A push for higher performance and smaller die size drives the semiconductor industry to reduce circuit chip area by approximately 50% every two years. The chip area reduction provides an economic benefit for migrating to newer technologies. The 50% chip area reduction is achieved by reducing the feature sizes between 25% and 30%. The reduction in feature size is enabled by improvements in manufacturing equipment and materials. For example, improvement in the lithographic process has enabled smaller feature sizes to be achieved, while improvement in chemical mechanical polishing (CMP) has in-part enabled a higher number of interconnect layers.
In the evolution of lithography, as the minimum feature size approached the wavelength of the light source used to expose the feature shapes, unintended interactions occurred between neighboring features. Today minimum feature sizes are approaching 45 nm (nanometers), while the wavelength of the light source used in the photolithography process remains at 193 nm. The difference between the minimum feature size and the wavelength of light used in the photolithography process is defined as the lithographic gap. As the lithographic gap grows, the resolution capability of the lithographic process decreases.
An interference pattern occurs as each shape on the mask interacts with the light. The interference patterns from neighboring shapes can create constructive or destructive interference. In the case of constructive interference, unwanted shapes may be inadvertently created. In the case of destructive interference, desired shapes may be inadvertently removed. In either case, a particular shape is printed in a different manner than intended, possibly causing a device failure. Correction methodologies, such as optical proximity correction (OPC), attempt to predict the impact from neighboring shapes and modify the mask such that the printed shape is fabricated as desired. The quality of the light interaction prediction is declining as process geometries shrink and as the light interactions become more complex.
In view of the foregoing, techniques are sought for managing lithographic gap issues as technology continues to progress toward smaller semiconductor device features sizes.
In one embodiment, a method is disclosed for defining a vertical connection layout for a circuit. The method includes an operation for defining a first virtual grate as a set of parallel virtual lines extending across a layout area in a first direction. The virtual lines of the first virtual grate correspond to placement locations for layout features in a lower chip level. The method also includes an operation for defining a second virtual grate as a set of parallel virtual lines extending across the layout area in a second direction substantially perpendicular to the first direction. The virtual lines of the second virtual grate correspond to placement locations for layout features in a higher chip level. Each intersection point between virtual lines of the first and second virtual grates is a gridpoint within a vertical connection placement grid. The method further includes an operation for placing vertical connection structures at a number of gridpoints within the vertical connection placement grid so as to provide electrical connectivity between layout features in the lower and higher chip levels. The vertical connection structures are placed so as to minimize a number of different spacing sizes between neighboring vertical connection structures across the vertical connection placement grid.
In another embodiment, a method is disclosed for optimizing a cell layout. In the method, a first virtual grate is defined as a set of parallel virtual lines of uniform pitch extending across the cell layout in a first direction. Also, a second virtual grate is defined as a set of parallel virtual lines of uniform pitch extending across the cell layout in a second direction that is perpendicular to the first direction. Each intersection point between virtual lines of the first and second virtual grates is a gridpoint within a vertical connection placement grid. For either of the first virtual grate, the second virtual grate, or both the first and second virtual grates, each of a respective lower pitch limit, a respective upper pitch limit, and a respective pitch increment value is defined. A pitch range for a given virtual grate extends from the lower pitch limit of the given virtual grate to the higher pitch limit of the given virtual grate in increments of the pitch increment value of the given virtual grate. The method also includes defining a number of variants of the vertical connection placement grid. Each variant of the vertical connection placement grid corresponds to a different combination of first and second virtual grate pitch values within their respective pitch ranges. Multiple layouts of a cell are then generated, such that each of the multiple layouts of the cell is generated using a different variant of the vertical connection placement grid. An area efficiency metric and a manufacturability rating metric are calculated for each of the multiple layouts of the cell. Then, the area efficiency metric and manufacturability rating metric are evaluated for the multiple layouts of the cell to determine an optimum vertical connection placement grid. Then, the layout of the cell is implemented using the optimum vertical connection placement grid.
In another embodiment, a semiconductor chip is disclosed as including a cell defined to include a number of vertical connection structures placed in accordance with a vertical connection placement grid. The vertical connection placement grid is defined by a first virtual grate and a second virtual grate. The first virtual grate is defined by a set of parallel virtual lines extending across a layout of the cell in a first direction. The second virtual grate is defined by a set of parallel virtual lines extending across the layout of the cell in a second direction substantially perpendicular to the first direction. Each intersection point between virtual lines of the first and second virtual grates is a gridpoint within the vertical connection placement grid. The virtual lines of the first virtual grate correspond to potential placement locations for layout features in a particular chip level. The virtual lines of the second virtual grate correspond to potential placement locations for layout features in another chip level different than the particular chip level associated with the first virtual grate. Vertical connection structures are placed at a number of gridpoints within the vertical connection placement grid so as to provide electrical connectivity between layout features in the chip levels associated with the first and second virtual grates. Also, the vertical connection structures are placed so as to minimize a number of different spacing sizes between neighboring vertical connection structures across the layout of the cell and so as to minimize a layout area of the cell.
Other aspects and advantages of the invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the present invention.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
In deep sub-micron VLSI (Very-Large-Scale Integration) design, process compensation techniques (PCTs) such as Optical Proximity Correction (OPC) or sub-resolution feature utilization, among others, enhance the printing of layout features. PCTs are easier to develop and implement when the layout is highly regular and when the quantity and diversity of lithographic interactions are minimized across the layout.
Dynamic Array Architecture
The dynamic array architecture represents a semiconductor device design paradigm in which linear-shaped layout features are defined along a regular-spaced virtual grate (or regular-spaced virtual grid) in a number of levels of a cell, i.e., in a number of levels of a semiconductor chip. The virtual grate is defined by a set of equally spaced, parallel virtual lines extending across a given level in a given chip area. The virtual grid is defined by a first set of equally spaced, parallel virtual lines extending across a given level in a given chip area in a first direction, and by a second set of equally spaced, parallel virtual lines extending across the given level in the given chip area in a second direction, where the second direction is perpendicular to the first direction. In various embodiments, the virtual grate of a given level can be oriented either substantially perpendicular of substantially parallel to the virtual grate of an adjacent level.
A linear layout feature is defined as a layout shape that extends along a virtual line of a virtual grate without contacting a neighboring linear layout feature that extends along a different virtual line of the virtual grate. In one embodiment, a linear layout feature can be defined to have a substantially rectangular cross-section when viewed in an as-drawn state. In another embodiment, a linear layout feature can be defined to have a primarily rectangular cross-section defined by a width and length, with some allowable variation in width along its length. It should be understood, however, that in this embodiment, the linear layout feature of varying width may not contact a neighboring linear layout feature that extends along a different virtual line of the same virtual grate within the same chip level. For example, some linear layout features may have one or more variations in width at any number of locations along their length, wherein “width” is defined across the substrate in a direction perpendicular to the virtual line along which the linear layout feature is disposed. Such a variation in width may be used to define a contact head upon which a contact is to connect, or may serve some other purpose. Additionally, different linear layout features within a given chip level can be defined to have the same width or different widths, so long as the width variation is predictable from a manufacturing perspective and does not adversely impact the manufacture of the linear layout feature or its neighboring layout features.
