METHODS FOR IDENTIFYING RISK OF BREAST CANCER AND TREATMENTS THEREOF

Abstract
Provided herein are methods for identifying risk of breast cancer in a subject and/or a subject at risk of breast cancer, reagents and kits for carrying out the methods, methods for identifying candidate therapeutics for treating breast cancer, and therapeutic methods for treating breast cancer in a subject. These embodiments are based upon an analysis of polymorphic variations in nucleotide sequences within the human genome.
Description
FIELD OF THE INVENTION

The invention relates to genetic methods for identifying risk of breast cancer and treatments that specifically target the disease.


BACKGROUND

Breast cancer is the third most common cancer, and the most common cancer in women, as well as a cause of disability, psychological trauma, and economic loss. Breast cancer is the second most common cause of cancer death in women in the United States, in particular for women between the ages of 15 and 54, and the leading cause of cancer-related death (Forbes, Seminars in Oncology, vol. 24(1), Suppl 1, 1997: pp. S1-20-S1-35). Indirect effects of the disease also contribute to the mortality from breast cancer including consequences of advanced disease, such as metastases to the bone or brain. Complications arising from bone marrow suppression, radiation fibrosis and neutropenic sepsis, collateral effects from therapeutic interventions, such as surgery, radiation, chemotherapy, or bone marrow transplantation—also contribute to the morbidity and mortality from this disease.


While the pathogenesis of breast cancer is unclear, transformation of normal breast epithelium to a malignant phenotype may be the result of genetic factors, especially in women under thirty (Miki, et al., Science, 266: 66-71 (1994)). However, it is likely that other, non-genetic factors also have a significant effect on the etiology of the disease. Regardless of its origin, breast cancer morbidity increases significantly if it is not detected early in its progression. Thus, considerable efforts have focused on the elucidation of early cellular events surrounding transformation in breast tissue. Such efforts have led to the identification of several potential breast cancer markers. For example, alleles of the BRCA1 and BRCA2 genes have been linked to hereditary and early-onset breast cancer (Wooster, et al., Science, 265: 2088-2090 (1994)). However, BRCA1 is limited as a cancer marker because BRCA1 mutations fail to account for the majority of breast cancers (Ford, et al., British J. Cancer, 72: 805-812 (1995)). Similarly, the BRCA2 gene, which has been linked to forms of hereditary breast cancer, accounts for only a small portion of total breast cancer cases.


SUMMARY

It has been discovered that certain polymorphic variations in human genomic DNA are associated with the occurrence of breast cancer. Thus, featured herein are methods for identifying a subject at risk of breast cancer and/or a risk of breast cancer in a subject, which comprises detecting the presence or absence of one or more of the polymorphic variations described herein in a human nucleic acid sample. Also featured herein are nucleic acids that include one or more polymorphic variations associated with the occurrence of breast cancer, as well as polypeptides encoded by these nucleic acids. Further, provided is a method for identifying a subject at risk of breast cancer and then prescribing to the subject a breast cancer detection procedure, prevention procedure and/or a treatment procedure. In addition, provided are methods for identifying candidate therapeutic molecules for treating breast cancer and related disorders, as well as methods for treating breast cancer in a subject by diagnosing breast cancer in the subject and treating the subject with a suitable treatment, such as administering a therapeutic molecule.


Also, featured is a method for inhibiting metastasis of breast cancer cells into other tissues, which comprises inhibiting a KIAA0861 nucleic acid or substantially identical nucleic acid thereof (e.g., reducing the amount of polypeptide expressed from mRNA encoded by the nucleotide sequence), or inhibiting a KIAA0861 polypeptide or substantially identical polypeptide thereof (e.g., inhibiting the guanine nucleotide exchange function of the KIAA0861 polypeptide). The inhibition is effected by contacting a system with a molecule having the inhibitory activity, where the system sometimes is a group of cells in vitro, a tissue sample in vitro, or an animal such as a human, often a female. In an embodiment, the KIAA0861 nucleic acid or substantially identical nucleic acid thereof is inhibited by contacting cells overexpressing the KIAA0861 nucleotide sequence with an RNA molecule, and in certain embodiments, the RNA molecule is double stranded with one strand complementary to a subsequence of the KIAA0861 nucleotide sequence.


Also provided are compositions comprising a breast cancer cell and/or a KIAA0861 nucleic acid with a RNAi, siRNA, antisense DNA or RNA, or ribozyme nucleic acid designed from a KIAA0861 nucleotide sequence. In an embodiment, the nucleic acid is designed from a KIAA0861 nucleotide sequence that includes one or more breast cancer associated polymorphic variations, and in some instances, specifically interacts with such a nucleotide sequence. Further, provided are arrays of nucleic acids bound to a solid surface, in which one or more nucleic acid molecules of the array have a KIAA0861 nucleotide sequence, or a fragment or substantially identical nucleic acid thereof, or a complementary nucleic acid of the foregoing. Featured also are compositions comprising a breast cancer cell and/or a KIAA0861 polypeptide, with an antibody that specifically binds to the polypeptide. In an embodiment, the antibody specifically binds to an epitope in the polypeptide that includes a non-synonymous amino acid modification associated with breast cancer (e.g., results in an amino acid substitution in the encoded polypeptide associated with breast cancer). In certain embodiments, the antibody specifically binds to an epitope that comprises a leucine at amino acid position 276 in SEQ ID NO: 4, a leucine at amino acid position 295 in SEQ ID NO: 4, a phenylalanine at amino acid position 506 in SEQ ID NO: 4, or an alanine at amino acid position 819 in SEQ ID NO: 4. Alternatively, the antibody specifically binds to an epitope that comprises a leucine at amino acid position 359 in SEQ ID NO: 5, a leucine at amino acid position 378 in SEQ ID NO: 5, a phenylalanine at amino acid position 589 in SEQ ID NO: 4, or an alanine at amino acid position 902 in SEQ ID NO: 5.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows proximal SNPs in and around a KIAA0861 region. The position of each SNP on the chromosome is shown on the x-axis and the y-axis provides the negative logarithm of the p-value comparing the estimated allele to that of the control group. Also shown in the figure are exons and introns of the region in the approximate chromosomal positions. The figure indicates that polymorphic variants associated with breast cancer are in a region spanning chromosome positions 184215647 to 184249849 on chromosome 3 (based on NCBI's Build 34).





DETAILED DESCRIPTION

It has been discovered that a polymorphic variation in a gene encoding a novel member of the DBL family of Rho guanine nucleotide exchange factors (RhoGEFs), known as KIAA0861, is associated with the occurrence of breast cancer. DBL RhoGEF proteins are characterized by two distinct domains, the Dbl homology (DH) domain and the pleckstrin homology (PH) domain, which are believed to be responsible for catalyzing the GDP-GTP exchange reaction of Rho proteins. RhoGEFs bind to the GDP-bound form and destabilize GDP-RhoGTPases while stabilizing a nucleotide-free reaction intermediate. Because of the high intracellular ratio of GTP:GDP, the released GTP is replaced with GTP, leading to activation. Rho family GTP-binding proteins (Rho GTPases) belong to the Ras-related G protein superfamily and function in controlling numerous cellular activities, including cell growth, adhesion, and movement. The Rho GTPase family includes members RhoA, RacI and Cdc42, which stimulate the cyclin D1 promoter and cause upregulation of cyclin D1 protein. RacI and Cdc42 promote inactivation of Rb and stimulation of E2F-mediated transcription. Signaling pathways for RhoGEFs and RhoGTPases are set forth in Schmidt & Hall, Genes and Development 16: 1587-1609 (2002) and Pruitt & Der, Cancer Letters 171: 1-10 (2001).


KIAA0861 shares strong homology with members of the Dbl family of Rho guanine nucleotide exchange factors (RhoGEFs), a family of over 60 proteins that function by catalyzing the exchange of Rho-bound GDP for GTP. Rho family GTP-binding proteins (Rho GTPases) belong to the Ras-related G protein superfamily and function in controlling numerous cellular activities, including cell growth, adhesion and movement. Over 18 Ras-related G protein superfamily members have been described to date, including several Rho-family GTP-binding proteins (Rho GTPases). Rho GTPases are membrane bound molecular switches that are active when bound to GTP and inactive when bound to GDP. Deregulation of both Rho GTPase activity and RhoGEF activity have been shown to be oncogenic. Several studies have shown that deregulation of Rho GTPase activity leads to loss of contact inhibition, growth factor dependence and anchorage dependence in a variety of cell types (Whitehead, I P, et al (1997) Biochem. Biophys. Acta, 1332: F1-F23).


Deregulation of both Rho GTPase activity and RhoGEF activity have been shown to be oncogenic. For example, DBS, a Rho-specific guanine nucleotide exchange factor (RhoGEF), exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts (Cheng, L, et al. (2002) MCB 22 (19):6895-6905). Several studies have shown that deregulation of Rho GTPase activity leads to loss of contact inhibition, growth factor dependence and anchorage dependence in a variety of cell types. Further, recent evidence has shown that deregulation of RhoGEF activity results in tumorigenic growth and promotes invasive potential (Whitehead, I P, et al. (1997) Biochem. Biophys. Acta, 1332: F1-F23). Interestingly, cellular transformation via deregulated RhoGEF function is much stronger than through deregulation of Rho GTPases (Lin, R, Cerione, R A, and Manor, D (1999) JBC, 274: 23633-23641).


Breast Cancer and Sample Selection

Breast cancer is typically described as the uncontrolled growth of malignant breast tissue. Breast cancers arise most commonly in the lining of the milk ducts of the breast (ductal carcinoma), or in the lobules where breast milk is produced (lobular carcinoma). Other forms of breast cancer include Inflammatory Breast Cancer and Recurrent Breast Cancer. Inflammatory breast cancer is a rare, but very serious, aggressive type of breast cancer. The breast may look red and feel warm with ridges, welts, or hives on the breast; or the skin may look wrinkled. It is sometimes misdiagnosed as a simple infection. Recurrent disease means that the cancer has come back after it has been treated. It may come back in the breast, in the soft tissues of the chest (the chest wall), or in another part of the body.


As used herein, the term “breast cancer” refers to a condition characterized by anomalous rapid proliferation of abnormal cells in one or both breasts of a subject. The abnormal cells often are referred to as “neoplastic cells,” which are transformed cells that can form a solid tumor. The term “tumor” refers to an abnormal mass or population of cells (i.e. two or more cells) that result from excessive or abnormal cell division, whether malignant or benign, and pre-cancerous and cancerous cells. Malignant tumors are distinguished from benign growths or tumors in that, in addition to uncontrolled cellular proliferation, they can invade surrounding tissues and can metastasize. In breast cancer, neoplastic cells may be identified in one or both breasts only and not in another tissue or organ, in one or both breasts and one or more adjacent tissues or organs (e.g. lymph node), or in a breast and one or more non-adjacent tissues or organs to which the breast cancer cells have metastasized.


The term “invasion” as used herein refers to the spread of cancerous cells to adjacent surrounding tissues. The term “invasion” often is used synonymously with the term “metastasis,” which as used herein refers to a process in which cancer cells travel from one organ or tissue to another non-adjacent organ or tissue. Cancer cells in the breast(s) can spread to tissues and organs of a subject, and conversely, cancer cells from other organs or tissue can invade or metastasize to a breast. Cancerous cells from the breast(s) may invade or metastasize to any other organ or tissue of the body. Breast cancer cells often invade lymph node cells and/or metastasize to the liver, brain and/or bone and spread cancer in these tissues and organs. Breast cancers can spread to other organs and tissues and cause lung cancer, prostate cancer, colon cancer, ovarian cancer, cervical cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, bladder cancer, hepatoma, colorectal cancer, uterine cervical cancer, endometrial carcinoma, salivary gland carcinoma, kidney cancer, vulval cancer, thyroid cancer, hepatic carcinoma, skin cancer, melanoma, ovarian cancer, neuroblastoma, myeloma, various types of head and neck cancer, acute lymphoblastic leukemia, acute myeloid leukemia, Ewing sarcoma and peripheral neuroepithelioma, and other carcinomas, lymphomas, blastomas, sarcomas, and leukemias.


Breast cancers arise most commonly in the lining of the milk ducts of the breast (ductal carcinoma), or in the lobules where breast milk is produced (lobular carcinoma). Other forms of breast cancer include Inflammatory Breast Cancer and Recurrent Breast Cancer. Inflammatory Breast Cancer is a rare, but very serious, aggressive type of breast cancer. The breast may look red and feel warm with ridges, welts, or hives on the breast; or the skin may look wrinkled. It is sometimes misdiagnosed as a simple infection. Recurrent disease means that the cancer has come back after it has been treated. It may come back in the breast, in the soft tissues of the chest (the chest wall), or in another part of the body. As used herein, the term “breast cancer” may include both Inflammatory Breast Cancer and Recurrent Breast Cancer.


In an effort to detect breast cancer as early as possible, regular physical exams and screening mammograms often are prescribed and conducted. A diagnostic mammogram often is performed to evaluate a breast complaint or abnormality detected by physical exam or routine screening mammography. If an abnormality seen with diagnostic mammography is suspicious, additional breast imaging (with exams such as ultrasound) or a biopsy may be ordered. A biopsy followed by pathological (microscopic) analysis is a definitive way to determine whether a subject has breast cancer. Excised breast cancer samples often are subjected to the following analyses: diagnosis of the breast tumor and confirmation of its malignancy; maximum tumor thickness; assessment of completeness of excision of invasive and in situ components and microscopic measurements of the shortest extent of clearance; level of invasion; presence and extent of regression; presence and extent of ulceration; histological type and special variants; pre-existing lesion; mitotic rate; vascular invasion; neurotropism; cell type; tumor lymphocyte infiltration; and growth phase.


The stage of a breast cancer can be classified as a range of stages from Stage 0 to Stage IV based on its size and the extent to which it has spread. The following table summarizes the stages:












TABLE A








Metastasis


Stage
Tumor Size
Lymph Node Involvement
(Spread)







I
Less than 2 cm
No
No


II
Between 2-5 cm
No or in same side of breast
No


III
More than 5 cm
Yes, on same side of breast
No


IV
Not applicable
Not applicable
Yes









Stage 0 cancer is a contained cancer that has not spread beyond the breast ductal system. Fifteen to twenty percent of breast cancers detected by clinical examinations or testing are in Stage 0 (the earliest form of breast cancer). Two types of Stage 0 cancer are lobular carcinoma in situ (LCIS) and ductal carcinoma in situ (DCIS). LCIS indicates high risk for breast cancer. Many physicians do not classify LCIS as a malignancy and often encounter LCIS by chance on breast biopsy while investigating another area of concern. While the microscopic features of LCIS are abnormal and are similar to malignancy, LCIS does not behave as a cancer (and therefore is not treated as a cancer). LCIS is merely a marker for a significantly increased risk of cancer anywhere in the breast. However, bilateral simple mastectomy may be occasionally performed if LCIS patients have a strong family history of breast cancer. In DCIS the cancer cells are confined to milk ducts in the breast and have not spread into the fatty breast tissue or to any other part of the body (such as the lymph nodes). DCIS may be detected on mammogram as tiny specks of calcium (known as microcalcifications) 80% of the time. Less commonly DCIS can present itself as a mass with calcifications (15% of the time); and even less likely as a mass without calcifications (<5% of the time). A breast biopsy is used to confirm DCIS. A standard DCIS treatment is breast-conserving therapy (BCT), which is lumpectomy followed by radiation treatment or mastectomy. To date, DCIS patients have chosen equally among lumpectomy and mastectomy as their treatment option, though specific cases may sometimes favor lumpectomy over mastectomy or vice versa.


In Stage I, the primary (original) cancer is 2 cm or less in diameter and has not spread to the lymph nodes. In Stage IIA, the primary tumor is between 2 and 5 cm in diameter and has not spread to the lymph nodes. In Stage IIB, the primary tumor is between 2 and 5 cm in diameter and has spread to the axillary (underarm) lymph nodes; or the primary tumor is over 5 cm and has not spread to the lymph nodes. In Stage IIIA, the primary breast cancer of any kind that has spread to the axillary (underarm) lymph nodes and to axillary tissues. In Stage IIIB, the primary breast cancer is any size, has attached itself to the chest wall, and has spread to the pectoral (chest) lymph nodes. In Stage IV, the primary cancer has spread out of the breast to other parts of the body (such as bone, lung, liver, brain). The treatment of Stage IV breast cancer focuses on extending survival time and relieving symptoms.


Based in part upon selection criteria set forth above, individuals having breast cancer can be selected for genetic studies. Also, individuals having no history of cancer or breast cancer often are selected for genetic studies. Other selection criteria can include: a tissue or fluid sample is derived from an individual characterized as Caucasian; the sample was derived from an individual of German paternal and maternal descent; the database included relevant phenotype information for the individual; case samples were derived from individuals diagnosed with breast cancer; control samples were derived from individuals free of cancer and no family history of breast cancer; and sufficient genomic DNA was extracted from each blood sample for all allelotyping and genotyping reactions performed during the study. Phenotype information included pre- or post-menopausal, familial predisposition, country or origin of mother and father, diagnosis with breast cancer (date of primary diagnosis, age of individual as of primary diagnosis, grade or stage of development, occurrence of metastases, e.g., lymph node metastases, organ metastases), condition of body tissue (skin tissue, breast tissue, ovary tissue, peritoneum tissue and myometrium), method of treatment (surgery, chemotherapy, hormone therapy, radiation therapy).


Provided herein is a set of blood samples and a set of corresponding nucleic acid samples isolated from the blood samples, where the blood samples are donated from individuals diagnosed with breast cancer. The sample set often includes blood samples or nucleic acid samples from 100 or more, 150 or more, or 200 or more individuals having breast cancer, and sometimes from 250 or more, 300 or more, 400 or more, or 500 or more individuals. The individuals can have parents from any place of origin, and in an embodiment, the set of samples are extracted from individuals of German paternal and German maternal ancestry. The samples in each set may be selected based upon five or more criteria and/or phenotypes set forth above.


Polymorphic Variants Associated with Breast Cancer


A genetic analysis provided herein linked breast cancer with polymorphic variants in and around a nucleotide sequence located on chromosome three that encodes a Rho family guanine-nucleotide exchange factor polypeptide designated KIAA0861. As used herein, the term “polymorphic site” refers to a region in a nucleic acid at which two or more alternative nucleotide sequences are observed in a significant number of nucleic acid samples from a population of individuals. A polymorphic site may be a nucleotide sequence of two or more nucleotides, an inserted nucleotide or nucleotide sequence, a deleted nucleotide or nucleotide sequence, or a microsatellite, for example. A polymorphic site that is two or more nucleotides in length may be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more, 20 or more, 30 or more, 50 or more, 75 or more, 100 or more, 500 or more, or about 1000 nucleotides in length, where all or some of the nucleotide sequences differ within the region. A polymorphic site is often one nucleotide in length, which is referred to herein as a “single nucleotide polymorphism” or a “SNP.”


Where there are two, three, or four alternative nucleotide sequences at a polymorphic site, each nucleotide sequence is referred to as a “polymorphic variant” or “nucleic acid variant.” Where two polymorphic variants exist, for example, the polymorphic variant represented in a minority of samples from a population is sometimes referred to as a “minor allele” and the polymorphic variant that is more prevalently represented is sometimes referred to as a “major allele.” Many organisms possess a copy of each chromosome (e.g., humans), and those individuals who possess two major alleles or two minor alleles are often referred to as being “homozygous” with respect to the polymorphism, and those individuals who possess one major allele and one minor allele are normally referred to as being “heterozygous” with respect to the polymorphism. Individuals who are homozygous with respect to one allele are sometimes predisposed to a different phenotype as compared to individuals who are heterozygous or homozygous with respect to another allele.


Furthermore, a genotype or polymorphic variant may be expressed in terms of a “haplotype,” which as used herein refers to two or more polymorphic variants occurring within genomic DNA in a group of individuals within a population. For example, two SNPs may exist within a gene where each SNP position includes a cytosine variation and an adenine variation. Certain individuals in a population may carry one allele (heterozygous) or two alleles (homozygous) having the gene with a cytosine at each SNP position. As the two cytosines corresponding to each SNP in the gene travel together on one or both alleles in these individuals, the individuals can be characterized as having a cytosine/cytosine haplotype with respect to the two SNPs in the gene.


As used herein, the term “phenotype” refers to a trait which can be compared between individuals, such as presence or absence of a condition, a visually observable difference in appearance between individuals, metabolic variations, physiological variations, variations in the function of biological molecules, and the like. An example of a phenotype is occurrence of breast cancer.


Researchers sometimes report a polymorphic variant in a database without determining whether the variant is represented in a significant fraction of a population. Because a subset of these reported polymorphic variants are not represented in a statistically significant portion of the population, some of them are sequencing errors and/or not biologically relevant. Thus, it is often not known whether a reported polymorphic variant is statistically significant or biologically relevant until the presence of the variant is detected in a population of individuals and the frequency of the variant is determined. Methods for detecting a polymorphic variant in a population are described herein, specifically in Example 2. A polymorphic variant is statistically significant and often biologically relevant if it is represented in 5% or more of a population, sometimes 10% or more, 15% or more, or 20% or more of a population, and often 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more of a population.


A polymorphic variant may be detected on either or both strands of a double-stranded nucleic acid. For example, a thymine at a particular position in SEQ ID NO: 1 can be reported as an adenine from the complementary strand. Also, a polymorphic variant may be located within an intron or exon of a gene or within a portion of a regulatory region such as a promoter, a 5′ untranslated region (UTR), a 3′ UTR, and in DNA (e.g., genomic DNA (gDNA) and complementary DNA (cDNA)), RNA (e.g., mRNA, tRNA, and rRNA), or a polypeptide. Polymorphic variations may or may not result in detectable differences in gene expression, polypeptide structure, or polypeptide function.


In the genetic analysis that associated breast cancer with the polymorphic variants described hereafter, samples from individuals having breast cancer and individuals not having cancer were allelotyped and genotyped. The term “genotyped” as used herein refers to a process for determining a genotype of one or more individuals, where a “genotype” is a representation of one or more polymorphic variants in a population. Genotypes may be expressed in terms of a “haplotype,” which as used herein refers to two or more polymorphic variants occurring within genomic DNA in a group of individuals within a population. For example, two SNPs may exist within a gene where each SNP position includes a cytosine variation and an adenine variation. Certain individuals in a population may carry one allele (heterozygous) or two alleles (homozygous) having the gene with a cytosine at each SNP position. As the two cytosines corresponding to each SNP in the gene travel together on one or both alleles in these individuals, the individuals can be characterized as having a cytosine/cytosine haplotype with respect to the two SNPs in the gene.


It was determined that polymorphic variations associated with an increased risk of breast cancer existed in KIAA0861 nucleotide sequences. Polymorphic variants in and around the KIAA0861 locus were tested for an association with breast cancer. These included polymorphic variants at positions selected from the group consisting of rs3811728, rs3811729, rs602646, rs488277, rs1629673, rs670232, rs575326, rs575386, rs684846, rs471365, rs496251, rs831246, rs831247, rs512071, rs1502761, rs681516, rs683302, rs619424, rs620722, rs529055, rs664010, rs678454, rs2653845, rs472795, rs507079, rs534333, rs535298, rs536213, rs831245, rs639690, rs684174, rs571761, rs1983421, rs4630966, rs2314415, rs6788196, rs2103062, rs9827084, rs9864865, rs6804951, rs6770548, rs1403452, rs7609994, rs9838250, rs9863404, rs903950, rs6787284, rs2017340, rs2001449, rs1317288, rs7635891, rs10704581, rs11371910, rs10937118, rs7642053, rs3821522, rs2029926, rs1390831, rs7643890, rs11925606, rs9826325, rs6800429, rs6803368, rs1353566, rs2272115, rs2272116, rs3732603, rs940055, rs2314730, rs2030578, rs2049280, rs3732602, rs2293203 and rs7639705; and position 13507 of SEQ ID NO: 1. These positions correspond to positions 246, 393, 628, 7586, 9223, 9933, 10154, 10175, 10877, 10907, 11289, 11793, 11813, 14249, 14586, 14647, 15004, 16573, 16811, 18921, 19651, 20565, 25239, 25721, 27133, 27778, 27906, 28000, 30005, 30520, 32195, 32439, 33858, 41716, 42450, 43554, 44211, 44775, 44962, 45317, 45712, 45941, 46520, 47175, 48045, 48636, 48689, 48704, 48849, 48850, 49931, 51510, 51526, 51758, 51975, 53475, 55524, 56754, 57473, 57497, 57613, 58023, 58821, 59644, 66217, 66344, 67326, 69777, 83594, 84579, 85623 and 13507 in SEQ ID NO: 1, respectively. Polymorphic variants in a region spanning positions 14647 to 48849 in SEQ ID NO: 1 were in particular associated with an increased risk of breast cancer, including polymorphic variants at positions 41716, 44775, 44962, 45317, 45712, 45941, and 48849 in SEQ ID NO: 1 (i.e., positions designated by rs4630966, rs9827084, rs9864865, rs6804951, rs6770548, rs1403452 and rs2001449, respectively). At these positions in SEQ ID NO: 1, a cytosine at position 41716, a guanine at position 44775, a guanine at position 44962, a cytosine at position 45317, a guanine at position 45712, a thymine at position 45941, and a cytosine at position 48849 were in particular associated with an increased risk of breast cancer. Also, an alanine at amino acid position 819 in SEQ ID NO: 4 (or position 902 in SEQ ID NO: 5) was in particular associated with an increased risk of breast cancer.


Based in part upon analyses summarized in FIG. 1, a region with significant association has been identified in a KIAA0861 region associated with increased risk of breast cancer. Any polymorphic variants associated with an increased risk of breast cancer in a region of significant association can be utilized for embodiments described herein. The following reports such a region, where “begin” and “end” designate the boundaries of the region according to chromosome positions within NCBI's Genome build 34. The chromosome on which the KIAA0861 region resides and an incident polymorphism in the locus also are noted.
















Incident
chr
begin
End
size







2001449
3
184215647
184249849
34202










The polymorphic variants described above and in the Examples section are applicable to embodiments described hereafter.


Additional Polymorphic Variants Associated with Breast Cancer


Also provided is a method for identifying polymorphic variants proximal to an incident, founder polymorphic variant associated with breast cancer. Thus, featured herein are methods for identifying a polymorphic variation associated with breast cancer that is proximal to an incident polymorphic variation associated with breast cancer, which comprises identifying a polymorphic variant proximal to the incident polymorphic variant associated with breast cancer, where the incident polymorphic variant is in a nucleotide sequence set forth in SEQ ID NO: 1. The nucleotide sequence often comprises a polynucleotide sequence selected from the group consisting of (a) a nucleotide sequence set forth in SEQ ID NO: 1; (b) a nucleotide sequence which encodes a polypeptide having an amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1; (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1 or a nucleotide sequence about 90% or more identical to the nucleotide sequence set forth in SEQ ID NO: 1; and (d) a fragment of a nucleotide sequence of (a), (b), or (c), often a fragment that includes a polymorphic site associated with breast cancer. The presence or absence of an association of the proximal polymorphic variant with breast cancer then is determined using a known association method, such as a method described in the Examples hereafter. In an embodiment, the incident polymorphic variant is set forth in SEQ ID NO: 1. In another embodiment, the proximal polymorphic variant identified sometimes is a publicly disclosed polymorphic variant, which for example, sometimes is published in a publicly available database. In other embodiments, the polymorphic variant identified is not publicly disclosed and is discovered using a known method, including, but not limited to, sequencing a region surrounding the incident polymorphic variant in a group of nucleic samples. Thus, multiple polymorphic variants proximal to an incident polymorphic variant are associated with breast cancer using this method.


The proximal polymorphic variant often is identified in a region surrounding the incident polymorphic variant. In certain embodiments, this surrounding region is about 50 kb flanking the first polymorphic variant (e.g. about 50 kb 5′ of the first polymorphic variant and about 50 kb 3′ of the first polymorphic variant), and the region sometimes is composed of shorter flanking sequences, such as flanking sequences of about 40 kb, about 30 kb, about 25 kb, about 20 kb, about 15 kb, about 10 kb, about 7 kb, about 5 kb, or about 2 kb 5′ and 3′ of the incident polymorphic variant. In other embodiments, the region is composed of longer flanking sequences, such as flanking sequences of about 55 kb, about 60 kb, about 65 kb, about 70 kb, about 75 kb, about 80 kb, about 85 kb, about 90 kb, about 95 kb, or about 100 kb 5′ and 3′ of the incident polymorphic variant.


In certain embodiments, polymorphic variants associated with breast cancer are identified iteratively. For example, a first proximal polymorphic variant is associated with breast cancer using the methods described above and then another polymorphic variant proximal to the first proximal polymorphic variant is identified (e.g., publicly disclosed or discovered) and the presence or absence of an association of one or more other polymorphic variants proximal to the first proximal polymorphic variant with breast cancer is determined.


The methods described herein are useful for identifying or discovering additional polymorphic variants that may be used to further characterize a gene, region or loci associated with a condition, a disease (e.g., breast cancer), or a disorder. For example, allelotyping or genotyping data from the additional polymorphic variants may be used to identify a functional mutation or a region of linkage disequilibrium.


In certain embodiments, polymorphic variants identified or discovered within a region comprising the first polymorphic variant associated with breast cancer are genotyped using the genetic methods and sample selection techniques described herein, and it can be determined whether those polymorphic variants are in linkage disequilibrium with the first polymorphic variant. The size of the region in linkage disequilibrium with the first polymorphic variant also can be assessed using these genotyping methods. Thus, provided herein are methods for determining whether a polymorphic variant is in linkage disequilibrium with a first polymorphic variant associated with breast cancer, and such information can be used in prognosis methods described herein.


Isolated KIAA0861 Nucleic Acids


Featured herein are isolated KIAA0861 nucleic acids, which include the nucleic acid having the nucleotide sequence of SEQ ID NO: 1, 2 or 3, nucleic acid variants, and substantially identical nucleic acids of the foregoing. Nucleotide sequences of the KIAA0861 nucleic acids sometimes are referred to herein as “KIAA0861 nucleotide sequences.” A “KIAA0861 nucleic acid variant” refers to one allele that may have one or more different polymorphic variations as compared to another allele in another subject or the same subject. A polymorphic variation in the KIAA0861 nucleic acid variant may be represented on one or both strands in a double-stranded nucleic acid or on one chromosomal complement (heterozygous) or both chromosomal complements (homozygous).


As used herein, the term “nucleic acid” includes DNA molecules (e.g., a complementary DNA (cDNA) and genomic DNA (gDNA)) and RNA molecules (e.g., mRNA, rRNA, and tRNA) and analogs of DNA or RNA, for example, by use of nucleotide analogs. The nucleic acid molecule can be single-stranded and it is often double-stranded. The term “isolated or purified nucleic acid” refers to nucleic acids that are separated from other nucleic acids present in the natural source of the nucleic acid. For example, with regard to genomic DNA, the term “isolated” includes nucleic acids which are separated from the chromosome with which the genomic DNA is naturally associated. An “isolated” nucleic acid is often free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′ and/or 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of 5′ and/or 3′ nucleotide sequences which flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. As used herein, the term “KIAA0861 gene” refers to a nucleotide sequence that encodes a KIAA0861 polypeptide.


In particular embodiments, a nucleic acid comprises a polymorphic variation corresponding to position 13507 of SEQ ID NO: 1. The nucleic acid often comprises a part of or all of a nucleotide sequence in SEQ ID NO: 1, 2 and/or 3, or a substantially identical sequence thereof and sometimes such a nucleotide sequence is a 5′ and/or 3′ sequence flanking a polymorphic variant described above that is 5, 6, 7 . . . 50, 51, 52 . . . 100, 101, 102 . . . 500, 501, 502 . . . 999 or 1000 nucleotides in length. Other embodiments are directed to methods of identifying a polymorphic variation at one or more positions in a nucleic acid (e.g., genotyping at one or more positions in the nucleic acid), where a position corresponds to position 13507 of SEQ ID NO: 1.


Also included herein are nucleic acid fragments. These fragments typically are a nucleotide sequence identical to a nucleotide sequence in SEQ ID NO: 1, 2 or 3, a nucleotide sequence substantially identical to a nucleotide sequence in SEQ ID NO: 1, 2 or 3, or a nucleotide sequence that is complementary to the foregoing. The nucleic acid fragment may be identical, substantially identical or homologous to a nucleotide sequence in an exon or an intron in SEQ ID NO: 1, and may encode a domain or part of a domain or motif of a KIAA0861 polypeptide. Domains and motifs of a KIAA0861 polypeptide include, but are not limited to, a Sec 14p-like lipid binding domain, spectrin repeats (SPEC), a RhoGEF domain (also called the DBL-homology domain (DH domain)), and a Pleckstrin-homology domain (PH domain). Sometimes, the fragment will comprises the polymorphic variation described herein as being associated with breast cancer. The nucleic acid fragment sometimes is 50, 100, or 200 or fewer base pairs in length, and is sometimes about 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3800, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 15000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 110000, 120000, 130000, 140000, 150000 or 160000 base pairs in length. A nucleic acid fragment complementary to a nucleotide sequence identical or substantially identical to the nucleotide sequence of SEQ ID NO: 1, 2 or 3 and hybridizes to such a nucleotide sequence under stringent conditions often is referred to as a “probe.” Nucleic acid fragments often include one or more polymorphic sites, or sometimes have an end that is adjacent to a polymorphic site as described hereafter.


An example of a nucleic acid fragment is an oligonucleotide. As used herein, the term “oligonucleotide” refers to a nucleic acid comprising about 8 to about 50 covalently linked nucleotides, often comprising from about 8 to about 35 nucleotides, and more often from about 10 to about 25 nucleotides. The backbone and nucleotides within an oligonucleotide may be the same as those of naturally occurring nucleic acids, or analogs or derivatives of naturally occurring nucleic acids, provided that oligonucleotides having such analogs or derivatives retain the ability to hybridize specifically to a nucleic acid comprising a targeted polymorphism. Oligonucleotides described herein may be used as hybridization probes or as components of prognostic or diagnostic assays, for example, as described herein.


Oligonucleotides are typically synthesized using standard methods and equipment, such as the ABI 3900 High Throughput DNA Synthesizer and the EXPEDITE™ 8909 Nucleic Acid Synthesizer, both of which are available from Applied Biosystems (Foster City, Calif.). Analogs and derivatives are exemplified in U.S. Pat. Nos. 4,469,863; 5,536,821; 5,541,306; 5,637,683; 5,637,684; 5,700,922; 5,717,083; 5,719,262; 5,739,308; 5,773,601; 5,886,165; 5,929,226; 5,977,296; 6,140,482; WO 00/56746; WO 01/14398, and related publications. Methods for synthesizing oligonucleotides comprising such analogs or derivatives are disclosed, for example, in the patent publications cited above and in U.S. Pat. Nos. 5,614,622; 5,739,314; 5,955,599; 5,962,674; 6,117,992; in WO 00/75372; and in related publications.


Oligonucleotides also may be linked to a second moiety. The second moiety may be an additional nucleotide sequence such as a tail sequence (e.g., a polyadenosine tail), an adapter sequence (e.g., phage M13 universal tail sequence), and others. Alternatively, the second moiety may be a non-nucleotide moiety such as a moiety which facilitates linkage to a solid support or a label to facilitate detection of the oligonucleotide. Such labels include, without limitation, a radioactive label, a fluorescent label, a chemiluminescent label, a paramagnetic label, and the like. The second moiety may be attached to any position of the oligonucleotide, provided the oligonucleotide can hybridize to the nucleic acid comprising the polymorphism.


Uses for Nucleic Acid Sequences

Nucleic acid coding sequences depicted in SEQ ID NO: 2 or 3 may be used for diagnostic purposes for detection and control of polypeptide expression. Also, included herein are oligonucleotide sequences such as antisense RNA, small-interfering RNA (siRNA) and DNA molecules and ribozymes that function to inhibit translation of a polypeptide. Antisense techniques and RNA interference techniques are known in the art and are described herein.


Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by a endonucleolytic cleavage. Ribozymes may be engineered hammerhead motif ribozyme molecules that specifically and efficiently catalyze endonucleolytic cleavage of RNA sequences corresponding to or complementary to the nucleotide sequences set forth in SEQ ID NO: 1-3. Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences, GUA, GUU and GUC. Once identified, short RNA sequences of between fifteen (15) and twenty (20) ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for predicted structural features such as secondary structure that may render the oligonucleotide sequence unsuitable. The suitability of candidate targets may also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays.


Antisense RNA and DNA molecules, siRNA and ribozymes may be prepared by any method known in the art for the synthesis of RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides well known in the art such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.


DNA encoding a polypeptide also may have a number of uses for the diagnosis of diseases, including breast cancer, resulting from aberrant expression of a target gene described herein. For example, the nucleic acid sequence may be used in hybridization assays of biopsies or autopsies to diagnose abnormalities of expression or function (e.g., Southern or Northern blot analysis, in situ hybridization assays).


In addition, the expression of a polypeptide during embryonic development may also be determined using nucleic acid encoding the polypeptide. As addressed, infra, production of functionally impaired polypeptide can be the cause of various disease states, such as breast cancer. In situ hybridizations using polynucleotide probes may be employed to predict problems related to breast cancer. Further, as indicated, infra, administration of human active polypeptide, recombinantly produced as described herein, may be used to treat disease states related to functionally impaired polypeptide (e.g., a KIAA0861 polypeptide that activates a Rho GTPase in a situation where it is not normally activated). Alternatively, gene therapy approaches may be employed to remedy deficiencies of functional polypeptide or to replace or compete with dysfunctional polypeptide.


Expression Vectors, Host Cells, and Genetically Engineered Cells


Provided herein are nucleic acid vectors, often expression vectors, which contain a KIAA0861 nucleic acid. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked and can include a plasmid, cosmid, or viral vector. The vector can be capable of autonomous replication or it can integrate into a host DNA. Viral vectors may include replication defective retroviruses, adenoviruses and adeno-associated viruses for example.


A vector can include a KIAA0861 nucleic acid in a form suitable for expression of the nucleic acid in a host cell. The recombinant expression vector typically includes one or more regulatory sequences operatively linked to the nucleic acid sequence to be expressed. The term “regulatory sequence” includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence, as well as tissue-specific regulatory and/or inducible sequences. The design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of polypeptide desired, and the like. Expression vectors can be introduced into host cells to produce KIAA0861 polypeptides, including fusion polypeptides, encoded by KIAA0861 nucleic acids.


Recombinant expression vectors can be designed for expression of KIAA0861 polypeptides in prokaryotic or eukaryotic cells. For example, KIAA0861 polypeptides can be expressed in E. coli, insect cells (e.g., using baculovirus expression vectors), yeast cells, or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


Expression of polypeptides in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion polypeptides. Fusion vectors add a number of amino acids to a polypeptide encoded therein, usually to the amino terminus of the recombinant polypeptide. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant polypeptide; 2) to increase the solubility of the recombinant polypeptide; and 3) to aid in the purification of the recombinant polypeptide by acting as a ligand in affinity purification. Often, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant polypeptide to enable separation of the recombinant polypeptide from the fusion moiety subsequent to purification of the fusion polypeptide. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith & Johnson, Gene 67: 31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding polypeptide, or polypeptide A, respectively, to the target recombinant polypeptide.


Purified fusion polypeptides can be used in screening assays and to generate antibodies specific for KIAA0861 polypeptides. In a therapeutic embodiment, fusion polypeptide expressed in a retroviral expression vector is used to infect bone marrow cells that are subsequently transplanted into irradiated recipients. The pathology of the subject recipient is then examined after sufficient time has passed (e.g., six (6) weeks).


Expressing the polypeptide in host bacteria with an impaired capacity to proteolytically cleave the recombinant polypeptide is often used to maximize recombinant polypeptide expression (Gottesman, S., Gene Expression Technology: Methods in Enzymology, Academic Press, San Diego, Calif. 185: 119-128 (1990)). Another strategy is to alter the nucleotide sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al., Nucleic Acids Res. 20: 2111-2118 (1992)). Such alteration of nucleotide sequences can be carried out by standard DNA synthesis techniques.


When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. Recombinant mammalian expression vectors are often capable of directing expression of the nucleic acid in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Non-limiting examples of suitable tissue-specific promoters include an albumin promoter (liver-specific; Pinkert et al., Genes Dev. 1: 268-277 (1987)), lymphoid-specific promoters (Calame & Eaton, Adv. Immunol. 43: 235-275 (1988)), promoters of T cell receptors (Winoto & Baltimore, EMBO J. 8: 729-733 (1989)) promoters of immunoglobulins (Banerji et al., Cell 33: 729-740 (1983); Queen & Baltimore, Cell 33: 741-748 (1983)), neuron-specific promoters (e.g., the neurofilament promoter; Byrne & Ruddle, Proc. Natl. Acad. Sci. USA 86: 5473-5477 (1989)), pancreas-specific promoters (Edlund et al., Science 230: 912-916 (1985)), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are sometimes utilized, for example, the murine hox promoters (Kessel & Gruss, Science 249: 374-379 (1990)) and the α-fetopolypeptide promoter (Campes & Tilghman, Genes Dev. 3: 537-546 (1989)).


A KIAA0861 nucleic acid may also be cloned into an expression vector in an antisense orientation. Regulatory sequences (e.g., viral promoters and/or enhancers) operatively linked to a KIAA0861 nucleic acid cloned in the antisense orientation can be chosen for directing constitutive, tissue specific or cell type specific expression of antisense RNA in a variety of cell types. Antisense expression vectors can be in the form of a recombinant plasmid, phagemid or attenuated virus. For a discussion of the regulation of gene expression using antisense genes see Weintraub et al., Antisense RNA as a molecular tool for genetic analysis, Reviews—Trends in Genetics, Vol. 1(1) (1986).


Also provided herein are host cells that include a KIAA0861 nucleic acid within a recombinant expression vector or KIAA0861 nucleic acid sequence fragments which allow it to homologously recombine into a specific site of the host cell genome. The terms “host cell” and “recombinant host cell” are used interchangeably herein. Such terms refer not only to the particular subject cell but rather also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell can be any prokaryotic or eukaryotic cell. For example, a KIAA0861 polypeptide can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.


Vectors can be introduced into host cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, transduction/infection, DEAE-dextran-mediated transfection, lipofection, or electroporation.


A host cell provided herein can be used to produce (i.e., express) a KIAA0861 polypeptide. Accordingly, further provided are methods for producing a KIAA0861 polypeptide using the host cells described herein. In one embodiment, the method includes culturing host cells into which a recombinant expression vector encoding a KIAA0861 polypeptide has been introduced in a suitable medium such that a KIAA0861 polypeptide is produced. In another embodiment, the method further includes isolating a KIAA0861 polypeptide from the medium or the host cell.


Also provided are cells or purified preparations of cells which include a KIAA0861 transgene, or which otherwise misexpress KIAA0861 polypeptide. Cell preparations can consist of human or non-human cells, e.g., rodent cells, e.g., mouse or rat cells, rabbit cells, or pig cells. In certain embodiments, the cell or cells include a KIAA0861 transgene (e.g., a heterologous form of a KIAA0861 such as a human gene expressed in non-human cells). The KIAA0861 transgene can be misexpressed, e.g., overexpressed or underexpressed. In other embodiments, the cell or cells include a gene which misexpress an endogenous KIAA0861 polypeptide (e.g., expression of a gene is disrupted, also known as a knockout). Such cells can serve as a model for studying disorders which are related to mutated or mis-expressed KIAA0861 alleles or for use in drug screening. Also provided are human cells (e.g., a hematopoietic stem cells) transformed with a KIAA0861 nucleic acid.


Also provided are cells or a purified preparation thereof (e.g., human cells) in which an endogenous KIAA0861 nucleic acid is under the control of a regulatory sequence that does not normally control the expression of the endogenous KIAA0861 gene. The expression characteristics of an endogenous gene within a cell (e.g., a cell line or microorganism) can be modified by inserting a heterologous DNA regulatory element into the genome of the cell such that the inserted regulatory element is operably linked to the endogenous KIAA0861 gene. For example, an endogenous KIAA0861 gene (e.g., a gene which is “transcriptionally silent,” not normally expressed, or expressed only at very low levels) may be activated by inserting a regulatory element which is capable of promoting the expression of a normally expressed gene product in that cell. Techniques such as targeted homologous recombinations, can be used to insert the heterologous DNA as described in, e.g., Chappel, U.S. Pat. No. 5,272,071; WO 91/06667, published on May 16, 1991.


Transgenic Animals


Non-human transgenic animals that express a heterologous KIAA0861 polypeptide (e.g., expressed from a KIAA0861 nucleic acid isolated from another organism) can be generated. Such animals are useful for studying the function and/or activity of a KIAA0861 polypeptide and for identifying and/or evaluating modulators of KIAA0861 nucleic acid and KIAA0861 polypeptide activity. As used herein, a “transgenic animal” is a non-human animal such as a mammal (e.g., a non-human primate such as chimpanzee, baboon, or macaque; an ungulate such as an equine, bovine, or caprine; or a rodent such as a rat, a mouse, or an Israeli sand rat), a bird (e.g., a chicken or a turkey), an amphibian (e.g., a frog, salamander, or newt), or an insect (e.g., Drosophila melanogaster), in which one or more of the cells of the animal includes a KIAA0861 transgene. A transgene is exogenous DNA or a rearrangement (e.g., a deletion of endogenous chromosomal DNA) that is often integrated into or occurs in the genome of cells in a transgenic animal. A transgene can direct expression of an encoded gene product in one or more cell types or tissues of the transgenic animal, and other transgenes can reduce expression (e.g., a knockout). Thus, a transgenic animal can be one in which an endogenous KIAA0861 gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal (e.g., an embryonic cell of the animal) prior to development of the animal.


Intronic sequences and polyadenylation signals can also be included in the transgene to increase expression efficiency of the transgene. One or more tissue-specific regulatory sequences can be operably linked to a KIAA0861 transgene to direct expression of a KIAA0861 polypeptide to particular cells. A transgenic founder animal can be identified based upon the presence of a KIAA0861 transgene in its genome and/or expression of KIAA0861 mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding a KIAA0861 polypeptide can further be bred to other transgenic animals carrying other transgenes.


KIAA0861 polypeptides can be expressed in transgenic animals or plants by introducing, for example, a nucleic acid encoding the polypeptide into the genome of an animal. In certain embodiments the nucleic acid is placed under the control of a tissue specific promoter, e.g., a milk or egg specific promoter, and recovered from the milk or eggs produced by the animal. Also included is a population of cells from a transgenic animal.


KIAA0861 Polypeptides


Featured herein are isolated KIAA0861 polypeptides, which include polypeptides having amino acid sequences of SEQ ID NO: 4 or 5, and substantially identical polypeptides thereof. Such polypeptides sometimes are proteins or peptides. The polypeptide having the amino acid sequence of SEQ ID NO: 5 often is utilized, as well as domain fragments, such as a fragment containing the DH and PH domains. A KIAA0861 polypeptide is a polypeptide encoded by a KIAA0861 nucleic acid, where one nucleic acid can encode one or more different polypeptides. An “isolated” or “purified” polypeptide or protein is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. In one embodiment, the language “substantially free” means preparation of a KIAA0861 polypeptide or KIAA0861 polypeptide variant having less than about 30%, 20%, 10% and sometimes 5% (by dry weight), of non-KIAA0861 polypeptide (also referred to herein as a “contaminating protein”), or of chemical precursors or non-KIAA0861 chemicals. When the KIAA0861 polypeptide or a biologically active portion thereof is recombinantly produced, it is also often substantially free of culture medium, specifically, where culture medium represents less than about 20%, sometimes less than about 10%, and often less than about 5% of the volume of the polypeptide preparation. Isolated or purified KIAA0861 polypeptide preparations are sometimes 0.01 milligrams or more or 0.1 milligrams or more, and often 1.0 milligrams or more and 10 milligrams or more in dry weight. In specific embodiments, the KIAA0861 polypeptide comprises a leucine at amino acid position 359 in SEQ ID NO: 5, a leucine at amino acid position 378 in SEQ ID NO: 5, or an alanine at amino acid position 857 in SEQ ID NO: 5.


In another aspect, featured herein are KIAA0861 polypeptides and biologically active or antigenic fragments thereof that are useful as reagents or targets in assays applicable to prevention, treatment or diagnosis of breast cancer. In another embodiment, provided herein are KIAA0861 polypeptides having a KIAA0861 activity or activities (e.g., GTPase binding activity, guanine nucleotide exchange activity (i.e., the ability to catalyze GDP-GTP exchange reactions of Rho proteins), translocating the GEF to the plasma membrane activity (i.e., cellular localization via interactions with lipids or proteins), or recognizing the substrate GTPase activity). In certain embodiments, the polypeptides are KIAA0861 proteins including a Sec 14p-like lipid binding domain, at least one spectrin repeat (SPEC), a RhoGEF domain (or DH domain), and a Pleckstrin-homology domain (PH domain), and sometimes having a KIAA0861 activity as described herein. These domains are always found in tandem, with the PH domain found C-terminal to the DH domain. It is believed that the DH domain interacts directly with Rho GTPase depleted of GTP and Mg2+ while the PH domain is responsible for translocating the GEF to the plasma membrane, placing it in close proximity to the substrate GTPase. A second, or alternative role for the PH domain has recently been described and involves the direct interaction of the PH domain with the GTPase (Rossman, K L, et al. (2002) EMBO, 21 (6): 1315-1326). Methods for monitoring and quantifying this biological activity, both in vitro and in vivo, are known (see, e.g., Cheng, L, et al. (2002) MCB. 22 (19):6895-6905).


A catalytically active form of the KIAA0861 protein includes the RhoGEF domain (DH domain), which serves to catalyze GDP-GTP exchange reactions of Rho proteins, and the Pleckstrin-homology domain (PH domain), which serves to translocate the GEF to the plasma membrane. The catalytically active form of the KIAA0861 protein can be approximately 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, or 341 amino acid residues in length (from about amino acid 535, 536, 537, 538, 539, 540, 571, 572, 573, 574, 575 or 576 to amino acid 870, 871, 872, 873, 874, 875 or 876 of SEQ ID NO: 5).


Human KIAA0861 contains the following regions or other structural features: a Sec14p-like lipid binding domain at about amino acids 99 to 190 of SEQ ID NO: 5; Spectrin repeats located at about amino acid residues 333 to 503 of SEQ ID NO: 5; RhoGEF (or DH) domain at about amino acids 623 to 820 or 659 to 818 of SEQ ID NO: 5; and a Pleckstrin-homology domain (PH domain) at about amino acids 857-953 or 857-956 of SEQ ID NO: 5. DH-PH domains often span from amino acids 623-953 or 623-856 in SEQ ID NO: 5. A nucleotide sequence of a DBS gene, another guanine nucleotide exchange factor discussed hereafter, is deposited as NP079255 in the GenBank database and DB-PH regions corresponding to the KIAA0861 DB-PH region are apparent from alignments shown hereafter.


In other embodiments, there are provided methods of decreasing the guanine nucleotide exchange reactions of Rho proteins, comprising providing or administering to individuals in need of decreasing the guanine nucleotide exchange reactions of Rho proteins the pharmaceutical or physiologically acceptable composition comprising inactive human KIAA0861 protein or fragment thereof, where the inactive KIAA0861 polypeptide fragments may have introduced point mutations in the DH domain of KIAA0861 to selectively narrow its specificity of exchange, further wherein it is understood that the inactive form of KIAA0861 does not have the ability or has a decreased ability to catalyze the guanine nucleotide exchange reactions of Rho proteins, but can still bind to Rho proteins. (See “Therapeutic Treatments” Section herein).


Further included herein are KIAA0861 polypeptide fragments. The polypeptide fragment may be a domain or part of a domain of a KIAA0861 polypeptide. The polypeptide fragment is often 50 or fewer, 100 or fewer, or 200 or fewer amino acids in length, and is sometimes 300, 400, 500, 600, 700, or 900 or fewer amino acids in length. In certain embodiments, the polypeptide fragment comprises, consists essentially of, or consists of, at least 6 consecutive amino acids and not more than 1211 consecutive amino acids of SEQ ID NO: 5, or the polypeptide fragment comprises, consists essentially of, or consists of, at least 6 consecutive amino acids and not more than 543 consecutive amino acids of SEQ ID NO: 5.


KIAA0861 polypeptides described herein can be used as immunogens to produce anti-KIAA0861 antibodies in a subject, to purify KIAA0861 ligands or binding partners, and in screening assays to identify molecules which inhibit or enhance the interaction of KIAA0861 with a KIAA0861 substrate. In a preferred embodiment, KIAA0861 polypeptides described herein are used to screen for competitive inhibitors of KIAA0861 with Rho family GTP-binding proteins. Full-length KIAA0861 polypeptides and polynucleotides encoding the same may be specifically substituted for a KIAA0861 polypeptide fragment or polynucleotide encoding the same in any embodiment described herein.


Substantially identical polypeptides may depart from the amino acid sequences of SEQ ID NO: 4 or 5 in different manners. For example, conservative amino acid modifications may be introduced at one or more positions in the amino acid sequences of SEQ ID NO: 4 or 5. A “conservative amino acid substitution” is one in which the amino acid is replaced by another amino acid having a similar structure and/or chemical function. Families of amino acid residues having similar structures and functions are well known. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Also, essential and non-essential amino acids may be replaced. A “non-essential” amino acid is one that can be altered without abolishing or substantially altering the biological function of a KIAA0861 polypeptide, whereas altering an “essential” amino acid abolishes or substantially alters the biological function of a KIAA0861 polypeptide. Amino acids that are conserved among KIAA0861 polypeptides are typically essential amino acids.


Also, KIAA0861 polypeptides and polypeptide variants may exist as chimeric or fusion polypeptides. As used herein, a KIAA0861 “chimeric polypeptide” or “fusion polypeptide” includes a KIAA0861 polypeptide linked to a non-KIAA0861 polypeptide. A “non-KIAA0861 polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a polypeptide which is not substantially identical to the KIAA0861 polypeptide, which includes, for example, a polypeptide that is different from the KIAA0861 polypeptide and derived from the same or a different organism. The KIAA0861 polypeptide in the fusion polypeptide can correspond to an entire or nearly entire KIAA0861 polypeptide or a fragment thereof. The non-KIAA0861 polypeptide can be fused to the N-terminus or C-terminus of the KIAA0861 polypeptide.


Fusion polypeptides can include a moiety having high affinity for a ligand. For example, the fusion polypeptide can be a GST-KIAA0861 fusion polypeptide in which the KIAA0861 sequences are fused to the C-terminus of the GST sequences, or a polyhistidine-KIAA0861 fusion polypeptide in which the KIAA0861 polypeptide is fused at the N- or C-terminus to a string of histidine residues. Such fusion polypeptides can facilitate purification of recombinant KIAA0861. Expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide), and a KIAA0861 nucleic acid can be cloned into an expression vector such that the fusion moiety is linked in-frame to the KIAA0861 polypeptide. Further, the fusion polypeptide can be a KIAA0861 polypeptide containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression, secretion, cellular internalization, and cellular localization of a KIAA0861 polypeptide can be increased through use of a heterologous signal sequence. Fusion polypeptides can also include all or a part of a serum polypeptide (e.g., an IgG constant region or human serum albumin).


KIAA0861 polypeptides or fragments thereof can be incorporated into pharmaceutical compositions and administered to a subject in vivo. Administration of these KIAA0861 polypeptides can be used to affect the bioavailability of a KIAA0861 substrate and may effectively increase or decrease KIAA0861 biological activity in a cell or effectively supplement dysfunctional or hyperactive KIAA0861 polypeptide. KIAA0861 fusion polypeptides may be useful therapeutically for the treatment of disorders caused by, for example, (i) aberrant modification or mutation of a gene encoding a KIAA0861 polypeptide; (ii) mis-regulation of the KIAA0861 gene; and (iii) aberrant post-translational modification of a KIAA0861 polypeptide. Also, KIAA0861 polypeptides can be used as immunogens to produce anti-KIAA0861 antibodies in a subject, to purify KIAA0861 ligands or binding partners, and in screening assays to identify molecules which inhibit or enhance the interaction of KIAA0861 with a KIAA0861 substrate. Preferably, said KIAA0861 polypeptides are used in screening assays to identify molecules which inhibit the interaction of KIAA0861 with Rho family GTP-binding proteins.


In addition, polypeptides can be chemically synthesized using techniques known in the art (See, e.g., Creighton, 1983 Proteins. New York, N.Y.: W. H. Freeman and Company; and Hunkapiller et al., (1984) Nature July 12-18; 310(5973):105-11). For example, a relative short polypeptide fragment can be synthesized by use of a peptide synthesizer. Furthermore, if desired, non-classical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the fragment sequence. Non-classical amino acids include, but are not limited to, to the D-isomers of the common amino acids, 2,4-diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoroamino acids, designer amino acids such as b-methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotary).


Also included are polypeptide fragments which are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, and the like. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH4; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; and the like.


Additional post-translational modifications include, for example, N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of prokaryotic host cell expression. The polypeptide fragments may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the polypeptide.


Also provided are chemically modified polypeptide derivatives that may provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity. See U.S. Pat. No. 4,179,337. The chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like. The polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.


The polymer may be of any molecular weight, and may be branched or unbranched. For polyethylene glycol, the molecular weight is between about 1 kDa and about 100 kDa (the term “about” indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing. Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog).


The polyethylene glycol molecules (or other chemical moieties) should be attached to the polypeptide with consideration of effects on functional or antigenic domains of the polypeptide. There are a number of attachment methods available to those skilled in the art, e.g., EP 0 401 384, herein incorporated by reference (coupling PEG to G-CSF), see also Malik et al (1992) Exp Hematol. September; 20(8): 1028-35, reporting pegylation of GM-CSF using tresyl chloride). For example, polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as, a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule may be bound. The amino acid residues having a free amino group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues, glutamic acid residues and the C-terminal amino acid residue. Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. A polymer sometimes is attached at an amino group, such as attachment at the N-terminus or lysine group.


One may specifically desire proteins chemically modified at the N-terminus. Using polyethylene glycol as an illustration of the present composition, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, and the like), the proportion of polyethylene glycol molecules to protein (polypeptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein. The method of obtaining the N-terminally pegylated preparation (i.e., separating this moiety from other monopegylated moieties if necessary) may be by purification of the N-terminally pegylated material from a population of pegylated protein molecules. Selective proteins chemically modified at the N-terminus may be accomplished by reductive alkylation, which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved.


Substantially Identical Nucleic Acids and Polypeptides


Nucleotide sequences and polypeptide sequences that are substantially identical to a KIAA0861 nucleotide sequence and the KIAA0861 polypeptide sequences encoded by those nucleotide sequences are included herein. The term “substantially identical” as used herein refers to two or more nucleic acids or polypeptides sharing one or more identical nucleotide sequences or polypeptide sequences, respectively. Included are nucleotide sequences or polypeptide sequences that are 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more (each often within a 1%, 2%, 3% or 4% variability) or more identical to the nucleotide sequences in SEQ ID NO: 1, 2 or 3 or the encoded KIAA0861 polypeptide amino acid sequences. One test for determining whether two nucleic acids are substantially identical is to determine the percent of identical nucleotide sequences or polypeptide sequences shared between the nucleic acids or polypeptides.


Calculations of sequence identity are often performed as follows. Sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The length of a reference sequence aligned for comparison purposes is sometimes 30% or more, 40% or more, 50% or more, often 60% or more, and more often 70% or more, 80% or more, 90% or more, 90% or more, or 100% of the length of the reference sequence. The nucleotides or amino acids at corresponding nucleotide or polypeptide positions, respectively, are then compared among the two sequences. When a position in the first sequence is occupied by the same nucleotide or amino acid as the corresponding position in the second sequence, the nucleotides or amino acids are deemed to be identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, introduced for optimal alignment of the two sequences.


Comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. Percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of Meyers & Miller, CABIOS 4: 11-17 (1989), which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. Also, percent identity between two amino acid sequences can be determined using the Needleman & Wunsch, J. Mol. Biol. 48: 444-453 (1970) algorithm which has been incorporated into the GAP program in the GCG software package (available at the http address www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. Percent identity between two nucleotide sequences can be determined using the GAP program in the GCG software package (available at http address www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A set of parameters often used is a Blossum 62 scoring matrix with a gap open penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.


Another manner for determining if two nucleic acids are substantially identical is to assess whether a polynucleotide homologous to one nucleic acid will hybridize to the other nucleic acid under stringent conditions. As use herein, the term “stringent conditions” refers to conditions for hybridization and washing. Stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y., 6.3.1-6.3.6 (1989). Aqueous and non-aqueous methods are described in that reference and either can be used. An example of stringent hybridization conditions is hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 50° C. Another example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 55° C. A further example of stringent hybridization conditions is hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 60° C. Often, stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 65° C. More often, stringency conditions are 0.5M sodium phosphate, 7% SDS at 65° C., followed by one or more washes at 0.2×SSC, 1% SDS at 65° C.


An example of a substantially identical nucleotide sequence to a KIAA0861 nucleotide sequence is one that has a different nucleotide sequence but still encodes the same polypeptide sequence encoded by the KIAA0861 nucleotide sequence. Another example is a nucleotide sequence that encodes a polypeptide having a polypeptide sequence that is more than 70% or more identical to, sometimes 75% or more, 80% or more, or 85% or more identical to, and often 90% or more and 95% or more identical to a polypeptide sequence encoded by a KIAA0861 nucleotide sequence.


KIAA0861 nucleotide sequences and KIAA0861 amino acid sequences can be used as “query sequences” to perform a search against public databases to identify other family members or related sequences, for example. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul et al., J. Mol. Biol. 215: 403-10 (1990). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to nucleotide sequences from SEQ ID NO: 1. BLAST polypeptide searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to polypeptides encoded by a KIAA0861 nucleotide sequence. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., Nucleic Acids Res. 25(17): 3389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used (see the http address www.ncbi.nlm.nih.gov).


A nucleic acid that is substantially identical to a KIAA0861 nucleotide sequence may include polymorphic sites at positions equivalent to those described herein when the sequences are aligned. For example, using the alignment procedures described herein, SNPs in a sequence substantially identical to a sequence in SEQ ID NO: 1, 2, or 3 can be identified at nucleotide positions that match (i.e., align) with nucleotides at SNP positions in the nucleotide sequence of SEQ ID NO: 1, 2 or 3. Also, where a polymorphic variation results in an insertion or deletion, insertion or deletion of a nucleotide sequence from a reference sequence can change the relative positions of other polymorphic sites in the nucleotide sequence.


Substantially identical nucleotide and polypeptide sequences include those that are naturally occurring, such as allelic variants (same locus), splice variants, homologs (different locus), and orthologs (different organism) or can be non-naturally occurring. Non-naturally occurring variants can be generated by mutagenesis techniques, including those applied to polynucleotides, cells, or organisms. The variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions (as compared in the encoded product). Orthologs, homologs, allelic variants, and splice variants can be identified using methods known in the art. These variants normally comprise a nucleotide sequence encoding a polypeptide that is 50% or more, about 55% or more, often about 70-75% or more, more often about 80-85% or more, and typically about 90-95% or more identical to the amino acid sequences of target polypeptides or a fragment thereof. Such nucleic acid molecules readily can be identified as being able to hybridize under stringent conditions to a nucleotide sequence in SEQ ID NO: 1, 2 or 3 or a fragment thereof. Nucleic acid molecules corresponding to orthologs, homologs, and allelic variants of a nucleotide sequence in SEQ ID NO: 1, 2 or 3 can be identified by mapping the sequence to the same chromosome or locus as the nucleotide sequence in SEQ ID NO: 1, 2 or 3.


Also, substantially identical nucleotide sequences may include codons that are altered with respect to the naturally occurring sequence for enhancing expression of a target polypeptide in a particular expression system. For example, the nucleic acid can be one in which one or more codons are altered, and often 10% or more or 20% or more of the codons are altered for optimized expression in bacteria (e.g., E. coli.), yeast (e.g., S. cervesiae), human (e.g., 293 cells), insect, or rodent (e.g., hamster) cells.


Methods for Identifying Subjects at Risk of Breast Cancer and Breast Cancer Risk in a Subject


Methods for prognosing and diagnosing breast cancer in subjects are provided herein. These methods include detecting the presence or absence of one or more polymorphic variations associated with breast cancer in a nucleotide sequence set forth in SEQ ID NO: 1, or substantially identical sequence thereof, in a sample from a subject, where the presence of a polymorphic variant described herein is indicative of a risk of breast cancer.


Thus, featured herein is a method for detecting a subject at risk of breast cancer or the risk of breast cancer in a subject, which comprises detecting the presence or absence of a polymorphic variation associated with breast cancer at a polymorphic site in a nucleotide sequence set forth in SEQ ID NO: 1 in a nucleic acid sample from a subject, where the nucleotide sequence comprises a polynucleotide sequence selected from the group consisting of: (a) a nucleotide sequence set forth in SEQ ID NO: 1; (b) a nucleotide sequence which encodes a polypeptide having an amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1; (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1 or a nucleotide sequence about 90% or more identical to the nucleotide sequence set forth in SEQ ID NO: 1; and (d) a fragment of a nucleotide sequence of (a), (b), or (c), often a fragment that includes a polymorphic site associated with breast cancer; whereby the presence of the polymorphic variation is indicative of a risk of breast cancer in the subject. In specific embodiments, the polymorphic variant is detected at a position corresponding to a position selected from the group consisting of rs3811728, rs3811729, rs602646, rs488277, rs1629673, rs670232, rs575326, rs575386, rs684846, rs471365, rs496251, rs831246, rs831247, rs512071, rs1502761, rs681516, rs683302, rs619424, rs620722, rs529055, rs664010, rs678454, rs2653845, rs472795, rs507079, rs534333, rs535298, rs536213, rs831245, rs639690, rs684174, rs571761, rs1983421, rs4630966, rs2314415, rs6788196, rs2103062, rs9827084, rs9864865, rs6804951, rs6770548, rs1403452, rs7609994, rs9838250, rs9863404, rs903950, rs6787284, rs2017340, rs2001449, rs1317288, rs7635891, rs10704581, rs11371910, rs10937118, rs7642053, rs3821522, rs2029926, rs1390831, rs7643890, rs11925606, rs9826325, rs6800429, rs6803368, rs1353566, rs2272115, rs2272116, rs3732603, rs940055, rs2314730, rs2030578, rs2049280, rs3732602, rs2293203, rs7639705, and position 13507 of SEQ ID NO: 1. In certain embodiments, determining the presence of a combination of two or more polymorphic variants associated with breast cancer in one or more nucleotide sequences of the sample (e.g., at ICAM, MAPK10, NUMA1, DPF3, LOC145197 and/or GALE sequences) is determined to identify a subject at risk of breast cancer and/or risk of breast cancer.


