METHODS FOR DIAGNOSING AND TREATING FOLLICULAR LYMPHOMA

Information

  • Patent Application
  • 20180223368
  • Publication Number
    20180223368
  • Date Filed
    March 17, 2016
    8 years ago
  • Date Published
    August 09, 2018
    6 years ago
Abstract
The invention relates generally to methods for diagnosis and treatment of follicular lymphoma or diffuse large B cell lymphoma. Specifically, the invention relates to detecting a lysine (K)-specific methyltransferase 2D (KMT2D) alteration to diagnose or treat follicular lymphoma or diffuse large B cell lymphoma.
Description
FIELD OF THE INVENTION

The invention relates generally to methods for diagnosis and treatment of follicular lymphoma. Specifically, the invention relates to detecting the presence or absence of a lysine (K)-specific methyltransferase 2D (KMT2D) alteration to diagnose or treat follicular lymphoma.


BACKGROUND OF THE INVENTION

Lymphoma is the most common blood cancer. There are two main forms of lymphoma, which are Hodgkin lymphoma and non-Hodgkin lymphoma (NHL). The body has two main types of lymphocytes that can develop into lymphomas. They are: B-lymphocytes (B-cells) and T-lymphocytes (T-cells). Follicular lymphoma (FL), a B-cell lymphoma, is the most common form of B-cell lymphoma. It is a slow-growing lymphoma. It is also called an “indolent” lymphoma for its slow nature, in terms of its behavior and how it looks under the microscope. Follicular lymphoma is subtle, with minor warning signs that often go unnoticed for a long time. Often, people with follicular lymphoma have no obvious symptoms of the disease at diagnosis. Follicular lymphoma remains incurable despite recent advances in lymphoma therapy. Follicular lymphoma arises from germinal center B-cells and the disease is typically triggered by the translocation t(14; 18) that activates the anti-apoptotic BCL2 oncogene. However, the t(14; 18) translocation is also detectable in many healthy adults who never develop the disease. This indicates that additional genetic and epigenetic events contribute to lymphomagenesis. Indeed, recent genome sequencing studies have catalogued many recurrent mutations in human B-cell lymphoma.


Accordingly, there exists a need to understand the genetics and molecular mechanisms of follicular lymphoma, and thereby develop improved methods for diagnosis and treatment.


SUMMARY OF THE INVENTION

In one embodiment, the invention provides a method for diagnosing a follicular lymphoma, in a subject, the method comprising the steps of: obtaining a biological sample from said subject; and testing said biological sample to detect the presence or absence of a lysine (K)-specific methyltransferase 2D (KMT2D) alteration in said biological sample, wherein the presence of said KMT2D alteration indicates a diagnosis of said follicular lymphoma in said subject. In one embodiment, the invention provides a method for diagnosing responsiveness of a follicular lymphoma in a subject to therapy, the method comprising the steps of: obtaining a biological sample from said subject; and testing said biological sample to detect the presence or absence of a lysine (K)-specific methyltransferase 2D (KMT2D) alteration in said biological sample, wherein the presence of said KMT2D alteration indicates a poor responsiveness or contraindication of said follicular lymphoma in said subject of the therapy. In an exemplary embodiment, said KMT2D alteration is a mutation in KMT2D. In another exemplary embodiment, the response to therapy is said subject's response or responsiveness to an immunotherapy, for example, said subject's tumor response to immunotherapy. In one embodiment the therapy is B cell therapy. In one embodiment, a patient with a KMT2D alteration may not be effectively treated with anti-CD40 therapy. In another embodiment, anti-CD40 therapy is contraindicated in a patient found to have a KMT2D alteration. In another embodiment, methods for treating follicular lymphoma include a determination of KMT2D alteration and guiding therapy away from anti-CD40 in the presence of an altered KMT2D. The use or non-use of anti-CD40 therapy may be in conjunction with the use or non-use of anti-IgM therapy.


In another embodiment, the invention provides a method of determining a treatment outcome for treating a follicular lymphoma, in a subject, the method comprising the steps of: obtaining a biological sample from said subject; and testing said biological sample to detect the presence or absence of a KMT2D alteration in said biological sample, wherein the presence of said KMT2D alteration indicates a response to a therapy, thereby determining said treatment outcome for treating said follicular lymphoma in said subject. In one embodiment, a patient with a KMT2D alteration may not be effectively treated with anti-CD40 therapy. In another embodiment, anti-CD40 therapy is contraindicated in a patient found to have a KMT2D alteration. In another embodiment, methods for treating follicular lymphoma include a determination of KMT2D alteration and guiding therapy away from anti-CD40 in the presence of an altered KMT2D. The use or non-use of anti-CD40 therapy may be in conjunction with the use or non-use of anti-IgM therapy.


In another embodiment, the invention provides a method for treating a follicular lymphoma, in a subject, the method comprising: (a) obtaining a biological sample from said subject; and testing said biological sample to detect the presence or absence of a KMT2D alteration in said biological sample, wherein the presence of said KMT2D alteration indicates a response to a therapy; (b) based on the determination of said response to said therapy, administering an effective amount of a therapeutic agent to treat said follicular lymphoma, thereby treating said follicular lymphoma in said subject. In one embodiment, a patient with a KMT2D alteration may not be effectively treated with anti-CD40 therapy. In another embodiment, anti-CD40 therapy is contraindicated in a patient found to have a KMT2D alteration. In another embodiment, methods for treating follicular lymphoma include a determination of KMT2D alteration and guiding therapy away from anti-CD40 in the presence of an altered KMT2D. The use or non-use of anti-CD40 therapy may be in conjunction with the use or non-use of anti-IgM therapy.


In another embodiment, the invention provides a method for identifying a molecule that increases sensitivity of a follicular lymphoma in a subject to immunotherapy, the method comprising: providing a plurality of molecules; and screening said plurality of molecules to identify a molecule that effectively enhances the level of a KMT2D, thereby identifying said molecule that effectively increases sensitivity of said follicular lymphoma in said subject to immunotherapy.


In another embodiment, the invention provides a method for treating a follicular lymphoma in a subject, the method comprising: administering to said subject a molecule that effectively enhances the level of a KMT2D in said subject, in combination with anti-CD40 antibodies, thereby treating said follicular lymphoma in said subject.


In any of the foregoing embodiments, therapy is B cell therapy, such as but not limited to anti-CD40 antibody, anti-CD20 antibody or anti-IgM therapy, or any combination thereof.


Other features and advantages of the present invention will become apparent from the following detailed description examples and figures. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the invention are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.


This application claims priority under 35 USC 119(e) to U.S. patent application Ser. No. 62/135,040, filed Mar. 18, 2015, and to U.S. patent application Ser. No. 62/201,390, filed Aug. 5, 2015, both of which are incorporated herein by reference in their entireties.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1G show that Kmt2d deficiency accelerates B cell lymphoma development in mice. (FIG. 1A) Diagram of the adoptive transfer model of FL using the VavP-Bcl2 transgenic mouse and retroviral transduction of HPCs followed by reconstitution into lethally irradiated, syngeneic, female mice. WT, wild type. MLS-shKmt2d, MSCV-GFP encoding shRNA against Kmt2d (FIG. 1B) Kaplan-Meier curve of C57BL/6 mice transplanted with VavP-Bcl2 HPCs transduced with MSCV-GFP retrovirus (black, n=37), MSCV-GFP encoding shRNAs against Kmt2d (red, n=30) or MSCV-GFP encoding c-Myc (gray, n=16). Statistical significance of survival difference was determined by the log-rank test: shKmt2d versus vector, P=0.03; c-Myc versus vector, P<0.001). (FIG. 1C) Mice were killed 5 months after injection and splenic lymphoma cells of mice that had been injected with VavP-Bcl2 HPCs (transduced with retrovirus encoding either GFP only or coexpressing one of two independent Kmt2d-specific shRNAs (shKmt2d#1 and shKmt2d#2) and GFP) were compared by flow cytometry to the same VavP-Bcl2 HPCs before injection into mice. (FIG. 1D) Recipient mice were killed 5 months after HPC injection and Kmt2d mRNA levels from MACS-sorted B220+ lymphoma B cells were quantified by qRT-PCR (vector, n=4; shKmt2d #1, n=5). Values correspond to average ±s.d. (FIG. 1E) Spleen weights (normalized to body weight) of the indicated recipient mice that were killed 5 months after HPC injection (vector, n=9; shKmt2d#1, n=11; c-Myc n=5). Representative images of spleens are shown on the right. Scale bars represent 0.5 cm. Values correspond to average ±s.d. Statistical significance in d and e was determined by the two-tailed Student's t-test, *P<0.05, ***P<0.001. (FIG. 1F) Upon sacrifice, tissue was extracted from recipient mice and stained with H&E and antibodies specific for B220, Ki67, PNA or TUNEL. Scale bars, 400 μm. (FIG. 1G) Representative images of flow cytometry analysis for the cellular composition of whole spleens from recipient mice that were killed 5 months after injection with HPCs. Four tumors of each genotype were analyzed.



FIG. 2 shows that Kmt2d deficiency affects physiological B cell behavior. (a) Schematic diagram of SRBC immunization study (SRBC, sheep red blood cell). (b) Representative spleen sections harvested 16 weeks after SRBC immunization from WT C57BL/6 females transplanted with HPCs expressing either MSCV-GFP (n=3) or MSCV-GFP-shKmt2d#1 (n=3) and stained with H&E and the indicated markers. Red asterisks indicate PNA+ cells. Images correspond to 10× magnification. (c) Quantification of Ki67 staining from FIG. 2b. Values represent mean±s.d. (n=3 females per genotype; two-tailed Student's t-test; ***P<0.001). (d,e) Representative plots (d) and quantitation (e) of flow cytometry analysis of splenocytes harvested from Kmt2d+/+ (WT, n=4, 2 males and 2 females; 1.5-2 months old) or Kmt2d−/− mice (n=4, 3 males and 1 female; 1.5-2 months old) 6 d after NP-CGG immunization. Cells were first gated on live (7ADD) B220+ lymphocytes to determine percentage of GC B cells (CD95+GL7+), transitional B cells (TR, CD21CD23), follicular zone B cells (FO, CD23+CD21lo), marginal zone B cells (MZ, CD23loCD21+) and intermediate plasma cells (IPC, B220+CD138+). Plasma cells (PC, B220 CD138+) cells were gated on live cells (7ADD). Values represent mean±s.d. Two-tailed Student's t-test was used to determine statistical significance; *P<0.05, **P<0.01. The antibodies used are described in Online Methods. Values represent mean±s.d. (n=4 mice per genotype; WT: 2 males and 2 females, Kmt2d−/−: 3 males and 1 female; 1.5-2 months old). Two-tailed Student's t-test was used to determine statistical significance (*P<0.05, **P <0.01). Antibodies used are described in Online Methods. (f) NP-specific IgM and IgG1 serum levels from WT or Kmt2d−/− mice before (dashed lines) and 6 d after NP-CGG immunization, as determined by ELISA. The bars show mean±s.d. (n=4 mice per genotype; same as in d,e). Two-tailed Student's t-test was used to determine statistical significance; *P<0.05. Data correspond to one representative assay from a total of two independent assays. (g) Schematic diagram of the B cell differentiation assay (see also Online Methods). (h) Flow cytometry analysis of IgG1 class switch recombination in B cells from WT and Kmt2d−/− mice 96 h post-stimulation in vitro with LPS, IL-4 and CD180-specific antibody. (i) Quantification of B220+ IgG1+ cells for two independent experiments. Values represent mean±s.d. (n=5 mice per genotype, 2 females and 3 males, 2.5-5 months old). Two-tailed Student's t-test was used to determine statistical significance; ***P<0.001.



FIG. 3 shows the consequences of KMT2D mutations in human FL and DLBCL. (a) Percentage of FL (n=104) specimens carrying KMT2D mutations according to the type of mutation. Exome refers to exome sequencing. Targeted refers to targeted sequencing. See Online Methods for further details. (b) Schematic diagram of the KMT2D mutations in FL specimens. PHD, pleckstrin homology domain; FYRN, phenylalanine- and tyrosine-rich domain N-terminal; FYRC, phenylalanine- and tyrosine-rich domain C-terminal; SET, Su(var)3-9, Enhancer-of-zeste and Trithorax domain. (c,d) Kaplan-Meier curves representing overall (c) and progression-free survival (d) of individuals with DLBCL, classified into three groups according to the KMT2D mutation status. Significance was estimated with the log-rank test. (e) Supervised analysis of the 100 most differentially expressed genes between human FL specimens that are WT (KMT2Dwt; n=12) and mutant (KMT2Dmut; n=7) for KMT2D. Columns represent individual FL specimens, rows correspond to the different genes indicated, with the expression value z-scores of rpkm (reads per kilobase per million mapped reads; scaled by row) as shown in the color bar. The two columns on the right represent a summary of all WT and mutant FL specimens, respectively. (f) Supervised analysis, as in e, comparing the 100 most differentially expressed mRNAs in MACS-purified mouse B220+ B cells from VavP-Bcl2-vector (n=4) and VavP-Bcl2-shKmt2d mouse lymphomas (n=5). (g) GSEA of 333 genes significantly downregulated in KMT2Dmut FLs (p-val<0.05) as compared to genes ranked log2-fold change in VavP-Bcl2-shKmt2d versus VavP-Bcl2-vector B220+ lymphoma B cells. (h) GSEA analysis as in g of downregulated genes (n=820) in VavP-Bcl2-shKmt2d versus VavP-Bcl2-vector B220+ B cell lymphomas (Padj<0.1) as compared to genes ranked log2-fold change in KMT2Dwt FLs versus KMT2Dmut FLs. NES, normalized enrichment score; FDR, false discovery rate. (i) Pathway analysis of downregulated genes (n=347) identified in the GSEA leading-edge analyses from c,d and compared to signatures from the Lymphochip database and MysigDB. The background included around 24,000 genes from Ref-seq gene annotation. Statistical significance was determined by hypergeometric tests and is shown in the color key. The red color indicates (in log10) the over-represented P values and the blue shows under-representation.



FIG. 4 shows the epigenetic effects of KMT2D on target genes in mouse lymphomas. (a) Average H3K4me1-H3K4me2 read density plot at promoters and enhancers in MACS-purified B220+ B cells from VavP-Bcl2-vector and VavP-Bcl2-shKmt2d lymphomas identified by ChIP-seq. (b) Proportion of H3K4me1 and H3K4me2 peaks by location near promoters or enhancers based on ChIP-seq from purified mouse B220+ cells from VavP-Bcl2-vector and VavP-Bcl2-shKmt2d lymphomas. The proportion of affected promoters and enhancers is shown for the indicated thresholds (***P<0.001 by chi-squared test). (c,d) GSEA of genes with a ≥25. % reduction in H3K4me1 and H3K4me2 marks at enhancers (P<0.05) in mouse B220+ cells from VavP-Bcl2-vector and VavP-Bcl2-shKmt2d lymphomas, as compared to ranked gene expression changes (log2-fold) in B220+ mouse lymphomas (c) or in human FL specimens with WT and mutant KMT2D (d); NES, normalized enrichment score. (e). Pathway analysis of downregulated genes (n=322) identified in the GSEA leading-edge analyses in b,c compared to genes in lymphoid signature database from the Staudt Lab (http://lymphochip.nih.gov/signaturedb/) and MysigDB. The background included around 24,000 genes from Ref-seq gene annotation. Statistical significance was determined by hypergeometric test and shown in the color key. The red color indicates (in log10) the over-represented P values and the blue shows under-representation. (f). Normalized UCSC (University of California Santa Cruz) read-density tracks of H3K4me1-H3K4me2 ChIP-seq peaks from B220+ mouse lymphomas with sh-Kmt2d (red) or vector (black).



FIG. 5 depicts the identification of KMT2D target genes in human lymphoma cells. (a) Proportion of H3K4me1-H3K4me2 peaks near promoters or enhancers by ChIP-seq in OCI-LY1 (containing KMT2Dmut) versus OCI-LY7 (containing KMT2Dwt) cells for the indicated thresholds (***P<0.001 by chi-squared test). (b) GSEA of genes with a ≥5.0% reduction in H3K4me1-H3K4me2 read density in OCI-LY1 versus OCI-LY7 cell lines, as compared to genes ranked by loge-fold change in FL specimens with WT versus mutant KMT2D. (c) Genomic distribution of KMT2D peaks located at transcription start sites (TSS), inside gene bodies (intragenic) or upstream or downstream of the closest gene in OCI-LY7 cells. (d) GSEA of genes with KMT2D binding in OCI-LY7 cells and >50% reduction in the H3K4me1-H3K4me2 mark in OCI-LY1 (KMT2Dmut) versus OCI-LY7 (KMT2DWt), as compared to genes ranked by log2-fold change in human FL specimens with WT and mutant KMT2D. (e) Pathway analysis of downregulated genes in FL subjects (P<0.05 by Wald test) with KMT2D binding and >50% reduction in the H3K4me1-H3K4me2 mark in OCI-LY1 versus OCI-LY7 cells (n=1,248), as compared to those in the lymphoid signature database from the Staudt Lab (http://lymphochip.nih.gov/signaturedb/) and MysigDB. The background included around 24,000 genes from Ref-seq gene annotation. Statistical signficance was determined by hypergeometric test and is shown in the color key. The red color indicates (in log10) the over-represented P values and the blue shows under-representation. (f) Normalized UCSC read-density tracks of KMT2D ChIP-seq peaks in OCI-LY7 (black) and OCI-LY1 (red) cells.



FIG. 6 shows that KMT2D inactivation affects growth and survival pathways in lymphoma cells. (a) mRNA levels, as measured by qRT-PCR, in the isogenic OCI-LY7 pairs expressing either a vector control or an shRNA against KMT2D. Values correspond to the average of three replicates ±s.d.; two-tailed Student's t-test was used to determine statistical significance; *P<0.05, **P<0.01, ***P<0.001. (b) qChIP analysis for H3K4me1-H3K4me2 occupancy loss in enhancer regions of the specified KMT2D target genes after KMT2D knockdown in OCI-LY7 cells. A genomic region (TNS4) with no KMT2D binding and H3K4me1-H3K4me2 was used as a negative control. Values correspond to mean percentage of input enrichment ±s.d. of triplicate qPCR reactions of a single replicate. Two-tailed Student's t-test was used to determine statistical significance; ***P<0.001. Data correspond to one representative assay from a total of 2 or 3 independent assays. (c) Immunoblot of the indicated proteins in vector- or shKMT2D-expressing OCI-LY7 cells upon 48 h of IL-21 stimulation. Actin was used as a loading control. (d) TNFAIP3 mRNA levels in OCI-LY7 and SU-DHL4 cells transduced with vector or shKMT2D upon 48 h of stimulation with antibodies to CD40 and IgM. Values correspond to the average of three experimental replicates ±s.d., and statistical significance was determined by the two-tailed Student's t-test; **P<0.01, *P<0.001. (e) Flow cytometric analysis of cell death induced by treatment with antibodies to CD40 and IgM in OCI-LY7 lymphoma cells that were transduced with a lentivirus containing vector alone or shKMT2D. (f) Proliferation of OCI-LY7 (KMT2DWt) and OCI-LY1 (KMT2Dmut) lymphoma cell lines upon stimulation with antibodies to CD40 alone or to both CD40 and IgM. Values correspond to the average of three experimental replicates relative to day 0±s.d. Two-tailed Student's t-test was used to determine statistical significance; *P<0.05, **P<0.01. (g,h) Viability assays in lymphoma cell lines upon stimulation with CD40-specific antibody for 96 h. Representative plots (g) and quantification (h), as analyzed by flow cytometry using annexin-V and DAPI exclusion. Bars correspond to the average of three experimental replicates ±s.d. Two-tailed Student's t-test was used to determine statistical significance. *P<0.05, **P<0.01. (i) TNFAPI3 (A20) (left) and NFKBIZ (right) mRNA levels in WT KMT2D-containing OCI-LY7, HT and SU-DHL4 and mutant KMT2D-containing OCI-LY1 and NU-DUL1 lymphoma cell lines upon stimulation with antibodies to CD40 alone or to both CD40 and IgM (24 h). Bars represent the mean of three biological replicates (two biological replicates for NU-DUL1 treated with antibodies to CD40+IgM; white bar)±s.d. Two-tailed Student's t-test was used to determine statistical significance; *P<0.05, **P<0.01. Red labels represent KMT2D-mutant cell lines and black labels represent cell lines with WT KMT2D.



FIG. 7 shows thatKmt2d deficiency accelerates B cell lymphoma development in mice. (a). Relative Kmt2d mRNA levels by qRT-PCR in FL512 mouse lymphoma cells transduced with vector or different shRNAs against KMT2D (#1 and #2). Bars represent mean of 2 biological replicates, error bars indicate standard deviation; **p<0.01, ***p<0.001 by two-tailed t-test. (b). Quantification of flow cytometry data showed in FIG. 1f. Values represent mean±SD (n=4 mice per genotype). Bars represent mean±SD (n=4 tumors per genotype). Two-tailed Student's t-test was used to determine statistical significance. No statistical significance was found. (c). High power image (100×) of H&E stained VavPBc12-vector and VavPBc12-shKmt2d lymphoma cells. (d). Representative histologic sections stained with H&E and immunohistochemical detection of B220+ lymphoma cells in the liver (left) and lung (right) of diseased mice with control (vector) and Kmt2d shRNA. Scale bars are 100 μm. (e). Tumor clonality analysis on VavPBc12/vector and VavPBcl2/sh-Kmt2d tumors, each lane corresponds to one tumor. PCR analysis of Vλ1-Jλ light chain rearrangements was performed on cDNA of B220+ lymphoma cells. (f). Table summarizing the results of the analysis of SHM in DNA from VavPBcl2/vector and VavPBcl2/sh-Kmt2d lymphomas. (g). Kaplan-Meier analysis of disease free survival of Kmt2d+/+ (Kmt2d+/+ CD19-Cre-=8, 3 females and 5 males), Kmt2d−/− (Kmt2df/f CD19-Cre+, n=43, 22 females and 21 males) (p value Kmt2d+/+ vs Kmt2d−/−=0.0158); AID-Tg (Kmt2d+/+; IgκAID-Tg n=14, 6 females and 8 males) and Kmt2d−/−; AID-Tg (Kmt2df/f; CD19-Cre+; AID-Tg n=7, 2 females and 5 males) cohorts. (p value AID-Tg vs Kmt2d−/−; AID-Tg<0.0001). (h). Representative histologic sections stained with H&E and immunohistochemical detection of B220, CD3, Ki67, PNA and TUNEL of Kmt2d−/− tumors. Asterisk represents red pulp infiltration by monotonous atypical B lymphocytes. (i). Representative FCM analysis of Kmt2d−/− and Kmt2d−/−; AID-Tg tumors, using antibodies against B220, IgM, IgD, IgL (Igκ+Igλ), CD19 and CD138 as indicated (see also Table 2). (j). Representative histologic sections stained with H&E and immunohistochemical detection of PNA, B220, Igκ, CD3, and Ki67, in Kmt2d−/−; AID-Tg tumors. (k). Schema of the IgH and Igκ loci showing restriction sites and probes used. (l). Southern blots showing clonal rearrangements in the JH (left) and Jκ (right) loci for the indicated tumors. (m). Southern blot analysis for detection of rearrangements in the Sμ region of DNA from indicated tumors, probes and restriction enzyme used are indicated at the bottom right of each panel. Position of the germ-line bands is shown. DNA from MEFS was used as control. Dotted lines represent the AID-induced DNA damage in switch regions during CSR. (n). Table summarizing the results of the analysis of SHM in DNA from Kmt2d−/− and Kmt2d−/−; AID-Tg tumors. The diagram on the top shows the region of the IgH locus used for PCR amplification and sequencing. Asterisks represent the mutations caused by AID in VDJ region during SHM.



FIG. 8 shows that KMT2D deficiency affects physiological B cell behavior (a). RNAseq analysis of KMT2D gene expression in different mature B cell populations from human tonsils. Each red dot represents a separate human tonsil and the mean expression is represented in TPM (transcripts per million). NB=Naïve B cells, CB=centroblasts, CC=centrocytes, TPC=Tonsil Plasma Cells, BMPC=Bone Marrow Plasma Cells, MEM=Memory cells. (b). Characterization of B cell populations in Kmt2d−/− mice. Representative FCM analysis on wt and Kmt2d−/− spleens to determine different B cell populations using antibodies against B220, IgM, CD5, CD23 and CD21 as indicated. TR: transitional, FO: follicular, MZ: marginal zone. (c). Table summarizing the total number of B cells and percentages for each B cell population relative to total number of live B220+ cells (7ADD−, B220+) in wt and Kmt2d−/− spleens. (d). Characterization of B cell populations in Kmt2d−/− mice. Representative FCM analysis on wt and Kmt2d−/− spleens (same mice as in c,d) to determine different B cell populations using antibodies against B220, IgM, CD138, CD95 and GL7 as indicated, GC: Germinal center cells. (e). Table summarizing the total number of B cells and percentages for each B cell population relative to total number of live B220+ cells (7ADD−, B220+, except plasma cells) in wt and Kmt2d−/− spleens. The percentage of plasma cells was calculated relative to total number of live cells (7ADD−). Values in (c) and (e) represent mean±SD (3 wt (2 females and 1 male) and 4 females Kmt2d−/− were used; 4-5.5 months old). Two-tailed Student's t-test was used to determine statistical significance and was calculated using each population percentage.



FIG. 9 depicts the consequences of KMT2D mutations in human FL and DLBCL. (a). Table summarizing KMT2D mutations found in FL patients and the grade of the disease. Fisher's exact tests were performed in order to determine correlation between mutation type and grade. Overall, no significant correlation was found. (b). Percentage of cases with DLBCL carrying KMT2D mutations by type of mutation and DLBCL subtype (ABC: activated B cell; n=107; GCB: germinal center B cell; n=193). P value for nonsense mutations in GC versus ABC type=0.038 (*) by Fisher Exact test. (c) and (d) Kaplan-Meier curves representing disease specific survival (DSS) (c), and time to progression (TTP) (d) in years from DLBCL cases for three groups according to KMT2D mutation status (wt, n=215; nonsense mutation, n=37; missense mutation, n=43). Significance was estimated with the log-rank test. (e). Percentage of up or down-regulated genes in the top 100/200/350/500 differentially expressed genes in KMT2Dmut FL patients vs. KMT2Dwt FL patients (ranked by p-val). (f). Percentage in top 100/200/350/500/1073 differentially expressed genes and corresponding minimum p-val in KMT2Dmut FL patients vs. KMT2Dwt FL patients (ranked by p-val). (g). Percentage of up or down-regulated genes in top 100/200/350/500 differentially expressed genes in VavPBc12-shKmt2d vs. VavPBc12-vector B220+ lymphoma B cells (ranked by p-val). (h). Percentage of up or down-regulated genes in top 100/200/350/500/3210 differentially expressed genes and corresponding minimum p-val in VavPBc12-shKmt2d vs. VavPBc12-vector B220+ lymphoma B cells. (i). GSEA of differentially expressed genes ranked by log 2 fold change in KMT2Dmut FL samples versus KMT2Dwt FL samples compared to Plasma cell differentiation signature gene set. (j). GSEA of differentially expressed genes ranked by log 2 fold change in VavPBcl2/sh-Kmt2d vs. VavPBcl2/vector B220+ lymphoma B cells compared to Plasma cell differentiation signature gene set. NES, normalized enrichment score. FDR, false discovery rate.



FIG. 10 shows the epigenetic effects of KMT2D on target genes in mouse lymphomas. (a). Immunoblot of total lysates of B220+ lymphoma cells isolated from VavPbcl2-vector and VavPbcl2-shKmt2d tumors. (b) Quantification of global H3K4me1, H3K4me2 and H3K4me3 by ImageJ software. (c). Immunoblot of histone lysates of B220+ cells isolated from wild type and Kmt2d−/− mice. (d) Quantification of global H3K4me1, H3K4me2 and H3K4me3 by ImageJ software. (e) and (f). GSEA analysis of genes with a >25% reduction in H3K4me1/2 read density at promoters (p-value<0.05) in Kmt2d knockdown tumors compared to ranked log 2 fold change levels identified by RNA-seq in Kmt2d B220 knockdown tumors or KMT2Dmut FL patients. NES, normalized enrichment score. FDR, false discovery rate. (g). Pathway analysis of down-regulated genes with a >25% reduction in H3K4 me1/me2 read density at promoters (p<0.05) identified by GSEA leading edge analysis (n=321) in sh-Kmt2d B220+ tumors and KMT2Dmut FL patients compared to lymphoid signature database from the Staudt Lab (http://lymphochip.nih.gov/signaturedb/) and MysigDB. The background included around 24,000 genes from Refseq gene annotation. Statistical signficance was determined by hypergeometric tests and shown in the color key. The red color indicates (in log 10) the over-represented p-values and the blue shows under-representation (h). Normalized UCSC read density tracks of H3K4me1/me2 ChIP-seq peaks from MACS-sorted B220 positive lymphoma B cells in VavPBc12-vector (vector) and VavPBc12-shKmt2d (sh-Kmt2d) lymphomas for the indicated genes.



FIG. 11 depicts the identification of KMT2D target genes in human lymphoma cells. (a). Immunoblot of histone lysates from KMT2D wild type (HT, DOHH2, SU-DHL4) and KMT2D mutant (Toledo, Karpas422) DLBCL cell lines. (b). Quantification of global H3K4me1, H3K4me2 and H3K4me3 by ImageJ software. (c). Quantitative Mass spectrometry analysis of mono-, di-, tri-methylated histone H3K4. Represented as the percentage of global H3K4 post-translational modification (% PTM) in KMT2D wt (black) and KMT2D nonsense mutant (red) DLBCL cell lines (average of two biological replicates). (d). Normalized UCSC read density tracks of KMT2D ChIP-seq peaks in OCI-LY7 (black) and OCI-LY1 (red) and H3K4me1/2 ChIP-seq peaks in OCI-LY7 (black) and OCI-LY1 (red) for indicated genes.



FIG. 12 shows that KMT2D inactivation affects growth and survival pathways in lymphoma cells (a) and (b). Proliferation of isogenic OCI-LY7 (a) and SU-DHL4 (b) lymphoma cells transduced with vector control or an shRNA against KMT2D. Values represent mean of 3 replicates, error bars indicate standard deviation; *p<0.05, **p<0.01, ***p<0.001 by two-tailed t-test. (c). Relative mRNA levels by qRT-PCR of KMT2D targets in MACS-sorted B220+ lymphoma B cells from VavPBc12-vector (vector) and VavPBc12-shKmt2d (sh-Kmt2d) lymphomas. Bars represent mean of 4-5 biological replicates ±s.d; Two-tailed Student's t-test was used to determine statistical significance: *p<0.05, **p<0.01, or number indicating p-value. (d) and (e). Relative mRNA levels by qRT-PCR of KMT2D targets in isogenic OCI-LY7 (d) and SU-DHL4 (e) lymphoma cells transduced with vector or different shRNAs against KMT2D. Bars represent mean of 3-6 biological replicates, error bars indicate standard deviation; *p<0.05, **p<0.01, ***p<0.001 by two-tailed t-test. (f). Flow cytometry analysis of CD40 receptor expression (CD40r) in the indicated KMT2D wild type and mutant cell lines. Red line represents isotype control, blue line represents anti-CD40r. (g). Growth curves for indicated cell lines treated with anti-CD40 or anti-CD40/anti-IgM for 4 days. Data correspond to one representative assay from a total of 3 independent assays. (h). Gene expression analysis in KMT2D wild type or mutant lymphoma cell lines upon anti-CD40 or anti-CD40/IgM treatment for 24 h. Bars represent mean of 3 biological replicates (2 biological replicates for NU-DUL1 anti-CD40+IgM)±s.d. Two-tailed Student's t-test was used to determine statistical significance *p<0.05, **p<0.01, ***p<0.001 or number indicating p-value. Red labels represent KMT2Dmut cell lines and black labels represent KMT2Dwt cell lines.



FIG. 13 is a schematic diagram indicating KMT2D target genes in relation to the affected signaling pathways. KMT2D targets identified by direct ChIP binding and verified by knockdown are marked by a star. These targets are both positive and negative regulators of IL21, BCR, and CD40 signaling pathways.





DETAILED DESCRIPTION OF THE INVENTION

The invention relates generally to methods for diagnosis and treatment of follicular lymphoma. Specifically, the invention relates to detecting the presence of, or the normal or an altered presence, activity, or expression of lysine (K)-specific methyltransferase 2D (KMT2D) to diagnose or treat follicular lymphoma.


The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. In one embodiment, KMT2D is shown to function as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. In one embodiment, KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a specific set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. In one embodiment, KMT2D mutations promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways.


Thus, the inventors of the instant application have surprisingly and unexpectedly found that KMT2D is a bona fide tumor suppressor and KMT2D deficiency promotes follicular lymphoma development in vivo. In addition, the inventors have surprisingly and unexpectedly found that KMT2D mutations contribute to lymphoma development. Furthermore, the inventors found that the presence of a KMT2D alteration adversely affects the normally tumor suppressive effects of anti-CD40, thereby reducing the effectiveness of anti-CD40 therapies when an alteration in KMT2D is present or potentially stimulating disease progression thereby. This finding is useful to help determine the response or responsiveness of a patient's tumor to a particular therapy, or lack thereof, thereby guiding the optimal course of therapy for a patient with follicular lymphoma, in particular whether antiCD40 or related therapy may be effective, or should be avoided because patients may do worse with such treatment. Thus, in one embodiment, a patient with a KMT2D alteration may not be effectively treated with anti-CD40 therapy. In another embodiment, anti-CD40 therapy is contraindicated in a patient found to have a KMT2D alteration. In another embodiment, methods for treating follicular lymphoma include a determination of KMT2D alteration and guiding therapy away from anti-CD40 in the presence of an altered KMT2D. In any of the foregoing embodiments, the guidance for the use or non-use of anti-CD40 therapy may be in conjunction with the respective use or non-use of anti-IgM therapy.


The results described herein establish the tumor suppressor function of KMT2D in germinal center B cells. The H3K4 methyltransferase KMT2D is one of the most frequently mutated genes in DLBCL and FL3,4, and we show that it controls the expression of multiple key regulators of the CD40, TLR and BCR signaling pathways (FIG. 13). Bona fide KMT2D target genes include lymphoid tumor suppressor genes such as TNFAIP3, SOCS3, SGK1, TRAF3, TNFRSF14 and ARID1A15,16,21 KMT2D also contributes to the normal B cell response, and KMT2D-deficient mice show an abnormal persistence of germinal centers, a defect in class switch recombination and reduced antibody production reminiscent of the reported immune defect seen in the heritable Kabuki syndrome, which has been most often linked to KMT2D mutations. Collectively these data show that KMT2D somatic mutations may drive GC expansion due to enhanced proliferation and impaired terminal differentiation of B cells and to loss of H3K4 mono- and dimethylation at key B cell enhancer regions and some promoters. Our results are consistent with genomic evidence indicating that KMT2D mutations are early lesions in GC lymphomas3,4. Notably, even in the absence of Bcl2 activation, KMT2D deficiency is sufficient to trigger B cell malignancy in mice. Clinically, KMT2D mutations are not associated with the outcome of R-CHOP chemotherapy in DLBCL. However, it is not yet known how KMT2D status would affect the responses of lymphomas to targeted signal inhibitors that are entering the clinic. In this regard, our results indicate the deregulation of multiple immune signaling pathways in KMT2D-mutant lymphoma cells and the altered responses to CD40 and BCR activation. Recently, histone deacetylase (HDAC) inhibitors were shown to ameliorate the developmental defects in a model of Kabuki syndrome22. Similarly, inhibition of H3K4 demethylase activities, such as those of JARID1 and LSD1, may be able to reverse some of the epigenetic changes seen in KMT2D-deficient lymphomas23.


Therapy or immunotherapy in one embodiment is B cell therapy. Therapy or immunotherapy in another embodiment is anti-CD40 antibody, anti-CD20 antibody or anti-IgM therapy, or any combination thereof.


The terms “KMT2D alteration,” as used herein, refer to any genetic change in KMT2D structure or its molecular expression. In one aspect, KMT2D alteration refers to a mutation in KMT2D. In another aspect, KMT2D alteration refers to a change in the expression level of KMT2D mRNA or KMT2D protein, or activity of the KMT2D protein, relative to a predetermined level (i.e., control level) of a healthy subject. Activity of the KMT2D protein may be enzymatic activity or histone binding activity, by KMT2D directly or by proteins associated with or complexed therewith. Activity may also include regulation of gene transcription activity.


The terms “mutation,” as used herein, refer to the presence of a mutation in KMT2D. In one aspect, the mutation refers to a change in the KMT2D gene with respect to the standard wild-type sequence. Mutations can be inherited, or they can occur in one or more cells during the lifespan of an individual. In some embodiments, the KMT2D mutation is homozygous. In other embodiments, the KMT2D mutation is heterozygous. The KMT2D mutation can be any type of mutation, for example, but not limited to, a non-sense mutation, a missense mutation, an insertion mutation, a deletion mutation, a replacement mutation, a point mutation, or a combination thereof.


As used herein, a “biological sample” is a sample that contains cells or cellular material. Non-limiting examples of biological samples include urine, blood, plasma, serum, cerebrospinal fluid, pleural fluid, sputum, peritoneal fluid, bladder washings, secretions (e.g., breast secretion), oral washings, tissue samples, tumor samples, touch preps, or fine-needle aspirates. A biological sample can be obtained using any suitable method. For example, a blood sample (e.g., a peripheral blood sample) can be obtained from a subject using conventional phlebotomy procedures. Similarly, plasma and serum can be obtained from a blood sample using standard methods.


KMT2D protein of the invention may comprise the amino acid sequence set forth in SEQ ID NO.: 1 (GenBank Accession No.: AAC51734.1). In one example, KMT2D protein comprises a homolog, a variant, an isomer, or a functional fragment of SEQ ID NO: 1. In another example, the amino acid sequence is approximately 60%, 70%, 80%, 85%, 90%, 95%, 98%, or 99% identical to SEQ ID NO.: 1. Each possibility represents a separate embodiment of the present invention.


KMT2D protein of the invention may be encoded by the nucleic acid sequence set forth in SEQ ID NO.: 2 (GenBank Accession No.: AF010403.1). In one example, KMT2D nucleic acid sequence comprises a homolog, a variant, an isomer, or a functional fragment of SEQ ID NO: 2. In another example, the nucleic acid sequence is approximately 60%, 70%, 80%, 85%, 90%, 95%, 98%, or 99% identical to SEQ ID NO.: 2. Each possibility represents a separate embodiment of the present invention.


In one aspect, the invention provides methods for detecting the KMT2D mutation. The KMT2D mutation in a sample can be detected using any technique that is suitable for detecting a mutation or genetic variation in a biological sample. Suitable techniques for detecting mutations or genetic variations in cells from a biological sample are well known to those of skill in the art. Examples of such techniques include, but are not limited to, PCR, Southern blot analysis, microarrays, and in situ hybridization. In a particular embodiment, a high-throughput system, for example, a microarray, is used to detect the KMT2D mutation.


In one aspect, nucleic acids can be isolated from the biological sample. The isolated nucleic acids can include a KMT2D nucleic acid sequence. In some embodiments, the KMT2D nucleic acid sequence can include a nucleotide sequence variant of SEQ ID NO: 2. As used herein, “isolated nucleic acid” refers to a nucleic acid that is separated from other nucleic acid molecules that are present in a mammalian genome, including nucleic acids that normally flank one or both sides of the nucleic acid in a mammalian genome (e.g., nucleic acids that encode non-KMT2D proteins). The term “isolated” as used herein with respect to nucleic acids also includes any non-naturally-occurring nucleic acid sequence since such non-naturally-occurring sequences are not found in nature and do not have immediately contiguous sequences in a naturally-occurring genome.


An isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally-occurring genome is removed or absent. Thus, an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule (e.g., a chemically synthesized nucleic acid, or a cDNA or genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other sequences as well as DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, lentivirus, adenovirus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include an engineered nucleic acid such as a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid. A nucleic acid existing among hundreds to millions of other nucleic acids within, for example, cDNA libraries or genomic libraries, or gel slices containing a genomic DNA restriction digest, is not to be considered an isolated nucleic acid.


The nucleic acid molecules provided herein can be between about 8 and about 15,789 nucleotides in length. In one example, a nucleic acid can be 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 45, or 50 nucleotides in length. Alternatively, the nucleic acid molecules provided herein can be greater than 50 nucleotides in length (e.g., 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 500 or more than 500 nucleotides in length). Nucleic acid molecules can be in a sense or antisense orientation, can be complementary to a KMT2D reference sequence (e.g., the sequence shown in GenBank Accession No. AF010403.1), and can be DNA, RNA, or nucleic acid analogs. Nucleic acid analogs can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, for example, stability, hybridization, or solubility of the nucleic acid.


