The present disclosure relates generally to methods and systems for analyzing genomic profiling data, and more specifically to methods and systems for predicting Alternative Lengthening of Telomeres (ALT) status based on genomic profiling data for a sample from a subject.
During somatic cell division, the ends of the telomeres (i.e., the ends of the chromosomes that are typically protected by telomere-binding proteins) cannot be replicated by the lagging DNA strand at the replication fork, thereby leading to shortening of the telomeres in each cell cycle (see, e.g., Zhang et al. (2020), “Alternative lengthening of telomeres: from molecular mechanisms to therapeutic outlooks”, Cell Biosci 10:30). As cancer cells continue to proliferate, telomere degradation eventually triggers cellular senescence unless a counteracting mechanism is activated. Most cancers that achieve replicative immortality rely on telomerase to extend and maintain telomeres during DNA replication. However, in some cancers, a homologous recombination-based pathway called Alternative Lengthening of Telomeres (ALT)—a telomerase-independent mechanism—enables cancer cells to avoid telomere degradation during DNA replication (Zhang et al. (2020), ibid.). ALT thus constitutes a potentially important therapeutic target for anti-cancer treatments as approximately 10% of cancers depend on this telomere maintenance mechanism for continued growth, and inhibition of ALT can cause cellular senescence (Henson et al. (2009), “DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity”, Nat Biotechnol. 27(12):1181-1185).
Determination of ALT status has been shown to have both prognostic and predictive value for some cancers. For example, ALT positive status has been shown to be prognostic for overall survival in neuroblastoma patients (Hartlieb et al, (2021), “Alternative Lengthening of Telomeres in Childhood Neuroblastoma from Genome to Proteome”, Nature Comm. 12:1269), while ALT status has been shown to have predictive value for response to chemotherapy in neuroblastoma patients (Koneru et al. (2021), “ALT Neuroblastoma Chemoresistance Due to Telomere Dysfunction-Induced ATM Activation is Reversible with ATM Inhibitor AZD0156”, Sci Transl Med. 13(607):eabd5750).
The current gold standard assay for determining ALT status is the polymerase chain reaction (PCR)-based C-circle assay (Henson et al. (2017), “The C-circle assay for alternative-lengthening-of-telomeres activity”, Methods 114:74-84). C-circles are partially single-stranded telomeric (CCCTAA)n DNA circles that are ALT-specific markers (Henson et al. (2009), ibid.). Attempts have been made to develop whole genome sequencing (WGS)—or whole exome sequencing (WES)—based methods for determining ALT status that are compatible with nucleic acid sequencing pipelines, however, to date these methods have required whole sequencing coverage to detect Telomeric Variant Repeats (TVRs). Furthermore, mutations that are known to be associated with ALT positive or ALT negative status are available for only selected cancer types. Thus, improved methods for determination of ALT status that are compatible with sequencing-based genomic profiling pipelines are required to fully integrate prognostic or predictive ALT status determination to facilitate treatment decision-making by healthcare providers and improve healthcare outcomes.
Disclosed herein are methods and systems for the determination of ALT status in samples collected from subjects (e.g., cancer patients) that are in need of treatment. The disclosed methods utilize statistical and/or machine learning techniques to analyze genomic features (e.g., variant gene sequences, copy number features, telomeric features, or a combination thereof) identified in nucleic acid sequencing data (e.g., targeted sequencing data) and predict ALT status. In contrast to prior art sequencing-based methods, the methods described herein are not based on detection of telomere variant repeats (TVRs). In addition to predicting ALT status, the disclosed methods may, in some instances, further comprise predicting a response of the subject to a treatment for a disease (e.g., cancer) and/or predicting a disease outcome for the subject based on the predicted ALT status. The disclosed methods also have the advantage of being compatible with genomic profiling pipelines currently used for sequencing-based disease diagnosis and prognosis.
Disclosed herein are methods comprising: providing a plurality of nucleic acid molecules obtained from a sample from a subject; ligating one or more adapters onto one or more nucleic acid molecules from the plurality of nucleic acid molecules; amplifying the one or more ligated nucleic acid molecules from the plurality of nucleic acid molecules; capturing amplified nucleic acid molecules from the amplified nucleic acid molecules; sequencing, by a sequencer, the captured nucleic acid molecules to obtain a plurality of targeted sequence reads that represent the captured nucleic acid molecules; receiving, at one or more processors, targeted sequence read data for the plurality of targeted sequence reads; processing, using the one or more processors, the targeted sequence read data to identify one or more genomic features; providing, using the one or more processors, the one or more genomic features as input to a trained model configured to predict an ALT status of the sample based on the one or more genomic features; and outputting, using the one or more processors, the predicted ALT status of the sample.
In some embodiments, the method further comprises predicting a response of the subject to treatment for a disease based on the predicted ALT status. In some embodiments, the method further comprises predicting a disease outcome for the subject based on the predicted ALT status.
In some embodiments, the one or more identified genomic features do not include telomere variant repeats (TVRs). In some embodiments, the one or more identified genomic features comprise one or more variant gene sequences, one or more copy number features, one or more telomeric features, or any combination thereof.
In some embodiments, the subject is suspected of having or is determined to have cancer. In some embodiments, the cancer is a B cell cancer (multiple myeloma), a melanoma, breast cancer, lung cancer, bronchus cancer, colorectal cancer, prostate cancer, pancreatic cancer, stomach cancer, ovarian cancer, urinary bladder cancer, brain cancer, central nervous system cancer, peripheral nervous system cancer, esophageal cancer, cervical cancer, uterine cancer, endometrial cancer, cancer of an oral cavity, cancer of a pharynx, liver cancer, kidney cancer, testicular cancer, biliary tract cancer, small bowel cancer, appendix cancer, salivary gland cancer, thyroid gland cancer, adrenal gland cancer, osteosarcoma, chondrosarcoma, a cancer of hematological tissue, an adenocarcinoma, an inflammatory myofibroblastic tumor, a gastrointestinal stromal tumor (GIST), colon cancer, multiple myeloma (MM), myelodysplastic syndrome (MDS), myeloproliferative disorder (MPD), acute lymphocytic leukemia (ALL), acute myelocytic leukemia (AML), chronic myelocytic leukemia (CML), chronic lymphocytic leukemia (CLL), polycythemia Vera, Hodgkin lymphoma, non-Hodgkin lymphoma (NHL), soft-tissue sarcoma, fibrosarcoma, myxosarcoma, liposarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, cpendymoma, pincaloma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, neuroblastoma, retinoblastoma, follicular lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, hepatocellular carcinoma, thyroid cancer, gastric cancer, head and neck cancer, small cell cancer, essential thrombocythemia, agnogenic myeloid metaplasia, hypereosinophilic syndrome, systemic mastocytosis, familiar hypercosinophilia, chronic cosinophilic leukemia, neuroendocrine cancers, or a carcinoid tumor.
In some embodiments, the cancer comprises acute lymphoblastic leukemia (Philadelphia chromosome positive), acute lymphoblastic leukemia (precursor B-cell), acute myeloid leukemia (FLT3+), acute myeloid leukemia (with an IDH2 mutation), anaplastic large cell lymphoma, basal cell carcinoma, B-cell chronic lymphocytic leukemia, bladder cancer, breast cancer (HER2 overexpressed/amplified), breast cancer (HER2+), breast cancer (HR+, HER2−), cervical cancer, cholangiocarcinoma, chronic lymphocytic leukemia, chronic lymphocytic leukemia (with 17p deletion), chronic myelogenous leukemia, chronic myelogenous leukemia (Philadelphia chromosome positive), classical Hodgkin lymphoma, colorectal cancer, colorectal cancer (dMMR/MSI-H), colorectal cancer (KRAS wild type), cryopyrin-associated periodic syndrome, a cutaneous T-cell lymphoma, dermatofibrosarcoma protuberans, a diffuse large B-cell lymphoma, fallopian tube cancer, a follicular B-cell non-Hodgkin lymphoma, a follicular lymphoma, gastric cancer, gastric cancer (HER2+), gastroesophageal junction (GEJ) adenocarcinoma, a gastrointestinal stromal tumor, a gastrointestinal stromal tumor (KIT+), a giant cell tumor of the bone, a glioblastoma, granulomatosis with polyangiitis, a head and neck squamous cell carcinoma, a hepatocellular carcinoma, Hodgkin lymphoma, juvenile idiopathic arthritis, lupus erythematosus, a mantle cell lymphoma, medullary thyroid cancer, melanoma, a melanoma with a BRAF V600 mutation, a melanoma with a BRAF V600E or V600K mutation, Merkel cell carcinoma, multicentric Castleman's disease, multiple hematologic malignancies including Philadelphia chromosome-positive ALL and CML, multiple myeloma, myelofibrosis, a non-Hodgkin's lymphoma, a nonresectable subependymal giant cell astrocytoma associated with tuberous sclerosis, a non-small cell lung cancer, a non-small cell lung cancer (ALK+), a non-small cell lung cancer (PD-L1+), a non-small cell lung cancer (with ALK fusion or ROSI gene alteration), a non-small cell lung cancer (with BRAF V600E mutation), a non-small cell lung cancer (with an EGFR exon 19 deletion or exon 21 substitution (L858R) mutations), a non-small cell lung cancer (with an EGFR T790M mutation), ovarian cancer, ovarian cancer (with a BRCA mutation), pancreatic cancer, a pancreatic, gastrointestinal, or lung origin neuroendocrine tumor, a pediatric neuroblastoma, a peripheral T-cell lymphoma, peritoneal cancer, prostate cancer, a renal cell carcinoma, rheumatoid arthritis, a small lymphocytic lymphoma, a soft tissue sarcoma, a solid tumor (MSI-H/dMMR), a squamous cell cancer of the head and neck, a squamous non-small cell lung cancer, thyroid cancer, a thyroid carcinoma, urothelial cancer, a urothelial carcinoma, or Waldenstrom's macroglobulinemia.
In some embodiments, the method further comprises treating the subject with an anti-cancer therapy. In some embodiments, the anti-cancer therapy comprises a targeted anti-cancer therapy. In some embodiments, the targeted anti-cancer therapy comprises abemaciclib (Verzenio), abiraterone acetate (Zytiga), acalabrutinib (Calquence), ado-trastuzumab emtansine (Kadcyla), afatinib dimalcate (Gilotrif), aldesleukin (Proleukin), alectinib (Alecensa), alemtuzumab (Campath), alitretinoin (Panretin), alpelisib (Piqray), amivantamab-vmjw (Rybrevant), anastrozole (Arimidex), apalutamide (Erleada), asciminib hydrochloride (Scemblix), atezolizumab (Tecentriq), avapritinib (Ayvakit), avelumab (Bavencio), axicabtagene ciloleucel (Yescarta), axitinib (Inlyta), belantamab mafodotin-blmf (Blenrep), belimumab (Benlysta), belinostat (Beleodaq), belzutifan (Welireg), bevacizumab (Avastin), bexarotene (Targretin), binimctinib (Mektovi), blinatumomab (Blincyto), bortezomib (Velcade), bosutinib (Bosulif), brentuximab vedotin (Adcetris), brexucabtagene autolcucel (Tecartus), brigatinib (Alunbrig), cabazitaxel (Jevtana), cabozantinib (Cabometyx), cabozantinib (Cabometyx, Cometriq), canakinumab (Ilaris), capmatinib hydrochloride (Tabrecta), carfilzomib (Kyprolis), cemiplimab-rwlc (Libtayo), ceritinib (LDK378/Zykadia), cetuximab (Erbitux), cobimetinib (Cotellic), copanlisib hydrochloride (Aliqopa), crizotinib (Xalkori), dabrafenib (Tafinlar), dacomitinib (Vizimpro), daratumumab (Darzalex), daratumumab and hyaluronidase-fihj (Darzalex Faspro), darolutamide (Nubeqa), dasatinib (Sprycel), denileukin diftitox (Ontak), denosumab (Xgeva), dinutuximab (Unituxin), dostarlimab-gxly (Jemperli), durvalumab (Imfinzi), duvelisib (Copiktra), clotuzumab (Empliciti), enasidenib mesylate (Idhifa), encorafenib (Braftovi), enfortumab vedotin-ejfv (Padcev), entrectinib (Rozlytrek), enzalutamide (Xtandi), erdafitinib (Balversa), erlotinib (Tarceva), everolimus (Afinitor), exemestane (Aromasin), fam-trastuzumab deruxtecan-nxki (Enhertu), fedratinib hydrochloride (Inrebic), fulvestrant (Faslodex), gefitinib (Iressa), gemtuzumab ozogamicin (Mylotarg), gilteritinib (Xospata), glasdegib malcate (Daurismo), hyaluronidase-zzxf (Phesgo), ibrutinib (Imbruvica), ibritumomab tiuxctan (Zevalin), idecabtagene vicleucel (Abecma), idelalisib (Zydelig), imatinib mesylate (Gleevec), infigratinib phosphate (Truseltiq), inotuzumab ozogamicin (Besponsa), iobenguane 1131 (Azedra), ipilimumab (Yervoy), isatuximab-irfc (Sarclisa), ivosidenib (Tibsovo), ixazomib citrate (Ninlaro), lanreotide acetate (Somatuline Depot), lapatinib (Tykerb), larotrectinib sulfate (Vitrakvi), lenvatinib mesylate (Lenvima), letrozole (Femara), lisocabtagene maralcucel (Breyanzi), loncastuximab tesirinc-lpyl (Zynlonta), lorlatinib (Lorbrena), lutetium Lu 177-dotatate (Lutathera), margetuximab-cmkb (Margenza), midostaurin (Rydapt), mobocertinib succinate (Exkivity), mogamulizumab-kpkc (Poteligco), moxctumomab pasudotox-tdfk (Lumoxiti), naxitamab-gqgk (Danyelza), necitumumab (Portrazza), neratinib maleate (Nerlynx), nilotinib (Tasigna), niraparib tosylate monohydrate (Zejula), nivolumab (Opdivo), obinutuzumab (Gazyva), ofatumumab (Arzerra), olaparib (Lynparza), olaratumab (Lartruvo), osimertinib (Tagrisso), palbociclib (Ibrance), panitumumab (Vectibix), panobinostat (Farydak), pazopanib (Votrient), pembrolizumab (Keytruda), pemigatinib (Pemazyre), pertuzumab (Perjeta), pexidartinib hydrochloride (Turalio), polatuzumab vedotin-piiq (Polivy), ponatinib hydrochloride (Iclusig), pralatrexate (Folotyn), pralsetinib (Gavreto), radium 223 dichloride (Xofigo), ramucirumab (Cyramza), regorafenib (Stivarga), ribociclib (Kisqali), ripretinib (Qinlock), rituximab (Rituxan), rituximab and hyaluronidase human (Rituxan Hycela), romidepsin (Istodax), rucaparib camsylate (Rubraca), ruxolitinib phosphate (Jakafi), sacituzumab govitecan-hziy (Trodelvy), seliciclib, selinexor (Xpovio), selpercatinib (Retevmo), selumetinib sulfate (Koselugo), siltuximab (Sylvant), sipuleucel-T (Provenge), sirolimus protein-bound particles (Fyarro), sonidegib (Odomzo), sorafenib (Nexavar), sotorasib (Lumakras), sunitinib (Sutent), tafasitamab-cxix (Monjuvi), tagraxofusp-erzs (Elzonris), talazoparib tosylate (Talzenna), tamoxifen (Nolvadex), tazemetostat hydrobromide (Tazverik), tebentafusp-tebn (Kimmtrak), temsirolimus (Torisel), tepotinib hydrochloride (Tepmetko), tisagenlecleucel (Kymriah), tisotumab vedotin-tftv (Tivdak), tocilizumab (Actemra), tofacitinib (Xeljanz), tositumomab (Bexxar), trametinib (Mekinist), trastuzumab (Herceptin), tretinoin (Vesanoid), tivozanib hydrochloride (Fotivda), toremifene (Fareston), tucatinib (Tukysa), umbralisib tosylate (Ukoniq), vandetanib (Caprelsa), vemurafenib (Zelboraf), venetoclax (Venclexta), vismodegib (Erivedge), vorinostat (Zolinza), zanubrutinib (Brukinsa), ziv-aflibercept (Zaltrap), or any combination thereof.
In some embodiments, the method further comprises obtaining the sample from the subject. In some embodiments, the sample comprises a tissue biopsy sample, a liquid biopsy sample, or a normal control. In some embodiments, the sample is a liquid biopsy sample and comprises blood, plasma, cerebrospinal fluid, sputum, stool, urine, or saliva. In some embodiments, the sample is a liquid biopsy sample and comprises circulating tumor cells (CTCs). In some embodiments, the sample is a liquid biopsy sample and comprises cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), or any combination thereof. In some embodiments, the plurality of nucleic acid molecules comprises a mixture of tumor nucleic acid molecules and non-tumor nucleic acid molecules. In some embodiments, the tumor nucleic acid molecules are derived from a tumor portion of a heterogeneous tissue biopsy sample, and the non-tumor nucleic acid molecules are derived from a normal portion of the heterogeneous tissue biopsy sample. In some embodiments, the sample comprises a liquid biopsy sample, and wherein the tumor nucleic acid molecules are derived from a circulating tumor DNA (ctDNA) fraction of the liquid biopsy sample, and the non-tumor nucleic acid molecules are derived from a non-tumor, cell-free DNA (cfDNA) fraction of the liquid biopsy sample.
In some embodiments, the one or more adapters comprise amplification primers, flow cell adaptor sequences, substrate adapter sequences, or sample index sequences. In some embodiments, the captured nucleic acid molecules are captured from the amplified nucleic acid molecules by hybridization to one or more bait molecules. In some embodiments, the one or more bait molecules comprise one or more nucleic acid molecules, each comprising a region that is complementary to a region of a captured nucleic acid molecule. In some embodiments, amplifying nucleic acid molecules comprises performing a polymerase chain reaction (PCR) amplification technique, a non-PCR amplification technique, or an isothermal amplification technique.
In some embodiments, the sequencing comprises use of a massively parallel sequencing (MPS) technique, whole genome sequencing (WGS), whole exome sequencing, targeted sequencing, direct sequencing, or Sanger sequencing technique. In some embodiments, the sequencing comprises massively parallel sequencing, and the massively parallel sequencing technique comprises next generation sequencing (NGS). In some embodiments, the sequencer comprises a next generation sequencer.
