Embodiments of the subject matter described herein relate generally to customer service platforms and, more particularly, to computer systems and applications for configuring and publishing social media posts in a case feed.
Modern software development is evolving away from the client-server model toward network-based processing systems that provide access to data and services via the Internet or other networks. In contrast to traditional systems that host networked applications on dedicated server hardware, a “cloud” computing model allows applications to be provided over the network “as a service” supplied by an infrastructure provider. The infrastructure provider typically abstracts the underlying hardware and other resources used to deliver a customer-developed application so that the customer no longer needs to operate and support dedicated server hardware. The cloud computing model can often provide substantial cost savings to the customer over the life of the application because the customer no longer needs to provide dedicated network infrastructure, electrical and temperature controls, physical security and other logistics in support of dedicated server hardware.
Multi-tenant cloud-based architectures have been developed to improve collaboration, integration, and community-based cooperation between customer tenants without sacrificing data security. Generally speaking, multi-tenancy refers to a system where a single hardware and software platform simultaneously supports multiple user groups (also referred to as “organizations” or “tenants”) from a common data storage element (also referred to as a “multi-tenant database”). The multi-tenant design provides a number of advantages over conventional server virtualization systems. First, the multi-tenant platform operator can often make improvements to the platform based upon collective information from the entire tenant community. Additionally, because all users in the multi-tenant environment execute applications within a common processing space, it is relatively easy to grant or deny access to specific sets of data for any user within the multi-tenant platform, thereby improving collaboration and integration between applications and the data managed by the various applications. The multi-tenant architecture therefore allows convenient and cost effective sharing of similar application features between multiple sets of users.
Robust Customer Relationship Management (CRM) systems and applications have been developed for use both within and outside the multi-tenant environment. In addition, automated systems for gathering social media content from the internet, such as the Radian6™ system available at www.salesforce.com, have been developed to assist customer service agents in locating and responding to customer queries. At the same time, consumers are increasingly interacting with brand agents using on-line social networking sites such as Facebook™, Pinterest™, Tumblr™, Google+™, Hootsuite™ and Twitter™. Presently known CRM applications, however, are not equipped to allow agents to communicate with consumers through on-line social networking sites.
Systems and methods are thus needed for integrating a customer service platform with social media channels to facilitate communication between customer service agents and consumers.
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
Embodiments of the subject matter described herein generally relate to integrating social media posts retrieved from the web into a customer service management (CRM) environment to facilitate interaction between a brand agent and a consumer, regardless of which social media channel the consumer chooses to engage for support (e.g., Twitter, Facebook, and the like). The integration generally involves four components:
i) an application programming interface (API) for receiving social post data from a web-based retrieval module;
ii) a parser for configuring the received data into custom objects and presenting a customer service case (ticket) to a brand agent in a CRM portal;
iii) a social publisher for facilitating seamless interaction between the CRM platform and various social media channels (e.g., Twitter, Facebook); and
ii) a case feed embedded within the CRM case page for tracking and displaying communication threads between the agent and the consumer.
Turning now to
As used herein, a “tenant” or an “organization” should be understood as referring to a group of one or more users that shares access to common subset of the data within the multi-tenant database 130. In this regard, each tenant includes one or more users associated with, assigned to, or otherwise belonging to that respective tenant. Stated another way, each respective user within the multi-tenant system 100 is associated with, assigned to, or otherwise belongs to a particular one of the plurality of tenants supported by the multi-tenant system 100. Tenants may represent companies, corporate departments, business or legal organizations, and/or any other entities that maintain data for particular sets of users (such as their respective customers) within the multi-tenant system 100. Although multiple tenants may share access to the server 102 and the database 130, the particular data and services provided from the server 102 to each tenant can be securely isolated from those provided to other tenants. The multi-tenant architecture therefore allows different sets of users to share functionality and hardware resources without necessarily sharing any of the data 132 belonging to or otherwise associated with other tenants.
