The present invention relates to medical devices, and more particularly to stenting and treatment of bifurcated vessels. A stent is an implantable scaffold that is typically delivered percutaneously and deployed in a vein, artery, or other tubular body organ for treating an occlusion, stenosis, aneurysm, collapse, dissection, or weakened, diseased, or abnormally dilated vessel or vessel wall. The stent is radially expanded in situ, thereby expanding and/or supporting the vessel wall or body organ wall. In particular, stents are quite commonly implanted in the coronary, cardiac, pulmonary, neurovascular, peripheral vascular, renal, gastrointestinal and reproductive systems, and have been successfully implanted in the urinary tract, the bile duct, the esophagus, the tracheo-bronchial tree and the brain, to reinforce these body organs.
Stents are often used for improving angioplasty results by preventing elastic recoil and remodeling of the vessel wall and for treating dissections in blood vessel walls caused by balloon angioplasty of coronary arteries, as well as peripheral arteries, by pressing together the intimal flaps in the lumen at the site of the dissection. Conventional stents have been used for treating more complex vascular problems, such as lesions at or near bifurcation points in the vascular system, where a secondary artery branches out of a typically larger, main artery, with limited success rates.
Conventional stent technology is relatively well developed. Conventional stent designs typically feature a straight tubular, single type cellular structure, configuration, or pattern that is repetitive through translation along the longitudinal axis. In many stent designs, the repeating structure, configuration, or pattern has strut and connecting balloon catheter portions that can impede blood flow at vessel bifurcations.
Furthermore, the configuration of struts and connecting balloon catheter portions may obstruct the use of post-operative devices to treat a daughter vessel in the region of a vessel bifurcation. For example, deployment of a first stent in the mother lumen may prevent a physician from inserting a daughter stent through the ostium of a daughter vessel of a vessel bifurcation in cases where treatment of the mother vessel is suboptimal because of displaced diseased tissue (for example, due to plaque shifting or “snow plowing”), occlusion, vessel spasm, dissection with or without intimal flaps, thrombosis, embolism, and/or other vascular diseases. A regular stent is designed in view of conflicting considerations of coverage versus access. For example, to promote coverage, the cell structure size of the stent may be minimized for optimally supporting a vessel wall, thereby preventing or reducing tissue prolapse. To promote access, the cell size may be maximized for providing accessibility of blood flow and of a potentially future implanted daughter stent to daughter vessels, thereby preventing “stent jailing,” and minimizing the amount of implanted material. Regular stent design has typically compromised one consideration for the other in an attempt to address both. Problems the present inventors observed involving daughter jailing, fear of plaque shifting, total occlusion, and difficulty of the procedure are continuing to drive the present inventors' into the development of novel, delivery systems, which are easier, safer, and more reliable to use for treating the above-indicated variety of vascular disorders. Although conventional stents are routinely used in clinical procedures, clinical data shows that these stents are not capable of completely preventing in-stent restenosis (ISR) or restenosis caused by intimal hyperplasia. In-stent restenosis is the reoccurrence of the narrowing or blockage of an artery in the area covered by the stent following stent implantation. Patients treated with coronary stents can suffer from in-stent restenosis.
Many pharmacological attempts have been made to reduce the amount of restenosis caused by intimal hyperplasia. Many of these attempts have dealt with the systemic delivery of drugs via oral or intravascular introduction. However, success with the systemic approach has been limited.
Systemic delivery of drugs is inherently limited since it is difficult to achieve constant drug delivery to the afflicted region and since systemically administered drugs often cycle through concentration peaks and valleys, resulting in time periods of toxicity and ineffectiveness. Therefore, to be effective, anti-restenosis drugs should be delivered in a localized manner. One approach for localized drug delivery utilizes stents as delivery vehicles. For example, stents seeded with transfected endothelial cells expressing bacterial betagalactosidase or human tissue-type plasminogen activator were utilized as therapeutic protein delivery vehicles. See, e.g., Dichek, D. A. et al., “Seeding of Intravascular Stents With Genetically Engineered Endothelial Cells,” Circulation, 80:1347-1353 (1989). U.S. Pat. No. 5,679,400, International Patent Publication No. WO 91/12779, entitled “Intraluminal Drug Eluting Prosthesis,” and International Patent Publication No. WO 90/13332, entitled “Stent With Sustained Drug Delivery” disclose stent devices capable of delivering antiplatelet agents, anticoagulant agents, antimigratory agents, antimetabolic agents, and other anti-restenosis drugs. U.S. Pat. Nos. 6,273,913; 6,383,215; 6,258,121; 6,231,600; 5,837,008; 5,824,048; 5,679,400; and 5,609,629 teach stents coated with various pharmaceutical agents such as Rapamycin, 17-beta-estradiol, Taxol and Dexamethasone. This and all other referenced patents are incorporated herein by reference in their entirety. Furthermore, where a definition or use of a term in a reference, which is incorporated by reference herein is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.
Therefore, given the challenges of current stent technology, a need exists for improved stent delivery systems and methods, particularly for treating bifurcated vessels. At least some of these objectives will be met by the present invention.
The present invention relates to methods and delivery systems used to deliver stents in a bifurcated vessel. Embodiments may be configured to stent at least a portion of a mother vessel and a portion of a daughter vessel.
In a first aspect of the present invention, a method of treating a bifurcated vessel comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a first elongate shaft, and a first expandable member near a distal end of the first elongate shaft. The second delivery catheter comprises a second elongate shaft, a second expandable member near a distal end of the second elongate shaft, and a stent disposed over the second expandable member. The stent has a sidewall with a side hole therethrough. A portion of the first elongate shaft is disposed under the stent and the first elongate shaft passes through the side hole in the stent. The first expandable member is distal to the second expandable member. Both the first delivery catheter and the second delivery catheter are advanced through a vessel toward the bifurcation. The bifurcation comprises a main branch vessel having a main branch lesion and a side branch extending from the main branch and having a side branch lesion. The vessels may be wired using standard angioplasty techniques. In some embodiments, the first catheter may be loaded on the main branch wire, and the second catheter may be mounted on the side branch wire. The system is advanced until the stent is disposed in both the main branch and in the side branch. The first expandable member is advanced until the first expandable member is disposed in the main branch past the bifurcation. The first elongate shaft is proximally retracted relative to the second elongate shaft so that the first elongate shaft is retracted under a proximal portion of the stent and a portion of the first expandable member is disposed under the stent while another portion of the first expandable member remains unconstrained by the stent and is disposed in the main branch distal to the side hole in the stent. The first expandable member is radially expanded thereby expanding the proximal portion of the stent into engagement with the main branch lesion and a wall of the main branch, and also expanding the side hole. The second expandable member is radially expanded thereby expanding a distal portion of the stent into engagement with the lesion in the side branch and a wall of the side branch. Both expandable members may then be radially expanded simultaneously.
In preferred embodiments, at least one stent has a sidewall with a side hole or aperture extending therethrough, and a portion of a delivery catheter may pass through the side hole. However, this is not intended to be limiting, and in any of the embodiments disclosed herein, one of skill in the art will appreciate that the stent may have another exit point. Thus the delivery catheter may pass through the exit point, whether it is a side hole in a side wall of the stent, or disposed in another portion of the stent.
Both the first and the second delivery catheters may be advanced until resistance to further advancement is felt by an operator. The resistance may be provided by separation of the first elongate shaft from the second elongate shaft as both shafts are advanced against a carina between the main branch and the side branch.
The first delivery catheter may comprise a first radiopaque marker disposed adjacent a proximal region of the first expandable member, and the second delivery catheter may comprise a second radiopaque marker disposed adjacent a proximal region of the second expandable member. The retracting step may comprise retracting the first elongate shaft until the first radiopaque marker is aligned with the second radiopaque marker. The second elongate shaft may comprise an exchange lumen, and the retracting step may comprise slidably retracting the first elongate shaft through the exchange lumen. The first elongate shaft and the second elongate shaft may be disposed in a central channel of a capture tube, and the retracting step may comprise slidably retracting the first elongate shaft through the central channel. The capture tube may comprise a perforated region, and the method may further comprise separating the perforated region and peeling the capture tube away from the first and the second elongate shafts. The second elongate shaft may comprise a snap fitting configured to receive and retain the first elongate shaft, and the retracting step may comprise slidably retracting the first elongate shaft along the snap fitting. The first elongate shaft and the second elongate shaft may be disposed in a polymer tube having a central channel therethrough, and the retracting step may comprise slidably retracting the first elongate shaft through the central channel.
The first expandable member or the second expandable member may comprise a balloon, and the expanding of the corresponding expandable member may comprise inflating the balloon. The method may further comprise contracting the first expandable member after expansion thereof and prior to the expansion of the second expandable member. The expanding of the stent may comprise differentially expanding the stent so that a proximal region of the expanded stent has a larger diameter than a distal region of the expanded stent.
The method may further comprise simultaneously expanding the first and the second expandable members into engagement with one another thereby ensuring engagement of a proximal portion of the stent with the lesion in the main branch, and engagement of a distal portion of the stent with the lesion in the side branch, and ensuring alignment of the side hole in the stent with the main branch. The main branch and the side branch may have substantially similar diameters. The method may further comprise eluting a therapeutic agent from the stent or one of the expandable members into the main branch lesion or the side branch lesion. The therapeutic agent may comprise an anti-restenosis agent.
In another aspect of the present invention, a system for treating a bifurcation comprises a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a first elongate shaft with proximal and distal ends, and a first expandable member adjacent the distal end of the first elongate shaft. The second delivery catheter comprises a second elongate shaft with proximal and distal ends, a second expandable member adjacent the distal end of the second elongate shaft, and a radially expandable stent disposed over the second expandable member. The stent comprises a sidewall having a side hole therethrough, and the stent also has a collapsed configuration and an expanded configuration. In the collapsed configuration the stent is suitable for delivery to the bifurcation, and in the expanded configuration the stent supports a wall of the main branch and a wall of a side branch of the bifurcation. A first portion of the first elongate shaft is disposed under a proximal portion of the stent. Also, the first elongate shaft passes through the side hole so that a second portion of the first elongate shaft is disposed over a distal portion of the stent. The first elongate shaft is axially slidable relative to the second elongate shaft while the stent is in the collapsed configuration.
In preferred embodiments, at least one stent has a sidewall with a side hole or aperture extending therethrough, and a portion of a delivery catheter may pass through the side hole. However, this is not intended to be limiting, and in any of the embodiments disclosed herein, one of skill in the art will appreciate that the stent may have another exit point. Thus the delivery catheter may pass through the exit point, whether it is a side hole in a side wall of the stent, or disposed in another portion of the stent.
The first expandable member and the second expandable member may be independently expandable of one another. The first or the second expandable member may comprise a balloon. Each of the first and the second delivery catheters may comprise an inflation lumen and/or a guidewire lumen. The first delivery catheter may comprise a distal guidewire opening in the distal end of the first elongate shaft, and a proximal guidewire opening. The proximal guidewire opening may be spaced closer to the distal guidewire opening than the proximal end of the first elongate shaft. In other embodiments, the proximal guidewire opening may be closer to the proximal end of the first elongate shaft than the distal guidewire opening. The guidewire lumen in the first delivery catheter may be configured to slidably receive a guidewire, and the guidewire lumen may extend from the distal guidewire opening to the proximal guidewire opening.
The second delivery catheter may comprise a distal guidewire opening in the distal end of the second elongate shaft, and a proximal guidewire opening. The proximal guidewire opening may be spaced closer to the distal guidewire opening than the proximal end of the second elongate shaft. In other embodiments, the proximal guidewire opening may be closer to the proximal end of the second elongate shaft than the distal guidewire opening. The guidewire lumen in the second delivery catheter may be configured to slidably receive a guidewire, and the guidewire lumen may extend from the distal guidewire opening to the proximal guidewire opening.
The first expandable member may be axially spaced apart from the second expandable member such that the first expandable member is distal to the second expandable member. The distal expandable member may have a cross-sectional profile that is smaller than the cross-sectional profile of the other expandable member. The first or the second expandable member comprises a working length and the working length may comprise a tapered region such that a proximal portion of the working length has a diameter greater than a distal portion of the working length.
One of the first elongate shaft or the second elongate shaft may comprise a region having a guidewire lumen, an inflation lumen, and an exchange lumen. The other elongate shaft may be slidably disposed in the exchange lumen. The expandable member on the other elongate shaft may be axially spaced apart from the first elongate shaft having the exchange lumen such that the expandable member on the other shaft is distal to the expandable member on the elongate shaft with the exchange lumen. The system may comprise a capture tube having a proximal end, a distal end, a longitudinal axis, and a central channel extending therebetween. The first elongate shaft and the second elongate shaft may be slidably disposed in the central channel. The capture tube may prevent the first elongate shaft from tangling with the second elongate shaft. The capture tube may comprise a perforated region extending along the longitudinal axis, extending at least partially between the proximal and distal ends of the capture tube so that the capture tube may be peeled away from the first and second elongate shafts. The capture tube may also comprise a locking mechanism for releasably holding the first elongate shaft and the second elongate shaft.
One of the first elongate shaft or the second elongate shaft may comprise a snap fitting configured to receive and retain the other elongate shaft. The other elongate shaft may be slidably movable axially through the snap fitting, and the expandable member on the other elongate shaft may be axially spaced apart from the elongate shaft having the snap fitting such that the expandable member on the other elongate shaft is distal to the expandable member on the elongate shaft with the snap fitting. The system may comprise a polymer sleeve having a proximal end, a distal end, a longitudinal axis, and a central channel extending therebetween. The first elongate shaft and the second elongate shaft may be slidably disposed in the central channel. The polymer sleeve may prevent the first elongate shaft from tangling with the second elongate shaft.
The stent may be balloon expandable, self-expanding, or a combination thereof. The stent may be non-uniformly crimped to the second expandable member. A therapeutic agent may be disposed on the radially expandable stent or on one of the first or the second expandable members, and the agent may be adapted to being eluted therefrom. The therapeutic agent may comprise an anti-restenosis agent.
The first elongate shaft may comprise a radiopaque marker disposed thereon, and the second elongate shaft may comprise a radiopaque marker disposed thereon. When the first radiopaque marker is aligned with the second radiopaque marker a working portion of the first expandable member may be aligned with a working portion of the second expandable member. A portion of the first expandable member may be disposed under the stent such that expansion of the first expandable member will also expand a proximal portion of the stent while a distal portion of the stent remains unexpanded. Either the first expandable member or the second expandable member may be differentially expandable such that a proximal portion of the differentially expandable member has a larger diameter than a distal portion of the differentially expandable member. The stent may also be differentially expandable such that in the expanded configuration a first portion of the stent has a larger diameter than a second portion of the stent.
The first delivery catheter may comprise a first guidewire lumen extending at least partially between the proximal and distal ends of the first elongate shaft. The system may further comprise a first guidewire that is slidably positioned in the first guidewire lumen. The second delivery catheter may comprise a second guidewire lumen extending at least partially between the proximal and distal ends of the second elongate shaft. The system may further comprise a second guidewire that is slidably positioned in the second guidewire lumen. A guidewire may be fixedly attached to a distal end of the first elongate shaft or the second elongate shaft.
These and other embodiments are described in further detail in the following description related to the appended drawing figures.
The present invention relates to delivery systems for delivery of stents to vessel bifurcations having a main branch and a side branch, and is generally configured to at least partially cover a portion of a the side branch as well as a portion of the main branch. However, this is not intended to be limiting, and one of skill in the art will appreciate that the devices and methods described herein may be used for treating other regions of the body.
The scientific community is slowly moving away from a main branch vs. side branch model and nomenclature. It is now well accepted that a “mother” vessel bifurcates into two “daughter vessels,” the two vessels that are anatomically after the carina. The vessel that appears to be the continuation of the mother vessel is usually less angulated. The other vessel is frequently smaller in diameter and may be commonly referred to as the side branch, or a daughter vessel. Therefore, in this specification, the terms “main branch,” “trunk,” or “mother vessel” may be used interchangeably. Also in this specification, the terms “side branch vessel” and “daughter vessel” may also be used interchangeably. The terms “main branch stent,” “trunk stent,” or “mother stent” are interchangeable, and the term “side branch stent” is also interchangeable with the term “daughter stent.” In the case where a main branch vessel bifurcates into two equally sized branches, one of the branches may still be considered to be the main branch or mother vessel, and the other branch may be considered a side branch or daughter vessel.
