This invention generally relates to optimizing data transmission over a network and more particularly, to a method and systems for optimizing the transmission of data to streamline network performance via preemptive acknowledgement signals.
With the widespread use of network based applications and the advent of the need to transmit larger amounts of data in the form of video or audio files, concerns have been raised with straining network resources in the routine transfer of data between networked computers. Currently such requests may be made for data to a web based server via a normal http request. The data is sent with certain information such as checksums to confirm the receipt of all of the data intended to be sent. Once the entirety of the requested data is received, the receiving computer sends an acknowledgment signal to the sending computer.
However, certain data is sent repetitively such as audio or video files that may be used repeatedly by certain applications. Although the receiving computer may already have received the requested data, it continues to request the same data when running certain applications that will reuse the received data. Thus the receiving computer receives the same data thus using network transmission resources unnecessarily. The large amount of unnecessary data transmission creates bottlenecks in network systems therefore slowing down service and responses to other server requests. For example, visiting a website may result in sending a flash file to the client's browser which may be cached. After visiting another page, the user may return to the website and subsequently have to request the flash file again from the web server.
According to one example, a method is disclosed for efficient transmission of data between a requesting computer and a server. A request is received for server data from a requesting computer and the request is sent to the server over at least one network. The requested server data responsive to the request is forwarded on to the requesting computer. It is determined whether the requested server data has been previously forwarded to the requesting computer or at least one other requestor. A preemptive acknowledgement signal is sent to the transmitting server substantially upon determining the requested server data has been previously forwarded for causing the transmitting server to cease transmitting any remaining, un-transmitted portions of the requested server data.
Another example disclosed is a machine readable medium having stored thereon instructions for increasing data flow in at least one network. The stored instructions comprise machine executable code, which when executed by at least one machine processor, causes the machine to accept a request for server data from a requesting computer over at least one network. The stored instructions further cause the machine to send the request for the server data to a server that stores the requested server data. The stored instructions further cause the machine to forward the requested server data responsive to the request to the requesting computer. The stored instructions further cause the machine to determine whether the requested server data has been previously forwarded to the requesting computer or at least one other requestor. The stored instructions further cause the machine to send a preemptive acknowledgement signal to the transmitting server substantially upon determining the requested server data has been previously forwarded for causing the transmitting server to cease transmitting any remaining, un-transmitted portions of the requested server data.
Another example disclosed is a system for efficient transmission of data. The system includes a requesting computer and a server coupled to the requesting computer via at least one network, the server storing server data. A network traffic optimization application module is interposed between the requesting computer and the server. The module receives a request for the server data from the requesting computer and sends the request to the server. The module forwards the requested server data responsive to the request on to the requesting computer. The module determines whether the requested server data has been previously forwarded either to the requesting computer or at least one other requesting computer. The module sends a preemptive acknowledgement signal to the transmitting server substantially upon determining the requested server data has been previously forwarded for causing the transmitting server to cease transmitting any remaining, un-transmitted portions of the requested server data.
Another example disclosed is a traffic management device for interposition between a requesting computer and a server. The traffic management device includes a first interface that receives a request for data from the requesting computer and sends the request to the server over a network. The device includes a second interface that obtains the requested data responsive to the request. A third interface forwards the requested data to the requesting computer. A controller determines whether the requested server data has been previously forwarded either to the requesting computer or at least one other requesting computer and sends a preemptive acknowledgement signal to the transmitting server substantially upon determining the requested server data has been previously forwarded for causing the transmitting server to cease transmitting any remaining, un-transmitted portions of the requested server data.
Additional aspects will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments, which is made with reference to the drawings, a brief description of which is provided below.
While these examples are susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail preferred examples with the understanding that the present disclosure is to be considered as an exemplification and is not intended to limit the broad aspect to the embodiments illustrated.
Currently, the ability to terminate redundant data transmission from sending servers is limited because the acknowledgment signals indicating that data is received cannot be sent by the receiving computer until the entirety of the requested data has been received. The result is that data is sent to the receiving computer that made the request, despite the receiving computer already having the data, resulting in wasted transmission resources for sending data that is already available to the receiving computer.