In the dynamic array architecture, variations in a vertical cross-section shape of an as-fabricated linear layout feature can be tolerated to an extent, so long as the variation in the vertical cross-section shape is predictable from a manufacturing perspective and does not adversely impact the manufacture of the given linear layout feature or its neighboring layout features. In this regard, the vertical cross-section shape corresponds to a cut of the as-fabricated linear layout feature in a plane perpendicular to the centerline of the linear layout feature.
In one embodiment, each linear layout feature of a given chip level is substantially centered upon one of the virtual lines of the virtual grate associated with the given chip level. A linear layout feature is considered to be substantially centered upon a particular virtual grate line when a deviation in alignment between of the centerline of the linear layout feature and the particular virtual grate line is sufficiently small so as to not reduce a manufacturing process window from what would be achievable with a true alignment between of the centerline of the linear layout feature and the virtual grate line. In one embodiment, the above-mentioned manufacturing process window is defined by a lithographic domain of focus and exposure that yields an acceptable fidelity of the layout feature. In one embodiment, the fidelity of a layout feature is defined by a characteristic dimension of the layout feature.
In another embodiment, some linear layout features in a given chip level may not be centered upon a virtual grate line. However, in this embodiment, the linear layout features remain parallel to the virtual lines of the virtual grate, and hence parallel to the other linear layout features in the given chip level. Therefore, it should be understood that the various linear layout features defined in a layout of a given chip level are oriented to extend across the given chip level in a parallel manner.
In one embodiment, within a given chip level defined according to the dynamic array architecture, proximate ends of adjacent, co-aligned linear layout features may be separated from each other by a substantially uniform gap. More specifically, adjacent ends of linear layout features defined along a common virtual grate line are separated by an end gap, and such end gaps within the chip level associated with the virtual grate may be defined to span a substantially uniform distance. Additionally, in one embodiment, a size of the end gaps is minimized within a manufacturing process capability so as to optimize filling of a given chip level with linear layout features.
Also, in the dynamic array architecture, a portion of a chip level can be defined to have any number of virtual grate lines occupied by any number of linear layout features. In one example, a portion of a given chip level can be defined such that all lines of its virtual grate are occupied by at least one linear layout feature. In another example, a portion of a given chip level can be defined such that some lines of its virtual grate are occupied by at least one linear layout feature, and other lines of its virtual grate are vacant, i.e., not occupied by any linear layout features. Furthermore, in a portion of a given chip level, any number of successively adjacent virtual grate lines can be left vacant. Also, the occupancy versus vacancy of virtual grate lines by linear layout features in a portion of a given chip level may be defined according to a pattern or repeating pattern across the given chip level.
In a given chip level, some of the linear layout features may form functional structures within an integrated circuit, and other linear layout features may be non-functional with respect to integrated circuit operation. It should be understood that the each of the linear layout features, regardless of function, is defined to extend across the chip level in the common direction of the virtual grate and to be devoid of a substantial change in direction along its length. It should be understood that each of the linear layout features, regardless of function, is defined such that no linear layout feature along a given virtual grate line is configured to connect directly within the same chip level to another linear layout feature defined along a different virtual grate line.
Additionally, within the dynamic array architecture, vias and contacts are defined to interconnect a number of layout features in various levels so as to form a number of functional electronic devices, e.g., transistors, and electronic circuits. Layout features for the vias and contacts can be aligned to a virtual grid. In one embodiment, a virtual grid is defined as a combination of virtual grates associated with a plurality of levels to which the vias and contacts will connect. Also, in one embodiment, a combination of virtual grates used to define a virtual grid can include one or more virtual grates defined independent from a particular chip level.
In the dynamic array architecture, a number of layout features in various chip levels form functional components of an electronic circuit. Additionally, some of layout features within various chip levels may be non-functional with respect to an electronic circuit, but are manufactured nonetheless so as to reinforce manufacturing of neighboring layout features. It should be understood that the dynamic array architecture is defined to enable accurate prediction of semiconductor device manufacturability with a high probability.
In view of the foregoing, it should be understood that the dynamic array architecture is defined by placement of linear layout features on a regular-spaced grate (or regular-spaced grid) in a number of levels of a cell, such that the linear layout features in a given level of the cell are oriented to be substantially parallel with each other in their traversal direction across the cell. As discussed above, in the dynamic array architecture, each as-drawn linear layout feature, i.e., prior to PCT processing, is defined to be devoid of a substantial change in direction relative to its traversal direction across the cell.
Cell
A cell, as referenced herein, represents an abstraction of a logic function, and encapsulates lower-level integrated circuit layouts for implementing the logic function. It should be understood that a given logic function can be represented by multiple cell variations, wherein the cell variations may be differentiated by feature size, performance, and process compensation technique (PCT) processing. For example, multiple cell variations for a given logic function may be differentiated by power consumption, signal timing, current leakage, chip area, OPC, RET, etc. It should also be understood that each cell description includes the layouts for the cell in each level of a chip, as required to implement the logic function of the cell. More specifically, a cell description includes layouts for the cell in each level of the chip extending from the substrate level up through a particular interconnect level.
Exemplary Embodiments
One method of constructing a circuit, such as a memory circuit, is to use the dynamic array architecture with a virtual grate having virtual lines that extend in a common direction across a portion of chip layout. The portion of the chip layout may correspond to a cell placed on the chip or to essentially any type of circuit block placed on the chip. For purposes of description, virtual lines of a given virtual grate are considered to extend in either an X-axis or a Y-axis direction across the portion of the chip. For example,
A number of contact features (contacts) can defined to extend in a substantially vertical manner through the chip so as to electrically connect gates to metal-1 wires (or other interconnect level wires), and to connect diffusion areas to metal-1 wires (or to other interconnect level wires). Additionally, a number of via features (e.g., via-1) can be defined to extend in a substantially vertical manner through the chip so as to electrically connect metal-1 wires to metal-2 wires, or to connect wires in any two interconnect levels. Thus, from a cross-sectional point of view, contacts and vias represent particular types of vertical connection structures that extend vertically between or through a number of different chip levels.
Exemplary embodiments are also disclosed herein for defining and utilizing perpendicularly oriented virtual grates to define a contact grid for a circuit layout, in accordance with the dynamic array architecture. Also, exemplary embodiments are disclosed herein for defining and evaluating acceptability criteria for a given circuit layout that is defined using the contact grid, in accordance with the dynamic array architecture. As discussed below, the acceptability criteria for a given circuit layout may be defined by metrics such as Area Efficiency and Manufacturability Ratings. Also, it should be understood that although the embodiments disclosed herein can be applied to essentially any type of circuitry layout, the disclosed embodiments are particularly applicable to a memory circuit layout.