The multi-tenant database 130 may be a repository or other data storage system capable of storing and managing the data 132 associated with any number of tenants. The database 130 may be implemented using conventional database server hardware. In various embodiments, the database 130 shares processing hardware 104 with the server 102. In other embodiments, the database 130 is implemented using separate physical and/or virtual database server hardware that communicates with the server 102 to perform the various functions described herein. In an exemplary embodiment, the database 130 includes a database management system or other equivalent software capable of determining an optimal query plan for retrieving and providing a particular subset of the data 132 to an instance of virtual application 128 in response to a query initiated or otherwise provided by a virtual application 128, as described in greater detail below. The multi-tenant database 130 may alternatively be referred to herein as an on-demand database, in that the multi-tenant database 130 provides (or is available to provide) data at run-time to on-demand virtual applications 128 generated by the application platform 110, as described in greater detail below.
In practice, the data 132 may be organized and formatted in any manner to support the application platform 110. In various embodiments, the data 132 is suitably organized into a relatively small number of large data tables to maintain a semi-amorphous “heap”-type format. The data 132 can then be organized as needed for a particular virtual application 128. In various embodiments, conventional data relationships are established using any number of pivot tables 134 that establish indexing, uniqueness, relationships between entities, and/or other aspects of conventional database organization as desired. Further data manipulation and report formatting is generally performed at run-time using a variety of metadata constructs. Metadata within a universal data directory (UDD) 136, for example, can be used to describe any number of forms, reports, workflows, user access privileges, business logic and other constructs that are common to multiple tenants. Tenant-specific formatting, functions and other constructs may be maintained as tenant-specific metadata 138 for each tenant, as desired. Rather than forcing the data 132 into an inflexible global structure that is common to all tenants and applications, the database 130 is organized to be relatively amorphous, with the pivot tables 134 and the metadata 138 providing additional structure on an as-needed basis. To that end, the application platform 110 suitably uses the pivot tables 134 and/or the metadata 138 to generate “virtual” components of the virtual applications 128 to logically obtain, process, and present the relatively amorphous data 132 from the database 130.
The server 102 may be implemented using one or more actual and/or virtual computing systems that collectively provide the dynamic application platform 110 for generating the virtual applications 128. For example, the server 102 may be implemented using a cluster of actual and/or virtual servers operating in conjunction with each other, typically in association with conventional network communications, cluster management, load balancing and other features as appropriate. The server 102 operates with any sort of conventional processing hardware 104, such as a processor 105, memory 106, input/output features 107 and the like. The input/output features 107 generally represent the interface(s) to networks (e.g., to the network 145, or any other local area, wide area or other network), mass storage, display devices, data entry devices and/or the like. The processor 105 may be implemented using any suitable processing system, such as one or more processors, controllers, microprocessors, microcontrollers, processing cores and/or other computing resources spread across any number of distributed or integrated systems, including any number of “cloud-based” or other virtual systems. The memory 106 represents any non-transitory short or long term storage or other computer-readable media capable of storing programming instructions for execution on the processor 105, including any sort of random access memory (RAM), read only memory (ROM), flash memory, magnetic or optical mass storage, and/or the like. The computer-executable programming instructions, when read and executed by the server 102 and/or processor 105, cause the server 102 and/or processor 105 to create, generate, or otherwise facilitate the application platform 110 and/or virtual applications 128 and perform one or more additional tasks, operations, functions, and/or processes described herein. It should be noted that the memory 106 represents one suitable implementation of such computer-readable media, and alternatively or additionally, the server 102 could receive and cooperate with external computer-readable media that is realized as a portable or mobile component or platform, e.g., a portable hard drive, a USB flash drive, an optical disc, or the like.
The application platform 110 is any sort of software application or other data processing engine that generates the virtual applications 128 that provide data and/or services to the client devices 140. In a typical embodiment, the application platform 110 gains access to processing resources, communications interfaces and other features of the processing hardware 104 using any sort of conventional or proprietary operating system 108. The virtual applications 128 are typically generated at run-time in response to input received from the client devices 140. For the illustrated embodiment, the application platform 110 includes a bulk data processing engine 112, a query generator 114, a search engine 116 that provides text indexing and other search functionality, and a runtime application generator 120. Each of these features may be implemented as a separate process or other module, and many equivalent embodiments could include different and/or additional features, components or other modules as desired.