In some embodiments, one or more of the plurality of sequencing reads overlap one or more gene loci within one or more subgenomic intervals in the sample. In some embodiments, the one or more gene loci comprises between 10 and 20 loci, between 10 and 40 loci, between 10 and 60 loci, between 10 and 80 loci, between 10 and 100 loci, between 10 and 150 loci, between 10 and 200 loci, between 10 and 250 loci, between 10 and 300 loci, between 10 and 350 loci, between 10 and 400 loci, between 10 and 450 loci, between 10 and 500 loci, between 20 and 40 loci, between 20 and 60 loci, between 20 and 80 loci, between 20 and 100 loci, between 20 and 150 loci, between 20 and 200 loci, between 20 and 250 loci, between 20 and 300 loci, between 20 and 350 loci, between 20 and 400 loci, between 20 and 500 loci, between 40 and 60 loci, between 40 and 80 loci, between 40 and 100 loci, between 40 and 150 loci, between 40 and 200 loci, between 40 and 250 loci, between 40 and 300 loci, between 40 and 350 loci, between 40 and 400 loci, between 40 and 500 loci, between 60 and 80 loci, between 60 and 100 loci, between 60 and 150 loci, between 60 and 200 loci, between 60 and 250 loci, between 60 and 300 loci, between 60 and 350 loci, between 60 and 400 loci, between 60 and 500 loci, between 80 and 100 loci, between 80 and 150 loci, between 80 and 200 loci, between 80 and 250 loci, between 80 and 300 loci, between 80 and 350 loci, between 80 and 400 loci, between 80 and 500 loci, between 100 and 150 loci, between 100 and 200 loci, between 100 and 250 loci, between 100 and 300 loci, between 100 and 350 loci, between 100 and 400 loci, between 100 and 500 loci, between 150 and 200 loci, between 150 and 250 loci, between 150 and 300 loci, between 150 and 350 loci, between 150 and 400 loci, between 150 and 500 loci, between 200 and 250 loci, between 200 and 300 loci, between 200 and 350 loci, between 200 and 400 loci, between 200 and 500 loci, between 250 and 300 loci, between 250 and 350 loci, between 250 and 400 loci, between 250 and 500 loci, between 300 and 350 loci, between 300 and 400 loci, between 300 and 500 loci, between 350 and 400 loci, between 350 and 500 loci, or between 400 and 500 loci.
In some embodiments, the one or more gene loci comprise ABL1, ACVR1B, AKT1, AKT2, AKT3, ALK, ALOX12B, AMER1, APC, AR, ARAF, ARFRP1, ARID1A, ASXL1, ATM, ATR, ATRX, AURKA, AURKB, AXIN1, AXL, BAP1, BARD1, BCL2, BCL2L1, BCL2L2, BCL6, BCOR, BCORL1, BCR, BRAF, BRCA1, BRCA2, BRD4, BRIP1, BTG1, BTG2, BTK, CALR, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD22, CD274, CD70, CD74, CD79A, CD79B, CDC73, CDH1, CDK12, CDK4, CDK6, CDK8, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CEBPA, CHEK1, CHEK2, CIC, CREBBP, CRKL, CSF1R, CSF3R, CTCF, CTNNA1, CTNNB1, CUL3, CUL4A, CXCR4, CYP17A1, DAXX, DDR1, DDR2, DIS3, DNMT3A, DOT1L, EED, EGFR, EMSY (C11orf30), EP300, EPHA3, EPHB1, EPHB4, ERBB2, ERBB3, ERBB4, ERCC4, ERG, ERRFI1, ESR1, ETV4, ETV5, ETV6, EWSR1, EZH2, EZR, FAM46C, FANCA, FANCC, FANCG, FANCL, FAS, FBXW7, FGF10, FGF12, FGF14, FGF19, FGF23, FGF3, FGF4, FGF6, FGFR1, FGFR2, FGFR3, FGFR4, FH, FLCN, FLT1, FLT3, FOXL2, FUBP1, GABRA6, GATA3, GATA4, GATA6, GID4 (C17orf39), GNA11, GNA13, GNAQ, GNAS, GRM3, GSK3B, H3F3A, HDAC1, HGF, HNF1A, HRAS, HSD3B1, ID3, IDH1, IDH2, IGF1R, IKBKE, IKZF1, INPP4B, IRF2, IRF4, IRS2, JAK1, JAK2, JAK3, JUN, KDM5A, KDM5C, KDM6A, KDR, KEAP1, KEL, KIT, KLHL6, KMT2A (MLL), KMT2D (MLL2), KRAS, LTK, LYN, MAF, MAP2K1, MAP2K2, MAP2K4, MAP3K1, MAP3K13, MAPK1, MCL1, MDM2, MDM4, MED12, MEF2B, MEN1, MERTK, MET, MITF, MKNK1, MLH1, MPL, MRE11A, MSH2, MSH3, MSH6, MSTIR, MTAP, MTOR, MUTYH, MYB, MYC, MYCL, MYCN, MYD88, NBN, NF1, NF2, NFE2L2, NFKBIA, NKX2-1, NOTCH1, NOTCH2, NOTCH3, NPM1, NRAS, NT5C2, NTRK1, NTRK2, NTRK3, NUTM1, P2RY8, PALB2, PARK2, PARP1, PARP2, PARP3, PAX5, PBRM1, PDCD1, PDCDILG2, PDGFRA, PDGFRB, PDK1, PIK3C2B, PIK3C2G, PIK3CA, PIK3CB, PIK3R1, PIM1, PMS2, POLD1, POLE, PPARG, PPP2R1A, PPP2R2A, PRDM1, PRKAR1A, PRKCI, PTCH1, PTEN, PTPN11, PTPRO, QKI, RAC1, RAD21, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RB1, RBM10, REL, RET, RICTOR, RNF43, ROS1, RPTOR, RSPO2, SDC4, SDHA, SDHB, SDHC, SDHD, SETD2, SF3B1, SGK1, SLC34A2, SMAD2, SMAD4, SMARCA4, SMARCB1, SMO, SNCAIP, SOCS1, SOX2, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STK11, SUFU, SYK, TBX3, TEK, TERC, TERT, TET2, TGFBR2, TIPARP, TMPRSS2, TNFAIP3, TNFRSF14, TP53, TSC1, TSC2, TYRO3, U2AF1, VEGFA, VHL, WHSC1, WHSC1L1, WT1, XPO1, XRCC2, ZNF217, ZNF703, or any combination thereof.
In some embodiments, the one or more gene loci comprise ABL, ALK, ALL, B4GALNT1, BAFF, BCL2, BRAF, BRCA, BTK, CD19, CD20, CD3, CD30, CD319, CD38, CD52, CDK4, CDK6, CML, CRACC, CS1, CTLA-4, dMMR, EGFR, ERBB1, ERBB2, FGFR1-3, FLT3, GD2, HDAC, HER1, HER2, HR, IDH2, IL-1β, IL-6, IL-6R, JAK1, JAK2, JAK3, KIT, KRAS, MEK, MET, MSI-H, mTOR, PARP, PD-1, PDGFR, PDGFRα, PDGFRβ, PD-L1, PI3Kδ, PIGF, PTCH, RAF, RANKL, RET, ROS1, SLAMF7, VEGF, VEGFA, VEGFB, or any combination thereof.
In some embodiments, the method further comprises generating, by the one or more processors, a report indicating the predicted ALT status for the sample. In some embodiments, the method further comprises transmitting the report to a healthcare provider. In some embodiments, the report is transmitted via a computer network or a peer-to-peer connection.
Disclosed herein are computer-implemented methods for predicting alternative lengthening of telomeres (ALT) status, the methods comprising: receiving, at one or more processors, targeted sequence read data derived from a sample from a subject; processing, using the one or more processors, the targeted sequence read data to identify one or more genomic features; providing, using the one or more processors, the one or more genomic features as input to a trained model configured to predict an ALT status of the sample based on the one or more genomic features; and outputting, using the one or more processors, the predicted ALT status of the sample.
In some embodiments, the method further comprises predicting a response of the subject to treatment for a disease based on the predicted ALT status. In some embodiments, the method further comprises predicting a disease outcome for the subject based on the predicted ALT status.
In some embodiments, the one or more identified genomic features do not include telomere variant repeats (TVRs). In some embodiments, the one or more identified genomic features comprise one or more variant gene sequences, one or more copy number features, one or more telomeric features, or any combination thereof.
In some embodiments, the one or more variant gene sequences comprise variants in ATRX, DAXX, TERC, TERT, MYCN, or any combination thereof.
In some embodiments, the one or more copy number features comprise a number of breakpoints per 10 Mb of genomic sequence, a number of breakpoints per 25 Mb of genomic sequence, a number of breakpoints per 50 Mb of genomic sequence, a number of breakpoints per 100 Mb of genomic sequence, a number of breakpoints per chromosome arm for each chromosome, a magnitude of a copy number change between any two adjacent copy number segments; a length of each copy number segment; the copy number of segments; a count of contiguous oscillating copy number chains, or any combination thereof.
In some embodiments, the one or more telomeric features comprise a number of telomeric sequence reads, a ratio of number of telomeric sequence reads to a total number of targeted sequence reads with a similar GC content, a telomere content, or a combination thereof. In some embodiments, the one or more telomeric features are determined by processing off-target sequence reads using a specialized telomere sequence alignment software package. In some embodiments, the specialized telomere sequence alignment software package is TelomereHunter.
In some embodiments, the trained model comprises a trained statistical model or a trained machine learning model. In some embodiments, the trained model comprises a trained machine learning model, and the trained machine learning model comprises a trained neural network model or trained deep learning model. In some embodiments, the trained model comprises a trained machine learning model, and the trained machine learning model comprises a random forest classifier or XGBoost model.
In some embodiments, the trained model is trained using one or more training data sets comprising paired genomic feature data and ALT status data for samples from a plurality of subjects.
In some embodiments, the predicted ALT status comprises a prediction of ALT-positive or ALT-negative status. In some embodiments, the predicted ALT status comprises a prediction of ALT-positive, ALT-negative, or ALT-indeterminate status.
In some embodiments, the sample is a cancer specimen, and the model is trained using a training data set comprising true positive samples that are defined by a presence of a genomic feature that results in loss of an ATRX or DAXX gene. In some embodiments, the sample is a cancer specimen, and the model is trained using a training data set comprising true positive samples that are defined by a presence of a variant ATRX or DAXX gene sequence that results in loss of gene function.
In some embodiments, the sample is a cancer specimen, and the cancer specimen comprises a liposarcoma, leiomyosarcoma, uterine sarcoma, or neuroblastoma specimen. In some embodiments, the cancer specimen is a neuroblastoma specimen, and wherein a prediction of ALT-positive status indicates an increased probability of survival for the subject. In some embodiments, the cancer specimen is a liposarcoma, leiomyosarcoma, uterine sarcoma specimen, and a prediction of ALT-positive status indicates a decreased probability of survival for the subject.
In some embodiments, the sample is a neuroblastoma sample, and the model is trained using one or more training data sets comprising true negative samples that are defined by a presence of wild-type ATRX and DAXX genes and a variant in a MYCN gene sequence.
In some embodiments, the sample is a tissue sample. In some embodiments, the sample is a liquid biopsy sample. In some embodiments, the liquid biopsy sample comprises blood, plasma, cerebrospinal fluid, sputum, stool, urine, or saliva.
In some embodiments, the prediction of ALT status is used to diagnose or confirm a diagnosis of disease in the subject. In some embodiments, the disease is cancer. In some embodiments, the cancer is a liposarcoma, leiomyosarcoma, uterine sarcoma, or neuroblastoma.
In some embodiments, the method further comprises selecting an anti-cancer therapy to administer to the subject based on the prediction of ALT status. In some embodiments, the method further comprises determining an effective amount of an anti-cancer therapy to administer to the subject based on the prediction of ALT status. In some embodiments, the method further comprises administering the anti-cancer therapy to the subject based on the prediction of ALT status. In some embodiments, the anti-cancer therapy comprises chemotherapy, radiation therapy, immunotherapy, a targeted therapy, or surgery.
Disclosed herein are methods for diagnosing a disease, the methods comprising: diagnosing that a subject has the disease based on a determination of ALT status for a sample from the subject, wherein ALT status is determined according to any of the methods described herein.
Disclosed herein are methods of selecting an anti-cancer therapy, the methods comprising: responsive to determining an ALT status for a sample from a subject, selecting an anti-cancer therapy for the subject, wherein ALT status is determined according to any of the methods described herein.
Disclosed herein are methods of treating a cancer in a subject, comprising: responsive to determining an ALT status for a sample from the subject, administering an effective amount of an anti-cancer therapy to the subject, wherein ALT status is determined according to any of the methods described herein.
Disclosed herein are methods for monitoring cancer progression or recurrence in a subject, the method comprising: determining a first ALT stats in a first sample obtained from the subject at a first time point according to any of the methods described herein; determining a second ALT status in a second sample obtained from the subject at a second time point; and comparing the first ALT status to the second ALT status, thereby monitoring the cancer progression or recurrence. In some embodiments, the second ALT status for the second sample is determined according to any of the methods described herein. In some embodiments, the method further comprises selecting an anti-cancer therapy for the subject in response to the cancer progression. In some embodiments, the method further comprises administering an anti-cancer therapy to the subject in response to the cancer progression. In some embodiments, the method further comprises adjusting an anti-cancer therapy for the subject in response to the cancer progression. In some embodiments, the method further comprises adjusting a dosage of the anti-cancer therapy or selecting a different anti-cancer therapy in response to the cancer progression. In some embodiments, the method further comprises administering the adjusted anti-cancer therapy to the subject. In some embodiments, the first time point is before the subject has been administered an anti-cancer therapy, and the second time point is after the subject has been administered the anti-cancer therapy.
In some embodiments, the subject has a cancer, is at risk of having a cancer, is being routine tested for cancer, or is suspected of having a cancer. In some embodiments, the cancer is a solid tumor. In some embodiments, the cancer is a hematological cancer. In some embodiments, the anti-cancer therapy comprises chemotherapy, radiation therapy, immunotherapy, a targeted therapy, or surgery.
In some embodiments, the method further comprises determining, identifying, or applying the predicted ALT status for the sample as a diagnostic value associated with the sample.
In some embodiments, the method further comprises generating a genomic profile for the subject based on the determination of ALT status. In some embodiments, the genomic profile for the subject further comprises results from a comprehensive genomic profiling (CGP) test, a gene expression profiling test, a cancer hotspot panel test, a DNA methylation test, a DNA fragmentation test, an RNA fragmentation test, or any combination thereof. In some embodiments, the genomic profile for the subject further comprises results from a nucleic acid sequencing-based test. In some embodiments, the method further comprises selecting an anti-cancer therapy, administering an anti-cancer therapy, or applying an anti-cancer therapy to the subject based on the generated genomic profile.
Also disclosed herein are systems comprising: one or more processors; and a memory communicatively coupled to the one or more processors and configured to store instructions that, when executed by the one or more processors, cause the system to: receive targeted sequence read data derived from a sample from a subject; process the targeted sequence read data to identify one or more genomic features; provide the one or more genomic features as input to a trained model configured to predict an ALT status of the sample based on the one or more genomic features; and output the predicted ALT status of the sample. In some embodiments, the system further comprises instructions for predicting a response of the subject to treatment for a disease based on the predicted ALT status. In some embodiments, the system further comprises instructions for predicting a disease outcome for the subject based on the predicted ALT status. In some embodiments, the one or more identified genomic features do not include telomere variant repeats (TVRs).
Disclosed herein are non-transitory computer-readable storage media storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of a system, cause the system to: receive targeted sequence read data derived from a sample from a subject; process the targeted sequence read data to identify one or more genomic features; provide the one or more genomic features as input to a trained model configured to predict an ALT status of the sample based on the one or more genomic features; and output the predicted ALT status of the sample. In some embodiments, the non-transitory computer-readable storage medium further comprises instructions for predicting a response of the subject to treatment for a disease based on the predicted ALT status. In some embodiments, the non-transitory computer-readable storage medium further comprises instructions for predicting a disease outcome for the subject based on the predicted ALT status. In some embodiments, the one or more identified genomic features do not include telomere variant repeats (TVRs).
It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference in its entirety. In the event of a conflict between a term herein and a term in an incorporated reference, the term herein controls.
Various aspects of the disclosed methods, devices, and systems are set forth with particularity in the appended claims. A better understanding of the features and advantages of the disclosed methods, devices, and systems will be obtained by reference to the following detailed description of illustrative embodiments and the accompanying drawings, of which:
Methods and systems for the determination of ALT status in samples collected from subjects (e.g., cancer patients) that are in need of treatment are described. The disclosed methods utilize statistical and/or machine learning techniques to analyze genomic features (e.g., variant gene sequences, copy number features, telomeric features, or a combination thereof) identified in nucleic acid sequencing data (e.g., targeted sequencing data) and predict ALT status. In contrast to prior art sequencing-based methods, the methods described herein are not based on detection of telomere variant repeats (TVRs). In addition to predicting ALT status, the disclosed methods may, in some instances, further comprise predicting a response of the subject to a treatment for a disease (e.g., cancer) and/or predicting a disease outcome for the subject based on the predicted ALT status. The disclosed methods also have the advantage of being compatible with genomic profiling pipelines currently used for sequencing-based disease diagnosis and prognosis.
In some instances, for example, methods are described that comprise receiving targeted sequence read data derived from a sample from a subject; processing the targeted sequence read data to identify one or more genomic features; providing the one or more genomic features as input to a trained model configured to predict an ALT status of the sample based on the one or more genomic features; and outputting the predicted ALT status of the sample.
In some instances, the methods further comprise predicting a response of the subject to treatment for a disease based on the predicted ALT status.
In some instances, the methods further comprising predicting a disease outcome for the subject based on the predicted ALT status.
In some instances, the one or more identified genomic features do not include telomere variant repeats (TVRs).
Unless otherwise defined, all of the technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art in the field to which this disclosure belongs.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Any reference to “or” herein is intended to encompass “and/or” unless otherwise stated.
“About” and “approximately” shall generally mean an acceptable degree of error for the quantity measured given the nature or precision of the measurements. Exemplary degrees of error are within 20 percent (%), typically, within 10%, and more typically, within 5% of a given value or range of values.
As used herein, the terms “comprising” (and any form or variant of comprising, such as “comprise” and “comprises”), “having” (and any form or variant of having, such as “have” and “has”), “including” (and any form or variant of including, such as “includes” and “include”), or “containing” (and any form or variant of containing, such as “contains” and “contain”), are inclusive or open-ended and do not exclude additional, un-recited additives, components, integers, elements, or method steps.
As used herein, the terms “individual,” “patient,” or “subject” are used interchangeably and refer to any single animal, e.g., a mammal (including such non-human animals as, for example, dogs, cats, horses, rabbits, zoo animals, cows, pigs, sheep, and non-human primates) for which treatment is desired. In particular embodiments, the individual, patient, or subject herein is a human.
The terms “cancer” and “tumor” are used interchangeably herein. These terms refer to the presence of cells possessing characteristics typical of cancer-causing cells, such as uncontrolled proliferation, immortality, metastatic potential, rapid growth and proliferation rate, and certain characteristic morphological features. Cancer cells are often in the form of a tumor, but such cells can exist alone within an animal, or can be a non-tumorigenic cancer cell, such as a leukemia cell. These terms include a solid tumor, a soft tissue tumor, or a metastatic lesion. As used herein, the term “cancer” includes premalignant, as well as malignant cancers.
