Methods and systems related to remote tamper detection

Information

  • Patent Grant
  • 9035756
  • Patent Number
    9,035,756
  • Date Filed
    Thursday, March 14, 2013
    12 years ago
  • Date Issued
    Tuesday, May 19, 2015
    9 years ago
Abstract
Remote tamper detection. At least some of the example embodiments are methods including: receiving Global Positioning System (GPS) signals indicative of a location, the receiving by a first device coupled to an asset; periodically sending a signal of operability between the first device and a second device, the second device coupled to the asset, and the second device configured to selectively disable the asset; determining that receipt of the signal of operability has ceased; and then issuing an indication of the location of the first device responsive to the determining that receipt of the signal of operability has ceased, the issuing from the first device by a wireless transmission to a remote operations center.
Description
BACKGROUND

In situations where an individual has obtained financing for an asset, such as a vehicle, financing institutions may be interested tracking the location of the asset. Tracking the location of the asset may be beneficial in ensuring the borrower does not abscond with the asset, or otherwise fails to make payments. Thus, advancements in tracking financed assets may result in a lower payment default.





BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of exemplary embodiments, reference will now be made to the accompanying drawings in which:



FIG. 1 shows, in block diagram form, a system in accordance with at least some embodiments;



FIG. 2 shows, in block diagram form, a system in accordance with at least some embodiments;



FIG. 3 shows, in block diagram form, a system in accordance with at least some embodiments;



FIG. 4 shows, in block diagram form, a computer system in accordance with at least some embodiments; and



FIG. 5 shows a flow diagram depicting an overall method in accordance with at least some embodiments.





NOTATION AND NOMENCLATURE

Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, different companies may refer to a component and/or method by different names. This document does not intend to distinguish between components and/or methods that differ in name but not in function.


In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . . ” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device that connection may be through a direct connection or through an indirect connection via other devices and connections.


“Remote” shall mean one kilometer or more.


“Supercapacitor” shall mean one or more electrical components, either alone or in parallel having a capacitance density of at least 3.0 millifarads per cubic millimeter (mF/mm3).


“Periodically,” in reference to sending a signal, shall mean a recurring action, but shall not require each action to occur at equal intervals of time.


DETAILED DESCRIPTION

The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.


Various embodiments are directed to systems and methods of detecting tampering of at least one onboard device coupled to a vehicle. In particular, two devices installed within a vehicle are communicatively linked, and if the link is determined to have been improperly broken, alerts and/or actions are subsequently taken. The developmental context is detecting tampering with at least one onboard device used to aid in ensuring payment on a vehicle loan, and thus the specification will be based on the development context; however, the developmental context shall not be read as a limitation as to the applicability of the various embodiments, as the methods described herein may apply to other tamper detecting scenarios for other mobile and non-mobile assets. The specification first turns to a high level system overview.



FIG. 1 shows, in block diagram form, a system in accordance with at least some embodiments. In particular, the system comprises an operations center 100 communicatively coupled to a vehicle 114 by way of a wireless network 110. The operations center 100 comprises a processor 102. In some embodiments, the processor 102 may be a stand-alone computer system, or the processor may comprise a plurality of computer systems communicatively coupled and performing the functions of the operations center 100, the functions discussed more thoroughly below. The processor 102 may couple to an administrative user interface 104. The administrative user interface 104 may enable an administrative agent 106 to control or configure the operation of the system.


In one embodiment, in order to communicate with vehicle 114, the operations center 100 may further comprise a network interface 108 communicatively coupled to the processor 102. By way of the network interface 108, the processor 102, and any programs executing thereon, may communicate with vehicle 114, such as by wireless network 110. Wireless network 110 is illustrative of any suitable communications network, such as a cellular network, a Wireless Fidelity (Wi-Fi) network, satellite communication network, or other mechanism, or combinations of mechanisms, for transmitting information between the operations center 100 and the vehicle 114.


In accordance with at least some embodiments, the operations center 100 is remotely located from the vehicle 114. In some cases, the operations center 100 and vehicle 114 may be located within the same city or state. In other cases, the operations center 100 may be many hundreds or thousands of miles from vehicle 114, and thus the illustrative wireless network 110 may span several different types of communication networks.


Still referring to FIG. 1, the system further comprises a vehicle 114 communicatively coupled to operations center 100 by way of the illustrative wireless network 110. The vehicle 114 may comprise at least two onboard devices: illustrative onboard device 116 and illustrative onboard device 118.