A risk of developing aggressive forms of breast cancer likely to metastasize or invade surrounding tissues (e.g., Stage IIIA, IIIB, and IV breast cancers), and subjects at risk of developing aggressive forms of breast cancer also may be identified by the methods described herein. These methods include collecting phenotype information from subjects having breast cancer, which includes the stage of progression of the breast cancer, and performing a secondary phenotype analysis to detect the presence or absence of one or more polymorphic variations associated with a particular stage form of breast cancer. Thus, detecting the presence or absence of one or more polymorphic variations in a KIAA0861 nucleotide sequence associated with a late stage form of breast cancer often is diagnostic of an aggressive form of the cancer.


Results from prognostic tests may be combined with other test results to diagnose breast cancer. For example, prognostic results may be gathered, a patient sample may be ordered based on a determined predisposition to breast cancer, the patient sample is analyzed, and the results of the analysis may be utilized to diagnose breast cancer. Also breast cancer diagnostic methods can be developed from studies used to generate prognostic/diagnostic methods in which populations are stratified into subpopulations having different progressions of breast cancer. In another embodiment, prognostic results may be gathered; a patient's risk factors for developing breast cancer analyzed (e.g., age, race, family history, age of first menstrual cycle, age at birth of first child); and a patient sample may be ordered based on a determined predisposition to breast cancer. In an alternative embodiment, the results from predisposition analyses described herein may be combined with other test results indicative of breast cancer, which were previously, concurrently, or subsequently gathered with respect to the predisposition testing. In these embodiments, the combination of the prognostic test results with other test results can be probative of breast cancer, and the combination can be utilized as a breast cancer diagnostic. The results of any test indicative of breast cancer known in the art may be combined with the methods described herein. Examples of such tests are mammography (e.g., a more frequent and/or earlier mammography regimen may be prescribed); breast biopsy and optionally a biopsy from another tissue; breast ultrasound and optionally an ultrasound analysis of another tissue; breast magnetic resonance imaging (MRI) and optionally an MRI analysis of another tissue; electrical impedance (T-scan) analysis of breast and optionally of another tissue; ductal lavage; nuclear medicine analysis (e.g., scintimammography); BRCA1 and/or BRCA2 sequence analysis results; and thermal imaging of the breast and optionally of another tissue. Testing may be performed on tissue other than breast to diagnose the occurrence of metastasis (e.g., testing of the lymph node).


Risk of breast cancer sometimes is expressed as a probability, such as an odds ratio, percentage, or risk factor. The risk is based upon the presence or absence of one or more polymorphic variants described herein, and also may be based in part upon phenotypic traits of the individual being tested. Methods for calculating predispositions based upon patient data are well known (see, e.g., Agresti, Categorical Data Analysis, 2nd Ed. 2002. Wiley). Allelotyping and genotyping analyses may be carried out in populations other than those exemplified herein to enhance the predictive power of the prognostic method. These further analyses are executed in view of the exemplified procedures described herein, and may be based upon the same polymorphic variations or additional polymorphic variations. Risk determinations for breast cancer are useful in a variety of applications. In one embodiment, breast cancer risk determinations are used by clinicians to direct appropriate detection, preventative and treatment procedures to subjects who most require these. In another embodiment, breast cancer risk determinations are used by health insurers for preparing actuarial tables and for calculating insurance premiums.


The nucleic acid sample typically is isolated from a biological sample obtained from a subject. For example, nucleic acid can be isolated from blood, saliva, sputum, urine, cell scrapings, and biopsy tissue. The nucleic acid sample can be isolated from a biological sample using standard techniques, such as the technique described in Example 2. As used herein, the term “subject” refers primarily to humans but also refers to other mammals such as dogs, cats, and ungulates (e.g., cattle, sheep, and swine). Subjects also include avians (e.g., chickens and turkeys), reptiles, and fish (e.g., salmon), as embodiments described herein can be adapted to nucleic acid samples isolated from any of these organisms. The nucleic acid sample may be isolated from the subject and then directly utilized in a method for determining the presence of a polymorphic variant, or alternatively, the sample may be isolated and then stored (e.g., frozen) for a period of time before being subjected to analysis.


The presence or absence of a polymorphic variant is determined using one or both chromosomal complements represented in the nucleic acid sample. Determining the presence or absence of a polymorphic variant in both chromosomal complements represented in a nucleic acid sample from a subject having a copy of each chromosome is useful for determining the zygosity of an individual for the polymorphic variant (i.e., whether the individual is homozygous or heterozygous for the polymorphic variant). Any oligonucleotide-based diagnostic may be utilized to determine whether a sample includes the presence or absence of a polymorphic variant in a sample. For example, primer extension methods, ligase sequence determination methods (e.g., U.S. Pat. Nos. 5,679,524 and 5,952,174, and WO 01/27326), mismatch sequence determination methods (e.g., U.S. Pat. Nos. 5,851,770; 5,958,692; 6,110,684; and 6,183,958), microarray sequence determination methods, restriction fragment length polymorphism (RFLP), single strand conformation polymorphism detection (SSCP) (e.g., U.S. Pat. Nos. 5,891,625 and 6,013,499), PCR-based assays (e.g., TAQMAN® PCR System (Applied Biosystems)), and nucleotide sequencing methods may be used.


Oligonucleotide extension methods typically involve providing a pair of oligonucleotide primers in a polymerase chain reaction (PCR) or in other nucleic acid amplification methods for the purpose of amplifying a region from the nucleic acid sample that comprises the polymorphic variation. One oligonucleotide primer is complementary to a region 3′ of the polymorphism and the other is complementary to a region 5′ of the polymorphism. A PCR primer pair may be used in methods disclosed in U.S. Pat. Nos. 4,683,195; 4,683,202, 4,965,188; 5,656,493; 5,998,143; 6,140,054; WO 01/27327; and WO 01/27329 for example. PCR primer pairs may also be used in any commercially available machines that perform PCR, such as any of the GENEAMP® Systems available from Applied Biosystems. Also, those of ordinary skill in the art will be able to design oligonucleotide primers based upon a nucleotide sequence set forth herein without undue experimentation using knowledge readily available in the art.


Also provided is an extension oligonucleotide that hybridizes to the amplified fragment adjacent to the polymorphic variation. As used herein, the term “adjacent” refers to the 3′ end of the extension oligonucleotide being often 1 nucleotide from the 5′ end of the polymorphic site, and sometimes 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from the 5′ end of the polymorphic site, in the nucleic acid when the extension oligonucleotide is hybridized to the nucleic acid. The extension oligonucleotide then is extended by one or more nucleotides, and the number and/or type of nucleotides that are added to the extension oligonucleotide determine whether the polymorphic variant is present. Oligonucleotide extension methods are disclosed, for example, in U.S. Pat. Nos. 4,656,127; 4,851,331; 5,679,524; 5,834,189; 5,876,934; 5,908,755; 5,912,118; 5,976,802; 5,981,186; 6,004,744; 6,013,431; 6,017,702; 6,046,005; 6,087,095; 6,210,891; and WO 01/20039. Oligonucleotide extension methods using mass spectrometry are described, for example, in U.S. Pat. Nos. 5,547,835; 5,605,798; 5,691,141; 5,849,542; 5,869,242; 5,928,906; 6,043,031; and 6,194,144, and a method often utilized is described herein in Example 2. Multiple extension oligonucleotides may be utilized in one reaction, which is referred to herein as “multiplexing.”


A microarray can be utilized for determining whether a polymorphic variant is present or absent in a nucleic acid sample. A microarray may include any oligonucleotides described herein, and methods for making and using oligonucleotide microarrays suitable for diagnostic use are disclosed in U.S. Pat. Nos. 5,492,806; 5,525,464; 5,589,330; 5,695,940; 5,849,483; 6,018,041; 6,045,996; 6,136,541; 6,142,681; 6,156,501; 6,197,506; 6,223,127; 6,225,625; 6,229,911; 6,239,273; WO 00/52625; WO 01/25485; and WO 01/29259. The microarray typically comprises a solid support and the oligonucleotides may be linked to this solid support by covalent bonds or by non-covalent interactions. The oligonucleotides may also be linked to the solid support directly or by a spacer molecule. A microarray may comprise one or more oligonucleotides complementary to a polymorphic site shown in SEQ ID NO: 1 or below.


A kit also may be utilized for determining whether a polymorphic variant is present or absent in a nucleic acid sample. A kit often comprises one or more pairs of oligonucleotide primers useful for amplifying a fragment of a KIAA0861 nucleotide sequence or a substantially identical sequence thereof, where the fragment includes a polymorphic site. The kit sometimes comprises a polymerizing agent, for example, a thermostable nucleic acid polymerase such as one disclosed in U.S. Pat. No. 4,889,818 or 6,077,664. Also, the kit often comprises an elongation oligonucleotide that hybridizes to a KIAA0861 nucleotide sequence in a nucleic acid sample adjacent to the polymorphic site. Where the kit includes an elongation oligonucleotide, it also often comprises chain elongating nucleotides, such as DATP, dTTP, dGTP, dCTP, and dITP, including analogs of dATP, dTTP, dGTP, dCTP and dITP, provided that such analogs are substrates for a thermostable nucleic acid polymerase and can be incorporated into a nucleic acid chain elongated from the extension oligonucleotide. Along with chain elongating nucleotides would be one or more chain terminating nucleotides such as ddATP, ddTTP, ddGTP, ddCTP, and the like. In an embodiment, the kit comprises one or more oligonucleotide primer pairs, a polymerizing agent, chain elongating nucleotides, at least one elongation oligonucleotide, and one or more chain terminating nucleotides. Kits optionally include buffers, vials, microtiter plates, and instructions for use.


An individual identified as being at risk of breast cancer may be heterozygous or homozygous with respect to the allele associated with a higher risk of breast cancer. A subject homozygous for an allele associated with an increased risk of breast cancer is at a comparatively high risk of breast cancer, a subject heterozygous for an allele associated with an increased risk of breast cancer is at a comparatively intermediate risk of breast cancer, and a subject homozygous for an allele associated with a decreased risk of breast cancer is at a comparatively low risk of breast cancer. A genotype may be assessed for a complementary strand, such that the complementary nucleotide at a particular position is detected.


Also featured are methods for determining risk of breast cancer and/or identifying a subject at risk of breast cancer by contacting a polypeptide or protein encoded by a KIAA0861 nucleotide sequence from a subject with an antibody that specifically binds to an epitope associated with increased risk of breast cancer in the polypeptide. In certain embodiments, the antibody specifically binds to an epitope that comprises a leucine at amino acid position 359 in SEQ ID NO: 5, a leucine at amino acid position 378 in SEQ ID NO: 5, or an alanine at amino acid position 857 in SEQ ID NO: 5.


Applications of Prognostic and Diagnostic Results to Pharmacogenomic Methods


Pharmacogenomics is a discipline that involves tailoring a treatment for a subject according to the subject's genotype. For example, based upon the outcome of a prognostic test described herein, a clinician or physician may target pertinent information and preventative or therapeutic treatments to a subject who would be benefited by the information or treatment and avoid directing such information and treatments to a subject who would not be benefited (e.g., the treatment has no therapeutic effect and/or the subject experiences adverse side effects). As therapeutic approaches for breast cancer continue to evolve and improve, the goal of treatments for breast cancer related disorders is to intervene even before clinical signs (e.g., identification of lump in the breast) first manifest. Thus, genetic markers associated with susceptibility to breast cancer prove useful for early diagnosis, prevention and treatment of breast cancer.


The following is an example of a pharmacogenomic embodiment. A particular treatment regimen can exert a differential effect depending upon the subject's genotype. Where a candidate therapeutic exhibits a significant interaction with a major allele and a comparatively weak interaction with a minor allele (e.g., an order of magnitude or greater difference in the interaction), such a therapeutic typically would not be administered to a subject genotyped as being homozygous for the minor allele, and sometimes not administered to a subject genotyped as being heterozygous for the minor allele. In another example, where a candidate therapeutic is not significantly toxic when administered to subjects who are homozygous for a major allele but is comparatively toxic when administered to subjects heterozygous or homozygous for a minor allele, the candidate therapeutic is not typically administered to subjects who are genotyped as being heterozygous or homozygous with respect to the minor allele.


The methods described herein are applicable to pharmacogenomic methods for detecting, preventing, alleviating and/or treating breast cancer. For example, a nucleic acid sample from an individual may be subjected to a genetic test described herein. Where one or more polymorphic variations associated with increased risk of breast cancer are identified in a subject, information for detecting, preventing or treating breast cancer and/or one or more breast cancer detection, prevention and/or treatment regimens then may be directed to and/or prescribed to that subject.


In certain embodiments, a detection, prevenative and/or treatment regimen is specifically prescribed and/or administered to individuals who will most benefit from it based upon their risk of developing breast cancer assessed by the methods described herein. Thus, provided are methods for identifying a subject at risk of breast cancer and then prescribing a detection, therapeutic or preventative regimen to individuals identified as being at risk of breast cancer. Thus, certain embodiments are directed to methods for treating breast cancer in a subject, reducing risk of breast cancer in a subject, or early detection of breast cancer in a subject, which comprise: detecting the presence or absence of a polymorphic variant associated with breast cancer in a nucleotide sequence set forth in SEQ ID NO: 1 in a nucleic acid sample from a subject, where the nucleotide sequence comprises a polynucleotide sequence selected from the group consisting of: (a) a nucleotide sequence set forth in SEQ ID NO: 1; (b) a nucleotide sequence which encodes a polypeptide having an amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1; (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1 or a nucleotide sequence about 90% or more identical to the nucleotide sequence set forth in SEQ ID NO: 1; and (d) a fragment of a nucleotide sequence of (a), (b), or (c), sometimes comprising a polymorphic site associated with breast cancer; and prescribing or administering a breast cancer treatment regimen, preventative regimen and/or detection regimen to a subject from whom the sample originated where the presence of one or more polymorphic variations associated with breast cancer are detected in the nucleotide sequence. In certain embodiments, one or more of the polymorphic variants described herein is detected. In these methods, genetic results may be utilized in combination with other test results to diagnose breast cancer as described above. Other test results include but are not limited to mammography results, imaging results, biopsy results and results from BRCA1 or BRAC2 test results, as described above.


Detection regimens include one or more mammography procedures, a regular mammography regimen (e.g., once a year, or once every six, four, three or two months); an early mammography regimen (e.g., mammography tests are performed beginning at age 25, 30, or 35); one or more biopsy procedures (e.g., a regular biopsy regimen beginning at age 40); breast biopsy and biopsy from other tissue; breast ultrasound and optionally ultrasound analysis of another tissue; breast magnetic resonance imaging (MRI) and optionally MRI analysis of another tissue; electrical impedance (T-scan) analysis of breast and optionally another tissue; ductal lavage; nuclear medicine analysis (e.g., scintimammography); BRCA1 and/or BRCA2 sequence analysis results; and/or thermal imaging of the breast and optionally another tissue.


Treatments sometimes are preventative (e.g., is prescribed or administered to reduce the probability that a breast cancer associated condition arises or progresses), sometimes are therapeutic, and sometimes delay, alleviate or halt the progression of breast cancer. Any known preventative or therapeutic treatment for alleviating or preventing the occurrence of breast cancer is prescribed and/or administered. For example, certain preventative treatments often are prescribed to subjects having a predisposition to breast cancer and where the subject is not diagnosed with breast cancer or is diagnosed as having symptoms indicative of early stage breast cancer (e.g., stage I). For subjects not diagnosed as having breast cancer, any preventative treatments known in the art can be prescribed and administered, which include selective hormone receptor modulators (e.g., selective estrogen receptor modulators (SERMs) such as tamoxifen, reloxifene, and toremifene); compositions that prevent production of hormones (e.g., aramotase inhibitors that prevent the production of estrogen in the adrenal gland, such as exemestane, letrozole, anastrozol, groserelin, and megestrol); other hormonal treatments (e.g., goserelin acetate and fulvestrant); biologic response modifiers such as antibodies (e.g., trastuzumab (herceptin/HER2)); anthracycline antibiotics (e.g., ellence/Pharmorubicin®); surgery (e.g., lumpectomy and mastectomy); drugs that delay or halt metastasis (e.g., pamidronate disodium); and alternative/complementary medicine (e.g., acupuncture, acupressure, moxibustion, qi gong, reiki, ayurveda, vitamins, minerals, and herbs (e.g., astragalus root, burdock root, garlic, green tea, and licorice root)).


The use of breast cancer treatments are well known in the art, and include surgery, chemotherapy and/or radiation therapy. Any of the treatments may be used in combination to treat or prevent breast cancer (e.g., surgery followed by radiation therapy or chemotherapy). Examples of chemotherapeutics are taxanes (e.g., docetaxel or paclitaxel), and examples of chemotherapy combinations used to treat breast cancer include: cyclophosphamide (Cytoxan), methotrexate (Amethopterin, Mexate, Folex), and fluorouracil (Fluorouracil, 5-Fu, Adrucil), which is referred to as CMF; cyclophosphamide, doxorubicin (Adriamycin), and fluorouracil, which is referred to as CAF; and doxorubicin (Adriamycin) and cyclophosphamide, which is referred to as AC.


As breast cancer preventative and treatment information can be specifically targeted to subjects in need thereof (e.g., those at risk of developing breast cancer or those that have early signs of breast cancer), provided herein is a method for preventing or reducing the risk of developing breast cancer in a subject, which comprises: (a) detecting the presence or absence of a polymorphic variation associated with breast cancer at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject; (b) identifying a subject with a predisposition to breast cancer, whereby the presence of the polymorphic variation is indicative of a predisposition to breast cancer in the subject; and (c) if such a predisposition is identified, providing the subject with information about methods or products to prevent or reduce breast cancer or to delay the onset of breast cancer. Also provided is a method of targeting information or advertising to a subpopulation of a human population based on the subpopulation being genetically predisposed to a disease or condition, which comprises: (a) detecting the presence or absence of a polymorphic variation associated with breast cancer at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject; (b) identifying the subpopulation of subjects in which the polymorphic variation is associated with breast cancer; and (c) providing information only to the subpopulation of subjects about a particular product which may be obtained and consumed or applied by the subject to help prevent or delay onset of the disease or condition.


Pharmacogenomics methods also may be used to analyze and predict a response to a breast cancer treatment or a drug. For example, if pharmacogenomics analysis indicates a likelihood that an individual will respond positively to a breast cancer treatment with a particular drug, the drug may be administered to the individual. Conversely, if the analysis indicates that an individual is likely to respond negatively to treatment with a particular drug, an alternative course of treatment may be prescribed. A negative response may be defined as either the absence of an efficacious response or the presence of toxic side effects. The response to a therapeutic treatment can be predicted in a background study in which subjects in any of the following populations are genotyped: a population that responds favorably to a treatment regimen, a population that does not respond significantly to a treatment regimen, and a population that responds adversely to a treatment regiment (e.g., exhibits one or more side effects). These populations are provided as examples and other populations and subpopulations may be analyzed. Based upon the results of these analyses, a subject is genotyped to predict whether he or she will respond favorably to a treatment regimen, not respond significantly to a treatment regimen, or respond adversely to a treatment regimen.


The methods described herein also are applicable to clinical drug trials. One or more polymorphic variants indicative of response to an agent for treating breast cancer or to side effects to an agent for treating breast cancer may be identified using the methods described herein. Thereafter, potential participants in clinical trials of such an agent may be screened to identify those individuals most likely to respond favorably to the drug and exclude those likely to experience side effects. In that way, the effectiveness of drug treatment may be measured in individuals who respond positively to the drug, without lowering the measurement as a result of the inclusion of individuals who are unlikely to respond positively in the study and without risking undesirable safety problems. In certain embodiments, the agent for treating breast cancer described herein targets KIAA0861 or a target in the KIAA0861 pathway (e.g., Rho GTPase).


Thus, another embodiment is a method of selecting an individual for inclusion in a clinical trial of a treatment or drug comprising the steps of: (a) obtaining a nucleic acid sample from an individual; (b) determining the identity of a polymorphic variation which is associated with a positive response to the treatment or the drug, or at least one polymorphic variation which is associated with a negative response to the treatment or the drug in the nucleic acid sample, and (c) including the individual in the clinical trial if the nucleic acid sample contains said polymorphic variation associated with a positive response to the treatment or the drug or if the nucleic acid sample lacks said polymorphic variation associated with a negative response to the treatment or the drug. In addition, the methods for selecting an individual for inclusion in a clinical trial of a treatment or drug encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination. The polymorphic variation may be in a sequence selected individually or in any combination from the group consisting of (i) a polynucleotide sequence set forth in SEQ ID NO: 1; (ii) a polynucleotide sequence that is 90% or more identical to a nucleotide sequence set forth in SEQ ID NO: 1; (iii) a polynucleotide sequence that encodes a polypeptide having an amino acid sequence identical to or 90% or more identical to an amino acid sequence encoded by a nucleotide sequence set forth in SEQ ID NO: 1; and (iv) a fragment of a polynucleotide sequence of (i), (ii), or (iii) comprising the polymorphic site. The including step (c) optionally comprises administering the drug or the treatment to the individual if the nucleic acid sample contains the polymorphic variation associated with a positive response to the treatment or the drug and the nucleic acid sample lacks said biallelic marker associated with a negative response to the treatment or the drug.


Also provided herein is a method of partnering between a diagnostic/prognostic testing provider and a provider of a consumable product, which comprises: (a) the diagnostic/prognostic testing provider detects the presence or absence of a polymorphic variation associated with breast cancer at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject; (b) the diagnostic/prognostic testing provider identifies the subpopulation of subjects in which the polymorphic variation is associated with breast cancer; (c) the diagnostic/prognostic testing provider forwards information to the subpopulation of subjects about a particular product which may be obtained and consumed or applied by the subject to help prevent or delay onset of the disease or condition; and (d) the provider of a consumable product forwards to the diagnostic test provider a fee every time the diagnostic/prognostic test provider forwards information to the subject as set forth in step (c) above.


Compositions Comprising Breast Cancer-Directed Molecules


Featured herein is a composition comprising a breast cancer cell and one or more molecules specifically directed and targeted to a nucleic acid comprising a KIAA0861 nucleotide sequence or a KIAA0861 polypeptide. Such directed molecules include, but are not limited to, a compound that binds to a KIAA0861 nucleic acid or a KIAA0861 polypeptide; a RNAi or siRNA molecule having a strand complementary to a KIAA0861 nucleotide sequence; an antisense nucleic acid complementary to an RNA encoded by a KIAA0861 DNA sequence; a ribozyme that hybridizes to a KIAA0861 nucleotide sequence; a nucleic acid aptamer that specifically binds a KIAA0861 polypeptide; and an antibody that specifically binds to a KIAA0861 polypeptide or binds to a KIAA0861 nucleic acid. In certain embodiments, the antibody specifically binds to an epitope that comprises a leucine at amino acid position 359 in SEQ ID NO: 5, a leucine at amino acid position 378 in SEQ ID NO: 5, or an alanine at amino acid position 857 in SEQ ID NO: 5. In specific embodiments, the breast cancer directed molecule interacts with a KIAA0861 nucleic acid or polypeptide variant associated with breast cancer. In other embodiments, the breast cancer directed molecule interacts with a polypeptide involved in the KIAA0861 signal pathway, or a nucleic acid encoding such a polypeptide. Polypeptides involved in the KIAA0861 signal pathway are discussed herein.


Compositions sometimes include an adjuvant known to stimulate an immune response, and in certain embodiments, an adjuvant that stimulates a T-cell lymphocyte response. Adjuvants are known, including but not limited to an aluminum adjuvant (e.g., aluminum hydroxide); a cytokine adjuvant or adjuvant that stimulates a cytokine response (e.g., interleukin (IL)-12 and/or γ-interferon cytokines); a Freund-type mineral oil adjuvant emulsion (e.g., Freund's complete or incomplete adjuvant); a synthetic lipoid compound; a copolymer adjuvant (e.g., TitreMax); a saponin; Quil A; a liposome; an oil-in-water emulsion (e.g., an emulsion stabilized by Tween 80 and pluronic polyoxyethlene/polyoxypropylene block copolymer (Syntex Adjuvant Formulation); TitreMax; detoxified endotoxin (MPL) and mycobacterial cell wall components (TDW, CWS) in 2% squalene (Ribi Adjuvant System)); a muramyl dipeptide; an immune-stimulating complex (ISCOM, e.g., an Ag-modified saponin/cholesterol micelle that forms stable cage-like structure); an aqueous phase adjuvant that does not have a depot effect (e.g., Gerbu adjuvant); a carbohydrate polymer (e.g., AdjuPrime); L-tyrosine; a manide-oleate compound (e.g., Montanide); an ethylene-vinyl acetate copolymer (e.g., Elvax 40W1,2); or lipid A, for example. Such compositions are useful for generating an immune response against a breast cancer directed molecule (e.g., an HLA-binding subsequence within a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1). In such methods, a peptide having an amino acid subsequence of a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1 is delivered to a subject, where the subsequence binds to an HLA molecule and induces a CTL lymphocyte response. The peptide sometimes is delivered to the subject as an isolated peptide or as a minigene in a plasmid that encodes the peptide. Methods for identifying HLA-binding subsequences in such polypeptides are known (see e.g., publication WO02/20616 and PCT application US98/01373 for methods of identifying such sequences).


The breast cancer cell may be in a group of breast cancer cells and/or other types of cells cultured in vitro or in a tissue having breast cancer cells (e.g., a melanocytic lesion) maintained in vitro or present in an animal in vivo (e.g., a rat, mouse, ape or human). In certain embodiments, a composition comprises a component from a breast cancer cell or from a subject having a breast cancer cell instead of the breast cancer cell or in addition to the breast cancer cell, where the component sometimes is a nucleic acid molecule (e.g., genomic DNA), a protein mixture or isolated protein, for example. The aforementioned compositions have utility in diagnostic, prognostic and pharmacogenomic methods described previously and in breast cancer therapeutics described hereafter. Certain breast cancer molecules are described in greater detail below.


Compounds


Compounds can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive (see, e.g., Zuckermann et al, J. Med. Chem. 37: 2678-85 (1994)); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; “one-bead one-compound” library methods; and synthetic library methods using affinity chromatography selection. Biological library and peptoid library approaches are typically limited to peptide libraries, while the other approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam, Anticancer Drug Des. 12: 145, (1997)). Examples of methods for synthesizing molecular libraries are described, for example, in DeWitt et al., Proc. Natl. Acad. Sci. U.S.A. 90: 6909 (1993); Erb et al, Proc. Natl. Acad. Sci. USA 91: 11422 (1994); Zuckermann et al., J. Med. Chem. 37: 2678 (1994); Cho et al., Science 261: 1303 (1993); Carrell et al., Angew. Chem. Int. Ed. Engl. 33: 2059 (1994); Carell et al., Angew. Chem. Int. Ed. Engl. 33: 2061 (1994); and in Gallop et al., J. Med. Chem. 37: 1233 (1994).


Libraries of compounds may be presented in solution (e.g., Houghten, Biotechniques 13: 412-421 (1992)), or on beads (Lam, Nature 354: 82-84 (1991)), chips (Fodor, Nature 364: 555-556 (1993)), bacteria or spores (Ladner, U.S. Pat. No. 5,223,409), plasmids (Cull et al., Proc. Natl. Acad. Sci. USA 89: 1865-1869 (1992)) or on phage (Scott and Smith, Science 249: 386-390 (1990); Devlin, Science 249: 404-406 (1990); Cwirla et al., Proc. Natl. Acad. Sci. 87: 6378-6382 (1990); Felici, J. Mol. Biol. 222: 301-310 (1991); Ladner supra.).


A compound sometimes alters expression and sometimes alters activity of a KIAA0861 polypeptide and may be a small molecule. Small molecules include, but are not limited to, peptides, peptidomimetics (e.g., peptoids), amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.


Antisense Nucleic Acid Molecules, Ribozymes, RNAi, siRNA and Modified Nucleic Acid Molecules


An “antisense” nucleic acid refers to a nucleotide sequence complementary to a “sense” nucleic acid encoding a polypeptide, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. The antisense nucleic acid can be complementary to an entire coding strand in SEQ ID NO: 1, 2 or 3, or to a portion thereof or a substantially identical sequence thereof. In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence in SEQ ID NO: 1 (e.g., 5′ and 3′ untranslated regions).


An antisense nucleic acid can be designed such that it is complementary to the entire coding region of an mRNA encoded by a nucleotide sequence in SEQ ID NO: 1 (e.g., SEQ ID NO: 2 or 3), and often the antisense nucleic acid is an oligonucleotide antisense to only a portion of a coding or noncoding region of the mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of the mRNA, e.g., between the −10 and +10 regions of the target gene nucleotide sequence of interest. An antisense oligonucleotide can be, for example, about 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or more nucleotides in length. The antisense nucleic acids, which include the ribozymes described hereafter, can be designed to target a nucleotide sequence in SEQ ID NO: 1, often a variant associated with breast cancer, or a substantially identical sequence thereof. Among the variants, minor alleles and major alleles can be targeted, and those associated with a higher risk of breast cancer are often designed, tested, and administered to subjects.


An antisense nucleic acid can be constructed using chemical synthesis and enzymatic ligation reactions using standard procedures. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Antisense nucleic acid also can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).


When utilized as therapeutics, antisense nucleic acids typically are administered to a subject (e.g., by direct injection at a tissue site) or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a polypeptide and thereby inhibit expression of the polypeptide, for example, by inhibiting transcription and/or translation. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then are administered systemically. For systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, for example, by linking antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. Antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. Sufficient intracellular concentrations of antisense molecules are achieved by incorporating a strong promoter, such as a pol II or pol III promoter, in the vector construct.


Antisense nucleic acid molecules sometimes are alpha-anomeric nucleic acid molecules. An alpha-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual beta-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids. Res. 15: 6625-6641 (1987)). Antisense nucleic acid molecules can also comprise a 2′-o-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15: 6131-6148 (1987)) or a chimeric RNA-DNA analogue (Inoue et al., FEBS Lett. 215: 327-330 (1987)). Antisense nucleic acids sometimes are composed of DNA or PNA or any other nucleic acid derivatives described previously.


In another embodiment, an antisense nucleic acid is a ribozyme. A ribozyme having specificity for a KIAA0861 nucleotide sequence can include one or more sequences complementary to such a nucleotide sequence, and a sequence having a known catalytic region responsible for mRNA cleavage (see e.g., U.S. Pat. No. 5,093,246 or Haselhoff and Gerlach, Nature 334: 585-591 (1988)). For example, a derivative of a Tetrahymena L-19 IVS RNA is sometimes utilized in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a mRNA (see e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742). Also, target mRNA sequences can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (see e.g., Bartel & Szostak, Science 261: 1411-1418 (1993)).


Breast cancer directed molecules include in certain embodiments nucleic acids that can form triple helix structures with a KIAA0861 nucleotide sequence or a substantially identical sequence thereof, especially one that includes a regulatory region that controls expression of a polypeptide. Gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of a KIAA0861 nucleotide sequence or a substantially identical sequence (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of a gene in target cells (see e.g., Helene, Anticancer Drug Des. 6(6): 569-84 (1991); Helene et al., Ann. N.Y. Acad. Sci. 660: 27-36 (1992); and Maher, Bioassays 14(12): 807-15 (1992). Potential sequences that can be targeted for triple helix formation can be increased by creating a so-called “switchback” nucleic acid molecule. Switchback molecules are synthesized in an alternating 5′-3′,3′-5′ manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.


Breast cancer directed molecules include RNAi and siRNA nucleic acids. Gene expression may be inhibited by the introduction of double-stranded RNA (dsRNA), which induces potent and specific gene silencing, a phenomenon called RNA interference or RNAi. See, e.g., Fire et al., U.S. Pat. No. 6,506,559; Tuschl et al. PCT International Publication No. WO 01/75164; Kay et al. PCT International Publication No. WO 03/010180A1; or Bosher J M, Labouesse, Nat Cell Biol 2000 February; 2(2):E31-6. This process has been improved by decreasing the size of the double-stranded RNA to 20-24 base pairs (to create small-interfering RNAs or siRNAs) that “switched off” genes in mammalian cells without initiating an acute phase response, i.e., a host defense mechanism that often results in cell death (see, e.g., Caplen et al. Proc Natl Acad Sci USA. 2001 Aug. 14; 98(17):9742-7 and Elbashir et al. Methods 2002 February; 26(2):199-213). There is increasing evidence of post-transcriptional gene silencing by RNA interference (RNAi) for inhibiting targeted expression in mammalian cells at the mRNA level, in human cells. There is additional evidence of effective methods for inhibiting the proliferation and migration of tumor cells in human patients, and for inhibiting metastatic cancer development (see, e.g., U.S. Patent Application No. US2001000993183; Caplen et al. Proc Natl Acad Sci USA; and Abderrahmani et al. Mol Cell Biol 2001 Nov. 21 (21):7256-67).


An “siRNA” or “RNAi” refers to a nucleic acid that forms a double stranded RNA and has the ability to reduce or inhibit expression of a gene or target gene when the siRNA is delivered to or expressed in the same cell as the gene or target gene. “siRNA” refers to short double-stranded RNA formed by the complementary strands. Complementary portions of the siRNA that hybridize to form the double stranded molecule often have substantial or complete identity to the target molecule sequence. In one embodiment, an siRNA refers to a nucleic acid that has substantial or complete identity to a target gene and forms a double stranded siRNA.


When designing the siRNA molecules, the targeted region often is selected from a given DNA sequence beginning 50 to 100 nucleotides downstream of the start codon. See, e.g., Elbashir et al., Methods 26:199-213 (2002). Initially, 5′ or 3′ UTRs and regions nearby the start codon were avoided assuming that UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP or RISC endonuclease complex. Sometimes regions of the target 23 nucleotides in length conforming to the sequence motif AA(N19)TT (SEQ ID NO: 6) (N, an nucleotide), and regions with approximately 30% to 70% G/C-content (often about 50% G/C-content) often are selected. If no suitable sequences are found, the search often is extended using the motif NA(N21). The sequence of the sense siRNA sometimes corresponds to (N19) TT or N21 (position 3 to 23 of the 23-nt motif), respectively. In the latter case, the 3′ end of the sense siRNA often is converted to TT. The rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3′ overhangs. The antisense siRNA is synthesized as the complement to position 1 to 21 of the 23-nt motif. Because position 1 of the 23-nt motif is not recognized sequence-specifically by the antisense siRNA, the 3′-most nucleotide residue of the antisense siRNA can be chosen deliberately. However, the penultimate nucleotide of the antisense siRNA (complementary to position 2 of the 23-nt motif) often is complementary to the targeted sequence. For simplifying chemical synthesis, TT often is utilized. siRNAs corresponding to the target motif NAR(N17)YNN, where R is purine (A,G) and Y is pyrimidine (C,U), often are selected. Respective 21 nucleotide sense and antisense siRNAs often begin with a purine nucleotide and can also be expressed from pol III expression vectors without a change in targeting site. Expression of RNAs from pol III promoters often is efficient when the first transcribed nucleotide is a purine.


The sequence of the siRNA can correspond to the full length target gene, or a subsequence thereof. Often, the siRNA is about 15 to about 50 nucleotides in length (e.g., each complementary sequence of the double stranded siRNA is 15-50 nucleotides in length, and the double stranded siRNA is about 15-50 base pairs in length, sometimes about 20-30 nucleotides in length or about 20-25 nucleotides in length, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. The siRNA sometimes is about 21 nucleotides in length. Methods of using siRNA are well known in the art, and specific siRNA molecules may be purchased from a number of companies including Dharmacon Research, Inc.


Antisense, ribozyme, RNAi and siRNA nucleic acids can be altered to form modified nucleic acid molecules. The nucleic acids can be altered at base moieties, sugar moieties or phosphate backbone moieties to improve stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of nucleic acid molecules can be modified to generate peptide nucleic acids (see Hyrup et al., Bioorganic & Medicinal Chemistry 4 (1): 5-23 (1996)). As used herein, the terms “peptide nucleic acid” or “PNA” refers to a nucleic acid mimic such as a DNA mimic, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of a PNA can allow for specific hybridization to DNA and RNA under conditions of low ionic strength. Synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described, for example, in Hyrup et al, (1996) supra and Perry-O'Keefe et al, Proc. Natl. Acad. Sci. 93: 14670-675 (1996).


PNA nucleic acids can be used in prognostic, diagnostic, and therapeutic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, for example, inducing transcription or translation arrest or inhibiting replication. PNA nucleic acid molecules can also be used in the analysis of single base pair mutations in a gene, (e.g., by PNA-directed PCR clamping); as “artificial restriction enzymes” when used in combination with other enzymes, (e.g., S1 nucleases (Hyrup (1996) supra)); or as probes or primers for DNA sequencing or hybridization (Hyrup et al, (1996) supra; Perry-O'Keefe supra).


In other embodiments, oligonucleotides may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across cell membranes (see e.g., Letsinger et al., Proc. Natl. Acad. Sci. USA 86: 6553-6556 (1989); Lemaitre et al., Proc. Natl. Acad. Sci. USA 84: 648-652 (1987); PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (See, e.g., Krol et al., Bio-Techniques 6: 958-976 (1988)) or intercalating agents. (See, e.g., Zon, Pharm. Res. 5: 539-549 (1988)). To this end, the oligonucleotide may be conjugated to another molecule, (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent).


Also included herein are molecular beacon oligonucleotide primer and probe molecules having one or more regions complementary to a nucleotide sequence of SEQ ID NO: 1, 2, or 3 or a substantially identical sequence thereof, two complementary regions one having a fluorophore and one a quencher such that the molecular beacon is useful for quantifying the presence of the nucleic acid in a sample. Molecular beacon nucleic acids are described, for example, in Lizardi et al., U.S. Pat. No. 5,854,033; Nazarenko et al., U.S. Pat. No. 5,866,336, and Livak et al., U.S. Pat. No. 5,876,930.


Antibodies


The term “antibody” as used herein refers to an immunoglobulin molecule or immunologically active portion thereof, i.e., an antigen-binding portion. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab′)2 fragments which can be generated by treating the antibody with an enzyme such as pepsin. An antibody sometimes is a polyclonal, monoclonal, recombinant (e.g., a chimeric or humanized), fully human, non-human (e.g., murine), or a single chain antibody. An antibody may have effector function and can fix complement, and is sometimes coupled to a toxin or imaging agent.


A full-length polypeptide or antigenic peptide fragment encoded by a KIAA0861 nucleotide sequence can be used as an immunogen or can be used to identify antibodies made with other immunogens, e.g., cells, membrane preparations, and the like. An antigenic peptide often includes at least 8 amino acid residues of the amino acid sequences encoded by a nucleotide sequence of SEQ ID NO: 1, 2 or 3, or substantially identical sequence thereof, and encompasses an epitope. Antigenic peptides sometimes include 10 or more amino acids, 15 or more amino acids, 20 or more amino acids, or 30 or more amino acids. Hydrophilic and hydrophobic fragments of polypeptides sometimes are used as immunogens.


Epitopes encompassed by the antigenic peptide are regions located on the surface of the polypeptide (e.g., hydrophilic regions) as well as regions with high antigenicity. For example, an Emini surface probability analysis of the human polypeptide sequence can be used to indicate the regions that have a particularly high probability of being localized to the surface of the polypeptide and are thus likely to constitute surface residues useful for targeting antibody production. The antibody may bind an epitope on any domain or region on polypeptides described herein.


Also, chimeric, humanized, and completely human antibodies are useful for applications which include repeated administration to subjects. Chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, can be made using standard recombinant DNA techniques. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in Robinson et al International Application No. PCT/US86/02269; Akira, et al European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al European Patent Application 173,494; Neuberger et al PCT International Publication No. WO 86/01533; Cabilly et al U.S. Pat. No. 4,816,567; Cabilly et al European Patent Application 125,023; Better et al, Science 240: 1041-1043 (1988); Liu et al., Proc. Natl. Acad. Sci. USA 84: 3439-3443 (1987); Liu et al., J. Immunol. 139: 3521-3526 (1987); Sun et al., Proc. Natl. Acad. Sci. USA 84: 214-218 (1987); Nishimura et al., Canc. Res. 47: 999-1005 (1987); Wood et al., Nature 314: 446-449 (1985); and Shaw et al., J. Natl. Cancer Inst. 80: 1553-1559 (1988); Morrison, S. L., Science 229: 1202-1207 (1985); Oi et al., BioTechniques 4: 214 (1986); Winter U.S. Pat. No. 5,225,539; Jones et al., Nature 321: 552-525 (1986); Verhoeyan et al., Science 239: 1534; and Beidler et al., J. Immunol. 141: 4053-4060 (1988).


Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Such antibodies can be produced using transgenic mice that are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. See, for example, Lonberg and Huszar, Int. Rev. Immunol. 13: 65-93 (1995); and U.S. Pat. Nos. 5,625,126; 5,633,425; 5,569,825; 5,661,016; and 5,545,806. In addition, companies such as Abgenix, Inc. (Fremont, Calif.) and Medarex, Inc. (Princeton, N.J.), can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above. Completely human antibodies that recognize a selected epitope also can be generated using a technique referred to as “guided selection.” In this approach a selected non-human monoclonal antibody (e.g., a murine antibody) is used to guide the selection of a completely human antibody recognizing the same epitope. This technology is described for example by Jespers et al., Bio/Technology 12: 899-903 (1994).


Antibody can be a single chain antibody. A single chain antibody (scFV) can be engineered (see, e.g., Colcher et al., Ann. N Y Acad. Sci. 880: 263-80 (1999); and Reiter, Clin. Cancer Res. 2: 245-52 (1996)). Single chain antibodies can be dimerized or multimerized to generate multivalent antibodies having specificities for different epitopes of the same target polypeptide.


Antibodies also may be selected or modified so that they exhibit reduced or no ability to bind an Fc receptor. For example, an antibody may be an isotype or subtype, fragment or other mutant, which does not support binding to an Fc receptor (e.g., it has a mutagenized or deleted Fc receptor binding region).


Also, an antibody (or fragment thereof) may be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive metal ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thiotepa chlorambucil, melphalan, carmustine (BCNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).


Antibody conjugates can be used for modifying a given biological response. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a polypeptide such as tumor necrosis factor, γ-interferon, α-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors. Also, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Pat. No. 4,676,980, for example.


An antibody (e.g., monoclonal antibody) can be used to isolate target polypeptides by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, an antibody can be used to detect a target polypeptide (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the polypeptide. Antibodies can be used diagnostically to monitor polypeptide levels in tissue as part of a clinical testing procedure, e.g., to determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance (i.e., antibody labeling). Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H. Also, an antibody can be utilized as a test molecule for determining whether it can treat breast cancer, and as a therapeutic for administration to a subject for treating breast cancer.


An antibody can be made by immunizing with a purified antigen, or a fragment thereof, e.g., a fragment described herein, a membrane associated antigen, tissues, e.g., crude tissue preparations, whole cells, preferably living cells, lysed cells, or cell fractions.


Included herein are antibodies which bind only a native polypeptide, only denatured or otherwise non-native polypeptide, or which bind both, as well as those having linear or conformational epitopes. Conformational epitopes sometimes can be identified by selecting antibodies that bind to native but not denatured polypeptide. Also featured are antibodies that specifically bind to a polypeptide variant associated with breast cancer.


Screening Assays


Featured herein are methods for identifying a candidate therapeutic for treating breast cancer. The methods comprise contacting a test molecule with a target molecule in a system. A “target molecule” as used herein refers to a nucleic acid of SEQ ID NO: 1, 2 or 3, a substantially identical nucleic acid thereof, or a fragment thereof, and an encoded polypeptide of the foregoing. The method also comprises determining the presence or absence of an interaction between the test molecule and the target molecule, where the presence of an interaction between the test molecule and the nucleic acid or polypeptide identifies the test molecule as a candidate breast cancer therapeutic. The interaction between the test molecule and the target molecule may be quantified.


Test molecules and candidate therapeutics include, but are not limited to, compounds, antisense nucleic acids, siRNA molecules, ribozymes, polypeptides or proteins encoded by a KIAA0861 nucleic acids, or a substantially identical sequence or fragment thereof, and immunotherapeutics (e.g., antibodies and HLA-presented polypeptide fragments). A test molecule or candidate therapeutic may act as a modulator of target molecule concentration or target molecule function in a system. A “modulator” may agonize (i.e., up-regulates) or antagonize (i.e., down-regulates) a target molecule concentration partially or completely in a system by affecting such cellular functions as DNA replication and/or DNA processing (e.g., DNA methylation or DNA repair), RNA transcription and/or RNA processing (e.g., removal of intronic sequences and/or translocation of spliced mRNA from the nucleus), polypeptide production (e.g., translation of the polypeptide from mRNA), and/or polypeptide post-translational modification (e.g., glycosylation, phosphorylation, and proteolysis of pro-polypeptides). A modulator may also agonize or antagonize a biological function of a target molecule partially or completely, where the function may include adopting a certain structural conformation, interacting with one or more binding partners, ligand binding, catalysis (e.g., phosphorylation, dephosphorylation, hydrolysis, methylation, and isomerization), and an effect upon a cellular event (e.g., effecting progression of breast cancer).


As used herein, the term “system” refers to a cell free in vitro environment and a cell-based environment such as a collection of cells, a tissue, an organ, or an organism. A system is “contacted” with a test molecule in a variety of manners, including adding molecules in solution and allowing them to interact with one another by diffusion, cell injection, and any administration routes in an animal. As used herein, the term “interaction” refers to an effect of a test molecule on test molecule, where the effect sometimes is binding between the test molecule and the target molecule, and sometimes is an observable change in cells, tissue, or organism.


There are many standard methods for detecting the presence or absence of an interaction between a test molecule and a target molecule. For example, titrametric, acidimetric, radiometric, NMR, monolayer, polarographic, spectrophotometric, fluorescent, and ESR assays probative of a target molecule interaction may be utilized.


KIAA0861 activity and/or KIAA0861 interactions can be detected and quantified using assays known in the art. For example, an immunoprecipitation assay or a kinase activity assay that employs a kinase-inactivated MEK can be utilized. Kinase inactivated MEKs are known in the art, such as a MEK that includes the mutation K97M. In these assays, mammalian cells (e.g., COS or NIH-3T3) are transiently transfected with constructs expressing KIAA0861, and in addition, the cells are co-transfected with oncogenic RAS or SRC or both. Oncogenic RAS or SRC activates KIAA0861 kinase activity. KIAA0861 is immunoprecipitated from cell extracts using a monoclonal antibody (e.g., 9E10) or a polyclonal antibody (e.g., from rabbit) specific for a unique peptide from KIAA0861. KIAA0861 is then resuspended in assay buffer containing GST-Mekl or GST-Mek2 and/or GST-ERK2. In addition, [γ32P] ATP can be added to detect and/or quantify phosphorylation activity. Samples are incubated for 5-30 minutes at 30° C., and then the reaction is terminated by addition of EDTA. The samples are centrifuged and the supernatant fractions are collected. Phosphorylation activity is detected using one of two methods: (i) activity of GST-ERK2 kinase can be measured using MBP (myelin basic protein, a substrate for ERK) as substrate, or (ii) following incubation of immunoprecipitated KIAA0861 in reaction buffer containing GST-ERK and [γ32P] ATP, transfer of labeled ATP to kinase-dead ERK can be quantified by a phosphor-imager or densitometer following PAGE separation of polypeptide products (phosphorylated and non-phosphorylated forms). These types of assays are described in Weber et al., Oncogene 19: 169-176 (2000); Mason et al., EMBO J. 18: 2137-2148 (1999); Marais et al., J. Biol. Chem. 272: 4378-4383 (1997); Marais et al., EMBO J. 14: 3136-3145 (1995).


Screening assays also are performed to identify molecules that regulate the interaction between a GEF, such as KIAA0861, and a GTPase. Such molecules can be identified using an assay for a GEF activity, such as guanine nucleotide exchange activity, binding to a guanine nucleotide-depleted site of a GTPase, or oncogenic transforming activity, or a TGPase activity such as GTP hydrolysis. In general, a compound having such an in vitro activity will be useful in vivo to modulate a biological pathway associated with a GTPase (e.g., to treat a pathological condition associated with the biological and cellular activities mentioned above). By way of illustration, the ways in which GEF regulators can be identified are described above and below in terms of Rho and KIAA0861. However, it is to be understood that such methods can be applied generally to other GEFs.


A guanine nucleotide exchange assay, e.g., as described in Hart et al., Nature, 354:311-314, 28 Nov. 1991, can be used to assay for the ability of a compound to regulate the interaction between Rho and KIAA0861. For example, Rho protein (recombinant, recombinant fusion protein, or isolated from natural sources) is labeled with tritiated-GDP. The tritiated-GDP-labeled Rho is then incubated with KIAA0861 and GTP under conditions in which nucleotide exchange occurs. The amount of tritiated-GDP that is retained by Rho is determined by separating bound GDP from free GDP, e.g., using a BA85 filter. The ability of a compound to regulate the interaction can be determined by adding the compound at a desired time to the incubation (e.g., before addition of KIAA0861, after addition of KIAA0861) and determining its effect on nucleotide exchange. Various agonist and antagonists of the interaction can be identified in this manner.


Binding to a guanine nucleotide-depleted site of Rho can be determined in various ways, e.g., as described in Hart et al., J. Biol. Chem. 269:62-65, 1994. Briefly, a Rho protein can be coupled to a solid support using various methods that one skilled in the art would know, e.g., using an antibody to Rho, a fusion protein between Rho and a marker protein, such as glutathione protein (GST), wherein the fusion is coupled to a solid support via the marker protein (such as glutathionine beads when GST is used), and the like. The Rho protein is converted to a guanine nucleotide depleted state (for effective conditions, see, e.g., Hart et al., J. Biol. Chem., 269:62-65, 1994) and incubated with, e.g., GDP, GTP γS, and GEF such as KIAA0861. The solid support is then separated and any protein on it run on a gel. A compound can be added at any time during the incubation (as described above) to determine its effect on the binding of GEF to Rho.


Modulation of oncogenic transforming activity by a KIAA0861, or derivatives thereof can be measured according to various known procedures, e.g., Eva and Aaronson, Nature, 316:273-275, 1985; Hart et al., J. Biol. Chem., 269:62-65, 1994. A compound can be added at any time during the method (e.g., pretreatment of cells; after addition of GEF, and the like) to determine its effect on the oncogenic transforming activity of KIAA0861. Various cell lines also can be used.


Other assays for Rho-mediated signal transduction can be accomplished according in analogy to procedures known in the art, e.g., as described in U.S. Pat. Nos. 5,141,851; 5,420,334; 5,436,128; and 5,482,954; WO94/16069; WO93/16179; WO91/15582; WO90/00607. In addition, peptides which inhibit the interaction, e.g., binding between KIAA0861 and a G-protein, such as RhoA, can be identified and prepared according to EP 496 162.


Included herein are methods of testing for and identifying an agent which modulates the guanine nucleotide exchange activity of a guanine nucleotide exchange factor, or a biologically-active fragment thereof, or which modulates the binding between a GEF, or a biologically-active fragment thereof, and a GTPase, or a biologically-active fragment thereof, to which it binds. The method comprises contacting the GEF and GTPase with an agent to be tested and then detecting the presence or amount of binding between the GEF and GTPase, or an activity of the GEF such as guanine nucleotide exchange activity. As discussed herein “modulating” refers to an agent that affects the activity or binding of a GEF such as KIAA0861. The binding or activity modulation can be affected in various ways, including inhibiting, blocking, preventing, increasing, enhancing, or promoting it. The binding or activity affected does not have to be achieved in a specific way, e.g., it can be competitive, noncompetitive, allosteric, sterically hindered, via cross-linking between the agent and the GEF or GTPase, or the like. The agent can act on either the GEF or GTPase. The agent can be an agonist, an antagonist, or a partial agonist or antagonist. The presence or amount of binding can be determined in various ways, e.g., directly or indirectly by assaying for an activity promoted or inhibited by the GEF, such as guanine nucleotide exchange, GTP hydrolysis, oncogenic transformation, and the like. Such assays are described above and below, and are also known in the art. The agent can be obtained and/or prepared from a variety of sources, including natural and synthetic. It can comprise, e.g., amino acids, lipids, carbohydrates, organic molecules, nucleic acids, inorganic molecules, or mixtures thereof. See, e.g., Hoeprich, Nature Biotechnology, 14:1311-1312, 1996, which describes an example of automated synthesis of organic molecules. The agent can be added simultaneously or sequentially. For example, the agent can be added to the GEF and then the resultant mixture can be further combined with the GTPase. The method can be carried out in liquid on isolated components, on a matrix (e.g., filter paper, nitrocellulose, agarose), in cells, on tissue sections, and the like. In accordance with the method, a GEF can bind to the GTPase, which binding will modulate some GTPase activity. For example, as discussed above and below, a KIAA0861 binds to Rho, causing guanine nucleotide dissociation. The effect can be directly on the binding site between the GEF and GTPase, or it can be allosteric, or it can be on only one component (e.g., on the GEF only) Assays for guanine nucleotide dissociation can be readily adapted to identify agents which regulate the activity of a GTPase. The method further relates to obtaining or producing agents which have been identified according to the above-described method. The present invention also relates to products identified in accordance with such methods. Various GEFs and GTPases can be employed, including KIAA0861, mSOS, SO, C3G, lsc, Dbl, Dbl-related proteins, polypeptides comprising one or more DH domains, CDC24, Tiam, Ost, Lbc, Vav, Ect2, Bcr, Abr, Rho (A, B, and C), Rac, Ras, CDC42, chimeras thereof, biologically-active fragments thereof, muteins thereof, and the like.


In general, an interaction can be determined by labeling the test molecule and/or the KIAA0861 molecule, where the label is covalently or non-covalently attached to the test molecule or KIAA0861 molecule. The label is sometimes a radioactive molecule such as 125I, 131I, 35S or 3H, which can be detected by direct counting of radioemission or by scintillation counting. Also, enzymatic labels such as horseradish peroxidase, alkaline phosphatase, or luciferase may be utilized where the enzymatic label can be detected by determining conversion of an appropriate substrate to product. Also, presence or absence of an interaction can be determined without labeling. For example, a microphysiometer (e.g., Cytosensor) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indication of an interaction between a test molecule and KIAA0861 (McConnell, H. M. et al., Science 257: 1906-1912 (1992)).


In cell-based systems, cells typically include a KIAA0861 nucleic acid or polypeptide or variants thereof and are often of mammalian origin, although the cell can be of any origin. Whole cells, cell homogenates, and cell fractions (e.g., cell membrane fractions) can be subjected to analysis. Where interactions between a test molecule with a KIAA0861 polypeptide or variant thereof are monitored, soluble and/or membrane bound forms of the polypeptide or variant may be utilized. Where membrane-bound forms of the polypeptide are used, it may be desirable to utilize a solubilizing agent. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)n, 3-[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylamminio]-2-hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate.


An interaction between two molecules also can be detected by monitoring fluorescence energy transfer (FET) (see, for example, Lakowicz et al., U.S. Pat. No. 5,631,169; Stavrianopoulos et al. U.S. Pat. No. 4,868,103). A fluorophore label on a first, “donor” molecule is selected such that its emitted fluorescent energy will be absorbed by a fluorescent label on a second, “acceptor” molecule, which in turn is able to fluoresce due to the absorbed energy. Alternately, the “donor” polypeptide molecule may simply utilize the natural fluorescent energy of tryptophan residues. Labels are chosen that emit different wavelengths of light, such that the “acceptor” molecule label may be differentiated from that of the “donor”. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, the spatial relationship between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the “acceptor” molecule label in the assay should be maximal. An FET binding event can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter).


In another embodiment, determining the presence or absence of an interaction between a test molecule and a KIAA0861 molecule can be effected by using real-time Biomolecular Interaction Analysis (BIA) (see, e.g., Sjolander & Urbaniczk, Anal. Chem. 63: 2338-2345 (1991) and Szabo et al., Curr. Opin. Struct. Biol. 5: 699-705 (1995)). “Surface plasmon resonance” or “BIA” detects biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the mass at the binding surface (indicative of a binding event) result in alterations of the refractive index of light near the surface (the optical phenomenon of surface plasmon resonance (SPR)), resulting in a detectable signal which can be used as an indication of real-time reactions between biological molecules.


In another embodiment, the KIAA0861 molecule or test molecules are anchored to a solid phase. The KIAA0861 molecule/test molecule complexes anchored to the solid phase can be detected at the end of the reaction. The target KIAA0861 molecule is often anchored to a solid surface, and the test molecule, which is not anchored, can be labeled, either directly or indirectly, with detectable labels discussed herein.


It may be desirable to immobilize a KIAA0861 molecule, an anti-KIAA0861 antibody, or test molecules to facilitate separation of complexed from uncomplexed forms of KIAA0861 molecules and test molecules, as well as to accommodate automation of the assay. Binding of a test molecule to a KIAA0861 molecule can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion polypeptide can be provided which adds a domain that allows a KIAA0861 molecule to be bound to a matrix. For example, glutathione-S-transferase/KIAA0861 fusion polypeptides or glutathione-S-transferase/target fusion polypeptides can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivitized microtiter plates, which are then combined with the test compound or the test compound and either the non-adsorbed target polypeptide or KIAA0861 polypeptide, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of KIAA0861 binding or activity determined using standard techniques.


Other techniques for immobilizing a KIAA0861 molecule on matrices include using biotin and streptavidin. For example, biotinylated KIAA0861 polypeptide or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).


In order to conduct the assay, the non-immobilized component is added to the coated surface containing the anchored component. After the reaction is complete, unreacted components are removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the previously non-immobilized component is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the previously non-immobilized component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the immobilized component (the antibody, in turn, can be directly labeled or indirectly labeled with, e.g., a labeled anti-Ig antibody).


In one embodiment, this assay is performed utilizing antibodies reactive with KIAA0861 polypeptide or test molecules but which do not interfere with binding of the KIAA0861 polypeptide to its test molecule. Such antibodies can be derivitized to the wells of the plate, and unbound target or KIAA0861 polypeptide trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the KIAA0861 polypeptide or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the KIAA0861 polypeptide or test molecule.


Alternatively, cell free assays can be conducted in a liquid phase. In such an assay, the reaction products are separated from unreacted components, by any of a number of standard techniques, including but not limited to: differential centrifugation (see, for example, Rivas, G., and Minton, A. P., Trends Biochem Sci August; 18(8): 284-7 (1993)); chromatography (gel filtration chromatography, ion-exchange chromatography); electrophoresis (see, e.g., Ausubel et al, eds. Current Protocols in Molecular Biology, J. Wiley: New York (1999)); and immunoprecipitation (see, for example, Ausubel, F. et al., eds. Current Protocols in Molecular Biology, J. Wiley: New York (1999)). Such resins and chromatographic techniques are known to one skilled in the art (see, e.g., Heegaard, J. Mol. Recognit. Winter; 11(1-6): 141-8 (1998); Hage & Tweed, J. Chromatogr. B Biomed. Sci. Appl. October 10; 699 (1-2): 499-525 (1997)). Further, fluorescence energy transfer may also be conveniently utilized, as described herein, to detect binding without further purification of the complex from solution.


In another embodiment, modulators of KIAA0861 expression are identified. For example, a cell or cell free mixture is contacted with a candidate compound and the expression of KIAA0861 mRNA or polypeptide evaluated relative to the level of expression of KIAA0861 mRNA or polypeptide in the absence of the candidate compound. When expression of KIAA0861 mRNA or polypeptide is greater in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of KIAA0861 mRNA or polypeptide expression. Alternatively, when expression of KIAA0861 mRNA or polypeptide is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of KIAA0861 mRNA or polypeptide expression. The level of KIAA0861 mRNA or polypeptide expression can be determined by methods described herein for detecting KIAA0861 mRNA or polypeptide.


In another embodiment, binding partners that interact with a KIAA0861 molecule are detected. The KIAA0861 molecules can interact with one or more cellular or extracellular macromolecules, such as polypeptides, in vivo, and these molecules that interact with KIAA0861 molecules are referred to herein as “binding partners.” Molecules that disrupt such interactions can be useful in regulating the activity of the target gene product. Such molecules can include, but are not limited to molecules such as antibodies, peptides, and small molecules. Target genes/products for use in this embodiment often are the KIAA0861 genes herein identified. In an alternative embodiment, provided is a method for determining the ability of the test compound to modulate the activity of a KIAA0861 polypeptide through modulation of the activity of a downstream effector of a KIAA0861 target molecule. For example, the activity of the effector molecule on an appropriate target can be determined, or the binding of the effector to an appropriate target can be determined, as previously described.


To identify compounds that interfere with the interaction between the target gene product and its cellular or extracellular binding partner(s), e.g., a substrate, a reaction mixture containing the target gene product and the binding partner is prepared, under conditions and for a time sufficient, to allow the two products to form complex. In order to test an inhibitory agent, the reaction mixture is provided in the presence and absence of the test compound. The test compound can be initially included in the reaction mixture, or can be added at a time subsequent to the addition of the target gene and its cellular or extracellular binding partner. Control reaction mixtures are incubated without the test compound or with a placebo. The formation of any complexes between the target gene product and the cellular or extracellular binding partner is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test compound, indicates that the compound interferes with the interaction of the target gene product and the interactive binding partner. Additionally, complex formation within reaction mixtures containing the test compound and normal target gene product can also be compared to complex formation within reaction mixtures containing the test compound and mutant target gene product. This comparison can be important in those cases where it is desirable to identify compounds that disrupt interactions of mutant but not normal target gene products.


These assays can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring either the target gene product or the binding partner onto a solid phase, and detecting complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested. For example, test compounds that interfere with the interaction between the target gene products and the binding partners, e.g., by competition, can be identified by conducting the reaction in the presence of the test substance. Alternatively, test compounds that disrupt preformed complexes, e.g., compounds with higher binding constants that displace one of the components from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed. The various formats are briefly described below.


In a heterogeneous assay system, either the target gene product or the interactive cellular or extracellular binding partner, is anchored onto a solid surface (e.g., a microtiter plate), while the non-anchored species is labeled, either directly or indirectly. The anchored species can be immobilized by non-covalent or covalent attachments. Alternatively, an immobilized antibody specific for the species to be anchored can be used to anchor the species to the solid surface.


In order to conduct the assay, the partner of the immobilized species is exposed to the coated surface with or without the test compound. After the reaction is complete, unreacted components are removed (e.g., by washing) and any complexes formed will remain immobilized on the solid surface. Where the non-immobilized species is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the non-immobilized species is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the initially non-immobilized species (the antibody, in turn, can be directly labeled or indirectly labeled with, e.g., a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds that inhibit complex formation or that disrupt preformed complexes can be detected.


Alternatively, the reaction can be conducted in a liquid phase in the presence or absence of the test compound, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for one of the binding components to anchor any complexes formed in solution, and a labeled antibody specific for the other partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test compounds that inhibit complex or that disrupt preformed complexes can be identified.


In an alternate embodiment, a homogeneous assay can be used. For example, a preformed complex of the target gene product and the interactive cellular or extracellular binding partner product is prepared in that either the target gene products or their binding partners are labeled, but the signal generated by the label is quenched due to complex formation (see, e.g., U.S. Pat. No. 4,109,496 that utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the species from the preformed complex will result in the generation of a signal above background. In this way, test substances that disrupt target gene product-binding partner interaction can be identified.


Also, binding partners of KIAA0861 molecules can be identified in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al., Cell 72:223-232 (1993); Madura et al, J. Biol. Chem. 268: 12046-12054 (1993); Bartel et al., Biotechniques 14: 920-924 (1993); Iwabuchi et al., Oncogene 8: 1693-1696 (1993); and Brent WO94/10300), to identify other polypeptides, which bind to or interact with KIAA0861 (“KIAA0861-binding polypeptides” or “KIAA0861-bp”) and are involved in KIAA0861 activity. Such KIAA0861-bps can be activators or inhibitors of signals by the KIAA0861 polypeptides or KIAA0861 targets as, for example, downstream elements of a KIAA0861-mediated signaling pathway.


A two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a KIAA0861 polypeptide is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified polypeptide (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor. (Alternatively the: KIAA0861 polypeptide can be the fused to the activator domain.) If the “bait” and the “prey” polypeptides are able to interact, in vivo, forming a KIAA0861-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the polypeptide which interacts with the KIAA0861 polypeptide.


Candidate therapeutics for treating breast cancer are identified from a group of test molecules that interact with a KIAA0861 nucleic acid or polypeptide. Test molecules are normally ranked according to the degree with which they interact or modulate (e.g., agonize or antagonize) DNA replication and/or processing, RNA transcription and/or processing, polypeptide production and/or processing, and/or function of KIAA0861 molecules, for example, and then top ranking modulators are selected. In a preferred embodiment, the candidate therapeutic (i.e., test molecule) acts as a KIAA0861 antagonist. Also, pharmacogenomic information described herein can determine the rank of a modulator. Candidate therapeutics typically are formulated for administration to a subject.


Therapeutic Treatments


Formulations or pharmaceutical compositions typically include in combination with a pharmaceutically acceptable carrier, a compound, an antisense nucleic acid, a ribozyme, an antibody, a binding partner that interacts with a KIAA0861 polypeptide, a KIAA0861 nucleic acid, or a fragment thereof. The formulated molecule may be one that is identified by a screening method described above. Also, formulations may comprise a KIAA0861 polypeptide or fragment thereof, where the KIAA0861 polypeptide is able to bind to a Rho GTPase but unable to catalyze GDP-GTP exchange reactions of Rho proteins. As used herein, the term “pharmaceutically acceptable carrier” includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions.


A pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerin, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


Oral compositions generally include an inert diluent or an edible carrier. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, e.g., gelatin capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride sometimes are included in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation often utilized are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. Molecules can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


In one embodiment, active molecules are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. Materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


It is advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.


Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Molecules which exhibit high therapeutic indices often are utilized. While molecules that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.


The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such molecules often lies within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any molecules used in the methods described herein, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.