In this example, the private network 108 is a local area network (LAN) environment employing any suitable interface mechanisms and communications technologies including, for example telecommunications in any suitable form (e.g., voice, modem, and the like), Public Switched Telephone Network (PSTNs), Ethernet based Packet Data Networks (PDNs), combinations thereof, and the like. Moreover, private network 108 may be made up of one or more interconnected LANs located in substantially the same geographic location or geographically separated, although network 108 may include other types of networks arranged in other configurations. Moreover, private network 108 may include one or more additional intermediary and/or network infrastructure devices in communication with each other via one or more wired and/or wireless network links, such as switches, routers, modems, or gateways (not shown), and the like, as well as other types of network devices including network storage devices. Further, system 100 includes public network 108′, which interconnects and includes public client computers 102′ and public servers 104′ to the private network 108 by via the at least one traffic management device 106. Moreover, public network 108′ may include any publicly accessible network environment, such as the Internet, which includes network components, such as public server 104, that are not directly managed or under direct control by traffic management device 106, yet whose operation may still be influenced in unique, novel and unexpected ways in response to TCP/IP protocol directives strategically purposefully determined and sent from the traffic management device 106 to make the private network 108, and perhaps the public network 108′, operate more efficiently, as will be described in greater detail herein. It should be noted, however, that the ensuing descriptions of the various functionalities relating to the private clients 102 and private server 104 are applicable to the public clients 102′ and the public servers 104′, respectively, and thus the remaining description will simply refer to either one as clients 102 and/or servers 104 unless noted otherwise.
In this example, the server 104 may run a web page server application, such as a streaming media video application. It is to be understood that the server 104 may be hardware or software or may represent a system with multiple servers which may include internal networks. In this example the server 104 may be any version of Microsoft® IIS servers or Apache® servers, although other types of servers may be used. Further, additional servers may be coupled to the system 100 and many different types of applications may be available on servers coupled to the system 100.
The traffic management device 106 may be interposed between the server 104 and the client computers 102 as shown in
As will be detailed below, the traffic management device 106 may receive one or more data requests for the server applications running on the server 104 from the client computers 102. The requests may include header data that provide certain identification and routing data from the requesting client computer 102. The traffic management device 106 may route the requests to the server 104 for the requested application. The traffic management device 106 may receive the acknowledgment that the requests have been fulfilled from the requesting client computer 102. The appropriate server application on server 104 may then terminate or cease the transmission of data.
The efficient data transmission of the system 100 may be based on a protocol that allows deterministic acknowledgement signals such as the Transmission Control Protocol (TCP) of the Internet. Deterministic acknowledgment signals acknowledge the data on receipt and may be sent prior to when that the data transmission has completed. The traffic management device 106 may send a preemptive acknowledgment to the server 104 as soon as it is determined that a block of data or entire requested data file is already present either at the traffic management device 106 or at the requesting client computer 102. The traffic management device 106 may then send an acknowledgment signal initiated by itself or the client computer 102 to the server 104 that stops the sending of server data, thus clearing up bandwidth across the system 100.
The traffic management device 106 and the receiving client computer 102 may become aware that requested data is already present in internal memory such as the buffer memory 204 in the traffic management device 106. In
In this example, the traffic management device 106 may become aware of the contents of the entire data file 220 by reading an identifying key from the first data block 220A. Such an identifying key may be included in information relating to the requested data contained in the header in the first data block. In this example, the header may include a hash value derived from the data block. The traffic management device 106 may then perform a “pessimistic” lookup of the contents of the buffer 204 while receiving an additional data block 220B. The “pessimistic” lookup is defined as a lookup that is performed without interrupting the underlying operation. Thus, in this example, the lookup is performed while continuing the receiving of the requested data. This comparison may be made using the hash value to determine whether the requested data is already stored. If a match is found, the traffic management device 106 may stop the transmission of the remainder of the data file 220 from the server 104 by sending an acknowledgment signal to the server 104. In this example, the traffic management device 106 may store the data blocks 220A-220F of the data file 220 from a previous request in the buffer 204 and thus the traffic management device 106 may send an acknowledgement signal to the server 104 using the identification of the client computer 102. Since the data already exists, the remainder of the requested data (data blocks 220C-220F) may instead be sent by the traffic management device 106 from the stored data in the buffer 204 and therefore additional data blocks from the server 104 are unnecessary to fulfill the request. If a match were not found, there is no penalty for the subsequent trip time of the additional data (data blocks 220C-220F) from the server 104.
