1. Field of the Invention
The present invention relates generally to medical methods and apparatus. More particularly, the present invention relates to methods and devices for restricting spinal flexion in patients having back pain or other spinal conditions.
A major source of chronic low back pain is discogenic pain, also known as internal disc disruption. Patients suffering from discogenic pain tend to be young, otherwise healthy individuals who present with pain localized to the back. Discogenic pain usually occurs at the lower lumbar discs of the spine (
Such discogenic low back pain can be thought of as flexion instability and is related to flexion instability that is manifested in other conditions. The most prevalent of these is spondylolisthesis, a spinal condition in which abnormal segmental translation is exacerbated by segmental flexion.
Current treatment alternatives for patients diagnosed with chronic discogenic pain are quite limited. Many patients follow a conservative treatment path, such as physical therapy, massage, anti-inflammatory and analgesic medications, muscle relaxants, and epidural steroid injections, but typically continue to suffer with a significant degree of pain. Other patients elect to undergo spinal fusion surgery, which commonly requires discectomy (removal of the disk) together with fusion of adjacent vertebrae. Fusion is not usually recommended for discogenic pain because it is irreversible, costly, associated with high morbidity, and of questionable effectiveness. Despite its drawbacks, however, spinal fusion for discogenic pain remains common due to the lack of viable alternatives.
An alternative method, that is not commonly used in practice, but has been approved for use by the FDA, is the application of bone cerclage devices that can encircle the spinous processes or other vertebral elements and thereby create a restraint to motion. Physicians typically apply a tension or elongation to the devices that applies a constant and high force on the anatomy, thereby fixing the segment in one position and allowing effectively no motion. The lack of motion allowed after the application of such a device is thought useful to improve the likelihood of fusion performed concomitantly; if the fusion does not take, these devices will fail through breakage of the device or of the spinous process to which the device is attached. These devices are designed for static applications and are not designed to allow for a dynamic elastic resistance to flexion across a range of motion. The purpose of bone cerclage devices and the other techniques described above is to almost completely restrict measurable motion of the vertebral segment of interest. This loss of motion at a given segment gives rise to abnormal loading and motion at adjacent segments, leading eventually to adjacent segment morbidity.
Recently, a less invasive and potentially more effective treatment for discogenic pain has been proposed. A spinal implant has been designed which inhibits spinal flexion while allowing substantially unrestricted spinal extension. The implant is placed over one or more adjacent pairs of spinous processes and provides an elastic restraint to the spreading apart of the spinous processes which occurs during flexion. Such devices and methods for their use are described in U.S. Patent Publication No. 2005/02161017A1, published on Sep. 29, 2005, and having common inventors with the present application.
As illustrated in
While potentially robust over millions of cycles of use, the “compressive” compliance members of the '017 application can have difficulty in providing controlled elastic tension within the relatively low 25 N/mm to 75 N/mm range set forth in the application. The use of compressive rubber or elastomeric blocks in the compliance members also limits the length of device elongation which can be achieved. Even if the initial compression provided by the block is within the target elastic resistance range, the stiffness of the compressive block would be expected to rise quickly and potentially fall outside of the target range as the block is further compressed by pulling of the spinous processes on the upper and lower straps. Moreover, even such relatively “low” stiffnesses above 25 N/mm can present some risk of damage or trauma to the spinous processes and other parts of the vertebrae and spine. In order to reduce the compressive force and increase the compressive length, the size of the compressive block may be increased. Increasing the size of the compressive block, however, increases the overall size of the device and is undesirable. The need to have the straps or cables traverse the entire length of the compressive block also increases the size and complexity of the implant structure. Increasing the size of the device is undesirable for many reasons, including making implantation more difficult, while increasing the complexity of the device is undesirable as it increases the risk of failure.
For these reasons, it would be desirable to provide improved spinal implants and methods for their use in inhibiting flexion in patients suffering from discogenic pain. It would be particularly desirable if the improved devices could reliably and repeatedly provide relatively low initial tension on the spinous processes and a relatively low elastic resistance to flexion, even over relatively long lengths of travel. Moreover, any risk of damage to the vertebrae of spine should be minimized. In addition, the devices should have a relatively small size with a decreased complexity in order to facilitate implantation and reduce the risk of failure. Furthermore, the devices should be designed to continue to function even after being cycled for long periods of time (e.g. up to multiple years of implantation) through high numbers of cycles (e.g. up to millions of cycles) and as such should exhibit primarily elastic behavior with minimal plasticity, i.e., low creep. At least some of these objectives will be met by the inventions described hereinbelow.