For discussion purposes, a Y-axis virtual grate is defined by a set of equally spaced virtual lines that extend across the chip area in the X-axis direction, thereby indexing the contact grid in the Y-axis direction. Similarly, an X-axis virtual grate is defined by a set of equally spaced virtual lines that extend across the chip area in the Y-axis direction, thereby indexing the contact grid in the X-axis direction. The Y-axis virtual grate and X-axis virtual grate are perpendicular to each other, and combine to form the contact grid.
In the dynamic array architecture, transistor placement can be considered optimum because there are limited constraints beyond the dynamic array architecture layout rules and design issues such as signal routing. Use of the X-axis virtual grate serves to constrain transistor placement in the X-axis direction. This X-axis virtual grate constraint may increase the cell layout area, or reduce the area utilization efficiency for a specific section of the cell layout. Either the total cell layout area, the sectional cell layout area utilization efficiency, or both, may be used as Area Efficiency metrics for the above-mentioned circuit layout acceptability criteria.
Another criterion to consider is the Manufacturability Rating of the cell. There are multiple metrics that may be used to rate a cell layout's manufacturability. One metric that may be applicable is the quantity of edge-to-edge interactions between contacts in a specific layout.
Balancing the Area Efficiency metric (i.e., cell layout area utilization efficiency) against the Manufacturing Rating metric is a consideration in selecting a pitch value for a virtual grate. The pitch value for a given virtual grate corresponds to the perpendicular distance between adjacent virtual grate lines in the given virtual grate. The cell designer may set a target for each of the Area Efficiency and Manufacturing Rating metrics over the entire design to guide the overall implementation. Thus, different cells may have a different balance of performance with regard to the Area Efficiency and Manufacturing Rating metrics in order to achieve an overall design target with regard to Area Efficiency and Manufacturing Rating.
In one embodiment, the X-Axis virtual grate of the contact grid is defined to follow the linear-shaped metal-2 wires running over the cell. As an example, a cell may use a minimum metal-2 wire pitch to obtain maximum signal density.
It can be observed that the manufacturing rating of the cell layout 605 is consistent with the example cell of
To search for an optimum or an acceptable virtual grate pitch, a pitch search range can be defined by a lower pitch limit and an upper pitch limit. In one embodiment, the lower pitch limit of the virtual grate can be defined in terms of the manufacturing process features/capabilities and mask generation capabilities. For example, in an advanced ultra-deep submicron process technology, an as-drawn gate length dimension may be referenced as the smallest feature size manufacturable by the process and/or mask generation capabilities. Another factor that may affect the lower pitch limit is the mask resolution. Because process compensation techniques (PCTs) may be dependent on the gate length dimension and/or mask resolution, the lower pitch limit of the virtual grate may be defined as a mathematical common factor or a mathematical common multiple of both the gate length and the mask resolution.
The upper pitch limit of the search range may be a mathematical factor or a mathematical multiple of the wire pitch of any interconnect layer whose features are commonly oriented (i.e., parallel) with the virtual grate. In one embodiment, the optimum pitch search for the virtual grate is conducted by linearly incrementing the virtual grate pitch through the pitch search range. The increment size used for the virtual grate optimum pitch search can be set in a number of ways, including but not limited to, using a mathematical multiple of the mask resolution. At each incremented pitch value within the search range, the cell layout is re-implemented using the contact grid defined in-part by the adjusted virtual grate. Then, the corresponding Area Efficiency and Manufacturability Rating metrics for the re-implemented cell layout are determined and recorded. The Area Efficiency and Manufacturability Rating metrics at each pitch value can be compared to corresponding targets to determine which virtual grate pitch value provides best overall balance among the metrics and satisfies any specified acceptance criteria, if applicable.
It should be further understood, that a virtual grid defined by two perpendicularly oriented virtual grates can be optimized by searching through virtual grate pitch adjustment ranges of either or both of the virtual grates that define the virtual grid. For example, if a virtual grid for gate contact placement is defined by a gate level virtual grate and an interconnect level virtual grate, optimization of the virtual grid for contact placement can be done by either of the following: 1) adjusting the virtual grate pitch of the gate level only, 2) adjusting the virtual grate pitch of the interconnect level only, or 3) adjusting the virtual grate pitches of both the gate level and interconnect level. Each different combination of virtual grate pitches for the gate level and interconnect level represents a different variant of the virtual grid to be evaluated for contact placement.
It should be appreciated that the above-described techniques for placing contacts can also be applied to the placement of vias, and any other type of vertical connection structure. For example,
In one embodiment, a vertical connection structure (i.e., contact or via) grid is defined by two orthogonally related virtual grates, wherein one or both of these virtual grates are not utilized for placement of layout shapes within a given chip level. For example, in one exemplary embodiment, vertical connection structures are to be defined between two chip levels, wherein the layout features in each chip level are oriented in the same direction, i.e., run parallel to each other. In this embodiment, one of the virtual grates used to define the virtual connection structure grid may correspond to a virtual grate used to place layout shapes in one of the two chip levels. However, the second virtual grate used to define the virtual connection structure grid can be defined arbitrarily and may not be used for placement of layout shapes within a particular chip level. Therefore, the second virtual grate is defined to restrict placement of vertical connection structures along the length of the layout shapes in the two commonly oriented chip levels. Hence, the second virtual grate can be defined to limit a number of vertical connection spacing options along the direction of extent of the layout shapes in the two commonly oriented chip levels. It should be further understood that in another embodiment both of the virtual grates used to define a vertical connection structure grid may be defined arbitrarily and may not specifically correspond to placement of layout shapes in any chip level.
The method further includes an operation 1005 for placing vertical connection structures at a number of gridpoints within the vertical connection placement grid so as to provide electrical connectivity between layout features in the lower and higher chip levels. In one embodiment, the vertical connection structures are placed so as to minimize a number of different spacing sizes between neighboring vertical connection structures across the vertical connection placement grid. In another embodiment, the vertical connection structures are placed so as to minimize an area of the layout. Additionally, in one embodiment, the vertical connection structures are placed so as to optimally balance a reduction in both an area of the layout and a number of different spacings between neighboring vertical connection structures within the layout.
In one embodiment, layout features placed in accordance with either the first or second virtual grate are linear-shaped gate electrode features. In this embodiment, the vertical connection structures are defined as gate electrode contacts. Also, in one instance of this embodiment, a pitch of the virtual grate used for gate electrode placement is equal to one-half of a center-to-center perpendicular spacing between adjacently placed linear-shaped gate electrode features. In another embodiment, the vertical connection structures are defined as diffusion contacts. In yet another embodiment, both the first and second virtual grates correspond to respective interconnect levels. In this embodiment, the vertical connection structures are defined as via structures.