As defined herein, a therapeutically effective amount of protein or polypeptide (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, sometimes about 0.01 to 25 mg/kg body weight, often about 0.1 to 20 mg/kg body weight, and more often about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The protein or polypeptide can be administered one time per week for between about 1 to 10 weeks, sometimes between 2 to 8 weeks, often between about 3 to 7 weeks, and more often for about 4, 5, or 6 weeks. The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment, or sometimes can include a series of treatments.


With regard to polypeptide formulations, featured herein is a method for treating breast cancer in a subject, which comprises contacting one or more cells in the subject with a polypeptide that interacts with a KIAA0861 polypeptide and inhibits its guanine nucleotide exchange factor activity.


For antibodies, a dosage of 0.1 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg) is often utilized. If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is often appropriate. Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible. Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is described by Cruikshank et al., J. Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193 (1997).


Antibody conjugates can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a polypeptide such as tumor necrosis factor, .alpha.-interferon, .beta.-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors. Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Pat. No. 4,676,980.


For compounds, exemplary doses include milligram or microgram amounts of the compound per kilogram of subject or sample weight, for example, about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram. It is understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid described herein, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.


KIAA0861 nucleic acid molecules can be inserted into vectors and used in gene therapy methods for treating breast cancer. Featured herein is a method for treating breast cancer in a subject, which comprises contacting one or more cells in the subject with a first KIAA0861 nucleic acid, where genomic DNA in the subject comprises a second KIAA0861 nucleic acid comprising one or more polymorphic variations associated with breast cancer, and where the first KIAA0861 nucleic acid comprises fewer polymorphic variations associated with breast cancer. The first and second KIAA0861 nucleic acids typically comprise a nucleotide sequence selected from the group consisting of the nucleotide sequence of SEQ ID NO: 1-3; a nucleotide sequence which encodes a polypeptide consisting of an amino acid sequence of SEQ ID NO: 4 or 5; a nucleotide sequence that is 90% or more identical to the nucleotide sequence of SEQ ID NO: 1-3, and a nucleotide sequence which encodes a polypeptide that is 90% identical to an amino acid sequence of SEQ ID NO: 4 or 5. The second KIAA0861 nucleic acid also may be a fragment of the foregoing comprising one or more polymorphic variations. The subject often is a human.


Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or by stereotactic injection (see e.g., Chen et al., (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057). Pharmaceutical preparations of gene therapy vectors can include a gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells (e.g., retroviral vectors) the pharmaceutical preparation can include one or more cells which produce the gene delivery system. Examples of gene delivery vectors are described herein.


Pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.


Pharmaceutical compositions of active ingredients can be administered by any of the paths described herein for therapeutic and prophylactic methods for treating breast cancer. With regard to both prophylactic and therapeutic methods of treatment, such treatments may be specifically tailored or modified, based on knowledge obtained from pharmacogenomic analyses described herein. As used herein, the term “treatment” is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease. A therapeutic agent includes, but is not limited to, small molecules, peptides, antibodies, ribozymes and antisense oligonucleotides.


Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the KIAA0861 aberrance, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of KIAA0861 aberrance, for example, a KIAA0861 molecule, KIAA0861 agonist, or KIAA0861 antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.


As discussed, successful treatment of KIAA0861 disorders can be brought about by techniques that serve to inhibit the expression or activity of target gene products. For example, compounds (e.g., an agent identified using an assays described above) that exhibit negative modulatory activity can be used to prevent and/or treat breast cancer. Such molecules can include, but are not limited to peptides, phosphopeptides, small organic or inorganic molecules, or antibodies (including, for example, polyclonal, monoclonal, humanized, anti-idiotypic, chimeric or single chain antibodies, and FAb, F(ab′)2 and FAb expression library fragments, scFV molecules, and epitope-binding fragments thereof).


Further, antisense and ribozyme molecules that inhibit expression of the target gene can also be used to reduce the level of target gene expression, thus effectively reducing the level of target gene activity. Still further, triple helix molecules can be utilized in reducing the level of target gene activity. Antisense, ribozyme and triple helix molecules are discussed above.


It is possible that the use of antisense, ribozyme, and/or triple helix molecules to reduce or inhibit mutant gene expression can also reduce or inhibit the transcription (triple helix) and/or translation (antisense, ribozyme) of mRNA produced by normal target gene alleles, such that the concentration of normal target gene product present can be lower than is necessary for a normal phenotype. In such cases, nucleic acid molecules that encode and express target gene polypeptides exhibiting normal target gene activity can be introduced into cells via gene therapy method. Alternatively, in instances where the target gene encodes an extracellular polypeptide, normal target gene polypeptide often is co-administered into the cell or tissue to maintain the requisite level of cellular or tissue target gene activity.


Another method by which nucleic acid molecules may be utilized in treating or preventing a disease characterized by KIAA0861 expression is through the use of aptamer molecules specific for KIAA0861 polypeptide. Aptamers are nucleic acid molecules having a tertiary structure which permits them to specifically bind to polypeptide ligands (see, e.g., Osborne, et al, Curr. Opin. Chem. Biol. 1(1): 5-9 (1997); and Patel, D. J., Curr. Opin. Chem. Biol. June; 1(1): 32-46 (1997)). Since nucleic acid molecules may in many cases be more conveniently introduced into target cells than therapeutic polypeptide molecules may be, aptamers offer a method by which KIAA0861 polypeptide activity may be specifically decreased without the introduction of drugs or other molecules which may have pluripotent effects.


Antibodies can be generated that are both specific for target gene product and that reduce target gene product activity. Such antibodies may, therefore, by administered in instances whereby negative modulatory techniques are appropriate for the treatment of KIAA0861 disorders. For a description of antibodies, see the Antibody section above.


In circumstances where injection of an animal or a human subject with a KIAA0861 polypeptide or epitope for stimulating antibody production is harmful to the subject, it is possible to generate an immune response against KIAA0861 through the use of anti-idiotypic antibodies (see, for example, Herlyn, D., Ann. Med.; 31(1): 66-78 (1999); and Bhattacharya-Chatterjee & Foon, Cancer Treat. Res.; 94: 51-68 (1998)). If an anti-idiotypic antibody is introduced into a mammal or human subject, it should stimulate the production of anti-anti-idiotypic antibodies, which should be specific to the KIAA0861 polypeptide. Vaccines directed to a disease characterized by KIAA0861 expression may also be generated in this fashion.


In instances where the target antigen is intracellular and whole antibodies are used, internalizing antibodies may be utilized. Lipofectin or liposomes can be used to deliver the antibody or a fragment of the Fab region that binds to the target antigen into cells. Where fragments of the antibody are used, the smallest inhibitory fragment that binds to the target antigen often is utilized. For example, peptides having an amino acid sequence corresponding to the Fv region of the antibody can be used. Alternatively, single chain neutralizing antibodies that bind to intracellular target antigens can also be administered. Such single chain antibodies can be administered, for example, by expressing nucleotide sequences encoding single-chain antibodies within the target cell population (see e.g., Marasco et al., Proc. Natl. Acad. Sci. USA 90: 7889-7893 (1993)).


KIAA0861 molecules and compounds that inhibit target gene expression, synthesis and/or activity can be administered to a patient at therapeutically effective doses to prevent, treat or ameliorate KIAA0861 disorders. A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms of the disorders.


Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit large therapeutic indices often are utilized. While compounds that exhibit toxic side effects can be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.


Data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds often lies within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in a method described herein, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma can be measured, for example, by high performance liquid chromatography.


Another example of effective dose determination for an individual is the ability to directly assay levels of “free” and “bound” compound in the serum of the test subject. Such assays may utilize antibody mimics and/or “biosensors” that have been created through molecular imprinting techniques. The compound which is able to modulate KIAA0861 activity is used as a template, or “imprinting molecule”, to spatially organize polymerizable monomers prior to their polymerization with catalytic reagents. The subsequent removal of the imprinted molecule leaves a polymer matrix which contains a repeated “negative image” of the compound and is able to selectively rebind the molecule under biological assay conditions. A detailed review of this technique can be seen in Ansell et al., Current Opinion in Biotechnology 7: 89-94 (1996) and in Shea, Trends in Polymer Science 2: 166-173 (1994). Such “imprinted” affinity matrixes are amenable to ligand-binding assays, whereby the immobilized monoclonal antibody component is replaced by an appropriately imprinted matrix. An example of the use of such matrixes in this way can be seen in Vlatakis, et al, Nature 361: 645-647 (1993). Through the use of isotope-labeling, the “free” concentration of compound which modulates the expression or activity of KIAA0861 can be readily monitored and used in calculations of IC50. Such “imprinted” affinity matrixes can also be designed to include fluorescent groups whose photon-emitting properties measurably change upon local and selective binding of target compound. These changes can be readily assayed in real time using appropriate fiberoptic devices, in turn allowing the dose in a test subject to be quickly optimized based on its individual IC50. A rudimentary example of such a “biosensor” is discussed in Kriz et al., Analytical Chemistry 67: 2142-2144 (1995).


Provided herein are methods of modulating KIAA0861 expression or activity for therapeutic purposes. Accordingly, in an exemplary embodiment, the modulatory method involves contacting a cell with a KIAA0861 or agent that modulates one or more of the activities of KIAA0861 polypeptide activity associated with the cell. An agent that modulates KIAA0861 polypeptide activity can be an agent as described herein, such as a nucleic acid or a polypeptide, a naturally-occurring target molecule of a KIAA0861 polypeptide (e.g., a KIAA0861 substrate or receptor), a KIAA0861 antibody, a KIAA0861 agonist or antagonist, a peptidomimetic of a KIAA0861 agonist or antagonist, or other small molecule.


In one embodiment, the agent stimulates one or more KIAA0861 activities. Examples of such stimulatory agents include active KIAA0861 polypeptide and a nucleic acid molecule encoding KIAA0861. In another embodiment, the agent inhibits one or more KIAA0861 activities. Examples of such inhibitory agents include antisense KIAA0861 nucleic acid molecules, anti-KIAA0861 antibodies, and KIAA0861 inhibitors, and competitive inhibitors that target Rho family GTP-binding proteins that are regulated by KIAA0861. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, provided are methods of treating an individual afflicted with a disease or disorder characterized by aberrant or unwanted expression or activity of a KIAA0861 polypeptide or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) KIAA0861 expression or activity. In a preferred embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that inhibits KIAA0861 expression or activity (e.g., a KIAA0861 activity may include catalyzing the exchange of Rho-bound GDP for GTP). In another embodiment, the method involves administering a KIAA0861 polypeptide or nucleic acid molecule as therapy to compensate for reduced, aberrant, or unwanted KIAA0861 expression or activity.


Stimulation of KIAA0861 activity is desirable in situations in which KIAA0861 is abnormally downregulated and/or in which increased KIAA0861 activity is likely to have a beneficial effect. For example, stimulation of KIAA0861 activity is desirable in situations in which a KIAA0861 is downregulated and/or in which increased KIAA0861 activity is likely to have a beneficial effect. Likewise, inhibition of KIAA0861 activity is desirable in situations in which KIAA0861 is abnormally upregulated and/or in which decreased KIAA0861 activity is likely to have a beneficial effect.


Methods of Treatment


In another aspect, provided are methods for identifying a predisposition to cancer in an individual as described herein and, if a genetic predisposition is identified, treating that individual to delay or reduce or prevent the development of cancer. Such a procedure can be used to treat breast cancer. Optionally, treating an individual for cancer may include inhibiting cellular proliferation, inhibiting metastasis, inhibiting invasion, or preventing tumor formation or growth as defined herein. Suitable treatments to prevent or reduce or delay breast cancer focus on inhibiting additional cellular proliferation, inhibiting metastasis, inhibiting invasion, and preventing further tumor formation or growth. Treatment usually includes surgery followed by radiation therapy. Surgery may be a lumpectomy or a mastectomy (e.g., total, simple or radical). Even if the doctor removes all of the cancer that can be seen at the time of surgery, the patient may be given radiation therapy, chemotherapy, or hormone therapy after surgery to try to kill any cancer cells that may be left. Radiation therapy is the use of x-rays or other types of radiation to kill cancer cells and shrink tumors. Radiation therapy may use external radiation (using a machine outside the body) or internal radiation. Chemotherapy is the use of drugs to kill cancer cells. Chemotherapy may be taken by mouth, or it may be put into the body by inserting a needle into a vein or muscle. Hormone therapy often focuses on estrogen and progesterone, which are hormones that affect the way some cancers grow. If tests show that the cancer cells have estrogen and progesterone receptors (molecules found in some cancer cells to which estrogen and progesterone will attach), hormone therapy is used to block the way these hormones help the cancer grow. Hormone therapy with tamoxifen is often given to patients with early stages of breast cancer and those with metastatic breast cancer. Other types of treatment being tested in clinical trials include sentinel lymph node biopsy followed by surgery and high-dose chemotherapy with bone marrow transplantation and peripheral blood stem cell transplantation. Any preventative/therapeutic treatment known in the art may be prescribed and/or administered, including, for example, surgery, chemotherapy and/or radiation treatment, and any of the treatments may be used in combination with one another to treat or prevent breast cancer (e.g., surgery followed by radiation therapy).


Rho-proteins function as binary switches cycling between a biologically inactive GDP-bound state and a biologically active GTP-bound state. Conversion to the GTP-bound form is mediated by the actions of Rho-GEFs, which stimulate the dissociation of bound GDP, thus providing an opportunity for GTP to bind. Since most Rho proteins exhibit biological activity only when in the GTP-bound state, RhoGEFs, such as KIAA0861, are thought to be Rho activators. Regulation of RhoGEFs are believed to be the result of several regulatory modes involving intra or inter-molecular interactions (Zheng, Y. Trends Biochem. Sci. 26(12): 724-732 (2001)). A first possible RhoGEF regulatory mode is through the intramolecular interaction between DH and PH domains. A second possible RhoGEF regulatory mode is through the intramolecular interaction of a regulatory domain with the DH or PH domain such that the regulatory domain imposes a constraint on the normal DH and/or PH domain functions. A third possible mode involves oligomerization through an intermolecular interaction between Dh domains, thus allowing for the recruitment of multiple Rho substrates into one signaling complex. A final possible mode involves the recruitment of inhibitory cellular factors that suppress GEF activity and help maintain the basal, inactive state. Regulatory molecules known to affect RhoGEF activity include kinases, lipid products from kinase reactions such as phosphoinositol phosphates, and cytoskelelton proteins such as ankyrin (Zheng, Y. Trends Biochem. Sci. 26(12): 724-732 (2001)). Deregulation of any of these regulatory mechanisms due to a specific mutation in KIAA0861 can lead to a Rho protein that is always biologically active, thus leading to oncogenesis.


Thus, featured herein are methods of regulating a biological pathway in which a GTPase is involved, particularly pathological conditions, e.g., cell proliferation (e.g., cancer), growth control, morphogenesis, stress fiber formation, and integrin-mediated interactions, such as embryonic development, tumor cell growth and metastasis, programmed cell death, hemostatis, leukocyte homing and activation, bone resorption, clot retraction, and the response of cells to mechanical stress. See, e.g., Clarke and Brugge, Science 268:233-239, 1995; Bussey, Science, 272:225-226, 1996. Thus, all aspects of modulating an activity of a Rho polypeptide is included herein, which often comprises administering an effective amount of a compound which modulates the activity of a Rho polypeptide, or an effective amount of a nucleic acid which codes for a KIAA0861 polypeptide or a biologically-active fragment thereof. The activity of Rho which is modulated can include: GTP binding, GDP binding, GTPase activity, integrin binding, coupling or binding or Rho to receptor or effector-like molecules (such as integrins, growth factor receptors, tyrosine kinases, PI-3K, PIP-5K, and the like). See, e.g., Clarke and Brugge, Science 268:233-239, 1995. The activity can be modulated by increasing, reducing, antagonizing, promoting, and the like, of Rho. The modulation of Rho can be measured by assayed routinely for GTP hydrolysis, PI(4,5)biphosphate, binding to KIAA0861 or a similar assay such as the one described in Example 11. An effective amount is any amount which, when administered, modulates the Rho activity. The activity can be modulated in a cell, a tissue, a whole organism, in situ, in vitro (test tube, a solid support, and the like), in vivo, or in any desired environment.


Also provided are methods of preventing or treating breast cancer comprising providing an individual in need of such treatment with a GEF inhibitor that reduces or blocks the dysregulated guanine nucleotide exchange function of the GEF in the subject. In some embodiments, it is preferable to specifically reduce or block the dysregulated guanine nucleotide exchange function of KIAA0861 by administering a KIAA0861 inhibitor to the subject in need thereof (e.g., an inhibitor that inhibits the activity of KIAA0861 more than the activity of another GEF). GEF inhibitors and KIAA0861 specific inhibitors sometimes bind to a GEF or KIAA0861 polypeptide or interact with another peptide and reduce the guanine nucleotide exchange function of the GEF or KIAA0861. Also included are methods of reducing or blocking the guanine nucleotide exchange function of KIAA0861 by introducing point mutations into the catalytic domain of KIAA0861 to inhibit its GDP-GTP exchange activity. In the embodiments described above, treating or preventing breast cancer are specifically directed to reducing or inhibiting breast cancer cell metastasis. Thus, featured are methods for reducing or inhibiting breast cancer cell metastasis by inhibiting a GEF or specifically inhibiting KIAA0861. Data shown herein demonstrates that inhibition of KIAA0861 can inhibit cancer metastasis (e.g., see siRNA results herein).


The examples set forth below are intended to illustrate but not limit the invention.


EXAMPLES

In the following studies a group of subjects were selected according to specific parameters relating to breast cancer. Nucleic acid samples obtained from individuals in the study group were subjected to genetic analysis, which identified associations between breast cancer and a polymorphism in the KIAA0861 gene on chromosome three. Methods are described for producing KIAA0861 polypeptide and KIAA0861 polypeptide variants in vitro or in vivo, KIAA0861 nucleic acids or polypeptides and variants thereof are utilized for screening test molecules for those that interact with KIAA0861 molecules. Test molecules identified as interactors with KIAA0861 molecules and KIAA0861 variants are further screened in vivo to determine whether they treat breast cancer.


Example 1
Samples and Pooling Strategies
Sample Selection

Blood samples were collected from individuals diagnosed with breast cancer, which were referred to as case samples. Also, blood samples were collected from individuals not diagnosed with breast cancer as gender and age-matched controls. All of the samples were of German/German descent. A database was created that listed all phenotypic trait information gathered from individuals for each case and control sample. Genomic DNA was extracted from each of the blood samples for genetic analyses.


DNA Extraction from Blood Samples


Six to ten milliliters of whole blood was transferred to a 50 ml tube containing 27 ml of red cell lysis solution (RCL). The tube was inverted until the contents were mixed. Each tube was incubated for 10 minutes at room temperature and inverted once during the incubation. The tubes were then centrifuged for 20 minutes at 3000×g and the supernatant was carefully poured off. 100-200 μl of residual liquid was left in the tube and was pipetted repeatedly to resuspend the pellet in the residual supernatant. White cell lysis solution (WCL) was added to the tube and pipetted repeatedly until completely mixed. While no incubation was normally required, the solution was incubated at 37° C. or room temperature if cell clumps were visible after mixing until the solution was homogeneous. 2 ml of protein precipitation was added to the cell lysate. The mixtures were vortexed vigorously at high speed for 20 sec to mix the protein precipitation solution uniformly with the cell lysate, and then centrifuged for 10 minutes at 3000×g. The supernatant containing the DNA was then poured into a clean 15 ml tube, which contained 7 ml of 100% isopropanol. The samples were mixed by inverting the tubes gently until white threads of DNA were visible. Samples were centrifuged for 3 minutes at 2000×g and the DNA was visible as a small white pellet. The supernatant was decanted and 5 ml of 70% ethanol was added to each tube. Each tube was inverted several times to wash the DNA pellet, and then centrifuged for 1 minute at 2000×g. The ethanol was decanted and each tube was drained on clean absorbent paper. The DNA was dried in the tube by inversion for 10 minutes, and then 1000 μl of 1×TE was added. The size of each sample was estimated, and less TE buffer was added during the following DNA hydration step if the sample was smaller. The DNA was allowed to rehydrate overnight at room temperature, and DNA samples were stored at 2-8° C.


DNA was quantified by placing samples on a hematology mixer for at least 1 hour. DNA was serially diluted (typically 1:80, 1:160, 1:320, and 1:640 dilutions) so that it would be within the measurable range of standards. 125 μl of diluted DNA was transferred to a clear U-bottom microtiter plate, and 125 μl of 1×TE buffer was transferred into each well using a multichannel pipette. The DNA and 1×TE were mixed by repeated pipetting at least 15 times, and then the plates were sealed. 50 μl of diluted DNA was added to wells A5-H12 of a black flat bottom microtiter plate. Standards were inverted six times to mix them, and then 50 μl of 1×TE buffer was pipetted into well A1, 1000 ng/ml of standard was pipetted into well A2, 500 ng/ml of standard was pipetted into well A3, and 250 ng/ml of standard was pipetted into well A4. PicoGreen (Molecular Probes, Eugene, Oreg.) was thawed and freshly diluted 1:200 according to the number of plates that were being measured. PicoGreen was vortexed and then 50 μl was pipetted into all wells of the black plate with the diluted DNA. DNA and PicoGreen were mixed by pipetting repeatedly at least 10 times with the multichannel pipette. The plate was placed into a Fluoroskan Ascent Machine (microplate fluorometer produced by Labsystems) and the samples were allowed to incubate for 3 minutes before the machine was run using filter pairs 485 nm excitation and 538 nm emission wavelengths. Samples having measured DNA concentrations of greater than 450 ng/μl were re-measured for conformation. Samples having measured DNA concentrations of 20 ng/μl or less were re-measured for confirmation.


Pooling Strategies


Samples were placed into one of two groups based on disease status. The two groups were female case groups and female control groups. A select set of samples from each group were utilized to generate pools, and one pool was created for each group. Each individual sample in a pool was represented by an equal amount of genomic DNA. For example, where 25 ng of genomic DNA was utilized in each PCR reaction and there were 200 individuals in each pool, each individual would provide 125 pg of genomic DNA. Inclusion or exclusion of samples for a pool was based upon the following criteria: the sample was derived from an individual characterized as Caucasian; the sample was derived from an individual of German paternal and maternal descent; the database included relevant phenotype information for the individual; case samples were derived from individuals diagnosed with breast cancer; control samples were derived from individuals free of cancer and no family history of breast cancer; and sufficient genomic DNA was extracted from each blood sample for all allelotyping and genotyping reactions performed during the study. Phenotype information included pre- or post-menopausal, familial predisposition, country or origin of mother and father, diagnosis with breast cancer (date of primary diagnosis, age of individual as of primary diagnosis, grade or stage of development, occurrence of metastases, e.g., lymph node metastases, organ metastases), condition of body tissue (skin tissue, breast tissue, ovary tissue, peritoneum tissue and myometrium), method of treatment (surgery, chemotherapy, hormone therapy, radiation therapy). Samples that met these criteria were added to appropriate pools based on gender and disease status.


The selection process yielded the pools set forth in Table 1, which were used in the studies that follow:












TABLE 1







Female CASE
Female CONTROL




















Pool size
272
276



(Number)



Pool Criteria
case
control



(ex: case/control)



Mean Age
59.6
55.4



(ex: years)










Example 2
Association of Polymorphic Variants with Breast Cancer

A whole-genome screen was performed to identify particular SNPs associated with occurrence of breast cancer. As described in Example 1, two sets of samples were utilized, which included samples from female individuals having breast cancer (breast cancer cases) and samples from female individuals not having cancer (female controls). The initial screen of each pool was performed in an allelotyping study, in which certain samples in each group were pooled. By pooling DNA from each group, an allele frequency for each SNP in each group was calculated. These allele frequencies were then compared to one another. Particular SNPs were considered as being associated with breast cancer when allele frequency differences calculated between case and control pools were statistically significant. SNP disease association results obtained from the allelotyping study were then validated by genotyping each associated SNP across all samples from each pool. The results of the genotyping were then analyzed, allele frequencies for each group were calculated from the individual genotyping results, and a p value was calculated to determine whether the case and control groups had statistically significantly differences in allele frequencies for a particular SNP. When the genotyping results agreed with the original allelotyping results, the SNP disease association was considered validated at the genetic level.


It was discovered that females having a cytosine at position 33106 of SEQ ID NO: 1 were predisposed to breast cancer.


SNP Panel Used for Genetic Analyses


A whole-genome SNP screen began with an initial screen of approximately 25,000 SNPs over each set of disease and control samples using a pooling approach. The pools studied in the screen are described in Example 1. The SNPs analyzed in this study were part of a set of 25,488 SNPs confirmed as being statistically polymorphic as each is characterized as having a minor allele frequency of greater than 10%. The SNPs in the set reside in genes or in close proximity to genes, and many reside in gene exons. Specifically, SNPs in the set are located in exons, introns, and within 5,000 base-pairs upstream of a transcription start site of a gene. In addition, SNPs were selected according to the following criteria: they are located in ESTs; they are located in Locuslink or Ensemble genes; and they are located in Genomatix promoter predictions. SNPs in the set also were selected on the basis of even spacing across the genome, as depicted in Table 2.


A case-control study design using a whole genome association strategy involving approximately 28,000 single nucleotide polymorphisms (SNPs) was employed. Approximately 25,000 SNPs were evenly spaced in gene-based regions of the human genome with a median inter-marker distance of about 40,000 base pairs. Additionally, approximately 3,000 SNPs causing amino acid substitutions in genes described in the literature as candidates for various diseases were used. The case-control study samples were of female German origin (German paternal and maternal descent) 548 individuals were equally distributed in two groups (female controls and female cases). The whole genome association approach was first conducted on 2 DNA pools representing the 2 groups. Significant markers were confirmed by individual genotyping.










TABLE 2





General Statistics
Spacing Statistics


















Total # of SNPs
28,532
Median
  34,424 bp


# of Exonic SNPs
 8,497 (30%)
Minimum*
   1,000 bp


# SNPs with refSNP ID
26,625 (93%)
Maximum*
3,000,000 bp


Gene Coverage
23,874
Mean
  122,412 bp


Chromosome Coverage
All
Std Deviation
   354, bp





*Excludes outliers






Allelotyping and Genotyping Results

The genetic studies summarized above and described in more detail below identified an allelic variant associated with breast cancer, set forth in Table 3.


















TABLE 3








Position








SNP

Chromosome
in SEQ ID
Contig
Contig
Sequence

Sequence
Allelic


Reference
Chromosome
Position
NO: 1
Identification
Position
Identification
Locus
Position
Variability







2001449
3
184049849
48563
NT_005612
89424094
NM_015078
KIAA0861
intron
G/C









Assay for Verifying, Allelotyping, and Genotyping SNPs


A MassARRAY™ system (Sequenom, Inc.) was utilized to perform SNP genotyping in a high-throughput fashion. This genotyping platform was complemented by a homogeneous, single-tube assay method (hME™ or homogeneous MassEXTEND™ (Sequenom, Inc.)) in which two genotyping primers anneal to and amplify a genomic target surrounding a polymorphic site of interest. A third primer (the MassEXTEND™ primer), which is complementary to the amplified target up to but not including the polymorphism, was then enzymatically extended one or a few bases through the polymorphic site and then terminated.


For each polymorphism, SpectroDESIGNER™ software (Sequenom, Inc.) was used to generate a set of PCR primers and a MassEXTEND™ primer was used to genotype the polymorphism. Table 4 shows PCR primers and Table 5 shows extension primers used for analyzing polymorphisms. The initial PCR amplification reaction was performed in a 5 μl total volume containing 1×PCR buffer with 1.5 mM MgCl2 (Qiagen), 200 μM each of dATP, dGTP, dCTP, dTTP (Gibco-BRL), 2.5 ng of genomic DNA, 0.1 units of HotStar DNA polymerase (Qiagen), and 200 nM each of forward and reverse PCR primers specific for the polymorphic region of interest.









TABLE 4







PCR Primers










Reference
Forward PCR primer
Reverse PCR primer



SNP ID
(SEQ ID NO: 7)
(SEQ ID NO: 8)





rs2001449
ATGTCAAGTGCACCCACA
AGGAAGAAACTGACGGAAGG




TG









Samples were incubated at 95° C. for 15 minutes, followed by 45 cycles of 95° C. for 20 seconds, 56° C. for 30 seconds, and 72° C. for 1 minute, finishing with a 3 minute final extension at 72° C. Following amplification, shrimp alkaline phosphatase (SAP) (0.3 units in a 2 μl volume) (Amersham Pharmacia) was added to each reaction (total reaction volume was 7 μl) to remove any residual dNTPs that were not consumed in the PCR step. Samples were incubated for 20 minutes at 37° C., followed by 5 minutes at 85° C. to denature the SAP.


Once the SAP reaction was complete, a primer extension reaction was initiated by adding a polymorphism-specific MassEXTEND™ primer cocktail to each sample. Each MassEXTEND™ cocktail included a specific combination of dideoxynucleotides (ddNTPs) and deoxynucleotides (dNTPs) used to distinguish polymorphic alleles from one another. In Table 5, ddNTPs are shown and the fourth nucleotide not shown is the dNTP.












TABLE 5





Reference
Extend Probe
Term



SNP ID
(SEQ ID NO: 9)
Mix

















rs2001449
CACATGCCTGCTCGCCCCC
ACT









The MassEXTEND™ reaction was performed in a total volume of 9 μl, with the addition of 1× ThermoSequenase buffer, 0.576 units of ThermoSequenase (Amersham Pharmacia), 600 nM MassEXTEND™ primer, 2 mM of ddATP and/or ddCTP and/or ddGTP and/or ddTTP, and 2 mM of dATP or dCTP or dGTP or dTTP. The deoxy nucleotide (dNTP) used in the assay normally was complementary to the nucleotide at the polymorphic site in the amplicon. Samples were incubated at 94° C. for 2 minutes, followed by 55 cycles of 5 seconds at 94° C., 5 seconds at 52° C., and 5 seconds at 72° C.


Following incubation, samples were desalted by adding 16 μl of water (total reaction volume was 25 μl), 3 mg of SpectroCLEAN™ sample cleaning beads (Sequenom, Inc.) and allowed to incubate for 3 minutes with rotation. Samples were then robotically dispensed using a piezoelectric dispensing device (SpectroJET™ (Sequenom, Inc.)) onto either 96-spot or 384-spot silicon chips containing a matrix that crystallized each sample (SpectroCHIP® (Sequenom, Inc.)). Subsequently, MALDI-TOF mass spectrometry (Biflex and Autoflex MALDI-TOF mass spectrometers (Bruker Daltonics) can be used) and SpectroTYPER RT™ software (Sequenom, Inc.) were used to analyze and interpret the SNP genotype for each sample.


Genetic Analysis


Variations identified in the KIAA0861 gene are represented by SEQ ID NO: 1 at position 33106. Minor allelic frequencies for these polymorphisms was verified as being 10% or greater by determining the allelic frequencies using the extension assay described above in a group of samples isolated from 92 individuals originating from the state of Utah in the United States, Venezuela and France (Coriell cell repositories).


Genotyping results are shown for female pools in Table 6A and 6B. Table 6A shows the original genotyping results and Table 6B shows the genotyped results re-analyzed to remove duplicate individuals from the cases and controls (i.e., individuals who were erroneously included more than once as either cases or controls). Therefore, Table 6B represents a more accurate measure of the allele frequencies for this particular SNP. In the subsequent tables, “AF” refers to allelic frequency; and “F case” and “F control” refer to female case and female control groups, respectively.













TABLE 6A





Reference






SNP ID
AF F case
AF F control
p-value
Odds Ratio







rs2001449
G = 0.703
G = 0.780
0.0040
1.49



C = 0.297
C = 0.220






















TABLE 6B







Reference



Odds



SNP ID
AF F case
AF F control
p-value
Ratio









rs2001449
G = 0.693
G = 0.782
0.0012
1.59




C = 0.307
C = 0.218










As can be seen in Tables 6A and 6B, a cytosine at position 33106 were more common in the female breast cancer group. Genotyping results were considered significant with a calculated p-value of less than 0.05 for genotype results.


Odds ratio results are shown in Tables 6A and 6B. An odds ratio is an unbiased estimate of relative risk which can be obtained from most case-control studies. Relative risk (RR) is an estimate of the likelihood of disease in the exposed group (susceptibility allele or genotype carriers) compared to the unexposed group (not carriers). It can be calculated by the following equation:






RR=IA/Ia


IA is the incidence of disease in the A carriers and Ia is the incidence of disease in the non-carriers.


RR>1 indicates the A allele increases disease susceptibility.


RR<1 indicates the a allele increases disease susceptibility.


For example, RR=1.5 indicates that carriers of the A allele have 1.5 times the risk of disease than non-carriers, i.e., 50% more likely to get the disease.


Case-control studies do not allow the direct estimation of IA and Ia, therefore relative risk cannot be directly estimated. However, the odds ratio (OR) can be calculated using the following equation:






OR=(nDAnda)/(ndAnDa)=pDA(1−pdA)/pdA(1−pDA), or






OR=((case f)/(1−case f))/((control f)/(1−control f)), where f=susceptibility allele frequency.


An odds ratio can be interpreted in the same way a relative risk is interpreted and can be directly estimated using the data from case-control studies, i.e., case and control allele frequencies. The higher the odds ratio value, the larger the effect that particular allele has on the development of breast cancer. Possessing an allele associated with a relatively high odds ratio translates to having a higher risk of developing or having breast cancer.


Example 3
Samples and Pooling Strategies for the Replication Samples

SNP reference number rs2001449 was genotyped again in a collection of replication samples to further validate its association with breast cancer. Like the original study population described in Examples 1 and 2, the replication samples consisted of females diagnosed with breast cancer (cases) and females without cancer (controls). The case and control samples were selected and genotyped as described below.


Samples were placed into one of two groups based on disease status. The two groups were female case groups and female control groups. A select set of samples from each group were utilized to generate pools, and one pool was created for each group. Each individual sample in a pool was represented by an equal amount of genomic DNA. For example, where 25 ng of genomic DNA was utilized in each PCR reaction and there were 200 individuals in each pool, each individual would provide 125 pg of genomic DNA. Inclusion or exclusion of samples for a pool was based upon the following criteria: the sample was derived from a female individual characterized as Caucasian; case samples were derived from individuals diagnosed with breast cancer; control samples were derived from individuals free of cancer and no family history of breast cancer; and sufficient genomic DNA was extracted from each blood sample for all allelotyping and genotyping reactions performed during the study. Samples that met these criteria were added to appropriate pools based on gender and disease status.


The selection process yielded the “Griffith” samples set forth in Table 7A and the “Kiechle” samples set forth in Table 7B, which were used in the studies that follow:












TABLE 7A







Female CASE
Female CONTROL




















Pool size
190
190



(Number)



Pool Criteria
case
control



(ex: case/control)



Mean Age
64.5
**



(ex: years)







** Each case was matched by a control within 5 years of age of the case.
















TABLE 7B







Female CASE
Female CONTROL




















Pool size
195
153



(Number)



Pool Criteria
case
control



(ex: case/control)










The replication genotyping results are shown in Table 8A for the Griffith samples and in Table 8B for the Kiechle samples. The odds ratio was calculated as described in Example 2.















TABLE 8A







Reference
AF
AF

Odds



SNP ID
F case
F control
p-value
Ratio









2001449
G = 0.685
G = 0.777
0.005
1.59




C = 0.315
C = 0.223























TABLE 8B







Reference
AF
AF

Odds



SNP ID
F case
F control
p-value
Ratio









2001449
G = 0.754
G = 0.716
0.267
0.82




C = 0.246
C = 0.284










The absence of a statistically significant association in the replication cohort should not be interpreted as minimizing the value of the original finding. There are many reasons why a biologically derived association identified in a sample from one population would not replicate in a sample from another population. The most important reason is differences in population history. Due to bottlenecks and founder effects, there may be common disease predisposing alleles present in one population that are relatively rare in another, leading to a lack of association in the candidate region. Also, because common diseases such as breast cancer are the result of susceptibilities in many genes and many environmental risk factors, differences in population-specific genetic and environmental backgrounds could mask the effects of a biologically relevant allele. For these and other reasons, statistically strong results in the original, discovery sample that did not replicate in the replication sample may be further evaluated in additional replication cohorts and experimental systems.


Example 4
Mode of Inheritance

To further describe the role of the SNP in breast cancer susceptibility the penetrance was estimated in both the discovery samples and the replication samples to allow inference of the mode of inheritance. The penetrance, defined as the probability of disease given each SNP genotype, was estimated from the case and control genotype frequencies, which provide estimates of the probability of each SNP genotype given the disease. Using Bayes theorem and an assumed age-matched population prevalence of breast cancer (all patients and breast cancer survivors) of 0.028, calculated from NCI data, results reported in Table 9 were obtained.













TABLE 9







Probability of Breast Cancer
Penetrance
Penetrance



Based on Genotype
in Discovery
in Replication









P(BC|GG)
0.022
0.022



P(BC|GC)
0.035
0.035



P(BC|CC)
0.048
0.048










These penetrances suggest that breast cancer susceptibility at this SNP is additive. These penetrances further suggest that breast cancer susceptibility at this SNP is inherited as a dominant trait.


Example 5
KIAA0861 Proximal SNPs

It has been discovered that a polymorphic variation (rs2001449) in a gene encoding KIAA0861 is associated with the occurrence of breast cancer (see Examples 1 and 2). Subsequently, SNPs proximal to the incident SNP (rs2001449) were identified and allelotyped in breast cancer sample sets and control sample sets as described in Examples 1 and 2. A total of seventy-five allelic variants located within or nearby the KIAA0861 gene were identified and fifty-seven allelic variants were allelotyped. The polymorphic variants are set forth in Table 10. The chromosome position provided in column four of Table 10 is based on Genome “Build 34” of NCBI's GenBank.















TABLE 10






Position in








SEQ ID

Chromosome
Allele
Genome
Deduced


dbSNP rs#
NO: 1
Chromosome
Position
Variants
Letter
Iupac





















3811728
246
3
184201246
t/c
c
Y


3811729
393
3
184201393
a/g
a
R


602646
628
3
184201628
c/g
c
S


488277
7586
3
184208586
t/c
c
Y


1629673
9223
3
184210223
a/g
g
R


670232
9933
3
184210933
a/t
a
W


575326
10154
3
184211154
t/c
c
Y


575386
10175
3
184211175
c/g
c
S


684846
10877
3
184211877
t/c
c
Y


471365
10907
3
184211907
g/c
g
S


496251
11289
3
184212289
g/a
a
R


831246
11793
3
184212793
t/c
t
Y


831247
11813
3
184212813
g/c
g
S


KIAA0861-AA
13507
3
184214507
c/g
g
S


512071
14249
3
184215249
c/t
c
Y


1502761
14586
3
184215586
a/c
a
M


681516
14647
3
184215647
c/t
t
Y


683302
15004
3
184216004
c/t
t
Y


619424
16573
3
184217573
t/g
g
K


620722
16811
3
184217811
a/g
a
R


529055
18921
3
184219921
a/g
a
R


664010
19651
3
184220651
t/g
g
K


678454
20565
3
184221565
c/t
c
Y


2653845
25239
3
184226239
g/a
a
R


472795
25721
3
184226721
g/a
a
R


507079
27133
3
184228133
g/a
g
R


534333
27778
3
184228778
t/c
t
Y


535298
27906
3
184228906
t/c
t
Y


536213
28000
3
184229000
g/a
a
R


831245
30005
3
184231005
a/g
g
R


639690
30520
3
184231520
t/c
c
Y


684174
32195
3
184233195
t/c
c
Y


571761
32439
3
184233439
c/g
c
S


1983421
33858
3
184234858
t/c
t
Y


4630966
41716
3
184242716
c/t
t
Y


2314415
42450
3
184243450
t/g
c
M


6788196
43554
3
184244554
g/a
g
R


2103062
44211
3
184245211
a/g
g
R


9827084
44775
3
184245775
g/c
c
S


9864865
44962
3
184245962
a/g
a
R


6804951
45317
3
184246317
c/t
t
Y


6770548
45712
3
184246712
a/g
a
R


1403452
45941
3
184246941
t/c
c
Y


7609994
46520
3
184247520
g/t
t
K


9838250
47175
3
184248175
c/t
c
Y


9863404
48045
3
184249045
g/t
t
K


903950
48636
3
184249636
c/a
t
K


6787284
48689
3
184249689
g/a
g
R


2017340
48704
3
184249704
a/g
c
Y


2001449
48849
3
184249849
g/c
g
S


1317288
48850
3
184249850
g/a
g
R


7635891
49931
3
184250931
t/g
g
K


10704581
51510
3
184252510
—/tt
t
N


11371910
51526
3
184252526
—/a
c
N


10937118
51758
3
184252758
a/g
a
R


7642053
51975
3
184252975
c/g
g
S


3821522
53475
3
184254475
a/g
c
Y


2029926
55524
3
184256524
t/c
g
R


1390831
56754
3
184257754
t/g
a
M


7643890
57473
3
184258473
a/g
g
R


11925606
57497
3
184258497
a/c
c
M


9826325
57613
3
184258613
g/a
a
R


6800429
58023
3
184259023
g/a
g
R


6803368
58821
3
184259821
t/c
c
Y


1353566
59644
3
184260644
c/a
g
K


2272115
66217
3
184267217
g/a
a
R


2272116
66344
3
184267344
g/a
g
R


3732603
67326
3
184268326
g/c
c
S


940055
69777
3
184270777
a/c
a
M


2314730
83594
3
184284594
a/g
g
R


2030578
84579
3
184285579
g/c
g
S


2049280
85623
3
184286623
c/t
t
Y


3732602
126831
3
184327831
c/t
a
R


2293203
137878
3
184338878
a/t
t
W


7639705
147455
3
184348455
g/t
t
K









Assay for Verifying and Allelotyping SNPs

The methods used to verify and allelotype the seventy-five proximal SNPs of Table 10 are the same methods described in Examples 1 and 2 herein. The PCR primers and extend primers used in these assays are provided in Table 11 and Table 12, respectively.












TABLE 11






Forward PCR primer
Reverse PCR primer



dbSNP rs#
(SEQ ID NOS 10-81)
(SEQ ID NOS 82-153)







3811728
ACGTTGGATGACGTGTCGGTCCCCTTTCAT
ACGTTGGATGACGCGCCACACCTCCCTAC






3811729
ACGTTGGATGTGGGCGAGGTTCTGCAGCGT
ACGTTGGATGGTTTCGTTTCTCCGGCACAG





 602646
ACGTTGGATGGAGGAGACCCAGGGTATGAG
ACGTTGGATGTCTGGGACCGTTTACCGCA





 488277
ACGTTGGATGCACACATTCTTCTCAAGTGC
ACGTTGGATGGGAGGGACACAATTTAACTC





1629673
ACGTTGGATGGGCACCATGTGTGGCTAATT
ACGTTGGATGAAGGATCACGTGAAGTCAGG





 670232
ACGTTGGATGGAAGGTGGAGCAGACATTAG
ACGTTGGATGACCTTAGTTATACCAGGCAC





 575326
ACGTTGGATGACAGAGAGGCTTGGTCATAC
ACGTTGGATGGGTGCTTGGTTGTGATTCTC





 575386
ACGTTGGATGATTCCTGCAGGTACTGTGTC
ACGTTGGATGTGAGCCCAAAACTACTGCTG





 684846
ACGTTGGATGACCACCAGATAAAATCCCTC
ACGTTGGATGAAGTTCCTCTGGTGGACAAC





 471365
ACGTTGGATGTGAGTGACATTTGTGTCACC
ACGTTGGATGCGGAGGATCTGAACAACTTC





 496251
ACGTTGGATGGGGAGTCATTCCAATACCAG
ACGTTGGATGGGAGTGAAAGGTCATATTGG





 831246
ACGTTGGATGCACAATCTGTTAGAATGGTGG
ACGTTGGATGCGTCAAGACTGAATGCATAG





 831247
ACGTTGGATGGAAAATATAGTCCTACACAA
ACGTTGGATGCGTCAAGACTGAATGCATAG





KIAA0861-AA
ACGTTGGATGGTTCTAATGTCACCCCTTCC
ACGTTGGATGCAATGTGGCAAATTCTCTGG





 512071
ACGTTGGATGCAAATCACCCCTGACAATTC
ACGTTGGATGACCAGCACACTCAGCTTTAG





1502761
ACGTTGGATGCAGAAATATGAAGGTGGCCC
ACGTTGGATGACCTTGAGCTCTGAGCCCTT





 681516
ACGTTGGATGCTCCTCCTCAGAGGACTAAC
ACGTTGGATGAGCCCAAGGACTCATACAAC





 683302
ACGTTGGATGAAACATGGCGAAACCCGGTC
ACGTTGGATGACCACGCCTGGCTAATTTTG





 619424
ACGTTGGATGACCGGGAGCTCCCAGTCTG
ACGTTGGATGTGGGAATCGGTTGAGAGCCG





 620722
ACGTTGGATGGCAGCAAAGAATTGCCCGGC
ACGTTGGATGTAAGGCGCCTGCAGAGGCGA





 529055
ACGTTGGATGCTGCAGTTATCTGGGTGAGC
ACGTTGGATGCCAGAACGTGGCTTGTTGGG





 664010
ACGTTGGATGTGGTACCTCCAGGTAAAATG
ACGTTGGATGTCCAGGCAGTCATTTTACCC





 678454
ACGTTGGATGTTCTCTGCGGAGGAAAGTGC
ACGTTGGATGTTAAGCCAGTCCCCACAAGG





2653845
ACGTTGGATGATCACTTGGACTCAGGAAGC
ACGTTGGATGAGTCTTGCTCTGTTTCCAGG





 472795
ACGTTGGATGTCACCTGAGCATCAGACATG
ACGTTGGATGATAGTGGAAGGAGAAACGGG





 507079
ACGTTGGATGAAGCCTCAGATGAGGCATAC
ACGTTGGATGTCTGAAAGGGTTCAGGAAGG





 534333
ACGTTGGATGCGTTGATGCACTGAAGGGAG
ACGTTGGATGAGAGGCTAAATGTTGGCAGG





 535298
ACGTTGGATGCAATTGCTCAGACCTTCACC
ACGTTGGATGAATGCTAGAGACATTGCACC





 536213
ACGTTGGATGTGAGGACCTCATTATTGGTG
ACGTTGGATGCTGAGCAATCGAACTGCTAC





 831245
ACGTTGGATGCTAGAATTACAGGTGCACAC
ACGTTGGATGGCCAAGATGGTGAAACCTTG





 639690
ACGTTGGATGGCATTTTACCACCATGTGGTT
ACGTTGGATGCCTTCATGTTAATTCTGCCC





 684174
ACGTTGGATGCTTTACTGAGTGGGCAAACG
ACGTTGGATGTCTAAGTGGAACTCAGCAGC





 571761
ACGTTGGATGAATATCCTAGGCTAGCAGTG
ACGTTGGATGGTGCATAAATACATGAATAG





1983421
ACGTTGGATGTCCAGGTGTTATGGAGTCAG
ACGTTGGATGGGCTTCTTGTGCTGCTGTGT





4630966
ACGTTGGATGTCAACAAAGATGCCAAGACC
ACGTTGGATGGTGGATATCCATTGTCCTAG





2314415
ACGTTGGATGGGCTGAGTAACAGTCCATTG
ACGTTGGATGCTTACAGTATCCAAAAAGGG





6788196
ACGTTGGATGTCAAAGGTAGGTTACCCCTG
ACGTTGGATGATCCCCAATTTGCACATCCC





2103062
ACGTTGGATGTGCAGCCCTCAACCTTTCAG
ACGTTGGATGCCTTATTCAGTTACTATTACG





9827084
ACGTTGGATGAAACACACACACCCACATAC
ACGTTGGATGGGGAGAAAGAAAACAAAGGC





9864865
ACGTTGGATGCAATGCCTGCACTTAGACAC
ACGTTGGATGAGTGATGAGAACATGGGCTG





6804951
ACGTTGGATGGCAATAGGACTCCCTTTACC
ACGTTGGATGAAGATACGAATGGAGCCTGG





6770548
ACGTTGGATGTTTTTGAGCTTCACTGAGCG
ACGTTGGATGCGTATCTCTAGCTCAAGCAT





1403452
ACGTTGGATGCAGAAGTTAGGATGCAGATG
ACGTTGGATGCCAGTAGAGATAGAATTTTGG





7609994
ACGTTGGATGATACCTAGAGTTTGCCCAAC
ACGTTGGATGAGCTGAGATCAATCCCTATG





9838250
ACGTTGGATGGTGGCAGTCAAAACACAGTC
ACGTTGGATGACAGAGTAAGACTCCGTCTC





9863404
ACGTTGGATGGCTATTAGAAAGTCAGAGCC
ACGTTGGATGTGTTCCAGAAGGTGTAGAAG





 903950
ACGTTGGATGCTTCAGTTCAGGGAGAGATC
ACGTTGGATGATAGGGCCCCCAGCATAAAA





6787284
ACGTTGGATGGCTTTCCCCTAAAGCATCTC
ACGTTGGATGGATCTCTCCCTGAACTGAAG





2017340
ACGTTGGATGTATTCCACTGCCTGCTTTCC
ACGTTGGATGGAAAACAGGAGGAAGTGGTG





2001449
ACGTTGGATGATGTCAAGTGCACCCACATG
ACGTTGGATGAGGAAGAAACTGACGGAAGG





1317288
ACGTTGGATGATGTCAAGTGCACCCACATG
ACGTTGGATGAGGAAGAAACTGACGGAAGG





7635891
ACGTTGGATGTCTCACCTTGCCTTTGGACG
ACGTTGGATGCTGATGTCGCAAGGAACCAC





10704581 
ACGTTGGATGCCTGTTGAATTATGGAGGAG
ACGTTGGATGCTCTTCTTTCCATGGATCTTC





11371910 
ACGTTGGATGCTCTTCTTTCCATGGATCTTC
ACGTTGGATGCAGCTAATTTCTCCTGACAG





10937118 
ACGTTGGATGATGCAAACTGGCTGGGAATG
ACGTTGGATGGAGGAGGCTGTGAGAAAAGA





7642053
ACGTTGGATGATGCCCTGGATTGACCTAAC
ACGTTGGATGGGGTTAGGGTGTGTATAAGG





3821522
ACGTTGGATGAACCCGCACTACAAGATTCC
ACGTTGGATGGTCAGTCCCACATTCAGAAC





2029926
ACGTTGGATGTCCCGAACATAAAGACTCAG
ACGTTGGATGGGTTGTAATTGGAACATTGG





1390831
ACGTTGGATGGTCTGCCAAAGTTCCCTTAG
ACGTTGGATGAGGAAAGGGAAGAGAAACCG





7643890
ACGTTGGATGGACTGTGAGTTATAGGATAC
ACGTTGGATGATGGGTCGGAGGATTTATAG





11925606 
ACGTTGGATGCTCGGCTAAGGTACTCAATA
ACGTTGGATGAGACCACCAAGTAAAATTGC





9826325
ACGTTGGATGTTGGGTTAATGCAGGGTCTG
ACGTTGGATGCTAGTTCACCTGGGTCTATC





6800429
ACGTTGGATGCCAAAGCCCATGTTTTAAAAA
ACGTTGGATGGTTTTTCTAAAATATGGGCT





6803368
ACGTTGGATGAAACCAGCTCAGGCCATTAC
ACGTTGGATGATGCAAAATAAGCTCTGCCC





1353566
ACGTTGGATGGGTGTACTCTGCCATTTGTC
ACGTTGGATGTGGAGGAGGTTCTAGTACCC





2272115
ACGTTGGATGAGTTGTGAGTGATTTCAGGG
ACGTTGGATGCAGGCCTTCTTGCTCTTATC





2272116
ACGTTGGATGCTGTGCCTTCTGAGTAGTTC
ACGTTGGATGATCTGTTGCCTTAGGTTCAC





3732603
ACGTTGGATGCTCTCAATTCCATCAGTCTC
ACGTTGGATGCTTTACGAATTTCACAACAGG





 940055
ACGTTGGATGTATGCTTCCAGTCTCTGACC
ACGTTGGATGATAGGTAATCCAGTTGGGCC





2314730
ACGTTGGATGCTCAGGTAATCTGCCTTCTC
ACGTTGGATGCAGGGATAATGAGAACAAATC





2030578
ACGTTGGATGAACAACCTTACTTCATGCCC
ACGTTGGATGTTCTCCACTTTCTGGTCAAC





2049280
ACGTTGGATGTGGATACTGAGGGTCAACTG
ACGTTGGATGCTTCCCAACATTTTCGGCTC



















TABLE 12






Extend Primer




dbSNP rs#
(SEQ ID NOS: 154-225)
Term Mix







3811728 
GTCCCCTTTCATCTAAAC
ACT






3811729 
TCTGCAGCGTGCGGCGA
ACT





602646
CCAGGGTATGAGCGGAGGA
ACT





488277
AGTGCACACAGAACATTTAACA
ACT





1629673 
TGTGGAGACAAGGTCTCACT
ACT





670232
TGGGCAAACAAGCCCAT
CGT





575326
TGGTCATACCCTTCAAG
ACT





575386
GAAGGGTATGACCAAGC
ACT





684846
AGTTGTTCAGATCCTCC
ACT





471365
TCCAAAACCACCAGATAAAATC
ACT





496251
GTATTGTCCTCCAGTGA
ACG





831246
AGAATGGTGGTGTATTTTTAC
ACT





831247
TAGTCCTACACAATCTGTTA
ACT





KIAA0861-AA
GGTATCAGGAAGAGTCA
ACT





512071
CCCTGACAATTCCAAAACTAA
ACG





1502761 
GGAGGAGGCACTATTAAT
ACT





 681516
GGCCACCTTCATATTTC
ACG





 683302
CAGGAGATCCAGACCATCC
ACG





 619424
TGCGGCCCCCGCCGGGTT
ACT





 620722
GAATTGCCCGGCTCCGAAT
ACT





 529055
GAGCAGGCAGCACAAGT
ACT





 664010
ACCTCCAGGTAAAATGATTAGTT
ACT





 678454
CAGGGATGGTAATTGAC
ACG





2653845
AAGCGGAGGTTGCAGTGAGC
ACG





 472795
GACATGTCCCTCTCGGCCT
ACG





 507079
GGCAATGTTTGCCCTTT
ACG





 534333
GGGAGAAAGTAACAGGGTC
ACT





 535298
CAGGTGGATGGGGACAC
ACT





 536213
TGGTGTTAAGTGGCGTG
ACG





 831245
CACACCACCACGCCCGGCT
ACT





 639690
CTGCTATTCATTTGTGTAGA
ACT





 684174
CTCTGATGTTACCTCCTCC
ACT





 571761
CTAGGCTAGCAGTGGGGTTG
ACT





1983421
GGCAGGGAAGAGAAGAGC
ACT





4630966
AGATGCCAAGACCATTCAAAG
ACG





2314415
TAGTTGATGAAGATTTGGG
ACT





6788196
AGGTTACCCCTGCTGACTTT
ACG





2103062
GAGATCATTTCTCCTTCAAC
ACT





9827084
CCACACCCATATATATTTATGCT
ACT





9864865
AAAGATACACCGTTGAGAAGG
ACT





6804951
GACTCCCTTTACCTTCATGG
ACG





6770548
CTTCACTGAGCGTGGTGCC
ACT





1403452
CACAGATGCTCATGGGTCC
ACT





7609994
GTTTGCCCAACATATAAACAATAA
CGT





9838250
AACACAGTCAAAATTTTGCTTCA
ACG





9863404
GAGCCAAGTTTACATCAAGTTTA
CGT





 903950
AGATCACATTGCCAACCCCCA
CGT





6787284
CCCGTCTCCTGCTGGTCA
ACG





2017340
CCCTAAAGCATCTCACAGCCCC
ACT





2001449
CACATGCCTGCTCGCCCCC
ACT





1317288
CACATGCCTGCTCGCCCC
ACG





7635891
TGCCTTTGGACGTCTAGCC
ACT





10704581 
TATGGAGGAGTAGATATTGGAA
CGT





11371910 
GAAAATTCCAATATCTACTCCTC
CGT





10937118 
CTGGGAATGAAATTAGGGCAG
ACT





7642053
GTTCCCTTGACTTTCCTCAG
ACT





3821522
GCATCTTCAGGAATCTTG
ACT





2029926
CATAAAGACTCAGCATTCAGC
ACT





1390831
GGTTAGGAAGAAATCTGTG
ACT





7643890
ATCTAGATAATAAAGACCACCAA
ACT





11925606 
CTATTAATGGTGTTTGTCTATGG
ACT





9826325
TAATGCAGGGTCTGCTGGAT
ACG





6800429
ATCTCTAAGATATAACACTCTAC
ACG





6803368
GTGCCTGCAAAGAAAGGAAC
ACT





1353566
TTGTCAGTTATGAGACCTTG
CGT





2272115
ATACCTCAGAATACAGCTTTTTTT
ACG





2272116
TCTCATTTCTCCTCTCTTTC
ACG





3732603
CTCATTTCCACCCTTCT
ACT





 940055
GTCTCTGACCACTTGACCCA
ACT





2314730
TCCTTCTTCTCTGCTTT
ACT





2030578
TCATGCCCATTGGGTTAG
ACT





2049280
GGGTCAACTGTACCAAG
ACG









Genetic Analysis of Allelotyping Results

Allelotyping results are shown for cases and controls in Table 13. The allele frequency for the A2 allele is noted in the fifth and sixth columns for breast cancer pools and control pools, respectively, where “AF” is allele frequency. SNPs with blank allele frequencies were untyped (“not AT”).

















TABLE 13






Position in






Breast Cancer



SEQ ID
Chromosome
A1/A2




Associated


dbSNP rs#
NO: 1
Position
Allele
Case AF
Control AF
p-Value
OR
Allele























3811728
246
184201246
T/C
T = 0.002
T = 0.003
0.952
1.28
C






C = 0.998
C = 0.997


3811729
393
184201393
A/G
A = 0.968
A = 0.947
0.268
0.61
A






G = 0.032
G = 0.053


602646
628
184201628
C/G
C =
C = 0.344






G =
G = 0.656


488277
7586
184208586
T/C
T = 0.9
T = 0.898
0.92
0.98
T






C = 0.100
C = 0.102


1629673
9223
184210223
A/G
A = 0.93
A = 0.911
0.459
0.78
A






G = 0.070
G = 0.089


670232
9933
184210933
A/T
A = 0.138
A = 0.137
0.951
0.99
A






T = 0.862
T = 0.863


575326
10154
184211154
T/C
T = 0.876
T = 0.869
0.753
0.94
T






C = 0.124
C = 0.131


575386
10175
184211175
C/G
C = 0.224
C = 0.221
0.921
0.98
C






G = 0.776
G = 0.779


684846
10877
184211877
T/C
T = 0.202
T =






C = 0.798
C =


471365
10907
184211907
G/C
G = 0.258
G = 0.262
0.88
1.02
C






C = 0.742
C = 0.738


496251
11289
184212289
G/A
G = 0.841
G = 0.839
0.967
0.99
G






A = 0.159
A = 0.161


831246
11793
184212793
T/C
T = 0.229
T = 0.203
0.373
0.86
T






C = 0.771
C = 0.797


831247
11813
184212813
G/C
G = 0.17
G = 0.178
0.755
1.06
C






C = 0.830
C = 0.822


KIAA0861-
13507
184214507
C/G
C = 0.745
C = 0.762
0.557
1.10
G


AA



G = 0.255
G = 0.238


512071
14249
184215249
C/T
C = 0.391
C = 0.363
0.376
0.89
C






T = 0.609
T = 0.637


1502761
14586
184215586
A/C
A = 0.417
A = 0.409
0.799
0.97
A






C = 0.583
C = 0.591


681516
14647
184215647
C/T
C = 0.762
C = 0.817
0.0906
1.39
T






T = 0.238
T = 0.183


683302
15004
184216004
C/T
C = 0.729
C =






T = 0.271
T =


619424
16573
184217573
T/G
T = 0.925
T = 0.929
0.812
1.06
G






G = 0.075
G = 0.071


620722
16811
184217811
A/G
T =
A = 0.181






G =
G = 0.819


529055
18921
184219921
A/G
A = 0.398
A = 0.364
0.325
0.86
A






G = 0.602
G = 0.636


664010
19651
184220651
T/G
T = 0.549
T = 0.607
0.145
1.27
G






G = 0.451
G = 0.393


678454
20565
184221565
C/T
C = 1.000
C = 0.985
0.0998
0.00
C






T = 0.000
T = 0.015


2653845
25239
184226239
G/A
G = 0.825
G = 0.827
0.94
1.01
A






A = 0.175
A = 0.173


472795
25721
184226721
G/A
G = 0.921
G = 0.921
0.983
0.99
G






A = 0.079
A = 0.079


507079
27133
184228133
G/A
G = 0.166
G = 0.167
0.979
1.00
A






A = 0.834
A = 0.833


534333
27778
184228778
T/C
T = 0.502
T = 0.491
0.73
0.96
T






C = 0.498
C = 0.509


535298
27906
184228906
T/C
T = 0.275
T = 0.228
0.127
0.78
T






C = 0.725
C = 0.772


536213
28000
184229000
G/A
G = 0.726
G = 0.717
0.781
0.96
G






A = 0.274
A = 0.283


831245
30005
184231005
A/G
A = 0.979
A = 0.981
0.843
1.12
G






G = 0.021
G = 0.019


639690
30520
184231520
T/C
T = 0.882
T = 0.892
0.65
1.10
C






C = 0.118
C = 0.108


684174
32195
184233195
T/C
T = 0.698
T = 0.708
0.756
1.05
C






C = 0.302
C = 0.292


571761
32439
184233439
C/G
C = 0.601
C = 0.576
0.499
0.90
C






G = 0.399
G = 0.424


1983421
33858
184234858
T/C
T = 0.566
T = 0.58
0.669
1.06
C






C = 0.434
C = 0.420


4630966
41716
184242716
C/T
C = 0.359
C = 0.271

0.00247

0.66
C






T = 0.641
T = 0.729


2314415
42450
184243450
T/G
T = 0.974
T = 0.951
0.124
0.53
T






G = 0.026
G = 0.049


6788196
43554
184244554
G/A
G = 1.000
G = 1.000
0.967
0.00
G






A = 0
A = 0.000


2103062
44211
184245211
A/G
A = 0.674
A = 0.642
0.381
0.87
A






G = 0.326
G = 0.358


9827084
44775
184245775
G/C
G = 0.966
G = 0.928

0.0403

0.46
G






C = 0.034
C = 0.072


9864865
44962
184245962
A/G
A = 0.106
A = 0.185

0.000529

1.93
G






G = 0.894
G = 0.815


6804951
45317
184246317
C/T
C = 0.96
C = 0.904

0.00573

0.40
C






T = 0.040
T = 0.096


6770548
45712
184246712
A/G
A = 0.062
A = 0.159

1.12E−05

2.86
G






G = 0.938
G = 0.841


1403452
45941
184246941
T/C
T = 0.97
T = 0.932

0.0144

0.43
T






C = 0.030
C = 0.068


7609994
46520
184247520
G/T
G = 0.001
G = 0.002
0.918
2.34
T






T = 0.999
T = 0.998


9838250
47175
184248175
C/T
C = 0.52
C = 0.524
0.909
1.01
T






T = 0.480
T = 0.476


9863404
48045
184249045
G/T
G = 0.001
G = 0.002
0.887
2.58
T






T = 0.999
T = 0.998


903950
48636
184249636
C/A
C = 0.417
C = 0.406
0.739
0.96
C






A = 0.583
A = 0.594


6787284
48689
184249689
G/A
G = 0.475
G = 0.501
0.416
1.11
A






A = 0.525
A = 0.499


2017340
48704
184249704
A/G
A = 0.965
A = 0.945
0.195
0.63
A






G = 0.035
G = 0.055


2001449
48849
184249849
G/C
G = 0.738
G = 0.797

0.0285

1.39
C






C = 0.262
C = 0.203


1317288
48850
184249850
G/A
G = 1.000
G = 1.000
0.967
0.51
G






A = 0.000
A = 0.000


7635891
49931
184250931
T/G
T = 0.973
T = 0.947
0.121
0.49
T






G = 0.027
G = 0.053


10704581
51510
184252510
—/TT
— = 0.998
— = 0.997
0.949
0.83







TT = 0.002
TT = 0.003


11371910
51526
184252526
—/A
— = 1.000
— = 1.000
0.977
0.00







A = 0
A = 0.000


10937118
51758
184252758
A/G
A = 0.495
A = 0.51
0.629
1.06
G






G = 0.505
C = 0.490


7642053
51975
184252975
C/G
C = 0.002
C = 0.003
0.908
1.85
G






G = 0.998
G = 0.997


3821522
53475
184254475
A/G
A = 0.504
A = 0.52
0.62
1.07
G






G = 0.496
G = 0.480


2029926
55524
184256524
T/C
T = 0.001
T = 0.001
0.975
2.52
C






C = 0.999
C = 0.999


1390831
56754
184257754
T/G
T = 0.057
T = 0.076
0.284
1.36
G






G = 0.943
G = 0.924


7643890
57473
184258473
A/G
A = 0.001
A = 0.002
0.934
2.30
G






G = 0.999
G = 0.998


11925606
57497
184258497
A/C
A = 0
A = 0.001
0.956

C






C = 1.000
C = 0.999


9826325
57613
184258613
G/A
G = 0.002
G = 0.003
0.887
1.85
A






A = 0.998
A = 0.997


6800429
58023
184259023
G/A
G = 0.605
G = 0.59
0.662
0.94
G






A = 0.395
A = 0.410


6803368
58821
184259821
T/C
T = 0.002
T = 0.001
0.885
0.20
T






C = 0.998
C = 0.999


1353566
59644
184260644
C/A
C = 0.452
C = 0.469
0.604
1.07
A






A = 0.548
A = 0.531


2272115
66217
184267217
G/A
G = 0.673
G = 0.634
0.224
0.84
G






A = 0.327
A = 0.366


2272116
66344
184267344
G/A
G = 0.999
G = 1.000
0.876
8.14
A






A = 0.001
A = 0.000


3732603
67326
184268326
G/C
G = 0.773
G = 0.792
0.495
1.11
C






C = 0.227
C = 0.208


940055
69777
184270777
A/C
A = 0.778
A = 0.803
0.356
1.17
C






C = 0.222
C = 0.197


2314730
83594
184284594
A/G
A = 0.352
A = 0.311
0.183
0.83
A






G = 0.648
G = 0.689


2030578
84579
184285579
G/C
G = 1.000
G = 1.000
0.963
0.33
G






C = 0.000
C = 0.000


2049280
85623
184286623
C/T
C = 0.001
C = 0.005
0.576
30.94
T






T = 0.999
T = 0.995










FIG. 1 shows the proximal SNPs in and around the KIAA0861 gene for females. As indicated, some of the SNPs were untyped. The position of each SNP on the chromosome is presented on the x-axis. The y-axis gives the negative logarithm (base 10) of the p-value comparing the estimated allele in the case group to that of the control group. The minor allele frequency of the control group for each SNP designated by an X or other symbol on the graphs in FIG. 1 can be determined by consulting Table 13. By proceeding down the Table from top to bottom and across the graphs from left to right the allele frequency associated with each symbol shown can be determined.