The isolated nucleic acid molecules provided herein can be produced using standard techniques including, without limitation, chemical synthesis.


Nucleic acids of the invention can also be isolated using a commercially available kit. In one embodiment, DNA from a peripheral blood sample can be isolated using a DNeasy DNA isolation kit, a QIAamp DNA blood kit, or a PAXgene blood DNA kit from Qiagen Inc. (Valencia, Calif.). DNA from other tissue samples also can be obtained using a DNeasy DNA isolation kit. Any other suitable DNA extraction and purification technique also can be used, including liquid-liquid and solid-phase techniques ranging from phenol-chloroform extraction to automated magnetic bead nucleic acid capture systems.


In one aspect, once nucleic acid has been obtained, it can be contacted with at least one oligonucleotide (e.g., a primer) that can result in specific amplification of a mutant KMT2D gene, if the mutant KMT2D gene is present in the biological sample. In another embodiment, the nucleic acid also can be contacted with a second oligonucleotide (e.g., a reverse primer) that hybridizes to either a mutant or a wild-type KMT2D gene. The nucleic acid sample and the oligonucleotides can be subjected to conditions that will result in specific amplification of a portion of the mutant KMT2D gene if the mutant KMT2D gene is present in the biological sample.


Once the amplification reactions are completed, the presence or absence of an amplified product can be detected using any suitable method. Such methods include, without limitation, those known in the art, such as gel electrophoresis with or without a fluorescent dye (depending on whether the product was amplified with a dye-labeled primer), a melting profile with an intercalating dye, and hybridization with an internal probe. Alternatively, the amplification and detection steps can be combined in a real time PCR assay. In some embodiments, the detection of an amplified product indicates that cells containing the KMT2D mutation were present in the biological sample, while the absence of an amplified product indicates that cells containing the KMT2D mutation were not present in the biological sample.


In another aspect, the methods provided herein also can include contacting the nucleic acid sample with a third oligonucleotide that can result in specific amplification of a wild-type KMT2D gene without detectable amplification of a mutant KMT2D. These methods can further include subjecting the nucleic acid and the oligonucleotides to conditions that will result in specific amplification of a wild-type KMT2D sequence if a wild-type KMT2D gene is present in the biological sample. The presence or absence of an amplified product containing a wild-type KMT2D sequence can be detected using any suitable method, including those disclosed above. Methods that include using oligonucleotides for amplification of both mutant and wild-type KMT2D sequences also can include quantifying and comparing the amounts of amplified product for each sequence. The relative levels of mutant and wild-type products can indicate the fraction of cells in the biological sample that contain a mutant KMT2D gene.


In some embodiments, the methods disclosed herein can further include a first, universal amplification step. Such methods can include contacting nucleic acids obtained from a biological sample with, for example, a cocktail of degenerate primers, and using standard PCR procedures for an overall amplification of the DNA. This preliminary amplification can be followed by specific amplification and detection of products, as described herein.


In another embodiment, the KMT2D mutation is detected by Southern blot hybridization. Suitable probes for Southern blot hybridization of a given sequence can be produced from the nucleic acid sequences of the KMT2D. Methods for preparation of labeled probes, and the conditions for hybridization thereof to target nucleotide sequences, are well known in the art and are described in Molecular Cloning: A Laboratory Manual, J. Sambrook et al., eds., 2nd edition, Cold Spring Harbor Laboratory Press, 1989, Chapters 10 and 11.


In another embodiment, the KMT2D mutation can be detected by a technique of in situ hybridization. This technique requires fewer cells than the Southern blotting technique, and involves depositing whole cells onto a microscope cover slip and probing the nucleic acid content of the cell with a solution containing radioactive or otherwise labeled nucleic acid probes. This technique is particularly well-suited for analyzing tissue biopsy samples from subjects. The practice of the in situ hybridization technique is described in more detail in U.S. Pat. No. 5,427,916, the disclosure of which is incorporated herein by reference. In an exemplary embodiment, the in situ hybridization technique is a FISH (fluorescent in situ hybridization) technique.


In another embodiment, detection the KMT2D mutation, for example, a mutation in KMT2D, can be accomplished by micro array techniques. The microarray may be fabricated using techniques known in the art. For example, probe oligonucleotides of an appropriate length are 5′-amine modified and printed using commercially available microarray systems, e.g., the GENEMACHINE, OMNIGRID 100 MICROARRAYER and AMERSHAM CODELINK activated slides. The microarray can be processed by direct detection of the tagged molecules using, e.g., STREPTAVIDIN-ALEXA647 conjugate, and scanned utilizing conventional scanning methods.


Other techniques for detecting the KMT2D mutation are also within the skill in the art, and include various techniques for detecting genetic variations.


In another aspect, KMT2D alteration is detected by measuring a change in the expression level of KMT2D mRNA or KMT2D protein, relative to a predetermined level (i.e., control level) of a healthy subject.


In one example, the invention features agents which are capable of detecting KMT2D polypeptide or mRNA such that the presence of KMT2D is detected. As defined herein, an “agent” refers to a substance which is capable of identifying or detecting KMT2D in a biological sample (e.g., identifies or detects KMT2D mRNA, KMT2D DNA, KMT2D protein, KMT2D activity). In one embodiment, the agent is a labeled or labelable antibody which specifically binds to KMT2D polypeptide. As used herein, the phrase “labeled or labelable” refers to the attaching or including of a label (e.g., a marker or indicator) or ability to attach or include a label (e.g., a marker or indicator). Markers or indicators include, but are not limited to, for example, radioactive molecules, colorimetric molecules, and enzymatic molecules which produce detectable changes in a substrate.


In one embodiment the agent is an antibody which specifically binds to all or a portion of a KMT2D protein. As used herein, the phrase “specifically binds” refers to binding of, for example, an antibody to an epitope or antigen or antigenic determinant in such a manner that binding can be displaced or competed with a second preparation of identical or similar epitope, antigen or antigenic determinant. In an exemplary embodiment, the agent is an antibody which specifically binds to all or a portion of the human KMT2D protein.


In yet another embodiment the agent is a labeled or labelable nucleic acid probe capable of hybridizing to KMT2D mRNA. For example, the agent can be an oligonucleotide primer for the polymerase chain reaction which flank or lie within the nucleotide sequence encoding human KMT2D. In a preferred embodiment, the biological sample being tested is an isolate, for example, RNA. In yet another embodiment, the isolate (e.g., the RNA) is subjected to an amplification process which results in amplification of KMT2D nucleic acid. As defined herein, an “amplification process” is designed to strengthen, increase, or augment a molecule within the isolate. For example, where the isolate is mRNA, an amplification process such as RT-PCR can be utilized to amplify the mRNA, such that a signal is detectable or detection is enhanced. Such an amplification process is beneficial particularly when the biological, tissue, or tumor sample is of a small size or volume.


Detection of RNA transcripts may be achieved by Northern blotting, for example, wherein a preparation of RNA is run on a denaturing agarose gel, and transferred to a suitable support, such as activated cellulose, nitrocellulose or glass or nylon membranes. Radiolabeled cDNA or RNA is then hybridized to the preparation, washed and analyzed by autoradiography.


Detection of RNA transcripts can further be accomplished using known amplification methods. For example, it is within the scope of the present invention to reverse transcribe mRNA into cDNA followed by polymerase chain reaction (RT-PCR); or, to use a single enzyme for both steps as described in U.S. Pat. No. 5,322,770, or reverse transcribe mRNA into cDNA followed by symmetric gap ligase chain reaction (RT-AGLCR). Any suitable known amplification method known to one skilled in the art can be used. In situ hybridization visualization may also be employed, wherein a radioactively labeled antisense RNA probe is hybridized with a thin section of a biopsy sample, washed, cleaved with RNase and exposed to a sensitive emulsion for autoradiography. The samples may be stained with haematoxylin to demonstrate the histological composition of the sample, and dark field imaging with a suitable light filter shows the developed emulsion. Non-radioactive labels such as digoxigenin may also be used.


In another aspect of the invention pertains to measuring a change in the level of KMT2D protein, for example, using anti-KMT2D antibodies. The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site which specifically binds (immunoreacts with) an antigen, such as KMT2D. The invention provides polyclonal and monoclonal antibodies that bind KMT2D.


It is generally preferred to use antibodies, or antibody equivalents, to detect KMT2D protein. Methods for the detection of protein are well known to those skilled in the art, and include ELISA (enzyme linked immunosorbent assay), RIA (radioimmunoassay), Western blotting, and immunohistochemistry. Immunoassays such as ELISA or RIA, which can be extremely rapid, are more generally preferred.


Immunohistochemistry may also be used to detect expression of human KMT2D in a biopsy sample. A suitable antibody is brought into contact with, for example, a thin layer of cells, washed, and then contacted with a second, labeled antibody. Labeling may be by fluorescent markers, enzymes, such as peroxidase, avidin, or radiolabelling. The assay is scored visually, using microscopy.


The invention also encompasses kits for detecting the presence of KMT2D in a biological sample. In one aspect, the kit can comprise a labeled or labelable agent capable of detecting KMT2D or its mutation. In another aspect, the kit can comprise a labeled or labelable agent capable of detecting KMT2D protein or mRNA in a biological sample and a means for determining the amount of KMT2D in the sample. The kit may also include instructions for the detections.


The step of detection of the invention can be performed prior to or after a treatment by one or more therapeutic modalities, for example, but not limited to, an immunotherapy, a chemotherapy, a radiation therapy, and a combination thereof. Therapy in one embodiment is B cell therapy, such as but not limited to anti-CD40 antibody, anti-CD20 antibody or anti-IgM therapy, or any combination thereof. In one embodiment, the detection step is performed prior to administering an antibody (e.g., an anti-CD40 antibody, an anti-CD20 antibody—rituximab) to treat a follicular lymphoma. Coadministration with anti-IgM is also embodied herein. In another embodiment, the detection step is performed after administering an antibody to treat a follicular lymphoma. In another embodiment, the detection step is performed prior to administering a chemotherapy agent to treat a follicular lymphoma. In another embodiment, the detection step is performed after administering a chemotherapy agent to treat a follicular lymphoma. In another embodiment, the detection step is performed prior to a radiation therapy to treat a follicular lymphoma. In another embodiment, the detection step is performed after a radiation therapy to treat a follicular lymphoma.


In another aspect, provided herein is a method of determining a treatment outcome for treating a follicular lymphoma, in a subject, the method comprising the steps of: obtaining a biological sample from said subject; and testing said biological sample to detect the presence or absence of a KMT2D alteration in said biological sample, wherein the presence of said KMT2D alteration indicates a response (e.g., a tumor response) to a therapy, thereby determining said treatment outcome for treating said follicular lymphoma in said subject. In another aspect, provided herein is a method for treating a follicular lymphoma, in a subject, the method comprising: (a) obtaining a biological sample from said subject; and testing said biological sample to detect the presence or absence of a KMT2D alteration in said biological sample, wherein the presence of said KMT2D alteration indicates a response to a therapy; (b) based on the determination of said tumor response to said therapy, administering an effective amount of a therapeutic agent to treat said follicular lymphoma, thereby treating said follicular lymphoma in said subject. In all embodiments herein, a response may include a lack of a response.


As noted herein above, the presence of a KMT2D alteration adversely affects the normally tumor suppressive effects of anti-CD40, thereby reducing the effectiveness of anti-CD40 therapies when an alteration in KMT2D is present or potentially stimulating disease progression thereby. Therefore, a response to therapy relates to, in one embodiment, whether antiCD40 or related therapy may be effective, or should be avoided because patients may do worse with such treatment. Thus, in one embodiment, a patient with a KMT2D alteration may not be effectively treated with anti-CD40 therapy. In another embodiment, anti-CD40 therapy is contraindicated in a patient found to have a KMT2D alteration. In another embodiment, methods for treating follicular lymphoma include a determination of KMT2D alteration and guiding therapy away from anti-CD40 in the presence of an altered KMT2D. In any of the foregoing embodiments, the guidance for the use or non-use of anti-CD40 therapy may be in conjunction with the respective use or non-use of anti-IgM therapy. In another embodiment, an effective therapeutic agent to treat follicular lymphoma may be one or more agents excluding anti-CD40, anti-CD20 or anti-IgM therapy (and any combination thereof) but other chemotherapeutic agents such as but not limited to cyclophosphamide, vincristine, prednisone, doxorubicin, bortezomib, everolimus, idelalisib, ibrutinib, lenalidomide, ofatumumab, or panobinostat, or combinations thereof, by way of non-limiting examples.


In yet another aspect, provided herein is a method for treating a follicular lymphoma in a subject, the method comprising: administering to said subject a molecule that effectively enhances the level of a KMT2D in said subject, thereby treating said follicular lymphoma in said subject.


As used herein, “response” can refer to the outcome or responsiveness, or predicted outcome or responsiveness, of a patient's disease or cancer to a particular therapy, i.e., whether the patient will benefit from or the cancer will be treated by the therapy, whether the patient or cancer will have little or no effect from the therapy, or whether the therapy may exacerbate the disease or cause the patient to do worse as a result of use of a particular therapy. In one embodiment, a response can mean no response or a lack of a response.


As used herein, the terms “treat” and “treatment” refer to therapeutic treatment, wherein the object is to prevent or slow down (lessen) an undesired physiological change associated with a disease or disorder. Beneficial or desired clinical results include alleviation of symptoms, diminishment of the extent of a disease or disorder, stabilization of a disease or disorder (i.e., where the disease or disorder does not worsen), delay or slowing of the progression of a disease or disorder, amelioration or palliation of the disease or disorder, and remission (whether partial or total) of the disease or disorder, whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the disease or disorder as well as those prone to having the disease or disorder.


In one aspect, the treatment includes administering a KMT2D protein. In another aspect, the treatment includes administering a nucleic acid sequence encoding the KMT2D protein. In yet another aspect, the treatment includes administering an agent that enhances the activity of KMT2D.


The treatment compositions of the invention may be administered alone (monotherapy), or in combination with one or more therapeutically effective agents or treatments (combination therapy).


Cancers treated by the invention include, but are not limited to, a Grade 1, 2, or 3 follicular lymphoma and a Stage 1, 2, 3, or 4 follicular lymphoma.


In another aspect, provided herein is a method for identifying a molecule that effectively treats a follicular lymphoma in a subject, the method comprising: providing a plurality of molecules; and screening said plurality of molecules to identify a molecule that effectively enhances the level of a KMT2D, thereby identifying said molecule that effectively treats said follicular lymphoma in said subject.


The terms “subject” and “individual” are defined herein to include animals, such as mammals, including but not limited to, primates, cows, sheep, goats, horses, dogs, cats, rabbits, guinea pigs, rats, mice or other bovine, ovine, equine, canine, feline, rodent, or murine species.


All patents and literature references cited in the present specification are hereby incorporated by reference in their entirety.


The following examples are presented in order to more fully illustrate the preferred embodiments of the invention. They should in no way be construed, however, as limiting the broad scope of the invention.


EXAMPLES
Example 1. Methods

Measurement of KMT2D mRNA Expression in Human B Cells.


The human tonsil and bone marrow samples were obtained in Pamplona (Spain) at the Clinica Universidad de Navarra and the obtention of these samples was approved by the ethical committee of Clinica Universidad de Navarra (Spain). Cells from tonsils and bone marrow were immunophenotyped using eight-color antibody combination: CD20-Pacific Blue (PB), CD45-Oranje Chrome 515 (00515), CD38-fluorescein isothiocyanate (FITC), CXCR4-phycoerythrin (PE), CD3-peridinin chlorophyll protein-cyanin 5.5 (PerCP-Cy5.5), CD10-PE-cyanin 7 (PE-Cy7), CD27-allophycocyanin (APC) and CD44-APCH7 aimed at the identification and high-purity (□97%) FACS-sorting (FACSAria II, Becton Dickinson Biosciences, San Jose, Calif.) of the following B cell (CD3−CD20+CD45+) subsets (after careful exclusion of CD3+CD20−CD45+ T cells): naive B cells (CD10−CD44+CD27−CD38−), germinal center (CD10+CD44loCD38+) centrocytes (CXCR4−) and centroblasts (CXCR4+), memory B cells (CD10−CD27+CD44+) and new-born plasmablasts (CD10−CD27hiCD38hiCD44hi). The strand-specific RNA-seq was performed in naive B cells (n=5 samples), centroblasts (n=7), centrocytes (n=7), memory cells (n=8), tonsilar plasma B cells (n=5) and purified plasma B cells from bone marrow of healthy donors (n=3). Each red dot represents a separate human tonsil and the mean expression is represented in TPM (transcripts per million).


Characterization of Human FL Samples.


The Institutional Review Board (IRB) of Weill Cornell Medical College (IRB#0107004999) approved the study protocol. The specimens were derived from excess diagnostic materials that were banked in the lymphoma repository. A waiver of informed consent has been obtained for this retrospective study. The IRB-approved protocol permitted association of these specimens with a particular individual, allowing review of the medical records for the minimum information necessary to complete the study. All of the data that were provided to investigators were stripped of protected health information.


Sample preparation. Frozen single-cell suspensions of individual tumor samples were first thawed in a 37° C. water bath and then resuspended in RPMI+10% FBS and incubated in an incubator (37° C. and 5% CO2) for 1 h. Half of the sample was used to isolate B cells by using EasySep Human B Cell Enrichment Kit (STEMCELL Technologies, Vancouver, Canada), and the other half was used to isolate T cells with Easy Sep Human T Cell Isolation Kit. DNA was extracted from isolated cell populations by using PureLink Genomic DNA kit (LifeTechnologies, Grand Island, N.Y.). Total RNA was extracted using the Qiagen RNeasy Mini Kit (Valencia, Calif.). The quantity of DNA and RNA samples was measured by a Qubit Fluorometer (LifeTechnologies, Grand Island, N.Y.), and the quality of DNA and RNA samples was assessed by a bioanalyzer (Agilent Technologies, Santa Clara, Calif.).


Exome sequencing. For each tumor sample and the respective T cell control sample, 3 □g of high-molecular-weight genomic DNA was used to prepare exome sequencing libraries using the Aglient SureSelectXT Human All Exon 50 Mb Target Enrichment System for Illumina Pair-End Sequencing Library kit (Agilent Technologies, Santa Clara, Calif.). Each library was sequenced on one entire lane of a flow cell on an Illumina HiSeq 2000. Sequence information of 75 bp on each end of the DNA library fragment (PE75) was collected.


Targeted resequencing. A targeted-enrichment panel was designed by RainDance Technologies (Billerica, Mass.) for 36 of the most commonly mutated lymphoma genes including, ARID1A, ATP6AP1, B2M, BCL2, BCL6, BTG1, BTG2, CARD11, CD79B, CREBBP, EB1, EEF1A1, EP300, EZH2, GNAl3, HIST1H1B, HIST1H1C, HVCN1, IRF4, IRF8, KLHL6, KMT2D, MEF2B, MYD88, PCGFS, PDSSA, PIM1, POU2F2, PRDM1, SGK1, STAT6, SZT2, TBL1XR1, TNFAIP3, TP53 and XPOT. The entire coding regions of this set of genes were targeted by overlapping PCR amplicons averaging 200 bp. DNA (200 ng) was first sheared to around 3 kb by using a Covaris S220 Focused ultrasonicator (Woburn, Mass.) and then merged with primer pairs in a picoliter-droplet format on a Raindance ThunderStorm system. Targeted regions were amplified with the addition of specific tailed primers. A second round of PCR was performed to add indexed adaptor sequences for Illumina sequencing. Final indexed products from 48 samples were multiplexed together and sequenced on one entire lane of flow cell on Illumina HiSeq 2500 by using the fast mode setting. Sequence information of 100 bp on each end of the library fragment (PE100) was collected.


Discovery of single-nucleotide variants (SNV). Sequencing reads were aligned to human genome assembly GRCh37/hg19 using the BWA aligner24. After filtering duplicated paired reads, variants were detected as previously described25-27. Novel coding region SNVs were defined as those that were not present in SNP132. These SNVs were then further filtered by sequencing depth (□20×) and variant percentage (□25%). To obtain the list of somatic mutations in each tumor sample, we compared the variant ratio of each novel coding SNV between tumor B cells and their respective control T cells and estimated the statistical significance of the difference using a chi-squared test, corrected with multiple hypothesis testing (Benjamini-Hochberg corrected P<0.1).


Characterization of DLBCL Samples.


We analyzed 347 newly diagnosed DLBCL cases, in which individuals were treated with R-CHOP (given with curative intent) at the BC Cancer Agency (Vancouver). Subject sample use was approved by the University of British Columbia, British Columbia Cancer Agency, Research Ethics Board (REB #H13-01478). The cases were selected on the basis of the following criteria: 16 years of age or older; histologically confirmed de novo DLBCL according to the 2008 WHO classification; available DNA extracted from fresh-frozen biopsy material (tumor content >30%). All cases were centrally classified by A.M. and R.D.G., who were blinded for sample identity to determine the diagnosis. Individuals were excluded if they were younger than 16 years old and had DLBCL that was not de novo DLBCL (primary mediastinal large B cell lymphoma, primary central nervous system lymphoma and a previous diagnosis of an indolent lymphoproliferative disorder) and positive HIV serology.


Targeted Resequencing in DLBCL Samples.


Targeted resequencing of the coding exons of KMT2D in 347 DLBCL cases was performed using a Truseq Custom Amplicon assay (Illumina) and libraries were run on the MiSeq (Illumina). Mutation calling was done with Mutascope pipeline. Cell of origin (COO) classification was available in 331 cases according to gene expression profiling by the Lymph2Cx assay using the NanoString platform28 in 299 subjects, as well as Hans algorithm29 in 32 cases with low tumor content. 194 cases were assigned to GCB subtype, 107 cases to the ABC (non-GCB) subtype and 30 were unclassifiable.


Correlation Between KMT2D Mutation Status with Disease Progression and Survival. Baseline characteristics were compared between the groups with KMT2D mutation type using the chi-squared test.


We measured the endpoints from the time of the initial pathologic diagnosis to the following events: overall survival (OS; the date of death from any cause or to the last follow-up); progression-free survival (PFS; the date of progression, relapse or death from any cause); disease-specific survival (DSS; the date from lymphoma or acute treatment toxicity) and time-to-progression (TTP; the date of progression, relapse or death from lymphoma or acute treatment toxicity). OS, PFS, DSS and TTP were estimated using the Kaplan-Meier method and differences in outcome between groups were assessed using the log-rank test. Two-sided P<0.05 was considered significant. Data were analyzed using SPSS software (SPSS version 14.0; SPSS Inc, IL).


Generation of Mice.


Kmt2dfl/fl mice were previously described7 and here we bred them with CD19-Cre mice (Jackson no. 006785) where Cre is expressed from the pre-B cell stage and removes exons 16-19 of Kmt2d causing an open reading frame shift that creates a stop codon in exon 20. Kmt2dfl/fl×CD19-Cre mice were maintained in a mixed C57BL/6; 129 background. Mice were monitored for tumor formation once a week for the first 4 months and every day after then. All mice were housed in the Frederick National Laboratory and treated with procedures approved by the US National Institutes of Health (NIH) Animal Care and Use Committee.


The VavP-Bcl2 mouse model of FL9 was adapted to the adoptive transfer approach using retrovirally transduced HPCs. HPC isolation and transduction were performed as in ref. 30. 8- to 10-week-old lethally irradiated (4.5 Gy twice) C57BL/6 females were used as recipients for all transplantation experiments. shRNAs to mouse Kmt2d were designed using Designer of Small Interfering RNA (DSIR, http://biodev.extra.cea.fr/DSIR/) and are based on MSCV31: shKmt2d #1 (mouse), GACTGGTCTAGCCGATGTAAA (SEQ ID NO:20) and shKmt2d #2 (mouse), TGAATCTTTATCTTCAGCAGG (SEQ ID NO:21).


Mouse B220+ Tumor Sample Preparation.


B220+ cells were purified from mouse lymphoma tumors by immunomagnetic enrichment with CD45R (B220) microbeads (Miltenyi Biotech). RNA extraction was performed using TRIzol (Ambion) using the manufacturer's protocol.


Histology.


Mouse tissues were fixed overnight in formalin, embedded in paraffin blocks and sectioned. Tissue sections were stained with hematoxilin and eosin (H&E) or with Ki67, TUNEL, B220 or PNA following standard procedures32,33.


Flow Cytometric Analysis.


Vavp-Bcl2 Tumors.


Tumor cell suspensions of representative tumors for each genotype were stained as described30. The antibodies used were B220 (CD45R; BD PharMingen, #553092) or IgG1 (BD PharMingen #560089), which were conjugated with APC, and to B220 (CD45R; BD PharMingen, #553090), CD19 (BD PharMingen, #557399), IgM (PharMingen, #553409), Thy1 (CD90; Cedarlane, #CL8610PE), CD8 (PharMingen, #553032), Sca-1 (PharMingen, #553108), IgD (BD PharMingen #558597) and GL7 (BD PharMingen #561530), which were conjugated with phycoerythrin. Analysis was performed with a BD LSRFortessa cell analyzer and FlowJo software (Tree Star).


Kmt2d−/− Tumors.


Single-cell suspensions were obtained from spleens according to standard procedures. Red blood cells were lysed with ACK Lysing Buffer (Quality Biological) and surface markers on tumor cells were analyzed on FACSCalibur (BD Biosciences) using the following fluorochrome-cojugated antibodies: IgM-PE (BD Pharmingen, clone R6-60.2 #553409), IgM-FITC (BD Pharmingen, clone R6-60.2 #553408), IgD-FITC (BD Pharmingen, clone 11-26c.2a #553439), FITC-conjugated Ig, λ1, λ2 and λ3 (BD Pharmingen, clone R26-46 #553434), Igκ-FITC (BD Pharmingen, clone 187.1 #550003), CD19-APC (BD Pharmingen, clone 1D3 #550992), B220-PE (BD Pharmingen, clone RA3-6B2 #553090), B220-PE (BD Pharmingen, clone RA3-6B2 #553088), CD138-PE (BD Pharmingen, clone 281.2 #553714), CD24-FITC (BD Pharmingen, clone M1/69 #553261), CD11b-APC (BD Pharmingen, clone M1/70 #553312), CD4-PE (Biolengend, clone GK1.5 #100408), CD8-FITC (BD Pharmingen, clone 53-6.7 #553031), CD3-PE (BD Pharmingen, clone 500A2 #553240), and CD43-biotin (BD Pharmingen, clone S7 #553269) and B220-biotin (BD Pharmingen RA3-6B2 #553085) followed by Streptavidin-APC (BD Pharmingen). Analysis was performed with FlowJo software (Tree Star).


Characterization of Nonmalignant B Cell Populations in Kmt2d−/− Mice.


To identify the different B cell populations, two stains were performed in splenocytes from 4- to 5.5-month-old mice (two female and one male wild-type mice and four female Kmt2d−/− mice). First, to identify transitional, follicular and marginal zone populations, cells were stained with the following antibodies: CD21-FITC (Biolegend, clone 7E9, #123407), CD5-PE (eBioscience, clone 53-7.3 #12-0051-81), CD23-PECY7 (Biolegend, clone B3B4 #101613), IgM-APC (Biolegend, clone RMM-1 #406509) or B220-Alexa700 (Biolegend, clone RA3 #103232). To identify intermediate plasma cells or plasmablasts (IPC), plasma cells (PC) and germinal center populations, cells were stained with the following antibodies: GL7-FITC (Biolegend, clone GL7 #144003), CD138-PE (Biolegend, clone 281-2 #142503), CD95-APC (eBioscience, clone 15A7 #17-0951-80) or B220-Alexa700 (Biolegend, clone RA3 #103232). To determine the percentages of cell populations, values were normalized by percentage of B220+ single live cells (single cells, 7-AADB220+; 7-AAD (Life Technologies) was used to identify dead cells). Data acquisition was performed in a BD LSR II Flow Cytometer (BD Biosciences) and analysis was performed with FlowJo software (Tree Star).


DLBCL Cell Lines.


CD40R expression on DLBCL cell lines was measured using FITC-conjugated anti-CD40 (BD clone C53 #B555588). DLBCL cell line viability was measured by APC-conjugated anti-annexin V (BD #B550474) and DAPI exclusion. Data were acquired on MacsQuant flow cytometer (Miltenyi Biotec) and analyzed using FlowJo software package (TreeStar).


IgVH Rearrangement Analysis.


PCR to evaluate IgVH rearrangements was performed on cDNA of VavP-Bcl2 lymphoma cells with a set of a forward primer that anneal to the framework region of the most abundantly used IgVL gene families and a reverse primer located in the Jλ1,3 gene segment (IgL-Vλ1: GCCATTTCCCCAGGCTGTTGTGACTCAGG [SEQ ID NO:22] and IgL-Jλ1,3: ACTCACCTAGGACAGTCAGCTTGGTTCC; SEQ ID NO:23)34.


Class Switch Recombination (CSR) in Kmt2d□/□ Tumors.


Genomic DNA isolated from tumors cell suspensions and MEFS as a germinal band control were restricted and for Southern blot hybridization was performed with the following probes: JH probe (PCR amplified with 5′-TATGGACTACTGGGGTCAAGGAAC-3′ [SEQ ID NO:3] and 5′-CCAACTACAGCCCCAACTATCCC-3′ [SEQ ID NO:4], 3′Smu probe (PCR amplified with 5′-CCATGGGCTGCCTAGCCCGGGACTTCCTGCCC [SEQ ID NO:5] and 5′-ATCTGTGGTGAAGCCAGATTCCACGAGCTTCCCATCC-3′; SEQ ID NO:6) and IgκIII a EcoRI/SacI fragment downstream Jκ5 at Igκ locus.


Somatic Hypermutation.


The genomic sequences from VH to the intron downstream of JH4 were PCR-amplified from tumor DNA using degenerate forward primers for the different VH families35 and a reverse primer (5′-AGGCTCTGAGATCCCTAGACAG-3′; SEQ ID NO:7)36 downstream of JH4. Proofreading polymerase (Phusion High Fidelity, NEB) was used for amplification with previously published PCR conditions35. Amplification products were isolated from agarose gels and submitted to Sanger sequencing. Sequences were compared with reference and mutation rate calculated using IMGT/V-QUEST37 and UCSC BLAT. PCR amplification and sequencing was repeated two or three times for each sample. As a negative and a positive control, DNA extracted from mouse embryonic fibroblasts (MEFS) and Igκ-AID B cells, respectively, were used in parallel.


Characterization of Mouse B Cell Differentiation and Antibody Production.


Germinal Center Assessment in Mice.


HPCs from C57BL/6 mice were retrovirally transduced with empty vector or shKmt2d and adoptive transfer approach was performed in 2-month-old C57BL/6 females irradiated with 4.5 Gy (n=3 or 4 per group). After 4 and 7 weeks after injection of HPCs, females were immunized intraperitoneally with 0.5 ml of 2% sheep red blood cell (SRBC) suspension in PBS (Cocalico Biologicals). Nine weeks later spleens were collected for histology and immunohistochemistry analysis. Ki67-positive cells were quantified using Metamorph software.


For analysis of the formation of GCs in Km2d−/− mice, four mice for each genotype (1.5- to 2-month-old, wild-type: 2 males and 2 females; Kmt2d−/− mice: 3 males and 1 female) were immunized intraperitoneally with 100 μg of NP21-CGG (Biosearch Technologies) in Imject alum (Pierce). On day 6 after immunization, splenocytes were harvested and B cell populations were analyzed by flow cytometry as above (see Characterization of B cell populations in Kmt2d−/− mice).


ELISA Analysis of NP-Specific Antibody Production.


Serum from NP-CGG-immunized Kmt2d+/+ (wild-type) or Kmt2d−/− mice was analyzed for NP-specific IgM or IgG1 titer using the SBA Clonotyping System-HRP (SouthernBiotech). Plates were coated with 10 ug/ml NP(20)-BSA (Biosearch Technologies) and serum from immunized or nonimmunized mice was added to 96-well assay plates (Costar) at increasing dilutions in PBS with 1% BSA. Bound antibodies were detected with HRP-labeled goat anti-mouse IgG1 or IgM antibodies. The optical density of each well was measured at 405 nm.


In vitro class-switch recombination. For class switch recombination to IgG1, resting splenic B cells were isolated from 2.5- to 5-month-old Kmt2d+/+ CD19-Cre (wild-type, 2 females and 3 males) and Kmt2dfl/fl CD19-Cre+ (Kmt2d−/−; 2 females and 3 males) mice by immunomagnetic depletion with anti-CD43 MicroBeads (anti-Ly48, Miltenyi Biotech), and cultured at 0.5×106 cells/ml with LPS (25 μg/ml; Sigma), IL-4 (5 ng/ml; Sigma) and RP105 (anti-mouse CD180; 0.5 μg/ml; BD Pharmingen) for 4 d. B cells were infected at 24 and 48 h in culture with pMX-Cre-IRES-GFP as described38 to enhance Kmt2dfl/fl deletion. Class switching to IgG1 was measured at 96 h in the GFP+ population (>90%) by flow cytometry using the following antibodies: IgG1-biotin (BD Pharmingen, clone A85-1 #553441) following streptavidin-Pacific Blue (Molecular Probes) and B220-Alexa700 (Biolegend, clone RA3 #103232). Data acquisition was performed on the BD LSR II Flow Cytometer (BD Biosciences) equipped with CellQuest software (Becton Dickinson). Analysis was performed with FlowJo software (Tree Star).


mRNA-Seq Library Preparation and Sequencing Analysis.


RNA was purified using the RNAeasy Plus Kit (QIAGEN) that included a genomic DNA elimination step. RNA size, concentration and integrity were verified using Agilent 2100 Bioanalyzer (Agilent Technologies). Libraries were generated using Illumina's TruSeq RNA sample Prep Kit v2, following the manufacturer's protocol. Sequencing of 8-10 pM of each library was done on the HiSeq2500 sequencer as 50-bp single-read runs. RNA-seq data from mouse B220 cells were aligned to the mm9 genome using STAR. RNA-seq data from FL subjects were aligned to the hg19 genome using TopHat. −2.0.10 with default parameters except −r 150 (TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions). Read counts were derived from HTSeq.scripts.count module in HTSeq-0.6.0 with default parameters (HTSeq—a Python framework to work with high-throughput sequencing data). Differentially expressed genes were generated by DESeq2-1.6.3 in R [moderated estimation of fold change and dispersion for RNA-seq data with DESeq2].


ChIP and ChIP-Seq Library Preparation and Sequencing Analysis.


H3K4me1 and H3K4me2 ChIP was performed as previously described39. Briefly, 4×106 mouse B220+ cells or DLBCL cells were fixed with 1% formaldehyde, lysed and sonicated (Branson Sonicator; Branson) leading to a DNA average size of 200 bp. 4 ul of H3K4me1 and H3K4me2-specific antibody (Abcam 32356 lot GR106705-5), tested for specificity by histone-peptide array (Active Motif 13001), was added to the precleared sample and incubated overnight at 4° C. The complexes were purified using protein-A beads (Roche) followed by elution from the beads and reverse cross-linking. DNA was purified using PCR purification columns (QIAGEN).


H3K4me1 and H3K4me2 ChIP-seq libraries were prepared using 10 ng of DNA and Illumina's TruSeq ChIP sample prep, according to the manufacturer. Libraries were validated using the Agilent Technologies 2100 Bioanalyzer and Quant-iT dsDNA HS Assay (Life Technologies) and 8-10 pM was sequenced on a HiSeq2500 sequencer as 50-bp single-read runs. ChIP-seq data was aligned to the hg18 and hg19 genomes using STAR. Peak calling and read density in peak regions were performed by ChIPseeqer-2.1 with default parameters (an integrated ChIP-seq analysis platform with customizable workflows).


KMT2D ChIP assays were performed as previously described40. Briefly, 3-5×107 cells were cross-linked with 1% paraformaldehyde at room temperature for 15 min and sonicated to generate chromatin fragments of 200-600 bp. Fragmented chromatin was then immunoprecipitated overnight with in-house-generated human KMT2D antibody specific for the N terminus previously described5, followed by washes and elution. ChIP-sequencing libraries were prepared with KAPA HTP ChIP-seq sample prep kit (KAPA Bioystems) for further high-throughput sequencing.


H3K4me1 and H3K4me2 ChIP DNA from OCI-LY7 cells transduced with KMT2D shRNA or empty vector control lentivirus were quantified by qPCR. Primers were designed to amplify loci with KMT2D peaks in OCI-LY7 and H3K4me1 and H3K4me2 depletion in OCI-LY1. Enrichment was calculated relative to input. The primers used were:











TNFAIP3 (A20), Forward:



(SEQ ID NO: 8)



GTGCTGCCATCCCCCAAATA,







Reverse:



(SEQ ID NO: 9)



AGCTTTCCCATGAGCCACT;







SOCS3, Forward:



(SEQ ID NO: 10)



ACCTGGCTAGACTGAGGTCAT,







Reverse:



(SEQ ID NO: 11)



TTAGAGGCGCTCTGGTTCCT;







TRAF3, Forward:



(SEQ ID NO: 12)



TCCAAGGGAAGATGAGGCCA,







Reverse:



(SEQ ID NO: 13)



CCTCGGGGGCCATAATACAG;







SGK1, Forward:



(SEQ ID NO: 14)



GACCGATTGGGAAAGCAGGT,







Reverse:



(SEQ ID NO: 15)



GAGTTGGCTCTGGCTTCCAT;







IKBKB, Forward:



(SEQ ID NO: 16)



AGGTCAACAAGGAGTCAGCC,







Reverse:



(SEQ ID NO: 17)



AGGAGGGAGGGGAGCTTTAT;







TNS4 (negative control loci), Forward:



(SEQ ID NO: 18)



TTATTTGGCTGGGTGTGGT,







Reverse:



(SEQ ID NO: 19)



GTAGAGACGGGATTTCACCATG.






Human_Downregulated_Genes are downregulated genes (log fold change (log FC)<0, P val<0.05, n=519) in FL subjects with nonsense KMT2D mutations versus those with wild-type KMT2D, FIG. 3e) based on RNA-seq data. Mouse_Downregulated_Genes were downregulated genes (log FC<0, P adjust<0.1, Benjamini-Hochberg method, n=1,016) in mouse B220+ cells, shKmt2d versus empty vector, FIG. 3f) based on RNA-seq data. We also determined an RNA-seq leading-edge gene set (n=347, FIG. 3i). This gene set is the union of two gene subsets: (i) top 200 downregulated genes in Human_Downregulated_Genes (ranked by log FC derived from B220 RNA-seq) and (ii) top 200 downregulated genes in Mouse_Downregulated_Genes (ranked by log FC derived from FL RNA-seq).


For H3K4me1 and H3K4me2 ChIP data from mouse B220+ cells, candidate peaks were the union of the peaks called from each control replicate (n=3) with ChIPseeqer. We defined peaks that overlapped with promoters (defined as ±2 kb windows centered on RefSeq transcription start sites (TSS)). Peaks that didn't overlap with promoters, gene bodies and exons were treated as enhancer peaks. Enhancer peaks inside gene bodies were identified as intragenic enhancer peaks. Intergenic enhancer peaks were defined as being within a 50-kb window from the corresponding genes. TSS Mouse_Enh_H3K4me1/me2_Loss were genes identified with H3K4me1 and H3K4me2 depletion (>25% read density loss and P val<0.05, t-test, n=680) at enhancer peaks in shKmt2d (n=3) (FIG. 4c,d). We also determined a mouse H3K4me1-H3K4me2 ChIP-seq enhancer leading-edge gene set (n=322, FIG. 4e), which is the union of two gene subsets: (i) top 200 downregulated genes in Mouse_Enh_H3K4me1/me2_Loss gene set (ranked by log FC derived from B220 RNA-seq) and (ii) top 200 downregulated genes in Mouse_Enh_H3K4me1/me2 Loss gene set (ranked by log FC derived from FL RNA-seq).


We derived Mouse_Pro_H3K4me1/me2 Loss gene sets (n=602, FIG. 10e,f) and mouse H3K4me1 and H3K4me2 ChIP-seq promoter leading-edge genes (n=321, FIG. 10g) in the same way as that for enhancers, described above.


For H3K4me1 and H3K4me2 ChIP data from OCI-LY1 and OCI-LY7 cell lines, candidate peaks were the union of the peaks called from two OCI-LY7 replicates (KMT2D WT) with ChIPseeqer. Promoter and enhancer peaks were determined by the same method described above for mouse B220 H3K4me1-H3K4me2 ChIPseq. In addition all enhancer peaks were overlapped with annotated enhancers previously determined in OCI-LY7. Human_H3K4me1/me2 LOSS50 were genes with H3K4me1 and H3K4me2 depletion (>50% read density loss, n=4416) in OCI-LY1 versus OCI-LY7 (FIG. 5b).