A variety of catheter designs may be employed to deploy and position the mother and daughter stents. Such catheters may be used in connection with multiple guidewires that terminate in the mother and daughter vessels. These guidewires may be used to facilitate introduction of the catheter, any angioplasty balloons, any stents, and/or to properly orient the stent or balloon within the vessel.
In general, the methods disclosed herein may utilize a catheter system comprising a catheter body having a mother vessel guidewire lumen and a daughter vessel balloon that is independently operable and coupled to the catheter body. The daughter balloon catheter portion has a daughter vessel guidewire lumen. The catheter system further includes a mother catheter balloon, and a stent is disposed over the balloon. The daughter catheter portion extends into the proximal opening of the mother stent and exits the mother stent through a side passage of the mother stent.
According to one method, a mother vessel guidewire is inserted into the mother vessel until a distal end of the mother vessel guidewire passes beyond the ostium of the daughter vessel, and a daughter vessel guidewire is inserted into the mother vessel until a distal end of the daughter vessel guidewire passes into the daughter vessel. To prevent the crossing of guidewires, the two vessels are wired through a guidewire catheter with two lumens to keep the guidewires separate and untangled.
The guidewire catheter is then removed and a wire separator is placed on the wires to keep the guidewires unwrapped. The catheter system is then advanced over the mother and daughter vessel guidewires, with the mother and daughter vessel catheters passing over the mother vessel guidewire and the daughter vessel guidewire. The catheter system is advanced on both wires with the daughter vessel balloon catheter portion distal to the mother balloon catheter portion, leading the system. As the catheter system advances over the wires, the daughter vessel balloon will enter the daughter vessel and may be positioned after or simultaneously with placement of the mother vessel balloon. The mother balloon catheter portion of the catheter system is then advanced distally as far as it can be advanced where it is stopped by the carina. It can not be advanced beyond the bifurcation site because the tension of the daughter catheter on the mother stent will prevent the mother catheter from moving distally. At this time the distal portion of the mother stent is beyond the carina in the mother vessel and can not be advanced any further. This method facilitates advancement of the catheter system to the bifurcation, which may be necessary for tortuous or calcified coronaries. Once the catheter system is in place the daughter vessel balloon catheter portion is then pulled back relative to the mother catheter so that the proximal part of the daughter balloon is partially within the mother stent. Alignment can be performed with radiopaque markers, in that the proximal markers on the two balloons are next to each other. The operator can then gently push the catheter system distal to maximize apposition to the carina. The daughter balloon which is now partially under the mother stent is then inflated to ensure proper alignment of the mother stent. The daughter balloon may also have a stent on its distal portion, which would result in the proximal portion of the mother stent and the daughter stent to expand simultaneously. The daughter balloon is then deflated.
The mother balloon is then inflated which deploys the mother stent. Kissing, reinflation, of the two balloons is performed if necessary or for shifting plaque. The catheter system may be removed while the wires remain in place. In this embodiment, or any of the other embodiments disclosed herein, an angioplasty catheter may be used to predilate the vessel and lesion prior to stenting. In some embodiments, primary stenting is employed where the stent is deployed without the predilation. The two vessels may be angioplastied separately if predilatation is indicated on occasion.
In an alternative method, the mother catheter can be mounted on the daughter vessel guidewire and the daughter catheter can be mounted on the mother vessel guidewire. In daughter vessels with a high degree of angularity, for example, when the bifurcation angle is greater than about 60-70°, the friction between catheters is lower when the operator needs to draw the daughter stent proximally along the main branch and into the mother stent, as opposed to the prior configuration where the daughter stent is drawn along the side branch into the mother stent. The catheter system is advanced so the daughter balloon catheter leads the system and passes the ostium of the daughter vessel, while remaining in the mother vessel. As the catheter system is advanced further, the mother balloon catheter will enter the daughter vessel. The catheter system can only be advanced a certain distance toward the bifurcation, until it is stopped by the carina. It cannot be advanced beyond the bifurcation site because the tension of the daughter catheter on the mother stent will prevent the mother catheter from moving distally. At this time the distal portion of the mother stent is beyond the ostium of the daughter vessel and can not be advanced any further. While the mother catheter is held in place, the daughter catheter is drawn back such that the proximal portion of the daughter balloon is partially in the mother stent. Alignment can be performed with radiopaque markers, in that the proximal markers on the two balloons are next to each other. The operator can then gently push the catheter system distally to maximize apposition to the carina. A stent on the daughter balloon (which is now partially under the mother stent) is aligned so that when the daughter balloon is inflated the daughter stent and the proximal portion of the mother stent expand simultaneously and give complete coverage of the mother vessel. The daughter vessel balloon is then deflated. The mother vessel balloon is then inflated and the distal portion of the mother stent is expanded. A kissing procedure can also be performed if required.
The mother vessel can be stented if necessary with any commercially available stent. A balloon on a wire could be used as an alternative to the daughter catheter. In an alternative embodiment, the catheter system can be arranged with the daughter balloon portion proximal to the mother balloon portion and advanced over the guidewires to the bifurcation. In the case of the mother catheter on the mother guidewire, the alignment of the mother stent with the ostium of the daughter vessel occurs because tension between the daughter guidewire and mother stent on the mother catheter prevents further advancement of the mother catheter. In the alternative case of the mother catheter on the daughter guidewire, the alignment of the mother stent with the ostium of the mother vessel occurs because tension between the mother guidewire and mother stent on the mother catheter (on the daughter guidewire) prevents further advancement of the mother catheter. In both cases the daughter stent is advanced into alignment with the mother stent and expanded. In preferred embodiments, the mother catheter is an over-the-wire (OTW) design and the daughter catheter is a rapid-exchange (RX) design with daughter catheter portion preferably distal thereto. The daughter balloon is placed just distal to the tip of the mother catheter, this arrangement minimizes the overall profile of the catheter system and allows maximal tracking of the arteries. The system may additionally have stents crimped over the balloons. The daughter stent may be any length, but in preferred embodiments is approximately half the length of the daughter balloon or mother stent. The proximal end of the mother stent may be crimped only slightly to allow the daughter catheter balloon portion to operate independently so that it may be pushed or pulled without dislodging the mother stent.
An exemplary method comprises the following steps:
In an alternative embodiment, the mother catheter is an over-the-wire (OTW) design and the daughter catheter is a rapid-exchange (RX) design with daughter catheter portion distal thereto. The system may additionally have stents crimped over the balloons. The daughter stent is preferably less than the length of the mother balloon or stent, although this is not intended to be limiting, and the daughter stent may be any length. The proximal end of the mother stent may be partially crimped to allow the daughter catheter balloon portion to operate independently, so that it may be pushed or pulled without restriction and minimum friction, and without dislodging or affecting the mother stent. An exemplary method comprises the following steps:
In one particular aspect, the daughter balloon catheter portion may be used without a stent. This would allow perfect alignment of the mother stent around the ostium of the daughter vessel. The daughter balloon would be used for the alignment as outlined in step three above, and expand the proximal portion of the mother stent.
In an alternative embodiment, the mother catheter is an over-the-wire design and the daughter catheter is a rapid-exchange design with daughter catheter portion distal thereto. The system may additionally have stents crimped over the balloons. The daughter stent may be approximately half the length of the mother balloon or stent, but this is not intended to be limiting, and the daughter stent may be any length. The proximal end of the mother stent may be partially crimped to allow the daughter catheter balloon portion to operate independently, so that it may be pushed or pulled without dislodging the mother stent. An exemplary method comprises the following steps:
In an alternative embodiment the mother and daughter systems balloons are aligned. This embodiment could include the mother stent and daughter stent or either stent. When there is both a mother stent and a daughter stent, the daughter stent is preferably shorter than the mother stent, although it may be any length, and in preferred embodiments is approximately half the length of the mother stent so that the daughter stent could be mounted on the distal half of the daughter balloon. Furthermore, the proximal portion of the daughter catheter shaft is positioned under the non-uniformly crimped mother stent. The dual stent arrangement reduces the profile compared to a full length stent that covers the entire length of the daughter balloon.
The methods described herein could alternatively include the step of flushing the catheters and the guidewire port to assist with maneuverability. The methods described herein could alternatively include the step of a couple of snap-on couplers that lock the two catheters together. In another particular aspect, each balloon catheter portion may include at least one radiopaque marker. With such a configuration, separation of the markers may be conveniently observed using fluoroscopy to indicate that the balloon catheter portions have passed beyond the ostium and the daughter balloon catheter portion has passed into the daughter vessel, thus aligning the passage of the stent with the ostium of the daughter vessel. In another particular aspect, the catheter systems design is contemplated to cover combinations of rapid exchange and over the wire; for visualization purposes the hybrid versions are preferred because they are easier to distinguish while using fluoroscopy.
In another particular aspect, the proximal balloon may be differentially expandable, such that one end of the balloon may expand prior to the other end. In another particular aspect, the proximal balloon catheter portion may receive a stent that can be crimped under variable pressure to allow the distal balloon catheter portion freedom of movement.
In another particular aspect, a stent may be crimped over the proximal balloon catheter portion and the stent may be designed to deploy with variable profile to better oppose the patient anatomy.
In another particular aspect, the distal balloon catheter portion may be delivered via a pull away or peel away capture tube. All of the above embodiments may utilize mother vessel stents having any diameter, with diameter preferably ranging from about 2.5 to about 5 millimeters, and daughter vessel stent having any diameter, preferably ranging from about 2 to about 5 millimeters. The length of the stents may be any length, preferably in the range of about 4 to about 40 millimeters. The position of a stent on a catheter need not be fixed and may be positioned on either or both catheters.
Catheter Configurations:
The second catheter 130 includes an elongate shaft 132 with a radially expandable balloon 140 disposed near a distal end of the elongate shaft 132. A stent 142 is disposed over balloon 140. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 142 is shorter than the working length of the balloon 140 so that a proximal portion of the balloon 140 is unconstrained by the stent 142 and this unconstrained portion of the balloon 140 may be slidably advanced or refracted through side hole 120 and under proximal portion 122 of stent 108 as will be discussed below. Stent 142 is crimped to balloon 140 to prevent ejection during delivery. At least a portion of balloon 140, and stent 142 are distally offset relative to balloon 106 and stent 108 so as to minimize profile of the device. In this embodiment the distal stent 142 may be deployed in a main branch of the vessel and the other stent 108 may be deployed in a side branch of the vessel. Alternatively, the distal stent 142 may be deployed in a side branch of a vessel and the other stent 108 may be deployed in the main branch of a vessel. The second catheter 130 is a rapid exchange catheter (RX) having a guidewire lumen 134 extending from the distal guidewire port 138 at the distal end of the elongate shaft 132 to a proximal guidewire port 136 which is closer to the distal port 138 than the proximal end of the catheter shaft 132. The proximal guidewire port 136 is also unobstructed by the hollow exchange tube 124 and preferably proximal thereto. A connector 144, preferably a Luer connector is connected to the proximal end of the elongate shaft 132 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 132 for inflation of balloon 140. A portion of shaft 132 is disposed in the central channel 126 of the hollow exchange tube 124 and this helps keep the two catheter shafts 104, 132 parallel and prevents tangling during delivery and as shaft 132 is slidably advanced or retracted relative to shaft 104. Also, another portion of shaft 132 is disposed under proximal portion 122 of stent 108. The second catheter 130 may also be slidably advanced or retracted under the proximal portion 122 of stent 108 so that the shaft 132 passes through the side hole 120 in stent 108. Radiopaque markers may be placed at different locations on the shaft 132, often near the balloon 140 or stent 142, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 230 includes an elongate shaft 232 with a radially expandable balloon 240 disposed near a distal end of the elongate shaft 232. A stent 242 having a proximal portion 222, a distal portion 214, and a side hole 220 is disposed over balloon 240. The distal portion 214 is crimped to balloon 240 to prevent ejection during delivery, while the proximal portion 222 is partially crimped to balloon 240 so elongate shaft 204 may be slidably advanced or retracted under the proximal portion 222 of stent 242. The stent may preferably have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. At least a portion of balloon 206, and stent 208 are distally offset relative to balloon 240 and stent 242 so as to minimize profile of the device. In this embodiment the distal stent 208 may be deployed in a main branch of the vessel and the other stent 242 may be deployed in a side branch of the vessel. Alternatively, the distal stent 208 may be deployed in a side branch of a vessel and the other stent 242 may be deployed in the main branch of a vessel. The second catheter 230 is a rapid exchange catheter (RX) having a guidewire lumen 234 extending from the distal guidewire port 238 at the distal end of the elongate shaft 232 to a proximal guidewire port 236 which is closer to the distal port 238 than the proximal end of the catheter shaft 232. The proximal guidewire port 236 is also unobstructed by the hollow exchange tube 224 and preferably proximal thereto. A connector 244, preferably a Luer connector is connected to the proximal end of the elongate shaft 232 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 232 for inflation of balloon 240. A portion of shaft 232 is disposed in the central channel 226 of the hollow exchange tube 224 and this helps keep the two catheter shafts 204, 232 parallel and prevents tangling during delivery and as shaft 232 is slidably advanced or retracted relative to shaft 204. Also, a portion of shaft 204 is disposed under proximal portion 222 of stent 242. The first catheter 202 may be slidably advanced or retracted under the proximal portion 222 of stent 242 so that the shaft 204 passes through the side hole 220 in stent 242. Radiopaque markers may be placed at different locations on the shaft 232, often near the balloon 240 or stent 242, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 330 includes an elongate shaft 332 with a radially expandable balloon 340 disposed near a distal end of the elongate shaft 332. A stent 342 is disposed over balloon 340. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 342 is shorter than the working length of the balloon 340 so that a proximal portion of the balloon 340 is unconstrained by the stent 342 and this unconstrained portion of the balloon 340 may be slidably advanced or refracted through side hole 320 and under proximal portion 322 of stent 308 as will be discussed below. Stent 342 is crimped to balloon 340 to prevent ejection during delivery. At least a portion of balloon 340, and stent 342 are distally offset relative to balloon 306 and stent 308 so as to minimize profile of the device. In this embodiment the distal stent 342 may be deployed in a main branch of the vessel and the other stent 308 may be deployed in a side branch of the vessel. Alternatively, the distal stent 342 may be deployed in a side branch of a vessel and the other stent 308 may be deployed in the main branch of a vessel. The second catheter 330 is a rapid exchange catheter (RX) having a guidewire lumen 334 extending from the distal guidewire port 338 at the distal end of the elongate shaft 332 to a proximal guidewire port 336 which is closer to the distal port 338 than the proximal end of the catheter shaft 332. The proximal guidewire port 336 is also unobstructed by the hollow exchange tube 324 and may be distal thereto. A connector 344, preferably a Luer connector is connected to the proximal end of the elongate shaft 332 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 332 for inflation of balloon 340. A portion of shaft 332 is disposed in the central channel 326 of the hollow exchange tube 324 and this helps keep the two catheter shafts 304, 332 parallel and prevents tangling during delivery and as shaft 332 is slidably advanced or retracted relative to shaft 304. Also, another portion of shaft 332 is disposed under proximal portion 322 of stent 308. The second catheter 330 may also be slidably advanced or retracted under the proximal portion 322 of stent 308 so that the shaft 332 passes through the side hole 320 in stent 308. Radiopaque markers may be placed at different locations on the shaft 332, often near the balloon 340 or stent 342, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 430 includes an elongate shaft 432 with a radially expandable balloon 440 disposed near a distal end of the elongate shaft 432. A stent 442 is disposed over balloon 440. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 442 is shorter than the working length of the balloon 440 so that a proximal portion of the balloon 440 is unconstrained by the stent 442 and this unconstrained portion of the balloon 440 may be slidably advanced or refracted through side hole 420 and under proximal portion 422 of stent 408 as will be discussed below. Stent 442 is crimped to balloon 440 to prevent ejection during delivery. At least a portion of balloon 440, and stent 442 are distally offset relative to balloon 406 and stent 408 so as to minimize profile of the device. In this embodiment the distal stent 442 may be deployed in a main branch of the vessel and the other stent 408 may be deployed in a side branch of the vessel. Alternatively, the distal stent 442 may be deployed in a side branch of a vessel and the other stent 408 may be deployed in the main branch of a vessel. The second catheter 430 is an over-the-wire (OTW) catheter having a guidewire lumen 434 extending from the distal guidewire port 438 at the distal end of the elongate shaft 432 to the proximal end of the elongate shaft 432 into Y-adapter 446 having a connector 448. The connector 448 is preferably a Luer connector and this allows easy coupling with a syringe or other device for lumen flushing or injecting contrast media. When unconnected, the guidewire lumen 434 exits via connector 448. A second connector 444, also preferably a Luer connector allows attachment of an Indeflator or other device to the catheter for inflation of the balloon 440 via an inflation lumen (not shown) in the elongate shaft 432. A portion of shaft 432 is disposed in the central channel 426 of the hollow exchange tube 424 and this helps keep the two catheter shafts 404, 432 parallel and prevents tangling during delivery and as shaft 432 is slidably advanced or retracted relative to shaft 404. Also, another portion of shaft 432 is disposed under proximal portion 422 of stent 408. The second catheter 430 may also be slidably advanced or retracted under the proximal portion 422 of stent 408 so that the shaft 432 passes through the side hole 420 in stent 408. Radiopaque markers may be placed at different locations on the shaft 432, often near the balloon 440 or stent 442, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 530 includes an elongate shaft 532 with a radially expandable balloon 540 disposed near a distal end of the elongate shaft 532. A stent 542 is disposed over balloon 540. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 542 is shorter than the working length of the balloon 540 so that a proximal portion of the balloon 540 is unconstrained by the stent 542 and this unconstrained portion of the balloon 540 may be slidably advanced or refracted through side hole 520 and under proximal portion 522 of stent 508 as will be discussed below. Stent 542 is crimped to balloon 540 to prevent ejection during delivery. At least a portion of balloon 540, and stent 542 are distally offset relative to balloon 506 and stent 508 so as to minimize profile of the device. In this embodiment the distal stent 542 may be deployed in a main branch of the vessel and the other stent 508 may be deployed in a side branch of the vessel. Alternatively, the distal stent 542 may be deployed in a side branch of a vessel and the other stent 508 may be deployed in the main branch of a vessel. The second catheter 530 is a rapid exchange catheter (RX) having a guidewire lumen 534 extending from the distal guidewire port 538 at the distal end of the elongate shaft 532 to a proximal guidewire port 536 which is closer to the distal port 538 than the proximal end of the catheter shaft 532. The proximal guidewire port 536 is also unobstructed by the capture tube 524 and may be distal thereto. A connector 544, preferably a Luer connector is connected to the proximal end of the elongate shaft 532 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 532 for inflation of balloon 540. A portion of shaft 532 is disposed in the central channel 526 of the capture tube 524 and this helps keep the two catheter shafts 504, 532 parallel and prevents tangling during delivery and as shaft 532 is slidably advanced in the central channel 526. Compression fitting 525 may be used to lock elongate shafts 504, 532 in the capture tube 524 to prevent axial movement. The compression fitting may be a Tuohy-Borst fitting. Also, another portion of shaft 532 is disposed under proximal portion 522 of stent 508. The second catheter 530 may also be slidably advanced or retracted under the proximal portion 522 of stent 508 so that the shaft 532 passes through the side hole 520 in stent 508. Radiopaque markers may be placed at different locations on the shaft 532, often near the balloon 540 or stent 542, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 630 includes an elongate shaft 632 with a radially expandable balloon 640 disposed near a distal end of the elongate shaft 632. A stent 642 having a proximal portion 622, a distal portion 614, and a side hole 620 is disposed over balloon 640. The distal portion 614 is crimped to balloon 640 to prevent ejection during delivery, while the proximal portion 622 is partially crimped to balloon 640 so elongate shaft 604 may be slidably advanced or retracted under the proximal portion 622 of stent 642. The stent may preferably have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. At least a portion of balloon 606, and stent 608 are distally offset relative to balloon 640 and stent 642 so as to minimize profile of the device. In this embodiment the distal stent 608 may be deployed in a main branch of the vessel and the other stent 642 may be deployed in a side branch of the vessel. Alternatively, the distal stent 608 may be deployed in a side branch of a vessel and the other stent 642 may be deployed in the main branch of a vessel. The second catheter 630 is a rapid exchange catheter (RX) having a guidewire lumen 634 extending from the distal guidewire port 638 at the distal end of the elongate shaft 632 to a proximal guidewire port 636 which is closer to the distal port 638 than the proximal end of the catheter shaft 632. The proximal guidewire port 636 is also unobstructed by the capture tube 624 and may be distal thereto. A connector 644, preferably a Luer connector is connected to the proximal end of the elongate shaft 632 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 632 for inflation of balloon 640. A portion of shaft 632 is disposed in the central channel 626 of the capture tube 624 and this helps keep the two catheter shafts 604, 632 parallel and prevents tangling during delivery and as shaft 604 is slidably advanced in the central channel 626. Compression fitting 625 may be used to lock elongate shafts 604, 632 in the capture tube 624 to prevent axial movement. The compression fitting may be a Tuohy-Borst fitting. Also, a portion of shaft 604 is disposed under proximal portion 622 of stent 642. The first catheter 602 may be slidably advanced or retracted under the proximal portion 622 of stent 642 so that the shaft 604 passes through the side hole 620 in stent 642. Radiopaque markers may be placed at different locations on the shaft 632, often near the balloon 640 or stent 642, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 730 includes an elongate shaft 732 with a radially expandable balloon 740 disposed near a distal end of the elongate shaft 732. A stent 742 is disposed over balloon 740. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 742 is shorter than the working length of the balloon 740 so that a proximal portion of the balloon 740 is unconstrained by the stent 742 and this unconstrained portion of the balloon 740 may be slidably advanced or refracted through side hole 720 and under proximal portion 722 of stent 708 as will be discussed below. Stent 742 is crimped to balloon 740 to prevent ejection during delivery. At least a portion of balloon 740, and stent 742 are distally offset relative to balloon 706 and stent 708 so as to minimize profile of the device. In this embodiment the distal stent 742 may be deployed in a main branch of the vessel and the other stent 708 may be deployed in a side branch of the vessel. Alternatively, the distal stent 742 may be deployed in a side branch of a vessel and the other stent 708 may be deployed in the main branch of a vessel. The second catheter 730 is a rapid exchange catheter (RX) having a guidewire lumen 734 extending from the distal guidewire port 738 at the distal end of the elongate shaft 732 to a proximal guidewire port 736 which is closer to the distal port 738 than the proximal end of the catheter shaft 732. The proximal guidewire port 736 is also unobstructed by the capture tube 724 and may be distal thereto. A connector 744, preferably a Luer connector is connected to the proximal end of the elongate shaft 732 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 732 for inflation of balloon 740. A portion of shaft 732 is disposed in the central channel 726 of the capture tube 724 and this helps keep the two catheter shafts 704, 732 parallel and prevents tangling during delivery and as shaft 732 is slidably advanced in the central channel 726. Compression fitting 725 may be used to lock elongate shafts 704, 732 in the capture tube 724 to prevent axial movement. The compression fitting may be a Tuohy-Borst fitting. Also, another portion of shaft 732 is disposed under proximal portion 722 of stent 708. The second catheter 730 may also be slidably advanced or retracted under the proximal portion 722 of stent 708 so that the shaft 732 passes through the side hole 720 in stent 708. Radiopaque markers may be placed at different locations on the shaft 732, often near the balloon 740 or stent 742, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 830 includes an elongate shaft 832 with a radially expandable balloon 840 disposed near a distal end of the elongate shaft 832. A stent 842 is disposed over balloon 840. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 842 is shorter than the working length of the balloon 840 so that a proximal portion of the balloon 840 is unconstrained by the stent 842 and this unconstrained portion of the balloon 840 may be slidably advanced or refracted through side hole 820 and under proximal portion 822 of stent 808 as will be discussed below. Stent 842 is crimped to balloon 840 to prevent ejection during delivery. At least a portion of balloon 840, and stent 842 are distally offset relative to balloon 806 and stent 808 so as to minimize profile of the device. In this embodiment the distal stent 842 may be deployed in a main branch of the vessel and the other stent 808 may be deployed in a side branch of the vessel. Alternatively, the distal stent 842 may be deployed in a side branch of a vessel and the other stent 808 may be deployed in the main branch of a vessel. The second catheter 830 is an over-the-wire (OTW) catheter having a guidewire lumen 834 extending from the distal guidewire port 838 at the distal end of the elongate shaft 832 to the proximal end of the elongate shaft 832 into Y-adapter 846 having a connector 848. The connector 848 is preferably a Luer connector and this allows easy coupling with a syringe or other device for lumen flushing or injecting contrast media. When unconnected, the guidewire lumen 834 exits via connector 848. A second connector 844, also preferably a Luer connector allows attachment of an Indeflator or other device to the catheter for inflation of the balloon 840 via an inflation lumen (not shown) in the elongate shaft 832. A portion of shaft 832 is disposed in the central channel 826 of the capture tube 824 and this helps keep the two catheter shafts 804, 832 parallel and prevents tangling during delivery and as shaft 832 is slidably advanced in the central channel 826. Compression fitting 825 may be used to lock elongate shafts 804, 832 in the capture tube 824 to prevent axial movement. The compression fitting may be a Tuohy-Borst fitting. Also, another portion of shaft 832 is disposed under proximal portion 822 of stent 808. The second catheter 830 may also be slidably advanced or retracted under the proximal portion 822 of stent 808 so that the shaft 832 passes through the side hole 820 in stent 808. Radiopaque markers may be placed at different locations on the shaft 832, often near the balloon 840 or stent 842, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 930 includes an elongate shaft 932 with a radially expandable balloon 940 disposed near a distal end of the elongate shaft 932. A stent 942 is disposed over balloon 940. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 942 is shorter than the working length of the balloon 940 so that a proximal portion of the balloon 940 is unconstrained by the stent 942 and this unconstrained portion of the balloon 940 may be slidably advanced or refracted through side hole 920 and under proximal portion 922 of stent 908 as will be discussed below. Stent 942 is crimped to balloon 940 to prevent ejection during delivery. At least a portion of balloon 940, and stent 942 are distally offset relative to balloon 906 and stent 908 so as to minimize profile of the device. In this embodiment the distal stent 942 may be deployed in a main branch of the vessel and the other stent 908 may be deployed in a side branch of the vessel. Alternatively, the distal stent 942 may be deployed in a side branch of a vessel and the other stent 908 may be deployed in the main branch of a vessel. The second catheter 930 is a rapid exchange catheter (RX) having a guidewire lumen 934 extending from the distal guidewire port 938 at the distal end of the elongate shaft 932 to a proximal guidewire port 936 which is closer to the distal port 938 than the proximal end of the catheter shaft 932. The proximal guidewire port 936 is also unobstructed by the capture tube 924 and may be distal thereto. A connector 944, preferably a Luer connector is connected to the proximal end of the elongate shaft 932 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 932 for inflation of balloon 940. A portion of shaft 932 is disposed in the central channel 926 of the capture tube 924 and this helps keep the two catheter shafts 904, 932 parallel and prevents tangling during delivery and as shaft 932 is slidably advanced in the central channel 926. Compression fitting 925 may be used to lock elongate shafts 904, 932 in the capture tube 924 to prevent axial movement. The compression fitting may be a Tuohy-Borst fitting. Also, another portion of shaft 932 is disposed under proximal portion 922 of stent 908. The second catheter 930 may also be slidably advanced or retracted under the proximal portion 922 of stent 908 so that the shaft 932 passes through the side hole 920 in stent 908. Capture tube 924 may be peeled away from shaft 932 by severing the perforated region 945. Radiopaque markers may be placed at different locations on the shaft 932, often near the balloon 940 or stent 942, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 1030 includes an elongate shaft 1032 with a radially expandable balloon 1040 disposed near a distal end of the elongate shaft 1032. A stent 1042 having a proximal portion 1022, a distal portion 1014, and a side hole 1020 is disposed over balloon 1040. The distal portion 1014 is crimped to balloon 1040 to prevent ejection during delivery, while the proximal portion 1022 is partially crimped to balloon 1040 so elongate shaft 1004 may be slidably advanced or retracted under the proximal portion 1022 of stent 1042. The stent may preferably have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. At least a portion of balloon 1006, and stent 1008 are distally offset relative to balloon 1040 and stent 1042 so as to minimize profile of the device. In this embodiment the distal stent 1008 may be deployed in a main branch of the vessel and the other stent 1042 may be deployed in a side branch of the vessel. Alternatively, the distal stent 1008 may be deployed in a side branch of a vessel and the other stent 1042 may be deployed in the main branch of a vessel. The second catheter 1030 is a rapid exchange catheter (RX) having a guidewire lumen 1034 extending from the distal guidewire port 1038 at the distal end of the elongate shaft 1032 to a proximal guidewire port 1036 which is closer to the distal port 1038 than the proximal end of the catheter shaft 1032. The proximal guidewire port 1036 is also unobstructed by the capture tube 1024 and may be distal thereto. A connector 1044, preferably a Luer connector is connected to the proximal end of the elongate shaft 1032 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 1032 for inflation of balloon 1040. A portion of shaft 1032 is disposed in the central channel 1026 of the capture tube 1024 and this helps keep the two catheter shafts 1004, 1032 parallel and prevents tangling during delivery and as shaft 1032 is slidably advanced in the central channel 1026. Compression fitting 1025 may be used to lock elongate shafts 1004, 1032 in the capture tube 1024 to prevent axial movement. The compression fitting may be a Tuohy-Borst fitting. Also, a portion of shaft 1004 is disposed under proximal portion 1022 of stent 1042. The first catheter 1002 may be slidably advanced or retracted under the proximal portion 1022 of stent 1042 so that the shaft 1004 passes through the side hole 1020 in stent 1042. Capture tube 1024 may be peeled away from shaft 1032 by severing the perforated region 1045. Radiopaque markers may be placed at different locations on the shaft 1032, often near the balloon 1040 or stent 1042, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 1130 includes an elongate shaft 1132 with a radially expandable balloon 1140 disposed near a distal end of the elongate shaft 1132. A stent 1142 is disposed over balloon 1140. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 1142 is shorter than the working length of the balloon 1140 so that a proximal portion of the balloon 1140 is unconstrained by the stent 1142 and this unconstrained portion of the balloon 1140 may be slidably advanced or retracted through side hole 1120 and under proximal portion 1122 of stent 1108 as will be discussed below. Stent 1142 is crimped to balloon 1140 to prevent ejection during delivery. At least a portion of balloon 1140, and stent 1142 are distally offset relative to balloon 1106 and stent 1108 so as to minimize profile of the device. In this embodiment the distal stent 1142 may be deployed in a main branch of the vessel and the other stent 1108 may be deployed in a side branch of the vessel. Alternatively, the distal stent 1142 may be deployed in a side branch of a vessel and the other stent 1108 may be deployed in the main branch of a vessel. The second catheter 1130 is a rapid exchange catheter (RX) having a guidewire lumen 1134 extending from the distal guidewire port 1138 at the distal end of the elongate shaft 1132 to a proximal guidewire port 1136 which is closer to the distal port 1138 than the proximal end of the catheter shaft 1132. The proximal guidewire port 1136 is also unobstructed by the capture tube 1124 and may be distal thereto. A connector 1144, preferably a Luer connector is connected to the proximal end of the elongate shaft 1132 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 1132 for inflation of balloon 1140. A portion of shaft 1132 is disposed in the central channel 1126 of the capture tube 1124 and this helps keep the two catheter shafts 1104, 1132 parallel and prevents tangling during delivery and as shaft 1132 is slidably advanced in the central channel 1126. Compression fitting 1125 may be used to lock elongate shafts 1104, 1132 in the capture tube 1124 to prevent axial movement. The compression fitting may be a Tuohy-Borst fitting. Also, another portion of shaft 1132 is disposed under proximal portion 1122 of stent 1108. The second catheter 1130 may also be slidably advanced or retracted under the proximal portion 1122 of stent 1108 so that the shaft 1132 passes through the side hole 1120 in stent 1108. Capture tube 1124 may be peeled away from shaft 1132 by severing the perforated region 1145. Radiopaque markers may be placed at different locations on the shaft 1132, often near the balloon 1140 or stent 1142, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 1230 includes an elongate shaft 1232 with a radially expandable balloon 1240 disposed near a distal end of the elongate shaft 1232. A stent 1242 is disposed over balloon 1240. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 1242 is shorter than the working length of the balloon 1240 so that a proximal portion of the balloon 1240 is unconstrained by the stent 1242 and this unconstrained portion of the balloon 1240 may be slidably advanced or retracted through side hole 1220 and under proximal portion 1222 of stent 1208 as will be discussed below. Stent 1242 is crimped to balloon 1240 to prevent ejection during delivery. At least a portion of balloon 1240, and stent 1242 are distally offset relative to balloon 1206 and stent 1208 so as to minimize profile of the device. In this embodiment the distal stent 1242 may be deployed in a main branch of the vessel and the other stent 1208 may be deployed in a side branch of the vessel. Alternatively, the distal stent 1242 may be deployed in a side branch of a vessel and the other stent 1208 may be deployed in the main branch of a vessel. The second catheter 1230 is an over-the-wire (OTW) catheter having a guidewire lumen 1234 extending from the distal guidewire port 1238 at the distal end of the elongate shaft 1232 to the proximal end of the elongate shaft 1232 into Y-adapter 1246 having a connector 1248. The connector 1248 is preferably a Luer connector and this allows easy coupling with a syringe or other device for lumen flushing or injecting contrast media. When unconnected, the guidewire lumen 1234 exits via connector 1248. A second connector 1244, also preferably a Luer connector allows attachment of an Indeflator or other device to the catheter for inflation of the balloon 1240 via an inflation lumen (not shown) in the elongate shaft 1232. A portion of shaft 1232 is disposed in the central channel 1226 of the capture tube 1224 and this helps keep the two catheter shafts 1204, 1232 parallel and prevents tangling during delivery and as shaft 1232 is slidably advanced in the central channel 1226. Compression fitting 1225 may be used to lock elongate shafts 1204, 1232 in the capture tube 1224 to prevent axial movement. The compression fitting may be a Tuohy-Borst fitting. Also, another portion of shaft 1232 is disposed under proximal portion 1222 of stent 1208. The second catheter 1230 may also be slidably advanced or retracted under the proximal portion 1222 of stent 1208 so that the shaft 1232 passes through the side hole 1220 in stent 1208. Capture tube 1224 may be peeled away from shaft 1232 by severing the perforated region 1245. Radiopaque markers may be placed at different locations on the shaft 1232, often near the balloon 1240 or stent 1242, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 1330 includes an elongate shaft 1332 with a radially expandable balloon 1340 disposed near a distal end of the elongate shaft 1332. A stent 1342 is disposed over balloon 1340. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 1342 is shorter than the working length of the balloon 1340 so that a proximal portion of the balloon 1340 is unconstrained by the stent 1342 and this unconstrained portion of the balloon 1340 may be slidably advanced or retracted through side hole 1320 and under proximal portion 1322 of stent 1308 as will be discussed below. Stent 1342 is crimped to balloon 1340 to prevent ejection during delivery. At least a portion of balloon 1340, and stent 1342 are distally offset relative to balloon 1306 and stent 1308 so as to minimize profile of the device. In this embodiment the distal stent 1342 may be deployed in a main branch of the vessel and the other stent 1308 may be deployed in a side branch of the vessel. Alternatively, the distal stent 1342 may be deployed in a side branch of a vessel and the other stent 1308 may be deployed in the main branch of a vessel. The second catheter 1330 is a rapid exchange catheter (RX) having a guidewire lumen 1334 extending from the distal guidewire port 1338 at the distal end of the elongate shaft 1332 to a proximal guidewire port 1336 which is closer to the distal port 1338 than the proximal end of the catheter shaft 1332. The proximal guidewire port 1336 is also unobstructed by the snap fitting 1324 and preferably proximal thereto. A connector 1344, preferably a Luer connector is connected to the proximal end of the elongate shaft 1332 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 1332 for inflation of balloon 1340. A portion of shaft 1332 is snapped into the central channel 1326 of the snap fitting 1324 via slit 1345, and thus shaft 1332 may slide in channel 1326. This helps keep the two catheter shafts 1304, 1332 parallel and prevents tangling during delivery and as shaft 1332 is slidably advanced or retracted relative to shaft 1304. Also, another portion of shaft 1332 is disposed under proximal portion 1322 of stent 1308. The second catheter 1330 may also be slidably advanced or refracted under the proximal portion 1322 of stent 1308 so that the shaft 1332 passes through the side hole 1320 in stent 1308. Radiopaque markers may be placed at different locations on the shaft 1332, often near the balloon 1340 or stent 1342, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 1430 includes an elongate shaft 1432 with a radially expandable balloon 1440 disposed near a distal end of the elongate shaft 1432. A stent 1442 having a proximal portion 1422, a distal portion 1414, and a side hole 1420 is disposed over balloon 1440. The distal portion 1414 is crimped to balloon 1440 to prevent ejection during delivery, while the proximal portion 1422 is partially crimped to balloon 1440 so elongate shaft 1404 may be slidably advanced or retracted under the proximal portion 1422 of stent 1442. The stent may preferably have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. At least a portion of balloon 1406, and stent 1408 are distally offset relative to balloon 1440 and stent 1442 so as to minimize profile of the device. In this embodiment the distal stent 1408 may be deployed in a main branch of the vessel and the other stent 1442 may be deployed in a side branch of the vessel. Alternatively, the distal stent 1408 may be deployed in a side branch of a vessel and the other stent 1442 may be deployed in the main branch of a vessel. The second catheter 1430 is a rapid exchange catheter (RX) having a guidewire lumen 1434 extending from the distal guidewire port 1438 at the distal end of the elongate shaft 1432 to a proximal guidewire port 1436 which is closer to the distal port 1438 than the proximal end of the catheter shaft 1432. The proximal guidewire port 1436 is also unobstructed by the snap fitting 1424 and preferably proximal thereto. A connector 1444, preferably a Luer connector is connected to the proximal end of the elongate shaft 1432 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 1432 for inflation of balloon 1440. A portion of shaft 1432 is snapped into the central channel 1426 of the snap fitting 1424 via slit 1445, and thus shaft 1432 may slide in channel 1426. This helps keep the two catheter shafts 1404, 1432 parallel and prevents tangling during delivery and as shaft 1432 is slidably advanced or retracted relative to shaft 1404. Also, a portion of shaft 1404 is disposed under proximal portion 1422 of stent 1442. The first catheter 1402 may be slidably advanced or retracted under the proximal portion 1422 of stent 1442 so that the shaft 1404 passes through the side hole 1420 in stent 1442. Radiopaque markers may be placed at different locations on the shaft 1432, often near the balloon 1440 or stent 1442, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 1530 includes an elongate shaft 1532 with a radially expandable balloon 1540 disposed near a distal end of the elongate shaft 1532. A stent 1542 is disposed over balloon 1540. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 1542 is shorter than the working length of the balloon 1540 so that a proximal portion of the balloon 1540 is unconstrained by the stent 1542 and this unconstrained portion of the balloon 1540 may be slidably advanced or retracted through side hole 1520 and under proximal portion 1522 of stent 1508 as will be discussed below. Stent 1542 is crimped to balloon 1540 to prevent ejection during delivery. At least a portion of balloon 1540, and stent 1542 are distally offset relative to balloon 1506 and stent 1508 so as to minimize profile of the device. In this embodiment the distal stent 1542 may be deployed in a main branch of the vessel and the other stent 1508 may be deployed in a side branch of the vessel. Alternatively, the distal stent 1542 may be deployed in a side branch of a vessel and the other stent 1508 may be deployed in the main branch of a vessel. The second catheter 1530 is a rapid exchange catheter (RX) having a guidewire lumen 1534 extending from the distal guidewire port 1538 at the distal end of the elongate shaft 1532 to a proximal guidewire port 1536 which is closer to the distal port 1538 than the proximal end of the catheter shaft 1532. The proximal guidewire port 1536 is also unobstructed by the snap fitting 1524 and may be distal thereto. A connector 1544, preferably a Luer connector is connected to the proximal end of the elongate shaft 1532 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 1532 for inflation of balloon 1540. A portion of shaft 1532 is snapped into the central channel 1526 of the snap fitting 1524 via slit 1545, and thus shaft 1532 may slide in channel 1526. This helps keep the two catheter shafts 1504, 1532 parallel and prevents tangling during delivery and as shaft 1532 is slidably advanced or retracted relative to shaft 1504. Also, another portion of shaft 1532 is disposed under proximal portion 1522 of stent 1508. The second catheter 1530 may also be slidably advanced or retracted under the proximal portion 1522 of stent 1508 so that the shaft 1532 passes through the side hole 1520 in stent 1508. Radiopaque markers may be placed at different locations on the shaft 1532, often near the balloon 1540 or stent 1542, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 1630 includes an elongate shaft 1632 with a radially expandable balloon 1640 disposed near a distal end of the elongate shaft 1632. A stent 1642 is disposed over balloon 1640. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 1642 is shorter than the working length of the balloon 1640 so that a proximal portion of the balloon 1640 is unconstrained by the stent 1642 and this unconstrained portion of the balloon 1640 may be slidably advanced or retracted through side hole 1620 and under proximal portion 1622 of stent 1608 as will be discussed below. Stent 1642 is crimped to balloon 1640 to prevent ejection during delivery. At least a portion of balloon 1640, and stent 1642 are distally offset relative to balloon 1606 and stent 1608 so as to minimize profile of the device. In this embodiment the distal stent 1642 may be deployed in a main branch of the vessel and the other stent 1608 may be deployed in a side branch of the vessel. Alternatively, the distal stent 1642 may be deployed in a side branch of a vessel and the other stent 1608 may be deployed in the main branch of a vessel. The second catheter 1630 is an over-the-wire (OTW) catheter having a guidewire lumen 1634 extending from the distal guidewire port 1638 at the distal end of the elongate shaft 1632 to the proximal end of the elongate shaft 1632 into Y-adapter 1646 having a connector 1648. The connector 1648 is preferably a Luer connector and this allows easy coupling with a syringe or other device for lumen flushing or injecting contrast media. When unconnected, the guidewire lumen 1634 exits via connector 1648. A second connector 1644, also preferably a Luer connector allows attachment of an Indeflator or other device to the catheter for inflation of the balloon 1640 via an inflation lumen (not shown) in the elongate shaft 1632. A portion of shaft 1632 is snapped into the central channel 1626 of the snap fitting 1624 via slit 1645, and thus shaft 1632 may slide in channel 1626. This helps keep the two catheter shafts 1604, 1632 parallel and prevents tangling during delivery and as shaft 1632 is slidably advanced or retracted relative to shaft 1604. Also, another portion of shaft 1632 is disposed under proximal portion 1622 of stent 1608. The second catheter 1630 may also be slidably advanced or retracted under the proximal portion 1622 of stent 1608 so that the shaft 1632 passes through the side hole 1620 in stent 1608. Radiopaque markers may be placed at different locations on the shaft 1632, often near the balloon 1640 or stent 1642, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 1730 includes an elongate shaft 1732 with a radially expandable balloon 1740 disposed near a distal end of the elongate shaft 1732. A stent 1742 is disposed over balloon 1740. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 1742 is shorter than the working length of the balloon 1740 so that a proximal portion of the balloon 1740 is unconstrained by the stent 1742 and this unconstrained portion of the balloon 1740 may be slidably advanced or retracted through side hole 1720 and under proximal portion 1722 of stent 1708 as will be discussed below. Stent 1742 is crimped to balloon 1740 to prevent ejection during delivery. At least a portion of balloon 1740, and stent 1742 are distally offset relative to balloon 1706 and stent 1708 so as to minimize profile of the device. In this embodiment the distal stent 1742 may be deployed in a main branch of the vessel and the other stent 1708 may be deployed in a side branch of the vessel. Alternatively, the distal stent 1742 may be deployed in a side branch of a vessel and the other stent 1708 may be deployed in the main branch of a vessel. The second catheter 1730 is a rapid exchange catheter (RX) having a guidewire lumen 1734 extending from the distal guidewire port 1738 at the distal end of the elongate shaft 1732 to a proximal guidewire port 1736 which is closer to the distal port 1738 than the proximal end of the catheter shaft 1732. The proximal guidewire port 1736 is also unobstructed by the snap fitting 1724 and preferably distal thereto. A connector 1744, preferably a Luer connector is connected to the proximal end of the elongate shaft 1732 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 1732 for inflation of balloon 1740. A portion of shaft 1732 is snapped into the central channel 1726 of the snap fitting 1724 via slit 1745, and thus shaft 1732 may slide in channel 1726. This helps keep the two catheter shafts 1704, 1732 parallel and prevents tangling during delivery and as shaft 1732 is slidably advanced or retracted relative to shaft 1704. Also, another portion of shaft 1732 is disposed under proximal portion 1722 of stent 1708. The second catheter 1730 may also be slidably advanced or retracted under the proximal portion 1722 of stent 1708 so that the shaft 1732 passes through the side hole 1720 in stent 1708. Radiopaque markers may be placed at different locations on the shaft 1732, often near the balloon 1740 or stent 1742, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 1830 includes an elongate shaft 1832 with a radially expandable balloon 1840 disposed near a distal end of the elongate shaft 1832. A stent 1842 having a proximal portion 1822, a distal portion 1814, and a side hole 1820 is disposed over balloon 1840. The distal portion 1814 is crimped to balloon 1840 to prevent ejection during delivery, while the proximal portion 1822 is partially crimped to balloon 1840 so elongate shaft 1804 may be slidably advanced or retracted under the proximal portion 1822 of stent 1842. The stent may preferably have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. At least a portion of balloon 1806, and stent 1808 are distally offset relative to balloon 1840 and stent 1842 so as to minimize profile of the device. In this embodiment the distal stent 1808 may be deployed in a main branch of the vessel and the other stent 1842 may be deployed in a side branch of the vessel. Alternatively, the distal stent 1808 may be deployed in a side branch of a vessel and the other stent 1842 may be deployed in the main branch of a vessel. The second catheter 1830 is a rapid exchange catheter (RX) having a guidewire lumen 1834 extending from the distal guidewire port 1838 at the distal end of the elongate shaft 1832 to a proximal guidewire port 1836 which is closer to the distal port 1838 than the proximal end of the catheter shaft 1832. The proximal guidewire port 1836 is also unobstructed by the snap fitting 1824 and preferably distal thereto. A connector 1844, preferably a Luer connector is connected to the proximal end of the elongate shaft 1832 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 1832 for inflation of balloon 1840. A portion of shaft 1832 is snapped into the central channel 1826 of the snap fitting 1824 via slit 1845, and thus shaft 1832 may slide in channel 1826. This helps keep the two catheter shafts 1804, 1832 parallel and prevents tangling during delivery and as shaft 1832 is slidably advanced or retracted relative to shaft 1804. Also, a portion of shaft 1804 is disposed under proximal portion 1822 of stent 1842. The first catheter 1802 may be slidably advanced or retracted under the proximal portion 1822 of stent 1842 so that the shaft 1804 passes through the side hole 1820 in stent 1842. Radiopaque markers may be placed at different locations on the shaft 1832, often near the balloon 1840 or stent 1842, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 1930 includes an elongate shaft 1932 with a radially expandable balloon 1940 disposed near a distal end of the elongate shaft 1932. A stent 1942 is disposed over balloon 1940. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 1942 is shorter than the working length of the balloon 1940 so that a proximal portion of the balloon 1940 is unconstrained by the stent 1942 and this unconstrained portion of the balloon 1940 may be slidably advanced or retracted through side hole 1920 and under proximal portion 1922 of stent 1908 as will be discussed below. Stent 1942 is crimped to balloon 1940 to prevent ejection during delivery. At least a portion of balloon 1940, and stent 1942 are distally offset relative to balloon 1906 and stent 1908 so as to minimize profile of the device. In this embodiment the distal stent 1942 may be deployed in a main branch of the vessel and the other stent 1908 may be deployed in a side branch of the vessel. Alternatively, the distal stent 1942 may be deployed in a side branch of a vessel and the other stent 1908 may be deployed in the main branch of a vessel. The second catheter 1930 is a rapid exchange catheter (RX) having a guidewire lumen 1934 extending from the distal guidewire port 1938 at the distal end of the elongate shaft 1932 to a proximal guidewire port 1936 which is closer to the distal port 1938 than the proximal end of the catheter shaft 1932. The proximal guidewire port 1936 is also unobstructed by the snap fitting 1924 and may be distal thereto. A connector 1944, preferably a Luer connector is connected to the proximal end of the elongate shaft 1932 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 1932 for inflation of balloon 1940. A portion of shaft 1932 is snapped into the central channel 1926 of the snap fitting 1924 via slit 1945, and thus shaft 1932 may slide in channel 1926. This helps keep the two catheter shafts 1904, 1932 parallel and prevents tangling during delivery and as shaft 1932 is slidably advanced or retracted relative to shaft 1904. Also, another portion of shaft 1932 is disposed under proximal portion 1922 of stent 1908. The second catheter 1930 may also be slidably advanced or retracted under the proximal portion 1922 of stent 1908 so that the shaft 1932 passes through the side hole 1920 in stent 1908. Radiopaque markers may be placed at different locations on the shaft 1932, often near the balloon 1940 or stent 1942, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 2030 includes an elongate shaft 2032 with a radially expandable balloon 2040 disposed near a distal end of the elongate shaft 2032. A stent 2042 is disposed over balloon 2040. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 2042 is shorter than the working length of the balloon 2040 so that a proximal portion of the balloon 2040 is unconstrained by the stent 2042 and this unconstrained portion of the balloon 2040 may be slidably advanced or retracted through side hole 2020 and under proximal portion 2022 of stent 2008 as will be discussed below. Stent 2042 is crimped to balloon 2040 to prevent ejection during delivery. At least a portion of balloon 2040, and stent 2042 are distally offset relative to balloon 2006 and stent 2008 so as to minimize profile of the device. In this embodiment the distal stent 2042 may be deployed in a main branch of the vessel and the other stent 2008 may be deployed in a side branch of the vessel. Alternatively, the distal stent 2042 may be deployed in a side branch of a vessel and the other stent 2008 may be deployed in the main branch of a vessel. The second catheter 2030 is an over-the-wire (OTW) catheter having a guidewire lumen 2034 extending from the distal guidewire port 2038 at the distal end of the elongate shaft 2032 to the proximal end of the elongate shaft 2032 into Y-adapter 2046 having a connector 2048. The connector 2048 is preferably a Luer connector and this allows easy coupling with a syringe or other device for lumen flushing or injecting contrast media. When unconnected, the guidewire lumen 2034 exits via connector 2048. A second connector 2044, also preferably a Luer connector allows attachment of an Indeflator or other device to the catheter for inflation of the balloon 2040 via an inflation lumen (not shown) in the elongate shaft 2032. A portion of shaft 2032 is snapped into the central channel 2026 of the snap fitting 2024 via slit 2045, and thus shaft 2032 may slide in channel 2026. This helps keep the two catheter shafts 2004, 2032 parallel and prevents tangling during delivery and as shaft 2032 is slidably advanced or retracted relative to shaft 2004. Also, another portion of shaft 2032 is disposed under proximal portion 2022 of stent 2008. The second catheter 2030 may also be slidably advanced or retracted under the proximal portion 2022 of stent 2008 so that the shaft 2032 passes through the side hole 2020 in stent 2008. Radiopaque markers may be placed at different locations on the shaft 2032, often near the balloon 2040 or stent 2042, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 2130 includes an elongate shaft 2132 with a radially expandable balloon 2140 disposed near a distal end of the elongate shaft 2132. A stent 2142 is disposed over balloon 2140. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 2142 is shorter than the working length of the balloon 2140 so that a proximal portion of the balloon 2140 is unconstrained by the stent 2142 and this unconstrained portion of the balloon 2140 may be slidably advanced or retracted through side hole 2120 and under proximal portion 2122 of stent 2108 as will be discussed below. Stent 2142 is crimped to balloon 2140 to prevent ejection during delivery. At least a portion of balloon 2140, and stent 2142 are distally offset relative to balloon 2106 and stent 2108 so as to minimize profile of the device. In this embodiment the distal stent 2142 may be deployed in a main branch of the vessel and the other stent 2108 may be deployed in a side branch of the vessel. Alternatively, the distal stent 2142 may be deployed in a side branch of a vessel and the other stent 2108 may be deployed in the main branch of a vessel. The second catheter 2130 is a rapid exchange catheter (RX) having a guidewire lumen 2134 extending from the distal guidewire port 2138 at the distal end of the elongate shaft 2132 to a proximal guidewire port 2136 which is closer to the distal port 2138 than the proximal end of the catheter shaft 2132. A connector 2144, preferably a Luer connector is connected to the proximal end of the elongate shaft 2132 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 2132 for inflation of balloon 2140. Having a portion of shaft 2132 disposed under proximal portion 2122 of stent 2108 helps keep catheter 2104, 2132 parallel and prevents tangling during delivery and as shaft 2132 is slidably advanced or retracted relative to shaft 2104. Also, another portion of shaft 2132 is disposed under proximal portion 2122 of stent 2108. The second catheter 2130 may also be slidably advanced or retracted under the proximal portion 2122 of stent 2108 so that the shaft 2132 passes through the side hole 2120 in stent 2108. Radiopaque markers may be placed at different locations on the shaft 2132, often near the balloon 2140 or stent 2142, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 2230 includes an elongate shaft 2232 with a radially expandable balloon 2240 disposed near a distal end of the elongate shaft 2232. A stent 2242 having a proximal portion 2222, a distal portion 2214, and a side hole 2220 is disposed over balloon 2240. The distal portion 2214 is crimped to balloon 2240 to prevent ejection during delivery, while the proximal portion 2222 is partially crimped to balloon 2240 so elongate shaft 2204 may be slidably advanced or retracted under the proximal portion 2222 of stent 2242. The stent may preferably have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. At least a portion of balloon 2206, and stent 2208 are distally offset relative to balloon 2240 and stent 2242 so as to minimize profile of the device. In this embodiment the distal stent 2208 may be deployed in a main branch of the vessel and the other stent 2242 may be deployed in a side branch of the vessel. Alternatively, the distal stent 2208 may be deployed in a side branch of a vessel and the other stent 2242 may be deployed in the main branch of a vessel. The second catheter 2230 is a rapid exchange catheter (RX) having a guidewire lumen 2234 extending from the distal guidewire port 2238 at the distal end of the elongate shaft 2232 to a proximal guidewire port 2236 which is closer to the distal port 2238 than the proximal end of the catheter shaft 2232. A connector 2244, preferably a Luer connector is connected to the proximal end of the elongate shaft 2232 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 2232 for inflation of balloon 2240. Having a portion of shaft 2204 disposed under proximal portion 2222 of stent 2208 helps keep catheter 2202, 2232 parallel and prevents tangling during delivery and as shaft 2204 is slidably advanced or retracted relative to shaft 2232. The first catheter 2202 may be slidably advanced or retracted under the proximal portion 2222 of stent 2242 so that the shaft 2204 passes through the side hole 2220 in stent 2242. Radiopaque markers may be placed at different locations on the shaft 2232, often near the balloon 2240 or stent 2242, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 2330 includes an elongate shaft 2332 with a radially expandable balloon 2340 disposed near a distal end of the elongate shaft 2332. A stent 2342 is disposed over balloon 2340. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 2342 is shorter than the working length of the balloon 2340 so that a proximal portion of the balloon 2340 is unconstrained by the stent 2342 and this unconstrained portion of the balloon 2340 may be slidably advanced or retracted through side hole 2320 and under proximal portion 2322 of stent 2308 as will be discussed below. Stent 2342 is crimped to balloon 2340 to prevent ejection during delivery. At least a portion of balloon 2340, and stent 2342 are distally offset relative to balloon 2306 and stent 2308 so as to minimize profile of the device. In this embodiment the distal stent 2342 may be deployed in a main branch of the vessel and the other stent 2308 may be deployed in a side branch of the vessel. Alternatively, the distal stent 2342 may be deployed in a side branch of a vessel and the other stent 2308 may be deployed in the main branch of a vessel. The second catheter 2330 is a rapid exchange catheter (RX) having a guidewire lumen 2334 extending from the distal guidewire port 2338 at the distal end of the elongate shaft 2332 to a proximal guidewire port 2336 which is closer to the distal port 2338 than the proximal end of the catheter shaft 2332. A connector 2344, preferably a Luer connector is connected to the proximal end of the elongate shaft 2332 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 2332 for inflation of balloon 2340. Having a portion of shaft 2332 disposed under proximal portion 2322 of stent 2208 helps keep catheters 2302, 2332 parallel and prevents tangling during delivery and as shaft 2332 is slidably advanced or retracted relative to shaft 2304. The second catheter 2330 may also be slidably advanced or retracted under the proximal portion 2322 of stent 2308 so that the shaft 2332 passes through the side hole 2320 in stent 2308. Radiopaque markers may be placed at different locations on the shaft 2332, often near the balloon 2340 or stent 2342, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 2430 includes an elongate shaft 2432 with a radially expandable balloon 2440 disposed near a distal end of the elongate shaft 2432. A stent 2442 is disposed over balloon 2440. The stent may have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. In preferred embodiments, the stent 2442 is shorter than the working length of the balloon 2440 so that a proximal portion of the balloon 2440 is unconstrained by the stent 2442 and this unconstrained portion of the balloon 2440 may be slidably advanced or retracted through side hole 2420 and under proximal portion 2422 of stent 2408 as will be discussed below. Stent 2442 is crimped to balloon 2440 to prevent ejection during delivery. At least a portion of balloon 2440, and stent 2442 are distally offset relative to balloon 2406 and stent 2408 so as to minimize profile of the device. In this embodiment the distal stent 2442 may be deployed in a main branch of the vessel and the other stent 2408 may be deployed in a side branch of the vessel. Alternatively, the distal stent 2442 may be deployed in a side branch of a vessel and the other stent 2408 may be deployed in the main branch of a vessel. The second catheter 2430 is an over-the-wire (OTW) catheter having a guidewire lumen 2434 extending from the distal guidewire port 2438 at the distal end of the elongate shaft 2432 to the proximal end of the elongate shaft 2432 into Y-adapter 2446 having a connector 2448. The connector 2448 is preferably a Luer connector and this allows easy coupling with a syringe or other device for lumen flushing or injecting contrast media. When unconnected, the guidewire lumen 2434 exits via connector 2448. A second connector 2444, also preferably a Luer connector allows attachment of an Indeflator or other device to the catheter for inflation of the balloon 2440 via an inflation lumen (not shown) in the elongate shaft 2432. Having a portion of shaft 2432 disposed under proximal portion 2422 of stent 2408 helps keep catheters 2402, 2430 parallel and prevents tangling during delivery and as shaft 2432 is slidably advanced or retracted relative to shaft 2404. The second catheter 2430 may also be slidably advanced or retracted under the proximal portion 2422 of stent 2408 so that the shaft 2432 passes through the side hole 2420 in stent 2408. Radiopaque markers may be placed at different locations on the shaft 2432, often near the balloon 2440 or stent 2442, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
In some embodiments, only a single stent may be deployed at the bifurcation. This “hybrid” method of ostial stenting of the bifurcation stents the main branch of the vessel and also stents a portion of the side branch, while maintaining patency along the main branch.
The embodiments seen in
The second catheter 4530 includes an elongate shaft 4532 with a radially expandable balloon 4540 disposed near a distal end of the elongate shaft 4532. A proximal portion of the balloon 4540 may be slidably advanced or refracted through side hole 4520 and under proximal portion 4522 of stent 4508 as will be discussed below. At least a portion of balloon 4540 is distally offset relative to balloon 4506 and stent 4508 so as to minimize profile of the device. In this embodiment the stent 4508 is preferably deployed in a main branch of the vessel, however one of skill in the art will appreciate that stent 4508 may also be deployed in a side branch of the vessel. The second catheter 4530 is a rapid exchange catheter (RX) having a guidewire lumen 4534 extending from the distal guidewire port 4538 at the distal end of the elongate shaft 4532 to a proximal guidewire port 4536 which is closer to the distal port 4538 than the proximal end of the catheter shaft 4532. A connector 4544, preferably a Luer connector is connected to the proximal end of the elongate shaft 4532 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 4532 for inflation of balloon 4540. Having a portion of shaft 4532 disposed under proximal portion 4522 of stent 4508 helps keep catheters 4504, 4532 parallel and prevents tangling during delivery and as shaft 4532 is slidably advanced or retracted relative to shaft 4504. Also, this ensures that a portion of balloon 4540 is also disposed under proximal portion 4522 of stent 4508, and thus when balloon 4540 is inflated, the proximal portion 4522 of stent 4508 will be expanded while the distal portion 4514 will remain unexpanded. The second catheter 4530 may also be slidably advanced or retracted under the proximal portion 4522 of stent 4508 so that the shaft 4532 passes through the side hole 4520 in stent 4508. Radiopaque markers may be placed at different locations on the shaft 4532, often near the balloon 4540 or stent 4542, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 4630 includes an elongate shaft 4632 with a radially expandable balloon 4640 disposed near a distal end of the elongate shaft 4632. A stent 4642 having a proximal portion 4622, a distal portion 4614, and a side hole 4620 is disposed over balloon 4640. The distal portion 4614 is crimped to balloon 4640 to prevent ejection during delivery, while the proximal portion 4622 is partially crimped to balloon 4640 so elongate shaft 4604 may be slidably advanced or retracted under the proximal portion 4622 of stent 4642. The stent may preferably have a length that matches the working length of the balloon, or the stent length may be shorter than the balloon working length. At least a portion of balloon 4606 is distally offset relative to balloon 4640 and stent 4642 so as to minimize profile of the device. In this embodiment the stent 4642 is preferably deployed in a main branch of the vessel, although it could also be deployed in a side branch. The second catheter 4630 is a rapid exchange catheter (RX) having a guidewire lumen 4634 extending from the distal guidewire port 4638 at the distal end of the elongate shaft 4632 to a proximal guidewire port 4636 which is closer to the distal port 4638 than the proximal end of the catheter shaft 4632. A connector 4644, preferably a Luer connector is connected to the proximal end of the elongate shaft 4632 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 4632 for inflation of balloon 4640. Having a portion of shaft 4604 disposed under proximal portion 4622 of stent 4608 helps keep catheters 4602, 4632 parallel and prevents tangling during delivery and as shaft 4604 is slidably advanced or retracted relative to shaft 4632. The first catheter 4602 may be slidably advanced or retracted under the proximal portion 4622 of stent 4642 so that the shaft 4604 passes through the side hole 4620 in stent 4642. Radiopaque markers may be placed at different locations on the shaft 4632, often near the balloon 4640 or stent 4642, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 4730 includes an elongate shaft 4732 with a radially expandable balloon 4740 disposed near a distal end of the elongate shaft 4732. A proximal portion of the balloon 4740 may be slidably advanced or refracted through side hole 4720 and under proximal portion 4722 of stent 4708 as will be discussed below. This allows expansion of proximal portion 4722 of stent 4708 when balloon 4740 is expanded. At least a portion of balloon 4740 is distally offset relative to balloon 4706 and stent 4708 so as to minimize profile of the device. In this embodiment stent 4708 is preferably deployed in a main branch of the vessel, although it may be deployed in a side branch. The second catheter 4730 is a rapid exchange catheter (RX) having a guidewire lumen 4734 extending from the distal guidewire port 4738 at the distal end of the elongate shaft 4732 to a proximal guidewire port 4736 which is closer to the distal port 4738 than the proximal end of the catheter shaft 4732. A connector 4744, preferably a Luer connector is connected to the proximal end of the elongate shaft 4732 and allows an Indeflator or other device to be coupled with an inflation lumen (not shown) in elongate shaft 4732 for inflation of balloon 4740. Having a portion of shaft 4732 disposed under proximal portion 4722 of stent 4708 helps keep catheters 4702, 4732 parallel and prevents tangling during delivery and as shaft 4732 is slidably advanced or retracted relative to shaft 4704. The second catheter 4730 may also be slidably advanced or retracted under the proximal portion 4722 of stent 4708 so that the shaft 4732 passes through the side hole 4720 in stent 4708. Radiopaque markers may be placed at different locations on the shaft 4732, often near the balloon 4740 or stent 4742, to help mark the proximal and distal ends of the stent or balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
The second catheter 4830 includes an elongate shaft 4832 with a radially expandable balloon 4840 disposed near a distal end of the elongate shaft 4832. A proximal portion of the balloon 4840 may be slidably advanced or refracted through side hole 4820 and under proximal portion 4822 of stent 4808 as will be discussed below. Thus, inflation of balloon 4840 will also expand the proximal portion 4822 of stent 4808. At least a portion of balloon 4840 is distally offset relative to balloon 4806 and stent 4808 so as to minimize profile of the device. In this embodiment the stent 4808 is preferably deployed in the main branch of a vessel, although it may be deployed in a side branch. The second catheter 4830 is an over-the-wire (OTW) catheter having a guidewire lumen 4834 extending from the distal guidewire port 4838 at the distal end of the elongate shaft 4832 to the proximal end of the elongate shaft 4832 into Y-adapter 4846 having a connector 4848. The connector 4848 is preferably a Luer connector and this allows easy coupling with a syringe or other device for lumen flushing or injecting contrast media. When unconnected, the guidewire lumen 4834 exits via connector 4848. A second connector 4844, also preferably a Luer connector allows attachment of an Indeflator or other device to the catheter for inflation of the balloon 4840 via an inflation lumen (not shown) in the elongate shaft 4832. Having a portion of shaft 4832 disposed under proximal portion 4822 of stent 4808 helps keep catheters 4802, 4830 parallel and prevents tangling during delivery and as shaft 4832 is slidably advanced or retracted relative to shaft 4804. The second catheter 4830 may also be slidably advanced or retracted under the proximal portion 4822 of stent 4808 so that the shaft 4832 passes through the side hole 4820 in stent 4808. Radiopaque markers may be placed at different locations on the shaft 4832, often near the balloon 4840, to help mark the proximal and distal ends of the balloon, as well to facilitate alignment of the two catheters during stent deployment, as discussed elsewhere in this specification.