At least one, if not both, onboard devices may have location tracking capabilities and/or vehicle disablement capabilities. Tracking the location of the vehicle may be beneficial in many situations. In one example situation, a lending institution financing a vehicle purchase may be interested in the ability to track the vehicle in the event timely payments are not made on the loan. In particular, a driver purchases vehicle 114 by receiving financing from a financing institution (e.g., a bank, a dealership). The financing institution may request that onboard device 116 and/or 118 be installed within vehicle 114 to track the location of the vehicle and/or to disable the vehicle in the event of a non-payment. A driver who has not made a payment, or who is intending not to make a payment, and aware of the possibility of vehicle disablement or repossession may attempt to tamper with the disabling onboard device by removing it from the vehicle, or otherwise disconnecting it. In order to prevent the driver from tampering with the device and thus circumventing the locating tracking and/or disablement capabilities, onboard devices 116 and 118 are placed within different areas of vehicle 114. For example, one onboard device may be located in an inconspicuous location, such as within an electrical compartment under the hood or within the luggage compartment, and the other onboard device may be located in a conspicuous location, such as under the dashboard of the vehicle. By placing the onboard devices in different locations, the driver may not be aware of a second device, or may have difficulty locating the second device.


In order to detect tampering, the onboard devices communicate with each other. In one embodiment, if one or both of the onboard devices detects there is no longer a communicative link between the devices, the lack of a signal may indicate tampering. For example, onboard device 116 may have the capability of sending onboard device 118 a communication related to operability. The onboard device 118 may have the capability of sending a return message to the onboard device 116 acknowledging receipt of the message of operability. In the alternative, onboard device 118 may send the message of operability, whereas onboard device 116 may send the message acknowledging receipt. Thus, onboard devices 116 and 118 have two-way communications capabilities with each other.


Upon receiving a message from the other onboard device, one or both of the onboard devices may take appropriate action, such as sending an alert of tampering, sending an indication of last known location, and/or disabling the vehicle. In order to more fully understand the methods and system associated with detecting tampering and taking subsequent action, the onboard devices will now be described in more detail.



FIG. 2 shows the overall system from FIG. 1 combined with a more detailed depiction of onboard device 116. In particular, onboard device 116 is configured to couple to vehicle 114. Onboard device 116 may be defined as a separately enclosed device both mechanically and electrically coupled to the vehicle 114 by way of connector 122. That is, connector 122 may provide mechanical support that holds the onboard device 116 in place, and/or by way of the connector 122 the onboard device 116 may electrically couple to other components of the vehicle 114. For example, connector 122 may enable coupling between onboard device 116 to the onboard diagnostic version two (“OBD-II”) port, thus giving onboard device 116 the ability to communicate with one or more components of the vehicle 114 such as the vehicle computer (not specifically shown), a starter solenoid relay connector, or fuel pump relay connector.


Onboard device 116 may comprise a computer system 200. Although not specifically shown, the onboard device computer system 200 may comprise a processor, where the processor may communicate with subsystems of the vehicle over the connector 122, such as a computer system of the vehicle 114 (not specifically shown). The onboard device 116 configured to couple to the OBD-II port may also have the ability to read or determine data associated with the vehicle 114, such as determining the identity of the vehicle (e.g., by reading the vehicle identification number, hereafter “VIN”), and may also have the ability to command the computer system of the vehicle to disable certain functions (e.g. starter circuit, spark ignition, fuel system) such that the vehicle 114 may be disabled at the command of the onboard device 116, discussed in more detail below.


The onboard device 116 may further comprise a wireless network interface 202 coupled to the computer system 200. By way of the wireless network interface 202, programs executed by the computer system 200 may communicate with other devices. In particular, the wireless network interface 202 may be the interface through which onboard device 116 sends and receives signals of operability and communications to and from onboard device 118. In some embodiments, the wireless network interface 202 enables the computer system 200 to communicate with operations center 100 by way of a wireless transmission through the wireless network 110.


In addition to communications over the wireless network interface 202, onboard device 116 may comprise a speaker 204 which broadcasts sounds received by a microphone coupled to onboard device 118 (discussed more below). The sounds may be alerts indicative of a loss of power or communication, and thus may be indicative of tampering between the devices.


