Methods for assessing cardiovascular status and compositions for use thereof

Information

  • Patent Grant
  • 6197505
  • Patent Number
    6,197,505
  • Date Filed
    Friday, March 27, 1998
    26 years ago
  • Date Issued
    Tuesday, March 6, 2001
    23 years ago
Abstract
The present invention provides methods for assessing cardiovascular status in an individual, which comprise determining the sequence at one or more polymorphic positions within the human genes encoding angiotensin converting enzyme (ACE), angiotensinogen (AGT), and/or type 1 angiotensin II receptor (AT1). The invention also provides isolated nucleic acids encoding ACE, AGT, and AT1 polymorphisms, nucleic acid probes that hybridize to polymorphic positions, kits for the prediction of cardiovascular status, and nucleic acid and peptide targets for use in identifying candidate cardiovascular drugs.
Description




FIELD OF THE INVENTION




The present invention relates to genetic polymorphisms useful for assessing cardiovascular status in humans.




BACKGROUND OF THE INVENTION




The renin-angiotensin-aldosterone system (RAAS) plays an important role in cardiovascular physiology in mammals. Specifically, RAAS regulates salt-water homeostasis and the maintenance of vascular tone. Stimulation or inhibition of this system raises or lowers blood pressure, respectively, and disturbances in this system may be involved in the etiology of, for example, hypertension, stroke, and myocardial infarction. The RAAS system may also have other functions such as, e.g., control of cell growth. The renin-angiotensin system includes at least renin, angiotensin converting enzyme (ACE), angiotensinogen (AGT), type 1 angiotensin II receptor (AT1), and type 2 angiotensin II receptor (AT2).




AGT is the specific substrate of renin, an aspartyl protease. The human AGT gene contains five exons and four introns which span 13Kb (Gaillard et al.,


DNA


8:87-99, 1989; Fukamizu et al.,


J. Biol. Chem.


265:7576-7582, 1990). The first exon (37 bp) codes for the 5′ untranslated region of the mRNA. The second exon codes for the signal peptide and the first 252 amino acids of the mature protein. Exons 3 and 4 are shorter and code for 90 and 48 amino acids, respectively. Exon 5 contains a short coding sequence (62 amino acids) and the 3′-untranslated region.




Plasma AGT is synthesized primarily in the liver and its expression is positively regulated by estrogens, glucocorticoids, thyroid hormones, and angiotensin II (Ang II) (Clauser et al.,


Am. J. Hypertension


2:403-410, 1989). Cleavage of the amino-terminal segment of AGT by renin releases a decapeptide prohormone, angiotensin-I, which is firther processed to the active octapeptide angiotensin II by the dipeptidyl carboxypeptidase designated angiotensin-converting enzyme (ACE). Cleavage of AGT by renin is the rate-limiting step in the activation of the renin-angiotensin system.




Several epidemiological observations indicate a possible role of AGT in blood pressure regulation. A highly significant correlation between plasma AGT concentration and blood pressure has been observed in epidemiological studies (Walker et al.,


J. Hypertension


1:287-291, 1979). Interestingly, a number of allelic dimorphisms have been identified in the AGT gene. The frequency of at least two of them (174M and 235T) have been partially characterized and in certain populations shown to be significantly elevated in hypertensive subjects (Jeunemaitre et al.,


Cell


71:169-180, 1992). In addition, a specific polymorphism, 235T, has been suggested to be directly involved in coronary atherosclerosis (Ishigami et al.,


Circulation


91:951-4, 1995). Futhermore, the presence of A or G at position 1218 in the AGT regulatory region has been correlated with differences in in vitro transcriptional capacity for this gene (Inuoe et. al.,


J. Clin. Invest.


99:1786, 1997.




The human ACE gene is also a candidate as a marker for hypertension and myocardial infarction. ACE inhibitors constitute an important and effective therapeutic approach in the control of human hypertension (Sassaho et al.


Am. J. Med.


83:227-235, 1987). In plasma and on the surface of endothelial cells, ACE converts the inactive angiotensin I molecule (Ang I) into active angiotensin II (Ang II) (Bottari et al.,


Front. Neuroendocrinology


14:123-171, 1993). Another ACE substrate is bradykinin, a potent vasodilator and inhibitor of smooth muscle cell proliferation, which is inactivated by ACE (Ehlers et al.,


Biochemistry


28:5311-5318, 1989; Erdos, E. G.,


Hypertension


16:363-370, 1990; Johnston, C. I.


Drugs


(suppl. 1) 39:21-31, 1990).




Levels of ACE are very stable within individuals, but differ greatly between individuals. Plasma ACE levels have been suggested to be genetically determined as a consequence of diallelic polymorphisms, situated within or close to the ACE gene. Prior to the present invention, no definitive association was demonstrated between polymorphisms and hypertension or blood pressure. However, a greater risk of myocardial infarction has been identified in a group of subjects with an ACE polymorphism designated ACE-DD (Cambien et al.,


Nature


359:641-644, 1992), and a 12-fold greater risk of myocardial infarction has been identified in a subgroup of patients having a combination of the ACE polymorphism ACE-DD and one of the AGT polymorphisms (235T) described above (Kamitani et al.,


Hypertension


24:381, 1994). Recently, six ACE polymorphisms were identified and characterized (Villard et al.,


Am. J. Human Genet.


58:1268-1278, 1996).




The vasoconstrictive, cell growth-promoting and salt conserving actions of Ang II are mediated through binding to and activation of angiotensin receptors, of which at least two types have been cloned (AT1 and AT2). The type 1 Ang II receptor (AT1), a G-protein-coupled seven transmembrane domain protein, is widely distributed in the body and mediates almost all known Ang II effects (Fyhrquist et al.,


J. Hum. Hypertension


5:519-524, 1995).




Several polymorphisms have been identified in the AT1 receptor gene. Initial studies suggest that at least one of them is more frequent in hypertensive subjects (AT


1166


C)(Bonnardeaux et al.,


Hypertension


24:63-69, 1994). This polymorphism, combined with the ACE-DD polymorphism, has been shown to correlate strongly with the risk of myocardial infarction (Tiret et al.,


Lancet


344:910-913, 1994).




The high morbidity and mortality associated with cardiovascular disease demonstrate a need in the art for methods and compositions that allow the determination and/or prediction of the therapeutic regimen that will result in the most positive treatment outcome in a patient suffering from cardiovascular disease. This includes identification of individuals who are more or less susceptible to particular therapeutic regimens, including, e.g., particular drugs that are conventionally used to treat cardiovascular disease. There is also a need in the art for methods and compositions that allow the identification of individuals having a predisposition to cardiovascular disease, such as, e.g., myocardial infarction, hypertension, atherosclerosis, and stroke to facilitate early intervention and disease prevention.




SUMMARY OF THE INVENTION




The present invention provides methods for assessing cardiovascular status in a human individual. Cardiovascular status is the physiological status of the cardiovascular system as reflected in one or more status markers. Status markers include without limitation clinical parameters such as, e.g., blood pressure or electrocardiographic profile, as well as diagnoses of cardiovascular status made by skilled medical practitioners, such as, e.g., acute myocardial infarction, silent myocardial infarction, stroke, and atherosclerosis. Also included in the evaluation of cardiovascular status are changes in status markers with time. The methods of the invention are carried out by the steps of:




(i) determining the sequence of one or more polymorphic positions within one or more of the genes encoding angiotensin converting enzyme (ACE), angiotensinogen (AGT), and type 1 angiotensin II receptor (AT1) in the individual to establish a polymorphic pattern for the individual; and




(ii) comparing the polymorphic pattern established in (i) with the polymorphic patterns of individuals exhibiting predetermined markers of cardiovascular status. The polymorphic pattern of the individual is, preferably, highly similar and, most preferably, identical to the polymorphic pattern of individuals who exhibit particular status markers, cardiovascular syndromes, and/or particular patterns of response to therapeutic interventions.




For example, a comparison of the polymorphic pattern of an individual with the polymorphic patterns of individuals exhibiting differing responses to a particular therapeutic intervention can be used to predict the degree of responsivity of the individual to such intervention. In a similar manner, the methods of the invention can be used to predict predisposition to different cardiovascular syndromes.




The invention also provides isolated nucleic acids encoding ACE, AGT, and AT1 in an individual, each of which comprises at least one polymorphic position. In preferred embodiments, the polymorphic position, either alone or in combination with other polymorphic positions in the sequence of human ACE, AGT, or AT1, or in one or more other human genes, is predictive of a particular level of responsivity to a given treatment and/or indicates a predisposition to one or more clinical syndromes associated with cardiovascular disease.




The isolated nucleic acids according to the invention (which are described using the numbering indicated in Table 1 below) include without limitation:




(i) Nucleic acids encoding ACE having one or more polymorphic positions at the position in the regulatory region (SEQ ID NO: 129) numbered 5106; positions in the coding region (SEQ ID NO: 130) numbered 375, 582, 731, 1060, 2741, 3132, 3387, 3503, and 3906; and position 1451 as numbered in Genbank entry X62855 (SEQ ID NO: 128). In preferred embodiments, the sequences at the polymorphic positions in the ACE regulatory region are one or more of 5106C and 5106T; and the sequences at the polymorphic positions in the coding region are one or more of 375A, 375C, 582C, 582T, 731A, 731G, 1060G, 1060A, 2741G, 2741T, 3132C, 3132T, 3387T, 3387C, 3503G, 3503C, 3906G, and 3906A. The invention also encompasses a nucleic acid encoding a deletion of nucleotides 1451-1783 as numbered in Genbank entry X62855.




(ii) Nucleic acids encoding AGT having one or more polymorphic positions at positions in the regulatory region (SEQ ID NO: 123) numbered 395, 412, 432, 449, 692, 839, 1007, 1072, and 1204; positions in the coding region (SEQ ID NO: 124-127) numbered 273, 912, 997, 1116, and 1174; and position 49 as numbered in Genbank entry M24688 (SEQ ID NO: 126). In preferred embodiments, the sequences at the polymorphic positions in the AGT regulatory region are one or more of 395T, 395A, 412C, 412T, 432G, 432A, 449T, 449C, 692C, 692T, 839G, 839A, 1007G, 1007A, 1072G, 1072A, 1204C, and 1204A; the sequences at the polymorphic position in the coding region are one or more of 273C, 273T, 912C, 912T, 997G, 997C, 1116G, 1116A, 1174C and 1174A; and the sequence at position 49 in Genbank entry M24688 is either A or G.




(iii) Nucleic acids encoding AT1 having one or more polymorphic positions at positions in the regulatory region (SEQ ID NO: 131) numbered 1427, 1756, 1853, 2046, 2354, 2355, and 2415; and the position in the coding region (SEQ ID NO: 132-133 which are contiguous) numbered 449. In preferred embodiments, the sequences at the polymorphic positions in the AT1 regulatory region are one or more of 1427A, 1427T, 1756T, 1756A, 1853T, 1853G, 2046T, 2046C, 2354A, 2354C, 2355G, 2355C, 2415A and 2415G; and the sequences at the polymorphic positions in the coding region are one or more of 449G, 449C, 678T, 678C, 1167A, 1167G, 1271A, and 1271C.




The invention also encompasses libraries of isolated nucleic acid sequences, wherein each sequence in the library comprises one or more polymorphic positions in the genes encoding human ACE, AGT, or AT1, including without limitation the polymorphic positions and sequences disclosed herein. Also provided are nucleic acid probes that hybridize specifically to the identified poliymorphic positions; peptides and polypeptides comprising polymorphic positions; and polymorphism-specific antibodies, i.e., sequence-specific antibodies that bind differentially to polymorphic variants of ACE, AGT, or AT1 polypeptides and, preferably, can be used to identify particular polymorphic variants.




In yet another aspect, the invention provides kits for the determination of polymorphic patterns in an individual's ACE, AGT, and/or AT1 genes. The kits comprise a means for detecting polymorphic sequences, including without limitation oligonucleotide probes that hybridize at or adjacent to the polymorphic positions and polymorphism-specific antibodies.




In yet another aspect, the invention provides nucleic acid and polypeptide targets for use in screening methods to identify candidate cardiovascular drugs. Nucleic acid targets may be, e.g., DNA or RNA and are preferably at least about 10, and most preferably at least about 15, residues in length and comprise one or more polymorphic positions. Peptide targets are at least about 5 amino acids in length and may be as large or larger than full-length ACE, AGT, or AT1 polypeptides.




DETAILED DESCRIPTION OF THE INVENTION




All patents, patent applications, publications and other materials cited herein are hereby incorporated by reference in their entirety. In the case of inconsistencies, the present description, including definitions, is intended to control.




Definitions:




1. A “polymorphism” as used herein denotes a variation in the sequence of a gene in an individual. A “polymorphic position” is a predetermined nucleotide position within the sequence of a gene or a predetermined amino acid position in the sequence of a polypeptide at which a polymorphism is located. An individual “homozygous” for a particular polymorphism is one in which both copies of the gene contain the same sequence at the polymorphic position. An individual “heterozygous” for a particular polymorphism is one in which the two copies of the gene contain different sequences at the polymorphic position.




2. A “polymorphism pattern” as used herein denotes a set of one or more polymorphisms, which may be contained in the sequence of a single gene or a plurality of genes. A polymorphism pattern may comprise nucleotide or amino acid polymorphisms.




3. “Nucleic acid” or “polynucleotide” as used herein refers to purine- and pyrimidine-containing polymers of any length, either polyribonucleotides or polydeoxyribonucleotides or mixed polyribo-polydeoxyribo nucleotides. Nucleic acids include without limitation single- and double-stranded molecules, i.e., DNA-DNA, DNA-RNA and RNA-RNA hybrids, as well as “protein nucleic acids” (PNA) formed by conjugating bases to an amino acid backbone. This also includes nucleic acids containing modified bases.




4. An “isolated” nucleic acid or polypeptide as used herein refers to a nucleic acid or polypeptide that is removed from its original environment (for example, its natural environment if it is naturally occurring). An isolated nucleic acid or polypeptide contains less than about 50%, preferably less than about 75%, and most preferably less than about 90%, of the cellular components with which it was originally associated.




5. A nucleic acid or polypeptide sequence that is “derived from” a designated sequence refers to a sequence that corresponds to a region of the designated sequence. For nucleic acid sequences, this encompasses sequences that are homologous or complementary to the sequence.




6. A “probe” refers to a nucleic acid or oligonucleotide that forms a hybrid structure with a sequence in a target nucleic acid due to complementarity of at least one sequence in the probe with a sequence in the target nucleic acid.




7. Nucleic acids are “hybridizable” to each other when at least one strand of nucleic acid can anneal to another nucleic acid strand under defined stringency conditions.




Stringency of hybridization is determined, e.g., by a) the temperature at which hybridization and/or washing is performed, and b) the ionic strength and polarity (e.g., formamide) of the hybridization and washing solutions, as well as other parameters. Hybridization requires that the two nucleic acids contain substantially complementary sequences; depending on the stringency of hybridization, however, mismatches may be tolerated. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementarity, variables well known in the art. For example, “high stringency” as used herein refers to hybridization and/or washing at 68° C. in 0.2XSSC, at 42° C. in 50% formamide, 4XSSC, or under conditions that afford levels of hybridization equivalent to those observed under either of these two conditions.




8. A “gene” for a particular protein as used herein refers to a contiguous nucleic acid sequence corresponding to a sequence present in a genome which comprises (i) a “coding region,” which comprises exons (i.e., sequences encoding a polypeptide sequence or “protein-coding sequences”), introns, and sequences at the junction between exons and introns; and (ii) regulatory sequences, which flank the coding region at both 5′ and 3′ termini. For example, the “ACE gene” as used herein encompasses the regulatory and coding regions of the human gene encoding angiotensin converting enzyme. Similarly, the “AGT gene” encompasses regulatory and coding regions of the human gene encoding angiotensinogen and the “AT1 gene” encompasses regulatory and coding regions of the human gene encoding type I angiotensin II receptor. Typically, regulatory sequences according to the invention are located 5′ (i.e., upstream) of the coding region segment. The reference sequences, obtained from Genbank, which were used in practicing the present invention are shown in Table 1.














TABLE 1











Numbering








according








to sequence







Compared master




entry in






Abbreviation




sequence




GenBank











AGT Regulatory




X15323




X15323 (SEQ






Region





ID NO:123)






AGT Coding




M24686 (exon 2) (SEQ ID NO: 124)




Protein-coding






Region




M24687 (exon 3) (SEQ ID NO: 125)




sequences from







M24688 (exon 4) (SEQ ID NO: 126)




exon 2-5 were







M24689 (exon 5) (SEQ ID NO: 127)




spliced together








as described








in the GenBank








entries.








Nucleotide 1








is assigned to








the first








nucleotide of








the initiator








methionine








codon.







X62855 (intron 16) (SEQ ID NO:




X62855







128)






ACE Regulatory




X94359 (SEQ ID NO: 129)




X94359






Region






ACE Coding




J04144 (SEQ ID NO: 130)




J04144






Region





Nucleotide 1








is assigned








to the first








nucleotide of








the initiator








methionine








codon.






AT1 Regulatory




U07144 (SEQ ID NO: 131)




U07144






Region






AT1 Coding




S80239 (exon 3) (SEQ ID NO: 132)




The protein-






Region




S77410 (exon 5) (SEQ ID NO: 133)




coding








sequence of








S80239 was








spliced to








position 288








of entry








S77410.








Nucleotide 1








is assigned to








the first








nucleotide of








the initiator








methionine








codon in








entry S80239.














The present inventors have surprisingly and unexpectedly discovered the existence of genetic polymorphisms within the human genes encoding ACE, AGT, and AT1 which, singly or in combination, can be used to assess cardiovascular status. In accordance with the invention, the polymorphic pattern of ACE, AGT, and/or AT1 sequences in an individual can predict the responsivity of the individual to particular therapeutic interventions and serve as an indicator of predisposition to various forms of cardiovascular disease. The invention provides methods for assessing cardiovascular status by detecting polymorphic patterns in an individual. The present invention also provides isolated nucleic acids derived from the ACE, AGT, and AT1 genes which comprise these polymorphisms, including probes which hybridize specifically to polymorphic positions; isolated polypeptides and peptides comprising polymorphic residues; and antibodies which specifically recognize ACE, AGT, or AT1 polypeptides containing one or more polymorphic amino acids.




Methods for Assessing Cardiovascular Status




The present invention provides diagnostic methods for assessing cardiovascular status in a human individual. Cardiovascular status as used herein refers to the physiological status of an individual's cardiovascular system as reflected in one or more markers or indicators. Status markers include without limitation clinical measurements such as, e.g., blood pressure, electrocardiographic profile, and differentiated blood flow analysis. Status markers according to the invention include diagnoses of one or more cardiovascular syndromes, such as, e.g., hypertension, acute myocardial infarction, silent myocardial infarction, stroke, and atherosclerosis. It will be understood that a diagnosis of a cardiovascular syndrome made by a medical practitioner encompasses clinical measurements and medical judgement. Status markers according to the invention are assessed using conventional methods well known in the art. Also included in the evaluation of cardiovascular status are quantitative or qualitative changes in status markers with time, such as would be used, e.g., in the determination of an individual's response to a particular therapeutic regimen.




The methods are carried out by the steps of:




(i) determining the sequence of one or more polymorphic positions within one or more of the genes encoding angiotensin coverting enzyme (ACE), angiotensinogen (AGT), or type 1 angiotensin II receptor (AT1) in the individual to establish a polymorphic pattern for the individual; and




(ii) comparing the polymorphic pattern established in (i) with the polymorphic patterns of humans exhibiting different markers of cardiovascular status. The polymorphic pattern of the individual is, preferably, highly similar and, most preferably, identical to the polymorphic pattern of individuals who exhibit particular status markers, cardiovascular syndromes, and/or particular patterns of response to therapeutic interventions. Polymorphic patterns may also include polymorphic positions in other genes which are shown, in combination with one or more polymorphic positions in ACE, AGT, or AT1, to correlate with the presence of particular status markers. In one embodiment, the method involves comparing an individual's polymorphic pattern with polymorphic patterns of individuals who have been shown to respond positively or negatively to a particular therapeutic regimen. Therapeutic regimen as used herein refers to treatments aimed at the elimination or amelioration of symptoms and events associated cardiovascular disease. Such treatments include without limitation one or more of alteration in diet, lifestyle, and exercise regimen; invasive and noninvasive surgical techniques such as atherectomy, angioplasty, and coronary bypass surgery; and pharmaceutical interventions, such as administration of ACE inhibitors, angiotensin II receptor antagonists, diuretics, alpha-adrenoreceptor antagonists, cardiac glycosides, phosphodiesterase inhibitors, beta-adrenoreceptor antagonists, calcium channel blockers, HMG-CoA reductase inhibitors, imidazoline receptor blockers, endothelin receptor blockers, and organic nitrites. Interventions with pharmaceutical agents not yet known whose activity correlates with particular polymorphic patterns associated with cardiovascular disease are also encompassed. The present inventors have discovered that particular polymorphic patterns correlate with an individual's responsivity to ACE inhibitors (see, e.g., Example 3 below). It is contemplated, for example, that patients who are candidates for a particular therapeutic regimen will be screened for polymorphic patterns that correlate with responsivity to that particular regimen.