In any of the embodiments disclosed herein, commercially available catheters and commercially available stents may be matched up to form the systems illustrated. In still other embodiments, commercially available catheters that are single use devices for treating a single vessel may be mated together in various combinations and coupled together with a polymer sleeve. The operator chooses the two catheters for the patient's anatomy then slides a sized polymer sleeve over both catheters from the distal ends. Once the operator has the catheters aligned the polymer sleeve can be treated with a heat or light source to shrink and bond the two catheters together with friction. The polymer sleeve is made of typical polymers that can act as shrink wrap when treated with a heat or light source. The polymer of the polymer sleeve for example could be manufactured with polyolefin, a chemical used in manufacturing shrink wrap. The polymer sleeve would not crosslink or covalently attach to the catheters, several types of polymers are commercially available and have the requisite properties, thin, strong, not adhesive, and reaction times to their source of ten minutes or less. The polymer sleeves are typically 15 centimeters in length and have various diameters to suit typical catheter diameters 4 French to 20 French. The operator can test that the bond is holding by applying slight pressure prior to the procedure. If the polymer sleeve does not hold tightly the operator may elect to use a smaller diameter polymer sleeve or use more than one polymer sleeve by placing the polymer sleeves adjacent to each other. Alternatively, several smaller sleeves from 1 to 10 centimeters in length could be placed over several different portions of the catheters.
In any of the embodiments discussed herein, a therapeutic agent may be disposed on the stent or balloon and eluted therefrom in a controlled manner into the target treatment area such as a stenotic lesion. Exemplary therapeutic agents help inhibit restenosis, hyperplasia or have other therapeutic benefits. Exemplary anti-hyperplasia agents include anti-neoplastic drugs, such as paclitaxel, methotrexate, and batimastal; antibiotics such as doxycycline, tetracycline, rapamycin, everolimus, biolimus A9, novolimus, myolimus, zotarolimus, and other analogs and derivatives of rapamycin, and actinomycin; amino suppressants such as dexamethasone and methyl prednisolone; nitric oxide sources such as nitroprussides; estrogen; estradiols; and the like. Methods for applying the therapeutic agent to the stent or balloon are well known to those skilled in the art, and have been described in the patent and scientific literature.
Stent Delivery:
In an alternative embodiment the delivery catheter mother balloons having tapered ends to accommodate balloons and stents with non-uniform profiles. For example, the proximal end of the daughter vessel stent may be designed to have a larger circumference than the distal end to compensate for the natural bifurcation anatomy. The daughter vessel balloon would likewise have a taper to properly expand the stent and ensure complete apposition. Additionally, it is possible to design the mother stent to expand differentially along its profile to compensate for a larger arterial diameter at the carina or ostium. In other words, the proximal and distal ends of the mother vessel balloon and mother vessel stent would be smaller in circumference while the center portion of the mother vessel stent would have a larger circumference. In an alternative embodiment the mother vessel balloon has tapered ends to accommodate the distal balloon catheter portion and guidewire lumen. Further, the mother vessel balloon may be designed for differential expansion to accommodate natural vessel anatomy.
In a preferred embodiment the distal (daughter) balloon catheter portion is crimped with a half stent on a rapid exchange catheter. The daughter vessel stent is about 4-20 millimeters long and the daughter vessel balloon is approximately twice as long in length. The mother vessel stent is about 10-30 millimeters long, and is differentially crimped to allow independent operation of the daughter balloon catheter portion. The distal portion of the mother vessel stent is crimped tightly enough to keep the entire stent from unintentionally dislodging during the procedure. The proximal portion of the mother vessel stent is crimped just tightly enough to reduce the crossing profile and to allow the daughter balloon catheter portion to be moved distal or proximal relative to the mother balloon catheter portion. The proximal (mother) balloon catheter portion is an over the wire type design with the mother vessel balloon preferably about 3 centimeters proximal to the daughter vessel balloon. In an alternative embodiment a stent is designed to allow differential expansion of the middle portion of the stent relative to the proximal and distal ends. In particular, the design facilitates the placement of the stent across a bifurcation lesion in the mother vessel because it has a larger circumference in the middle portion relative to the ends than a stent with a constant profile. Further, the profile can be adjusted so that the largest circumference can be placed proximal or distal to the midpoint of the stent. In the particular embodiment the largest circumference is distal to the midpoint of the stent, but could be easily reversed for variable patient anatomy. Partial crimping has the following features that make it possible to maintain sufficient stent retention during delivery and placement and still allows the secondary system adjustability and deliverability.
Further, this process improves safety and reduces trauma to the vessel. While the above embodiment discloses a bifurcation stent that is crimped at or about its distal half; this is not a limitation. The stent could be differentially crimped along its axis depending upon stent design, for example; if a hole in the side of a stent was not centered along the axis. It may be preferential to have the distal crimped portion of the bifurcation stent extend just distal of the hole that the daughter catheter to pass through. Alternatively, the distal crimped portion could extend partially or entirely over the hole that the daughter catheter passes through.
In
In
In
In
In
In
Referring now to
In
Any of the methods described above may use any of the stents disclosed herein in any of the system configurations described. Additionally, any of the features previously described above may also be used. Therefore, one of skill in the art will appreciate that any number of combinations may made. For example, catheter systems may have any combination of rapid exchange or over-the-wire configurations, with any of the stents disclosed herein, with or without a therapeutic agent, and with or without any of the hollow exchange port, capture tube, removable capture tube, or snap fittings described above.
Stents:
The catheter systems and methods described above may use a commercially available stent for either the proximal or distal stent in the system. When a commercially available stent is used for the distal stent, it need only be crimped to the distal balloon catheter. When the commercially available stent is used for the proximal stent it may be partially crimped to the proximal balloon such that a portion of a second catheter shaft is slidably disposed under the stent and a portion of the second catheter shaft slidably passes through a side hole in the stent. The stent is crimped to the proximal balloon so that it is not displaced from the balloon during delivery, and also so the second catheter shaft can slide thereunder.
Balloon Configurations:
The balloons used to radially expand the stents described herein may be cylindrical balloons having a constant diameter along the working length, or diameter may vary. When stenting a tapered vessel, it may be advantageous to use a balloon which has a variable diameter balloon that more closely matches the vessel anatomy. For example, in
In addition to using catheters having rapid exchange or over-the-wire guidewire lumens, and tapered or stepped balloons, the balloon catheters may not always employ a guidewire lumen. Instead, a fixed wire may be attached to a distal end of the catheter. For example,
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
The present application is a continuation in part of International PCT Application No. PCT/US2009/058505 filed Sep. 25, 2009 which claims the benefit of U.S. Provisional Patent Application No. 61/194,346 filed Sep. 25, 2008, the entire contents of each of which are incorporated herein by reference. The present application is also a non-provisional of, and claims the benefit of U.S. Provisional Patent Application No. 61/317,130 , filed Mar. 24, 2010, the entire contents of which are incorporated herein by reference. The present application is related to U.S. patent application Ser. No. 13/071,149, filed the same day as the present application. The present application is also related to U.S. patent application Ser. Nos. 13/071,251; 13/071,239; 13/071,198; and 13/071,183; each filed on the same day as the present application, and each of which is incorporated herein by reference. The present application is also related to U.S. Provisional Patent Application Nos. 61/317,105; 61/317,198; 61/317,114; and 61/317,121; each filed on Mar. 24, 2010, and each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4069825 | Akiyama | Jan 1978 | A |
4468224 | Enzmann et al. | Aug 1984 | A |
4512338 | Balko | Apr 1985 | A |
4564014 | Fogarty et al. | Jan 1986 | A |
4580568 | Gianturco | Apr 1986 | A |
4681110 | Wiktor | Jul 1987 | A |
4690684 | McGreevy et al. | Sep 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4762129 | Bonzel | Aug 1988 | A |
4770176 | McGreevy et al. | Sep 1988 | A |
4775337 | Van Wagener et al. | Oct 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4886062 | Wiktor | Dec 1989 | A |
4891225 | Langer et al. | Jan 1990 | A |
4988356 | Crittenden et al. | Jan 1991 | A |
4994066 | Voss | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
5013318 | Spranza, III | May 1991 | A |
5040548 | Yock | Aug 1991 | A |
5064435 | Porter | Nov 1991 | A |
5092877 | Pinchuk | Mar 1992 | A |
5102417 | Palmaz | Apr 1992 | A |
5104404 | Wolff | Apr 1992 | A |
5122154 | Rhodes | Jun 1992 | A |
5135535 | Kramer | Aug 1992 | A |
5195984 | Schatz | Mar 1993 | A |
5217495 | Kaplan et al. | Jun 1993 | A |
5219355 | Parodi et al. | Jun 1993 | A |
5226913 | Pinchuk | Jul 1993 | A |
5246421 | Saab | Sep 1993 | A |
5273536 | Savas | Dec 1993 | A |
5282824 | Gianturco | Feb 1994 | A |
5300085 | Yock | Apr 1994 | A |
5312415 | Palermo | May 1994 | A |
5334187 | Fischell et al. | Aug 1994 | A |
5403341 | Solar | Apr 1995 | A |
5421955 | Lau et al. | Jun 1995 | A |
5456694 | Marin et al. | Oct 1995 | A |
5456713 | Chuter | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5478349 | Nicholas | Dec 1995 | A |
5490837 | Blaeser et al. | Feb 1996 | A |
5496346 | Horzewski et al. | Mar 1996 | A |
5501227 | Yock | Mar 1996 | A |
5507768 | Lau et al. | Apr 1996 | A |
5507771 | Gianturco | Apr 1996 | A |
5514093 | Ellis et al. | May 1996 | A |
5514154 | Lau et al. | May 1996 | A |
5527354 | Fontaine et al. | Jun 1996 | A |
5549551 | Peacock, III et al. | Aug 1996 | A |
5549563 | Kronner | Aug 1996 | A |
5549635 | Solar | Aug 1996 | A |
5554181 | Das | Sep 1996 | A |
5562725 | Schmitt et al. | Oct 1996 | A |
5571086 | Kaplan et al. | Nov 1996 | A |
5593412 | Martinez et al. | Jan 1997 | A |
5607444 | Lam | Mar 1997 | A |
5607463 | Schwartz et al. | Mar 1997 | A |
5609627 | Goicoechea et al. | Mar 1997 | A |
5628775 | Jackson et al. | May 1997 | A |
5632763 | Glastra | May 1997 | A |
5632772 | Alcime et al. | May 1997 | A |
5634928 | Fischell et al. | Jun 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5662675 | Polanskyj Stockert et al. | Sep 1997 | A |
5669924 | Shaknovich | Sep 1997 | A |
5670161 | Healy et al. | Sep 1997 | A |
5676654 | Ellis et al. | Oct 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5697948 | Marin et al. | Dec 1997 | A |
5697967 | Dinh et al. | Dec 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5709701 | Parodi | Jan 1998 | A |
5716393 | Lindenberg et al. | Feb 1998 | A |
5722669 | Shimizu et al. | Mar 1998 | A |
5723003 | Winston et al. | Mar 1998 | A |
5735869 | Fernandez-Aceytuno | Apr 1998 | A |
5741323 | Pathak et al. | Apr 1998 | A |
5749848 | Jang et al. | May 1998 | A |
5749921 | Lenker et al. | May 1998 | A |
5755735 | Richter et al. | May 1998 | A |