2. Description of the Background Art
US Patent Publication No. 2005/0216017A1 has been described above. US 2005/0192581 describes an orthopedic tether which can have a stiffness from at least 1 N/mm to at least 200 N/mm and which can be used for many purposes, including wrapping spinous processes. Other patents and published applications of interest include: U.S. Pat. Nos. 3,648,691; 4,643,178; 4,743,260; 4,966,600; 5,011,494; 5,092,866; 5,116,340; 5,180,393; 5,282,863; 5,395,374; 5,415,658; 5,415,661; 5,449,361; 5,456,722; 5,462,542; 5,496,318; 5,540,698; 5,562,737; 5,609,634; 5,628,756; 5,645,599; 5,725,582; 5,902,305; Re. 36,221; 5,928,232; 5,935,133; 5,964,769; 5,989,256; 6,053,921; 6,248,106; 6,312,431; 6,364,883; 6,378,289; 6,391,030; 6,468,309; 6,436,099; 6,451,019; 6,582,433; 6,605,091; 6,626,944; 6,629,975; 6,652,527; 6,652,585; 6,656,185; 6,669,729; 6,682,533; 6,689,140; 6,712,819; 6,689,168; 6,695,852; 6,716,245; 6,761,720; 6,835,205; 7,029,475; 7,163,558; Published U.S. Patent Application Nos. US 2002/0151978; US 2004/0024458; US 2004/0106995; US 2004/0116927; US 2004/0117017; US 2004/0127989; US 2004/0172132; US 2004/0243239; US 2005/0033435; US 2005/0049708; US 2006/0069447; US 2006/0136060; US 2006/0240533; US 2007/0213829; US 2007/0233096; Published PCT Application Nos. WO 01/28442 A1; WO 02/03882 A2; WO 02/051326 A1; WO 02/071960 A1; WO 03/045262 A1; WO 2004/052246 A1; WO 2004/073532 A1; and Published Foreign Application Nos. EP 0322334 A1; and FR 2 681 525 A1. The mechanical properties of flexible constraints applied to spinal segments are described in Papp et al. (1997) Spine 22:151-155; Dickman et al. (1997) Spine 22:596-604; and Garner et al. (2002) Eur. Spine J. 5186-5191; Al Baz et al. (1995) Spine 20, No. 11, 1241-1244; Heller, (1997) Arch. Orthopedic and Trauma Surgery, 117, No. 1-2:96-99; Leahy et al. (2000) Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 214, No. 5: 489-495; Minns et al., (1997) Spine 22 No. 16:1819-1825; Miyasaka et al. (2000) Spine 25, No. 6: 732-737; Shepherd et al. (2000) Spine 25, No. 3: 319-323; Shepherd (2001) Medical Eng. Phys. 23, No. 2: 135-141; and Voydeville et al (1992) Orthop Traumatol 2:259-264.
The present invention provides methods and apparatus for relieving symptoms of lumbar pain associated with flexion of a spinal segment of a patient. The lumbar pain may arise from a variety of particular conditions such as those described previously herein. The devices and methods will dynamically limit flexion of at least one spine segment by increasing the bending stiffness of the spinal segment by a preselected amount, typically in the range from 0.1 Nm/deg to 2 Nm/deg, preferably from 0.4 Nm/deg to 1 Nm/deg Usually, the bending stiffness is increased by coupling an elastic constraint between a superior spinous process and an inferior spinous process or between an L5 spinous process and a sacrum of the patient. The elastic constraint may have an elastic tensile stiffness in the range from 7.5 N/mm to 40 N/mm, where the constraint may be positioned at a lateral distance in the range from 25 mm to 75 mm in a posterior direction from a center of rotation of the spinal segment. The bending stiffness will be increased during flexion (but not extension) of the spinal segment, usually being increased over the full range of flexion. The full flexion-extension range of motion of the spinal segment will typically be from 3 to 20 degrees, usually from 5 to 15 degrees. The flexion portion of the total range of motion of the spinal segment is expressed as an angle measured relative to the neutral position (defined below) and will typically be from 2 degrees to 15 degrees, usually from 4 degrees to 10 degrees. The bending stiffness will be increased over at least 75% of the full range flexion, usually over the full range of flexion as well as 25% of the extension range of motion.
