The present invention relates to semiconductor devices with diode junctions (such as laser diodes), and more particularly to methods and systems for junction device screening.
A semiconductor laser (laser diode) transforms electrical energy into optical energy with relatively high efficiency. A laser diode is typically includes a layer of p-type semiconductor material adjacent to a layer of n-type semiconductor material (referred to as a p-n junction). When electrical current passes from the p-type layer to the n-type layer, stimulated emission of optical radiation results in the active layer. In practice, the stimulated emission is limited to only a portion (the active region) of the active layer. The opposing end faces of the active region are called the facets, which are cleaved and/or etched to define a laser cavity between the two facets. A highly reflective dielectric coating is usually deposited on one facet (the non-output facet), and a semi-reflective dielectric coating on the other facet (the output coupling facet). The optical energy generated by the electric current oscillates between the output facet and the non-output facet, and is partially transmitted by the semi-reflective coating at the output facet to produce a diode laser output beam.
Laser diode bars are constructed from a linear array of such individual laser diodes, with all the diodes typically driven in parallel from two highly conducting electrodes. Stacks of these bars can then be driven in series to form a laser diode array, which is a two dimensional array of individual diodes.
Diode junction aging, associated degradation, and catastrophic failure are serious problems in laser diodes. Specifically, one failure mode of laser diodes is catastrophic optical damage (COD), which occurs suddenly after more gradual diode aging in which the performance of the diode degrades slowly with time. Gradual aging is a result of localized junction heating and overheating caused by filamentation of the diode current and of the output optical beam. Initially, current and optical filamentation of the diode current is caused by local variations in the electrical and optical properties along the diode junction. For example, variations in electric field along the junction result in local current variations and also in local optical laser beam intensity variations along the diode output. These variations in electric field and associated current density variations also lead to temperature variations along the junction. Small changes in the local electric field, for example, can lead to changes in the local current density (relative to the average current density in the junction) and temperature, and therefore changes locally in the intensity of the optical laser beam. Gradual aging, resulting from these current density and temperature variations, may culminate in catastrophic optical damage (COD) and/or catastrophic optical mirror damage (COMD). Diodes may also fail due to other factors such as, but not limited to, gradual aging (also related to filamentation or anomalous conditions). COD and COMD are caused by an instability which rapidly leads to catastrophic overheating and results in the failure of that portion of the diode junction. COD and COMD result from destructive overheating of the junction material and/or the diode facet or coating material.
Multiple modes of laser diode failure arise from filamentation of the drive current to the diode or the diode bar, or filamentation of the optical beam within the laser active medium (the active portion of the p-n junction). These modes can range from overheating and destruction of the output facet, migration of dopants, and junction punch through.
In laser diodes, a predetermined current density must be provided in order to reach lasing threshold, and even higher current densities are needed to reach optimum laser output efficiency, laser power, and laser brightness. However, even if the laser is driven by a so-called constant current source, the current can filament in a region or regions of the active junction resulting in some sections of the junction experiencing higher current density than others. With a constant current source, these regions of higher current density have lower impedance to current flow than surrounding regions which experience lower current density than average. It is the sections of the junction experiencing higher current density that have higher temperature, age more rapidly, and are prone to unstable filamentation instabilities. In cases where the current is filamented in the diode, due for example to variations of electric field across the junction, the total current in the diode must be adjusted so that the sections of higher current density do not result in unacceptably rapid aging. However, accommodating these regions of higher current density in this manner reduces the efficiency and intensity in sections of lower current density, and therefore the overall efficiency and power of the diode is ultimately compromised. Since the bandgap of the semiconductor material changes with temperature, filamentation also leads to shifts and spreads of the output spectrum of the laser diode. These shifts and spreads in the output spectrum can reduce the efficiency of coupling to the pump bands of solid state laser media pumped by these laser diodes. Efficiency is defined as optical power output divided by electrical power input.