Furthermore, onboard device 116 may comprise a disablement system 208 that can selectively disable the vehicle 114. Disablement may take many forms. For example, the onboard device may disable the vehicle by any suitable technique, such as disabling the ability to crank the engine, disabling the spark ignition system, disabling the fuel pump relay, disabling by way of a starter interrupt, or a combination of disabling mechanisms. In other embodiments, the onboard device 116 may be a relay replacement device. For example, a starter relay is a device within a vehicle that, when activated, provides electrical current to the solenoid of the starter. In the event communication is lost with onboard device 118, the onboard device 116 may not provide current to the solenoid in spite of a command to do so. Thus, connector 122 may be a relay connector. In yet still other cases, the onboard device 116 may be a relay replacement device for any system that could disable the vehicle (e.g., either prevents the motor from starting, or prevents the motor from continuing to operate).


In addition, onboard device 116 may disable vehicle 114 on command from the operations center 100. In particular, the operations center may comprise disablement services described above, and at the request of any authorized entity (e.g., an administrative agent, a lending institution, a dealership), vehicle 114 may be disabled. Onboard device 118 will now be discussed in more detail with reference to FIG. 3.



FIG. 3 shows the overall system with a more detailed depiction of onboard device 118. In particular, onboard device 118 is configured to couple to vehicle 114. Like onboard device 116, onboard device 118 is a separately enclosed device distinct from onboard device 116. The onboard device 118 may be both mechanically and electrically coupled to the vehicle 114 by way of connector 124. That is, connector 124 may provide mechanical support that holds the onboard device 118 in place, and/or by way of the connector 124 the onboard device 118 may electrically couple to other components of the vehicle 114. For example, connector 122 may enable coupling between onboard device 118 to the OBD-II port, thus giving onboard device 118 the ability to communicate with one or more components of the vehicle 114 such as the vehicle computer (not specifically shown).


In one embodiment, the onboard device 118 further comprises a global position system (GPS) receiver 302 coupled to onboard computer system 300. The GPS receiver 302 receives signals from an array of GPS satellites orbiting the earth, and based on timing associated with arrival of those signals, a location of the onboard device 118 (and thus the vehicle 114) can be determined. In some cases, the GPS receiver 302 has sufficient functionality to calculate location, and thus the data passed to computer system 300 may be a direct indication of location. In other cases, the functionality to determine location may be shared between the GPS receiver 302 and software executing on the processor 102, by way of wireless network 110. That is, the GPS receiver 302 may receive the plurality of GPS signals and pass the information to a program on the processor 102, which program may then make the determination as to location of the onboard device 118, and thus the vehicle 114.


In one embodiment, the onboard device 118 tracks the vehicle with high precision, thus one may be able to identify the street and block at which the vehicle is passing at any given time (though the onboard device 118 may not necessarily have or contain street level databases). In other cases, the onboard device 118 may act only to determine the end-points of each trip.


In other embodiments, location determination by the onboard device 118 may be by mechanisms other than strictly GPS signals. For example, in some embodiments, the location may be fully or partially determined based on the signals of the wireless network interface 306. For example, location may be broadly determined by knowing the location of a particular tower with which the wireless network interface 306 or cellular transceiver 304 is communicating. In other cases, location may be determined by triangulation if multiple towers are in communication range of the wireless network interface 306. In some cases, the determination of location based on the wireless communication network is performed by the processor of computer system 300 coupled to onboard device 118, but in other cases the tower information is sent to the operations center 100 to perform the bulk of the location calculations.


In another embodiment, location tracking may be accomplished by way of cellular signal triangulation. Still referring to FIG. 3, the onboard device 118 may further comprise a cellular transceiver 304, where the cellular transceiver 304 may communicate with nearby cellular towers in order to determine location by way of cellular signal triangulation.


In some cases, the location determined by the onboard device 118 may only be a position on the face of the earth, for example, latitude and longitude. The operations center 100, receiving a stream of locations from the onboard device 118, may correlate to streets and addresses. In other cases, the onboard device 118 may have sufficient memory and computing functionality to not only determine position in a latitude and longitude sense, but also to correlate the positions to cities, streets, block numbers and addresses.


Although the onboard devices 116 and 118 have been described as disablement capable and location tracking devices respectively, either device may be designed and implemented to achieve either of or both functionalities.