The runtime application generator 120 dynamically builds and executes the virtual applications 128 in response to specific requests received from the client devices 140. The virtual applications 128 are typically constructed in accordance with the tenant-specific metadata 138, which describes the particular tables, reports, interfaces and/or other features of the particular application 128. In various embodiments, each virtual application 128 generates dynamic web content that can be served to a browser or other client program 142 associated with its client device 140, as appropriate.
The runtime application generator 120 suitably interacts with the query generator 114 to efficiently obtain multi-tenant data 132 from the database 130 as needed in response to input queries initiated or otherwise provided by users of the client devices 140. In a typical embodiment, the query generator 114 considers the identity of the user requesting a particular function (along with the user's associated tenant), and then builds and executes queries to the database 130 using system-wide metadata 136, tenant specific metadata 138, pivot tables 134, and/or any other available resources. The query generator 114 in this example therefore maintains security of the common database 130 by ensuring that queries are consistent with access privileges granted to the user and/or tenant that initiated the request.
With continued reference to
In exemplary embodiments, the application platform 110 is utilized to create and/or generate data-driven virtual applications 128 for the tenants that they support. Such virtual applications 128 may make use of interface features such as custom (or tenant-specific) screens 124, standard (or universal) screens 122 or the like. Any number of custom and/or standard objects 126 may also be available for integration into tenant-developed virtual applications 128. As used herein, “custom” should be understood as meaning that a respective object or application is tenant-specific (e.g., only available to users associated with a particular tenant in the multi-tenant system) or user-specific (e.g., only available to a particular subset of users within the multi-tenant system), whereas “standard” or “universal” applications or objects are available across multiple tenants in the multi-tenant system. The data 132 associated with each virtual application 128 is provided to the database 130, as appropriate, and stored until it is requested or is otherwise needed, along with the metadata 138 that describes the particular features (e.g., reports, tables, functions, objects, fields, formulas, code, etc.) of that particular virtual application 128. For example, a virtual application 128 may include a number of objects 126 accessible to a tenant, wherein for each object 126 accessible to the tenant, information pertaining to its object type along with values for various fields associated with that respective object type are maintained as metadata 138 in the database 130. In this regard, the object type defines the structure (e.g., the formatting, functions and other constructs) of each respective object 126 and the various fields associated therewith.
Still referring to
Typically, the user operates a conventional browser application or other client program 142 executed by the client device 140 to contact the server 102 via the network 145 using a networking protocol, such as the hypertext transport protocol (HTTP) or the like. The user typically authenticates his or her identity to the server 102 to obtain a session identifier (“SessionID”) that identifies the user in subsequent communications with the server 102. When the identified user requests access to a virtual application 128, the runtime application generator 120 suitably creates the application at run time based upon the metadata 138, as appropriate.
As noted above, the virtual application 128 may contain Java, ActiveX, or other content that can be presented using conventional client software running on the client device 140; other embodiments may simply provide dynamic web or other content that can be presented and viewed by the user, as desired. As described in greater detail below, the query generator 114 suitably obtains the requested subsets of data 132 from the database 130 as needed to populate the tables, reports or other features of the particular virtual application 128.
Multi-site data retrieval modules, such as Radian6™, gather social media posts from the internet based on a configurable rules engine (e.g., Social Hub™ also available from www.salesforce.com). For example, an organization such as KLM airlines may configure its rules engine to instruct Radian6 to retrieve all “KLM” posts based on hash tags, @mentions, keywords, or any desired combination of metrics. In the case of Radian6, the social post data may be sent to the CRM platform in the form of a Java script object notation (JSON) string, a well-known plain-text format for data storage whose grammar is a subset of the JavaScript expressions. Each JSON string comprises plurality of data fields, for example:
As described in greater detail below in conjunction with
Referring now to
The parser module 308 may comprise APEX™ class code configured to parse the JSON string into objects, and to create a customer service case (ticket) from the objects and present the case for processing by an agent. In an embodiment, the parser 310 creates at least the following two objects from the JSON string: i) a social post; and ii) a social persona. More particularly, the social post object corresponds to the posted message, for example “I lost my luggage.” The social persona object corresponds to the author of the post; if the author is not already represented in the CRM contact database, a new contact may be created for the author. Consequently, when a subsequent post is arrives, the CRM system can assign it to an existing case, as appropriate. In addition, by using information obtained from the contact profile, the case may be given appropriate (e.g., priority) treatment. In this way, it can be said that the social hub “pushes” these two objects (social persona and social post) to the on-demand database service.