Controlling the current density in the junctions of laser diodes, laser diode bars (LDBs) and laser diode arrays (LDAs) is complicated by the fact that the junction bandgap decreases with increasing temperature. Injunction regions having higher perturbed electric fields, the current density is higher. In these sections of the laser diode junction with higher current density, the temperature is higher and the bandgap is lower. When the bandgap shrinks, the current density in this section can increase even more at the expense of the current density in adjacent sections (even with a so-called constant current source powering the diode). The increased current density in this section then increases the temperature locally even further, and the bandgap shrinks even further. This instability can continue until the current density and temperature in this section is sufficiently high to cause cumulative incremental damage (aging), and catastrophic damage (COD and/or COMD). These instabilities can be driven by small variations in electric field across the junction, which can be caused by local changes in the junction material properties or by edge effects at the periphery of the junction. These initial variations can also be caused by crystal defects. The positive feedback process starting with increased current density in regions of higher electric field, leads to locally higher temperature, locally reduced bandgap, and then to even higher local current density. This positive feedback results in rapid thermal runaway, and breakdown locally of the p-n junction. This thermal runaway in the region of current filaments creating “hot spots” is referred to as a current filamentation instability
In laser diode devices, these current filamentation instabilities can be exacerbated by the nonlinear interaction of the laser beam with the laser gain medium. These Kerr-type instabilities can lead to self-focusing of the laser light within the laser device. This instability can interact with the current instability described above, damaging the diode facets and leading to so-called catastrophic optical damage (COD) and catastrophic optical mirror damage (COMD).
Laser diodes, light emitting diodes, and VCSELs are sometimes arranged in bars or arrays. For bars in which multiple devices are driven in parallel, the same type of fault mode mitigation and protection circuitry used for a single device can be effective in suppressing and protecting against instabilities. In a laser diode bar, all of the laser diodes are driven in parallel from the same current node. Physically this current node is typically fabricated from a material with high electrical conductivity and high thermal conductivity such as copper. These current nodes also serve a second function which is to cool the individual diodes by transporting waste heat generated in the diode to a heat sink.
Current instabilities similar to those which occur in single diodes can also occur in laser diode bars. In addition to filamentation within individual diodes in the bar, this instability also causes current hogging, in which the current to the common node for all the diodes in the bar is not shared equally among the diodes in the bar. The diodes that hog more current than the average current (average current=total current to the node/the number of diodes in the bar) are prone to overheating and thermal runaway. Note that such an instability is not prevented by using current regulating circuitry or so-called constant current sources to power the laser diode bar. Although laser diodes were used here as an example, other devices containing semiconducting junctions such as light emitting diodes and VCSELs are also sometimes arranged in parallel in bars, and the same descriptions and conclusions apply to them as well.
Lifetime testing of laser diodes requires exhaustive tests. Using conventional methods, in order to obtain lifetime versus power information a large number of exhaustive tests have to be performed.
There is a need for screening methods that can detect laser diodes that may exhibit failure.
There is also a need for faster methods of estimating lifetime versus power.
In an embodiment of the method for test screening a semiconductor device with diode junctions, non-uniformities and transients (filamentation) in current density and local junction temperature create anomalies (transients, such as, but not limited to, a shift to longer wavelengths of the laser diode output, laser diode voltage variations at fixed diode terminal current, laser diode impedance variations) that can be detected. Upon detection of these transients, the number of transients (also referred to as “fault events”) in a time period, referred to as the rate of transients or rate, is determined and the rate is compared to a predetermined threshold. If the rate exceeds the predetermined threshold, the device is screened out or culled
Another embodiment of the method of these teachings provides a method for obtaining laser diode lifetime as a function of power.
Embodiments of the system of these teachings are also disclosed.
For a better understanding of the present invention, together with other and further objects thereof, reference is made to the accompanying drawings and detailed description and its scope will be pointed out in the appended claims.
a is a schematic graphical representation of results of a calculation of device current showing the effects of a filamentation instability;
b is a schematic graphical representation of results of a calculation of junction temperature showing the effects of a filamentation instability;
c is a schematic graphical representation of results of another calculation of junction temperature showing the decay of the junction temperature from 400° K after turning off an device;
d is a schematic graphical representation of results of another calculation of junction temperature showing the effects (stable filamentation) of an electric field variation of 2% in the perturbed element;
a is a schematic block diagram representation of one embodiment of the system of these teachings for diode screening;
b is a schematic block diagram representation of another embodiment of the system of these teachings for diode screening;
c is a schematic block diagram representation of another embodiment of the system of these teachings for diode screening;
a is a schematic block diagram representation of yet another embodiment of the system of these teachings for diode screening;
b is a schematic block diagram representation of a detailed embodiment of the system of these teachings of
Screening methods and systems that can detect semiconductor junction devices that may exhibit various failure modes are disclosed herein below.