To aid the interpretation, multiple lines have been added to the graph. The broken horizontal lines are drawn at two common significance levels, 0.05 and 0.01. The vertical broken lines are drawn every 20 kb to assist in the interpretation of distances between SNPs. Two other lines are drawn to expose linear trends in the association of SNPs to the disease. The light gray line (or generally bottom-most curve) is a nonlinear smoother through the data points on the graph using a local polynomial regression method (W. S. Cleveland, E. Grosse and W. M. Shyu (1992) Local regression models. Chapter 8 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.). The black line provides a local test for excess statistical significance to identify regions of association. This was created by use of a 10 kb sliding window with 1 kb step sizes. Within each window, a chi-square goodness of fit test was applied to compare the proportion of SNPs that were significant at a test wise level of 0.01, to the proportion that would be expected by chance alone (0.05 for the methods used here). Resulting p-values that were less than 110-8 were truncated at that value.


Finally, the gene or genes present in the loci region of the proximal SNPs as annotated by Locus Link (http address: www.ncbi.nlm.nih.gov/LocusLink/) are provided on the graph. The exons and introns of the genes in the covered region are plotted below each graph at the appropriate chromosomal positions. The gene boundary is indicated by the broken horizontal line. The exon positions are shown as thick, unbroken bars. An arrow is place at the 3′ end of each gene to show the direction of transcription.


Additional Genotyping

A total of fourteen SNPs, including the incident SNP, were genotyped in the discovery cohort. The discovery cohort is described in Example 1. Four of the SNPs are non-synonomous, coding SNPs. Two of the SNPs (rs2001449 and rs6804951) were found to be significantly associated with breast cancer with a p-value of 0.001 and 0.007, respectively. See Table 16.


The methods used to verify and genotype the five proximal SNPs of Table 16 are the same methods described in Examples 1 and 2 herein. The PCR primers and extend primers used in these assays are provided in Table 14 and Table 15, respectively.












TABLE 14






Forward PCR primer
Revee PCR primer



dbSNP #
(SEQ ID NOS 226-239)
(SEQ ID NOS 240-253)







7639705
ACGTTGGATGTGTCAGAAAGCAAACCTGGC
ACGTTGGATGTTACAGGCATTGGAGACAGC






2293203
ACGTTGGATGCTGCATAATGGTGGCTTTGG
ACGTTGGATGTGTGGGTGTTCACTTTGCAG





3732602
ACGTTGGATGCCCTCTTGTCAGGAAGTTCT
ACGTTGGATGGAGACAGAGTTGAACTCCCG





2001449
ACGTTGGATGAGGAAGAAACTGACGGAAGG
ACGTTGGATGATGTCAAGTGCACCCACATG





6804951
ACGTTGGATGAAGATACGAATGGAGCCTGG
ACGTTGGATGGCAATAGGACTCCCTTTACC





3821522
ACGTTGGATGCGCACTACAAGATTCCAAGC
ACGTTGGATGTCAGTCCCACATTCAGAACC





2293203
ACGTTGGATGTGTGGGTGTTCACTTTGCAG
ACGTTGGATGCTGCATAATGGTGGCTTTGG





3811729
ACGTTGGATGTGGGCGAGGTTCTGCAGCGT
ACGTTGGATGGTTTCGTTTCTCCGGCACAG





 534333
ACGTTGGATGGATGCACTGAAGGGAGAAAG
ACGTTGGATGAGAGGCTAAATGTTGGCAGG





 575326
ACGTTGGATGTGAGCCCAAAACTACTGCTG
ACGTTGGATGATTCCTGCAGGTACTGTGTC





2272115
ACGTTGGATGCAGGCCTTCTTGCTCTTATC
ACGTTGGATGAGTTGTGAGTGATTTCAGGG





 940055
ACGTTGGATGTATGCTTCCAGTCTCTGACC
ACGTTGGATGGATAGGTAATCCAGTTGGGC





2017340
ACGTTGGATGGATCTCTCCCTGAACTGAAG
ACGTTGGATGGCTTTCCCCTAAAGCATCTC





 571761
ACGTTGGATGAATATCCTAGGCTAGCAGTG
ACGTTGGATGGTGCATAAATACATGAATAG



















TABLE 15






Extend Primer




dbSNP #
(SEQ ID NOS 254-267)
Term Mix







7639705
TGATGCACGTGGAGCAG
CGT






2293203
GCCCCTGGAAAAGGCCC
CGT





3732602
GGAAGATGATGAGACTAAAT
ACG





2001449
CACATGCCTGCTCGCCCCC
ACT





6804951
TCCCTTTACCTTCATGG
ACG





3821522
GCATCTTCAGGAATCTTG
ACT





2293203
GCCCCTGGAAAAGGCCC
CGT





3811729
GGTTCTGCAGCGTGCGGCGA
ACT





 534333
GAAGGGAGAAAGTAACAGGGTC
ACT





 575326
TGGTCATACCCTTCAAG
ACT





2272115
ATCTTCTACACATTGATTCAG
ACT





 940055
TCTCTGACCACTTGACCCA
ACT





2017340
TGGTGACCAGCAGGAGA
ACG





 571761
GGCTAGCAGTGGGGTTG
ACT









Table 16, below, shows the case and control allele frequencies along with the p-values for all of the SNPs genotyped. The disease associated allele of column 4 is in bold and the disease associated amino acid of column 5 is also in bold. The chromosome positions provided correspond to NCBI's Build 34. The amino acid change positions provided in column 5 correspond to KIAA0861 polypeptide sequence of SEQ ID NO: 4. The corresponding amino acid position in the alternative KIAA0861 polypeptide sequence (SEQ ID NO: 5) can be easily calculated by adding 83 amino acids to the positions provided in column 5.









TABLE 16







Genotpying Results

























Breast



Position in


Amino




Cancer



SEQ ID
Chromosome
Alleles
Acid

AF F

Odds
Associated


dbSNP rs#
NO: 1
Position
(A1/A2)
Change
AF F case
control
p-value
Ratio
Allele



















3811729
393
184201393

A/G


A = 0.917
A = 0.948
0.0542
1.65
G








G = 0.083


G = 0.052



575326
10154
184211154

T/C



T = 0.897


T = 0.885

0.545
0.88
T







C = 0.103
C = 0.115


534333
27778
184228778

T/C



T = 0.254


T = 0.249

0.85
0.97
T







C = 0.746
C = 0.751


571761
32439
184233439

C/G



C = 0.487


C = 0.465

0.492
0.92
C







G = 0.513
G = 0.535


6804951
45317
184246317

C/T


A819T


C = 0.956


C = 0.915


0.007

2.02
C







T = 0.044
T = 0.085


2017340
48704
184249704
G/A

G = 0.027
G = 0.042
0.203
1.57
A








A = 0.973


A = 0.958



2001449
48849
184249849
G/C

G = 0.693
G = 0.782

0.001

1.59
C








C = 0.307


C = 0.218



3821522
53475
184254475
A/G

A = 0.372
A = 0.391
0.539
1.08
G








G = 0.628


G = 0.609



2272115
66217
184267217
A/G

A = 0.407
A = 0.444
0.246
1.16
G








G = 0.593


G = 0.556



940055
69777
184270777
A/C

A = 0.702
A = 0.753
0.0721
1.29
C








C = 0.298


C = 0.247



3732602
126831
184327831
C/T
S506F
C = 0.008
C = 0.012
0.597
1.41
T








T = 0.992


T = 0.988



2293203
137878
184338878
A/T

L295Q

A = 0.012
A = 0.015
0.690
1.24
T








T = 0.988


T = 0.985



7639705
147455
184348455

G/T

I276L

G = 0.195


G = 0.189

0.794
1.04
G








T = 0.805


T = 0.811










Example 6
KIAA0861 Expression Profile

A cumulative mRNA expression profile was determined for KIAA0861 using a panel of 56 cells and tissues that represent a plurality of cells from different human tissue types. Specifically, RT-PCR was performed in cDNA made from 56 cell lines and 11 normal tissue samples using the following primers: forward, CCAGTCGAAATGGACTTGAG (SEQ ID NO: 268); and reverse, CGCCTTCACAGTCTTCAAAG (SEQ ID NO: 269). The cDNA samples represent a variety of tissue types throughout the human body. The PCR reactions were done in a final volume of 10 μl using Hotstar Taq™ from Qiagen, Inc. Half of the PCR reaction was loaded on a 2% agarose gel to resolve the resulting product. From the expression profiling described above, KIAA0861 expression was found to be ubiquitous across several tissues, including small intestine, bladder, prostate and colon, for example.


Expression Pattern in Breast Cancer Cell Lines vs Normal Breast Tissue

Quantitative RT-PCR hME was used to measure relative levels of KIAA0861 mRNA in 4 breast cancer cell lines and 2 normal breast tissue cDNA. A 56 Mix is a cDNA mixture from 56 different cell lines representing the major human tissues was used as a positive control. The amount of cDNA used for each reaction was normalized based on expression of a house keeping gene, HMBS. KIAA0861 expressed significantly in MCF7 and MDA-MB-231 cell lines (both breast cancer cell lines), but not significantly in normal breast tissue.


Example 7
Inhibition of KIAA0861 Gene Expression by Transfection of Specific siRNAs

RNAi-based gene inhibition was selected as a rapid way to inhibit expression of KIAA0861 in cultured cells. siRNA reagents were selectively designed to target KIAA0861. Algorithms useful for designing siRNA molecules specific for KIAA0861 are disclosed at the http address www.dharmacon.com. siRNA molecules up to 21 nucleotides in length were utilized. Table 17 summarizes the features of two duplexes that were used in the assays described herein. A non-homologous siRNA reagent (siGL2 control) was used as a negative control.












TABLE 17





siRNA
siRNA Target
Sequence Specificity
SEQ ID NO:



















siGEF1
KIAA0861
GAGACAAGTGGAGCTCCGT
270






siGEF2
KIAA0861
GTGGAGCTCCGTAAAGGCA
271





siGEF3
KIAA0861
ATCACCGCACTGCCATCGA
272





siGEF4
KIAA0861
GCATGCTATCCACGGAAGA
273





SiGEF1 STABLE
KIAA-861
GAGACAAGTGGAGCTCCGT
274





siGL2 control
Non-homologous
CGTACGCGGAATACTTCGA
275



scrambled control









The siRNAs were transfected in cell lines MCF-7 and T-47D using Lipofectamine™ 2000 reagent from Invitrogen, Corp. 2.5 μg or 5.0 μg of siRNA was mixed with 6.25 μl or 12.5 μl lipofectamine, respectively, and the mixture was added to cells grown in 6-well plates. Their inhibitory effects on KIAA0861 gene expression were confirmed by precision expression analysis by MassARRAY (quantitativeRT-PCR hME), which was performed on RNA prepared from the transfected cells. See Chunming D. and Cantor C. PNAS 100(6):3059-3064 (2003). KIAA0861 gene expression was also determined by flow cytometric analysis of cells stained with a polyclonal chicken antibody specific for KIAA0861. A 50% reduction of KIAA0861 protein was seen in siGEF1-treated cells. Cell viability was measured at 1, 2, 4 and 6 days post-transfection. Absorbance values were normalized relative to Day 1. RNA was extracted with Trizole reagent as recommended by the manufacturer (Invitrogen, Corp.) followed by cDNA synthesis using SuperScript™ reverse transcriptase.


Strong inhibition of cell proliferation of MCF-7 breast cancer cells by siGEF1 was obtained. siGEF1 also strongly inhibited proliferation of another breast cancer cell line, T47D. These effects were consistent in all six experiments performed. Each data point is an average of 3 wells of a 96-well plate normalized to values obtained from day 1 post transfection. The specificity of the active siRNAs was confirmed with a control siRNA, siGL2, which is not homologous to any human sequences.


Long term inhibition of gene expression is desirable in certain cases. Therefore, included herein are embodiments directed to siRNA duplexes described herein (see Tables 31-36) that are less susceptible to degradation. An example of a modification that decreases susceptibility to degradation is in siSTABLE RNA described at the http address www.dharmacon.com. A stable version of siGEF1 was used in an invasion assay described above, except that the cells were replated 14 days after transfection. Inhibition of MDA-MB-231 cell invasion by siGEF1-STABLE was still seen 15 days after transfection. In contrast, the inhibitory effect of the standard version of siGEF1 was no longer apparent at this time and is comparable to that of the control siGL2-treated cells.


siRNA—Starvation Growth Assay


An aliquot of MCF-7 and T47D cells was plated on Boyden chambers with 8 μm pore membranes that are coated with growth-factor reduced matrigel (Becton Dickinson). In addition to growth factors, matrigel contains basement membrane components such as collagens, laminin, and proteoglycans, making it a more physiological growth surface for these breast cell lines. One day after transfection, cells were trypsinized and resuspended in media without serum and plated on top of the matrigel-coated membrane, which is suspended over media containing 5% serum. Cells were allowed to grow for 6 days then fixed in 2% glutaraldehyde and stained with 0.2% crystal violet. Evidence showed that under low serum conditions and on a physiological surface, inhibition of KIAA0861 expression by siGEF1 dramatically inhibits growth of two breast cancer cell lines by 95%. This effect is greater on the matrigel surface than on plastic at a high serum concentration where 50-60% inhibition in proliferation was seen.


siRNA—Invasion Assay


In addition to high proliferative rates, some cancer cells also develop the ability to metastasize. The metastatic potential of tumor cells can be assessed in vitro using Boyden chambers. MCF-7 and T47D cells are not metastatic and therefore do not traverse through the matrigel. For this assay, another cell line was used, MDA-MB-231, which is known to be highly metastatic. Cells in 6-well plates were transfected with 2.5 μg of either siGEF1 or siGL2 as described above. Cells were replated 5 days after transfection on matrigel-coated Boyden chambers suspended on media containing 10% serum. Cells were stained with crystal violet 20 hrs later and photographed. Cells that remain on top of the membrane were scrubbed off and the cells that had invaded through the matrigel and grew on the bottom of the membrane were photographed. Significant inhibition of MDA-MB-231 breast cancer cell invasion by siGEF1 was observed. Duplicate chambers were used in a Wst-1 assay to determine total cell number for both treatments.


Example 8
In Vitro Production of KIAA40861 Polypeptides

KIAA0861 Cloning


KIAA0861 cDNA was cloned into a pET28a (Novagen) and pcDNA3.1 vectors (Invitrogen) using a directional cloning method. A KIAA0861 cDNA insert was prepared using PCR with forward and reverse primers having 5′ restriction site tags (in frame) and 5-6 additional nucleotides in addition to 3′ gene-specific portions, the latter of which is typically about twenty to about twenty-five base pairs in length. A Sal I restriction site was introduced by the forward primer and a Sma I restriction site was introduced by the reverse primer. The ends of KIAA0861 PCR products were cut with the corresponding restriction enzymes (e.g., Sal I and Sma I) and the products were gel-purified. The pIVEX 2.3-MCS vector was linearized using the same restriction enzymes, and the fragment with the correct sized fragment was isolated by gel-purification. Purified KIAA0861 PCR product was ligated into the linearized pIVEX 2.3-MCS vector and E. coli cells were transformed for plasmid amplification. The newly constructed expression vector was verified by restriction mapping and used for protein production.


KIAA0861 DH/PH, DH and PH sequences were cloned out of a human brain library and subsequently cloned into pET28a (Novagen) for bacterial expression and pcDNA3.1 vectors (Invitrogen) for mammalian expression and encode a polypeptide domain described herein. In both cases, a directional cloning method was used and the sequences were verified (for use in NIH-3T3 primary focus forming assay and soft agar assay). The table below summarizes the different plasmid constructs.












TABLE 18







EXPRESSION




CLONED
VECTOR


GENE
REGION
TYPE
CLONING VECTOR







KIAA0861
DH and PH
bacterial
pET28a NcoI/SalI sites



domains


KIAA0861
DH only
bacterial
pET28a NcoI/SalI sites


KIAA0861
PH only
bacterial
pET28a NcoI/SalI sites


KIAA0861
DH and PH
mammalian
pCDNA3.1 EcoRI/XbaI



domains

sites


KIAA0861
DH only
mammalian
pCDNA3.1 EcoRI/XbaI





sites


KIAA0861
PH only
mammalian
pCDNA3.1 EcoRI/XbaI





sites


KIAA0861
full length
mammalian
pCDNA3.1 EcoRI/XbaI



ORF

sites


DBS
DH and PH
bacterial
pET28a NcoI/SalI sites



domains


DBS
DH and PH
mammalian
pCDNA3.1 EcoRI/XbaI



domains

sites









Any method well-known in the art may be used to clone and express a target gene. For example, KIAA0861 cDNA may be cloned into a pIVEX 2.3-MCS vector (Roche Biochem) using a directional cloning method as described above. A KIAA0861 cDNA insert is prepared using PCR with forward and reverse primers having 5′ restriction site tags (in frame) and 5-6 additional nucleotides in addition to 3′ gene-specific portions, the latter of which is typically about twenty to about twenty-five base pairs in length. A Sal I restriction site is introduced by the forward primer and a Sma I restriction site is introduced by the reverse primer. The ends of KIAA0861 PCR products are cut with the corresponding restriction enzymes and the products are gel-purified. The pIVEX 2.3-MCS vector is linearized using the same restriction enzymes, and the fragment with the correct sized fragment is isolated by gel-purification. Purified KIAA0861 PCR product is ligated into the linearized pIVEX 2.3-MCS vector and E. coli cells transformed for plasmid amplification. The newly constructed expression vector is verified by restriction mapping and used for protein production.



E. coli lysate is reconstituted with 0.25 ml of Reconstitution Buffer, the Reaction Mix is reconstituted with 0.8 ml of Reconstitution Buffer; the Feeding Mix is reconstituted with 10.5 ml of Reconstitution Buffer; and the Energy Mix is reconstituted with 0.6 ml of Reconstitution Buffer. 0.5 ml of the Energy Mix was added to the Feeding Mix to obtain the Feeding Solution. 0.75 ml of Reaction Mix, 501 of Energy Mix, and 10 μg of the KIAA0861 template DNA is added to the E. coli lysate.


Using the reaction device (Roche Biochem), 1 ml of the Reaction Solution is loaded into the reaction compartment. The reaction device is turned upside-down and 10 ml of the Feeding Solution is loaded into the feeding compartment. All lids are closed and the reaction device is loaded into the RTS500 instrument. The instrument is run at 30° C. for 24 hours with a stir bar speed of 150 rpm. The pIVEX 2.3 MCS vector includes a nucleotide sequence that encodes six consecutive histidine amino acids on the C-terminal end of the KIAA0861 polypeptide for the purpose of protein purification. KIAA0861 polypeptide is purified by contacting the contents of reaction device with resin modified with Ni2+ ions. KIAA0861 polypeptide is eluted from the resin with a solution containing free Ni2+ ions.


Example 9
Cellular Production of KIAA40861 Polypeptides

KIAA0861 nucleic acids are cloned into DNA plasmids having phage recombination cites and KIAA0861 polypeptides and polypeptide variants are expressed therefrom in a variety of host cells. Alpha-phage genomic DNA contains short sequences known as attP sites, and E. coli genomic DNA contains unique, short sequences known as attB sites. These regions share homology, allowing for integration of phage DNA into E. coli via directional, site-specific recombination using the phage protein Int and the E. coli protein IHF. Integration produces two new att sites, L and R, which flank the inserted prophage DNA. Phage excision from E. coli genomic DNA can also be accomplished using these two proteins with the addition of a second phage protein, Xis. DNA vectors have been produced where the integration/excision process is modified to allow for the directional integration or excision of a target DNA fragment into a backbone vector in a rapid in vitro reaction (Gateway™ Technology (Invitrogen, Inc.)).


A first step is to transfer the KIAA0861 nucleic acid insert into a shuttle vector that contains affL sites surrounding the negative selection gene, ccdB (e.g. pENTER vector, Invitrogen, Inc.). This transfer process is accomplished by digesting the KIAA0861 nucleic acid from a DNA vector used for sequencing, and to ligate it into the multicloning site of the shuttle vector, which will place it between the two attL sites while removing the negative selection gene ccdB. A second method is to amplify the KIAA0861 nucleic acid by the polymerase chain reaction (PCR) with primers containing attB sites. The amplified fragment then is integrated into the shuttle vector using Int and IHF. A third method is to utilize a topoisomerase-mediated process, in which the KIAA0861 nucleic acid is amplified via PCR using gene-specific primers with the 5′ upstream primer containing an additional CACC sequence (e.g., TOPO® expression kit (Invitrogen, Inc.)). In conjunction with Topoisomerase I, the PCR amplified fragment can be cloned into the shuttle vector via the attL sites in the correct orientation.


Once the KIAA0861 nucleic acid is transferred into the shuttle vector, it can be cloned into an expression vector having attR sites. Several vectors containing attR sites for expression of KIAA0861 polypeptide as a native polypeptide, N-fusion polypeptide, and C-fusion polypeptides are commercially available (e.g., pDEST (Invitrogen, Inc.)), and any vector can be converted into an expression vector for receiving a KIAA0861 nucleic acid from the shuttle vector by introducing an insert having an attR site flanked by an antibiotic resistant gene for selection using the standard methods described above. Transfer of the KIAA0861 nucleic acid from the shuttle vector is accomplished by directional recombination using Int, IHF, and Xis (LR clonase). Then the desired sequence can be transferred to an expression vector by carrying out a one hour incubation at room temperature with Int, IHF, and Xis, a ten minute incubation at 37° C. with proteinase K, transforming bacteria and allowing expression for one hour, and then plating on selective media. Generally, 90% cloning efficiency is achieved by this method. Examples of expression vectors are pDEST 14 bacterial expression vector with att7 promoter, pDEST 15 bacterial expression vector with a T7 promoter and a N-terminal GST tag, pDEST 17 bacterial vector with a T7 promoter and a N-terminal polyhistidine affinity tag, and pDEST 12.2 mammalian expression vector with a CMV promoter and neo resistance gene. These expression vectors or others like them are transformed or transfected into cells for expression of the KIAA0861 polypeptide or polypeptide variants. These expression vectors are often transfected, for example, into murine-transformed a adipocyte cell line 3T3-L1, (ATCC), human embryonic kidney cell line 293, and rat cardiomyocyte cell line H9C2.


Example 10
Transformation of Normal Cells

Plasmid constructs of KIAA0861 and DBS DHPH domains in pcDNA3.1 vector were transfected into NIH-3T3 cells to determine the potential of these genes to transform normal cells. The oncogenic potential of DBS has already been established (Whitehead, I., Kirk, H., and Kay, R. (1995) Oncogene 10:713-721) and was used here as a positive control. Five μg plasmid was transfected into NIH-3T3 cells grown in 25 mm2 flasks using Lipofectamine 2000 (Invitrogen). Approximately 10,000 cells were replated 1 day after transfection into 100 mm2 dishes in media containing 10% serum. Cells were allowed to grow and express the plasmids for 4 days then media was changed to contain 2% serum. After 7 days growth in low serum, cells were fixed then stained with crystal violet. The low number of colonies that grew in cells transfected with the vector alone compared to those transfected with either KIAA0861 or DBS DH-PH domains indicate that these genes are transforming. Cells plated at 1000/dish show no growth in the vector alone treatment compared to a substantial number of colonies in the KIAA0861 or DBS treatments (data not shown).


To determine if KIAA0861 is able to induce a metastatic phenotype, a population of NIH-3T3 cells transfected with the above plasmids were selected by growth under 400 μg/ml G418 (geniticin) over a period of 2 months. These cells were then used in an in vitro invasion assay described in Example 8. Evidence showed that KIAA0861 as well as DBS transformed non-metastatic NIH-3T3 cells into cells that are able to invade through a matrigel matrix.


Example 11
Guanine Nucleotide Exchange Assays

Fluorescence spectroscopic analysis of N-methylanthraniloyl(mant)-GTP incorporation into bacterially purified Rho GTPases was carried out with a tecan XFlour spectrometer at 20° C. Exchange reaction assay mixtures containing 20 mM Hepes (pH 7.5), 50 mM NaCl, 5 mM MgCl2, and 2 μM relevant GTPase were prepared in a 200 ul volume in a 96-well plate. The relative fluorescence (λex=370 nm, λex=465+/−35 nm) was monitored before and after addition of 200 nM bacterially expressed Histidine tag fusions of KIAA0861, Dbs DH-PH domain proteins, or BSA. KIAA0861 and DBS DH-PH domain proteins are active in exchanging guanine nucleotide from the GST-tag fusions of the GTPases, RhoA and Cdc42. Based on the slope of a straight line fitted through the data points, KIAA0861 was equally active on both RhoA and Cdc42, while Dbs was more active on Cdc42 than on RhoA in this in vitro assay.


An alternative nucleotide exchange assay may be used as well, as described below. Guanine nucleotide exchange assays may be performed in 2 ml reactions. Briefly, nucleotide exchange is monitored as the increase in relative fluorescence of the GTP analog mant-GTP upon binding G protein in a reaction buffer containing 20 mM Tris (pH 7.5), 50 mM NaCl, 10 mM MgCl2, 1 mM dithiothreitol, 50 μg/ml bovine serum albumin, and 10% glycerol. Prior to the addition of GEF, a 1 μM concentration of the appropriate G protein is incubated with 200 nM mant-GTP at 20° C. in a thermostatted cuvette, and fluorescence is measured using a PerkinElmer Life Sciences LS-50B λex=360 nm; λem=440 nm; slits=5/5 nm). After equilibration, 10 nM GEF or buffer (uncatalyzed trace) is added.


Test molecules are screened using one or both of these procedures to determine which of them inhibit the guanine nucleotide exchange function of KIAA0861 or a portion thereof. The top ranked inhibitors identified in these screening procedures then are tested in other processes described herein, to determine their effect on cell transformation by KIAA0861 and cell invasion, for example. Top ranked molecules that inhibit cell transformation and/or cell invasion are identified as candidate therapeutics and are administered to animals and humans to determine their safety and therapeutic efficacy on breast cancer.


Provided hereafter is a KIAA0861 genomic sequence (SEQ ID NO: 1). Polymorphic variants are designated in IUPAC format. The following nucleotide representations are used throughout the specification and figures: “A” or “a” is adenosine, adenine, or adenylic acid; “C” or “c” is cytidine, cytosine, or cytidylic acid; “G” or “g” is guanosine, guanine, or guanylic acid; “T” or “t” is thymidine, thymine, or thymidylic acid; and “I” or “i” is inosine, hypoxanthine, or inosinic acid. SNPs are designated by the following convention: “R” represents A or G, “M” represents A or C; “W” represents A or T; “Y” represents C or T; “S” represents C or G; “K” represents G or T; “V” represents A, C or G; “H” represents A, C, or T; “D” represents A, G, or T; “B” represents C, G, or T; and “N” represents A, G, C, or T.