In a preferred embodiment, the presence or absence in an individual of a polymorphic pattern comprising ACE 2193 A/G, AGR 1072 G/A, and ATi 1167 A/G (see below) is determined to identify an individual's responsivity to ACE inhibitors.




In another embodiment, the method involves comparing an individual's polymorphic pattern with polymorphic patterns of individuals who exhibit or have exhibited one or more markers of cardiovascular disease, such as, e.g., high blood pressure, abnormal electrocardiographic profile, myocardial infarction, stroke, or atherosclerosis (see, e.g., Example 2 below).




In practicing the methods of the invention, an individual's polymorphic pattern can be established by obtaining DNA from the individual and determining the sequence at predetermined polymorphic positions in ACE, AGT, and AT1 such as those described above.




The DNA may be obtained from any cell source. Non-limiting examples of cell sources available in clinical practice include blood cells, buccal cells, cervicovaginal cells, epithelial cells from urine, fetal cells, or any cells present in tissue obtained by biopsy. Cells may also be obtained from body fluids, including without limitation blood, saliva, sweat, urine, cerebrospinal fluid, feces, and tissue exudates at the site of infection or inflammation. DNA is extracted from the cell source or body fluid using any of the numerous methods that are standard in the art. It will be understood that the particular method used to extract DNA will depend on the nature of the source.




Determination of the sequence of the extracted DNA at polymorphic positions in ACE, AGT, and/or AT1 genes is achieved by any means known in the art, including but not limited to direct sequencing, hybridization with allele-specific oligonucleotides, allele-specific PCR, ligase-PCR, HOT cleavage, denaturing gradient gel electrophoresis (DDGE), and single-stranded conformational polymorphism (SSCP). Direct sequencing may be accomplished by any method, including without limitation chemical sequencing, using the Maxam-Gilbert method; by enzymatic sequencing, using the Sanger method; mass spectrometry sequencing; and sequencing using a chip-based technology. See, e.g., Little et al.,


Genet. Anal.


6:151, 1996. Preferably, DNA from a subject is first subjected to amplification by polymerase chain reaction (PCR) using specific amplification primers.




In an alternate embodiment, biopsy tissue is obtained from a subject. Antibodies that are capable of distinguishing between different polymorphic forms ACE, AGT, and/or AT1 are then applied to samples of the tissue to determine the presence or absence of a polymorphic form specified by the antibody. The antibodies may be polyclonal or monoclonal, preferably monoclonal. Measurement of specific antibody binding to cells may be accomplished by any known method e.g. quantitative flow cytometry, or enzyme-linked or fluorescence-linked immunoassay. The presence or absence of a particular polymorphism or polymorphic pattern, and its allelic distribution (i.e., homozygosity vs. heterozygosity) is determined by comparing the values obtained from a patient with norms established from populations of patients having known polymorphic patterns.




In an alternate embodiment, RNA is isolated from biopsy tissue using standard methods well known to those of ordinary skill in the art such as guanidium thiocyanate-phenol-chloroform extraction (Chomocyznski et al., 1987,


Anal. Biochem.,


162:156.) The isolated RNA is then subjected to coupled reverse transcription and amplification by polymerase chain reaction (RT-PCR), using specific oligonucleotide primers. Conditions for primer annealing are chosen to ensure specific reverse transcription and amplification; thus, the appearance of an amplification product is diagnostic of the presence of particular alleles. In another embodiment, RNA is reverse-transcribed and amplified, after which the amplified sequences are identified by, e.g., direct sequencing.




In practicing the present invention, the distribution of polymorphic patterns in a large number of individuals exhibiting particular markers of cardiovascular status is determined by any of the methods described above, and compared with the distribution of polymorphic patterns in patients that have been matched for age, ethnic origin, and/or any other statistically or medically relevant parameters, who exhibit quantitatively or qualitatively different status markers. Correlations are achieved using any method known in the art, including nominal logistic regression or standard least squares regression analysis. In this manner, it is possible to establish statistically significant correlations between particular polymorphic patterns and particular cardiovascular statuses. It is further possible to establish statistically significant correlations between particular polymorphic patterns and changes in cardiovascular status such as, would result, e.g., from particular treatment regimens. In this manner, it is possible to correlate polymorphic patterns with responsivity to particular treatments.




Polymorphic Positions in Genes Encoding ACE, AGT, and AT1




Polymorphic positions in the genes encoding ACE, AGT, and AT1 which are encompassed by the invention are identified by determining the DNA sequence of all or part of the ACE, AGT, and/or AT1 genes in a multiplicity of individuals in a population. DNA sequence determination may be achieved using any conventional method, including, e.g., chemical or enzymatic sequencing.




The polymorphic positions of the invention include without limitation those listed below, whose numbering corresponds to the Genbank sequences listed in Table 1.




(i) ACE: positions in the regulatory region (designated ACR) numbered 5106, 5349, and 5496; positions in the coding region (designated ACE) numbered 375, 582, 731, 1060, 1215, 2193, 2328, 2741, 3132, 3387, 3503, and 3906; and position 1451 as numbered in Genbank entry X62855.




(ii) AGT: positions in the regulatory region (designated AGR) numbered 395, 412, 432, 449, 692, 839, 1007, 1072, 1204, and 1218; positions in the coding region (designated AGT) numbered 273, 620, 803, 912, 997, 1116, and 1174; and position 49 as numbered in Genbank entry M24688.




(iii) AT1: positions in the regulatory region (designated ATR) numbered 1427, 1756, 1853, 2046, 2354, 2355, and 2415; and positions in the coding region (designated AT1) numbered 449, 678, 1167, and 1271.




In preferred embodiments, the sequence at each of the above polymorphic positions is one of:




(i) ACE Regulatory Region: 5106C, 5106T, 5349A, 5349T, 5496T, and 5496C;




(ii) ACE Coding Region: 375A, 375C, 582C, 582T, 731A, 731G, 1060G, 1060A, 1215C, 1215T, 2193G, 2193A, 2328A, 2328G, 2741G, 2741T, 3132C, 3132T, 3387T, 3387C, 3503G, 3503C, 3906G, and 3906A; and a deletion of nucleotides 1451-1783 as numbered in Genbank entry X62855;




(iii) AGT Regulatory Region: 395T, 395A, 412C, 412T, 432G, 432A, 449T, 449C, 692C, 692T, 839G, 839A, 1007G, 1007A, 1072G, 1072A, 1204C, 1204A, 1218A, 1218G;




(iv) AGT Coding Region: 273C, 273T, 620C, 620T, 803T, 803C, 912C, 912T, 997G, 997C, 1116G, 1116A, 1174C, and 1174A; and A or G at position 49 in Genbank entry M24688;




(v) AT1 Regulatory Region: 1427A, 1427T, 1756T, 1756A, 1853T, 1853G, 2046T, 2046C, 2354A, 2354C, 2355G, 2355C, 2415A and 2415G; and




(vi) AT1 Coding Region: 449G6 449C, 678T, 678C, 1167A, 1167G, 1271A, and 1271C.




An individual may be homozygous or heterozygous for a particular polymorphic position (see, e.g., Table 6 below).




Non-limiting examples of polymorphic patterns comprising one or more polymorphism in ACE, AGT, and/or AT1 genes according to the invention include the following, which were correlated with an increased incidence of clinical signs of cardiovascular disease:




ACR 5349 A/T, AGR 1218 A; ACR 5496 C, AGR 1204 A/C; ACR 5496 C/T, AGR 1218 A, AGT 620 C/T; ACE 2193 A, AGR 1204 C, ACE 2328 G; ACE 2193 A, AGR 1204 A/C; ACE 3387 T, AGR 1218 A; ACE 3387 T, AGT 620 C/T; AGR 1204 A/C, AT1 678 C/T; AGR 1204 A/C, AT1 1271 A/C; ACE 1215 C, AGR 1204 A/C; AGR 1204 A/C, AT1 1167 A, ACE 3906 A/G; AGR 1204 A, AGT 620 C, AT1 1271 A, AT1 1167 A, AGR 395 A/T; AGR 1204 A/C, AGT 620 C/T, AT1 1271 A/C, AT1 1167 A, AGR 395 T; AGR 1204 A/C, AGT 620 C/T, AT1 1271 A/C, AF1 1167 A/G, AGR 395 T; AGR 1204 A, AT1 678 C, AT1 1167 A, AGR 395 A/T; AGR 1204 A/C, AT1 678 C/T, AT1 1167 A, AGR 395 T; AGT 620 C/T, AT1 1271 A/C, AT1 1167 A, AGR 395 T; AGT 620 C/T, AT1 1271 A/C, AT1 1167 A/G, AGR 395 T; AGT 620 C, AT1 1271 A, AT1 1167 A, AGR 395 A/T; AGT 620 C, AT1 678 A, AT1 1167 A, AGR 395 A/T; AGT 620 C/T, AT1 678 C/T; AT1 1167 A, AGR 395 T; ACE 2193 A, AGR 1218 A, AGT 803 A; ACE 2193 A, AGT 620 C/T; ACE 2328 G, AGT 620 C/T; ACE 3387 T, AGR 1204 A/C; ACE 2193 A, ACE 2328 G, AGR 1204 C; and ACE 2193 A/G, AGR 1072 G/A, AT1 1167 A/G.




Isolated Polymorphic Nucleic Acids, Probes, and Vectors




The present invention provides isolated nucleic acids comprising the polymorphic positions described above for the human ACE, AGT, and AT1 genes; vectors comprising the nucleic acids; and transformed host cells comprising the vectors. The invention also provides probes which are useful for detecting these polymorphisms.




In practicing the present invention, many conventional techniques in molecular biology, microbiology, and recombinant DNA, are used. Such techniques are well known and are explained fully in, for example, Sambrook et al., 1989,


Molecular Cloning: A Laboratory Manual,


Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York;


DNA Cloning: A Practical Approach,


Volumes I and II, 1985 (D. N. Glover ed.);


Oligonucleotide Synthesis,


1984, (M. L. Gait ed.);


Nucleic Acid Hybridization,


1985, (Hames and Higgins); Ausubel et al.,


Current Protocols in Molecular Biology,


1997, (John Wiley and Sons); and


Methods in Enzymology


Vol. 154 and Vol. 155 (Wu and Grossman, and Wu, eds., respectively).




Insertion of nucleic acids (typically DNAs) comprising the sequences of the present invention into a vector is easily accomplished when the termini of both the DNAs and the vector comprise compatible restriction sites. If this cannot be done, it may be necessary to modify the termini of the DNAs and/or vector by digesting back single-stranded DNA overhangs generated by restriction endonuclease cleavage to produce blunt ends, or to achieve the same result by filling in the single-stranded termini with an appropriate DNA polymerase.




Alternatively, any site desired may be produced, e.g., by ligating nucleotide sequences (linkers) onto the termini. Such linkers may comprise specific oligonucleotide sequences that define desired restriction sites. Restriction sites can also be generated by the use of the polymerase chain reaction (PCR). See, e.g., Saiki et al., 1988,


Science


239:48. The cleaved vector and the DNA fragments may also be modified if required by homopolymeric tailing.




The nucleic acids may be isolated directly from cells or may be chemically synthesized using known methods. Alternatively, the polymerase chain reaction (PCR) method can be used to produce the nucleic acids of the invention, using either chemically synthesized strands or genomic material as templates. Primers used for PCR can be synthesized using the sequence information provided herein and can further be designed to introduce appropriate new restriction sites, if desirable, to facilitate incorporation into a given vector for recombinant expression.




The nucleic acids of the present invention may be flanked by native ACE, AGT, or AT1 gene sequences, or may be associated with heterologous sequences, including promoters, enhancers, response elements, signal sequences, polyadenylation sequences, introns, 5′- and 3′-noncoding regions, and the like. The nucleic acids may also be modified by many means known in the art. Non-limiting examples of such modifications include methylation, “caps”, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoroamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.). Nucleic acids may contain one or more additional covalently linked moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), intercalators (e.g., acridine, psoralen, etc.), chelators (e.g., metals, radioactive metals, iron, oxidative metals, etc.), and alkylators. PNAs are also included. The nucleic acid may be derivatized by formation of a methyl or ethyl phosphotriester or an alkyl phosphoramidate linkage. Furthermore, the nucleic acid sequences of the present invention may also be modified with a label capable of providing a detectable signal, either directly or indirectly. Exemplary labels include radioisotopes, fluorescent molecules, biotin, and the like.




The invention also provides nucleic acid vectors comprising the disclosed ACE, AGT, and AT1-derived gene sequences or derivatives or fragments thereof. A large number of vectors, including plasmid and fungal vectors, have been described for replication and/or expression in a variety of eukaryotic and prokaryotic hosts, and may be used for gene therapy as well as for simple cloning or protein expression. Non-limiting examples of suitable vectors include without limitation pUC plasmids, pET plasmids (Novagen, Inc., Madison, Wis.), or pRSET or pREP (Invitrogen, San Diego, Calif.), and many appropriate host cells, using methods disclosed or cited herein or otherwise known to those skilled in the relevant art. The particular choice of vector/host is not critical to the practice of the invention.




Suitable host cells may be transformed/transfected/infected as appropriate by any suitable method including electroporation, CaCl


2


mediated DNA uptake, fungal or viral infection, microinjection, microprojectile, or other established methods. Appropriate host cells included bacteria, archebacteria, fungi, especially yeast, and plant and animal cells, especially mammalian cells. A large number of transcription initiation and termination regulatory regions have been isolated and shown to be effective in the transcription and translation of heterologous proteins in the various hosts. Examples of these regions, methods of isolation, manner of manipulation, etc. are known in the art. Under appropriate expression conditions, host cells can be used as a source of recombinantly produced ACE-, AGT-, or AT1-derived peptides and polypeptides. Nucleic acids encoding ACE-, AGT-, or AT1-derived gene sequences may also be introduced into cells by recombination events. For example, such a sequence can be introduced into a cell and thereby effect homologous recombination at the site of an endogenous gene or a sequence with substantial identity to the gene. Other recombination-based methods such as nonhomologous recombinations or deletion of endogenous genes by homologous recombination may also be used.




The nucleic acids of the present invention find use as probes for the detection of genetic polymorphisms and as templates for the recombinant production of normal or variant ACE-, AGT-, or AT1-derived peptides or polypeptides.




Probes in accordance with the present invention comprise without limitation isolated nucleic acids of about 10-100 bp, preferably 15-75 bp and most preferably 17-25 bp in length, which hybridize at high stringency to one or more of the ACE, AGT, or AT1 gene-derived polymorphic sequences disclosed herein or to a sequence immediately adjacent to a polymorphic position. Furthermore, in some embodiments a full-length gene sequence may be used as a probe. In one series of embodiments, the probes span the polymorphic positions in the ACE, AGT, or AT1 genes disclosed above. In another series of embodiments, the probes correspond to sequences immediately adjacent to the polymorphic positions.




Polymorphic ACE, AGT, and AT1 Polypeptides and Polymorphism-Specific Antibodies




The present invention encompasses isolated peptides and polypeptides encoding ACE, AGT, and AT1 comprising polymorphic positions disclosed above. In one preferred embodiment, the peptides and polypeptides are useful screening targets to identify cardiovascular drugs. In another preferred embodiments, the peptides and polypeptides are capable of eliciting antibodies in a suitable host animal that react specifically with a polypeptide comprising the polymorphic position and distinguish it from other polypeptides having a different sequence at that position.




Polypeptides according to the invention are preferably at least five or more residues in length, preferably at least fifteen residues. Methods for obtaining these polypeptides are described below. Many conventional techniques in protein biochemistry and immunology are used. Such techniques are well known and are explained in


Immunochemical Methods in Cell and Molecular Biology,


1987 (Mayer and Waler, eds; Academic Press, London); Scopes, 1987,


Protein Purification: Principles and Practice,


Second Edition (Springer-Verlag, N.Y.) and


Handbook of Experimental Immunology,


1986, Volumes I-IV (Weir and Blackwell eds.).




Nucleic acids comprising protein-coding sequences can be used to direct the ITT recombinant expression of ACE-, AGT, or AT1-derived polypeptides in intact cells or in cell-free translation systems. The known genetic code, tailored if desired for more efficient expression in a given host organism, can be used to synthesize oligonucleotides encoding the desired amino acid sequences. The polypeptides may be isolated from human cells, or from heterologous organisms or cells (including, but not limited to, bacteria, fungi, insect, plant, and mammalian cells) into which an appropriate protein-coding sequence has been introduced and expressed. Furthermore, the polypeptides may be part of recombinant fusion proteins.




Peptides and polypeptides may be chemically synthesized by commercially available automated procedures, including, without limitation, exclusive solid phase synthesis, partial solid phase methods, fragment condensation or classical solution synthesis. The polypeptides are preferably prepared by solid phase peptide synthesis as described by Merrifield, 1963,


J. Am. Chem. Soc.


85:2149.




Methods for polypeptide purification are well-known in the art, including, without limitation, preparative disc-gel electrophoresis, isoelectric focusing, HPLC, reversed-phase HPLC, gel filtration, ion exchange and partition chromatography, and countercurrent distribution. For some purposes, it is preferable to produce the polypeptide in a recombinant system in which the protein contains an additional sequence tag that facilitates purification, such as, but not limited to, a polyhistidine sequence. The polypeptide can then be purified from a crude lysate of the host cell by chromatography on an appropriate solid-phase matrix. Alternatively, antibodies produced against ACE, AGT, or AT1, or against peptides derived therefrom, can be used as purification reagents. Other purification methods are possible.




The present invention also encompasses derivatives and homologues of the polypeptides. For some purposes, nucleic acid sequences encoding the peptides may be altered by substitutions, additions, or deletions that provide for functionally equivalent molecules, i.e., function-conservative variants. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of similar properties, such as, for example, positively charged amino acids (arginine, lysine, and histidine); negatively charged amino acids (aspartate and glutamate); polar neutral amino acids; and non-polar amino acids.




The isolated polypeptides may be modified by, for example, phosphorylation, sulfation, acylation, or other protein modifications. They may also be modified with a label capable of providing a detectable signal, either directly or indirectly, including, but not limited to, radioisotopes and fluorescent compounds.




The present invention also encompasses antibodies that specifically recognize the polymorphic positions of the invention and distinguish a peptide or polypeptide containing a particular polymorphism from one that contains a different sequence at that position. Such polymorphic position-specific antibodies according to the present invention include polyclonal and monoclonal antibodies. The antibodies may be elicited in an animal host by immunization with ACE, AGT, or AT1-derived immunogenic components or may be formed by in vitro immunization of immune cells. The immunogenic components used to elicit the antibodies may be isolated from human cells or produced in recombinant systems. The antibodies may also be produced in recombinant systems programmed with appropriate antibody-encoding DNA. Alternatively, the antibodies may be constructed by biochemical reconstitution of purified heavy and light chains. The antibodies include hybrid antibodies (i.e., containing two sets of heavy chain/light chain combinations, each of which recognizes a different antigen), chimeric antibodies (i.e., in which either the heavy chains, light chains, or both, are fusion proteins), and univalent antibodies (i.e., comprised of a heavy chain/light chain complex bound to the constant region of a second heavy chain). Also included are Fab fragments, including Fab′ and F(ab)


2


fragments of antibodies. Methods for the production of all of the above types of antibodies and derivatives are well-known in the art and are discussed in more detail below. For example, techniques for producing and processing polyclonal antisera are disclosed in Mayer and Walker, 1987,


Immunochemical Methods in Cell and Molecular Biology,


(Academic Press, London). The general methodology for making monoclonal antibodies by hybridomas is well known. Immortal antibody-producing cell lines can be created by cell fusion, and also by other techniques such as direct transformation of B lymphocytes with oncogenic DNA, or transfection with Epstein-Barr virus. See, e.g., Schreier et al., 1980,


Hybridoma Techniques;


U.S. Pat. Nos. 4,341,761; 4,399,121; 4,427,783; 4,444,887; 4,466,917; 4,472,500; 4,491,632; and 4,493,890. Panels of monoclonal antibodies produced against ACE, AGT, or AT1-derived epitopes can be screened for various properties; i.e. for isotype, epitope affinity, etc.




The antibodies of this invention can be purified by standard methods, including but not limited to preparative disc-gel electrophoresis, isoelectric focusing, HPLC, reversed-phase HPLC, gel filtration, ion exchange and partition chromatography, and countercurrent distribution. Purification methods for antibodies are disclosed, e.g., in


The Art of Antibody Purification,


1989, Amicon Division, W. R. Grace & Co. General protein purification methods are described in


Protein Purification: Principles and Practice,


R. K. Scopes, Ed., 1987, Springer-Verlag, New York, N.Y.




Methods for determining the immunogenic capability of the disclosed sequences and the characteristics of the resulting sequence-specific antibodies and immune cells are well-known in the art. For example, antibodies elicited in response to a peptide comprising a particular polymorphic sequence can be tested for their ability to specifically recognize that polymorphic sequence, i.e., to bind differentially to a peptide or polypeptide comprising the polymorphic sequence and thus distinguish it from a similar peptide or polypeptide containing a different sequence at the same position.




