Methods for Identifying Risk of Type II Diabetes and Treatments Thereof

Abstract
Provided herein are methods for identifying a risk of type II diabetes in a subject, reagents and kits for carrying out the methods, methods for identifying candidate therapeutics for treating type II diabetes, and therapeutic and preventative methods applicable to type II diabetes. These embodiments are based upon an analysis of polymorphic variations in nucleotide sequences within the human genome.
Description
FIELD OF THE INVENTION

The invention relates to genetic methods for identifying predisposition to type I diabetes, also known as non-insulin dependent diabetes, and treatments that specifically target the disease.


BACKGROUND

Diabetes is among the most common of all metabolic disorders, affecting up to 11% of the population by age 70. Type I diabetes (insulin-dependent diabetes) represents about 5 to 10% of this group and is the result of progressive autoimmune destruction of the pancreatic beta-cells with subsequent insulin deficiency.


Type II diabetes (non-insulin dependent diabetes) represents 90-95% of the affected population, more than 100 million people worldwide. Approximately 17 million Americans suffer from type II diabetes, although 6 million do not even know they have the disease. The prevalence of the disease has jumped 33% in the last decade and is expected to rise further as the baby boomer generation gets older and more overweight. The global figure of people with diabetes is set to rise to an estimated 150 to 220 million in 2010, and 300 million in 2025. The widespread problem of diabetes has crept up on an unsuspecting health care community and has already imposed a huge burden on health-care systems (Zimmet et al. (2001) Nature 414: 782-787).


Often, the onset of type II diabetes can be insidious, or even clinically unapparent, making diagnosis difficult. Even when the disease is properly diagnosed, many of those treated do not have adequate control over their diabetes, resulting in elevated sugar levels in the bloodstream that slowly destroys the kidneys, eyes, blood vessels and nerves. This late damage is an important factor contributing to mortality in diabetics.


Type II diabetes is associated with peripheral insulin resistance, elevated hepatic glucose production, and inappropriate insulin secretion (DeFronzo, R. A. (1988) Diabetes 37:667-687), although the primary pathogenic lesion on type II diabetes remains elusive. Many have suggested that primary insulin resistance of the peripheral tissues is the initial event. Genetic epidemiological studies have supported this view. Similarly, insulin secretion abnormalities have been argued as the primary defect in type II diabetes. It is likely that both phenomena are important in the development of type II diabetes, and genetic defects predisposing to both are likely to be important contributors to the disease process (Rimoin, D. L., et al. (1996) Emery and Rimoin's Principles and Practice of Medical Genetics 3rd Ed. 1: 1401-1402).


Evidence from familial aggregation and twins studies point to a genetic component in the etiology of diabetes (Newman et al. (1987) Diabetologia 30:763-768; Kobberling, J. (1971) Diabetologia 7:46-49; Cook, J. T. E. (1994) Diabetologia 37:1231-1240), however, there is little agreement as to the nature of the genetic factors involved. This confusion can largely be attributed to the genetic heterogeneity known to exist in diabetes.


SUMMARY

It has been discovered that certain polymorphic variations in human genomic DNA are associated with the occurrence of type II diabetes, also known as non-insulin dependent diabetes. In particular, polymorphic variants in a locus containing an EPHA3 gene region in human genomic DNA have been associated with risk of type II diabetes.


Thus, featured herein are methods for identifying a subject at risk of type II diabetes and/or a risk of type II diabetes in a subject, which comprise detecting the presence or absence of one or more polymorphic variations associated with type II diabetes in and around the locus described herein in a human nucleic acid sample. In an embodiment, two or more polymorphic variations are detected and in some embodiments, 3 or more, or 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 19 or 20 or more polymorphic variants are detected.


Also featured are nucleic acids that include one or more polymorphic variations associated with occurrence of type II diabetes, as well as polypeptides encoded by these nucleic acids. In addition, provided are methods for identifying candidate therapeutic molecules for treating type II diabetes and other insulin-related disorders. In specific embodiments, featured are methods for identifying molecules that inhibit an interaction (e.g., binding) between the EPHA3 gene product (“EPHA3”) and one of its binding, partners, such as the binding partner ephrin-A5 or ephrin-M. In specific embodiments, an antibody is identified that specifically binds an EPHA3 isoform, ephrin-A5 or ephrin-A and decreases or blocks binding with EPHA3 in vitro and/or in vivo. Also provided are methods for treating type II diabetes in a subject by identifying a subject at risk of type II diabetes and treating the subject with a suitable prophylactic, treatment or therapeutic molecule. In specific embodiments, a method for treating type II diabetes is provided which comprises administering a molecule to a subject in need thereof that inhibits EPHA3 function, for example, by disrupting an interaction between EPHA3 and one of its binding partners, such as the binding partner ephrin-A5 or ephrin-A2, in an amount sufficient to reduce the interaction between the two proteins and to treat type II diabetes. Such a molecule may affect levels of C-peptide (e.g., often increasing levels of C-peptide), enhance glucose uptake in cells, increase triacylglycerol levels, and/or decrease resistin levels. In an embodiment, the molecule administered to the subject is an antibody that specifically binds to an EPHA3 isoform, ephrin-A5 or ephrin-A2 and inhibits or blocks binding between the two proteins. In another embodiment, the molecule administered to the subject is an epidermal growth factor (EGF), Src proto-oncogene tyrosine-protein kinase SRC), vascular endothelial growth factor (VEGF), or kinase insert domain receptor (KDR) inhibitor that also inhibits EPHA3. In yet another embodiment, the molecule administered to the subject is an EphA2 or EphB4 inhibitor that also inhibits EPHA3.