In another aspect of the present invention, the symptoms of lumbar pain associated with flexion may be relieved by constraining flexion of a spinal segment by limiting spreading of the spinous processes of a spinal segment to a maximum distance in the range from 1 mm to 10 mm, preferably from 2 mm to 8 mm. Optionally, the bending stiffness will be increased over the constrained range of flexion which is allowed. For example, the range of movement may be limited and the bending stiffness increased using a device having an elastic component together with stops or other mechanical constraints which provide a “hard stop” to prevent extension of the device beyond the allowed limited spreading distance of the spinous processes.
The present invention still further provides a compliance member for attaching tethers, typically being substantially inelastic, which circumscribe spinal processes for use in the methods of the present invention. The compliance member will comprise a body having a first tether attachment element and a second tether attachment element, where the body defines an axial tension spring between said attachments. The compliance members will typically be used in pairs, and systems according to the present invention will include first and second compliance members together with first and second tethers, typically inelastic tethers adapted to attach between the attachment elements on the compliance members so that the tethers may be placed over a superior spinous process and beneath an inferior spinous process in order to provide the elastic constraint and/or bending stiffness required by the methods herein. With such systems, compliance members will typically be located laterally adjacent to and vertically spanning the spinous processes of the spinal segment being treated. It has been found that compliance members having a maximum axial length of 34 mm (typically being in the range from 15 mm to 30 mm), a maximum depth in an anterior-posterior direction of 18 mm (typically being in the range from 8 mm to 15 mm), and a maximum width in the direction normal to the depth of 15 mm (typically being in the range from 7 mm to 10 mm), have been found to be particularly useful in conforming to the anatomy of most patients. Systems comprising of a pair of compliance members in combination with first and second inelastic tethers are also provided. The inelastic tethers usually have central regions adapted to be received over the spinous processes, with a thickness no greater than 2 mm and a width typically in the range from 3 mm to 10 mm, preferably from 5 mm to 8 mm.
The preferred methods and systems of the present invention will provide a minimum and preferably no elastic resistance to extension of the spinal segments. The preferred methods and systems of the present invention will usually be coupled to the spinous processes via flexible straps which, by virtue of their placement around the spinous processes and their flexible nature, make it very difficult for the preferred methods and systems of the present invention to provide any resistance to extension. Furthermore, the implants of the present invention will usually be free from structure located between adjacent spinous processes, although in some cases structure may be provided where the structure does not substantially interfere with or impede the convergence of the spinous processes as the spine undergoes extension. While some small amount of elastic resistance to extension might be found, it will preferably be below 3 N/mm, more preferably below 1 N/mm, and usually below 0.5 N/mm.
Similarly, the preferred methods and systems of the present invention will provide a minimum and preferably no elastic resistance to lateral bending or rotation of the spinal segments. The preferred methods and systems of the present invention will usually be coupled to the spinous processes via flexible straps which, by virtue of their placement around the spinous processes and their flexible nature, make it very difficult for the preferred methods and systems of the present invention to provide any resistance to lateral bending or rotation. This is particularly true in the lumbar spine where the range of motion in rotation is usually limited to ±3°. While some small amount of elastic resistance to lateral bending or rotation might be found, it will preferably be small.
As used herein, the phrase “spinal segment” refers to the smallest physiological motion unit of the spine which exhibits mechanical characteristics similar to those of the entire spine. The spinal segment, also referred to as a “functional spinal unit” (FSU), consists of two adjacent vertebrae, the intervertebral disk, and all adjoining ligaments and tissues between them. For a more complete description of the spinal segment or FSU, see White and Panjabi, Clinical Biomechanics of the Spine, J. B. Lippincott, Philadelphia, 1990.