Diagnostic Methods and Kits




The present invention provides kits for the determination of the sequence at polymorphic positions within the ACE, AGT, and AT1 genes in an individual. The kits comprise a means for determining the sequence at one or more polymorphic positions, and may optionally include data for analysis of polymorphic patterns. The means for sequence determination may comprise suitable nucleic acid-based and immunological reagents (see below). Preferably, the kits also comprise suitable buffers, control reagents where appropriate, and directions for determining the sequence at a polymorphic position. The kits may also comprise data for correlation of particular polymorphic patterns with desirable treatment regimens or other indicators.




Nucleic-acid-based diagnostic methods and kits:




The invention provides nucleic acid-based methods for detecting polymorphic patterns in a biological sample. The sequence at particular polymorphic positions in the genes encoding ACE, AGT, and/or AT1 is determined using any suitable means known in the art, including without limitation hybridization with polymorphism-specific probes and direct sequencing.




The present invention also provides kits suitable for nucleic acid-based diagnostic applications. In one embodiment, diagnostic kits include the following components:




(i) Probe DNA: The probe DNA may be pre-labelled; alternatively, the probe DNA may be unlabelled and the ingredients for labelling may be included in the kit in separate containers; and




(ii) Hybridization reagents: The kit may also contain other suitably packaged reagents and materials needed for the particular hybridization protocol, including solid-phase matrices, if applicable, and standards.




In another embodiment, diagnostic kits include:




(i) Sequence determination primers: Sequencing primers may be pre-labelled or may contain an affinity purification or attachment moiety; and




(ii) Sequence determination reagents: The kit may also contain other suitably packaged reagents and materials needed for the particular sequencing protocol. In one preferred embodiment, the kit comprises a panel of sequencing primers, whose sequences correspond to sequences adjacent to the following polymorphic positions: ACE 2193 A/G, AGR 1072 G/A, AT1 1167 A/G; as well as a means for detecting the presence of each polymorphic sequence.




Antibody-based diagnostic methods and kits:




The invention also provides antibody-based methods for detecting polymorphic patterns in a biological sample. The methods comprise the steps of: (i) contacting a sample with one or more antibody preparations, wherein each of the antibody preparations is specific for a particular polymorphic form of either ACE, AGT, or AT1, under conditions in which a stable antigen-antibody complex can form between the antibody and antigenic components in the sample; and (ii) detecting any antigen-antibody complex formed in step (i) using any suitable means known in the art, wherein the detection of a complex indicates the presence of the particular polymorphic form in the sample.




Typically, immunoassays use either a labelled antibody or a labelled antigenic component (e.g., that competes with the antigen in the sample for binding to the antibody). Suitable labels include without limitation enzyme-based, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays that amplify the signals from the probe are also known, such as, for example, those that utilize biotin and avidin, and enzyme-labelled immunoassays, such as ELISA assays.




The present invention also provides kits suitable for antibody-based diagnostic applications. Diagnostic kits typically include one or more of the following components:




(i) Polymorphism-specific antibodies. The antibodies may be pre-labelled; alternatively, the antibody may be unlabelled and the ingredients for labelling may be included in the kit in separate containers, or a secondary, labelled antibody is provided; and




(ii) Reaction components: The kit may also contain other suitably packaged reagents and materials needed for the particular immunoassay protocol, including solid-phase matrices, if applicable, and standards.




The kits referred to above may include instructions for conducting the test. Furthermore, in preferred embodiments, the diagnostic kits are adaptable to high-throughput and/or automated operation.




Drug Targets and Screening Methods




According to the present invention, nucleotide sequences derived from genes encoding ACE, AGT, and AT1 and peptide sequences derived from ACE, AGT, and AT1 polypeptides, particularly those that contain one or more polymorphic sequences, comprise useful targets to identify cardiovascular drugs, i.e., compounds that are effective in treating one or more clinical symptoms of cardiovascular disease.




Drug targets include without limitation (i) isolated nucleic acids derived from the genes encoding ACE, AGT, and AT1, and (ii) isolated peptides and polypeptides derived from ACE, AGT, and AT1 polypeptides, each of which comprises one or more polymorphic positions.




In vitro screening methods:




In one series of embodiments, an isolated nucleic acid comprising one or more polymorphic positions is tested in vitro for its ability to bind test compounds in a sequence-specific manner. The methods comprise:




(i) providing a first nucleic acid containing a particular sequence at a polymorphic position and a second nucleic acid whose sequence is identical to that of the first nucleic acid except for a different sequence at the same polymorphic position;




(ii) contacting the nucleic acids with a multiplicity of test compounds under conditions appropriate for binding; and




(iii) identifying those compounds that bind selectively to either the first or second nucleic acid sequence.




Selective binding as used herein refers to any measurable difference in any parameter of binding, such as, e.g., binding affinity, binding capacity, etc.




In another series of embodiments, an isolated peptide or polypeptide comprising one or more polymorphic positions is tested in vitro for its ability to bind test compounds in a sequence-specific manner. The screening methods involve:




(i) providing a first peptide or polypeptide containing a particular sequence at a polymorphic position and a second peptide or polypeptide whose sequence is identical to the first peptide or polypeptide except for a different sequence at the same polymorphic position;




(ii) contacting the polypeptides with a multiplicity of test compounds under conditions appropriate for binding; and




(iii) identifying those compounds that bind selectively to one of the nucleic acid sequences.




In preferred embodiments, high-throughput screening protocols are used to survey a large number of test compounds for their ability to bind the genes or peptides disclosed above in a sequence-specific manner.




Test compounds are screened from large libraries of synthetic or natural compounds. Numerous means are currently used for random and directed synthesis of saccharide, peptide, and nucleic acid based compounds. Synthetic compound libraries are commercially available from Maybridge Chemical Co. (Trevillet, Cornwall, UK), Comgenex (Princeton, N.J.), Brandon Associates (Merrimack, N.H.), and Microsource (New Milford, Conn.). A rare chemical library is available from Aldrich (Milwaukee, Wis.). Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available from e.g. Pan Laboratories (Bothell, Wash.) or MycoSearch (N.C.), or are readily producible. Additionally, natural and synthetically produced libraries and compounds are readily modified through conventional chemical, physical, and biochemical means.




In vivo screening methods:




Intact cells or whole animals expressing polymorphic variants of genes encoding ACE, AGT, and/or AT1 can be used in screening methods to identify candidate cardiovascular drugs.




In one series of embodiments, a permanent cell line is established from an individual exhibiting a particular polymorphic pattern. Alternatively, cells (including without limitation mammalian, insect, yeast, or bacterial cells) are programmed to express a gene comprising one or more polymorphic sequences by introduction of appropriate DNA. Identification of candidate compounds can be achieved using any suitable assay, including without limitation (i) assays that measure selective binding of test compounds to particular polymorphic variants of ACE, AGT, or AT1; (ii) assays that measure the ability of a test compound to modify (i.e., inhibit or enhance) a measurable activity or function of ACE, AGT, or AT1; and (iii) assays that measure the ability of a compound to modify (i.e., inhibit or enhance) the transcriptional activity of sequences derived from the promoter (i.e., regulatory) regions of ACE, AGT, or AT1 genes.




In another series of embodiments, transgenic animals are created in which (i) one or more human ACE, AGT, or AT1 genes having different sequences at particular polymorphic positions are stably inserted into the genome of the transgenic animal; and/or (ii) the endogenous ACE, AGT, and/or AT1 genes are inactivated and replaced with human ACE, AGT, and/or AT1 genes having different sequences at particular polymorphic positions. See, e.g., Coffman,


Semin. Nephrol.


17:404, 1997; Esther et al.,


Lab. Invest.


74:953, 1996; Murakami et al.,


Blood Press. Suppl.


2:36, 1996. Such animals can be treated with candidate compounds and monitored for one or more clinical markers of cardiovascular status.




The following are intended as non-limiting examples of the invention.











EXAMPLE 1




Methods for Identification of Polymorphic Positions in Human Genes Encoding ACE, AGT, and AK1




The following studies were performed to identify polymorphic residues within the genes encoding human ACE, AGT, and AT1.




DNA samples were obtained from 277 individuals. The individuals were Caucasian males born in Uppsala, Sweden between 1920 and 1924. Individuals were selected for the test population based on their medical history, i.e., they were either (i) healthy, with no signs of cardiovascular disease (100); or (ii) had suffered one of acute myocardial infarction (68), silent myocardial infarction (34), stroke (18), stroke and acute myocardial infarction (19), or high blood pressure at age 50 (39). DNA samples were obtained from each individual.




DNA sequence analysis was carried out by: (i) amplifying short fragments of each of the ACE, AGT, and AT1 genes using polymerase chain reaction (PCR) and (ii) sequencing the amplified fragments. The sequences obtained from each individual were then compared with known ACE, AGT, and AT1 genomic sequences (see Table 1).




(i) Amplification: PCR reactions employed the primers shown in Table 2 below.

















TABLE 2














Numbering











according









Modification





to






Name




Sequence





*)