As used herein, “treatment” (and grammatical variations thereof such as “treat” or “treating”) refers to clinical intervention (e.g., administration of an anti-cancer agent or anti-cancer therapy) in an attempt to alter the natural course of the individual being treated, and can be performed either for prophylaxis or during the course of clinical pathology. Desirable effects of treatment include, but are not limited to, preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing metastasis, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis.
As used herein, the term “subgenomic interval” (or “subgenomic sequence interval”) refers to a portion of a genomic sequence.
As used herein, the term “subject interval” refers to a subgenomic interval or an expressed subgenomic interval (e.g., the transcribed sequence of a subgenomic interval).
As used herein, the terms “variant sequence” or “variant” are used interchangeably and refer to a modified nucleic acid sequence relative to a corresponding “normal” or “wild-type” sequence. In some instances, a variant sequence may be a “short variant sequence” (or “short variant”), i.e., a variant sequence of less than about 50 base pairs in length.
The terms “allele frequency” and “allele fraction” are used interchangeably herein and refer to the fraction of sequence reads corresponding to a particular allele relative to the total number of sequence reads for a genomic locus.
The terms “variant allele frequency” and “variant allele fraction” are used interchangeably herein and refer to the fraction of sequence reads corresponding to a particular variant allele relative to the total number of sequence reads for a genomic locus.
The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.
The disclosed methods comprise training a model (e.g., a statistical model or a machine learning model) to predict whether or not the alternative lengthening of telomeres (ALT) pathway has been activated in patient samples based on a plurality of genomic features, e.g., copy-number features and telomeric features.
Typically, the trained model will need to be tailored for a specific disease type. For neuroblastomas, for example, true positive samples may be defined by detection of a mutation in the ATRX or DAXX genes, where alterations have been shown to be associated with ALT-positive status. For neuroblastomas, true negative samples are defined by being wildtype (WT) in ATRX and DAXX but altered in the MycN gene, which is known to be mutually exclusive with ALT-positive status (Hartlieb et al, 2022). The prediction accuracy of the trained model will be assessed by comparing the model's predictions to results obtained using the gold standard assay for ALT prediction, i.e., the C-circle assay referenced above.
The disclosed methods have the potential to improve sequencing-based prediction of ALT-positive samples from individuals diagnosed with or suspected of having a disease. As mentioned, mutations in ATRX and DAXX are currently used as a surrogate for detection of ALT-positive status. However, many ALT-positive tumors lack mutations in the ATRX or DAXX genes, thus making these mutations an insufficient basis for building an ALT status classifier that accurately determines ALT status.
The disclosed methods comprise training a model using genomic features identified in samples processed using a targeted sequencing panel. Non-limiting examples of the genomic features that may be used to train an ALT status classifier include, but are not limited to, mutations in the ATRX, DAXX, TERC, TERT, and MYCN genes, copy-number features to assess a degree of DNA damage in the sample, and telomeric features (including telomeric content).
At step 102 in
In some instances, the sequence read is derived from a plurality of sequence reads that map to a plurality of genes or genomic loci. In some instances, for example, the plurality of genes or genomic loci may comprise at least 4, at least 6, at least 8, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at least 400, at least 500, or more than 500 genes or genomic loci.
In some instances, the sequence read data may be derived by sequencing nucleic acids extracted from the sample using any of a variety of techniques known to those of skill including, but not limited to, next generation sequencing techniques (e.g., whole genome sequencing (WGS), whole exome sequencing (WES), and targeted sequencing).
In some instances, the sample may comprise a tissue biopsy sample, a liquid biopsy sample, or a normal control. In some instances, the sample may be a liquid biopsy sample and may comprise, e.g., blood, plasma, cerebrospinal fluid, sputum, stool, urine, or saliva. In some instances, the sample may be a liquid biopsy sample and may comprise circulating tumor cells (CTCs). In some instances, the sample may be a liquid biopsy sample and may comprise cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), or any combination thereof.
In some instances, the sample may be a cancer specimen. In some instances, the cancer specimen may comprise a liposarcoma, leiomyosarcoma, uterine sarcoma, or neuroblastoma specimen.
At step 104 in
Methods for identifying variant sequences based on, e.g., a comparison of sequence read data to a reference genome sequence, are known in the art (see, e.g., US Patent Application Publication No. 2023/0030656, which is incorporated herein by reference in its entirety).
In some instances, the one or more variant gene sequences may comprise variants in ATRX, DAXX, TERC, TERT, MYCN, or any combination thereof.
Methods for identifying copy numbers are known in the art. In some instances, for example, methods for estimating copy number may be based on, e.g., log-ratio coverage data and allele frequencies for several thousand heterozygous single nucleotide polymorphisms (SNPs). This experimental data is then segmented and modeled to estimate the overall tumor purity and tumor ploidy as well as to determine the per segment copy number and minor allele frequencies (MAF). The log-ratio and MAF data may then be fitted by a statistical copy number model which predicts genome-wide copy number for each segment. Due to over-parameterization, the experimental data can sometimes be described by more than one set of statistical model parameter values (e.g., tumor purity, tumor ploidy, and segment copy number), which can lead to unstable predictions of copy number.
More recently, methods for determining copy number based on, e.g., a determination of sequencing depth signals and statistical moments calculated therefrom, are known in the art (see, e.g., PCT International Patent Application Publication No. WO 2023/081639, which is incorporated herein by reference in its entirety). These methods are based on the method of moments to generate a system of nonlinear equations that can be solved to determine unique values for tumor purity and tumor ploidy, which in turn can be used to determine segment copy number and minor allele frequency (MAF). The methods have higher precision, accuracy, and computational efficiency as compared to previous methods due to the stability and reliability of the copy number estimation, and thus provide an advancement over previous methods for estimating copy number and identifying copy number alterations.
In some instances, for example, determining a copy number of a target genomic segment in a genome may comprise: determining a plurality of sequencing depth signals for a plurality of genomic segments in the genome of a sample, where a sequencing depth signal is associated with the number of sequence reads aligned to a gene locus in the genomic segment, and the plurality of genomic segments comprises the target genomic segment; determining for the plurality of genomic segments a first statistical moment, a second statistical moment, and a third statistical moment for the plurality of sequencing depth signals; determining a tumor purity and a tumor ploidy for the sample based on the first statistical moment, the second statistical moment, and the third statistical moment; and determining the copy number of the target genomic segment using the plurality of sequencing depth signals for the target genomic segment, the tumor purity, and the tumor ploidy, and, in some instances, generating a genomic profile for the sample based on the determined copy number.
In some instances, the plurality of sequencing depth signals may be normalized using a process-matched control.
In some instances, the determination of the copy number of a target genomic segment may comprise segmenting the genome to generate the plurality of genomic segments. For example, the genome may be segmented based on the plurality of sequencing depth signals. In some instance, the genome may be segmented using a circular binary segmentation (CBS) method.
In some instances, determining the tumor purity and the tumor ploidy may comprise solving a set of nonlinear equations that relate the first, second, and third statistical moments for the plurality of sequencing depth signals to the tumor purity, ρ, and tumor ploidy, ψ, for the sample.
Methods for identifying copy number features and copy number signatures based on, e.g., combinations of on-target and/or off-target sequence read data derived from a targeted sequencing method, are known in the art (see, e.g., PCT International Patent Application No.
PCT/US2023/075910, which is incorporated by reference herein in its entirety). Off-target sequence reads may arise in a targeted sequence read data set due to, for example, the inefficiencies of the enrichment strategies used for performing the targeted sequencing. In some instances, the off-target sequence reads may comprise an average sequencing coverage of less than 0.5×, 0.4×, 0.3×, 0.2×, or 0.1×.
In some instances, the one or more copy number features (e.g., characteristic features of a genome that has undergone copy number alterations) may comprise features that address whole genome data, targeted genome data, centromeric data, telomeric data, or any combination thereof.
In some instances, the one or more copy number features may comprise a number of breakpoints per 10 Mb of genomic sequence, a number of breakpoints per 25 Mb of genomic sequence, a number of breakpoints per 50 Mb of genomic sequence, a number of breakpoints per 100 Mb of genomic sequence, a number of breakpoints per chromosome arm for each chromosome, a magnitude of a copy number change between any two adjacent copy number segments; a length of each copy number segment; the copy number of segments; a count of contiguous oscillating copy number chains, or any combination thereof.
In some instances, the one or more copy number features may include, but are not limited to, bp10MB1, bp10MB2, bp10MB3, bp10MB4, bp10MB5, bp10MB6, bp100MB1, bp100MB2, bp100MB3, bp100MB4, bp100MB5, bp100MB6, bp50MB1, bp50MB2, bp50MB3, bp50MB4, bp50MB5, bp50MB6, bp25MB1, bp25MB2, bp25MB3, bp25MB4, bp25MB5, bp25MB6, segsize1, segsize2, segsize3, segsize4, segsize5, segsize6, segsize7, segsize8, segsize9, segsize 10, segsize11, segsize 12, segsize 13, osCN1, osCN2, osCN3, osCN4, osCN5, osCN6, bpchrarm 1, bpchrarm2, bpchrarm3, copynumber1, copynumber2, copynumber3, copynumber4, copynumber5, copynumber6, copynumber7, copynumber8, copynumber9, copynumber10, copynumber11, copynumber 12, copynumber13, copynumber 14, copynumber15, changepoint1, changepoint2, changepoint3, changepoint4, changepoint5, changepoint6, changepoint7, changepoint8, changepoint9, changepoint10, changepoint11, changepoint12, changepoint13, changepoint14, changepoint15, bp10MB1_centromeric, bp10MB2_centromeric, bp10MB3_centromeric, bp10MB4_centromeric, bp10MB5_centromeric, bp10MB6_centromeric, bp 100MB1_centromeric, bp100MB2_centromeric, bp100MB3_centromeric, bp100MB4_centromeric, bp100MB5_centromeric, bp100MB6_centromeric, bp50MB1_centromeric, bp50MB2_centromeric, bp50MB3_centromeric, bp50MB4_centromeric, bp50MB5_centromeric, bp50MB6_centromeric, bp25MB1_centromeric, bp25MB2_centromeric, bp25MB3_centromeric, bp25MB4_centromeric, bp25MB5_centromeric, bp25MB6_centromeric, segsize1_centromeric, segsize2_centromeric, segsize3_centromeric, segsize4_centromeric, segsize5_centromeric, segsize6_centromeric, segsize7_centromeric, segsize8_centromeric, segsize9_centromeric, segsize10_centromeric, segsize11_centromeric, segsize12_centromeric, segsize13_centromeric, segsize14_centromeric, osCN1_centromeric, osCN2_centromeric, bpchrarm1_centromeric, bpchrarm2_centromeric, bpchrarm3_centromeric, bpchrarm4_centromeric, bpchrarm5_centromeric, bpchrarm6_centromeric, copynumber 1_centromeric, copynumber2_centromeric, copynumber3_centromeric, copynumber4_centromeric, copynumber5_centromeric, copynumber6_centromeric, copynumber7_centromeric, copynumber8_centromeric, copynumber9_centromeric, copynumber10_centromeric, copynumber11_centromeric, copynumber 12_centromeric, copynumber13_centromeric, copynumber14_centromeric, copynumber15_centromeric, changepoint1_centromeric, changepoint2_centromeric, changepoint3_centromeric, changepoint4_centromeric, changepoint5_centromeric, changepoint6_centromeric, changepoint7_centromeric, changepoint8_centromeric, changepoint9_centromeric, changepoint10_centromeric, changepoint11_centromeric, changepoint12_centromeric, changepoint13_centromeric, changepoint14_centromeric, changepoint15_centromeric, bp10MB1_telomeric, bp10MB2_telomeric, bp10MB3_telomeric, bp10MB4_telomeric, bp10MB5_telomeric, bp10MB6_telomeric, bp100MB1_telomeric, bp100MB2_telomeric, bp100MB3_telomeric, bp100MB4_telomeric, bp100MB5_telomeric, bp100MB6_telomeric, bp50MB1_telomeric, bp50MB2_telomeric, bp50MB3_telomeric, bp50MB4_telomeric, bp50MB5_telomeric, bp50MB6_telomeric, bp25MB1_telomeric, bp25MB2_telomeric, bp25MB3_telomeric, bp25MB4_telomeric, bp25MB5_telomeric, bp25MB6_telomeric, segsize1_telomeric, segsize2_telomeric, segsize3_telomeric, segsize4_telomeric, segsize5_telomeric, segsize6_telomeric, segsize7_telomeric, segsize8_telomeric, segsize9_telomeric, segsize10_telomeric, segsize11_telomeric, segsize12_telomeric, segsize13_telomeric, segsize14_telomeric, segsize15_telomeric, osCN1_telomeric, osCN2_telomeric, bpchrarm1_telomeric, bpchrarm2_telomeric, bpchrarm3_telomeric, bpchrarm4_telomeric, bpchrarm5_telomeric, bpchrarm6_telomeric, copynumber1_telomeric, copynumber2_telomeric, copynumber3_telomeric, copynumber4_telomeric, copynumber5_telomeric, copynumber6_telomeric, copynumber7_telomeric, copynumber8_telomeric, copynumber9_telomeric, copynumber10_telomeric, copynumber11_telomeric, copynumber12_telomeric, copynumber13_telomeric, copynumber14_telomeric, copynumber15_telomeric, changepoint1_telomeric, changepoint2_telomeric, changepoint3_telomeric, changepoint4_telomeric, changepoint5_telomeric, changepoint6_telomeric, changepoint7_telomeric, changepoint8_telomeric, changepoint9_telomeric, changepoint10_telomeric, changepoint11_telomeric, changepoint12_telomeric, or any combination thereof.
In some instances, the one or more telomeric features (e.g., characteristic features of the telomere regions of the genome that comprise repetitive nucleotide sequences) may comprise a number of telomeric sequence reads, a ratio of number of telomeric sequence reads to a total number of targeted sequence reads with a similar GC content, a telomere content, or a combination thereof. In some instances, the one or more telomeric features do not include telomere variant repeats (TVRs).
In some instances, the one or more telomeric features are determined by processing off-target sequence reads using a specialized telomere sequence alignment software package. In some instances, the specialized telomere sequence alignment software package is TelomereHunter (Feuerback et al. (2019), “TelomereHunter—in silico estimation of telomere content and composition from cancer genomes”, BMC Bioinformatics 20:272).
At step 106 in FIG. 1, the one or more genomic features are provided as input to a trained model (e.g., a trained statistical model or a trained machine learning model) configured to predict an ALT status of the sample based on the one or more genomic features. In some instances, the trained model may comprise, for example, a random forest classifier or a logistic regression model.
In some instances, the trained model may comprise a trained machine learning model, e.g., a trained neural network model or trained deep learning model. Any of a variety of machine learning approaches & algorithms (where a machine learning model, as referred to herein, comprises a trained machine learning algorithm) may be used in implementing the disclosed methods. For example, the machine learning model may comprise a supervised learning model (i.e., a model trained using labeled sets of training data), an unsupervised learning model (i.e., a model trained using unlabeled sets of training data), a semi-supervised learning model (i.e., a model trained using a combination of labeled and unlabeled training data), a deep learning model (i.e., a model inspired by the structure and function of the human brain comprising many layers of coupled “nodes” that may be trained in a supervised, unsupervised, or semi-supervised manner), or any combination thereof. In some instances, one or more machine learning models (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 machine learning models) may be utilized to implement the disclosed methods.
Examples of machine learning algorithms that may be employed include, but are not limited to, artificial neural networks, deep neural networks, deep recurrent neural networks, deep convolutional neural networks, Gaussian process regression algorithms, logistical model tree algorithms, random forest algorithms, fuzzy classifier algorithms, decision tree algorithms, hierarchical clustering algorithms, k-means clustering algorithms, fuzzy clustering algorithms, deep Boltzmann machine learning algorithms, or any combination thereof.
In some instances, the trained machine learning model may comprise, e.g., a random forest classifier. Random forests are ensemble machine learning models used for classification, regression and other tasks that are based on constructing a plurality of decision trees (models that predict, e.g., a classification label, by evaluating a tree of if-then-else and/or true/false feature questions, and that comprise estimating the minimum number of questions required to assess the probability of making a correct decision), where each tree depends on the values of a random input vector sampled independently and with the same distribution from a data set for all trees in the forest (see, e.g., Ho (1995), “Random Decision Forests”, Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, 14-16 Aug. 1995, pp. 278-282; and Breiman (2001), “Random Forests”, Machine Learning 45:5-32. For classification tasks, the output of the random forest is the class selected by most trees. For regression tasks, the mean or average prediction of the individual trees is returned.
In some instances, the trained machine learning model may comprise, e.g., an Extreme Gradient Boosting (XGBoost) model. XGBoost is a supervised machine learning algorithm that uses an ensemble of decision trees and gradient boosting to make predictions. “Boosting” refers to an approach in which the performance of a single weak model is improved by combining it with a number of other weak models to generate a collective model exhibiting improved prediction performance. Gradient boosting is an extension of boosting where the process of additively generating weak models during training is formalized using a gradient descent algorithm to minimize prediction error relative to an objective function.
In some instances, the trained model may be trained using one or more training data sets (e.g., 1, 2, 3, 4, 5, or more than 5 training data sets) comprising paired genomic feature data and ALT status data for samples from a plurality (or cohort) of subjects.
In some instances, for example, the test samples may be cancer specimens, and the model may be trained using one or more training data sets comprising true positive samples from the cohort that are defined by a presence of a genomic feature that results in loss of an ATRX or DAXX gene. In some instances, the test samples may be cancer specimens, and the model may be trained using one or more training data sets comprising true positive samples from the cohort that are defined by a presence of a variant in the ATRX or DAXX gene sequence that results in loss of gene function.
In some instances, the sample (e.g., a test sample) may be a neuroblastoma sample, and the model may be trained using one or more training data sets comprising true negative samples from the cohort that are defined by a presence of wild-type ATRX and DAXX genes and a variant in the MYCN gene sequence.
At step 108 in
In some instances, the output may further comprise predicting a response of the subject to treatment for a disease based on the predicted ALT status. In some instances, the output may further comprise predicting a disease outcome for the subject based on the predicted ALT status.
In some instances, the predicted ALT status may comprise a prediction of ALT-positive or ALT-negative status. In some instances, the predicted ALT status may comprise a prediction of ALT-positive, ALT-negative, or ALT-indeterminate status.
In some instances, the sample (e.g., the test sample) may comprise a neuroblastoma specimen, and a prediction of ALT-positive status may indicate an increased probability of survival for the subject.
In some instances, the sample (e.g., the test sample) may comprise a liposarcoma, leiomyosarcoma, uterine sarcoma specimen, and a prediction of ALT-positive status may indicate a decreased probability of survival for the subject.