Onboard devices 116 and 118 may communicate wirelessly with each other by way of, in one example, wireless network interfaces 202 and 306, respectively. By way of wireless network interfaces 202 and 306, programs executed by the onboard device computer systems may communicate with each other. For simplification purposes, discussion will refer to wireless network interface 306 coupled to onboard device 118; however, wireless network interface 202 may be configured and may operate in a similar way.


Referring still to FIG. 3, the illustrative wireless network interface 306 may have a limited distance over which communication may take place. The range of over which communication may take place need not extend beyond the inside of the vehicle 114, where the onboard devices are located. The protocol over which the wireless network interface 306 communicates may likewise take many forms. In one embodiment, the wireless network interface 306 implements a radio frequency (RF) communication protocol (i.e., radio frequency communication by way of electromagnetic waves propagating through the air). For example, the communication may be implemented by way of ZIGBEE® brand network protocols, where the ZIGBEE® trademark is owned by Zigbee Alliance; or a Bluetooth communication protocol.


In another embodiment, communication between the onboard devices 116 and 118 is audible, sub-audible, or super-audible. For example, a microphone 308 (illustratively shown as part of onboard device 118) may couple to one or either of the onboard devices and receive an acoustic signal emitted from the other onboard device, such as speaker 204 (illustrative shown as part of onboard device 116) which can be recognized and analyzed by computer systems based on frequencies above, below, and within the audible range. In yet another embodiment, the two onboard devices may be connected by way of a hardwired connection (e.g., an Ethernet network).


Regardless of how the onboard devices communicate with each other, communication between the two devices may be indicative of two operable systems. In other words, as long as the devices are communicating with each other, there will be no alert sent related to suspected tampering.


If a driver tampers with one of the onboard devices, such as by removing the device, and thus breaks or severs the communication between onboard devices 116 and 118, the system may recognize that one or both of the onboard devices has been tampered with, and one of the onboard devices, such as onboard device 118, may send an indication of the last known location of vehicle 114 to the operations center 100 or to a third party, such as administrative agent 106. The indication of last known location may double as both an indication of tampering, and also as a way to aid the lending institution or third party in locating the vehicle.


Furthermore, onboard device 116 may be, in part, a starter relay replacement device, and thus may act as an operational starter relay when the onboard device 118 is communicatively coupled with onboard device 116. In the event communication is lost with the onboard device 118, the onboard device 116 may not provide current to the solenoid in spite of a command to do so, thus disabling the vehicle 114.


In one embodiment, severing the connection between the two onboard devices may also sever the power to one or more of the onboard devices, making it difficult to send off an alert indicative of tampering or an indication of last known location. Thus, one or more of the onboard devices 116 and 118 may be powered by a separate electric power supply 206 and/or 310, respectively. For purposes of simplification, discussion on the electric power supply will be made with reference to onboard device 118 and electric power supply 310; however, electric power supply 206 may be configured and may operate similarly.


Electric power supply 310 may be any device configurable for receiving and distributing electric power through the onboard device 118. Electric power supply 310 may have wires or cables for connecting a source of power. Further, electric power supply may be a battery; capacitor; supercapacitor; a low-voltage shared bus bar; or other electric charge storage device.


In one embodiment, electric power supply 310 is a supercapacitor. In particular, a supercapacitor may have a higher capacitance value per unit volume, with a capacitance value of up to 12,000 farads. Additionally, the supercapacitor may be able tolerate large numbers of rapid charge and discharge cycles. In the event that another source of electric power to one or more of the onboard devices is cut off, the supercapacitor may maintain enough voltage to send an alert to a third party, either directly by way of wireless network 110, or by way of the operations center 100, where, the alert may be an indication of last known location of the vehicle 114. Alternatively, for example, if power is cut off from onboard device 116 due to being removed from or disconnected from the vehicle 114, onboard device 116 may send a signal indicative of power loss (and thus potential tampering) to onboard device 118, requesting an alert be sent to the operations center or a third party. In order to reduce the amount of battery power needed for the onboard devices to communicate with one another, or for the onboard devices to communicate with remote locations, communications related to operability may be sent at periodic, as opposed to continuous, intervals. For example, the onboard devices may communicate with each other when the ignition system of the vehicle is activated. In another example, the onboard devices may communicate with each other every hour.