Nucleotides




**)











ACE/79RB




5′-TGCGTGCTTCAGAAGTCC-3′




SEQ ID NO:1




B




158-175




i+20: 1-175













ACE/82RB




5′-CCAGGGAGGTGAAGAAATC-3′




SEQ ID NO:2




B




35-53




e20, J04144













ACE/84FT




5′-AGCCAGGCAGTAATGACCT-3′




SEQ ID NO:3




T




1-19




i−19: 1-218













ACE/94FB




5′-GCCCACTGTTCCCTTATG-3′




SEQ ID NO:4




B




1-18




i−21: 1-76













ACE/95RB




5′-TGCCCTGACTGACAGAGC-3′




SEQ ID NO:5




B




105-122




i+23: 1-122













ACE/96RT




5′-GCCCTGGTGTGCCTGT-3′




SEQ ID NO:6




T




1-16




i−22: 1-65













ACE/107F




5′-TGCCTGGATATGTGTTGC-3′




SEQ UD NO:7









1-18




i−15: 1-225













ACE/107FB




5′-TGCCTGGATATGTGTTGC-3′




SEQ ID NO:8




B




1-18




i−15: 1-225













ACE/108RB




5′-GCCCTCGCCTCTCACT-3′




SEQ ID NO:9




B




23-38




i+16: 1-38













ACE/111RT




5′-TCCCCTCTCCCTGTACCT-3′




SEQ ID NO:10




T




17-34




i+15: 1-34













ACE/114RB




5′-GTGCTGGGGTAGGGTAGA-3′




SEQ ID NO:11




B




101-118




i+7: 1-118













ACE/118FT




5′-TCCCCCTGACCTGGCT-3′




SEQ ID NO:12




T




221-236




i−7: 1-253













ACE/119FB




5′-GGGGCACCGTGATGTT-3′




SEQ ID NO:13




B




1-16




i−4: 1-120













ACE/119FT




5′-GGGGCACCGTGATGTT-3′




SEQ ID NO:14




T




1-16




i−4: 1-120













ACE/120RB




5′-GCCAGAGCCTTTGGTTT-3′




SEQ ID NO:15




B




230-246




i+5: 1-246













ACE/122FB




5′-TGGAAGAGCCGACTTACA4-3′




SEQ ID NO:16




B




1-19




i−5: 1-78













ACE/123RB




5′-TCCCAGAGGCAAAGAGG-3′




SEQ ID NO:17




B




225-241




i+4: 1-241













ACE/130F




5′-GTTTCTACTGCGGCTTCAT-3′




SEQ ID NO:18









1-19




i−8: 1-131













ACE/130FB




5′-GTTTCTACTGCGGCTTCAT-3′




SEQ ID NO:19




B




1-19




i−8: 1-131













ACE/134RB




5′-TCCTGGAAGAGGGAGTTTC-3′




SEQ ID NO:20




B




148-166




i+9: 1-166













ACE/145F




5′-GCAGGATGAGAGCAACAAC-3′




SEQ ID NO:21









1-18




i−7: 1-253













ACE/146F




5′-CTGGAGACCACTCCCATCCTTTCT-3′




SEQ ID NO:22









1-24




i−17: 1-454













ACE/147R




5′-GATGTGGCCATCACATTCGTCAGAT-3′




SEQ ID NO:23









1-25




e17, J04144













ACB/170RT




5′-CTTCCGTGGGACTCATGT-3′




SEQ ID NO:24




T




23-40




i+5: 1-246













ACE/171RT




5′-TGCACCGTGAGGCTCTA-3′




SEQ ID NO:25




T




136-152




i+8: 1-152













ACE/173F




5′-GCCCAATAGGAGGAAGCA-3′




SEQ ID NO:26




MT




1-10, 1-9




i−2: 1-10, e2













ACE/174R




5′-CCCACCCCATCTCCAAGAA-3′




SEQ ID NO:27









166-184




i−2: 1-184













ACE/175FB




5′-GCC-3′





MT, B




1-3




i−2: 1-10













ACE/176RT




5′-TCCCTGATGGGCTGCTCTC-3′




SEQ ID NO:28




T




65-83




i−2: 1-184













ACE/177FT




5′-CAAGGCCCTCAACCAACTC-3′




SEQ ID NO:29




T




1-19




i−24: 1-50













ACE/178RB




5′-TTCCCACAAAAGCTCCAGTG-3′




SEQ ID NO:30




B




71-90




i+24: 1-108













ACE/179R




5′-GGCTCAAAATGGCAAGTGTT-3′




SEQ ID NO:31




-




89-108




i+24: 1-108













ACE/180FT




5′-GGGCCATGTCCTTCTGACTC-3′




SEQ ID NO:32




T




1-20




i−25: 1-45













ACE/181RB




5′-CAGCCTGGAGGGGTTAAGA-3′




SEQ ID NO:33




B




33-51




i+25: 1-51













ACE/182R




5′-CCCTTCTGAGCGAGCTGAGT-3′




SEQ ID NO:34









1-6,1-14




i−26: 1-6,











e26, J04144













ACE/183F




5′-GGCCATGTTGAGCTACTTCAA-3′




SEQ ID NO:35









83-103




e25, J04144













ACE/184FB




5′-CCTCCAGCCTTGGGTCTTAA-3′




SEQ ID NO:36




B




19-38




i+25: 1-38













ACE/185RT




5′-TTCCCATCCCAGTCTCTGGT-3′




SEQ ID NO:37




T




269-288




e26, J04144













ACE/188RT




5′-GGCAGCCTGGTTGATGAGT-3′




SEQ ID NO:38




T




116-134




e17, J04144













ACE/192FB




5′-ATTCCAGCTCTGAAATTCTCTGA-3′




SEQ ID NO:39




B




1-23




i−17: 1-85













ACP/3FT




5′-GAGCCCCTCCAGCACCTC-3′




SEQ ID NO:40




T




499-5017




X94359













ACP/4RB




5′-ACCCGAGCCTGCCCACC-3′




SEQ ID NO:41




B




5302-5318




X94359













ACP/5FT




5′-GGTCGGGCTGGGAAGATC-3′ SEQ ID NO:42




T




5232-5249




X94359













ACP/6RB




5′-TCGGCTCTGCCCCTTCTC-3′




SEQ ID NO:43




B




5576-5593




X94359 +











additional











downstream











sequence













ACP/7FT




5′-GCCCTTTCTCCAGCTTCCTCT-3′




SEQ ID NO:44




T




5361-5381




X94359













ACP/8RB




5′-CGGCGGCAGCAGCAACA-3′




SEQ ID NO:45




B




5666-5682




X94359 +










additional




additional










downstream










sequence













ACP/11FB




5′-GAGCCCCTCCAGCACCTC-3′




SEQ ID NO:46




B




499-5017




X94359













ACP/12RT




5′-ACCCGAGCCTGCCCACC-3′




SEQ ID NO:47




T




5302-5318




X94359













ACP/13FB




5′-GGTCGGGCTGGGAAGATC-3′




SEQ ID NO:48




B




5232-5249




X94359













ACP/14RT




5′-TCGGCTCTGCCCCTTCTC-3′




SEQ ID NO:49




T




5576-5593




X94359 +











additional











downstream











sequence













ACP/15FB




5′-GCCCTTTCTCCAGCTTCCTCT-3′




SEQ ID NO:50




B




5361-5381




X94359













ACP/16RT




5′-CGGCGGCAGCAGCAACA-3′




SEQ ID NO:51




T




5666-5682




X94359 +











additional











downstream











sequence













ANG/1FT




5′-ATGGCACTTAAAGGTCAGTTAAT-3′




SEQ ID NO:52




T




336-358




M24686













ANG/2RB




5′-TACGGAAGCCCAAGAAGTT-3′




SEQ ID NO:53




B




726-745




M24686













ANG/5FT




5′-CTCCCCAACGGCTGTCTT-3′




SEQ ID NO:54




T




797-814




M24686













ANG/6RB




5′-AGCAGCAACATCCAGTTCTGT-3′




SEQ ID NO:55




B




1119-1139




M24686













ANG/7FT




5′-TCCCACGCTCTCTGGACTT-3′




SEQ ID NO:56




T




1099-1117




M24686













ANG/8RB




5′-CTGATCTCAGCTACACATGGATACTA-3′




SEQ ID NO:57




B




1290-1315




M24686













ANG/15FT




5′-CCTGTCTTGGGTGACTCTTC-3′




SEQ ID NO:58




T




7-26




M24687













ANG/17FB




5′-TTCTGGGCTAAATGGTGACA-3′




SEQ ID NO:59




B




285-304




M24686













ANG/18RT




5′-CTTGTCTTCGGTGTCAAGTTT-3′




SEQ ID NO:60




T




675-695




M24686













ANG/19FB




5′-GGGAGCCTTGGACCACAC-3′




SEQ ID NO:61




B




839-856




M24686













ANG/20RT




5′-AGCCTGCATGAACCTGTCAA-3′




SEQ ID NO:62




T




1147-1167




M24686













ANG/21FB




5′-TGGTGGGCGTGTTCACA-3′




SEQ ID NO:63




B




1018-1034




M24686













ANG/22RT




5′-GCCAGAGCCAGCAGAGA-3′




SEQ ID NO:64




T




1264-1280




M24686













ANG/29RB




5′-CCACATTCCAGGGGAGAC-3′




SEQ ID NO:65




B




335-352




M24687













ANG/30FB




5′-CCTGTCTTGGGTGACTCTTC-3′ SEQ ID NO:66




B




7-26




M24687













ANG/32RT




5′-CCACATTCCAGGGGAGAC-3′




SEQ ID NO:67




T




334-352




M24687













ANP/1FT




5′-GTCCCTTCAGTGCCCTAATA-3′




SEQ ID NO:68




T




314-334




X15232













ANP/2RB




5′-ACAGCCAGATTGAAAGACACA-3′




SEQ ID NO:69




B




593-613




X15232













ANP/3FT




5′-AACCCTTTTACTGGTCATGTGA-3′




SEQ ID NO:70




B




492-513




X15232













ANP/4RB




5′-CGCTCATGGGATGTGTGAC-3′




SEQ ID NO:71




B




747-765




X15232













ANP/5FT




5′-TGTTTTCCCCAGTGTCTATTAGA-3′




SEQ ID NO:72




T




686-708




X15232













ANP/6RB




5′-GCAGGGTCGAGTTACACATTT-3′




SEQ ID NO:73




B




982-1003




X15232













ANP/7FT




5′-CCTCAGGCTGTCACACACCTA-3′




SEQ ID NO:74




T




909-929




X15232













ANP/8RB




5′-CGGCTTACCTTCTGCTGTAGT-3′




SEQ ID NO:75




B




1246-1266




X15232













ANP/9FB




5′-CTCCTTGAACCTGCTTGTGTT-3′




SEQ ID NO:76




B




273-293




X15232













ANP/10RT




5′-GCATTGAAAGATGTGCTGTTCT-3′




SEQ ID NO:77




T




548-569




X15232













ANP/11FB




5′-TAACGACTACAAAAGCAAGTCTTAC-3′




SEQ ID NO:78




B




446-469




X15232













ANP/12RT




5′-AGAGGGCAGGGGAGAGTCT-3′




SEQ ID NO:79




T




805-823




X15232













ANP/13FB




5′-GGCAGCAGGGTCAGAAGT-3′




SEQ ID NO:80




B




766-783




X15232













ANP/14RT




5′-GCTGGAGAGGAGGGTTACAT-3′




SEQ ID NO:81




T




1127-1146




X15232













ANP/15FB




5′-TGCAAACTTCGGTAAATGTGT-3′




SEQ ID NO:82




B




970-990




X15232













ANP/16RT




5′-CAGAACAACGGCAGCTTCT-3′




SEQ ID NO:83




T




1224-1242




X15232













AT1/5FT




5′-ACTGGCTGACTTATGCTTTTTACT-3′




SEQ ID NO:84




T




547-570




S77410













AT1/6RB




5′-GGGTTGAATTTTGGGACTCATA-3′




SEQ ID NO:85




B




884-905




S77410













AT1/7FT




5′-GCCAGTTTGCCAGCTATAAT-3′




SEQ ID NO:86




T




809-828




S77410













AT1/8RB




5′-TGATGCCTAGTTGAATCAATACA-3′




SEQ ID NO:87




B




1123-1145




S77410













AT1/9FT




5′-GAAGGCTTATGAAATTCAGAAGA-3′




SEQ ID NO:88




T




1003-1025




S77410













AT1/10RB




5′-AAAGTCGGTTCAGTCCACATAA-3′




SEQ ID NO:89




B




1535-1556




S77410













AT1/16FB




5′-AAACAGCTTGGTGGTGATAGTC-3′




SEQ ID NO:90




B




469-490




S77410













AT1/17RT




5′-GCAGGTGACTTTGGCTACAA-3′




SEQ ID NO:91




T




762-781




S77410













AT1/18FB




5′-CCTGTACGCTAGTGTGTTTCTACT-3′




SEQ ID NO:92




B




667-690




S77410













AT1/19RT




5′-AGGAAACAGGAAACCCAGTATAT-3′




SEQ ID NO:93




T




932-955




S77410













AT1/22FB




5′-CTGGATTCCCCACCAAATAT-3′




SEQ ID NO:94




B




1090-1109




S77410













AT1/23RT




5′-TGCTCCTTCTTTCACAAAATTAC-3′




SEQ ID NO:95




T




1438-1460




S77410













ATP/1FT




5′-CTTCCGTTATTATGTGTGATATTAGT-3′




SEQ ID NO:96




T




1244-1269




U07144













ATP/2RB




5′-GCATGTACCTAAAAAGTCCTGTC-3′




SEQ ID NO:97




B




1566-1588




U07144













ATP/5FT




5′-ATTGGCATATCCATCACCTTAA-3′




SEQ ID NO:98




T




1628-1649




U07144













ATP/6RB




5′-GATCTCCCAACTCATGCTATGA-3′




SEQ ID NO:99




B




1961-1982




U07144













ATP/7FT




5′-ATTGGATTCAATTTGCCTACAT-3′




SEQ ID NO:100




T




1846-1867




U07144













ATP/8RB




5′-TTTGGTAATACAGTTGTGGATCATA-3′




SEQ ID NO:101




B




2159-2184




U07144













ATP/9FT




5′-TGCAACTTGGGTAGCATGTC-3′




SEQ ID NO:102




T




2077-2096




U07144













ATP/10RB




5′-AGTCGTCCCGTGTCAACTATC-3′




SEQ ID NO:103




B




2370-2390




U07144













ATP/11FB




5′-CGTTGTCTTCCGTTATTATGTGT-3′




SEQ ID NO:104




B




1238-1260




U07144













ATP/12RT




5′-TTATTGCATGTACCTAAAAAGTGTA-3′




SEQ ID NO:105




T




l455-l479




U07144













ATP/15FB




5′-GCATTCATATAAAGATCAAATCAGT-3′




SEQ ID NO:106




B




1600-1624




U07144













ATP/16RT




5′-CACCCTGATAACAAAACCAGATA3′




SEQ ID NO:107




T




1929-1951




U07144













ATP/17FB




5′-CTTTCTGGCATCAACCTCACT-3′




SEQ ID NO:108




B




1794-1814




U07144













ATP/18RT




5′-ACTTTTAAGGACGAATTAGAGAACT-3′




SEQ ID NO:109




T




2214-2238




U07144













ATP/19FB




5′-GTCCACCCTTGAATTTCATAAC-3′




SEQ ID NO:110




B




2115-2136




U07144













ATP/20RT




5′-CCCAACCTCCTCCCTCTC-3′




SEQ ID NO:111




T




2396-2413




U07144













ATP/21FT




5′-GCTCGCTCTCCCTCACGAC-3′




SEQ ID NO:112




T




2310-2328




U07144













ATP/22RB




5′-TCCAGCCGCTCCCCATC-3′




SEQ ID NO:113




B




2657-2673




U07144













ATP/23FB




5′-GCTCGCTCTCCCTCACGAC-3′




SEQ ID NO:114




B




2310-2328




U07144













ATP/24RT




5′-TCCAGCCGCTCCCCATC-3′




SEQ ID NO:115




T




2657-2673




U07144













ATR/1F




5′-GCCCCTCAGATAATGTAAGCTC-3′




SEQ ID NO:116









1353-1374




S77410













ATR/2R




5′-AACCGGCACGAAAACTTTACT-3′




SEQ ID NO:117









1834-1854




S77410













ATR/3aF




5′-GCACTTCACTACCAAATGAGCA-3′




SEQ ID NO:118









1476-1500




S77410













ATR/4cF




5′-GCACTTCACTACCAAATGAGCC-3′




SEQ ID NO:119









1476-1500




S77410














Where indicated, the primers were modified in one of the following ways: (i) a biotin molecule was conjugated to the 5′ terminus of the indicated sequence (B); (ii) a sequence of nucleotides derived from M13, 5′-CAGGAAACAGCTATGACT-3′ (SEQ ID NO: 120), was added at the 5′ terminus of the indicated sequence (MT); or (iii) the sequence 5′-AGTCACGACGTTGTAAAACGACGGCCAGT-3′ (SEQ ID NO: 121). was added at the 5′ terminus of the indicated sequence (T=Tail). Nucleotides were numbered according to the Genbank sequences listed in Table 1 where indicated. When the sequences involved were not publicly available, the numbering was as in the following examples: The designation “i−4: 1-200” indicates that the primer sequence is located within the sequence extending 200 bp upstream of, and including, the nucleotide immediately upstream of the first coding nucleotide of exon 4. Similarly, the designation “i+4: 1-200” indicates that the primer sequence is located within the sequence extending from the nucleotide that is located immediately downstream of the last coding nucleotide of exon 4 downstream for 200 bp. In each case, the specific location of the primer sequence is indicated in Table 2 in the column marked “Nucleotides”.




The reaction components used for PCR are described in Table 3 below.














TABLE 3









Condition




Components




Volume











A




Ultrapure dNTP Set 2.5 mM




4 μl







(dATP:dCTP:dGTP:dTTP = 1:1:1:1),







(Pharmacia Biotech)







10xPCR buffer II, (Perkin Elmer)




5 μl







MgCl


2


solution 2.5 mM,




3 μl







AmpliTaq ® DNApolymerase




0.15 μl







(Perkin Elmer) (5U/ml)







Primer 1




1 μl







Primer 2




1 μl







DNA solution




1 μl







R/O-purified water q.s.




Tot. 50 μl






B




Ultrapure dNTP Set 2.5 mM




4 μl







(dATP:dCTP:dGTP:dITP:dTTP = 2:2:1:1:2),







(Pharmacia Biotech)







10xPCR buffer II, (Perkin Elmer)




5 μl







MgCl


2


solution 2.5 mM, (Perkin Elmer)




3 μl







AmpliTaq ® DNApolymerase (5U/ml)




0.15 μl







Primer 1




1 μl







Primer 2




1 μl







DNA solution




1 μl







R/O-purified water q.s.




Tot. 50 μl






C




Ultrapure dNTP Set 2.5 mM




4 μl







(dATP:dCTP:dGTP:dITP:dTTP = 4:4:1:3:4),







(Pharmacia Biotech)







10xPCR buffer II, (Perkin Elmer)




5 μl







MgCl


2


solution 2.5 mM, (Perkin Elmer)




3 μl







AmpliTaq ® DNApolymerase (5U/ml)




0.15 μl







Primer 1




1 μl







Primer 2




1 μl







DNA solution




1 μl







R/O-purified water q.s.




Tot. 50 μl






D




Ultrapure dNTP Set 2.5 mM




4 μl







(dATP:dCTP:dGTP:dITP:dTTP = 6:6:1:5:6),







(Pharmacia Biotech)







10xPCR buffer II, (Perkin Elmer)




5 μl







MgCl


2


solution 2.5 mM, (Perkin Elmer)




3 μl







AmpliTaq ® DNApolymerase (5U/ml)




0.15 μl







Primer 1




1 μl







Primer 2




1 μl







DNA solution




1 μl







R/O-purified water q. s.




Tot. 50 μl






E




Ultrapure dNTP Set 2.5 mM




4 μl







(dATP:dCTP:dGTP:dITP:dTTP = 4:4:1:3:4),







(Pharmacia Biotech)







10xPCR buffer II, (Perkin Elmer)




5 μl







MgCl


2


solution 2.5 mM, (Perkin Elmer)




2.5 μl







DMSO




2.5 μl







AmpliTaqGold ® DNApolymerase (5U/ml)




0.5 μm







Primer 1




1 μl







Primer 2




1 μl







DNA solution




1 μl







R/O-purified water q.s.




Tot. 50 μl






F




Ultrapure dNTP Set 2.5 mM




4 μl







(dATP:dCTP:dGTP:dTTP = 1:1:1:1)







(Pharmacia Biotech)







10xPCR buffer II, (Perkin Elmer)




5 μl







MgCl


2


solution 2.5 mM, (Perkin Elmer)




2 μl







AmpliTaq ® DNApolymerase (5U/ml)




0.5 μl







Primer 1




1 μl







Primer 2




1 μl







DNA solution




1 μl







R/O-purified water q.s.




Tot. 50 μl






G




Ultrapure dNTP Set 2.5 mM




4 μl







(dATP:dCTP:dGTP:dTTP = 1:1:1:1)







(Pharmacia Biotech)







10xPCR buffer II, (Perkin Elmer)




5 μl







MgCl


2


solution 2.5 mM, (Perkin Elmer)




2 μl







AmpliTaq ® DNApolymerase (5U/ml)




0.5 μl







Primer 1




1 μl







Primer 2




1 μl







DNA solution




1 μl







R/O-purified water q.s.




Tot. 50 μl






H




Ultrapure dNTP Set 2.5 mM




4 μl







(dATP:dCTP:dGTP:dITP:dTTP = 4:4:1:3:4),







(Pharmacia Biotech)







10xPCR buffer II, (Perkin Elmer)




5 μl







MgCl


2


solution 2.5 mM, (Perkin Elmer)




4 μl







AmpliTaqGold ® DNApolymerase (5U/ml)




0.5 μl







Primer 1




1 μl







Primer 2




1 μl







DNA solution




1 μl







R/O-purified water q.s.




Tot. 50 μl





























TABLE 4









PCR-










No of






method




Temperature*)




Time*)




Temperature**)




Time




Temperature




Time




cycles***)











25




94




15 s


   






55




30 s




72




45 s




35







72




 5 min








 1







22











27




94




15 s


   






55




30 s




72




45 s




35







72




 5 min








 1







22











36




94




 2 min








 1







94




15 s


   






58




30 s




72




45 s




35







72




 5 min








 1







22











38




94




 2 min








 1







94




15 s


   






60




30 s




72




45 s




15







72




 5 min








 1







22











40




94




 2 min








 1







94




15 s


   






60




30 s




72




45 s




35







72




 5 min








 1







22











54




96




 5 min







1







96




30 s


   






61




30 s




72




45 s




15







72




 5 min








 1







22











56




96




 5 min








 1







96




30 s


   






61




30 s




72




45 s




35







72




 5 min








 1







22











64




95




 2 min







95




15 s


   






59




30 s




72




45 s




40







72




 5 min








 1







22











70




95




 5 min







95




15 s


   






59




30 s




72




45 s




50







72




 5 min








 1







22
















All temperatures are given in degrees Celsius.










*)indicates the default initial temperatures (° C.) and times of the program.










**)indicates the default temperature (° C.) of the program.










***)indicates the default number of cycles of the program, referring to the section of the PCR program where three different temperatures are employed.













Any differences are indicated in “Modifications” in Table 5 below.




The amplified fragments are described in Table 5 below with respect to the primers and PCR reaction conditions used for amplification.

















TABLE 5












PCR





PCR reaction






Fragment




Primer 1




Primer 2




method




Modifications of PCR method




conditions





























ANPf1F





ANP/1FT




ANP/2RB




64





A






ANPf2F





ANP/3FT




ANP/4RB




64





B






ANPf3F





ANP/5FT




ANP/6RB




64




anneal. temp: 48° C.




A






ANPf4F





ANP/7FT




ANP/8RB




64




anneal. temp: 59° C.




D






ANPf5R





ANP/9FB




ANP/10RT




64





A






ANPf6R





ANP/11FB




ANP/12RT




64





B






ANPf7R





ANP/13FB




ANP/14RT




64





A






ANPf8R





ANP/15FB




ANP/16RT




64





C






ANGe2f1F





ANG/1FT




ANG/2RB




64





C






ANGe2f3F





ANG/5FT




ANG/6RB




64





C






ANGe2f4F





ANG/7FT




ANG/8RB




64





A






ANGe2f5R





ANG/17FB




ANG/18RT




64





A






ANGe2f7R





ANG/19FB




ANG/20RT




64





A






ANGe2f8R





ANG/21FB




ANG/22RT




64





A






ANGe3F





ANG/15FT




ANG/29RB




64




anneal. temp: 57° C.




F






ANGe3R





ANG/30FB




ANG/32RT




64




anneal. temp: 57° C., 45 cycles




A






ACPf2F





ACP/3FT




ACP/4RB




70




anneal. temp: 62° C.




E






ACPf3F





ACP/5FT




ACP/6RB




70




anneal. temp: 58° C.




E






ACPf4F





ACP/7FT




ACP/8RB




70





E






ACPf6R





ACP/11FB




ACP/12RT




70




anneal. temp: 62° C.




E






ACPf7R





ACP/13FB




ACP/14RT




70




anneal. temp: 58° C.




E






ACPf8R





ACP/15FB




ACP/16RT




70





E






ACEe2R




PCR1




ACE/173F




ACE/174R




38





A






ACEe2R




PCR2




ACE/175FB




ACE/176RT




40





A






ACEe4F




PCR1




ACE/119FB




ACE/120RB




27





A






ACEe4F




PCR2




ACE/119FT




ACE/123RB




25





A






ACEe5R




PCR1




ACE/119FB




ACE/120RB




27





A






ACEe5R




PCR2




ACE/122FB




ACE/170RT




25





A






ACEe7F




PCR1




ACE/145F




ACE/114RB




27





A






ACEe7F




PCR2




ACE/118FT




ACE/114RB




25





A






ACEe8R




PCR1




ACE/130F




ACE/134RB




27





A






ACEe8R




PCR2




ACE/130FB




ACE/171RT




25





A






ACEe15R




PCR1




ACE/107F




ACE/108RB




27





A






ACEe15R




PCR2




ACE/107FB




ACE/111RT




25





A






ACEe17R





ACE/192FB




ACE/188RT




40




anneal. temp: 63° C., 40 cycles




A






ACEe19F




PCR1




ACE/84FT




ACE/79RB




27





A






ACEe19F




PCR2




ACE/84FT




ACE/82RB




25





A






ACEe21R




PCR1




ACE/94FB




ACE/95RB




27





A






ACEe21R




PCR2




ACB/94FB




ACE/96RT




25





A






ACEe24F




PCR1




ACE/177FT




ACE/179R




38





A






ACEe24F




PCR2




ACE/177FT




ACE/178RB




40





A






ACEe25F




PCR1




ACE/180FT




ACE/182R




38





A






ACEe25F




PCR2




ACE/180FT




ACE/181RB




40





A






ACEe26R




PCR1




ACE/183F




ACE/185RT




54





A






ACEe26R




PCR2




ACE/184FB




ACE/185RT




56





A






ACEDI





ACE/146F




ACE/147R




36





A






ATPf1F





ATP/1FT




ATP/2RB




64





A






ATPf3F





ATP/5FT




ATP/6RB




64




anneal. temp: 58° C.




A






ATPf4F





ATP/7FT




ATP/8RB




64




anneal. temp: 48° C.




A






ATPf5F





ATP/9FT




ATP/10RB




64




anneal. temp: 58° C.




A






ATPf6R





ATP/11FB




ATP/12RT




64




anneal. temp: 48° C.




A






ATPf8R





ATP/15FB




ATP/16RT




64




anneal. temp: 55° C.




G






ATPf9R





ATP/17FB




ATP/18RT




64




anneal. temp: 54° C.




A






ATPf10R





ATP/19FB




ATP/20RT




64





A






ATPf11F





ATP/21FT




ATP/22RB




64




initial denaturation: 95° C., 12 min.




H






ATPf12R





ATP/23FB




ATP/24RT




64




initial denaturation: 95° C., 12 min.




H






AT1e5f2F





AT1/5FT




AT1/6RB




64





A






AT1e5f3F





AT1/7FT




AT1/8RB




64





A






AT1e5f4F





AT1/9FT




AT1/10RB




64





C






AT1e5f6R





AT1/16FB




AT1/17RT




64





A






AT1e5f7R





AT1/18FB




AT1/19RT




64





C






AT1e5f9R





AT1/22FB




AT1/23RT




64





A






AT1-spec. 1





ATR/1F




ATR/2R




40




anneal. temp: 63° C.




A








ATR/3aF






AT1-spec. 2





ATR/1F




ATR/4cF




40




anneal. temp: 63° C.




A








ATR/2R














All of the PCR products (except fragments ACEDI, AT1-spec. 1 and AT1-spec. 2) were subjected to solid phase sequencing according to the protocol commercially available from Pharmacia Biotech. The sequencing reactions are performed with a sequencing primer having a complementary sequence to the “Tail” sequence previously described in Table 2. The nucleotide sequence of the sequencing primer was 5′-CGACGTTGTAAAACGACGGCCAGT-3′ (SEQ ID NO: 122), and the primer was fluorescently labeled with a Cy-5-molecule on the 5′-nucleotide. The positions carrying a genetic variation were identified by determination of the nucleotide sequence by the use of the ALFexpress™ system commercially available from Pharmacia Biotech.




The detection of the fragment ACEDI was performed by analyzing the sizes of the amplified fragments by gel electrophoresis, where the presence of a shorter PCR product (192 base pairs) indicated the D-allele and a longer PCR product (479 base pairs) indicated the I-allele. The presence of both bands indicated a heterozygote for the two alleles. The detection of the allele-specific reaction of position AT1-1271 was performed by separately running two parallel PCR reactions on the same sample and comparing the sizes of the amplified fragments. A PCR product of 501 base pairs should always be present as a control in both parallel runs, whereas the presence of a PCR product of 378 base pairs in the reaction designated AT1-spec. 1 indicated the presence of an A in this position. The presence of a PCR product of 378 base pairs in the reaction designated AT1-spec. 2 indicated a C in this position. If the shorter PCR product was present in both reactions, the individual is a heterozygote for A and C.




Results:




The analysis described above resulted in the identification of polymorphic positions within the regulatory and coding/intron segments of the human genes encoding ACE, AGT, and AT1. The polymorphic positions, the variant nucleotides found at each of the positions, and the PCR fragment in which the polymorphism was identified are shown in Table 6 below. Also shown are the frequencies of each genotype in a population of 90 individuals, expressed as the percent of the study population having that genotype. Polymoiphisms that resulted in alternate amino acids in ACE, AGT, or AT1 are also indicated. As used herein below, the designations “AGR”, “ACR”, and “ATR” refer to the regulatory regions of the human AGT, ACE, and AT1 genes, respectively; and the designations “AGT”, “ACE”, and “AT1”, refer to the coding regions of the AGT, ACE, and AT1 genes.



















TABLE 6











Reported




Genetic




Frequency




Amino acid








Gene




Position




genotype




variation




(percent)




change




Fragment




Reference (if any)











AGR




 395




T




TT-TA-AA




88-11-1




None




ANPf1F

















ANPf5R






AGR




 412




C




CC-CT




99-1




None




ANPf1F

















ANPf5R






AGR




 432




G




GG-GA




81-19




None




ANPf1F

















ANPf5R






AGR




 449




C




TT-TC




92-8




None




ANPf1F

















ANPf5R






AGR




 692




C




CC-CT




81-19




None




ANPf2F

















ANPf6R






AGR




 839




G




GG-GA




93-7




None




ANPf3F

















ANPf7R






AGR




1007




G




GG-GA




81-19




None




ANPf4F

















ANPf7R






AGR




1072




G




GG-GA




89-11




None




ANPf4F

















ANPf7R






AGR




1204




C




CC-CA-AA




67-33




None




ANPf4F

















ANPf8R






AGR




1218




A




AA-AG-GG




14-55-31




None




ANPf4F




Inuoe, I et. al. J. C. I.












ANPf8R




(1997) 99:1786-1789.






AGT




 273




C




CC-CT




99-1




None




ANGe2f1F

















ANGe2f5R






AGT




 620




C




CC-CT




80-20




Thr-Met




ANGe2f3F




JeunmaîtreX, et al. Cell












ANGe2f7R




(1992) 71:169-180.






AGT




 803




T




TT-TC-CC




35-52-13




Met-Thr




ANGe2f4F




JeunmaîtreX, et al. Cell












ANGe2f8R




(1992) 71:169-180.






AGT




 912




C




CC-CT




99-1




None




ANGe3F

















ANGe3R






AGT




 997




G




CC




100




Glu-Gln




ANGe3F

















ANGe3R






AGT




1116




G




GG-GA-AA




87-12-1




None




ANGe3F

















ANGe3R






AGT




 49




A




AA-AG




80-20




None




ANGe3F











i3




Numbering








ANGe3R







according







to GenBank







entry







M24688






AGT




1174




C




CC-CA




99-1




Leu-Met




ANGe4F

















ANGe4R






ACR




5106




C




CC-CT




98-2




None




ACPf2F

















ACPf6R






ACR




5349




A




AA-AT-TT




35-46-19




None




ACPf3F




Villard, E. et al. Am. J.












ACPf7R




Hum. Genet. (1996) 58:













1268-1278






ACR




5496




T




TT-TC-CC




35-46-19




None




ACPf4F




Villard, E. et al. Am. J.