In some instances, the disclosed methods may comprise detection of variants in the ABL1, ACVR1B, AKT1, AKT2, AKT3, ALK, ALOX12B, AMER1, APC, AR, ARAF, ARFRP1, ARID1A, ASXL1, ATM, ATR, ATRX, AURKA, AURKB, AXIN1, AXL, BAP1, BARD1, BCL2, BCL2L1, BCL2L2, BCL6, BCOR, BCORL1, BCR, BRAF, BRCA1, BRCA2, BRD4, BRIP1, BTG1, BTG2, BTK, CALR, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD22, CD274, CD70, CD74, CD79A, CD79B, CDC73, CDH1, CDK12, CDK4, CDK6, CDK8, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CEBPA, CHEK1, CHEK2, CIC, CREBBP, CRKL, CSFIR, CSF3R, CTCF, CTNNA1, CTNNB1, CUL3, CUL4A, CXCR4, CYP17A1, DAXX, DDR1, DDR2, DIS3, DNMT3A, DOTIL, EED, EGFR, EMSY (C11orf30), EP300, EPHA3, EPHB1, EPHB4, ERBB2, ERBB3, ERBB4, ERCC4, ERG, ERRFI1, ESR1, ETV4, ETV5, ETV6, EWSR1, EZH2, EZR, FAM46C, FANCA, FANCC, FANCG, FANCL, FAS, FBXW7, FGF10, FGF12, FGF14, FGF19, FGF23, FGF3, FGF4, FGF6, FGFR1, FGFR2, FGFR3, FGFR4, FH, FLCN, FLT1, FLT3, FOXL2, FUBP1, GABRA6, GATA3, GATA4, GATA6, GID4 (C17orf39), GNA11, GNA13, GNAQ, GNAS, GRM3, GSK3B, H3F3A, HDAC1, HGF, HNF1A, HRAS, HSD3B1, ID3, IDH1, IDH2, IGF1R, IKBKE, IKZF1, INPP4B, IRF2, IRF4, IRS2, JAK1, JAK2, JAK3, JUN, KDM5A, KDM5C, KDM6A, KDR, KEAP1, KEL, KIT, KLHL6, KMT2A (MLL), KMT2D (MLL2), KRAS, LTK, LYN, MAF, MAP2K1, MAP2K2, MAP2K4, MAP3K1, MAP3K13, MAPK1, MCL1, MDM2, MDM4, MED12, MEF2B, MEN1, MERTK, MET, MITF, MKNK1, MLH1, MPL, MRE11A, MSH2, MSH3, MSH6, MST1R, MTAP, MTOR, MUTYH, MYB, MYC, MYCL, MYCN, MYD88, NBN, NF1, NF2, NFE2L2, NFKBIA, NKX2-1, NOTCH1, NOTCH2, NOTCH3, NPM1, NRAS, NT5C2, NTRK1, NTRK2, NTRK3, NUTM1, P2RY8, PALB2, PARK2, PARP1, PARP2, PARP3, PAX5, PBRM1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDK1, PIK3C2B, PIK3C2G, PIK3CA, PIK3CB, PIK3R1, PIM1, PMS2, POLD1, POLE, PPARG, PPP2R1A, PPP2R2A, PRDM1, PRKAR1A, PRKCI, PTCH1, PTEN, PTPN11, PTPRO, QKI, RAC1, RAD21, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RB1, RBM10, REL, RET, RICTOR, RNF43, ROS1, RPTOR, RSPO2, SDC4, SDHA, SDHB, SDHC, SDHD, SETD2, SF3B1, SGK1, SLC34A2, SMAD2, SMAD4, SMARCA4, SMARCB1, SMO, SNCAIP, SOCS1, SOX2, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STK11, SUFU, SYK, TBX3, TEK, TERC, TERT, TET2, TGFBR2, TIPARP, TMPRSS2, TNFAIP3, TNFRSF14, TP53, TSC1, TSC2, TYRO3, U2AF1, VEGFA, VHL, WHSC1, WHSC1L1, WT1, XPO1, XRCC2, ZNF217, or ZNF703 gene locus, or any combination thereof.
In some instances, the disclosed methods may comprise detection of variants in the ABL, ALK, ALL, B4GALNT1, BAFF, BCL2, BRAF, BRCA, BTK, CD19, CD20, CD3, CD30, CD319, CD38, CD52, CDK4, CDK6, CML, CRACC, CS1, CTLA-4, dMMR, EGFR, ERBB1, ERBB2, FGFR1-3, FLT3, GD2, HDAC, HER1, HER2, HR, IDH2, IL-1B, IL-6, IL-6R, JAK1, JAK2, JAK3, KIT, KRAS, MEK, MET, MSI-H, mTOR, PARP, PD-1, PDGFR, PDGFRα, PDGFRβ, PD-L1, PI3Kδ, PIGF, PTCH, RAF, RANKL, RET, ROS1, SLAMF7, VEGF, VEGFA, or VEGFB gene locus, or any combination thereof.
In some instances, the disclosed methods may further comprise one or more of the steps of: (i) obtaining the sample from the subject (e.g., a subject suspected of having or determined to have cancer), (ii) extracting nucleic acid molecules (e.g., a mixture of tumor nucleic acid molecules and non-tumor nucleic acid molecules) from the sample, (iii) ligating one or more adapters to the nucleic acid molecules extracted from the sample (e.g., one or more amplification primers, flow cell adaptor sequences, substrate adapter sequences, or sample index sequences), (iv) performing a methylation conversion reaction to convert, e.g., non-methylated cytosine to uracil, (v) amplifying the nucleic acid molecules (e.g., using a polymerase chain reaction (PCR) amplification technique, a non-PCR amplification technique, or an isothermal amplification technique), (vi) capturing nucleic acid molecules from the amplified nucleic acid molecules (e.g., by hybridization to one or more bait molecules, where the bait molecules each comprise one or more nucleic acid molecules that each comprising a region that is complementary to a region of a captured nucleic acid molecule), (vii) sequencing the nucleic acid molecules extracted from the sample (or library proxies derived therefrom) using, e.g., a next-generation (massively parallel) sequencing technique, a whole genome sequencing (WGS) technique, a whole exome sequencing technique, a targeted sequencing technique, a direct sequencing technique, or a Sanger sequencing technique) using, e.g., a next-generation (massively parallel) sequencer, and (viii) generating, displaying, transmitting, and/or delivering a report (e.g., an electronic, web-based, or paper report) to the subject (or patient), a caregiver, a healthcare provider, a physician, an oncologist, an electronic medical record system, a hospital, a clinic, a third-party payer, an insurance company, or a government office. In some instances, the report comprises output from the methods described herein. In some instances, all or a portion of the report may be displayed in the graphical user interface of an online or web-based healthcare portal. In some instances, the report is transmitted via a computer network or peer-to-peer connection.
The disclosed methods may be used with any of a variety of samples. For example, in some instances, the sample may comprise a tissue biopsy sample, a liquid biopsy sample, or a normal control. In some instances, the sample may be a liquid biopsy sample and may comprise blood, plasma, cerebrospinal fluid, sputum, stool, urine, or saliva. In some instances, the sample may be a liquid biopsy sample and may comprise circulating tumor cells (CTCs). In some instances, the sample may be a liquid biopsy sample and may comprise cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), or any combination thereof.
In some instances, the nucleic acid molecules extracted from a sample may comprise a mixture of tumor nucleic acid molecules and non-tumor nucleic acid molecules. In some instances, the tumor nucleic acid molecules may be derived from a tumor portion of a heterogeneous tissue biopsy sample, and the non-tumor nucleic acid molecules may be derived from a normal portion of the heterogeneous tissue biopsy sample. In some instances, the sample may comprise a liquid biopsy sample, and the tumor nucleic acid molecules may be derived from a circulating tumor DNA (ctDNA) fraction of the liquid biopsy sample while the non-tumor nucleic acid molecules may be derived from a non-tumor, cell-free DNA (cfDNA) fraction of the liquid biopsy sample.
In some instances, the disclosed methods for predicting ALT status may be used to diagnose (or as part of a diagnosis of) the presence of disease or other condition (e.g., cancer, genetic disorders (such as Down Syndrome and Fragile X), neurological disorders, or any other disease type where detection of variants, e.g., copy number alternations, are relevant to diagnosing, treating, or predicting said disease) in a subject (e.g., a patient). In some instances, the disclosed methods may be applicable to diagnosis of any of a variety of cancers as described elsewhere herein.
In some instances, the disclosed methods for predicting ALT status may be used to select a subject (e.g., a patient) for a clinical trial, and may accelerate the development of targeted therapies and improve the healthcare outcomes for treatment decisions.
In some instances, the disclosed methods for predicting ALT status may be used to select an appropriate therapy or treatment (e.g., an anti-cancer therapy or anti-cancer treatment) for a subject. In some instances, for example, the anti-cancer therapy or treatment may comprise use of a poly (ADP-ribose) polymerase inhibitor (PARPi), a platinum compound, chemotherapy, radiation therapy, a targeted therapy (e.g., immunotherapy), surgery, or any combination thereof.
In some instances, the targeted therapy (or anti-cancer target therapy) may comprise abemaciclib (Verzenio), abiraterone acetate (Zytiga), acalabrutinib (Calquence), ado-trastuzumab emtansine (Kadcyla), afatinib dimaleate (Gilotrif), aldesleukin (Proleukin), alectinib (Alecensa), alemtuzumab (Campath), alitretinoin (Panretin), alpelisib (Piqray), amivantamab-vmjw (Rybrevant), anastrozole (Arimidex), apalutamide (Erleada), asciminib hydrochloride (Scemblix), atezolizumab (Tecentriq), avapritinib (Ayvakit), avelumab (Bavencio), axicabtagene ciloleucel (Yescarta), axitinib (Inlyta), belantamab mafodotin-blmf (Blenrep), belimumab (Benlysta), belinostat (Beleodaq), belzutifan (Welireg), bevacizumab (Avastin), bexarotene (Targretin), binimetinib (Mektovi), blinatumomab (Blincyto), bortezomib (Velcade), bosutinib (Bosulif), brentuximab vedotin (Adcetris), brexucabtagene autoleucel (Tecartus), brigatinib (Alunbrig), cabazitaxel (Jevtana), cabozantinib (Cabometyx), cabozantinib (Cabometyx, Cometriq), canakinumab (Ilaris), capmatinib hydrochloride (Tabrecta), carfilzomib (Kyprolis), cemiplimab-rwlc (Libtayo), ceritinib (LDK378/Zykadia), cetuximab (Erbitux), cobimetinib (Cotellic), copanlisib hydrochloride (Aliqopa), crizotinib (Xalkori), dabrafenib (Tafinlar), dacomitinib (Vizimpro), daratumumab (Darzalex), daratumumab and hyaluronidase-fihj (Darzalex Faspro), darolutamide (Nubeqa), dasatinib (Sprycel), denileukin diftitox (Ontak), denosumab (Xgeva), dinutuximab (Unituxin), dostarlimab-gxly (Jemperli), durvalumab (Imfinzi), duvelisib (Copiktra), elotuzumab (Empliciti), enasidenib mesylate (Idhifa), encorafenib (Braftovi), enfortumab vedotin-cjfv (Padcev), entrectinib (Rozlytrek), enzalutamide (Xtandi), erdafitinib (Balversa), erlotinib (Tarceva), everolimus (Afinitor), exemestane (Aromasin), fam-trastuzumab deruxtecan-nxki (Enhertu), fedratinib hydrochloride (Inrebic), fulvestrant (Faslodex), gefitinib (Iressa), gemtuzumab ozogamicin (Mylotarg), gilteritinib (Xospata), glasdegib maleate (Daurismo), hyaluronidase-zzxf (Phesgo), ibrutinib (Imbruvica), ibritumomab tiuxetan (Zevalin), idecabtagene vicleucel (Abecma), idelalisib (Zydelig), imatinib mesylate (Gleevec), infigratinib phosphate (Truseltiq), inotuzumab ozogamicin (Besponsa), iobenguane 1131 (Azedra), ipilimumab (Yervoy), isatuximab-irfc (Sarclisa), ivosidenib (Tibsovo), ixazomib citrate (Ninlaro), lanreotide acetate (Somatuline Depot), lapatinib (Tykerb), larotrectinib sulfate (Vitrakvi), lenvatinib mesylate (Lenvima), letrozole (Femara), lisocabtagene maraleucel (Breyanzi), loncastuximab tesirine-lpyl (Zynlonta), lorlatinib (Lorbrena), lutetium Lu 177-dotatate (Lutathera), margetuximab-cmkb (Margenza), midostaurin (Rydapt), mobocertinib succinate (Exkivity), mogamulizumab-kpkc (Poteligco), moxctumomab pasudotox-tdfk (Lumoxiti), naxitamab-gqgk (Danyelza), necitumumab (Portrazza), neratinib maleate (Nerlynx), nilotinib (Tasigna), niraparib tosylate monohydrate (Zejula), nivolumab (Opdivo), obinutuzumab (Gazyva), ofatumumab (Arzerra), olaparib (Lynparza), olaratumab (Lartruvo), osimertinib (Tagrisso), palbociclib (Ibrance), panitumumab (Vectibix), panobinostat (Farydak), pazopanib (Votrient), pembrolizumab (Keytruda), pemigatinib (Pemazyre), pertuzumab (Perjeta), pexidartinib hydrochloride (Turalio), polatuzumab vedotin-piiq (Polivy), ponatinib hydrochloride (Iclusig), pralatrexate (Folotyn), pralsetinib (Gavreto), radium 223 dichloride (Xofigo), ramucirumab (Cyramza), regorafenib (Stivarga), ribociclib (Kisqali), ripretinib (Qinlock), rituximab (Rituxan), rituximab and hyaluronidase human (Rituxan Hycela), romidepsin (Istodax), rucaparib camsylate (Rubraca), ruxolitinib phosphate (Jakafi), sacituzumab govitecan-hziy (Trodelvy), seliciclib, selinexor (Xpovio), selpercatinib (Retevmo), selumetinib sulfate (Koselugo), siltuximab (Sylvant), sipuleucel-T (Provenge), sirolimus protein-bound particles (Fyarro), sonidegib (Odomzo), sorafenib (Nexavar), sotorasib (Lumakras), sunitinib (Sutent), tafasitamab-cxix (Monjuvi), tagraxofusp-erzs (Elzonris), talazoparib tosylate (Talzenna), tamoxifen (Nolvadex), tazemetostat hydrobromide (Tazverik), tebentafusp-tebn (Kimmtrak), temsirolimus (Torisel), tepotinib hydrochloride (Tepmetko), tisagenlecleucel (Kymriah), tisotumab vedotin-tftv (Tivdak), tocilizumab (Actemra), tofacitinib (Xeljanz), tositumomab (Bexxar), trametinib (Mekinist), trastuzumab (Herceptin), tretinoin (Vesanoid), tivozanib hydrochloride (Fotivda), toremifene (Fareston), tucatinib (Tukysa), umbralisib tosylate (Ukoniq), vandetanib (Caprelsa), vemurafenib (Zelboraf), venetoclax (Venclexta), vismodegib (Erivedge), vorinostat (Zolinza), zanubrutinib (Brukinsa), ziv-aflibercept (Zaltrap), or any combination thereof.
In some instances, the disclosed methods for predicting ALT status may be used in treating a disease (e.g., a cancer) in a subject. For example, in response to determining ALT status using any of the methods disclosed herein, an effective amount of an anti-cancer therapy or anti-cancer treatment may be administered to the subject.
In some instances, the disclosed methods for predicting ALT status may be used for monitoring disease progression or recurrence (e.g., cancer or tumor progression or recurrence) in a subject. For example, in some instances, the methods may be used to determine ALT status in a first sample obtained from the subject at a first time point, and used to determine ALT status in a second sample obtained from the subject at a second time point, where comparison of the first determination of ALT status and the second determination of ALT status allows one to monitor disease progression or recurrence. In some instances, the first time point is chosen before the subject has been administered a therapy or treatment, and the second time point is chosen after the subject has been administered the therapy or treatment.
In some instances, the disclosed methods may be used for adjusting a therapy or treatment (e.g., an anti-cancer treatment or anti-cancer therapy) for a subject, e.g., by adjusting a treatment dose and/or selecting a different treatment in response to a change in the determination of ALT status.
In some instances, the ALT status of a sample determined using the disclosed methods may be used as a prognostic or diagnostic indicator associated with the sample. For example, in some instances, the prognostic or diagnostic indicator may comprise an indicator of the presence of a disease (e.g., cancer) in the sample, an indicator of the probability that a disease (e.g., cancer) is present in the sample, an indicator of the probability that the subject from which the sample was derived will develop a disease (e.g., cancer) (i.e., a risk factor), or an indicator of the likelihood that the subject from which the sample was derived will respond to a particular therapy or treatment.
In some instances, the disclosed methods for predicting ALT status may be implemented as part of a genomic profiling process that comprises identification of the presence of variant sequences at one or more gene loci in a sample derived from a subject as part of detecting, monitoring, predicting a risk factor, or selecting a treatment for a particular disease, e.g., cancer. In some instances, the variant panel selected for genomic profiling may comprise the detection of variant sequences at a selected set of gene loci. In some instances, the variant panel selected for genomic profiling may comprise detection of variant sequences at a number of gene loci through comprehensive genomic profiling (CGP), which is a next-generation sequencing (NGS) approach used to assess hundreds of genes (including relevant cancer biomarkers) in a single assay. Inclusion of the disclosed methods for predicting ALT status as part of a genomic profiling process (or inclusion of the output from the disclosed methods for predicting ALT status as part of the genomic profile of the subject) can improve the validity of, e.g., disease detection calls and treatment decisions, made on the basis of the genomic profile by, for example, independently confirming the ALT status in a given patient sample.
In some instances, a genomic profile may comprise information on the presence of genes (or variant sequences thereof), copy number variations, epigenetic traits, proteins (or modifications thereof), and/or other biomarkers in an individual's genome and/or proteome, as well as information on the individual's corresponding phenotypic traits and the interaction between genetic or genomic traits, phenotypic traits, and environmental factors.
In some instances, a genomic profile for the subject may comprise results from a comprehensive genomic profiling (CGP) test, a nucleic acid sequencing-based test, a gene expression profiling test, a cancer hotspot panel test, a DNA methylation test, a DNA fragmentation test, an RNA fragmentation test, or any combination thereof.
In some instances, the method can further include administering or applying a treatment or therapy (e.g., an anti-cancer agent, anti-cancer treatment, or anti-cancer therapy) to the subject based on the generated genomic profile. An anti-cancer agent or anti-cancer treatment may refer to a compound that is effective in the treatment of cancer cells. Examples of anti-cancer agents or anti-cancer therapies include, but not limited to, alkylating agents, antimetabolites, natural products, hormones, chemotherapy, radiation therapy, immunotherapy, surgery, or a therapy configured to target a defect in a specific cell signaling pathway, e.g., a defect in a DNA mismatch repair (MMR) pathway.