An alternate process may be a network traffic optimization application installed on the client computer 102 in
Each of the client computers 102, server 104, and the traffic management device 106 may include a central processing unit (CPU), controller or processor, a memory, and an interface system which are coupled together by a bus or other link, although other numbers and types of each of the components and other configurations and locations for the components can be used. The processors in the client computers 102, server 104 and the traffic management device 106 may execute a program of stored instructions for one or more aspects of the methods and systems as described herein, including for increasing data transmission efficiency, although the processor could execute other types of programmed instructions. The memory may store these programmed instructions for one or more aspects of the methods and systems as described herein, including the method for increasing the transmission efficiency, although some or all of the programmed instructions could be stored and/or executed elsewhere. A variety of different types of memory storage devices, such as a random access memory (RAM) or a read only memory (ROM) in the system or a floppy disk, hard disk, CD ROM, DVD ROM, or other computer readable medium which is read from and/or written to by a magnetic, optical, or other reading and/or writing system that is coupled to the processor, may be used for the memory. The user input device may comprise a computer keyboard and a computer mouse, although other types and numbers of user input devices may be used. The display may comprise a computer display screen, such as a CRT or LCD screen by way of example only, although other types and numbers of displays could be used.
Although an example of the client computers 102, server 104 and traffic management device 106 are described and illustrated herein in connection with
Furthermore, each of the systems of the system 100 may be conveniently implemented using one or more general purpose computer systems, microprocessors, digital signal processors, micro-controllers, application specific integrated circuits (ASIC), programmable logic devices (PLD), field programmable logic devices (FPLD), field programmable gate arrays (FPGA) and the like, programmed according to the teachings as described and illustrated herein, as will be appreciated by those skilled in the computer, software and networking arts.
In addition, two or more computing systems or devices may be substituted for any one of the systems in the system 100. Accordingly, principles and advantages of distributed processing, such as redundancy, replication, and the like, also can be implemented, as desired, to increase the robustness and performance of the devices and systems of the system 100. The system 100 may also be implemented on a computer system or systems that extend across any network environment using any suitable interface mechanisms and communications technologies including, for example telecommunications in any suitable form (e.g., voice, modem, and the like), Public Switched Telephone Network (PSTNs), Packet Data Networks (PDNs), the Internet, intranets, a combination thereof, and the like.
The operation of the example network traffic optimization application 202, shown in
Returning to
If the traffic management device 106 determines that the requested data are already stored in the buffer 204 (308), the traffic management device 106 may send a preemptive ACK signal to the server 104 (318). The server 104, on receiving the preemptive ACK signal may cease transmitting any remaining data blocks to the traffic management device 106 (320). The server 104 may then purge the data blocks in the stack 222 thus freeing up the stack 222 for use with other server tasks. Thus, if the data requested exists in the traffic management device 106, greater data transmission efficiency is achieved by sending a deterministic acknowledgment signal to the server 104. For example, the server 104 may proceed to transmit additional responsive data associated with the data file after terminating the transmitting of the responsive data file. In larger data files, the ACK signal may also include information relating to the data blocks in the requesting computer matching the requested data. In such a case, the server 104 could be instructed to transmit only data blocks that are part of the requested data file, but are not available to the requesting computer.
It is to be understood that the receiving computer that already stores the requested data in the above example is the traffic management device 106 but the receiving computer that already stores the requested data may be the actual client computer 102 in
Having thus described the basic concepts, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the examples. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.