KMT2D peaks from KMT2D ChIP-seq data were called using ChIPseeqer. Human_H3K4me1/me2_Loss50_KMT2D were genes with H3K4me1-H3K4me2 loss peaks (>50% read density loss and overlapped with KMT2D peaks, n=1,248, FIG. 5d). We chose 1,248 genes as leading-edge genes (ranked by H3K4me1-H3K4me2 loss from OCI-LY1 and OCI-LY7 ChIP-seq).


Gene Ontology (GO) Analysis with iPAGE.


The GO analyses were performed with iPAGE41. The concept of mutual information (MI)42 to directly quantify the dependency between expression and known pathways in MsigDB43 or in the lymphoid signature database from the Staudt Lab44 are used in iPAGE. Nonparametric statistical tests are then used to determine whether a pathway is significantly informative about the observed expression measurements. An iPAGE input file is defined across around 24,000 genes from Refseq genes, where each gene is associated with a unique expression status in our analysis. Meanwhile, each gene can be associated with a subset of M known pathways (for example, from the Gene Ontology annotations). For each pathway, the pathway profile is defined as binary vector with N elements, one for each gene. “1” indicates that the gene belongs to the pathway and “0” indicates that it does not.


Given a pathway profile and an expression file with Ne groups, iPAGE creates a table C of dimensions 2×Ne, in which C(1,j) represents the number of genes that are contained in the jth expression group and are also present in the given pathway. C(2,j) contains the number of genes that are in the jth expression group but not assigned to the pathway. Given this table, we calculate the empirical mutual information (MI) as follows:







I


(


candidate





pathway

;
expression

)


=




i
=
1

2






j
=
1


N
e





P


(

i
,
j

)



log



P


(

i
,
j

)




P


(
i
)




P


(
j
)












where







P


(

i
,
j

)


=


C


(

i
,
j

)


/

N
e



,






P


(
i
)


=





j
=
1


N
e





P


(

i
,
j

)







and






P


(
j
)




=




i
=
1

2



P


(

i
,
j

)









To assess the statistical significance of the calculated MI values, we used a nonparametric randomized-based statistical test. Given I as the real MI value and keeping the pathway profile unaltered, the expression file is shuffled 10,000 times and the corresponding MI values Irandom are calculated. A pathway is accepted only if I is larger than (1-max_p) of the Irandom values (max_p is set to 0.005). This corresponds to a P<0.005. In iPAGE, pathways are first sorted by information (from informative to noninformative). Starting from the most informative pathways, the statistical test described above is applied to each pathway, and pathways that pass the test are returned. When 20 contiguous pathways in the sorted list do not pass the test, the procedure is stopped.


Highly statistically significant mutual information is explained by combination of over-representation and under-representation in specific expression groups. To quantify the level of over- and under-representation, the hypergeometric distribution is used to calculate two distinct P values:


For Over-Representation:







P
over



(

X

x

)


=




i
=
x

N





(



m




i



)



(




n
-
m






n
-
i




)



(



N




n



)







For Under-Representation:







P
under



(

X

x

)


=




i
=
0

N





(



m




i



)



(




N
-
m






n
-
i




)



(



N




n



)







where x equals the number of genes in the given expression group that are also assigned to the give pathway, m is the number of genes assigned to the pathway (foreground), n is the number of genes in the expression group and N is the total number of genes (background). If Pover<Punder, we consider the pathway to be over-represented in the expression cluster, otherwise it is under-represented. In the heat map, the red color indicates (in log10) the over-represented P values and the blue shows under-representation.


Gene Set Enrichment (GSEA) Analysis.


All the GSEA analysis results in this manuscript were generated from GSEA preranked mode43,45. There were two kinds of input files: (i) FL subjects: gene expression level log FC (nonsense KMT2D mutation versus WT) and (ii) B220: gene expression level log FC (shKMT2D versus MLS). In those input files, we chose the minimum log FC when a gene had multi-transcripts. All the gene sets used in GSEA were described in the Computational Methods section.


Human Cell Lines.


The lymphoma cell lines HT, DoHH2, SU-DHL4, Toledo, Karpas-442, OCI-LY8, NU-DUL1 and SU-DHL10 were maintained in RPMI 1640 with 10% FBS, 1% L-Glutamine and 1% penicillin-streptomycin. OCI-LY7, OCI-LY1 and OCI-LY18 cells were cultured with IMDM media (GIBCO) with 15% FBS, 1% L-Glutamine and 1% penicillin-streptomycin. When indicated OCI-LY7 or SU-DHL4 lymphoma cells were transduced with lentiviruses expressing empty vector (pLKO.1) or shRNA against KMT2D (pLKO.1; Sigma, shKMT2D #1: TRCN0000013140; shKMT2D #2: TRCN0000013142; shKMT2D #3: TRCN0000235742). Source of cell lines are as follows: OCI-LY7, OCI-LY1 and OCI-LY18 from OCI (Ontario Cancer Institute); HT (ATCC® CRL2260™) from ATCC (American Type Culture Collection); SU-DHL4 and NU-DUL1 from DSMZ (Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH). Cell lines were authenticated by STR DNA profiling by biosynthesis (http://www.biosyn.com/celllinetesting.aspx). Mycoplasma contamination is routinely tested with Universal Mycoplasma detection kit ATCC (http://www.atcc.org/products/all/30-1012K.aspx).


Proliferation assays in lentiviral-transduced OCI-LY7 cells were performed using Viacount assay from Guava Technologies performed as reported46. 5×105 cells were seeded in 2 ml into a single well of a 6-well dish. Each experiment was done in triplicate.


For the IL-21 stimulation assay, OCI-LY7 cells transduced with lentiviruses with vector or shRNA against KMT2D were seeded and recombinant human IL-21 (PeproTech #200-21) was added to a 10 ng/ml final concentration; cells were collected after 48 h and whole cell lysates were prepared.


For CD40-IgM stimulation assays, DLBCL cells were seeded at 2.5×105 cells in 500 ul into a single well of a 12-well plate and cultured with anti-CD40 (2.5 ug/ml; RD Systems #AF632) alone or in combination with anti-IgM (10 ug/ml; Jackson ImmunoResearch #109-006-129) for 1, 2 or 4 d. After 1 or 2 d, cells were collected for RNA isolation. After 4 d, cell death was measured using annexin-V and DAPI staining.


Histone Extraction and Quantitative Mass Spectrometry Analysis.


Nuclei were isolated and histone proteins were extracted as described previously with minor modifications47. Briefly, histones were acid-extracted from nuclei with 0.2 M H2SO4 for 2 h and precipitated with 25% trichloroacetic acid (TCA) overnight. Protein pellets were redissolved in 100 mM NH4HCO3 and the protein concentration was measured by Bradford assay. Histone proteins were derivatized by propionic anhydride and digested with trypsin for about 6 h (ref. 47). Peptides were also derivatized by propionic anhydride and desalted by C18 Stage-tips. Histone peptides were loaded to a 75 μm inner diameter (I.D.)×15 cm fused silica capillary column packed with Reprosil-Pur C18-AQ resin (3 μm; Dr. Maisch GmbH, Germany) using an EASY-nLC 1000 HPLC system (Thermo Scientific, Odense, Denmark). The HPLC gradient was 2-35% solvent B (A=0.1% formic acid in water; B=0.1% formic acid in acetonitrile) in 40 min and from 35% to 98% solvent B in 20 min at a flow rate of 300 nl/min. HPLC was coupled to an LTQ-Orbitrap Elite (Thermo Fisher Scientific, Bremen, Germany). Full MS spectrum (m/z 290-1400) was performed in the Orbitrap with a resolution of 60,000 (at 400 m/z), and the 10 most intense ions were selected for tandem mass spectrometry (MS/MS) performed with collision-induced dissociation (CID) with normalized collision energy of 35 in the ion trap. Automatic gain control (AGC) targets of full MS and MS/MS scans are 1×106 and 1×104, respectively. Precursor ion charge state screening was enabled and all unassigned charge states as well as singly-charged species were rejected. The dynamic exclusion list was restricted to a maximum of 500 entries with a maximum retention period of 30 s. Lock mass calibration in full MS scan is implemented using polysiloxane ion 371.10123. Histone peptide abundances were calculated from the acquired raw data by EpiProfile program48.


Immunoblot Analysis.


PBS lysis buffer (1% Triton X-100, 1 mM DTT, in PBS) followed by 0.2 N HCl solution was used to prepare lysates for histone fraction of lymphoma (B220+) cells. RIPA buffer (Boston Bioproducts) was used to prepare whole-cell lysates of OCI-LY7 cells. Immunoblot analyses were performed according to standard procedures. Membranes were probed with the indicated primary antibodies to: H3K4me1 (Abcam, #ab8895), H3K4me2 (Millipore #07-030), H3K4me3 (Millipore #07-473), total H3 (abcam #ab1791), p-Tyr705-STAT3 (Cell Signaling #9145), total-STAT3 (Cell Signaling #12640) and SOCS3 (Cell Signaling #2932). Enhanced chemiluminescence was used for detection (ECL, Amersham).


Validation of KMT2D Targets by Quantitative Real Time PCR Analyses.


Total RNA from cells was extracted using TRIzol (Invitrogen). Reverse transcription was performed using random primers and SuperScript III First Strand (Invitrogen #18080-400). Quantitative real time-PCR was performed using TaqMan Universal Master Mix (Applied Biosystems) in a 7900 HT Fast Real Time thermocycler (Applied Biosystem). The housekeeping gene used for input normalization of all the qRT-PCR data is β-actin. Taqman gene expression assays used: Kmt2d (Mm02600438_m1), Actb (encoding β-actin) (#4352663), Socs3 (Mm00545913), Dusp1 (Mm00457274), Tnfaip3 (Mm00437121), Arid1a (Mm00473838), Fos (Mm00487425), Ikbkb (Mm01222247), Tnfrsf14 (Mm00619239), KMT2D (Hs00231606), SOCS3 (Hs02330328), TNFRSF14 (Hs00998604), TNFAIP3 (Hs00234713), ARID1A (Hs00195664), DUSP1 (Hs00610256), TRAF3 (Hs00936781), NR4A1 (Hs00374226), IKBKB (Hs00233287), DNMT3A (Hs01027166), ASXL1 (Hs00392415), ARID3B (Hs00356736), MAP3K8 (Hs00178297) and ACTB (#4352667).


Statistical Methods.


Sample sizes for comparisons between cell types or between mouse genotypes followed Mead's recommendations49. Samples were allocated to their experimental groups according to their predetermined type (i.e., mouse genotype) and, therefore, there was no randomization. Investigators were not blinded to the experimental groups unless indicated. In the case in FIG. 1b, only mice that developed lymphomas were considered; mice that didn't develop lymphomas were censored and indicated with ticks in the Kaplan-Meier curves. Quantitative PCR data were obtained from independent biological replicates (n values indicated in the corresponding figure legends). Normal distribution and equal variance was confirmed in the large majority of data and, therefore, we assumed normality and equal variance for all samples. On this basis we used the Student's t-test (two-tailed, unpaired) to estimate statistical significance. Survival in mouse experiments was represented with Kaplan-Meier curves, and significance was estimated with the log-rank test. For contingency analysis (proportion of H3K4me1-H3K4me2 peaks) we used the chi-squared exact test.


Accession Codes.


The Gene Expression Omnibus accession codes for the data in this manuscript are: GES67291 (mouse B220+ lymphoma H3K4me1 and H3K4me2 ChIPseq and RNAseq), GES67314 (KMT2D ChIPseq in OCI-LY7 lymhoma cells), GES67381 (H3K4me1 and H3K4me2 ChIPseq in OCI-LY7 and OCI-LY1 lymphoma cells), SRP056293 (FL samples RNA-seq), SRP056292 (targeted resequencing in FL samples) and SRP056291 (exome sequencing in FL samples).


Example 2. KMT2D Deficiency Promotes Lymphoma Development In Vivo

To directly test the effect of KMT2D deficiency in the development of GC-derived lymphoma, we used the VavP-Bcl2 mouse model. In this model, the Vav promoter drives expression of the Bcl2 oncogene in all hematopoietic lineages, and this results in the development of B cell lymphomas that recapitulate key aspects of the genetics, pathology and GC origin of human FLs9-11. To knock down Kmt2d we transduced unselected VavP-Bcl2 (C57BL/6) transgenic fetal liver cells (embryonic day (ED) 14.5, which are a rich source of hematopoietic progenitor cells (HPCs), with MSCV (Murine Stem Cell Virus) retroviruses that encoded a GFP reporter and either short hairpin RNAs targeting Kmt2d (shKmt2d; n=30), an empty vector (vector; n=37) or the Myc oncogene as a positive control for lymphomagenesis (c-Myc; n=16). We injected an unsorted mix of transduced and untransduced HPCs into syngeneic (C57BL/6) wild-type (WT), lethally irradiated female mice and monitored the recipients for 200 d by peripheral blood smears for the emergence of lymphomas (FIG. 1a). Knockdown of Kmt2d caused a marked acceleration of lymphomagenesis and an increase in FL penetrance from 30% to 60% (FIG. 1b). The lymphomas expressing the Kmt2d-specific shRNA displayed a substantial enrichment of cells that were transduced with two different shRNAs to Kmt2d tethered to GFP as compared to the unsorted HPCs they were derived from and to the HPCs transduced with empty retrovirus (FIG. 1c). We confirmed reduction of Kmt2d mRNA levels in mouse B cells expressing the Kmt2d-specific shRNA constructs (FIG. 1d and FIG. 7a).


The mice transplanted with the VavP-Bcl2-shKmt2d HPCs showed significant splenomegaly and the lymphomas were marked by pathognomonic follicular expansion of neoplastic B220+ B lymphocytes that showed positive staining with peanut agglutinin (PNA) and had low Ki67 staining indicating slow proliferation like human FLs (FIG. 13). The PNA-positive staining of and the localization within follicular structures of the B cells are indicative of their germinal center origin (FIG. 1f). Compared to the lymphomas arising in control animals (recipients of VavP-Bcl2 HPCs expressing the empty vector), the Kmt2d-deficient tumors revealed a greater expansion of neoplastic B220+PNA+ B cells and an advanced destruction of the underlying splenic architecture with invasion of the red pulp in nodular, and sometimes diffuse, patterns (FIG. 1f). Kmt2d-deficient tumors were composed of a greater number of larger, centroblast-like B cells (FIG. 7c), and had more prominent extranodal infiltration into the lung, liver and kidneys (FIG. 7d). Immunophenotyping showed a similar composition of cells in control and Kmt2d-deficient lymphomas, with neoplastic B cells expressing B220, CD19, IgM, IgD and the GC marker GL7 (FIG. 1g and FIG. 7b) and Table 1). PCR analysis of the immunoglobulin light chain (IgL) locus indicated clonal disease (FIG. 7e), and sequence analysis of the VDJH4 variable region showed evidence of SHM (FIG. 7f). Hence, Kmt2d deficiency cooperates with Bcl2 to promote the development of high-grade, GC-derived FLs.


Next we analyzed the potential tumor suppressor function of KMT2D in the absence of any cooperating genetic lesions. We crossed Kmt2d conditional knockout mice (Kmt2dfl/fl)7 with a CD19-Cre strain to induce Kmt2d deletion in CD19+ early B cells. The majority (58%) of the Kmt2dfl/fl×CD19-Cre mice (herein referred to as Kmt2d−/−) became moribund with a survival of 338 d (FIG. 7g). Pathology indicated that the Kmt2d−/− B cell lymphomas in spleens and lymph nodes arose from a pre-GC B cell and were composed of monotonous, atypical B lymphocytes with a high proliferative index (>90% Ki67+) and abundant numbers of apoptotic cells, as assayed by TUNEL staining (FIG. 7h). Flow cytometry analysis of these tumors revealed the presence of CD19+B220+IgM+ B cells that often express immunoglobulin kappa (Igκ) or lambda (Igλ) light chains and that have variable expression of IgD and the plasmacytic marker CD138 (FIG. 7i) (Table 1). Genomic analyses of the immunoglobulin locus in these lymphoma cells indicated an oligoclonal origin from cells that had undergone V(D)J recombination at the immunoglobulin heavy chain (IgH) and Igκ loci (FIG. 7k,l). However, the lymphoma cells did not undergo class switch recombination (CSR), as they retained the unrearranged IgH constant region (FIG. 7m). They also showed no evidence of SHM at the IgH locus (FIG. 7n) and lacked expression of markers for mouse GC B cells (PNA; (FIG. 7h). Although the mouse tumors may not directly resemble human lymphomas, these results indicate that Kmt2d acts as a tumor suppressor in B lymphocytes and that this contrasts with its oncogenic function in the myeloid lineage12.


KMT2D mutations are typically seen in lymphomas that originate from GC B cells that are exposed to the genotoxic activity of the GC-specific enzyme activation-induced cytidine deaminase (AID). Therefore we tested whether the genomic instability caused by AID would synergize with the Kmt2d deficiency to promote lymphoma development in vivo. We crossed the Kmt2d−/− mice to animals overexpressing AID (encoded by Aicda; referred to here as ‘AID-Tg’ mice) and observed a further acceleration of lymphoma onset (FIG. 7g). The Kmt2d−/−×AID-Tg tumors were more aggressive than Kmt2d−/− tumors and showed extensive dissemination into solid organs and complete effacement of the splenic architecture by diffuse proliferation of large atypical B220+ B cells with monotypic expression of IgL light chain and very high proliferative fraction (Ki67 positivity >90%). Neoplastic cells were focally positive for CD138 and had intracytoplasmic accumulation of immunoglobulins, suggesting plasmacytic differentiation (FIG. 7i,j). These tumors were oligoclonal and, contrary to the tumors arising in Kmt2d−/− mice, showed AID-induced CSR and SHM and were PNA (FIG. 7k-n). Hence, AID-induced genomic instability, a hallmark feature of the mutagenic GC environment, cooperates with Kmt2d deficiency in lymphomagenesis.


Example 3. KMT2D Deficiency Affects Physiological B Cell Behavior

Heritable nonsense mutations in KMT2D are a major cause of the rare congenital Kabuki syndrome (also known as Kabuki makeup or Niikawa-Kuroki syndrome). The syndrome is named for its typical facial features and often comprises a mild immune defect with decreased production of class-switched antibodies and a propensity for ear infections, although a link to tumor development has not been clearly established13. We wanted to examine how KMT2D deficiency affects normal B cells. First we analyzed KMT2D expression using RNA-seq in purified mature B cell subsets isolated from human tonsils. KMT2D expression levels were similar in naive, centroblast, centrocyte and memory B cells, whereas it was reduced in plasma B cells, suggesting a functional role for KMT2D before terminal B cell differentiation (FIG. 8a). Next we examined the effect of KMT2D knock down on GC formation using a transplantation model with WT HPCs transduced with retroviruses containing either empty vector (as a control) or Kmt2d-specific shRNA, followed by immunization with sheep red blood cells (SRBC) (FIG. 2a). In control mice, all of the GCs resolved by week 16, as indicated by loss of PNA and Ki67 staining. In contrast, Kmt2d-knockdown mice showed persistent GCs beyond week 16 that consisted of B cells with high PNA and Ki67 staining (FIG. 2b,c). To determine how complete genetic Kmt2d inactivation affects mature B cell populations, we examined unimmunized 4- to 5-month-old Kmt2d−/− mice (before lymphoma onset). Flow cytometric analysis of splenocytes harvested from WT and Kmt2d−/− mice indicated there were equal numbers of total B220+ B cells, intermediate plasmablasts (IPCs; B220+CD138+) and plasma cells (B220CD138+) in both sets of mice (FIG. 8b,c). We observed two-fold increase in the number of transitional B cells (B220+CD21CD23) and a trend toward elevated numbers of GC B cells (B220+GL7+CD95+) in the Kmt2d−/− mice (FIG. 8b-e). To determine the impact of Kmt2d deletion on GC formation and differentiation, we immunized mice with SRBC, to induce germinal center (GC) formation, and analyzed splenocytes harvested from WT and Kmt2d−/− mice 6 d after immunization. Flow cytometric analysis indicated a modest decrease in follicular B cells (FO; B220+CD23+CD21lo), a trend toward decreased numbers of plasmablasts and increased numbers of transitional B cells (TR) and, most notably, a significant three-fold increase in the number of GC B cells in Kmt2d−/− splenocytes, as compared to those in splenocytes from WT mice (FIG. 2d,e). These results indicate that Kmt2d loss results in an expansion of GC B cells (which represent the cell type from which DLBCLs and FLs arise in humans) after immunization.


To determine whether Kmt2d loss affects B cell antibody production, we measured serum IgM and IgG1 levels by ELISA in WT and Kmt2d−/− mice. Results showed that IgM antibody levels were similar for both groups of mice under basal conditions, and although the wild-type mice showed the expected increase in IgG1 levels following NP-CGG (Chicken Gamma Globulin) immunization, Kmt2d−/− mice had decreased IgG1 levels, indicating a class switch defect (FIG. 2f). Consistent with these in vivo findings, we also observed a defect in CSR to IgG1 in Kmt2d-deficient B cells after in vitro stimulation with lipopolysaccharide (LPS), CD80-specific antibody and interleukin-4 (IL-4), as indicated by reduced surface IgG1 expression on the Kmt2d−/− B cells (FIG. 2g-i). Hence, KMT2D loss affects B cell differentiation and impedes the B cell immune response in a manner consistent with the mild immune defect associated with Kabuki syndrome.


Example 4. Consequences of KMT2D Mutations in Human Lymphomas

To explore the effects of KMT2D mutations on clinical behavior, we established the KMT2D mutation status in a cohort of 104 human FL specimens. We detected KMT2D mutations in nearly 40% of samples but did not find an apparent hotspot (FIG. 3a,b) (Table 2). In these FLs, 38 of the 104 samples had KMT2D mutations, with four being homozygous. Of a total of 49 KMT2D mutations, 36 were nonsense, 12 were missense and one was a frameshift mutation. KMT2D mutations in FL were not significantly associated with FL grade (FIG. 9a).


Next we analyzed KMT2D status in a cohort of 347 newly diagnosed, clinically annotated DLBCL cases that were all treated with rituximab (R) plus a combination of cyclophosphamide, vincristine, doxorubicin and prednisone (CHOP)—referred to here as R-CHOP—at the BC Cancer Agency (Vancouver) and that were classified as GC B cell (GCB) or activated B cell (ABC) subtype by gene expression profiling. The cases were selected on the basis of the following criteria: individuals were 16 years of age or older with histologically confirmed de novo DLBCL according to the 2008 World Health Organization (WHO) classification, and DNA extracted from fresh-frozen biopsy material (tumor content >30%) was available. The overall mutation frequency was similar to our FL cohort, however we noticed a higher prevalence of nonsense mutations in the GCB subtype (17.6%) than in the ABC subtype (8.4%) (FIG. 9b). KMT2D mutations were not significantly linked to overall survival (OS), progression-free survival (PFS), disease-specific survival (DSS) or time to progression (TTP) (FIG. 3c,d and FIG. 9c,d) Table 2). The lack of correlation may indicate no effect of this specific treatment, or it may reflect alternate changes in tumors with wild-type KMT2D that equally affect outcomes.


Example 5. KMT2D Controls a Common Set of Genes in Mouse and Human FLs

Next we investigated the transcriptional changes related to KMT2D mutation status by RNA-seq on seven human FL specimens with KMT2D nonsense mutations and 12 with wild-type KMT2D. As expected, the most differentially expressed genes in FLs with nonsense mutation-containing KMT2D were skewed toward gene downregulation, such that among the top 100 genes 70% were decreased, whereas that fraction decreased to 55% when 500 genes were included (FIG. 3e and FIG. 9e,f). Similarly, RNA-seq on magnetic cell sorting (MACS)-purified mouse B220+ cells from Kmt2d-knockdown (n=5) and control lymphomas (n=4) revealed that differentially expressed genes in Kmt2d-deficient lymphomas were skewed toward gene downregulation, further supporting the established role of Kmt2d as an activator of gene expression (FIG. 3f and FIG. 9g,h). Moreover, genes that were downregulated in the mouse Kmt2d-deficient lymphomas were highly enriched among genes that were downregulated in human KMT2D mutant specimens and vice versa (FIG. 3g,h; Table 3). By contrast, there was no enrichment among the upregulated genes. This suggests the downregulation of a conserved gene expression signature in human and mouse KMT2D-deficient lymphomas. To further explore these signatures, we examined the leading-edge genes that drive this reciprocal relationship for potential B cell functions that are perturbed by KMT2D inactivating mutations (Table 4). The analysis revealed an enrichment for genes implicated in the immediate early response to antigen/growth factor stimulation, IL-6, IL-10, RAS and tumor necrosis factor (TNF) signaling pathways (FIG. 3i and Table 4) and for plasma cell differentiation-related genes (FIG. 9i,j). Hence in human and mouse FLs, KMT2D controls a common set of genes related to immune signaling and B cell differentiation pathways


To assess how KMT2D depletion contributes to transcriptional regulation, we measured H3K4 mono- and dimethylation (H3K4me1 and H3K4me2, respectively) in Kmt2d-deficient and control lymphomas. Using an antibody that specifically recognizes H3K4me1 and H3K4me2 on DNA, we performed ChIP-seq on purified B220+ mouse lymphoma cells (n=3 for both empty vector-containing and shKmt2d-containing VavP-Bcl2 cells). First, analysis of ChIP-seq data for H3K4me1 and H3K4me2 abundance did not reveal a global loss of the marks genome wide (FIG. 4a). We confirmed this observation with immunoblots for H3K4me1, H3K4me2 and trimethylated H3K4 (H3K4me3) on lysates from sorted B220+ mouse Kmt2d-knockdown lymphoma cells (FIG. 10a,b) and nonmalignant B220+ cells from WT and Kmt2d−/− mice (FIG. 10c,d). By contrast, we observed focal depletion of the H3K4me1 and H3K4me2 marks at a subset of genomic sites in the mouse VavP-Bcl2-shKmt2d lymphomas. Specifically, H3K4me1 and H3K4me2 depletion was significantly more pronounced at putative enhancers as compared to that in promoter elements (FIG. 4b). Using gene set enrichment analyses (GSEA) we found that the genes associated with significant H3K4me1 and H3K4me2 depletion in enhancers and promoters (≥25% read density reduction) were enriched among downregulated genes in both mouse and human KMT2D-deficient lymphomas (FIG. 4c,d and FIG. 10e,f). The leading-edge genes driving this association were enriched for target genes induced by CD40, NF-κB, IL-6, IL-10, LPS, TGF-τ and TNF-α (FIG. 4e, FIG. 10g). Notably, among the genes that showed depletion of the H3K4me1 and H3K4me2 marks at enhancers with concurrent changes in gene expression were tumor suppressor genes such as Tnfaip3 (A20) (ref. 14), Socs3 (ref. 15), Tnfrsf14 (Hvem)16, Asxl1 and Arid1A (FIG. 4f and FIG. 4h).


Next we analyzed H3K4me1 and H3K4me2 abundance in human lymphoma cells lines that were either wild type (OCI-LY7, HT, DOHH2 and SU-DHL4) or mutant (OCI-LY1, OCI-LY18, Toledo and Karpas422) for KMT2D. As in the mouse lymphomas, measurements of global H3K4 methylation by immunoblotting and mass spectrometry showed no differences between the lymphoma lines with WT and mutant KMT2D (FIG. 11a-c). Consistent with the results in the mouse lymphomas, H3K4me1 and H3K4me2 ChIP-Seq on human lymphoma cells containing either WT (OCI-LY7) or mutant (OCI-LY1) KMT2D showed a focal defect that was limited to a subset of H3K4me1 and H3K4me2 sites, and ranking based on the extent of H3K4me1 and H3K4me2 depletion confirmed a predominant effect on enhancers similar to those observed in the experiments in mouse lymphoma cells (FIG. 5a). However, initial analyses for the enrichment of the loss of H3K4me1 and H3K4me2 among genes that were downregulated in human FLs with mutant KMT2D did not show the expected level of enrichment (FIG. 5b). This indicated that we needed to more accurately define the direct KMT2D target genes in human lymphoma cells. To measure KMT2D binding directly we performed ChIP-seq in OCI-LY7 and OCI-LY1 cells using a validated antibody against KMT2D. Similarly to previous studies, we identified ˜24,000 KMT2D-binding sites; 32% were associated within transcriptional start sites (TSS) and the others were distributed to locations that were intragenic or upstream or downstream of genes in the OCI-LY7 cells (FIG. 5c)5. Of note, genes in OCI-LY7 cells that were bound directly by KMT2D and that had a loss of H3K4me1 and H3K4me2 were also highly enriched among the downregulated genes that were identified in human FL subjects with KMT2D mutations (FIG. 5d). Once again these KMT2D target genes were associated with immune signaling pathways including those involving CD40, IL-6, IL-10, NF-κB, IRF4 and others (FIG. 5e). Consistent with the analysis of the mouse lymphomas, these genes included the lymphoid tumor suppressors TNFAIP3 (A20) and SOCS3, which showed consistent changes in KMT2D binding and H3K4 methylation in cells with WT (OCI-LY7) and mutant (OCI-LY1) KMT2D (FIG. 5f and FIG. 11d).|


Example 6. Functional Validation of Selected KMT2D Target Genes

On the basis of concordant changes in expression, H3K4me1 and H3K4me2 depletion and KMT2D binding, we selected several candidate KMT2D targets for further validation (SOCS3, TNFSRF14, TNFAIP3, ARID1A, DUSP1, TRAF3, NR4A1, IKBKB, DNMT3A, ASXL1, ARID3B, MAP3K8 and SGK1). First we generated isogenic pairs of parental and KMT2D-knockdown human lymphoma cells using the wild-type KMT2D-containing lines OCI-LY7 and SU-DHL4. Unlike in certain solid tumor cells17, KMT2D-deficient lymphoma cells were more proliferative in vitro than their KMT2D-proficient parental counterparts (FIG. 12a,b). Next we tested three additional shRNAs for KMT2D knockdown (shKMT2D #1-3) and used qRT-PCR to measure effects on the expression of candidate target genes. We found a marked loss of expression for the indicated KMT2D targets in both isogenic, paired human cell lines and also in purified mouse lymphoma B220+ B cells (FIG. 6a and FIG. 12c-e). For further confirmation of KMT2D-mediated H3K4me1 and H3K4me2 methylation at enhancer regions, we performed H3K4me1 and H3K4me2 quantitative ChIP (qChIP) on the isogenic pairs of KMT2D-knockdown and parental OCI-LY7 cells. We observed substantial loss of H3K4me1 and H3K4me2 in the enhancer regions of SOCS3, TNFAIP3, TRAF3, SGK1 and IKBKB, as compared to their levels in TNS4, which is not a KMT2D target gene (FIG. 6b). Hence, KMT2D targets the regulatory regions of several tumor suppressor genes that control B cell signaling pathways.


Next we probed how KMT2D loss in human lymphoma cells affected the specific functions of key KMT2D targets. We generated isogenic pairs of KMT2D-proficient and KMT2D-deficient human lymphoma cell lines using shRNA knockdown. We identified SOCS3, a negative regulator of STAT3 signaling, as a KMT2D target. Accordingly, we found a reduction of SOCS3 protein levels and an augmentation in the JAK-STAT response to IL-21 stimulation in the KMT2D-deficient cells as compared to those in the isogenic control OCI-LY7 cells (FIG. 6c). Among the KMT2D target genes we also identified key signaling molecules involved in the CD40, B cell receptor (BCR) and Toll-like receptor (TLR) pathways (such as TRAF3, TNFAIP3, MAPK3K8 and DUSP1). Transcriptional expression of many of these target genes, including TNFAIP3, is dependent on CD40 and BCR signal activation (refs. 18,19). Therefore, we tested whether loss of KMT2D in the wild-type KMT2D-containing cell lines OCI-LY7 and SU-DHL4 affected the induction of KMT2D target genes when the cells were stimulated with antibodies to CD40 and IgM. Analysis by qRT-PCR showed that the induction of TNFAIP3 was greatly diminished in both cell lines after KMT2D knockdown (FIG. 6d). CD40 signaling has also been shown to be pro-apoptotic in a panel of DLBCL cell lines20. Therefore we tested if KMT2D knockdown could protect OCI-LY7 cells from apoptosis induced by CD40 signaling and found that, after treatment with antibodies to CD40 and IgM, OCI-LY7 cells harboring the KMT2D-specific shRNA showed reduced cell death induction, as measured by annexin V and DAPI staining (FIG. 6e). We made analogous observations when comparing panels of lymphoma cell lines with WT (OCI-LY7, HT, SU-DHL4) or mutant (OCI-LY1, OCI-LY18, NU-DUL1) KMT2D. For example, OCI-LY7, HT and SU-DHL4 cells (which contain wild-type KMT2D) showed greater growth inhibition than cell lines OCI-LY1, OCI-LY18 and NU-DUL1 (which contain mutant KMT2D) upon treatment with antibody to CD40 alone or in combination with that to IgM (FIG. 6f and FIG. 12g). Similarly, viability assays showed that cells with wild-type KMT2D were more sensitive than cells with mutant KMT2D to CD40 stimulation and had increased levels of apoptosis, as measured by annexin V and DAPI staining (FIG. 6g,h). These differences were not caused by differential CD40 receptor expression, as only OCI-LY18 does not express the CD40 receptor and was not affected by treatment with the CD40-specific antibody (FIG. 12f). Analysis of target gene expression showed that in KMT2D-mutant cell lines there was an overall attenuated transcriptional response for important KMT2D targets such as the tumor suppressor genes TNFAIP3 (A20), NFKBIZ, FAS and DUSP1 (FIG. 6i and FIG. 12h). Hence, KMT2D deficiency affects key effects of BCR, CD40 and JAK-STAT signaling in lymphoma B cells.


It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications that are within the spirit and scope of the invention, as defined by the appended claims.


The following tables are included herein:

    • Table 1. Surface marker analysis in murine lymphomas
    • Table 2. FL and DLBCL subject features and KMT2D mutation
    • Table 3. Downregulated genes in FL subjects with KMT2D mutations and B220+ lymphoma cells from vav-BCL2 tumors
    • Table 4. Leading edge genes from GSEA and genes associated with pathways.


LITERATURE CITED



  • 1. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137-148 (2015).

  • 2. Kridel, R., Sehn, L. H. & Gascoyne, R. D. Pathogenesis of follicular lymphoma. J. Clin. Invest. 122, 3424-3431 (2012).

  • 3. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298-303 (2011).

  • 4. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B cell lymphoma. Nature 471, 189-195 (2011).

  • 5. Hu, D. et al. The MLL3-MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33, 4745-4754 (2013).

  • 6. Herz, H. M. et al. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev. 26, 2604-2620 (2012).

  • 7. Lee, J. E., et al. H3K4 mono- and dimethyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2:e01503 (2013).</unknown>

  • 8. Herz, H. M., Hu, D. & Shilatifard, A. Enhancer malfunction in cancer. Mol. Cell 53, 859-866 (2014).

  • 9. Egle, A. VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 103, 2276-2283 (2004).

  • 10. Oricchio, E. et al. The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell 147, 554-564 (2011).

  • 11. Stadtfeld, M. & Graf, T. Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by noninvasive lineage tracing. Development 132, 203-213 (2005).

  • 12. Santos, M. A. et al. DNA damage-induced differentiation of leukemic cells as an anti-cancer barrier. Nature 514, 107-111 (2014).

  • 13. Hoffman, J. D. et al. Immune abnormalities are a frequent manifestation of Kabuki syndrome. Am. J. Med. Genet. A. 135, 278-281 (2005).

  • 14. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-□B in diffuse large B cell lymphoma. Nature 459, 717-721 (2009).

  • 15. Molavi, O. et al. Gene methylation and silencing of SOCS3 in mantle cell lymphoma. Br. J. Haematol. 161, 348-356 (2013).

  • 16. Cheung, K. J. et al. Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res. 70, 9166-9174 (2010).

  • 17. Guo, C. et al. KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget 4, 2144-2153 (2013).

  • 18. Sarma, V. et al. Activation of the B cell surface receptor CD40 induces A20, a novel zinc-finger protein that inhibits apoptosis. J. Biol. Chem. 270, 12343-12346 (1995).

  • 19. Hsing, Y., Hostager, B. S. & Bishop, G. A. Characterization of CD40 signaling determinants regulating nuclear factor-kappa B activation in B lymphocytes. J. Immunol. 159, 4898-4906 (1997).

  • 20. Hollmann, C. A., Owens, T., Nalbantoglu, J., Hudson, T. J. & Sladek, R. Constitutive activation of extracellular signal-regulated kinase predisposes diffuse large B cell lymphoma cell lines to CD40-mediated cell death. Cancer Res. 66, 3550-3557 (2006).

  • 21. Bjornsson, H. T., et al. Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome. Sci. Transl. Med. 6:256ra135 (2014).</unknown>

  • 22. Højfeldt, J. W., Agger, K. & Helin, K. Histone lysine demethylases as targets for anticancer therapy. Nat. Rev. Drug Discov. 12, 917-930 (2013).23.

  • 23. Li, H. & Durbin, R. Fast and accurate short-read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760 (2009).

  • 24. Jiang, Y., Soong, T. D., Wang, L., Melnick, A. M. & Elemento, O. Genome-wide detection of genes targeted by non-Ig somatic hypermutation in lymphoma. PLoS ONE 7, e40332 (2012).

  • 25. Wacker, S. A., Houghtaling, B. R., Elemento, O. & Kapoor, T. M. Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat. Chem. Biol. 8, 235-237 (2012).

  • 26. Rajadhyaksha, A. M. et al. Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa. Am. J. Hum. Genet. 87, 643-654 (2010).

  • 27. Scott, D. W. et al. Determining cell-of-origin subtypes of diffuse large B cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood 123, 1214-1217 (2014).

  • 28. Hans, C. P. et al. Confirmation of the molecular classification of diffuse large B cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103, 275-282 (2004).

  • 29. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332-337 (2004).

  • 30. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289-1295 (2005).

  • 31. Béguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677-692 (2013).

  • 32. Mavrakis, K. J. et al. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev. 22, 2178-2188 (2008).

  • 33. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250-264 (2008).

  • 34. Ehlich, A., Martin, V., Muller, W. & Rajewsky, K. Analysis of the B cell progenitor compartment at the level of single cells. Curr. Biol. 4, 573-583 (1994).

  • 35. Gostissa, M. et al. Conditional inactivation of p53 in mature B cells promotes generation of nongerminal center-derived B cell lymphomas. Proc. Natl. Acad. Sci. USA 110, 2934-2939 (2013).

  • 36. Brochet, X., Lefranc, M. P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36, W503-W508 (2008).

  • 37. Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028-1038 (2008).

  • 38. Ci, W. et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 113, 5536-5548 (2009).

  • 39. Lee, T. I., Johnstone, S. E. & Young, R. A. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc. 1, 729-748 (2006).

  • 40. Goodarzi, H., Elemento, O. & Tavazoie, S. Revealing global regulatory perturbations across human cancers. Mol. Cell 36, 900-911 (2009).

  • 41. Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley-Interscience, Hoboken, N.J., 2006).

  • 42. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545-15550 (2005).

  • 43. Shaffer, A. L. et al. A library of gene expression signatures to illuminate normal and pathological lymphoid biology. Immunol. Rev. 210, 67-85 (2006).

  • 44. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273 (2003).

  • 45. Mavrakis, K. J. & Wendel, H. G. Translational control and cancer therapy. Cell Cycle 7, 2791-2794 (2008).

  • 46. Lin, S. & Garcia, B. A. Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol. 512, 3-28 (2012).

  • 47. Yuan, Z. F. et al. EpiProfile quantifies histone peptides with modifications by extracting retention time and intensity in high-resolution mass spectra. Mol. Cell. Proteomics 14, 1696-1707 (2015).

  • 48. Festing, M. F. W. & Laboratory Animals Ltd. The Design of Animal Experiments: Reducing the Use of Animals in Research Through Better Experimental Design (Royal Society of Medicine, London, 2002).