As used herein, “neutral position” refers to the position in which the patient's spine rests in a relaxed standing position. The “neutral position” will vary from patient to patient. Usually, such a neutral position will be characterized by a slight curvature or lordosis of the spine where the spine has a slight anterior convexity and slight posterior concavity. In some cases, the presence of the constraint of the present invention may modify the neutral position, e.g. the device may apply an initial force which defines a new neutral position having some small extension of the untreated spine. As such, the use of the term “neutral position” is to be taken in context of the presence or absence of the device. As used herein, “neutral position of the spinal segment” refers to the position of a spinal segment when the spine is in the neutral position.
As used herein, “segmental flexion” refers to the motion between adjacent vertebrae in a spinal segment as the patient bends forward. Referring to
As used herein, “segmental extension” refers to the motion of the individual vertebrae L as the patient bends backward and the spine extends from the neutral position illustrated in
As used herein, the phrases “elastic resistance” and “elastic stiffness” refer to an application of constraining force to resist motion between successive, usually adjacent, spinous processes such that increased motion of the spinous processes results in a greater constraining force. The elastic resistance or stiffness will, in the inventions described herein, inhibit motion of individual spinal segments by, upon deformation, generating a constraining force transmitted directly to the spinous processes or to one or more spinous process and the sacrum. The elastic resistance or stiffness can be described in units of stiffness, usually in units of force per deflection such as Newtons per millimeter (N/mm). In some cases, the elastic resistance will generally be constant (within ±5%) over the expected range of motion of the spinous processes or spinous process and sacrum. In other cases, typically with elastomeric components as discussed below, the elastic resistance may be non-linear, potentially varying from 33% to 100% of the initial resistance over the physiologic range of motion. Usually, in the inventions described herein, the pre-operative range of motion of the spinous process spreading from the neutral or upright position to a maximum flexion-bending position will be in the range from 2 mm to 20 mm, typically from 4 mm to 12 mm. With the device implanted, the post-operative range of motion of the spinous process spreading from the neutral or upright position to a maximum flexion-bending position will be reduced and will usually be in the range from 1 mm to 10 mm, typically from 2 mm to 5 mm. Such spinous process spreading causes the device to undergo deformations of similar magnitude.
As used herein, the phrase “bending stiffness” is defined as the resistance of the spinal segment to bending. The incremental bending stiffness which is provided by the constraints of the present invention may be calculated based on the elastic tensile stiffness (or elastic resistance) of the constraint circumscribing the spinous processes (or coupling the L5 spinous process to sacrum) and the distance or moment arm between a center of rotation (COR) of the spinal segment and the location at which the elastic constraint is located on the spinous processes. As used herein, the moment arm distance D will be expressed in meters (m) and the elastic stiffness ES will be expressed in Newtons per millimeter (N/mm). The units of bending stiffness, as used herein, will be Newton-meters per degree (Nm/deg.). The increase in bending stiffness IBS provided by the constraint of the present invention can be calculated by the formula:
IBS=1000 ES·D2·(π/180°)
where the elastic stiffness ES of the device can be measured by testing the device on an Instron® or other tensile strength tester, and the moment arm length D can be measured from radiographs.
Alternatively, the increase in bending stiffness of a device could be measured directly by placement on a cadaveric spine segment or a suitable vertebral model. The bending stiffness of the spine segment could be measured with and without the elastic constraint and the increase in bending stiffness provided by the constraint would be the difference between the two values. It would also be possible to calculate the increase in bending stiffness by finite element analysis.
The bending stiffness increase can thus be adjusted by changing the tensile stiffness of the elastic constraint and/or the distance of the moment arm. For example, once the treating physician determines the location of the elastic constraint and the distance between that location and the center of rotation (COR), the physician can then choose an elastic constraint having an appropriate elastic tensile stiffness in order to achieve a target therapeutic increase in the bending stiffness. The location of the center of rotation and the distance of the moment arm can be determined from radiographic images of the target spinal segment, typically taken in at least two positions or postures, such as in flexion and in extension. Typically, the center of rotation will be an average or calculated value determined by measuring translational vectors between the two radiographic positions for two points on a vertebra. Such techniques are described in detail, for example, in Musculoskeletal Biomechanics. Paul Brinckmann, Wolfgang Frobin, Gunnar Leivseth (Eds.), Georg Thieme Verlag, Stuttgart, 2002; p. 105. It would also be possible to employ the instantaneous axis of rotation (IAR), which location varies depending on the degree of spinal flexion or extension. Generally, however, using the COR is preferred since it is a fixed and readily determined value, although the device may affect the location of the COR in some cases.