In the above discussion, onboard device 116 is described as having the capability to selectively disable the vehicle from a command issued from the operations center 100. Furthermore, onboard device 118 has been described as having the capability to track the location of the vehicle through a plurality of location tracking devices and methods, as well as having the capability to send a last known location indication to a third party when communication with the onboard device 116 has been broken. In another embodiment, however, onboard device 116 may also have the capability to track location, and send off a last known location indication if tampering has occurred. Thus, in this alternative embodiment, both onboard devices have the capability to send off a last-known indication of location if power to the other onboard device has been cut.


Although the above description has discussed ascertaining whether tampering has occurred between two communicatively coupled onboard devices, any number of onboard devices may be contemplated. Furthermore, although the above discussion refers to at least two onboard devices communicatively coupled, it is also possible that two or more onboard devices are coupled by a hardwire connection, such as electrical wires or cables.



FIG. 4 shows a computer system 400, which is illustrative of a computer system upon which the various embodiments may be practiced. The computer system 400 may be illustrative of, for example, computer system 200 coupled to the onboard device 116. In another embodiment, the computer system 400 may be illustrative of, for example, computer system 300 coupled to the onboard device 118. In yet another embodiment, computer system 400 may be illustrative of processor 102. The computer system 400 comprises a processor 402, and the processor couples to a main memory 404 by way of a bridge device 406. Moreover, the processor 402 may couple to a long term storage device 408 (e.g., a hard drive, solid state disk, memory stick, optical disc) by way of the bridge device 406. Programs executable by the processor 402 may be stored on the storage device 408, and accessed when needed by the processor 402. The program stored on the storage device 408 may comprise programs to implement the various embodiments of the present specification, such as sending an indication of the last known location of vehicle 114 in the event of device tampering. In some cases, the programs are copied from the storage device 408 to the main memory 404, and the programs are executed from the main memory 404. Thus, the main memory 404, and storage device 408 shall be considered computer-readable storage mediums.


A method of remote tamper detection will now be discussed in more detail. FIG. 5 shows a flow diagram depicting an overall method of detecting whether tampering has occurred with respect to location tracking and disablement devices. The method starts (block 500) by receiving Global Positioning System (GPS) signals indicative of a location, the receiving by a first device coupled to an asset (block 502). The method moves to periodically sending a signal of operability between the first device and a second device, the second device coupled to the asset, and the second device configured to selectively disable the asset (block 504); determining that receipt of the signal of operability has ceased (block 506); and issuing an indication of the location of the first device responsive to the determining that receipt of the signal of operability has ceased, the issuing from the first device by a wireless transmission to a remote operations center (block 508). Thereafter, the method ends (block 510).


From the description provided herein, those skilled in the art are readily able to combine software created as described with appropriate general-purpose or special-purpose computer hardware to create a computer system and/or computer sub-components in accordance with the various embodiments, to create a computer system and/or computer sub-components for carrying out the methods of the various embodiments and/or to create a non-transitory computer-readable medium (i.e., not a carrier wave) that stores a software program to implement the method aspects of the various embodiments.


References to “one embodiment,” “an embodiment,” “some embodiments,” “various embodiments,” or the like indicate that a particular element or characteristic is included in at least one embodiment of the invention. Although the phrases may appear in various places, the phrases do not necessarily refer to the same embodiment.


The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. For example, the various embodiments have been described in terms of detecting tampering of a remote location tracking device. This context, however, shall not be read as a limitation as to the scope of one or more of the embodiments described—the same techniques may be used for other embodiments. It is intended that the following claims be interpreted to embrace all such variations and modifications.