ACPf8R




Hum. Genet. (1996) 58:













1268-1278






ACE




 375




A




CC




100




None




ACEe2R











ACE




 582




C




CC-CT




94-6




None




ACEe4F











ACE




 731




A




AA-AG




96-4




Tyr-Cys




ACEe5R











ACE




1060




G




GG-GA




97-3




Gly-Arg




ACEe7F











ACE




1215




C




CC-CT-TT




35-42-23




None




ACEe8R




Villard, E. et al. Am. J.













Hum. Genet. (1996) 58:













1268-1278






ACE




2193




G




GG-GA-AA




20-57-23




None




ACEe15R




Villard, E. et al. Am. J.













Hum. Genet. (1996) 58:













1268-1278






ACE




1451





DD-DI-II




29-54-20




None




ACEDI




Villard, E. et al. Am. J.













Hum. Genet. (1996) 58:













1268-1278






ACE




2328




A




AA-AG-GG




20-57-23




None




ACEe17R




Villard, E. et al. Am. J.













Hum. Genet. (1996) 58:













1268-1278






ACE




2741




G




TT




100




Gly-Val




ACEe19F











ACE




3132




C




CC-CT




99-1




None




ACEe21R











ACE




3387




T




TT-TC-CC




20-57-23




None




ACEe24F











ACE




3503




C




GG




100




Ala-Gly




ACEe25F











ACE




3906




G




GG-GA




91-9




None




ACEe26R











ATR




1427




A




AA-AT-TT




77-22-1




None




ANPf1F

















ANPf6R






ATR




1756




T




TT-TA-AA




75-24-1




None




ANPf3F

















ANPf8R






ATR




1853




T




TT-TG-GG




82-11-1




None




ANPf3F

















ANPf8R






ATR




2046




T




CC-CT-TT




46-46-8




None




ANPf4F

















ANPf9R






ATR




2354




A




AA-AC-CC




73-26-1




None




ANPf5F

















ANPf10R






ATR




2355




G




GG-GC-CC




73-26-1




None




ANPf5F

















ANPf10R






ATR




2415




A




AA-AG




75-24-1




None




ANPf11F

















ANPf12R






AT1




 449




G




GG-GC




99-1




Ser-Thr




AT1e5f2F

















AT1e5f6R






AT1




 678




T




CC-CT-TT




31-48-21




None




AT1e5f3F




Rolfs A, et. al. Eur. Heart.












AT1e5f7R




J. (1994) 15:













Suppl. D, 108-112.






AT1




1167




A




AA-AG




92-8




None




AT1e5f4F




Rolfs A, et. al. Eur. Heart.












AT1e5f9R




J. (1994) 15:













Suppl. D, 108-112.






AT1




1271




A




AA-AC-CC




50-40-10




None




AT1-spec




Bonnardeaux, A. et al.













Hypertension (1994) 24:63-69.














A subset of these polymorphic positions were further analyzed in an additional 187 individuals. Table 7 shows the polymorphic positions, the sequence at these positions, and the genotype frequencies for each position in a population of 277 as described in Example 1 above.

















TABLE 7











Gene




Position




Genetic variation




Frequency (per cent)













AGR




395




TT-TA-AA




87-12-7







AGR




432




GG-GA-AA




78-21-1







AGR




449




TT-TC-CC




94-5-1







AGR




692




CC-CT-TT




78-21-1







AGR




839




GG-GA




96-4







AGR




1007




GG-GA-AA




78-21-1







AGR




1072




GG-GA




76-24







AGR




1204




CC-CA-AA




3-27-70







AGR




1218




AA-AG-GG




16-5O-34







AGT




620




CC-CT-TT




75-23-2







AGT




803




TT-TC-CC




34-5O-16







AGT




1116




GG-GA-AA




83-15-2







ACR




5349




AA-AT-TT




37-44-19







ACR




5496




TT-TC-CC




38-43-19







ACE




1060




GG-GA




96-4







ACE




1215




CC-CT-TT




34-46-20







ACE




2193




GG-GA-AA




22-53-25







ACE




2328




AA-AG-GG




23-52-25







ACE




3387




TT-TC-CC




24-53-23







ACE




3906




GG-GA-AA




86-13-1







ATR




1427




AA-AT-TT




72-26-2







ATR




1756




TT-TA-AA




72-25-3







ATR




1853




TT-TG-GG




73-25-2







ATR




2046




CC-CT-TT




47-41-12







ATR




2354




AA-AC-CC




72-26-2







ATR




2355




GG-GC-CC




71-27-2







ATR




2415




AA-AG-GG




73-25-2







AT1




678




CC-CT-TT




26-51-23







AT1




1167




AA-AG




88-12







AT1




1271




AA-AC-CC




55-36-9















EXAMPLE 2




Correlation of Polymorphic Patterns with Cardiovascular Disease




The polymorphic positions identified as in Example 1 were correlated with the following markers of cardiovascular status present in the study population: myocardial infarction (MI); stroke; and high blood pressure. Polymorphic patterns, i.e., combinations of sequences at particular polymorphic positions, that show a statistically significant correlation with one or more of these markers are shown below.






















Healthy




MI




Stroke




High BP




Total







(100)




(120)




(37)




(39)




(n)
























ACR 5349 A/T, AGR 1218 A
















# of events




3




7




3




5




17






% within group




3




5.8




8.1




12.8











ACR 5496 C, AGR 1204 A/C
















# of events




2




7




3




2




13






% within group




2




5.8




8.1




5.1











ACR 5496 C/T, AGR 1218 A, AGT 620 C/T
















# of events




4




13




1




3




21






% within group




4




10.8




2.7




7.7











ACE 2193 A, AGR 1204 C, ACE 2328 G
















# of events




0




11




3




3




16






% within group




0




9.2




8.1




7.7











ACE 2193 A, AGR 1204 A/C
















# of events




1




1




0




1




3






% within group




1




0.8




0




2.6











ACE 3387 T, AGR 1218 A
















# of events




2




4




1




3




10






% within group




2




3.3




2.7




7.7











ACE 3387 T, AGT 620 C/T
















# of events




1




10




3




2




15






% within group




1




8.3




8.1




5.1











AGR 1204 A/C, AT1 678 C/T
















# of events




5




23




5




6




37






% within group




5




19.2




13.5




15.4











AGR 1204 A/C, AT1 1271 A/C
















# of events




3




17




3




4




26






% within group




3




14.2




8.1




10.3











ACE 1215 C, AGR 1204 A/C
















# of events




3




13




5




6




25






% within group




3




10.8




13.5




15.4











AGR 1204 A/C, AT1 1167 A, ACE 3906 A/G
















# of events




0




5




1




0




6






% within group




0




4.2




2.7




0











AGR 1204 A, AGT 620 C, AT1 1271 A, AT1 1167 A, AGR 395 A/T
















# of events




1




4




5




3




11






% within group




1




3.3




13.5




7.7











AGR 1204 A/C, AGT 620 C/T, AT1 1271 A/C, AT1 1167 A, AGR 395 T
















# of events




3




13




3




2




20






% within group




3




10.8




8.1




5.1











AGR 1204 A/C, AGT 620 C/T,






AT1 1271 A/C, AT1 1167 A/G, AGR 395 T
















# of events




0




2




0




1




3






% within group




0




1.7




0




2.6











Summary of the three previous polymorphic patterns






(which involve the same polymorphic positions):
















# of events




4




19




8




6




34






% within group




4




15.8




21.6




15.4











AGR 1204 A, AT1 678 C, AT1 1167 A, AGR 395 A/T
















# of events




1




2




2




1




5






% within group




1




1.7




5.4




2.6











AGR 1204 A/C, AT1 678 C/T, AT1 1167 A, AGR 395 T
















# of events




3




18




5




4




28






% within group




3




15.0




13.5




10.3











Summary of the two previous polymorphic patterns:
















# of events




4




20




7




5




33






% within group




4




16.7




18.9




12.8











AGT 620 C/T, AT1 1271 A/C, AT1 1167 A, AGR 395 T
















# of events




2




8




1




2




13






% within group




2




6.7




2.7




5.1











AGT 620 C/T, AT1 1271 A/C, AT1 1167 A/G, AGR 395 T
















# of events




0




2




0




1




3






% within group




0




1.7




0




2.6











AGT 620 C, AT1 1271 A, AT1 1167 A, AGR 395 A/T
















# of events




1




4




5




3




11






% within group




1




3.3




13.5




7.7











Summary of the three previous polymorphic patterns:
















# of events




3




14




6




6




27






% within group




3




11.7




16.2




15.4











AGT 620 C, AT1 678 A, AT1 1167 A, AGR 395 A/T
















# of events




1




2




2




1




5






% within group




1




1.7




5.4




2.6











AGT 620 CIT, AT1 678 C/T; AT1 1167 A, AGR 395 T
















# of events




3




15




4




4




24






% within group




3




12.5




10.8




10.3











Summary of the two previous polymorphic patterns:
















# of events




4




17




6




5




29






% within group




4




14.2




16.2




12.9











ACE 2193 A, AGR 1218 A, AGT 803 A
















# of events




2




5




1




3




11






% within group




2




4.2




2.7




7.7











ACE 2193 A, AGT 620 C/T
















# of events




1




11




3




2




16






% within group




1




9.2




8.1




5.1











ACE 2328 G, AGT 620 C/T
















# of events




1




11




3




2




16






% within group




1




9.2




8.1




5.1











ACE 3387 T, AGR 1204 A/C
















# of events




0




10




3




3




15






% within group




0




8.3




8.1




7.7














EXAMPLE 3




Correlation Between a Specific Polymorphic Pattern and Treatment Response




The following study was undertaken to define polymorphic patterns in the human ACE, AGT, and/or AT1 genes that predict the efficacy of treatments for cardiovascular disease.




Two groups of hypertensive patients were studied, 41 in the first group and in the second group. The groups were analyzed independently and in combination.




The patients in this population were each treated with one of the following five ACE inhibitors: Captopril, Trandolapril, Lisinopril, Fosinopril, or Enalapril. The effect of the drugs on mean arterial blood pressure was quantified. Mean arterial blood pressure was defined as ⅔ of the diastolic blood pressure+⅓ of systolic blood pressure. The individuals were also categorized as “high responders,” i.e., those exhibiting a decrease of more than 16 mm Hg during treatment with an ACE inhibitor drug, and “low responders,” i.e., those not exhibiting a decrease of more than 16 mm Hg.




One particular polymorphic pattern, ACE 2193 A/G, AGR 1072 G/A, AT1 1167 A/G, which was present in 51% of the first study population, discriminated between high responders and low responders. In the second group of 20 patients, the pattern was less prevalent (25%), but the correlation with lowered blood pressure was evident. Individuals having this polymorphic pattern (designated “1” below) experienced a larger decrease in blood pressure than those lacking this polymorphic pattern (designated “0” below).























Mean (mm Hg)








Polymorphic Pattern




Observations




Change in B.P.




S.D.













0




36




−11.4




8.6







1




25




−18.1




9.7















Furthermore, the distribution of high responders and low responders (as defined above) was as follows:

















Polymorphic Pattern




Low responder %




High responder %











0




80.1




19.4






1




24.0




76.0














Taken together, the results from the two groups indicate that the presence of this polymorphic pattern correlates with an incremental decrease of 6.4-7.3 mm Hg relative to individuals not having this polymorphic pattern.




The prevalence of this polymorphic pattern was 41% in this hypertensive population. This suggests that testing for this polymorphic pattern in hypertensive patients, followed by prescribing ACE inhibitors only to those patients having this polymorphic pattern, could increase the response rate from 43% (in a hypertensive population in general) to 76% in hypertensive population selected according to the methods of the invention.







133




1


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





1
tgcgtgcttc agaagtcc 18




2


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





2
ccagggaggt gaagaaatc 19




3


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





3
agccaggcag taatgacct 19




4


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





4
gcccactgtt cccttatg 18




5


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





5
tgccctgact gacagagc 18




6


16


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





6
gccctggtgt gcctgt 16




7


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





7
tgcctggata tgtgttgc 18




8


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





8
tgcctggata tgtgttgc 18




9


16


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





9
gccctcgcct ctcact 16




10


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





10
tcccctctcc ctgtacct 18




11


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





11
gtgctggggt agggtaga 18




12


16


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





12
tccccctgac ctggct 16




13


16


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





13
ggggcaccgt gatgtt 16




14


16


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





14
ggggcaccgt gatgtt 16




15


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





15
gccagagcct ttggttt 17




16


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





16
tggaagagcc gacttacag 19




17


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





17
tcccagaggc aaagagg 17




18


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





18
gtttctactg cggcttcat 19




19


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





19
gtttctactg cggcttcat 19




20


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





20
tcctggaaga gggagtttc 19




21


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





21
gcaggatgag agcaacaac 19




22


24


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





22
ctggagacca ctcccatcct ttct 24




23


25


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





23
gatgtggcca tcacattcgt cagat 25




24


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





24
cttccgtggg actcatgt 18




25


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





25
tgcaccgtga ggctcta 17




26


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





26
gcccaatagg aggaagca 18




27


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





27
cccaccccat ctccaagaa 19




28


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





28
tccctgatgg gctgctctc 19




29


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





29
caaggccctc aaccaactc 19




30


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





30
ttcccacaaa agctccagtg 20




31


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





31
ggctcaaaat ggcaagtgtt 20




32


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





32
gggccatgtc cttctgactc 20




33


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





33
cagcctggag gggttaaga 19




34


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





34
cccttctgag cgagctgagt 20




35


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





35
ggccatgttg agctacttca a 21




36


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





36
cctccagcct tgggtcttaa 20




37


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





37
ttcccatccc agtctctggt 20




38


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





38
ggcagcctgg ttgatgagt 19




39


23


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





39
attccagctc tgaaattctc tga 23




40


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





40
gagcccctcc agcacctc 18




41


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





41
acccgagcct gcccacc 17




42


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





42
ggtcgggctg ggaagatc 18




43


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





43
tcggctctgc cccttctc 18




44


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





44
gccctttctc cagcttcctc t 21




45


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





45
cggcggcagc agcaaca 17




46


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





46
gagcccctcc agcacctc 18




47


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





47
acccgagcct gcccacc 17




48


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





48
ggtcgggctg ggaagatc 18




49


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





49
tcggctctgc cccttctc 18




50


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





50
gccctttctc cagcttcctc t 21




51


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





51
cggcggcagc agcaaca 17




52


23


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





52
atggcactta aaggtcagtt aat 23




53


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





53
tacggaagcc caagaagtt 19




54


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





54
ctccccaacg gctgtctt 18




55


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





55
agcagcaaca tccagttctg t 21




56


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





56
tcccacgctc tctggactt 19




57


26


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





57
ctgatctcag ctacacatgg atacta 26




58


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





58
cctgtcttgg gtgactcttc 20




59


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





59
ttctgggcta aatggtgaca 20




60


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





60
cttgtcttcg gtgtcaagtt t 21




61


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





61
gggagccttg gaccacac 18




62


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





62
agcctgcatg aacctgtcaa 20




63


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





63
tggtgggcgt gttcaca 17




64


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





64
gccagagcca gcagaga 17




65


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





65
ccacattcca ggggagac 18




66


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





66
cctgtcttgg gtgactcttc 20




67


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





67
ccacattcca ggggagac 18




68


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





68
gtcccttcag tgccctaata c 21




69


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





69
acagccagat tgaaagacac a 21




70


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





70
aaccctttta ctggtcatgt ga 22




71


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





71
cgctcatggg atgtgtgac 19




72


23


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





72
tgttttcccc agtgtctatt aga 23




73


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





73
gcagggtcga gttacacatt t 21




74


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





74
cctcaggctg tcacacacct a 21




75


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





75
cggcttacct tctgctgtag t 21




76


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





76
ctccttgaac ctgcttgtgt t 21




77


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





77
gcattgaaag atgtgctgtt ct 22




78


25


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





78
taacgactac aaaagcaagt cttac 25




79


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





79
agagggcagg ggagagtct 19




80


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





80
ggcagcaggg tcagaagt 18




81


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





81
gctggagagg agggttacat 20




82


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





82
tgcaaacttc ggtaaatgtg t 21




83


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





83
cagaacaacg gcagcttct 19




84


24


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





84
actggctgac ttatgctttt tact 24




85


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





85
gggttgaatt ttgggactca ta 22




86


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





86
gccagtttgc cagctataat 20




87


23


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





87
tgatgcctag ttgaatcaat aca 23




88


23


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





88
gaaggcttat gaaattcaga aga 23




89


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





89
aaagtcggtt cagtccacat aa 22




90


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





90
aaacagcttg gtggtgatag tc 22




91


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





91
gcaggtgact ttggctacaa 20




92


24


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





92
cctgtacgct agtgtgtttc tact 24




93


23


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





93
aggaaacagg aaacccagta tat 23




94


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





94
ctggattccc caccaaatat 20




95


23


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





95
tgctccttct ttcacaaaat tac 23




96


26


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





96
cttccgttat tatgtgtgat attagt 26




97


23


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





97
gcatgtacct aaaaagtcct gtc 23




98


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





98
attggcatat ccatcacctt aa 22




99


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





99
gatctcccaa ctcatgctat ga 22




100


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





100
attggattca atttgcctac at 22




101


25


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





101
tttggtaata cagttgtgga tcata 25




102


20


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





102
tgcaacttgg gtagcatgtc 20




103


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





103
agtcgtcccg tgtcaactat c 21




104


23


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





104
cgttgtcttc cgttattatg tgt 23




105


25


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





105
ttattgcatg tacctaaaaa gtgta 25




106


25


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





106
gcattcatat aaagatcaaa tcagt 25




107


23


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





107
caccctgata acaaaaccag ata 23




108


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





108
ctttctggca tcaacctcac t 21




109


25


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





109
acttttaagg acgaattaga gaact 25




110


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





110
gtccaccctt gaatttcata ac 22




111


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





111
cccaacctcc tccctctc 18




112


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





112
gctcgctctc cctcacgac 19




113


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





113
tccagccgct ccccatc 17




114


19


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





114
gctcgctctc cctcacgac 19




115


17


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





115
tccagccgct ccccatc 17




116


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





116
gcccctcaga taatgtaagc tc 22




117


21


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





117
aaccggcacg aaaactttac t 21




118


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





118
gcacttcact accaaatgag ca 22




119


22


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





119
gcacttcact accaaatgag cc 22




120


18


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





120
caggaaacag ctatgact 18




121


29


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





121
agtcacgacg ttgtaaaacg acggccagt 29




122


24


DNA


Artificial Sequence




Description of Artificial Sequence PCR PRIMER





122
cgacgttgta aaacgacggc cagt 24




123


1278


DNA


Homo sapiens




Angiotensinogen, 5′ region and exon 1





123
ccagacaagt gatttttgag gagtccctat ctataggaac aaagtaatta aaaaaatgta 60
tttcagaatt tacaggccca tgtgagatat gattttttta aatgaagatt tagagtaatg 120
ggtaaaaaag aggtatttgt gtgtttgttg attgttcagt cagtgaatgt acagcttctg 180
cctcatatcc aggcaccatc tcttcctgct ctttgttgtt aaatgttcca ttcctgggta 240
atttcatgtc tgccatcgtg gatatgccgt ggctccttga acctgcttgt gttgaagcag 300
gatcttcctt cctgtccctt cagtgcccta ataccatgta tttaaggctg gacacatcac 360
cactcccaac ctgcctcacc cactgcgtca cttgtgatca ctggcttctg gcgactctca 420
ccaaggtctc tgtcatgccc tgttataacg actacaaaag caagtcttac ctataggaaa 480
ataagaatta taaccctttt actggtcatg tgaaacttac catttgcaat ttgtacagca 540
taaacacaga acagcacatc tttcaatgcc tgcatcctga aggcattttg tttgtgtctt 600
tcaatctggc tgtgctattg ttggtgttta acagtctccc cagctacact ggaaacttcc 660
agaaggcact tttcacttgc ttgtgtgttt tccccagtgt ctattagagg cctttgcaca 720
gggtaggctc tttggagcag ctgaaggtca cacatcccat gagcgggcag cagggtcaga 780
agtggccccc gtgttgccta agcaagactc tcccctgccc tctgccctct gcacctccgg 840
cctgcatgtc cctgtggcct cttgggggta catctcccgg ggctgggtca gaaggcctgg 900
gtggttggcc tcaggctgtc acacacctag ggagatgctc ccgtttctgg gaaccttggc 960
cccgactcct gcaaacttcg gtaaatgtgt aactcgaccc tgcaccggct cactctgttc 1020
agcagtgaaa ctctgcatcg atcactaaga cttcctggaa gaggtcccag cgtgagtgtc 1080
gcttctggca tctgtccttc tggccagcct gtggtctggc caagtgatgt aaccctcctc 1140
tccagcctgt gcacaggcag cctgggaaca gctccatccc cacccctcag ctataaatag 1200
ggcctcgtga cccggccagg ggaagaagct gccgttgttc tgggtactac agcagaaggt 1260
aagccggggg ccccctca 1278