With continued reference to
Referring now to
The social publisher 406 is configured to allow the agent to respond to consumer inquiries by publishing replies to various social channels (e.g., Facebook, Twitter) from a single CRM portal, as explained in greater detail below.
The case feed 410 may be configured as a scrolling list or “feed” of communication threads (posts) between the agent and one or more consumers. In the illustrated example, the case feed 410 includes an inbound identifier 412 (e.g., “Sutthipong Sent a Tweet”), corresponding to the post 414 “I Lost My Luggage” which @mentions KLM. The case feed 410 also includes an outbound identifier 418 (e.g., “Agent Sent a Reply”), corresponding to the post 420 “What's Your Flight Number”, which @mentions Sutthipong; that is, when using Twitter, for example, one may direct a message to a known recipient by appending the recipient's user name to the symbol “@”.
With continued reference to
A method 600 for integrating posts retrieved from social media channels into a CRM platform typically begins with a consumer reaching out for customer service and/or support, such as a passenger sending a tweet (@mentioning KLM) “I Lost My Luggage” (Task 602). The consumer post may then be retrieved by the social hub 304, which sends a JSON string 307 (See
With continued reference to
When the response is complete, the agent may press the “Send” virtual button 408 to thereby create and save a new social post object, namely, the reply @Sutthipong “What is Your Filght Number” (Task 614). The Reply may then be sent to the consumer (Task 616). In an embodiment, Task 616 may involve the APEX class 310 calling an API associated with the Radian6 module and/or the social hub module 304 to thereby send the reply to the consumer via the designated channel (e.g., Twitter). The consumer (in the present example, Sutthipong) then views (Task 618) the agent's Reply on the same channel through which the initial query was sent, for example, via Twitter.
Upon viewing the agent's reply, the consumer may respond via Twitter with a new social post such as: @mention KLM “Flight #991” (Task 620). The consumer's response is picked up by the Radian6 module and presented to the agent (Task 622) as discussed above, whereupon the process essentially repeats steps 602-610. That is, the new post “Flight #991” is passed to the CRM platform as a JSON string, parsed, and presented to the agent as either a new case or appended to an existing case thread in the case feed, as appropriate.
Each of the various functional modules and/or steps shown in
Methods and systems are thus provided for integrating social media channels into a customer service management (CRM) portal. The method involves: receiving data for a consumer post; parsing the data into at least two objects; creating a case from the at least two objects; and displaying the case in the CRM portal.
In an embodiment, receiving data for the consumer post comprises receiving the data in the form of a Java script object notation (JSON) string, and parsing the data into at least two objects comprises parsing the data into a social post object and a social persona object.
In an embodiment, the CRM portal comprises a social publisher and a social case feed, and displaying the case in the CRM portal comprises displaying indicia of the social post object and the social persona object in the social case feed.
In an embodiment, the method may also involve: prompting an agent to compose a reply to the social post; pre-populating the social publisher with information obtained from the social post object and the social persona object; creating, by the agent using the CRM portal, a reply social post; and transmitting, from the CRM portal, the reply social post to the consumer.
In an embodiment, receiving data for a consumer post comprises receiving the data from a social media channel such as Twitter or Facebook, and transmitting comprises transmitting the reply social post using the same channel from which the consumer post data was received.
In an embodiment, parsing the JSON string comprises parsing using an APEX class parser.
The method may also involve prompting the agent, using the social publisher, to select Facebook, Twitter, or another social media channel as the transmission channel, and using the APEX class to direct the reply social post to the selected channel.
In an embodiment, receiving data for a consumer post comprises receiving the data from an internet bot having a configurable rules engine.
A customer service portal is also provided for communicating with at least one social media channel. The portal may include: an interface configured to receive a social post retrieved from the at least one social media channel, and to parse the social post into at least one object; a database for storing the at least one object; and a display module including a case feed configured to present indicia of the at least one object to a customer service agent, and a publisher configured to allow the agent to respond to the social post via the at least one social media channel.