While the embodiments presented below are described in terms of laser diodes, it should be noted that the embodiments could be utilized for other semiconductor devices with diode junctions.
While not desiring to be bound by theory, for the current filamentation instability and transients, an estimate of the instability growth rate can be made in terms of diode materials, geometries and other properties.
Initially, electric field variations and resulting current filamentation can lead to large, but stable changes in the local diode junction temperature and in the intensity of the output laser beam (hereinafter referred to as transients). Later, as these stable current, temperature, and optical intensity variations age the diode junction, the filamentation can become unstable, and the larger unstable current, temperature, and intensity changes in the region can lead to diode failure. Diode failure may also result from various other mechanisms, such as, but not limited to, aging, which are related to anomalous behavior (such as filamentation).
Equations describing the current filamentation instability, which is driven by variations in the electric field across the junction and depend on the decrease in junction bandgap with increasing junction temperature, are provided in Appendix A of U.S. patent application Ser. No. 10/922,753, which is incorporated by reference in its entirety herein, in order to illustrate an instability that can lead to filamentation in semiconductor devices with diode junctions.
d shows results of calculations, according to the methods of Appendix A of U.S. patent application Ser. No. 10/922,753, which is incorporated by reference herein in its entirety, indicating the stable temperature behavior of a current filament created by a non-uniformity in electric field locally across the junction when the junction is driven by a current source. The temperature of the remainder of the junction is also shown. Note that the perturbed element has a temperature of 343° K while the temperature of the remaining elements in the junction are approximately 303° K.
It should be noted that embodiments of the method of these teachings in which the device voltage is detected at a fixed current will be performed similar to the embodiment shown in
One example of the analytic relationship that might exist between the change in diode terminal voltage at a preselected current and the resulting change in junction temperature is provided by the calculation in Appendix A of U.S. patent application Ser. No. 10/922,753 (Equations 5-8 therein).
The junction temperature rise typically leads to a shift in diode emission to longer or shorter wavelengths. While not desiring to be bound by theory, this wavelength shift can be a direct result of the decrease in photonic junction bandgap with increasing temperature. Such wavelength shifts in the diode output beam can also be used to sense the onset of filamentation, since filamentation instabilities and transients produce regions of shifted temperature and thus a change in the wavelength of the radiation.
a shows a schematic block diagram representation of an embodiment of a system 492 for diode screening. Referring to
b shows a schematic block diagram representation of another embodiment of a system 490 for diode screening. Referring to
c shows a schematic block diagram representation of a further embodiment of a system 590 for diode screening. Referring to
The diode terminal voltage decreases from its equilibrium value as the transition is made from stable operation to unstable operation in a diode laser driven by a substantially constant current. Typically, this decrease is significant and can easily be detected from the diode or diode bar terminals. This decrease in device terminal (or junction) voltage accompanies the transition from stable to transient operation (from unfilamented to filamented operation), and therefore is used in the above described embodiment as a signal to screen or cull the device.
a shows a schematic block diagram representation of yet another embodiment of a system 600 for diode screening. Referring to
Wavelength shift data (previously obtained) 740 indicating the occurring of transients (anomalous device behavior and parameters) is compared to the output of the optical sensing device 720 by a comparison/processing system 730. In one embodiment the wavelength shift data (previously obtained) 740 provides a predetermined threshold. When the signal from the optical system sampling a fraction of the output reaches a certain threshold, the detector signal indicates that, in the laser diode operation, a transient has occurred. If the comparison indicates that a transient has occurred, the comparator signal is provided to the components 590-597 in
One embodiment of the comparison/processing system 730 is shown in
In the embodiments of the system for diode screening shown in
Similarly, in the embodiment of the system for diode screening shown in
A signal indicative of the voltage and a signal indicative of the current may be used to produce a signal indicative of a relationship between the voltage and the current, such as the impedance of a laser diode.