The disclosed methods and systems may be used with any of a variety of samples (also referred to herein as specimens) comprising nucleic acids (e.g., DNA or RNA) that are collected from a subject (e.g., a patient). Examples of a sample include, but are not limited to, a tumor sample, a tissue sample, a biopsy sample (e.g., a tissue biopsy, a liquid biopsy, or both), a blood sample (e.g., a peripheral whole blood sample), a blood plasma sample, a blood serum sample, a lymph sample, a saliva sample, a sputum sample, a urine sample, a gynecological fluid sample, a circulating tumor cell (CTC) sample, a cerebral spinal fluid (CSF) sample, a pericardial fluid sample, a pleural fluid sample, an ascites (peritoneal fluid) sample, a feces (or stool) sample, or other body fluid, secretion, and/or excretion sample (or cell sample derived therefrom). In certain instances, the sample may be frozen sample or a formalin-fixed paraffin-embedded (FFPE) sample.
In some instances, the sample may be collected by tissue resection (e.g., surgical resection), needle biopsy, bone marrow biopsy, bone marrow aspiration, skin biopsy, endoscopic biopsy, fine needle aspiration, oral swab, nasal swab, vaginal swab or a cytology smear, scrapings, washings or lavages (such as a ductal lavage or bronchoalveolar lavage), etc.
In some instances, the sample is a liquid biopsy sample, and may comprise, e.g., whole blood, blood plasma, blood serum, urine, stool, sputum, saliva, or cerebrospinal fluid. In some instances, the sample may be a liquid biopsy sample and may comprise circulating tumor cells (CTCs). In some instances, the sample may be a liquid biopsy sample and may comprise cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), or any combination thereof.
In some instances, the sample may comprise one or more premalignant or malignant cells. Premalignant, as used herein, refers to a cell or tissue that is not yet malignant but is poised to become malignant. In certain instances, the sample may be acquired from a solid tumor, a soft tissue tumor, or a metastatic lesion. In certain instances, the sample may be acquired from a hematologic malignancy or pre-malignancy. In other instances, the sample may comprise a tissue or cells from a surgical margin. In certain instances, the sample may comprise tumor-infiltrating lymphocytes. In some instances, the sample may comprise one or more non-malignant cells. In some instances, the sample may be, or is part of, a primary tumor or a metastasis (e.g., a metastasis biopsy sample). In some instances, the sample may be obtained from a site (e.g., a tumor site) with the highest percentage of tumor (e.g., tumor cells) as compared to adjacent sites (e.g., sites adjacent to the tumor). In some instances, the sample may be obtained from a site (e.g., a tumor site) with the largest tumor focus (e.g., the largest number of tumor cells as visualized under a microscope) as compared to adjacent sites (e.g., sites adjacent to the tumor).
In some instances, the disclosed methods may further comprise analyzing a primary control (e.g., a normal tissue sample). In some instances, the disclosed methods may further comprise determining if a primary control is available and, if so, isolating a control nucleic acid (e.g., DNA) from said primary control. In some instances, the sample may comprise any normal control (e.g., a normal adjacent tissue (NAT)) if no primary control is available. In some instances, the sample may be or may comprise histologically normal tissue. In some instances, the method includes evaluating a sample, e.g., a histologically normal sample (e.g., from a surgical tissue margin) using the methods described herein. In some instances, the disclosed methods may further comprise acquiring a sub-sample enriched for non-tumor cells, e.g., by macro-dissecting non-tumor tissue from said NAT in a sample not accompanied by a primary control. In some instances, the disclosed methods may further comprise determining that no primary control and no NAT is available, and marking said sample for analysis without a matched control.
In some instances, samples obtained from histologically normal tissues (e.g., otherwise histologically normal surgical tissue margins) may still comprise a genetic alteration such as a variant sequence as described herein. The methods may thus further comprise re-classifying a sample based on the presence of the detected genetic alteration. In some instances, multiple samples (e.g., from different subjects) are processed simultaneously.
The disclosed methods and systems may be applied to the analysis of nucleic acids extracted from any of variety of tissue samples (or disease states thereof), e.g., solid tissue samples, soft tissue samples, metastatic lesions, or liquid biopsy samples. Examples of tissues include, but are not limited to, connective tissue, muscle tissue, nervous tissue, epithelial tissue, and blood. Tissue samples may be collected from any of the organs within an animal or human body. Examples of human organs include, but are not limited to, the brain, heart, lungs, liver, kidneys, pancreas, spleen, thyroid, mammary glands, uterus, prostate, large intestine, small intestine, bladder, bone, skin, etc.
In some instances, the nucleic acids extracted from the sample may comprise deoxyribonucleic acid (DNA) molecules. Examples of DNA that may be suitable for analysis by the disclosed methods include, but are not limited to, genomic DNA or fragments thereof, mitochondrial DNA or fragments thereof, cell-free DNA (cfDNA), and circulating tumor DNA (ctDNA). Cell-free DNA (cfDNA) is comprised of fragments of DNA that are released from normal and/or cancerous cells during apoptosis and necrosis, and circulate in the blood stream and/or accumulate in other bodily fluids. Circulating tumor DNA (ctDNA) is comprised of fragments of DNA that are released from cancerous cells and tumors that circulate in the blood stream and/or accumulate in other bodily fluids.
In some instances, DNA is extracted from nucleated cells from the sample. In some instances, a sample may have a low nucleated cellularity, e.g., when the sample is comprised mainly of erythrocytes, lesional cells that contain excessive cytoplasm, or tissue with fibrosis. In some instances, a sample with low nucleated cellularity may require more, e.g., greater tissue volume for DNA extraction.
In some instances, the nucleic acids extracted from the sample may comprise ribonucleic acid (RNA) molecules. Examples of RNA that may be suitable for analysis by the disclosed methods include, but are not limited to, total cellular RNA, total cellular RNA after depletion of certain abundant RNA sequences (e.g., ribosomal RNAs), cell-free RNA (cfRNA), messenger RNA (mRNA) or fragments thereof, the poly(A)-tailed mRNA fraction of the total RNA, ribosomal RNA (rRNA) or fragments thereof, transfer RNA (tRNA) or fragments thereof, and mitochondrial RNA or fragments thereof. In some instances, RNA may be extracted from the sample and converted to complementary DNA (cDNA) using, e.g., a reverse transcription reaction. In some instances, the cDNA is produced by random-primed cDNA synthesis methods. In other instances, the cDNA synthesis is initiated at the poly(A) tail of mature mRNAs by priming with oligo(dT)-containing oligonucleotides. Methods for depletion, poly(A) enrichment, and cDNA synthesis are well known to those of skill in the art.
In some instances, the sample may comprise a tumor content (e.g., comprising tumor cells or tumor cell nuclei), or a non-tumor content (e.g., immune cells, fibroblasts, and other non-tumor cells). In some instances, the tumor content of the sample may constitute a sample metric. In some instances, the sample may comprise a tumor content of at least 5-50%, 10-40%, 15-25%, or 20-30% tumor cell nuclei. In some instances, the sample may comprise a tumor content of at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, or at least 50% tumor cell nuclei. In some instances, the percent tumor cell nuclei (e.g., sample fraction) is determined (e.g., calculated) by dividing the number of tumor cells in the sample by the total number of all cells within the sample that have nuclei. In some instances, for example when the sample is a liver sample comprising hepatocytes, a different tumor content calculation may be required due to the presence of hepatocytes having nuclei with twice, or more than twice, the DNA content of other, e.g., non-hepatocyte, somatic cell nuclei. In some instances, the sensitivity of detection of a genetic alteration, e.g., a variant sequence, or a determination of, e.g., microsatellite instability, may depend on the tumor content of the sample. For example, a sample having a lower tumor content can result in lower sensitivity of detection for a given size sample.
In some instances, as noted above, the sample comprises nucleic acid (e.g., DNA, RNA (or a cDNA derived from the RNA), or both), e.g., from a tumor or from normal tissue. In certain instances, the sample may further comprise a non-nucleic acid component, e.g., cells, protein, carbohydrate, or lipid, e.g., from the tumor or normal tissue.
In some instances, the sample is obtained (e.g., collected) from a subject (e.g., patient) with a condition or disease (e.g., a hyperproliferative disease or a non-cancer indication) or suspected of having the condition or disease. In some instances, the hyperproliferative disease is a cancer. In some instances, the cancer is a solid tumor or a metastatic form thereof. In some instances, the cancer is a hematological cancer, e.g., a leukemia or lymphoma.
In some instances, the subject has a cancer or is at risk of having a cancer. For example, in some instances, the subject has a genetic predisposition to a cancer (e.g., having a genetic mutation that increases his or her baseline risk for developing a cancer). In some instances, the subject has been exposed to an environmental perturbation (e.g., radiation or a chemical) that increases his or her risk for developing a cancer. In some instances, the subject is in need of being monitored for development of a cancer. In some instances, the subject is in need of being monitored for cancer progression or regression, e.g., after being treated with an anti-cancer therapy (or anti-cancer treatment). In some instances, the subject is in need of being monitored for relapse of cancer. In some instances, the subject is in need of being monitored for minimum residual disease (MRD). In some instances, the subject has been, or is being treated, for cancer. In some instances, the subject has not been treated with an anti-cancer therapy (or anti-cancer treatment).
In some instances, the subject (e.g., a patient) is being treated, or has been previously treated, with one or more targeted therapies. In some instances, e.g., for a patient who has been previously treated with a targeted therapy, a post-targeted therapy sample (e.g., specimen) is obtained (e.g., collected). In some instances, the post-targeted therapy sample is a sample obtained after the completion of the targeted therapy.
In some instances, the patient has not been previously treated with a targeted therapy. In some instances, e.g., for a patient who has not been previously treated with a targeted therapy, the sample comprises a resection, e.g., an original resection, or a resection following recurrence (e.g., following a disease recurrence post-therapy).
In some instances, the sample is acquired from a subject having a cancer. Exemplary cancers include, but are not limited to, B cell cancer (e.g., multiple myeloma), melanomas, breast cancer, lung cancer (such as non-small cell lung carcinoma or NSCLC), bronchus cancer, colorectal cancer, prostate cancer, pancreatic cancer, stomach cancer, ovarian cancer, urinary bladder cancer, brain or central nervous system cancer, peripheral nervous system cancer, esophageal cancer, cervical cancer, uterine or endometrial cancer, cancer of the oral cavity or pharynx, liver cancer, kidney cancer, testicular cancer, biliary tract cancer, small bowel or appendix cancer, salivary gland cancer, thyroid gland cancer, adrenal gland cancer, osteosarcoma, chondrosarcoma, cancer of hematological tissues, adenocarcinomas, inflammatory myofibroblastic tumors, gastrointestinal stromal tumor (GIST), colon cancer, multiple myeloma (MM), myelodysplastic syndrome (MDS), myeloproliferative disorder (MPD), acute lymphocytic leukemia (ALL), acute myelocytic leukemia (AML), chronic myelocytic leukemia (CML), chronic lymphocytic leukemia (CLL), polycythemia Vera, Hodgkin lymphoma, non-Hodgkin lymphoma (NHL), soft-tissue sarcoma, fibrosarcoma, myxosarcoma, liposarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pincaloma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, neuroblastoma, retinoblastoma, follicular lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, hepatocellular carcinoma, thyroid cancer, gastric cancer, head and neck cancer, small cell cancers, essential thrombocythemia, agnogenic myeloid metaplasia, hypereosinophilic syndrome, systemic mastocytosis, familiar hypercosinophilia, chronic cosinophilic leukemia, neuroendocrine cancers, carcinoid tumors, and the like.
In some instances, the cancer comprises acute lymphoblastic leukemia (Philadelphia chromosome positive), acute lymphoblastic leukemia (precursor B-cell), acute myeloid leukemia (FLT3+), acute myeloid leukemia (with an IDH2 mutation), anaplastic large cell lymphoma, basal cell carcinoma, B-cell chronic lymphocytic leukemia, bladder cancer, breast cancer (HER2 overexpressed/amplified), breast cancer (HER2+), breast cancer (HR+, HER2−), cervical cancer, cholangiocarcinoma, chronic lymphocytic leukemia, chronic lymphocytic leukemia (with 17p deletion), chronic myelogenous leukemia, chronic myelogenous leukemia (Philadelphia chromosome positive), classical Hodgkin lymphoma, colorectal cancer, colorectal cancer (dMMR and MSI-H), colorectal cancer (KRAS wild type), cryopyrin-associated periodic syndrome, a cutaneous T-cell lymphoma, dermatofibrosarcoma protuberans, a diffuse large B-cell lymphoma, fallopian tube cancer, a follicular B-cell non-Hodgkin lymphoma, a follicular lymphoma, gastric cancer, gastric cancer (HER2+), a gastroesophageal junction (GEJ) adenocarcinoma, a gastrointestinal stromal tumor, a gastrointestinal stromal tumor (KIT+), a giant cell tumor of the bone, a glioblastoma, granulomatosis with polyangiitis, a head and neck squamous cell carcinoma, a hepatocellular carcinoma, Hodgkin lymphoma, juvenile idiopathic arthritis, lupus erythematosus, a mantle cell lymphoma, medullary thyroid cancer, melanoma, a melanoma with a BRAF V600 mutation, a melanoma with a BRAF V600E or V600K mutation, Merkel cell carcinoma, multicentric Castleman's disease, multiple hematologic malignancies including Philadelphia chromosome-positive ALL and CML, multiple myeloma, myelofibrosis, a non-Hodgkin's lymphoma, a nonresectable subependymal giant cell astrocytoma associated with tuberous sclerosis, a non-small cell lung cancer, a non-small cell lung cancer (ALK+), a non-small cell lung cancer (PD-L1+), a non-small cell lung cancer (with ALK fusion or ROSI gene alteration), a non-small cell lung cancer (with BRAF V600E mutation), a non-small cell lung cancer (with an EGFR exon 19 deletion or exon 21 substitution (L858R) mutations), a non-small cell lung cancer (with an EGFR T790M mutation), ovarian cancer, ovarian cancer (with a BRCA mutation), pancreatic cancer, a pancreatic, gastrointestinal, or lung origin neuroendocrine tumor, a pediatric neuroblastoma, a peripheral T-cell lymphoma, peritoneal cancer, prostate cancer, a renal cell carcinoma, rheumatoid arthritis, a small lymphocytic lymphoma, a soft tissue sarcoma, a solid tumor (MSI-H/dMMR), a squamous cell cancer of the head and neck, a squamous non-small cell lung cancer, thyroid cancer, a thyroid carcinoma, urothelial cancer, a urothelial carcinoma, or Waldenstrom's macroglobulinemia.
In some instances, the cancer is a hematologic malignancy (or premaligancy). As used herein, a hematologic malignancy refers to a tumor of the hematopoictic or lymphoid tissues, e.g., a tumor that affects blood, bone marrow, or lymph nodes. Exemplary hematologic malignancies include, but are not limited to, leukemia (e.g., acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), hairy cell leukemia, acute monocytic leukemia (AMOL), chronic myelomonocytic leukemia (CMML), juvenile myelomonocytic leukemia (JMML), or large granular lymphocytic leukemia), lymphoma (e.g., AIDS-related lymphoma, cutaneous T-cell lymphoma, Hodgkin lymphoma (e.g., classical Hodgkin lymphoma or nodular lymphocyte-predominant Hodgkin lymphoma), mycosis fungoides, non-Hodgkin lymphoma (e.g., B-cell non-Hodgkin lymphoma (e.g., Burkitt lymphoma, small lymphocytic lymphoma (CLL/SLL), diffuse large B-cell lymphoma, follicular lymphoma, immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma, or mantle cell lymphoma) or T-cell non-Hodgkin lymphoma (mycosis fungoides, anaplastic large cell lymphoma, or precursor T-lymphoblastic lymphoma)), primary central nervous system lymphoma, Sézary syndrome, Waldenström macroglobulinemia), chronic myeloproliferative neoplasm, Langerhans cell histiocytosis, multiple myeloma/plasma cell neoplasm, myelodysplastic syndrome, or myelodysplastic/myeloproliferative neoplasm.
DNA or RNA may be extracted from tissue samples, biopsy samples, blood samples, or other bodily fluid samples using any of a variety of techniques known to those of skill in the art (see, e.g., Example 1 of International Patent Application Publication No. WO 2012/092426; Tan, et al. (2009), “DNA, RNA, and Protein Extraction: The Past and The Present”, J. Biomed. Biotech. 2009:574398; the technical literature for the Maxwell® 16 LEV Blood DNA Kit (Promega Corporation, Madison, WI); and the Maxwell 16 Buccal Swab LEV DNA Purification Kit Technical Manual (Promega Literature #TM333, Jan. 1, 2011, Promega Corporation, Madison, WI)). Protocols for RNA isolation are disclosed in, e.g., the Maxwell® 16 Total RNA Purification Kit Technical Bulletin (Promega Literature #TB351, August 2009, Promega Corporation, Madison, WI).
A typical DNA extraction procedure, for example, comprises (i) collection of the fluid sample, cell sample, or tissue sample from which DNA is to be extracted, (ii) disruption of cell membranes (i.e., cell lysis), if necessary, to release DNA and other cytoplasmic components, (iii) treatment of the fluid sample or lysed sample with a concentrated salt solution to precipitate proteins, lipids, and RNA, followed by centrifugation to separate out the precipitated proteins, lipids, and RNA, and (iv) purification of DNA from the supernatant to remove detergents, proteins, salts, or other reagents used during the cell membrane lysis step.
Disruption of cell membranes may be performed using a variety of mechanical shear (e.g., by passing through a French press or fine needle) or ultrasonic disruption techniques. The cell lysis step often comprises the use of detergents and surfactants to solubilize lipids the cellular and nuclear membranes. In some instances, the lysis step may further comprise use of proteases to break down protein, and/or the use of an RNase for digestion of RNA in the sample.
Examples of suitable techniques for DNA purification include, but are not limited to, (i) precipitation in ice-cold ethanol or isopropanol, followed by centrifugation (precipitation of DNA may be enhanced by increasing ionic strength, e.g., by addition of sodium acetate), (ii) phenol-chloroform extraction, followed by centrifugation to separate the aqueous phase containing the nucleic acid from the organic phase containing denatured protein, and (iii) solid phase chromatography where the nucleic acids adsorb to the solid phase (e.g., silica or other) depending on the pH and salt concentration of the buffer.
In some instances, cellular and histone proteins bound to the DNA may be removed either by adding a protease or by having precipitated the proteins with sodium or ammonium acetate, or through extraction with a phenol-chloroform mixture prior to a DNA precipitation step.
In some instances, DNA may be extracted using any of a variety of suitable commercial DNA extraction and purification kits. Examples include, but are not limited to, the QIAamp (for isolation of genomic DNA from human samples) and DNAeasy (for isolation of genomic DNA from animal or plant samples) kits from Qiagen (Germantown, MD) or the Maxwell® and ReliaPrep™ series of kits from Promega (Madison, WI).