Claims
  • 1. A method comprising: receiving signals indicative of a location, the receiving by a first device coupled to an asset;periodically sending a signal of operability between the first device and a second device, the second device coupled to the asset, and the second device configured to selectively disable the asset;determining that receipt of the signal of operability has ceased; andissuing an indication of the location of the first device responsive to the determining that receipt of the signal of operability has ceased, the issuing from the first device by a wireless transmission to a remote operations center.
  • 2. The method of claim 1 wherein sending the signal of operability further comprises sending the signal when an ignition system of the asset is activated.
  • 3. The method of claim 1 wherein issuing the indication of the location of the first device further comprises issuing an alert indicative of tampering with at least one selected from the group consisting of: the first device; and the second device.
  • 4. The method of claim 1 wherein sending the signal of operability further comprises sending the signal by way of at least one selected from the group consisting of: a radio frequency transmission; an acoustic transmission; and a hardwire connection.
  • 5. The method of claim 1 wherein the asset is a vehicle.
US Referenced Citations (136)
Number Name Date Kind
4335370 Scalley et al. Jun 1982 A
4592443 Simon Jun 1986 A
4624578 Green Nov 1986 A
4688026 Scribner et al. Aug 1987 A
4700296 Palmer, Jr. et al. Oct 1987 A
4738333 Collier et al. Apr 1988 A
4800590 Vaughan Jan 1989 A
5014206 Scribner et al. May 1991 A
5132968 Cephus Jul 1992 A
5228083 Lozowick et al. Jul 1993 A
5426415 Prachar et al. Jun 1995 A
5490200 Snyder et al. Feb 1996 A
5495531 Smiedt Feb 1996 A
5510780 Norris et al. Apr 1996 A
5619573 Brinkmeyer et al. Apr 1997 A
5673318 Bellare et al. Sep 1997 A
5708712 Brinkmeyer et al. Jan 1998 A
5775290 Staerzi et al. Jul 1998 A
5797134 McMillan et al. Aug 1998 A
5818725 McNamara et al. Oct 1998 A
5819869 Horton Oct 1998 A
5898391 Jefferies et al. Apr 1999 A
5917405 Joao Jun 1999 A
5970143 Schneier et al. Oct 1999 A
6025774 Forbes Feb 2000 A
6026922 Horton Feb 2000 A
6032258 Godoroja et al. Feb 2000 A
6064970 McMillan et al. May 2000 A
6088143 Bang Jul 2000 A
6130621 Weiss Oct 2000 A
6157317 Walker Dec 2000 A
6185307 Johnson, Jr. Feb 2001 B1
6195648 Simon et al. Feb 2001 B1
6249217 Forbes Jun 2001 B1
6278936 Jones Aug 2001 B1
6353776 Rohrl et al. Mar 2002 B1
6370649 Angelo et al. Apr 2002 B1
6380848 Weigl et al. Apr 2002 B1
6401204 Euchner et al. Jun 2002 B1
6429773 Schuyler Aug 2002 B1
6489897 Simon Dec 2002 B2
6587739 Abrams et al. Jul 2003 B1
6601175 Arnold et al. Jul 2003 B1
6611201 Bishop et al. Aug 2003 B1
6611686 Smith et al. Aug 2003 B1
6615186 Kolls Sep 2003 B1
6665613 Duvall Dec 2003 B2
6714859 Jones Mar 2004 B2
6717527 Simon Apr 2004 B2
6741927 Jones May 2004 B2
6804606 Jones Oct 2004 B2
6812829 Flick Nov 2004 B1
6816089 Flick Nov 2004 B2
6816090 Teckchandani et al. Nov 2004 B2
6828692 Simon Dec 2004 B2
6868386 Henderson et al. Mar 2005 B1
6870467 Simon Mar 2005 B2
6873824 Flick Mar 2005 B2
6888495 Flick May 2005 B2
6917853 Chirnomas Jul 2005 B2
6924750 Flick Aug 2005 B2
6950807 Brock Sep 2005 B2
6952645 Jones Oct 2005 B1
6961001 Chang et al. Nov 2005 B1
6972667 Flick Dec 2005 B2
6985583 Brainard et al. Jan 2006 B1
6993658 Engberg et al. Jan 2006 B1
7005960 Flick Feb 2006 B2
7015830 Flick Mar 2006 B2
7020798 Meng et al. Mar 2006 B2
7031826 Flick Apr 2006 B2
7031835 Flick Apr 2006 B2
7039811 Ito May 2006 B2
7053823 Cervinka et al. May 2006 B2
7061137 Flick Jun 2006 B2