124


1347


DNA


Homo sapiens




Angiotensinogen, exon 2





124
gtccatctcc tcatctcctc ttctcataag gacacaggtc atattagatc agggctcacc 60
ctcatggcct cattttaact taatcatctc tttaaagatc ctgtctccaa ataatggtca 120
cattctaggt cctggggttt aggacttcaa cacgggcatt atggccgttg gggaggtagg 180
acataattca gctgatattg tgcattttgc acttggatca tgtagatatt ttccatggag 240
ctttgaatcc atttcttctt ttttttgtag acatgaatga tttattctgg gctaaatggt 300
gacaggaata ttgagacaat gaaagatctg gttagatggc acttaaaggt cagttaataa 360
ccacctttca ccctttgcaa aatgatattt caggtatgcg gaagcgagca ccccagtctg 420
agatggctcc tgccggtgtg agcctgaggg ccaccatcct ctgcctcctg gcctgggctg 480
gcctggctgc aggtgaccgg gtgtacatac accccttcca cctcgtcatc cacaatgaga 540
gtacctgtga gcagctggca aaggccaatg ccgggaagcc caaagacccc accttcatac 600
ctgctccaat tcaggccaag acatcccctg tggatgaaaa ggccctacag gaccagctgg 660
tgctagtcgc tgcaaaactt gacaccgaag acaagttgag ggccgcaatg gtcgggatgc 720
tggccaactt cttgggcttc cgtatatatg gcatgcacag tgagctatgg ggcgtggtcc 780
atggggccac cgtcctctcc ccaacggctg tctttggcac cctggcctct ctctatctgg 840
gagccttgga ccacacagct gacaggctac aggcaatcct gggtgttcct tggaaggaca 900
agaactgcac ctcccggctg gatgcgcaca aggtcctgtc tgccctgcag gctgtacagg 960
gcctgctagt ggcccagggc agggctgata gccaggccca gctgctgctg tccacggtgg 1020
tgggcgtgtt cacagcccca ggcctgcacc tgaagcagcc gtttgtgcag ggcctggctc 1080
tctatacccc tgtggtcctc ccacgctctc tggacttcac agaactggat gttgctgctg 1140
agaagattga caggttcatg caggctgtga caggatggaa gactggctgc tccctgatgg 1200
gagccagtgt ggacagcacc ctggctttca acacctacgt ccacttccaa ggtaaggcaa 1260
acctctctgc tggctctggc cctaggactt agtatccatg tgtagctgag atcagccagt 1320
caggccttgg agatgggcag ggggcag 1347




125


377


DNA


Homo sapiens




Angiotensinogen, exon 3





125
cctgcccctg tcttgggtga ctcttccctc cctgtctcct gtctgatttc agggaagatg 60
aagggcttct ccctgctggc cgagccccag gagttctggg tggacaacag cacctcagtg 120
tctgttccca tgctctctgg catgggcacc ttccagcact ggagtgacat ccaggacaac 180
ttctcggtga ctgaagtgcc cttcactgag agcgcctgcc tgctgctgat ccagcctcac 240
tatgcctctg acctggacaa ggtggagggt ctcactttcc agcaaaactc cctcaactgg 300
atgaagaaac tgtctccccg gtagagccct cccggtctcc cctggaatgt gggagccaca 360
ctctcctgac ccaggct 377




126


273


DNA


Homo sapiens




Angiotensinogen, exon 4





126
cctctgggag agccctcact gtgtggcctg gagccttcct aactgtgcat catctcccca 60
ggaccatcca cctgaccatg ccccaactgg tgctgcaagg atcttatgac ctgcaggacc 120
tgctcgccca ggctgagctg cccgccattc tgcacaccga gctgaacctg caaaaattga 180
gcaatgaccg catcagggtg ggggaggtat ttaccttcct tgcctacctg gtccattgca 240
caggtgagca tgattaagga aaagagctat ggt 273




127


945


DNA


Homo sapiens




Angiotensinogen, exon 5





127
agcccaccgc cggccctcta gccctcacga ccctgggtca cccatgcgcc ctcagaatga 60
tcctgatcct gatgtctggt cctttgcagg tgctgaacag catttttttt gagcttgaag 120
cggatgagag agagcccaca gagtctaccc aacagcttaa caagcctgag gtcttggagg 180
tgaccctgaa ccgcccattc ctgtttgctg tgtatgatca aagcgccact gccctgcact 240
tcctgggccg cgtggccaac ccgctgagca cagcatgagg ccagggcccc agaacacagt 300
gcctggcaag gcctctgccc ctggcctttg aggcaaaggc cagcagcaga taacaacccc 360
ggacaaatca gcgatgtgtc acccccagtc tcccaccttt tcttctaatg agtcgacttt 420
gagctggaaa gcagccgttt ctccttggtc taagtgtgct gcatggagtg agcagtagaa 480
gcctgcagcg gcacaaatgc acctcccagt ttgctgggtt tattttagag aatgggggtg 540
gggaggcaag aaccagtgtt tagcgcggga ctactgttcc aaaaagaatt ccaaccgacc 600
agcttgtttg tgaaacaaaa aagtgttccc ttttcaagtt gagaacaaaa attgggtttt 660
aaaattaaag tatacatttt tgcattgcct tcggtttgta tttagtgtct tgaatgtaag 720
aacatgacct ccgtgtagtg tctgtaatac cttagttttt tccacagatg cttgtgattt 780
ttgaacaata cgtgaaagat gcaagcacct gaatttctgt ttgaatgcgg aacaatagct 840
ggttatttct cccttgtgtt agtaataaac gtcttgccac actaagcctc caaatttact 900
ctttattaga cgccaacaga tgtatacatt cagccagata gactg 945




128


1856


DNA


Homo sapiens




Angiotensin I converting enzyme, intron 16





128
gtgagagctc atgtgcaggc tgagtgagag gcgagggctg ggactggcat ggggcccggg 60
ggtgctgggt gagagcacag agttgggctc ccctcgctct tggggtcagc gtgcccagga 120
aatgcccttt cttgttttcc acgagggggg cttctctgcc cactgagagc cggcacctac 180
ttcataccat gccccgatca gctgcccctc cctcagaacc gccctctgct taagggtgtc 240
cactctctcc tgtcctctct gcatgccgcc cctcagagca gcgggatctc aaagttatat 300
ttcatgggct tggactccaa atggggggaa ctcggggaca ctagctcccc ccggcctcct 360
ttcgtgaccc tgcccttgac ttcctcacct tctctgtctt tcctgagccc ctctcccagc 420
atgtgactga taaggaaatt gagtcacaca gcccctgaaa gcgccagact agaacctgag 480
cctctgattc ctctcacttc cctcccctac cctgccactt cctactggat agaagtagac 540
agctcttgac tgtcctcttt tctccccact ggctggtcct tcttagcccc agcccgtttg 600
aaagagctca cccccgacac aaggacccgc acacagatac ctcccagctc cctctcaacc 660
caccctttcc agggttggag aacttgaggc ataaacattc ttccatgagg aatctccacc 720
cagaaatggg tctttctggc ccccagccca gctcccacat tagaacaatg acaaatagaa 780
ggggaaatgg aaaataaaca ggagaaacgg ttttcccagg acagggtttg gcctacaagt 840
tgtggatgtg ggtacccatg ccaagtgtga ggggaggctg gccgggtgtg gtggctcatg 900
ctctaatccc agcactttgg gaggccaagg tgagtagatc acttgaggcc gggagtttga 960
gaccagcctg gccaacatgg tgaaacccca tctgtactaa aaatacaaaa gttagctggg 1020
cgtggtggta gatgcctgta gtcccagcta cttgggaggc tgaggcatga gaatcgcttg 1080
agcccagcca gggcaataca gcaagacccc gtctctacaa ataaaataca aaaaattagt 1140
tggatgtggt ggtgcatgcc tgtagtccta gctgctaggg aggctgagat ggaaggattg 1200
cttgagcctg ggaggtcaag gctgcagtga gccgagatgg cgccactgca ctccagcctg 1260
ggcaacagag tgagaccctg tctcagaaag aaaaaaaaaa aaaaaggaga ggagagagac 1320
tcaagcacgc ccctcacagg actgctgagg ccctgcaggt gtctgcagca tgtgcccagg 1380
ccggggactc tgtaagccac tgctggagac cactcccatc ctttctccca tttctctaga 1440
cctgctgcct atacagtcac tttttttttt tttttgagac ggagtctcgc tctgtcgccc 1500
aggctggagt gcagtggcgg gatctcggct cactgcaacg tccgcctccc gggttcacgc 1560
cattctcctg cctcagcctc ccaagtagct gggaccacag cgcccgccac tacgcccggc 1620
taattttttg tatttttagt agagacgggg tttcaccgtt ttagccggga tggtctcgat 1680
ctcctgacct cgtgatccgc ccgcctcggc ctcccaaagt gctgggatta caggcgtgat 1740
acagtcactt ttatgtggtt tcgccaattt tattccagct ctgaaattct ctgagctccc 1800
cttacaagca gaggtgagct aagggctgga gctcaagcca ttcaaccccc taccag 1856




129


5590


DNA


Homo sapiens




Angiotensin I converting enzyme, 5′ region





129
cagcgttgta caaccatcac tactaatgtc agaacatttc actaccccta aaagaaaccc 60
cataccacag attccgatgc cgccgggagc cctgtcatgc catgtcacat atattatagt 120
atatatatgc ccagccatgg tcaacccacc gtgttctttg acatcaccat caacagcaag 180
cccttgggcc acgtctcctt caagctgttt gcagacaagt ttccaaagac ggcagaaaac 240
tttcctgctc tgagcactgg agagaaaggg tttggttata agagttcctg ctttcacaga 300
attattccag ggtttatgtg tcagggtggt gacttcacac accataatgg cactggtgtc 360
aagtccatct atggggagaa atttgatgat gagaacttca ttctgaagca tacaggtcct 420
ggcatctttt ccatggcaaa tgctggaccc aacacaaatg gttcccagtt ttgcaactgc 480
actgccaaga ctgcgtggtt ggatggcatg catgtggtcc ttggccaagt gaaagaaggc 540
atggatattg cggaggctat ggagcgcttt gggtccagga atggcaagac cagcaagaag 600
attaccattg ccgactgtgg acaactctac taagtttgac ttgtgtttta tcttaaccac 660
cagatcattc cttttgtagc tcaggagagc accctccacc tcatttgctc accgtagcct 720
ctaatctttg tgccatctct cagttccctt tgggttccat gtttgcctta ttctcctcca 780
tgcctagctg gatttcagag ttaagtttat gattatgaga taaaaactaa ataacaattg 840
caaaaaaata aaataaaaag aaagaagagg ctgggagcgg tggctcactc ctctaatccc 900
agcactttgg gaggccgagg tgggcctacc aaaggtcagg agatcgagac caccctggct 960
aacacggtga aatcccatgt ctactaaaaa tacaaaaaaa attagccagg cgtcgtggcg 1020
tgcctgcggt cccagctact cggaaggctg aggcagagga atggcgtgaa cccaggaggt 1080
ggagcttgca gtgagccgag atcgcaccac tgcactccag cctgggcaac agagcaagac 1140
tctatctcaa aaaaaaaaaa aaaaaaagac ggaaaaggca ttatatattt gtgaagacat 1200
ggacagaaat gtgtcctgat tgtggtgcca caaagcactg agcctactag aagacgtcag 1260
caaaagatcc cctgaaaagt gactccaagc cattcactgc aagggatggt tacacagatg 1320
cagaatacag aaggtcaata gtagcttaat gctacatcac agcttaacac tacatcatcc 1380
acctcacttc atctcacccc atcgtatcgt gtcactgtgc tcaccatcac aagaacaggg 1440
aggatagcac aggaagatat tctgacagag aaagagagag accacattta cataactttt 1500
attacagtat attgttataa ttgttctatt ttattattag ttattgctaa tctcttactg 1560
cacctaattt ataaattaaa ccttgttatt ggtatgtatg tataggaaaa aatatagtgt 1620
atatagggct tggtactttc ttcaatttca ggcatccatt gagagtcttg gaatgtaccc 1680
actgaggata agggggggtt gctgtacata ctttgcaaat atcttctctc atcccatggg 1740
ttgtcttttc attttctttc tttttttttt tgagacggag ttttgctctt gttgcccagg 1800
ctggagtgca gtggcacaat ctcggctcac cacaatctct gcctcccggg ttcaagcgat 1860
tctcctgcct cagcctcccg agtagctggg attacaggaa tgaaccacca cgcctggcta 1920
atttttgtat ttttagtaga gatggggttt ctccatatgg ccagcctggt ctcgaactcc 1980
cgacctcagg cgatctaccc acctcggcct cccaaagtgc tgggattaca ggtgtgagcc 2040
actgtgcctg gccgtctttt cattttcttg atggtgtcat tgaagcacaa aagttttaaa 2100
ttttgatgaa gaccaattta tctgtttttt ctttcatcac ttatgctttt ggtgtcatat 2160
ctaagaaacc attgactaat ccaaggtcac aaaagattta ttgcctatgt tttcttctaa 2220
aagttttatg attttagttc ttaaatcaag gtctatttta agtcttttgt tttgtttttt 2280
gttttttgtt ttgggacagg gtcttactct gtcacccagg ctggagtgca gaggcacatc 2340
atggctcact gcagcctcaa cctcttggcc tcaagcaatc ctcccacttc agcctcccaa 2400
ggagctggta ttatagacat gcgcaaccat gcccagctaa tttttttgta gagatagggt 2460
ttcaccatat tgcccagact ggtctcaaac tcctaagctc cagtgatccg cccacctcag 2520
cttcccaaag ttctgggatt atagcatgag ccactgcacc cagccccaaa ttttgtatat 2580
ggtattagaa aggggtccaa cttcattctt ttacatgtgg aaatccaatt gccccagcac 2640
catttgttaa aaatattttc tttcccattt aattgtccta gtgttcttgt caaaaacaat 2700
tgaacataat tgtatgggtt catttctgga ctctcaattc tattccattg ttgagcatat 2760
ttttaagggc tgtttttctc tcctgtggta actggtgacc tgtacttcct ggaagagaga 2820
tgaaaagatt cccaagccaa ctgagttacc tcacgtgggt caggtctctg tggctctctg 2880
cactggccta ttcataatga tatcctcctg caggatttga gccttctcct ttgttgtgac 2940
ggcagccgag gaggtggctg actgcccaga cagccttatc tctttcctac ctttcaaggt 3000
tattgtaaat accaaattag attgtttata cacaagaatt tagcactaaa gcactataca 3060
aatgtaagct atttatttct atttatcctt ctccttcatg aataagaccc taaaaataga 3120
agatattttt aatttttact cactgggctc aaggttgcag tgtctgtatt attgcaaatt 3180
ccaaattaat gaagtctggc tcttcttata ttattcctgc aaaaggctgt gtgctacccc 3240
ccggagtgtg aatacgagtg tgggtctttc ctctttcctc tgcacccttc cttcgatgag 3300
gttttgccct ggctaggcac catgctaaac tctgagaaaa ccacagagaa caagcagacg 3360
ccatccctgc cctccagtaa catacaattt agtgatgaag ctggggattt aacaagccat 3420
tctaataaag cgttacagtg agggaggtgc agggtgatgc ctccagcagc cctggtgtca 3480
gctgctccag gtccagggga agacttccat tatcttccaa cctgtcggaa gtggaggcgg 3540
aggctgttta ttcgtgacac agtccctaac ccagggtcta tagacattgt ggaaatgcct 3600
tggagtcaga cgggagaatg aaccagcaga agcaatgccc gccctcacct cctgaagagg 3660
gttctcagga actctttgga ggcgaggccc agtctggctg agggcctctg gatacaggtt 3720
aggcctcagg ctcttctcct ctctactcat ctctcctccc ttggcccctc cttcagaggc 3780
tgacagagcc ccactctcat ctcttcccca cccaagcctc tttccacaga aagactgctt 3840
cctcccagga gacagcagct catttgcaca cagacaccca cagccctcaa agcctggaag 3900
gccaagctgt taggacccct gagagcaggg tggctcctgg gaggagagcc caggccacca 3960
ccttgccctc cctgcccctg gccttcgatg gggctgctct gatcacaaac gtccaccaac 4020
gtagccggcc cagaagtgca cccatgtcct ctggtatcca ctggctctcc aagccaaact 4080
gggcagggag gagttgtgag ggaaaactgc aggtcaggag ggaggctggc aaagcgggcc 4140
agggccaggc ctgaccccag ctctcctctc ccggccccac tgccggccag tgtttaacaa 4200
ggccctgcct tctccctcta gtgctaggga cagccacctt cttcctctcc ccaccgcccc 4260
ctctcccctg caacacgtca tctgacaagt cagtgcgatc tcactggagg tgcatctcac 4320
aggaacgcgg ggtcacagcc tcctgcacac actccatgct gcacagcaag gtgcacgtgt 4380
cctcagagcc ccagacacat cccccactca cccagaagcc caagtgattc ccaacagccc 4440
ccagcagcct aatgggttgg ggtcttggga gcagctgtcc ctggctcctt ccctgatccc 4500
accgcccagc ctcaccccac ggttcctcca ttgccccacc tcccactgcg ccgccgggcc 4560
tctgccaggg tcaaggggct tcccccctct ggcagcagac gccatggtgc cgaggtggcc 4620
tccacaaccg ccctgtgcgc caataggaca agactgtcct ccctccccca cacttgtcac 4680
tttgagggac acgtggatga gacaggaaaa cacaggggag tgtggagacc tgaggtgact 4740
tggagcaagc ctctcaacct gagcggcaat ttcttcatct gtaaaatgag ggggttgttc 4800
tcatctctga ggctttgtgt cgctctcaaa gcctgctagc ctcgggttct aggactctgt 4860
tgggatcgtg tgtgatgttt tctgctgagc gactggcagc ctgtgtcctc ggggggaaag 4920
aggcaggcgc tccaaagctc ctgcgctctg tggctccccc tccctcgcag ccccaagccc 4980
caggtgtgcc ggccgccctg agcccctcca gcacctcccg gaggcgcctg caagacacct 5040
aaggtccccg cctccctcct ctcccccccg ccacacccct acccccggca ggcgacgtcc 5100
ccgcccctcg accatggcct ggtgaagaag ccggccaggc ccgatcagcc ccatccccgc 5160
cgcacgagcg gcgcctgcgg acagctcctg gggccccggc cttgtcactc cggaggcggg 5220
aggctccggg gggtcgggct gggaagatcg agccggaggc cgctaggctc ccaggccccg 5280
gccgaggctg cgcggccgca cggtgggcag gctcgggtgt tccggcaaac tgccgggtcc 5340
ccatcttcaa aagagaggag gccctttctc cagcttcctc tgcgggagcc cgacccagcc 5400
ccatcccgcc acccccgggc tgcacctcgg cccctccccg gcccgcgccc ctgcccgggg 5460
cgggccagga acctcggccc gcgccgctgg ggactttgga gcggaggagg aagcgcggcg 5520
gggcgggggc gggggtgtgt cgggttttat aacccgcagg gcggccgcgg cgcaggagaa 5580
ggggcagagc 5590