5755771 | Penn et al. | May 1998 | A |
5755772 | Evans et al. | May 1998 | A |
5755776 | Al-Saadon | May 1998 | A |
5755781 | Jayaraman | May 1998 | A |
5769882 | Fogarty et al. | Jun 1998 | A |
5772669 | Vrba | Jun 1998 | A |
5776141 | Klein et al. | Jul 1998 | A |
5797951 | Mueller | Aug 1998 | A |
5800519 | Sandock | Sep 1998 | A |
5807398 | Shaknovich | Sep 1998 | A |
5824040 | Cox et al. | Oct 1998 | A |
5824041 | Lenker et al. | Oct 1998 | A |
5827320 | Richter et al. | Oct 1998 | A |
5833694 | Poncet | Nov 1998 | A |
5836964 | Richter et al. | Nov 1998 | A |
5843092 | Heller et al. | Dec 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5858556 | Eckert et al. | Jan 1999 | A |
5870381 | Kawasaki et al. | Feb 1999 | A |
5879370 | Fischell et al. | Mar 1999 | A |
5891190 | Boneau | Apr 1999 | A |
5893887 | Jayaraman | Apr 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5899935 | Ding | May 1999 | A |
5902332 | Schatz | May 1999 | A |
5911754 | Kanesaka et al. | Jun 1999 | A |
5919175 | Sirhan | Jul 1999 | A |
5922020 | Klein et al. | Jul 1999 | A |
5961536 | Mickley et al. | Oct 1999 | A |
5968069 | Dusbabek et al. | Oct 1999 | A |
5972027 | Johnson | Oct 1999 | A |
5976107 | Mertens et al. | Nov 1999 | A |
5976155 | Foreman et al. | Nov 1999 | A |
5980484 | Ressemann et al. | Nov 1999 | A |
5980486 | Enger | Nov 1999 | A |
5980514 | Kupiecki et al. | Nov 1999 | A |
5980552 | Pinchasik et al. | Nov 1999 | A |
5984957 | Laptewicz, Jr. et al. | Nov 1999 | A |
5997563 | Kretzers et al. | Dec 1999 | A |
6004328 | Solar | Dec 1999 | A |
6007517 | Anderson | Dec 1999 | A |
6017363 | Hojeibane | Jan 2000 | A |
6022359 | Frantzen | Feb 2000 | A |
6022374 | Imran | Feb 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6036725 | Avellanet | Mar 2000 | A |
6039721 | Johnson et al. | Mar 2000 | A |
6042589 | Marianne | Mar 2000 | A |
6048361 | Von Oepen | Apr 2000 | A |
6056722 | Jayaraman | May 2000 | A |
6056775 | Borghi et al. | May 2000 | A |
6059811 | Pinchasik et al. | May 2000 | A |
6059824 | Taheri | May 2000 | A |
6066155 | Amann et al. | May 2000 | A |
6068655 | Seguin et al. | May 2000 | A |
6070589 | Keith et al. | Jun 2000 | A |
6086604 | Fischell et al. | Jul 2000 | A |
6090063 | Makower et al. | Jul 2000 | A |
6090136 | McDonald et al. | Jul 2000 | A |
6096071 | Yadav | Aug 2000 | A |
6096073 | Webster et al. | Aug 2000 | A |
6099497 | Adams et al. | Aug 2000 | A |
6102942 | Ahari | Aug 2000 | A |
6106530 | Harada | Aug 2000 | A |
RE36857 | Euteneuer et al. | Sep 2000 | E |
6117117 | Mauch | Sep 2000 | A |
6120522 | Vrba et al. | Sep 2000 | A |
6123712 | Di Caprio et al. | Sep 2000 | A |
6123723 | Konya et al. | Sep 2000 | A |
6126685 | Lenker et al. | Oct 2000 | A |
6129738 | Lashinski et al. | Oct 2000 | A |
6129756 | Kugler | Oct 2000 | A |
6132460 | Thompson | Oct 2000 | A |
6142973 | Carleton et al. | Nov 2000 | A |
6143016 | Bleam et al. | Nov 2000 | A |
6165167 | Delaloye | Dec 2000 | A |
6165210 | Lau et al. | Dec 2000 | A |
6179878 | Duerig | Jan 2001 | B1 |
6183509 | Dibie | Feb 2001 | B1 |
6187034 | Frantzen | Feb 2001 | B1 |
6190402 | Horton et al. | Feb 2001 | B1 |
6196995 | Fagan | Mar 2001 | B1 |
6200337 | Moriuchi et al. | Mar 2001 | B1 |
6210429 | Vardi et al. | Apr 2001 | B1 |
6238991 | Suzuki | May 2001 | B1 |
6241691 | Ferrera et al. | Jun 2001 | B1 |
6251132 | Ravenscroft et al. | Jun 2001 | B1 |
6251134 | Alt et al. | Jun 2001 | B1 |
6254612 | Hieshima | Jul 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6258117 | Camrud et al. | Jul 2001 | B1 |
6264682 | Wilson et al. | Jul 2001 | B1 |
6264688 | Herklotz et al. | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6273895 | Pinchuk et al. | Aug 2001 | B1 |
6273911 | Cox et al. | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6312458 | Golds | Nov 2001 | B1 |
6315794 | Richter | Nov 2001 | B1 |
6319277 | Rudnick et al. | Nov 2001 | B1 |
6322586 | Monroe et al. | Nov 2001 | B1 |
6325823 | Horzewski et al. | Dec 2001 | B1 |
6325826 | Vardi et al. | Dec 2001 | B1 |
6334871 | Dor et al. | Jan 2002 | B1 |
6344053 | Boneau | Feb 2002 | B1 |
6344056 | Dehdashtian | Feb 2002 | B1 |
6344272 | Oldenburg et al. | Feb 2002 | B1 |
6357104 | Myers | Mar 2002 | B1 |
6361555 | Wilson | Mar 2002 | B1 |
6375676 | Cox | Apr 2002 | B1 |
6379365 | Diaz | Apr 2002 | B1 |
6383171 | Gifford et al. | May 2002 | B1 |
6398807 | Chouinard et al. | Jun 2002 | B1 |
6409753 | Brown et al. | Jun 2002 | B1 |
6415696 | Erickseon et al. | Jul 2002 | B1 |
6419693 | Fariabi | Jul 2002 | B1 |
6428811 | West et al. | Aug 2002 | B1 |
6443982 | Israel et al. | Sep 2002 | B1 |
6451025 | Jervis | Sep 2002 | B1 |
6451050 | Rudakov et al. | Sep 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6468298 | Pelton | Oct 2002 | B1 |
6468299 | Stack et al. | Oct 2002 | B2 |
6485510 | Camrud et al. | Nov 2002 | B1 |
6485511 | Lau et al. | Nov 2002 | B2 |
6488694 | Lau et al. | Dec 2002 | B1 |
6488702 | Besselink | Dec 2002 | B1 |
6488703 | Kveen et al. | Dec 2002 | B1 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6514281 | Blaeser et al. | Feb 2003 | B1 |
6520986 | Martin et al. | Feb 2003 | B2 |
6520987 | Plante | Feb 2003 | B1 |
6520988 | Colombo et al. | Feb 2003 | B1 |
6527789 | Lau et al. | Mar 2003 | B1 |
6527799 | Shanley | Mar 2003 | B2 |
6530944 | West et al. | Mar 2003 | B2 |
6540777 | Stenzel | Apr 2003 | B2 |
6540779 | Richter et al. | Apr 2003 | B2 |
6551350 | Thornton et al. | Apr 2003 | B1 |
6555157 | Hossainy | Apr 2003 | B1 |
6569180 | Sirhan et al. | May 2003 | B1 |
6575993 | Yock | Jun 2003 | B1 |
6579305 | Lashinski | Jun 2003 | B1 |
6579309 | Loos et al. | Jun 2003 | B1 |
6582394 | Reiss et al. | Jun 2003 | B1 |
6582460 | Cryer | Jun 2003 | B1 |
6585756 | Strecker | Jul 2003 | B1 |
6592549 | Gerdts et al. | Jul 2003 | B2 |
6596020 | Vardi et al. | Jul 2003 | B2 |
6596022 | Lau et al. | Jul 2003 | B2 |
6599296 | Gillick et al. | Jul 2003 | B1 |
6599314 | Mathis | Jul 2003 | B2 |
6602282 | Yan | Aug 2003 | B1 |
6605062 | Hurley et al. | Aug 2003 | B1 |
6605109 | Fiedler | Aug 2003 | B2 |
6607553 | Healy et al. | Aug 2003 | B1 |
6645517 | West | Nov 2003 | B2 |
6645547 | Shekalim et al. | Nov 2003 | B1 |
6656212 | Ravenscroft et al. | Dec 2003 | B2 |
6660031 | Tran et al. | Dec 2003 | B2 |
6660381 | Halas et al. | Dec 2003 | B2 |
6666883 | Seguin et al. | Dec 2003 | B1 |
6676695 | Solem | Jan 2004 | B2 |
6679909 | McIntosh et al. | Jan 2004 | B2 |
6685721 | Kramer | Feb 2004 | B1 |
6685730 | West et al. | Feb 2004 | B2 |
6689156 | Davidson et al. | Feb 2004 | B1 |
6692465 | Kramer | Feb 2004 | B2 |
6692483 | Vardi et al. | Feb 2004 | B2 |
6699280 | Camrud et al. | Mar 2004 | B2 |
6699724 | West et al. | Mar 2004 | B1 |
6702843 | Brown | Mar 2004 | B1 |
6706062 | Vardi et al. | Mar 2004 | B2 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6709440 | Callol et al. | Mar 2004 | B2 |
6712827 | Ellis et al. | Mar 2004 | B2 |
6712845 | Hossainy | Mar 2004 | B2 |
6723071 | Gerdts et al. | Apr 2004 | B2 |
6736842 | Healy et al. | May 2004 | B2 |
6749628 | Callol et al. | Jun 2004 | B1 |
6761734 | Suhr | Jul 2004 | B2 |
6770091 | Richter et al. | Aug 2004 | B2 |
6778316 | Halas et al. | Aug 2004 | B2 |
6743251 | Duane et al. | Oct 2004 | B1 |
6811566 | Penn et al. | Nov 2004 | B1 |
6825203 | Pasternak et al. | Nov 2004 | B2 |
6835203 | Vardi et al. | Dec 2004 | B1 |
6837901 | Rabkin et al. | Jan 2005 | B2 |
6849084 | Rabkin et al. | Feb 2005 | B2 |
6852252 | Halas et al. | Feb 2005 | B2 |
6855125 | Shanley | Feb 2005 | B2 |
6858034 | Hijlkema et al. | Feb 2005 | B1 |
6875228 | Pinchasik et al. | Apr 2005 | B2 |
6878161 | Lenker | Apr 2005 | B2 |
6879370 | Yokoue et al. | Apr 2005 | B2 |
6884258 | Vardi et al. | Apr 2005 | B2 |
6893417 | Gribbons et al. | May 2005 | B2 |
6896695 | Mueller et al. | May 2005 | B2 |
6908477 | McGuckin, Jr. et al. | Jun 2005 | B2 |
6918928 | Wolinsky et al. | Jul 2005 | B2 |
6939376 | Shulz et al. | Sep 2005 | B2 |
6945989 | Betelia et al. | Sep 2005 | B1 |
6945995 | Nicholas | Sep 2005 | B2 |
6949120 | Kveen et al. | Sep 2005 | B2 |
6951053 | Padilla et al. | Oct 2005 | B2 |
6955687 | Richter et al. | Oct 2005 | B2 |
6955688 | Wilson et al. | Oct 2005 | B2 |
6962602 | Vardi et al. | Nov 2005 | B2 |
6989026 | Richter et al. | Jan 2006 | B2 |
7005454 | Brocchini et al. | Feb 2006 | B2 |
7037327 | Salmon et al. | May 2006 | B2 |
7090694 | Morris et al. | Aug 2006 | B1 |
7101840 | Brocchini et al. | Sep 2006 | B2 |
7137993 | Acosta et al. | Nov 2006 | B2 |
7147655 | Chermoni | Dec 2006 | B2 |
7147656 | Andreas et al. | Dec 2006 | B2 |
7182779 | Acosta et al. | Feb 2007 | B2 |
7192440 | Andreas et al. | Mar 2007 | B2 |
7220275 | Davidson et al. | May 2007 | B2 |
7241308 | Andreas et al. | Jul 2007 | B2 |
7270668 | Andreas et al. | Sep 2007 | B2 |
7294146 | Chew et al. | Nov 2007 | B2 |
7300456 | Andreas et al. | Nov 2007 | B2 |
7309350 | Landreville et al. | Dec 2007 | B2 |
7314480 | Eidenschink et al. | Jan 2008 | B2 |
7320702 | Hammersmark et al. | Jan 2008 | B2 |
7323006 | Andreas et al. | Jan 2008 | B2 |
7323009 | Suhr et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7326242 | Eidenschink | Feb 2008 | B2 |
7341598 | Davidson et al. | Mar 2008 | B2 |
7387639 | Bourang et al. | Jun 2008 | B2 |
7445688 | Suzuki et al. | Nov 2008 | B2 |
7520895 | Douglas et al. | Apr 2009 | B2 |
7537609 | Davidson et al. | May 2009 | B2 |
7540881 | Meyer et al. | Jun 2009 | B2 |
7635383 | Gumm | Dec 2009 | B2 |
7641684 | Hillaire et al. | Jan 2010 | B2 |
7641685 | Richter | Jan 2010 | B2 |
7695508 | Der Leest et al. | Apr 2010 | B2 |
8016870 | Chew et al. | Sep 2011 | B2 |
8070789 | Will et al. | Dec 2011 | B2 |
20010003161 | Vardi et al. | Jun 2001 | A1 |
20010020154 | Bigus et al. | Sep 2001 | A1 |
20010020181 | Layne | Sep 2001 | A1 |
20010044595 | Reydel et al. | Nov 2001 | A1 |
20010044622 | Vardi et al. | Nov 2001 | A1 |
20010044632 | Daniel et al. | Nov 2001 | A1 |
20010049547 | Moore | Dec 2001 | A1 |
20020037358 | Barry et al. | Mar 2002 | A1 |
20020091439 | Baker et al. | Jul 2002 | A1 |
20020107560 | Richter | Aug 2002 | A1 |
20020111671 | Stenzel | Aug 2002 | A1 |
20020128706 | Osypka | Sep 2002 | A1 |
20020138132 | Brown | Sep 2002 | A1 |
20020143382 | Hijlkema et al. | Oct 2002 | A1 |
20020151924 | Shiber | Oct 2002 | A1 |
20020151955 | Tran et al. | Oct 2002 | A1 |
20020156496 | Chermoni | Oct 2002 | A1 |
20020173835 | Bourang et al. | Nov 2002 | A1 |
20020177890 | Lenker | Nov 2002 | A1 |
20020183763 | Callol et al. | Dec 2002 | A1 |
20020188343 | Mathis | Dec 2002 | A1 |
20020188347 | Mathis | Dec 2002 | A1 |
20020193873 | Brucker et al. | Dec 2002 | A1 |
20030028233 | Vardi et al. | Feb 2003 | A1 |
20030029039 | Richter et al. | Feb 2003 | A1 |
20030045923 | Bashiri et al. | Mar 2003 | A1 |
20030093143 | Zhao et al. | May 2003 | A1 |
20030097169 | Brucker et al. | May 2003 | A1 |
20030114912 | Sequin et al. | Jun 2003 | A1 |
20030114919 | McQuiston et al. | Jun 2003 | A1 |
20030114922 | Iwasaka et al. | Jun 2003 | A1 |
20030125791 | Sequin et al. | Jul 2003 | A1 |
20030125800 | Shulze et al. | Jul 2003 | A1 |
20030125802 | Callol et al. | Jul 2003 | A1 |
20030135259 | Simso | Jul 2003 | A1 |
20030135266 | Chew et al. | Jul 2003 | A1 |
20030139796 | Sequin et al. | Jul 2003 | A1 |
20030139797 | Johnson et al. | Jul 2003 | A1 |
20030139798 | Brown et al. | Jul 2003 | A1 |
20030163085 | Tanner et al. | Aug 2003 | A1 |
20030176909 | Kusleika | Sep 2003 | A1 |
20030191516 | Weldon et al. | Oct 2003 | A1 |
20030192164 | Austin | Oct 2003 | A1 |
20030195609 | Berenstein | Oct 2003 | A1 |
20030199821 | Gerdts et al. | Oct 2003 | A1 |
20030204238 | Tedeschi | Oct 2003 | A1 |
20030212447 | Euteneuer | Nov 2003 | A1 |
20030225446 | Hartley | Dec 2003 | A1 |
20040024450 | Shulze et al. | Feb 2004 | A1 |
20040030380 | Shulze et al. | Feb 2004 | A1 |
20040044395 | Nelson | Mar 2004 | A1 |
20040044398 | Nicholas | Mar 2004 | A1 |
20040087965 | Levine et al. | May 2004 | A1 |
20040093061 | Acosta et al. | May 2004 | A1 |
20040093067 | Israel | May 2004 | A1 |
20040093077 | White et al. | May 2004 | A1 |
20040098081 | Landreville et al. | May 2004 | A1 |
20040106979 | Goicoechea | Jun 2004 | A1 |
20040111145 | Serino et al. | Jun 2004 | A1 |
20040117008 | Wnendt et al. | Jun 2004 | A1 |
20040176832 | Hartley et al. | Sep 2004 | A1 |
20040186551 | Kao et al. | Sep 2004 | A1 |
20040193245 | Deem et al. | Sep 2004 | A1 |
20040215165 | Coyle et al. | Oct 2004 | A1 |
20040215312 | Andreas et al. | Oct 2004 | A1 |
20040243217 | Andersen et al. | Dec 2004 | A1 |
20040249434 | Andreas et al. | Dec 2004 | A1 |