In one embodiment, the method of
The method also includes an operation 1105 for defining a respective lower pitch limit, a respective upper pitch limit, and a respective pitch increment value for either the first virtual grate, the second virtual grate, or both the first and second virtual grates. A pitch range for a given virtual grate extends from the lower pitch limit of the given virtual grate to the upper pitch limit of the given virtual grate in increments of the pitch increment value of the given virtual grate. In one embodiment, the lower pitch limit is defined as a mathematical common multiple of both a gate length and a mask resolution. In one embodiment, the upper pitch limit is defined as a mathematical factor of a wire pitch of any chip level having features that are commonly oriented with either the first or second virtual grate. In one embodiment, the pitch increment value is defined as a mathematical multiple of a mask resolution.
The method further includes an operation 1107 for defining a number of variants of the vertical connection placement grid. Each variant of the vertical connection placement grid corresponds to a different combination of first and second virtual grate pitch values within their respective pitch ranges. An operation 1109 is performed to generate multiple layouts of a cell. Each of the multiple layouts of the cell is generated using a different variant of the vertical connection placement grid. In an operation 1111, both an area efficiency metric and a manufacturability rating metric are calculated for each of the multiple layouts of the cell. In one embodiment, the area efficiency metric is defined as a chip area occupied by the cell layout. In one embodiment, the manufacturability rating metric is defined as a number of different spacing sizes between neighboring vertical connection structures across the vertical connection placement grid. However, in other embodiments different area efficiency and manufacturability rating metrics can be utilized.
The method further includes an operation 1113 for evaluating the area efficiency metric and manufacturability rating metric for the multiple layouts of the cell to determine an optimum vertical connection placement grid. In one embodiment, the optimum vertical connection placement grid is defined by a combination of first and second virtual grate pitch values that minimizes both the area occupied by the cell layout and the number of different spacing sizes between neighboring vertical connection structures. An operation 1115 is then performed to implement the layout of the cell using the optimum vertical connection placement grid.
In one embodiment of the method of
In yet another embodiment of the method of
It should be appreciated that the methods for defining and optimizing vertical connection structure grids and placing vertical connection structures thereon, as described herein, provide a systematic approach for limiting layout shape spatial relationships within the layout. Therefore, the method for defining, optimizing, and utilizing vertical connection structure grids as described herein allow for reduction in the quantity of different edge-to-edge lithographic interactions within the layout, thereby increasing the manufacturability of the layout. For instance, in one embodiment, a number of layout shape spatial relationships can be limited to allow for co-optimization between the manufacturing process and design. Additionally, limiting the number of layout shape spatial relationships can enable abstraction of a finite number of allowable layouts, which can benefit layout simulation and/or modeling speed and/or accuracy.
It should be understood that the methods for optimizing cell layouts as described herein and the resulting cell layouts can be stored in a tangible form, such as in a digital format on a computer readable medium. Also, the invention described herein can be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include hard drives, network attached storage (NAS), read-only memory, random-access memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical and non-optical data storage devices. The computer readable medium can also be distributed over a network of coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
Any of the operations described herein that form part of the invention are useful machine operations. The invention also relates to a device or an apparatus for performing these operations. The apparatus may be specially constructed for the required purpose, such as a special purpose computer. When defined as a special purpose computer, the computer can also perform other processing, program execution or routines that are not part of the special purpose, while still being capable of operating for the special purpose. Alternatively, the operations may be processed by a general purpose computer selectively activated or configured by one or more computer programs stored in the computer memory, cache, or obtained over a network. When data is obtained over a network the data maybe processed by other computers on the network, e.g., a cloud of computing resources.