>3: 184201001-184348700










     1
aaagccaaga ctcccattcc taaaccctag ctcaggtctc catctcttaa atccgagtga






    61
cctctacaaa ctctccctga gaaggtgtcc agaacccttt tggaagcgag ggacagtgtc





   121
actgtctttg gggttgacac ctgctctgag taactcacgg aaaacaagtt ccagctggga





   181
agcccttgga cgcgccacac ctccctaccc gcagcccgtc ctgtggcgcc cgggactcca





   241
gagtgYgttt agatgaaagg ggaccgacac gtcagggcca ccgcgggaag cgctgagggc





   301
cactcaccgg ccagggacgc gaagagcgcg gccgccgcgc tgagctgccg gggcatggtg





   361
ggcgctgggc gaggttctgc agcgtgcggc gaRgtccggg caggccccga atcggtgcca





   421
gagaaaccta cctgtgccgg agaaacgaaa ccacctgctt atgagaagca gccgaaaagc





   481
ccgcccaggg ccgctgggcg gggagggaaa ctccgccggc cccctcctac ccctacggag





   541
cagggagggg cggggactcg gcgcagccgc cggggcccgg gcctctggga ccgtttaccg





   601
cacgcgcgtg gtcccggcag cgccggcstc ctccgctcat accctgggtc tcctcctttc





   661
tttttctttt ctttttgaga cgaagtctcg ctctgtcgcc cagggtggag tgcagtggcg





   721
cgatctcggc tcactacaac ctctgcctcc cgggttcaag cgattcttct gcctcagcct





   781
cccgagtagc tgggattaca ggcatgcacc accacacccg gctaattttt gtatttttag





   841
tagagacggg gtgtcaccat attggccagg ctggtctcga gctcctgacc tcgtgattcg





   901
cccgcctcga cctcccaaag tgctgggatt atagacgtga gccaccgagc ccggccaggg





   961
tctcctcttt tatttctttt ctttttattt cttttgtttt gttttgtttt gttttgtttt





  1021
ttgagacaaa gtctcgctct gtcgccaggc tggagtgcag tggcgggatc tcggctcact





  1081
gccctggttc aagcgattct cctgccgcag cctcccgagt agctggggtt acaggcgccc





  1141
gccaccacgc ccagctaatt tttgtatttt agtagagacg gggtttcacc ctgttggcca





  1201
ggctggtctc gatctcctga ccttgtgatc cgcccgcctc ggcctcccaa agtgttggga





  1261
ttacaggcgt gagccactgc gcccggccca gggtctcctc ttttctaaca gctcgggtac





  1321
ctttctggga acccagagac gcttctcagc cgggagaaag ccagccacta ggcgagcagg





  1381
agcctaaaaa cccctaagca ccctgactcc atgtcttccc agggagtctg cggcagccgc





  1441
gctccacgcc caggcctcgc caggaccgcg gtttgcggga agcaacagga gcacagccca





  1501
gaggcgctag gtctggctgg gagctcgcgc tgccgactcc ccggcgtgcg gcgtcgggga





  1561
acctctagga gccttggatt cttcagctgt aaaacggaca taataatgcc cactcccagt





  1621
gtgttttttt attttctttt ttctttttct ttctttgttt ttgtttgttt gtttttgttt





  1681
ttgtttttga gacagggtct cactctgtcg cccaggctgg agggcaatgg cgtgatctcg





  1741
gctcactgca aacttgggtt caggcgattc tcctgcctca gcctccacag tagctgggat





  1801
tacagatgtg cgccaccacg tccggctaat tttttgtatt tttagtagag accaggtttc





  1861
accgtgttgg ccaagctggt ctcaaactcc tgaccccagg tgatccgccc gcctcggcct





  1921
tccaaagatc tgggattaca agcgtgagcc actgtgcctg gccccaggtg gttttacaga





  1981
ccagaaaatc ctggaacaaa aaacacacaa tatcgttttt tttttttttt tggagtcagg





  2041
gtctcgctct atcacccagg ctggagtgca gtggcgtgat ctcggctcac tgcaacttcg





  2101
acctcctggc ctcaagtgag tctcccacct tagcctcctg agtagctggg accaaaggcg





  2161
cgtgccacca cgcccagcta ttttatttta ttttatgtag agaggaggtc tcgctgtgtt





  2221
gcccaggctg gtctcgagtt cctggcctca aatgatcctc ctgcgttagc caaccattgg





  2281
gattacaggc gtaagccacg gcccacggct caacaacgct gacaggcaac cttttaatgt





  2341
cttatctcct tcctctatta attggattgt ctgtcaaaac aacgatgttt tgacagggct





  2401
tgagtcccag tggggaatac acatttaagc agtatattag gagaccctcc ttatcactag





  2461
attgagggct ttcagcctag cctcaaatta ttttctgaaa aataactttg gctacaacta





  2521
ttttgtctta ctatgttgct ccaaacacta atcaagtaaa cttaaccaaa gcttgcagtg





  2581
tgtttcagaa tggaattttt atggtgaaaa gtgagggtta acttgtgcca gtcaacctag





  2641
tttcagcaac tacctgcttt ctgatctttg agacagttta ttcaaaagac gataattaag





  2701
tgggtataga ctgtgtgcca ggcactcttc ttattccatt taagcgccat agccactcta





  2761
tatggacact gttgttatta tcgctgcccc atttcgcaga tggagaaact aagcacaaag





  2821
aagggagttg cccagagtca cttagataat aaataccgaa acctgaccat aaatcttgtc





  2881
tgccttgaga gtctaggatt ttaagcacat agccgggcgc agtggctcac gcctgtaatc





  2941
ccagcacttt aggaggccga ggcgggcgga tcacgaggtc aggagatgga gaccatcctg





  3001
gctaacacag tgaaacccag ttctattaaa aatataaaaa aattagccag gcgtggtggc





  3061
aggtgcatgt agtcccagct actcgggagg ctgaggcagg agaatggtgt gaacccagga





  3121
ggtggagctt gcagtgagcg gagatcgcgc cactgcactc cagcccgggc gacagaagga





  3181
gactccgtct caaaaaaaaa aaaataaata aaataaagct gctcctctta ccctggaaat





  3241
tccaagggat ttaggagctc tgtttcagga accagggtca aagaccaagt attaaaacaa





  3301
aagattctcc tagaactctg gcatataagg attttaggag ctctgtctta gaaactggga





  3361
cagagaccaa agatatatta ttatatcgca gtatcatagt ttattatttt caaaaaacgt





  3421
tttctggctg gtacagtggt tcatgcctat aatccaagca ctttgggagg ccaaggtggg





  3481
agggtcactt gaggccagaa gttcaagtcc agcctgggca acacagggag accctgccac





  3541
tattaaaaat tttttaaatt agctgggcat ggtggcacat gcctgtagtc ccagctactt





  3601
gggaggctga agcaggagga ttgcttgagc ctgagaggtc aagactgtag tgagctgcga





  3661
tcaagcgact gcactctagc ctgggtgaca aagccagacc ctgtgtctaa aaaaaagaaa





  3721
agaagaggaa aaaaaaaggt ttttatttca actaagttgt tggatttatt agcataaagc





  3781
ttttcataac aatcccttgt cttacaatat ctgtagtata ggtagtgatg tcacttcttt





  3841
tattactaat attaataatt tgtattttct ctcttatttc cctgctaata ttaataattt





  3901
gtattttctc tcttttttcc ctgataagtt tggctggagg ttgatcaatt ctattcatgt





  3961
tttcaagaaa aaaaaaaaaa tttcatttca tcgagttcct tcattgttct tatgttttct





  4021
gttttattca tttctacctg atctttatta ttttctttct tctacttaac ttgtgtttta





  4081
tttgctcctc tttcaatagt tttcaaagat ggaacttgcc tgggatatcc cagcacttta





  4141
ggaggctgag gtgggaggat cacctgaggt caggagttca agaccagcct ggccaacatg





  4201
gtgaaactcc gtctctacta aaaatacaaa aattagctgg gtgtggtggt gggcacctgt





  4261
gatcccagct actcgggagg ctgaggcagg agaatcgctt gaacccggga ggtggaggtt





  4321
acagtgagct gagatcacgc cactgcactc cagcctgggt gacaggagct agactctgtc





  4381
tcaaaaaaaa aaaaagaaaa aaaaaaagat ggaagttgag gccagtggta taaaatcttt





  4441
cttcatctct aataaacagg tttactgtta tgaacgtccc tctaattact actttagttg





  4501
gatcccacaa gtttaatatg ttttcatttt catataatta gaaagacttc ctaatttcct





  4561
tttgctatct cctcgactca tggttattta aaatagcatt atttcatttc caaacatata





  4621
gtttttcaga tatctttctt ttattgattt ttaattccac tgtggttgaa aacataatta





  4681
tggacttaaa tcttacaaat ttattgatat ttgttttttg accaagacta tggttggtta





  4741
cattagtttt caggactgac ataacaaagt gccacagact gggtaattaa accacagaca





  4801
tttgctttct tataattctg gaaaccagac atgtgagatc aaagtgtcag ccgggttggt





  4861
tttttctttt tccttttttt tttttttttt tgagacagag tctctttctg tcacccaggc





  4921
tgggatgcag tggtgtgatc tcggcttact gcaaattctg cctcccaggc tcaagcgatt





  4981
ctcctgcctc agcctcccga gtagctggga ttacaggtgc ctctcactgc acctggctaa





  5041
tttttgtatt tttagtagag acggggtttc accatgttgg ccaggttgat ctcaaactcc





  5101
tgatctcagg taatacaccc gcctcggcct cccaaagtac tgagattaca ggcgtgagcc





  5161
actgcacccg gcccgggtta gttctttcta aggcctctct ccttggctag tagacacctt





  5221
tgtttcacat ggtcatccct ctgtgcatgc ctttgtctgt cctaatctcc tcttcttata





  5281
aggacattag tcaggtagga ttagtgccta ctctttgaac tcgttttacc tcttaaagac





  5341
cctatctccg aatatagtca cattctgaga tacttggggt taagacttgt attagtccat





  5401
tttcacgctg ctcataaaga catacctgag actgggaaga aaaagaggtt taattggaca





  5461
attccacatg gctggggagg cctcagaatc atggtgggag gcgaaaggga ctttttacat





  5521
ggtggcggca agagaaaatg aggaagaagc aaaagcagaa acccctgata gataagccca





  5581
ccagatatca tgagatttat tcactgtcat gagaacagca cgggaaagac cagcccccat





  5641
gaatacatta cctcttcctt ggtccccccc tccccacaat atgtggggat tctgggagat





  5701
acaattaaaa ttgagatttg agtggggaca cagccaaacc atatcattct gtccctggtc





  5761
cttccaaatc tcatgtcctc acatttcaaa accaatcatg cctttccaat agtccctcaa





  5821
agtcttaact catttcagca ttaacctaaa agtccacagt ccaaagtctc atctgagaca





  5881
aggccttccg cctatgagcc tgtacaatca aaagcaagct agttagttcc tagatacaat





  5941
gggggtacag gtattgggta aataaagcca ttccaaatgg gagaaattgg ccaaaacaaa





  6001
ggggttacag ggcccatgca agtctgaaat ccagtgaggg agtcaaattt taaagctcca





  6061
aaatgatctc ctttgactcc aggtcttaca tccaggtcac gctaatgcaa aaggtaggtt





  6121
tccatggtct tgggcagctc cacccctgtg gctttgcagg gtacagcctc cctccaggct





  6181
gctttcatgg gctggtgttg agtgtctgca gcttttccag gcacccagtg caagctgtca





  6241
gtggatctac cattctgggg tttggaggac aaaggccctc ttctcacagc tgcactaggc





  6301
agtgccccga tagggactct gtgtgggggc tctgatccca catttccctt ctgcactgcc





  6361
ctaagaggtt ctccttgagg gccccacagc ttccaccctc tgaaccatag cccaagctat





  6421
gcattggccc ctttcagcca tggctggagc agctgggaca gagggcacca agtcactagg





  6481
ctgcacacaa catggggacc ctgggcctgc cccacaaaac ccctttttcc tcctgggcct





  6541
ccaagcctgt gatgggagag gctgctgtga aggtctctga catggccttg gagacatttc





  6601
cccatggtct tggggattca cattaggctt cttgctactt atgcaaattt ctgcaaccag





  6661
cttgaatttc tccccagaaa atgggttttt cttttctgtc acatagtccg gctgcaaatt





  6721
ttccaaactt ttatgctctg cttcccttat aaaactgaac gcctttaata gcacccaaat





  6781
cacctcttga atgttttgct gcttagaaat tttttccacc agatacccta aataatctct





  6841
caagttcaaa gttccacaag tctctagggc aggggcaaaa tgtggccagt ctctttgcta





  6901
aaacataaca agaggcacct ttgctccagt tcccaaaaag ttcctcatct ccatctgaga





  6961
ccacctcagc ctggatctta ttgtccatat cactatcagc attttgggca aaaccattca





  7021
acaagtctct aggaagttcc aaactttccc acattttcct gtcttcttct gagcccttca





  7081
aactgttcca atctctgcct gttacccagt tccaaagttg ttccacattt tcaggtatct





  7141
tcagcaacgt ttcactctac tggtagcaat ttactgtatt agtccatttt cacactgctg





  7201
ataaagacat atctgagact gggaagaaaa ataggtttaa ttggacttac agttccacat





  7261
ggctggggag gcctcagaat catggtgaga ggtgaaaggc acttcttacg tggtagtgac





  7321
aagagaaaat gaggaagaag caaaagcgga aacccctgat aaatccatca gatctcatga





  7381
gacttattca ctatcacgag aatagcatgg gaaagaccgg cccccatgat tcaattacct





  7441
ccccctgggt ccctcccaca acacatggga attctgggag atacaattca agttgagatt





  7501
tgggtgggga cacagccaaa ccatatcaag acttctacat atgaattttg gagggacaca





  7561
atttaactca taatagtgga ctgtcYtgtt aaatgttctg tgtgcacttg agaagaatgt





  7621
gtgtattctc tcattgttgg attcagtgac ctataaatgt taattaggtt aaactaattg





  7681
atgtagggaa aagaaagaga gatcagactg tcactgtgtc tatgtagaaa gggaagacat





  7741
aagagactcc attttgaaaa agacctgtac ttcaaacaat tgctttgctg agatgttaat





  7801
ttgtagcttt gccccagcca ctttgcccca gccactttga cccaacttgg agctcacaaa





  7861
aacatgtgtt gtataaaatc aaggtttaag ggatctaggg ctgtgcagga cgtgccttgt





  7921
taacaaaatg tttacaagca gtatacttgg tcaaagtcat cgccattctc tagtctcaat





  7981
aaaccagggg cacaatgcac tgcggaaagc tgcagggagc cctgcccttg gaagcggggt





  8041
attgtccaag gtttctcccc atgtgacagt ctgaaatatg gcctcgtagg atgagaaaga





  8101
cctgactgtc ccccagccca acacccataa agggtctgtg ctgaggtgga ttggtaaaag





  8161
aggaaagcct cttacagttg agatagagga aggccactgt ctcctgcctg cccctgggaa





  8221
ctgaatgtct tggtgtaaaa cccgattgta catttgttca actctgaaat aggagaaaag





  8281
ctgccctgtg gtgggaggtg agacatgttt gcagtaatgc tgccttgtta ttctttactc





  8341
cactgagatg tttgggtgga gagaaacata aatctggcct atgtgcacat ccaggcatag





  8401
taccttccct tgaacttaat tatgatacag attcttttgc tcacatgttt tttgttgacc





  8461
ttctccttat tatcaccctg ctgtcctact acattccttt ttgctgaaat aatgaaaata





  8521
ataatcaata aaaactgagg gaactcagag gctggtgccg gtacaggtcc ttggtgtgct





  8581
gagtgccggt cccctggact cactgttgtt tctttatact ttgtctctgt gtcttatttc





  8641
ttttctccgg ctctcatccc acccgactag aaatacccac aggtgtggag gggcaggcca





  8701
ccccttcaat tgatagtatg gttcaagaac aaatggtatc aacttaggat ggtttaactt





  8761
atgatttttc aactttagaa tggtgtgaag tctgtatgca ttcagtagaa ggcatacttt





  8821
gaatttttat cttttcccaa gctactgcta tgggacaaga tactctctca caattctggg





  8881
cagtggcagc aagcctcagc ttccagtcag cacccaatcc caagggtaaa caactgatac





  8941
agccattctg tttttcattt ttagcaaaat actcaataaa ttacatgagg cactcaatgc





  9001
tttattataa gacaagcttt gtattagatg atttgcccaa ctgtaggcta atgtaggtgt





  9061
tctgagcaca tttaaggtag actatactat gccatgatgt ttggaaggtt aggtaaattt





  9121
aatgcatttt cgacttagaa tactttcagc ctcccaaata gctgggacca caggtgtgtg





  9181
gcaccatgtg tggctaattt tttgtggaga caaggtctca ctRtgtcgcc caagttggtc





  9241
tcaaaatcct gacttcacgt gatccttcca ctctggtctc ccaaagtgcg attacaggtg





  9301
tgagtcacca cacctggccg tgttgtcaca cattttaatt ctttataaat tagaaacttc





  9361
acaacacatt gttcttattt aaaatttaaa caattatctt taaatataca taatatataa





  9421
atatgtatat aatatataaa tatatacaat atataaatat ataagatata ttatatatat





  9481
aatatataaa tatataatat ataaatatat aatatgtaaa tatataatat ataaatatat





  9541
gtaaatatgt aatatgtaaa tatgtaatat gtaaatatat aatatgtaaa tatataatat





  9601
ataaatatac ataatatata aatatataat atataaatat ataatatata aatatataat





  9661
atataaatat ataatatata aatatatatt atatataaat atataatata cataaatata





  9721
tataatatat aaatatatat aatatacata aatatataat atataaatat atataatata





  9781
tataaatata tatggggaaa aaagctttta tacttactca tgtgattacc gtttcttgca





  9841
gtctttattc ctttgtttag atccttggga tttttgttgc tatggtgacc ttagttatac





  9901
caggcacttc aaatcttacc ttgtgtttag gaWatgggct tgtttgccca aaggtcttcc





  9961
ctaatgtctg ctccaccttc aactttaggt cttctctgct gtcagtttct ctctccatac





 10021
acttgtagct ctcccaggag tattccatcg ttacttgtta gtcagtgctt attagcgggg





 10081
tggtgggatc tgagaggtga ggtgcttggt tgtgattctc agttctgatt cctgcaggta





 10141
ctgtgtccct gggYcttgaa gggtatgacc aagcStctct gtccctcccc gcagcagtag





 10201
ttttgggctc agcacatatt cctgcccctt ccccagaatc agagggtttt ttgttgttgt





 10261
tgttttgttt ttcaagtttt tgttcctttt tctccatctg tgttggattt accagccccc





 10321
taggagcgtc agtatttgtt acccttcctc caggctttta aggcctttgt aggagagatg





 10381
ggccaatagc atctgagcat ggttttgtgt ctttcttgta gcaactgata ttcctcaccc





 10441
ccaggtctat gccaggaagg atgcttcctt acatgcctgt aatcccagct accggggagg





 10501
ctgaagcaga agaatcactt gaacccagga ggcagaggtt gcagtgagcc aagatcatgc





 10561
cactgcactc cagcctggca acagagcgag acttcattca aaaaaaaaaa aagctcttac





 10621
actcttctgc atattctgca aagtatactc tgggaaggct ggtttagagg atctctaact





 10681
tttctaatat ttcataatgc atggctgatg tttaacatga actcagactc ccatcagatt





 10741
ttacagatct gggtctgctt ttagttctaa tgcttcagcc agggcacttt aatctgaggt





 10801
cacagcattc ccaattgtca gcagtatttt gaaatctaag ttcctctggt ggacaacagg





 10861
caacatcata tagccaYgga ggatctgaac aacttctaag tctgagSgat tttatctggt





 10921
ggttttggat tcttttccat ttatacttaa acaaggtgac acaaatgtca ctcacagaaa





 10981
agccactctt ttttcccctg tttttaagaa gtctaaaaat gcacaactat ttcctgaatg





 11041
agcagtgtgt ccaggtgtag aatagggaat gtcgtgtcca ctgggaacag acggtgtacc





 11101
tggcacaatt ttatgagaat tatcccatga ttcctgtccc accctgcagc ccaccatggg





 11161
ctcagtgggg agtctgagtc tctgagcccc aaagggtagc tttttcccag acgacaccag





 11221
caagcagagc agcagcttgg ggctttgaca aggaggctgg agtgaaaggt catattggac





 11281
catcctggRt cactggagga caatacccca ggaacctcca gcaatgactg gtattggaat





 11341
gactcccctg gtcacccacc tgtggcaaga catttgcaaa cagggtcttc ctatgaggct





 11401
tgtgaggttt ggccaatttg cattctgcta gaattattaa gtatggacat cctcatagat





 11461
ccagaaaagg gccgagatcc aaaggattga gaatgctttg gggggtgttt ccatagtgag





 11521
tggctggcta ttcaacagtc aaatgtttga gaggatacaa gtgatgtgtt tcctgaggca





 11581
agtggtcaga acccaacaga ctcttctgtt cagctaagat gagagaccat ctgaagttct





 11641
tacatgttct cacagagaaa tggattctca tagggaaatg gatatattgt gatagacact





 11701
gtaagcagag aagttgactg agaaacacac acacacacac acacacacac acacacgtca





 11761
agactgaatg catagatgtg tattataaaa agYgtaaaaa tacaccacca ttStaacaga





 11821
ttgtgtagga ctatattttc ttttttttta atttattatt attatacttt aagttttagg





 11881
gtacatgtgc acaatgtgca ggttagttac atatgtatac atgtgccatg ctggtgtgct





 11941
gcacccatta actcgtcatt tagcattagg tatatctcct aatgctatcc ctcccccctt





 12001
cccccacccc acaacagtcc ccagaatggg atgttcccct tcctgtgtcc atgtgttctc





 12061
attgttcaat tcccacctat gagtgagaat atgtggtgtt ttgttttttg tccttgcaat





 12121
agtttactga gaatgatgat ttccaatttc atccatgtcc ctacaaagga catgaactca





 12181
ccatttttta tggctgcata gtattccatg gtgtatatgt gccacatttt cttaatccag





 12241
tctatcattg ttggacattt gggttggttc caagtctttg ctattgtgaa tagtgccaca





 12301
ataaacatac gtgtgcatgt gtctttatag cagcatgatt tatagtcctt tgggtatata





 12361
cccagtaatg ggatggctgg gtcaaatggt atttctagtt ctagatccct gaggaatcgc





 12421
cacactgact tccacaatgg ttgaactagt ttacagtccc accaacagtg taaaagtgtt





 12481
cctatttctc cacatcctct ccagcacctg ttgtttcctg actttttaat gattgccatt





 12541
ctaactggtg tgagatggta tctcactgtg gttttgattt gcatttctct gatggccagt





 12601
gatgatgagc attttttcat gtgttttttg gctgcatcag tgctctacac gttcagagaa





 12661
acttctctag tgacgaacta tagaaatgat ccctgaaagt atagtcttag gactatattt





 12721
tcttttgact tgggaggcat gtttattgct gttaatgctg caaagggctc tacgtgcttt





 12781
aaaaaatccc aatctgttgc attcataagc ctgggttgga tctaaagcag cctcccactt





 12841
ttggaaaggc atccccacga cctttccatg gttgctgaat gcagctggag gcagtcacag





 12901
ctggtgatgt ccggagccca ttccccactg tgctggtctg cagaacttct gcatgccatt





 12961
cccacaagca ggtctctgcc ctgctctcct ccacctccct tgtcagagga agtctgcact





 13021
tcacagcttt ctggtctcaa ccctcctcca tccctacaga tgtgtaagca gcaggaatca





 13081
aaaggtgaag gagagggggc aactcacctc cgatggacac gtgaaaagtg ggagatggat





 13141
aaaatcaaga aggagcttaa gatatccaga aatgtaaact gtgtttggaa aagtaaggtc





 13201
aggagaagca tgggactcct gaggttgctc cctactatct tgcagacttg ctgcaggacc





 13261
aaatgaagca ggatctgtca agcaccaggg ccagctctta agcttagtgc ctttctgaac





 13321
cctgtgaccc agcagcctcc atcaactcgt cctacctgcc atgcacagct cctctgtgcc





 13381
cctgtacctg agctcatgct attccctctg ccaggatgcc cttctccttc tccaccagga





 13441
gaagaacact tgccagtaag acccagttct aatgtcaccc cttcctgacg gtatcaggaa





 13501
gagtcaStga tggtgtttta tgctcccaga gaatttgcca cattgtgttg tgattatttt





 13561
tccacatctg tctcccccac tggaatgaga gcctcactca tcttcatacc tccctggtct





 13621
ctacctggtg ccagaaccat cctcagggca ggggaatgct caggaaatag atattgaata





 13681
aaataagtgt atccatccat ccatccatcc atccttccat ccatccagac atatatacat





 13741
atgtaaacat tctgatggtc aaatggaaca atgtgggctg aagaataatg caggtagaag





 13801
aacctaagat tacagattct tgatttggga ggaactttat tttattgtgc aaacagtcta





 13861
caaatttgaa acatactcta tcaagaaaga cactgttgtt aggaaagggc gtgggagagg





 13921
gtggccccac aaaacagtgt aaagttctaa agaatttgag aggaacactc tgcgggaccc





 13981
tgttccaagg gcatctttct aagagtctgt cccttaggct ctgccccttt ttggccacgt





 14041
tgtcaaaggc cttctttatg aacgaagtga gacacattat ttttgttttc ttgaattcta





 14101
aagtgattgt cttgagttcc ctgggggaga ctcctgggag gtgtggccca ctctattcca





 14161
gaaacaaacc aggagactga agactcatcc caatcccata tcccatgaaa atgtgaaatc





 14221
aaatcacccc tgacaattcc aaaactaaYg gaatcctaac ataactctat gtaactctaa





 14281
agctgagtgt gctggtaatt aagcttccag cccacccttc ccagctctgg ggtgcagggt





 14341
caccatgggc tccttcctgt gtgcacccca ccccaccccc actgtcagca tcctgtctcc





 14401
accctgagag tgacagctgg ttccagtagc gggagttggt tccagcttgc cattttccta





 14461
gcactcctat aaccagcctg ctgatgccca ttcagagaca gcagcacggg ctggccatgt





 14521
cccctctcca gaattctgcg tccagctcct ggaccttgag ctctgagccc ttgggccacg





 14581
tgtacMatta atagtgcctc ctcctcagag gactaacccc cagccctagg gccaccttca





 14641
tatttcYgag ttttgatatt ttcaacctct tttctttgtt gtatgagtcc ttgggctggg





 14701
agcttgcagt caaaatcttc atgatatctc attatcacta ctttttttta aatctctact





 14761
agctggataa caattattta tattaaattc tctcttgaaa taactgatac agtgtctctt





 14821
gattgaaact tgactagtag actaagaatt ctaactctaa ataattctga gggccgggtg





 14881
tggtggctca cacctgtaat cccagcactt tgggaggcca acgcgaatgg atcacctgag





 14941
gtcaggagtt ggagaccagc ctggcaaaca tggcgaaacc cggtcaggag atccagacca





 15001
tccYggctaa catggtgaaa cctcatcttt acttaaaaaa aaaaaaaaat acaaaacaaa





 15061
attagccagg cgtggtggca gatgcctgta gtcccagcta ttcaggaggc tgagacagga





 15121
gaatagcgtg aacccgggag gtggagcttg cagtgagccg agattgcacc actgcactcc





 15181
agcctgggtg acagagagag actccgtctc aacaacaaca acaacaaatt agccgggcat





 15241
ggtggcaggt gcctgtaatc tcaactactt gggaggctga ggtaggagaa ttgcttgaac





 15301
ccgggaggcg gaggttgcag tgagccaaga ttgcggcact tcactccagc ctgggtgaca





 15361
agagcaaaac tccatctcaa aaaaaaaaaa aaagaaaaaa aaatctgaca attaaataaa





 15421
gaacagaaaa aaaatttgaa tggcaaatac aaagctgaaa agaaataact gagaataaat





 15481
aactctgaaa atagctcaaa aactaaatac ctcaaaaact ctttaaaaat tcagaaaata





 15541
taatgttcaa atatgaagta atgctgaaaa tgaaataact aaaaaccaag taacttgaaa





 15601
aaaagaacat aaaaataaac aactcaaata taaaataact gaaaataaat acctgtgaac





 15661
ataagcaact cgaaaaccag ataactaggg gaaacccttc attaaaacat ttcactctga





 15721
aaataaataa cttgacagta gttcatgaac ttccagtgag tgtttaatag tcaaataagt





 15781
tactgtaaaa ataaataact caaaaactcc aataagataa agtgaaataa ctatgaaggt





 15841
aaataactca gataataatt gtaaagataa ttaaaaataa attccggctg ggcgcggtgg





 15901
ctcacgcctg taatcccagc actttgggag gccgaggcag ggggatcacg aggtcaggag





 15961
atcgagacca tcctggctaa cacggggaaa ccccgtctct actaaaaatc caaataaaaa





 16021
attagccggg cgtggtggcg ggcgcctgta gtcccagcta ctcaggaggc tgaggcagga





 16081
gaatggcgtg aacccgggag gcggtttgca gtgagccgag atcacaccac tgcactccag





 16141
cctgggcgac agagcgagac tccgtctcga aaaataaata aataaataaa taaataaatt





 16201
ccaagcaaat taatttgaac atctgtaact cctaaaacaa aacaactaca tataaataac





 16261
tgaaaatgaa caactaaata actttgaaaa taaagtaact ataaaccagt aactgaaact





 16321
ataaaattaa ataaccagaa agctacaaag aaatgaaaat caactaataa aactaaaaat





 16381
aaaatacaac tgaaactaac aaaactcatt taaaaactaa taaatcgata cataaaatac





 16441
ctcagaaagt aacttggaac gaactctctc tacaacgaag caatcttggc actaacacga





 16501
acaccccatg aacgctcgca gggatgctgg gaggcggacc gggagctccc agtctgcggc





 16561
ccccgccggg ttKgagcggc tccggctcct ccaaggctcg ggctaagcgg ctctcaaccg





 16621
attcccaccc cgccctggag aaatgcgggc gtgtctgcag gcatttttga ttgtcacgat





 16681
ttgggggcgg ggtggaggat ggggtggcgc attcctggca cctagtgggt agaggccagg





 16741
ggtgctacta aacatcctac cgtgggagca cagagaagcc cacgcagcaa agaattgccc





 16801
ggctccgaat Rtcgaagtgc gcggtcgaga aggcgtgggc tgcgggctct gctcgcctct





 16861
gcaggcgcct tagagcagct ccgaggtccc ccgtgcggag ctaggcgcgc acccaggaca





 16921
cccctcgggc tcctcggagg aggccctggt tgtccccttt ctgccgccgc cgaggctccg





 16981
gctgctttct gcgtagctgg gcagggcccg ggcccccaca ccgcctctcc cgggaatgcg





 17041
ggcgctctgg agccgaggag cgggggcgtc cgcagggagg tcagctctcc tgggcggagg





 17101
tcctcgggcg cagcgccctc gcctggaaac cagccgtcgc ccccgcagga gccagccggc





 17161
ccgtggacgc cccagcgcgc tcctcctcgg tgctgcgggt cgccctgcaa ttccgagaag





 17221
aaagtcagag acgccgtggc ccaaagaggc gcttagtctt tcctcgctca cactcacgtt





 17281
tcctcctcat cgcgttcttc tttttctccc tggctgcttt ctcccctctc caggaaagca





 17341
gatttggagg aacaggtttc gtgactgtcg tccgactgga aaaggcccgc gagctggaag





 17401
ggaggggacg ggtgcaccct cagagttatt gctggaggct gtggccagac cgggcaaggt





 17461
ggtgactccc gctggcaggc tgaggcccac cccagccctc ccacctgggc cacggggctc





 17521
tcagcgggag ccccagttat gaccggacac cagcgcaccg ccaaggagac agccacgtgg





 17581
ggacatgctg gactaggagg gtcagagcca gtttgagggt ctggtgacct cggctccctg





 17641
gcttaaccag gtccttatgg gtgagaatcc tgaggagggg gagagggatg gaggctaggg





 17701
acaggaggca ggaggagctg atgaatagga aggagggaag aagatgaaag aaacaaaagg





 17761
gaagtaatta cactcagagc actgctctcc ttttccatgt cttctgcgcc ttcacagtct





 17821
tcaaaggtgt ccatggagct aaactccctg ctggagcagc cttagggaga gaaagggaag





 17881
gatggggcct ctgtggggtg ggaggacatc ccctctgccc atggcagggt gtagcaggca





 17941
gtgcctgttg caggcacggt cctccccatc tctaactcct gctctccaag ggcctgcact





 18001
gcgctgggct gtgagggggt ctgtgatctc caggctgctt ttccagcgcc gagatgccgt





 18061
aattcaccga gaaggcgcgt ccacatgctg ttcatggccc tacctccccg ttcctccaag





 18121
aaaacagtca ttgttttttg tgtttgccag tcttctaacc acgcctcctt cccttcctcc





 18181
tcccctgtct ctttctcacc ctcccctcct tgcctccttt tctctcccct aattaatgtc





 18241
catttcccat ctccctggca gcctctgcca agtgtcactg ctccccataa gggaaaatca





 18301
gaggaacaag caagtgcatc catcctgcct ctctctgcag tgaactgatt aattaatcca





 18361
tcagtcttgt ctatggcgca catgttacat ccctggggcg gtgttggaca ctgtggggaa





 18421
cagcagccac tgccaaatac tgaacaactg ccctgtgcct ggtggtatgt taggcatttg





 18481
tcaaagttta agcctcacaa ccctgtaagg gtctcagccc cctttacagt tggggaaaca





 18541
gacagcaatg gtcacttggc caagtcctct tggcctgtgg cagggcagct gtcttctcca





 18601
gcactcctgc tctttaccct cgctctgagt gagatggagt ctctgcccca catggctcac





 18661
aagccagggt agggagcaga gcatctgcag aaaggtccca acacaggaca gccccagacc





 18721
gagggtcagc tgagtagtct acgcggcggg agccgtgcta ggaaagtgtc tgctcaggcg





 18781
agaattcagg gaggtttggg caggacttga ggggcagaca ggactggaga gggagggcat





 18841
tctgggcaga ggcatggcca gagggcggta ggcggcagtg gagggagctg cagttatctg





 18901
ggtgagcagg cagcacaagt Rgcgtctcct gggctgctgc cccaagcccc caacaagcca





 18961
cgttctgggc cccaggccct ccccagagca gatcagtggg ggctgtgtga gtaacatggg





 19021
ggcggggggg cagctgggca gcacctccct ggaggcccct ctgaaatcct gcctgactct





 19081
ggcaggctcc gagggggctg gacaccctcc tctcaggttg aagcaagtcc tggttgagtt





 19141
cctagtccca ggaggtggga ggggcaaggg gtggagggca gaggagaaac tgcctcaggg





 19201
atgtgccccc tgccttcatc ctccagacag gacttgggag catctaagga aacccaagac





 19261
tcctctttag agaagtcatc cagccctggg gtccccttat gccaggagca agcagtgaga





 19321
atggaagaat gattgtcttg ctgaaagttc tgtgatggag ggatagaggg acagagggag





 19381
ccatgccctt gaccatcccc tgcatgaata ggaagggctg tgtctccagg gtccatggcc





 19441
tctgtgcccc ggatgatgcc agggctgcta gggaccatag agccacccac tgggaggctg





 19501
gcggttgggc ctggctcagg agccttcgtc agccataggc agccacagcc tggggtgggc





 19561
agggctggga ggcgacacag gaactgaaaa acctgacaag ctctagcccc tccgcagggt





 19621
aagtggtacc tccaggtaaa atgattagtt Kgttccagcc cctctgcagg gtaagtggca





 19681
cctggggtaa aatgactgcc tggagctggc agctgctttc cctgctctcg cgggccctgc





 19741
agggaagcgg ggaagggaag ggggcacagc gctgggcaca gaggggctct cagaccctgg





 19801
actcaactgt ttcagggtca tctgaaacag tcaactgttt cctctagccc attccctgcc





 19861
tccaggcgag gatttgcctg aacgtggaaa gaggaaggat cctcccagtg ctgtcaaccc





 19921
cagattccac ctccctgtgg gggactgtca gcgcaggccc tgacaacgca gagaaagaca





 19981
caggacccac ctgggccagt gacagcagga gctccgggtg ccacaggtga gggtggggat





 20041
gcctggagca ccacgggggg cctggtttag tctagagcca ggttttccat acaccttaga





 20101
gtgcaacctc agggagatgc aaattttacc ccctaacaca gcatacacgc agaaacacat





 20161
ttatacaatt caaacacaag cggacggaac aatatttacc cttagagtgt gtgaagtcct





 20221
catctgtccc acctcatcct atcatgcttt gttctatcct aggagacaaa gcaggagggg





 20281
gggctgcgga ggtgggggag tctcatccaa gcccttgggt gacacgtctc tcctgagaca





 20341
aactgcagct gctctgggtg tgccctcgcc tgtctccctc caggccccgg gttcctgcca





 20401
gcagagacag taacctattc accaggtatc ccccagggct cctggaagaa actcagaatt





 20461
ctcagaacca gaaaacctta gagagcatcc tgcaggcaaa gcccctggtt ctctgcggag





 20521
gaaagtgcgg ctcacagggt gccccgccag ggatggtaat tgacYaccag gctgtgtgcc





 20581
ttgtggggac tggcttaagg ccctgtggga gctgagtcag ggccaggacc ggggtgtcct





 20641
gactcctaga gatcatgttc ccttcctcac ccaggccttc cagtcccagc cctgggcttt





 20701
tatttattta ttttggagac agagtctggc ttgtcaccca ggttggagtg cagttgtgtg





 20761
atcacggctc actgcagcct tgacttcctg ggttgaactg atcctcccac atcagcctcc





 20821
tgagtagctg ggaccacagg cacatgccac cacacccagc taatttttgt attttttggt





 20881
agagatgggg ttttaccatg ttggccaggc tggtcttgaa ctcctgagct caactgatct





 20941
gcccacctca gcctcccaca gtgctgggat tacagatgtg agccatcatg cccacctcct





 21001
gggctgactt ttgctgtctt acatcatctg catatttaat cccctgctgg attcactggt





 21061
catgggctct gaggccctaa gagtcttagg cactaaggag ctggcagcac tgaggggacc





 21121
ccaaaatctc agactcagga tctggccagt cacaggcatg tgagggaaca actgagaggc





 21181
ccattgcccc atggcaggag aaggtgctct ggagtcagtc agacctgagg gcagtcagac





 21241
ctgattctca ctctgtcact cactagctgt gtgatcttgg atacatcact taacctcttg





 21301
agcatcagct tccttatctc taaaatggag ataataacat cgattttgca gtcttggtat





 21361
gaggattagc aaatcttctg ataaagaaaa atgcctggta catcatagga attcaacaaa





 21421
tagtacctgt tatgattatt gtgtatagca attacaataa tactaaagag agggtctcaa





 21481
aacagctctg ggcactccag gtgtgctatt attacttaca tttcagggag gtttgtctgc





 21541
cattgtctca tcctcataaa cactcaggga aagaaacatt ataaggataa taaatggctt





 21601
taaaaagaaa cagagcaaac acacacacac acacacccct cagaaaaacc atgccaaaca





 21661
cacaggctct tgacaaatat tcaatctgat tatagcaaaa ctgttttgtt ttgttttgtt





 21721
tttttgtttg tttttgagac aggggtctcg ctctgtcgcc caggctggag tgcagtggcg





 21781
tgatcttggc tcacagcaac ctccttctcc cgggttcaag caattctcct gtctcagcct





 21841
ccagagtagc tgggactaca ggcacatgcc actatgcctg gctaattttt gtatttttag





 21901
tagagacagg gtttcaccat attggtcagg ctggtctcga actcttgatc tcaggtgatc





 21961
cacctgcctt ggcctcccaa agtgtgagat tacaggcgtg agccaccatg cccagctgat





 22021
tatagcaaaa ttctaagtga tagttgtatt cttggaaaat gaatggaacg acttttgtcc





 22081
cagccaagat ctagtggtgt gttggagcag atacaccctg agtctctggg gcactctcag





 22141
tctatgtatc agataagcat aaggagtatt ggtggagaag gacaagaatg ggaaaggtgg





 22201
gcgatgagaa ttcctgcaga taaggactgg tgagagtatt ctcttttgaa acccttagtc





 22261
gacaatcttt ctggtgcata tcagataagc tgaatggttt aggaaatcta gtgttcacat





 22321
ttagtgctta gaattctaag cttttttatt ttgcttaaac aaatggaatg aaatttatta





 22381
acaagtgaac ctagtaatga gctgaaatta ttctcaccag catacatatt tttggtaaat





 22441
tatagacttt gaagacaaaa tcatggtgtt tcccttactg tccagtggat ggcacaaaga





 22501
gaccattgta gatcctgctg gttcagcggt agctctcaat ccatagatat taaatgggca





 22561
aattctattt ttattgtctt tcaaactaga tttttctcaa tgcacaactt tttttttctt





 22621
tttctttttt ttttttgaga cggagtctcg ctctattgcc aggctggagt gcagtgacac





 22681
gatctcggct cactgcaacc tccgcctccc gggttcaagt gattctcctg cctcagcctc





 22741
ctgagtagct ggggactaca ggcgcatgcc accatgccca gctaattttt ttgtaatatc





 22801
agtagagaca gggtttcacc atgttggcca ggatggtctc gatctcctga ccacgtgatc





 22861
cgcccacctt ggccttccaa agtgctggga ttacaggcgt aagccaccgc gcttggccaa





 22921
ttatgcacaa ctttttaagg accatctcta tcacatgaac taaaggatat cattttcact





 22981
tgggggtggg aagtggtgag ctgcttaaaa gcaatgccta aaccccctgg gctttccttc





 23041
ctttcacttg gaagaaccag ggggtaacta actgctaaca attccatgct ttcagagatc





 23101
taggcgcaag cctaagggct tcatctcatt taatcctcat ggcaagactg tacagtatta





 23161
tctccatttt gtaaaatgaa tgataaaaag aacttaagca cagacaggct atagaatcca





 23221
tccaaagaga tggagctgca cttgaggctg ggtctttgag acctgagttt gagcccttca





 23281
tcattgtgtt gtgtgtgctg ctaaccaatt tcccctctct gtcttctagg atttaataca





 23341
tggtgtcaca ttctgtctga tccatcccag tagctctcca gagctcccaa caggagagag





 23401
ttccaaaatg tttccagggg tactaggctc ggttacaata ttttgcttgg tggcccagag





 23461
tataaacgtg gatatcttag gctggtctat agctgaaacg tctatttcat ttgcaagcct





 23521
atctttggct aagaggaagt gaatcattct tgagaacatc taattaattg ctttcagatt





 23581
ccacatgttg acattctcag ggcacatttt ttttttcccg tgcatttctg ttgtcaaagt





 23641
ccctgccagc tcctaaggca gtctgagctg gctgtcttag actttcagag ctgctggaag





 23701
cttgggggag ggaggggctg taggtcaaag aaactttata acctagcttt acctcccagc





 23761
tcagccacca gctgccctca aatgttctgg attggaataa gcccaaagat gagtggcagg





 23821
agggaagggc aagccaatac gtctagtttg gttcagtcaa agccttgccc atttcatcag





 23881
aattttaatg gaaaatttcc aataagatta aaatataagg tcaccccaat tttagtatgg





 23941
ctccatttaa aaaaaatcat gcatatcttt gttttgcaat ggggccttac tcttgcccag





 24001
gagaggtgcg gtggtacaat catggcttac ggcagcctca acctcctgag ctcaagcaat





 24061
cctttcacct tggcctgcca aatagctagg attacagaca cccaccacca tgcccagcta





 24121
atttttaaaa aaaatttttt gtaggtccag tgcagtggct catgcctgta aatctcagca





 24181
ctttgggagg ccgaggcaag cggatcacct gaggtcagga gtttgagacc agcctggcca





 24241
caatggtgaa actgccgtct ctactaaaaa cacaaaaatt agcgaggtgt ggtggtgggc





 24301
acctgtaatc ccagctactc gggagactga agcaggagaa tcaattgaac ctgggaggtg





 24361
gaggttgcag tgagccaagt tcgtgccatt gcactccagc ctgggcaaca agagtgaaac





 24421
tccgtctcaa aagtttttgt ggagatgggg tcttgcgata ttgcccaggc tggtctcaag





 24481
ctcctggata tcaagtgatc ctcctgcttt ggcttcccaa agtgttggga ttacaggcat





 24541
gagccaccac aactgaccaa atcatgcatt tctatagaca acgtctgcaa gaagatatta





 24601
atggtgatta tatctggtta tgttggattt gtatttttat ttgtactttc ctgtattttc





 24661
taaattcctg acattctaca tgtgtactcc tttaataatc agaaaaggaa acttaaaata





 24721
gttaaaacca attggtcaga tatgtaaaat aacccaccat ctctccagag agggctgttt





 24781
gctagaactt attttcttca ttgaaatact agagtgcccc aataagtttg aataacacaa





 24841
aaaaaaagat aatgaaagta actaaattat ctaggcccaa aaggaaatgc cacaaaaatt





 24901
ggcaaagaaa caaccatgac gtgctatacc ggatagctcc taggccccct tggagaccct





 24961
gaggtacccg acgagggacc tgtagtaagg ctggcagaca ggttcttcct ctgttagctc





 25021
tgaggtacaa cagttattct catttttatg tctttcacat ggccagaact ttgcaaatca





 25081
gaggcaaagt gaattcagaa ttaaaaattt tcagcaccat ccaagtcagt aaaacagtct





 25141
tagcttataa cctttatttt ttttattatt ttattatttt tttatttttg gatggagtct





 25201
tgctctgttt ccaggctgga gtgcagtggc atcatctcRg ctcactgcaa cctccgcttc





 25261
ctgagtccaa gtgattctcc tgcctcagcc tcccgagtag ctgggacgac aggcatgcgc





 25321
caccacgccc agccaatttt tgtattttta gtagagacgg ggtttcacca tgttggccaa





 25381
gatggtctca atctcttgac ctcctgatcc tcccgcctcg gcctcccaaa gtgctgggat





 25441
tacaggcgtg agccaccgcg cccagccctt tatttttact gtaagctgcc agtaaacagc





 25501
acacccacct gtctgctgac tgtcccatct ggaagttgtg taggtcctta ctgaatctta





 25561
ccttcttccc ttcccctacc cagaccccat cccagctggc acgtggaatc ctttcccttt





 25621
ctcctcatgt caatagacca gcaggcaaag agagcagtta ccatagtgga aggagaaacg





 25681
ggtcctagtc gtggtgagga ggtagggctg ctgcttaaca Raggccgaga gggacatgtc





 25741
tgatgctcag gtgatccact aggacatctc gcaatactcc catgcccagc tgtaactatg





 25801
atggccaagt ccaagaacca tagcctgata agagtctagg acccccacta tacatgccac





 25861
cagtagaagt gcctgatggg gagagggatg tctagaatga gtaggaggga atgatgacaa





 25921
agcacagcca aggaccaact gcagtggcag gtggcagcca cagattgagt taagtaggat





 25981
tcttgctgtg ttccctagtg gaagcatctc ccttgttgag acccactgag gttaaagttg





 26041
gagacatggg gagaaaacaa tgtccccgtg ttcatcacta gagtcatgat gggcaaggtc





 26101
acaactcatt tgacttcttg gctcccagat tcatatactc tgcctcttgg gggcacttca





 26161
ccataataca gccattggtt cagttgtatg ctgcatcctg agggacagca ctccatcccc





 26221
gcagtgccat gtccaaactg ctgccccgcc tcactctcaa gaggctgtcc cactactctg





 26281
tcaggcacca gcttctgaat gcagtggtaa gactctgtcc tgtgatcacg tctatggctg





 26341
attctctttt gccatactga gtcccctgat caaagcagtg ttatacagcc tggcgcgctg





 26401
gctcatgcct gtgatcccag cactctggga ggcagagggg gatggatcac tagaggtcag





 26461
gagttcaaga ccagcctggt caacatggtg aaaccctgtc tcctctacta aaaattcaaa





 26521
aattagctgg gtgtggcatg agcctgtaat cccagctact cggaaggctg aggcaggaga





 26581
atcacttgca cccaggaggt ggaggttgca gtgatccctg atggtgccgt tgcactccag





 26641
cctgagcgac aagtgtgaaa ctctatcgca aaaaaaaaaa gcaacgctta tgattgatca





 26701
cacactgtac tttctaacct gaaggggtct ggtaaaatca acttgtcttc tcaagggaca





 26761
gtaccaaact gggggctcag cactgacctc tgctggcatg tcggacattt aaaagtggta





 26821
gcagctagag cagtcttgaa gacatggagc cctcactgct ggggccgagc actgctgggt





 26881
tcaattctgc taccaaggct tctccatttc cgagcccatg gtgcaggcac tggggtgcct





 26941
aagaggaagt gcactaactg gacttctgct atgcaccttc tttagggggc attaaagcac





 27001
agttcaaaga ctctcacatt ttgagttaac ccccacaggc ctgtgtgccc cttctccagt





 27061
caggtcatgt tgtcatttga tcctagttat tattctgaaa gggttcagga agggaggtgg





 27121
ggacagatct tgRaaagggc aaacattgcc ttgtatgcct catctgaggc ttccgcatag





 27181
tcttagggga ctgggaaccg tcttaagtga atctcacctt cttcccttcc cccagccagg





 27241
ccctagccct actggcatga ggaatcctat ctctttgtcc tcatgccagg agaccagcag





 27301
gcaaagagag cagttaccat actggaagga gaaatgggtc ctggtcatca gaaggaggta





 27361
ctcctcaagg gacagtacct gagggagaca cttccactag ggaacacagc aagaatccta





 27421
cttaactaaa tctacggctg ccgcctgctg ctacagttgg tccttggctg tactttgtag





 27481
tacaaggcga agtaggccac tgctgccagc ccaggaggtc aagggcattt acccagacat





 27541
cctcattccc agtttttggg tcccttatct tccctctcag gatctaatga ctcatctact





 27601
ggcactagga gtccaaaatg accagatggc agactcgcct aggctgagaa ttcttccttc





 27661
tctcaaattc tgccactttt accagcccag tctgcctctg ctgtaggaga tgagaggcta





 27721
aatgttggca gggaggcccc ctgattctga tcctgtgttt taaatcgata attagtcYga





 27781
ccctgttact ttctcccttc agtgcatcaa cgggaggctc ttagcaacag cctcccaact





 27841
ctaccttcct gatagataat attttcctca aagctctcaa atgctagaga cattgcacca





 27901
gctggYgtgt ccccatccac ctgtatctga tcccaggtca ccacaggtga aggtctgagc





 27961
aatcgaactg ctacagcagg ccaggtacca ggactctcaR cacgccactt aacaccaata





 28021
atgaggtcct catggccatt tggcctgcag tgagccaaca ccagaatccc atccattctg





 28081
ggacccctcc tgctactaac ggtcttcagt caggttcccc agaagcagat tatgcaaatg





 28141
tgttattgaa aaacggcttt cagatgaaac ctggaagaca gtgaaggccg aagctagggc





 28201
agggaagaag ccaggcacag acgtgggctt agcagaagtc tagcatcagc ctgatcccct





 28261
gggcagtact ggagcatgga tggcaccaca ggttaccatc ttgagacaga aggactggct





 28321
tctgtaccct gaatcagtaa gccattggtg ggccataagc cacccttagg ggaggacata





 28381
acctcacagg catttcctgg ctggacgacc ctgggcagct gagggcaact gcctgaaggg





 28441
cacaacggtg agccattgtc agctaacctc acagcagcag agacatgggg ccaacagcct





 28501
ataaagaggg tctgggcagg ctgtcaatac tctctactgt aatactgtat atgtggttta





 28561
ttttaaaaac ttttttagaa ggctttattt tattttattt tttgagaagg agtttcgccc





 28621
ttgttgccca ggctggagtg caatggcgcg atcttgactc accacaatct ctgcctcctg





 28681
ggttcaagga attctcctgc ctcagcctcc cgagtagctg ggattacagg cgtgtaccac





 28741
catgcccggc taattttttg tatttttagt ttcatcatgt tggcctggct agtcttcaac





 28801
tcctgacctc aggtgatccg cccacctcgg cctcccaaag tgctgggatt acaggcgtga





 28861
gccaccgcac ccggctgact ttattttttt agagcagttt taggttcaca gaaaaactga





 28921
gaggaaggta caaagatttc ccatatatcc cctgtgctca cacatgcatg gcctccctat





 28981
caccatcccc caccagagag gcacatttgt tacaatggat gaacgtatac actgaatata





 29041
tcatattcac ccaaagtctg tagctcacat catggttcac tttggctgtt gtacattcct





 29101
tggatctaga cacttttata atgacaggta cagtagtccc cctttatcct caggggctac





 29161
ttccaagatc cccagtggat gcccgaaacc gcagagagtg ccaaacttga ctgccatcag





 29221
tgggaatatg tttctattcg ccttccacca ccaccggttt aacgcctttt tcatcttagt





 29281
gctgctgccg taactttggc agtttgagat gcgacagcaa aatgagtaca aatttctttc





 29341
tccttcttca caatgtcatg gacagatgat tccttcttac catagatctt agcaacctcg





 29401
gtgtgtgatt ttttttcttt cttgttaaat caactttcac cttttcactt aaaggaagca





 29461
tttgacggct tctctttggc atatctgaat ttccagcatc acgactgtgc tttggggcca





 29521
ttgtttgttt atttatttat ttattttatt tatttttttg agacagagtc tcgctctgtt





 29581
gcccaggctg gagtgcagtg gcgtgatctc ggctcactgc aagctccgcc tcccaggttg





 29641
acgccattct cctgcctcag cctcccgagt agctgggact acaggcgccc accaccaagc





 29701
gcagctaatt tttttttttt tttgtatttt tagtagagat ggggtttcac tgtgttagcc





 29761
agggtgatct cgatctcctg acctcgtgat cctcccgcct cagcctccca aagtgccggg





 29821
attacaggca tgagtatttt atttatttat ttattttttc agacagagtc tcactctgtc





 29881
ggccaggctg gagtgcagtg gcaccatctc gctcactgca acctccgcct cccaggttca





 29941
agcaattctc tgcctcaaac tccggagtag ctagaattac aggtgcacac caccacgccc





 30001
ggctRatttt tgtattttta gtagagacaa ggtttcacca tcttggccag gctggtctta





 30061
aactcctgac ctcaggtgat ccacccacct cggcctccca aagtgctggg attataggcg





 30121
tgagccaccg tgcttggcct tggggccatt attaagtaaa ataagagtca cttgaacaca





 30181
aacactgtga tcctaacagt cgatttaatc accaagatgg ctataagtga ctaaggctgg





 30241
cggggtgggg agcacagaca gcagggacac cctggacaag gggataattc gtgtaccaag





 30301
caagacacag cggaaggcgc cagatttcat cgcactactc agaatggcat atcatttaaa





 30361
actcatcgat tgtttatttc tgtaattttt ccatttgata tttggacagc agttgactaa





 30421
gagtaactaa aacctggaaa gtgaaacagt ggataagggg gtgctcctgt acttctcaat





 30481
gtgagacatt tgcccttcat gttaattctg ccccattagY tctacacaaa tgaatagcag





 30541
gaaattgatt ttaaaccaca tggtggtaaa atgctttctt ttttctccct catttaacta





 30601
aagaagggct gggccctagg tgatgtcttc cttagcatct aagcagctgg catcacccca





 30661
ctgcttctgt gctccactct cccatgggac cctccctacc tttaatccct cctgtgctgg





 30721
aggccgggtc ttccttgcta gtggtagctc tttccatatt tttaatccat ggtccggatc





 30781
ctgctccact gcctttgctt tagagaaata aacatgaata ttgagtcact ggaaggaatg





 30841
acacacgcat ccctccccca ccagttggag taacgctggc ccacctagtg tatctctggt





 30901
ctaggtctcg aggacctgct gctcctccct cacctgtagt tgaagacctg cctcaggtca





 30961
gtaggtgata cgcagtaagg aaatgtccaa aggacacttc ttgttggatt acacagcaaa





 31021
catctaattg gctgcaaatc tttttttctt tttctttctt tttttttttg agacagagtc





 31081
tcgctctgtt gcccaggctg gagtgcagtg gcgcaatctt ggctcactgc aagctctgcc





 31141
acctgggttg acgccattct cctgcctcag cctcccaagt agctgggact acatgcgtgt





 31201
gccaccacac ccagctaatt tttgtatttt tagtagagac gaggtttcac catgttggcc





 31261
aggatggtct tgatctcttg accttgtgat ccgcccgcct tggcctccca aagtgctggg





 31321
attacatggc tacaaatctt aaagggggaa gagatgagga ggaataatcc cctttgtctt





 31381
ctcaaaaatg ttttcactgg ctcactacag ctccctcctt cctctttact gacccaaaat





 31441
gccaactatt atagtaactc ttttgggtta gacgaatcca gtgaataaac acctactaag





 31501
cattggaggt ccaagaggaa taagatatgc ctgagctaaa cctcatcacc cccggccttg





 31561
cttgcagagt ggtttgctgg cctcatctga ttattcaatg agtgctttca tttgtttatt





 31621
cactaaatat ttactgagca cctacaaaag tgcctggccc tggtagatga ggcctgaggg





 31681
aagctaaaac taataagaca aactccatgc cctagaggaa ttcatggtct catagggaga





 31741
aaatgtaaac acatcataaa attatagctt attaaatgct gcaatagagt actccgtaag





 31801
agtgtggggg cagagaggag ggggagaaac agctgctttc tagagccctc accttttcca





 31861
cttctctcat ctttctgggt tagggtctag cgggggttcc atgaggatca ggctaaatga





 31921
gcttagaaaa actaagcaga ctactgtatc agaactggat cacagtagac aggcgttttc





 31981
aacaaacata tattgagtat ccctgagtgc tttggacagg aagaggaatt atagacgaag





 32041
attgtaagtc gcagtaatag atgaggcaag gagcaccagt gaggacttaa ccctgaaaga





 32101
agtgtgagca catcttcctc ccagacaagg gggaataaag aaaggaagat gatcaggaga





 32161
gttctaagtg gaactcagca gccagagggg aagcYggagg aggtaacatc agagggtgcg





 32221
tttgcccact cagtaaagta ggaggcaggg cagccttgtg aaaataggaa tggaatagaa





 32281
agctcaagaa aacagccaaa agcaagggca attaggggag gtttcgaact ggcagatcta





 32341
cctcaactgg caatacagca agcatgcacc agaaaagata tcctagctag cagtggggtt





 32401
gggaactgat ttaatatcct aggctagcag tggggttgSg aactgattta ttatttaatt





 32461
ttttatatct attcatgtat ttatgcactt atttattttt gagataggct ctcgctctgt





 32521
cacagaggct agagtgcagt gatgtgatct aggctcactg cagctttgac ctcctgggct





 32581
caagtgatcc tcccacctca gcctcctgag tagctgggac tacaagcacg ccaccaccta





 32641
ggctaatttt tgtatttttt tttgttagag acagggtttc accatgttgc ccaggctggt





 32701
ctcaaactcc tgggctcaag cgatccatct gccttggcct cccaaagtgc tgagattaca





 32761
ggcgtgagcc actgcgccca gccaatattt tttaaaaatt ggaaatccct tgtaataagc





 32821
caagtgttgg gggaagaaaa gcaataaaag caatgacatg gactcaatat gaaacatcca





 32881
aagcatttga catgccttta aaataaaaaa atcagtactc acctcgtgct catttcaaac





 32941
tgtggatttc cttggtctaa aattttaaaa aacaaaaaac agcactctca aatttaagct





 33001
aatttgaatt gattttacat agtgattttt aaatacacat atatgcataa agagaatact





 33061
ataaaaatat ataaaggtgt gtaggtcttg atcatatttt cccaggaatt cagaaaacgc





 33121
tgctacagtc cctgggctca cgtggtcctg gcatcctccc caacgtctct accccatcct





 33181
gctgagtttc tggcatgcat tggttctggg tctgtccaag tttctactgt tagctccatt





 33241
aatactgaat taaggaataa acagtgctca aatgctcatt ttttccatgt gagcccaaat





 33301
tatgtgactt gatgagggaa aaaatcatga gtccctggga gagcgataag aatcacattc





 33361
tttactaaag tgttgtccca ggtatgagaa taacaccaga tctcaacctc cagaggcccc





 33421
ccactgcctc ccacagcata aaagccaaat tcctcggccc gatatttgag gccatctcaa





 33481
tctttttcct ttcaccctat acctgactct cccaggctag gctcagatcg tcactgaatg





 33541
tgctcacttc gaggcacctc tgtgattttc aaggttcctg ggcccacctt ttactaccga





 33601
tgtgactgcc acatgttgcc cagttgctag gatgggaccg tggccttgat ttctgccggg





 33661
actgaggctt tgccttgttt cccacccacc ctgctgcctg cccctgcact cttctggctg





 33721
gggcctgatc tttccccgca gtctcccttc acctctagat cacaggcagt catgccacag





 33781
ctgaggagct tgtcccaaac ctcagtgcct gcctccctcc tcggcttctt gtgctgctgt





 33841
gtctcaccca tcagtgaYgc tcttctcttc cctgcccaag ccctagctga ctccataaca





 33901
cctggataca atgtcctctt ctgtctggtt acctccgaga ggccctctct ctacatccct





 33961
cattggctcc cagtgtcatt cctctcaccc atggccctaa ggtcactgta ttctttggcc





 34021
agtgtacagg gttattatgc ttaacaatcc acaaaggttg aaaggtgttg taggatggtg





 34081
taaaaatgaa tctgggtggt aatgtttata tgtcagagct ttgtaaagtg ctcggcaggc





 34141
gtaaggtact gacagtcctg atattcctga tcttggaacc tgggacacca tcttctcaac





 34201
attgcccgga taccctcaag ggtatccaga cagcctgagt ttgcattctg ttcctggttc





 34261
agcccagggc cctggttccc gctcactcac catccactgt gggccctctc taaattctta





 34321
aagcccttgc catttgcatc actcacagag acatttcatc agagcctact tggtgcacca





 34381
ggctcaggag actcagttct gctgcggata agttatgtaa aattgaccct ctgcttgcac





 34441
atctgtaaaa ggaaggggct ggcacaacac ctctgggcct ttcagttcag tagtgttttc





 34501
tttttatcta aaccacgtgc tgggtcctgg ttttgcttct tatctagatt tttgcattcc





 34561
tgtcacaacc tataaagcac agttcaggcc ttaaggaggg cttgagaaat ctctttccga





 34621
attgtcaact gaataagtgt catatcttca taacaaactt gtcttttttt gcagggccag





 34681
gaaggcagca ggggagtcag ttaaaatata aattttagat taagcttaat attgttaaga





 34741
agtcaattct caccaaattg ttctagagat tttacataat cctaatcaaa atctcaataa





 34801
ggttttttga gaagttggca agcagattct aaaatatata tagaagtata aaggacacag





 34861
aataatcaaa acaactttaa aaaggaagaa caaaattata ggactctaac tacctcattt





 34921
taagacttat tagaaagcag cagtaaccaa gatagtgagg gactgatgtc aaggtagaca





 34981
aatagatcaa tggaaaagaa tcaggcatcc agaaatagat gcacttacat aaatcatcaa





 35041
ttggagaaag aatagtgttt ttaacaactg gcaatggaaa aactagaaca tcagtatgca





 35101
aaggactgaa ctttgatcca tacctcacac cacatacaaa tcaaaaacag aaacaaacaa





 35161
acaaacaaac aaatactcaa aatggatcag agacctaaat gtaaaactat aaaacttctg





 35221
gaagaaaaca cagggagaaa atctttatgg cttttagata acgatttctt aggcaggata





 35281
ccgaaaacat gatacataca gtttttaaaa ttaaatatta taagaattaa agtcttttgc





 35341
tcttcaaaag tcactcttaa gagaaaaaga tgccacacac tagaagaaaa tatttacaaa





 35401
gcattaaaag gacatatatc taggatatac ataaaaactc tcaaaagtca ataataagaa





 35461
aacaatgagc aaaagatttg aacagacact tcaccaaaga agagataaag atggcaaaga





 35521
agcacataaa gagatgctca accattagtt actagggaaa agcaaattaa aacctaatga





 35581
cataccacta tgcccctatt agaaatctga aaatttaaaa gactgacaat accaagtatt





 35641
ggtgaggaca tggcacaagt ggaactctca tacattacta tgggaatgga agatactata





 35701
atcactttgg aaactattta gaaatttcct aaaaaattaa acatacacct accatatggc





 35761
ctaaccatta cactcttagg tatttaccca agagaaatga aaacacatgt ccacacaaag





 35821
acttgtactt gcatgttcat agcagcatta ttcaaaatag ccccaaagca gaaacaaatc





 35881
ggatgttcat taacaagtaa atggataaag aaaacggggt ctagccaaac aatgaaatac





 35941
tactcagcaa caaccaaaat atgtactatt gtttacaaaa tccaaataga tgaatctcag





 36001
aataattatg cagaggagag aagccagacc aaaaaaaaaa gtacatagtg tattatctct





 36061
tatgaaattc tagaaaatgc aaactaacct atagtgacag aaaggagatt ggtggtcacc





 36121
tggggtgggt gagggagggg caggagaaag ggaatgcaaa gcagtgtgaa caaacctttg





 36181
gcggtgatag gcatgttcat tatccttact gtggtgatgc cttacagatg tatacagatg





 36241
tcaaaactta tcagattgta cactttaaat atgtgtggtt tatcgtgtca ttatacctca





 36301
gtaaaggagt tttaaaaatt gtagtaaaag gtctctacct agaaacctta ataagctaaa





 36361
atgtatgtcc ccaggactaa ccctagctat tctatagttc tggggtggaa cctagaaatc





 36421
tgcatttgta gcaagccctt caaataattt gaatgcaggt ggtccttaaa ccaccctttg





 36481
agaaacactg acctagtgag taaggatttc taaacaagct tgtgactaga atgttgtttc





 36541
tgcagggaac aagtgacttt ttctactaga gttgccatat cattctgtgt taagcctcta





 36601
ggacactcct actcaattac catgacatat atttaacata atattaatag ttgtaaaaca





 36661
aaagtaaacc atagtttttt tcccatctta tctgtataca aagtaaaatc aatgacataa





 36721
tattgttact agttcctggc agttacctac agtttaaatc aagaacttat gttgcttggt





 36781
ttttgtgaca gaaaactgat gtggtggctt tccagttaca ctgcttggtt taccttttcc





 36841
cttatcttat gatgcacacc cagctttgca cgttcctgag cagctgatga tcatagaaga





 36901
cctagaaaaa gtgtgagcca gttgcattcc tgctatctct aaagaaaaaa gttatctttt





 36961
catttttatg tgatttttct tacccaaaat gcaaaccact gccagtataa atgatggaag





 37021
atagactttc cacatgaaac tggcatttct tcaccctagt aacattacct gaggggaagg





 37081
tcagaactca attgataaag ctcgctgtgg attttcccac caaatatccc tgcaaacaaa





 37141
gtgaaaggat aaagcctgct taaagatgat ttgtaattgt tgaaaggagt acagtgtgtg





 37201
acatcagtga aaatggtgga gaaaaaaccc gtccccaaat tctcttcttt gtgaaagcat





 37261
ggaaaaaact ggccaaaaat ggttagaaaa tttattttca gaatatcgaa attttttttt





 37321
cctttttttt ttttttatta tactttaagt tctagggtac gtgtgcacaa catgcaggtt





 37381
tgttacatat gtatacatgt gccatgttgg tgtgctgcac ccattaactc atcatttgca





 37441
ttatgtatat cccctaatgc tatctatccc ttccccctcc ccccacccca ccacaggccc





 37501
tggtgtgtga tgttccctac cctgtgacca agtgttctca ttgttcagtt cccacctatg





 37561
agtgagaaca cacggtgttt ggttttctgt ccttgcgata gtttgctcag aatgatggtt





 37621
tccagcttca ccatgtccct acaaaggaca tgaactcatt gttttttatg gctgcatagt





 37681
attccatggt gtatatgtgc cacattttct taatccagtc tatcattgat ggacatttgg





 37741
gttggttcca agtctttgct attgtgaata gtgctgcaat aaacatacgt gtgcatgtat





 37801
ctttatagca gcatgattta taatcctttg ggtatatacc cagtaatggg atggctgggt





 37861
caaacgatat ttgtagttct agatctttga ggaatcgcca cactgtcttc cacaatggtt





 37921
gaactaattt acagtcccac caacagtgta aaagtgttcc tatttctcca catcctctcc





 37981
agcacctgtt gtttcctgac tttttaaaga ttgcctttct aactggtgtg agatgttatc





 38041
tcattgtggt tttgatttgc atttctctga tggccagtga tgatgagcat tttttcatgt





 38101
gtctgttggc tgcataaatg tcttcttttg agaagtgacc gttcatatct tttgcccact





 38161
ttttgatggg gttgattttt ttcttgtaaa tttgtttaag ttctttgtag attctggata





 38221
ttagcccttt gtcagatggg tagattgtaa acattttctc ccattctgta agttgcctgt





 38281
tcactctgat ggtagtttct tttgctgcgc agaaactctt tagtttaatt agatcccact





 38341
tgtcaatttt ggcttttgtt gccattgctt ttggtgtttt agtcatgaag tccttgccca





 38401
tgcctatggc ctgaatggta ttgcctaggt tttcttctag ggtttttatg gttttaggtc





 38461
taacatttaa gtctttaatc catcttgaat tcatttttgt ataaggtgta aggaagggat





 38521
ccagtttcag ctttctacat atggctagcc agttttccca gcactattta ttaaataggg





 38581
aatcctttcc ctatttcttg tttttgtcag gtttgtcaaa gatcagatgg ttgtagatgt





 38641
atgatattat ttctgagggc tctgttctgt tccattggtc tatatctctg tttttggtac





 38701
cagtaccatg ctgttttgat tactgtagcc ttgtagtata gtttgaagtc aggtagcgtg





 38761
atgcctccag ctttgttctt ttggcttagg attatcttga caatgcaagc tcttttttgg





 38821
ttccatatga actttaaagt agtttttttc caattctgtg aagaaagtca ttggtagctt





 38881
gatggggatg gcattgaatc tataaattac cttgggcagt atggccattt tcacgatatt





 38941
gattcttcct atccatgagc atggaatgtt cttccattgg tttgtgtcct cttttatttt





 39001
gttgagcagt ggtttgtagt tctccttgaa gaggtccttc acatcccttg taagttggat





 39061
tcctaggtat tttattctct ttgaagcaat tgtgaatggg agttcactca tgatttggct





 39121
ctctgtttgt ctgttattgg tgtataggaa tgcttgtaat ttttgcacat tgattttgta





 39181
tactgagact ttgctgaagt tgcttatcag cttaaggaga ttttgggctg agacgatggg





 39241
gttttctaaa tatacaatca tgtcatctgc aatttgacaa tttgactttc tcttttccta





 39301
attcaatacc ctttatttct ttctcctgcc tgattgccct ggccagaact tccaacacta





 39361
tgttgagtag gagtggtgag agagggcatc cctgtcttct gccaggtttc aaagggaata





 39421
cttccagttt ttgcccattc agtatgatat tggctgtggg tttgtcataa atagttctca





 39481
ttattttgag atacgtccca tcaataccta gtttattgag agtttttagc atgaagggct





 39541
gttgaatttt gttgaagacc tttactgcat ctattgagat aatcatgtgg tttttgtctt





 39601
cggagaacac tggaaattaa atgatggctt gcagcaatct ggagagcatt tattcaagga





 39661
aaatggctgt gtctcagtat gactaatgag ctttttaact tgccctattt ctatcctccc





 39721
cttccttggt ggtagcctta gaaatgaaca gcctgcaatg atagtgaaaa tcagcagtct





 39781
ggcagccatg ggaggggcag aacaggaatg ggggaactat ggagcctcat tcttagagaa





 39841
ttatcattat ttgatctgtc cacgggtttc taggaatacc tgacctgcaa gtctgtcttt





 39901
attaggcctg actcagaact tgcccaatgt gaaaagtctt ttccccaaag gcctttgtag





 39961
aaaatgatta caggcaattg tttaacttct tggttgctcg aggtattggc taacagtggg





 40021
gcaaacatgg gctaatcaga aggtttaaaa tgaaatgctc aggaataaga tgctcataga





 40081
gggttgtaaa ggctccaaaa tatttatgag actctagaag accatgcaca catttcctgt





 40141
gaacatgttc aggacagatc tgcgaaggcc ccacgatctt acctctggct gatcttgatg





 40201
atctgcacaa acagaaagtg aaagctaggc tagaactgtc aagtgccagg ctgagtgtga





 40261
aggtgtgccc taatgtgcac acagagcccc ttggcaaaga ctagaagact tactgctttc





 40321
aggtgtttaa agaaatctct gtcatgtcat tagtatttag atcactaagc taactgaaca





 40381
gaggcttcaa tggctgcaca taaatacaga cttcacagaa ttagtttaga aaagtcacta





 40441
taacaaacaa caataaacag caacaccaac aaacagtaga ggtgggaagg tccaatttcc





 40501
agagttgcta cattatgtta tttaaaatgt gcaattttaa cagaaaataa tgagacatgt





 40561
aaagaaataa gaaaatgcag tccataccca gggaaaaaga aaaaccagtc aatacaaact





 40621
gttcctaggc caggtgcagt ggctcatgcc tgtaatccca gcactttggg aggccaaggc





 40681
aggcagatca ccagaggtca ggagtttgag accagcctga ccaacatgtt gaaaccccat





 40741
ctctactaaa agaaaaatac aaatttagcc aggcatggtg gcgtgcacct gtaatcccag





 40801
ctactcggga ggctgaggca gaagaattgc ttgaacccag gaggcggagg ttgcagtgag





 40861
ctgagatcat gccattgcac tccagcctgg gctacagagc aagactctgt ctcaaaaaag





 40921
aaaaaaaaag aaaaaagaaa aaactgttcc tgaggaagcc aagatactga ctttactaga





 40981
ccaatacttt aactattttt acatgttcaa aaagttaaag gaaatcatat ataaagacta





 41041
aaggaaagca caagaacaaa tcctcattaa atagaaaata taaagatttg ttttaaagga





 41101
cgaaacagaa attctagatt tcaaaagtat aataattgaa tgagaaattc actagagtgg





 41161
ctggctcaat agcagatctg agcaggcaga agaaagaatt agagaactca gaaataggtc





 41221
aattgaatct atccagtctg aggaagagaa agaaagagga atgaaggaaa aatgaataga





 41281
gcctcagaga ctgtgagata ccttcaagca cgctaatgac gcataatggc agtctcagaa





 41341
ggagagaggg ataaatgggc taaaataata tttaaagaag caatggctga acatttccca





 41401
aatctgatga aaacattaat ctataccttc aagaaagtct ataaactcca agaaatataa





 41461
attcaaagag atcaagatcc acacctagag ataacataat caaactgtca acaaagacaa





 41521
tgaaattatc ttgaaagcag caagcacata gaaggactct tcaataagat taacagctga





 41581
tttctatcag aaatcacaga gttgagaagg caatgggatg acatattcaa agtgcttaaa





 41641
gaaaaagagg gtcaacaagg aattctatac ctaaagccaa tttatcttca acaaagatgc





 41701
caagaccatt caaagYgggg aaagaatagt cttttcaatc aatggttcta ggacaatgga





 41761
tatccacatg taaaaaaagg aacttgggcc cctaattcac atcatataca aaaattaact





 41821
cggaatgagt caaaggctta actgtaagag ttaaaactat aaactctttg caaagaacac





 41881
tatcaagaga gtaaaaagac aatgcacagt atgggaaaaa atacttgcaa ataatatatc





 41941
tgataaaagt ccagtatcca gaatatataa ataactctta caattcaacc ataaaatgac





 42001
