20040140955 | Metz | Jul 2004 | A1 |
20040155962 | Marks | Aug 2004 | A1 |
20040207597 | Marks | Oct 2004 | A1 |
20040213419 | Varma et al. | Oct 2004 | A1 |
20040239670 | Marks | Dec 2004 | A1 |
20040254017 | Cheng | Dec 2004 | A1 |
20050037844 | Shum et al. | Feb 2005 | A1 |
20050047611 | Mao | Mar 2005 | A1 |
20050059488 | Larsen et al. | Mar 2005 | A1 |
20050088369 | Yoshioka | Apr 2005 | A1 |
20050105777 | Koslowski et al. | May 2005 | A1 |
20050117045 | Abdellatif et al. | Jun 2005 | A1 |
20060033713 | Pryor | Feb 2006 | A1 |
20060035710 | Festejo et al. | Feb 2006 | A1 |
20070066394 | Ikeda et al. | Mar 2007 | A1 |
20070120834 | Boillot | May 2007 | A1 |
20070120996 | Boillot | May 2007 | A1 |
20080056561 | Sawachi | Mar 2008 | A1 |
20080070684 | Haigh-Hutchinson | Mar 2008 | A1 |
20090010494 | Bechtel et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
0353200 | Jan 1990 | EP |
0353200 | Jan 1990 | EP |
0613294 | Aug 1994 | EP |
0652686 | May 1995 | EP |
0750202 | Dec 1996 | EP |
0750202 | Dec 1996 | EP |
0823 683 | Feb 1998 | EP |
0869 458 | Oct 1998 | EP |
1180 384 | Feb 2002 | EP |
1279 425 | Jan 2003 | EP |
1435258 | Jul 2004 | EP |
GB 2 398 691 | Aug 2004 | EP |
2814965 | Apr 2002 | FR |
2832 892 | May 2003 | FR |
2206716 | Jan 1989 | GB |
2206716 | Nov 1989 | GB |
2376397 | Nov 2002 | GB |
2 376 397 | Dec 2002 | GB |
2388418 | Nov 2003 | GB |
1284897 | Nov 1989 | JP |
6102980 | Apr 1994 | JP |
9128141 | May 1997 | JP |
9185456 | Jul 1997 | JP |
1138949 | Feb 1999 | JP |
2000-172431 | Jun 2000 | JP |
2001-166676 | Jun 2001 | JP |
2004-145448 | May 2004 | JP |
WO 9926198 | May 1999 | WO |
WO 9926198 | Oct 1999 | WO |
WO 0118563 | Mar 2001 | WO |
WO 0227456 | Feb 2002 | WO |
WO 03079179 | Sep 2003 | WO |
WO 2004041379 | May 2004 | WO |
WO 2005073838 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070298882 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10663236 | Sep 2003 | US |
Child | 11301673 | US | |
Parent | 10759782 | Jan 2004 | US |
Child | 10663236 | US |