The embodiments of the present invention can also be defined as a machine that transforms data from one state to another state. The data may represent an article, that can be represented as an electronic signal and electronically manipulate data. The transformed data can, in some cases, be visually depicted on a display, representing the physical object that results from the transformation of data. The transformed data can be saved to storage generally, or in particular formats that enable the construction or depiction of a physical and tangible object. In some embodiments, the manipulation can be performed by a processor. In such an example, the processor thus transforms the data from one thing to another. Still further, the methods can be processed by one or more machines or processors that can be connected over a network. Each machine can transform data from one state or thing to another, and can also process data, save data to storage, transmit data over a network, display the result, or communicate the result to another machine.
While this invention has been described in terms of several embodiments, it will be appreciated that those skilled in the art upon reading the preceding specifications and studying the drawings will realize various alterations, additions, permutations and equivalents thereof. Therefore, it is intended that the present invention includes all such alterations, additions, permutations, and equivalents as fall within the true spirit and scope of the invention.
This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 61/034,927, filed Mar. 7, 2008, entitled “Defining and Using Contact Grids in Circuit Using Dynamic Array Architecture.” This application is a continuation-in-part application under 35 U.S.C. 120 of prior U.S. application Ser. No. 12/013,342, filed Jan. 11, 2008 now U.S. Pat. No. 7,917,879, entitled “Semiconductor Device with Dynamic Array Section,” which claims priority under 35 U.S.C. 119(e) to both U.S. Provisional Patent Application No. 60/963,364, filed Aug. 2, 2007, and to prior U.S. Provisional Patent Application No. 60/972,394, filed Sep. 14, 2007. This application is also a continuation-in-part application under 35 U.S.C. 120 of prior U.S. application Ser. No. 12/212,562, filed Sep. 17, 2008 now U.S. Pat. No. 7,842,975, entitled “Dynamic Array Architecture,” which is a continuation application under 35 U.S.C. 120 of prior U.S. application Ser. No. 11/683,402, filed Mar. 7, 2007 now U.S. Pat. No. 7,446,352, which claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 60/781,288, filed Mar. 9, 2006. The disclosure of each above-identified patent application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4197555 | Uehara et al. | Apr 1980 | A |
4417161 | Uya | Nov 1983 | A |
4424460 | Best | Jan 1984 | A |
4682202 | Tanizawa | Jul 1987 | A |
4801986 | Chang et al. | Jan 1989 | A |
5097422 | Corbin et al. | Mar 1992 | A |
5121186 | Wong et al. | Jun 1992 | A |
5208765 | Turnbull | May 1993 | A |
5224057 | Igarashi | Jun 1993 | A |
5242770 | Chen et al. | Sep 1993 | A |
5378649 | Huang | Jan 1995 | A |
5471403 | Fujimaga | Nov 1995 | A |
5497334 | Russell et al. | Mar 1996 | A |
5497337 | Ponnapalli et al. | Mar 1996 | A |
5581098 | Chang | Dec 1996 | A |
5636002 | Garofalo | Jun 1997 | A |
5682323 | Pasch et al. | Oct 1997 | A |
5684733 | Wu et al. | Nov 1997 | A |
5705301 | Garza et al. | Jan 1998 | A |
5723883 | Gheewalla | Mar 1998 | A |
5740068 | Liebmann et al. | Apr 1998 | A |
5745374 | Matsumoto | Apr 1998 | A |
5774367 | Reyes et al. | Jun 1998 | A |
5790417 | Chao et al. | Aug 1998 | A |
5796624 | Sridhar et al. | Aug 1998 | A |
5825203 | Kusunoki et al. | Oct 1998 | A |
5838594 | Kojima | Nov 1998 | A |
5841663 | Sharma et al. | Nov 1998 | A |
5847421 | Yamaguchi | Dec 1998 | A |
5852562 | Shinomiya et al. | Dec 1998 | A |
5858580 | Wang et al. | Jan 1999 | A |
5898194 | Gheewala | Apr 1999 | A |
5900340 | Reich et al. | May 1999 | A |
5908827 | Sirna | Jun 1999 | A |
5923059 | Gheewala | Jul 1999 | A |
5929469 | Mimoto et al. | Jul 1999 | A |
5935763 | Caterer et al. | Aug 1999 | A |
5973507 | Yamazaki | Oct 1999 | A |
5977305 | Wigler et al. | Nov 1999 | A |
6009251 | Ho et al. | Dec 1999 | A |
6026223 | Scepanovic et al. | Feb 2000 | A |
6037617 | Kumagai | Mar 2000 | A |
6044007 | Capodieci | Mar 2000 | A |
6063132 | DeCamp et al. | May 2000 | A |
6084437 | Sako | Jul 2000 | A |
6091845 | Pierrat et al. | Jul 2000 | A |
6099584 | Arnold et al. | Aug 2000 | A |
6100025 | Wigler et al. | Aug 2000 | A |
6114071 | Chen et al. | Sep 2000 | A |
6166415 | Sakemi et al. | Dec 2000 | A |
6174742 | Sudhindranath et al. | Jan 2001 | B1 |
6182272 | Andreev et al. | Jan 2001 | B1 |
6194104 | Hsu | Feb 2001 | B1 |
6194252 | Yamaguchi | Feb 2001 | B1 |
6194912 | Or-Bach | Feb 2001 | B1 |
6209123 | Maziasz et al. | Mar 2001 | B1 |
6230299 | McSherry et al. | May 2001 | B1 |
6232173 | Hsu et al. | May 2001 | B1 |
6240542 | Kapur | May 2001 | B1 |
6249902 | Igusa et al. | Jun 2001 | B1 |
6255600 | Schaper | Jul 2001 | B1 |
6262487 | Igarashi et al. | Jul 2001 | B1 |
6269472 | Garza et al. | Jul 2001 | B1 |
6275973 | Wein | Aug 2001 | B1 |
6282696 | Garza et al. | Aug 2001 | B1 |
6303252 | Lin | Oct 2001 | B1 |
6331733 | Or-Bach et al. | Dec 2001 | B1 |
6335250 | Egi | Jan 2002 | B1 |
6338972 | Sudhindranath et al. | Jan 2002 | B1 |
6356112 | Tran et al. | Mar 2002 | B1 |
6370679 | Chang et al. | Apr 2002 | B1 |
6378110 | Ho | Apr 2002 | B1 |
6388296 | Hsu | May 2002 | B1 |
6393601 | Tanaka et al. | May 2002 | B1 |