Thus, the bending stiffness applied by a constraining structure according to the present invention is increased when the spinal segment moves beyond the neutral position and will depend on several factors including the elastic characteristics of the constraining structure, the position of the constraining structure on the spinous processes, the dimensions of the constraining structure, and the patient's anatomy and movement. The constraining structure will usually be positioned so that the upper and lower tethers engage the middle anterior region of the spinous process (25 mm to 75 mm posterior of the COR), and the dimensions of the constraining structure will usually be adjusted so that the tethers are taut, i.e. free from slack, but essentially free from tension (axial load) when the spinal segment is in its neutral position, i.e., free from flexion and extension. As the segment flexes beyond the neutral position, the constraining structure will immediately provide an elastic resistance in the ranges set forth above.
In some cases, the dimensions and assembly of the construct will be selected so that the tethers and compliance members are slightly pre-tensioned even before the compliance members are under load. Thus, the constraining structure may apply a predetermined resistive force, typically in the range from 7.5 N to 40 N, as soon as the spinal segment flexes from the neutral position. In the absence of such pre-tensioning, the compliance members would apply a zero resistive force at the instant they are placed under load. In all cases, as the segment flexes beyond the treated neutral position, the constraining structure will provide increasing bending stiffness in the ranges set forth above.
Usually, the constraining structures will apply minimal or no bending stiffness when the spinal segment is in the neutral position. In some instances, however, it may be desirable to tighten the constraining structure over the spinous processes so that a relatively low finite bending stiffness force (typically in the range from 0.1 Nm/deg to 2 Nm/deg, usually from 0.4 Nm/deg to 1 Nm/deg) is applied even before flexion while the spinal segment remains at a neutral position. In this case, the additional stiffness afforded by the constraining structure will affect the entire flexion range of motion; as well as a portion of the untreated extension range of motion of the spinal segment.
The relative increase in bending stiffness afforded by the constraining structures of the present invention is advantageous because it allows the constraining structure to cause the treated segment to resist flexion sufficiently to relieve the underlying pain or instability with a reduced risk of injury from excessive force. In particular, the preferred bending stiffness ranges set forth above provide sufficient constraint to effect a significant change in flexion in the typical patient while allowing a significant safety margin to avoid the risk of injury. The bending stiffness provided by the constraints of the present invention will limit the separation of the spinous processes on the treated spinal segment which is desirable both to reduce flexion-related pain and spinal instability.
The resistance to flexion provided by the elastic constraints of the present invention may reduce the angular range-of-motion (ROM) relative to the angular ROM in the absence of constraint. Angular ROM is the change in angle between the inferior end plate of the superior vertebral body of the treated segment and the superior endplate of the inferior vertebral body of the treated segment when the segment undergoes flexion. Thus, the treatments afforded by the elastic constraints of the present invention will provide a relatively low angular ROM for the treated segment, but typically a ROM higher than that of a fused segment.
While the constraint structures of the present invention will limit flexion, it is equally important to note that in contrast to spinal fusion and immobilizing spinal spacers, the methods and devices of the present invention will allow a controlled degree of flexion to take place. Typically, the methods and devices of the present invention will allow a degree of flexion which is equal to at least about 20% of the flexion that would be observed in the absence of constraint, more typically being at least about 33%. By reducing but not eliminating flexion, problems associated with fusion, such as increased pain, vertebral degeneration, instability at adjacent segments, and the like, may be overcome.