It should be noted that although the embodiments presented above utilize the rate of transients, if the time period utilized is constant, the number of transients can be used in the same manner that the rate is used in the methods and systems of these teachings.
An embodiment of the method of these teachings for estimating lifetime as a function of output power (or equivalently, pump power) is shown in
In the instance in which the relationship between the transient rate and the lifetime of the laser diode (or semiconductor junction) is linear, the lifetime at a power less than the rated power (referred to as a derated power) can be obtained by multiplying the lifetime at rated power by ratio of the transient rate at the predetermined limit (in one instance, 20% higher than the rated power) to the transient rate at the derated power.
In the instance in which the relationship between the transient rate and the lifetime of the laser diode (or semiconductor junction) is not linear, an indication of the relationship between the transient rate and the lifetime of the laser diode (or semiconductor junction) can be obtained by performing lifetime and transient rate measurements at a limited number of values of power. Utilizing the curve or functional relationship between transient date and lifetime obtained from the limited number of measurements (obtained in one instance by means of curve fitting) and the more detailed expression for the transient rate versus power, an estimate of lifetime can be obtained. In another embodiment, a curve or functional relationship for lifetime versus power is obtained from the limited number of measurements and the more detailed expression of the transient rate versus power can be used to refine an estimate of lifetime.
In an exemplary embodiment of the method of
The embodiments of the system of these teachings shown in
The embodiments of the system of these teachings shown in
It should be noted that although in some of the embodiments presented above the methods and systems are described in terms of the device terminal voltage, in some embodiments the methods and systems can also be implemented in terms of the device junction voltage. The term “device voltage” as used hereinafter refers to, but not limited to, device terminal voltage (also called terminal voltage) or device junction voltage (also called junction voltage).
It should be noted that, although the term laser diode is utilized in the description of the methods and systems of these teachings, the method and system of these teachings can also be applied to laser diode arrays.
Although the above embodiments have been described in reference to laser diode screening, the methods and systems of these teachings can be utilized for screening of semiconductor devices with diode junctions.
It should be noted that the systems of these teachings can be partially (or in some cases completely) integrated onto the laser diode bar.
It should be noted that, although the above teachings, are presented in terms of filamentation, other anomalous conditions can result in the same observed behavior and are within the scope of these teachings. These teachings are not limited to any one model of anomalous behavior.
Although the invention has been described with respect to various embodiments, it should be realized that these teachings is also capable of a wide variety of further and other embodiments all within the spirit and scope of the appended claims.
This application claims priority of U.S. Provisional Application 60/710,084 entitled “METHODS AND SYSTEMS FOR HIGH CURRENT SEMICONDUCTOR DIODE JUNCTION SCREENING” filed on Aug. 22, 2005, and of U.S. Provisional Application 60/734,440 entitled “METHODS AND SYSTEMS FOR HIGH CURRENT SEMICONDUCTOR DIODE JUNCTION SCREENING AND LIFETIME ESTIMATION,” filed on Nov. 7, 2005, both of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3997849 | Thommen | Dec 1976 | A |
4415815 | Dijkmans et al. | Nov 1983 | A |
5287367 | Yanagawa | Feb 1994 | A |
5604758 | AuYeung et al. | Feb 1997 | A |
5812580 | Nabiev et al. | Sep 1998 | A |
5818857 | Palmer | Oct 1998 | A |
5966394 | Spurr et al. | Oct 1999 | A |
6229833 | Noda et al. | May 2001 | B1 |
6249140 | Shigihara | Jun 2001 | B1 |
6873171 | Reynick | Mar 2005 | B2 |
7453261 | Mark | Nov 2008 | B1 |
7495874 | Mangano | Feb 2009 | B2 |
20020190666 | Sakamoto et al. | Dec 2002 | A1 |
20030039280 | Mangano et al. | Feb 2003 | A1 |
20030048820 | Fischer | Mar 2003 | A1 |
20030058906 | Finn et al. | Mar 2003 | A1 |
20030091077 | Fischer | May 2003 | A1 |
20030152390 | Stewart et al. | Aug 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
60710084 | Aug 2005 | US | |
60734440 | Nov 2005 | US |