6415421 | Anderson et al. | Jul 2002 | B2 |
6416907 | Winder et al. | Jul 2002 | B1 |
6421820 | Mansfield et al. | Jul 2002 | B1 |
6425112 | Bula et al. | Jul 2002 | B1 |
6425117 | Pasch et al. | Jul 2002 | B1 |
6426269 | Haffner et al. | Jul 2002 | B1 |
6436805 | Trivedi | Aug 2002 | B1 |
6470489 | Chang et al. | Oct 2002 | B1 |
6476493 | Or-Bach et al. | Nov 2002 | B2 |
6477695 | Gandhi | Nov 2002 | B1 |
6480989 | Chan et al. | Nov 2002 | B2 |
6492066 | Capodieci et al. | Dec 2002 | B1 |
6496965 | van Ginneken et al. | Dec 2002 | B1 |
6505327 | Lin | Jan 2003 | B2 |
6505328 | van Ginneken et al. | Jan 2003 | B1 |
6509952 | Govil et al. | Jan 2003 | B1 |
6514849 | Hui et al. | Feb 2003 | B1 |
6516459 | Sahouria | Feb 2003 | B1 |
6523156 | Cirit | Feb 2003 | B2 |
6525350 | Kinoshita et al. | Feb 2003 | B1 |
6536028 | Katsioulas et al. | Mar 2003 | B1 |
6543039 | Watanabe | Apr 2003 | B1 |
6553544 | Tanaka et al. | Apr 2003 | B2 |
6553559 | Liebmann et al. | Apr 2003 | B2 |
6553562 | Capodieci et al. | Apr 2003 | B2 |
6571140 | Wewalaarachchi | May 2003 | B1 |
6571379 | Takayama | May 2003 | B2 |
6578190 | Ferguson et al. | Jun 2003 | B2 |
6588005 | Kobayashi et al. | Jul 2003 | B1 |
6590289 | Shively | Jul 2003 | B2 |
6591207 | Naya et al. | Jul 2003 | B2 |
6609235 | Ramaswamy et al. | Aug 2003 | B2 |
6610607 | Armbrust et al. | Aug 2003 | B1 |
6620561 | Winder et al. | Sep 2003 | B2 |
6633182 | Pileggi et al. | Oct 2003 | B2 |
6635935 | Makino | Oct 2003 | B2 |
6643831 | Chang et al. | Nov 2003 | B2 |
6650014 | Kariyazaki | Nov 2003 | B2 |
6661041 | Keeth | Dec 2003 | B2 |
6662350 | Fried et al. | Dec 2003 | B2 |
6673638 | Bendik et al. | Jan 2004 | B1 |
6687895 | Zhang | Feb 2004 | B2 |
6691297 | Misaka et al. | Feb 2004 | B1 |
6700405 | Hirairi | Mar 2004 | B1 |
6703170 | Pindo | Mar 2004 | B1 |
6714903 | Chu et al. | Mar 2004 | B1 |
6732338 | Crouse et al. | May 2004 | B2 |
6737199 | Hsieh | May 2004 | B1 |
6737347 | Houston et al. | May 2004 | B1 |
6745372 | Cote et al. | Jun 2004 | B2 |
6745380 | Bodendorf et al. | Jun 2004 | B2 |
6749972 | Yu | Jun 2004 | B2 |
6760269 | Nakase et al. | Jul 2004 | B2 |
6765245 | Bansal | Jul 2004 | B2 |
6777138 | Pierrat et al. | Aug 2004 | B2 |
6777146 | Samuels | Aug 2004 | B1 |
6789244 | Dasasathyan et al. | Sep 2004 | B1 |
6789246 | Mohan et al. | Sep 2004 | B1 |
6792593 | Takashima et al. | Sep 2004 | B2 |
6794914 | Sani et al. | Sep 2004 | B2 |
6795952 | Stine et al. | Sep 2004 | B1 |
6795953 | Bakarian et al. | Sep 2004 | B2 |
6807663 | Cote et al. | Oct 2004 | B2 |
6819136 | Or-Bach | Nov 2004 | B2 |
6826738 | Cadouri | Nov 2004 | B2 |
6834375 | Stine et al. | Dec 2004 | B1 |
6841880 | Matsumoto et al. | Jan 2005 | B2 |
6850854 | Naya et al. | Feb 2005 | B2 |
6854096 | Eaton et al. | Feb 2005 | B2 |
6854100 | Chuang et al. | Feb 2005 | B1 |
6877144 | Rittman et al. | Apr 2005 | B1 |
6884712 | Yelehanka et al. | Apr 2005 | B2 |
6898770 | Boluki et al. | May 2005 | B2 |
6904582 | Rittman et al. | Jun 2005 | B1 |
6918104 | Pierrat et al. | Jul 2005 | B2 |
6920079 | Shibayama | Jul 2005 | B2 |
6928635 | Pramanik et al. | Aug 2005 | B2 |
6931617 | Sanie et al. | Aug 2005 | B2 |
6953956 | Or-Bach et al. | Oct 2005 | B2 |
6954918 | Houston | Oct 2005 | B2 |
6957402 | Templeton et al. | Oct 2005 | B2 |
6968527 | Pierrat | Nov 2005 | B2 |
6978436 | Cote et al. | Dec 2005 | B2 |
6978437 | Rittman et al. | Dec 2005 | B1 |
6992394 | Park | Jan 2006 | B2 |
6992925 | Peng | Jan 2006 | B2 |
6993741 | Liebmann et al. | Jan 2006 | B2 |
6994939 | Ghandehari et al. | Feb 2006 | B1 |
7016214 | Kawamata | Mar 2006 | B2 |
7028285 | Cote et al. | Apr 2006 | B2 |
7041568 | Goldbach et al. | May 2006 | B2 |
7052972 | Sandhu et al. | May 2006 | B2 |
7063920 | Baba-Ali | Jun 2006 | B2 |
7064068 | Chou et al. | Jun 2006 | B2 |
7065731 | Jacques et al. | Jun 2006 | B2 |
7079989 | Wimer | Jul 2006 | B2 |
7093208 | Williams et al. | Aug 2006 | B2 |
7093228 | Andreev et al. | Aug 2006 | B2 |
7103870 | Misaka et al. | Sep 2006 | B2 |
7105871 | Or-Bach et al. | Sep 2006 | B2 |
7107551 | de Dood et al. | Sep 2006 | B1 |
7115343 | Gordon et al. | Oct 2006 | B2 |
7115920 | Bernstein et al. | Oct 2006 | B2 |
7120882 | Kotani et al. | Oct 2006 | B2 |
7124386 | Smith et al. | Oct 2006 | B2 |
7132203 | Pierrat | Nov 2006 | B2 |
7137092 | Maeda | Nov 2006 | B2 |
7149999 | Kahng et al. | Dec 2006 | B2 |
7152215 | Smith et al. | Dec 2006 | B2 |
7155685 | Mori et al. | Dec 2006 | B2 |
7155689 | Pierrat | Dec 2006 | B2 |
7159197 | Falbo et al. | Jan 2007 | B2 |
7174520 | White et al. | Feb 2007 | B2 |
7175940 | Laidig et al. | Feb 2007 | B2 |
7185294 | Zhang | Feb 2007 | B2 |
7188322 | Cohn et al. | Mar 2007 | B2 |
7194712 | Wu | Mar 2007 | B2 |
7200835 | Zhang et al. | Apr 2007 | B2 |
7202517 | Dixit et al. | Apr 2007 | B2 |
7219326 | Reed et al. | May 2007 | B2 |
7225423 | Bhattacharya et al. | May 2007 | B2 |
7227183 | Donze et al. | Jun 2007 | B2 |
7231628 | Pack et al. | Jun 2007 | B2 |
7235424 | Chen et al. | Jun 2007 | B2 |
7243316 | White et al. | Jul 2007 | B2 |
7252909 | Shin et al. | Aug 2007 | B2 |
7264990 | Rueckes et al. | Sep 2007 | B2 |
7278118 | Pileggi et al. | Oct 2007 | B2 |
7287320 | Wang et al. | Oct 2007 | B2 |
7294534 | Iwaki | Nov 2007 | B2 |
7302651 | Allen et al. | Nov 2007 | B2 |
7308669 | Buehler et al. | Dec 2007 | B2 |
7335966 | Ihme et al. | Feb 2008 | B2 |