The constraint structures of the present invention will act to restore the stiffness of a spinal segment which is “lax” relative to adjacent segments. Often a patient with flexion-related pain or instability suffers from a particular looseness or laxity at the painful segment. When the patient bends forward or sits down, the painful, lax segment will preferentially flex relative to the stiffer adjacent segments. By adjusting the length, position, or other feature of the devices of the present invention so that constraint structure is taut over the spinous processes when the spinal segment is in its neutral position, the stiffness of the treated segment can be “normalized” immediately as the patient begins to impart flexion to the spine. Thus, premature and/or excessive flexion of the target spinal segment can be inhibited or eliminated.
The protocols and apparatus of the present invention allow for individualization of treatment. Compliance members with different stiffnesses, elongations (lengths of travel), placement location in the anterior posterior direction along the spinous processes and other characteristics can be selected for particular patients based on their condition. For example, patients suffering from a severe loss of stiffness in the target spinal segment(s) may be treated with devices that provide more elastic resistance. Conversely, patients with only a minimal loss of natural segmental stiffness can be treated with devices that provide less elastic resistance. Similarly, bigger patients may benefit from compliance members having a greater maximum elongation, while smaller patients may benefit from compliance members having a shorter maximum elongation.
For some patients, particularly those having spinal segments which are very lax, having lost most or all of their natural segmental stiffness, the present invention can provide for “pre-tensioning” of the constraining structure. As described above, one way to accomplish this is by shortening the constraining structure such that a small amount of tension is held by the constraining structure when the spine is in the neutral or slightly extended initial position. Alternatively, pre-tensioned compliance elements can be provided to pre-tension the constraining structure without changing its length. The tension or compression elements utilized in the compliance members of the present invention, such as coil springs, elastomeric bodies, and the like, will typically present little or no elastic resistance when they are first deformed. Thus, there will be some degree of elongation of the compliance members prior to the spinal segment receiving a therapeutic resistance. To provide a more immediate relief, the tension or compression members may be pre-tensioned to have an initial static resistive force which must be overcome to initiate deformation. In this way, a constrained spinal segment will not begin to flex at the instant the patient begins to flex her or his spine which is an advantage when treating lax spinal segments. Certain specific embodiments for achieving such pre-tensioning are described in detail below.
Exemplary spinous process constraints according to the present invention are illustrated schematically in
The right and left compliance members 16 and 18 will usually have similar or identical constructions and include an adjustable attachment component 32 and a fixed attachment component 34 for securing connecting segments of the superior and inferior tether structures 12 and 14. Usually, each compliance member 16 and 18 will have one of the tether structures 12 and 14 pre-attached to the fixed attachment component 34. The two subassemblies can then be introduced onto opposite sides of the spinous processes, and the tether structures placed over the spinous processes or otherwise attached to the vertebral bodies, as generally described in co-pending application Ser. No. 11/875,674 (Attorney Docket No. 026398-000150US), the full disclosure of which is incorporated herein by reference.
The present invention is particularly concerned with the nature of the tension elements 30, and a number of specific embodiments will be described hereinbelow. In general, the tension elements 30 will elastically elongate as tension is applied by the superior and inferior tether structures 12 and 14 through the attachments 32 and 34, in the direction shown by arrow 36. As the spinous processes or spinous process and sacrum move apart during flexion of the constrained spinal segment, the superior and inferior tether structures 12 and 14 will also move apart, as shown generally in broken line in
The tension elements of the present invention will be positioned over adjacent spinous processes, or over the L5 spinous process and adjacent sacrum, in order to increase the bending stiffness of the spinal segment. Referring to
Thus, the positioning of any of the elastic constraints as described herein at a position on the spinous processes SPS and SPI generally indicated by line L will define a moment arm distance dm, as illustrated in
As also shown on
A first exemplary tension element 40 constructed in accordance with the principles of the present invention is illustrated in
The exterior of the tension member 40 may be covered with a protective cover, such as the elastomeric sheath 50 illustrated in
Referring now to
A free end 53 of the tether structure 52 may be attached to the adjustable tether connector 42, as illustrated in