TABLE 1







Surface marker analysis of murine vavP-Bcl2 lymphomas










B220+


















CD19+
IgM+
IgD+
IgG1+
GL7+
Thy1+
CD4+
CD8+
Sca-1





VavPBcl2-v1
72.6
19.8
28.9
8.59
53.2
16.3
15.1
4.03
87.3


VavPBcl2-v2
70.4
20.9
21.5
2.55
62.8
26.2
16.2
6.19
90.3


VavPBcl2-v3
62
41.7
50.7
1.51
29.5
31.9
14.9
13.5
83.4


VavPBcl2-v4
73.8
38.2
45.4
5.76
56.2
19.1
10.9
7.44
85.4


VavPBcl2-shKmt2d-1
56.6
24.4
39.2
3.43
33.3
20.4
14.8
7.86
69.9


VavPBcl2-shKmt2d-2
62.5
19.9
36.4
8.18
32
17.9
15.1
7.51
70.3


VavPBcl2-shKmt2d-3
77
16.4
11.7
24.2
67.6
12.9
17.7
2.59
91.5


VavPBcl2-shKmt2d-4
58.9
20
23.8
8.35
48.8
15.8
16.4
4.47
74.1










Surface markers analysis in Kmt2d−/− lymphomas






















IgM
IgD
IgL
CD19
B220
CD138
HSA
CD43
CD11b
CD4
CD8
CD3





Kmt2d−/−
1558



+

+/−
+
int
nd





Kmt2d−/−
2221
+

+
+
low
low
+
low
nd





Kmt2d−/−
4311
low
low
+
low
low
+/−
+
+
nd





Kmt2d−/−
2861
low

low
+
+
+
+
+
nd





Kmt2d−/−
2900
low


low

+/−
+
+
nd





Kmt2d−/−
4341
+
low
+
low
+
+/−
+
low
nd





Kmt2d−/−
2119
+

+
low
low

+
low
nd





Kmt2d−/−
4390
+

+
+
low
+
+
int






Kmt2d−/−
4383
low

+
+
low
+/−
+
int






Kmt2d−/−
1643
low
low
+
+
+

+
low int






Kmt2d−/−
4812
+
+
+

+
low
+
int






Kmt2d−/−
1651



low

+/−
+
int






Kmt2d−/−
4380
+
+
+
+
+

+
+






Kmt2d−/−
4982
low

+

+
+
+
int






Kmt2d−/−
5020



low
+

+
low






Kmt2d−/−
4737
low

low
+
+
+/−

+






Kmt2d−/−
1673

nd

+
low

+
low






Kmt2d−/−
4378
+
+
+
+
+

+
low






Kmt2d−/−
2795
low

+
+
low

+
int
nd





Kmt2d−/−
4384
+
low
+
+
+

+
low






Kmt2d−/−
1719



+


+
int






Kmt2d−/−; AID-tg
1816
low

low
low
+
+
+
low
nd





Kmt2d−/−; AID-tg
622




+
+
+
+
nd





Kmt2d−/−; AID-tg
1910
+

+
+
+
+/−
+
int
nd





Kmt2d−/−; AID-tg
2110
+
low
+
low
+
+
+
low
nd





Kmt2d−/−; AID-tg
19113



+
+
low
+
+
nd








−, negative


+, positive


low, low positive


int, intermedia


nd, not determined























SUPPL TABLE 3





Downregulated genes in FL subjects with KMT2D mutations and


B220+ lymphoma cells from vav-BCL2 mice with Kmt2d knockdown







Downreuglated genes in FL subjects with KMT2D mutations











hgnc_symbol
ensembl
pvalue
log2FoldChange
baseMean





HOOK1
ENSG00000134709
6.28E−08
−2.606026655
706.7347038


KLF11
ENSG00000172059
9.53E−07
−2.370164524
909.6064188


HSPA1A
ENSG00000204389
4.20E−06
−2.401910925
5976.573103


GATA3
ENSG00000107485
5.72E−06
−2.242672978
56.00309097


HSPA1B
ENSG00000204388
5.84E−06
−2.217373949
22492.80402


RARG
ENSG00000172819
1.18E−05
−1.311486444
271.3112


PMEPA1
ENSG00000124225
1.68E−05
−2.129472956
653.6239975


LDOC1L
ENSG00000188636
2.29E−05
−2.02552378
117.4697088


GAS7
ENSG00000007237
2.57E−05
−1.966175677
227.0592444


SLC12A7
ENSG00000113504
3.52E−05
−1.894448891
352.2864915


HSF5
ENSG00000176160
4.15E−05
−1.982160205
199.2051362



ENSG00000244620
6.98E−05
−2.074107287
73.26705493


FBLN2
ENSG00000163520
7.03E−05
−1.938154167
152.8460752


DNAJB1
ENSG00000132002
7.44E−05
−1.725961423
84153.89323


FSCN1
ENSG00000075618
0.000139244
−1.492263287
648.6603338


LGMN
ENSG00000100600
0.000141125
−1.851330386
598.6973801


ZBTB32
ENSG00000011590
0.000160118
−1.653053877
191.3119358


CADM1
ENSG00000182985
0.000165012
−1.937632766
280.200564


INSR
ENSG00000171105
0.00016601
−1.775591642
122.2444057


TOX2
ENSG00000124191
0.000175472
−1.935813853
280.5918922


EPHA4
ENSG00000116106
0.000258582
−1.855175751
109.5839998


JUP
ENSG00000173801
0.000268424
−1.486993433
2295.612852


DIP2B
ENSG00000066084
0.000312881
−0.709884398
4475.311588


DFNB31
ENSG00000095397
0.000317896
−1.469110018
169.2763435


TNRC6C
ENSG00000078687
0.00031964
−1.485288921
931.1163257


KLF3
ENSG00000109787
0.000340936
−1.664604344
730.5146987


IGHV1-24
ENSG00000211950
0.000366089
−1.848397032
202.089348


CCR7
ENSG00000126353
0.000373795
−1.658934272
1849.86227


SELF
ENSG00000174175
0.000392464
−1.640301592
112.0636809


IGHV5-51
ENSG00000211966
0.000447991
−1.757680571
630.4949681


CSF1
ENSG00000184371
0.000487984
−1.732989273
92.5838862


C10orf128
ENSG00000204161
0.000489472
−1.599042647
684.3551232


CELF2-AS1
ENSG00000181800
0.000553244
−1.404190481
76.7017806


MB21D1
ENSG00000164430
0.000588397
−0.867517431
1248.833364


PLBD1
ENSG00000121316
0.000610453
−1.691797845
73.5238732


PRKAG2
ENSG00000106617
0.000614037
−1.542477676
370.9465921


BTBD19
ENSG00000222009
0.000614118
−1.281490271
238.8069845


MYO15B
ENSG00000266714
0.000629424
−1.581909602
5175.793929


SERPINB9
ENSG00000170542
0.000674352
−1.058396243
4643.215211


SELL
ENSG00000188404
0.000702888
−1.195693157
15709.3632


GGT7
ENSG00000131067
0.000715818
−1.605322203
409.1227928


PTGR1
ENSG00000106853
0.000718652
−1.717406138
38.73941355


HSPA6
ENSG00000173110
0.000733966
−1.781914772
5397.603654


CTSW
ENSG00000172543
0.000751669
−1.188254629
74.82128206


NRROS
ENSG00000174004
0.000756384
−1.55748082
423.7121647


KLHL29
ENSG00000119771
0.000756525
−1.418125515
406.3435128


PDCD1
ENSG00000188389
0.000766331
−1.622870799
61.43230126


LTBP3
ENSG00000168056
0.000767411
−1.231417808
1416.607314


SNX9
ENSG00000130340
0.000769685
−1.487982352
1176.107246


CLNK
ENSG00000109684
0.000802396
−1.7229022
1927.054381


HS3ST1
ENSG00000002587
0.000822461
−1.610432857
573.5306956


MVB12B
ENSG00000196814
0.000857942
−1.53314016
193.7879193


SDK2
ENSG00000069188
0.000915363
−1.660615152
881.4188107


HSPA7
ENSG00000225217
0.000920588
−1.696494557
586.6180212


IGHG3
ENSG00000211897
0.000951943
−1.494874772
2906.414024


NA
ENSG00000182909
0.00111216
−1.032777566
80.71002825


MED13L
ENSG00000123066
0.001188338
−0.658233094
6649.698973


ZC3HAV1
ENSG00000105939
0.001240794
−0.726893259
13880.41689


CDYL
ENSG00000153046
0.001283033
−0.683945294
1556.132604


ERRFI1
ENSG00000116285
0.001290286
−1.296969393
79.33536462


PREX1
ENSG00000124126
0.001342103
−1.588815424
2323.837504


SOCS3
ENSG00000184557
0.001353499
−1.341546299
2872.511726


COL9A3
ENSG00000092758
0.001360053
−1.629672474
382.5054064


IL7R
ENSG00000168685
0.001420076
−1.482575543
49.01257605


TNFRSF1B
ENSG00000028137
0.001452244
−1.49147337
961.3391172


NA
ENSG00000197701
0.001484156
−1.607546481
939.2321272


PLCH2
ENSG00000149527
0.001509958
−1.382678088
537.582655


SLC37A2
ENSG00000134955
0.001555573
−1.528370771
96.52147424


CALHM2
ENSG00000138172
0.0015569
−1.248271638
431.2546323


ARID3A
ENSG00000116017
0.001558929
−1.347961842
541.910903


NLRP7
ENSG00000167634
0.001562051
−1.600107604
104.7830301


DOK2
ENSG00000147443
0.001575767
−1.616930201
236.5509308


ZNF433
ENSG00000197647
0.001607769
−1.005493262
207.8991903


AHDC1
ENSG00000126705
0.001646654
−1.275105058
510.3285749


SNAI1
ENSG00000124216
0.001742307
−1.221692456
869.9016096


KLF4
ENSG00000136826
0.00174801
−1.478876785
2119.99914


IGHV3-11
ENSG00000211941
0.001783889
−1.594447265
170.8703115


LRRC56
ENSG00000161328
0.001798764
−1.057658253
359.108889


EGR3
ENSG00000179388
0.001804274
−1.43261652
5883.571467



ENSG00000264781
0.001826948
−1.649283356
170.1717937


MTMR12
ENSG00000150712
0.001842663
−0.656343035
5496.286669



ENSG00000212371
0.001954581
−1.379710068
178.3533953


IGKVI-9
ENSG00000241755
0.002107246
−1.539916047
62.00709916


HLX
ENSG00000136630
0.002123136
−1.522513001
125.2251883


GPR132
ENSG00000183484
0.002136375
−1.333499997
1024.258188


KAZALD1
ENSG00000107821
0.002335779
−1.30357649
59.17193049


IGKV3-11
ENSG00000241351
0.002343156
−1.477833276
306.3712762


PLK3
ENSG00000173846
0.002350355
−0.726482468
3365.839368



ENSG00000233874
0.00237089
−0.555137641
91.38616381


IGKVI-16
ENSG00000240864
0.002430561
−1.569526749
104.1648362


AXIN2
ENSG00000168646
0.002485382
−1.567904975
156.6789534


ARRDC4
ENSG00000140450
0.002504073
−1.559261551
496.355505


IFITM2
ENSG00000185201
0.002665645
−0.93144556
1518.133196


ZMYND11
ENSG00000015171
0.002692508
−0.847938071
2071.931908


C1orf115
ENSG00000162817
0.0027265
−1.577717726
302.0243169


BAG3
ENSG00000151929
0.002741882
−1.331103564
3203.394329


LINC00963
ENSG00000204054
0.002761605
−1.425780833
81.76453826


NMT2
ENSG00000152465
0.00278311
−0.791688205
212.9669998


ARHGEF5
ENSG00000050327
0.00279243
−1.567143123
45.57794457



ENSG00000268015
0.002927409
−0.958910746
48.45373821


CACNA1A
ENSG00000141837
0.002955696
−1.304419472
288.897533


CHORDC1
ENSG00000110172
0.002962833
−0.985695148
9769.159506


CD274
ENSG00000120217
0.003021799
−1.162072546
101.4330369


RN7SK
ENSG00000202198
0.003047549
−1.226467906
1893.629558


HMOX1
ENSG00000100292
0.003249469
−1.262052669
705.3677841


RAB34
ENSG00000109113
0.003362995
−1.456135048
372.0656921


IGHV3-49
ENSG00000211965
0.003409312
−1.499872487
154.1956644



ENSG00000260077
0.003412572
−1.518147581
50.06376417


IL27RA
ENSG00000104998
0.003479438
−0.951994149
1270.998213


SQSTM1
ENSG00000161011
0.003515455
−0.52215924
5545.646248


CLCN7
ENSG00000103249
0.003584541
−0.672514959
6413.100849


JAM3
ENSG00000166086
0.00361224
−1.283885068
429.7201065


SYCE2
ENSG00000161860
0.003695917
−0.646980558
86.46650367


PARP14
ENSG00000173193
0.003720935
−0.896192383
15218.57649


PATL2
ENSG00000229474
0.003819702
−0.907410449
1715.947542


SIK3
ENSG00000160584
0.003872304
−0.531970885
5416.305576


PELI3
ENSG00000174516
0.003885214
−0.74178842
185.2758224


RNF130
ENSG00000113269
0.003918125
−1.331353855
341.1860825


SUFU
ENSG00000107882
0.004023752
−0.541831939
1059.354877


FBXW4
ENSG00000107829
0.004249071
−0.475495941
4387.838616


FAM43A
ENSG00000185112
0.004346381
−1.044728963
2305.832956


CAMKK1
ENSG00000004660
0.004375984
−1.052154902
293.0369706


SPG20
ENSG00000133104
0.004413395
−1.467249269
560.3494788


PRDM1
ENSG00000057657
0.004443008
−1.374809739
739.5559853



ENSG00000203362
0.004568927
−0.843026285
46.85485639


SESTD1
ENSG00000187231
0.004633775
−0.820078329
2728.772328


IGHV1-2
ENSG00000211934
0.004641079
−1.43870881
298.5982172


FGR
ENSG00000000938
0.004657393
−1.390733538
1256.254801


SNORD3A
ENSG00000263934
0.004887424
−1.397721152
178.4536263


C110rf85
ENSG00000168070
0.004903994
−1.480483334
65.77374793


NABP1
ENSG00000173559
0.004978121
−0.976766388
2382.127912



ENSG00000263606
0.004998783
−0.650360155
519.9027944



ENSG00000267216
0.00500429
−0.678572327
51.57936185


PKD1
ENSG00000008710
0.005009649
−0.487782388
3879.783724


PLAUR
ENSG00000011422
0.005024536
−1.196117419
53.72817587


RYKP1
ENSG00000263219
0.005094108
−0.824682147
45.57856763


PIEZO1
ENSG00000103335
0.005101844
−1.364610047
1469.392301


RILPL2
ENSG00000150977
0.005106538
−0.76331206
1848.624506


GPX1
ENSG00000233276
0.005196913
−0.851218057
2568.928957


TCF7
ENSG00000081059
0.005236157
−1.067454918
406.4773948


SMG1P3
ENSG00000180747
0.00525927
−0.678554114
645.4986796


NAALAD2
ENSG00000077616
0.005356353
−0.821532871
269.397953


CD7
ENSG00000173762
0.005444962
−1.408884263
43.76833236


HPS1
ENSG00000107521
0.005557405
−0.387824182
10154.93153


LY6E
ENSG00000160932
0.005655379
−1.376047788
961.3049692


IGLV1-40
ENSG00000211653
0.005660673
−1.214471175
166.1517526


CDC42EP4
ENSG00000179604
0.005801027
−1.188779076
52.43855765


ACSS2
ENSG00000131069
0.005807684
−1.19132702
102.8866055


CD72
ENSG00000137101
0.005834777
−0.959280191
14157.69454


GDF11
ENSG00000135414
0.005876632
−0.898791037
275.7392487


ITGA5
ENSG00000161638
0.005912479
−1.388670037
91.36828002


XAB2
ENSG00000076924
0.005961575
−0.296193042
5034.424651


TNFRSF13B
ENSG00000240505
0.006175912
−1.388276609
1211.91348



ENSG00000265517
0.00621176
−1.372646918
223.6550471


CCND1
ENSG00000110092
0.006298205
−0.994997881
231.3684014


GRK6P1
ENSG00000215571
0.006379697
−0.595153742
98.31827799


TLE1P1
ENSG00000228158
0.006431417
−1.398792453
137.465281


PTPRK
ENSG00000152894
0.006442566
−1.370200204
570.8393436


IGHV3-21
ENSG00000211947
0.006499833
−1.357188874
264.2493277


SERPINB6
ENSG00000124570
0.006546525
−1.313945181
603.0642676


RNF125
ENSG00000101695
0.006701709
−1.357384629
198.4843949


UST
ENSG00000111962
0.006816397
−1.299257377
360.1798649


ZNF492
ENSG00000229676
0.006833281
−1.428684519
47.4562949


TECR
ENSG00000099797
0.006833706
−0.828520855
2142.475421


ARIDSA
ENSG00000196843
0.006839714
−0.783748744
3670.977783


RNF43
ENSG00000108375
0.006882135
−1.165735136
114.2890116


TBXAS1
ENSG00000059377
0.007065814
−1.316926216
157.1527074


GPAT2
ENSG00000186281
0.007110011
−1.38613601
49.83170129


DUSP6
ENSG00000139318
0.007126128
−0.887185222
4858.862542


TNFSF12
ENSG00000239697
0.007145773
−1.121247896
473.6690034



ENSG00000237938
0.007215338
−0.850937628
69.13874639


SCML2
ENSG00000102098
0.007224749
−1.415022461
57.49995465


IL6
ENSG00000136244
0.007334792
−1.205049967
1759.424118


ARNTL
ENSG00000133794
0.007378966
−0.969262593
1525.822384



ENSG00000245017
0.007407381
−0.853435557
44.25613498


NA
ENSG00000251606
0.007422564
−1.283536115
76.81784924


IRAK2
ENSG00000134070
0.007680771
−0.927445761
1868.408049



ENSG00000263751
0.007703752
−1.404398383
171.9567079


ADAT3
ENSG00000213638
0.007712794
−0.614234878
40.82795355


NA
ENSG00000174194
0.007729464
−0.712977978
138.7163078


PARP15
ENSG00000173200
0.007811301
−1.174499508
9328.897754


THRA
ENSG00000126351
0.007897511
−0.865052788
296.1160371


ST6GALNAC3
ENSG00000184005
0.007909181
−1.358396716
42.35874597


HHEX
ENSG00000152804
0.007916049
−0.836242478
6494.896917


JUNB
ENSG00000171223
0.007985014
−0.749184467
62245.27361


ESAM
ENSG00000149564
0.008104033
−1.15466855
306.7436799



ENSG00000230076
0.008137058
−0.629438838
442.5234279


NDRG2
ENSG00000165795
0.008173915
−1.236563446
98.69135497



ENSG00000261207
0.008227809
−0.922712128
106.6976694


SLCO4A1
ENSG00000101187
0.008472558
−1.322724118
143.3655277


NAB2
ENSG00000166886
0.008502231
−0.766644034
1608.845189


MYRIP
ENSG00000170011
0.008800867
−1.38450835
40.53691189


MLF1
ENSG00000178053
0.009016763
−1.366785254
77.73280177


IGKV1-8
ENSG00000240671
0.009100048
−1.2828098
69.70373344


IL15RA
ENSG00000134470
0.009238207
−0.936494606
214.7324397


C10orf32
ENSG00000166275
0.009274214
−0.488659858
929.204537


HSPG2
ENSG00000142798
0.009498091
−1.307391609
67.64690145



ENSG00000260521
0.009553421
−0.515066012
1924.570674


RPL19P21
ENSG00000230508
0.009626061
−0.858190511
205.8398479


KLF9
ENSG00000119138
0.009834837
−1.088107119
1673.680535


CSF1R
ENSG00000182578
0.009881442
−0.781550933
91.52630848


HES6
ENSG00000144485
0.00993007
−1.139381237
176.4842882


HSPE1
ENSG00000115541
0.010061733
−0.83502009
2773.999223



ENSG00000217801
0.010142748
−1.201413301
162.9180178


KRT8P50
ENSG00000260799
0.010200039
−0.745914217
40.24249239


HSP90AA1
ENSG00000080824
0.010324636
−0.810978127
166583.0975


ZNF677
ENSG00000197928
0.010552071
−1.327290514
86.69821157


TCP1
ENSG00000120438
0.010648019
−0.585688181
11059.68746


HSP90AB2P
ENSG00000205940
0.010693579
−0.646087199
555.9836404


NOXA1
ENSG00000188747
0.010804546
−1.144873547
570.2339145


GDPGP1
ENSG00000183208
0.010844745
−0.481764667
130.1386326


IGLV7-43
ENSG00000211652
0.010853388
−1.164768667
41.44311137


MORN1
ENSG00000116151
0.010935368
−0.865462547
166.7716055



ENSG00000266706
0.010954896
−1.34572516
133.5281503


IGLV2-14
ENSG00000211666
0.011049827
−1.159262864
147.920407


RNY1P16
ENSG00000199933
0.011113381
−0.993415692
53.30064432


MAN2A2
ENSG00000196547
0.011123908
−0.67989203
6355.79058



ENSG00000234750
0.011200454
−0.966241286
41.04084603


FRAT1
ENSG00000165879
0.011370555
−0.501404353
1228.096356


CCDC113
ENSG00000103021
0.011493114
−1.051968416
80.64716993


CRAT
ENSG00000095321
0.011494857
−1.263462911
193.767124


PI4K2A
ENSG00000155252
0.011521642
−0.631058792
1899.479914


IGHV3-13
ENSG00000211942
0.011539003
−1.30098874
53.93412894


CHPT1
ENSG00000111666
0.011550456
−0.618869384
2254.916593


APOD
ENSG00000189058
0.011572134
−1.232696043
195.6866898


TRPM2
ENSG00000142185
0.011642077
−1.279229136
350.1801288


ATN1
ENSG00000111676
0.011763253
−0.959922214
4620.846114


CUBN
ENSG00000107611
0.011839579
−1.038946745
337.6392211


CLEC17A
ENSG00000187912
0.011850053
−1.065950296
4117.56126



ENSG00000226915
0.011950717
−0.717010124
106.8592618


ANXA4
ENSG00000196975
0.012046453
−1.222438866
671.3293009


BCAS1
ENSG00000064787
0.012100929
−1.11821548
318.6914879


CRTC3
ENSG00000140577
0.012135728
−0.796529357
2857.465993


TLE1
ENSG00000196781
0.012156023
−1.315249851
951.6040937


SNORD64
ENSG00000270704
0.012340205
−0.976689672
46.5993745


MRPL18
ENSG00000112110
0.012391051
−0.531437021
2477.98452


CD5
ENSG00000110448
0.012428311
−1.207098153
114.9373747


HSPA2
ENSG00000126803
0.012555351
−1.184832125
573.2886948


SLC25A28
ENSG00000155287
0.012587065
−0.540945388
4196.766933


EFCAB12
ENSG00000172771
0.012696544
−0.944380622
874.7597314


ELL
ENSG00000105656
0.012718151
−0.47608329
1528.60021



ENSG00000266408
0.012749697
−1.255563897
163.6684072


PDLIM1P1
ENSG00000270788
0.012768889
−1.111097815
40.22381041


SIRPB1
ENSG00000101307
0.012827767
−1.285673684
257.1286648


TMPPE
ENSG00000188167
0.01293819
−0.594812226
227.9648767


FSIP2
ENSG00000188738
0.013106601
−1.261574775
182.1930909



ENSG00000259363
0.013293063
−1.089505882
73.1916989


NA
ENSG00000271738
0.013337744
−1.010575242
105.2468375


IGLV2-11
ENSG00000211668
0.013360593
−1.261924075
93.33711656


RPS6KL1
ENSG00000198208
0.013384424
−1.017349154
232.6989824



ENSG00000260051
0.013395157
−0.856098969
173.7458631


C17orf51
ENSG00000212719
0.013501487
−1.033206873
117.9556452


FLNA
ENSG00000196924
0.013528771
−0.80118106
12729.56122


APCDD1
ENSG00000154856
0.013768831
−1.204136495
48.51628979


ZNF57
ENSG00000171970
0.013890307
−0.904575927
160.6008636


NFATC3
ENSG00000072736
0.013952989
−0.592538936
5030.012426


HSPD1
ENSG00000144381
0.014079291
−0.834656504
16542.34288


RGMB
ENSG00000174136
0.014121423
−0.969031231
816.7904819



ENSG00000265612
0.01424417
−1.273655611
181.195624


HSP90AA2P
ENSG00000224411
0.014273528
−0.809563115
9517.453407


ANXA1
ENSG00000135046
0.014359378
−1.186019182
66.98079353



ENSG00000231434
0.014402849
−0.820539972
703.996571


PDCD11
ENSG00000148843
0.014512013
−0.393152452
4084.309393


ERICH6-AS1
ENSG00000240137
0.014533272
−0.858461816
77.02174085


MAPK8IP3
ENSG00000138834
0.014598676
−0.678645373
21935.24166


CHL1
ENSG00000134121
0.014607331
−1.256049708
2873.305448


DOPEY2
ENSG00000142197
0.014615774
−0.812167024
3098.701088


DEDD2
ENSG00000160570
0.014620194
−0.755969098
8743.643667


RP9P
ENSG00000205763
0.014658921
−1.20680086
60.63961666


NA
ENSG00000248835
0.014718481
−0.462671362
319.4248328


SIPA1
ENSG00000213445
0.014762347
−0.533353162
15191.76327


UTRN
ENSG00000152818
0.014801752
−0.847065271
6079.33611


FHL1
ENSG00000022267
0.014896032
−1.097678174
65.31473023


LDOC1
ENSG00000182195
0.014902289
−1.284149894
182.101876


TMEM173
ENSG00000184584
0.015038176
−1.131433361
47.81961483


IGHV4-59
ENSG00000224373
0.015071556
−1.159388204
141.0175931


PDLIM7
ENSG00000196923
0.015131305
−0.732939801
1290.000033


ZKSCAN3
ENSG00000189298
0.015291931
−0.361461407
620.9615611


STARD5
ENSG00000172345
0.015316097
−0.619180438
1471.911204


EPHB1
ENSG00000154928
0.015562346
−1.261887238
1051.26415


PRR5
ENSG00000186654
0.015724868
−1.267072882
50.94493953


FBXO6
ENSG00000116663
0.015924967
−0.810615078
444.2864148


IGKV1-12
ENSG00000243290
0.015947631
−1.148121859
41.73155506


IFFO2
ENSG00000169991
0.016114377
−1.019836834
1365.794226


ZNF703
ENSG00000183779
0.016228734
−1.114062663
208.5500355


TBC1D27
ENSG00000128438
0.016513844
−1.22934711
1401.307749


TCTEX1D4
ENSG00000188396
0.016652488
−0.938040149
41.17765798


MSX1
ENSG00000163132
0.016718997
−1.251394405
156.5782407


NLRP6
ENSG00000174885
0.016726927
−1.098990167
54.41473605


IGHV1-46
ENSG00000211962
0.016729207
−1.188249692
92.1533394


CERS6
ENSG00000172292
0.016774947
−1.223816963
194.38565


TMEM8B
ENSG00000137103
0.017062675
−0.533310732
1237.689541


SNORA20
ENSG00000207392
0.017068628
−0.886575436
59.40897376


NA
ENSG00000174111
0.017122423
−0.638358286
321.2116424


TLR4
ENSG00000136869
0.017140445
−1.201233838
518.7400472


SCML1
ENSG00000047634
0.017243146
−1.250568353
435.2201969


AMOT
ENSG00000126016
0.017253164
−1.13474413
273.9477046


SH3RF3
ENSG00000172985
0.017309234
−1.185269628
54.67603133


CHN2
ENSG00000106069
0.017501618
−1.253695566
691.5220056


RRAGD
ENSG00000025039
0.017838901
−1.030968477
193.3427167


GNE
ENSG00000159921
0.017928242
−0.419064032
2274.374385


CD19
ENSG00000177455
0.018308888
−0.509899627
33891.93637


TNNT3
ENSG00000130595
0.01850668
−0.936756888
98.14925769


ITGB7
ENSG00000139626
0.018815613
−0.966572825
5215.626484


CIB1
ENSG00000185043
0.018830561
−0.479005766
6788.374752



ENSG00000264469
0.018884791
−0.69481884
236.3138535


GPD1
ENSG00000167588
0.018936182
−0.643883077
98.13013357


GRAP2
ENSG00000100351
0.019209399
−1.194004512
71.49612787


SLC12A8
ENSG00000221955
0.019220746
−1.005503819
96.32113805


TOR4A
ENSG00000198113
0.01929589
−0.808531582
665.5792394



ENSG00000228143
0.019532879
−0.853784472
41.80405943


IGKV1-27
ENSG00000244575
0.019621737
−1.165439195
85.18834223


MAP1A
ENSG00000166963
0.01975222
−1.022125996
423.4757321


IRF1
ENSG00000125347
0.020115773
−0.668801439
10626.68444


TGM2
ENSG00000198959
0.020407851
−1.133547932
258.9611168


DCBLD2
ENSG00000057019
0.020448429
−1.216961212
46.60052254


BANK1
ENSG00000153064
0.020618461
−0.511113901
35631.35192


TCFL5
ENSG00000101190
0.020743562
−0.636180545
742.9839979


PNMAL1
ENSG00000182013
0.020787187
−1.161353538
48.04038577


TYMP
ENSG00000025708
0.020939726
−0.811615728
1226.980696



ENSG00000227176
0.02098221
−0.911402431
53.9165327


FAM90A1
ENSG00000171847
0.02099384
−0.983626669
56.16716739


CDH13
ENSG00000140945
0.021029805
−1.136767259
40.29529628


CARD9
ENSG00000187796
0.021117524
−0.995073783
217.5525363



ENSG00000227359
0.021229996
−1.126016678
45.80711325



ENSG00000215154
0.021424781
−0.682289565
85.62623181


MTND2P28
ENSG00000225630
0.021531275
−1.075526849
288.2213016


BTBD3
ENSG00000132640
0.021580741
−1.18368154
71.15113667


FAM46C
ENSG00000183508
0.021625756
−0.771754908
18720.49254


ARRDC5
ENSG00000205784
0.021800878
−1.016204994
72.36016585


SPATA6
ENSG00000132122
0.021823805
−1.214065055
62.45963769


ATP2B4
ENSG00000058668
0.022049182
−1.140421472
444.0579454


KIAA0125
ENSG00000226777
0.022107671
−1.15660731
661.657367


MYBPC2
ENSG00000086967
0.022111096
−0.967889346
393.5371292


C21orf140
ENSG00000222018
0.022148374
−0.828459219
47.59763205


SYNPO
ENSG00000171992
0.022195358
−1.090259999
813.8920424


CA11
ENSG00000063180
0.022222987
−0.873093888
272.5468224


CNKSR2
ENSG00000149970
0.022242361
−1.071050097
996.362537


NINJ1
ENSG00000131669
0.022262221
−1.014629363
922.4266601


PIK3R4
ENSG00000196455
0.022351509
−0.369837388
2652.545308


SNORD14E
ENSG00000200879
0.022388624
−0.759407038
462.5671564


PKN3
ENSG00000160447
0.022424372
−0.896253018
506.0252494


STK10
ENSG00000072786
0.02244301
−0.398798107
12049.32294


FAM213A
ENSG00000122378
0.022836876
−0.757713935
506.3941194


IKZF1
ENSG00000185811
0.022841952
−0.412822476
23021.15871


PDGFRB
ENSG00000113721
0.022870116
−1.065747545
61.41169631


GTPBP1
ENSG00000100226
0.022882485
−0.347002526
5962.246064


SCARNA21
ENSG00000252835
0.02301958
−0.979527529
54.59687538


BATF2
ENSG00000168062
0.023059478
−1.097151916
90.58658659


CD48
ENSG00000117091
0.023196459
−0.76188096
8329.524048


IGLV2-23
ENSG00000211660
0.023311434
−1.118587022
139.7149559


HSPB1
ENSG00000106211
0.023530229
−1.13167149
2233.454021


PODXL2
ENSG00000114631
0.023645662
−1.035746757
648.2074529


LDB1
ENSG00000198728
0.023656708
−0.434590018
7288.490979


SLC18B1
ENSG00000146409
0.023699892
−0.760350324
855.7405937


PLXND1
ENSG00000004399
0.023890109
−0.974891276
864.1082873


SDC4
ENSG00000124145
0.023935312
−1.155656524
484.0291519


TBX21
ENSG00000073861
0.023971334
−0.979969137
244.8584004


IGHV3-15
ENSG00000211943
0.024006111
−1.073020891
159.2467412


KCNG1
ENSG00000026559
0.024079196
−1.175195855
71.21895559


IFIT2
ENSG00000119922
0.024080414
−0.79047955
3508.199757


PLCB2
ENSG00000137841
0.024134149
−0.647318237
8241.957018


FAR2P2
ENSG00000178162
0.024243235
−1.083516578
332.3887502


KHDRBS2
ENSG00000112232
0.024245578
−1.183892663
120.1829082


METRN
ENSG00000103260
0.024364815
−0.700828677
226.6386241


DUSP3
ENSG00000108861
0.024505009
−0.714683152
964.0530077


DDAH2
ENSG00000213722
0.024520179
−0.72889651
1379.478662


RBM17P4
ENSG00000259585
0.024594336
−0.351613097
159.5923786


ZNF267
ENSG00000185947
0.024634397
−0.501381917
2596.404339


IGHV3-48
ENSG00000211964
0.024725303
−1.143943773
171.5860897


ZNF597
ENSG00000167981
0.02473649
−0.957524502
542.7136742


PHF20
ENSG00000025293
0.024809101
−0.252735525
4441.204806


KLHL25
ENSG00000183655
0.024899764
−0.541812203
173.0940416


MYOM1
ENSG00000101605
0.024935569
−0.743892948
659.6661694


RABEP2
ENSG00000177548
0.025051723
−0.466575911
8983.660561


NUMBL
ENSG00000105245
0.025063835
−0.512635726
695.6593648


DSE
ENSG00000111817
0.025097389
−0.91952286
625.4506096


IGHV2-26
ENSG00000211951
0.025118403
−0.98558931
50.00836084


NFRKB
ENSG00000170322
0.02514458
−0.285763143
3387.403527


PTCHD2
ENSG00000204624
0.025304818
−1.100355729
62.4863163


RILP
ENSG00000167705
0.025416055
−0.600578964
109.3833789



ENSG00000269896
0.025440795
−0.877356158
177.7866638


ALOX15
ENSG00000161905
0.02552522
−1.102847588
122.0581344


DKK1
ENSG00000107984
0.025619909
−1.181142246
41.77606574



ENSG00000233597
0.025835654
−0.750499917
144.0436501


KLF2
ENSG00000127528
0.025871361
−0.677178429
22016.7369


SIK1
ENSG00000142178
0.025945818
−0.906324575
68402.83126


NEIL2
ENSG00000154328
0.026041419
−0.678441789
701.1145322



ENSG00000233028
0.026047896
−0.747664693
165.6573677


MYO1F
ENSG00000142347
0.026107467
−1.102330974
474.2062267


MYO5B
ENSG00000167306
0.02612698
−1.086714941
57.69740462


FAM129C
ENSG00000167483
0.026440782
−0.713921141
21002.88114


FAM69B
ENSG00000165716
0.026458923
−0.807096159
152.8128786


CPM
ENSG00000135678
0.026459213
−1.045619258
125.5256103


SKI
ENSG00000157933
0.026694256
−0.784390029
1493.096729


CLMN
ENSG00000165959
0.026778966
−1.022945471
763.1112578



ENSG00000258733
0.026903358
−0.963759035
88.5244254


LGALS3BP
ENSG00000108679
0.026903661
−1.03448771
407.4829786


PLTP
ENSG00000100979
0.027089295
−0.86262273
160.7073169


ALDOC
ENSG00000109107
0.027407162
−0.705658636
1369.69727


WDR81
ENSG00000167716
0.027461234
−0.580517147
4867.117434



ENSG00000244480
0.027508668
−0.619413673
108.922964


SYNGR1
ENSG00000100321
0.027565078
−0.919114562
1413.994046


NKG7
ENSG00000105374
0.02770669
−0.915811135
38.48480891


SH3BGR
ENSG00000185437
0.027900178
−0.625091
47.53933385



ENSG00000270442
0.027942198
−0.558009866
58.26058264


CACFD1
ENSG00000160325
0.028100598
−0.611212486
943.356209


NEAT1
ENSG00000245532
0.028125571
−0.664301549
21998.08567


ZSCAN31
ENSG00000235109
0.02824106
−0.700936189
61.94573732


WDFY1
ENSG00000085449
0.028318021
−0.45272126
4749.323481


ARSD
ENSG00000006756
0.028371393
−1.078338413
79.69941964


LINC00884
ENSG00000233058
0.028655818
−0.779689819
41.77406133


CYB5RL
ENSG00000215883
0.028796359
−0.480385523
326.0419821


IFI30
ENSG00000216490
0.028889607
−0.861232978
586.8956869


RPS15AP40
ENSG00000233921
0.029184009
−0.657117578
71.10198154


NRARP
ENSG00000198435
0.029202336
−0.944582958
904.0486298


CD2
ENSG00000116824
0.02951878
−1.148674702
52.69369994


AFF1
ENSG00000172493
0.029522721
−0.820964101
2053.189617


CKAP4
ENSG00000136026
0.029890309
−0.998370867
482.1952569


CELSR3
ENSG00000008300
0.030320353
−0.943170934
567.8092691


CD69
ENSG00000110848
0.030352174
−0.824052158
125525.2147


KREMEN2
ENSG00000131650
0.03093099
−1.040851881
303.5627628


GLTSCR2
ENSG00000105373
0.031020656
−0.428803354
17703.00275



ENSG00000182574
0.03106349
−0.760489093
48.42077363


WIPF2
ENSG00000171475
0.031219271
−0.345258424
5873.987233


ZFYVE27
ENSG00000155256
0.031224253
−0.322528945
5618.218826


IGHV1-3
ENSG00000211935
0.03132182
−1.050139337
84.73989246


DPP7
ENSG00000176978
0.031365163
−0.416176546
10119.77943



ENSG00000265714
0.031388897
−1.110696926
178.2894238


CSGALNACT1
ENSG00000147408
0.031490456
−1.092553024
181.502698


FBXL15
ENSG00000107872
0.031877287
−0.427693864
660.2233671


ADAP2
ENSG00000184060
0.031942642
−0.670802085
777.6831187


CCDC144NL-AS1
ENSG00000233098
0.031965708
−1.131294411
104.9278031


VDR
ENSG00000111424
0.032062003
−1.116989092
764.438711


HSPH1
ENSG00000120694
0.032417519
−0.836036183
37131.89193


LAMP3
ENSG00000078081
0.03243215
−1.002698583
401.7316037


ADAM8
ENSG00000151651
0.032453368
−0.77466405
3725.033253


VWA7
ENSG00000204396
0.03251523
−0.933578055
48.74599777


PLEKHG4
ENSG00000196155
0.032659111
−0.924447286
86.042865


PGAP3
ENSG00000161395
0.032668618
−0.424053351
1319.056036


HSP90AB1
ENSG00000096384
0.032752592
−0.557921944
106947.8432


OAT
ENSG00000065154
0.03279342
−0.707895618
3547.950083


C10orf76
ENSG00000120029
0.032824503
−0.415153356
4550.945215


BPGM
ENSG00000172331
0.032955289
−0.683577542
1577.295769


NR4A2
ENSG00000153234
0.032985333
−0.931532486
31536.93308


PHTF1
ENSG00000116793
0.033376285
−0.483419061
1633.776673


SEMA3B
ENSG00000012171
0.033394342
−0.885056535
90.80456692


TRPV3
ENSG00000167723
0.033458754
−1.040270095
249.3318062


TGIF1
ENSG00000177426
0.033498727
−1.023714282
3928.642239


RAB20
ENSG00000139832
0.033651418
−1.111274053
50.53392861



ENSG00000237989
0.034529095
−1.027494773
1108.405343


DNAJA1
ENSG00000086061
0.03462001
−0.653604105
48893.6446


SLC16A5
ENSG00000170190
0.03470936
−1.059949347
145.7113355


EEF1A1P13
ENSG00000250182
0.034785565
−0.491604877
6606.241509


SLA2
