The methods and systems of the present invention are directed to the modification and improvement of transmissions for automotive vehicles, more commonly referred to as “factory installed” transmissions, installed in automotive vehicles by an original motor vehicle manufacturer. The invention is more particularly directed to improvements to the pressure regulator valve of the Ford 5R110W; 6F35; and 6R60-6R80 and the BMW ZF6HP-19 through 6HP-32 “factory installed” transmissions.
Operation of the aforementioned “factory installed” automotive transmissions are well known to and within the knowledge of persons skilled in the relevant art of automotive transmission operation and design. Descriptions and illustrations of these “factory installed” automotive transmissions are found in publications of the Ford Motor Company of Dearborn, Mich. identified as “Automatic Transaxle/Transmission-TorqShift”, 307-01, Jul. 2, 2004 (5R110W); “Automatic Transmission-6R60”, 307-01B, Dec. 23, 2005; and “Automatic TransaxleTransmission-6F35”, 307-01A—Jun. 26, 2008), and publications by ZF Getriebe GmbH entitled “Functional Description” (ZF6HP-19 through 6HP-32 “factory installed” transmissions). Excerpts from these publications by the Ford Motor Company and ZF Getriebe GmbH describing and illustrating the aforementioned “factory installed” automotive transmissions are being filed concurrently herewith.
The “factory installed” pressure regulator valve of the Ford 5R110W; 6F35; and 6R60-6R80 and the BMW ZF6HP-19 through 6HP-32 “factory installed” transmissions are replaced by a pressure regulator valve having two separate valve components conjointly movable together in a bore. A protrusion or protuberance extending from one end of one of the valve components in a direction towards the other valve component defines a fulcrum which abuts against the adjacent end of the other valve component as the two valve components move conjointly and in direct contact with each other within the bore during operation of the pressure regulator valve. The fulcrum is preferably defined to extend from the center of the one end of the one valve component. Preferably, an opening is provided in a land in one of the valve components to vent hydraulic fluid (transmission oil) to prevent a pressure build-up in the bore which might separate the two valve components from each other during reciprocating movement of the valve components in the bore. Preferably, one of the valve components is larger than the other, and the protrusion defining the fulcrum extends from an end of the larger valve component. However, the protrusion defining the fulcrum can extend from either the larger or smaller of the two valve components. Moreover, although the two valve components are preferably a larger valve component and a smaller valve component, it is within the scope of the invention that the two valve components be of equal length.
The present invention is directed to an improved pressure regulator valve for an automotive transmission, an improved hydraulic circuit of an automotive transmission including the improved pressure regulator valve, and a method for modifying a “factory installed” automotive transmission to replace the “factory installed” pressure regulator valve with the improved pressure regulator valve of the present invention.
The factory installed Ford 5R110W transmission has a main pump cover which Is made from cast aluminum. It routes and regulates the output of the transmission oil pump. It is subject to a pressure of 300 psi or greater in certain locations and modes of use, and up 15″ of vacuum in other Locations and modes of use. This pump cover is also subject to large temperature variations in outside air temperature (−30° F. or less in Winter in northern Canada or 240° F. or greater in Summer in Southern Texas). Warp and distortion to the casting occurs from heating and cooling, and pressure and vacuum variations over time. The cover also houses the main Pressure Regulator Valve in a precision bored hole that is over 5″ deep with bore to valve clearance of 0.001″. When the casting becomes sufficiently distorted as a result of the above mentioned forces and operating conditions over the length of the valve, the valve becomes pinched in the bore and losses its ability to quickly move back and forth smoothly to meet current driving conditions. Transmission failure ultimately occurs.
One improvement of the present invention provides a new two piece replacement Pressure Regulator Valve (PRV) to reduce the pinching of the valve in the bore by allowing the two pieces to move with the bore distortion and providing a fulcrum point between the two pieces of the PRV. The new designed two component PRV continues to operate during conditions which would cause the original factory installed PRV to stick in the bore, such as the distortion of the pump cover or the valve bore. This solution greatly reduces the need for a replacement pump assembly and provides an easy and cost effective repair.
As best shown in
The factory installed Ford 6F35 transmission has a main pump cover which Is made from cast aluminum. It routes and regulates the output of the transmission oil pump. It is subject to a pressure of 300 psi or greater in certain locations and modes of use, and up 15″ of vacuum in other locations and modes of use. This pump cover is also subject to large temperature variations in outside air temperature (−30° F. or less in Winter in northern Canada or 240° F. or greater in Summer in Southern Texas). Warp and distortion to the casting occurs from heating and cooling, and pressure and vacuum variations, over time. The cover also houses the main Pressure Regulator Valve in a precision bored hole that is over 4″ deep with bore to valve clearance of 0.001″. When the casting becomes sufficiently distorted as a result of the above mentioned forces and operating conditions over the length of the valve, the valve becomes pinched in the bore and losses its ability to quickly move back and forth smoothly to meet current driving conditions. Transmission failure ultimately occurs.