130


4020


DNA


Homo sapiens




Angiotensin I converting enzyme mRNA





130
gccgagcacc gcgcaccgcg tcatgggggc cgcctcgggc cgccgggggc cggggctgct 60
gctgccgctg ccgctgctgt tgctgctgcc gccgcagccc gccctggcgt tggaccccgg 120
gctgcagccc ggcaactttt ctgctgacga ggccggggcg cagctcttcg cgcagagcta 180
caactccagc gccgaacagg tgctgttcca gagcgtggcc gccagctggg cgcacgacac 240
caacatcacc gcggagaatg caaggcgcca ggaggaagca gccctgctca gccaggagtt 300
tgcggaggcc tggggccaga aggccaagga gctgtatgaa ccgatctggc agaacttcac 360
ggacccgcag ctgcgcagga tcatcggagc tgtgcgaacc ctgggctctg ccaacctgcc 420
cctggctaag cggcagcagt acaacgccct gctaagcaac atgagcagga tctactccac 480
cgccaaggtc tgcctcccca acaagactgc cacctgctgg tccctggacc cagatctcac 540
caacatcctg gcttcctcgc gaagctacgc catgctcctg tttgcctggg agggctggca 600
caacgctgcg ggcatcccgc tgaaaccgct gtacgaggat ttcactgccc tcagcaatga 660
agcctacaag caggacggct tcacagacac gggggcctac tggcgctcct ggtacaactc 720
ccccaccttc gaggacgatc tggaacacct ctaccaacag ctagagcccc tctacctgaa 780
cctccatgcc ttcgtccgcc gcgcactgca tcgccgatac ggagacagat acatcaacct 840
caggggaccc atccctgctc atctgctggg agacatgtgg gcccagagct gggaaaacat 900
ctacgacatg gtggtgcctt tcccagacaa gcccaacctc gatgtcacca gtactatgct 960
gcagcagggc tggaacgcca cgcacatgtt ccgggtggca gaggagttct tcacctccct 1020
ggagctctcc cccatgcctc ccgagttctg ggaagggtcg atgctggaga agccggccga 1080
cgggcgggaa gtggtgtgcc acgcctcggc ttgggacttc tacaacagga aagacttcag 1140
gatcaagcag tgcacacggg tcacgatgga ccagctctcc acagtgcacc atgagatggg 1200
ccatatacag tactacctgc agtacaagga tctgcccgtc tccctgcgtc ggggggccaa 1260
ccccggcttc catgaggcca ttggggacgt gctggcgctc tcggtctcca ctcctgaaca 1320
tctgcacaaa atcggcctgc tggaccgtgt caccaatgac acggaaagtg acatcaatta 1380
cttgctaaaa atggcactgg aaaaaattgc cttcctgccc tttggctact tggtggacca 1440
gtggcgctgg ggggtcttta gtgggcgtac ccccccttcc cgctacaact tcgactggtg 1500
gtatcttcga accaagtatc aggggatctg tcctcctgtt acccgaaacg aaacccactt 1560
tgatgctgga gctaagtttc atgttccaaa tgtgacacca tacatcaggt actttgtgag 1620
ttttgtcctg cagttccagt tccatgaagc cctgtgcaag gaggcaggct atgagggccc 1680
actgcaccag tgtgacatct accggtccac caaggcaggg gccaagctcc ggaaggtgct 1740
gcaggctggc tcctccaggc cctggcagga ggtgctgaag gacatggtcg gcttagatgc 1800
cctggatgcc cagccgctgc tcaagtactt ccagccagtc acccagtggc tgcaggagca 1860
gaaccagcag aacggcgagg tcctgggctg gcccgagtac cagtggcacc cgccgttgcc 1920
tgacaactac ccggagggca tagacctggt gactgatgag gctgaggcca gcaagtttgt 1980
ggaggaatat gaccggacat cccaggtggt gtggaacgag tatgccgagg ccaactggaa 2040
ctacaacacc aacatcacca cagagaccag caagattctg ctgcagaaga acatgcaaat 2100
agccaaccac accctgaagt acggcaccca ggccaggaag tttgatgtga accagttgca 2160
gaacaccact atcaagcgga tcataaagaa ggttcaggac ctagaacggg cagcgctgcc 2220
tgcccaggag ctggaggagt acaacaagat cctgttggat atggaaacca cctacagcgt 2280
ggccactgtg tgccacccga atggcagctg cctgcagctc gagccagatc tgacgaatgt 2340
gatggccaca tcccggaaat atgaagacct gttatgggca tgggagggct ggcgagacaa 2400
ggcggggaga gccatcctcc agttttaccc gaaatacgtg gaactcatca accaggctgc 2460
ccggctcaat ggctatgtag atgcagggga ctcgtggagg tctatgtacg agacaccatc 2520
cctggagcaa gacctggagc ggctcttcca ggagctgcag ccactctacc tcaacctgca 2580
tgcctacgtg cgccgggccc tgcaccgtca ctacggggcc cagcacatca acctggaggg 2640
gcccattcct gctcacctgc tggggaacat gtgggcgcag acctggtcca acatctatga 2700
cttggtggtg cccttccctt cagccccctc gatggacacc acagaggcta tgctaaagca 2760
gggctggacg cccaggagga tgtttaagga ggctgatgat ttcttcacct ccctggggct 2820
gctgcccgtg cctcctgagt tctggaacaa gtcgatgctg gagaagccaa ccgacgggcg 2880
ggaggtggtc tgccacgcct cggcctggga cttctacaac ggcaaggact tccggatcaa 2940
gcagtgcacc accgtgaact tggaggacct ggtggtggcc caccacgaaa tgggccacat 3000
ccagtatttc atgcagtaca aagacttacc tgtggccttg agggagggtg ccaaccccgg 3060
cttccatgag gccattgggg acgtgctagc cctctcagtg tctacgccca agcacctgca 3120
cagtctcaac ctgctgagca gtgagggtgg cagcgacgag catgacatca actttctgat 3180
gaagatggcc cttgacaaga tcgcctttat ccccttcagc tacctcgtcg atcagtggcg 3240
ctggagggta tttgatggaa gcatcaccaa ggagaactat aaccaggagt ggtggagcct 3300
caggctgaag taccagggcc tctgcccccc agtgcccagg actcaaggtg actttgaccc 3360
aggggccaag ttccacattc cttctagcgt gccttacatc aggtactttg tcagcttcat 3420
catccagttc cagttccacg aggcactgtg ccaggcagct ggccacacgg gccccctgca 3480
caagtgtgac atctaccagt ccaaggaggc cgggcagcgc ctggcgaccg ccatgaagct 3540
gggcttcagt aggccgtggc cggaagccat gcagctgatc acgggccagc ccaacatgag 3600
cgcctcggcc atgttgagct acttcaagcc gctgctggac tggctccgca cggagaacga 3660
gctgcatggg gagaagctgg gctggccgca gtacaactgg acgccgaact ccgctcgctc 3720
agaagggccc ctcccagaca gcggccgcgt cagcttcctg ggcctggacc tggatgcgca 3780
gcaggcccgc gtgggccagt ggctgctgct cttcctgggc atcgccctgc tggtagccac 3840
cctgggcctc agccagcggc tcttcagcat ccgccaccgc agcctccacc ggcactccca 3900
cgggccccag ttcggctccg aggtggagct gagacactcc tgaggtgacc cggctgggtc 3960
ggccctgccc aagggcctcc caccagagac tgggatggga acactggtgg gcagctgagg 4020




131


2720


DNA


Homo sapiens




Angiotensin II type I receptor, promoter region





131
aagcttgctg gggttttgat agagattttg tttaacctgt agatcatttg aagattaatg 60
ccattgtaac gatattaaat ctttcaatcc aagaacatgg aatgtcattc catttattta 120
ggtctacctt atttcaacaa ttctttttgt ttgttttcag actacaagtt ttagatcctt 180
ttgttaaatt tatttcttag ggtttttttt gttttgtttt gttttgttgg ttggttggtt 240
tgttttgaga tggagtctca ctctgtcacc caggctggag tgcagtggca caatctcagc 300
tcacagcaac ctctacctcc tgggttcaag cgattattct gcctcagcct cctcctcctg 360
agtagctgga actacaggca tgcaccacca cgcctggcct tttttttttt tttttctttt 420
gcatttttag tagagacagg gtttcacgat gttggccagc ctggtctcga atccctgacc 480
ttgtgattca cccacctcgg cctcccaaag tgctgagatt acaggagtga gccactacac 540
caggtcattt cttgatattt ttactctttt gatctatagt aagtaaaatt gtttttatct 600
ttgaattttt aaatttttaa cacagttcaa atcagtgtgt ctgatttcat ctccttctct 660
aacaaaccag ggtgccagaa ctgcttcagt ttctctgcct tctctttgtc tatgatgact 720
aatgtatgaa ggtatctgct gcatcaaact ttaaacttca cattatcctt atttctcttg 780
accttgacag atctggcatc ttttcacctg gtcgtaagca gaaagtcctt gatctcctta 840
actttttgag gcatggcagc atgtgaggca gggagaggac acagacccac acagcaagtg 900
gtgagaagcc aacagtggaa ttgttttctt aattccattt gttgattgtt tattgctagt 960
gtatagaaat acaactgatt tttgtatatt gatcttgtat tctaaaaact tgctcaactt 1020
gtttcttagt tctaatagtt aattaattga ttccttaggg ctttttaata caagatcatg 1080
tcatctacaa atagaaattg ttttactttc tttctaatct ggatgccatt tatctttttt 1140
tcttgtccaa ttgccctcac tagaaccttt agtacaaagt taaatagaaa tgggaagact 1200
agacattttg tcttgttcct gatcttagac ataaaaacgt tgtcttccgt tattatgtgt 1260
gatattagtt aagttaagtt tttcataaat aaacttcaca gtttgaggaa gttcctattc 1320
ctaatttgtt gagtgttagc atgaaaaagt gttgaatttt gtccaagagt ttttaaaaat 1380
ttttttagac aatcatgtag gctttgtcca ttttttactt ctttaaattt attttatttg 1440
atacacaata gatgtacact ttttaggtac atgcaataat ttaatgcccc tcactataaa 1500
ttcggagctg cctcctcgcc gatgattcca gcgcctgaca gccaggaccc caggcagcag 1560
cgagtgacag gactttttag gtacatgcaa taatttaatg cattcatata aagatcaaat 1620
cagtgcaatt ggcatatcca tcaccttaaa tatttgtctt tttcttcatg ctagaaacat 1680
tcaagttatt ttctcctagc tactctgaaa tatacaatag attactgtaa actacagtca 1740
ccctactcac ctatctaaca ttaattgatt tttggtaaac taatctaatc ttgctttctg 1800
gcatcaacct cacttgacca tggtgtatag tccctttcat atgttattgg attcaatttg 1860
cctacatttt gttgagaatt tttatctata ctcttaagaa atattgatct gtagtctcgt 1920
gatgtcttta tctggttttg ttatcagggt gatactggcc tcatagcatg agttgggaga 1980
tcatccttac tcttctattt tttggaagag tttgtgaaga attgatatta tttcttcttt 2040
aaatatttat tgggttttta aaatacattt ttaaaatgca acttgggtag catgtccaat 2100
aggaacaaat gagtgtccac ccttgaattt cataaccctc ggaattaatc catgtaatct 2160
atgatccaca actgtattac caaagttcga gttactcata ggaaagagaa agaagttctc 2220
taattcgtcc ttaaaagttt tccaagttca gaaaaaaaaa atgttgaaga acacgaactc 2280
ccgcaggaaa tgatactcct gtacccccag ctcgctctcc ctcacgaccc ctcgctaggc 2340
ggggttcggg accaggtgaa cgctgatctg atagttgaca cgggacgact gtggcatcat 2400
ccttgctgcc gtcaatatcc cgagagggag gaggttgggc cgggagggtc tccggggcgg 2460
ggcggaggag gagggaatgc aaaacagagc ctcgtccccg gaacccaaga agcagcaacg 2520
cccctcacta taaattcgga gctgcctcct cgccaatgat tccagcgcct gacagccagg 2580
accccaggca gcagcgagtg acaggacgtc tggaccggcg cgccgctagc agctctgccg 2640
ggccgcggcg gtgatcgatg gggagcggct ggagcggacc cagcgagtga gggcgcacag 2700
ccgggacgcc gaggcggcgg 2720




132


480


DNA


Homo sapiens




Type I Angiotensin II receptor isoform, exon 3





132
gaattctcag agctggcgaa acagtctggt ccaagcagcc tctcagcagt gcctttcagc 60
ctcccctctc tgagtctttc caccccttgc tggtacttta gtttcttcca cttctagcac 120
cacgtgtagt ttcccaattt ctcttaccca aatttgctca cagggaaaaa aataaattaa 180
attagccatt tacaccacag tgtgaactta ataacaccaa caaaagttcc aaagctctag 240
ggtctcatag cacctccaga tccatgatct cattcggtgt ttccaacaat gttttgcacc 300
aaactggaca catgcttgct acttcatcat cctcatcgtg aacattatta ttattatcat 360
cattttccag atgaagaaaa tgaatcacaa gtcaactgac agtccaaagg ctccacagct 420
cagaggaggt aaatcatgtg cttaattcag aacttttggc tcccatcact atgctcttcc 480




133


2268


DNA


Homo sapiens




Type I angiotensin II receptor, exon 5





133
accccaggca gcagcgagtg acaggacgtc tggaccggcg cgccgctagc agctctgccg 60
ggccgcggcg gtgatcgatg gggagcggct ggagcggacc cagcgagtga gggcgcacag 120
ccgggacgcc gaggcggcgg gcgggagacc cgcaccagcg cagccggccc tcggcgggac 180
gtgacgcagc gcccggggcg cgggtttgat atttgacaaa ttgatctaaa atggctgggt 240
ttttatctga ataactcact gatgccatcc cagaaagtcg gcaccaggtg tatttgatat 300
agtgtttgca acaaattcga cccaggtgat caaaatgatt ctcaactctt ctactgaaga 360
tggtattaaa agaatccaag atgattgtcc caaagctgga aggcataatt acatatttgt 420
catgattcct actttataca gtatcatctt tgtggtggga atatttggaa acagcttggt 480
ggtgatagtc atttactttt atatgaagct gaagactgtg gccagtgttt ttcttttgaa 540
tttagcactg gctgacttat gctttttact gactttgcca ctatgggctg tctacacagc 600
tatggaatac cgctggccct ttggcaatta cctatgtaag attgcttcag ccagcgtcag 660
tttcaacctg tacgctagtg tgtttctact cacgtgtctc agcattgatc gatacctggc 720
tattgttcac ccaatgaagt cccgccttcg acgcacaatg cttgtagcca aagtcacctg 780
catcatcatt tggctgctgg caggcttggc cagtttgcca gctataatcc atcgaaatgt 840
atttttcatt gagaacacca atattacagt ttgtgctttc cattatgagt cccaaaattc 900
aacccttccg atagggctgg gcctgaccaa aaatatactg ggtttcctgt ttccttttct 960
gatcattctt acaagttata ctcttatttg gaaggcccta aagaaggctt atgaaattca 1020
gaagaacaaa ccaagaaatg atgatatttt taagataatt atggcaattg tgcttttctt 1080
tttcttttcc tggattcccc accaaatatt cacttttctg gatgtattga ttcaactagg 1140
catcatacgt gactgtagaa ttgcagatat tgtggacacg gccatgccta tcaccatttg 1200
tatagcttat tttaacaatt gcctgaatcc tcttttttat ggctttctgg ggaaaaaatt 1260
taaaagatat tttctccagc ttctaaaata tattccccca aaagccaaat cccactcaaa 1320
cctttcaaca aaaatgagca cgctttccta ccgcccctca gataatgtaa gctcatccac 1380
caagaagcct gcaccatgtt ttgaggttga gtgacatgtt cgaaacctgt ccataaagta 1440
attttgtgaa agaaggagca agagaacatt cctctgcagc acttcactac caaatgagca 1500
ttagctactt ttcagaattg aaggagaaaa tgcattatgt ggactgaacc gacttttcta 1560
aagctctgaa caaaagcttt tctttccttt tgcaacaaga caaagcaaag ccacattttg 1620
cattagacag atgacggctg ctcgaagaac aatgtcagaa actcgatgaa tgtgttgatt 1680
tgagaaattt tactgacaga aatgcaatct ccctagcctg cttttgtcct gttatttttt 1740
atttccacat aaaggtattt agaatatatt aaatcgttag aggagcaaca ggagatgaga 1800
gttccagatt gttctgtcca gtttccaaag ggcagtaaag ttttcgtgcc ggttttcagc 1860
tattagcaac tgtgctacac ttgcacctgg tactgcacat tttgtacaaa gatatgctaa 1920
gcagtagtcg tcaagttgca gatctttttg tgaaattcaa cctgtgtctt ataggtttac 1980
actgccaaaa caatgcccgt aagatggctt atttgtataa tggtgttact aaagtcacat 2040
ataaaagtta aactacttgt aaaggtgctg cactggtccc aagtagtagt gtcctcctag 2100
tatattagtt tgatttaata tctgagaagt gtatatagtt tgtggtaaaa agattatata 2160
tcataaagta tgccttcctg tttaaaaaaa gtatatattc tacacatata tatatatgta 2220
tatctatatc tctaaactgc tgttaattga ttaaaatctg gcaaagtt 2268