ENSG00000101082
0.034898423
−1.000028585
97.17387756


IGHV3-7
ENSG00000211938
0.034980627
−0.714466274
322.799965


AASS
ENSG00000008311
0.035134334
−1.054848039
191.4758339


MMP17
ENSG00000198598
0.035311394
−1.044396632
358.6460142



ENSG00000260461
0.035351393
−0.591219971
125.5073405


POLL
ENSG00000166169
0.03571765
−0.309837119
1887.888278


CCDC102B
ENSG00000150636
0.035892782
−0.679114211
55.27593255


FBXO24
ENSG00000106336
0.035899011
−0.686220382
48.04625965


CD44
ENSG00000026508
0.035999501
−0.761054415
11474.22524


RAP2B
ENSG00000181467
0.036391863
−0.420652378
2221.716265


TJP3
ENSG00000105289
0.036449432
−0.803301813
63.07905413


CRB2
ENSG00000148204
0.03647401
−0.761576483
356.5059343


PAQR7
ENSG00000182749
0.036503249
−0.750270482
139.3848283


FAM150B
ENSG00000189292
0.036647813
−0.951977341
51.31512636


MIR25
ENSG00000207547
0.036676996
−0.662859949
82.3998348


RNF149
ENSG00000163162
0.036737914
−0.411117723
2220.106209


SLC25A30
ENSG00000174032
0.036770547
−0.571260187
1024.53341


TBKBP1
ENSG00000198933
0.036786213
−1.031552962
598.3495595


DNAJA1P3
ENSG00000215007
0.036797241
−0.667026797
821.4598011


HERC1
ENSG00000103657
0.037076957
−0.403058937
8732.618435


NTN1
ENSG00000065320
0.037085164
−0.924474319
85.40276875


SERPINE1
ENSG00000106366
0.037273577
−1.055427988
66.8821918


PLD4
ENSG00000166428
0.03729425
−1.019128192
1806.498631


TRGV4
ENSG00000211698
0.037313512
−0.776234876
104.3255648


FURIN
ENSG00000140564
0.037342723
−0.783918495
6054.720588


FAM65A
ENSG00000039523
0.037579158
−0.74582307
5572.927206


SPHK1
ENSG00000176170
0.037735568
−0.871859787
65.54749775


LDLRAP1
ENSG00000157978
0.038061603
−0.909970091
117.7267336


ZNF473
ENSG00000142528
0.038233551
−0.394956481
1187.617972



ENSG00000225637
0.038349242
−1.017413232
88.46721738


IL17RA
ENSG00000177663
0.038952707
−0.480252097
2007.789839


PGF
ENSG00000119630
0.039060982
−0.803900141
70.27778726


FPGT-TNNI3K
ENSG00000259030
0.039095308
−0.934364666
78.14747369


IGHJ4
ENSG00000240041
0.039453436
−1.083658923
68.67369071


PAFAH2
ENSG00000158006
0.039631827
−0.336538914
840.1578067


RARA
ENSG00000131759
0.039874593
−0.723110759
1419.615028


TNFRSF12A
ENSG00000006327
0.039963907
−0.81536304
65.12605032


MTMR3
ENSG00000100330
0.040114051
−0.25893991
5906.828642


NAV2
ENSG00000166833
0.040197798
−1.030034484
73.78288523


COL5A2
ENSG00000204262
0.040249337
−0.7596624
140.940164


TMEM184A
ENSG00000164855
0.040323086
−0.776172325
38.78938458


ITPRIP
ENSG00000148841
0.040567224
−0.508058835
4532.6864


TELO2
ENSG00000100726
0.040730743
−0.404082659
3714.008493


KLRF1
ENSG00000150045
0.040747352
−1.066119307
97.28848873



ENSG00000173727
0.040759747
−0.837550411
211.6706785


ABLIM2
ENSG00000163995
0.040992961
−1.035135847
67.87364371


FOXN3P1
ENSG00000176318
0.041038045
−0.606526518
62.8319276


ZNF442
ENSG00000198342
0.041067379
−0.703614518
310.356268


ADCY7
ENSG00000121281
0.041262726
−0.418980171
3909.215889


LFNG
ENSG00000106003
0.041577258
−0.753545533
974.983984


CTRC
ENSG00000162438
0.041988855
−0.780673286
37.71496075


PLAU
ENSG00000122861
0.042150006
−0.891823079
42.02881402


FMNL3
ENSG00000161791
0.042164533
−0.433624987
17082.6478



ENSG00000257924
0.042506737
−1.061502409
83.47856494


RASA3
ENSG00000185989
0.042545385
−0.846872986
2470.783708


LINC00996
ENSG00000242258
0.042572771
−1.035550976
116.4294968


IGLV8-61
ENSG00000211638
0.042738443
−1.000732377
99.88302369


PRR5L
ENSG00000135362
0.042846835
−1.029804623
74.30085527


CHD7
ENSG00000171316
0.043039725
−0.382248282
10036.08605


RASD1
ENSG00000108551
0.043371868
−0.729662829
100.5060963


ALPL
ENSG00000162551
0.043546151
−1.045384778
746.2978616


ZNF14
ENSG00000105708
0.043628376
−0.548291616
938.46441


HERC3
ENSG00000138641
0.043709401
−0.55529592
5095.814568


ALPK2
ENSG00000198796
0.043727694
−1.032704778
43.62858665


C19orf71
ENSG00000183397
0.043838796
−0.46492666
237.8674143


SAFB2
ENSG00000130254
0.043868439
−0.234300485
7831.469912


SLC4A3
ENSG00000114923
0.044069583
−1.01434518
60.38008962


NOTCH1
ENSG00000148400
0.044083672
−0.644278717
4679.644712


HSP90AB3P
ENSG00000183199
0.044148842
−0.51016921
10744.85819


RAB24
ENSG00000169228
0.044247504
−0.540769751
306.0746047


IFNAR2
ENSG00000159110
0.044249509
−0.57905528
1277.573042


PHLDB3
ENSG00000176531
0.044278656
−0.525056477
580.3355019


RAB11FIP5
ENSG00000135631
0.044331533
−0.887300755
160.2423971


CD3E
ENSG00000198851
0.044355198
−0.98148352
81.81750275


NFKBIZ
ENSG00000144802
0.0444216
−0.612527615
15426.39283


CRY1
ENSG00000008405
0.044587701
−1.03683301
59.53112408


UACA
ENSG00000137831
0.044626096
−1.054907938
57.94598744


HSPA1L
ENSG00000204390
0.044830773
−0.97272724
100.8703761


NA
ENSG00000265150
0.044866356
−0.840325803
2852.430192


EPHB6
ENSG00000106123
0.044912739
−0.888922528
741.568143


VASH1
ENSG00000071246
0.044969159
−0.810827913
114.9492951


HEXIM1
ENSG00000186834
0.045075983
−0.709136234
12457.39581


DOK3
ENSG00000146094
0.045190441
−0.508914662
9843.265333


CYSLTR1
ENSG00000173198
0.045294395
−0.811705205
568.8399641


FAM132A
ENSG00000184163
0.045296189
−0.721194648
40.87301843


THEMIS2
ENSG00000130775
0.045303311
−0.830338957
1596.292919


APOL3
ENSG00000128284
0.045618869
−0.840043487
1123.986606


HSP90AA4P
ENSG00000205100
0.045767914
−0.674038632
124.3280168


COL8A2
ENSG00000171812
0.046004526
−0.791211594
43.2095101


C1R
ENSG00000159403
0.046079859
−0.727901518
58.15374921


NA
ENSG00000211939
0.04668379
−1.04207084
147.5792767


PARP9
ENSG00000138496
0.04699084
−0.57515454
2703.29381



ENSG00000250155
0.04702265
−0.604993632
289.3496425


CD6
ENSG00000013725
0.047067069
−0.983694236
371.5244664


REPS1
ENSG00000135597
0.047139536
−0.430978364
4074.643438


RGS12
ENSG00000159788
0.047263148
−0.736972691
166.2071664


MFSD1P1
ENSG00000261868
0.047283726
−0.823923501
43.61282406


SIRT1
ENSG00000096717
0.047448513
−0.582715163
7653.279866


RENBP
ENSG00000102032
0.047486318
−0.860780685
485.363642


NA
ENSG00000198374
0.047529469
−0.837507141
121.7619742


TERF1
ENSG00000147601
0.047580439
−0.251681982
1050.44628


SLC12A6
ENSG00000140199
0.047726963
−0.762319861
1847.516403


SLC2A3P4
ENSG00000254088
0.047864413
−0.826336595
51.67196752


PITPNM3
ENSG00000091622
0.048024601
−0.753384842
51.49363126


WWP2
ENSG00000198373
0.048163726
−0.298834405
6857.522287


ABCD1
ENSG00000101986
0.048378578
−0.497404841
836.1464356


SIGIRR
ENSG00000185187
0.04838764
−0.68612648
666.7086672


RNASET2
ENSG00000026297
0.0485324
−0.570442924
5617.148898



ENSG00000223821
0.04860157
−0.83215865
52.43949408


TPM2
ENSG00000198467
0.048744832
−0.961209154
499.096811


APOBR
ENSG00000184730
0.048874739
−0.780604669
231.9644076


MPP1
ENSG00000130830
0.04896819
−0.925063824
481.2364463


RIN3
ENSG00000100599
0.048970369
−0.981704754
913.562486


CDKN1A
ENSG00000124762
0.049076486
−0.766899361
21148.91718


CDIP1
ENSG00000089486
0.049319306
−0.818503091
456.1616353


FMNL2
ENSG00000157827
0.049491502
−0.91603724
554.9980333


ENO2
ENSG00000111674
0.049505784
−0.691625271
5171.433409


CDKN2D
ENSG00000129355
0.049522938
−0.528084154
2363.226701


EFHD2
ENSG00000142634
0.04968295
−0.472111822
7065.929214



ENSG00000260279
0.049795021
−0.663479043
51.31535361


APOL1
ENSG00000100342
0.049815844
−0.870335664
764.5184107










Genes downregulated in B220 positive lymphoma cells from VavPBcl2 sh-Kmt2d tumors vs VavPBcl2-vector tumors













gene symbol
ensembl
pvalue
padj
log2FoldChange
baseMean
hgnc_symbol





Lpl
ENSMUSG00000015568
2.06E−09
5.00E−06
−2.66849639
49.48262037
LPL


Rgs1
ENSMUSG00000026358
1.00E−08
1.46E−05
−2.816396672
1073.995217
RGS1


Adrbk2
ENSMUSG00000042249
2.55E−08
2.89E−05
−2.316244258
55.76356027
ADRBK2


Dusp1
ENSMUSG00000024190
2.58E−08
2.89E−05
−2.999263903
2217.251525
DUSP1


Klf4
ENSMUSG00000003032
3.02E−08
3.15E−05
−3.287908872
299.2336182
KLF4


Plk2
ENSMUSG00000021701
4.82E−08
4.39E−05
−2.74328799
217.2694707
PLK2


Rasgrp4
ENSMUSG00000030589
1.88E−07
0.000124988
−1.032147316
92.64153278
RASGRP4


Fosb
ENSMUSG00000003545
3.20E−07
0.000180082
−3.477771152
4934.293017
FOSB


Pbx1
ENSMUSG00000052534
3.21E−07
0.000180082
−1.610571041
165.32453
PBX1


Asph
ENSMUSG00000028207
5.71E−07
0.000297659
−1.477735757
27.67753747
ASPH


Wbscr17
ENSMUSG00000034040
1.07E−06
0.000490279
−1.769389326
48.282298
WBSCR17


Scn8a
ENSMUSG00000023033
1.38E−06
0.00059403
−1.909292146
204.8407371
SCN8A


Clu
ENSMUSG00000022037
1.95E−06
0.000749744
−2.124981508
28.97217448
CLU


Grin3a
ENSMUSG00000039579
2.74E−06
0.001001185
−3.456710374
4.798432678
GRIN3A


Marco
ENSMUSG00000026390
2.86E−06
0.001019084
−2.757499587
38.88665003
MARCO


Adcy6
ENSMUSG00000022994
2.97E−06
0.001032043
−3.225511666
7.175592488
ADCY6


Lilrb4
ENSMUSG00000062593
3.23E−06
0.001096783
−1.307407974
109.1638048
LILRB4


Egr1
ENSMUSG00000038418
3.87E−06
0.00120682
−2.660218304
4879.586708
EGR1


Ppp1r15a
ENSMUSG00000040435
3.89E−06
0.00120682
−2.439855766
3085.260647
PPP1R15A


Apobr
ENSMUSG00000042759
4.44E−06
0.001351529
−1.538778953
37.28736229
APOBR


Tns1
ENSMUSG00000055322
4.77E−06
0.001392569
−1.912291852
38.50870665
TNS1


Gramd1b
ENSMUSG00000040111
7.65E−06
0.002068562
−1.743407429
141.2322456
GRAMD1B


Vwf
ENSMUSG00000001930
1.03E−05
0.002633483
−2.382697447
6.738996347
VWF


Nod2
ENSMUSG00000055994
1.27E−05
0.003096494
−0.922291646
221.1208057
NOD2


Siglec1
ENSMUSG00000027322
1.32E−05
0.003136553
−2.726949868
15.52301448
SIGLEC1


Itga2b
ENSMUSG00000034664
1.39E−05
0.003145765
−1.456121576
28.09287216
ITGA2B


Psd2
ENSMUSG00000024347
1.54E−05
0.003304846
−2.125792023
16.96418361
PSD2


Ptp4a1
ENSMUSG00000026064
1.55E−05
0.003304846
−1.976484282
134.8184132
PTP4A1


Pld2
ENSMUSG00000020828
1.58E−05
0.003304846
−1.378714908
94.14783773
PLD2


Slc22a23
ENSMUSG00000038267
1.76E−05
0.003574348
−1.491328389
21.37201334
SLC22A23


Star
ENSMUSG00000031574
2.19E−05
0.004142547
−1.653300584
56.74425576
STAR


Dock5
ENSMUSG00000044447
2.47E−05
0.004561579
−1.896753351
17.43941047
DOCK5


Ptplad2
ENSMUSG00000028497
2.64E−05
0.004641388
−2.061147475
12.38206067
PTPLAD2


Psd3
ENSMUSG00000030465
3.42E−05
0.005605076
−2.04565605
78.56759814
PSD3


Bgn
ENSMUSG00000031375
4.13E−05
0.006613811
−2.297184737
10.41904097
BGN


Slc8a1
ENSMUSG00000054640
4.24E−05
0.006613811
−2.446393473
8.712193186
SLC8A1


Nlrp1b
ENSMUSG00000070390
4.43E−05
0.006739063
−1.371451662
45.31224194
NLRP1


Csf2rb2
ENSMUSG00000071714
4.71E−05
0.007089168
−1.805202078
44.47042122
CSF2RB


Cd69
ENSMUSG00000030156
4.83E−05
0.007114717
−1.697054756
1499.601504
CD69


Sspo
ENSMUSG00000029797
5.13E−05
0.007352169
−1.962387251
14.73690907
SSPO


Dock4
ENSMUSG00000035954
5.28E−05
0.007408941
−2.088623557
14.33005442
DOCK4


Atf3
ENSMUSG00000026628
5.99E−05
0.007872282
−2.272845585
57.89351011
ATF3


6430548M08Rik
ENSMUSG00000031824
6.00E−05
0.007872282
−1.689481524
34.80936177
KIAA0513


Fyco1
ENSMUSG00000025241
6.09E−05
0.007872282
−1.775754791
567.4333134
FYCO1


Gm684
ENSMUSG00000079559
6.22E−05
0.007958499
−2.629265541
30.80289861
COLCA2


Nlgn3
ENSMUSG00000031302
6.81E−05
0.008316188
−1.836724839
13.12952716
NLGN3


Lrp1
ENSMUSG00000040249
6.84E−05
0.008316188
−2.22911854
128.5806173
LRP1


Lrp4
ENSMUSG00000027253
6.90E−05
0.008316188
−2.099484255
8.345478819
LRP4


Havcr2
ENSMUSG00000020399
7.63E−05
0.008987505
−1.899705598
12.39990071
HAVCR2


Nfkbiz
ENSMUSG00000035356
7.81E−05
0.00910765
−1.506989112
638.1804961
NFKBIZ


Trim15
ENSMUSG00000050747
7.87E−05
0.00910765
−2.277779784
5.122292611
TRIM15


6330403A02Rik
ENSMUSG00000053963
8.46E−05
0.009642784
−1.471477346
13.86003662
C1orf95


Slc16a10
ENSMUSG00000019838
9.11E−05
0.010001108
−1.480688129
64.54262
SLC16A10


Padi2
ENSMUSG00000028927
9.58E−05
0.010353618
−1.068143616
260.4942761
PADI2


Frmd4a
ENSMUSG00000026657
0.00010485
0.011253612
−1.72228982
23.05872621
FRMD4A


Tead2
ENSMUSG00000030796
0.000110389
0.011761699
−1.268349705
46.63791248
TEAD2


Fam169a
ENSMUSG00000041817
0.000121609
0.012589575
−1.710241457
9.253708334
FAM169A


Vasn
ENSMUSG00000039646
0.000131586
0.013402871
−2.076497998
139.5475629
VASN


Gp49a
ENSMUSG00000089672
0.000133357
0.013402871
−1.615020534
23.39187201
LILRB4


Tbkbp1
ENSMUSG00000038517
0.000134056
0.013402871
−0.997421145
59.47426537
TBKBP1


Sort1
ENSMUSG00000068747
0.000153184
0.014116364
−1.619502059
39.84809268
SORT1


Itgb1bp2
ENSMUSG00000031312
0.000153449
0.014116364
−2.050345677
8.191181455
ITGB1BP2


Arhgap32
ENSMUSG00000041444
0.000154309
0.014116364
−1.900267823
11.00374662
ARHGAP32


Nrg4
ENSMUSG00000032311
0.000154588
0.014116364
−2.020306571
20.88599242
NRG4


Tspan9
ENSMUSG00000030352
0.000155496
0.014116364
−2.191326532
4.29913557
TSPAN9


Zbtb37
ENSMUSG00000043467
0.000158556
0.014116364
−1.446576548
258.6765671
ZBTB37


Zcchc14
ENSMUSG00000061410
0.000176414
0.015328068
−2.166427137
10.70475468
ZCCHC14


Pde4c
ENSMUSG00000031842
0.0001794
0.015413323
−1.302281586
138.4238558
PDE4C


Ttbk1
ENSMUSG00000015599
0.000183056
0.015413323
−1.390377996
66.39089031
TTBK1


Dnhd1
ENSMUSG00000030882
0.000183285
0.015413323
−0.926979245
204.6546441
DNHD1


Ankrd16
ENSMUSG00000047909
0.000185197
0.015413323
−0.998792317
857.1580809
ANKRD16


Ankrd61
ENSMUSG00000029607
0.000186213
0.015413323
−2.046083793
16.98421956
ANKRD61


Etohil
ENSMUSG00000074519
0.000187954
0.015413323
−1.217110782
68.53278883
ZNF442


Zfp36
ENSMUSG00000044786
0.000190474
0.015532684
−1.456474181
8404.428092
ZFP36


Bbs2
ENSMUSG00000031755
0.000193814
0.01568575
−0.787575799
740.2933078
BBS2


Runx2
ENSMUSG00000039153
0.0001945
0.01568575
−1.904864387
26.56547154
RUNX2


Slc26a1
ENSMUSG00000046959
0.000199211
0.015900571
−1.561801487
11.30257131
SLC26A1


Elk4
ENSMUSG00000026436
0.000206469
0.016011688
−1.624547145
950.3110468
ELK4


Ptk6
ENSMUSG00000038751
0.00020723
0.016011688
−1.850532537
10.82785673
PTK6


Spred3
ENSMUSG00000037239
0.000208979
0.016011688
−1.416959185
31.21992833
SPRED3


Hpn
ENSMUSG00000001249
0.000210983
0.016011688
−2.171439542
6.446607001
HPN


Tbc1d8
ENSMUSG00000003134
0.000214106
0.016011688
−1.470253374
39.44898738
TBC1D8


Carns1
ENSMUSG00000075289
0.000219911
0.016294608
−1.41037029
590.4947326
CARNS1


Stard9
ENSMUSG00000033705
0.000237108
0.017219261
−1.822797935
115.7567616
STARD9


Gpr182
ENSMUSG00000058396
0.000242295
0.017422573
−1.713383849
10.58878259
GPR182


Mfsd2b
ENSMUSG00000037336
0.000252729
0.017829658
−2.138048658
14.80263876
MFSD2B


Fgd4
ENSMUSG00000022788
0.000254064
0.017829658
−2.159733108
4.616439369
FGD4


Dchs1
ENSMUSG00000036862
0.000261269
0.018028809
−1.621875815
17.92123837
DCHS1


Cd4
ENSMUSG00000023274
0.000262997
0.018028809
−1.295262339
134.1673578
CD4


Rims3
ENSMUSG00000032890
0.000270585
0.018029762
−1.950090439
22.81460888
RIMS3


Deptor
ENSMUSG00000022419
0.000274332
0.018029762
−1.772251398
10.1358429
DEPTOR


Zc3h6
ENSMUSG00000042851
0.000276376
0.018029762
−1.316978163
340.8142937
ZC3H6


Fbxl20
ENSMUSG00000020883
0.000276461
0.018029762
−1.400047212
822.1908281
FBXL20


Kcna2
ENSMUSG00000040724
0.000279612
0.018029762
−2.672876169
5.873194136
KCNA2


Chadl
ENSMUSG00000063765
0.000285076
0.018067559
−2.330056283
6.658916452
CHADL


Itgad
ENSMUSG00000070369
0.000285107
0.018067559
−1.501323109
137.956606
ITGAD


Pde1b
ENSMUSG00000022489
0.000285922
0.018067559
−1.27673416
390.0942618
PDE1B


Ceacam16
ENSMUSG00000014686
0.00029084
0.018226519
−1.682749383
227.6048411
CEACAM16


Zfp287
ENSMUSG00000005267
0.000296237
0.018255867
−0.965142445
281.7186824
ZNF287


Klf6
ENSMUSG00000000078
0.000298436
0.018255867
−1.821621138
3288.546144
KLF6


Egr2
ENSMUSG00000037868
0.000298907
0.018255867
−1.393708127
703.293856
EGR2


Gpr35
ENSMUSG00000026271
0.000302486
0.01832109
−1.521787015
16.29382022
GPR35


Clec9a
ENSMUSG00000046080
0.000319253
0.019162219
−1.723879784
13.51143487
CLEC9A


Rhob
ENSMUSG00000054364
0.000324982
0.019162219
−1.748356408
1486.356103
RHOB


Cacnb4
ENSMUSG00000017412
0.000325562
0.019162219
−1.041322794
32.76046261
CACNB4


Adam23
ENSMUSG00000025964
0.000330081
0.019350193
−2.224862791
15.68728041
ADAM23


Arl4c
ENSMUSG00000049866
0.000334635
0.019438666
−1.411187557
49.70635225
ARL4C


Npff
ENSMUSG00000023052
0.000336917
0.019438666
−1.286345909
19.73125903
NPFF


Pdzd4
ENSMUSG00000002006
0.000338417
0.019448302
−2.0564967
17.71933299
PDZD4


Tifab
ENSMUSG00000049625
0.000354388
0.02012841
−1.132022255
29.51786383
TIFAB


Dnajb9
ENSMUSG00000014905
0.000361291
0.020326045
−1.139495968
1169.569645
DNAJB9


Lrrc39
ENSMUSG00000027961
0.000364435
0.020326045
−1.545482427
23.0552134
LRRC39


Tnnt3
ENSMUSG00000061723
0.000386286
0.021118403
−0.987352253
43.77323144
TNNT3


Hspg2
ENSMUSG00000028763
0.000402718
0.021691792
−1.679153333
53.47278252
HSPG2


Zfyve9
ENSMUSG00000034557
0.000418847
0.021992476
−1.764697161
11.76562696
ZFYVE9


Nr4a1
ENSMUSG00000023034
0.000431055
0.022312433
−1.673712587
562.962306
NR4A1


Peli2
ENSMUSG00000021846
0.000435928
0.022402604
−2.422663668
3.880881547
PELI2


Erp27
ENSMUSG00000030219
0.000438927
0.022402604
−1.426292137
51.65998631
ERP27


Zscan30
ENSMUSG00000024274
0.000441607
0.022460416
−1.322286164
24.89340076
ZSCAN30


Fos
ENSMUSG00000021250
0.000464525
0.023301257
−2.357949096
13275.11206
FOS


Ccnd1
ENSMUSG00000070348
0.000466927
0.023341567
−1.17070802
31.02358047
CCND1


Ahnak
ENSMUSG00000069833
0.000470683
0.023358764
−2.062416424
1680.173855
AHNAK


Tet2
ENSMUSG00000040943
0.000474655
0.023358764
−1.897938543
284.6863129
TET2


Socs3
ENSMUSG00000053113
0.000482331
0.023456565
−0.778914185
381.5964304
SOCS3


Fam196b
ENSMUSG00000069911
0.000490387
0.023702587
−2.514870474
4.595410993
FAM196B


Zfp369
ENSMUSG00000021514
0.000494442
0.023748617
−1.665629112
159.9610263
ZNF274


Dgkh
ENSMUSG00000034731
0.000497279
0.023799292
−1.547762715
38.8310628
DGKH


Tgm2
ENSMUSG00000037820
0.000512176
0.024153243
−1.448477355
67.85696055
TGM2


Pde8b
ENSMUSG00000021684
0.000517871
0.024153243
−1.570338766
9.885745994
PDE8B


Ttc39b
ENSMUSG00000038172
0.000521879
0.024153243
−1.252097216
1288.028067
TTC39B


Sgpp2
ENSMUSG00000032908
0.000522421
0.024153243
−1.317481065
36.71535726
SGPP2


Usp35
ENSMUSG00000035713
0.000531228
0.024384685
−1.082047744
115.7539621
USP35


Parvb
ENSMUSG00000022438
0.000533758
0.024424045
−1.639534795
16.94850224
PARVB


Gpr152
ENSMUSG00000044724
0.000579798
0.025802775
−1.686187576
7.310734836
GPR152


Pear1
ENSMUSG00000028073
0.000588984
0.025914239
−0.962898932
752.752543
PEAR1


Ube2i
ENSMUSG00000015120
0.000596984
0.025981678
−1.295610489
954.5547059
UBE2I


Tmcc2
ENSMUSG00000042066
0.000598016
0.025981678
−2.279008363
52.12486744
TMCC2


Sez6l2
ENSMUSG00000030683
0.000607528
0.026082627
−1.174744011
45.06918512
SEZ6L2


Rab11fip2
ENSMUSG00000040022
0.000617794
0.026368242
−1.375870651
262.6668625
RAB11FIP2


Dpm1
ENSMUSG00000078919
0.000619853
0.026378988
−1.454695115
116.1047827
DPM1


Mecp2
ENSMUSG00000031393
0.000638248
0.026848711
−1.062638145
1280.061831
MECP2


Acp2
ENSMUSG00000002103
0.000653192
0.027218676
−1.111920414
157.0098306
ACP2


Samd8
ENSMUSG00000021770
0.000682225
0.027894796
−1.162239057
193.3696486
SAMD8


Iqce
ENSMUSG00000036555
0.000699693
0.028292003
−1.013854798
552.3055062
IQCE


Chrna2
ENSMUSG00000022041
0.000724236
0.028853706
−1.880406556
23.03180046
CHRNA2


Brat
ENSMUSG00000002413
0.000732744
0.029064841
−1.645744132
482.0690938
BRAF


Adam22
ENSMUSG00000040537
0.000736352
0.029128807
−1.467519536
21.67314744
ADAM22


Alpk3
ENSMUSG00000038763
0.000738987
0.029154048
−2.047155916
4.816961555
ALPK3


Zc3hav1l
ENSMUSG00000047749
0.000753422
0.029643379
−1.618197185
30.70909319
ZC3HAV1L


Clcn2
ENSMUSG00000022843
0.000763569
0.029877171
−1.191921359
43.40641403
CLCN2


Slc38a6
ENSMUSG00000044712
0.000776559
0.03008192
−1.048071927
142.5907025
SLC38A6


Tbc1d23
ENSMUSG00000022749
0.000777335
0.03008192
−0.999479142
424.229294
TBC1D23


Ptpdc1
ENSMUSG00000038042
0.000790761
0.030329028
−1.484380314
29.03252488
PTPDC1


Tctn1
ENSMUSG00000038593
0.000795347
0.030329028
−0.622094666
294.8930879
TCTN1


Itpripl2
ENSMUSG00000073859
0.000795977
0.030329028
−1.552002946
8.816377642
ITPRIPL2


Jun
ENSMUSG00000052684
0.000802027
0.030329028
−2.160247006
8020.746127
JUN


Metap1d
ENSMUSG00000041921
0.000802449
0.030329028
−0.609973578
606.0931886
METAP1D


Obscn
ENSMUSG00000061462
0.000803165
0.030329028
−2.183798912
24.35334393
OBSCN


Nr4a2
ENSMUSG00000026826
0.000803594
0.030329028
−1.989067864
25.0441257
NR4A2


Axl
ENSMUSG00000002602
0.000817943
0.03052382
−1.530728281
359.039184
AXL


Cln8
ENSMUSG00000026317
0.000819236
0.03052382
−1.34287642
46.28912776
CLN8


Klf7
ENSMUSG00000025959
0.000819712
0.03052382
−1.223255019
260.61713
KLF7


Ccnl1
ENSMUSG00000027829
0.000822814
0.030561357
−1.11646967
4010.711626
CCNL1


Plp1
ENSMUSG00000031425
0.000837012
0.030853205
−1.401889911
55.30656797
PLP1


Vamp2
ENSMUSG00000020894
0.000840388
0.030899599
−1.12310418
1037.633535
VAMP2


Zfyve28
ENSMUSG00000037224
0.0008486
0.031022264
−0.772489103
57.0132211
ZFYVE28


Lcp2
ENSMUSG00000002699
0.000875632
0.031327442
−0.862374515
510.7997865
LCP2


Gabbr1
ENSMUSG00000024462
0.000890466
0.031740688
−1.346141353
680.5141611
GABBR1


Zfp174
ENSMUSG00000054939
0.000898687
0.031840142
−0.967707083
28.98228042
ZNF174


Thbs3
ENSMUSG00000028047
0.000905663
0.032009602
−1.546344617
12.52096958
THBS3


Fgr
ENSMUSG00000028874
0.000912921
0.032188174
−0.614812973
556.771912
FGR


Ptprm
ENSMUSG00000033278
0.000923418
0.03235568
−2.176539279
10.76546163
PTPRM


Ccr2
ENSMUSG00000049103
0.000957734
0.033085629
−1.546823902
12.46833031
CCR2


Adam11
ENSMUSG00000020926
0.000960738
0.033085629
−2.090077764
35.19529734
ADAM11


Hip1
ENSMUSG00000039959
0.000966141
0.033085629
−1.330696206
182.2892978
HIP1


Sox5
ENSMUSG00000041540
0.000974751
0.03318395
−1.330513151
75.21368604
SOX5


Synpo
ENSMUSG00000043079
0.000990985
0.033407396
−1.438892605
15.99326057
SYNPO


Gm608
ENSMUSG00000068284
0.001001189
0.03367364
−1.739947459
1983.226642
KIAA2018


Pou2f1
ENSMUSG00000026565
0.001007623
0.033812121
−1.607513731
939.7315583
POU2F1


1700028K03Rik
ENSMUSG00000089798
0.001010216
0.033821385
−1.971705771
10.69377346
C1orf146


Nfat5
ENSMUSG00000003847
0.001018325
0.033871836
−1.821256847
1631.378438
NFAT5


Carf
ENSMUSG00000026017
0.001021005
0.033871836
−1.32669663
45.79511781
CARF


Gm614
ENSMUSG00000090141
0.001027951
0.034009558
−1.856503549
9.752766971
CXorf65


Gfra2
ENSMUSG00000022103
0.001037691
0.034009558
−1.972942717
30.54222793
GFRA2


Cttnbp2nl
ENSMUSG00000062127
0.001039136
0.034009558
−1.727450521
13.58433501
CTTNBP2NL


Rad9b
ENSMUSG00000038569
0.001045166
0.034076491
−1.12502387
67.51132281
RAD9B


Rab6b
ENSMUSG00000032549
0.001049312
0.034113143
−0.777837523
231.3277775
RAB6B


Mybpc2
ENSMUSG00000038670
0.001068908
0.034524263
−0.787990887
194.7536505
MYBPC2


Atxn1
ENSMUSG00000046876
0.00106988
0.034524263
−1.825378503
76.01911992
ATXN1


Pik3r6
ENSMUSG00000046207
0.001073783
0.034524263
−1.191103345
28.26961953
PIK3R6


Farp2
ENSMUSG00000034066
0.001109036
0.035225629
−0.971150366
75.08956959
FARP2


Itgam
ENSMUSG00000030786
0.00111149
0.035225629
−1.278158644
109.7427865
ITGAM


Fhdc1
ENSMUSG00000041842
0.001112406
0.035225629
−1.992900235
11.75848047
FHDC1


Gpr157
ENSMUSG00000047875
0.001117337
0.035225629
−1.186495937
51.21112294
GPR157


Sema5a
ENSMUSG00000022231
0.00111973
0.035225629
−1.594643342
57.4750412
SEMA5A


Tdo2
ENSMUSG00000028011
0.001138023
0.035647475
−1.479747742
12.53458474
TDO2


Iqgap2
ENSMUSG00000021676
0.001149215
0.035742861
−1.258050011
29.08656655
IQGAP2


Gda
ENSMUSG00000058624
0.001150863
0.035742861
−1.910003382
32.44621308
GDA


Dusp6
ENSMUSG00000019960
0.001155247
0.035802853
−1.191094253
906.6456664
DUSP6


Il1b
ENSMUSG00000027398
0.001169181
0.03615792
−1.89775988
47.08800643
IL1B


Wdfy1
ENSMUSG00000073643
0.001172593
0.036186753
−1.255042649
371.5815498
WDFY1


Itgax
ENSMUSG00000030789
0.001184169
0.036237565
−1.247330309
172.4690963
ITGAX


Zc3h12c
ENSMUSG00000035164
0.001186863
0.036244013
−1.999811212
145.8967019
ZC3H12C


Fut1
ENSMUSG00000008461
0.001196734
0.036359068
−1.215891369
22.88567235
FUT1


Sspn
ENSMUSG00000030255
0.001202941
0.036359068
−1.77726208
143.8983592
SSPN


Agap1
ENSMUSG00000055013
0.001205321
0.036359068
−1.827005908
9.997808786
AGAP1


Slc20a1
ENSMUSG00000027397
0.001205576
0.036359068
−0.99645932
915.8355255
SLC20A1


Cd5l
ENSMUSG00000015854
0.001211302
0.036383132
−1.673802969
305.6733454
CD5L


Slc38a5
ENSMUSG00000031170
0.001211359
0.036383132
−2.451657428
7.827237746
SLC38A5


Tulp2
ENSMUSG00000023467
0.001227043
0.036597733
−1.630866903
65.52661594
TULP2


Cd300ld
ENSMUSG00000034641
0.001228533
0.036597733
−1.633135674
17.06044102
CD300LD


Dse
ENSMUSG00000039497
0.001242309
0.036857689
−1.383628182
43.67319584
DSE


Man1c1
ENSMUSG00000037306
0.001247163
0.036926658
−1.018797877
43.36779018
MAN1C1


Slc38a9
ENSMUSG00000047789
0.001251777
0.036972668
−0.676897822
589.701862
SLC38A9


Armc9
ENSMUSG00000062590
0.001253783
0.036972668
−0.757768677
151.331344
ARMC9


Dgke
ENSMUSG00000000276
0.001281769
0.037565847
−1.04217362
382.7516859
DGKE


Tagln
ENSMUSG00000032085
0.001305948
0.037631548
−0.799451295
64.02575513
TAGLN


Impg2
ENSMUSG00000035270
0.001306141
0.037631548
−1.277898096
62.07141876
IMPG2


Cyp2u1
ENSMUSG00000027983
0.001307063
0.037631548
−1.625322473
10.96789881
CYP2U1


Per1
ENSMUSG00000020893
0.001329551
0.037848569
−1.493817053
1026.104012
PER1


Wdr78
ENSMUSG00000035126
0.001329929
0.037848569
−1.105139407
80.6910908
WDR78


Piwil2
ENSMUSG00000033644
0.00133989
0.037848569
−1.057180547
16.83165035
PIWIL2


Lcor
ENSMUSG00000025019
0.00134053
0.037848569
−1.802566928
257.9653543
LCOR


Fam126b
ENSMUSG00000038174
0.001346831
0.037879955
−1.514600603
207.8671293
FAM126B


Ar19
ENSMUSG00000063820
0.001361604
0.038010233
−2.007697083
3.970194176
ARL9


Mfsd4
ENSMUSG00000059149
0.001403555
0.038772731
−1.937948775
444.739803
MFSD4


Gem
ENSMUSG00000028214
0.001407793
0.038772731
−1.030813296
735.252472
GEM


Nrp1
ENSMUSG00000025810
0.0014233
0.039126003
−1.026079656
41.49195176
NRP1


Loxl3
ENSMUSG00000000693
0.001433139
0.039253589
−1.091331274
15.85034464
LOXL3


Ctnnd1
ENSMUSG00000034101
0.001433319
0.039253589
−1.456561402
48.63625709
CTNND1


Mtx3
ENSMUSG00000021704
0.001440455
0.03932394
−1.555572943
256.3570554
MTX3


Srgap3
ENSMUSG00000030257
0.00144281
0.03932394
−1.287860548
102.5694615
SRGAP3


Ppp1r3f
ENSMUSG00000039556
0.001456575
0.039593351
−0.748642694
101.5104631
PPP1R3F


Specc1
ENSMUSG00000042331
0.001491099
0.04005965
−1.522339041
38.14391744
SPECC1


Pak1
ENSMUSG00000030774
0.001504271
0.040127081
−1.324409193
15.64719258
PAK1


Tlr8
ENSMUSG00000040522
0.001507355
0.040127081
−1.98114572
13.91611408
TLR8


Aoc2
ENSMUSG00000078651
0.001509198
0.040127081
−1.189031157
87.54427606
AOC2


Ifih1
ENSMUSG00000026896
0.001530799
0.040392874
−0.853168096
77.83204665
IFIH1


Col20a1
ENSMUSG00000016356
0.001534908
0.040392874
−1.195109289
35.60469803
COL20A1


Zfand5
ENSMUSG00000024750
0.001550711
0.04063866
−0.587413401
1199.813172
ZFAND5


Dqx1
ENSMUSG00000009145
0.001567283
0.040865398
−0.944582107
96.17668182
DQX1


Impact
ENSMUSG00000024423
0.001582996
0.040897325
−1.262143225
352.4035286
IMPACT


Guf1
ENSMUSG00000029208
0.001612152
0.040959899
−0.785685742
529.2192097
GUF1


Lilra5
ENSMUSG00000070873
0.001616853
0.040959899
−1.856486125
13.04937651
LILRA5


St8sia1
ENSMUSG00000030283
0.001617552
0.040959899
−0.923887131
30.47780576
ST8SIA1


Evi5
ENSMUSG00000011831
0.00161909
0.040959899
−1.35473236
73.63568417
EVI5


Ptpre
ENSMUSG00000041836
0.001629267
0.041008996
−1.022144533
284.6119241
PTPRE


Vcam1
ENSMUSG00000027962
0.001654649
0.04135772
−1.512930989
463.4984908
VCAM1


Afap1
ENSMUSG00000029094
0.001676451
0.041687418
−1.511150161
26.15138084
AFAP1


Kcna3
ENSMUSG00000047959
0.001680231
0.041687418
−1.421594373
270.7066815
KCNA3


B4galnt2
ENSMUSG00000013418
0.001682119
0.041687418
−1.207778662
11.55931098
B4GALNT2


Mical3
ENSMUSG00000003178
0.001690196
0.041816605
−1.076535212
95.4659356
MICAL3


Sh3bp4
ENSMUSG00000036206
0.001719547
0.042185262
−1.680178506
25.78754028
SH3BP4


P2rx7
ENSMUSG00000029468
0.001728037
0.042322411
−1.011597402
43.62655299
P2RX7


Scai
ENSMUSG00000035236
0.001734236
0.042349233
−1.617574656
1233.894058
SCAI


Ubn2
ENSMUSG00000038538
0.001737836
0.042349233
−1.796709477
791.2081954
UBN2


Ino80d
ENSMUSG00000040865
0.001747516
0.042360628
−1.839055403
1154.013149
INO80D


Sox6
ENSMUSG00000051910
0.001749583
0.042360628
−2.37272878
7.592385073
SOX6


Daam2
ENSMUSG00000040260
0.001759771
0.042528781
−1.79754816
5.46460294
DAAM2


Adamdec1
ENSMUSG00000022057
0.001776703
0.042701049
−1.3876336
77.10787512
ADAMDEC1


Cd46
ENSMUSG00000016493
0.001794176
0.043004253
−1.007818003
41.30256018
CD46


Stx17
ENSMUSG00000061455
0.001798121
0.043028149
−1.118731586
435.4264888
STX17


Ppia
ENSMUSG00000071866
0.001813502
0.043134194
−0.83904338
194.8989037
PPIA


Trpm2
ENSMUSG00000009292
0.00182745
0.043192322
−1.699378652
112.6912182
TRPM2


Hipk2
ENSMUSG00000061436
0.001829821
0.043192322
−1.014916571
297.0900864
HIPK2


Slc14a1
ENSMUSG00000059336
0.001835899
0.043192322
−0.678347814
481.6850918
SLC14A1


Yod1
ENSMUSG00000046404
0.00183753
0.043192322
−1.406278097
173.53393
YOD1


Baz2b
ENSMUSG00000026987
0.001846712
0.043243687
−1.409386369
2296.598948
BAZ2B


Phlda1
ENSMUSG00000020205
0.001849472
0.043243687
−1.136949209
94.65351752
PHLDA1


Taok1
ENSMUSG00000017291
0.001856046
0.043243687
−1.602859887
1238.630797
TAOK1


Ccdc38
ENSMUSG00000036168
0.0018582
0.043243687
−1.410899128
32.88986262
CCDC38


Nrip2
ENSMUSG00000001520
0.001860453
0.043243687
−1.800337069
28.44699656
NRIP2


Ankrd23
ENSMUSG00000067653
0.001914453
0.043976315
−0.941425775
160.7948308
ANKRD23