aagccaatta aaaaacatac aaatgagtta actgacattt ctacaaagaa gatataccaa





 42061
tggccaatat gcatgttaaa agatgctcaa catcactagc catgagggaa atgtaaatca





 42121
aaatcacaat gagatactag tacatgccca ctaggatggc aatgataata ataataataa





 42181
taataatgtt attataatga acaatacaag tgttagtaag gaaatggaga aaattgaacc





 42241
caactattat attgctggtg tgaatgtgaa atggtggtac tgttttgaaa gatgatttgg





 42301
aagttcctca gaaagttaac aaaagttacc atatggtctg gcaattctac atatatacac





 42361
caaagaaaac tggaaataaa gattcataca aaaatctgta caaaaatatc tacagcagct





 42421
ttacttacag tatccaaaaa ggggaaaaaM cccaaatctt catcaactaa tgaatggata





 42481
aacaaagatg gtatatccat acaatggact gttactcagc cataaaaagg tatgaagtac





 42541
tgatagatac tacaacataa atgaaactta aaaaaatacg caaagtgaaa gaagctagac





 42601
agaaagggcc atatatgtga tgtgtagaga aaacatccaa tagagacagg aaatacatta





 42661
gtgattgcca ggggctgggt aaaggtgaga gatggagaat gattgctaat tggtacagaa





 42721
tttttttgtt gggagagtta tgaaaatatt ttggaagtat aattagaatt aggctgttaa





 42781
atactttaaa acaaaaaaca gctgggcgca gtggctcaca cctgtaatcc cagcactttg





 42841
ggaggccgag gcaggcagat cataaggtca ggagatcaag accatcctgc ccaacatggt





 42901
gacaccctgt ctctactaca aacacacaaa ttagccaggc gtgttggcgc gcctgtagtc





 42961
ccagctattc gggaggctga ggcaggagaa tcacttgaac ctgggaggca gaggttgcag





 43021
tgagcccaga tggtgccact gcactccagc ctgggcgaca agagcaaaaa ctccatctca





 43081
aaacaaaaca aaacaaaaaa caaaagtaag aagtaaaaaa atagaattag actggggatg





 43141
gttattgagc cttgtgaata atctaaaacc cactgaattg tatattttag acagtgaatt





 43201
tgatggcatg ttaattatat cttgatgttt taaaaaaagt agtacagtgt ctgaaaggta





 43261
gcattggcca tttgaatctc tgttaacatt ttcttgggtg gccatcagat ttttgattaa





 43321
aggtgacctt ggcaattaag tggtgggggg aacacaacca aaagggacaa accaacacaa





 43381
ccacacacaa tcacacaacc cctccacctc caccacagtg gaaatcaagc ataggtgctt





 43441
ccagggactg tgaaaatgtg gccacagttg ttttcccagc aaaccatttt ctttcacaat





 43501
atccccaatt tgcacatccc ccactgagct gaaatcagta taactcgaca gacRaaagtc





 43561
agcaggggta acctaccttt gatattattt tgttgttcca tcaataattt acttatttct





 43621
gaaaaccaac agtctctgat ttcttttgaa gctgcctgca atcacacata agaaaacact





 43681
ataagactac catgagtatt aattgcagag tttttattct cccagtgacc gttagactaa





 43741
tgagatagaa aacacttgtc aagtcatggg aacacaataa ggaaagagta gaggagaccc





 43801
atggggaagg catgagcgtt acctgcagga tgtatttctc aagtccattt cgactggcaa





 43861
tctcaaactt tctatggctc ccccttccaa gctggcgaat tgaaagtgtc atcagctatt





 43921
ataaagaggg aagagaaatg ttctatacca tcgttttctg attttaaaat agtccctgtc





 43981
aatcactcta atcctttcta tccttgacag ctctcttctt tcatcttcct ttcaagtttt





 44041
tgctttcctc tcttaatgac tccaagacag cataaaacac aatctggtac agtgtcttct





 44101
gtctcatctg tttcagaagg taacacagac tgttaacttt ctactgtatc tttatgcagg





 44161
aggcgctgca gccctcaacc tttcagtgaa gagatcattt ctccttcaac Rtgtatttta





 44221
caactttcta cgtaatagta actgaataag gatctattca gaaacataaa taacaaggcc





 44281
aggtatggtg gctcatgcct ctgtaatcag tcctgtaatt ccagcacttt gggaggccta





 44341
ggtgggcgga tcacctgagg tcaggagttc gagaccagcc tgaccaacat ggtgaaaccc





 44401
tgtctctact aaaaatacaa aattagctgg gcatgctggt gcgtgcctgt aatcccagct





 44461
acctgggagg ctgaggcaga attgcttgaa cccgggaggt ggaggttgca gttagccaag





 44521
atcatgccat tgcactccag cctgggcaac aagagcaaaa ctctgtcgaa agaaaagaaa





 44581
gaaagaaaga caagaaagaa agacagaaag aaagaaagga aggaaggaag gaaggaagga





 44641
aggaaggaag gaaggaagga aggaaggaag gaagggaggg agggagggag gaaggaaggg





 44701
agggaggaag gaaggaagga aggggagaaa gaaaacaaag gctactatga acaaattaac





 44761
agctttaatc acaaSagcat aaatatatat gggtgtggct cctgtatgtg ggtgtgtgtg





 44821
tttcatagcc tgagagctaa ctggctatga aacagtttct aaacaggtga gaaaacaatg





 44881
cttggtgtgg gcctgggtgc cttagacccc aaggtcagga caatgcctgc acttagacac





 44941
aaagatacac cgttgagaag gRcaagtcta agatgaaatc cagcccatgt tctcatcact





 45001
aagtctttca actctctttt acctctttgc ctggaagaaa gagggtactt ttactaatta





 45061
gtttgtccag actggctgcc atatagtctt ttttctctag tacaaaggca ctcctatgcc





 45121
agccctggcc cataagctct gaccctggag tcagacagac ccggctatgg attctagccc





 45181
tgtggtgtgg tatttggcaa gttaacttca cctctctaca ctgcagcttc ctcatctgta





 45241
aaataaggaa aacgatctct ctcttttctg catagggcga ctcccagatg caataggact





 45301
ccctttacct tcatggYctt cttgaagctg taatgaggag ataatccctg gtccccaggc





 45361
tccattcgta tcttacagaa cactattccc ctttcaaata ggtagatttg cctctggctg





 45421
ggtttaaatc gaatcaaatc cttcatttta taacgatcct tgtgaattgt ccagacgctg





 45481
aaagggccgt gcagcaacag cttgcctagt tttccaatat cgtccttttg gaaacacaca





 45541
tacaggaaaa gaagctgtaa aattacttga cagagaaaga agcctttgtg gcctgttttc





 45601
aaattttata aagcatgctt ctttgaggtt tacaattcta aaagtgctat tcaggctggt





 45661
ctgtcactaa atcaaaacga caattttttg agcttcactg agcgtggtgc cRtttagtta





 45721
tataaggaaa tcaattcagc tatgaaaggt aatgctatac ataaagaatg ttagaaatgc





 45781
ttgagctaga gatacgggga ctgtgatatt tttgactcaa ttttaactag cagaattcaa





 45841
tttcctctgt gctatgtttg atacatgaca gtctccttca aagggacaag aaattaacat





 45901
ttcaattatg tccagtagag atagaatttt ggctgcattg Yggacccatg agcatctgtg





 45961
tgttccatct gcatcctaac ttctgcttca ggtatatgag gacctgagaa aatgaagctt





 46021
gttctgaaaa gagaaagttt actgtgatct aatcttcaca acattgtaat ggaaatagta





 46081
actgcattca actctgagtt tttcagagtg agtcaacagt gccaagataa taccaaatga





 46141
cagattttta agaagtctgt ttgactctag gcataaactg tgatgcccct gtctccacca





 46201
gcaaggctgc ctttgtcata tgtctggttg aaagtccaaa tgagatgacc ctgccttctc





 46261
tgagctctct tcaaaagaca gtggaccaag atgagctggg agcgaggcat tttatctggt





 46321
atttttcaaa acttcgattg cttaaagcag ataagaattc atttccctga ataaaaacac





 46381
caaaaggaac aaattatttg aaggggacca agacaaagaa atctccctaa gtgacctcta





 46441
gctgagatca atccctatga tttctgagtt aatactggaa atatgtactt cattcataat





 46501
tgattgggca tttttataaK ttattgttta tatgttgggc aaactctagg tatctttttt





 46561
aaaaaggaat tgactttact tctgaaacat taaaagaaaa acttcaagag caataaactc





 46621
tagtcatttc tatggtgtct atggcgttat ttcctatgtt aattttctat tttcttcttt





 46681
ggaaaattta catatgtaga ctgtggtgaa taaaaccctc aaactcccag ccacgaggcc





 46741
ttctttccta aaagccaatg ctcctgttct gtgttaacag ttcaccacat tccaaaacag





 46801
aagggtggat aggtccatga ggaccctgga gaattttttc actctatctg catccatcaa





 46861
ggacccactc aaatgtaatc actacagacc ttagtgactg ctttttcctt taaatccatt





 46921
caattcataa tcaatatcga cataaatagt gcaggaaata tgttttagta aaggcaactg





 46981
gtagaagtag atacttaata tttgccacat aaacaaatgt tatcagcaca ggttgagcat





 47041
ccataattta aaaaatctga aatcctccaa aatctggaac tttctgagaa ccagtatgac





 47101
actggaggtg aaaaattcca tacctgacca catgtgatgg gtggcagtca aaacacagtc





 47161
aaaattttgc ttcaYgcaca aaattatttt ttatttttta tttttttgag acggagtctt





 47221
actctgttgc caaggctgca gtagagtggc acgaccttgg ctcaccgcaa cctctgtctc





 47281
ctgagttcaa gggactctcc tgcctcatcc tcccgagtag cttggattac aggcgtgcat





 47341
taccatgccc ggctaatttt tgtattttta gtagagccag ggtttcagca tgttggccag





 47401
gctggtctcg aactcctgac ctctggtgat ctgcccacct cagcctccca aagtgctggg





 47461
attacaggca taagccactg ctcccggcct tcatgcacta aattatttaa aatatgtaaa





 47521
attaccttca gtctatgtgt ataaggtgtc atgaaacata aatgaatttc gtgtttacac





 47581
ttgggttcca tctgcaacat aactcagtac gtatgcaaat actccaatcc tcccctaaaa





 47641
aaaaaaaaac tccaaaacac ttttggcctc aagcattttg gctaagggat attcaaactt





 47701
gtagtttcta tcttacaatg tattcactct ctacctcatt ttaaacattc gacgcatctt





 47761
acagaaatat atacagtata gacagataga aaataaccga gggaattaag gtgaagaaaa





 47821
aataaagaag ttgggagctt ggcgcctgcc tgtagtcgca actacttggg aggctgaggc





 47881
aggaggatca cttgagtcca ggagtttgag gccagcctgg gcaacatagg gagatcacca





 47941
tccctaaata taaagacaat aaatcagatg aactgttcca gaaggtgtag aagataaaag





 48001
aaaagatgaa gaggttatat gtaaaatgca tataataaag ccatKtaaac ttgatgtaaa





 48061
cttggctctg actttctaat agcaatacag agggaaacat ggtgagtggt acgatttatt





 48121
atgtctgaag acatacacaa accggttgtt caggaaaagc acagctattc ctactaagac





 48181
ataagaaaca tttctcccag tgatatgttg tcactgagca acatcctcaa ccacgcccta





 48241
tgatagaaag aggaacatgt tttaggtaaa gctgcttgta agaacacatt tggtcagtgt





 48301
ggaggctcag ctgtcaaagt aattctagaa gaggctagga tgatagggga agggggaata





 48361
agtcgaggtg tacactctct aatgacttgt gaagatgggg tgacgtgagt taaggcatcc





 48421
acaaggctat tgtagaggaa acagccccaa ccagaaatgc tgaagaggca gcctcaggca





 48481
gcaaggtttg tgctttatta cctctgaact ttcctcatca ccccatccac agccatgctg





 48541
ctgcaccttc ataggcaagt aatcagagga tgtgaatcca gagaggtacc agcagctgac





 48601
catagggccc ccagcataaa aacaatgtgc cagggKtggg ggttggcaat gtgatctctc





 48661
cctgaactga agaaaacagg aggaagtgRt gaccagcagg agaYggggct gtgagatgct





 48721
ttaggggaaa gcaggcagtg gaataaacga gaaggaaaca gaactatgaa gaaggtgagt





 48781
cattagaaat tatgaggaag aggaagaaac tgacggaagg gaaaaaaaca gtcagtaggt





 48841
ggtaagagSR ggggcgagca ggcatgtggg tgcacttgac atatacaggc gggtcacaca





 48901
ggtaagaacc ccggctccct ccccaggccc aggccccaga ggtgctgtgg atcctgggtt





 48961
tgctcagttc ccatctccgc gaacttggct ttgccatcgt gacttcttga gaagctgcag





 49021
gtcagctttc cagtaagccc attattactg gaagtgactc ggggggagtc gctgggtctt





 49081
tcaagtctgg cagaaacata tgggcacata tcctctgggt catgttgcac aaatgttctc





 49141
aggaccacac atatgacggt attgcccatc tccacgccca aggtccgatc tccagcgggt





 49201
gagcacatgc cctacacggt gctgaccaag ggcaggcaca cacactgttc actgtgctgt





 49261
gtggagctgc tccgcctcca acaggaagct gcagggacat tccctgagca ggagcaagaa





 49321
tgaccttttc cgtcacgtgt accttttctt tccaactaga ctgtagttga tctcaaggtc





 49381
ggagaccacg ttgcacaacc tctttcagat acgtgttcac cagtatttat ttatttattg





 49441
gcattcccta gtatttattt atttattggc atttagtggt gcttgggagt aggggacagg





 49501
aaacaaaata ctcatcactg tgagggaata ttgatttatc caaggagttc attcagcgac





 49561
gcccctgtac tgggttgaat agtgttcccc caaaaactca tgtctatgag accctcaaaa





 49621
tatgatctta ttcggaaaga gggtctttgc agatacaatt ggttaagatg gggttgccct





 49681
gggttaggat gggtccaaat ccaatgactg gtatccttat aaaaaaagaa aacaaagaaa





 49741
tggagacgca cgctgaggga acagccatgc aaaggcagag gcagaaattg gagtggcaca





 49801
gctgtcagcc aaggaactcc aagaattgcc ggcagtcacc agaagctcag acgaggtaag





 49861
gaaggattct tcctgagagc cctcagaggg aacgtgggcc tgctctcacc ttgcctttgg





 49921
acgtctagcc Ktcaaaactg tgagggaata aatttctgtt gttttaagtc acgtactttg





 49981
tggttccttg cgacatcagc cctaggaaac gaatatactt ccaactgttt tccaccagta





 50041
acaaagaagt gtggccatgt cacacggtgt gtggaagaac ctgatggttg tgaactcaga





 50101
gatggaacat agcggctacc tcaaatgagc gagcgataag ttagatggcc tcctctgtac





 50161
aagaagtgat agcaaaatca attagtaaat gctaccactt tcacacctgg gcattctgca





 50221
ggtaagagcc ccgatacaag gatttcaaat gtgactacat tggccaaatg aagagtctgg





 50281
ctgagagagt gaatctaggg aagctggcct cagcaagagc ttcttttggg tgcccgtgtt





 50341
tccattccag gtagtaagag ttaatatgac tgtcacaaac ttactgcaca aagaagcagg





 50401
aaacatctgt ataaatgcgt ccacacagag cctgagtcca gaaatgaaaa gcagaagctg





 50461
tgggagcctg tgattacaat agtcaggggc aaagaggtat cttcctttcc agcttgagca





 50521
ggtccccata taacgtacca ctagggctgt ttattcggca tctgttgggc gccaggcaca





 50581
gtgcttggtg ccttacccat catttaattc tcacttactc ccggcaaccg cctgtaatat





 50641
aggtattgtg ggggggtggg gggggtgggg gggtggggaa tgaagaagat actttgcctg





 50701
ggtcactagg attatttact tagccctatc tctgcagcta acactgtggt aaggaaagag





 50761
gaaactgaaa tagaaataaa atcctggccc tagctcacaa tgaacttaca atacaagtac





 50821
atcctttagt ggtttatata aatttgttcc aaaaaggaag actgtttcat tcaatcttta





 50881
caagtcaact ttggaactta tccctggcaa gtcagaattt aaatgcatct ctaatatgca





 50941
ttggatttga aaaaaaaaaa aacttttgtt ttttttttgc aaatagatag aagtaaatta





 51001
taactcagtg ttccacaaaa caaacttgtt tggaaaagaa ttttaaactt ctgtgattaa





 51061
attagaccca ggactaattg agtacacaga aaaacaagaa aatataaata tcagaaggga





 51121
tttttttcta gttgctttct agttgtttaa ttgtgataat ttaattatca cattcaattt





 51181
ctttccttta taaaaccagg ttaatattaa atttcaagca gagaaactaa gaggttaaac





 51241
tggactcagc catgcatata gctgtaattt attacaggtg atcataaaca cctgtaataa





 51301
aactctacaa aatggagaca aagaatctca gaatcatttg agctgagtta gaggcagttg





 51361
tcagtcaatt ctaatcagaa acagataaag agtggaatag caccctgata gggaatgaac





 51421
aagaaatagt ccaaggtgac agccatgtaa tcttgagtga gttaactctt ctttccatgg





 51481
atcttctttt gaatcagaag gttgaaaatN ccaatatcta ctcctNcata attcaacagg





 51541
attatacaaa actgtcagga gaaattagct gatgtattag atgtaaaagt aagttaagtc





 51601
ttagtagaaa aggtaccaaa aagcatctgg cagaggcaca attctgagga cacatggtca





 51661
aaaaaggtcc tttgcttttt gcgtgtaaaa tctccaaatt ctgtaagctg gttcatccta





 51721
tttgcatgca aactggctgg gaatgaaatt agggcagRat gttatttgct catgttttaa





 51781
ccattctttt ctcacagcct cctcctccta tgttatttac actgtttcct gccctgtgta





 51841
ttgtttccag gacattcatt agattcaggg aaatgaaatt taatagggat gtctaatacg





 51901
taattcaaga tttaaaaagg aacagaaaga tgccctggat tgacctaaca aattgttccc





 51961
ttgactttcc tcagScgaag aaagaagaat tattaccaag aaaatgatcc ttatacacac





 52021
cctaacccta ctctgcagtt tatgcatatc ctcttgaatc atgcatcagt tgtcatcaga





 52081
gacaccttgg agtcccaggg gacagtaaca gcatcatggc tgggatcaca gcaaacccca





 52141
tggggctaag tttctgagat ccaggcccaa gaaataccag cgtgggaagt aaaaataact





 52201
catttttcgg accttaataa ctttcatggt ttgatttatg acaaggaaag aaaagtcatt





 52261
tcctctacca agacctcaat acatggtatg ttcaaaacca aataaaaatg aaaagaaaaa





 52321
aaaagagaag gaaaaagtat aatataatca caagtgacaa aaacgcagaa gagggggtca





 52381
cagagatgtg atgtaagaaa aacttggccg ggcacgatgg ctctcacctg taatcccagc





 52441
actttgggag gcggagatgg gtggatcacg aggtcaggag ttcgagacca gcctgaccaa





 52501
catggagaag ccccgtctct actaaaaata caaaaaaaaa aaaaaattag caaggtgtgg





 52561
tggcaagtgc ctgtagtccc agctactcag gaggctggga caggagaatc gcttgaacct





 52621
ggcgggcaga ggttgcagtg agctgagatc atgccattac actccagcct gggcgacaga





 52681
gcaagactct gtctcaaaaa caaacaaaca aaaagaagaa gaacccaacc tgccattgct





 52741
ggtttgtgct ttattacctc tgctcataga agccatgagc catggagcgt gggtggcctt





 52801
tttaagctgg aaaattccag gagacagatg ctagactcca aaaaggaaag gaaacacctt





 52861
gattttagcc catgagactg tgttgaactt ctgaccttgg aacttcaaaa taataataat





 52921
aatgaatttg tgctgctcta agccaccaag cttatggtaa tttattatga cagtgaaata





 52981
aaacaaacac atctgaataa aaatctagag tacttcaaag taaaaaacaa aacaagtcga





 53041
atattaacta tgctccagtc tcaaagagat catacagtta taggggatgt tttgcctgga





 53101
atgcctggga ccagcctgct ccggattaac actgacgctg gagctcaact ccccagcatt





 53161
ggcctctaac tgcatctctt gggttttctt tagactattt ggattaatgc atgtacacta





 53221
tatacttttg gggcctcttc tgggatctgt gatataaaat tggggcaaga atataggacc





 53281
tgtttccaaa atacttttct tagagaaact ctgaaacaag aagacaaatc ttttactatt





 53341
ttaatagtgc catgagttag aaaataaatt gctcctccag gacttttcct ctgcccatat





 53401
atgttctggc ccttgacttt ctggtttgtc cagacagtgg gtcagtccca cattcagaac





 53461
cctgaggaat aaatYcaaga ttcctgaaga tgccaaggga cagcttggaa tcttgtagtg





 53521
cgggtttact gagcaattta ggcgactgtc ctcagagtcc aattccttta ccatagacga





 53581
tctctctgac tttgccagag catttcctca ctgtgtagta ttgcacctgc cttttgtgtg





 53641
agatgctcta acactactat ggaacatacc ggacattcag tcactgctgc taggtccaca





 53701
gccaactcac aggacttgat caaatcctct atcactgcca aagcttgttg tagttcagtt





 53761
gagaatgctg aatctttggt tctctttggc ccatcctgtg gaaaacaaat gccttgttgg





 53821
aaatcaaaag tataccatct gcaaagtgaa gaaggaaaac aggacagaga tgaggagcca





 53881
gggatccagc caaccctgac tgagaagggt ggatattgat ctgtctccct gctcccaaag





 53941
catggtggct aaagatgctt actgatttag gtatacggca tagagacaag caaaatcatc





 54001
tacctctgtg cattgtacta gtgacgaatg aagttcataa atcatggaaa ttatattcct





 54061
gctacataag aaacatatag aattcagcta tatagctgaa ttctatatgt ttcttatgtg





 54121
tatatatatt atataaatat ttatatagta tattaaatat ttatatatta atatataatt





 54181
atatgtttat atattaatta tatatattaa atatttatat attatatatt atataaaata





 54241
taagtatata tattatatat atatatatat atatatatat attttttttt tttttttttt





 54301
tttttttttt tttttttgag agcgagagag agtttcactc tgtcacccag gctggagtgc





 54361
agaggcacga tctcggctcg ctgcaacctc tgcctcctgg attcaagcaa ttctcctgtc





 54421
tcagcctccc gagtagctgg gattacaggt gtgcgccacc atgcctggct aatttttgta





 54481
tttttagtag agacggagtt tcgccatgtt gaccaggctg ttctcaaact cctaacctca





 54541
ggtgatccac ccaccttggc ctcctaaagt gctgggatta caggcgtaag ccactgtgcc





 54601
tggccagaat ttagcttttt taaagcatgg aaaaacctag ctccttttaa ataggcttct





 54661
ctctctttta tacccctatt ccctggggct tactgaaaaa aaaaatacca tatggccggg





 54721
cgggtggctc atgcctgtaa tcccagcact ttgggaggct gagacaggca gagcacttga





 54781
ggtcaggagt ttgagcccag cctggctaac atggtgaaac cccgtctcta ctaaaaatac





 54841
aaaaattagc ttagtgtggt ggtgggcgcc tgtaatccca gctacttggg aggttgaggc





 54901
aggagaacag cttgaaccca ggaggcggag gttgcagtga gcccagattg tgtcattgca





 54961
ctccagcctg ggtaacaaga gtgaaacccc gtctcaaaaa aaaaaaaaaa aaaaaaaaaa





 55021
aaagtagctg ggtgtggtgg tgtgtgcctg taatcccagc tactcaggag gctgaggcag





 55081
gaggattgct tgaacacggg aggtggagtt tgcagtgagc caagattgcg ccactgcact





 55141
ccagcctggg caacaaagtg agaccttgtc tcacaaaaaa agaaaaaaga aaaagaaaaa





 55201
gaatacaatc tgagtatcat attcctatat ttaatgtgga agccttattc ctgtgggaaa





 55281
aattatactt aaaatcatcc cagaggagga catttgtaaa ctcctataga gacaaagaac





 55321
tccatagagg ctgctaagtg gaaatttact aatgatttac atgtaaaagc tataacatca





 55381
tatttccaca ctgaatctcc cccaactctg tccttccttc ctccacttgt ccctggccct





 55441
ccccacattg caccaccatt aaagatgcca aagagataag ccagcgctct gcacctcccg





 55501
aacataaaga ctcagcattc agcRgaaaag cagtaactaa ttaaagagac caatgttcca





 55561
attacaacca cagtgacatt taggatgtga ttggggtgat tgtttcagct ctaaaggctt





 55621
ttgcatgggc ttgaggtatt ttatctccct gctacctaca tgctgtattt atctgttacc





 55681
tggtaaatac acataaaaaa attttggttt attcaatgta tttttttaac atctcaagtt





 55741
ctgcagtgaa gaacagctag cccctttgct gctccgcatc tggccctgac tctttttgtc





 55801
ctctacagca caatgtagtc acagggttta atattttctt aatctatgcg gaagcactgg





 55861
gtatttgcat ctttggatga gagacatgag tgacagggct gatgaatgga atagatcgtg





 55921
ctgctgcctc tgaaaaacgt atcatggatt cgtagcttct cattcataat aaagaagctt





 55981
cgcttcctgg taaaagaaaa cagactctca cctgaattta ttttaacaac atcaataagg





 56041
gattaagagt tcttggcagg gcgcagtggc tcacgcctgt aatcccagca ctttgggagg





 56101
ccgagggggg gagtggatca cgaggtcacg agatcgagac cagcctgacc aacgtggtga





 56161
aaccccatct ctactaaaaa caaaaattag ccgggcgtgg tggcgggtgc ctgtaatccc





 56221
agctactcag gaggctgagg caggataata gcttgaaccc gggaggcgga gttgcagtga





 56281
gccgaaactg cgccattgca ctccagtctg ggtgacagag cgagactctg tctcaaaaaa





 56341
ataaaaaaat aagaaataat ttttttttaa agttcttata ccaggcatct tcctccttac





 56401
caaacactga atgctcagtt tcctttcaga tcctcacctc ttcccatccc ccttccttcc





 56461
gctaaccctc cttcacaaaa cacgaggtgg ctagggtttt gaactgtata atgtagggtt





 56521
cagaaaaatc ctttaaaaca ttattaaact cctctaacta gggctagctc ctcttgctcc





 56581
aggctgtaaa aatatgacct gtgtcctgag ctgcttctgt tttcaacagg tccttgtcat





 56641
ccattctgag cagaaagggc atgcaaatga ctgccccata agacatgtct caagtgtttc





 56701
ttgctaaaac cagaatattc tataggaaag ggaagagaaa ccgcactgct ataMcacaga





 56761
tttcttccta acctggtgtg gtcatggtca ccatttattc taagggaact ttggcagact





 56821
cttagagttc acacacacgc acacacacac acagaggaga acaaggcata acatatagaa





 56881
attagatata ctaagaggta caaagaagaa aacataatcc taccattcag gaaagccaca





 56941
gcagacattt tatcatatct atttacttcc agtcttttat gtatgcattt tacgtatttg





 57001
cttaattttg ttcccattaa aatttttttg gctgggtgca gtggctcacg cctgtaatac





 57061
cagcactttg ggaggccgag gcaggtggat catctgaggt caggagttca agaccagcct





 57121
ggccaacatg gcgaaacccc gtctctacta aaaataaaaa aattagctgt gcatggtggc





 57181
gggcacctgt aatcccagct acttgggagg ctgaggcagg agaatcgctt gaacccggga





 57241
ggcagaggtt gcagtgagcc aagattgcac cattgcactc cagcctgtgc aatggagtga





 57301
gactttgtct aaaaaaaaaa aaattatgtg gaaggaagaa aatatattac cacttccatt





 57361
tgggctgcaa atccctactt taaaattgcc tttaattttt ttgttttttt tcttgactgt





 57421
gagttatagg atacatacta ttttagaaaa tctagataat aaagaccacc aaRtaaaatt





 57481
gctataaatc ctccgaMcca tagacaaaca ccattaatag ttagttatat aaaatgtaat





 57541
atttaatatt gagtacctta gccgagcctc ctagttcacc tgggtctatc tccatatctt





 57601
caggagactc gaRatccagc agaccctgca ttaacccaaa agtcttgttg aaaattaaaa





 57661
tgtacattgc catcaaaatg tagattgtca acaaaatcta ctgtgcaaac tatctgccac





 57721
caatgctaag ctgactgaga acgtgtgtaa atgtgtaaga gggaaagaat aaatgatgta





 57781
tttggcacag ggtcctttcc acaaacctag aatcatattg tacacactat tttgtagact





 57841
actttttctc attcaaccat acctcatgaa tattttccca tgatattatg tttttctaaa





 57901
atatgggctt tgattgtggt agagtgttat atcttacaga taaaccattt ttctcattca





 57961
gcaatatctc atgaatattt tcccatgata ttatgttttt ctaaaatatg ggctttgatt





 58021
gtRgtagagt gttatatctt agagataaac catttttctc attcaacaat atctcatgaa





 58081
tattttccca tgatattata tttttttaaa acatgggctt tggttgtggt agagtgttat





 58141
atcttataga taaaccataa tcgaattata gtccccctta tcattaaaca tttaggttca





 58201
acaatatttt ttactataat aatgataata acttttgtgc atttttctta aagctaaatt





 58261
cctagagtgg aattgtaaat gttaagagtt ttgaggcata tttccaagtt cttcagagaa





 58321
ggactgtctt cctgccagct gtataggaaa gcctgtctca ccagccccta gcctacaagg





 58381
ggtagtacca tttaatcaaa aatctttacc aattgaatga aaagagaaat cctacctcac





 58441
tgttgtttta atttgacttc cttagataac tagaggtgta gaactttttt aaaaaaacgt





 58501
ttgctactag tgtttattct tttgcaaatt gctatgtcct ttgcgcatct ttttattata





 58561
atttccaaga gcacatgatt cattaagcat actgatcatc tgttacatat tttgttcaca





 58621
ttttccccaa tgtttcatga gtctgtcttt aatggtataa gctatcactc atcaccctct





 58681
ccccaagatc ccatgatcct ttctaaagca tgaggcaatc agtccaacat tcatgctctt





 58741
tcaagccagc acatgtgtgc gagatgcaaa ataagctctg cccctgggga tagagaaggt





 58801
cctagatagg attacaaggt Ygttcctttc tttgcaggca cgtaatggcc tgagctggtt





 58861
tcacaggcac cagcaagctt agctgtgggg acactgctct ggtctgcctt gggtagctcc





 58921
cacggctcct cacagacccc ccgcaaaata ttttgtagta attctatctc ttgtttcttc





 58981
agtgaaaggc agctaacaaa accttctaag tccttttaac ctgtattatc tcatttaatg





 59041
ctcccaacaa gcataccagg aaagtactat tattatctta tttctatagg tgagaaatct





 59101
gaggctgaga gaggttaagt aacttgcctg agttcacgca gcctggaagg gtcagagcct





 59161
ggattcagac ccaggttgtt aaactctcga gtctgtgttt ccaatgacga tgccccacag





 59221
ccctctgcgt ctggtaccga acctagctcc tatgtaaatg tcacctctgt gggaaagctg





 59281
gaacctaggc tgagggagga aggaccatca ctttcgtcct gctcatgcct cactgggccc





 59341
agaggttgga cttctacaat aggaatgaca gtgacaatgg gacatgcaga ggagcatgag





 59401
gccctgagtg agtgctgggt caaacatgct ctgaggtgct gctcgctgaa agaagcagat





 59461
cattatcctc atttctatgg tggtgtgaca gtctcaatgt ctaagataac agctacacat





 59521
catgcagagc ttcctgggct gtgccaagcc ctccgcatgt gctaatcatc tgcttcataa





 59581
cgatcttatg gaggaggttc tagtaccctc attttacata gaggaaaact aaggcccaag





 59641
aggKcaaggt ctcataactg acaaatggca gagtacaccg aggctgaaac tgctaatgga





 59701
aagcttgaaa ggagtaactt tgaaaaaatg tttttaaaat tatttttaca gatgaggtct





 59761
tgctatgttg cccaggctag tcttgaactc ctggactgaa gggatgcctc ctgcctccac





 59821
ctcctgagta gctgctggga ctacaggtgt gtgttatcat gtctggcctg aaaggggtaa





 59881
ctttttctga ggggagactg ttgggcaatg agcttaacct tcctgagcct cagtttcttc





 59941
acagtccaga gcatggctgg tatgtctgat tgtggagatt aaataagaaa tactgtaatc





 60001
ccagcacttt gggaggctga ggtgggcaga tcacgaggtc aggagttcaa gaccagcctg





 60061
gccaacatgg tgaaaccccg tctctactaa aaatacaaaa attagccagg catggcggcg





 60121
cgtgcctgta atctcagcta cttgggaggc tgaggcagga gaattgcttg aacctgggag





 60181
gcagaggttg cagtgaactg agatcgcgcc attgcactcc agcctaggca gagtctcact





 60241
ctgtctcaaa aaaaaagaaa gaaagaaaga aaaaagaaat acacgtgggg aagtacccag





 60301
taaacagtag gtgcttgttt ttgtttttgt ttttgttttt tattaagaaa tagtggccac





 60361
tgggcaagag ctacctaaat gccttataga ggttaattca acagacaact tatcgtggtg





 60421
gcccaaacct ttctctcaag ctcacaccta gaaaaccagc catgataggc cctcatatcc





 60481
tgtttggagt gtctgagaat gcttgcctgc agatgtgcta gtgtcaatga cttatcacta





 60541
aggaggggta aaggtcagag agagagagag aaaaccactt aggggttcag ggttcagata





 60601
tagcaaagtt cattctgtta ggctgctctc agggtaagat cctaaatcta agaatggagg





 60661
tcagtgctgc aaaaggatag aagacttcag ttttgtcttc tcccttccac aagttaaaat





 60721
gcccataaaa cagtaacttt ggggaaaatc acactctcgc tcccaaagag ctctcttccc





 60781
ctaagccaga ctccttagtg attcatgccc tgagctagac attggactag tgaggccctc





 60841
aggtgccctc caactctatg attctttggt cttactccac attgaagagg gctgatttag





 60901
agttggagga aagaaaaagc ctgcaggata gacgtatctt cagccttaga agaccaaggc





 60961
acagctctac atgtgtaacg acatgggcac cacagtgcag gcgtctggtt tcccaccaag





 61021
gaaaagcact gtctcattga ttttaccttc aacagcatct ggtattttat aagtctctgg





 61081
cttggtcctt tgagatactt aaaaagaggg agattgtgat ccagttggcg ctggcatacc





 61141
tttaaaagcc aaatagaaac aacataaagc aaaacaaaca acacacacag aataaaagtg





 61201
gcagcattta ggtacaaaac acaaaattgc ttttcctgga caacaggggc agctgtgtcg





 61261
agcagctcca taaggctgtg gggttgttct ttcccctagg aacagtgtgt gaaataagag





 61321
aaagaggaaa gaggacggct cggctaatat ttttacaggc atctagggaa gcagaaccat





 61381
ttatttcttt tagaaagcaa gttcactaga agacagtggg gcatttcaag tccttctgaa





 61441
aaagaggcca cctatcttca agttgggggc tgccagagtc tattcaggcc ttttggagcc





 61501
tgaaggatac agacggtttg tagacatcat tccagggagc ccaaagtgtg acatttttta





 61561
cttagtttca tttttaaaac ccatcttaga agaagacact ggttttctca ccagatatag





 61621
gtgctcctca caggcctatc ccattacaac ttttcatgtg taatttcaaa gtatgggaca





 61681
ctttaaataa acataaatcg caatgccaag ttcctctccc tagtcccact tttgatttct





 61741
ttaacaactt gatgcataga aacattttcc aggaagaagt ttgtcttctc aacattaccc





 61801
caaagtaggc gcagtcttga cactcttgcc agattgccct agctcggggc agattcttat





 61861
ggtatttaaa atatatctga agatcttctt tctaggtggg aaaaaattag aataaattaa





 61921
tcaggcagca tttttcagta agtggacagg atgatacagt ttattcattc attcaacaag





 61981
ccagagtatt ctaatgtgta aggaattggg ggtgtacagt aagtaatctt atgttgggat





 62041
gtgtgtgtga tggagagata aacagaaggc tttaaacaac cataactacc agacatagat





 62101
aggcacagag tgctctggga gcatctacaa gggctattgg taaatacata agtagactca





 62161
caaacaggaa ttggttttta tctttatcat tcttttcctg ccctttgtcc aggacatcga





 62221
catctcccca caacaggtct gcaatgagta gtaaaactga cagaaaagag gctggtgttt





 62281
gatggtcccc ctctcttctc tctccaccct ctccttgtgg tcatcgtgac accaaccctg





 62341
caaagaagcc caagaaacaa ccaaaagatg gaaacatgcc agaggggaga tgtggtagat





 62401
cgggcaacca atacggagct cagtcatttg ggcaaccctc aaagtgacag gctccgcctc





 62461
aaacatcact ttcaacctgc agcacaagac tctgagacag gaaatgttat gtgactgttt





 62521
cggagctaga gagcaaggag gactcaacgt gctgttcaac ctgtattctc atggtatcaa





 62581
agacgctgag aggtgggcac atatctgcca atctcccgga gagaaagcac actccaagcc





 62641
tctggcgtca gcttgccagc ttcactcgct ctatcaggga gcctggccca cagcggctgt





 62701
gctggccaca gatcccatgc cattctggtg gagaagccca tgtagccacc tccttgcaga





 62761
agtctgtgtc cctgtcctcc tgctcagccc aactctggat ttccttcatg tcaacacaga





 62821
tgattccttc cctctcagct tcaatgatgc ctgttctact cccaaataca ttgctatagt





 62881
ggatgacttc catttctgta gctctttctt tctcccaata ggttgtaagt ggtcatttca





 62941
gcataggaac tacagcaacc gtcctttgct attccctcca ggaaaaaaat ggcacacaca





 63001
tttaagacag atggcccttg aaaaatgttc agactggtta aggagctaga ataataactc





 63061
agagcttaac aatatagtat tgacctaaat tgctcttcta aaggctaaca gtccaaaatt





 63121
cctcagagaa aggatgtcca ctaaccagca acatacaaaa gtgcccaatt ctcctaatct





 63181
ccttatagaa tgaatcagga ggctataaaa ttgctaccag aaactcatat tcacacaaga





 63241
atacatactt gcttacggat taagactgcg gggctctggt ggcggatggt ccaggttcag





 63301
ttcttggctt tgccaaatac aaatcatatg gcctaaagta agttacctaa ccttcctaga





 63361
cttcagtttc ctcatctgtt aagtgggccc ataacagtag tcaactcctg tgactgttgt





 63421
gagattaaat gagatgatgt atagaaacct ctccacaaat gcccaatgga tagagtactc





 63481
aaaaaatggt ggctattgtc aaagcacttt ttactttatg gaatcctctg catacattat





 63541
tttgtttccc acaacaactg tacatattgg tactattagc ctgttgtgtg gaggaggaaa





 63601
gtgagattcc aaagtttaag ttatttactg gaggtcatgc agatagcaag tggcttgacc





 63661
aacatgataa atcgggtttc ctgacttacc agttactccc acatatcagt gtgagcaccc





 63721
attccagtgc tctttccatt ttaccatgtg agatctcaga gtacttggaa cccacagtac





 63781
actatggaca aatattattc tatatagaac atggtctctg gaggagaatt gtttcagaag





 63841
atacaggcta aagaggctga ttaaaacact tggtcagaaa actatttcaa aattcattat





 63901
cttggaaggc cgaggtgggc ggatcacgag gtcaggagat ggagaccatc ctggccaaca





 63961
tgatgaaacc tcgtctctac taaaaataca aaaattagcc gggcgtggtg gcacatgcct





 64021
gtaatcccag ctacgaggga gggtgaggca ggagaatcgc ttgaatcagg gagtcagagg





 64081
ttgcagtgag ccgagatcac gccacagcac tccagcctgg tgacagagcg agactccgtc





 64141
tcaagaaaaa aaaaaaaagt actacttgta ttttgtctct aacatcataa atcacatagg





 64201
gctaagtcag tgttttctgg ctgggttaat gatttacaat gttcctccca acatggcggg





 64261
gcgctatcaa aaaactttgt aaaactttac aatttaggag aggaattcag aaaaggtatt





 64321
tagttaataa ttctctgaca atttcctcat atttgaacaa tttgataata tccactttcc





 64381
cacaggaact ttgcccattt ctcattgagc aatttaaata atctttgcag taatgacata





 64441
cataaccata aaatacttct aatctctgaa actagatttc acattagtcg tttgttaagt





 64501
gcaaaaattc aaaatagtat ataaagcact aataatgtaa tagttcaaaa aaattaatga





 64561
atcagaatga gtataaaata gttttcagtg tacattgaat tctggtgctt tgacacaaag





 64621
cctatgatga gttgacatgg aaagccatat ggggccacca aaaggctctg agcatggaag





 64681
attccttctc tccattaatg tcaaatatct tgaaacctgg aggctttgtt tgcttccagt





 64741
tatcataagt attgctctca gcctcagtca taatatgagt tgcttacaac tttaagttgt





 64801
ttgatctgtt gccttgggtt cacaaaaata aaaataagaa agagaatgag aaggactagt





 64861
tgagaaagag aggagaaatg agaactattt agaaggcaca gggggtcagg atcatctcca





 64921
tggtcgtgtc ctagaaagta cctggtgggg attgatgttg ggtggaacat ttctctgtgg





 64981
cagctcccac tggcccatat agcctatttg ttgcctaaaa cagggtggag aaacagggaa





 65041
agagggaaga agtctgggag gtgggaagaa ggggtagttg gaggtataat gttgtaggcc





 65101
aagatgttca taaattgagt actaagccta aaggaggctg tagatttaga attttcgaat





 65161
catcctctat gttgtaaaaa atagaatgga aagaaaatgt atttcctgag gtttttagtt





 65221
taacaccagt gcttctcctc ttgagagcat tagtacagct ttattgtggg actctaacct





 65281
cgctgtatga ttcttgtttt aaaacgtagt tgagtcattc agaagaggat cctctgcttt





 65341
ggggaccatg gatggccagc cttccatttc atggggcttt gcaggaagcc aggcttgcgg





 65401
ttactcccac atatcagtgt gagctcagtc aaattggact cattctcacc ttggataaag





 65461
tcagataaag ttgggaggcc aactcatgtt ttccattcaa agggcagata caagatatac





 65521
tgtcttgaca aattgcaagt gtacagtaca gtattattcc atgatagtcg ccatgctgtg





 65581
cgttacatct ccaggactta ctcatctcat aactgcaagt ttgtaccctg tgaccaacat





 65641
ctccctactt cctctagact ccagcccctg gcaaccaccc ttctacttca atgagctcaa





 65701
ctgtttttgg attatatata tatacatata cacacacaca cacacacaat ggtaatgaat





 65761
gtattcatta acttgattgc agtaatcatt tcacagggtg taagtatatc aaaccatcat





 65821
gttgtatagt ttgaatatat gcaattttta tttaccaatt atacttcagt aaagcttgga





 65881
gtcggaggga agcagatatg tttttagacc attgatgttt ccatttgtcc ttgccactta





 65941
acgcagaaat gtaagggctg actttaacat gattatttac tgggagtaca gacttactct





 66001
cttgagaaag caatgtgcca gaagttcagg gttctcagca cacttttcca actcttttag





 66061
aaaagtccta gaaaaataaa agtatacaag taataatgtt ttgattttga catgtaggta





 66121
attaattttt taagtacaat cacataaggt ttcaagaggt gcctagaaaa atgttctcca





 66181
ggccttcttg ctcttatctt ctacacattg attcagRaaa aaaagctgta ttctgaggta





 66241
ttactacaat taccctgaaa tcactcacaa ctttaagttg ttcgatctgt tgccttaggt





 66301
tcacaaaaag aaaaataaga aagagaatga gaagaactag ttgRgaaaga gaggagaaat





 66361
gagaactact cagaaggcac agggggtcag gatcatctcc aattatcaga acacagctgt





 66421
tcgggtaatt ctaagcacta gtcatagata gactggatac attcactgat gctctctctt





 66481
acatgaaagt aacgttcata agaactgctg ctgctgctgt tgctattact aatatcattg





 66541
acagcttact ataagccagg cataagctaa gtgctccgca aatagtatct catttaatcc





 66601
tcaaccaaag atagggtttt ataaatataa aacctggggc tcaaagaggc tacataactt





 66661
ctctggggaa atcaacagaa atgggtttcc atttcagttt tgcgtctgac caacggacga





 66721
ggaatggggt taggaagcaa ctgtggttca attcaccaag cagcttttct ccctctgtga





 66781
attaggtgtg caatcttggg gtcatcatag cgaataaaga gagttaacaa gttaccattc





 66841
ccatatgtgt aacatgaaag ggtttgaaga tgatttccaa agtcccttat tcctgcaatt





 66901
ctctagaact caatatccaa gcagccccga gttaaaagta caacttgttt gagcagtcag





 66961
cattttctaa caccctagtt cccagcatcc ccttatgata gtagtatgga gatgtgtatc





 67021
ttggtcatct ttgtattccc aatgctgagc acagtgcctg gcacagaaca ggtgctcaaa





 67081
aaatgctgat gcatgaataa ataaacaaag gaacactcaa ctgcatacaa catggatgtc





 67141
tgacactggg tccctgttcc tttgatgtct cttccctttc tctccaggga tcctgtgggg





 67201
cttctcccct cctttcactc caacccaccc caatccaatc cactgactcc aaaccacttg





 67261
cttaaacctg aaaacatcta agtgttttca tctctcaatt ccatcagtct catttccacc





 67321
cttctSttac tctccattct ttctgataac atgaattatt atatacctgt tgtgaaattc





 67381
gtaaagttct ctaatattcc caaagagaaa gtccttgtta ttctgaagaa catctggaat





 67441
tagatgcttt agccaaataa aatccattgg agtgatatat ccctgcagag gtgcaaacaa





 67501
ggtaggtgtt acaaacagga acataccaga gatcatctga attagctact gcaaaaccca





 67561
aaactttagt gaaatgattg aagaatatag cacacttgtt tcttgaaagc tatcgtattg





 67621
agtactttct tttgatatca ttttcctcat gtgcccactt tcagaaggag atggcttaat





 67681
ggcaatgatc ataaaatggc atttttgtgg gaagaacaaa tatatttaaa aatgtttatg





 67741
ttacacaggt ttaatctaaa agaagggaaa atgtacccac tgttttatga actaatacaa





 67801
ttactattat tattatgatt attattaata ttgagacgaa gttttgctct tcttcccagg





 67861
ctggagtgca atggcgtgat ctcggctcac tgcaacctcc gcctcctggg ttcaagtgat





 67921
tcttccgttt cagactccca agtagctgga attacaggca cacaccacca cacctggcta





 67981
attttcgtat ttttagtaga gacagggttt caccatgttg gccaggctgg tctcaaactt





 68041
ctgacctcag gcgatccacc cgcctcggcc tcccaaaatg ctgggattac aggcgtgagc





 68101
cactgcatcc ggcccaataa ttatttttta atatctgaat aatgtttact cagcatatat





 68161
atcatagttt actaaacatt ccctttttat ggacatttgg gttgcttcta atattttatg





 68221
gtaaaaatgt gattataaat aatcgcgtac atataatttt ttccttaaga ttattccctt





 68281
aggaaaatag ggaaaacatg catttttact cttaagaaaa agactacttt aaaaaaacaa





 68341
gaaataatct tcccttatta aagtatcagg aacacttata atatcctttg ttggcaagaa





 68401
gatggtaaac ctatttgggc tttgctggaa tcagtgtgaa ctggcttaat tctttggaaa





 68461
ctatttggct acatggatca agaaaccaca gggatgttct tattcctact ggagacactt





 68521
gtaatattct aagacctgaa accttggtgg gaattctgga gacttctggc aactattttg





 68581
agtctctttg tacaacaaaa catctgcagt ttgaatatat gcttgatacc ccactcccca





 68641
aatctactta catcaattat gcttttaatc tcttttatgt aaatctcttc agtctcaagc





 68701
aagtcacgta taatgcgcct gaatcacagc agcaggtggg agggtgaaag agagagagac





 68761
agggagagga gaatgttctt ttagaattct gttagaataa tgctcatcaa tacagttccc





 68821
ttttagtggc tcacctactt agtttctggt cagttcattc tgttctattg aacacccaag





 68881
gtcagcatct cacaaacgca cactgtgatc acactggtat caagaagaaa cagcaaggtt





 68941
agagaactca aaatccttta ggcagccagt gaatgacctg tcctctgggt gggccatata





 69001
gtgtgggggt caagaaggga gatgttggag tcagaaatac caggtctgga tccttagtca





 69061
aggaaggtct gcctgacccc acccccaccc cctatattgt atacattgta taagtggttt





 69121
cctagatttt ctctccagct ttctgctcac atcaagcttt cttttccttt taagagaaag





 69181
ggtcttgccc tgttgcccag gaatgagtgc agtggcatga tcatggctca ctgtagcctt





 69241
gaactcccgg gctccagcaa ccctcctgcc tcagcctccc aagtagctag ggctacagat





 69301
atgcaccatc acacccagct aacgcctttt tttttttttg gtagagatga ggtcttgcta





 69361
tgttacccag gctggtctca aactgctact ttcaagcaat cctcctgcct ttgcctccca





 69421
aactgctggg attataggtg tgagacactg tgccaggcca gatccagatc tttgacccat





 69481
atggatgtat tttgttgtac atggggttag atgtatgcta gctccttcct ctggcattgg





 69541
atgtttcact gtgatttcct aaggcaaaag atatgacttc tgtctgcttc tgtcaaggaa





 69601
tgcaggtgga agatgtggtg gacagaattt aagacggtcc ccaagacttc tggccccact





 69661
gcacatacgc ctcttccaat caaacactaa tttaggggat gctgtggaag gattttgctg





 69721
ttcatttgat aggtaatcca gttgggcctg tcctaatcat atgaactcag atctatMtgg





 69781
gtcaagtggt cagagactgg aagcataaaa aagattcaac acaaaggaga ttcccctttg





 69841
ctgacttttg agatggaggg ggccagatgg aatggaatgt gggcagccgt aggaactgag





 69901
agtggctccc agctgacagg cagcaaggaa gggaaatcag tcctatagtt gcaaggaacc





 69961
gagtcctgcc acaaccacgc gaacttagaa gaggatccag agctccacat gaaaacacag





 70021
ccagccaaca ccttgacttt agccttgtgg gactcctgtc ccagggaaac tgtaggtctc





 70081
ctaagtttgt ggtcagtttt tatatagcaa tagaaaacca gtagaaagag taaggccagt





 70141
ccccacatct atcccagaca gactttcttt ctctcctcag gctacgtggc catatttatt





 70201
atttctttta ggagtccaag tagatgagtg tttatacatg tgtccttgtg tagaatatat





 70261
atatttattc ttgttaacta ttgatggatt atctattaaa tggcagcctc tcctagaaaa





 70321
tgatttgttt ttctctcata aaaatggatg tgacaaatga tccaatagaa aaaaatggga





 70381
aaggacacaa aataggagat tcacacaaat attcaaatgg atatgagact cgtggaaaaa





 70441
atactcagta catacattca acgaaggcat attttaaaag agcaacaatt ttcatctatt





 70501
agaatattaa acatttcaaa cctcatagaa agactggtaa atgagggtgt ggaaaaaccc





 70561
tcacacaata ttggtaaaat gtgtaaattt gtgcaagctc tttggaaggt aatttagaaa





 70621
catctcaccc aaatgtaaaa cacgtgctcc ttggttcagt aatttcactt ctaggaatgt





 70681
tcattgttta taattaggac aatataactt caacaacaac cagatataaa ctggttactt





 70741
aaatgctcat caaaaaatta tggtacatgg gccgggcatg gtggttcacc cctgtaatcc





 70801
cagcactctg ggaggctgag gcaggtggat cacttgaggc caggaaatcg agaccagcct





 70861
ggccaacatg gtgaaaccct gtgtctacta aaaatacaaa aaattagatg ggtgtggtag





 70921
cgcatgcttg taatcccagc tacttgggag ggtgacgcag gataattact cgaacccagg





 70981
aggtggagat tgcagtgagc cgagatcaca ccattgcact ccagcctggg caacaagagt





 71041
gaaactccat ctcaaaaaaa aaatatatat atacatacat atagatatag atagatatat





 71101
gtgtgtgtgt gtgtatatat atatacatat atatggtaca tacatataat gatgaaatac





 71161
catgcaattg ttaaaaagaa tgaggctgac taaaacactg atatgacaga ggccaggtat





 71221
ttttagtgaa aaaacaaaac aagacgtaga caagtaagca tagtatgact atttgtgtaa





 71281
aaaatgaatg tgtatgtaga aatatacgta aaactgtata tgctcagaaa atttatgcaa





 71341
agaaacttaa cacattgtta aaagtgattg cttttggaga gtggtactga aagctaaagt





 71401
atgggaaagg agaatttcta catcttactc tatacccttc tacaatcttt tttaaagtga





 71461
aacatttact gcttttataa tggaaaaata gggtttacat aatattttaa aatgaatgtt





 71521
actggaggta atgatatgta aaccctattt gatagatata aataaataat acaattcaca





 71581
tattttacag ctcattattc tttcttataa tcatttttgt gtctatttat aaatacttgt





 71641
ataagacaag actgataaac aagatgtacc acagaggatg taatttccgg aagtctaaaa





 71701
ctcccaaaaa gttacttaaa catcatactt tactaagtca ctgagaaaga ggttcctatg





 71761
ccttttataa atcacccgga aacaacaacg gtttctatgt cagaaggaag tacaggcctc





 71821
aataccaata tgtttctacg agccctggca tcaagtggga ccacagcaac agttaagcat





 71881
tcatggaaaa cctgagtaca atcagcctct tatgccttca tgaagcactg ggcttaagca





 71941
acttggcaag ctggcttcag gatgcattga caattaaagg aagtcagaag gcagaaataa





 72001
ccaggaggtg gacagaagtc aaggttatta tccaaaaatg atctatgaac ttaagagact





 72061
cttaggagct tttaggactc taatacagga aaatattcac atctctgaag gaaaagaaat





 72121
cccttggtca tattctggat tacagtttgg aaaaaaagtc tagaaatctc atccaactgc





 72181
ttcattttac ctgttggagt gcaagagata aaatgccaag gataggaact ccactgaaga





 72241
atgtaggcaa atcaatattc attaaataca ttcaaattaa tatatgactt aaaaagagcc





 72301
ctcacatcag tgttaggcca ttgcttttcc ttgcttctct tgttttcctt tcaaatacct





 72361
ttataaaata ggagaaaatg tatgactctt tttttttttt tttttttttt attatactct





 72421
aagttttagg gtacatgtgc acattgtgca ggttagttac atatgtatac atgtgccatg





 72481
ctggtgcgct gcacccacta atgtgtcatc tagcattagg tatatctccc aatgctatcc





 72541
ctcccctctc ccccgacccc accacagtcc ccagagtgtg atattcccct tcctgtgtcc





 72601
atgtgatctc attgttcaat tcccacctat gagtgagaat atgcggtgtt tggttttttg





 72661
ttcttgcgat agtttactga gaatgatggt ttccaatttc atccatgtcc ctacaaagga





 72721
tatgaactca tcatttttta tggctgcata gtattccatg gtgtatatgt gccacatttt





 72781
cttaatccag tctatcattg ttggacattt gggttggttc caagtctttg ctattgtgaa





 72841
tagtgccaca ataaacatac gtgtgcatgt gtctttatag cagcatgatt tataatcctt





 72901
tgggtatata cccagtaatg ggatggctgg gtcaaatggt atttctagtt ctagatccct





 72961
gaggaatcgc cacactgact tccacaatgg ttgaactagt ttacagtccc accaacagtg





 73021
taaaagtgtt cctatttctc cgcatcctct ccagcacctg ttgtttcctg actttttaat





 73081
gattgccatt ctaactggtg tgagatgata tctcataatg gttttgattt gcatttctct





 73141
gatggccagt gatgatgagc atttcttcat gtgttttttg gctgcataaa tgtcttcttt





 73201
tgagaagtgt ctgttcatgt ccttcgccca ctttttgatg gggttgtttg tttttttctt





 73261
gtaaatttgt ttgagttcat tgtagattct ggatattagc cctttgtcag atgagtaggt





 73321
tgcgaaaatt ttctcccatg ttgtaagttg cctgttcact ctgatggtag tttcttctgc





 73381
tgtgcagaag ctctttagtt taattagatc ccatttgtca attttgtctt ttgttgccat





 73441
tgcttttggt gttttggaca tgaagtcctt gcccacgcct atgtcctgaa tggtaatgcc





 73501
taggttttct tctagggttt ttatggtttt aggtttaacg tttaaatctt taatccatct





 73561
tgaattgatt tttgtataag gtgtaaggaa gggatccagt ttcagctttc tacatatggc





 73621
tagccagttt tcccagcacc atttattaaa tagggaatcc tttccccatt gcttgttttt





 73681
ctcaggtttg tcaaagatca gatagttgta gatatgcggc attatttctg agggctctgt





 73741
tctgttccat tgatctatat ctctgttttg gtaccagtac catgctgttt tggttactgt





 73801
agccttgtag tatagtttga agtcaggtag tgtgatgcct ccagctttgt tcttttggct





 73861
taggattgac ttggcgatgc gggctctttt ttggttccat atgaacttta aagtagtttt





 73921
ttccaattct gtgaagaaag tcattggtag cttgatgggg atggcattga atctgtaaat





 73981
taccttgggc agtatggcca ttttcacgat attgattctt cctacccatg agcatggaat





 74041
gttcttccat ttgtttgtgt cctcttttat ttccttgagc agtggtttgt agttctcctt





 74101
gaagaggtcc ttcacatccc ttgtaagttg gattcctagg tattttattc tctttgaagc





 74161
aattgtgaat gggagttcac ccatgatttg gctctctgtt tgtctgttgt tggtgtataa





 74221
gaatgcttgt gatttttgta cattgatttt gtatcctgag actttgctga agttgcttat





 74281
cagcttaagg agattttggg ctgagacgat ggggttttct agataaacaa tcatgtcgtc





 74341
tgcaaacagg gacaatttga cttcctcttt tcctaattga atacctttta tttccttctc





 74401
ctgcctgatt gccctggcca gaacttccaa cactatgttg aataggagcg gtgagagagg





 74461
gcatccctgt cttgtgccag ttttcaaagg gaatgcttcc agtttttgcc cattcagtat





 74521
gatattggct gtgggtttgt catagatagc tcttattatt ttgaaatacg tcccatcaat





 74581
acctaattta ttgagagttt ttagcatgaa gggttgttga attttgtcaa aggctttttc





 74641
tgcatctatt gagataatca tgtggttttt gtctttggct ctgtttatat gctggattac





 74701
atttattgat ttgcgtatat tgaaccagcc ttgcatccca gggatgaagc ccacttgatc





 74761
atggtggata agctttttga tgtgctgctg gattcggttt gccagtattt tattgaggat





 74821
ttttgcatca atgttcatca aggatattgg tctaaaattc tcttttttgg ttgtgtctct





 74881
gcccggcttt ggtatcagaa tgatgctggc ctcataaaat gagttaggga ggattccctc





 74941
tttttctatt gattggaata gtttcagaag gaatggtacc agttcctcct tgtacctctg





 75001
gtagaattcg gctgtgaatc catctggtcc tggactcttt ttggttggta aactattgat





 75061
tattgccaca atttcagagc ctgttattgg tctattcaga gattcaactt cttcctggtt





 75121
tagtcttggg agagtgtatg tgtcgaggaa tgtatccatt tcttctagat tttctagttt





 75181
atttgcgtag aggtgtttgt agtattctct gatggtagtt tgtatttctg tgggatcggt





 75241
ggtgatatcc cctttatcat tttttattgt gtctatttga ttcttctctc tttttttctt





 75301
tattagtctt gctagcggtc tatcaatttt gttgatcctt tcgaaaaacc agctcctgga





 75361
ttcattgatt ttttgaaggg ttttttgtgt ctctatttcc ttcagttctg ctctgatttt





 75421
agttatttct tgccttctgc tagcttttga atgtgtttgc tcttgctttt ctagttcttt





 75481
taattgtgat gttagggtgt caattttgga tctttcctgc tttctcttgt aggcatttag





 75541
tgctataaat ttccctctac acactgcttt gaatgcgtcc cagagattct ggtatgtggt





 75601
gtctttgttc tcgttggttt caaagaacat ctttatttct gccttcattt cgttatgtac





 75661
ccagtagtca ttcaggagca ggttgttcag tttccatgta gttgagcggc tttgagtgag





 75721
attcttaatc ctgagttcta gtttgattgc actgtggtct gagagatagt ttgttataat





 75781
ttctgttctt ttacatttgc tgaggagagc tttacttcca actatgtggt caattttgga





 75841
attccctgct ttattattct aaagcaagct tgtccaacct gcggcctgtg gcccaacaca





 75901
aatttgtaaa ctttcttaaa acgttatgag attttttttg cgattttttt tttttttttt





 75961
tttagctcac cagctatcgt tagtgttaat gtattttttg ttttgttttg ttttgagacg





 76021
gagtcttgct ttgttgccag gctggaatgc agtggtgcag tctcggctca ctgccacctc





 76081
tgcctcccag gttcaagcaa ttcccctgcc tcagactccc gagtagctgg gactgcaggc





 76141
gtgcgccacc atgcccagct aactttttgt atttttgtag agatggggtt ttaccatgtt





 76201
ggccaggatg gtcttgatct cctgacctcg tgatccaccc tccttggtct cccaaagtgc





 76261
tgggattaca ggcgtgagcc acctcgcctg gccagtgtta atgtatttta tgtgtggccc





 76321
aagacaattc ttcttcttcc agcgtggccc aggaaagcca aaagattgga cacccctgtt





 76381
ccaaagcatg taattttatt cacagaaaag actctcggcc gggcgcggtg gctcacgcct





 76441
gtaatcccag cactttggga ggccgaggca ggcggatcac gaggtcagga gatgtagacc





 76501
atcctggcta acacggtgaa accccgtctc tactaaaaat acaaaaaatt agccaggcgt





 76561
ggtggtgggt gcctgtagtc ccagctactc gggaggctga gacaggagaa tggcgtggac





 76621
cccggaggtg gagcttgcag cgagccgaga tcacaccact gcactccagt ctgggcaaca





 76681
gagcgatatc cgtctcaaaa aaaaaaaaaa aaaaaaaaag actctcaagg atttaccatc





 76741
taaaatcatc aagtgtatat catgcagatg aacaacagaa aacactggga gtattcaagt





 76801
aattaaaaat aacctttcag caccaacagc aatttctgtc ctgatggcaa tctactcaga





 76861
gctagaggac tgcacttagg ataccaaagg gagcttagga tgcaagagca gcctgcacta





 76921
atgtactctg cgttagttta catccgggca ctttgcttta cgtttcaaaa cagacgccgc





 76981
ccttagctca ttaaagggga aatggaggta taatgtgttt taaagggatg tttcttctct





 77041
gaagccatat ttcagggtag catgaaaaca gagctttgga tatctggttc cattctacat





 77101
gacacctcat gcttgtttca aatgacacca caaccaaggg gcaggaatga aaggaatatg





 77161
ctaaaaaaaa aaaatgcaat cctttttagc aagaaagatc attaaggatt tcctgataag





 77221
tttcttcttt gttcatgtgc cctcctctgc tccccctttg aactactgcc cctgtcaccc





 77281
ccccttcccc gcctccccgc cgtttctcag ttctccaata gggatccagt ctgccagagg





 77341
tctatttttg ctcattattg tcaacacaat ttgccatcaa gagttttcac ttactcctgc





 77401
tatcctatca tcacattatg catgtcagaa agcattacag atttttactt ttcaagaacc





 77461
cgaactcaga tttccaggct tctgtccttc ctgtttcatg ctgttgactc tcccacatct





 77521
ttgtcttcct cctagacctt tggtcactct tgagcccaca ttgccaatgg tctatatcat





 77581
tttcacctgg atgcctccca gacacctcag tcacatcaag ttgaaataga actaattaga





 77641
cagaagtagc atgtgtttca gtggaactga catttttcta gggtccctaa aacacaggtg





 77701
ttgtttcaaa ctcccccctc caacatccct tatattctct ctgtcaccca ggctccttat





 77761
atcatctctc aacatgcttc ctgggtgact actgactctc cacttctggt gacaccccac





 77821
agagcaagct ttcaattcct gtcatttaaa cactttagtg cactcataga atctcatcct





 77881
tctgagattt ctcttccacc agtctatttt gcagaccacc aggctacgcc cttccaaaag





 77941
ctcctttgag atggagtttc actcttgttg cccaggctgg agtgcaatgg catgatctcg





 78001
gctcattgca actgccacct ctcaggttca aatggttctc gtgcctcagc ctccccagta





 78061
gctggggtta aagttgcctg ccaccatacc cagctaaatt ttgtattagg ggttttacca





 78121
tgttggccag gctggtctcg aactcctgac ctcaggtgat ctgccaccta ggcctcccaa





 78181
agtgctggga ttacaggtgt gagaaaccac gcctagtccc ccaaagctcc atttttatcc





 78241
tgtcttcatt ctctcttcaa gaacttgccc acagctgcca gagttccttc taagagttta





 78301
agactctctg ttcatgtggt aagaatcttc ttaaggagct tgctttaaag gtaaaaccag





 78361
atttacacat cagaatgggg agaggtgggt gggagctaag atggaatctg taattttcac





 78421
aagtgccctg gatgattcta ctgcagatgg tctcctattc aactaaatag cactcatctg





 78481
acccactcct tttagacccc acttctgtta agccagtgtt atcgctattt tccactttct





 78541
ttcaagttct aatcatcctt aaaactccaa cagcttcagc tgaaatcagt accacactct





 78601
catccttgtt tcccacccaa aaactattgt actaattgac cagacatgta ttgatgccct





 78661
actatgagcc tggctccatg ataggcactt gggatagaga aatgtaccat aatcctgacc





 78721
ttaataaatt tagagtctaa tggaagagat aaaaaaaatc aatgattcca atgagtgtga





 78781
taaggtaagg ctagtcagaa aagtcaggtg cagaggaggg gcaactaatt aaaccagggg





 78841
ttgggggaga cactgccaac tctgtgttga gtgaagttta agcagaggtt tttctttaag





 78901
taaaaaatca gtttttttaa ataaaaagtt ttttaaaaag taagggggaa tagaagaagg





 78961
aggtttgtcc ctaaggggaa cagtgtggag gaggaaagga ggtgaaagtg tatgctattc





 79021
tgtgtactgg caaattcttt ggtgggtgat atggtttggc tctgtgtccc cacccaaatc





 79081
tcaccttgaa ttgtaataat ccccacatgt catgggaggg acccagtgga aagtaattga





 79141
atcatgaggg caggtttttc ctgtgctgtt ctcatgatag tgaataagtc tcaggagatc





 79201
tgatgatttt ataaagggcg gttcccttgc acatgctctc ttgcctgcca ccatgtaaga





 79261
catgcttttg ctcctccttt gccttccacc atgattttga ggcctcccca gctatgtgga





 79321
actgtgagtc cattaaacct ctttccttta taaattaccc agtctcagct atgtctttat





 79381
taggagcatg agaatagact aatacagtaa attggtactg gtagagtggg gtgctgcagt





 79441
atctgaaaat gtggaagcaa ctttggaact gggtaacagg cagaggttga aacagtttgg





 79501
agggctcaga agacaggaag atgtggtaaa gtttggaact tcctagagac ttgttgaatg





 79561
gctttgacca aaatgctgat agtgatatgg gcaataaagt ccaggctgag gtggtctcag





 79621
atagagatga ggaacttgtt gggaattgga gcaaaggaga ctcttgctat gttttagcaa





 79681
agagcctggc agcattttgc ccctgcccta gagatctgtg gaaatttgaa cttgagagag





 79741
atgattcagg gcacctggca gaagacactt ctaagcagca aagcattcaa gatgtcactt





 79801
gagtgctgtt aaaagcattc agttttatgt attcacaaag atatggttcg gaattggaac





 79861
ttatgctcaa aagggaagaa gagcataaaa gttcagaaaa ttggcagcct gatgatgtga





 79921
tagaaaagaa aaacccattt tctgaggaga aattcaagcc tgctgcagac atttgcataa





 79981
gtaagatgga gccaaatgtt aatcaccaag acaaagggga aaatgtctgc agggcatgtc





 80041
aaggaccttt gtggcaaccc ctcccatcac aggctcaggc ctaggaggaa aaagtggttt





 80101
tgtgggccca gcccggggac ccctgctcta tgcagtctag ggacttgttg ccctgcatgc





 80161
cagttgctcc agccatggct gaaaggggcc aaggtacagc tcaggccatt ggttcagaga





 80221
tgcaagcctc aagccttggt ggcttacacg tagtgttggg cctgtgggtt cacagaagtc





 80281
aagaattgag gtggatgtac agaaatgcct ggatgtccag gcagaagttt gctgcagggg





 80341
tggggccctc atggagaatc tctgctaggg gagtatggaa gggaaatgtg gggctggagt





 80401
ccccacacag agtgcccact gggacactgc ttggtggagc tgtgagaaga gggacaccat





 80461
cctccagact ccagaatggt ggatccacca acagtttgca ccatgtgctt ggaaaagctg





 80521
cagataccca acaccagccc atcaaagcaa ccacaagggg ggctgtaccc tgcaaagcca





 80581
caggggcaga gttgcccaag gctgtggtgg gaacccacct cttgaatctc tatgagacat





 80641
ggagtcaaag gagattattt tggaacttta aggtttgact gctttattgg atttcagact





 80701
cgcataaggc tgatagcccc tttgttttgg acaatttctc ccattttgaa caggtatttt





 80761
tacccaatgt ctacacccac attttatctg ggaaatagct aacttgcttt tgattttaca





 80821
ggcacatagg tggaagggac ttgccttgtt tcagatgaga ctttgaactg tggacttttg





 80881
agttaatgct gaaataagtc tttgggggac tgttgggaag gcatgatttg tcttgaaatg





 80941
tgaggacatg agatttggga ggggccgggg tgaaatgata tggtttgtct ctgtgtcccc





 81001
agcttcatca ggatcctccc acacatcccc attctaagtt gcagggtccc attcttttcc





 81061
aatcaatgcc ctcattttaa cagtagacac ctggtgaggc tgtgcatgca cctttcattg





 81121
caggtcagcc gctcccatga taagagcttg tatctgattt tccacaattt cagctctttc





 81181
tctacaagag ataagactct cactctggac aatcttagaa gatttgaggc tcagtgtatg





 81241
cttctggagc tgggagttag aatccctaag ttcatggttt tcttctatca gtttgtccag





 81301
tgaacttagg agcaaccaac caacttcgtt atattccttg gtcctctata tatggtcaaa





 81361
ggtattatgt atagagtcat taaactcctt gcctctcatg agtggtgaat caggagtact





 81421
gaatgcattt cttttgcata agtgtttgaa cagttcgtgc caaggactat cagtgttctc





 81481
cacacaatta gaagtagagt ccttagcatt ttggggtcta atcatattaa gcaaccaact





 81541
ccagaaaccc aaaaaccaac taaagaaatc tatccttctg taatcccagc actttgggag





 81601
gccaaggcag gcggatcacg aggtcaggag actgagacca cagtgaaacc ccatctctgc





 81661
taaaaataca aaaaattagc caggcatggt ggcgggcacc tgtagtccca gctactcggg





 81721
aggctgaggc aggagaatgg catgaatcca ggaggcggag cttgcagtga gctgagattg





 81781
cgccactgca ctccagcccg ggtgacagag tgagactcca gctcaaaaac aaaaaaaaag





 81841
aaaaaaaaga aatccatcct taaaattctg ttcctctaga accattccca gtaccaaaat





 81901
ctgattaaaa aaaaaaaaca ggcagaggaa ggtggaagga ctagatcttt ctccagtgct





 81961
ggatgcttcc tgccctggaa catcagactc caagttcttc agcttttgga ctcttggact





 82021
tacaacagta atttgccagg ggctctttgg cacttggcca cagactgcag gctgcactat





 82081
cagcttccct atttttgagg ttttgggact cagactggct tcctgactcc tcagcttgca





 82141
gatgcctatt gtgggacttg gtatcttgtg attgtgtgag tcaactctcc taataaactc





 82201
cccttcatat attcatctat cctattagtt ctgtaccttt agagaacact gactaatgcc





 82261
gtggggttaa gccaatcgtc tagtaggttc ataaaatgct aaaagcagat ataaacttaa





 82321
agacgatcca gctcatctct tcattttaca gatgtaaaaa cagaagtaga aatagaattg





 82381
gaaccccagt ttcttgaaac ccagtgtttg cataatacca tgctaatttc attctaattt





 82441
gtgttttatt taataatcag gaaacagttc aaatagaggc ccagggctct gaaacattgc





 82501
ccaaggtcta tggcttttgc aaagcaagta ctgtttctgc tactttacct agttgctctt





 82561
ggcctatgtt tggggtgcat ctaaagaact gtttgctgat tattaaataa aacacaaatt





 82621
agaatgaaat tagcatggtg ttataaaaac acagggtttc aagaaactgg ggttccagtt





 82681
ctatttctac ctctaggata cagggtaagt cacttccttt ctcagattct gtttctttgt





 82741
atgtcaaagg gctggattag ataaacttga cttcccctct tggccctcat gtatcattct





 82801
ataaatatgt tatcatttct aatagactgt ttgatgtaat cttttgtcta atggcccctg





 82861
cttttcacaa taaatgaaac aaaggtcaca agacttttat tcatttgcaa ccctgattaa





 82921
ctaacagtta atgtgtaact ggagtgccac atagaaacag aaaggagaag gggaatggat





 82981
tgggttggag aaggtgaagt ctgacctatc ctctacaaga ggtacagggt ttatccagga





 83041
agacaggagt gccatgagga gtaaactcca gcaggggctg gagtcatggc cacacacagg





 83101
gccttacagg atccaggctg cccagagcag agtttggatg ggggctggga ggctggggga





 83161
gctagctgag gagatggttg tcatgccagg ccacgagtgt ggatgagtgc tggccagggg





 83221
aggtatagga gattgatggg gctgtggcaa gcagggcaga tacccttcca ggaacctgtt





 83281
tcattaaaca cagaatacag tcctgagggc tcggtctcaa tacagtcctg agggctcggt





 83341
ctcaggaaaa catgttctta agttttacat ccttcttctg ttttgattag gtgtttcctg





 83401
attataaaat aaattcctag aactgttaat ggtaacaaca caaagcacta tagacccata





 83461
cgaggatcat attgaaacca atgacattta agaataaaag atctgatgaa tatgaacact





 83521
tccctggttc ctaggaggat aacagttgag ttttgctcag gtaatctgcc ttctcttcct





 83581
tcttctctgc tttRtatctc agtttctata ttttgtctta cattaatagg atttgttctc





 83641
attaccctga tgattttatg gtaaactacc tcaaattctt tttggaagaa gatgggatat





 83701
aaattatttt taaagtttat ctgaatagat gttcttcaat atcacacaat aaataatgac





 83781
aatgtaactt tgtgcatata gcactttaag agattgatca taaacacaat cctattaatc





 83821
ttaattcaag ttaataatgc ttgcatttgt atggcatttt aggtattata aagttttttt





 83881
taattgtggt aagatatgca taaaatttac tatttaaacc tttttgaagt gtatagttca





 83941
gtagtgttaa gtacattcac aatgttgtgt aaccatcacc actagccatt tccagacttt





 84001
ttcatcatcc caaactgaat ctctgtacct attaaacatg acctcattct ccacctcccc





 84061