Number | Name | Date | Kind |
---|---|---|---|
3950735 | Patel | Apr 1976 | A |
4644532 | George et al. | Feb 1987 | A |
4897781 | Chang et al. | Jan 1990 | A |
4965772 | Daniel et al. | Oct 1990 | A |
5023826 | Patel | Jun 1991 | A |
5053953 | Patel | Oct 1991 | A |
5299312 | Rocco, Jr. | Mar 1994 | A |
5327529 | Fults et al. | Jul 1994 | A |
5367635 | Bauer et al. | Nov 1994 | A |
5371852 | Attanasio et al. | Dec 1994 | A |
5406502 | Haramaty et al. | Apr 1995 | A |
5475857 | Dally | Dec 1995 | A |
5517617 | Sathaye et al. | May 1996 | A |
5519694 | Brewer et al. | May 1996 | A |
5519778 | Leighton et al. | May 1996 | A |
5521591 | Arora et al. | May 1996 | A |
5528701 | Aref | Jun 1996 | A |
5581764 | Fitzgerald et al. | Dec 1996 | A |
5596742 | Agarwal et al. | Jan 1997 | A |
5606665 | Yang et al. | Feb 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5663018 | Cummings et al. | Sep 1997 | A |
5752023 | Choucri et al. | May 1998 | A |
5761484 | Agarwal et al. | Jun 1998 | A |
5768423 | Aref et al. | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5790554 | Pitcher et al. | Aug 1998 | A |
5802052 | Venkataraman | Sep 1998 | A |
5812550 | Sohn et al. | Sep 1998 | A |
5825772 | Dobbins et al. | Oct 1998 | A |
5875296 | Shi et al. | Feb 1999 | A |
5892914 | Pitts | Apr 1999 | A |
5892932 | Kim | Apr 1999 | A |
5919247 | Van Hoff et al. | Jul 1999 | A |
5936939 | Des Jardins et al. | Aug 1999 | A |
5941988 | Bhagwat et al. | Aug 1999 | A |
5946690 | Pitts | Aug 1999 | A |
5949885 | Leighton | Sep 1999 | A |
5951694 | Choquier et al. | Sep 1999 | A |
5959990 | Frantz et al. | Sep 1999 | A |
5974460 | Maddalozzo, Jr. et al. | Oct 1999 | A |
5983281 | Ogle et al. | Nov 1999 | A |
5988847 | McLaughlin et al. | Nov 1999 | A |
6006260 | Barrick, Jr. et al. | Dec 1999 | A |
6006264 | Colby et al. | Dec 1999 | A |
6026452 | Pitts | Feb 2000 | A |
6028857 | Poor | Feb 2000 | A |
6051169 | Brown et al. | Apr 2000 | A |
6078956 | Bryant et al. | Jun 2000 | A |
6085234 | Pitts et al. | Jul 2000 | A |
6092196 | Reiche | Jul 2000 | A |
6108703 | Leighton et al. | Aug 2000 | A |
6111876 | Frantz et al. | Aug 2000 | A |
6128279 | O'Neil et al. | Oct 2000 | A |
6128657 | Okanoya et al. | Oct 2000 | A |
6170022 | Linville et al. | Jan 2001 | B1 |
6178423 | Douceur et al. | Jan 2001 | B1 |
6182139 | Brendel | Jan 2001 | B1 |
6192051 | Lipman et al. | Feb 2001 | B1 |
6233612 | Fruchtman et al. | May 2001 | B1 |
6246684 | Chapman et al. | Jun 2001 | B1 |
6253226 | Chidambaran et al. | Jun 2001 | B1 |
6253230 | Couland et al. | Jun 2001 | B1 |
6263368 | Martin | Jul 2001 | B1 |
6289012 | Harrington et al. | Sep 2001 | B1 |
6298380 | Coile et al. | Oct 2001 | B1 |
6327622 | Jindal et al. | Dec 2001 | B1 |
6343324 | Hubis et al. | Jan 2002 | B1 |