As noted above, in some instances the sample may comprise a formalin-fixed (also known as formaldehyde-fixed, or paraformaldehyde-fixed), paraffin-embedded (FFPE) tissue preparation. For example, the FFPE sample may be a tissue sample embedded in a matrix, e.g., an FFPE block. Methods to isolate nucleic acids (e.g., DNA) from formaldehyde-or paraformaldehyde-fixed, paraffin-embedded (FFPE) tissues are disclosed in, e.g., Cronin, et al., (2004) Am J Pathol. 164(1):35-42; Masuda, et al., (1999) Nucleic Acids Res. 27(22):4436-4443; Specht, et al., (2001) Am J Pathol. 158 (2): 419-429; the Ambion RecoverAll™ Total Nucleic Acid Isolation Protocol (Ambion, Cat. No. AM1975, September 2008); the Maxwell® 16 FFPE Plus LEV DNA Purification Kit Technical Manual (Promega Literature #TM349, February 2011); the E.Z.N.A.® FFPE DNA Kit Handbook (OMEGA bio-tek, Norcross, GA, product numbers D3399-00, D3399-01, and D3399-02, June 2009); and the QIAamp® DNA FFPE Tissue Handbook (Qiagen, Cat. No. 37625, October 2007). For example, the RecoverAll™ Total Nucleic Acid Isolation Kit uses xylene at elevated temperatures to solubilize paraffin-embedded samples and a glass-fiber filter to capture nucleic acids. The Maxwell® 16 FFPE Plus LEV DNA Purification Kit is used with the Maxwell® 16 Instrument for purification of genomic DNA from 1 to 10 μm sections of FFPE tissue. DNA is purified using silica-clad paramagnetic particles (PMPs), and eluted in low elution volume. The E.Z.N.A.® FFPE DNA Kit uses a spin column and buffer system for isolation of genomic DNA. QIAamp® DNA FFPE Tissue Kit uses QIAamp® DNA Micro technology for purification of genomic and mitochondrial DNA.
In some instances, the disclosed methods may further comprise determining or acquiring a yield value for the nucleic acid extracted from the sample and comparing the determined value to a reference value. For example, if the determined or acquired value is less than the reference value, the nucleic acids may be amplified prior to proceeding with library construction. In some instances, the disclosed methods may further comprise determining or acquiring a value for the size (or average size) of nucleic acid fragments in the sample, and comparing the determined or acquired value to a reference value, e.g., a size (or average size) of at least 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 base pairs (bps). In some instances, one or more parameters described herein may be adjusted or selected in response to this determination.
After isolation, the nucleic acids are typically dissolved in a slightly alkaline buffer, e.g., Tris-EDTA (TE) buffer, or in ultra-pure water. In some instances, the isolated nucleic acids (e.g., genomic DNA) may be fragmented or sheared by using any of a variety of techniques known to those of skill in the art. For example, genomic DNA can be fragmented by physical shearing methods, enzymatic cleavage methods, chemical cleavage methods, and other methods known to those of skill in the art. Methods for DNA shearing are described in Example 4 in International Patent Application Publication No. WO 2012/092426. In some instances, alternatives to DNA shearing methods can be used to avoid a ligation step during library preparation.
In some instances, the nucleic acids isolated from the sample may be used to construct a library (e.g., a nucleic acid library as described herein). In some instances, the nucleic acids are fragmented using any of the methods described above, optionally subjected to repair of chain end damage, and optionally ligated to synthetic adapters, primers, and/or barcodes (e.g., amplification primers, sequencing adapters, flow cell adapters, substrate adapters, sample barcodes or indexes, and/or unique molecular identifier sequences), size-selected (e.g., by preparative gel electrophoresis), and/or amplified (e.g., using PCR, a non-PCR amplification technique, or an isothermal amplification technique). In some instances, the fragmented and adapter-ligated group of nucleic acids is used without explicit size selection or amplification prior to hybridization-based selection of target sequences. In some instances, the nucleic acid is amplified by any of a variety of specific or non-specific nucleic acid amplification methods known to those of skill in the art. In some instances, the nucleic acids are amplified, e.g., by a whole-genome amplification method such as random-primed strand-displacement amplification. Examples of nucleic acid library preparation techniques for next-generation sequencing are described in, e.g., van Dijk, et al. (2014), Exp. Cell Research 322:12-20, and Illumina's genomic DNA sample preparation kit.
In some instances, the resulting nucleic acid library may contain all or substantially all of the complexity of the genome. The term “substantially all” in this context refers to the possibility that there can in practice be some unwanted loss of genome complexity during the initial steps of the procedure. The methods described herein also are useful in cases where the nucleic acid library comprises a portion of the genome, e.g., where the complexity of the genome is reduced by design. In some instances, any selected portion of the genome can be used with a method described herein. For example, in certain embodiments, the entire exome or a subset thereof is isolated. In some instances, the library may include at least 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, or 5% of the genomic DNA. In some instances, the library may consist of cDNA copies of genomic DNA that includes copies of at least 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, or 5% of the genomic DNA. In certain instances, the amount of nucleic acid used to generate the nucleic acid library may be less than 5 micrograms, less than 1 microgram, less than 500 ng, less than 200 ng, less than 100 ng, less than 50 ng, less than 10 ng, less than 5 ng, or less than 1 ng.
In some instances, a library (e.g., a nucleic acid library) includes a collection of nucleic acid molecules. As described herein, the nucleic acid molecules of the library can include a target nucleic acid molecule (e.g., a tumor nucleic acid molecule, a reference nucleic acid molecule and/or a control nucleic acid molecule; also referred to herein as a first, second and/or third nucleic acid molecule, respectively). The nucleic acid molecules of the library can be from a single subject or individual. In some instances, a library can comprise nucleic acid molecules derived from more than one subject (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30 or more subjects). For example, two or more libraries from different subjects can be combined to form a library having nucleic acid molecules from more than one subject (where the nucleic acid molecules derived from each subject are optionally ligated to a unique sample barcode corresponding to a specific subject). In some instances, the subject is a human having, or at risk of having, a cancer or tumor.
In some instances, the library (or a portion thereof) may comprise one or more subgenomic intervals. In some instances, a subgenomic interval can be a single nucleotide position, e.g., a nucleotide position for which a variant at the position is associated (positively or negatively) with a tumor phenotype. In some instances, a subgenomic interval comprises more than one nucleotide position. Such instances include sequences of at least 2, 5, 10, 50, 100, 150, 250, or more than 250 nucleotide positions in length. Subgenomic intervals can comprise, e.g., one or more entire genes (or portions thereof), one or more exons or coding sequences (or portions thereof), one or more introns (or portion thereof), one or more microsatellite region (or portions thereof), or any combination thereof. A subgenomic interval can comprise all or a part of a fragment of a naturally occurring nucleic acid molecule, e.g., a genomic DNA molecule. For example, a subgenomic interval can correspond to a fragment of genomic DNA which is subjected to a sequencing reaction. In some instances, a subgenomic interval is a continuous sequence from a genomic source. In some instances, a subgenomic interval includes sequences that are not contiguous in the genome, e.g., subgenomic intervals in cDNA can include exon-exon junctions formed as a result of splicing. In some instances, the subgenomic interval comprises a tumor nucleic acid molecule. In some instances, the subgenomic interval comprises a non-tumor nucleic acid molecule.
The methods described herein can be used in combination with, or as part of, a method for evaluating a plurality or set of subject intervals (e.g., target sequences), e.g., from a set of genomic loci (e.g., gene loci or fragments thereof), as described herein.
In some instances, the set of genomic loci evaluated by the disclosed methods comprises a plurality of, e.g., genes, which in mutant form, are associated with an effect on cell division, growth or survival, or are associated with a cancer, e.g., a cancer described herein.
In some instances, the set of gene loci evaluated by the disclosed methods comprises at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, or more than 100 gene loci.
In some instances, the selected gene loci (also referred to herein as target gene loci or target sequences), or fragments thereof, may include subject intervals comprising non-coding sequences, coding sequences, intragenic regions, or intergenic regions of the subject genome. For example, the subject intervals can include a non-coding sequence or fragment thereof (e.g., a promoter sequence, enhancer sequence, 5′ untranslated region (5′ UTR), 3′ untranslated region (3′ UTR), or a fragment thereof), a coding sequence of fragment thereof, an exon sequence or fragment thereof, an intron sequence or a fragment thereof.
The methods described herein may comprise contacting a nucleic acid library with a plurality of target capture reagents in order to select and capture a plurality of specific target sequences (e.g., gene sequences or fragments thereof) for analysis. In some instances, a target capture reagent (i.e., a molecule which can bind to and thereby allow capture of a target molecule) is used to select the subject intervals to be analyzed. For example, a target capture reagent can be a bait molecule, e.g., a nucleic acid molecule (e.g., a DNA molecule or RNA molecule) which can hybridize to (i.e., is complementary to) a target molecule, and thereby allows capture of the target nucleic acid. In some instances, the target capture reagent, e.g., a bait molecule (or bait sequence), is a capture oligonucleotide (or capture probe). In some instances, the target nucleic acid is a genomic DNA molecule, an RNA molecule, a cDNA molecule derived from an RNA molecule, a microsatellite DNA sequence, and the like. In some instances, the target capture reagent is suitable for solution-phase hybridization to the target. In some instances, the target capture reagent is suitable for solid-phase hybridization to the target. In some instances, the target capture reagent is suitable for both solution-phase and solid-phase hybridization to the target. The design and construction of target capture reagents is described in more detail in, e.g., International Patent Application Publication No. WO 2020/236941, the entire content of which is incorporated herein by reference.
The methods described herein provide for optimized sequencing of a large number of genomic loci (e.g., genes or gene products (e.g., mRNA), microsatellite loci, etc.) from samples (e.g., cancerous tissue specimens, liquid biopsy samples, and the like) from one or more subjects by the appropriate selection of target capture reagents to select the target nucleic acid molecules to be sequenced. In some instances, a target capture reagent may hybridize to a specific target locus, e.g., a specific target gene locus or fragment thereof. In some instances, a target capture reagent may hybridize to a specific group of target loci, e.g., a specific group of gene loci or fragments thereof. In some instances, a plurality of target capture reagents comprising a mix of target-specific and/or group-specific target capture reagents may be used.
In some instances, the number of target capture reagents (e.g., bait molecules) in the plurality of target capture reagents (e.g., a bait set) contacted with a nucleic acid library to capture a plurality of target sequences for nucleic acid sequencing is greater than 10, greater than 50, greater than 100, greater than 200, greater than 300, greater than 400, greater than 500, greater than 600, greater than 700, greater than 800, greater than 900, greater than 1,000, greater than 1,250, greater than 1,500, greater than 1,750, greater than 2,000, greater than 3,000, greater than 4,000, greater than 5,000, greater than 10,000, greater than 25,000, or greater than 50,000.
In some instances, the overall length of the target capture reagent sequence can be between about 70 nucleotides and 1000 nucleotides. In one instance, the target capture reagent length is between about 100 and 300 nucleotides, 110 and 200 nucleotides, or 120 and 170 nucleotides, in length. In addition to those mentioned above, intermediate oligonucleotide lengths of about 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 300, 400, 500, 600, 700, 800, and 900 nucleotides in length can be used in the methods described herein. In some embodiments, oligonucleotides of about 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, or 230 bases can be used.
In some instances, each target capture reagent sequence can include: (i) a target-specific capture sequence (e.g., a gene locus or microsatellite locus-specific complementary sequence), (ii) an adapter, primer, barcode, and/or unique molecular identifier sequence, and (iii) universal tails on one or both ends. As used herein, the term “target capture reagent” can refer to the target-specific target capture sequence or to the entire target capture reagent oligonucleotide including the target-specific target capture sequence.
In some instances, the target-specific capture sequences in the target capture reagents are between about 40 nucleotides and 1000 nucleotides in length. In some instances, the target-specific capture sequence is between about 70 nucleotides and 300 nucleotides in length. In some instances, the target-specific sequence is between about 100 nucleotides and 200 nucleotides in length. In yet other instances, the target-specific sequence is between about 120 nucleotides and 170 nucleotides in length, typically 120 nucleotides in length. Intermediate lengths in addition to those mentioned above also can be used in the methods described herein, such as target-specific sequences of about 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 300, 400, 500, 600, 700, 800, and 900 nucleotides in length, as well as target-specific sequences of lengths between the above-mentioned lengths.
In some instances, the target capture reagent may be designed to select a subject interval containing one or more rearrangements, e.g., an intron containing a genomic rearrangement. In such instances, the target capture reagent is designed such that repetitive sequences are masked to increase the selection efficiency. In those instances where the rearrangement has a known juncture sequence, complementary target capture reagents can be designed to recognize the juncture sequence to increase the selection efficiency.
In some instances, the disclosed methods may comprise the use of target capture reagents designed to capture two or more different target categories, each category having a different target capture reagent design strategy. In some instances, the hybridization-based capture methods and target capture reagent compositions disclosed herein may provide for the capture and homogeneous coverage of a set of target sequences, while minimizing coverage of genomic sequences outside of the targeted set of sequences. In some instances, the target sequences may include the entire exome of genomic DNA or a selected subset thereof. In some instances, the target sequences may include, e.g., a large chromosomal region (e.g., a whole chromosome arm). The methods and compositions disclosed herein provide different target capture reagents for achieving different sequencing depths and patterns of coverage for complex sets of target nucleic acid sequences.
Typically, DNA molecules are used as target capture reagent sequences, although RNA molecules can also be used. In some instances, a DNA molecule target capture reagent can be single stranded DNA (ssDNA) or double-stranded DNA (dsDNA). In some instances, an RNA-DNA duplex is more stable than a DNA-DNA duplex and therefore provides for potentially better capture of nucleic acids.
In some instances, the disclosed methods comprise providing a selected set of nucleic acid molecules (e.g., a library catch) captured from one or more nucleic acid libraries. For example, the method may comprise: providing one or a plurality of nucleic acid libraries, each comprising a plurality of nucleic acid molecules (e.g., a plurality of target nucleic acid molecules and/or reference nucleic acid molecules) extracted from one or more samples from one or more subjects; contacting the one or a plurality of libraries (e.g., in a solution-based hybridization reaction) with one, two, three, four, five, or more than five pluralities of target capture reagents (e.g., oligonucleotide target capture reagents) to form a hybridization mixture comprising a plurality of target capture reagent/nucleic acid molecule hybrids; separating the plurality of target capture reagent/nucleic acid molecule hybrids from said hybridization mixture, e.g., by contacting said hybridization mixture with a binding entity that allows for separation of said plurality of target capture reagent/nucleic acid molecule hybrids from the hybridization mixture, thereby providing a library catch (e.g., a selected or enriched subgroup of nucleic acid molecules from the one or a plurality of libraries).
In some instances, the disclosed methods may further comprise amplifying the library catch (e.g., by performing PCR). In other instances, the library catch is not amplified.
In some instances, the target capture reagents can be part of a kit which can optionally comprise instructions, standards, buffers or enzymes or other reagents.
As noted above, the methods disclosed herein may include the step of contacting the library (e.g., the nucleic acid library) with a plurality of target capture reagents to provide a selected library target nucleic acid sequences (i.e., the library catch). The contacting step can be effected in, e.g., solution-based hybridization. In some instances, the method includes repeating the hybridization step for one or more additional rounds of solution-based hybridization. In some instances, the method further includes subjecting the library catch to one or more additional rounds of solution-based hybridization with the same or a different collection of target capture reagents.
In some instances, the contacting step is effected using a solid support, e.g., an array. Suitable solid supports for hybridization are described in, e.g., Albert, T.J. et al. (2007) Nat. Methods 4(11):903-5; Hodges, E. et al. (2007) Nat. Genet. 39(12):1522-7; and Okou, D.T. et al. (2007) Nat. Methods 4(11):907-9, the contents of which are incorporated herein by reference in their entireties.
Hybridization methods that can be adapted for use in the methods herein are described in the art, e.g., as described in International Patent Application Publication No. WO 2012/092426. Methods for hybridizing target capture reagents to a plurality of target nucleic acids are described in more detail in, e.g., International Patent Application Publication No. WO 2020/236941, the entire content of which is incorporated herein by reference.
The methods and systems disclosed herein can be used in combination with, or as part of, a method or system for sequencing nucleic acids (e.g., a next-generation sequencing system) to generate a plurality of sequence reads that overlap one or more gene loci within a subgenomic interval in the sample and thereby determine, e.g., gene allele sequences at a plurality of gene loci. “Next-generation sequencing” (or “NGS”) as used herein may also be referred to as “massively parallel sequencing” (or “MPS”), and refers to any sequencing method that determines the nucleotide sequence of either individual nucleic acid molecules (e.g., as in single molecule sequencing) or clonally expanded proxies for individual nucleic acid molecules in a high throughput fashion (e.g., wherein greater than 103, 104, 105 or more than 105 molecules are sequenced simultaneously).
Next-generation sequencing methods are known in the art, and are described in, e.g., Metzker, M. (2010) Nature Biotechnology Reviews 11:31-46, which is incorporated herein by reference. Other examples of sequencing methods suitable for use when implementing the methods and systems disclosed herein are described in, e.g., International Patent Application Publication No. WO 2012/092426. In some instances, the sequencing may comprise, for example, whole genome sequencing (WGS), whole exome sequencing, targeted sequencing, or direct sequencing. In some instances, sequencing may be performed using, e.g., Sanger sequencing. In some instances, the sequencing may comprise a paired-end sequencing technique that allows both ends of a fragment to be sequenced and generates high-quality, alignable sequence data for detection of, e.g., genomic rearrangements, repetitive sequence elements, gene fusions, and novel transcripts.
The disclosed methods and systems may be implemented using sequencing platforms such as the Roche/454 Genome Sequencer (GS) FLX System, Illumina/Solexa Genome Analyzer (GA), Illumina's HiSeq® 2500, HiSeq® 3000, HiSeq® 4000 and NovaSeq® 6000 Sequencing Systems, Life/APG's Support Oligonucleotide Ligation Detection (SOLID) system, Polonator's G.007 system, Helicos BioSciences' HeliScope Gene Sequencing system, or Pacific Biosciences' PacBio® RS platform. In some instances, sequencing may comprise Illumina MiSeqÔ sequencing. In some instances, sequencing may comprise Illumina HiSeq® sequencing. In some instances, sequencing may comprise Illumina NovaSeq® sequencing. Optimized methods for sequencing a large number of target genomic loci in nucleic acids extracted from a sample are described in more detail in, e.g., International Patent Application Publication No. WO 2020/236941, the entire content of which is incorporated herein by reference.