acagctcctg ggaacctcta ttctactttc tgtatgaatt ttcctattct aggtgtctca





 84121
tataagtgga atcatacaat attcatcctt tggtgtctgg cttatttcac gtagcgtaat





 84181
gctttcaagg ttcattcatg ttgtagcatt tatcagaatt tgattcattt ttaaggctga





 84241
atatcttcca ttttatgtgt ctaccacatt ttgcttatcc attcttctgt tgatgaacac





 84301
ctgggttgtt ttcacctttt ggctattgtg aataatgctg ctatgaacac tgatgtgcaa





 84361
gtacctgtct gagtctctgc tttcaatttt gggcatatac ctagaagtgg gattgctgga





 84421
tcataggatc attctatttt taactttttt gaggaattgc cataccaccc gctacagcag





 84481
ccgcatcttt tatattgcca acagtgcaca aaggctctga tttctccact ttctggtcaa





 84541
catttagatt atcattcttt ttttaaaaaa acgtaataSc taacccaatg ggcatgaagt





 84601
aaggttgttt ttgttttttg tttttaatgt gtgcgttatc ttacttgatc cattaaatcc





 84661
ctaacaagaa ctcctctagg gcagatgtcc tgtcttattc atccttggcc ccagtgtctt





 84721
gcaagcaagt gaattctcaa taagtgttaa ttgaatggat ggttgataga tttataggat





 84781
gcatgccaat tctgtggacg agagtaggta ctaattgtta ttttcatttc acagaagagc





 84841
aagtcagggc tccgagcact aagtgacttg gctgaggtca aactgcctgc aagttttatc





 84901
taatagtgac agaggaacca atgtgtcgag catgaatgtc agtccattga aacagtgccc





 84961
acttttctga ctctgctcct taagagacag ggcctgtaca gcaaggacac agagaagcag





 85021
gttacagaaa aagggctggc tcatccgtgt atgcctggca tttgaggaat gtggctgaaa





 85081
tctcaacact ctggttcaga agcacatctg caatcaaata taacaagaca tggtatgaga





 85141
gatgtctggc ataccaagga gattcctaga atacagcgga taggaaaacc tcattacttc





 85201
aattcccaag aaagagtact actggtagta atcccaacag gagtatccaa gtaactcggt





 85261
aatcttcagt aaagaaaaga aattgtgaaa caattatagt cagtcctcca tctctgtagg





 85321
ttccacatct gtggattcaa ctcacctcat attgaaaata ttaataaata aataaataat





 85381
aacaatataa caattaaaat aatgcaaatt ttaaaagcat aacaactatt tacatagtat





 85441
ttatattgta ttaggtatta taagtaatcc agagattatt taaaacatat gggagagtgt





 85501
gcataggtta tatgcaaata ctacaccatt ttacataaga gacttgggca tctgtggact





 85561
ttgttatctg caagggtcct ggaaccaatt ccccatggat actgagggtc aactgtacca





 85621
agYtgaaaac aaaacaaaag gaaatctatt gcaaaaagga aattcccaaa gataaaaagc





 85681
atgtctatga aatagtcaaa gagccgaaaa tgttgggaag acccacactg ctttccctgc





 85741
cctgtgcccc tttttgcaga tctatttgtg tctttatcta ccagcagata ttctattatt





 85801
ctaatagatt cctgtttttc ccaagagggt ttacttattt attaaatatg atgcaaacat





 85861
ctctctcaga gatgttgctc tctcttccta ggattcctta gccctaaatc tgcagagcca





 85921
attaggtatt aatattgggc tttacaactt tggaccatct gaccaccaag actgattcat





 85981
taaatgtata tggtttcaga tcacattaat ttatcataga ctttagaatt ggctttttag





 86041
aagtactgct ataaggaaaa tctcagcata gcaagtttta tctaatagtc tacttgtatt





 86101
aaagagtact caatgtaaac cctaggaaga cttttaactg ccttttggaa attggttgag





 86161
tgggatttga accgtgtact ctctgtaaag caggaaatta tcacttagta attactaagt





 86221
atttaaaaat gggaaataga aaattacatt tcagacctgg tgcagtggct catacctgta





 86281
atcctaacac tttggcaggt ggaggcaggt ggatcgcttg agcccaggag ttcaagacca





 86341
gcctgggcaa catagtgagc aactccattt ctactaaaaa taaaaaaaat tatttgggcg





 86401
tgatggggtg cacctgtagt ccccactact caggaggctg agacaggaag attgcttgag





 86461
cctagaaggt caagcctgag tgagcagtga ccggccattg tattccagcc tgagcaacac





 86521
agcgagaccc tgtctcaaaa aaaatgtata tttttaaaaa aagaaaatta cattttagtt





 86581
gttccataaa tatcagtaca accaaaccta agtgcaaaat tcccaacaca aatgatcgcc





 86641
tctgggccag ccatgtagcc cccatcttgc tgtcaataat catttccagg ggctgtaatt





 86701
gtcttccttc cccctgtacc accccatcac aggacacaaa ttgttttgct tagtttagat





 86761
agctgtgact aaactaagtg ccaattgtct tttaaaatat gtgttaatca gcactcaaga





 86821
ttgttcctac aaaaatgtca ctccctcact caatttgcat gtgccctcct gagtaggaga





 86881
gaaagagctg agttagaggc agccctctgg gacctgcaca gaaccctgta tgcttccggg





 86941
agtgtggagt gtgtgtctga tctgctgctg ggaaaaggag aagaaatgct gagacactca





 87001
ctgccagggg ctggtatcag gccattttca caggggctgt tggagggttg acagcacagc





 87061
tctactggac cagggagggt cccagccagc agggcctgcc cctccgaaac tgtccctgtc





 87121
cctgtccctg agaggcccca ctgagtgtca gatggcacat aagagatttc cttatgcgtt





 87181
ggtgtgaagg agatgatcag ttccaggagg cccctccccc atgcagaaga gaagaaaatg





 87241
gaagaaaccg ggttctcaga gtggcctgcg ggtgagtgcc gccttgtgct gtcagttccc





 87301
ttcaccttcc agttctgggt gtacctagtg tggtttcatc aaactgctga ggccctggaa





 87361
ttgagggagg atgctgaagg gtgccaggcc atagaagcag tagcaggagc tgcagcaaag





 87421
agctagtgtg tctccagcgt cagcttttgg gccttggtgg catcaaagga gacgtacaca





 87481
gggccactgt actacggatg ggattcttgg aacaaaagtt tgaataattg atgagtgtgg





 87541
aagtgctatg caaaaattca attcaacctg cagttaccag gcattcattc tgtgacaggc





 87601
attattgtga gggtggcaag gagacgggga gtctctgaga gactcagaga agagcagggc





 87661
atggtgtcca cccacaagag atctgaagac tttcaaagta gttgggaaaa cagacataca





 87721
acttttttcc cctccccaca gctagttgag gcaaaagaca tataacttat acagtgacaa





 87781
aatactactg actgttactg acacataaca gcctgggctg ggtcactggt gagaaaaagg





 87841
aggattcttg cttttggggc attcaagtcc tgtccattaa ccatttccca atcccatatt





 87901
tatacatccc attttagaca tattaagctg aagattgatg tgacataccc aaagacactt





 87961
aaggttgaag ctgagaatct gggctagaaa tataaatcag gatgggctgg gagcggtggt





 88021
tcacgcctgt agtcccagca ctttgggagg ccgaggcggg cggatcactt gaagtcagga





 88081
gttcaagacc tgcctggcca acatggtgaa accccatctc caccaaaaat ataaaaaatt





 88141
agccaggtgt ggtggtgcat gactgtaatc ccagctactc gggaggctga ggcaggagag





 88201
tcacttgaac ccgggaggca gaggttacag tgaaaggaga tcgtgccact gcactccagc





 88261
ctgggtgaca gagcgatact tcgtttcaaa aaaagaaaaa aaaaaaaaag aaagaaatgt





 88321
aagtcaagat taaagacaat gggtgagatc agcaaggagc atgtgtgcgg agaagagaac





 88381
accaaggaag gctgcgtgtg gtgggaggtg gccggggggc agagaaagag gcggcggagc





 88441
caaggagata gggcatcgtc tgaatggtga tgctgtatca acagatgtga aattcccaga





 88501
ggtgtgaaac acagcagatc ctttacagca cgatgacagg acacagcatg agcctacctc





 88561
tgccaggtga gaggagcttt ctgcaacctg tgatgggctc aaggatgctg accattcatc





 88621
cgcccattgg gatagcccag gctctgagct cagcactcca cccgtcactg cgattgcact





 88681
aatcctcacc cacccttgca ggcaggtatt actgtgggca cagagaagtt tgctaacttg





 88741
ccagagatcc tgtgtaggaa gccaggtcag gaaacaacca gagtctctct aacagcccag





 88801
gccttgaatg aacaccggcc tgcttcagaa tacatggccc gtgatgtgtt tgaattcaca





 88861
gattcactgg acaggttccc tatagggcct gtgaggaaat ctggtctaac agaatccaga





 88921
aagacaaatt tcgctaaaca ggtcaagcct gatactgctg ctacacttca gctgtgttaa





 88981
gccactcggt tatcagacct gcttctcctt tcatgatttt agtaacacag gcctcttcct





 89041
tgggcccctg ttgctcccac catctcccag gttctcttgt actcagggtt tagtctcccc





 89101
tccccactac taatgatgca tgtgccttac tctctgatca tctctcctaa atctgctact





 89161
cctctgctct ttctgtgcct tatctatccc tgccgagtct aacatgcaga ttttggtcat





 89221
tccaaagtca tgtatagatc taatcacagg gctctctgct taccagctgc tacttggata





 89281
aggaaagcat gccaacacgg tcctccttct tcatgctggc caagtcagca tcattattat





 89341
tacctaagtt tatttctaac acatctcaat atcttcatgc actccctctt gataaaagta





 89401
actgagcata gcaccatcaa taccatcaaa tctgtcattc tcttcccctc tctctgggtg





 89461
ggacaggaag ccaggctgct ctaggaaatc ttccctaaca agcaaagggg acttgcctgt





 89521
cctctcgcat gtgtgatctg agcttgtgtg gatcccagag tgggcattct ggactacttg





 89581
accttgccta tctctccttc acaccctctc atctctccct cctaccacca aaaaacttgc





 89641
atcgtatttc caatctccag acatactttt gaaaccattt atctatctgg tgtgtttatc





 89701
tgtatctagt atgatgtgaa tatgtgattt gtatgtgtgt ctaccactgt tttggtcagt





 89761
ttgtatttct cgtgggtaca gttctatgtg ctcatgtatg tggaacatat gtatactgac





 89821
acatggacct agctccaaat gatctgaaag gaatataatt gtaattgaat atttgcacag





 89881
atatacaaca tacacatgtg atggctgggg gaaatgcatg tgggatttca gtcagcattt





 89941
tattagagaa ggtatgtcat tagtgctgta ttaacaatga atcagcttat ttgtgggtca





 90001
ctgtcaatga ctcctttgca aatcacacat gtaaatattt ctgtctgtgg tctgatgaac





 90061
atgcagtgcc acagtctggg agatgctgag ccatgccctg tgtaggcagc atatgaaaag





 90121
aactgcatga tttaaaagat gctgaccagc ttaaggaaag caatttaaaa acttcctaaa





 90181
aatctagttt gaatgaacaa cagttttcat tttgtgtgtg tgttttttct tttagagatg





 90241
gggtcttgct atgttggcca cgctggtctc taactcctgg gatcaagcaa tcctcctgcg





 90301
gctcagcctc ccaaagtgat gggattacag gtgtgagcca ccgtgtctgc tggccccact





 90361
gttttaaacc ctgattcgac aatcatacat ttaactcatt acctgtcttg ttccttttac





 90421
gacaaactca aagcttttat tttactaaag tatttgggtt aatcttttgc ttttctgtca





 90481
tgttctgaaa tatgtacaat aacagaatcg ctcaaaatat tatctccgtt aaatgttttg





 90541
tggctttagg gagaggtcta acaacatgcg ggaaacaaga aatcaagcgc atccaggatt





 90601
catttataat ctctctcgtt gagtagaagt ccgcatctct cgatattgtc tggttacctg





 90661
catgaagtat tctaaaggag gaaaatagct caaagaggac attcatgtgc actctggctt





 90721
ccagttggcc atttgagtaa gtgatcgcaa ttaactgacg agcggcaggg aaacacttcc





 90781
tggaattctc atctacagac aagaacaaac tggggcgggg cccatcacct tcacctacgc





 90841
gccgggaggg tggcggctgg cgggcggggc cgggctcggg ccgtgacgcc gagagtgcgg





 90901
ggcgcgcggc tgggagcctc gcgcccccgc ccgggcccgc ccccatcccg cccgcataca





 90961
gcccgcatcc cgccggggaa gcgagcccag tccagcgctg cccgtccagt cctcgcccaa





 91021
gatttaaagc ccgcaagttt tgttcttgag accagcgact ttagctccga tgcgggaagg





 91081
aaagccgacc tccgatttgg acatttaaag agctgggctt gaacttcgtg agtttcgctc





 91141
taaactgccc ttgaaatgaa gctggacttg gaggtaaagt cactgggaag ctggcctggg





 91201
gcggggtttc cccctcttct cgtattttag aaacggacag cggcagtgca gccctagttt





 91261
gctgtaagtt tccttacttt gttactgagg cccccagagc tccacgcata agtggtgtga





 91321
ccagaaacct tttaacaaga cccgcctgag cctgcgttag agctcccgct cggaaagtaa





 91381
aagaccatcc taatccgcgg cgctgcggaa ccggtgtccc gtgtgggagg aaccgcggcg





 91441
ttccctgggc gtagggcccg cgaggccagc acagtccgcc tcttggcgga gcgccctggg





 91501
ccggtggttc cgcgcggagt tagtctgtgg tcagttacgt ggtgaaaaca cggctgtgcc





 91561
gcggccgcat ctttccgcgg ccgaggcctc tctgggtggg agtgttggct tcctttccgg





 91621
atcgctaaat ggggaaagtt ctggccgctc ggcgggatac gtctccaggc cacggatggt





 91681
tcgttctccg tgccgcggcc ccgagctggg ctccctgggt ctccagcgcg ggctcccggc





 91741
attgggggct gcgggccggc ccctccgccc cgcccccgcc ccgccgcgcc tcctcggccg





 91801
agcggctcgc ggtctccggc gcgggaggct ccgagtctgc ccactccggg ccgagcgagg





 91861
tctctggagg agaagagtgg cgaggaggtg agggcacgcc ggccctcgcc cggcgggtgg





 91921
cgccaggact tcaggtggga acgcgcgctt gggccggggg cgcgtggctg gcgtggacac





 91981
cggatcgggg cccgccgccc tggcccggac cgcgcacggc ccagcgccgg gaagtcggga





 92041
agccggggag gcctctccca ccgcgggccc cggcagcccg ccctctgaaa gcgcggcgga





 92101
gaaggaggct cgtcccctcc ccggaacgcc tttgttccct ccggcctgcc cgcgcgggtg





 92161
gccagcggct gggacccagg ccgggccgcc gcccaggtgc ggcaggtagg ctcgggggcc





 92221
gggcagctcc ggttggggcg gcttcccggg gcctgcgggt ccccgtccct gaggagctcc





 92281
ggctcctcgg tggcgggaca ggcccgtgcg cgggagccgc gaggcgaacg ccgcgcccac





 92341
caattcggtt gccggccggg ggccccaggc ttgcggccac ccgcctccgg ctggagggct





 92401
gaattcgagt cgaaagcccg tgtcgggctg gaaagaagaa accgccaacc tgagaacgct





 92461
ttcggcgagt tactggcggg ggaaatgggg acagggaagt gggcaggcgg ggagactgca





 92521
gccgcagatc tccctggcgg ggaggtcgtg gccactcttt cctttgactc tgcctcattt





 92581
cattttgaat cctgatgtga cagaggcaat tgcttgcttg gataccatat aggtaaaagt





 92641
aacagttttc aactcgactc ttgactacac cctgtacatt cttggccggt gttggttttc





 92701
ttaggttatg gatcatgtta aaggtacacc gatgtggtaa ccgcacagtg gccgatggtg





 92761
gcctgaggct catatttatg gtaattatct gatgaaagta catccatcag aattggattt





 92821
gtgcgtctgt gcctttattt tgggaaacct tgcctgttcc ctgtggggga tgggagagga





 92881
atgtgaaaag ccgaagttga cccagaaaag gatgattgaa ggtagttgta ttaagtggtg





 92941
gcaccgaaat gattccaccc tgaactttct gaaagggtga ttagtgatca gcagcagacg





 93001
ttataacttt ctcaaaataa atttatggta gattttctat ctggtcacaa gtgaggaggt





 93061
gaaagctgct ttttggggcc aactctttgc ttttaaagca agctaaacgc aataccagaa





 93121
aggtttccat tctgtactta acctgcttgt ccttctcact cttccttatc ctcccgcaca





 93181
cgctctgagc attgactgag cactctgagg aggaggctga ctcaggctga cccttcccgg





 93241
ccctgcaagg ctctaaggta gaaccagtgt tatcacagga aaggcccaag ccaaagctca





 93301
gagcagctgt tcctgagaaa gtgggagatg aggatgagta ggaggtagag atgcttataa





 93361
ctgctctgcc cagagaaaac tcagaaggtg cagaagagtt ttcaaaataa agtgcaggcc





 93421
ccatcaagta aaaaatgaaa cattgtattt cattaaaatg gtgatcagtt ttctcttttc





 93481
ataaaagaca ttcaaatggt gagattgtaa aaaaaaaaaa aaagaaaaag aaaactttct





 93541
aattctcaaa aatagaacag cttgaataat aactcatggg ttttgaaatg ggtcatcttt





 93601
taaaatgggt cactttggct agaatcattg cacttggtga ctttcacatt gtaaagggtc





 93661
cagttctttc tgaggcccaa ttgcactaga atctgcattt cagaacacag gaggtatcag





 93721
gaagaaactg ggagaaattc agagggaaat tgtctcttct cagagtaaca aaatgtcccc





 93781
tattcagggg gaattttata tatgctgaag taaatagatc tcagctttga atttttataa





 93841
tacattatgc cttttctgaa atatttccat agccattatt ttaatgcatt gttagaataa





 93901
ccttgtaagg agaggaattc attgtatctg tgttccagaa actgaggcac agtaaattac





 93961
aagagctctg ccctttgata tcgaatctct gtgagcgaag atgtaaccag aacagtgtaa





 94021
atctagaatt actttcctta cggtatgcaa tatctaatta ttatgtatta gtttacatat





 94081
atatagggga tgtaagaatc tttatattta aaggataaga aacttgatca ggtgagatac





 94141
aagatttgaa taaaaaagcg attttttaga aacattttaa ttctacaaat tcagttgctg





 94201
gctttgatat gtaacttatt cagatttctc ttccatagaa ggctttaaca ctagaagcca





 94261
gttctctaca aaagagaatg ttctaccaag tgtgtaggca acaaagccca aaagttcaag





 94321
ttcaaaatac tgttctacag cctaagatcc acctaatatt tcagatttga ctcttttgct





 94381
cctttcctat aacttcctat aactttttca tagtgctcta agcaaagtaa gttcaaggat





 94441
ggactcacct caagtttcct tctcttactt tagaggacca tataatctta tacctgtgtc





 94501
atcctaattg aaatgtattt taagtgcttg tgggaacaag aataacggaa gaccgttatt





 94561
ccattaatgg aataatgggg aacatgagaa ggaccatatt cagtcaatta gggatgatac





 94621
ttctgcctca acagtatttg cgatgtgtta aatggccctt agccatcaga tcagtatttt





 94681
taaaaactcc tacctaatta atgttttttg agaagaagca tattatgagt atagctcagt





 94741
attctaaaaa gaaaaaaacc tgaaaaaaaa atcagccatc cattaactaa cccatcctgg





 94801
taaagctaca caaacagatt ctagagaaag gaaatttgca cagatggaac atctaatctg





 94861
gactgacatt gtcaacaagt tatctcaaat gatcctgaga aaacactggt acatggttta





 94921
gagacaagtc gagctcatgt gactagtaaa tggagaggca cagtatacat ctacttttgt





 94981
tggcatttaa acactctcgg cttttttact ctctttcacc accatcaggt ccagattcca





 95041
gcttgcactg gaatatttat tgaccctttg atagaagagc tacacctgaa acatctctga





 95101
agtcttttta gcatcctatc ctgcccatgg cctactacac agtatgtgat aagttaatgt





 95161
ttgttgaatt agttaaatat acgtattaac ctactttcag ggctgcccgc tgtaatgcct





 95221
agaatagggc aggcacttaa taaatggtag ttaacttaga ctaaatgttg atccaccaag





 95281
acagaaacat gttacatata cctcttgttt tacaccatct tctacttttt gtacctctgt





 95341
gttataaacc ctctatcaag tgttgcttct aaagacaatg tccagaatgg gacgtaggaa





 95401
ctgccactgg gcaacaggca gacactgggt tatatcgtca tcctgtttct gaatcctggt





 95461
ttttcttatt attattcaac cacagctaaa ctttctgatc tccttttttc cgttttttcc





 95521
ctttacccta acttctagcc aaactaagtg atttgacatt tccccactca agccacaact





 95581
ttttctctta tgtgcttaaa aaaaattcct gcgtagtctc tcttggaatg tcttattcct





 95641
tgctccctcc acttcaccct tttttttttt tttttttttt ttttttgaga cggagtctcg





 95701
ctctgttgcc caggctggag tgcaatggtg ccatctcggc tcaccgcaac ctccgcctcc





 95761
tgggttcaag cgattctcct gcttcagcct cccgagtagc tgggattaca ggcatgctcc





 95821
accacaccca gctaattttt gtgtttttag tagagatggg gtttcaccat gttagccagg





 95881
atggtcttga tctcccgacc tcctgatccg cccgcctcgg cctcccaaag tgctgggatt





 95941
acaggcatga gccaccgcac ccggcccact tcacccttta agccagttga aatgctcctt





 96001
gccctactcc tcccttctcc ttttctttct cccatccaag tactaaccag gcccaaccct





 96061
gcttagcttc tgagatcagc caggatcagg tgcattcagc ggggtatggc tgtagacttc





 96121
tctttctgag ctgtgtcttc ctcctttcct ccccaaaccc acatttgaat tctgttctag





 96181
ctcctgctca tttgccacct ctcccacaaa gccttcccca gtttccatct tctccctgct





 96241
tccctcatct cagaggaaag ctcttcattc acagagcacc tggtttgggg tccatagttt





 96301
gttgtccctc agtatccttg gggaattagt cccaggacac cacccccccg cccctgatat





 96361
ccatgcatgc tcaagtccct tatataaaat ggtacagcat ttatattata acctatgcaa





 96421
tattcccatg tactcttttt ttttattttt atgtgtttag agatgggtct cactctgttg





 96481
tccaggctag agtgcagagg catgtagcct tgagctcctg agtcaaatga tcctcctgcc





 96541
tccgcctccc aagtagttgg gattacaagt atgagctacc acacctggcc catgtacttt





 96601
aaatcatctc tagattactt ataataacta atgcaatata aatgctatgt aaacaattgt





 96661
tacacggtat tgtttagtgc ataatgacaa gaaaaaaatg tgcatgttca gtacagacac





 96721
gaccataaat ttttttttca aatgtttttg atctgtagtt ggttgaatct gaggatgcgg





 96781
aacccatgaa cgtacacgac caactgcata tgggtttcta ataacagatt tgtggatgaa





 96841
gcccacccaa cataatgcaa catttcaaat gtatcttagt cagtttttct ggggcaaagc





 96901
cagcctaaca aatctcaaga atgtttgaaa aattctagct tgagtgaacg ttgttcttct





 96961
agtgactcaa ataaagcagt cattgtgtct gaggagtcct agtggggtgg caggggtggg





 97021
gctaggagta gtggctgttt gtagcatgtt ttatatcaca ttaaagggct gggtatgcat





 97081
tttaggcaat aattcttact cttattgata ggagaacttg tattttttat tcatctacct





 97141
tatgatggat aactggttta catctcttca tcaggtttac ttcttacgtg tcattttatg





 97201
agctgacttt gaatatatct tcagattttc cctgccttta cacatgaaaa cggttttgat





 97261
acagcttttt cattagagaa tggcagcttt tccaggccag ggtgtctgtg tctgactcct





 97321
cgcctttcat tttacccaat acttgcttaa aacatcctcc ctgagtccgg tacttttttg





 97381
cctcctctcc ttccttccac cccacctctt tttgtcaccc tcctgcgact ttggatctcc





 97441
atccttggag tccctgaatc ttttttgtgg ttgaaagact acacccaaag gacacagact





 97501
gatgaggtca cttctgccca ctgtctagta ctagtgagac caagaagaag aaggagggaa





 97561
aactgaaatg gaaggtttga aaaagagtgt gttagtgaag gaagtaagaa cagtgctaac





 97621
agaatgcagc aaaacagaaa tgacttcaca cttctggcag tgaagcaaat tctcatccat





 97681
cttgggttgc ttctcttgac cctgcccacc tcctcccctg ccctcccctc ccgatgagaa





 97741
ctgcaggaac acctgtgccc atgccaagga aaaagggcag gtgaggaaca cagggatggg





 97801
gctgggactc acaagctgct ctaagctgcc acagggtctg gaatttgttg acattacatg





 97861
gttaactcgg tatctcgatg cctcagtatc ttctgcaaaa tgtggaggga gatcctttct





 97921
tcctcaaagg ttgttgtaag gcttaaagag ctaccacatt cgtaaggcat ttggaacagg





 97981
gcctggtata tagtagacat acccatggta gtaactgttg ctagactggg taaaaggaga





 98041
agtttcttaa gtaggcaaga aaaaaactga caacagttat atttaaaaga gcaagcaacc





 98101
gtgtcagccc aaacaagtgt gttgcaagaa tgagcacaga gggccaagct cagaaaagcg





 98161
agtgtttgac ctctctgaga cctcctttat atgtcagctt ttttatttgt ttcaaatttt





 98221
gcataatcaa actggttact gggaattatt gagttcatat aacttcccta aaatctaaga





 98281
ataatctata atcccatgcc accagtcccg ttaataaaga cttagggtct gtctttaccc





 98341
atttgttcat ttgaaattcc ccgtctttac ttcccccata accaggaaac agatctacac





 98401
ccatgtttaa cttataaaga gatataagtg agtttacata ggtggagatc ttgtacctgg





 98461
attcacattg taggttttat tacccagctt tcccctctat cccaaagcca tgattgccat





 98521
agtggaattt aaagtctttg gactaacact gaatcaagaa ctaactctac aaatgtattc





 98581
tctgcaggag gataagaatt ccaaatggct tctaattgtt gcccatggct tgaaataaag





 98641
ttccatatag ctaaagcccc agcacaaaaa cacttgaaga cagccattag gtagaatttc





 98701
ttttcttttt tagaggtctt atattggaaa tgtaacagtt gcaaagatat ctaatgtttc





 98761
accttaaaat gtgagttata aattcacatt tcacattgcc tccttcctcc ttgagcaaac





 98821
agactaggca attagtacca aatagtaact agttatattt cttaacaccg attattgtaa





 98881
gtaatttatt aagaaaaaat ctaggaagat caaattatag cttttccagt aaatctgggg





 98941
ctttttattc ctgatctctc tcaacaaggc agtttggctt ctgaagattg gtcctagcta





 99001
tacttaacag gaaacagatg acgagaagaa gccaggaaaa aatacttgga atatagaaca





 99061
aaatgcagca taaagatggt acagaagatt ttatctttct ttcctttagt tatgtgtgga





 99121
caggaactaa aaactctccc acgtgggact ttattaagta ataaaagttt aaatgtaaaa





 99181
gatataaagg aatgaggata taaaggaaat ttttttaaaa actgtgactc accggaggag





 99241
ccttatatag tctactttct aagcatatca cttttaaagg gatcattata ttttcatgat





 99301
gcatggggat attccaagta ttaaattgat tttttaaatg aagaaaatta tcagttcagt





 99361
cttgttttct atgtaggttt cactacagta ttttatttcc cccgcaagga aaaaaccaga





 99421
gctagaatgg aatgattaaa tttcttagtt ttcttctaat ctgttagtct ttccattaaa





 99481
ttatactgcc ttcttatata gaatttctgg gtttgttctt gttttggcaa taattgaagt





 99541
aagagaggat gattttatgg tagaggtttg attccattct agattggtgt ttttcagcta





 99601
tgtagaacac aatccattca tggttcagac aaccgtttta ggaggttttc atgtccagca





 99661
ttaaaaaaaa aaaaaaaaga atagaattgg gcattcatat atatatatat atatgaatat





 99721
ttattaataa aagtttaaaa gatataaagg aatgaggaat gcatatatat tatatatata





 99781
tataccaaat taaagtatca taatactaat acaaggatta gtatcgtttt atgatacttt





 99841
attatataca ctaagggtta gtcttgtttt atgatacttt attatataca ctaagggtta





 99901
gtcttgtttt atgatacttt attatataca ctaagggtta gtcttgtttt atgatacttt





 99961
aggttggtat acatacatat actaagaatg cagacatgtc catggaagtt ggcaatattc





100021
agcccccagc aggccccagt cagcaggaca gggattaggg gagtcaggtg aggcagggct





100081
gtataagtgc agggttggag cctgtcttgg tttaccgttt tgacattttg ttcactgtgg





100141
atttttttca gtaactttga ttttttaaaa atattgcatc aaaatattat actgactacg





100201
gagtttttgg taccccctta aattgtgcac ctaaaataag tggctccctt gtctccccct





100261
agtcccggcc cgatcagtat gttttataga gggaatggtg agtgttgggg aactagggag





100321
cccatgagga ggcggcccag aaggggagga ggagctgatg gtgtgtctga tgtctcctcc





100381
tttctctagg aagcagacag gaggtgaagt cttcagggtg ggggggacag agcctgggag





100441
ggggagattt agcatggccg ctgaagagac tgggaaaggg agaaggttcg ggacaagttc





100501
aggaacagtc acgtagcact gaaaactgct caaagctaga tagtgccatt tgtggtgacg





100561
ctgcctgcct ggtaagtccc atttccccag cagccctgga ggtgtcatag gaacaggaag





100621
atgggagggc gctggggtct ggggttgttg gggtgggagg gcaaaggtgt ccaatgattc





100681
tgcatctgaa acgggggagg tgtgtgagga agaaaggtca ggagactgct gggcagggtg





100741
gggtggcaga aggttctcga tgaatattta gaagttgcag ctgaggagtg agtgtactat





100801
agagtgagta tcctggaatt tgaggtctca gaagaaatgc agttctcagt gaagccatgt





100861
aaacaacttc ctggctgata aggtgtcttg agtgttggga gatcacatga tcaaaatggt





100921
atacacacca taaggtgtcc ttagacttga gtgtggtgta agtctactga ataaaatgca





100981
gaaatacagt tcactgttgc ttttcttcct ggaaattgcc ctccccaacc tcaaaccagc





101041
ccccaagtgg ggcagggtcc atctttagac cctcctgtag cacccagcac aaccctaact





101101
atatggtcaa tgtctctctt ccccacttag agctccaaga ccagggcctt gtttgtcctg





101161
cttacccact ctacccattt gttaacccca tcttaatttt ctgatgaatg agcccttttt





101221
tcattgactc ctcctttctc tccttctccg gagtttattt ttcctccagg cccattgctg





101281
tctctccacc tagagagctt atccacattc atgaaattag tcatcttcat gctcagagta





101341
cccacctgga tctctccagt cctgtctaac tcgtcttaga ttattacccc ctggacatct





101401
gtaccttctt gtctctccat cgcctcgaac tcaatgcgag tctaaaatca aatactcctt





101461
cactcctaac tcaggaaacc agttttccct cccttgttgg taatgcttga aattagctct





101521
tacttctctt cttcctcctt tactcgccat cccaggtcat tcatcaggtc ctgctaggtc





101581
tttgattttc ttgaaagggc cttctttatg ccttccttcc gtccccattt ccaccaccct





101641
cgactaggcc ttcctcacct catccggcat cagtgtgagc ccttgagaaa ccagcgtcct





101701
gatcttcagg cattctgcat ttcaccccat accaccatta gccagtttaa tccctcttgc





101761
tcaaacttaa taaatactga gcaagggagt tactataaca aacaaaacca gaaatttcta





101821
tgacttcctg ctgctttctg taccccccta agactcctct acctgatttt caaggttctc





101881
cataagcagg ttcccacctc tctgctttca aatcttctat ctgccataca cagttcttgt





101941
ctaaaacaaa gattgttcct actcctgcag ccacctaaat cctagtcgtc ctcaggccct





102001
cctaaaatcc tgactaatcc aacccccacc gatttctcta ctagtcccag agacttccct





102061
cttgtgcctg gggttggtgt catgcagaca cactgtacct taccaggatt tgcccattgt





102121
tgtctgtggg aactatgctt tcatgtggga actacgagtc ttgtcacaaa tagagtgtaa





102181
atgctttgag attggagact gtaaaatact tcttcatgat ctcccactgt gtctggtata





102241
agaacccgca gagtaaatac tcatatactt gtaggattaa ttgaaacaac tggagactga





102301
ggttgtttaa cttgtactta gaagtgtgga cctccccatc ttgattaaaa cttcaaaacg





102361
gatagcaggt ttcacatatt atctcagcat cacaaaagta gactcaacaa agaaatgagt





102421
tgacagcagg ggtaaggttt acaacaatca gggattattg cagggaaact tgtagccttt





102481
gggtgttcta actagttttt tcccaaaaag tttaaagagc tctcttgtga aagaatattc





102541
ttatgagtaa ctgaggggca cggctcctag actgaaaagt atttgggatc tgtcacctct





102601
tttctgatgt tcctacttct attctttatt cttctgacta cctctattag aaaagataat





102661
actaagaata cctgtccctt cttctcagtc caaatagaag caaacccagg ttgtatctga





102721
gatatctgca tattttcttc taagcaattc tttgtcctct tctctcccat gctttttcta





102781
tttcctattt tcagcaggct ctgaagtcat ttataatttt tactgcccct cggtgacatt





102841
acatggatat tcatccctga tttgcagatt aaagcaccga atcagagtga ggtgagggtt





102901
gcccaaggtt acacaataaa tctggcccca aacaggggta acccttgagt ttctagtctg





102961
ttgattggcc actgacccgt gctgcaggca cacaaaggaa gctgcaccca cagcagtctg





103021
ttgtggatgg ttgctgagct gcgcattcgg cattgggctt gctttgtttc ctgccaggcc





103081
cagcattttc ttctaccaga tcggcaggct tgtgggcttc ttcctaggtc cctcccctgc





103141
actctgaata ggaaagctgg aagctgtgct ttagagaagc tttaagacgc cgaaagaaac





103201
cagaagagtg agcgccagtt gtatgtgcgt ggtctccatc cgcaaagccg gagctgggcg





103261
caacagtgtt gacttgtaat tgatcaattt agatcgggcg caggccgggg gagggcagtg





103321
cttttgattt aggctgggaa aggcctccta gtgactatgt tcaatttgga ggaattcaga





103381
tgttcttttg ttatacaagt gaagctgtgt aatacaaatg aggagtttta cttttcctaa





103441
atcttcccct tatcattcaa gtattgagga gttttacctt tcctaaatct tccccttatc





103501
attccagtat tatcagtgag atctggttgt gatttatgta aatggtggct aaaaaattca





103561
aactactgag ggggagaatt ctcattttac agcttcacat gctgtgctga actaaataag





103621
tagcgtggga tgttggcttt gtgacaggtc ttttgtcatt tttcagaaag cattttgact





103681
tgttgatgtc aatttggaac agctgaaaaa atacaggaaa ataagataaa tacgtacatg





103741
ttgagggtgg ggacaaaatg aaggttctga accagctgcc ggcttacagt agccatataa





103801
gcaacagcag caatgcacca acctggtgag taataggcct gattcactgg agagatacta





103861
gcacctttaa tgagtcagat agatgcacaa tgggtgtggg agcagttgga cttgtgggca





103921
caaagtctag caagaagctc agacttgcaa acaactgtag gacgtgcaaa gcaagctggc





103981
attggagctt gccgggcaca gctgctcagg aataggcagc tggttttccc tttgatccct





104041
gagattccaa aggttacttt cctctttgtt cccttcccag ggtcaattag agtagaaact





104101
gcagatgctt ttcagttgag aattttccta gaattctcaa aaatgtgtat gctggcttaa





104161
aatctgccat caagaattct gttaccttgc tttaagcctc cagttccttc cagatgtatg





104221
gtggaggagg ccagagggcc cttgttttgg ggcttcagag gatggttgtt atctggatga





104281
gcactgtgga aagactgaga gagcaactga gagaaagtgg gcccctgaat gaaagtgatt





104341
tcgcaaattt taggcagatg ccaccatcag aaactgatat tttctgacgt ctttctcacc





104401
ttcctctaga gcattcagtc cagaaatgac cagcctgtcc aaagggggaa attactgata





104461
ttgatctgtt ccttagagca gtgtttcagt cttttttttt tttttgagat ggaatctcat





104521
tctgtcaccc aggctggagt gcagtggcac gatctcggct cattgcaacc tccaccttcc





104581
tgattcaagt gattctcctg cctcagcctc ccaagaagct ggaattacag gtgtgcacca





104641
ccacacccgg ctaatttttg aattttttat agagatgggg tttcaccatg ttgccaggct





104701
ggtctcaaac tcctgacctc aagtgatcct cctgcctcgg cctcccaaag cgctaggatt





104761
acaggcgtga gccaccatgg ccggccttca gcctttgtga tattaaagca cagcaacaca





104821
tttcccatta cacccctgaa cacacacaca cagaaaaccc aaaagtttca caaaatgatt





104881
cttgctctta ctactctcag tacactctgt atttaaaaaa aaaaatgctg gttgtggctt





104941
cctaagtggt gcgtgcagtt ttcaaatcaa tgcccttggc gataaagtgt gccctatact





105001
gattatctct ggacaaagtc tgaatggggc ttggctctaa tctctagtcc tcattggaca





105061
ttttacatac ctggcctttg cctccaccct gatgtggagt gatcatgggg gtgggaaata





105121
tagctggatc cgaaagctct gaagtgggga tggaggtgtc acagctgagg ctaggcccat





105181
tctgcagggc actcagtgtg tacagttggt tttctatcag gggtcaaccg gcggggggac





105241
ttgagaacag atctctgggc acaaagcagg gcctttgccc tggggcttgc tatgtggctc





105301
agcctacacg gctctctccc cgtcagtcct gtccaaagcc caggaaacta atgtaccacc





105361
cccgaggaag agagcctacc tttccatcca aggaagtgtt ttacctgtgg taagcacggg





105421
ggacagaatt cttgaggaag gagggtgctg cgtcccagtg gtggaggaaa agagaggacc





105481
tggtgtaagc agccatggca tggacctcat ccgaggtggc acctggctag ggtcctgacc





105541
tccaatcctt ccccagtaac catcactttg agtaaacagt ggctccaccc ccggcatggt





105601
tctttgcacc aacatttggg gaatgcctac caggggtcac acactgagct ggatgctgag





105661
tgtagggtgt ccacaacatc gtgcctaaaa agtctctgta tggggtataa gaaggtgctg





105721
gggcaataca gatgagatga gaagcatctt tcagggaatg ggttgatccc aattcaggct





105781
tcccagagaa ggatgtctgt agacttcata ttagcaaggg aggaaggtag ccaggccaca





105841
ggactgctgg tgtaaagacc agggcatatg aaatggcaag tgtgactgtg ctttcagcca





105901
ataatttggt attgtcaaat gatgggacca aacagctgga gaggcagatc ctaaagggtc





105961
ctgtgggcca ggctggactt catcttgtca ctaactaatg gagaggctct gaaggagtta





106021
aaagagctca gtttgtctcg tggttaaatc caagttttac aaaggtcacg ctgactgtaa





106081
agtggaaggt gggctggcca ggggatcatc tagtctgggt gagaagtgat gataacatga





106141
aggggtgaag agagatttag aagaagtgat tcacaggatt aaacatttaa ataatggaag





106201
tggagaaaat ggggggggcg gttccagatt tcaggcatag atgaaagaag tgcagttagg





106261
cacatgtaaa gagaaacagg aacagcaggt tttaggggag aagataacag aatgggtgag





106321
aaatgacact tgagtaccct agtgtgctag gtaatcatct gtctacttcc cttcatttgt





106381
catgtatatt cccatttaat ttgcataaag acttcgagtt aaacggtctt accccaattt





106441
gtcaaatttc tgcgcatgat atggtacaag aaaccgtaag tggctaaggc ggcattggtg





106501
ttcaaattgc ctgactacaa aggcagtgct tgttggctac attctgttgc ttcccagttt





106561
agaacatgtt acattgaggc gcctgctgca tttccaaata aaaaagtaca gaaagaaggt





106621
ggctgtataa atctggggct cacaaagtaa ttttgattac tgagagtttg ctttcaagga





106681
gcaaactgtg actccttgat tatgaacctt aatttaaaaa aaaagaaaaa agaagtctta





106741
ctcttattcc tgccttgtct ggggcaagcc ttaatggatt tttactgctg tgaattttct





106801
tttcattgaa gattttgcct tgatctatgt atctgctttc atcctgacca tattcaagtc





106861
agtatattca tgaatgtacc tgtttgtgaa atttgaactt aagtatacac gattatagcc





106921
gtttgggaag cttttttttt ttttttttta agagtaggag tagaaaaagg tctctgtact





106981
ctgaatggga agacagtgta aagcaatttt ttcccttttc ctgtcctcct ttaaaaaaaa





107041
taaacagccg tatgcctctg ctaagtacta actacctcat caccttttgt gcagacaggg





107101
caggttacat ttggttttaa ggaattagga atatgtttct ttccagcacc ttagtaaccc





107161
acgcgattgt gattcttttc tcttcttgac tgtgataggt ggcatggaat attcacatgg





107221
gagagccgca tgaggccgcc caccacgctt cctgaaggat gcccgtgtgg aagaattttg





107281
acgtgccagt gtcctcgttc tacagggtgt tccattcttc cgcaatctca gaaaaatggg





107341
actaaaagaa actattttgt aaaataagaa gacttccatt tttaatgacc aacatgtatt





107401
aagatggaca cctactctac gaaacacgaa gttctatggt ctcgaagaag cccgtgcctg





107461
tttaaaactg atcctaacta aaaacagact tgagtggata tgagaatgtt ggttagtggc





107521
agaagagtca aaaaatggca gttaattatt cagttatttg ctacttgttt tttagcgagc





107581
ctcatgtttt tttgggaacc aatcgataat cacattgtga gccatatgaa gtcatattct





107641
tacagatacc tcataaatag ctatgacttt gtgaatgata ccctgtctct taagcacacc





107701
tcagcggggc ctcgctacca atacttgatt aaccacaagg aaaagtgtca agctcaagac





107761
gtcctccttt tactgtttgt aaaaactgct cctgaaaact atgatcgacg ttccggaatt





107821
agaaggacgt ggggcaatga aaattatgtt cggtctcagc tgaatgccaa catcaaaact





107881
ctgtttgcct taggaactcc taatccactg gagggagaag aactacaaag aaaactggct





107941
tgggaagatc aaaggtacaa tgatataatt cagcaagact ttgttgattc tttctacaat





108001
cttactctga aattacttat gcagttcagt tgggcaaata cctattgtcc acatgccaaa





108061
tttcttatga ctgctgatga tgacatattt attcacatgc caaatctgat tgagtacctt





108121
caaagtttag aacaaattgg tgttcaagac ttttggattg gtcgtgttca tcgtggtgcc





108181
cctcccatta gagataaaag cagcaaatac tacgtgtcct atgaaatgta ccagtggcca





108241
gcttaccctg actacacagc cggagctgcc tatgtaatct ccggtgatgt agctgccaaa





108301
gtctatgagg catcacagac actaaattca agtctttaca tagacgatgt gttcatgggc





108361
ctctgtgcca ataaaatagg gatagtaccg caggaccatg tgtttttttc tggagagggt





108421
aaaactcctt atcatccctg catctatgaa aaaatgatga catctcatgg acacttagaa





108481
gatctccagg acctttggaa gaatgctaca gatcctaaag taaaaaccat ttccaaaggt





108541
ttttttggtc aaatatactg cagattaatg aagataattc tcctttgtaa aattagctat





108601
gtggacacat acccttgtag ggctgcgttt atctaatagt acttgaatgt tgtatgtttt





108661
cactgtcact gagtcaaacc tggatgaaaa aaacctttaa atgttcgtct ataccctaag





108721
taaaatgagg acgaaagaca aatattttga aagcctagtc catcagaatg tttctttgat





108781
tctagaagct gtttaatatc acttatctac ttcattgcct aagttcattt caaagaattt





108841
gtatttagaa aaggtttata ttattagtga aaacaaaact aaagggaagt tcaagttctc





108901
atgtaatgcc acatatatac ttgaggtgta gagatgttat taagaagttt tgatgttaga





108961
ataattgctt ttggaaaata ccaaatgaac gtacagtaca acatttcaag gaaatgaata





109021
tattgttaga ccaggtaagc aagtttattt ttgttaaaga gcacttggtg gaggtagtag





109081
gggcagggaa aggtcagcat aggagagaaa gttcatgaat ctggtaaaac agtctcttgt





109141
tcttaagagg agatgtagaa aaatgtgtac aatgttatta taaacagaca aatcacgtct





109201
taccacatcc atgtagctac tggtgttaga gtcattaaaa tacctttttt tgcatctttt





109261
ttcaaagttt aatgtgaact tttagaaaag tgattaatgt tgccctaata ctttatatgt





109321
ttttaatgga ttttttttta agtattagaa aatgacacat aacacgggca gctggttgct





109381
catagggtcc ttctctaggg agaaaccatt gttaattcaa ataagctgat tttaatgacg





109441
ttttcaactg gtttttaaat attcaatatt ggtctgtgtt taagtttgtt atttgaatgt





109501
aatttacata gaggaatata ataatggaga gacttcaaat ggaaagacag aacattacaa





109561
gcctaatgtc tccataattt tataaaatga aatcttagtg tctaaatcct tgtactgatt





109621
actaaaatta acccactcct ccccaacaag gtcttataaa ccacagcact ttgttccaag





109681
ttcagagttt taaattgaga gcattaaaca tcaaagttat aatatctaaa acaatttatt





109741
tttcatcaat aactgtcaga ggtgatcttt attttctaaa tatttcaaac ttgaaaacag





109801
agtaaaaaag tgatagaaaa gttgccagtt tggggttaaa gcatttttaa agctgcatgt





109861
tccttgtaat caaagagatg tgtctgagat ctaatagagt aagttacatt tattttacaa





109921
agcaggataa aaatgtggct ataatacaca ctacctccct tcactacaga aagaactagg





109981
tggtgtctac tgctagggag attatatgaa ggccaaaata atgacttcag caagagtgac





110041
tgaactcact ctaaggcctt tgactgcaga ggcacctgtt agggaaaatc agatgtctca





110101
tataataagg tgatgtcgga aacacgcaaa acaaaacgaa aaaagatttc tcagtataca





110161
caactgaatg atgatactta caatttttag caggtagctt tttaatgttt acagaaattt





110221
taattttttt ctattttgaa atttgaggct tgtttacatt gcttagataa tttagaattt





110281
ttaactaatg tcaaaactac agtgtcaaac attctaggtt gtagttactt tcagagtaga





110341
tacagggttt tagatcatta cagtttaagt tttctgacca attaaaaaaa catagagaac





110401
aaaagcatat ttgaccaagc aacaagctta taattaattt ttattagttg attgattaat





110461
gatgtattgc cttttgccca tatataccct gtgtatctat acttggaagt gtttaaggtt





110521
gccattggtt gaaaacataa gtgtctctgg ccatcaaagt gatcttgttt acagcagtgc





110581
ttttgtgaaa caattattta tttgctgaaa gagctcttct gaactgtgtc cttttaattt





110641
ttgcttagaa tagaatggaa caagtttaaa tttcaaggaa atatgaaggc acttcctttt





110701
tttctaagaa ggaagttgct agatgattcc ttcatcacac ttacttaaag tactgagaag





110761
agtatctgta aataaaaggg ttccaacctt ttaaaaaaga aggaaaaaac tttttggtgc





110821
tccagtgtag ggctatcttt ttaaaaaatg tcaacaaagg gaaaataaac tatcagcttg





110881
gatggtcact tgaatagaag atggttatac acagtgttat tgttaaaatt tttttacctt





110941
ttggttggtt tgcatctttt ttccatattg ttaattttat accaaaatgt taaatatttg





111001
tattacttga attttgctct tgtatggcaa aataattagt gagtttaaaa aaaatctata





111061
gtttccaata aacaactgaa aaattatcat gagatgtgta tttaaacttt ttcatgaaca





111121
ttgcttatat aatcattcct tctgtcttaa tgtactacat ggtcttagcc ctgttcctat





111181
aggattatca tgttctctgc attatagagc cacctaagat gtactttttg ttaaatgact





111241
catgctggaa tatctggatg gggagatgtt ctttcctaat gtagtcatgt gccacaaaat





111301
gacgtttcgg ttaacgatgg atcacatata tgatgatagt cccatgaaat tgtaatggaa





111361
ctgccctata caggtgtacc attttttatc ttttatttca gatttttact gtaccttttg





111421
tatatttaga tgtgtttaga tacacaaata ctttccattg tcttacaatt gcctgcagta





111481
ttcagtacag caacatgctg tacaggtttc tagcccagga gcaataggct ctaccatata





111541
tctaggtgtc tagtaggcta ttccatctag gttctcgtat gtataacctg ggatgtttgc





111601
acatcgatgt ggtcacctaa agatgcattt attggccagg cgccatggct cacgcctgta





111661
atcccagcac tttgggaggc cgaggcaagt ggaccacctg aggttaggag tttgagacca





111721
gcctggccaa catggtgaaa ccccatctct actaaaaata caaaaatcag ccaggtgtgg





111781
tggcacacac cagtaatccc aactactcgg gaggctgagg caggagaatt gcttgaacct





111841
gggaaaggga ggttgcaatg acctgagatt gtgccactgc tctccaacct ggacgacaga





111901
gcgagactgt ctcaaaaaaa aaaaaaatgc atttctcaga acttatcctc attgttaagc





111961
aatgcatgac tataatctgt tgagagaggg atgaaatcac ctgtagttat agcgctttaa





112021
gataccattt gaaaaggtta cgttttcctt ttctttgaca cggttagctg tctgaaatac





112081
agtcaatttt aaccctaatc tcttaatatc aggaatgccc ttacacctac tttggagtgt





112141
ctggtgcttc gatatagttg catgtaatgt gctctcatct gtttttacct gattcctgct





112201
cagttcttca catggcatat tgtgtaactc aatctatatt taaaacttgt aagcatccga





112261
attatttgtt tatggtagaa ctttttactt gcaagtcgtg gtaggagtgt ttgtagttgg





112321
tactaaaatg tgatgacttg gaagaattaa ttaatgacct atatttgggg actttaattg





112381
gatgctatag ctgcaatgag aatagaacca gagaactctt gatatgcaag gttattcatt





112441
ctgtgataat aatgagagga atattcgatg tctctttgag tcagttttcc ttccgatcac





112501
ttccgcattc tgcagtgaca caatccttaa tcatagcttt cattacaata ttcctttact





112561
ccagacctca aagactcctc actgcctcca gcatcaaatc taaactcttc tacctggttt





112621
tcaacgccct acgtaaactt ttcctccttc attccctata gcttggtttt ttttttttta





112681
tcactgccac tattatctat cacaaatgtc aatcatgacc ataccttgct taagttggtt





112741
tcccttgcca agagcactgt ttttcctata cctgttgaaa ttttggaaat ccaattctac





112801
ctcctctctt cccttaagca tctcttcctt cccttctccc caaatttata tttagtcaca





112861
tatattatcg tactacctac taatcattcc atgtgttttt ttacgagctg taagttctga





112921
aggcaaccat gccttgtaca gtgtccactt agggttctga ataattaatc atctccccaa





112981
aatctgaaag ccttctatat accaagcaaa tttgtttagt tatgcagcaa aactcaaatc





113041
tataaaatca aaaaggaata aggaaataca gattaaacag ttgcagcaaa gactggtgat





113101
cttaaggtat ttagtcaaag ctggtggtag aacaaaaaca gtagtcttac agattctacc





113161
tcttgattaa ctcagtggct aattttgcct tttctcaaag ttcttttgca agaacataaa





113221
gatatttttg tttctttagt tgagtgctgt aactttattc ctttgtgttt ctcataagta





113281
tgatttggca gtctgccata cgttttttgt tttttttctt cctctttgag acagggtttt





113341
gctctgtcac ccaggctgca gtgcagctgt gtgatcacag cttagctcac tgcagactta





113401
gcttcctggg ctcaagcaat cttctcacct cagtctcctg agtaactgag actacaggtg





113461
caccccacca catcccgcta aatgttttaa tttcttgtgg agatggtgtc ttcactatgt





113521
tgctcaggct ggtcttcaac tcctgggctc gagcaatcct cctacctcag cctcccaaag





113581
tgttggaaag tgttgggatt acagacctga gccaccacac ctggcctgtt ataagttaat





113641
acaataattc atcaactaac ttaaagaaca ctaagactct tacaaaagta ggtatgagtt





113701
ttagtaaaag tctcaaaaga taaactgtca cttaaggaaa actagagaac atatcattgc





113761
caaatggtgt ttttcagaga ttataccatt caacgcccac atgctgaatt gggccattca





113821
ttataactcc aggaacatgg caatcagtaa gagcccacat gtttctttga atacaccgta





113881
agtgaaagaa tataaagtag tctagttaat attatgttta atcaaggagc acattcctaa





113941
agatgtttgt tcattcattc tacagacatt tttcagaggc ctgctaagag tcaagcatta





114001
tgatagacgc catggataaa agcttacaag tcaaccagcg tgggtataaa taatgtgact





114061
agcactagaa caggtatcat gatggggatt ctgagtataa atattttttt aaaataaatt





114121
tccccgtgtt atttttggct tttacctccc taatttaggc tttctaaatg gcacagcatt





114181
tctgaggatg caaacacctt tctacagagc aaaaacagca tttgtataaa tttgtgtctt





114241
tggggaacca agagacttta aatgtgttta aaccaataat tcagtcaata tcaacattag





114301
cttacatgta atattctctt gatagcccaa ttttttaaaa cactgtattc ttagaagttt





114361
ggtttctaag atgtcacttt aagctctttt gcttgttgct tttgtgggat ccacaaattt





114421
tgttctcagg tacataaatg aaggttagta tagaggataa atattatgat tcttatctgg





114481
gaaagacagg tgctgaggtg taaaagagag gatcctcgcc acccatgccc cgcaccccct





114541
cgccccctgc acccacggat gtgcagtctt acctgcgggg ggaaaggtct ccgagcctgg





114601
cctgctgctc cagctcaggg ttcccccttt catgatggct ttcaaagatt tcttcactct





114661
gaagtgaaag aaattttggt aagatttgat attgtaggga cctcctaatc tatatttttc





114721
tctctcccaa tttctgtgtt tgattttggt tttgagtctc tcgataagca aaatatccag





114781
tttctcatgc cgctttctca ggttttcccc agccactctg gatccattat ggtttgccct





114841
ttttggcttc ctttaggcac actaaaaact ccttcccaaa agcaggtatc ggccgggcgt





114901
ggtggcaggc gcctgtaatc ccagctactc tggaggctga ggcaggagaa ttgctcgaac





114961
ctgggaggcg gaggttgcag tgagccaaga tcacaccatt gcactccagc ctcagcaaca





115021
gagcgagatg ccatatccaa aaaaaaaaaa aaaagcaggt gtcctttccc cttaatcatg





115081
aagggctatt catactttac tgccccaccc ctattgattc ataagaggac agtaaagcga





115141
tcactgcatt caacatctcc tttttttttt tcttgtaaga aatcaaggtc tggaaaagtt





115201
gcactcgccc tgagaccaga aagtgctgga ggcagagatg aagtaagccc agtgtaggct





115261
ttcacagatg cgtgataaca agtctaacta aagaagtacc tgggatacta gttttgccaa





115321
ttcagctcta aaacaatatg gcaatcttat attccaaata tatatatata tatttgtatt





115381
tatagtagag atggggtttc accatgttgg ctaggctggt cttgaactcc tgacctcaaa





115441
tgatccactg acctcagcct cctaaagtgg aggaaacata tatatatgtt ttccttttaa





115501
aataggatgt cagtccaata agaatctaaa ttttagttcc ctctaatata tatatctgac





115561
tagggaccag ataatatttt tcatgtgtca atatataaaa gttggccagg tgcagtggct





115621
catgcctgta atcccagcac tttaggaggc tgaggtcagt ggatcatttg aggtcaggag





115681
ttcaagacca gcctagccaa catggtgaaa ccccatctct actaaaaata caaaaattag





115741
ccgggcatgg tggcaggcac ctgtaatcca gctatttggg aggctgaggc aggagaatca





115801
cttgagcctg ggaggcagag gttgcggtga gctgagattg caccactgca ctccagtctg





115861
ggcgacacag tgagaccctg tctcaaaaga aaaaatatat atatatatat attttttatt





115921
atattgttta ttaaacaaat aaaaataaaa gatatctcat cagttacgat gtaaatgaaa





115981
aaattgtgtg tgtgtgtgtg tgtgtgtgtt atgatgtact tcttgtgagt tgtggtcagg





116041
ctttgaaagc cactatgtat gtgtgtgtgt gtgtacataa aagtaagtat cagtcccagg





116101
attcaaattc gaaccagtcc cagtcaaatt caatctaatt attttcacca cactaccaaa





116161
agtctttctt cacattttct atataaagtt gaactaatta atacagcagt gaatgttaca





116221
ttgtatcctt ttgcagtttc tcatctatga cattactatg cctgaattcc ccactggact





116281
ttgaactcag tcttactcat ctttggatcc ccagcgtgta atacaggccc ttcataaaga





116341
gtgaccatta ttactaacaa aatttcctct cactgtgaaa cctgctccca attataaaat





116401
gaattgtgct ctttcgaact ccgttgatct attgtatgca gggtggatca tagagtctta





116461
tttcataata acctagtgat ggaaaaataa caatgattca ggagtaggta atggaccttg





116521
tcatctttta cactgaatga tgagatttcc ctaatttata gattttgtca tgcatgagat





116581
gccctcagga gcttgcagaa atgccttggc acgttgctct gctgacatgt gtcagatggc





116641
tggtgtggag gtagagggag tctcctctgc caagcaagtc taatggaata taacactggt





116701
gccattgagg atgcaatgag aaggacccac agcagatcca gagactgcat tcataaaagc





116761
tgcacagtat accatgtttt attaaggtat agacagatta gttgtgttct agcatagtgg





116821
ttttcaaagc ctgaccacaa ctcacaagaa gtacataaca cacacacaca cacacataca





116881
cacacacatt ttttcattta catcgtaact gatgagatat cttttatttt tatttgctta





116941
attttttatt tctttttttt ttgagacgaa aggtgaattg tagccaaagt acttttagga





117001
aattttaaaa ttacacattt tgaaagctct aggaggaaga gagcatattc aagtaaaacc





117061
tttcttttat tcaaatagta gactaaaaaa ttgaccatag actaactcag caattgctgc





117121
catatttctt agtgagggat tccttatgag ctccattgaa tgataaaagg atactcttcc





117181
aaatcagagc aacaatcgtt tcttgtgaca ctgcatcctt tttcccttcc ttcaccctga





117241
attgccccta gggtatacct aggagaggga gggctggcaa ccagctgctg ttgtgaaagg





117301
gatgtcattc atggcctgcc ctattgggag gccaatcagg cggaacagcc cctctcccct





117361
tatggtcatt ttatcctgaa gaaaaagggt ggcaaaaaga tggcaaaaaa gattgctgat





117421
cacagatcac tgttacaaat acaacaattg gctgggcatg gtggctcacg cctgtaatcc





117481
cagcacttcg ggaggccgag gcgagtggat cacgaggtca agagttcaag accagcctga





117541
ccaacatggt gaaaacccgt ctctactaaa aatacaaaaa ttagccgggc atagtggcgc





117601
atgtctgtag tcccagctac tcaggaggct gaggcaggaa agtcacttga acccggaggt





117661
ggaggttgag tgaaccaaga ttgtgccact gccctccagc ctgggcgaca gagcaagatt





117721
ccgtctccaa aaaaaaaaaa ggagggggtg gcaatgagac agggaactgc tctgggtcca





117781
actcccctca catagcccca acccccatat ccaccccaca aacctccacc tccccacttc





117841
cagcctctcc agtttcaaag tgacgcttac caacacgcag gctctccagg agcaccttga





117901
aaggtaactt cttacatctt tccaaaacac ttataatcta attgttcttt ctcccctata





117961
ttttgaagaa atgcatgctc tcaaaattga aaaaaacgcc tagaggaatt ttgtaaaaaa





118021
attatatttt tccagtttct ccaaaggaca tataaaccct ttttaaactt agattttgaa





118081
aagtcccaat agctgatttt caatcgatta ttgaaattgt tttttttttc ttccctaaag





118141
gggagatacc aacctttgaa caaaattaaa ttaacttttc cccaaagtta aatgatttta





118201
ctttgtgatt ttaggaatgt gtagaaagtg atttcagttc caactctttt aaagcaaggg





118261
tatctgggcc aggcgtggtg gctccctcct gtaatcctag cgctttggga ggccaaggtg





118321
gggcagatca cctgtggtca ggagttcgag atcagcctgg ccaacataga gaaaccccat





118381
ctctactaaa aacacaaaat tagctgggta tagtggtgcg cgcctgtact cccagctact





118441
cgggaggctg aggcaggaga atcgcttgaa cccgggagac ggaggttgca atgagctgag





118501
atcacgccac tgcactccag cctgggcaac agagtgagtc tctgtcaaaa aaaaaaaaaa





118561
aaacaaacaa gcaaacaaac aaacaaaaac aagggtatct ggtaatttaa ggtgaaagta





118621
ttattcacta ttataatcaa ttttcttaaa aacaggagct attaggccca attctgagga





118681
gagaaaaaaa agcagatttc aagggcccgt gccaccttct ttgtttaaag catagagaat





118741
gataataaaa tgttaaaggt tcagcatttt ctggcattgt aaatttaatt aattaattat





118801
gtaaattaat tatggaaatg agaaataaag tgaaaaggta tgtcaagtaa gaatcaataa





118861
ttatcaaaac gttctctacc aaatgggatg caggggagaa gggtgagaag aagggaagga





118921
aataaaggca aaggcatttg cccacagcct cagtccaggg tgttctacat gacgcagccc





118981
cagagtaaaa aatactagcc acaggaatga gtggctctgt cttcctctcc agaactgacg





119041
ggcaaaagag ggggaacctc accttttttt tttttttttt tttggaaact cactgggttt





119101
tgatatggag aacaggaaga gaatctaccc tagcagcaca ttcacagatg gtttgtctgc





119161
cctatttgct ccatctccct ggctcttcct agcacttctt ttcctacttt ccattttcat





119221
tggccgcaaa agccacttaa atattccttt ggaaaactgg gcagtctgtc ccctttttaa





119281
aaccacaact atttccagga gagttaaagg gctttcggac tgcccatcat tcatgcattg





119341
tggtgaacta gctcagactg cctctacctt tagtccagat cagctgcctt gggagggcga





119401
ttcctggagg aaaggatgag gagaggaagg ttttaggaca tcgtatggac tgaagccccg





119461
ttggagggga agggcaggct tgaggaacaa gcctcagtgt tcctgaggct ttgtggaaat





119521
gagaaatgaa tagagaaaga taagagactg gatcctaaat gcaattttgc ctatttcaaa





119581
attttcacag ggtctttttt tttttttttt tttgagacaa ggtcttgctc tgtcacccag





119641
gctgaagggc agtggtgtga tcatagcttc ctgaagcttg cagcctcgaa ctcctgagct





119701
caagcgatca tcctgcttca gcctcccaaa gcgctgggat tacaggcatg agccaccacc





119761
cccagcctca gggtcttttt aatccctaag atcttaaatt tcccagctac tattgttagt





119821
aatgagttca atttacttac tggttaaatt ggcttttatt attattatta tttattttat





119881
tttattttat tttatttgag acagagtctt gtgctgtcgc ccaggctgtg gtacagtggt





119941
gcaatctcag ctcactgcaa gctctgcctc cctggttcat gccattctcc tgcctcagcc





120001
tcccgagtag ctgggactac aggcacccgc caccacgccc agctaatttt ttgtattttt





120061
agtagagacg gggtttcacc atgttagcca ggatggtctc gatctcctga cctcatcgtc





120121
tggactaata ctctaaacgc tattggcaat agtttgttta caggaaaaac atcttcttat





120181
aaagctgact gcaaatgttt taataaattt gcaaatatgt aattctgttt aaaatatcag





120241
gaagtgagaa acatgttatg tgataactct ttcccattcc cgaaccaaga aaatgtaaag





120301
gcagtaagtg tgccaaggac actgaaagga agctgcccgt acatctttga atcttctcag





120361
gctgtttggt ttcatctgat tttaagctcc atggataaat ttcattgtaa caatttttat





120421
gtctgtaaat cttaacccat aaataaaatc acaaatcaga aaagtacttt attaggccag





120481
tctttgtcca agcaaatttg gtcccaaagc tagtttacaa ataattgcca cacagctaca





120541
aggccagtgg gttgactatc gtagcatcaa tggtgtgggc agggctgcag cctctggggc





120601
agcattagcc ccaactgaca gagggtatag gtgctcttaa caatctatga gaccccccac





120661
aacctggact cagctgtcat aagcctttac ttcttatgtt cttcctaagt actttatcgg





120721
gccaacaaat tcatcccatg aggaatccaa gatggaaacg tcaaaactat ctttggtatc





120781
atgcttcctc cccctacctt ctctgccttg atcccctcct tcattctaca cattttctct





120841
gatagtcgtg ttctagccac tagggagaac gtttcagtca atgggtatga tttctgctca





120901
cctctttttg ccatagctat tagtaagctc tcaccactga tgtctcagct gactgtgaca





120961
actgccagcg gctggtcagc ctgcctgcct tcatctaacc tgctctttac tgtctaccag





121021
agtcagcttc gtaatacaca ggtgccctcc tcctcctgtc aacattcctc aaccaaagcc





121081
tcagtaaact gtctctcatc taccttccca gcattcttga gccattccca ggatagccta





121141
ggccctttag acctctgaga tgttataccc ttcctcattc tggaatgccc ttcagtgtct





121201
tacccacctt tcagagttct atttattctt tttttttttt tagatggagt ctcactctgt





121261
cacccaggct ggagagcagt ggcaccatct tggctcactg caccctctgc ctcccaggtt





121321
caagtgattc tcctgcctca gcctcctgag tagctgggat tacaggtgcc cgccaccatg





121381
cccagctaat ttttgtattt ttagtagaga cgaggtttca ccatgttggt cagtctggtc





121441
ttgaactcct gaactcaggt gatccaccca cctcagcctc ccaaagtgct gggattacag





121501
gtgtgagcca ccacgaccag ccttatttat tctttagagt tgaattcaaa tgccacctcc





121561
tttgaaagcc atccttgatg tccttgtgag gaattacttt ctctaccaca ttatatattc





121621
cttttactgt agaaacgtca ttctgcttta tattataaat tattagaaat atgttgtttc





121681
ccccatgaaa gtttcaagtt tcctgagttt aggcctgatg atacaatcat tttcatatga





121741
ctcacagcaa ttgccttagt atatattaaa ttgagctgaa taagccatgt acccagttga





121801
acacaccaaa tattttagtg atgtcatttc tttattggtg aaagagcaag gccaacgttg





121861
atcttaatgt tattctctct tttatcttat tcagctccct caacaaaaat acattctcat





121921
agattaatgt aatcaccacc tcactcctct caactttaga ccctatacta gcctgagaaa





121981
tccagatcca acttaatgag ttctccttta tcccaagtcc tcatgaccta taaatgtaac





122041
ctctaggaca atgttacaaa gagtgagatc tttataccac ctgcattctt gtcaccaaac





122101
gtgtaagtta aaaattcaga ttctgagtgt ggtgactcac gcctgtaatc ccagcacttt





122161
gggaggctga gccaggtggg tcacctgagg tcaggagttc gagaccagcc tgggcaacat





122221
ggtgaaaccc tgtctctact agaaatacaa aaattagcca ggcatggtga caggcacctg





122281
taatcccagc tactctagag gctaaggcag gagaatcact tgaacctggg aggcggaagt





122341
tgcagtgagc tgagatcact ccatggcact ccagcttggg caacaaagtg agactctgtc





122401
tccaaaaaaa aaaaaaaatt tagattccag gacccgaccc tacacctccc taattagaat





122461
ctcagagagt ggggccctgg gaatctgcat aattcataac cttctcagag ctctggtaca





122521
caagaaacca tgagaatctt tgttctggaa acttcagaga acttggctga gggccacccc





122581
aggatttggt ggcgtccctg aatctcccat tagctctgac actgactaga cttcaaatat





122641
cacagaaggc aagcattgaa gtgtgtttat attcaaatag ttttcttgtt gagaatcaga





122701
aatattaata aaacttttgg gagtcaaagt aatgagaaga caaggaactg aacttgcccc





122761
ctgatctgtt atcatttggc agtaaggtac atattcaaca ataggataat tctgtataag





122821
acctgaatct gaccttcttt catctttcac actgacaatt ctgtctctaa acacaggatt





122881
aaatgaggaa ctaaaattca ccaagatcct gctaggtgtc aggtacagtg ctagctgctt





122941
ccacacattt ctcatttaat cagccacctg tgaaattgct atgatttatc accatttggc





123001
agaaaaggac atttagggca caagagatta aataagctgc tggttgggta cattaagtat





123061
taataaataa tcagatagat aagttaggta gttaagtaag ctgccagatt agtaaacagc





123121
tagtttcaaa tcccagctcc aacatttact agttgtatga cccttgggga aactcaacct





123181
ctgagtctca tggcactgct gataaaacgg aaaacatcat cctcacaagg ttctgaggac





123241
tagggatgga ctcaggtaca cacagcaccc agtacaatgt ctggccttca gccagtgata





123301
gcaacccttc actcacctct ccattccctt ccagcccctg cattcaaaaa cttttattta





123361
tttatttttt taatttagga ggctctttgc tcagaatcct gaaaaggctt ttgttacttt





123421
attttttctt ttttttcatc ttctgggagc acagaatagg cttctgctcc tttaaataac





123481
tttaacaggc accaaaggaa cactgctagc tctttcttaa ttctgtaggt ccacatttag





123541
gaaaaagaaa ttgtcagcct ctgacttatt tccagcttac aaaaaggctg tgatgttggc





123601
agcccgggga aagcagttcc cgtgagtcat gctttcacct ttcagccagt gaagaacagg





123661
aaatagtcac atcactattg ccaacaagca cagcgaatcg cttccaccac cgggctttcc





123721
cagatgacgt cagtgagcca agtgcagggc atcacccttg ccagatggcc ccggaagagt





123781
ctcagctgcc ctgtcaagtt tagcttctca agctccccag aaccagcatg gcaaggatca





123841
cccctccaga aaaggaaatg atttctctga tcatgatcaa accatgtcat aattttagct





123901
gtaggtggtg agtatcagtg actgtattat agatggtttt ggttcacagc tatttttttt





123961
ctcggtatat ttactctcaa gggcaaaggg gtggcattta tcacaatgct atgattcact





124021
ctactagact ggctgggttt catttcatct ttgagttcta gacctaaggc caaaaggatg





124081
tcagaatcgc cacccagagc tagatgcatg ctcaatgcaa cctggccatc tctctcggac





124141
agtggccact aaacacaagc tgcaatgatt attgttgatg ttagtcaatt gatttgtccc





124201
ccttttaata atccatgatc cacacagaca tgaatctaaa cctttttttt gaacctatct





124261
ttttcttact agttttctta catattttgg aataacaatt tccctggtta taatacacaa





124321
tgtgtgaaac actaattgca tttattggtc ctaaattcat tcccaagtct aggatttggg





124381
gatttagtgc acaaatccac tttcttcctg ctcatgttgt tcatgacttt atggattctg





124441
cttacatttc ctcccaaagc cttggtcttt ctaagcagaa atctgaccag cctctgttcc





124501
tactctgctt cctccaccac cttgactgtt aacatacact gttgtgggag aagcttttca





124561
ttaaatacgc aaacaaatca acaataagga agaaaacaac tgaagcacag aaggatgatt





124621
gtaacatgga cttgtgcttg tttaacagta cccatactgt ttggtgagtt gcctaaatac





124681
agagggagat ggcaacttaa caggatgggt ttggagtctg aattaaataa acaacatggc





124741
aaaagaagga agaaaccaaa agttgggtga ctagggcttc ttggattcta ctcaacactt





124801
tccacaccta caggcctctg attctatccc caccgctgct cctacactgt ctatgtttct





124861
cttttacaac aacaacaaaa aaatagcact tgtttactgt tcacaattat tgaaataaat





124921
cactctaatt tggattcctt tatatgagaa cttccatatg cttaaaactc ccgtagcatt





124981
tttatagtgt acaggtcata aacatgttgt ctgaagatgg gcaaagtagg tcgtagagat





125041
aggaagtgag ttcacatcac ggcgtgagtc aaggcagcag catatgagct caggggccaa





125101
atctgagctg tgatcatgtg acacagtcct caccttcaga gatgacattc tcccagaagt





125161
ccagggtgca gaaatggata ggctgatgtt cacttttgaa gaggaccaca atgaaaccct





125221
tttaatatta ctcaatgatt ccacagacct cctgggtgtt aaatcaggtg aatctatttt





125281
taaaaattgc tatttacttt tttaggtggc tgatcaggac agtatgaaat ttcatacagt





125341
ttcctaactt gagaaaacat ggtgatgcaa ttcctccaac caggagggat ttatggacag





125401
cggtggctac gtcctaatct gcccagaata caggatgact aaacaaattg gcaaacggac





125461
gcagctttct ctctctctaa gaaaagtctg ctgagaaccc tcgttcccac tctgtttctg





125521
cctccaagaa gaaaagccta aaactcactt tcttccggac tctttcaagg tcagtggagt





125581
tcctctgggg ttcatattca gatactttgg ggattgatga tggatcataa atgttgctga





125641
agttcatttg agcccatggc ctctggtttc agaaccattc agccagtcaa atatttaaat





125701
tttagtgagg caggggaaag ggaacccctt cgggggctgc tatacagcaa cttatattca





125761
caattcacaa ttaaatacac ttcagtttct aaatatatgt tactttaaaa ttatacagtg





125821
cttagcaatt ttcaaatttt cattttgtgc tcaaaatatt ttcaggaggt agctgttgtt





125881
atacccattt gtacaagcaa gaaactgagg tttcaagagg ttatgttgct taaacccaga





125941
tctgcctgat tccaaacctt atgctttttt taaacttcta ttttgaaata attatattaa





126001
gtcacatgag gttgcaaaga aatggaaagt ctcatgtccc ctttctccaa acctcatcca





126061
atgttaacat ctaagaaatt gacactggca caatccacag agcctattca gggttcacca





126121