7337421 | Kamat | Feb 2008 | B2 |
7338896 | Vanhaelemeersch et al. | Mar 2008 | B2 |
7346885 | Semmler | Mar 2008 | B2 |
7350183 | Cui et al. | Mar 2008 | B2 |
7353492 | Gupta et al. | Apr 2008 | B2 |
7360179 | Smith et al. | Apr 2008 | B2 |
7360198 | Rana et al. | Apr 2008 | B2 |
7366997 | Rahmat et al. | Apr 2008 | B1 |
7367008 | White et al. | Apr 2008 | B2 |
7376931 | Kokubun | May 2008 | B2 |
7383521 | Smith et al. | Jun 2008 | B2 |
7397260 | Chanda et al. | Jul 2008 | B2 |
7400627 | Wu et al. | Jul 2008 | B2 |
7404173 | Wu et al. | Jul 2008 | B2 |
7411252 | Anderson et al. | Aug 2008 | B2 |
7421678 | Barnes et al. | Sep 2008 | B2 |
7423298 | Mariyama et al. | Sep 2008 | B2 |
7424694 | Ikeda | Sep 2008 | B2 |
7426710 | Zhang et al. | Sep 2008 | B2 |
7434185 | Dooling et al. | Oct 2008 | B2 |
7441211 | Gupta et al. | Oct 2008 | B1 |
7444609 | Charlebois et al. | Oct 2008 | B2 |
7446352 | Becker et al. | Nov 2008 | B2 |
7449371 | Kemerling et al. | Nov 2008 | B2 |
7458045 | Cote et al. | Nov 2008 | B2 |
7459792 | Chen | Dec 2008 | B2 |
7465973 | Chang et al. | Dec 2008 | B2 |
7466607 | Hollis et al. | Dec 2008 | B2 |
7480880 | Visweswariah et al. | Jan 2009 | B2 |
7480891 | Sezginer | Jan 2009 | B2 |
7484197 | Allen et al. | Jan 2009 | B2 |
7487475 | Kriplani et al. | Feb 2009 | B1 |
7506300 | Sezginer et al. | Mar 2009 | B2 |
7509621 | Melvin, III | Mar 2009 | B2 |
7509622 | Sinha et al. | Mar 2009 | B2 |
7512921 | Shibuya | Mar 2009 | B2 |
7514959 | Or-Bach et al. | Apr 2009 | B2 |
7523429 | Kroyan et al. | Apr 2009 | B2 |
7527900 | Zhou et al. | May 2009 | B2 |
7563701 | Chang et al. | Jul 2009 | B2 |
7568174 | Sezginer et al. | Jul 2009 | B2 |
7569310 | Wallace et al. | Aug 2009 | B2 |
7614030 | Hsu | Nov 2009 | B2 |
7632610 | Wallace et al. | Dec 2009 | B2 |
7665051 | Ludwig et al. | Feb 2010 | B2 |
7712056 | White et al. | May 2010 | B2 |
7770144 | Dellinger | Aug 2010 | B2 |
7802219 | Tomar et al. | Sep 2010 | B2 |
7825437 | Pillarisetty et al. | Nov 2010 | B2 |
7842975 | Becker et al. | Nov 2010 | B2 |
7882456 | Zach | Feb 2011 | B2 |
7888705 | Becker et al. | Feb 2011 | B2 |
7898040 | Nawaz | Mar 2011 | B2 |
7908578 | Becker et al. | Mar 2011 | B2 |
7910958 | Becker et al. | Mar 2011 | B2 |
7917877 | Singh et al. | Mar 2011 | B2 |
7917879 | Becker et al. | Mar 2011 | B2 |
7923266 | Thijs et al. | Apr 2011 | B2 |
7923337 | Chang et al. | Apr 2011 | B2 |
7932545 | Becker et al. | Apr 2011 | B2 |
7962867 | White et al. | Jun 2011 | B2 |
7964267 | Lyons et al. | Jun 2011 | B1 |
7971160 | Osawa et al. | Jun 2011 | B2 |
7992122 | Burstein et al. | Aug 2011 | B1 |
7994583 | Inaba | Aug 2011 | B2 |
8004042 | Yang et al. | Aug 2011 | B2 |
8058671 | Becker et al. | Nov 2011 | B2 |
20020015899 | Chen et al. | Feb 2002 | A1 |
20020079927 | Katoh et al. | Jun 2002 | A1 |
20020166107 | Capodieci et al. | Nov 2002 | A1 |
20030042930 | Pileggi et al. | Mar 2003 | A1 |
20030046653 | Liu | Mar 2003 | A1 |
20030061592 | Agrawal et al. | Mar 2003 | A1 |
20030088839 | Watanabe | May 2003 | A1 |
20030088842 | Cirit | May 2003 | A1 |
20030106037 | Moniwa et al. | Jun 2003 | A1 |
20030145299 | Fried et al. | Jul 2003 | A1 |
20030177465 | MacLean et al. | Sep 2003 | A1 |
20030229868 | White et al. | Dec 2003 | A1 |
20030229875 | Smith et al. | Dec 2003 | A1 |
20040049754 | Liao et al. | Mar 2004 | A1 |
20040063038 | Shin et al. | Apr 2004 | A1 |
20040115539 | Broeke et al. | Jun 2004 | A1 |
20040139412 | Ito et al. | Jul 2004 | A1 |
20040145028 | Matsumoto et al. | Jul 2004 | A1 |
20040153979 | Chang | Aug 2004 | A1 |
20040161878 | Or-Bach et al. | Aug 2004 | A1 |
20040229135 | Wang et al. | Nov 2004 | A1 |
20040243966 | Dellinger | Dec 2004 | A1 |
20050055828 | Wang et al. | Mar 2005 | A1 |
20050087806 | Hokazono | Apr 2005 | A1 |
20050093147 | Tu | May 2005 | A1 |
20050101112 | Rueckes et al. | May 2005 | A1 |
20050136340 | Baselmans et al. | Jun 2005 | A1 |
20050138598 | Kokubun | Jun 2005 | A1 |
20050185325 | Hur | Aug 2005 | A1 |
20050189614 | Ihme et al. | Sep 2005 | A1 |
20050196685 | Wang et al. | Sep 2005 | A1 |
20050224982 | Kemerling et al. | Oct 2005 | A1 |
20050229130 | Wu et al. | Oct 2005 | A1 |
20050251771 | Robles | Nov 2005 | A1 |
20050268256 | Tsai et al. | Dec 2005 | A1 |
20060063334 | Donze et al. | Mar 2006 | A1 |
20060070018 | Semmler | Mar 2006 | A1 |
20060084261 | Iwaki | Apr 2006 | A1 |
20060101370 | Cui et al. | May 2006 | A1 |
20060112355 | Pileggi et al. | May 2006 | A1 |
20060121715 | Chang et al. | Jun 2006 | A1 |
20060125024 | Ishigaki | Jun 2006 | A1 |
20060151810 | Ohshige | Jul 2006 | A1 |
20060158270 | Gibet et al. | Jul 2006 | A1 |
20060177744 | Bodendorf et al. | Aug 2006 | A1 |
20060181310 | Rhee | Aug 2006 | A1 |
20060197557 | Chung | Sep 2006 | A1 |
20060206854 | Barnes et al. | Sep 2006 | A1 |
20060223302 | Chang et al. | Oct 2006 | A1 |
20060248495 | Sezginer | Nov 2006 | A1 |
20070038973 | Li et al. | Feb 2007 | A1 |
20070074145 | Tanaka | Mar 2007 | A1 |
20070094634 | Seizginer et al. | Apr 2007 | A1 |
20070101305 | Smith et al. | May 2007 | A1 |
20070105023 | Zhou et al. | May 2007 | A1 |
20070106971 | Lien et al. | May 2007 | A1 |
20070113216 | Zhang | May 2007 | A1 |
20070196958 | Bhattacharya et al. | Aug 2007 | A1 |
20070209029 | Ivonin et al. | Sep 2007 | A1 |
20070210391 | Becker | Sep 2007 | A1 |