7091822 Flick et al. Aug 2006 B2
7103368 Teshima Sep 2006 B2
7123128 Mullet et al. Oct 2006 B2
7124088 Bauer et al. Oct 2006 B2
7133685 Hose et al. Nov 2006 B2
7149623 Flick Dec 2006 B2
7205679 Flick Apr 2007 B2
7224083 Flick May 2007 B2
7266507 Simon et al. Sep 2007 B2
7299890 Mobley Nov 2007 B2
7323982 Staton et al. Jan 2008 B2
7327250 Harvey Feb 2008 B2
7379805 Olsen, III et al. May 2008 B2
7389916 Chirnomas Jun 2008 B2
7561102 Duvall Jul 2009 B2
7823681 Crespo et al. Nov 2010 B2
7873455 Arshad et al. Jan 2011 B2
7877269 Bauer et al. Jan 2011 B2
7930211 Crolley Apr 2011 B2
8018329 Morgan et al. Sep 2011 B2
8095394 Nowak et al. Jan 2012 B2
8140358 Ling et al. Mar 2012 B1
8217772 Morgan et al. Jul 2012 B2
8370027 Pettersson et al. Feb 2013 B2
20010040503 Bishop Nov 2001 A1
20020019055 Brown et al. Feb 2002 A1
20020193926 Katagishi et al. Dec 2002 A1
20030036823 Mahvi Feb 2003 A1
20030151501 Teckchandani et al. Aug 2003 A1
20030191583 Uhlmann et al. Oct 2003 A1
20040088345 Zellner et al. May 2004 A1
20040153362 Bauer et al. Aug 2004 A1
20040176978 Simon et al. Sep 2004 A1
20040177034 Simon et al. Sep 2004 A1
20040203974 Seibel Oct 2004 A1
20040204795 Harvey et al. Oct 2004 A1
20040239510 Karsten Dec 2004 A1
20050017855 Harvey Jan 2005 A1
20050033483 Simon et al. Feb 2005 A1
20050134438 Simon Jun 2005 A1
20050162016 Simon Jul 2005 A1
20050270178 Ioli Dec 2005 A1
20060059109 Grimes Mar 2006 A1
20060108417 Simon May 2006 A1
20060111822 Simon May 2006 A1
20060122748 Nou Jun 2006 A1
20060136314 Simon Jun 2006 A1
20070010922 Buckley Jan 2007 A1
20070176771 Doyle Aug 2007 A1
20070185728 Schwarz et al. Aug 2007 A1
20070194881 Schwarz et al. Aug 2007 A1
20080114541 Shintani et al. May 2008 A1
20080162034 Breen Jul 2008 A1
20080221743 Schwarz et al. Sep 2008 A1
20090043409 Ota Feb 2009 A1
20090182216 Roushey, Iii et al. Jul 2009 A1
20100148947 Morgan et al. Jun 2010 A1
20100268402 Schwarz et al. Oct 2010 A1
20110050407 Schoenfeld et al. Mar 2011 A1
20110057800 Sofer Mar 2011 A1
20110084820 Walter et al. Apr 2011 A1
Foreign Referenced Citations (5)
Number Date Country
1557807 Jul 2005 EP
9616845 Jun 1996 WO
2007092272 Aug 2007 WO
2007092287 Aug 2007 WO
2010068438 Jun 2010 WO
Non-Patent Literature Citations (15)
Entry
US 5,699,633, 10/1999, Roser (withdrawn).
ON TIME Payment Protection Systems, printed Jan. 2, 2004 from www.ontime-pps.com/how.html.
Aircept Products, printed Jan. 2, 2004 from www. aircept. com/products.html.
How PayTeck Works, printed Jan. 2, 2004 from www. payteck.cc/aboutpayteck.html.
Article: “Pager Lets You Locate Your Car, Unlock and Start It”, published Dec. 10, 1997 in USA Today.
Article: “Electronic Keys Keep Tabs on Late Payers”, published Sep. 22, 1997 in Nonprime Auto News.
Article: “PASSTEC Device Safely Prevents Vehicles from Starting”, published Jul. 19, 1999 in Used Car News.
Payment Clock Disabler advertisement, published, May 18, 1998.
Secure Your Credit & Secure Your Investment (Pay Teck advertisement), printed Jan. 2, 2004 from www. payteck.cc.
iMetrik Company Information, printed Dec. 21, 2006 from imetrik.com.
About C-CHIP Technologies, printed Dec. 21, 2006 from www.c-chip.com.
Hi-Tech tools to solve traditional problems, printed Dec. 21, 2006 from www.c-chip.com.
C-CHIP Technologies Products: Credit Chip 100, Credit Chip 100C, Credit Chip 200, printed Dec. 21, 2006 from www. c-chip.com.
The Credit Chip 100, printed Dec. 21, 2006 from www.c-chip.com.
EEC-EN0F204RK Panasonic Electronic Components | P14164CT-ND | DigiKey. Web. Accessed Feb. 13, 2013. www.digikey.com/product-detail/en/EEC-EN0F204RK/P14164CT-ND/1937322.
Related Publications (1)
Number Date Country
20140266652 A1 Sep 2014 US