Nielen, “Capillary Zone Electrophoresis Using a Hollow Polypropylene Fiber,” J. High Res. Chrom., (1993), vol. 16, pp. 62-64. |
Liu et al., “Polymeric Hollow Fibers for Capillary Electrophoresis,” J. Microcol., (1993), vol. 5, No. 3, pp. 243-253. |
Hjerten, “High-Performance Electrophoresis Elimination of Electroendosmosis and Solute Adsorption,” J. Chrom., (1995), 347, pp. 191-198. |
“Adhesion and Bonding” In: Enclycopedia of Polymer Science and Engineering, Wiley Interscience, (1995) vol. 1, vol. 1, pp. 476-517. |
Gilges et al., “Capillary Zone Electrophoresis Separations of Basic and Acidic Proteins Using Poly(vinyl alcohol) Coatings in Fused Silica Capillaries,” Anal. Chem., (1994), vol. 66, No. 13, pp. 2038-2046. |
Ratner, “Surface modification of polymers: chemical, biological and surface analytical challenges,” Biosensors & Bioelectronis, (1995) 10, pp. 797-804. |
VerLee et al., “Fluid Circuit Technology: Integrated Interconnect Technology for Miniature Fluidic Devices,” Solid-State Sensor and Actuator Workshop—Hilton Head, S.C., (Jun. 2-6, 1996), pp. 9-14. |
Schutzner et al., “Electrophoresis in Synthetic Organic Polymer Capillaries: Variation of Electroosmotic Velocity and Potential with pH and Solvent Composition,” Anal. Chem, (1992), vol. 64, No. 17. |
Tomlinson et al., “Improved On-Line Membrane Preconcentration-Capillary Electrophoresis (mPC-CE), ” J. High Res. Chrom. (1995) 18:381-3. |
Barron & Blanch, “DNA Separations by Slab Gel and Capillary Electrophoresis: Theory and Practice,” Separation and Purification Methods (1995) 24:1-118. |
K. Hofmann et al., “Avidin Binding of Carboxyl-Substituted Biotin and Analogues,” (1982), Biochemisty vol. 21, pp. 978-984. |
Simpson et al., “Microfabricated Capillary Array Electrophoresis Device and Method,” 1997. |
Wooley et al., “Ultra-high-speed DNA fragment separations using Microfabricated capillary array electrophoresis chips,” PNAS USA, (1994), vol. 91, pp. 11348-11352. |
Guzman, “Biomedical applications of on-line preconcentration-capillary electrophoresis using an analyte concentrator:; investigation of design options,” J. Liquid Chro. (1995), pp. 3751-3768. |
Cole et al., “Selective preconcentration for capillary zone electrophoresis using protein G immunoaffinity capillary chromatography,” Electophoresis (1995), pp. 549-556. |
Cai et al., “Selective On-Line Preconcentration of Proteins by Tandem Metal Chelate Capillaries-Capillary Zone Electrophoresis,” J. Liquid Chro. (1993), pp. 2007-2004. |
Cai et al., “On-Line Preconcentration of Triazine Herbicides with Tandem Octadecyl Capillaries-Capillary Zone Electrophoresis,” J. Liquid Chrom. pp. 1179-1192. |
Kasicka et al., “Isotachophoretic Electrodesorption of Proteins From an Affinity Adsorbent on a Microscale,” J. Chrom. (1983), pp. 117-128. |
Stegehuis et al., “Isotachophoresis as an on-line concentration pretreatment technique in capillary electrophoresis,” J. Chrom. (1991), pp. 393-402. |
Chien et al., “Field amplified sample injection in high-performance capillary electrophoresis,” J. Chrom. (1991), pp. 141-152. |
Beckers et al., “Effect of sample stacking on resolution, calibration graphs and pH in capillary zone electrophoresis,” J. Chrom. (1993), pp. 371-378. |
Effenhauser et al., “High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device,” Anal. Chem. (1994), pp. 2949-2953. |
Jacobson et al., “Precolumn Reactions with Electophretic Analysis Integrated on a Microchip,” Anal. Chem. (1994), pp. 4127-4132. |
Harrison et al., “Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip,” Science (1993), vol. 261, pp. 895-897. |
Tomlinson et al., “Enchancement of concentration limits of detection in CE and CE-MS: A review of on-line sample extraction, clean-up, analyte preconcentration, and microreactor technology,” J. Cap. Elc. (1995) pp. 247-266. |