In certain instances, the disclosed methods comprise one or more of the steps of: (a) acquiring a library comprising a plurality of normal and/or tumor nucleic acid molecules from a sample; (b) simultaneously or sequentially contacting the library with one, two, three, four, five, or more than five pluralities of target capture reagents under conditions that allow hybridization of the target capture reagents to the target nucleic acid molecules, thereby providing a selected set of captured normal and/or tumor nucleic acid molecules (i.e., a library catch); (c) separating the selected subset of the nucleic acid molecules (e.g., the library catch) from the hybridization mixture, e.g., by contacting the hybridization mixture with a binding entity that allows for separation of the target capture reagent/nucleic acid molecule hybrids from the hybridization mixture, (d) sequencing the library catch to acquiring a plurality of reads (e.g., sequence reads) that overlap one or more subject intervals (e.g., one or more target sequences) from said library catch that may comprise a mutation (or alteration), e.g., a variant sequence comprising a somatic mutation or germline mutation; (e) aligning said sequence reads using an alignment method as described elsewhere herein; and/or (f) assigning a nucleotide value for a nucleotide position in the subject interval (e.g., calling a mutation using, e.g., a Bayesian method or other method described herein) from one or more sequence reads of the plurality.
In some instances, acquiring sequence reads for one or more subject intervals may comprise sequencing at least 1, at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least 750, at least 800, at least 850, at least 900, at least 950, at least 1,000, at least 1,250, at least 1,500, at least 1,750, at least 2,000, at least 2,250, at least 2,500, at least 2,750, at least 3,000, at least 3,500, at least 4,000, at least 4,500, or at least 5,000 loci, e.g., genomic loci, gene loci, microsatellite loci, etc. In some instances, acquiring a sequence read for one or more subject intervals may comprise sequencing a subject interval for any number of loci within the range described in this paragraph, e.g., for at least 2,850 gene loci.
In some instances, acquiring a sequence read for one or more subject intervals comprises sequencing a subject interval with a sequencing method that provides a sequence read length (or average sequence read length) of at least 20 bases, at least 30 bases, at least 40 bases, at least 50 bases, at least 60 bases, at least 70 bases, at least 80 bases, at least 90 bases, at least 100 bases, at least 120 bases, at least 140 bases, at least 160 bases, at least 180 bases, at least 200 bases, at least 220 bases, at least 240 bases, at least 260 bases, at least 280 bases, at least 300 bases, at least 320 bases, at least 340 bases, at least 360 bases, at least 380 bases, or at least 400 bases. In some instances, acquiring a sequence read for the one or more subject intervals may comprise sequencing a subject interval with a sequencing method that provides a sequence read length (or average sequence read length) of any number of bases within the range described in this paragraph, e.g., a sequence read length (or average sequence read length) of 56 bases.
In some instances, acquiring a sequence read for one or more subject intervals may comprise sequencing with at least 100× or more coverage (or depth) on average. In some instances, acquiring a sequence read for one or more subject intervals may comprise sequencing with at least 100×, at least 150×, at least 200×, at least 250×, at least 500×, at least 750×, at least 1,000×, at least 1,500×, at least 2,000×, at least 2,500×, at least 3,000x, at least 3,500×, at least 4,000×, at least 4,500×, at least 5,000×, at least 5,500×, or at least 6,000× or more coverage (or depth) on average. In some instances, acquiring a sequence read for one or more subject intervals may comprise sequencing with an average coverage (or depth) having any value within the range of values described in this paragraph, e.g., at least 160×.
In some instances, acquiring a read for the one or more subject intervals comprises sequencing with an average sequencing depth having any value ranging from at least 100× to at least 6,000× for greater than about 90%, 92%, 94%, 95%, 96%, 97%, 98%, or 99% of the gene loci sequenced. For example, in some instances acquiring a read for the subject interval comprises sequencing with an average sequencing depth of at least 125× for at least 99% of the gene loci sequenced. As another example, in some instances acquiring a read for the subject interval comprises sequencing with an average sequencing depth of at least 4,100× for at least 95% of the gene loci sequenced.
In some instances, the relative abundance of a nucleic acid species in the library can be estimated by counting the relative number of occurrences of their cognate sequences (e.g., the number of sequence reads for a given cognate sequence) in the data generated by the sequencing experiment.
In some instances, the disclosed methods and systems provide nucleotide sequences for a set of subject intervals (e.g., gene loci), as described herein. In certain instances, the sequences are provided without using a method that includes a matched normal control (e.g., a wild-type control) and/or a matched tumor control (e.g., primary versus metastatic).
In some instances, the level of sequencing depth as used herein (e.g., an X-fold level of sequencing depth) refers to the number of reads (e.g., unique reads) obtained after detection and removal of duplicate reads (e.g., PCR duplicate reads). In other instances, duplicate reads are evaluated, e.g., to support detection of copy number alteration (CNAs).
Alignment is the process of matching a read with a location, e.g., a genomic location or locus. In some instances, NGS reads may be aligned to a known reference sequence (e.g., a wild-type sequence). In some instances, NGS reads may be assembled de novo. Methods of sequence alignment for NGS reads are described in, e.g., Trapnell, C. and Salzberg, S.L. Nature Biotech., 2009, 27:455-457. Examples of de novo sequence assemblies are described in, e.g., Warren R., et al., Bioinformatics, 2007, 23:500-501; Butler, J. et al., Genome Res., 2008, 18:810-820; and Zerbino, D.R. and Birney, E., Genome Res., 2008, 18:821-829. Optimization of sequence alignment is described in the art, e.g., as set out in International Patent Application Publication No. WO 2012/092426. Additional description of sequence alignment methods is provided in, e.g., International Patent Application Publication No. WO 2020/236941, the entire content of which is incorporated herein by reference.
Misalignment (e.g., the placement of base-pairs from a short read at incorrect locations in the genome), e.g., misalignment of reads due to sequence context (e.g., the presence of repetitive sequence) around an actual cancer mutation can lead to reduction in sensitivity of mutation detection, can lead to a reduction in sensitivity of mutation detection, as reads for the alternate allele may be shifted off the histogram peak of alternate allele reads. Other examples of sequence context that may cause misalignment include short-tandem repeats, interspersed repeats, low complexity regions, insertions-deletions (indels), and paralogs. If the problematic sequence context occurs where no actual mutation is present, misalignment may introduce artifactual reads of “mutated” alleles by placing reads of actual reference genome base sequences at the wrong location. Because mutation-calling algorithms for multigene analysis should be sensitive to even low-abundance mutations, sequence misalignments may increase false positive discovery rates and/or reduce specificity.
In some instances, the methods and systems disclosed herein may integrate the use of multiple, individually-tuned, alignment methods or algorithms to optimize base-calling performance in sequencing methods, particularly in methods that rely on massively parallel sequencing (MPS) of a large number of diverse genetic events at a large number of diverse genomic loci. In some instances, the disclosed methods and systems may comprise the use of one or more global alignment algorithms. In some instances, the disclosed methods and systems may comprise the use of one or more local alignment algorithms. Examples of alignment algorithms that may be used include, but are not limited to, the Burrows-Wheeler Alignment (BWA) software bundle (see, e.g., Li, et al. (2009), “Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform”, Bioinformatics 25:1754-60; Li, et al. (2010), Fast and Accurate Long-Read Alignment with Burrows-Wheeler Transform”, Bioinformatics epub. PMID: 20080505), the Smith-Waterman algorithm (see, e.g., Smith, et al. (1981), “Identification of Common Molecular Subsequences”, J. Molecular Biology 147(1):195-197), the Striped Smith-Waterman algorithm (see, e.g., Farrar (2007), “Striped Smith-Waterman Speeds Database Searches Six Times Over Other SIMD Implementations”, Bioinformatics 23(2):156-161), the Needleman-Wunsch algorithm (Needleman, et al. (1970) “A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins”, J. Molecular Biology 48(3):443-53), or any combination thereof.
In some instances, the methods and systems disclosed herein may also comprise the use of a sequence assembly algorithm, e.g., the Arachne sequence assembly algorithm (sec, e.g., Batzoglou, et al. (2002), “ARACHNE: A Whole-Genome Shotgun Assembler”, Genome Res. 12:177-189).
In some instances, the alignment method used to analyze sequence reads is not individually customized or tuned for detection of different variants (e.g., point mutations, insertions, deletions, and the like) at different genomic loci. In some instances, different alignment methods are used to analyze reads that are individually customized or tuned for detection of at least a subset of the different variants detected at different genomic loci. In some instances, different alignment methods are used to analyze reads that are individually customized or tuned to detect each different variant at different genomic loci. In some instances, tuning can be a function of one or more of: (i) the genetic locus (e.g., gene loci, microsatellite locus, or other subject interval) being sequenced, (ii) the tumor type associated with the sample, (iii) the variant being sequenced, or (iv) a characteristic of the sample or the subject. The selection or use of alignment conditions that are individually tuned to a number of specific subject intervals to be sequenced allows optimization of speed, sensitivity, and specificity. The method is particularly effective when the alignment of reads for a relatively large number of diverse subject intervals are optimized.
In some instances, the method includes the use of an alignment method optimized for rearrangements in combination with other alignment methods optimized for subject intervals not associated with rearrangements.
In some instances, the methods disclosed herein further comprise selecting or using an alignment method for analyzing, e.g., aligning, a sequence read, wherein said alignment method is a function of, is selected responsive to, or is optimized for, one or more of: (i) tumor type, e.g., the tumor type in the sample; (ii) the location (e.g., a gene locus) of the subject interval being sequenced; (iii) the type of variant (e.g., a point mutation, insertion, deletion, substitution, copy number variation (CNV), rearrangement, or fusion) in the subject interval being sequenced; (iv) the site (e.g., nucleotide position) being analyzed; (v) the type of sample (e.g., a sample described herein); and/or (vi) adjacent sequence(s) in or near the subject interval being evaluated (e.g., according to the expected propensity thereof for misalignment of the subject interval due to, e.g., the presence of repeated sequences in or near the subject interval).
In some instances, the methods disclosed herein allow for the rapid and efficient alignment of troublesome reads, e.g., a read having a rearrangement. Thus, in some instances where a read for a subject interval comprises a nucleotide position with a rearrangement, e.g., a translocation, the method can comprise using an alignment method that is appropriately tuned and that includes: (i) selecting a rearrangement reference sequence for alignment with a read, wherein said rearrangement reference sequence aligns with a rearrangement (in some instances, the reference sequence is not identical to the genomic rearrangement); and (ii) comparing, e.g., aligning, a read with said rearrangement reference sequence.
In some instances, alternative methods may be used to align troublesome reads. These methods are particularly effective when the alignment of reads for a relatively large number of diverse subject intervals is optimized. By way of example, a method of analyzing a sample can comprise: (i) performing a comparison (e.g., an alignment comparison) of a read using a first set of parameters (e.g., using a first mapping algorithm, or by comparison with a first reference sequence), and determining if said read meets a first alignment criterion (e.g., the read can be aligned with said first reference sequence, e.g., with less than a specific number of mismatches); (ii) if said read fails to meet the first alignment criterion, performing a second alignment comparison using a second set of parameters, (e.g., using a second mapping algorithm, or by comparison with a second reference sequence); and (iii) optionally, determining if said read meets said second criterion (e.g., the read can be aligned with said second reference sequence, e.g., with less than a specific number of mismatches), wherein said second set of parameters comprises use of, e.g., said second reference sequence, which, compared with said first set of parameters, is more likely to result in an alignment with a read for a variant (e.g., a rearrangement, insertion, deletion, or translocation).
In some instances, the alignment of sequence reads in the disclosed methods may be combined with a mutation calling method as described elsewhere herein. As discussed herein, reduced sensitivity for detecting actual mutations may be addressed by evaluating the quality of alignments (manually or in an automated fashion) around expected mutation sites in the genes or genomic loci (e.g., gene loci) being analyzed. In some instances, the sites to be evaluated can be obtained from databases of the human genome (e.g., the HG19 human reference genome) or cancer mutations (e.g., COSMIC). Regions that are identified as problematic can be remedied with the use of an algorithm selected to give better performance in the relevant sequence context, e.g., by alignment optimization (or re-alignment) using slower, but more accurate alignment algorithms such as Smith-Waterman alignment. In cases where general alignment algorithms cannot remedy the problem, customized alignment approaches may be created by, e.g., adjustment of maximum difference mismatch penalty parameters for genes with a high likelihood of containing substitutions; adjusting specific mismatch penalty parameters based on specific mutation types that are common in certain tumor types (e.g. CàT in melanoma); or adjusting specific mismatch penalty parameters based on specific mutation types that are common in certain sample types (e.g. substitutions that are common in FFPE).
Reduced specificity (increased false positive rate) in the evaluated subject intervals due to misalignment can be assessed by manual or automated examination of all mutation calls in the sequencing data. Those regions found to be prone to spurious mutation calls due to misalignment can be subjected to alignment remedies as discussed above. In cases where no algorithmic remedy is found possible, “mutations” from the problem regions can be classified or screened out from the panel of targeted loci.
In some instances, the methods may include the use of an alignment method optimized for aligning sequence reads for DNA that has been converted using, e.g., a bisulfite reaction, to convert unmethylated cytosine residues to uracil (which is interpreted as a thymine in sequencing results). In some instances, sequence reads may be aligned to two genomes in silico, e.g., converted and unconverted versions of the reference genome, using such alignment tools. Methylation occurs primarily at CpG sites, but may also occur less frequently at non-CpG sites (e.g., CHG or CHH sites).
In some instances, the sequence read data may be obtained using a nucleic acid sequencing method comprising the use of a bisulfite-or enzymatic-conversion reaction (e.g., during library preparation) to convert non-methylated cytosine to uracil (see, e.g., Li, et al. (2011), “DNA Methylation Detection: Bisulfite Genomic Sequencing Analysis”, Methods Mol. Biol. 791:11-21).
In some instances, the sequence read data may be obtained using a nucleic acid sequencing method comprising the use of alternative chemical and/or enzymatic reactions (e.g., during library preparation) to convert non-methylated cytosine to uracil (or to convert methylated cytosine to dihydrouracil). For example, enzymatic deamination of non-methylated cytosine using APOBEC to form uracil can be performed using, e.g., the Enzymatic Methyl-seq Kit from New England BioLabs (Ipswich, MA) which uses prior treatment with ten-eleven translocation methylcytosine dioxygenase 2 (TET2) to oxidize 5-mC and 5-hmC, thereby providing greater protection of the methylated cytosine from deamination by APOBEC). Liu, et al. (2019) recently described a bisulfite-free and base-level-resolution sequencing-based method, TET-Assisted Pyridine borane Sequencing (TAPS), for detection of 5mC and 5hmC. The method combines ten-eleven translocation methylcytosine dioxygenase (TET)-mediated oxidation of 5mC and 5hmC to 5-carboxylcytosine (5caC) with pyridine borane reduction of 5caC to dihydrouracil (DHU). Subsequent PCR amplification converts DHU to thymine, thereby enabling conversion of methylated cytosines to thymine (Liu, et al. (2019), “Bisulfite-Free Direct Detection of 5-Methylcytosine and 5-Hydroxymethylcytosine at Base Resolution”, Nature Biotechnology, vol. 37, pp. 424-429).
In some instances, the sequence read data may be obtained using a nucleic acid sequencing method comprising the use of Methylated DNA Immunoprecipitation (MeDIP).
Examples of alignment tools optimized for aligning sequence reads for converted DNA include, but are not limited to, NovoAlign (Novocraft Technologies, Selangor, Malaysia), and the Bismark tool (Krueger, et al. (2011), “Bismark: A Flexible Aligner and Methylation Caller for Bisulfite-Seq Applications”, Bioinformatics 27(11):1571-1572).
Base calling refers to the raw output of a sequencing device, e.g., the determined sequence of nucleotides in an oligonucleotide molecule. Mutation calling refers to the process of selecting a nucleotide value, e.g., A, G, T, or C, for a given nucleotide position being sequenced. Typically, the sequence reads (or base calling) for a position will provide more than one value, e.g., some reads will indicate a T and some will indicate a G. Mutation calling is the process of assigning a correct nucleotide value, e.g., one of those values, to the sequence. Although it is referred to as “mutation” calling, it can be applied to assign a nucleotide value to any nucleotide position, e.g., positions corresponding to mutant alleles, wild-type alleles, alleles that have not been characterized as either mutant or wild-type, or to positions not characterized by variability.
In some instances, the disclosed methods may comprise the use of customized or tuned mutation calling algorithms or parameters thereof to optimize performance when applied to sequencing data, particularly in methods that rely on massively parallel sequencing (MPS) of a large number of diverse genetic events at a large number of diverse genomic loci (e.g., gene loci, microsatellite regions, etc.) in samples, e.g., samples from a subject having cancer. Optimization of mutation calling is described in the art, e.g., as set out in International Patent Application Publication No. WO 2012/092426.
Methods for mutation calling can include one or more of the following: making independent calls based on the information at each position in the reference sequence (e.g., examining the sequence reads; examining the base calls and quality scores; calculating the probability of observed bases and quality scores given a potential genotype; and assigning genotypes (e.g., using Bayes' rule)); removing false positives (e.g., using depth thresholds to reject SNPs with read depth much lower or higher than expected; local realignment to remove false positives due to small indels); and performing linkage disequilibrium (LD)/imputation-based analysis to refine the calls.
Equations used to calculate the genotype likelihood associated with a specific genotype and position are described in, e.g., Li, H. and Durbin, R. Bioinformatics, 2010; 26(5):589-95. The prior expectation for a particular mutation in a certain cancer type can be used when evaluating samples from that cancer type. Such likelihood can be derived from public databases of cancer mutations, e.g., Catalogue of Somatic Mutation in Cancer (COSMIC), HGMD (Human Gene Mutation Database), The SNP Consortium, Breast Cancer Mutation Data Base (BIC), and Breast Cancer Gene Database (BCGD).
Examples of LD/imputation based analysis are described in, e.g., Browning, B.L. and Yu, Z. Am. J. Hum. Genet. 2009, 85(6):847-61. Examples of low-coverage SNP calling methods are described in, e.g., Li, Y., et al., Annu. Rev. Genomics Hum. Genet. 2009, 10:387-406.
After alignment, detection of substitutions can be performed using a mutation calling method (e.g., a Bayesian mutation calling method) which is applied to each base in each of the subject intervals, e.g., exons of a gene or other locus to be evaluated, where presence of alternate alleles is observed. This method will compare the probability of observing the read data in the presence of a mutation with the probability of observing the read data in the presence of base-calling error alone. Mutations can be called if this comparison is sufficiently strongly supportive of the presence of a mutation.
An advantage of a Bayesian mutation detection approach is that the comparison of the probability of the presence of a mutation with the probability of base-calling error alone can be weighted by a prior expectation of the presence of a mutation at the site. If some reads of an alternate allele are observed at a frequently mutated site for the given cancer type, then presence of a mutation may be confidently called even if the amount of evidence of mutation does not meet the usual thresholds. This flexibility can then be used to increase detection sensitivity for even rarer mutations/lower purity samples, or to make the test more robust to decreases in read coverage. The likelihood of a random base-pair in the genome being mutated in cancer is ˜1e-6. The likelihood of specific mutations occurring at many sites in, for example, a typical multigenic cancer genome panel can be orders of magnitude higher. These likelihoods can be derived from public databases of cancer mutations (e.g., COSMIC).