One improvement of the present invention provides a new two piece replacement Pressure Regulator Valve (PRV) to reduce the pinching of the valve in the bore by allowing the two pieces to move with the bore distortion and providing a fulcrum point between the two pieces of the PRV. The new designed two component PRV continues to operate during conditions which would cause the original factory installed PRV to stick in the bore, such as distortion of the pump cover or the valve bore. This solution greatly reduces the need for a replacement pump assembly and provides an easy and cost effective repair.
One of the valve components, in this case the smaller valve component 9, of the split pressure regulator valve, has a protrusion or protuberance 12 defining a fulcrum extending from the center of one end of the valve component 9 in a direction towards an adjacent end of a second valve component 10. In operation, the protrusion 12 abuts against the adjacent end of the second, larger, valve component 10, and the valve components 9 and 10 move conjointly together in a reciprocating motion within a bore. Preferably, an opening is provided in a land of one of the valve components to vent transmission oil to prevent build up of fluid pressure to a value which would cause the first valve component 9 to separate from the second valve component 10 during operation of the pressure regulator valve. Accordingly, the two valve components will remain in direct contact with each other as them move in reciprocating motion within the valve bore.
The factory installed Ford 6R60-6R80, and the factory installed BMW ZF 6HP-19-6HP-32, transmissions have a main pump cover which is made from cast aluminum. It routes and regulates the output of the transmission oil pump. It is subject to a pressure of 300 psi or greater in certain locations and modes of use, and up 15″ of vacuum in other locations and modes of use. This pump cover is also subject to large temperature variations in outside air temperature (−30° F. or less in Winter in northern Canada or 240° F. or greater In Summer in Southern Texas). Warp and distortion to the casting occurs from heating and cooling, and pressure and vacuum variations, over time. The cover also houses the main Pressure Regulator Valve in a precision bored hole that is over 4¾″ deep with bore to valve clearance of 0.001″ on 3 different diameters. When the casting sufficiently distorts as a result of the above mentioned forces and operating conditions over the length of the valve, the valve wears into the bore and losses its ability to seal the bore on the left end creating a leak in the VFS 5 circuit to vent. Adding a longer land to the pressure regulator valve to reseal the leak does not solve the problem but exacerbates it because the longer valve is more susceptible to distortion.
One improvement of the present invention provides a new two piece replacement Pressure Regulator Valve (PRV) to reduce the pinching of the valve in the bore by allowing the two pieces to move with the bore distortion and providing a fulcrum point between the two pieces of the PRV. The new designed two component PRV continues to operate during conditions which would cause the original factory installed PRV to stick in the bore, such as distortion of the pump cover or the valve bore. This solution greatly reduces the need for a replacement pump assembly and provides an easy and cost effective repair.
As best shown in
The description of the preferred embodiments of the invention discussed and illustrated herein are intended to be exemplary only and not restrictive of the scope of the invention, that scope being defined by the following claims and all equivalents thereto.
Number | Name | Date | Kind |
---|---|---|---|
4316599 | Bouvet | Feb 1982 | A |
4449426 | Younger | May 1984 | A |
4711140 | Younger | Dec 1987 | A |
4790938 | Younger | Dec 1988 | A |
5251659 | Sturman | Oct 1993 | A |
5253549 | Younger | Oct 1993 | A |
5259414 | Suzuki | Nov 1993 | A |
5540628 | Younger | Jul 1996 | A |
5624342 | Younger | Apr 1997 | A |
5730685 | Younger | Mar 1998 | A |
5743823 | Younger | Apr 1998 | A |
5768953 | Younger | Jun 1998 | A |
5820507 | Younger | Oct 1998 | A |
5947155 | Miki | Sep 1999 | A |
5967928 | Younger | Oct 1999 | A |
6099429 | Younger | Aug 2000 | A |
6117047 | Younger | Sep 2000 | A |
6179005 | Inami | Jan 2001 | B1 |
6287231 | Younger | Sep 2001 | B1 |
6390944 | Younger | May 2002 | B1 |
6565472 | Younger | May 2003 | B1 |
6699157 | Younger | Mar 2004 | B2 |
6729989 | Younger | May 2004 | B2 |
6814680 | Younger | Nov 2004 | B2 |
6871397 | Younger | Mar 2005 | B2 |
6913554 | Younger | Jul 2005 | B2 |
6964628 | Younger | Nov 2005 | B2 |
7128679 | Younger | Oct 2006 | B2 |
7331893 | Younger | Feb 2008 | B2 |
9429228 | Younger | Aug 2016 | B2 |
9970534 | Younger | May 2018 | B2 |
20070145315 | Uemura | Jun 2007 | A1 |
Entry |
---|
“Automatic Transaxle/Transmission—TorqShift”, Ford motor Company, 307-01, dated Jul. 2, 2004. |
“Automatic Transaxle/Transmission—6F35”, Ford Motor Company, 307-01A, dated Jun. 26, 2008. |
“Automatic Transmission—6R60”, Ford Motor Company, 307-01B, dated Dec. 23, 2005. |
“Functional Description Automatic Transmission 6HP19/6HP26 BMW”, ZF Car Driveline Technology, ZF Getriebe GmbH, dated Jul. 2. |
Number | Date | Country | |
---|---|---|---|
20190376599 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62683277 | Jun 2018 | US |