6347339 | Morris et al. | Feb 2002 | B1 |
6360270 | Cherkasova et al. | Mar 2002 | B1 |
6374300 | Masters | Apr 2002 | B2 |
6396833 | Zhang et al. | May 2002 | B1 |
6430562 | Kardos et al. | Aug 2002 | B1 |
6434081 | Johnson et al. | Aug 2002 | B1 |
6484261 | Wiegel | Nov 2002 | B1 |
6490624 | Sampson et al. | Dec 2002 | B1 |
6510135 | Almulhem et al. | Jan 2003 | B1 |
6510458 | Berstis et al. | Jan 2003 | B1 |
6519643 | Foulkes et al. | Feb 2003 | B1 |
6601084 | Bhaskaran et al. | Jul 2003 | B1 |
6636503 | Shiran et al. | Oct 2003 | B1 |
6636894 | Short et al. | Oct 2003 | B1 |
6650640 | Muller et al. | Nov 2003 | B1 |
6650641 | Albert et al. | Nov 2003 | B1 |
6654701 | Hatley | Nov 2003 | B2 |
6683873 | Kwok et al. | Jan 2004 | B1 |
6691165 | Bruck et al. | Feb 2004 | B1 |
6708187 | Shanumgam et al. | Mar 2004 | B1 |
6742045 | Albert et al. | May 2004 | B1 |
6751663 | Farrell et al. | Jun 2004 | B1 |
6754228 | Ludwig | Jun 2004 | B1 |
6760775 | Anerousis et al. | Jul 2004 | B1 |
6772219 | Shobatake | Aug 2004 | B1 |
6779039 | Bommareddy et al. | Aug 2004 | B1 |
6781986 | Sabaa et al. | Aug 2004 | B1 |
6798777 | Ferguson et al. | Sep 2004 | B1 |
6816901 | Sitaraman et al. | Nov 2004 | B1 |
6829238 | Tokuyo et al. | Dec 2004 | B2 |
6868082 | Allen, Jr. et al. | Mar 2005 | B1 |
6876629 | Beshai et al. | Apr 2005 | B2 |
6876654 | Hegde | Apr 2005 | B1 |
6888836 | Cherkasova | May 2005 | B1 |
6928082 | Liu et al. | Aug 2005 | B2 |
6950434 | Viswanath et al. | Sep 2005 | B1 |
6954780 | Susai et al. | Oct 2005 | B2 |
6957272 | Tallegas et al. | Oct 2005 | B2 |
6975592 | Seddigh et al. | Dec 2005 | B1 |
6987763 | Rochberger et al. | Jan 2006 | B2 |
7007092 | Peiffer | Feb 2006 | B2 |
7113993 | Cappiello et al. | Sep 2006 | B1 |
7139792 | Mishra et al. | Nov 2006 | B1 |
7228422 | Morioka et al. | Jun 2007 | B2 |
7283470 | Sindhu et al. | Oct 2007 | B1 |
7287082 | O'Toole, Jr. | Oct 2007 | B1 |
7308703 | Wright et al. | Dec 2007 | B2 |
7321926 | Zhang et al. | Jan 2008 | B1 |
7333999 | Njemanze | Feb 2008 | B1 |
7343413 | Gilde et al. | Mar 2008 | B2 |
7349391 | Ben-Dor et al. | Mar 2008 | B2 |
7398552 | Pardee et al. | Jul 2008 | B2 |
7454480 | Labio et al. | Nov 2008 | B2 |
7490162 | Masters | Feb 2009 | B1 |
7500269 | Huotari et al. | Mar 2009 | B2 |
7526541 | Roese et al. | Apr 2009 | B2 |
7558197 | Sindhu et al. | Jul 2009 | B1 |
7580971 | Gollapudi et al. | Aug 2009 | B1 |
7624424 | Morita et al. | Nov 2009 | B2 |
7668166 | Rekhter et al. | Feb 2010 | B1 |
7706261 | Sun et al. | Apr 2010 | B2 |
7724657 | Rao et al. | May 2010 | B2 |
7801978 | Susai et al. | Sep 2010 | B1 |
7876677 | Cheshire | Jan 2011 | B2 |
7908314 | Yamaguchi et al. | Mar 2011 | B2 |
8130650 | Allen, Jr. et al. | Mar 2012 | B2 |
8199757 | Pani et al. | Jun 2012 | B2 |
8351333 | Rao et al. | Jan 2013 | B2 |