20070234252 | Visweswariah et al. | Oct 2007 | A1 |
20070256039 | White | Nov 2007 | A1 |
20070274140 | Joshi et al. | Nov 2007 | A1 |
20070290361 | Chen | Dec 2007 | A1 |
20070294652 | Bowen | Dec 2007 | A1 |
20080005712 | Charlebois et al. | Jan 2008 | A1 |
20080046846 | Chew et al. | Feb 2008 | A1 |
20080082952 | O'Brien | Apr 2008 | A1 |
20080086712 | Fujimoto | Apr 2008 | A1 |
20080097641 | Miyashita et al. | Apr 2008 | A1 |
20080098334 | Pileggi et al. | Apr 2008 | A1 |
20080099795 | Bernstein et al. | May 2008 | A1 |
20080127029 | Graur et al. | May 2008 | A1 |
20080134128 | Blatchford et al. | Jun 2008 | A1 |
20080144361 | Wong | Jun 2008 | A1 |
20080148216 | Chan et al. | Jun 2008 | A1 |
20080163141 | Scheffer et al. | Jul 2008 | A1 |
20080168406 | Rahmat et al. | Jul 2008 | A1 |
20080216207 | Tsai | Sep 2008 | A1 |
20080244494 | McCullen | Oct 2008 | A1 |
20080276105 | Hoberman et al. | Nov 2008 | A1 |
20080283910 | Dreeskornfeld et al. | Nov 2008 | A1 |
20080308848 | Inaba | Dec 2008 | A1 |
20090014811 | Becker | Jan 2009 | A1 |
20090024974 | Yamada | Jan 2009 | A1 |
20090031261 | Smith et al. | Jan 2009 | A1 |
20090032898 | Becker | Feb 2009 | A1 |
20090032967 | Becker | Feb 2009 | A1 |
20090037864 | Becker | Feb 2009 | A1 |
20090077524 | Nagamura | Mar 2009 | A1 |
20090101940 | Barrows et al. | Apr 2009 | A1 |
20090106714 | Culp et al. | Apr 2009 | A1 |
20090155990 | Yanagidaira et al. | Jun 2009 | A1 |
20090181314 | Shyu et al. | Jul 2009 | A1 |
20090187871 | Cork | Jul 2009 | A1 |
20090224408 | Fox | Sep 2009 | A1 |
20090228853 | Hong et al. | Sep 2009 | A1 |
20090280582 | Thijs et al. | Nov 2009 | A1 |
20090302372 | Chang et al. | Dec 2009 | A1 |
20100001321 | Becker | Jan 2010 | A1 |
20100006897 | Becker | Jan 2010 | A1 |
20100006898 | Becker | Jan 2010 | A1 |
20100006899 | Becker | Jan 2010 | A1 |
20100006900 | Becker | Jan 2010 | A1 |
20100006901 | Becker | Jan 2010 | A1 |
20100006902 | Becker | Jan 2010 | A1 |
20100006903 | Becker | Jan 2010 | A1 |
20100006947 | Becker | Jan 2010 | A1 |
20100006948 | Becker | Jan 2010 | A1 |
20100006950 | Becker | Jan 2010 | A1 |
20100006951 | Becker | Jan 2010 | A1 |
20100006986 | Becker | Jan 2010 | A1 |
20100011327 | Becker | Jan 2010 | A1 |
20100011328 | Becker | Jan 2010 | A1 |
20100011329 | Becker | Jan 2010 | A1 |
20100011330 | Becker | Jan 2010 | A1 |
20100011331 | Becker | Jan 2010 | A1 |
20100011332 | Becker | Jan 2010 | A1 |
20100011333 | Becker | Jan 2010 | A1 |
20100012981 | Becker | Jan 2010 | A1 |
20100012982 | Becker | Jan 2010 | A1 |
20100012983 | Becker | Jan 2010 | A1 |
20100012984 | Becker | Jan 2010 | A1 |
20100012985 | Becker | Jan 2010 | A1 |
20100012986 | Becker | Jan 2010 | A1 |
20100017766 | Becker | Jan 2010 | A1 |
20100017767 | Becker | Jan 2010 | A1 |
20100017768 | Becker | Jan 2010 | A1 |
20100017769 | Becker | Jan 2010 | A1 |
20100017770 | Becker | Jan 2010 | A1 |
20100017771 | Becker | Jan 2010 | A1 |
20100017772 | Becker | Jan 2010 | A1 |
20100019280 | Becker | Jan 2010 | A1 |
20100019281 | Becker | Jan 2010 | A1 |
20100019282 | Becker | Jan 2010 | A1 |
20100019283 | Becker | Jan 2010 | A1 |
20100019284 | Becker | Jan 2010 | A1 |
20100019285 | Becker | Jan 2010 | A1 |
20100019286 | Becker | Jan 2010 | A1 |
20100019287 | Becker | Jan 2010 | A1 |
20100019288 | Becker | Jan 2010 | A1 |
20100019308 | Chan et al. | Jan 2010 | A1 |
20100023906 | Becker | Jan 2010 | A1 |
20100023907 | Becker | Jan 2010 | A1 |
20100023908 | Becker | Jan 2010 | A1 |
20100023911 | Becker | Jan 2010 | A1 |
20100025731 | Becker | Feb 2010 | A1 |
20100025732 | Becker | Feb 2010 | A1 |
20100025733 | Becker | Feb 2010 | A1 |
20100025734 | Becker | Feb 2010 | A1 |
20100025735 | Becker | Feb 2010 | A1 |
20100025736 | Becker | Feb 2010 | A1 |
20100032721 | Becker | Feb 2010 | A1 |
20100032722 | Becker | Feb 2010 | A1 |
20100032723 | Becker | Feb 2010 | A1 |
20100032724 | Becker | Feb 2010 | A1 |
20100032726 | Becker | Feb 2010 | A1 |
20100037194 | Becker | Feb 2010 | A1 |
20100037195 | Becker | Feb 2010 | A1 |
20100096671 | Becker | Apr 2010 | A1 |
20100203689 | Bernstein et al. | Aug 2010 | A1 |
20100232212 | Anderson et al. | Sep 2010 | A1 |
20100264468 | Xu | Oct 2010 | A1 |
20100287518 | Becker | Nov 2010 | A1 |
20110108890 | Becker et al. | May 2011 | A1 |
20110108891 | Becker et al. | May 2011 | A1 |
20110154281 | Zach | Jun 2011 | A1 |
20110207298 | Anderson et al. | Aug 2011 | A1 |
20110260253 | Inaba | Oct 2011 | A1 |
20120012932 | Perng et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
1394858 | Mar 2004 | EP |
1670062 | Jun 2006 | EP |
2860920 | Apr 2005 | FR |
10-116911 | May 1998 | JP |
2002-258463 | Sep 2002 | JP |
2005-259913 | Sep 2005 | JP |
10-1999-0057943 | Jul 1999 | KR |
10-2000-0028830 | May 2000 | KR |
10-2005-0030347 | Mar 2005 | KR |
WO 2005104356 | Nov 2005 | WO |
WO 2006014849 | Feb 2006 | WO |
WO 2006052738 | May 2006 | WO |
WO 2007103587 | Sep 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090228853 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
61034927 | Mar 2008 | US | |
60963364 | Aug 2007 | US | |
60972394 | Sep 2007 | US | |
60781288 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11683402 | Mar 2007 | US |
Child | 12013342 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12212562 | Sep 2008 | US |
Child | 12399948 | US | |
Parent | 12013342 | Jan 2008 | US |
Child | 12212562 | US |