In an embodiment, the at least one social media channel may be one of Twitter, Facebook or another social media channel.
In an embodiment, the interface is configured to receive the social post in the form of a JSON string from an internet bot having a user configurable rules engine, and the interface is configured to parse the social post into at least a social post object and a social persona object.
In an embodiment, the display module is configured to display indicia of the social post object and the social persona object in the social case feed.
The system may also include a processing system configured to: prompt the agent to compose a reply to the social post using the publisher; pre-populate the publisher with information obtained from the social post object and the social persona object; prompt the agent to select a channel from among the at least one social media channels; and transmit, from the customer service portal, the reply social post via the selected social media channel.
Computer code embodied in a non-transitory computer readable medium for execution by a processor is also provided for performing the steps of: receiving data for a consumer post from a social media channel; parsing the data into at least two objects; creating a case from the at least two objects; displaying the case for processing by an agent in a customer service portal; prompting the agent to compose a reply to the consumer post; pre-populating a social publisher with information obtained from the at least two objects; creating, by the agent using the customer service portal, a reply social post; and transmitting, from the customer service portal, the reply social post to a consumer via the social media channel.
The foregoing description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the technical field, background, or the detailed description. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations, and the exemplary embodiments described herein are not intended to limit the scope or applicability of the subject matter in any way.
For the sake of brevity, conventional techniques related to computer programming, computer networking, database querying, database statistics, query plan generation, XML and other functional aspects of the systems (and the individual operating components of the systems) may not be described in detail herein. In addition, those skilled in the art will appreciate that embodiments may be practiced in conjunction with any number of system and/or network architectures, data transmission protocols, and device configurations, and that the system described herein is merely one suitable example. Furthermore, certain terminology may be used herein for the purpose of reference only, and thus is not intended to be limiting. For example, the terms “first”, “second” and other such numerical terms do not imply a sequence or order unless clearly indicated by the context.
Embodiments of the subject matter may be described herein in terms of functional and/or logical block components, and with reference to symbolic representations of operations, processing tasks, and functions that may be performed by various computing components or devices. Such operations, tasks, and functions are sometimes referred to as being computer-executed, computerized, software-implemented, or computer-implemented. In this regard, it should be appreciated that the various block components shown in the figures may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For example, an embodiment of a system or a component may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. In this regard, the subject matter described herein can be implemented in the context of any computer-implemented system and/or in connection with two or more separate and distinct computer-implemented systems that cooperate and communicate with one another. That said, in exemplary embodiments, the subject matter described herein is implemented in conjunction with a virtual customer relationship management (CRM) application in a multi-tenant environment.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application. Accordingly, details of the exemplary embodiments or other limitations described above should not be read into the claims absent a clear intention to the contrary.
This application claims the benefit of U.S. provisional patent application Ser. Nos. 61/877,701, 61/877,715, and 61/877,722 filed Sep. 13, 2013, the entire content of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