Neb
ENSMUSG00000026950
0.001925784
0.044129772
−1.54919577
17.68960529
NEB


Guca1b
ENSMUSG00000023979
0.001937385
0.04423654
−1.088884026
42.83725195
GUCA1B


Plcb4
ENSMUSG00000039943
0.001941167
0.04423654
−1.375639815
19.44996019
PLCB4


Kctd18
ENSMUSG00000054770
0.001942565
0.04423654
−1.083525904
347.4675541
KCTD18


Kcnip4
ENSMUSG00000029088
0.001960055
0.044339257
−1.772663601
8.05695919
KCNIP4


Ptar1
ENSMUSG00000074925
0.001977223
0.044339257
−1.062707492
123.9886755
PTAR1


Gramd1a
ENSMUSG00000001248
0.001979745
0.044339257
−0.424852529
3045.373649
GRAMD1A


Ttn
ENSMUSG00000051747
0.001980412
0.044339257
−1.667179394
75.16634357
TTN


Phactr2
ENSMUSG00000062866
0.001983526
0.044339257
−1.025550939
27.5924515
PHACTR2


Rad54l2
ENSMUSG00000040661
0.001993949
0.044436148
−1.525655164
416.5510434
RAD54L2


Tsc22d1
ENSMUSG00000022010
0.00205227
0.045320697
−0.987807941
98.18193001
TSC22D1


Ubc
ENSMUSG00000008348
0.00206653
0.045566668
−0.97134897
2816.026898
UBC


Nav1
ENSMUSG00000009418
0.002092325
0.045858368
−1.905821597
18.05060464
NAV1


Myh10
ENSMUSG00000020900
0.002129334
0.046249219
−1.540387918
16.85034676
MYH10


Ache
ENSMUSG00000023328
0.002135986
0.046249219
−1.552066261
25.655598
ACHE


Tsnaxip1
ENSMUSG00000031893
0.002140448
0.046249219
−1.057077659
69.78482173
TSNAXIP1


Nfix
ENSMUSG00000001911
0.002147465
0.046249219
−0.97261198
51.35588561
NFIX


Alkbh1
ENSMUSG00000079036
0.002153497
0.046249219
−1.010881702
51.29066794
ALKBH1


Katnal1
ENSMUSG00000041298
0.002154394
0.046249219
−0.804276845
223.280228
KATNAL1


Bmp8a
ENSMUSG00000032726
0.002166725
0.046426588
−1.004131251
18.41173419
BMP8A


Lats1
ENSMUSG00000040021
0.002174684
0.046426588
−1.376277679
1162.252141
LATS1


Clec4n
ENSMUSG00000023349
0.002183619
0.046426588
−1.386549259
81.89343304
CLEC6A


Efcab5
ENSMUSG00000050944
0.002189126
0.046426588
−1.489437872
9.929930977
EFCAB5


Sparc
ENSMUSG00000018593
0.002192419
0.046426588
−1.975327488
9.129997659
SPARC


Cbl
ENSMUSG00000034342
0.00220791
0.046426588
−1.744766638
782.9917131
CBL


Klhl11
ENSMUSG00000048732
0.002213644
0.046426588
−1.343955816
146.3406721
KLHL11


Enpp4
ENSMUSG00000023961
0.002214191
0.046426588
−1.321217721
22.62334124
ENPP4


Plekhn1
ENSMUSG00000078485
0.00221426
0.046426588
−1.136355252
138.9971781
PLEKHN1


Ppp1r32
ENSMUSG00000035179
0.00221962
0.046426588
−1.523298784
9.419578344
PPP1R32


Mtss1l
ENSMUSG00000033763
0.002221923
0.046426588
−1.174775994
14.1449068
MTSS1L


Galnt3
ENSMUSG00000026994
0.002236168
0.046426588
−1.762087884
18.76526829
GALNT3


Il9r
ENSMUSG00000020279
0.002236372
0.046426588
−0.97765408
3809.992506
IL9R


Tbc1d2b
ENSMUSG00000037410
0.002267764
0.046696408
−0.999270003
85.55462826
TBC1D2B


Trip11
ENSMUSG00000021188
0.0022702
0.046696408
−1.535176925
800.9216782
TRIP11


Tmem86b
ENSMUSG00000045282
0.002286901
0.046884685
−1.047217658
63.04238682
TMEM86B


Syne1
ENSMUSG00000019769
0.0023038
0.047058371
−1.877779368
3279.656252
SYNE1


Gp1ba
ENSMUSG00000050675
0.002311492
0.047058371
−1.356583323
31.53577933
GP1BA


Pfkfb2
ENSMUSG00000026409
0.002322318
0.047212926
−1.497045407
294.8531523
PFKFB2


Cbx7
ENSMUSG00000053411
0.002328259
0.047267858
−0.715779175
3459.102659
CBX7


Al607873
ENSMUSG00000073490
0.00234156
0.047429523
−1.296738804
35.49601509
IFI16


Map3k12
ENSMUSG00000023050
0.002355717
0.047429523
−0.829678314
102.446822
MAP3K12


Zbtb20
ENSMUSG00000022708
0.002379116
0.04770324
−1.820714241
2455.246872
ZBTB20


Dennd2a
ENSMUSG00000038456
0.0024103
0.048185748
−1.350111632
15.06832752
DENND2A


Cd300e
ENSMUSG00000048498
0.002414153
0.048185748
−1.729362091
29.660255
CD300E


Mycbp2
ENSMUSG00000033004
0.002439526
0.048361253
−1.568007187
5286.770923
MYCBP2


Tnrc6b
ENSMUSG00000047888
0.002447265
0.048361253
−1.560737971
1599.751295
TNRC6B


Shank1
ENSMUSG00000038738
0.002448377
0.048361253
−1.643087277
209.4328718
SHANK1


Sntb2
ENSMUSG00000041308
0.002486274
0.048911235
−1.090574093
73.33470884
SNTB2


Dbndd2
ENSMUSG00000017734
0.002535013
0.049135724
−1.73560582
4.677556244
DBNDD2


Cd300lf
ENSMUSG00000047798
0.002553957
0.049144066
−1.322632383
273.8252648
CD300LF


Crb2
ENSMUSG00000035403
0.002555343
0.049144066
−0.947061108
29.09071441
CRB2


Krba1
ENSMUSG00000042810
0.002567868
0.049255149
−0.83320778
579.0831227
KRBA1


Kel
ENSMUSG00000029866
0.002579825
0.049307603
−2.261612038
11.44607619
KEL


Orai2
ENSMUSG00000039747
0.002580736
0.049307603
−0.822809874
729.947539
ORAI2


Rsad2
ENSMUSG00000020641
0.002600861
0.049562356
−1.537633979
50.73956779
RSAD2


Rpl9
ENSMUSG00000047215
0.002641511
0.050271371
−0.858074342
387.871764
RPL9


Map3k8
ENSMUSG00000024235
0.002670136
0.050679991
−0.975127519
333.0591158
MAP3K8


Ccdc15
ENSMUSG00000034303
0.002675095
0.050679991
−1.302502076
98.21644668
CCDC15


Leng8
ENSMUSG00000035545
0.002699137
0.050964335
−1.467377723
2103.885735
LENG8


Mdn1
ENSMUSG00000058006
0.002712939
0.050964335
−1.7505979
1735.486177
MDN1


Dclre1b
ENSMUSG00000027845
0.002724063
0.050964335
−0.57992325
219.655892
DCLRE1B


Sowaha
ENSMUSG00000044352
0.002733984
0.050964335
−2.238144676
3.917222135
SOWAHA


2410089E03Rik
ENSMUSG00000039801
0.002769457
0.051366919
−1.348311345
390.3736865
C5orf42


Rasgrf1
ENSMUSG00000032356
0.002787622
0.051507493
−2.052113626
4.694585864
RASGRF1


Sh2d4b
ENSMUSG00000037833
0.002802791
0.051670273
−1.537446362
9.694337764
SH2D4B


Zfp398
ENSMUSG00000062519
0.002803511
0.051670273
−0.915779997
299.5144412
ZNF398


Col27a1
ENSMUSG00000045672
0.0028163
0.051783881
−1.845653573
81.36372086
COL27A1


Myo5a
ENSMUSG00000034593
0.002822162
0.051792157
−1.396819539
2909.691163
MYO5A


Abl2
ENSMUSG00000026596
0.002838045
0.051848492
−1.628702314
1225.082798
ABL2


Krt80
ENSMUSG00000037185
0.002841812
0.051852421
−1.746138151
6.231696218
KRT80


Tnn
ENSMUSG00000026725
0.002875676
0.052209263
−1.959886816
5.971039031
TNN


Thbs1
ENSMUSG00000040152
0.002887544
0.052294633
−1.298747578
8.562818138
THBS1


1700094D03Rik
ENSMUSG00000078667
0.002929464
0.052651874
−0.732196825
209.5151333
C1orf189


Ash1l
ENSMUSG00000028053
0.002932519
0.052651874
−1.754682273
1970.209966
ASH1L


Tmc4
ENSMUSG00000019734
0.002960344
0.052858346
−1.004546281
54.44834478
TMC4


Hp
ENSMUSG00000031722
0.002960995
0.052858346
−1.83794817
8.653475049
HP


Nav2
ENSMUSG00000052512
0.002963538
0.052858346
−1.782120759
107.5243491
NAV2


Catsperg1
ENSMUSG00000049676
0.002968173
0.052858346
−1.508112659
12.13922305
CATSPERG


Sec61a2
ENSMUSG00000025816
0.002969651
0.052858346
−0.877853229
93.98347743
SEC61A2


Prdm9
ENSMUSG00000051977
0.002972988
0.052858346
−1.429579504
115.538749
PRDM9


Cd300a
ENSMUSG00000034652
0.002998384
0.053245034
−1.403402141
77.70668999
CD300A


Slc25a37
ENSMUSG00000034248
0.003008499
0.053294975
−1.134730368
1650.989541
SLC25A37


Tnfaip2
ENSMUSG00000021281
0.003039429
0.053612831
−1.775717837
45.89237934
TNFAIP2


Chd2
ENSMUSG00000078671
0.003041133
0.053612831
−1.591895817
2542.436522
CHD2


Ikzf2
ENSMUSG00000025997
0.003048044
0.053669846
−1.404534203
24.58346807
IKZF2


Fam43a
ENSMUSG00000046546
0.003078616
0.053934152
−1.417878054
907.7240983
FAM43A


Akap7
ENSMUSG00000039166
0.00309197
0.053934152
−0.655605359
145.4381737
AKAP7


Bhlhe40
ENSMUSG00000030103
0.003129818
0.05432337
−1.04247025
667.5769426
BHLHE40


Stac3
ENSMUSG00000040287
0.003133567
0.054323852
−1.266363504
20.95984489
STAC3


Dact1
ENSMUSG00000044548
0.003185813
0.054870363
−1.342059338
11.41799361
DACT1


Fyb
ENSMUSG00000022148
0.003191156
0.054870363
−1.610030752
122.6887965
FYB


Avil
ENSMUSG00000025432
0.003214187
0.054947866
−1.255659772
16.17126052
AVIL


Kcnd1
ENSMUSG00000009731
0.003247193
0.055250963
−1.599185958
6.01168036
KCND1


Csf3r
ENSMUSG00000028859
0.003255178
0.055250963
−1.642389834
33.57414213
CSF3R


Rmnd1
ENSMUSG00000019763
0.003321531
0.056009456
−0.48995226
276.3258512
RMND1


Setd1a
ENSMUSG00000042308
0.003327595
0.056009456
−1.041558973
418.5694017
SETD1A


Gan
ENSMUSG00000052557
0.003330562
0.056009456
−1.473204946
43.50547852
GAN


Zc3h12b
ENSMUSG00000035045
0.003337328
0.056058662
−1.896993441
7.052766727
ZC3H12B


Zbtb34
ENSMUSG00000068966
0.00334372
0.056101467
−1.427308398
133.0693166
ZBTB34


Cdh1
ENSMUSG00000000303
0.003348595
0.056118755
−1.881882209
7.820055577
CDH1


Ypel4
ENSMUSG00000034059
0.003358768
0.05612327
−2.11772407
7.526145089
YPEL4


Tubb4a
ENSMUSG00000062591
0.003361102
0.05612327
−0.786324181
49.46057703
TUBB4A


Ffar3
ENSMUSG00000019429
0.003375778
0.05612327
−1.202308212
17.75717605
FFAR3


B3gntl1
ENSMUSG00000046605
0.003386681
0.056162854
−0.771750202
178.7966126
B3GNTL1


Syngap1
ENSMUSG00000067629
0.003410452
0.056288681
−1.215855871
13.03974214
SYNGAP1


Nsd1
ENSMUSG00000021488
0.003413082
0.056288681
−1.375376804
2148.679253
NSD1


Brwd1
ENSMUSG00000022914
0.003416577
0.056288681
−1.336369197
2984.392424
BRWD1


Abcc10
ENSMUSG00000032842
0.003447156
0.056728455
−0.92578508
166.5399318
ABCC10


Sgk1
ENSMUSG00000019970
0.003472636
0.056928135
−1.217964374
242.1021591
SGK1


Sept8
ENSMUSG00000018398
0.003473557
0.056928135
−1.662776306
15.29154322
SEPT8


Il18rap
ENSMUSG00000026068
0.003478685
0.056928135
−1.294182699
18.67261236
IL18RAP


Pak6
ENSMUSG00000074923
0.003484399
0.056928135
−1.38425969
28.95921849
PAK6


Cxcr2
ENSMUSG00000026180
0.003496867
0.056928135
−1.643901634
6.206052059
CXCR2


Arrb1
ENSMUSG00000018909
0.00349829
0.056928135
−1.261598395
460.854442
ARRB1


Golgb1
ENSMUSG00000034243
0.003536364
0.057322531
−1.586091342
1426.180884
GOLGB1


Znrf3
ENSMUSG00000041961
0.003552849
0.057358555
−1.289816816
115.5558828
ZNRF3


Herc1
ENSMUSG00000038664
0.003553369
0.057358555
−1.600993273
2288.188266
HERC1


Rfx3
ENSMUSG00000040929
0.00364492
0.05799888
−1.44710635
277.553011
RFX3


Kcnc3
ENSMUSG00000062785
0.003666679
0.05799888
−1.108328538
54.16139083
KCNC3


Card9
ENSMUSG00000026928
0.003673456
0.05799888
−1.389264569
8.917365199
CARD9


Srcap
ENSMUSG00000090663
0.003676912
0.05799888
−1.153580425
748.3731953
SRCAP


Nova1
ENSMUSG00000021047
0.003680797
0.05799888
−1.007380636
59.97185208
NOVA1


Nid2
ENSMUSG00000021806
0.00369383
0.05799888
−1.610131061
4.342383157
NID2


Coro2b
ENSMUSG00000041729
0.003696141
0.05799888
−0.936981347
219.8276205
CORO2B


Ccdc88c
ENSMUSG00000021182
0.003699182
0.05799888
−1.40760636
2689.728726
CCDC88C


Rnasel
ENSMUSG00000066800
0.003716039
0.058030887
−1.222592056
150.2687524
RNASEL


Maml3
ENSMUSG00000061143
0.003767585
0.058640834
−1.36668595
50.91665869
MAML3


Rnf170
ENSMUSG00000013878
0.003769616
0.058640834
−0.820828806
111.3265901
RNF170


Pigm
ENSMUSG00000050229
0.003819737
0.058964109
−1.080536143
886.5961741
PIGM


Srcap
ENSMUSG00000053877
0.003827437
0.058964109
−1.52836921
708.9162389
SRCAP


Dennd1c
ENSMUSG00000002668
0.003846367
0.058964109
−0.471981213
1600.046754
DENND1C


Hebp1
ENSMUSG00000042770
0.003846644
0.058964109
−1.488000117
56.87657606
HEBP1


Tnfsf15
ENSMUSG00000050395
0.003858959
0.059045314
−1.441145642
7.753118656
TNFSF15


Abca1
ENSMUSG00000015243
0.003867151
0.059083883
−1.52438333
1690.872149
ABCA1


Arih2
ENSMUSG00000064145
0.003869712
0.059083883
−0.563328206
727.5401647
ARIH2


Wfikkn1
ENSMUSG00000071192
0.003885635
0.059083883
−1.257147849
12.30750834
WFIKKN1


Slc45a3
ENSMUSG00000026435
0.003888102
0.059083883
−1.434128841
17.82713476
SLC45A3


Trip6
ENSMUSG00000023348
0.003894598
0.059095054
−0.966567622
56.87380867
TRIP6


Dstyk
ENSMUSG00000042046
0.003906042
0.059185894
−1.553150494
129.1257716
DSTYK


Arhgap39
ENSMUSG00000033697
0.00392035
0.059185894
−0.928186181
161.7130493
ARHGAP39


Bmp2k
ENSMUSG00000034663
0.003927368
0.059185894
−1.120089834
2711.929603
BMP2K


Cep250
ENSMUSG00000038241
0.003934201
0.059185894
−1.460020135
1147.850975
CEP250


Far2
ENSMUSG00000030303
0.00397624
0.059346804
−1.622020245
48.45500845
FAR2


Sowahc
ENSMUSG00000071286
0.003990287
0.059392796
−1.093748254
268.1302328
SOWAHC


Spata1
ENSMUSG00000028188
0.003997948
0.059392796
−0.860112342
58.1100795
SPATA1


Arhgap29
ENSMUSG00000039831
0.00400681
0.059438427
−1.570536108
19.1194466
ARHGAP29


Mxd1
ENSMUSG00000001156
0.004018874
0.059515288
−0.856241302
320.1744354
MXD1


Aasdh
ENSMUSG00000055923
0.004028825
0.059539384
−0.759002725
331.7909899
AASDH


Tmem8b
ENSMUSG00000078716
0.004029932
0.059539384
−0.995315434
23.33478386
TMEM8B


Mdm4
ENSMUSG00000054387
0.004063883
0.059841595
−1.596188925
1628.120635
MDM4


Myo1h
ENSMUSG00000066952
0.004086459
0.059841595
−1.177975603
48.93474814
MYO1H


Mapk8ip3
ENSMUSG00000024163
0.004103724
0.059841595
−1.170440197
1821.199673
MAPK8IP3


Zbtb46
ENSMUSG00000027583
0.004124179
0.059841595
−1.126693849
33.20585388
ZBTB46


Szt2
ENSMUSG00000033253
0.004138726
0.059993027
−1.12068361
1435.76862
SZT2


Arhgap33
ENSMUSG00000036882
0.004205858
0.060304885
−1.015205327
132.308769
ARHGAP33


Adora3
ENSMUSG00000000562
0.00425102
0.060680686
−1.725183182
4.984216455
ADORA3


Tor1aIp2
ENSMUSG00000050565
0.004283291
0.060938789
−1.338929927
560.3701064
TOR1AIP2


Etv6
ENSMUSG00000030199
0.004318738
0.061026738
−0.818437178
629.1260978
ETV6


Cpeb4
ENSMUSG00000020300
0.004334407
0.061070791
−1.467384446
502.19185
CPEB4


1810046K07Rik
ENSMUSG00000036027
0.004342074
0.061092939
−1.60859306
24.11001019
C11orf53


Phc3
ENSMUSG00000037652
0.00439176
0.061308249
−1.556736277
1067.209404
PHC3


Slco2a1
ENSMUSG00000032548
0.004433474
0.06162591
−1.054883975
71.23045085
SLCO2A1


Plekhm3
ENSMUSG00000051344
0.004439294
0.06162591
−1.255686597
1386.353413
PLEKHM3


4833420G17Rik
ENSMUSG00000062822
0.004468578
0.06171035
−0.536805313
1272.52028
C5orf34


Igfbp7
ENSMUSG00000036256
0.004485698
0.061728754
−1.739114272
11.93676987
IGFBP7


Ffar1
ENSMUSG00000044453
0.004486827
0.061728754
−1.423557065
294.0493983
FFAR1


Fbxo24
ENSMUSG00000089984
0.004535313
0.06191093
−1.163643833
15.0020521
FBXO24


Papss2
ENSMUSG00000024899
0.00453824
0.06191093
−1.517502056
8.874841112
PAPSS2


Pkd1l3
ENSMUSG00000048827
0.004546556
0.061966459
−1.21493691
38.22903908
PKD1L3


Hemgn
ENSMUSG00000028332
0.004579932
0.062117596
−1.325076701
182.0621619
HEMGN


Wwc2
ENSMUSG00000031563
0.004601686
0.062117596
−1.45414707
22.74419776
WWC2


Rnd3
ENSMUSG00000017144
0.004616673
0.062117596
−1.233769836
12.48476459
RND3


Snai1
ENSMUSG00000042821
0.004633021
0.062117596
−1.105681494
12.17247913
SNAI1


Sdc3
ENSMUSG00000025743
0.004667927
0.062340096
−1.293709622
349.3145776
SDC3


Ptprf
ENSMUSG00000033295
0.004715146
0.062573088
−2.05447342
9.076929938
PTPRF


Myo10
ENSMUSG00000022272
0.004716172
0.062573088
−1.168366523
63.26967784
MYO10


Tep1
ENSMUSG00000006281
0.004787927
0.063161972
−0.95245391
981.7871334
TEP1


Zfp112
ENSMUSG00000052675
0.004829136
0.063163419
−1.041550117
19.37446062
ZNF112


Zmym3
ENSMUSG00000031310
0.004843402
0.063194562
−0.541459127
745.7185446
ZMYM3


Csrnp1
ENSMUSG00000032515
0.004844469
0.063194562
−0.636381524
2137.416521
CSRNP1


Rnf213
ENSMUSG00000070327
0.004854846
0.063273376
−1.534003425
3460.74652
RNF213


Pik3c2b
ENSMUSG00000026447
0.004872695
0.063400617
−1.281902831
3027.686018
PIK3C2B


AW554918
ENSMUSG00000033632
0.004923976
0.063400617
−0.665426781
264.6898486
KIAA1328


Junb
ENSMUSG00000052837
0.004964373
0.063400617
−1.077389476
5217.437044
JUNB


Mgat4a
ENSMUSG00000026110
0.004972945
0.063400617
−1.18800224
987.5953597
MGAT4A


Cd302
ENSMUSG00000060703
0.004975971
0.063400617
−1.188706479
38.06684966
CD302


Tmcc3
ENSMUSG00000020023
0.004979606
0.063400617
−1.258450169
151.4550485
TMCC3


Kcng1
ENSMUSG00000074575
0.004989246
0.063400617
−1.206992014
51.83194036
KCNG1


Mtcp1
ENSMUSG00000031200
0.004997812
0.063400617
−1.27792211
138.7569717
CMC4


Amigo3
ENSMUSG00000032593
0.005013296
0.063400617
−1.231008729
98.18197283
AMIGO3


Map3k9
ENSMUSG00000042724
0.00502935
0.063400617
−1.29755695
800.0182799
MAP3K9


Insr
ENSMUSG00000005534
0.005031478
0.063400617
−1.401230214
410.6007626
INSR


Hfe
ENSMUSG00000006611
0.005034001
0.063400617
−1.420298017
41.01244102
HFE


Tnfaip3
ENSMUSG00000019850
0.005048695
0.063476148
−1.293504858
1834.228509
TNFAIP3


Tmem170b
ENSMUSG00000087370
0.005100505
0.06396329
−1.242339415
281.2235186
TMEM170B


St6galnac2
ENSMUSG00000057286
0.005162675
0.064301438
−1.296597821
13.47907473
ST6GALNAC2


Adamtsl4
ENSMUSG00000015850
0.00518308
0.064301438
−1.039438821
106.148533
ADAMTSL4


Plxnb3
ENSMUSG00000031385
0.005185852
0.064301438
−1.383598251
11.54105353
PLXNB3


1700029J07Rik
ENSMUSG00000071103
0.005189223
0.064301438
−1.006833881
124.0464484
C4orf47


Ghrl
ENSMUSG00000064177
0.005282908
0.064484775
−1.945347672
6.752720904
GHRL


Zfp831
ENSMUSG00000050600
0.005322418
0.064745525
−1.442124786
738.7168355
ZNF831


Ankrd11
ENSMUSG00000035569
0.005327079
0.064745525
−1.481449147
3727.235855
ANKRD11


Ikbke
ENSMUSG00000042349
0.005392208
0.065103445
−0.804442999
270.451603
IKBKE


Hspa1a
ENSMUSG00000091971
0.00540187
0.065107898
−2.01272039
1638.470421
HSPA1B


Hspa1a
ENSMUSG00000091971
0.00540187
0.065107898
−2.01272039
1638.470421
HSPA1A


Smg1
ENSMUSG00000030655
0.005414353
0.065107898
−1.620661319
5537.654304
SMG1


Paqr9
ENSMUSG00000064225
0.005415298
0.065107898
−1.43889666
11.23505493
PAQR9


Huwe1
ENSMUSG00000025261
0.005430988
0.065158666
−1.474874189
6709.960857
HUWE1


Atp8b4
ENSMUSG00000060131
0.005432493
0.065158666
−1.153326875
29.11909392
ATP8B4


Trim7
ENSMUSG00000040350
0.005460034
0.065221046
−0.749729901
2125.564446
TRIM7


Iffo1
ENSMUSG00000038271
0.005469791
0.065284165
−0.723614942
782.5437224
IFFO1


Lrrc16b
ENSMUSG00000022211
0.005517392
0.065322115
−0.916604133
48.51566458
LRRC16B


Zfp113
ENSMUSG00000037007
0.005517721
0.065322115
−1.073910455
182.7190222
ZNF3


Slc4a8
ENSMUSG00000023032
0.005534959
0.065394022
−1.021457519
698.6968473
SLC4A8


Kcnb1
ENSMUSG00000050556
0.005542382
0.065401897
−0.987740681
109.5872635
KCNB1


Wdr13
ENSMUSG00000031166
0.005596886
0.065779187
−1.161926916
368.6716062
WDR13


Mob1b
ENSMUSG00000006262
0.005616374
0.065955123
−0.977642742
507.2650533
MOB1B


Zcchc7
ENSMUSG00000035649
0.005624965
0.065991755
−1.033788412
1941.581156
ZCCHC7


Col7a1
ENSMUSG00000025650
0.005628536
0.065991755
−1.147532895
27.14193201
COL7A1


Mybpc3
ENSMUSG00000002100
0.005654101
0.066079188
−1.16002188
11.44074656
MYBPC3


Zzef1
ENSMUSG00000055670
0.005690898
0.066188857
−1.275593674
1810.175411
ZZEF1


Isl1
ENSMUSG00000042258
0.005724826
0.066188857
−1.037685718
45.06655869
ISL1


Slc9a9
ENSMUSG00000031129
0.005757394
0.066188857
−0.832841552
71.06300195
SLC9A9


Klf11
ENSMUSG00000020653
0.005771183
0.066188857
−1.355579779
165.3404477
KLF11


Ccl3
ENSMUSG00000000982
0.005780896
0.066188857
−1.443307871
25.28154734
CCL3L3


Fat1
ENSMUSG00000070047
0.005782589
0.066188857
−1.967272625
6.060135749
FAT1


Lrch4
ENSMUSG00000029720
0.005809925
0.066188857
−1.075722367
65.25377889
LRCH4


Herc2
ENSMUSG00000030451
0.005815333
0.066188857
−1.532534847
2148.837442
HERC2


Palm3
ENSMUSG00000047986
0.005820557
0.066188857
−1.191443456
19.84764565
PALM3


Dsel
ENSMUSG00000038702
0.005831258
0.066188857
−0.98287202
15.73048342
DSEL


Med1
ENSMUSG00000018160
0.005848133
0.06627733
−1.105994554
1269.517001
MED1


Rnf150
ENSMUSG00000047747
0.005902488
0.0665206
−1.54731947
4.722111847
RNF150


Ccnj
ENSMUSG00000025010
0.005906056
0.0665206
−1.151212748
200.6602739
CCNJ


Dbndd1
ENSMUSG00000031970
0.005929244
0.066627542
−1.670026792
8.639444548
DBNDD1


Plxdc1
ENSMUSG00000017417
0.005952523
0.066628684
−1.234409063
12.45504943
PLXDC1


Ppm1k
ENSMUSG00000037826
0.005953266
0.066628684
−1.286787958
503.49303
PPM1K


Hsd3b7
ENSMUSG00000042289
0.005963327
0.066628684
−0.66988067
47.16164
HSD3B7


Rxra
ENSMUSG00000015846
0.006014065
0.066693009
−1.275539069
62.88204094
RXRA


Snapc4
ENSMUSG00000036281
0.006027291
0.066693009
−0.977672401
567.576063
SNAPC4


Eng
ENSMUSG00000026814
0.00604389
0.066693009
−1.507521038
9.067408936
ENG


Mafg
ENSMUSG00000051510
0.006059564
0.066693009
−0.987908116
354.4876684
MAFG


Aak1
ENSMUSG00000057230
0.006125685
0.067058591
−1.28357627
209.4298147
AAK1


Hdgfrp3
ENSMUSG00000025104
0.006130934
0.067058591
−1.617522948
35.61538229
HDGFRP3


Ppl
ENSMUSG00000039457
0.006132988
0.067058591
−1.420542331
105.313222
PPL


F8
ENSMUSG00000031196
0.006140491
0.067064609
−0.949792321
28.91801433
F8


Sfxn5
ENSMUSG00000033720
0.006174661
0.067162096
−0.664024562
121.0857564
SFXN5


Zfp329
ENSMUSG00000057894
0.006205406
0.067267616
−1.098171615
350.5182412
ZNF329


Fan1
ENSMUSG00000033458
0.006207404
0.067267616
−1.28583474
73.11320238
FAN1


Slc38a9
ENSMUSG00000069056
0.006217953
0.067282035
−1.317676608
79.57055357
SLC38A9


Setbp1
ENSMUSG00000024548
0.006263451
0.067508043
−1.467343435
923.3840662
SETBP1


Fry
ENSMUSG00000056602
0.006273479
0.067508043
−1.438069053
454.1576082
FRY


Lrp5
ENSMUSG00000024913
0.006281916
0.067508043
−1.200802026
20.17448104
LRP5


Ampd3
ENSMUSG00000005686
0.006285088
0.067508043
−1.177240612
101.6812504
AMPD3


Heatr5b
ENSMUSG00000073113
0.006299001
0.067607739
−1.000644902
21.57806596
HEATR5B


Rbbp6
ENSMUSG00000030779
0.006352633
0.067912648
−1.111321921
2263.888205
RBBP6


Mfsd9
ENSMUSG00000041945
0.006376618
0.068040562
−1.268604805
11.31954383
MFSD9


Megf8
ENSMUSG00000045039
0.006424186
0.068296032
−1.535851825
17.50301396
MEGF8


Ccr3
ENSMUSG00000035448
0.006454714
0.068402961
−1.338024426
54.02627742
CCR3


Rbm15
ENSMUSG00000048109
0.006487665
0.068547606
−1.007967982
676.3291177
RBM15


Rab3il1
ENSMUSG00000024663
0.006500087
0.068547606
−1.417229715
36.77181948
RAB3IL1


Cep97
ENSMUSG00000022604
0.006571376
0.068860286
−0.799332426
327.8690795
CEP97


Sned1
ENSMUSG00000047793
0.006588593
0.068891979
−1.500202894
10.86745422
SNED1


Ephb2
ENSMUSG00000028664
0.006634926
0.068891979
−1.289117984
84.99084886
EPHB2


Capn3
ENSMUSG00000079110
0.006644226
0.068891979
−1.107875414
22.61978555
CAPN3


Prkdc
ENSMUSG00000022672
0.006676123
0.06891893
−1.322132873
932.1180528
PRKDC


Dcaf10
ENSMUSG00000035572
0.006684921
0.068960984
−0.58808453
444.4298506
DCAF10


Igsf6
ENSMUSG00000035004
0.006744162
0.06909071
−1.282504898
54.58029474
IGSF6


Dnmt3a
ENSMUSG00000020661
0.006794
0.069153049
−0.997039468
510.6695913
DNMT3A


Rapgef4
ENSMUSG00000049044
0.006797874
0.069153049
−0.776932861
325.4108559
RAPGEF4


Prkab2
ENSMUSG00000038205
0.006802918
0.069153049
−1.197868527
188.1813361
PRKAB2


Nfic
ENSMUSG00000055053
0.006819277
0.069221825
−0.96858722
255.2294523
NFIC


Pou6f1
ENSMUSG00000009739
0.006861902
0.069439372
−1.068296249
871.4861743
POU6F1


Dopey2
ENSMUSG00000022946
0.006887921
0.069464463
−1.061419275
373.3857369
DOPEY2


Pcf11
ENSMUSG00000041328
0.006917224
0.069484715
−1.222381213
1799.227623
PCF11


Trim36
ENSMUSG00000033949
0.006921338
0.069484715
−1.252366973
72.35444993
TRIM36


Klhdc10
ENSMUSG00000029775
0.006994734
0.069932964
−0.665516207
379.1279401
KLHDC10


Clcn1
ENSMUSG00000029862
0.007005496
0.069944749
−1.570622082
4.617537397
CLCN1


Ric8b
ENSMUSG00000035620
0.007029323
0.070065212
−0.631125899
295.3321598
RIC8B


Siglece
ENSMUSG00000030474
0.007046835
0.070108842
−1.470618851
41.54527022
SIGLEC9


Zfand1
ENSMUSG00000039795
0.007094405
0.070113266
−0.637343811
164.3488286
ZFAND1


Adam8
ENSMUSG00000025473
0.007099643
0.07011738
−1.036707183
24.71823835
ADAM8


Bod1l
ENSMUSG00000061755
0.007106209
0.070134776
−1.543825167
1261.686746
BOD1L1


8030462N17Rik
ENSMUSG00000047466
0.007145753
0.070287439
−0.922145578
338.3174376
C1801125


Gtpbp2
ENSMUSG00000023952
0.007159196
0.070309167
−0.772834724
1803.078417
GTPBP2


Lair1
ENSMUSG00000055541
0.007249811
0.070348737
−1.037738249
105.3515399
LAIR1


P2rx1
ENSMUSG00000020787
0.007254594
0.070348737
−1.254284652
12.15216666
P2RX1


C4a
ENSMUSG00000015451
0.007287478
0.070348737
−1.01503145
16.26541338
C4B


C4a
ENSMUSG00000015451
0.007287478
0.070348737
−1.01503145
16.26541338
C4A


Hoxb4
ENSMUSG00000038692
0.007287846
0.070348737
−1.209095074
14.45189147
HOXB4


Gas7
ENSMUSG00000033066
0.007392635
0.070621924
−1.009367658
81.37762259
GAS7


Brca2
ENSMUSG00000041147
0.007484544
0.070998401
−1.191456499
238.2777251
BRCA2


Nbeal2
ENSMUSG00000056724
0.007531899
0.071206686
−1.126827729
808.7592777
NBEAL2


Kif19a
ENSMUSG00000010021
0.007622393
0.071736989
−0.734737348
91.5843586
KIF19


Ica1l
ENSMUSG00000026018
0.007690092
0.071775223
−1.443336665
7.367650444
ICA1L


Ttc23
ENSMUSG00000030555
0.007702962
0.071775223
−0.812200801
21.91071957
TTC23


Atxn7l1
ENSMUSG00000020564
0.007705129
0.071775223
−0.824102575
989.933163
ATXN7L1


Cul9
ENSMUSG00000040327
0.007788677
0.072118409
−0.864679679
308.5469277
CUL9


Plec
ENSMUSG00000022565
0.007804307
0.072165478
−1.54174215
1574.721059
PLEC


Kcnj16
ENSMUSG00000051497
0.007835819
0.072220199
−1.511399235
17.29287385
KCNJ16


Slc3a1
ENSMUSG00000024131
0.007848542
0.072220199
−1.383078768
7.33339704
SLC3A1


Eif4ebp3
ENSMUSG00000090264
0.007885379
0.072283221
−1.776557782
5.771300248
EIF4EBP3


Mks1
ENSMUSG00000034121
0.007891176
0.072283221
−0.550475874
233.977386
MKS1


Fblim1
ENSMUSG00000006219
0.007933775
0.072341363
−0.81082868
29.76432556
FBLIM1


Itga4
ENSMUSG00000027009
0.007967186
0.072341363
−1.413970532
1931.831585
ITGA4


Ikbkb
ENSMUSG00000031537
0.007968547
0.072341363
−0.89207925
2706.709153
IKBKB


Rc3h2
ENSMUSG00000075376
0.008032308
0.072378521
−1.364570284
932.1174907
RC3H2


Haus5
ENSMUSG00000078762
0.008062662
0.072438104
−0.283835278
679.5890562
HAUS5


Ptpn23
ENSMUSG00000036057
0.008064117
0.072438104
−0.994782459
739.6890278
PTPN23


Myl9
ENSMUSG00000067818
0.008082098
0.072510375
−1.549232468
5.941545471
MYL9


Glcci1
ENSMUSG00000029638
0.00810744
0.072555875
−1.6279329
50.39073291
GLCCI1


Kifc2
ENSMUSG00000004187
0.008121568
0.072596773
−0.774165418
71.08273593
KIFC2


Synj1
ENSMUSG00000022973
0.008164294
0.072836589
−1.161059001
317.353507
SYNJ1


Nlrc4
ENSMUSG00000039193
0.008185729
0.072836589
−0.735662725
598.0362046
NLRC4


Itpr1
ENSMUSG00000030102
0.008211332
0.072836589
−1.433819177
1622.512534
ITPR1


Pgap1
ENSMUSG00000073678
0.008212343
0.072836589
−1.295297968
243.338791
PGAP1


Ttc28
ENSMUSG00000033209
0.008245609
0.072969953
−1.297327488
106.70871
TTC28


Map4k2
ENSMUSG00000024948
0.00827772
0.072969953
−0.78559624
5121.273547
MAP4K2


Slc9a8
ENSMUSG00000039463
0.008297202
0.073048404
−0.652089377
1216.717822
SLC9A8


Map3k2
ENSMUSG00000024383
0.008348944
0.073238905
−1.350346656
682.1872842
MAP3K2


Tnfrsf19
ENSMUSG00000060548
0.008421582
0.073566153
−1.41626026
8.20855857
TNFRSF19


Plxna1
ENSMUSG00000030084
0.008431607
0.073566153
−1.2286356
94.76484065
PLXNA1


Wipi2
ENSMUSG00000029578
0.008456703
0.073653039
−0.487224804
1735.024181
WIPI2


Tcte1
ENSMUSG00000023949
0.008632849
0.074454297
−1.202709829
18.31170416
TCTE1


Tnik
ENSMUSG00000027692
0.008652909
0.074454297
−1.252380548
62.58573792
TNIK


B4galt6
ENSMUSG00000056124
0.00868173
0.074543057
−1.262365127
7.834040838
B4GALT6


Kcnc1
ENSMUSG00000058975
0.008684849
0.074543057
−0.915850033
30.18553447
KCNC1


4932438A13Rik
ENSMUSG00000037270
0.008686562
0.074543057
−1.437686908
2636.784272
KIAA1109


Plcxd2
ENSMUSG00000087141
0.00873337
0.074762504
−1.415657244
155.538752
PLCXD2


Cubn
ENSMUSG00000026726
0.008737753
0.074762504
−1.327862452
5.270437768
CUBN


Sfi1
ENSMUSG00000023764
0.008803498
0.075095961
−0.828576189
2164.403671
SFI1


Dusp18
ENSMUSG00000047205
0.008807583
0.075095961
−1.363665468
5.859329124
DUSP18


Tulp4
ENSMUSG00000034377
0.008910063
0.075366556
−1.029548616
374.1201536
TULP4


Zfp609
ENSMUSG00000040524
0.008929624
0.075452185
−1.397384853
292.4276051
ZNF609


Aire
ENSMUSG00000000731
0.008963416
0.075452185
−1.188740601
288.4261911
AIRE


Epb4.1l1
ENSMUSG00000027624
0.008989707
0.075452185
−1.504385872
7.357302465
EPB41L1


Slc24a5
ENSMUSG00000035183
0.009004574
0.075466731
−1.398389371
11.00741238
SLC24A5


Dmxl2
ENSMUSG00000041268
0.009006422
0.075466731
−1.38499073
102.8793973
DMXL2


Egf
ENSMUSG00000028017
0.009030382
0.075466731
−0.839725579
34.96998486
EGF


Itgb8
ENSMUSG00000025321
0.009035378
0.075466731
−1.424100187
29.70300082
ITGB8


Ttll3
ENSMUSG00000030276
0.009060147
0.075466731
−0.897196027
229.134985
TTLL3


Ulk3
ENSMUSG00000032308
0.009080264
0.075566723
−0.59051229
709.6822763
ULK3


Il18r1
ENSMUSG00000026070
0.009097507
0.075624321
−1.391598706
128.4917149
IL18R1


Prr22
ENSMUSG00000090273
0.009104819
0.075642027
−0.819095831
19.44019122
PRR22


Btbd11
ENSMUSG00000020042
0.009127177
0.075735185
−1.425794149
5.042056587
BTBD11