8380854 | Szabo | Feb 2013 | B2 |
8447871 | Szabo | May 2013 | B1 |
20010023442 | Masters | Sep 2001 | A1 |
20020059428 | Susai et al. | May 2002 | A1 |
20020138615 | Schmeling | Sep 2002 | A1 |
20020161913 | Gonzalez et al. | Oct 2002 | A1 |
20020198993 | Cudd et al. | Dec 2002 | A1 |
20030046291 | Fascenda | Mar 2003 | A1 |
20030070069 | Belapurkar et al. | Apr 2003 | A1 |
20030086415 | Bernhard et al. | May 2003 | A1 |
20030108052 | Inoue et al. | Jun 2003 | A1 |
20030145062 | Sharma et al. | Jul 2003 | A1 |
20030145233 | Poletto et al. | Jul 2003 | A1 |
20030225485 | Fritz et al. | Dec 2003 | A1 |
20040003287 | Zissimopoulos et al. | Jan 2004 | A1 |
20040103283 | Hornak | May 2004 | A1 |
20040117493 | Bazot et al. | Jun 2004 | A1 |
20040267920 | Hydrie et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050004887 | Igakura et al. | Jan 2005 | A1 |
20050021736 | Carusi et al. | Jan 2005 | A1 |
20050044213 | Kobayashi et al. | Feb 2005 | A1 |
20050052440 | Kim et al. | Mar 2005 | A1 |
20050055435 | Gbadegesin et al. | Mar 2005 | A1 |
20050122977 | Lieberman | Jun 2005 | A1 |
20050154837 | Keohane et al. | Jul 2005 | A1 |
20050187866 | Lee | Aug 2005 | A1 |
20050188220 | Nilsson et al. | Aug 2005 | A1 |
20050262238 | Reeves et al. | Nov 2005 | A1 |
20060031520 | Bedekar et al. | Feb 2006 | A1 |
20060059267 | Cugi et al. | Mar 2006 | A1 |
20060156416 | Huotari et al. | Jul 2006 | A1 |
20060161577 | Kulkarni et al. | Jul 2006 | A1 |
20060171365 | Borella | Aug 2006 | A1 |
20060233106 | Achlioptas et al. | Oct 2006 | A1 |
20060242300 | Yumoto et al. | Oct 2006 | A1 |
20070016662 | Desai et al. | Jan 2007 | A1 |
20070064661 | Sood et al. | Mar 2007 | A1 |
20070083646 | Miller et al. | Apr 2007 | A1 |
20070107048 | Halls et al. | May 2007 | A1 |
20070118879 | Yeun | May 2007 | A1 |
20070174491 | Still et al. | Jul 2007 | A1 |
20070220598 | Salowey et al. | Sep 2007 | A1 |
20070297551 | Choi | Dec 2007 | A1 |
20080034136 | Ulenas | Feb 2008 | A1 |
20080072303 | Syed | Mar 2008 | A1 |
20080133518 | Kapoor et al. | Jun 2008 | A1 |
20080134311 | Medvinsky et al. | Jun 2008 | A1 |
20080148340 | Powell et al. | Jun 2008 | A1 |
20080201599 | Ferraiolo et al. | Aug 2008 | A1 |
20080256224 | Kaji et al. | Oct 2008 | A1 |
20080301760 | Lim | Dec 2008 | A1 |
20090028337 | Balabine et al. | Jan 2009 | A1 |
20090049230 | Pandya | Feb 2009 | A1 |
20090119504 | van Os et al. | May 2009 | A1 |
20090125625 | Shim et al. | May 2009 | A1 |
20090138749 | Moll et al. | May 2009 | A1 |
20090141891 | Boyen et al. | Jun 2009 | A1 |
20090228956 | He et al. | Sep 2009 | A1 |
20090287935 | Aull et al. | Nov 2009 | A1 |
20100023582 | Pedersen et al. | Jan 2010 | A1 |
20100071048 | Novak et al. | Mar 2010 | A1 |
20100122091 | Huang et al. | May 2010 | A1 |