Another tether structure (not illustrated) will be attached to the fixed connector 44 at the other end of the tension element 40, typically using a pin (not illustrated). The pin may be anchored in a pair of receiving holes 62, and a free end of the tether wrapped over the pin and firmly attached. Usually, the fixed tether structure will be pre-attached at the time of manufacture so that the treating physician can implant each of the pair of tension members, with one tether structure attached to the fixed tether connector. The remaining free ends of each tether structure 52 may then be deployed around the spinous processes (or attached to a sacrum) in a pattern generally as shown in
An alternative tension element 66 comprising an elastomeric body 68 is illustrated in
The tension elements 66 may be joined to tether structures 76 and 78, as shown in
In contrast, adjustable attachment of the tether structures 76 and 78 is provided by a cord 84 which may be loosened or tightened in a locking structure comprising mating surfaces on a nut 86 and pin 88 assembly, as shown in
A further alternative embodiment of a tension element 100 is illustrated in
Referring now to
The elastomeric tension elements 200 may be incorporated into a superior tether structure 210 and an inferior tether structure 212, as seen in
While the superior and inferior tether structures 210 and 212 could be joined in a variety of ways, a particularly convenient approach is to form a connecting loop 230 at the end of the sheath 214 which holds the elastic tensioning element 200. The loop 230 may be formed simply by stretching and folding the end of the sheath and attaching the end to the body of the sheath, by heat sealing, adhesives, crimps, or the like. After the loop is formed, the two tether structures 210 and 212 may be joined into a continuous loop for placement over the spinous processes by drawing distal ends 232 of each sheath 214 through the loop 230 of the opposite tether structure, as best seen in
An elastomeric compression member 320 is illustrated in
Another flexion restriction system 120, as illustrated in
Referring now to
In the embodiment of
Coil spring tension members may be secured to both fixed and adjustable tether connectors, such as connectors 148 and 150 in
Referring now to
Referring now to
Pre-tensioning or pre-loading of compliance members is illustrated in
An alternative compliance member 280 is illustrated in
Movement of the piston 292 is constrained by a shoulder 294 formed about the circumference of the interior 284. If the spring 282 is selected so that its length is equal to the length between the piston (when engaged against the shoulder 294) and the upper end of the interior 284, then there will be no pre-tensioning of the spring. If, however, the spring is selected so that it is shorter than the distance between the piston 292 and the upper end of the chamber 284, then the spring will be in tension at all times, even prior to elongation by placing a force between the tether structures. In this way, the initial displacement of the tether structures relative to each other will act to overcome the pre-tensioning force of the spring.
The effect of pre-tensioning on the kinematics of the compliance members is best understood with reference to
As illustrated thus far, spinous constraint structures of the present invention have generally included flexible, typically non-distensible, tethers or bands adjoining the superior and inferior ends of the compliance members. Instead of employing such flexible tether structures, the compliance members could be joined by a rigid frame structure 340, as illustrated in
Referring now to
In some instances, it may be desirable to incorporate the ability to monitor displacement and/or tension force between the tether structures and the compliance members. As illustrated in
The displacement or force measurement could also be provided in an indicator window 390 in a compliance member 392, as shown in
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 12/535,560 (Attorney Docket No. 41564-706.501), filed Aug. 4, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 12/106,103 (Attorney Docket No. 41564-706.201), filed on Apr. 18, 2008, which claims the benefit of provisional Application No. 60/936,897, (Attorney Docket No. 41564-706.101), filed on Jun. 22, 2007, the full disclosures of which are incorporated herein by reference. The present invention is related to but does not claim priority from application Ser. No. 11/076,469, filed on Mar. 9, 2005, now U.S. Pat. No. 7,458,981, which claimed the benefit of prior provisional application 60/551,235, filed on Mar. 9, 2004; application Ser. No. 11/777,366 (Attorney Docket No. 026398-000110US); filed on Jul. 13, 2007; application Ser. No. 11/827,980 (Attorney Docket No. 026398-000120US); filed on Jul. 13, 2007; PCT application no. US 2007/081815 (Attorney Docket No. 026398-000130PC); filed on Oct. 18, 2007; PCT application no. US 2007/081822 (Attorney Docket No. 026398-000140PC); filed on Oct. 18, 2007; and application Ser. No. 11/975,674 (Attorney Docket No. 026398-000150US); filed on Oct. 19, 2007, the full disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60936897 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12535560 | Aug 2009 | US |
Child | 13205415 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12106103 | Apr 2008 | US |
Child | 12535560 | US |