Zfp318
ENSMUSG00000015597
0.009176156
0.075735185
−1.395553179
1929.947983
ZNF318


Klf12
ENSMUSG00000072294
0.009189901
0.075735185
−1.374393318
52.04201957
KLF12


Timd4
ENSMUSG00000055546
0.009204937
0.07574096
−1.223804755
26.80434413
TIMD4


Atf7
ENSMUSG00000052414
0.009224568
0.075774346
−1.13733044
330.7587183
ATF7


Pggt1b
ENSMUSG00000024477
0.009273798
0.076135901
−0.794339849
438.3002968
PGGT1B


6330408A02Rik
ENSMUSG00000070814
0.009349864
0.076301544
−0.83965435
124.1229997
C19orf68


Slc7a8
ENSMUSG00000022180
0.009400941
0.076362011
−1.362461261
18.84625293
SLC7A8


Oaf
ENSMUSG00000032014
0.009474784
0.076482045
−1.338191086
5.323340694
OAF


Epb4.1l3
ENSMUSG00000024044
0.009497623
0.076510375
−1.390452016
35.21219197
EPB41L3


Cpd
ENSMUSG00000020841
0.009579655
0.076743728
−1.214763362
66.18727319
CPD


Zbtb43
ENSMUSG00000026788
0.009590203
0.076743728
−1.179724555
482.4853546
ZBTB43


Pf4
ENSMUSG00000029373
0.009606944
0.076762804
−1.282712847
7.78264168
PF4


Fbxl18
ENSMUSG00000066640
0.009632796
0.076794062
−0.932708501
208.3937876
FBXL18


Cd8a
ENSMUSG00000053977
0.009660648
0.076796357
−1.199732644
21.17237337
CD8A


Shb
ENSMUSG00000044813
0.009664651
0.076796357
−1.007689943
62.78622235
SHB


Mast1
ENSMUSG00000053693
0.009670486
0.076800919
−1.235703388
25.47046984
MAST1


Rccd1
ENSMUSG00000038930
0.009700371
0.076870965
−0.614437766
330.4262645
RCCD1


BC017158
ENSMUSG00000030780
0.009734412
0.077098865
−0.447126887
279.8311681
C16orf58


Bcl9l
ENSMUSG00000063382
0.009745742
0.07711483
−1.331878174
643.554208
BCL9L


Cd300lb
ENSMUSG00000063193
0.009751711
0.07711483
−1.516559706
8.868505377
CD300LB


Zfp867
ENSMUSG00000054519
0.009773899
0.077160413
−0.70745998
99.61684205
ZNF627


Eml5
ENSMUSG00000051166
0.009804541
0.077208873
−1.250789071
536.441661
EML5


Zcchc4
ENSMUSG00000029179
0.009823956
0.077221476
−0.653739629
367.9298302
ZCCHC4


Fam179a
ENSMUSG00000045761
0.009868742
0.077240875
−1.256245883
11.75812909
FAM179A


Apc
ENSMUSG00000005871
0.009971268
0.077461736
−1.512694223
1193.695641
APC


Zufsp
ENSMUSG00000039531
0.009979342
0.077467882
−0.571475058
872.6293115
ZUFSP


Mitf
ENSMUSG00000035158
0.010003561
0.077523519
−1.377312097
9.762648442
MITF


Cabin1
ENSMUSG00000020196
0.010014623
0.077550903
−0.705389929
1908.191728
CABIN1


Itpripl2
ENSMUSG00000073858
0.010034802
0.077638083
−1.549402052
7.266360753
ITPRIPL2


Atf7ip
ENSMUSG00000053935
0.010036519
0.077638083
−1.249684979
473.0102725
ATF7IP


Tnrc6c
ENSMUSG00000025571
0.010098179
0.077738507
−1.370300193
1068.118831
TNRC6C


Bace1
ENSMUSG00000032086
0.010100092
0.077738507
−1.581333569
107.0940562
BACE1


Arhgap31
ENSMUSG00000022799
0.010102722
0.077738507
−1.070499824
351.5413968
ARHGAP31


Camk2g
ENSMUSG00000021820
0.010114604
0.077738507
−0.69358034
359.6236645
CAMK2G


Abcc5
ENSMUSG00000022822
0.010148019
0.077738507
−1.037009776
283.9034448
ABCC5


Ankdd1b
ENSMUSG00000047117
0.010197876
0.077805875
−0.690139797
28.30465108
ANKDD1B


Rel
ENSMUSG00000020275
0.010217197
0.077805875
−1.24474685
751.2718915
REL


Coro7
ENSMUSG00000039637
0.01021946
0.077805875
−0.679054753
2271.570983
COR07-PAM16


Coro7
ENSMUSG00000039637
0.01021946
0.077805875
−0.679054753
2271.570983
COR07


Fam84b
ENSMUSG00000072568
0.010235383
0.077805875
−1.279368329
153.003237
FAM84B


Dock7
ENSMUSG00000028556
0.01026318
0.077824228
−1.325236649
13.18297993
DOCK7


Scn1b
ENSMUSG00000019194
0.010279127
0.077889678
−1.507647476
10.25864626
SCN1B


Coro2a
ENSMUSG00000028337
0.010282483
0.077889678
−0.766701661
1175.534362
CORO2A


Smarcad1
ENSMUSG00000029920
0.010298272
0.07790701
−0.512818993
650.0448339
SMARCAD1


Ep400
ENSMUSG00000029505
0.010310769
0.077942155
−1.227772446
3221.936449
EP400


Pcyt1a
ENSMUSG00000005615
0.010338473
0.077952492
−0.92222021
219.1119949
PCYT1A


Sytl2
ENSMUSG00000030616
0.010343618
0.077952492
−1.498680012
3.879270156
SYTL2


Pigl
ENSMUSG00000014245
0.010379841
0.077952492
−0.538816063
163.6964408
PIGL


Crybg3
ENSMUSG00000022723
0.010402189
0.077952492
−1.181733286
272.8233253
CRYBG3


Tgm1
ENSMUSG00000022218
0.010429239
0.078036842
−1.362663195
37.77807492
TGM1


Fanca
ENSMUSG00000032815
0.010436785
0.078045976
−0.530541536
402.1041096
FANCA


Teti
ENSMUSG00000047146
0.010465681
0.078181957
−1.565179149
9.24043738
TETI


Rbak
ENSMUSG00000061898
0.010480995
0.078256307
−1.096973558
178.9377105
RBAK


Trp53inp2
ENSMUSG00000038375
0.010567025
0.078315781
−1.030868272
237.5116097
TP53INP2


Traf3
ENSMUSG00000021277
0.010581861
0.078315781
−0.981581757
1147.414028
TRAF3


Asxl2
ENSMUSG00000037486
0.010604351
0.078375553
−1.203026061
1459.529668
ASXL2


Tomt
ENSMUSG00000078630
0.010631728
0.078458711
−1.320509765
9.686753967
LRTOMT


Fzd7
ENSMUSG00000041075
0.010656151
0.078534581
−1.553523229
4.871059402
FZD7


Gm15800
ENSMUSG00000042744
0.010658149
0.078534581
−1.282111988
1435.465857
HECTD4


Dcdc2b
ENSMUSG00000078552
0.010711017
0.07878532
−0.847482737
19.73892051
DCDC2B


Vamp1
ENSMUSG00000030337
0.01075619
0.078842585
−1.118476656
590.3626967
VAMP1


Lpp
ENSMUSG00000033306
0.010770895
0.078842585
−1.35364225
1178.236921
LPP


Adamts10
ENSMUSG00000024299
0.01078637
0.078842585
−0.803103708
555.7565365
ADAMTS10


Arid3b
ENSMUSG00000004661
0.010833864
0.078976016
−0.883450121
1073.825873
ARID3B


Tnfrsf14
ENSMUSG00000042333
0.010856609
0.078976016
−0.764972942
211.1197315
TNFRSF14


Slc9a5
ENSMUSG00000014786
0.010920563
0.078998504
−0.920059587
86.75320744
SLC9A5


Armcx5
ENSMUSG00000072969
0.010925785
0.078998504
−0.848281897
211.1113973
ARMCX5


Pde7a
ENSMUSG00000069094
0.010961749
0.079068331
−0.777034393
3063.094707
PDE7A


Atp6v0a1
ENSMUSG00000019302
0.01097445
0.079068331
−0.681684194
1341.480343
ATP6V0A1


Nlrp3
ENSMUSG00000032691
0.011010566
0.079162474
−1.360081646
6.66949537
NLRP3


Parp4
ENSMUSG00000054509
0.011025369
0.079162474
−1.162848635
1349.639882
PARP4


Acvr2a
ENSMUSG00000052155
0.011078839
0.079429181
−1.410795042
39.41078536
ACVR2A


Klhl15
ENSMUSG00000043929
0.01110063
0.079546341
−0.722058534
130.8752231
KLHL15


H6pd
ENSMUSG00000028980
0.011139486
0.079629323
−0.945303747
159.2618312
H6PD


Ahnak2
ENSMUSG00000072812
0.011193122
0.07977832
−1.598257354
5.196868755
AHNAK2


Vps13d
ENSMUSG00000020220
0.011247414
0.079906123
−1.395797153
1714.340931
VPS13D


Pparg
ENSMUSG00000000440
0.011266344
0.079906123
−1.268339931
23.51793828
PPARG


Rdh5
ENSMUSG00000025350
0.011310794
0.079906123
−0.66050462
53.16966775
RDH5


Elac1
ENSMUSG00000036941
0.011319719
0.079906123
−0.99352373
254.0938282
ELAC1


Snx21
ENSMUSG00000050373
0.01132781
0.079906123
−0.99227817
56.81944821
SNX21


Atrx
ENSMUSG00000031229
0.011369959
0.080094606
−1.477889154
3213.381127
ATRX


Cflar
ENSMUSG00000026031
0.011382236
0.080094606
−0.840014556
932.5102315
CFLAR


Fpr2
ENSMUSG00000052270
0.011398353
0.080094606
−1.583510094
11.91190566
FPR2


Gatsl2
ENSMUSG00000015944
0.011413786
0.080094606
−1.011859696
45.13997458
GATSL2


Zfp182
ENSMUSG00000054737
0.011418571
0.080094606
−0.934727361
355.9913983
ZNF182


Vps13b
ENSMUSG00000037646
0.01152131
0.080416747
−1.219340813
1775.383479
VPS13B


Zfc3h1
ENSMUSG00000034163
0.011529173
0.080416747
−1.153676097
1066.170397
ZFC3H1


Scn11a
ENSMUSG00000034115
0.011568523
0.080448967
−1.399713114
25.44866353
SCN11A


Slc37a1
ENSMUSG00000024036
0.011589979
0.080448967
−0.4685812
419.8661639
SLC37A1


K1h117
ENSMUSG00000078484
0.011607689
0.080452452
−0.724141288
487.3366677
KLHL17


Mink1
ENSMUSG00000020827
0.011612887
0.080452452
−1.080707027
962.9203679
MINK1


Fam160a2
ENSMUSG00000044465
0.011633901
0.080479239
−0.701047218
425.3063312
FAM160A2


Iqsec1
ENSMUSG00000034312
0.011687417
0.080554359
−1.093656066
1786.461153
IQSEC1


Dcaf17
ENSMUSG00000041966
0.011714786
0.080554359
−0.547531481
492.8370775
DCAF17


Fgfr1op
ENSMUSG00000069135
0.011722399
0.080561139
−0.763547185
905.6041286
FGFR1OP


Ccdc157
ENSMUSG00000051427
0.011789868
0.080777152
−1.029000742
183.4357355
CCDC157


Clip2
ENSMUSG00000063146
0.011826074
0.080777152
−1.122569614
1329.764484
CLIP2


Itsn1
ENSMUSG00000022957
0.01182741
0.080777152
−0.903866867
255.9923569
ITSN1


Asb1
ENSMUSG00000026311
0.011842372
0.080777152
−0.831421912
462.6032187
ASB1


Mlh3
ENSMUSG00000021245
0.011856197
0.080833677
−1.04460159
209.1006906
MLH3


Zfp799
ENSMUSG00000059000
0.011910005
0.080951538
−0.732542317
65.27742718
ZNF799


Zfp169
ENSMUSG00000050954
0.011926204
0.081003752
−1.294908135
167.1144371
ZNF169


Cbfa2t2
ENSMUSG00000038533
0.011962036
0.081070464
−0.908767566
371.3575282
CBFA2T2


Chd9
ENSMUSG00000056608
0.011994045
0.081166932
−1.100159791
1491.218452
CHD9


Irf2bp2
ENSMUSG00000051495
0.012021745
0.081235296
−0.76236622
756.3026508
IRF2BP2


Cds2
ENSMUSG00000058793
0.012049733
0.081235296
−1.025521462
2172.610644
CDS2


Fgfr1
ENSMUSG00000031565
0.012051033
0.081235296
−1.376954383
6.561949327
FGFR1


Kdm6b
ENSMUSG00000018476
0.012147736
0.081414373
−1.225070515
476.2268269
KDM6B


Eml6
ENSMUSG00000044072
0.012185013
0.081574279
−0.935140648
158.0163731
EML6


Zfp652
ENSMUSG00000075595
0.012191332
0.081574279
−1.149662359
838.1985096
ZNF652


Ern1
ENSMUSG00000020715
0.012193949
0.081574279
−1.144574032
333.6826332
ERN1


Pikfyve
ENSMUSG00000025949
0.012204559
0.081601543
−1.234326087
653.0891598
PIKFYVE


Arap2
ENSMUSG00000037999
0.012237526
0.081613544
−1.326495466
850.5387718
ARAP2


Notch2
ENSMUSG00000027878
0.012261467
0.081613544
−1.347836903
2849.787421
NOTCH2


Pilra
ENSMUSG00000046245
0.012305428
0.081677278
−1.264267285
54.74976696
PILRA


Ypel1
ENSMUSG00000022773
0.012380591
0.081884681
−1.274817096
20.16524856
YPEL1


Zfp619
ENSMUSG00000068959
0.012408281
0.081997141
−1.16471656
105.1300748
ZNF208


Mapkbp1
ENSMUSG00000033902
0.012434665
0.082041416
−1.318094576
171.109109
MAPKBP1


2310035C23Rik
ENSMUSG00000026319
0.012438058
0.082041416
−1.048083287
948.2303659
KIAA1468


Fam175a
ENSMUSG00000035234
0.012458381
0.082101576
−0.322958493
357.1688676
FAM175A


Rreb1
ENSMUSG00000039087
0.012473416
0.082106217
−1.258615152
566.2203327
RREB1


Vps13c
ENSMUSG00000035284
0.012502494
0.082132721
−1.449884329
636.8272029
VPS13C


Dicer1
ENSMUSG00000041415
0.012563814
0.082248674
−1.179366227
1209.609337
DICER1


Ypel2
ENSMUSG00000018427
0.012566472
0.082248674
−0.949394041
90.30261257
YPEL2


Glb1l
ENSMUSG00000026200
0.012600324
0.082248674
−0.594557335
103.5500513
GLB1L


Foxj1
ENSMUSG00000034227
0.012604363
0.082248674
−1.193647
7.897467497
FOXJ1


Mybpc1
ENSMUSG00000020061
0.012640075
0.082270966
−1.105863237
23.95869301
MYBPC1


Ccr5
ENSMUSG00000079227
0.01265449
0.082279553
−0.838907149
45.72863491
CCR5


Abca5
ENSMUSG00000018800
0.012711996
0.08247724
−1.137525942
54.20326943
ABCA5


Rpl5
ENSMUSG00000058558
0.01273057
0.082477951
−0.719350178
185.1102909
RPL5


Phlpp2
ENSMUSG00000031732
0.012742223
0.082477951
−1.296775998
529.3274256
PHLPP2


Gpr137c
ENSMUSG00000049092
0.012747347
0.082477951
−0.968774283
32.38544774
GPR137C


Agbl3
ENSMUSG00000038836
0.01281255
0.082552489
−0.712128
57.57861492
AGBL3


Rnft2
ENSMUSG00000032850
0.012878863
0.082639568
−1.138329132
13.45292751
RNFT2


Chd7
ENSMUSG00000041235
0.012879702
0.082639568
−1.344358345
1174.750646
CHD7


Snx30
ENSMUSG00000028385
0.012915274
0.082679318
−1.254863809
2511.189704
SNX30


Cry2
ENSMUSG00000068742
0.012933438
0.082693557
−0.780392708
237.0308156
CRY2


Bcl11a
ENSMUSG00000000861
0.013059492
0.08313169
−0.846871521
2381.390264
BCL11A


Zfp266
ENSMUSG00000060510
0.013064256
0.08313169
−0.836201437
421.7016832
ZNF266


Setd2
ENSMUSG00000044791
0.013076919
0.083153903
−1.233858658
3109.883982
SETD2


Golga4
ENSMUSG00000038708
0.013085396
0.08315521
−1.410611746
946.3615855
GOLGA4


Pkd1
ENSMUSG00000032855
0.013107031
0.083256453
−1.25706393
1450.558608
PKD1


Tom1l2
ENSMUSG00000000538
0.013160293
0.083473397
−0.872553987
354.9400208
TOM1L2


Olfr164
ENSMUSG00000050742
0.013169777
0.083473397
−1.769577951
4.603460573
OR2M3


Ylpm1
ENSMUSG00000021244
0.013238012
0.083666662
−1.269094094
1085.088728
YLPM1


Rnf144b
ENSMUSG00000038068
0.01324156
0.083666662
−1.409513394
16.36125811
RNF144B


Pygl
ENSMUSG00000021069
0.01324386
0.083666662
−1.263482657
30.1429258
PYGL


Zbtb10
ENSMUSG00000069114
0.013246181
0.083666662
−1.307274071
163.1503619
ZBTB10


Tnni3
ENSMUSG00000035458
0.013262794
0.083668691
−1.494042954
9.45094598
TNNI3


Slc16a6
ENSMUSG00000041920
0.01328088
0.083717371
−1.006810443
392.8612392
SLC16A6


Trim39
ENSMUSG00000045409
0.013354128
0.083895144
−1.074887341
1079.819369
TRIM39


Plekhg3
ENSMUSG00000052609
0.01338217
0.083903509
−1.296103299
162.5257675
PLEKHG3


Ccdc93
ENSMUSG00000026339
0.013414866
0.083933475
−0.965654671
690.6223703
CCDC93


Srsf6
ENSMUSG00000016921
0.013446932
0.083987327
−0.54523613
4162.449902
SRSF6


Srms
ENSMUSG00000027579
0.013467864
0.084043482
−0.728866239
107.6238678
SRMS


Ttll4
ENSMUSG00000033257
0.013496395
0.084072805
−1.124863854
699.3602601
TTLL4


Stx16
ENSMUSG00000027522
0.013507237
0.084072805
−1.128009415
1169.25115
STX16


Nnat
ENSMUSG00000067786
0.013531746
0.084072805
−1.725508992
5.25931015
NNAT


Fcamr
ENSMUSG00000026415
0.01355892
0.084072805
−1.362688019
54.51808086
FCAMR


Lrrk2
ENSMUSG00000036273
0.013590515
0.084072805
−1.296594474
3758.29599
LRRK2


Pik3r5
ENSMUSG00000020901
0.013594177
0.084072805
−0.891695424
285.3127537
PIK3R5


Chst10
ENSMUSG00000026080
0.01360608
0.084072805
−0.75860699
352.0285415
CHST10


Mest
ENSMUSG00000051855
0.013606933
0.084072805
−1.445806419
7.063098048
MEST


Sec31b
ENSMUSG00000051984
0.013611219
0.084072805
−0.845463405
52.73258518
SEC31B


Ppm1h
ENSMUSG00000034613
0.013615582
0.084072805
−0.908904339
90.97169596
PPM1H


Zfp319
ENSMUSG00000074140
0.013773578
0.084511524
−0.90977173
91.47128561
ZNF319


Rapgef6
ENSMUSG00000037533
0.013813357
0.084622765
−1.264839477
2122.483734
RAPGEF6


Ift172
ENSMUSG00000038564
0.013839401
0.084622765
−0.906813775
494.1281579
IFT172


Vwa3b
ENSMUSG00000026115
0.013850167
0.084622765
−0.895667969
42.76212315
VWA3B


Cacna1e
ENSMUSG00000004110
0.013858321
0.084622765
−1.556859069
1292.314025
CACNA1E


Aff1
ENSMUSG00000029313
0.013875677
0.084622765
−1.302883707
1175.504973
AFF1


Ermap
ENSMUSG00000028644
0.013892969
0.084622765
−1.450463901
46.88382186
ERMAP


Tmem184c
ENSMUSG00000031617
0.013930664
0.084622765
−0.525068253
989.7359675
TMEM184C


Rhbdf1
ENSMUSG00000020282
0.013938767
0.084622765
−0.516294435
838.4283363
RHBDF1


Soat2
ENSMUSG00000023045
0.013943717
0.084622765
−0.737847006
100.0823366
SOAT2


Gng7
ENSMUSG00000048240
0.01395281
0.084622765
−1.175175213
9.126091088
GNG7


Lmbrd2
ENSMUSG00000039704
0.013971423
0.084622765
−1.334315393
161.8316829
LMBRD2


Lpin1
ENSMUSG00000020593
0.014021343
0.08479343
−0.897112933
158.3380693
LPIN1


Slfn4
ENSMUSG00000000204
0.014055661
0.084909809
−1.37454427
8.686481829
SLFN12L


Ralgapa1
ENSMUSG00000021027
0.014059533
0.084909809
−1.035979226
1359.770867
RALGAPA1


Hbs1l
ENSMUSG00000019977
0.014137838
0.085171286
−0.383636946
594.4111461
HBS1L


Ubr4
ENSMUSG00000066036
0.014165681
0.08529108
−1.367407789
4783.041973
UBR4


Plcg1
ENSMUSG00000016933
0.014169409
0.08529108
−1.05144565
716.5135272
PLCG1


Hivep3
ENSMUSG00000028634
0.014221665
0.085500479
−1.366544196
437.8539865
HIVEP3


Fbxo33
ENSMUSG00000035329
0.014226749
0.085500479
−0.922857492
595.0925604
FBXO33


Atp7a
ENSMUSG00000033792
0.014235662
0.085500479
−1.338673753
139.417406
ATP7A


Gm5595
ENSMUSG00000069727
0.0142382
0.085500479
−0.773170744
25.05705696
ZNF14


Phyhd1
ENSMUSG00000079484
0.014249014
0.085515489
−1.22606884
8.545978464
PHYHD1


Pdzd3
ENSMUSG00000032105
0.014256958
0.085515489
−1.096249586
18.00905285
PDZD3


Hpgd
ENSMUSG00000031613
0.014263393
0.085515489
−1.168539353
58.67471523
HPGD


Camsap1
ENSMUSG00000026933
0.01426552
0.085515489
−1.034453308
295.3556777
CAMSAP1


Clk4
ENSMUSG00000020385
0.014292701
0.085577969
−0.746533133
2293.58935
CLK4


Zrsr2
ENSMUSG00000031370
0.014333022
0.085587696
−0.795569435
613.161291
ZRSR2


Tiam1
ENSMUSG00000002489
0.014335062
0.085587696
−1.161710618
18.69859792
TIAM1


Arsg
ENSMUSG00000020604
0.014362218
0.085587696
−0.611249494
66.61526984
ARSG


Col4a1
ENSMUSG00000031502
0.014362343
0.085587696
−1.736436393
4.319012166
COL4A1


Htt
ENSMUSG00000029104
0.014447773
0.085712485
−1.182975753
1374.807682
HTT


Nbeal1
ENSMUSG00000073664
0.014576816
0.086106778
−1.42251323
516.0124635
NBEAL1


Dntt
ENSMUSG00000025014
0.014586083
0.086106778
−1.485311762
10.27976592
DNTT


Mysm1
ENSMUSG00000062627
0.014625077
0.086118908
−1.309020275
899.5386502
MYSM1


Ier2
ENSMUSG00000053560
0.014631424
0.086118908
−1.061424662
1466.65366
IER2


Thsd7a
ENSMUSG00000032625
0.014651373
0.086187473
−1.51658018
130.2103467
THSD7A


Gabpb2
ENSMUSG00000038766
0.014654882
0.086187473
−1.368904628
2568.323307
GABPB2


Cx3cr1
ENSMUSG00000052336
0.014748951
0.086577436
−1.234893752
24.71223945
CX3CR1


Hmbox1
ENSMUSG00000021972
0.014790464
0.086590072
−1.100806882
411.2616329
HMBOX1


Tmem116
ENSMUSG00000029452
0.014794522
0.086590072
−0.829693167
27.65454245
TMEM116


Nktr
ENSMUSG00000032525
0.014816785
0.086685615
−1.276541199
2126.128977
NKTR


Son
ENSMUSG00000022961
0.014939539
0.086916083
−1.250812194
10173.49236
SON


Luc7l2
ENSMUSG00000029823
0.01501031
0.087035524
−1.216686276
3120.446062
LUC7L2


Mga
ENSMUSG00000033943
0.015021126
0.087035524
−1.422140515
1856.862273
MGA


Mtf1
ENSMUSG00000028890
0.015051469
0.087035524
−0.614696943
565.2191351
MTF1


Osgin1
ENSMUSG00000074063
0.015074657
0.087035524
−0.934577205
35.34599529
OSGIN1


Prrc2b
ENSMUSG00000039262
0.015085901
0.087035524
−1.315815004
3211.520645
PRRC2B


Atf7ip
ENSMUSG00000030213
0.015094996
0.087035524
−1.157296426
1295.961609
ATF7IP


Tubb1
ENSMUSG00000016255
0.015121462
0.087043584
−1.469723141
4.437466774
TUBB1


Bambi
ENSMUSG00000024232
0.015157437
0.087057911
−1.148265183
26.42514752
BAMBI


Bmpr2
ENSMUSG00000067336
0.015172738
0.087057911
−1.334507897
7.503170042
BMPR2


Gpr126
ENSMUSG00000039116
0.015173335
0.087057911
−1.803152709
4.140667144
GPR126


Pofut1
ENSMUSG00000046020
0.01517908
0.087057911
−0.733564734
681.5215003
POFUT1


Camk1
ENSMUSG00000030272
0.015187628
0.087057911
−0.884412759
33.3091197
CAMK1


Zscan18
ENSMUSG00000070822
0.015190072
0.087057911
−0.936068641
41.92761479
ZSCAN18


Cpt1b
ENSMUSG00000078937
0.015296491
0.087236616
−1.388248338
4.656045908
CPT1B


Clec4a1
ENSMUSG00000049037
0.015321287
0.087284863
−1.260313227
43.50034413
ZNF705A


Ankzf1
ENSMUSG00000026199
0.015360904
0.087284863
−0.627372186
644.9610673
ANKZF1


Tbc1d9
ENSMUSG00000031709
0.015366445
0.087284863
−1.229353144
120.5297296
TBC1D9


Akap13
ENSMUSG00000066406
0.015446813
0.087284863
−1.36765445
6065.538078
AKAP13


Large
ENSMUSG00000004383
0.015469655
0.087284863
−1.718597325
4.55211812
LARGE


Zfp451
ENSMUSG00000042197
0.015500985
0.087284863
−1.071814361
670.2461643
ZNF451


Snrnp48
ENSMUSG00000021431
0.015501114
0.087284863
−0.461869294
620.0762651
SNRNP48


Ccnt2
ENSMUSG00000026349
0.015517392
0.087284863
−1.128650326
1592.840299
CCNT2


Per3
ENSMUSG00000028957
0.015537494
0.087284863
−1.230573666
84.97264151
PER3


Zc3h12a
ENSMUSG00000042677
0.015622475
0.087554701
−0.746839415
635.7939315
ZC3H12A


Slc26a2
ENSMUSG00000034320
0.015638796
0.087554701
−1.165021166
396.2704163
SLC26A2


Bdp1
ENSMUSG00000049658
0.015639697
0.087554701
−1.40316165
977.7803975
BDP1


Nap1l5
ENSMUSG00000055430
0.015643123
0.087554701
−1.59336728
4.272282326
NAP1L5


Prpf40b
ENSMUSG00000023007
0.015662169
0.087611499
−0.863146261
181.1449725
PRPF40B


BC049715
ENSMUSG00000047515
0.015665274
0.087611499
−0.969711821
14.44523504
C12orf60


Hlcs
ENSMUSG00000040820
0.015685998
0.087660225
−0.599258484
657.5224388
HLCS


Phf20l1
ENSMUSG00000072501
0.015806079
0.087879521
−1.309698817
825.0755001
PHF20L1


Inpp4a
ENSMUSG00000026113
0.015954269
0.088257431
−1.137529888
422.0426148
INPP4A


Gspt2
ENSMUSG00000071723
0.016016795
0.088395311
−1.130172901
8.448835997
GSPT2


Lnpep
ENSMUSG00000023845
0.016056573
0.088395311
−1.423623155
2012.995619
LNPEP


Snca
ENSMUSG00000025889
0.016066477
0.088395311
−1.653914076
37.47042992
SNCA


BC030499
ENSMUSG00000037593
0.016066595
0.088395311
−1.318292994
6.051871419
SGK494


Adap2
ENSMUSG00000020709
0.016077509
0.088395311
−1.448725563
17.46968355
ADAP2


Trim40
ENSMUSG00000073399
0.016091193
0.088395311
−1.023776522
12.88183169
TRIM40


Sesn3
ENSMUSG00000032009
0.016091853
0.088395311
−0.784184409
1054.326844
SESN3


Cebpa
ENSMUSG00000034957
0.016140471
0.088456158
−0.981001607
26.20247198
CEBPA


Wdr11
ENSMUSG00000042055
0.016149472
0.088456158
−0.887442614
816.802302
WDR11


Usp48
ENSMUSG00000043411
0.016225097
0.08863688
−1.077064654
1800.697166
USP48


Znf512b
ENSMUSG00000000823
0.016235577
0.088658351
−1.183329772
740.0764865
ZNF512B


Disc1
ENSMUSG00000043051
0.016278169
0.088787979
−1.195411885
13.24347935
DISC1


Rai1
ENSMUSG00000062115
0.01629877
0.08883986
−1.003850007
559.4775749
RAI1


Crtc1
ENSMUSG00000003575
0.016331268
0.08898377
−0.657622848
378.3122648
CRTC1


Rgs2
ENSMUSG00000026360
0.016353982
0.089007859
−0.615116525
3983.63183
RGS2


Ino80
ENSMUSG00000034154
0.016449247
0.089260097
−1.068757463
1052.95832
INO80


Ndor1
ENSMUSG00000006471
0.016465402
0.089276715
−0.63707781
1204.967915
NDOR1


Rnf157
ENSMUSG00000052949
0.016476324
0.089276715
−0.417063462
1203.793529
RNF157


Ercc6
ENSMUSG00000054051
0.016488115
0.089276715
−1.248311611
630.521908
ERCC6


Zfp445
ENSMUSG00000047036
0.016497604
0.089276715
−1.374387942
794.9400438
ZNF445


Herc6
ENSMUSG00000029798
0.01651996
0.089278731
−0.479168344
499.7955735
HERC6


Kif21b
ENSMUSG00000041642
0.016550411
0.089335086
−1.313960897
3951.091126
KIF21B


Plcb2
ENSMUSG00000040061
0.016741841
0.089978148
−1.166546653
799.7453429
PLCB2


Mafb
ENSMUSG00000074622
0.016817768
0.090238122
−1.232904092
78.41605515
MAFB


Tet3
ENSMUSG00000034832
0.016843747
0.090244986
−1.412408945
950.5493543
TET3


Dak
ENSMUSG00000034371
0.016849619
0.090244986
−0.54048695
234.7445952
DAK


B3gnt5
ENSMUSG00000022686
0.016860797
0.090244986
−0.893470582
3041.540574
B3GNT5


Gpd1
ENSMUSG00000023019
0.016864678
0.090244986
−1.123377461
12.24390341
GPD1


Ipcef1
ENSMUSG00000064065
0.01693754
0.090563104
−1.197339847
223.1098492
IPCEF1


Cdk12
ENSMUSG00000003119
0.016948738
0.090583774
−1.114775744
1261.43648
CDK12


Fam46a
ENSMUSG00000032265
0.017075474
0.090867918
−1.241760066
178.0250189
FAM46A


Cep63
ENSMUSG00000032534
0.01709408
0.09089013
−0.643345706
721.3101443
CEP63


Brwd3
ENSMUSG00000063663
0.017104058
0.09089013
−1.288878033
414.7772581
BRWD3


Dnajc27
ENSMUSG00000020657
0.017132721
0.09089013
−0.916556136
365.4529266
DNAJC27


Megf11
ENSMUSG00000036466
0.017144438
0.090903508
−1.397054429
5.992120988
MEGF11


Sidt2
ENSMUSG00000034908
0.01717632
0.090973418
−0.30389852
3650.980474
SIDT2


Bptf
ENSMUSG00000040481
0.017219244
0.091068588
−1.255484699
5645.938968
BPTF


Scml4
ENSMUSG00000044770
0.017282247
0.091147173
−1.058845613
558.2429221
SCML4


Dync1h1
ENSMUSG00000018707
0.017314966
0.091244245
−1.31189975
4297.71315
DYNC1H1


Grap2
ENSMUSG00000042351
0.017337264
0.091326307
−0.966980345
688.6004098
GRAP2


Gpr68
ENSMUSG00000047415
0.017346335
0.091326307
−0.827817603
14.37827547
GPR68


Safb2
ENSMUSG00000042625
0.01736713
0.091326307
−1.081222905
2419.542369
SAFB2


Ubxn7
ENSMUSG00000053774
0.017377945
0.091337443
−1.161631386
1066.259893
UBXN7


Chd6
ENSMUSG00000057133
0.017400551
0.091337443
−1.275910886
1739.67433
CHD6


Unc13b
ENSMUSG00000028456
0.017403684
0.091337443
−1.123222103
20.84620494
UNC13B


Ccdc77
ENSMUSG00000030177
0.017441783
0.091450324
−0.711506154
294.3748403
CCDC77


Tub
ENSMUSG00000031028
0.01748396
0.091539944
−1.462061832
31.63584374
TUB


Cstf3
ENSMUSG00000027176
0.017507937
0.091569224
−0.331073953
737.3833886
CSTF3


Clk2
ENSMUSG00000068917
0.017577028
0.091569224
−0.5001039
1412.030818
CLK2


Ccnl2
ENSMUSG00000029068
0.017584162
0.091569224
−0.780939107
3762.265218
CCNL2


Dip2b
ENSMUSG00000023026
0.01763293
0.091655615
−1.133991122
1036.281289
DIP2B


Tbl1xr1
ENSMUSG00000027630
0.017654385
0.091688755
−0.965538897
1524.808036
TBL1XR1


Jup
ENSMUSG00000001552
0.017742308
0.09180532
−0.986127033
49.20842536
JUP


Asxl1
ENSMUSG00000042548
0.017747737
0.09180532
−1.040607547
1579.330115
ASXL1


Drp2
ENSMUSG00000000223
0.017792355
0.091869475
−0.983140086
8.632973327
DRP2


Mgat5
ENSMUSG00000036155
0.017882428
0.092106492
−1.144317333
152.6544653
MGAT5


Cdo1
ENSMUSG00000033022
0.017923746
0.092230527
−0.930566557
11.92817261
CDO1


Nup210l
ENSMUSG00000027939
0.01795143
0.092230527
−1.064090562
41.08688347
NUP210L


Nsun6
ENSMUSG00000026707
0.017983684
0.092230527
−0.525898694
208.924779
NSUN6


Acsl1
ENSMUSG00000018796
0.017991026
0.092230527
−0.755538669
337.0473674
ACSL1


Epha2
ENSMUSG00000006445
0.018014672
0.092230527
−1.430145009
8.540709877
EPHA2


Ddi2
ENSMUSG00000078515
0.018021228
0.092230527
−1.154007887
920.2798774
DDI2


Hoxb6
ENSMUSG00000000690
0.01803016
0.092230527
−1.408633271
4.529366864
HOXB6


Fbxo48
ENSMUSG00000044966
0.018033016
0.092230527
−0.740128736
46.60243776
FBXO48


Cdon
ENSMUSG00000038119
0.018037027
0.092230527
−0.882313552
240.5108328
CDON


Cd274
ENSMUSG00000016496
0.018056972
0.092230527
−1.07871155
562.3129892
CD274


Uevld
ENSMUSG00000043262
0.018087926
0.092230527
−0.817079183
66.60563383
UEVLD


Zfp612
ENSMUSG00000044676
0.018090738
0.092230527
−1.152059327
9.674349939
ZNF23


Klhl28
ENSMUSG00000020948
0.018123377
0.09224091
−0.91884418
288.5210522
KLHL28


Fam89a
ENSMUSG00000043068
0.018168698
0.092310644
−0.798230277
26.10340703
FAM89A


Zbtb49
ENSMUSG00000029127
0.018232097
0.092568319
−0.476637852
284.1677482
ZBTB49


Ttbk2
ENSMUSG00000090100
0.018295275
0.092695635
−1.391336151
87.55931245
TTBK2


Tgfbi
ENSMUSG00000035493
0.018379081
0.092830343
−1.072885574
115.2375347
TGFBI


Zfp26
ENSMUSG00000063108
0.018421429
0.092915547
−1.084262276
560.8614655
ZNF778


Lime1
ENSMUSG00000090077
0.018570164
0.09343974
−1.225126372
12.31650091
LIME1


Myo1f
ENSMUSG00000024300
0.018662534
0.093807512
−0.882847964
458.6474595
MYO1F


Prrc2c
ENSMUSG00000040225
0.018715482
0.093894237
−1.47120844
3170.162399
PRRC2C


Wdr60
ENSMUSG00000042050
0.018729727
0.093894237
−0.906283249
14.95670664
WDR60


Btbd8
ENSMUSG00000070632
0.018749861
0.093933419
−0.870852395
17.29502599
BTBD8


Ddx19b
ENSMUSG00000033658
0.018764804
0.093933419
−0.836449429
484.5248653
DDX19B


Gm13139
ENSMUSG00000067916
0.018790437
0.094029487
−1.086064455
10.94732811
ZNF616


Spen
ENSMUSG00000040761
0.018829033
0.094096986
−1.381698329
1027.433588
SPEN


Col11a2
ENSMUSG00000024330
0.018829367
0.094096986
−0.834142813
190.2070782
COL11A2


Zfp628
ENSMUSG00000074406
0.01883451
0.094096986
−0.542042243
397.8378315
ZNF628


Tas1r3
ENSMUSG00000029072
0.018884467
0.094096986
−0.568213464
51.20226003
TAS1R3


Cep350
ENSMUSG00000033671
0.018926406
0.094096986
−1.377044351
1466.110192
CEP350


Plk3
ENSMUSG00000028680
0.018987117
0.094198506
−0.70968689
229.0856183
PLK3


Serac1
ENSMUSG00000015659
0.019011358
0.094198506
−1.053993423
73.33354374
SERAC1


Hap1
ENSMUSG00000006930
0.019065758
0.094403443
−0.996510611
69.59838136
HAP1


Ccdc9
ENSMUSG00000041375
0.01908246
0.094403443
−0.702718121
1162.527853
CCDC9


Acot11
ENSMUSG00000034853
0.019145482
0.094542043
−1.135314984
30.51018249
ACOT11


Myo9a
ENSMUSG00000039585
0.019250347
0.094664867
−1.088410817
303.0822416
MYO9A


Aff4
ENSMUSG00000049470
0.019289776
0.094741879
−1.258925338
3470.402189
AFF4


Gpm6a
ENSMUSG00000031517
0.019373053
0.094801018
−1.162763364
247.9406564
GPM6A


Zmiz1
ENSMUSG00000007817
0.019376935
0.094801018
−1.3866755
931.2942481
ZMIZ1


Dnaic2
ENSMUSG00000034706
0.019413302
0.094832313
−0.986996817
13.02632144
DNAI2


Eme2
ENSMUSG00000073436
0.019415967
0.094832313
−0.729757875
282.211322
EME2


Rgp1
ENSMUSG00000028468
0.019460355
0.094941037
−1.028395859
844.9241291
RGP1


Zkscan1
ENSMUSG00000029729
0.019481088
0.094978437
−1.085946236
335.651014
ZKSCAN1


Ncor2
ENSMUSG00000029478
0.019530941
0.095189696
−1.184467949
1277.810028
NCOR2


Ranbp10
ENSMUSG00000037415
0.019629871
0.095462941
−0.869754355
767.6113446
RANBP10