gttattcacg cacttgtgtg tgtgcatgtg tgtgtgcagc tctgtgcaat tttgtcatgc





126181
tctttttttt tttttttttt gagacatagt ttcgctctgt tgcccaggct ggagtacagt





126241
ggcacagtct ctgctcactg taacctccaa cttccagttt caagcaattt tcctgcctca





126301
gcctcctgag tagctgggat tacaggcatc tgccaccacg cccatctaat ttttgtattt





126361
ttagtagaga caaggtttca ccatgctagc cagactggtc tcaaactcct gacctcgtga





126421
tcttcccacc tcggcctccc aaagtgctgg gattacaggc gtgaaccacc gcgcccggcc





126481
tgtcatgctc tttttataca tgaaccatac actgttctgc caattttaaa tatgaaggca





126541
gattacagaa ataaataaaa tgatttttct tttactacaa cagtatctac caataatcac





126601
atacatgacc aaatagcttt cacttctagc tgccgttaag aagaaagaaa aggatgaaaa





126661
gaaaaaaaat cctataaacc ccagttcttg aaagcattag tctgtgctat gtgccttagg





126721
tacagattaa ggaaacacaa tttgttgatt tattgataat tgtgacagca atcttccctc





126781
ttgtcaggaa gttctataag taaaataaag gtaattttac cttgacttca Ratttagtct





126841
catcatcttc ctttccccgg gagttcaact ctgtctccgt ataaggttcc tcagacgttc





126901
tcagaggacg agctagaggg actaagagaa cctgccatta gtgtggttat ttaacttata





126961
aactataact cagtgcactt tgtctgattt ggacaaatag ctggaccacg tcaatgtggc





127021
taactataaa agctcacttg agctgctgcg ttgatttcct agggctggat gaaattggag





127081
gtgaaggaga gacacagagg agaaatagaa tccttgactc cagggacttg acatttcagc





127141
agaagagaaa aaagtcacac ccagcaccat atgaaacatt aaactacaac aaatctgtac





127201
atatagcaat gtggtaaaga atagtagatt ttctgtcatt cccattttta aggcccagct





127261
aaaaggtcac ttttggctgg gtttggtggc tcacacctgt aatcccagca ctttgggagg





127321
ctgaggcggg cagatcacct gaggtcagga gttcgagacc agcccggcca acatggtgaa





127381
atcccgtctc tattaaaaat acaaaaatta tccgggaaca gtggcaagtg cctgtaatcc





127441
tagttactcg ggaggctgag gcaggagaat cacttgaacc tgggaggcgg aggttgcggt





127501
gagctgagat tgcgccactg cactccagcc tgggcaacag agctagactc catctcaaac





127561
aaacaaacag acaaacaaac aaaaaggcca ctttcctcat gaagtcttcc atattacaaa





127621
ctttatggat tcttttatgc actgctgctt tggcatgcat catgtgtaca gcataatgtt





127681
gcacttgatg ttgttcttgg attcaaagac taaattctag gtactacatt gtattgaata





127741
tattttccat tataaaggta attaattttt gcttattaca gaaaatctga aaaacactaa





127801
actcttaacg ctgaagcaca atcacttagt atatttcctt acagtcttct ttcaaatgct





127861
ctccctcttt ttacacacat acatgtacac acacaatcat actatgattg tattgtaaga





127921
ggatggccat gcctgctgct cttgctcttt tctcttggcc actctatctc ccttctcccc





127981
acctgggaaa tatcctttct tcaagctcca tggccatttg gtagtaaaat tgggacttga





128041
gaggagaagg cctcaaggct tcctaaccca ccttaccagc tttgccaagc attgtgggtg





128101
atggccacaa ggctaataga taagaggtac tttgaattct tatttgtcac agtcaccacc





128161
cttgcatatg ctggtccctt gggaaactca caggagacat gattaatccc aggcaggatt





128221
tgagcatttc tttctttctt tctttttttt tttgagacag agtctcgctc tgtcgccagg





128281
ctggagtgca gtggtgtgat ctcagctcac tgcaacctcc gcctcccagg ttcaagcgat





128341
tcttctgcct cagcctccca agtagctggg actacaggcg cgcaccacca tacgcagcta





128401
atttttgtat ttttagtagc gacggagttt taccacgttg gacaggatgg tcttactctc





128461
ttgacctcat gatctgcctg cctcggcctc ccaaagtgct gggattacag gcgtgagcca





128521
ctgtgcccag ccaattttag catttgtagg tcccaagacc aaaatgccat tcattgaatg





128581
ccaccaatat atcaccctga ttcttagcta tggtagactt gatggaggtt gaccatctga





128641
tctccagagg ccccttccaa cccttccatt ctgtgagcca actggaagca gcttgggctt





128701
tctatgggtt tttcatagat gttatgttga aaatcgcaga aaattacact gctaccccag





128761
gttatacata ttaccattaa tgctgctttg taataacaga caatcctttg ggctcctccc





128821
tctctgtggg atctctataa agtgagtgat tccaggcaca ataactagat gctagaaatg





128881
catgcactat aatttgtgac accatgactg agaagcgcct gtccttgaca ctgtaagtag





128941
agtgaagcag tgaaaggcgg ggccacagaa gccacactgc cagtgttcaa accttgctct





129001
tccatgcacg agacaaacat gattacagtc acctctgtac cttacctttt tcatctgtaa





129061
agtagggaaa aatgagaaat cctacagtaa agggctgtga taaggcttta atgagttcat





129121
ttgtgaagaa tgtagatcat atacaatgca taacacattt tagctattat tgccacatgg





129181
cactaaaaag ttttttcacg ttccttatga acttcagagg tgttagaagt tgtagccaag





129241
gcatccagct aacaagagtc agagctgaaa ttccagctct taagcccctc cacacatctt





129301
ctttatactg tgaaatacaa ttgcttatct tggcacagac tcagttacta aggaatcaga





129361
caaaaatgtt tgaaaatcct tttagtgact tgctggagtc cacactcagt agatacttac





129421
caaaaacaaa agtgcaggat tgttctgcaa aacgagctag ttgtttgact taggtcaatg





129481
acaacctgtt cagacttgac aaagacctat ttattctggg aaggagtgtt atctattatg





129541
aaatcttgta tttgaaaagc tgagaaacaa ccctgtaatt cctgctttat ttacttgaaa





129601
caaacatatg tacctggaaa caacgaatga ggccaagtca tagatgtgaa catagtttag





129661
cttgaggaca gacgaaaggt caagagaacc aagttctgtt tccaatcatc taagaaggat





129721
gtctctgtgt atgtttgggt atgtctgtgg tatgtgtgtg caagtgtgtg agagtgtatg





129781
tgtgtggatg tgtgtgtgtg tgtttgcaga taaaaattca ggaaagaaat acactaaatg





129841
ttatcaaggc ttacttctaa aaagtaggat acatggtgga agacaaggga tcgtaaattg





129901
tactaaatgg agaattacca aaacacccca caattttcat ataaacaaaa actgaaagaa





129961
tttattgcta acaggccagg catggtggct cacaactgta attccagctc ttagggaggc





130021
agaggcagga ggatagcttg agcccaggag ttcgaaacct gcctggacaa tatagcaaga





130081
ccccgttctc cacaaaaagg aaaaaataaa gacaagaaaa gaatttgttg ctagtagact





130141
ccccaacaat aaatactaac agaagctctt tattccgaag agaaatgaca caagatagta





130201
attcaaatct ataataagga atgaagaacc ccagaaatgg tgaataaggg ggtatgtaca





130261
cacacacaca cacacacaca cacacacaca tgcacacaca cacgtatgta tttctcttaa





130321
tttgatacat gactatttaa agcaaaaatt ataataccat agtgggggat taacatatat





130381
agatgtgata tttatgataa gaatagcaca gaggatggat ggggagcata tggaagtatg





130441
acattgtagt atgtagtatg atttcctata ttttgcatag aatggtatga aactaattca





130501
atagatcatg acaagttaag gatgcatatg gtaatcccca gtctggtgaa aaacagtaca





130561
aagagatatg ataacaagcc aatagaggaa ttaaaacaaa atattaaaaa atatttacta





130621
acccaaagga aggcaggaaa ggaggaaaag aggaataaaa agcacatgag acatgtagga





130681
taacaaaaca ggaactctaa atccaactat atcaataatg atgatggatg taaacataaa





130741
aatctaatca ctccaattac aaggcagagg tcacagtgta taaaaaggca agacccaact





130801
atatgctgcc tacaacaaat atactttaaa tacaaagaca gaagaataga aaacaaaaaa





130861
aatatgttct gcaaacacta agcatgagaa aactggaatg gctgtgacaa tatcgcacaa





130921
gatagacttt aagagtattt ctagaggtaa ggagggaagg agagacattt cataattata





130981
aaagagctaa tatatctgaa agacataaaa accatgaata tgtatgtgct taatgacaga





131041
ggtccacaat acacgacaca aacaaatgac atgtacatcc tgcccaaggg cagtttattc





131101
caaggatgta cagttgtttt aacatttgaa aacaaatcat tgtaatttac catattaaca





131161
aataaagaag aaaaaccata tcattctctc aatacatgga ccaaataagc atttgaaaac





131221
tcaataatca ttcacgataa aaactctcct aaaaaataga aatagaagag aattccctca





131281
atctgataaa agacatctgt ggaaaaccta tagcttacat catacttaaa gatgaaactt





131341
gaactctttt cctaatattg ggaaaacaca cagatgtctg ctctcaccat ttctatttga





131401
cattgtagtg gaggtcccag tcattataat atgacaagaa aaaaagtata aagattgaaa





131461
cagaaaaaag taaaagcatc cctattcaca gatgatagga ttatatttct atatagaaat





131521
ctattcctat tcttaattat atatggtaaa ttccattcat tatagggtta aaaaaatgtt





131581
aaatgcctaa ggcctttaca ctcaaaacga ctgcattgtt gagagaaatt aaagatgacc





131641
taaaaaacat aagttataac atattcagga attggaaaag tcaatattgg taagataata





131701
gttctctcca aattagctca tatatccagt gtaatcccta tcataatccc agcagaaatt





131761
gaaaggtgat tctaaaattt atggaacaat gaaaaggacc taaaatagcc aaaacaacct





131821
tgaaaaagaa caacgttgga acatcgcatg acttgatctt aaaggctgac taataagcta





131881
tggtaatcag gaccatgtgg gattggcata agaacttacc tattttttaa atctttgctc





131941
aaagaaccaa ttttactact ccattgctaa taaaacatgg gccttttaaa ggtcctgaat





132001
ggggtctatt ttatgctgtt attattatgt tattattatg atgcatttgt tgttgttgtt





132061
gttgttgttg agacagagtt ttgctcttgt cgcccaggct ggagggcaat ggcgcaatct





132121
ctgctcactg caacctctgc ctcccgggtt caagcaattc tcctgcctca gcctcctgag





132181
tagctgggat tacaggcgcc cgccaccatg cccaggctaa tttatttata tatatatatg





132241
tatatatatg tatgtgtgtg tgtgtgtgtg tatatatatg tgtatataca tatatgtgta





132301
tgtgtgtgtg tgtgtgtata tatatatata tatatttttt tttttttgag acggagtctc





132361
gctctgtcac ccaggatgga gtgcagtggc gccatctccg ctaactgcaa gctctgcctc





132421
ccaggttcac gccattctcc tgcctcagcc tcccgagtag ctgggactac aggtgcccac





132481
caccacgcct ggctaatttt ttgtattttt agtatagatg gggtttcacc gtgttagcca





132541
ggatggtctc gatctcctga cctcgtgatc tgcccgcctc aggctcccaa agtgctggga





132601
ttacaggcgt gagccaccgc gcccagccta atttttctat ttttagtaga gatgggtttc





132661
aacatgttgg ccaggctggt ctcgaattcc tgacctcaga taatccaccc gccacggcct





132721
cccaaagtgc tgggattaca ggcgtgagct accgcacccg gcctttatga tgcattttta





132781
ttattccttc agtagattgt gtgtttctcc ttgcatccag gcacttggtg ttatctaagt





132841
gtttatgtct tccatgtctg cactatgcta tatctgtagt ttgttttaaa tagtatctgt





132901
taaaacagcg accattatcc attgtagaca accagtcaca gtcctcatgg tgctgatgaa





132961
acacaaaagc cacaaagctt cttttcctca aataacctac ccgaggtgga gggctggctg





133021
gtttttgatg acacccattt tggtgaagac tcaggatgtg gggccacagg ttgcactgga





133081
cgagtctgtt tggctgccag tttcatcaga ctcacttgcc tcttgtgaaa tatttcctgg





133141
acatcatcca gcctctgcaa aactttctgg gctttggcct acagtaacaa aagcaaatca





133201
tgatgaacag gtctctctgt atacagcctg aggacacgaa gcattccctt tctcccacct





133261
tcccctactc cccccatccc tacctccctc aggtgacccc ctctgggcat cactatgcaa





133321
gtcgctgcag gtcctgccat gctccagaat tgggtatcta aggattagcc tctcctactt





133381
gagacccttg aggacaatga ctacatcctt tcactatggc gtctccagtg cctggaacac





133441
cctggcacag gagtttgaga ccagcctggt caacatggtg aaatcacatc tctactaaaa





133501
atacaaaaat tagccgggtg tggtggctgg cacctgtcat cccagctact tgagaagctg





133561
aggcaggaga atcgcttgaa cccaggaggc agaggttgca ctgagccgag atcatgccac





133621
tgcactccag cctgggcgac agagcgactc catctcagaa ataaacaaac aaacaaacaa





133681
ttagaataca atgtggcttg tgtcatgtta gacagagcaa agaattttgg cctgagtcca





133741
tggatggact tcagggcatt ccccagaatt acacaaacag ttagacaggc tggatataat





133801
ctgtttgttc ctccactgca tcttctcttc ctttctttgt gcccaggaag ctgattaaaa





133861
gaagctccta aaccagaggt gcagacaagg tgatgatgtg gctctcagag gaaggtgtgc





133921
tacctacaac cctgctggct tcatggaaga atatgcttct caaatgcaaa tccaatcaag





133981
ttatctccct gcttaaatcc aaactcgctc atgtggccca caaagcctac cttgcctgcc





134041
tctctctaac ctcacccaaa acacacttcc attgctctct aggttccagc accctgacct





134101
tttggtctgc actgtgccag gctccctcca gccctgaagc ctttgcacat gctgttcctc





134161
ctgtctggaa aggctctccc atcttgtcta ttcgttctcc aggctcaagt gactcttcct





134221
gagagccttc tctgacccca gtccaggtca agttcctctg tcacatgcct gaccctgcat





134281
ccctccttga cagcacttat atcagcttgt aacacatttt tgtgtgatta ttttgttaat





134341
gtcagcctct cccacaaact gtaagctcag tgagggatgg aagcatgcct atttttaatc





134401
atcatggtat cctcagcact cagcacagca catggtacat caggaatgct cataagcatt





134461
aatagagaaa tgactgattt gagtcagacg aagactcagt atgccaggac gttcaggccg





134521
agagtctaag aggccgccgg agggcttcgg aaccagtgag cccactcaat tcagcctgct





134581
cagtaccctg tgtgtacttt atcaggaaga aggtacagtc cctccctccc ctatccgttt





134641
cccaaccaca ggatcaaaat aacccggaag cattaccttt gcatcgaggg tgagcagcaa





134701
ctcaaactcg ttgtaaaact ccttggggct gagcaacggg tactccttga ctgtgcccag





134761
gaatgtcgca atgtcgttca aggcgatatc aaccccttct cgagactggc acttgtctac





134821
agcttgggaa gccaagaggt agattcctgc ctcacaccat tggctgacct tttggaaaga





134881
aacagtgccc tgtgcacttc gcctgaccac aactcagagc caccgtaatc ctcagcaggt





134941
ctgagcttgt aaggtgtcta caaggattcc cagacaatgg gaaattgtca tgggacggca





135001
tcgagtttaa ggggtctaac cactgtaaat tacactatga gggggacaaa cccaaaccag





135061
ctgatacctg tccacttctc agggaagtca ctcggtcagc aaaatgagtc tcttccatta





135121
acagtaattg ctacatctcc aggaggagac agctaaatat atatttaatt aaagacaggg





135181
tttcactctg tcacccaggc tggagtacag tagtgcaatt atggcttaat gcagcctgga





135241
gaggtctacc ccaggctcag gtgattcttc caccttagcc tcctgagtag ctgggactac





135301
agatgcatgc caccacacca ggctaatttt tccttccttc ctcccttcct tccttccttc





135361
cttccttcct ctttctttct ctctgtctct ctttctttct ttcctttttt tgagacaggt





135421
tttggccatg ttgccgaggc tgctctcgaa ctcctgggct caagcaatcc tcccacctcg





135481
gcctcccaaa gtgctgggat tacaggtgtg aggcactgca cccacccagc cttatagcta





135541
aatatctctt aggctggtct aaccatagag aaatgtaatc aatggctttt ggggtttacc





135601
tgctagtcca ctcttcttgc atccgaattg gttaccagaa cacagggtga ttaataagac





135661
attagacctg gcccttacat ttcctgggag aagggcatgt cccttttaac aaaaacacaa





135721
ctttcatctt tggattccca ggtgatccct atttgcattt actggcgttt gtctttcgta





135781
aggaagcaag aatgcaaagc tttgtaactc agcacagcga tactcaagag tttctggatg





135841
ctgggaggac attagatagg tgatgagttc taattattca atttttaaaa aagactcatt





135901
ttctttgctc ttttgaactc cactgagaca cttgaacaga aagacaggga gcccttatgc





135961
tacctgaaga gttatatgaa aagaagtttc cagtgccaat acctctgcat ttccatttac





136021
catgtgacct gaaaagcaat ataaagtaac tatacagaga aaaaagatca aaatgcaaca





136081
cgccaaagtg gttgtctttc taagtgggaa aatgataggc aacttaagtt tttgtcttat





136141
ttttttccta gattatttac agtgaatatg taccacattt agaataataa aaaatcataa





136201
agatatttca gaattaataa ttaccattat gtagggatgg gggatagtgg gatatgtacg





136261
tgcccatgag taaccttttt cttcctacat ttttggattt ccacaataat atgaactcat





136321
gctttgatat atgctgtgaa aactttctct ttacacatca tgcccagatc tgcaaaaaac





136381
attaggctgg gattttctgt agagttacta tggctacttg ctttctctct ctctctgtct





136441
ccctctctct ctctcaaaca cacatgcaca cacacacaca cacacacaca cacaccaggc





136501
ttataatctc tggagcaaaa atggagttgg gaaaacagca gctgatccca cagcgagctc





136561
agcacacaga gcaggctgca caccagcccc ttcggagcta cttgcttctg aaacaactat





136621
atttcattga cattaaaatc cctttagcaa tgggatgagg taagcgcctg ggtgggtgcc





136681
ccctgccatg caagaggaac agctgtgggg atggagcatg ctgactcatt gccgtcagcc





136741
acatgctgcc tgggaccagc tcacagggaa gactccagaa accgctgctc ctgctgactg





136801
ggaacatacc ctagaggtca cctccaaagg gcacccctct ccttgtgggc ccctggcatg





136861
cgcccttgct gtctatcctg tgaagccttg gtgtggaatc tggcaggcct gactttaatt





136921
ctggcttccc ctgtgtgcac catgtgtggt cttgggcagt catttacccc agggtttctt





136981
ggtgacatcc ctgcaccacc tgcaccagaa tcatttagac actttactaa aatactagtt





137041
cctgggcagt attccagacc tatcgacgct gagtcttcag ggcagtgcat aagggaatct





137101
gccatataac agctcactag gtgattctcg tgtgctacat tttgagaccc agcagagtat





137161
cagtttctgc ctctgcacaa tgaggccatt aataccttcc tcagaggttg tcttgaggat





137221
tataaataga tgacataatt atgttcctgg taggaatgca gtaggtgctc gatacatggt





137281
agggggtata aaatggttgt tattacttaa gcttctccaa aaagagtcaa aaccctttgc





137341
ctttatatga gggaagcact ctgcaaatat agtgcttggt tctctgtaca cctgaaaggg





137401
aatcaagaag tgttcccaca gggccaagcc aaaacacact cttaaagtcc ggctccacac





137461
agatagaaat gggcttcagt taactttaat gggatgtggt gggatggcca gagcactttt





137521
taccttcgtg ccaggtatac ttctacaccc caggatctgc acagttttta atgcctctcg





137581
aacatctttt cacataaagc actcaagcct ctcagcaatc acacaaggaa gggaggacga





137641
gtatgatgga agcttcttca cagaaaatct tgcagacatc atgttcttgg ctgtgttttg





137701
ctcaccttgt ccagctgtct atgaaactct aaggactttc ctaaaatgtc ccattttttc





137761
ttgtttccat tgatgaaatc gtcacagagg tgcctgagct ccacacaccg gggcctgatg





137821
gcatctgctg cataatggtg gctttggatg agctggtccc caaccagtgc cagcagcWgg





137881
gccttttcca ggggctcctg caaagtgaac acccacagcc aggcgtcaga agtcagagca





137941
tcatgaggct gagagctgcc tggtactgtg tgctccaagc ctggagggag gctgtggaga





138001
tgctaaccca ggatgaaggc tggagaacct gagaaagctc ggaatggttc caggcccagg





138061
aagttaagcc tggcccagag ttgtccacat gctgaacaac agcagtcatt cattcaaata





138121
cctgttgagt tctgggctag acatcgagga tatagtgtta acaagcccaa aattttcaga





138181
ttaatggaga attcagatat caactaaatt acacaaatcg ttaaattatt acaattgcaa





138241
taaactctag ggcagaaaag catggagtgc acataataag agattttgaa tacccctatt





138301
aactaaagga acaagaagag ggactgacac ctgtccttga ggagagtggg gggtgagctg





138361
aagttgaaac actggtgaaa attggatttg gacaactcaa aggtggtcat gacacttaag





138421
aaatatgctt gtctaggctg ggcgtggtgg ctcccacctg taatgccagc actttgggag





138481
gccgaggtgg gcggatcacc tgaggtcagg agttcaagac gcgcctgacc aacgtggaaa





138541
aaccccgtct ctactaaata caaaaattag atgggcgtgg tggtaggtgt ctgtaatccc





138601
aactactcag gaggctgagg caggagaatc gcttgaaccc gggaggcgga gattgcagtg





138661
aattgagatt gcgccactgc actccagcct gggtgacaga gcaagactcc atctcaaaaa





138721
aaaaaaaaaa aaaaaaaaga aatatgcttg tctaaaccct ttcccaaagc ctgtaagggc





138781
cctgtctaca ctgaccctgt ctgctcaatc acatttccta cctctttctg catgacactt





138841
cgctctaacc acacgtgcca agttttcctg tttgtttaag cattccttca ttcatccttc





138901
tcatattatt gagaacctgc tatttgccaa acactgtcat aggtgctggg agttcattgg





138961
taaagaaagc aggcaaaaac ccccacctca tgaaatgaag cttacatttt aatgggagac





139021
agaggcaata aacaagtgca tgtgtaggtc atatggtatc ttagacagtg atgagtatgt





139081
ggagaaaaat tagatggtgg ggagggcagg gagtgctgga gctagtattt taaatcggat





139141
ggtgagacag tctccctgag aaggagtact caagctatgc agaaaagact tcacatagaa





139201
agcctgagac taggccgggc tgtggtggct cacgcctgta atcctagcac tttgggaggc





139261
cgaggcaggc ggattgcctg agttcaggag ttggagacca gcctcggcaa cacagggaaa





139321
ccccatctct actaaaacaa aaaaaattag ccaggcatgg cagcatgcgc cgatagtccc





139381
agctactctg gaagctgagg caggagaatt gcttgaacct gggaagagga ggttgcagtg





139441
agccaagatc gtgccactgc actccagcct gggtgagagc taggctctgt ctccaaaaaa





139501
aaaaaaaaaa gagaaaagaa agcctgacac tacagcctta gaaagaaaga cccgatttta





139561
agattggccc tttgttggca tctaggaact tagatttttg ggaaggtttc ctccattccc





139621
tgatgtgaat ggttcatgat ccctgaactg tttgtgcaaa cagtatggtt tatggtgatt





139681
acttgctttt tcttctggga gtctgaaatc ttggtacttg ccagacagaa gctgctgaca





139741
tgaccagcca ccaataaaac ctctgggcat tgagtctcta atgagctccc ctggtagaca





139801
acatttcaca catgttgtca caacccacag acgggggcag gaagtatgtc ctgtgagact





139861
cccacaggag aggattctaa gaagcttgtg cctggtttcc tccagacttc acctcgcatg





139921
cctttctcct ttgctaattt tgcttagtac tttctcatct taatagatca taactctaat





139981
acagctacat gcagaatcct cctagtgaat cttcgaagaa atgtgtgcat ggtcttggga





140041
gcgctctgca tacaagctga gacctgaagt cagggacaag ccgtgcagta cttggctggg





140101
aggtgaaggc gtgtttgaca agtttgggta gcaggaagga ggccagtgtg gctgcagcag





140161
agggagcaag aaggaaatga gtggaagact aactagagga aagagggggt tccatagccg





140221
gggtgagagg aaagcccctg ggtttggagg gaggatctcg atcatgtttt tgaaaggacc





140281
actcccggta cagtgtccag aataagagga aatgcaggga gactcattaa ggggctgctg





140341
caggaatcca gccgagagat acggcttacg gctggtcacc aaactagctc ctgactcgac





140401
ccttctctgg attgttcttc cctgggtcat gcagagctga gttcctgggt cacctcctca





140461
cagcgcttcc ctggcgacta tatcttaagt cattctctac aacctattcg cccagtcacc





140521
taggccctct cccacacttt aattctttaa cagcattatc tctatctaaa aactattttc





140581
tttatttact ttaatgtaga attcctccct cctggctggg cgcggtggct cacaccagta





140641
atcccagcac tttgggaggc cgagacgggc agatcatgag gtcaggagat cgagaccatc





140701
ctggctaaca cggtgaaacc ccatctctac taaaaagaca aaaaattagc caggcatggt





140761
ggcacacacc tgtagtccca gctactcggg aggctgaggc aggagaatag cttgaacctg





140821
ggaggcggag gttgcagtaa gctgagattg tgccactgca ctccagcctg ggcaacagaa





140881
tgagactctg tctccaaaaa aaaaaaagaa ttcctccctc ctccactcac tcccaccaaa





140941
atgtaagttc catgagagca tttagtaggc atgcaataaa tatttgatca acaaaataaa





141001
tgaatgagcc aatgagctac atgatgcggt gacctgcttg gctggaactc tgtgaagcaa





141061
tcagcacaga tgactgccac attccaaaag gtctccagga gcagagagcc catgagcccc





141121
cttgccagcc acactaagca tccagtgcat cactgcactg ctttagctgt ttacagtaac





141181
acaaggagtc acggtaactc caggtgcgta catcttgccc ctctcttaac ttgcactggt





141241
ttatggtttc aacaatttcc aaaccccttt cctcttaccc tcccagtcat tcacgaagcc





141301
ccgcagggac cgtcgccttc ttaatgcctt tcaaattctg accccatctc tgccacctcc





141361
ttgtcactgt ctgctcaggc ctcatggctt ctcatgggga caactggtct ccctgctttt





141421
cttcaggctc tccttcaaat catgctccag actgctgaca aaggagcaat tccaacatat





141481
cttattgtgt ctacatcact cccaagcttc aagccctttc ctgggcgccc agggtcttca





141541
ggagcaagct taaactcttg agcaatgcac acggggaatt tcattatcta gctcatacct





141601
gggtgtgcct gacttaccaa gtcctcttcc acttcctcaa ctccattctc tgctgcaacc





141661
atactaatta tccacttatt gttccccaaa tattcaggca gcttcaggcc tccatccctt





141721
ctccacctgc tgtctgccta gaaagcccat ccttccctac tccccctcac ccatactcct





141781
ctggggccaa ctcgatctaa atcatatttc agacttcacc ttctccagaa aactttctct





141841
gtgcttctct tgatcagagc acctgcttca ttatgttgtg accacttatc tgctgcctgc





141901
gctatgccac agacacctat ggtccagaac cagctcttat tcaactgaaa acagtgcatg





141961
ctgcatctta ggtacttaca aataaatgct gcacaaaaca aagaggagta ctggtataga





142021
aacaagtgac acaaatcaag tagtggctag ttaaaaggac tgaggcaaaa atacccagaa





142081
cacttgttct aaacagcaaa ggcccaggtg cactggttac cacccctaca agatgactgg





142141
aatactcatt ccctgggcag tgattttttt tttttttttt tttttgagat ggaatcttgc





142201
tctgtagcta ggctggagtg cagtggcttg atctaggctc actgaaaatt ctgcctccgg





142261
ggttcaagcg attctcctcc ctcagcctcc cgagtagctg ggactatagg cgcccaccac





142321
tatgcctggc taattttttt tttttttaat ttttagcaga gatggggttt caccatgttg





142381
cccaggctgg tctcgaactc ctgagctcag gcaattcacc cgcctcggcc tcccaaagtg





142441
ctaggattac aggcgtgagc caccgcgcct ggtctgggca gtgatttttg actctttggt





142501
tcactgctgt gtcctcagaa cttaaacagt acctggcatg gtaggagatg aataaatatt





142561
tgcagaatag atgtcgaatg aatgacagac ctttcctagc actgctcagc taccgcagac





142621
tgaacctagc acatgttcca tagcccagaa tttatccctc tacctctgta atgttaataa





142681
caacagctaa catctactga gagcttaaca gatgccaggc actgttctga atgctttaca





142741
tttgcttatt tccttaactc ttcacaacaa accctttgat acaggtactg ttttaccaaa





142801
gggaagtgga gcacaatggc ccaaggtgac ccaggtagga aagagaagag ccaggcttca





142861
aacccaggca gtcttgctcc aggatctggc tcagaccaac atacacagag aaaaatggct





142921
gcacttgttc tgcctaaact tagagacctc atttggttgc tcgaacttgt ctgactttag





142981
tcaaatatag aaacatgaga cttggcatga aagtctctgt tgacactttt ttttttttta





143041
agtccagctg cctaatttat taagaacagg gcagaatttt ctgggtccag ggaaattcac





143101
cacaggatac ttccaaatca ccctgtggtg atcagagcct gcccttccct cagcatacag





143161
tatttcaccc ttcagaattt tccagaagac atttgagatg ttagagggaa gatgtgtgta





143221
acaggtccaa atgggtctag ggagaaacgc ccataaaggc aactgaggag gccgggcgca





143281
gtgggtcacg cctgtaatcc cagcactttg ggaagccaag gccggcggat cacaaggtca





143341
ggagttagag accagcctga ccaacatggt gaaaccccat ctctactaaa aatacaaaaa





143401
ttagccgggt gtggtggagg gtacctgtag tcccagctac ttgggaggct gagacagaag





143461
aatcgcttga acccaggagg cggaggttgc agtgagctga gattgtgcca ctgcactcca





143521
gcctgggcgg caagagtgaa actccgtctc aaaaaaaagg gcaactaagg agcaacccgg





143581
attcagccac cacatggctg gaaggtcact attacagaat tgaaaggaca acaatagttt





143641
ctgaccactg actactgacc accaaccata ttgcaagctg accacatgaa gtccctacca





143701
cacatctaac tcatttaatc ttcacaaggt ctctgtgagg caggaattat tacctctgct





143761
ttacagatga gggggaccat attcagaaag gctacgaaac gtgactaggg tcatacagct





143821
ggtacttgtt agagccaaga tttgaatcca tccctatccg acttccaaag cctgtgttct





143881
tgtcaccttc cagcccacct ggcctctaca catgtgctat gaaatcctcc tggtgcctgc





143941
aaagaaattt atggtgaaac ctccaaattg aagcttattt ttttagttta tatacctccc





144001
actcaggata aatagtcatc aaaatctcca aagtaaaaaa gaaagagtga gggaaaaaat





144061
ggctaaaatc ttctgatcac aagcccatct gggatctttc agatgctgaa aattccagaa





144121
ggctggatcg tcaagtttca gcttagaagt tgcaatcaga aatctttatt gaaataagtt





144181
tatttccccc cgaggactct gctggtataa cagatgagag atgagagtgc ctactaggga





144241
agaaagtggc gagaaagcga gtgatgctac tctatccggg aatctagaac aaacccacag





144301
aggatccaca gggatggagt gtgtgtatgg ggaggtgggc cagatgaaac aagaaaggca





144361
gaaagctaat ggttgttgaa attgaatgat ggacacttgg agttcattgt gccagtctat





144421
ctgcttctct gtgtgtttga aaatttcaca catgtacaca aagccatgac cctccaacaa





144481
gatgacatcc ttagatgtta atggcctggg ttccatgcct tcttagacac agcaccctta





144541
tggggagagg tcaaggctga aatcaggtgg ttcctccacc ctgtcctggt ctgttccctg





144601
ctggcccctc agcaagggtc tcagtacggc ccacagtcaa aaccctgcag caagttctgc





144661
ttttatagaa gaccttctgt aagtggttga aactactgtt tttcagaatc aggaaggagc





144721
attcaaaaga ctgctaaacc ctcaaacgag aacaagataa agaacaggct gaatcagcat





144781
gcgacaggag cctggttagt gagttgactg aggttacttg tgagaatgat gtcactgtgt





144841
ggaataagga agctggcaac accccagagc cagcgtgtgg ctgtgctggg agggagctgg





144901
ccccttagtg ccgagtaaag gacaaactcc aggcagatat ttgtcagatt gtggccagac





144961
acagtcttgt tcctttaaca ctttaaagga caaatggaaa gattagccaa gccctaatca





145021
tctgaagaag ccatgtgtct gagaagtctg agggaagata tattgaaaac gatctcagtt





145081
acgatgagac agctttgttt gatttacgca aaggcagaga cacaggtgta ctacatcctt





145141
caggaagcaa gtttagaaat aagatctgca agtcatagga tgtgacaggt ctgcaaatcc





145201
tgcaagtcac aggtcatcca cagtgggcta gtctagctgc ttcaagaatg ttgcccacga





145261
aaggtgggtc atgggttcac agagcattcc tgtgttccat aaccacaggt ttcatcccta





145321
actctggtca gcaacttttg aagtatatac caaggaccac aagttcaagg aagtgggcag





145381
aagaaagaat gtgatgcagt catgcagatc catcgccact attcaagaca cagcccagag





145441
cgccttccaa gggctttctg ttccactgag aataaaattc aaatcctcac aaaagatctc





145501
agggtgcaac aggactacct ggcctctgct catctctgtt cactcatttc ctcctggccc





145561
acctgctcta gcaatgttcc ttgaactcac caagctcatt tccactttag gacctttgca





145621
cctgcagctc gctcttgctt tgatactatt ccctaagtct ttgcatgatt acacagatca





145681
aacagatctc agaccaaagg tcgtcttctc aggcctttcc agaccattct agctaaagta





145741
gcatccccag tcactttcta ttatatcttg ttttcttttt tatatcactt gttactatct





145801
gatgttatta tttatttgat tgctttttag tgaactgtct ctctccagta gaatgtaagc





145861
tccatgaggg cagattctgg actgtctggc tcaccgctgc acccacggaa cctaggataa





145921
ggaatacctc ttgatgaata aataaccctc tggataggtc agtagctact ttcatatata





145981
tatgaaggca ttttttttga tgaggcactt tttcttaata tatgaataag caaaaaaata





146041
tagtatctat attcagtaaa aaattatttt gaaaaaacta aaatgatata aggttggggc





146101
tgtcctggag aatctaaggt atctagtcat catatatatg aaattcaact tttccattgt





146161
ttgataaatg ttcctgatga ctcatgtgtc tttagcacta gtttatctgt caaatggtca





146221
ctggtaagag aaagagcgct cgctgtgaag ggatgggatt cctgaatggg gatctggata





146281
cacagctggg tttgtgtgtt catgcatgtg cacaagcacc tgcagctcag aatctacaac





146341
caacagctct tagagtcagt gtggccttgg tatactttgt tttgtatcct ttaggggtgt





146401
gtgtctccaa ctttaacgta caagtcaatc acctggggat cttcttaaaa tgcagattcc





146461
aattccaggg tggggtctga gattttatat ttctaattag cgcttactca ggtgacatct





146521
gtgctgctgg ccagaggctc acactttggc aaatctctag tactgcaaaa ttgccgtctg





146581
agaaacatgc ctccagatta gctaagaaag gaagcgctaa ccacagggga cttggtcccc





146641
aagacccaaa aatatagaga acctaatttc aaacaagcag aaaggaactt ctctggaaag





146701
agacgactca gctttcttca tttgtaataa accaaatctg taaacactta aaatggaatc





146761
atttctaaat gctgacttgt gtgcggatct gggacactgt ttaattccag tatgggactg





146821
taaaatacat attcttttac aagtttcaca tttacaactc ttgggacatg agaaaggaga





146881
aagctttgcc aattctgtgt agcaatggaa ctaacatgga ccaatttccc ccatctaatt





146941
gtcttgctcc aggtataaaa ctagttgttt ttttttttct ggtttctcct ttgaaagttt





147001
cccatcctta ctaccaaccc cacaaccccc agccccctag tccaggctcc agggaggagc





147061
tcaagctgat gggtgagcct ctgatataat tgttctggtg agtgatgagc ctgttgtgac





147121
cttctcccac ttggctgctg accacgtgag agggcagggc tggtccagag tcctcacccg





147181
acctgagcgt ccaactgcaa ctgtatgttc cggcagcttt aataggactc tgtgctgccc





147241
gtattattca tagcagttgt taatgtgcct ctctccttgg gatcctgggg tgactgaagg





147301
gcaggactgg gcattcctgt gtcctttagc aaccttccaa tagcaatgac tggacatgat





147361
ccatcattgt ccacagcaac ctccctccca gtacacaaaa atgtcagaaa gcaaacctgg





147421
cttttttcct ccagtttttt gtgttcctta agaaKctgct ccacgtgcat cacgctgtct





147481
ccaatgcctg taaactctgc ttgctcttcc agcaaattat ccagggcaag cttagcctac





147541
aagaaacatt agaacagtcc agaagtaaac caacactcac tcacctgaag gtataggttt





147601
gttatgcttc aagaaaactc aaaattccaa aaaggattca agacttgtat atatctatat





147661
atgttaaaaa tttttttttt gcagctcact aactttcaaa






Following is a KIAA0861 genomic nucleotide sequence that includes the KIAA0861 SNP “KIAA0861-AA” (SEQ ID NO: 276).










GTGCCTTTCTGAACCCTGTGACCCAGCAGCCTCCATCAACTCGTCCTACC






TGCCATGCACAGCTCCTCTGTGCCCCTGTACCTGAGCTCATGCTATTCCC





TCTGCCAGGATGCCCTTCTCCTTCTCCACCAGGAGAAGAACACTTGCCAG





TAAGACCCAGTTCTAATGTCACCCCTTCCTGACGGTATCAGGAAGAGTCA





[G/C]TGATGGTGTTTTATGCTCCCAGAGAATTTGCCACATTGTGTTGTG





ATTATTTTTCCACATCTGTCTCCCCCACTGGAATGAGAGCCTCACTCATC





TTCATACCTCCCTGGTCTCTACCTGGTGCCAGAACCATCCTCAGGGCAGG





GGAATGCTCAGGAAATAGATATTGAATAAAATAAGTGTATCCATCCATCC





ATCCA






Following is a first KIAA0861 cDNA sequence (SEQ ID NO: 2).










KIAA0861 Coding Sequence (cDNA) Corresponding to



SEQ ID NO: 2. (cDNA from positions 94 . . . 3189)


cgctgaattctaggggaggatggcgcccccatcatcacgttcccagagtt





ttcggggttcaaacacatcccagatgaagacttcctgaatgtcatgacct





acctgactagcatccccagtgtggaggctgccagcattggattcattgtt





gttatcgacagacgaagagacaagtggagctccgtaaaggcatccttgac





acgaatagctgtggcatttccaggaaacttacagctcatattcatccttc





gtccatctcgctttatccagaggacattcactgacattggcattaaatac





tatcgaaatgagtttaaaacgaaagtgccgatcatcatggtaaactctgt





ctctgaccttcacggctacatcgacaaaagccaactgacccgggaattag





gggggactttggaatatcgccacggtcagtgggtaaatcaccgcactgcc





atcgaaaactttgccttgaccttgaagaccactgcccagatgctgcagac





gtttgggtcctgcctggccacagcagagctgcccagaagcatgctatcca





cggaagaccttctcatgtcccacacaaggcagcgggacaagctgcaggat





gagctgaaattacttggaaagcaggggaccacattgctgtcatgcatcca





agaaccagcaaccaaatgtcccaacagcaaactcaatctcaaccaacttg





agaatgtaactaccatggaaaggttattagttcaactggatgaaacagaa





aaagcctttagtcacttttggtctgagcatcatctgaagcttaaccagtg





cctacaactacagcattttgagcacgatttttgtaaggctaagcttgccc





tggataatttgctggaagagcaagcagagtttacaggcattggagacagc





gtgatgcacgtggagcagattcttaaggaacacaaaaaactggaggaaaa





aagccaggagtccctggaaaaggcccagctgctggcactggttggggacc





agctcatccaaagccaccattatgcagcagatgccatcaggccccggtgt





gtggagctcaggcacctctgtgacgatttcatcaatggaaacaagaaaaa





atgggacattttaggaaagtccttagagtttcatagacagctggacaagg





tcagccaatggtgtgaggcaggaatctacctcttggcttcccaagctgta





gacaagtgccagtctcgagaaggggttgatatcgccttgaacgacattgc





gacattcctgggcacagtcaaggagtacccgttgctcagccccaaggagt





tttacaacgagtttgagttgctgctcaccctcgatgcaaaggccaaagcc





cagaaagttttgcagaggctggatgatgtccaggaaatatttcacaagag





gcaagtgagtctgatgaaactggcagccaaacagactcgtccagtgcaac





ctgtggccccacatcctgagtcttcaccaaaatgggtgtcatcaaaaacc





agccagccctccacctcggtccctctagctcgtcctctgagaacgtctga





ggaaccttatacggagacagagttgaactcccggggaaaggaagatgatg





agactaaatttgaagtcaagagtgaagaaatctttgaaagccatcatgaa





agggggaaccctgagctggagcagcaggccaggctcggagacctttcccc





ccgcaggcgcattatacgtgacttgcttgagactgaagagatttacataa





aagagattaaaagcataattgatggatatatcactccaatggattttatt





tggctaaagcatctaattccagatgttcttcagaataacaaggactttct





ctttgggaatattagagaactttacgaatttcacaacaggacttttctaa





aagagttggaaaagtgtgctgagaaccctgaacttctggcacattgcttt





ctcaagagaaaagaagatcttcagatatattttaaataccataagaatct





gccccgagctagggcaatctggcaagagtgtcaagactgcgcctactttg





gggtatgccagcgccaactggatcacaatctccctctttttaagtatctc





aaaggaccaagccagagacttataaaataccagatgctgttgaagggtct





gctggatttcgagtctcctgaagatatggagatagacccaggtgaactag





gaggctcggctaaggatgggccaaagagaaccaaagattcagcattctca





actgaactacaacaagctttggcagtgatagaggatttgatcaagtcctg





tgagttggctgtggacctagcagcagtgactgaatgtccggacgatattg





gaaaactaggcaagctgttgctgcacggccctttcagcgtctggacaatt





cacaaggatcgttataaaatgaaggatttgattcgatttaaacccagcca





gaggcaaatctacctatttgaaaggggaatagtgttctgtaagatacgaa





tggagcctggggaccagggattatctcctcattacagcttcaagaaggcc





atgaagctgatgacactttcaattcgccagcttggaagggggagccatag





aaagtttgagattgccagtcgaaatggacttgagaaatacatcctgcagg





cagcttcaaaagaaatcagagactgttggttttcagaaataagtaaatta





ttgatggaacaacaaaataatatcaaagaccaaggaaatccacagtttga





aatgagcacgagcaaaggcagtggagcaggatccggaccatggattaaaa





atatggaaagagctaccactagcaaggaagacccggcctccagcacagga





gggattaaaggctgctccagcagggagtttagctccatggacacctttga





agactgtgaaggcgcagaagacatggaaaaggagagcagtgctctgagtc





tcgcgggccttttccagtcggacgacagtcacgaaacctgttcctccaaa





tctgctttcctggagaggggagaaagcagccagggagaaaaagaagaacg





cgatgaggaggaaacggcgacccgcagcaccgaggaggagcgcgctgggg





cgtccacgggccggctggctcctgcgggggcgacggctggtttccaggcg





agggcgctgcgcccgaggacctccgcccaggagagctga






Following is a second KIAA0861 cDNA sequence (SEQ ID NO: 3).










ttgggcggagatgcctttaaaaaatcatccaccgcagcggtagaaacagt






tttgtttggctttatttatacggaatggtttttcagtgaaatgctgtctt





gcttaaaagaagagatgcctccccaggagctcacccggcgactggccaca





gtgatcactcatgtcgatgaaattatgcagcaggaagtcagacccctgat





ggcggtggagataatagaacaacttcacagacaatttgccattctttcag





gaggccgaggggaggatggcgcccccatcatcacgttcccagagttttcg





gggttcaaacacatcccagatgaagacttcctgaatgtcatgacctacct





gactagcatccccagtgtggaggctgccagcattggattcattgttgtta





tcgacagacgaagagacaagtggagctccgtaaaggcatccttgacacga





atagctgtggcatttccaggaaacttacagctcatattcatccttcgtcc





atctcgctttatccagaggacattcactgacattggcattaaatactatc





gaaatgagtttaaaacgaaagtgccgatcatcatggtaaactctgtctct





gaccttcacggctacatcgacaaaagccaactgacccgggaattaggggg





gactttggaatatcgccacggtcagtgggtaaatcaccgcactgccatcg





aaaactttgccttgaccttgaagaccactgcccagatgctgcagacgttt





gggtcctgcctggccacagcagagctgcccagaagcatgctatccacgga





agaccttctcatgtcccacacaaggcagcgggacaagctgcaggatgagc





tgaaattacttggaaagcaggggaccacattgctgtcatgcatccaagaa





ccagcaaccaaatgtcccaacagcaaactcaatctcaaccaacttgagaa





tgtaactaccatggaaaggttattagttcaactggatgaaacagaaaaag





cctttagtcacttttggtctgagcatcatctgaagcttaaccagtgccta





caactacagcattttgagcacgatttttgtaaggctaagcttgccctgga





taatttgctggaagagcaagcagagtttacaggcattggagacagcgtga





tgcacgtggagcagattcttaaggaacacaaaaaactggaggaaaaaagc





caggagcccctggaaaaggcccagctgctggcactggttggggaccagct





catccaaagccaccattatgcagcagatgccatcaggccccggtgtgtgg





agctcaggcacctctgtgacgatttcatcaatggaaacaagaaaaaatgg





gacattttaggaaagtccttagagtttcatagacagctggacaaggtcag





ccaatggtgtgaggcaggaatctacctcttggcttcccaagctgtagaca





agtgccagtctcgagaaggggttgatatcgccttgaacgacattgcgaca





ttcctgggcacagtcaaggagtacccgttgctcagccccaaggagtttta





caacgagtttgagttgctgctcaccctcgatgcaaaggccaaagcccaga





aagttttgcagaggctggatgatgtccaggaaatatttcacaagaggcaa





gtgagtctgatgaaactggcagccaaacagactcgtccagtgcaacctgt





ggccccacatcctgagtcttcaccaaaatgggtgtcatcaaaaaccagcc





agccctccacctcggtccctctagctcgtcctctgagaacgtctgaggaa





ccttatacggagacagagttgaactcccggggaaaggaagatgatgagac





taaatttgaagtcaagagtgaagaaatctttgaaagccatcatgaaaggg





ggaaccctgagctggagcagcaggccaggctcggagacctttccccccgc





aggcgcattatacgtgacttgcttgagactgaagagatttacataaaaga





gattaaaagcataattgatggatatatcactccaatggattttatttggc





taaagcatctaattccagatgttcttcagaataacaaggactttctcttt





gggaatattagagaactttacgaatttcacaacaggacttttctaaaaga





gttggaaaagtgtgctgagaaccctgaacttctggcacattgctttctca





agagaaaagaagatcttcagatatattttaaataccataagaatctgccc





cgagctagggcaatctggcaagagtgtcaagactgcgcctactttggggt





atgccagcgccaactggatcacaatctccctctttttaagtatctcaaag





gaccaagccagagacttataaaataccagatgctgttgaagggtctgctg





gatttcgagtctcctgaagatatggagatagacccaggtgaactaggagg





ctcggctaaggatgggccaaagagaaccaaagattcagcattctcaactg





aactacaacaagctttggcagtgatagaggatttgatcaagtcctgtgag





ttggctgtggacctagcagcagtgactgaatgtccggacgatattggaaa





actaggcaagctgttgctgcacggccctttcagcgtctggacaattcaca





aggatcgttataaaatgaaggatttgattcgatttaaacccagccagagg





caaatctacctatttgaaaggggaatagtgttctgtaagatacgaatgga





gcctggggaccagggattatctcctcattacagcttcaagaagaccatga





agctgatgacactttcaattcgccagcttggaagggggagccatagaaag





tttgagattgccagtcgaaatggacttgagaaatacatcctgcaggcagc





ttcaaaagaaatcagagactgttggttttcagaaataagtaaattattga





tggaacaacaaaataatatcaaagaccaaggaaatccacagtttgaaatg





agcacgagcaaaggcagtggagcaggatccggaccatggattaaaaatat





ggaaagagctaccactagcaaggaagacccggcctccagcacaggaggga





ttaaaggctgctccagcagggagtttagctccatggacacctttgaagac





tgtgaaggcgcagaagacatggaaaaggagagcagtgctctgagtctcgc





gggccttttccagtcggacgacagtcacgaaacctgttcctccaaatctg





ctttcctggagaggggagaaagcagccagggagaaaaagaagaacgcgat





gaggaggaaacggcgacccgcagcaccgaggaggagcgcgctggggcgtc





cacgggccggctggctcctgcgggggcgacggctggtttccaggcgaggg





cgctgcgcccgaggacctccgcccaggagagctgacctccctgcggacgc





ccccgctcctcggctccagagcgcccgcattcccgggagaggcggtgtgg





gggcccgggccctgcccagctacgcagaaagcagccggagcctcggcggc





ggcagaaaggggacaaccagggcctcctccgaggagcccgaggggtgtcc





tgggtgcgcgcctagctccgcacgggggacctcggagctgctctaaggcg





cctgcagaggcgagcagagcccgcagcccacgccttctcgaccgcgcact





tcgacattcggagccgggcaattctttgctgcgtgggcttctctgtgctc





ccacggtaggatgtttagtagcacccctggcctctacccactaggtgcca





ggaatgcgccaccccatcctccaccccgcccccaaatcgtgacaatcaaa





aatgcctgcagacacgcccgcatttctccagggcggggtgggaatcggtt





gagagccgcttagcccgagccttggaggagccggagccgctcaaacccgg





cgggggccgcagactgggagctcccggtccgcctcccagcatccctgcga





gcgttcatggggtgttcgtgttagtgccaagattgcttcgttgtagagag





agttcgttccaagttactttctgaggtattttatgtatcgatttattagt





ttttaaatgagttttgttagtttcagttgtattttatttttagttttatt





agttgattttcatttctttgtagctttctggttatttaattttatagttt





cagttactggtttatagttactttattttcaaagttatttagttgttcat





tttcagttatttatatgtagttgttttgttttaggagttacagatgttca





aattaatttgcttggaatttatttatttatttatttatttatttttcgag





acggagtctcgctctgtcgcccaggctggagtgcagtggtgtgatctcgg





ctcactgcaaaccgcctcccgggttcacgccattctcctgcctcagcctc





ctgagtagctgggactacaggcgcccgccaccacgcccggctaatttttt





atttggatttttagtagagacggggtttccccgtgttagccaggatggtc





tcgatctcctgacctcgtgatccccctgcctcggcctcccaaagtgctgg





gattacaggcgtgagccaccgcgcccagccggaatttatttttaattatc





tttacaattattatctgagttatttaccttcatagttatttcactttatc





ttattggagtttttgagttatttatttttacagtaacttatttgactatt





aaacactcactggaagttcatg (4772 bp)






Following is a first KIAA0861 amino acid sequence (SEQ ID NO: 4).










MTYLTSIPSVEAASIGFIVVIDRRRDKWSSVKASLTRIAVAFPGNLQLIF






ILRPSRFIQRTFTDIGIKYYRNEFKTKVPIIMVNSVSDLHGYIDKSQLTR





ELGGTLEYRHGQWVNHRTAIENFALTLKTTAQMLQTFGSCLATAELPRSM





LSTEDLLMSHTRQRDKLQDELKLLGKQGTTLLSCIQEPATKCPNSKLNLN





QLENVTTMERLLVQLDETEKAFSHFWSEHHLKLNQCLQLQHFEHDFCKAK





LALDNLLEEQAEFTGTGDSVMHVEQTLKEHKKLEEKSQESLEKAQLLALV





GDQLTQSHHYAADATRPRCVELRHLCDDFTNGNKKKWDTLGKSLEFHRQL





DKVSQWCEAGTYLLASQAVDKCQSREGVDTALNDTATFLGTVKEYPLLSP





KEFYNEFELLLTLDAKAKAQKVLQRLDDVQETFHKRQVSLMKLAAKQTRP





VQPVAPHPESSPKWVSSKTSQPSTSVPLARPLRTSEEPYTETELNSRGKE





DDETKFEVKSEETFESHHERGNPELEQQARLGDLSPRRRTTRDLLETEET





YTKETKSTTDGYTTPMDFTWLKHLTPDVLQNNKDFLFGNTRELYEFHNRT





FLKELEKCAENPELLAHCFLKRKEDLQTYFKYHKNLPRARATWQECQDCA





YFGVCQRQLDHNLPLFKYLKGPSQRLTKYQMLLKGLLDFESPEDMEIDPG





ELGGSAKDGPKRTKDSAFSTELQQALAVIEDLIKSCELAVDLAAVTECPD





DIGKLGKLLLHGPFSVWTIHKDRYKMKDLIRFKPSQRQIYLFERGIVFCK





IRMEPGDQGLSPHYSFKKAMKLMTLSIRQLGRGSHRKFEIASRNGLEKYI





LQAASKEIRDCWFSEISKLLMEQQNNIKDQGNPQFEMSTSKGSGAGSGPW





IKNMERATTSKEDPASSTGGIKGCSSREFSSMDTFEDCEGAEDMEKESSA





LSLAGLFQSDDSHETCSSKSAFLERGESSQGEKEERDEEETATRSTEEER





AGASTGRLAPAGATAGFQARALRPRTSAQES (1031 aa)






Following is a second KIAA0861 amino acid sequence (SEQ ID NO: 5).












MLSCLKEEMPPQELTRRIATVITHVDEIMQQEVRPLMAVEIIEQLHRQFA










ILSGGRGEDGAPIITFPEFSGFKHIPDEDFLNV
MTYLTSTPSVEAASTGF






TVVTDRRRDKWSSVKASLTRTAVAFPGNLQLTFTLRPSRFTQRTFTDTGT





KYYRNEFKTKVPTTMVNSVSDLHGYTDKSQLTRELGGTLEYRHGQWVNHR





TATENFALTLKTTAQMLQTFGSCLATAELPRSMLSTEDLLMSHTRQRDKL





QDELKLLGKQGTTLLSCTQEPATKCPNSKLNLNQLENVTTMERLLVQLDE





TEKAFSHFWSEHHLKLNQCLQLQHFEHDFCKAKLALDNLLEEQAEFTGTG





DSVMHVEQTLKEHKKLEEKSQEPLEKAQLLALVGDQLTQSHHYAADATRP





RCVELRHLCDDFTNGNKKKWDTLGKSLEFHRQLDKVSQWCEAGTYLLASQ





AVDKCQSREGVDTALNDTATFLGTVKEYPLLSPKEFYNEFELLLTLDAKA





KAQKVLQRLDDVQETFHKRQVSLMKLAAKQTRPVQPVAPHPESSPKWVSS





KTSQPSTSVPLARPLRTSEEPYTETELNSRGKEDDETKFEVKSEETFESH





HERGNPELEQQARLGDLSPRRRTTRDLLETEETYTKETKSTTDGYTTPMD





FTWLKHLTPDVLQNNKDFLFGNTRELYEFHNRTFLKELEKCAENPELLAH





CFLKRKEDLQTYFKYHKNLPRARATWQECQDCAYFGVCQRQLDHNLPLFK





YLKGPSQRLTKYQMLLKGLLDFESPEDMEIDPGELGGSAKDGPKRTKDSA





FSTELQQALAVIEDLIKSCELAVDLAAVTECPDDIGKLGKLLLHGPFSVW





TIHKDRYKMKDLIRFKPSQRQIYLFERGIVFCKIRMEPGDQGLSPHYSFK





KTMKLMTLSIRQLGRGSHRKFEIASRNGLEKYILQAASKEIRDCWFSEIS





KLLMEQQNNIKDQGNPQFEMSTSKGSGAGSGPWIKNMERATTSKEDPASS





TGGIKGCSSREFSSMDTFEDCEGAEDMEKESSALSLAGLFQSDDSHETCS





SKSAFLERGESSQGEKEERDEEETATRSTEEERAGASTGRLAPAGATAGF





QARALRPRTSAQES (1114 aa)






Following is an amino acid sequence alignment between KIAA0861 domain and SEC14 domain sequences (SEQ ID NOS 277-280, respectively in order of appearance).












Sequence 1: KIAA0861
1031 aa
Sequences (1:2) Aligned. Score: 38



Sequence 2: Hs_DBS_GNEF
1108 aa
Sequences (1:3) Aligned. Score: 37


Sequence 3: Mm_DBS_GNEF
1149 aa
Sequences (1:4) Aligned. Score: 40


Sequence 4: Rn_DBS_GNEF
 937 aa
Sequences (2:3) Aligned. Score: 83




Sequences (2:4) Aligned. Score: 87




Sequences (3:4) Aligned. Score: 96













KIAA0861
---------MTYLTSIPSVEAASIGFIVVIDRRRKDWSSVKASLTRIAVAFPGNLQLIPI
 51



Hs_DBS_GNEF
IPDKEFQNVMTYLTSIPSLQDAGIGFILVIDRRRDKWTSVKASVLRIAASFPANLQLVLV
180


Mm_DBS_GNEF
IPDKEFQNVMTYLTSIPSLQDAGIGFILVIDRPQDKSTSVKASVLRIAASFPANLQLVLV
165


Rn_DBS_GNEF
-------------------QDAGIGFILVIDRPQDKWTSVKASVLRIAASFPANLQLVLV
 41



                   : *.****:*****:***:*****: ***.:**.****:::





KIAA0861
LRPSRFIQRTFTDIGIKYYRNEFKTKVPIIMVNSVSDLHGYIDKSQLTRELGGTLEYRHG
111


Hs_DBS_GNEF
LRPTGFFQRTLSDIAFKFNRDDFKMKVPVIMLSSVPDLHGYIDKSQLTEDLGGTLDYCHS
240


Mm_DBS_GNEF
LRPTGFFQRTLSDIAFKFNRDEFKMKVPVMMLSSVPELHGYIDKSQLTEDLGGTLDYCHS
225


Rn_DBS_GNEF
LRPTGFFQRTLSDIAFKFNRDEFKMKVPVMMLSSVPELHGYIDKSQLTEDLGGYLDYCHS
101



***: *:***::**.:*: *::** ***::*:.**.:***********.:*****:* *.






Following is an amino acid sequence alignment between KIAA0861 domain and SPEC domain sequences (SEQ ID NOS 281-284, respectively in order of appearance).












KIAA0861
KLLGKQGTTLLSCIQEPATKCPNSKLNLNQLENVTTMERLLVQLDETEKAFSHFWSEHHL
231



Hs_DBS_GNEF
RLALKEGHSVLESLRELQAEGSEPSVNQDQLDNQATVQRLLAQLNETEAAFDEFWAKHQQ
360


Mm_DBS_GNEF
QLALKEGNSILESLREPLAESAAHSVNQDQLDNQATVQPLLAQLNETEAAFDEFWAKHQQ
345


Rn_DBS_GNEF
QLALTEGNSILESLREPLAESIVHSVNQDQLDNQATVKRLLTQLNETEAAFDEFWAKHQQ
221



:*  .:* ::*..::*  ::    .:* :**:* :*::***.**:*** **..**::*:





KIAA0861
KLNQCLQLQHFEHDFCKAKLALDNLLEEQAEFTGIGDSVMHVEQILKEHKKLEEKSQESL
291


Hs_DBS_GNEF
KLEQCLQLRHFEQGFREVKAILDAASQKIATFTDIGNSLAHVEHLLRDLASFEEKSGVAV
420


Mm_DBS_GNEF
KLEQCLQLRHFEQGFREVKTTLDSMSQKIAAFTDVGNSLAHVQHLLKDLTAFEEKSSVAV
405


Rn_DBS_GNEF
KLEQCLQLRHFEQGFREVKTALDSMSQKIAAFTDVGNSLAHVQHLLKDLTTFEEKSSVAV
281



**:*****:***:.* : *  **   :: * **.:*:*: **:::*::   :****  ::





KIAA0861
EKAQLLALVGDQLIQSHHYAADAIRPRCVELRHLCDDFINGNKKKWDILGKSLEFHRQLD
351


Hs_DBS_GNEF
ERARALSLDGEQLIGNKHYAVSDIRPKCQELRHLCDQFSAEIARRRGLLSKSLELSRRLE
480


Mm_DBS_GNEF
DKARALSLEGQQLIENRHYAVDSIHPKCEELQHLCDHFASEVTRRRGLLSKSLELHSLLE
465


Rn_DBS_GNEF
-TSQSPVLEGQQLIENRHYAVDISHPKCEELQHLCDHFASEVTRRRDLLSKSLELHSLLE
340



  ::   * *:*** .:***.*:*:*:* **:****.*     :: .:*.****:*  *:





KIAA0861
KVSQWCEAGIYLLASQAVDKCQSRESVDIALNDIATFLGRVKEYPLLSPKEFYNEFELLL
411


Hs_DBS_GNEF
TSMKWCDEGIYLLASQPVDKCQSQDGAEAALQEIEKFLETGAENKIQELNAIYKSYESIL
540


Mm_DBS_GNEF
TSMKWSDEGIFLLASQPVDKCQSQDGAEASFQEIEKFLETGAENKIQELNEIYKEYECIL
525


Rn_DBS_GNEF
TSMKWSDEGIFLLASQPVDKCQSQDGAEAALQEIEKFLETGAENKIQELNKIYKEYECIL
400



.  :*.: **:*****.******::*.: ::::* .** *  *  : . : :*:*:* :*





KIAA0861
TLDAKAKAQKVLQRLDDVQEIFHKRQVSLMKLAAKQTRPVQPVAPHPESSPKWVSSKTSQ
471


Hs_DBS_GNEF
NQDLMEHVRKVFQKQASMEEVFHRRQASLKKLAARQTRPVQPVAPRPEAL-----AKSPC
595


Mm_DBS_GNEF
NQDLLEHVQKVFQKQESTEEMFHRRQASLKKLAAKQTRPVQPVAPRPEAL-----TKSPS
580


Rn_DBS_GNEF
NQDLLEHVQKVFQKQESTERMFHRRQASLKKLAAKQTRPVQPVAPRPEAL-----TKSPS
455



. *   :.:**:*:  . :*:**:**.** ****:**********:**:      :*:.






Following is an amino acid sequence alignment between KIAA0861 domain and RhoGEF domain sequences (SEQ ID NOS 285-288, respectively in order of appearance).












KIAA0861
GDLSPRRRIIRDLLETEEIYIKEIKSIIDGYITPMDFIWLKHLIPDVLQNNKDFLFGNIR
591



Hs_DBS_GNEF
AIL--RRHVMSELLDTERAYVEELLCVLEGYAAEMDNPLMAHLLSTGLHNKKDVLFGNME
701


Mm_DBS_GNEF
AIL--RRHVMNELLDTERAYVEELLCVLEGYAAEMDNPLMAHLISTGLQNKKNILFGNME
687


Rn_DBS_GNEF
AIL--RRHVMNELLDTERAYVEELLCVLEGYAAEMDNPLMAHLISTGLQNKKNILFGNME
562



. *  **::: :**:**. *::*: .:::** : **   : **:.  *:*:*:.****:.





KIAA0861
ELYEFHNRTFLKELEKCAENPELLAHCFLKRKEDLQIYFKYHKNLPRARAIWQECQDCAY
651


Hs_DBS_GNEF
EIYHFHNRIFLRELENYTDCPELVGRCPLERMEDFQIYEKYCQNKPRSESLWRQCSDCPF
761


Mm_DBS_GNEF
EIYHPHNRNIPAGVESCIDCPELVGRCFLERMEEFQIYEKYCQNKPRSESLWRQCSDCFF
747


Rn_DBS_GNEF
EIYHFHNRIFLRELESCIDCPELVGRCFLERMEEFQIYEKYCQNKPRSESLWRQCSDCPF
622



*:*.**** :   :*.  : ***:.:***:* *::*** ** :* **:.::*::*.**.:





KIAA0861
FGVCQRQLDHNLPLFKYLKGPSQRLIKYQMLLKGLLDFESPEDMEIDGGELGGSAKDGPK
711


Hs_DBS_GNEF
FQECQRKLDHKLSLDSYLLKPVQRITKYQLLLKEML-----------------------K
798


Mm_DBS_GNEF
FQECQKKLDHKLSLDSYLLKPVQRITKYQLLLKEML-----------------------K
784


Rn_DBS_GNEF
FQECQKKLDHKLSLDSYLLKPVQRITKYQLLLKEML-----------------------K
659



*  **::***:*.* .**  * **: ***:*** :*





KIAA0861
RTKDSAFSTELQQALAVIEDLIKSCELAVDLAAVTECPDDIGKLGKLLLHGPFSVWTIHK
771


Hs_DBS_GNEF
YSRNCEGAEDLQEALSSILGILKAVNDSMHLIAITGYDGNLGDLGKLLMQGSFSVWTDHK
858


Mm_DBS_GNEF
YSKHCEGAEDLQEALSSILGILKAVNDSMHLIAITGYDGNLGDLGKLLMQGSFSVWTDHK
844


Rn_DBS_GNEF
YSKHCEGAEDLQEALSSILGILKAVNDSMHLIAITGYDGNLGDLGKLLMQGSFSVWTDHK
719



 **..  : :**:**: * .::*: : ::.* *:*   .::*.*****::*.***** **






Following is an amino acid sequence alignment between KIAA0861 domain and PH domain sequences (SEQ ID NOS 289-292, respectively in order of appearance).












KIAA0861
DRY-KMDKLIRFKPSQRQIYLFERGIVFCKIRMEPGD-QGLSPHYSFKKAMKLMTLSIRQ
829



Hs_DBS_GNEF
RGHTKVKELARFKPMQRHLFLHEKAVLFCKKREENGEGYEKAPSYSYKQSLNMAAVGITE
918


Mm_DBS_GNEF
KGHTKVKELARFKPMQRHLFLHEKAVLFCKKREENGEGYEKAPSYSYKQSLNMTAVGITE
904


Rn_DBS_GNEF
KGHTKVKELARFKPMQRHLFLHEKAVLFCKKREENGEGYEKAPSYSYKQSLNMTAVGITE
779



  : *:*:* **** **:::*.*:.::*** * * *:    :* **:*::::: ::.* :





KIAA0861
LGRGSHRKFEIASRNGLEKYILQAASKEIRDCWFSEISKLLMEQQNNIKDQGNPQ-FEMS
888


Hs_DBS_GNEF
NVKGDAKKFEIWYNAREEVYIVQAPTPEIKAAWVNEIRKVLTSQLQACREASQHRALEQS
978


Mm_DBS_GNEF
NVKGDTKKFEIWYNAREEVYIIQAPTPEIKAAWVNEIRKVLTSQLQACREASQHRALEQS
964


Rn_DBS_GNEF
NVKGDTKKFEIWYNAREEVYIIQAPTPEIKAAWVNEIRKVLTSQLQACREASQHRALEQS
839



  :*. :****  .   * **:**.: **: .*..** *:* .* :  :: .: : :* *






Modifications may be made to the foregoing without departing from the basic aspects of the invention. Although the invention has been described in substantial detail with reference to one or more specific embodiments, those of skill in the art will recognize that changes may be made to the embodiments specifically disclosed in this application, yet these modifications and improvements are within the scope and spirit of the invention, as set forth in the claims which follow. All publications or patent documents cited in this specification are incorporated herein by reference as if each such publication or document was specifically and individually indicated to be incorporated herein by reference.


Citation of the above publications or documents is not intended as an admission that any of the foregoing is pertinent prior art, nor does it constitute any admission as to the contents or date of these publications or documents. U.S. patents, documents and other publications referenced herein are hereby incorporated by reference.

Claims
  • 1-85. (canceled)
  • 86. A method for identifying a subject at risk of breast cancer, which comprises detecting the presence or absence of one or more polymorphic variations associated with breast cancer in a nucleotide sequence set forth in SEQ ID NO: 1, a substantially identical sequence thereof or complement of the foregoing, in a sample from a subject, whereby the presence of a polymorphic variant associated with breast cancer is indicative of the subject being at risk of breast cancer.
  • 87. The method of claim 86, wherein the one or more polymorphic variations are selected from the group consisting of rs3811728, rs3811729, rs602646, rs488277, rs1629673, rs670232, rs575326, rs575386, rs684846, rs471365, rs496251, rs831246, rs831247, rs512071, rs1502761, rs681516, rs683302, rs619424, rs620722, rs529055, rs664010, rs678454, rs2653845, rs472795, rs507079, rs534333, rs535298, rs536213, rs831245, rs639690, rs684174, rs571761, rs1983421, rs4630966, rs2314415, rs6788196, rs2103062, rs9827084, rs9864865, rs6804951, rs6770548, rs1403452, rs7609994, rs9838250, rs9863404, rs903950, rs6787284, rs2017340, rs2001449, rs1317288, rs7635891, rs10704581, rs11371910, rs10937118, rs7642053, rs3821522, rs2029926, rs1390831, rs7643890, rs11925606, rs9826325, rs6800429, rs6803368, rs1353566, rs2272115, rs2272116, rs3732603, rs940055, rs2314730, rs2030578, rs2049280, rs3732602, rs2293203, rs7639705, and position 13507 of SEQ ID NO: 1.
  • 88. The method of claim 86, which further comprises obtaining the nucleic acid sample from the subject.
  • 89. The method of claim 86, wherein a polymorphic variation is detected at one or more positions in a region spanning positions 14647 to 48849 in SEQ ID NO: 1.
  • 90. The method of claim 86, wherein a polymorphic variation is rs4630966.
  • 91. The method of claim 86, wherein a polymorphic variation is rs9827084.
  • 92. The method of claim 86, wherein a polymorphic variation is rs9864865.
  • 93. The method of claim 86, wherein a polymorphic variation is rs6804951.
  • 94. The method of claim 86, wherein a polymorphic variation is rs6770548, rs1403452 and rs2001449.
  • 95. The method of claim 86, wherein one or more polymorphic variations are detected at one or more positions in linkage disequilibrium with a polymorphic variation at one or more positions selected from the group consisting of rs3811728, rs3811729, rs602646, rs488277, rs1629673, rs670232, rs575326, rs575386, rs684846, rs471365, rs496251, rs831246, rs831247, rs512071, rs1502761, rs681516, rs683302, rs619424, rs620722, rs529055, rs664010, rs678454, rs2653845, rs472795, rs507079, rs534333, rs535298, rs536213, rs831245, rs639690, rs684174, rs571761, rs1983421, rs4630966, rs2314415, rs6788196, rs2103062, rs9827084, rs9864865, rs6804951, rs6770548, rs1403452, rs7609994, rs9838250, rs9863404, rs903950, rs6787284, rs2017340, rs2001449, rs1317288, rs7635891, rs10704581, rs11371910, rs10937118, rs7642053, rs3821522, rs2029926, rs1390831, rs7643890, rs11925606, rs9826325, rs6800429, rs6803368, rs1353566, rs2272115, rs2272116, rs3732603, rs940055, rs2314730, rs2030578, rs2049280, rs3732602, rs2293203, rs7639705, and position 13507 of SEQ ID NO: 1.
  • 96. The method of claim 86, wherein detecting the presence or absence of the one or more polymorphic variations comprises: hybridizing an oligonucleotide to the nucleic acid sample, wherein the oligonucleotide is complementary to a nucleotide sequence in the nucleic acid and hybridizes to a region adjacent to the polymorphic variation;extending the oligonucleotide in the presence of one or more nucleotides, yielding extension products; anddetecting the presence or absence of a polymorphic variation in the extension products.
  • 97. The method of claim 86, wherein the subject is a human.
  • 98. A method of genotyping a nucleic acid which comprises determining the nucleotide corresponding to position 13507 of SEQ ID NO: 1 in the nucleic acid.
  • 99. An isolated nucleic acid which comprises a cytosine at position 13507 of SEQ ID NO: 1, or a cytosine at a position corresponding to position 13507 of SEQ ID NO: 1 in a substantially identical nucleic acid.
  • 100. An oligonucleotide comprising a nucleotide sequence complementary to a portion of the nucleotide sequence of claim 99, wherein the 3′ end of the oligonucleotide is adjacent to a polymorphic variation.
  • 101. A microarray comprising an isolated nucleic acid of claim 99 linked to a solid support.
  • 102. An isolated polypeptide encoded by the isolated nucleic acid sequence of claim 99.
  • 103. A method of targeting information for preventing or treating breast cancer to a subject in need thereof, which comprises detecting the presence or absence of one or more polymorphic variations associated with breast cancer in SEQ ID NO: 1, a substantially identical nucleotide sequence thereof or complement of the foregoing in a nucleic acid sample from a subject, and directing information for preventing or treating breast cancer to a subject in need thereof based upon the presence or absence of the one or more polymorphic variations in the nucleic acid sample.
  • 104. The method of claim 103, wherein the polymorphic variation is detected in a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence in SEQ ID NO: 1, 2 or 3;(b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1, 2 or 3;(c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1, 2 or 3;(d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising the polymorphic variation.
  • 105. The method of claim 103, wherein the one or more polymorphic variations are detected at one or more positions corresponding to a position selected from the group consisting of rs3811728, rs3811729, rs602646, rs488277, rs1629673, rs670232, rs575326, rs575386, rs684846, rs471365, rs496251, rs831246, rs831247, rs512071, rs1502761, rs681516, rs683302, rs619424, rs620722, rs529055, rs664010, rs678454, rs2653845, rs472795, rs507079, rs534333, rs535298, rs536213, rs831245, rs639690, rs684174, rs571761, rs1983421, rs4630966, rs2314415, rs6788196, rs2103062, rs9827084, rs9864865, rs6804951, rs6770548, rs1403452, rs7609994, rs9838250, rs9863404, rs903950, rs6787284, rs2017340, rs2001449, rs1317288, rs7635891, rs10704581, rs11371910, rs10937118, rs7642053, rs3821522, rs2029926, rs1390831, rs7643890, rs11925606, rs9826325, rs6800429, rs6803368, rs1353566, rs2272115, rs2272116, rs3732603, rs940055, rs2314730, rs2030578, rs2049280, rs3732602, rs2293203, rs7639705, and position 13507 of SEQ ID NO: 1.
  • 106. The method of claim 103, wherein the information comprises a description of a breast cancer detection procedure, a chemotherapeutic treatment, a surgical treatment, a radiation treatment, a preventative treatment of breast cancer, and combinations of the foregoing.
RELATED PATENT APPLICATIONS

This patent application claims priority to international application no. PCT/US2004/016942 filed May 27, 2004, having attorney docket number SEQ-4066-PC2. This patent application names Richard B. Roth et al. as inventors and is hereby incorporated herein by reference in its entirety, including all drawings and cited publications and documents.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US04/16942 5/27/2004 WO 00 12/12/2008