20100150154 | Viger et al. | Jun 2010 | A1 |
20100242092 | Harris et al. | Sep 2010 | A1 |
20100251330 | Kroeselberg et al. | Sep 2010 | A1 |
20100325277 | Muthiah et al. | Dec 2010 | A1 |
20110040889 | Garrett et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110066718 | Susai et al. | Mar 2011 | A1 |
20110173295 | Bakke et al. | Jul 2011 | A1 |
20110273984 | Hsu et al. | Nov 2011 | A1 |
20110282997 | Prince et al. | Nov 2011 | A1 |
20110321122 | Mwangi et al. | Dec 2011 | A1 |
20120066489 | Ozaki et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
0744850 | Nov 1996 | EP |
9114326 | Sep 1991 | WO |
9505712 | Feb 1995 | WO |
9905829 | Feb 1997 | WO |
9709805 | Mar 1997 | WO |
9745800 | Dec 1997 | WO |
9906913 | Feb 1999 | WO |
9910858 | Mar 1999 | WO |
9939373 | Aug 1999 | WO |
9964967 | Dec 1999 | WO |
0004422 | Jan 2000 | WO |
0004458 | Jan 2000 | WO |
Entry |
---|
Crescendo Networks, “Application Layer Processing (ALP),” 2003-2009, pp. 168-186, Chapter 9, CN-5000E/5500E, Foxit Software Company. |
“A Process for Selective Routing of Servlet Content to Transcoding Modules,” Research Disclosure 422124, Jun. 1999, pp. 889-890, IBM Corporation. |
“Big-IP Controller with Exclusive OneConnect Content Switching Feature Provides a Breakthrough System for Maximizing Server and Network Performance,” F5 Networks, Inc. Press Release, May 8, 2001, 2 pages, Las Vegas, Nevada. |
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2068, Jan. 1997, pp. 1-162 |
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2616, Jun. 1999, pp. 1-176. |
Floyd et al., “Random Early Detection Gateways for Congestion Avoidance,” Aug. 1993, pp. 1-22, IEEE/ACM Transactions on Networking, California. |
Hochmuth, Phil, “F5, CacheFlow pump up content-delivery lines,” Network World Fusion, May 4, 2001, 1 page, Las Vegas, Nevada. |
“Servlet/Applet/HTML Authentication Process With Single Sign-On,” Research Disclosure 429128, Jan. 2000, pp. 163-164, IBM Corporation. |
“Traffic Surges; Surge Queue; Netscaler Defense,” 2005, PowerPoint Presentation, slides 1-12, Citrix Systems, Inc. |
Macvittie, Lori, “Message-Based Load Balancing,” Technical Brief, Jan. 2010, pp. 1-9, F5 Networks, Inc. |
F5 Networks Inc., “Configuration Guide for Local Traffic Management,” F5 Networks Inc., Jan. 2006, version 9.2.2, 406 pgs. |
Abad, C., et al., “An Analysis on the Schemes for Detecting and Preventing ARP Cache Poisoning Attacks”, IEEE, Computer Society, 27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07), 2007, pp. 1-8. |
OWASP, “Testing for Cross site scripting”, OWASP Testing Guide v2, Table of Contents, Feb. 24, 2011, pp. 1-5, (www.owasp.org/index.php/Testing—for—Cross—site—scripting). |
International Search Report for International Patent Application No. PCT/US2013/026615 (Jul. 4, 2013). |