Indel calling is a process of finding bases in the sequencing data that differ from the reference sequence by insertion or deletion, typically including an associated confidence score or statistical evidence metric. Methods of indel calling can include the steps of identifying candidate indels, calculating genotype likelihood through local re-alignment, and performing LD-based genotype inference and calling. Typically, a Bayesian approach is used to obtain potential indel candidates, and then these candidates are tested together with the reference sequence in a Bayesian framework.
Algorithms to generate candidate indels are described in, e.g., McKenna, A., et al., Genome Res. 2010; 20(9):1297-303; Ye, K., et al., Bioinformatics, 2009; 25(21):2865-71; Lunter, G., and Goodson, M., Genome Res. 2011; 21(6):936-9; and Li, H., et al. (2009), Bioinformatics 25(16):2078-9.
Methods for generating indel calls and individual-level genotype likelihoods include, e.g., the Dindel algorithm (Albers, C.A., et al., Genome Res. 2011; 21(6):961-73). For example, the Bayesian EM algorithm can be used to analyze the reads, make initial indel calls, and generate genotype likelihoods for each candidate indel, followed by imputation of genotypes using, e.g., QCALL (Le S.Q. and Durbin R. Genome Res. 2011; 21(6):952-60). Parameters, such as prior expectations of observing the indel can be adjusted (e.g., increased or decreased), based on the size or location of the indels.
Methods have been developed that address limited deviations from allele frequencies of 50% or 100% for the analysis of cancer DNA. (see, e.g., SNVMix-Bioinformatics. 2010 Mar. 15; 26(6): 730-736.) Methods disclosed herein, however, allow consideration of the possibility of the presence of a mutant allele at frequencies (or allele fractions) ranging from 1% to 100% (i.e., allele fractions ranging from 0.01 to 1.0), and especially at levels lower than 50%. This approach is particularly important for the detection of mutations in, for example, low-purity FFPE samples of natural (multi-clonal) tumor DNA.
In some instances, the mutation calling method used to analyze sequence reads is not individually customized or fine-tuned for detection of different mutations at different genomic loci. In some instances, different mutation calling methods are used that are individually customized or fine-tuned for at least a subset of the different mutations detected at different genomic loci. In some instances, different mutation calling methods are used that are individually customized or fine-tuned for each different mutant detected at each different genomic loci. The customization or tuning can be based on one or more of the factors described herein, e.g., the type of cancer in a sample, the gene or locus in which the subject interval to be sequenced is located, or the variant to be sequenced. This selection or use of mutation calling methods individually customized or fine-tuned for a number of subject intervals to be sequenced allows for optimization of speed, sensitivity and specificity of mutation calling.
In some instances, a nucleotide value is assigned for a nucleotide position in each of X unique subject intervals using a unique mutation calling method, and X is at least 2, at least 3, at least 4, at least 5, at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at least 400, at least 500, at least 1000, at least 1500, at least 2000, at least 2500, at least 3000, at least 3500, at least 4000, at least 4500, at least 5000, or greater. The calling methods can differ, and thereby be unique, e.g., by relying on different Bayesian prior values.
In some instances, assigning said nucleotide value is a function of a value which is or represents the prior (e.g., literature) expectation of observing a read showing a variant, e.g., a mutation, at said nucleotide position in a tumor of type.
In some instances, the method comprises assigning a nucleotide value (e.g., calling a mutation) for at least 10, 20, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1,000 nucleotide positions, wherein each assignment is a function of a unique value (as opposed to the value for the other assignments) which is or represents the prior (e.g., literature) expectation of observing a read showing a variant, e.g., a mutation, at said nucleotide position in a tumor of type.
In some instances, assigning said nucleotide value is a function of a set of values which represent the probabilities of observing a read showing said variant at said nucleotide position if the variant is present in the sample at a specified frequency (e.g., 1%, 5%, 10%, etc.) and/or if the variant is absent (e.g., observed in the reads due to base-calling error alone).
In some instances, the mutation calling methods described herein can include the following: (a) acquiring, for a nucleotide position in each of said X subject intervals: (i) a first value which is or represents the prior (e.g., literature) expectation of observing a read showing a variant, e.g., a mutation, at said nucleotide position in a tumor of type X; and (ii) a second set of values which represent the probabilities of observing a read showing said variant at said nucleotide position if the variant is present in the sample at a frequency (e.g., 1%, 5%, 10%, etc.) and/or if the variant is absent (e.g., observed in the reads due to base-calling error alone); and (b) responsive to said values, assigning a nucleotide value (e.g., calling a mutation) from said reads for each of said nucleotide positions by weighing, e.g., by a Bayesian method described herein, the comparison among the values in the second set using the first value (e.g., computing the posterior probability of the presence of a mutation), thereby analyzing said sample.
Additional description of exemplary nucleic acid sequencing methods, mutation calling methods, and methods for analysis of genetic variants is provided in, e.g., U.S. Pat. Nos. 9,340,830, 9,792,403, 11,136,619, 11,118,213, and International Patent Application Publication No. WO 2020/236941, the entire contents of each of which is incorporated herein by reference.
In some instances, the methods described herein may comprise the use of a methylation status calling method, e.g., to call the methylation status of the CpG sites based on the sequence reads and fragments (complementary pairs of forward and reverse sequence reads) derived from DNA that has been subjected to a chemical or enzymatic conversion reaction, e.g., to convert unmethylated cytosine residues to uracil (which is interpreted as a thymine in sequencing results). Examples of such methylation status calling tools include, but are not limited to, the Bismark tool (Krueger, et al. (2011), “Bismark: A Flexible Aligner and Methylation Caller for Bisulfite-Seq Applications”, Bioinformatics 27(11):1571-1572), TARGOMICS (Garinet, et al. (2017), “Calling Chromosome Alterations, DNA Methylation Statuses, and Mutations in Tumors by Simple Targeted Next-Generation Sequencing—A Solution for Transferring Integrated Pangenomic Studies into Routine Practice?”, J. Molecular Diagnostics 19(5):776-787), Bicycle (Grana, et al. (2018) “Bicycle: A Bioinformatics Pipeline to Analyze Bisulfite Sequencing Data”, Bioinformatics 34(8):1414-5), SMAP (Gao, et al. (2015), “SMAP: A Streamlined Methylation Analysis Pipeline for Bisulfite Sequencing”, Gigascience 4:29), and MeDUSA (Wilson, et al. (2016), “Computational Analysis and Integration of MeDIP-Seq Methylome Data”, in: Kulski JK, editor, Next Generation Sequencing: Advances, Applications and Challenges. Rijeka: InTech, p. 153-69). See also, Rauluseviciute, et al. (2019), “DNA Methylation Data by Sequencing: Experimental Approaches and Recommendations for Tools and Pipelines for Data Analysis”, Clinical Epigenetics 11:193.
Also disclosed herein are systems designed to implement any of the disclosed methods for predicting ALT status in a sample from a subject. The systems may comprise, e.g., one or more processors, and a memory unit communicatively coupled to the one or more processors and configured to store instructions that, when executed by the one or more processors, cause the system to: receive targeted sequence read data derived from a sample from a subject; process the targeted sequence read data to identify one or more genomic features; provide the one or more genomic features as input to a trained model configured to predict an ALT status of the sample based on the one or more genomic features; and output the predicted ALT status of the sample.
In some instances, the disclosed systems may further comprise a sequencer, e.g., a next generation sequencer (also referred to as a massively parallel sequencer). Examples of next generation (or massively parallel) sequencing platforms include, but are not limited to, Roche/454's Genome Sequencer (GS) FLX system, Illumina/Solexa's Genome Analyzer (GA), Illumina's HiSeq® 2500, HiSeq® 3000, HiSeq® 4000 and NovaSeq® 6000 sequencing systems, Life/APG's Support Oligonucleotide Ligation Detection (SOLID) system, Polonator's G.007 system, Helicos BioSciences' HeliScope Gene Sequencing system, ThermoFisher Scientific's Ion Torrent Genexus system, or Pacific Biosciences' PacBio® RS system.
In some instances, the disclosed systems may be used for predicting ALT status in any of a variety of samples as described herein (e.g., a tissue sample, biopsy sample, hematological sample, or liquid biopsy sample derived from the subject).
In some instances, the plurality of gene or genomic loci for which sequencing data is processed to determine ALT status may comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, or more than 1000 gene or genomic loci (or any number of gene or gene or genomic loci within the range of 1 to more than 1000 gene or genomic loci).
In some instance, the nucleic acid sequence data is acquired using a next generation sequencing technique (also referred to as a massively parallel sequencing technique) having a read-length of less than 400 bases, less than 300 bases, less than 200 bases, less than 150 bases, less than 100 bases, less than 90 bases, less than 80 bases, less than 70 bases, less than 60 bases, less than 50 bases, less than 40 bases, or less than 30 bases.
In some instances, the determination of ALT status is used to select, initiate, adjust, or terminate a treatment for cancer in the subject (e.g., a patient) from which the sample was derived, as described elsewhere herein.
In some instances, the disclosed systems may further comprise sample processing and library preparation workstations, microplate-handling robotics, fluid dispensing systems, temperature control modules, environmental control chambers, additional data storage modules, data communication modules (e.g., Bluetooth®, WiFi, intranet, or internet communication hardware and associated software), display modules, one or more local and/or cloud-based software packages (e.g., instrument/system control software packages, sequencing data analysis software packages), etc., or any combination thereof. In some instances, the systems may comprise, or be part of, a computer system or computer network as described elsewhere herein.
Input device 220 can be any suitable device that provides input, such as a touch screen, keyboard or keypad, mouse, or voice-recognition device. Output device 230 can be any suitable device that provides output, such as a touch screen, haptics device, or speaker.
Storage 240 can be any suitable device that provides storage (e.g., an electrical, magnetic or optical memory including a RAM (volatile and non-volatile), cache, hard drive, or removable storage disk). Communication device 260 can include any suitable device capable of transmitting and receiving signals over a network, such as a network interface chip or device. The components of the computer can be connected in any suitable manner, such as via a wired media (e.g., a physical system bus 280, Ethernet connection, or any other wire transfer technology) or wirelessly (e.g., Bluetooth®, Wi-Fi®, or any other wireless technology).
Software module 250, which can be stored as executable instructions in storage 240 and executed by processor(s) 210, can include, for example, an operating system and/or the processes that embody the functionality of the methods of the present disclosure (e.g., as embodied in the devices as described herein).
Software module 250 can also be stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as those described herein, that can fetch instructions associated with the software from the instruction execution system, apparatus, or device and execute the instructions. In the context of this disclosure, a computer-readable storage medium can be any medium, such as storage 240, that can contain or store processes for use by or in connection with an instruction execution system, apparatus, or device. Examples of computer-readable storage media may include memory units like hard drives, flash drives and distribute modules that operate as a single functional unit. Also, various processes described herein may be embodied as modules configured to operate in accordance with the embodiments and techniques described above. Further, while processes may be shown and/or described separately, those skilled in the art will appreciate that the above processes may be routines or modules within other processes.
Software module 250 can also be propagated within any transport medium for use by or in connection with an instruction execution system, apparatus, or device, such as those described above, that can fetch instructions associated with the software from the instruction execution system, apparatus, or device and execute the instructions. In the context of this disclosure, a transport medium can be any medium that can communicate, propagate or transport programming for use by or in connection with an instruction execution system, apparatus, or device. The transport readable medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic or infrared wired or wireless propagation medium.
Device 200 may be connected to a network (e.g., network 304, as shown in
Device 200 can be implemented using any operating system, e.g., an operating system suitable for operating on the network. Software module 250 can be written in any suitable programming language, such as C, C++, Java or Python. In various embodiments, application software embodying the functionality of the present disclosure can be deployed in different configurations, such as in a client/server arrangement or through a Web browser as a Web-based application or Web service, for example. In some embodiments, the operating system is executed by one or more processors, e.g., processor(s) 210.
Device 200 can further include a sequencer 270, which can be any suitable nucleic acid sequencing instrument.
Devices 200 and 306 may communicate, e.g., using suitable communication interfaces via network 304, such as a Local Area Network (LAN), Virtual Private Network (VPN), or the Internet. In some embodiments, network 304 can be, for example, the Internet, an intranet, a virtual private network, a cloud network, a wired network, or a wireless network. Devices 200 and 306 may communicate, in part or in whole, via wireless or hardwired communications, such as Ethernet, IEEE 802.11b wireless, or the like. Additionally, devices 200 and 306 may communicate, e.g., using suitable communication interfaces, via a second network, such as a mobile/cellular network. Communication between devices 200 and 306 may further include or communicate with various servers such as a mail server, mobile server, media server, telephone server, and the like. In some embodiments, Devices 200 and 306 can communicate directly (instead of, or in addition to, communicating via network 304), e.g., via wireless or hardwired communications, such as Ethernet, IEEE 802.11b wireless, or the like. In some embodiments, devices 200 and 306 communicate via communications 308, which can be a direct connection or can occur via a network (e.g., network 304).
One or all of devices 200 and 306 generally include logic (e.g., http web server logic) or are programmed to format data, accessed from local or remote databases or other sources of data and content, for providing and/or receiving information via network 304 according to various examples described herein.
Exemplary implementations of the methods and systems described herein include:
29. The method of clause 27 or clause 28, wherein the one or more gene loci comprise ABL1, ACVR1B, AKT1, AKT2, AKT3, ALK, ALOX12B, AMER1, APC, AR, ARAF, ARFRP1, ARID1A, ASXL1, ATM, ATR, ATRX, AURKA, AURKB, AXIN1, AXL, BAP1, BARD1, BCL2, BCL2L1, BCL2L2, BCL6, BCOR, BCORL1, BCR, BRAF, BRCA1, BRCA2, BRD4, BRIP1, BTG1, BTG2, BTK, CALR, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD22, CD274, CD70, CD74, CD79A, CD79B, CDC73, CDH1, CDK12, CDK4, CDK6, CDK8, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CEBPA, CHEK1, CHEK2, CIC, CREBBP, CRKL, CSF1R, CSF3R, CTCF, CTNNA1, CTNNB1, CUL3, CUL4A, CXCR4, CYP17A1, DAXX, DDR1, DDR2, DIS3, DNMT3A, DOT1L, EED, EGFR, EMSY (C11orf30), EP300, EPHA3, EPHB1, EPHB4, ERBB2, ERBB3, ERBB4, ERCC4, ERG, ERRFI1, ESR1, ETV4, ETV5, ETV6, EWSR1, EZH2, EZR, FAM46C, FANCA, FANCC, FANCG, FANCL, FAS, FBXW7, FGF10,FGF12, FGF14, FGF19, FGF23, FGF3, FGF4, FGF6, FGFR1, FGFR2, FGFR3, FGFR4, FH, FLCN, FLT1, FLT3, FOXL2, FUBP1, GABRA6, GATA3, GATA4, GATA6, GID4 (C17orf39), GNA11, GNA13, GNAQ. GNAS, GRM3, GSK3B, H3F3A, HDAC1, HGF, HNF1A, HRAS, HSD3B1, ID3, IDH1, IDH2, IGF1R, IKBKE, IKZF1, INPP4B, IRF2, IRF4, IRS2, JAK1, JAK2, JAK3, JUN, KDM5A, KDM5C, KDM6A, KDR, KEAP1, KEL, KIT, KLHL6, KMT2A (MLL), KMT2D (MLL2), KRAS, LTK, LYN, MAF, MAP2K1, MAP2K2, MAP2K4, MAP3K1, MAP3K13, MAPK1, MCL1, MDM2, MDM4, MED12, MEF2B, MEN1, MERTK, MET, MITF, MKNK1, MLH1, MPL, MRE11A, MSH2, MSH3, MSH6, MST1R, MTAP, MTOR, MUTYH, MYB, MYC, MYCL, MYCN, MYD88, NBN, NF1, NF2, NFE2L2, NFKBIA, NKX2-1, NOTCH1, NOTCH2, NOTCH3, NPM1, NRAS, NT5C2, NTRK1, NTRK2, NTRK3, NUTM1, P2RY8, PALB2, PARK2, PARP1, PARP2, PARP3, PAX5, PBRM1, PDCD1, PDCDILG2, PDGFRA, PDGFRB, PDK1, PIK3C2B, PIK3C2G, PIK3CA, PIK3CB, PIK3R1, PIM1, PMS2, POLD1, POLE, PPARG, PPP2R1A, PPP2R2A, PRDM1, PRKAR1A, PRKCI, PTCH1, PTEN, PTPN11, PTPRO, QKI, RAC1, RAD21, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RB1, RBM10, REL, RET, RICTOR, RNF43, ROS1, RPTOR, RSPO2, SDC4, SDHA, SDHB, SDHC, SDHD, SETD2, SF3B1, SGK1, SLC34A2, SMAD2, SMAD4, SMARCA4, SMARCB1, SMO, SNCAIP, SOCS1, SOX2, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STK11, SUFU, SYK, TBX3, TEK, TERC, TERT, TET2, TGFBR2, TIPARP, TMPRSS2, TNFAIP3, TNFRSF14, TP53, TSC1, TSC2, TYRO3, U2AF1, VEGFA, VHL, WHSC1, WHSC1L1, WT1, XPO1, XRCC2, ZNF217, ZNF703, or any combination thereof.
30. The method of clause 27 or clause 28, wherein the one or more gene loci comprise ABL, ALK, ALL, B4GALNT1, BAFF, BCL2, BRAF, BRCA, BTK, CD19, CD20, CD3, CD30, CD319, CD38, CD52, CDK4, CDK6, CML, CRACC, CS1, CTLA-4, dMMR, EGFR, ERBB1, ERBB2, FGFR1-3, FLT3, GD2, HDAC, HER1, HER2, HR, IDH2, IL-1β, IL-6, IL-6R, JAK1, JAK2, JAK3, KIT, KRAS, MEK, MET, MSI-H, mTOR, PARP, PD-1, PDGFR, PDGFRα, PDGFRβ, PD-L1, PI3Kδ, PIGF, PTCH, RAF, RANKL, RET, ROS1, SLAMF7, VEGF, VEGFA, VEGFB, or any combination thereof.
It should be understood from the foregoing that, while particular implementations of the disclosed methods and systems have been illustrated and described, various modifications can be made thereto and are contemplated herein. It is also not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the preferable embodiments herein are not meant to be construed in a limiting sense. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. Various modifications in form and detail of the embodiments of the invention will be apparent to a person skilled in the art. It is therefore contemplated that the invention shall also cover any such modifications, variations and equivalents.
This application claims priority to U.S. Provisional Patent Application Ser. No. 63/608,705, filed Dec. 11, 2023, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63608705 | Dec 2023 | US |