Nin
ENSMUSG00000021068
0.019648724
0.095462941
−1.308382086
1346.623763
NIN


Pdp2
ENSMUSG00000048371
0.019723627
0.095703519
−0.849250329
140.40094
PDP2


Adam19
ENSMUSG00000011256
0.01976855
0.095715263
−1.126960649
634.7672398
ADAM19


Rnf214
ENSMUSG00000042790
0.019811125
0.095715263
−0.84177797
309.0177764
RNF214


Lpgat1
ENSMUSG00000026623
0.01981555
0.095715263
−0.879803263
2137.753401
LPGAT1


Acap3
ENSMUSG00000029033
0.019821331
0.095715263
−0.625280884
392.831564
ACAP3


Ppip5k1
ENSMUSG00000033526
0.019822628
0.095715263
−0.668430693
365.8628434
PPIP5K1


Zyg11b
ENSMUSG00000034636
0.019826354
0.095715263
−1.139551873
915.9211197
ZYG11B


Atad2b
ENSMUSG00000052812
0.019844406
0.095715263
−1.330003003
552.766295
ATAD2B


Mical3
ENSMUSG00000051586
0.019965345
0.095846214
−0.992577279
224.4029859
MICAL3


Clec4b1
ENSMUSG00000030147
0.019965902
0.095846214
−1.533481839
4.42757991
CLEC4C


Degs2
ENSMUSG00000021263
0.020009357
0.096014656
−1.045449322
249.6306372
DEGS2


Hif3a
ENSMUSG00000004328
0.020027935
0.096040658
−1.062633445
8.487928197
HIF3A


Gp9
ENSMUSG00000030054
0.020049221
0.09611116
−1.433603363
3.975682944
GP9


Med13
ENSMUSG00000034297
0.020097096
0.096182726
−1.253932367
3615.226429
MED13


Fcgr4
ENSMUSG00000059089
0.020143715
0.096255477
−1.160522854
84.67335768
FCGR3A


Fcgr4
ENSMUSG00000059089
0.020143715
0.096255477
−1.160522854
84.67335768
FCGR3B


Shisa3
ENSMUSG00000050010
0.020148657
0.096255477
−1.354883089
7.396057646
SHISA3


Card14
ENSMUSG00000013483
0.020151863
0.096255477
−1.488784593
4.134855448
CARD14


Pgam2
ENSMUSG00000020475
0.020208691
0.096453838
−0.874254092
42.29415437
PGAM2


Serping1
ENSMUSG00000023224
0.020257234
0.096600732
−1.46851951
4.460761253
SERPING1


Nipa1
ENSMUSG00000047037
0.020305754
0.096733808
−1.355631035
6.049910928
NIPA1


Acrbp
ENSMUSG00000072770
0.020379924
0.096995679
−0.665882973
127.5221364
ACRBP


Usp34
ENSMUSG00000056342
0.020394315
0.097000917
−1.245592918
2387.682289
USP34


Rictor
ENSMUSG00000050310
0.020473487
0.097282386
−1.340904671
1042.8486
RICTOR


Atxn1l
ENSMUSG00000069895
0.020532234
0.097316188
−1.167706306
824.1639304
ATXN1L


Kcnh7
ENSMUSG00000059742
0.020552572
0.097338954
−1.421541182
20.19665951
KCNH7


Tmem194b
ENSMUSG00000043015
0.020588529
0.097384643
−0.702580895
1251.883956
TMEM194B


Atxn7
ENSMUSG00000021738
0.02065255
0.097401325
−1.255286468
773.0175735
ATXN7


Pitpnm1
ENSMUSG00000024851
0.020670104
0.097401325
−0.685730815
1893.409241
PITPNM1


Abca7
ENSMUSG00000035722
0.020672008
0.097401325
−0.896529318
1678.793683
ABCA7


Chd8
ENSMUSG00000053754
0.02073566
0.097497474
−1.108100007
2582.749866
CHD8


Dcbld2
ENSMUSG00000035107
0.020739169
0.097497474
−0.896278859
41.47789801
DCBLD2


Atr
ENSMUSG00000032409
0.020773627
0.097619935
−1.045071667
730.5907763
ATR


Arc
ENSMUSG00000022602
0.020785282
0.097619935
−1.046036651
21.25006924
ARC


Tmem81
ENSMUSG00000048174
0.020817663
0.097662613
−1.066412805
101.5300744
TMEM81


Trim56
ENSMUSG00000043279
0.020833411
0.097662613
−1.347669212
1567.961398
TRIM56


Otud4
ENSMUSG00000036990
0.020887229
0.097846879
−1.312902713
1718.933544
OTUD4


Trerf1
ENSMUSG00000064043
0.020954295
0.098007493
−0.954539436
436.5849234
TRERF1


Rc3h1
ENSMUSG00000040423
0.0209618
0.098007493
−1.098873456
1021.721514
RC3H1


Pyroxd2
ENSMUSG00000060224
0.021008992
0.09813384
−1.101720545
12.90247692
PYROXD2


Fnbp4
ENSMUSG00000008200
0.021025321
0.098178699
−1.083836292
2906.519261
FNBP4


C8g
ENSMUSG00000015083
0.021093421
0.098276624
−0.710398943
42.09913467
C8G


A230050P20Rik
ENSMUSG00000038884
0.021163595
0.098310039
−0.735455602
413.8436488
C19orf66


A830010M20Rik
ENSMUSG00000044060
0.021166803
0.098310039
−1.062248038
169.4242824
KIAA1107


Arid1a
ENSMUSG00000007880
0.021174661
0.098310039
−1.267323856
3807.911199
ARID1A


Pigo
ENSMUSG00000028454
0.02117672
0.098310039
−0.574199906
731.2224965
PIGO


Tmem87b
ENSMUSG00000014353
0.021181412
0.098310039
−0.950106858
453.9553155
TMEM87B


Ralgapa2
ENSMUSG00000037110
0.021355006
0.098707733
−1.119998066
366.6264567
RALGAPA2


Atm
ENSMUSG00000034218
0.02140639
0.098766949
−1.356995482
1085.266522
ATM


Ccdc114
ENSMUSG00000040189
0.021437127
0.098868165
−0.749043204
49.0581057
CCDC114


Mphosph9
ENSMUSG00000038126
0.021455559
0.098921921
−0.986818653
509.2254015
MPHOSPH9


Rab12
ENSMUSG00000023460
0.021525336
0.099149677
−0.473015915
261.6254043
RAB12


Birc6
ENSMUSG00000024073
0.021554805
0.099191515
−1.30548857
4536.630806
BIRC6


Cdh5
ENSMUSG00000031871
0.021609473
0.099349126
−0.816789219
22.856724
CDH5


Lyst
ENSMUSG00000019726
0.021649841
0.099444322
−1.41308572
2164.991428
LYST


Ppargc1b
ENSMUSG00000033871
0.021758245
0.09962519
−1.002746533
110.3899446
PPARGC1B


Fem1c
ENSMUSG00000033319
0.021809067
0.099732756
−0.743798118
607.1405448
FEM1C


Upf3b
ENSMUSG00000036572
0.021853625
0.099805941
−0.985226886
762.2502718
UPF3B


Atp2a1
ENSMUSG00000030730
0.021854223
0.099805941
−1.213156411
22.42177377
ATP2A1


Slc4a7
ENSMUSG00000021733
0.021906324
0.099895848
−1.209137871
1840.303917
SLC4A7


Tsc1
ENSMUSG00000026812
0.021915951
0.099908536
−1.144463056
1042.615413
TSC1


Gfod1
ENSMUSG00000051335
0.021929835
0.099938159
−1.016421256
167.1676106
GFOD1


Proz
ENSMUSG00000031445
0.021970318
0.099938159
−1.073825063
42.30681128
PROZ
















TABLE 4





Leading edge genes from GSEA and genes associated with pathways







Leading edge genes from FIGS. 3g and 3h


400 leading edge genes determined by GSEA. Downregulated genes ranked by log2-fold


change and determined by RNAseq were used for analysis


(B220 gene set q-value <0.1 and FL gene set p-value <0.05








B220+ VavPBcl2-shKmt2d
KMT2D nonsense mutant FL





ACHE
ABCD1


ADAM8
ADAM8


ADAMTSL4
ADAP2


ADAP2
ADCY7


ADRBK2
AFF1


AFF1
AHDC1


AHNAK
ALPK2


AHNAK2
ALPL


APC
AMOT


APOBR
APOBR


ARAP2
ARID3A


ARHGAP31
ARID5A


ATP6V0A1
ARRDC4


BAMBI
ATN1


BCL9L
BANK1


BHLHE40
C10orf128


BOD1L1
C10orf76


CAPN3
C19orf71


CARD14
C1R


CARD9
CACNA1A


CARNS1
CADM1


CCDC9
CAMKK1


CCND1
CARD9


CCR2
CCND1


CD274
CD274


CD300A
CD44


CD4
CD69


CD69
CDC42EP4


CDH1
CDYL


CHD7
CHD7


CLIP2
CHN2


CLN8
CKAP4


CLU
CLCN7


CRB2
COL9A3


CSRNP1
CRB2


CUBN
CRTC3


CX3CR1
CUBN


DACT1
CYB5RL


DBNDD1
DCBLD2


DCBLD2
DFNB31


DEGS2
DIP2B


DIP2B
DNAJA1


DOPEY2
DNAJB1


DSE
DOK2


DUSP1
DOPEY2


DUSP6
DSE


EGR1
DUSP3


EGR2
DUSP6


EML5
EGR3


ENG
ELL


EPHA2
EPHB6


FAM43A
ERRFI1


FAM46A
ESAM


FAN1
FAM129C


FAR2
FAM43A


FARP2
FAM46C


FBXL20
FAM65A


FBXO24
FBXO24


FFAR1
FGR


FGR
FLNA


FOS
FMNL3


FOSB
FSCN1


FOXJ1
FURIN


FRMD4A
GAS7


FYB
GATA3


GALNT3
GDF11


GAS7
GPD1


GHRL
GPR132


GPD1
GRAP2


GPR157
GTPBP1


GRAP2
HERC1


HAVCR2
HERC3


HEBP1
HEXIM1


HERC1
HHEX


HFE
HMOX1


HIPK2
HOOK1


HMBOX1
HSP90AA1


HSD3B7
HSPA1A


HSPA1A
HSPA1B


HSPA1B
HSPA1L


HSPG2
HSPG2


HTT
HSPH1


IER2
IFFO2


IL18R1
IFIT2


IL1B
IFITM2


INSR
IKZF1


IQSEC1
IL17RA


ITGAM
INSR


JUNB
IRAK2


JUP
ITGA5


KCNG1
ITGB7


KDM6B
ITPRIP


KIAA2018
JAM3


KIF21B
JUNB


KLF11
JUP


KLF4
KCNG1


LAIR1
KLF11


LILRB4
KLF2


LOXL3
KLF3


LRCH4
KLF4


LRP1
KLF9


LRRC16B
LAMP3


MAPK8IP3
LDLRAP1


MDN1
LFNG


MEGF8
LRRC56


MICAL3
LTBP3


MTSS1L
MAN2A2


MYBPC2
MAPK8IP3


MYBPC3
MED13L


MYO1F
MTMR12


MYO5A
MTMR3


NAV2
MYBPC2


NCOR2
MYO1F


NEB
MYO5B


NFKBIZ
NAV2


NOTCH2
NFATC3


NR4A1
NFKBIZ


NR4A2
NFRKB


NRP1
NMT2


NUP210L
NOTCH1


OSGIN1
NR4A2


P2RX1
NRARP


PAK1
NTN1


PARVB
PAFAH2


PDE4C
PARP14


PELI2
PDCD11


PER1
PELI3


PER3
PHF20


PHACTR2
PHLDB3


PIK3C2B
PHTF1


PIK3R5
PI4K2A


PKD1
PIK3R4


PLCB2
PKD1


PLEC
PKN3


PLEKHM3
PLAUR


PLK2
PLCB2


PLK3
PLK3


PTK6
PLXND1


PTPDC1
PRDM1


PTPRE
PREX1


PYROXD2
PRR5L


RAB6B
PTPRK


RAI1
RAB11FIP5


RDH5
RABEP2


RNF213
RAP2B


RREB1
RARA


SCML4
RARG


SERPING1
RASA3


SESN3
RGMB


SGK1
RGS12


SIDT2
RIN3


SLFN12L
RNF149


SNAI1
RNF43


SOCS3
SAFB2


SPARC
SDC4


SPECC1
SELP


SPEN
SERPINE1


SRGAP3
SIK3


STAC3
SIRT1


STARD9
SKI


SYNGAP1
SLC12A6


SYNPO
SLC12A7


TAGLN
SLC16A5


TBC1D8
SLC25A30


TBC1D9
SLC4A3


TBKBP1
SNAI1


TGFBI
SNX9


TGM1
SOCS3


TGM2
SPATA6


TIAM1
ST6GALNAC3


TLR8
STK10


TMC4
SUFU


TMEM8B
SYNPO


TNFRSF14
TBKBP1


TNNT3
TBXAS1


TNRC6B
TELO2


TNRC6C
TERF1


TRIM56
TGM2


TRPM2
THRA


TSC1
TLR4


TTC39B
TMEM8B


TTN
TNFRSF1B


VASN
TNNT3


VCAM1
TNRC6C


VPS13C
TRPM2


VPS13D
UST


WDFY1
UTRN


ZBTB20
WDFY1


ZBTB43
WDR81


ZC3H12A
WIPF2


ZC3H12B
ZBTB32


ZFP36
ZC3HAV1


ZMIZ1
ZFYVE27


ZNF14
ZKSCAN3


ZNF208
ZMYND11


ZNF23
ZNF14


ZNF3
ZNF267


ZNF398
ZNF442


ZNF442
ZNF473


ZNF628
ZNF597










Genes associated with significantly enriched pathways in FIG. 3i












Lymphochip database




pathways (http://




lymphochip.nih.gov/




signaturedb/index.html)

















Immediate Early genes =

EGR1
FOS
FOSB
ZFP36
JUNB
DUSP1


Immediate_early









IL6 induced genes =

EGR2
ZFP36
SGK1
JUNB
SOCS3
ZBTB20


IL6 LY10 Up all









IL10 induced genes =

CD274
BANK1
HMOX1
ZFP36
SGK1
SESN3


IL10_OCILy3 Up

SNX9
JUNB
IFITM2
BCL9L
SOCS3
PRDM1




DUSP1







HRAS target genes =

NFKBIZ
EPHA2
EGR1
FOS
IL1B
ADAM8


HRAS_overexpression

CD274
ZFP36
SDC4
IER2
JUNB
PLAUR


2x up

PTPRE
DUSP6
DUSP1





KRAS target genes =

TAGLN
ADCY7
HSPG2
NLRP1
SPARC
SNAI1


KRAS_Up.txt

SGK1
TGFBI
SERPINE1
JUNB
CADM1



HRAS target genes =

EPHA2
EGR1
FOS
IL1B
ADAM8
ZFP36


HRAS_overexpression_

IER2
JUNB
PLAUR
DUSP6
DUSP1



4x_up









IL10 induced genes =

CD274
BANK1
HMOX1
ZFP36
SGK1
SESN3


1L10_OCILy3_Up

SNX9
JUNB
IFITM2
BCL9L
SOCS3
PRDM1




DUSP1







IL6 induced genes =

EGR2
ZFP36
SGK1
JUNB
SOCS3
ZBTB20


IL6_Ly10_Up_all









Immediate Early genes =

EGR1
FOS
FOSB
ZFP36
JUNB
DUSP1


Immediate_early









JAK_IL10_Ly10_Up

ZFP36
JUNB
IFITM2
PRDM1




KRAS target genes =

TAGLN
ADCY7
HSPG2
SPARC
SNAI1
SGK1


KRAS_Up

TGFBI
SERPINE1
JUNB
CADM1





Broad institute Molecular









signatures Database









(http://www.









broadinstitute.org/









gsea/msigdb/index.jsp)
ID


















HRAS Oncogenic
msig_1335
NFKBIZ
EPHA2
EGR1
FOS
IL1B
ADAM8
CD274


Signature = BILD

ZFP36
SDC4
KDM6B
IER2
JUNB
PLAUR
PTPRE


HRAS Oncogenic

ITPRIP
DUSP6
DUSP1
AHNAK2





EGF signaling target
msig_308 
EPHA2
EGR2
EGR3
EGR1
FOS
FOSB
DNAJB1


genes = NAGASHIMA_

ZFP36
NR4A2
NR4A1
BHLHE40
KDM6B
IER2
JUNB


EGF_SIG

DUSP1








TGFB1 induced genes =
msig_2312
NOTCH2
LRP1
HSPG2
APC
JUP
SPARC
SERPINE1


VERRECCHIA_

CD44
PAK1







EARLY_RES










Serum Response genes =
msig_977 
ZC3H12A
EGR3
EGR1
NR4A2
PLK2
BHLHE40
SGK1


AMIT_SERUM_

IER2








RESPONSI










LPS (TLR4) induced
msig_1707
NFKBIZ
ZC3H12A
EGR2
EGR3
EGR1
VCAM1
PLK2


genes = SEKI_INFLAM-

PTPRE
CD44







MATORY










TNF induced genes =
msig_994 
CDC42EP4
NFKBIZ
ZC3H12A
DSE
IL1B
SDC4
SGK1


ZHANG_RESPONSE_

IRAK2
SNX9
PLAUR
SOCS3
GPR132




TO_IKK_










CROONQUIST_NRAS_
msig_1832
CX3CR1
CCR2
TBC1D9
DUSP6





SIGNALING_UP










CHIARADONNA_
msig_398 
NOTCH1
SLC4A3
FOS
KLF2
STK10
JUP
PER1


NEOPLASTIC_

RAB11FIP5
SOCS3
DUSP1






TRANSFORMATIO










PEREZ_TP53_AND_
msig_556 
ADAP2
NTN1
COL9A3
EGR2
EGR1
NRARP
BAMBI


TP63_TARGETS

INSR
DFNB31
FAM46C
TNRC6C
FAM43A
VASN
CAPN3











Leading Edge Genes from B220 ChlPseq
Leading Edge Genes from B220 ChlPseq


Enhancer FIGS. 4c, d 400 leading edge
promoter from Suppl FIGS. 4e, f 400 leading


genes determined by GSEA.
edge genes determined by GSEA.










B220+
KMT2D
B220+
KMT2D


VavPBcl2-5hKmt2d
nonsense mutant FL
VavPBcl2-shKmt2d
nonsense mutant FL





ABR
ACAD9
ABR
ABAT


ACSL1
ADAMTSL4
ACACB
ABCB6


ACVR1B
ADCK5
ACHE
ACACB


ACVRL1
ADORA2A
ADAR
ACHE


ADAMTSL4
ADRBK1
AEBP2
ACOT7


ADCY9
AGPAT4
AGRN
ADCK5


AFF3
AHCYL2
AIM2
ADORA2A


AHCYL2
AKAP2
AIRE
AGRN


AKAP2
ALPK2
AKT3
ALDH7A1


ANKRD11
ANKRD11
ALDH1L2
ALKBH7


ANKRD44
AP1S3
APP
ANKRD9


APOBEC2
ARHGAP22
ARHGAP23
APP


ARHGAP26
ARHGAP26
ARHGAP29
ARHGEF40


ARHGAP29
ARID3A
ARHGAP6
ARID2


ARHGAP32
ARID5A
ARID1A
ARMC5


ARID3B
AXIN1
ARID2
ATE1


ARMC9
AZIN1
ARID5B
B3GAT2


ASAP1
BCAR3
ATXN1
BAHD1


ASXL1
BCL9L
B3GAT2
BCAP31


ATP11B
BFSP2
BAHD1
BCL3


ATP8B4
BTG1
BCR
BMP1


ATXN7L1
C100rf32
BRD3
C19orf66


B4GALT5
C1orf95
C19orf66
C1orf95


BATF3
C9orf85
C1orf95
CASZ1


BCL9
CAPN10
C3orf70
CBX6


BCL9L
CCRN4L
CACNA1H
CCDC64


BEGAIN
CD69
CAMK2A
CCDC88B


BMP2K
CDADC1
CASZ1
CCDC9


BPTF
CDK5R1
CCDC102A
CCR6


C1orf95
CDYL
CCDC38
CD55


CACNA1H
CELF2
CCDC39
CDC42BPB


CACNG6
CEP164
CCDC88B
CDH24


CCDC38
CHD9
CCDC9
CEP68


CCDC6
CHST12
CCR6
CHRM4


CCDC88B
CIITA
CDC42BPB
CHST7


CD69
CLIP2
CELSR1
CKAP4


CECR2
CMTM7
CENPF
CLIP2


CELF2
CPM
CEP68
COL1A1


CELSR2
CRB2
CLIP2
CRAMP1L


CEP164
CSRNP1
CNST
CRAT


CHD9
CXCR4
CPD
CSRNP2


CHST11
CXCR5
CRAMP1L
CXCR3


CIITA
DFNB31
DBNDD1
CXorf40A


CLASP1
DIP2B
DCBLD2
DBNDD1


CLIP2
DLL1
DENND3
DCBLD2


CORO2A
DNASE1
DNAI2
DHRS13


CRB2
DOCK11
DNMBP
EHHADH


CREB1
DOCK9
EEPD1
ELF4


CRYBG3
DTNB
EHHADH
ENTPD7


DCHS1
DYRK1A
ELF4
EOMES


DDX6
EGR2
EPHB2
ERBB2IP


DENND1B
ELF4
ERBB2IP
ESAM


DFNB31
ELK3
ESAM
FAAH


DGKH
EMILIN2
FAM105A
FABP5


DIP2B
ENPP1
FAM179A
FADS2


DLL1
ETV6
FAM89A
FAM105A


DNAI2
EXT1
FARP2
FAM110A


DNMT3A
FAM117A
FBXL2
FAM132A


DOCK11
FAM134B
FGR
FAM83H


DOCK9
FAM46C
FSCN1
FARP2


DUSP16
FAM49B
FUT1
FBXL2


DYRK1A
FAM91A1
GBP6
FGF9


EDARADD
FMNL3
GFOD1
FGFRL1


EEPD1
FOSB
GPR157
FGR


EGR2
FSCN1
GYLTL1B
FRAT2


EIF2AK3
FUT8
HCN3
FSCN1


EIF4A2
GADD45B
HEMGN
GALNT12


EIF4G3
GDF11
HIC2
GNGT2


ELF4
GHRL
HIF3A
GPR135


EML4
GLTSCR1
HINFP
GPR157


EPHB2
GNA15
HIP1R
GTPBP1


ETV6
GNG7
HOXB6
GTPBP4


EXOC1
GPM6B
HTATSF1
GYLTL1B


FAM129B
GPR157
HTT
HIC1


FAM91A1
GPR18
IGSF3
HIC2


FBXO10
GYPC
IL9R
HIP1R


FCHSD2
HAAO
IMPACT
HSD17614


FGD6
HDAC4
INF2
HSPB1


FKBP15
HDAC7
INTS2
HTT


FMNL3
HEG1
IQCE
IGF1R


FNBP1
HIPK2
IQSEC2
IGF2BP3


FOSB
HIVEP1
ITGB3
IGSF3


FOXK1
HMBOX1
ITGB8
IL12RB1


FRY
IDH2
KCP
ING1


GDA
IDO1
KDM3B
INPP5A


GHRL
INPP5A
KDM5B
INPP5D


GLTSCR1
INPP5D
KIAA0922
KAZALD1


GNG7
IQSEC1
KIAA1522
KCNJ1


GPR157
IRAK2
KIAA2018
KDM3B


GRAMD1B
ITGB2
KIF19
KIAA2018


GXYLT1
ITPR2
KLF11
KLF11


HDAC4
JMJD1C
KLF13
KLF13


HEG1
KDM2B
KLF2
KLF2


HIPK2
KIF13B
LATS2
LCP2


HIVEP1
KLHL3
LCP2
LEPRE1


HK3
KSR1
LIME1
LGALS1


HMBOX1
LASP1
MAFB
LGALS3BP


IL6R
LRRFIP1
MAFK
MAFK


IL9R
LY6E
MAPKBP1
MAPK8IP1


IQSEC1
MANBA
MAST1
MAPKBP1


ITGAL
MAP3K5
MCTP2
MCOLN1


ITGB3
MBP
MED13L
MED13L


ITPR2
MED13L
MGAT4A
MEPCE


JMJD1C
MGAT1
MGAT5
MICALL1


KATNAL1
MICAL3
MICALL1
MMP17


KIF13B
MTMR12
MYCBP2
MOCS3


KIF20B
MXD1
MYO5B
MOV10


KSR1
MYO3B
NAA40
MSH5


LNPEP
NCEH1
NAV2
MTL5


LPGAT1
NCOA2
NBEAL2
MYCBP2


LRIG2
NCOR2
NFATC2
MYO5B


LRRFIP1
NDUFA13
NFE2L1
NAV2


LYST
NFATC1
NFE2L3
NBEAL2


MAP3K5
NFKBIA
NFIC
NDRG1


MAP3K8
NLRC5
NFIX
NDRG4


MCTP2
NLRP2
NFXL1
NFATC2


MED13L
NPRL3
NOSTRIN
NINJ1


MEF2A
NRARP
NQO1
NR3C2


MGAT5
OGFRL1
NRP2
NXPH4


MICAL3
OSBPL3
OSBPL6
PAOX


MINK1
OSBPL8
PAK6
PCK2


MXD1
PCNX
PAPLN
PDE4C


MYCBP2
PFKFB3
PARM1
PHRF1


NCOA2
PHF2
PBX1
PIK3CD


NCOR2
PIK3AP1
PCF11
PIM3


NLRC5
PIK3C2B
PCGF3
PLEKHG2


NOD2
PIK3CD
PCMTD1
PLXNB2


NOSTRIN
PIP5K1C
PDE4C
PLXNC1


NRIP1
PLEKHO2
PEAR1
POLD1


NRP2
POPDC2
PFKFB4
PPP1R3E


OSBPL8
PPP1R13B
PHRF1
PPTC7


PAG1
PREX1
PLCG1
PRR5L


PAN3
PRICKLE1
PLEKHG2
PTPDC1


PCMTD1
PRR5
PLXNB2
RAB35


PCNX
PSAP
PPARGC1B
RAB36


PCYT1A
PSTPIP1
PPL
RAB6B


PCYT1B
PTP4A3
PPM1H
RAI1


PECAM1
PTPN1
PRRC2B
RALGDS


PIK3C2B
RAB6B
PTPDC1
RASL11B


PIK3R1
RAB8B
PTPN3
RASSF2


POFUT1
RAD54B
PVRL1
RBMX2


POU2F2
RALGDS
RAB6B
RDH10


PREX1
RAP1GAP2
RAI1
REPIN1


PRRC2B
RASA3
RASGRF1
RERE


PVRL1
RERE
RASSF2
RGS12


QPRT
RIMKLA
RCBTB1
RGS14


RAB6B
RNF130
RERE
RIMKLA


RAD54B
RNF19B
RGS3
RMND5A


RAP1GAP2
RUNX1
RIMKLA
RND1


RASA2
RUNX3
SALL2
RPS6KA1


RASGRP3
SECISBP2L
SCN11A
RRAGD


RERE
SEMA4B
SEC14L2
RUNX3


REV1
SEMA7A
SEC31B
SALL2


RIMKLA
SERTAD1
SEMA4B
SCN11A


RUNX1
SGK1
SGK223
SEC31B


SCN8A
SH3BP5
SH3BP4
SEMA4B


SECISBP2L
SH3PXD2A
SHANK1
SEMA4D


SEMA4B
SIPA1L1
SHB
SERHL2


SERTAD2
SLAMF1
SIN3A
SESN2


SGK1
SLC4A8
SIX1
SETD4


SH3PXD2A
SLC9A3R1
SLC11A1
SGTB


SHB
SNX18
SLC12A9
SIDT2


SIPA1L1
SNX9
SLC22A15
SIN3A


SIPA1L2
SOCS3
SLC26A8
SLBP


SLC29A3
ST3GAL1
SLC30A1
SLC12A4


SLC4A8
ST6GALNAC6
SLC43A2
SLC12A9


SMAD3
STAT5B
SLC45A4
SLC25A34


SMAD7
TAF3
SLC4A3
SLC25A43


SMARCA2
TBC1D14
SOAT2
SLC39A14


SOCS3
TBC1D9
SPATA1
SLC4A2


SPATA13
TBKBP1
SRMS
SLC4A3


SPRED2
TCP11L2
STARD9
SP110


ST3GAL1
TEC
SYNPO
ST6GALNAC6


TAF3
TMEM173
TBC1D2
STARD9


TARSL2
TMEM176B
TEAD2
SYNGR3


TBC1D14
TMEM189
TFCP2L1
SYNPO


TBC1D9
TMEM2
THSD1
TCF3


TBKBP1
TMEM201
TOX
TCTN2


TCF4
TNFAIP3
TRPM2
TEX9


TEF
TNFAIP8
TRRAP
TMEM108


TMEM131
TNFRSF14
TSC1
TNFRSF12A


TNFAIP3
TNIP1
TSPAN33
TRAF4


TNFAIP8
TNRC18
TTC28
TRPM2


TNFRSF14
TOX2
TTC39B
TRRAP


TNRC18
TRAF2
TUFT1
TSC1


TRAK1
TRIM2
USP2
TSPAN18


TRERF1
TRIM8
USP51
TTC39B


TRIM2
TSNAXIP1
WDFY1
UBE2D1


TSNAXIP1
TSPAN14
VVHSC1L1
ULK1


TTC39B
TTC39B
ZBTB38
UNC119


USP6NL
TUBA1B
ZBTB4
USP2


USP7
USP15
ZC3H12A
WDFY1


VAMP1
VAMP1
ZDHHC23
VVDR6


VAV2
WDFY1
ZMIZ1
WSB2


WDFY1
WDFY4
ZNF275
ZBTB38


WDFY4
WVVP2
ZNF280B
ZC3H12A


ZBTB38
ZBTB38
ZNF546
ZFP82


ZFYVE26
ZMIZ1
ZNF629
ZMIZ1


ZMIZ1
ZNF469
ZNFX1
ZNF629


ZNF217
ZNRF1
ZNRF3
ZNFX1










Genes associated with significantly enriched pathways in FIG. 4e enhancers
















Lymphochip database








pathways (http://








lymphochip.nih.gov/








signaturedb/index.html)





NFkB targets = NFkB
GADD45B
NFKBIA
TNFAIP3
SMARCA2




bothOCILy3andLY10








IL0 induced genes =
EGR2
CXCR5
PTPN1
SGK1
SOCS3



1L6_Ly10_Up_all








IL10 induced genes =
CXCR5
NLRC5
FUT8
PTPN1
PFKFB3
TNFAIP3


1L10_OCILy3_Up
SGK1
CIITA
ADRBK1
SNX9
BCAR3
BCL9L



SOCS3
POU2F2
BATF3





TGFB induced genes =
GADD45B
SMAD7
EPHB2
SGK1
ST3GAL1



TGFbeta up epithelial








large








KRAS induced genes =
INPP4B
GADD45B
MAP3K8
EPHB2
SGK1
ACVR1B


KRAS_Up








PRDM1 repressed genes =
CXCR5
GPR18
INPP5D
CIITA
PAG1
POU2F2


Blimp_Bcell_repressed





Broad institute Molecular








signatures Database








(http://www.








broadinstitute.org/








gsea/msigdb/index.jsp)
ID





CD40 induced genes =
msig_1313
GADD45B
CXCR5
MAP3K8
NFKBIA
TNFAIP8


BASSO_CD4O_

TNFAIP3
PIK3CD
PTP4A3
SLAMF1
TNFAIP3


SIGNALING_UP








LPS (TLR4) induced
msig_1707
BTG1
GADD45B
EGR2
NFKBIA
TNFAIP3


genes = SEKI_INFLAM-

TMEM2






MATORY_








RESPONSE_LPS_UP








TNF induced genes =
msig_994 
BTG1
ABTB2
SMAD3
RNF19B
B4GALT5


ZHANG_RESPONSE_

SEMA7A
MXD1
NFKBIA
TNFAIP8
TNFAIP3


TO_IKK_INHIBITOR_

SGK1
DUSP16
IRAK2
SNX9
PAG1


AND_TNF_UP

SOCS3
HIVEP1





EGF signaling target
msig_968 
TSPAN14
EXT1
CDYL
MBP
AMIGO2


genes = AMIT_EGF_

CHST11
TRIO
BCAR3
LY6E
GRAMD1B


RESPONSE_








480_HELA








p53 and p63 target genes =
msig_556 
PPP1R13B
SIPA1L2
EGR2
NRARP
SMAD7


PEREZ_TP53_AND_

TAF3
TRIM8
KSR1
FAM105A
DFNB31


TP63_TARGETS

FAM46C
TOX
FRY










Genes associated with significantly enriched pathways in FIG. 4g promoters
















Lymphochip database








pathways (http://








lymphochip.nih.gov/








signaturedb/index.html)





KRAS target genes =
COL1A1
ULK1
HSPB1
EPHB2
BMP1
TUFT1


KRAS_Up





Broad institute Molecular








signatures Database








(http://www.broadinstitute.








org/gsea/msigdb/index.jsp)
ID





KRAS regulated genes in
msig_398 
SLC4A3
COL1A1
KAZALD1
KLF2
APP


neoplastic transformation =

INPP5A
TCF3
NDRG4




CHIARADONNA_








NEOPLASTIC_TRAN








PEREZ_TP53_AND_
msig_556 
ULK1
MAFB
HIC2
TUFT1
FAM105A


TP63_TARGETS

TOX
IGF1R
PAK6
CASZ1
SEMA4D




CRAMP1L














Genes associated with significantly enriched pathways in FIG. 5e

















Lymphochip database









pathways (http://









lymphochip.nih.gov/









signaturedb/index.html)





PRDM1 targets =
FCER1G
FCRLA
MS4A1
ST6GAL1
CXCR5
VPREB3
CD22


Blimp_Bcell_repressed
NR1H2
ZFP36L1
CIITA
BTK
CD19
PLEK
PAG1



FCER2
POU2F2







IL10 induced genes =
ST6GAL1
IL21R
CXCR5
RB1
DMD
HMOX1
ZFP36


IL10_OCILy3_Up
RAD51
MEF2D
CIITA
BCAR3
IFITM1
BCL9L
POU2F2



PRDM1
MYB
CCND3






KRAS target genes
PGLS
PDXK
GADD45B
JAK1
HSPB1
PMEPA1
SNAI1


KRAS_Up
NPTX1
EVL
NCF2
SOX4
ATP2B4
CADM1



NFkB_bothOCILy3
GADD45B
RELB
BCL2L1
TRAF1
NFKBIA
NCF2
IRF4


andLy10





Broad institute Molecular









signatures Database









(http://www.









broadinstitute.org/









gsea/msigdb/index.jsp)
ID





IL6 induced genes =
msig_1155
EPB41L2
GADD45B
MAPKAPK2
RB1
DAPK1
GNA13


BROCKE_APOPTOSIS_

SF1
ZFP36
TMEM184B
HBEGF
MX1
SOX2


REVERSED_BY_IL6

CADPS
IRF1
IRF4
ATP2B4
ID3
POU2F2




PRDM1
SLC2A3






IRF4 induced genes in
msig_1812
WHSC1
SSR1
ST6GAL1
GNG7
CD38
PPP1R2


plasma cells =

TXNDC5
IRF4
TNFRSFI7
SUB1
MNAT1
PRDM1


SHAFFER_IRF4_

MYB







TARGETS_IN_









ACTIVATED_









DENDRITIC_CEL









CD40 induced genes
msig_28 
CHMP7
FOXN3
EPB41L2
TUBA1C
FANCA
ITGB1


in GCB-DLBCL =

PLEKHF2
CKAP4
CUX1
ALDH2
NRGN
CD38


HOLLMAN_

CD22
SGCB
CAB39L
KDM5D
MAP4K1
BLK


APOPTOSIS_VIA_

BTK
ALDH4A1
NR3C1
TNFRSFI7
MRPL34
PPP2CB


CD40_UP

INT59
ENDOD1
NFIB





NFkB target genes
msig_587 
GADD45B
TNFRSF21
BCL2L1
TNFRSF10B
TRAF1
MDM2


downregulated after

TERT







IKKB inhibition =









DUTTA_APOPTOSIS_









VIA_NFKB








Claims
  • 1. A method for diagnosing a follicular lymphoma or a diffuse large B cell lymphoma, or the responsiveness or contraindication to therapy thereto in a subject, the method comprising the steps of: obtaining a biological sample from said subject; and testing said biological sample to detect the presence or absence of a lysine (K)-specific methyltransferase 2D (KMT2D) alteration in said biological sample, wherein the presence of said KMT2D alteration indicates a diagnosis of said follicular lymphoma or diffuse large B cell lymphoma, or poor responsiveness or contraindication to therapy thereto in said subject.
  • 2. (canceled)
  • 3. The method of claim 1, wherein said KMT2D alteration is a mutation in said KMT2D.
  • 4. The method of claim 3, wherein said mutation is a non-sense mutation, missense mutation, or a combination thereof.
  • 5. The method of claim 1, wherein said KMT2D alteration is a change in the level of KMT2D protein or mRNA, relative to a predetermined level.
  • 6.-8. (canceled)
  • 9. The method of claim 1, wherein said therapy is an immunotherapy, a chemotherapy, a radiation therapy, or a combination thereof.
  • 10. The method of claim 1 wherein the therapy is a B cell therapy, anti-CD40 antibody immunotherapy, anti-CD20 antibody immunotherapy or anti-IgM antibody immunotherapy.
  • 11. (canceled)
  • 12. The method of claim 1, wherein said follicular lymphoma is a Grade 1, 2, or 3 follicular lymphoma.
  • 13. The method of claim 1, wherein a tumor associated with said follicular lymphoma is at Stage 1, 2, 3, or 4.
  • 14.-25. (canceled)
  • 26. A method for treating a follicular lymphoma or diffuse large B cell lymphoma in a subject, the method comprising: (a) obtaining a biological sample from said subject; and testing said biological sample to detect the presence or absence of a lysine (K)-specific methyltransferase 2D (KMT2D) alteration in said biological sample, wherein the presence of said KMT2D alteration indicates a response or lack thereof to a therapy; (b) based on the determination of said response or lack thereof to said therapy, administering an effective amount of a therapeutic agent to treat said follicular lymphoma, thereby treating said follicular lymphoma or diffuse large B cell lymphoma in said subject.
  • 27. The method of claim 26 wherein said therapeutic agent is for immunotherapy, chemotherapy, radiation therapy, or any combination thereof.
  • 28. The method of claim 26, wherein said therapeutic agent is a B cell therapy, anti-CD40 antibody therapy, anti-CD20 antibody therapy or anti-IgM antibody therapy.
  • 29. The method of claim 26, wherein said KMT2D alteration is a mutation in said KMT2D.
  • 30. The method of claim 29, wherein said mutation is a non-sense mutation, a missense mutation, or a combination thereof.
  • 31. The method of claim 26, wherein said KMT2D alteration is a change in the level of KMT2D protein or mRNA, relative to a predetermined level.
  • 32.-35. (canceled)
  • 36. The method of claim 26, wherein said follicular lymphoma is a Grade 1, 2, or 3 follicular lymphoma.
  • 37. The method of claim 26, wherein a tumor associated with said follicular lymphoma is at Stage 1, 2, 3, or 4.
  • 38. (canceled)
  • 39. A method for treating a follicular lymphoma or diffuse large B cell lymphoma in a subject, the method comprising: administering to said subject a combination of a molecule that effectively enhances the level of a lysine (K)-specific methyltransferase 2D (KMT2D) or effectively decreases or inhibits the level or activity of a demethylase in said subject, and an anti-CD40 antibody, anti-CD20 antibody, an anti-IgM antibody, or combination thereof, thereby treating said follicular lymphoma or diffuse large B cell lymphoma in said subject.
  • 40. The method of claim 26 wherein the patient with a KMT2D alteration may not be effectively treated with an anti-CD40 antibody, an anti-CD20 antibody, anti-IgM antibody, and any combination thereof.
  • 41. The method of claim 26 wherein anti-CD40 therapy, anti-CD20 antibody therapy, or anti-IgM antibody therapy, or any combination thereof, is contraindicated in a patient found to have a KMT2D alteration.
  • 42.-43. (canceled)
  • 44. The method of claim 39 wherein the demethylase is a H3K4 demethylase.
  • 45. The method of claim 39 wherein the molecule is an inhibitor of JARID1 or LSD1.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 USC 119(e) to U.S. patent application Ser. No. 62/135,040, filed Mar. 18, 2015, and to U.S. patent application Ser. No. 62/201,390, filed Aug. 5, 2015, both of which are incorporated herein by reference in their entireties.

GOVERNMENT SUPPORT

This invention was made with government support under grants CA183876, CA019038, CA187109, GM110174, CA150265, DP2OD007447 and CA008748 from the National Institutes of Health, and Grant 11557134 from the Department of Defense. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US16/22953 3/17/2016 WO 00
Provisional Applications (2)
Number Date Country
62135040 Mar 2015 US
62201390 Aug 2015 US