5983227 | Nazem et al. | Nov 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216133 | Masthoff | Apr 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6236978 | Tuzhilin | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6288717 | Dunkle | Sep 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec et al. | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp et al. | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6411949 | Schaffer | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans et al. | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6748420 | Quatrano | Jun 2004 | B1 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
6907566 | McElfresh et al. | Jun 2005 | B1 |
7062502 | Kesler | Jun 2006 | B1 |
7100111 | McElfresh et al. | Aug 2006 | B2 |
7181758 | Chan | Feb 2007 | B1 |
7269590 | Hull et al. | Sep 2007 | B2 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7373599 | McElfresh et al. | May 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7406501 | Szeto et al. | Jul 2008 | B2 |
7412455 | Dillon | Aug 2008 | B2 |
7454509 | Boulter et al. | Nov 2008 | B2 |
7508789 | Chan | Mar 2009 | B2 |
7599935 | La Rotonda et al. | Oct 2009 | B2 |
7603331 | Tuzhilin et al. | Oct 2009 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7644122 | Weyer et al. | Jan 2010 | B2 |
7668861 | Steven | Feb 2010 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7747648 | Kraft et al. | Jun 2010 | B1 |
7779475 | Jakobson et al. | Aug 2010 | B2 |
7827208 | Bosworth et al. | Nov 2010 | B2 |
7853881 | Aly Assal et al. | Dec 2010 | B1 |
7856445 | Gross | Dec 2010 | B2 |
7945653 | Zuckerberg et al. | May 2011 | B2 |
7991764 | Rathod | Aug 2011 | B2 |
8005896 | Cheah | Aug 2011 | B2 |
8014943 | Jakobson | Sep 2011 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8032297 | Jakobson | Oct 2011 | B2 |
8073850 | Hubbard et al. | Dec 2011 | B1 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8103611 | Tuzhilin et al. | Jan 2012 | B2 |
8150913 | Cheah | Apr 2012 | B2 |
8156186 | Singh | Apr 2012 | B2 |
8166013 | Bandaru et al. | Apr 2012 | B2 |
8209308 | Rueben et al. | Jun 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8457545 | Chan | Jun 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
8490025 | Jakobson et al. | Jul 2013 | B2 |
8504945 | Jakobson et al. | Aug 2013 | B2 |
8510045 | Rueben et al. | Aug 2013 | B2 |
8510664 | Rueben et al. | Aug 2013 | B2 |
8566301 | Rueben et al. | Oct 2013 | B2 |
8646103 | Jakobson et al. | Feb 2014 | B2 |
9152725 | Wong | Oct 2015 | B2 |
9646604 | Erhart | May 2017 | B2 |
9760905 | Yoder | Sep 2017 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramanian et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robbins | Nov 2002 | A1 |
20030004971 | Gong | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane et al. | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker et al. | Apr 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec et al. | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio et al. | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20060021019 | Hinton et al. | Jan 2006 | A1 |
20070174390 | Silvain | Jul 2007 | A1 |
20080010270 | Gross | Jan 2008 | A1 |
20080147487 | Hirshberg | Jun 2008 | A1 |
20080209320 | Mawhinney et al. | Aug 2008 | A1 |
20080249972 | Dillon | Oct 2008 | A1 |
20090063414 | White et al. | Mar 2009 | A1 |
20090100342 | Jakobson | Apr 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20100125502 | Solomon et al. | May 2010 | A1 |
20100217757 | Fujioka | Aug 2010 | A1 |
20100241576 | Beeri | Sep 2010 | A1 |
20110113058 | Lee | May 2011 | A1 |
20110173238 | Griggs | Jul 2011 | A1 |
20110209067 | Bogess et al. | Aug 2011 | A1 |
20110258204 | Hubbard et al. | Oct 2011 | A1 |
20120233137 | Jakobson et al. | Sep 2012 | A1 |
20120290407 | Hubbard et al. | Nov 2012 | A1 |
20130024841 | Agarwal | Jan 2013 | A1 |
20130110839 | Kirshenbaum | May 2013 | A1 |
20130218948 | Jakobson | Aug 2013 | A1 |
20130218949 | Jakobson | Aug 2013 | A1 |
20130218966 | Jakobson | Aug 2013 | A1 |
20140164502 | Khodorenko | Jun 2014 | A1 |
Entry |
---|
Final Office Action for U.S. Appl. No. 12/437,418, dated Apr. 16, 2012. |
Final Office Action for U.S. Appl. No. 12/356,429, dated May 2, 2012. |
Notice of Allowance for U.S. Appl. No. 12/819,402, dated May 14, 2012. |
Non-Final Office Action for U.S. Appl. No. 13/453,802, dated Jun. 8, 2012. |
Linear Combination—Wikipedia (http://en.wikipedia.org/wiki/Linear_Combination (accessed Jul. 16, 2012). |
USPTO Non-Final Office Action for U.S. Appl. No. 14/485,273, dated Jun. 23, 2017. |
USPTO Non-Final Office Action for U.S. Appl. No. 14/451,632, dated Aug. 5, 2014. |
USPTO Final Office Action for U.S. Appl. No. 14/485,273, dated Dec. 15, 2017. |
USPTO Notice of Allowance for U.S. Appl. No. 14/451,632, dated Dec. 15, 2017. |
Number | Date | Country | |
---|---|---|---|
20150081569 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61877701 | Sep 2013 | US | |
61877715 | Sep 2013 | US | |
61877722 | Sep 2013 | US |