20040249435 | Andreas et al. | Dec 2004 | A1 |
20050010276 | Acosta et al. | Jan 2005 | A1 |
20050038505 | Shuize et al. | Feb 2005 | A1 |
20050049673 | Andreas et al. | Mar 2005 | A1 |
20050049680 | Fischell et al. | Mar 2005 | A1 |
20050080474 | Andreas et al. | Apr 2005 | A1 |
20050080475 | Andreas et al. | Apr 2005 | A1 |
20050085845 | Hilaire et al. | Apr 2005 | A1 |
20050090846 | Pedersen et al. | Apr 2005 | A1 |
20050101624 | Betts et al. | May 2005 | A1 |
20050125051 | Eidenschink et al. | Jun 2005 | A1 |
20050131008 | Betts et al. | Jun 2005 | A1 |
20050133164 | Fischer et al. | Jun 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050149159 | Andreas et al. | Jul 2005 | A1 |
20050165378 | Heinrich et al. | Jul 2005 | A1 |
20050182473 | Eidenschink et al. | Aug 2005 | A1 |
20050183259 | Eidenschink et al. | Aug 2005 | A1 |
20050197688 | Theron et al. | Sep 2005 | A1 |
20050209674 | Kutscher et al. | Sep 2005 | A1 |
20050222671 | Schaeffer et al. | Oct 2005 | A1 |
20050228477 | Grainger et al. | Oct 2005 | A1 |
20050245637 | Hossainy et al. | Nov 2005 | A1 |
20050288763 | Andreas et al. | Dec 2005 | A1 |
20050288764 | Snow et al. | Dec 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060069424 | Acosta et al. | Mar 2006 | A1 |
20060100694 | Globerman | May 2006 | A1 |
20060123874 | Motsenbocker | Jun 2006 | A1 |
20060200223 | Andreas et al. | Sep 2006 | A1 |
20060206190 | Chermoni | Sep 2006 | A1 |
20060229700 | Acosta et al. | Oct 2006 | A1 |
20060229706 | Shulze et al. | Oct 2006 | A1 |
20060271150 | Andreas et al. | Nov 2006 | A1 |
20060271151 | McGarry et al. | Nov 2006 | A1 |
20060282147 | Andreas et al. | Dec 2006 | A1 |
20060282149 | Kao | Dec 2006 | A1 |
20060282150 | Olson et al. | Dec 2006 | A1 |
20060287726 | Segal et al. | Dec 2006 | A1 |
20070027521 | Andreas et al. | Feb 2007 | A1 |
20070027524 | Johnson et al. | Feb 2007 | A1 |
20070055351 | Eidenschink et al. | Mar 2007 | A1 |
20070061003 | Shmulewitz et al. | Mar 2007 | A1 |
20070067012 | George et al. | Mar 2007 | A1 |
20070088368 | Acosta et al. | Apr 2007 | A1 |
20070088420 | Andreas et al. | Apr 2007 | A1 |
20070088422 | Chew et al. | Apr 2007 | A1 |
20070100423 | Acosta et al. | May 2007 | A1 |
20070100424 | Chew et al. | May 2007 | A1 |
20070106365 | Andreas et al. | May 2007 | A1 |
20070118202 | Chermoni | May 2007 | A1 |
20070118203 | Chermoni | May 2007 | A1 |
20070118204 | Chermoni | May 2007 | A1 |
20070129733 | Will et al. | Jun 2007 | A1 |
20070156225 | George et al. | Jul 2007 | A1 |
20070156226 | Chew et al. | Jul 2007 | A1 |
20070179587 | Acosta et al. | Aug 2007 | A1 |
20070203571 | Kaplan et al. | Aug 2007 | A1 |
20070219611 | Krever et al. | Sep 2007 | A1 |
20070219612 | Andreas et al. | Sep 2007 | A1 |
20070219613 | Kao et al. | Sep 2007 | A1 |
20070265637 | Andreas et al. | Nov 2007 | A1 |
20070270936 | Andreas et al. | Nov 2007 | A1 |
20070276460 | Davis et al. | Nov 2007 | A1 |
20070276461 | Andreas et al. | Nov 2007 | A1 |
20070281117 | Kaplan et al. | Dec 2007 | A1 |
20070282419 | Hilaire et al. | Dec 2007 | A1 |
20070292518 | Ludwig | Dec 2007 | A1 |
20080009932 | Ta et al. | Jan 2008 | A1 |
20080009933 | Ta et al. | Jan 2008 | A1 |
20080051869 | Yribarren | Feb 2008 | A1 |
20080071345 | Hammersmark et al. | Mar 2008 | A1 |
20080077229 | Andreas et al. | Mar 2008 | A1 |
20080091257 | Andreas et al. | Apr 2008 | A1 |
20080097299 | Andreas et al. | Apr 2008 | A1 |
20080097574 | Andreas et al. | Apr 2008 | A1 |
20080132989 | Snow et al. | Jun 2008 | A1 |
20080147162 | Andreas et al. | Jun 2008 | A1 |
20080199510 | Ruane et al. | Aug 2008 | A1 |
20080208309 | Saeed | Aug 2008 | A1 |
20080208311 | Kao et al. | Aug 2008 | A1 |
20080208318 | Kao et al. | Aug 2008 | A1 |
20080221655 | Miller | Sep 2008 | A1 |
20080234795 | Snow et al. | Sep 2008 | A1 |
20080234798 | Chew et al. | Sep 2008 | A1 |
20080234799 | Acosta et al. | Sep 2008 | A1 |
20080269865 | Snow et al. | Oct 2008 | A1 |
20090076584 | Mao et al. | Mar 2009 | A1 |
20090105686 | Snow et al. | Apr 2009 | A1 |
20090171430 | Baim et al. | Jul 2009 | A1 |
20090182270 | Nanavati | Jul 2009 | A1 |
20090228088 | Lowe et al. | Sep 2009 | A1 |
20090240321 | Davidson et al. | Sep 2009 | A1 |
20090254167 | Ricci et al. | Oct 2009 | A1 |
20090259285 | Duane et al. | Oct 2009 | A1 |
20090287289 | Sagedahl et al. | Nov 2009 | A1 |
20090299454 | Jennings et al. | Dec 2009 | A1 |
20090319030 | Yadin et al. | Dec 2009 | A1 |
20090326641 | Davis et al. | Dec 2009 | A1 |
20100004737 | Eidenschink | Jan 2010 | A1 |
20100030183 | Toner et al. | Feb 2010 | A1 |
20100036477 | Bronson et al. | Feb 2010 | A1 |
20100042199 | Burton | Feb 2010 | A1 |
20100049298 | Hamer et al. | Feb 2010 | A1 |
20100057020 | Uretsky | Mar 2010 | A1 |
20100063571 | Roach et al. | Mar 2010 | A1 |
20100106238 | Hillaire et al. | Apr 2010 | A1 |
20110282427 | Bourang et al. | Nov 2011 | A1 |
20110307045 | Bourang et al. | Dec 2011 | A1 |
20110307046 | Bourang et al. | Dec 2011 | A1 |
20110307047 | Bourang et al. | Dec 2011 | A1 |
20110307052 | Bourang et al. | Dec 2011 | A1 |
20130268047 | Bourang et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
1867374 | Nov 2006 | CN |
102215780 | Oct 2011 | CN |
103037813 | Apr 2013 | CN |
103037815 | Apr 2013 | CN |
103037816 | Apr 2013 | CN |
103037817 | Apr 2013 | CN |
103068345 | Apr 2013 | CN |
0 203 945 | Dec 1986 | EP |
0 274 129 | Jul 1988 | EP |
0 282 143 | Sep 1988 | EP |
0 505 686 | Sep 1992 | EP |
0 533 960 | Mar 1993 | EP |
0 714 640 | Jun 1996 | EP |
0 596 145 | May 1997 | EP |
0 947180 | Oct 1999 | EP |
1 258 230 | Nov 2002 | EP |
1 277 449 | Jan 2003 | EP |
1 523 959 | Apr 2005 | EP |
1 523 960 | Apr 2005 | EP |
1 266 638 | Oct 2005 | EP |
1788977 | Mar 2008 | EP |
2344068 | Jul 2011 | EP |
2549949 | Jan 2013 | EP |
2549950 | Jan 2013 | EP |
2549951 | Jan 2013 | EP |
2549952 | Jan 2013 | EP |
2549958 | Jan 2013 | EP |
10-043313 | Feb 1998 | JP |
2003-532437 | Nov 2003 | JP |
2004-528877 | Sep 2004 | JP |
2007-508082 | Apr 2007 | JP |
2012503534 | Feb 2012 | JP |
2013523215 | Jun 2013 | JP |
9226689 | Sep 1996 | WO |
9633677 | Oct 1996 | WO |
9746174 | Dec 1997 | WO |
9748351 | Dec 1997 | WO |
9820810 | May 1998 | WO |
9837833 | Sep 1998 | WO |
9858600 | Dec 1998 | WO |
9901087 | Jan 1999 | WO |
0012832 | Mar 2000 | WO |
0015151 | Mar 2000 | WO |
0025841 | May 2000 | WO |
0032136 | Jun 2000 | WO |
0041649 | Jul 2000 | WO |
0050116 | Aug 2000 | WO |
0062708 | Oct 2000 | WO |
0072780 | Dec 2000 | WO |
0074595 | Dec 2000 | WO |
0170297 | Sep 2001 | WO |
0191918 | Dec 2001 | WO |
02060344 | Aug 2002 | WO |
02085253 | Oct 2002 | WO |
03022178 | Mar 2003 | WO |
03047651 | Jun 2003 | WO |
03051425 | Jun 2003 | WO |
03055414 | Jul 2003 | WO |
03105922 | Dec 2003 | WO |
2004017865 | Mar 2004 | WO |
2004043299 | May 2004 | WO |
2004043301 | May 2004 | WO |
2004043510 | May 2004 | WO |
2004052237 | Jun 2004 | WO |
2005013853 | Feb 2005 | WO |
WO 2005039681 | May 2005 | WO |
2006036939 | Apr 2006 | WO |
2006047520 | May 2006 | WO |
2007035805 | Mar 2007 | WO |
2007053187 | May 2007 | WO |
2007146411 | Dec 2007 | WO |
2008005111 | Jan 2008 | WO |
2010036982 | Apr 2010 | WO |
2011119879 | Sep 2011 | WO |
2011119880 | Sep 2011 | WO |
2011119882 | Sep 2011 | WO |
2011119883 | Sep 2011 | WO |
2011119884 | Sep 2011 | WO |
2012109365 | Aug 2012 | WO |
2012109382 | Aug 2012 | WO |
Entry |
---|
The International Search Report of May 6, 2011 and Written Opinion of the International Searching Authority to corresponding PCT/US11/29859 application. |
“Drug Delivery Stent With Holes Located on Neutral Axis”; No. 429007; Research Disclosure, Kenneth Mason Publications, Hampshire, CB; Jan. 2000; pp. 13; vol. 2266. |
“Stent”. Definitions from Dictionary.com. Unabridged (v1.01). Retrieved Sep. 22, 2006, from Dictionary.com, located at http://dictionary.reference.com/search?q=stent; 1 page. |
Colombo, “The Invatec Bifurcation Stent Solution” Bifurcation Stents: Novel Solutions, TCT 2003, Washington: Sep. 15-19, 2003, 24 pages. |
Cooley, Patrick et al.; “Applications of Ink-Jet Printing Technology to BioMEMs and Microfluidic Systems”; Proceedings, SPIE Conference on Microfluidics and BioMEMs; Oct. 2001; 12 pages. |
Evans Analytical Group; “Functional Sites on Non-polymeric Materials: Gas Plasma Treatment and Surface Analysis”; located at http://www.eaglabs.com; 2003; 2 pages. |
International Search Report mailed on May 27, 2011, for PCT Patent Application No. PCT/US2011/029863, filed on Mar. 24, 2011, 2 pages. |
Joung, Yoon Ki et al.; “Estrogen Release from Metallic Stent Surface for the Prevention of Restenosis”; Journal of Controlled Release; 2003; pp. 83-91; vol. 92. |
Lefèvre, Thierry et al. “Approach to Coronary Bifurcation Stenting in 2003”; Euro PCR; May 2003; pp. 127-154. |
Stimpson, Donald I. et al; “Parallel Production of Oligonucleotide Arrays Using Membranes and Reagent Jet Printing”; BioTechniques; Nov. 1998; pp. 886-890; vol. 25. |
Supplementary European Search Report dated Mar. 25, 2008, for EP Patent Application No. 05727731.1, 2 pages. |
Supplementary European Search Report mailed on Apr. 9, 2008, for EP Patent Application No. 05744136.2, 3 pages. |
U.S. Appl. No. 09/097,855, filed Jun. 15, 1998, first named inventor: Enrique J. Klein. |
U.S. Appl. No. 09/225,364, filed Jan. 4, 1999, first named inventor: Aaron V. Kaplan. |
U.S. Appl. No. 10/874,859, filed Jun. 22, 2004, first named inventor: Pablo Acosta. |
U.S. Appl. No. 60/336,607, filed Dec. 3, 2001, first named inventor: Bernard Andreas. |
U.S. Appl. No. 60/336,767, filed Dec. 3, 2001, first named inventor: Bernard Andreas. |
U.S. Appl. No. 60/336,967, filed Dec. 3, 2001, first named inventor: Sunmi Chew. |
U.S. Appl. No. 60/364,389, filed Mar. 13, 2002, first named inventor: Sunmi Chew. |
U.S. Appl. No. 60/440,839, filed Jan. 17, 2003, first named inventor: Bernard Andreas. |
U.S. Appl. No. 60/561,041, filed Apr. 9, 2004, first named inventor: Jeffry Grainger. |
U.S. Appl. No. 60/784,309, filed Mar. 20, 2006, first named inventor: Bernard Andreas. |
U.S. Appl. No. 60/810,522, filed Jun. 2, 2006, first named inventor: Stephen Kaplan. |
U.S. Appl. No. 60/890,703, filed Feb. 20, 2007, first named inventor: Patrick Ruane. |
U.S. Appl. No. 61/012,317, filed Dec. 7, 2007, first named inventor: Patrick Ruane. |
Written Opinion of the International Searching Authority mailed on May 27, 2011, for PCT Patent Application No. PCT/US2011/029863, filed on Mar. 24, 2011, 11 pages. |
First Office Action of Application No. CN 200980143592.X, Jun. 4, 2013, 10 pages. |
International Preliminary Report on Patentability of Application No. PCT/US2009/058505, Oct. 28, 2010, 38 pages. |
International Search Report and Written Opinion of Application No. PCT/US2009/058505, Nov. 25, 2009, 11 pages. |
International Search Report and Written Opinion of Application No. PCT/US2011/029858, May 25, 2011, 10 pages. |
International Preliminary Report on Patentability of Application No. PCT/US2011/029859, Sep. 25, 2012, 8 pages. |
International Preliminary Report on Patentability of Application No. PCT/US2011/029861, Sep. 25, 2012, 9 pages. |
International Search Report and Written Opinion of Application No. PCT/US2011/029861, May 20, 2011, 11 pages. |
International Preliminary Report on Patentability of Application No. PCT/US2011/029862, Sep. 25, 2012, 11 pages. |
International Search Report and Written Opinion of Application No. PCT/US2011/029862, May 25, 2011, 13 pages. |
International Preliminary Report on Patentability of Application No. PCT/US2011/029863, Sep. 25, 2012, 13 pages. |
International Preliminary Report on Patentability of Application No. PCT/US2012/024347, Aug. 13, 2013, 8 pages. |
International Search Report and Written Opinion of Application No. PCT/US2012/024347, Jun. 29, 2012, 13 pages. |
International Preliminary Report on Patentability of Application No. PCT/US2012/024366, Aug. 13, 2013, 19 pages. |
International Search Report and Written Opinion of Application No. PCT/US2012/024366, Sep. 7, 2012, 23 pages. |
Invitation to Pay Additional Fees of Application No. PCT/US2012/024366, Jun. 1, 2012, 3 pages. |
Office Action of Japanese Patent Application No. 2011-529290, mailed Sep. 25, 2013, 5 pages. |
English Translation and Second Office Action for corresponding Chinese Patent Application No. 200980143592.X dated Apr. 21, 2014, 26 pp. |
Number | Date | Country | |
---|---|---|---|
20110307044 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61194346 | Sep 2008 | US | |
61317130 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2009/058505 | Sep 2009 | US |
Child | 13071162 | US |