Claims
  • 1. An isolated nucleic acid derived from the human gene encoding angiotensin coverting enzyme (ACE), wherein said nucleic acid comprises a polymorphic position selected from the group consisting of a position in the regulatory region (SEQ ID NO: 129) numbered 5106; positions in the coding region (SEQ ID NO: 130) numbered 375, 582, 731, 1060, 2741, 3132, 3387, 3503, and 3906; and combinations of any of the foregoing.
  • 2. A nucleic acid as defined in claim 1 wherein the sequence at said polymorphic position in the regulatory region is selected from the group consisting of 5106C and 5106T; and the sequence at said polymorphic position in the coding region is selected from the group consisting of 375A, 375C, 582C, 582T, 731A, 731G, 1060G, 1060A, 2741G, 2741T, 3132C, 3132T, 3387T, 3387C, 3503G, 3503C, 3906G, 3906A.
  • 3. A probe which hybridizes to a polymorphic position as defined in claim 1 at high stringency, wherein high stringency conditions are selected from the goop consisting of hybridization and/or washing at 68° C. in 0.2× SSC and hybridization and/or washing at 42° C. in 50% formamide, 4× SSC.
  • 4. A library of nucleic acids, each of which comprises one or more polymorphic positions within the human ACE gene, wherein said polymorphic positions are selected from the group consisting of positions in the ACE regulatory region (SEQ ID NO: 129) numbered 5106, 5349, and 5496; and positions in the ACE coding region (SEQ ID NO: 130) numbered 375, 582, 731, 1060, 1215, 2193, 2328, 2741, 3132, 3387, 3503, and 3906 and 1451-1783 (SEQ ID NO: 128).
  • 5. A library as defined in claim 4, wherein the sequence at said polymorphic position in the regulatory region is selected from the group consisting of 5106C, 5106T, 5349A, 5349T, 5496T, and 5496C; and the sequence at said polymorphic position in the coding region is selected from the group consisting of 375A, 375C, 582C, 582T, 731A, 731G, 1060G, 1060A, 1215C, 1215T, 2193G, 2193A, 2328A, 2328G, 2741G, 2741T, 3132C, 3132T, 3387T, 3327C, 3503G, 3503C, 3906G, 3906A, and a deletion of nucleotides 1451-1783 (SEQ ID NO: 128).
  • 6. A library of targets for cardiovascular drugs, each of said targets comprising an isolated peptide comprising one or more polymorphic positions in the ACE polypeptide sequence, wherein said polymorphic positions are encoded by nucleotides selected from the group consisting of nucleotide positions in the ACE coding region (SEQ ID NO: 130) numbered 375, 582, 731, 1060, 1215, 2193, 2328, 2741, 3132, 3387, 3503, and 3906.
  • 7. An isolated nucleic acid comprising the human gene encoding angiotensinogen (AGT), wherein said nucleic acid comprises a polymorphic position selected from the group consisting of positions in the regulatory region (SEQ ID NO: 123) numbered 412 and 1072; positions in the coding region (SEQ ID NO:124) numbered 273, 997, and position 49 (SEQ ID NO: 126); and combinations of any of the foregoing.
  • 8. A nucleic acid as defined in claim 7 wherein the sequence at said polymorphic position in the regulatory region is selected from the group consisting of 412C, 412T, 1072C and 1072A; and the sequence at the polymorphic position in the coding region is selected from the group consisting of 273C, 273T, 997G, 997C, and A or G at position 49 (SEQ ID NO: 126).
  • 9. A probe which hybridizes to a polymorphic position as defined in claim 7 at high stringency, wherein high stringency conditions are selected from the group consisting of hybridization and/or washing at 68° C. in 0.2× SSC and hybridization and/or washing at 42° C. in 50% formamide, 4× SSC.
  • 10. A library of nucleic acids, each of which comprises one or more polymorphic positions within the human AGT gene, wherein said polymorphic position is selected from the group consisting of positions in the regulatory region (SEQ ID NO: 123) numbered 395, 412, 432, 449, 692, 839, 1007, 1072, 1204, and 1218; positions in the coding region (SEQ ID NO: 124) numbered 273, 620, 803, 912, 997, 1116, and 1174; and position 49 in the AGT gene (SEQ ID NO: 126).
  • 11. A library as defined in claim 10, wherein the sequence at said polymorphic position in the regulatory region is selected from the group consisting of 395T, 395A, 412C, 412T, 432G, 432A, 449T, 449C, 692C, 692T, 839G, 839A, 1007G, 1007A, 1072G, 1072A, 1204C, 1204A, 121 8A, 1218G; and the sequence at said polymnorphic position in the coding region is selected from the group consisting of 273C, 273T, 620C, 620T, 803T, 803C, 912C, 912T, 997G, 997C, 1116G, 1116A, 1174C, 11 74A, and A or G at position 49 (SEQ ID NO: 126).
  • 12. A library of targets for cardiovascular drugs, each of said targets comprising an isolated peptide comprising one or more polymorphic positions in the AGT polypeptide, wherein said polymorphic positions are encoded by nucleotides selected from the group consisting of nucleotide positions numbered 273, 620, 803, 912, 997, 1116, and 1174 of SEQ ID NO: 124.
  • 13. An isolated nucleic acid comprising the human gene encoding type I angiotensin II receptor (AT1), wherein said nucleic acid comprises a polymorphic position selected from the group consisting of positions in the regulatory region (SEQ ID NO: 131) numbered 1427, 1756, 1853, 2046, 2354, 2355, and 2415; a position in the coding/intron region (SEQ ID NOS: 132-133, which are contiguous) numbered 449; and combinations of the foregoing.
  • 14. A nucleic acid as defined in claim 13 wherein the sequence at said polymorphic position in the regulatory region is selected from the group consisting of 1427A, 1427T, 1756T, 1756A, 1853T, 1853G, 2046T, 2046C, 2354A, 2354C, 2355G, 2355C, 2415A and 2415G; and the sequence at said polymorphic position in the coding/intron region is selected from the group consisting of 449G and 449C.
  • 15. A probe which hybridizes to a polymorphic position as defined in claim 13 at high stringency, wherein high stringency conditions are selected from the group consisting of hybridization and/or washing at 68° C. in 0.2× SSC and hybridization and/or washing at 42° C. in 50% formamide, 4× SSC.
  • 16. A library of nucleic acids, each of which comprises one or more polymorphic positions within the human AT1 gene, wherein said polymorphic position is selected from the group consisting of positions in the regulatory region (SEQ ID NO: 131) numbered 1427, 1756, 1853,2046,2354,2355, and 2415; and positions in the coding region (SEQ ID NOS: 132-133, which are contiguous) numbered 449, 678, 1167, and 1271.
  • 17. A library as defined in claim 16, wherein the sequence at said polymorphic position in the regulatory region is selected from the group consisting of 1427A, 1427T, 1756T, 1756A, 1853T, 1853G, 2046T, 2046C, 2354A, 2354C, 2355G, 2355C, 2415A and 2415G; and the sequence at said polymorphic position in the coding region is selected from the group consisting of 449G, 449C, 678T, 678C, 1167A, 1167G, 1271A, and 1271C.
  • 18. A library of targets for cardiovascular drugs, each of said targets comprising an isolated peptide comprising one or more polymorphic positions in the AT1 polypeptide, wherein said polymorphic positions are encoded by nucleotides selected from the group consisting of nucleotide positions numbered 449, 678, 1167, and 1271 of continuous SEQ ID NOS: 132-133.
  • 19. A library of polymorphic patterns in the human ACE (SEQ ID NOS: 129-130), AGT (SEQ ID NOS: 123-127), and/or AT1 (SEQ ID NO: 132-133, which are contiguous) genes, comprising a member selected from the group consisting of: ACE 5349 A/T, AGR 1218 A; ACE 5496 C, AGR 1204 A/C; ACE 5496 C/T, AGR 1218 A, AGT 620 C/T; ACE 2193 A, AGR 1204 C, ACE 2328 G; ACE 2193 A, AGR 1204 A/C; ACE 3387 T, AGR 1218 A; ACE 3387 T, AGT 620 C/T; AGR 1204 A/C, AT1 678 C/T; AGR 1204 A/C, AT1 1271 A/C; ACE 1215 C, AGR 1204 A/C; AGR 1204 A/C, AT1 1167 A, ACE 3906 A/G; AGR 1204 A, AGT 620 C, AT1 1271 A, AT1 1167 A, AGR 395 A/T; AGR 1204 A/C, AGT 620 C/T, AT1 1271 A/C, AT1 1167 A, AGR 395 T; AGR 1204 A/C, AGT 620 C/T, AT1 1271 A/C, AT1 1167 A/G, AGR 395 T; AGR 1204 A, AT1 678 C, AT1 1167 A, AGR 395 A/T; AGR 1204 A/C, AT1 678 C/T, AT1 1167 A, AGR 395 T; AGT 620 C/T, AT1 1271 A/C, AT1 1167 A, AGR 395 T; AGT 620 C/T, AT1 1271 A/C, AT1 1167 A/G, AGR 395 T; AGT 620 C, AT1 1271 A, AT1 1167 A, AGR 395 A/T, AGT 620 C, AT1 678 A, AT1 1167 A, AGR 395 A/T; AGT 620 C/T, AT1 678 C/T, AT1 1167 A, AGR 395 T; ACE 2193 A, AGR 1218 A, AGT 803 A; ACE 2193 A, AGT 620 C/T; ACE 2328 G, AGT 620 C/T; ACE 3387 T, AGR 1204 A/C; ACE 2193 A, ACE 2328 G, AGR 1204 C; and ACE 2193 A/G, AGR 1072 G/A, AT1 1167 A/G.
  • 20. A kit for assessing responsiveness of an individual to a treatment regimen of a cardiovascular syndrome, said kit comprising(i) sequence determination primers and (ii) sequence determination reagents, wherein said primers are selected from the group consisting of primers that hybridize to polymorphic positions in human ACE, AGT, or AT1 genes; and primers that hybridize immediately adjacent to polymorphic positions in human ACE, AGT, or AT1 genes, wherein said polymorphic positions are selected from the group consisting of positions in the ACE regulatory region (SEQ ID NO: 129) numbered 5106, 5349, and 5496; positions in the ACE coding region (SEQ ID NO: 131) numbered 375, 582, 731, 1060, 1215, 2193, 2328, 2741, 3132, 3387, 3503, and 3906; positions in the AGT regulator region (SEQ ID NO: 123) numbered 395, 412, 432, 449, 692, 839, 1007, 1072, 1204 and 1218; positions in tie AGT coding region (SEQ ID NO: 124) numbered 273, 620, 803, 912, 997, 1116, and 1174; position 49 in the AGT gene (SEC ID NO; 126) position 1451 in the ACE gene (SEQ ID NO: 128); positions in the AT1 regulatory region numbered 1427, 1756, 1853, 2046, 2354, 2355, and 2415; positions in the AT1 coding region (SEQ ID NOS: 132-133, which are contiguous) numbered 449, 678, 1167, and 1271; and combinations of any of the foregoing.
  • 21. A kit for assessing cardiovascular status, said kit comprising one or more antibodies specific for a polymorphic position within the human ACE, AGT, or AT1 polypeptides.
  • 22. A kit as defined in claim 21, wherein said polymorphic positions are encoded by a nucleotide selected from the group consisting of nucleotide positions in the ACE coding region (SEQ ID NO: 130) numbered 375, 582, 731, 1060, 1215, 2193, 2328, 2741, 3132, 3387, 3503, and 3906; nucleotide positions in the AGT coding region (SEQ ID NO: 124) numbered 273, 620, 803, 912, 997, 1116, and 1114; positions in the AT1 coding region (SEQ ID NOS: 132-133 which are continuous) numbered 449, 678, 1167, and 1271; and combinations of any of the foregoing.
  • 23. A method for predicting the response of a human individual having a cardiovascular syndrome to a treatment regimen of said cardiovascular syndrome, which method comprises comparing a polymorphic pattern established in one or more polymorphic positions within one or more of the ACE, AGT, or AT1 genes of said individual wit a polymorphic pattern of the same polymorphic positions of humans who have a known response to the treatment regimen.
  • 24. A method as defined in claim 23, wherein said treatment regimen is an alteration in diet, lifestyle, and/or exercise; a surgical technique, or a pharmaceutical intervention.
  • 25. A method as defined in claim 24, wherein said treatment regimen is a pharmaceutical intervention.
  • 26. A method as defined in claim 25, wherein said treatment regimen comprises administering a cardiovascular drug selected from the group consisting of ACE inhibitors, angiotensin II receptor antagonists, diuretics, alpha-adrenoreceptor antagonists, cardiac glycosides, phosphodiesterase inhibitors, beta-adrenoreceptor antagonists, calcium channel blockers, HMG-CoA reductase inhibitors, imidizoline receptor blockers endothelin receptor blockers, and organic nitrites.
  • 27. A method as defined in claim 26, wherein said polymorphic positions comprise ACE 2193 (SEQ ID NO: 130), AGT 1072 (SEQ ID NO: 123), and AT1 1167 (SEQ ID NOS. 132-133 which are contiguous).
  • 28. A method as defined in claim 27, wherein said polymorphic pattern comprises ACE 2193 A/G, AGT 1072 G/A, and AT1 1167 A/G.
  • 29. A method as defined in claim 23, wherein said cardiovascular syndrome is selected from the group consisting of myocardial infarction, hypertension, atherosclerosis, and stroke.
  • 30. A method as defined in claim 23, wherein said treatment regimen is the administration of an ACE inhibitor, wherein said method comprises comparing the polymorphic pattern established by determining the sequence of (a) the ACE gene (SEQ ID NO: 130) at position 2193 in the coding region; (b) the AGT gene (SEQ ID NO: 123) at position 1072 in the regulatory region; and (c) the AT gene (SEQ ID NOS: 132-133, which are contiguous) at position 1167 in the coding region with the same polymorphic patterns of humans exhibiting different responses to said ACE inhibitor.
  • 31. A method as defined in claim 30, wherein said polymorphic pattern comprises ACE 2193 A/G, AGT 1072 G/A, AT 1 1167 A/G.
  • 32. A method for assessing cardiovascular status in a human individual, which method comprises comparing a polymorphic pattern established in one or more polymorphic positions within one or more of the ACE, AGT, or AT1 genes of said individual with a polymorphic pattern of the same polymorphic positions of humans who have a known cardiovascular status, wherein said polymorphic positions comprise ACE 2193 of SEQ ID NO: 130, AGT 1072 of SEQ ID NO: 123, and AT1 1167 (SEQ ID NOS: 132-133, which are contiguous).
  • 33. A method as defined in claim 32, wherein said polymorphic pattern comprises ACE 2193 A/G, AGT 1072 G/A, and AT1 1167 A/G.
  • 34. A method as defined in claim 32, which method comprises comparing the polymorphic pattern established by determining the sequence of (a) the ACE gene at position 2193 in the coding region; (b) the AGT gene at position 1072 in the regulatory region; and (c) the AT1 gene at position 1167 in the coding region.
  • 35. A method as defined in claim 34, wherein said polymorphic pattern comprises ACE 2193 A/G, AGR 1072 G/A, AT1 1167 A/G.
  • 36. A method for assessing cardiovascular status in a human individual, which method comprises comparing a polymorphic pattern established in one or more polymorphic positions within one or more of the ACE, AGT, or AT1 genes of said individual with a polymorphic pattern of the same polymorphic positions of humans who have a known cardiovascular status, wherein said polymorphic position is selected from the group consisting of positions in the ACE regulatory region (SEQ ID NO:129) numbered 5106, 5349, and 5496; positions in the ACE coding region (SEQ ID NO:130) numbered 375, 582, 731, 1060, 1215, 2193, 2328, 2741, 3132, 3387, 3503, and 3906; positions in the AGT regulatory region (SEQ ID NO: 123) numbered 395, 412, 432, 449, 692, 839, 1007, 1072, 1204, and 1218; positions in the AGT coding region (SEQ ID NO: 124) numbered 273, 620, 803, 912, 997, 1116, and 1174; position 49 in the AGT gene (SEQ ID NO:126); position 1451 in the ACE gene (SEQ ID NO:128); positions in the AT1 regulatory region (SEQ ID NO:131) numbered 1427, 1756, 1853, 2046, 2354, 2355, and 2415; positions in the AT1 coding region (SEQ ID NOS:132-133, which are contiguous) numbered 449, 678, 1167, and 1271; and combinations of any of the foregoing.
  • 37. A method as defined in claim 36, wherein said polymorphic patterns are selected from the group consisting of: ACE 5349 A/T, AGR 1218 A; ACE 5496 C, AGR 1204 A/C; ACE 5496 C/T, AGR 1218 A, AGT 620 C/T; ACE 2193 A, AGR 1204 C, ACE 2328 G; ACE 2193 A, AGR 1204 A/C; ACE 3387 T, AGR 1218 A; ACE 3387 T, AGT 620 C/T; AGR 1204 A/C, AT1 678 C/T; AGR 1204 A/C, AT1 1271 A/C; ACE 1215 C, AGR 1204 A/C; AGR 1204 A/C, AT1 1167 A, ACE 3906 A/G; AGR 1204 A, AGT 620 C, AT1 1271 A, AT1 1167 A, AGR 395 A/T; AGR 1204 A/C, AGT 620 C/T, AT1 1271 A/C, AT1 1167 A, AGR 395 T; AGR 1204 A/C, AGT 620 C/T, AT1 1271 A/C, AT1 1167 A/G, AGR 395 T; AGR 1204 A, AT1 678 C, AT1 1167 A, AGR 395 A/T; AGR 1204 A/C, AT1 678 C/T, AT1 1167 A, AGR 395 T; AGT 620 C/T, AT1 1271 A/C, AT1 1167 A, AGR 395 T; AGT 620 C/T, AT1 1271 A/C, AT1 1167 A/G AGR 395 T; AGT 620 C, AT1 1271 A, AT1 1167 A, AGR 395 A/T; AGT 620 C, AT1 678 A, AT1 1167 A, AGR 395 A/T; AGT 620 C/T, AT1 678 C/T; AT1 1167 A, AGR 395 T; ACE 2193 A, AGR 1218 A, AGT 803 A; ACE 2193 A, AGT 620 C/T; ACE 2328 G, AGT 620 C/T; ACE 3387 T, AGR 1204 A/C; ACE 2193 A, ACE 2328 G, AGR 1204 C; and ACE 2193 A/G, AGR 1072 G/A, AT1 1167 A/C.
  • 38. A method for predicting the response of a human individual having a cardiovascular syndrome to a treatment regimen of said cardiovascular syndrome, which method comprises comparing a polymorphic pattern established in a combination of polymorphic positions within one or more of the ACE, AGT, or AT1 genes of said individual with a polymorphic pattern of the same polymorphic positions of humans who heave a known response to the treatment regimen.
  • 39. A method as defined in claim 23, wherein said polymorphic position is selected from the group consisting of positions in the ACE regulatory region (SEQ ID NO: 129) numbered 5106, 5349, and 5496; positions in the ACE coding region (SEQ ID NO: 130) numbered 375, 582, 731, 1060, 1215, 2193, 2328, 2741, 3132, 3387, 3503, and 3906; positions in the AGT regulatory region (SEQ ID NO: 123) numbered 395, 412, 432, 449, 692, 839, 1007, 1072, 1204, and 1218; positions in the AGT coding region (SEQ ID NO: 124) numbered 273, 620, 803, 912, 997, 1116, and 1174; position 49 in the AGT gene (SEQ ID NO: 126); position 1451 in the ACE gene (SEQ ID NO: 128); positions in the AT1 regulatory region (SEQ ID NO: 131) numbered 1427, 1756, 1853, 2046, 2354, 2355, and 2415; positions in the AT1 coding region (SEQ ID NO: 132-133, which are contiguous) numbered 449, 678, 1167, and 1271; and combinations of any of the foregoing.
  • 40. A method as defined in claim 39, wherein said polymorphic patterns are selected from the group consisting of: ACE 5349 A/T, AGR 1218 A; ACE 5496 C, AGR 1204 A/C; ACE 5496 C/T, AGR 1218 A, AGT 620 C/T; ACE 2193 A, AGR 1204 C, ACE 2328 G; ACE 2193 A, AGR 1204 A/C; ACE 3387 T, AGR 1218 A; ACE 3387 T, AGT 620 C/T; AGR 1204 A/C, AT1 678 C/T; AGR 1204 A/C, AT1 1271 A/C; ACE 1215 C, AGR 1204 A/C, AGR 1204 A/C, AT1 1167 A, ACE 3906 A/G; AGR 1204 A, AGT 620 C, AT1 1271 A, AT1 1167 A, AGR 395 A/T; AGR 1204 A/C, AGT 620 C/T, AT1 1271 A/C, AT1 1167 A, AGR 395 T; AGR 1204 A/C, AGT 620 C/T, AT1 1271 A/C, AT1 1167 A/G, AGR 395 T; AGR 1204 A, AT1 678 C, AT1 1167 A, AGR 395 A/T; AGR 1204 A/C, AT1 678 C/T, AT1 1167 A, AGR 395 T; AGT 620 C/T, AT1 1271 A/C, AT1 1167 A, AGR 395 T; AGT 620 C/T, AT1 1271 A/C, AT1 1167 A/G, AGR 395 T; AGT 620 C, AT1 1271 A, AT1 1167 A, AGR 395 A/T; AGT 620 C, AT1 678 A, AT1 1167 A, AGR 395 A/T; AGT 620 C/T, AT1 678 C/T; AT1 1167 A, AGR 395 T; ACE 2193 A, AGR 1218 A, AGT 803 A; ACE 2193 A, AGT 620 C/T; ACE 2328 G, AGT 620 C/T; ACE 3387 T, AGR 1204 A/C; ACE 2193 A, ACE 2328 G, AGR 1204 C; and ACE 2193 A/G, AGR 1072 G/A, AT1 1167 A/G.
Parent Case Info

This application claims priority under 35 U.S.C. § 119 from provisional U.S. application Ser. No. 60/042,930, filed Apr. 4, 1997.

US Referenced Citations (4)
Number Name Date Kind
5374525 Lalouel et al. Dec 1994
5589584 Lalouel et al. Dec 1996
5763168 Lalouel et al. Jun 1998
5800990 Raynolds et al. Sep 1998
Foreign Referenced Citations (5)
Number Date Country
WO 87 02709 May 1987 WO
WO 88 08457 Nov 1988 WO
WO 94 08048 Apr 1994 WO
WO 98 45477 Oct 1998 WO
WO 99 37761 Jul 1999 WO
Non-Patent Literature Citations (30)
Entry
Cambien et al., Am. J. Hum. Genet., 1999, 65:183-191.
Hingorani et al., Journal of Hypertension, 1995, 13:1602-1609.
Jeunemaitre et al., Am. J. Hum. Genet., 1997, 60:1448-1460.
Maqbool et al., The Lancet, 1999, 353:897.
Poirier et al., Journal of Hypertension, 1998, 16(10):1443-1447.
Reihsaus et al., Am. J. Respir. Cell Mol. Biol., 1993, 8:334-339.
Rieder et al., Nature Genetics, 1999, 22:59-62.
Soubrier, F., Journal of Hypertension, 1993, 11(suppl 5):S20-S26.
Timmerman et al., Mutation Note #19, 1997, Novel DNA sequence differences in the beta2-adrenergic receoptor gene promoter region.
Soubrier et al., Renin-Angiotensin System Genes as Candidate Genes in Cardiovascular Diseases, Trends in Cardiovascular Med., 3:250-258, 1993.
Timmerman et al., Beta-2 Adrenoreceptor genetic variation is associated with genetic predisposition to essential hypertension: The bergen blood pressure study Kidney Intl., 53:1455-1460, 1998.
Brand et al., Structural analysis and evaluation of the aldosterone synthase gene in hypertension, Hypertension, 32:198-204, 1998.
Frossard et al., Correlations between RFLPs on the human renin gene locus and clinical variables of blood pressure regulation, Biogenic Amines, 11:313-324, 1995.
Dudley, C. et al., “Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: Investigation of renin-angiotensin system genes”, Journal of Hypertension, 1996, 14(2):259-262.
Raynolds et al., The Role of Genetic Variants in Angiotensin I Converting Enzyme, Angiotensinogen and the Angiotensin II type-1 Receptor in the Pathophysiology of Heart Muscle Disease, Eur. Heart J., 1995 Nov; 16 Suppl. K:23-30.
Raynolds et al., The Association Between the Angiotensin I Converting Enzyme Gene Polymorphism and Cardiovascular Disease, Coron. Artery Dis., Apr. 1995; 6(4):302-9.
Abraham et al., Importance of Angiotensin-Converting Enzyme in Pulmonary Hypertension, Cardiology 1995; 86 Suppl.:9-15.
Raynolds et al., Angiotensin-Converting Enzyme DD Genotype in Patients with Ischaemic or Idiopathic Dilated Cardiomyopathy, Lancet 1993, Oct. 30; 342 (8879):1073-5.
Bonnardeaux et al., Angiotensin II Type 1 Receptor Gene Polymorphisms in Human Essential Hypertension, Hypertension, 24:63-69, 1994.
Cambien, et al., Deletion Polymorphism in the Gene for Angiotensin-Converting Enzyme is a Potent Risk Factor for Myocardial Infarction, Nature, 359:41-644, 1992.
Coffman, A Genetic Approach for Studying the Physiology of the Type 1A (AT1A) Angiotensin Receptor, Semin. Nephrol., 17:404-411, 1997.
Esther et al., Mice Lacking Angiotensin-Converting Enzyme Have Low Blood Pressure, Renal Pathology, and Reduced Male Fertility, Lab. Invest., 74:953-965, 1996.
Inuoe et al. A Nucleotide Substitution in the Promoter on Human Angiotensinogen is Associated with Essential Hypertension and Affects Basal Transcription In Vitro, J. Clin. Invest., 99:1786, 1997.
Ishigami et al., Molecular Variant of Angiotensinogen Gene is Associated with Coronary Atherosclerosis, Circulation, 91:951-4, 1995.
Jeunemaitre et al., Molecular Basis of Human Hypertension: Role of Angiotensinogen, Cell, 71:169-180, 1992.
Kamitani et al., Significance of the Angiotensinogen Gene Polymorphism as a Risk Factor for Myocardial Infarction in the Japanese, Hypertension, 24:381, 1994.
Murakami et al., Hypertensive and Hypotensive Mice Produced by the Introduction and Disruption of Genes on the Renin-Angiotensin System, Blood Press. Suppl., 2:36-40, 1996.
Rolfs et al., Genetic Polymorphisms of the Angiotensin II Type 1 (AT1) Receptor Gene, Eur. Heart. J., 15:Suppl. D:108-112, 1994.
Tiret et al., Synergistic Effects of Angiotensin-Converting Enzyme and Angiotensin-II Type 1 Receptor Gene Polymorphisms on Risk of Myocardial Infarction, The Lancet, 344:910-913, 1994.
Villard et al, Identification of New Polymorphisms of the Angiotensin I-Converting Enzyme (ACE) Gene, and Study of Their Relationship to Plasma ACE Levels by Two-QTL Segregation-Linkage Analysis, Am. J. Hum. Genet., 58:1268-1278, 1996.
Provisional Applications (1)
Number Date Country
60/042930 Apr 1997 US