Also provided are compositions comprising a cell from a subject having type II diabetes or at risk of type II diabetes and/or an EPHA4 nucleic acid, with a nucleic acid that hybridizes to an EPHA3 nucleic acid under conditions of high stringency, or a RNAi, siRNA, antisense DNA or RNA, or a ribozyme nucleic acid designed from an EPHA3 nucleotide sequence. In an embodiment, the RNAi, siRNA, antisense DNA or RNA, or ribozyme nucleic acid is designed from an EPHA3 nucleotide sequence that includes one or more type II diabetes associated polymorphic variations, and in some instances, specifically interacts with such a nucleotide sequence. Further, provided are arrays of nucleic acids bound to a solid surface, in which one or more nucleic acid molecules of the array have an EPHA3 nucleotide sequence, or a fragment or substantially identical nucleic acid thereof, or a complementary nucleic acid of the foregoing. Featured also are compositions comprising a cell from a subject having type II diabetes or at risk of type II diabetes and/or an EPHA3 polypeptide, with an antibody that specifically binds to the polypeptide. In one an embodiment, the antibody specifically binds to an epitope in the polypeptide that includes a non-synonymous amino acid modification associated with type II diabetes (e.g. results in an amino acid substitution in the encoded polypeptide associated with type II diabetes). In embodiment, the antibody specifically binds to an epitope comprising an arginine at position 924, or a tryptophan at position 924, in an EPHA3 polypeptide (SEQ NO: 4).





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C show proximal SNP p-values (based on allelotyping results in the discovery cohort) in an EPHA3 region for females, males, and males and females combined, respectively. FIGS. 1D-1F show proximal SNP p-values based on allelotyping results in a replication cohort in an EPHA3 region for females, males, and males and females combined, respectively. Positions of each SNP on the chromosome are shown on the x-axis and the y-axis provides the negative logarithm of the p-value comparing the estimated allele frequency in the cases to that of the control group. Also shown are exons and introns of genes in approximate chromosomal positions.



FIG. 2 shows meta-analysis results for EPHA3.





DETAILED DESCRIPTION

It has been discovered that polymorphic variants in an EPHA3 locus in human genomic DNA are associated with occurrence of type II diabetes in subjects. Thus, detecting genetic determinants in and around this locus associated with an increased risk of type II diabetes occurrence can lead to early identification of a risk of type II diabetes and early application of preventative and treatment measures. Associating the polymorphic variants with type II diabetes also has provided new targets for diagnosing type II diabetes, and methods for screening molecules useful in diabetes treatments and diabetes preventatives.


EphA3, also known as Cek4, Mek4, Hek, Tyro4, and Hek4 (Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee [letter]. Cell 90(3):403-404 (1997)), is a member of the Eph receptor family which binds members of the ephrin ligand family. EPHA3 has two isoforms produced by alternate splicing: transcript variant 1 is a membrane protein, and transcript variant 2 is secreted (see SEQ ID NO: 2 and 3). Both variants have an extracellular region consisting of a globular domain, a cysteine-rich domain, and two fibronectin type III domains, followed by the transmembrane region and cytoplasmic region. The cytoplasmic region contains a juxtamembrane motif with two tyrosine residues, which are the major autophosphorylation sites, a kinase domain, and a conserved sterile alpha motif (SAM) in the carboxy tail which contains one conserved tyrosine residue. Activation of kinase activity occurs after ligand recognition and binding. EphA3 has been shown to bind ephrin-A5, ephrin-A2, ephrin-A3, ephrin-A1, ephrin-A4, and ephrin-B1. (Flanagan, J. G. and P. Vanderhaegen, The ephrins and Eph receptors in neural development, Ann. Rev. Neuro Sci. 21:309-345 (1998); Pasquale, E. B. the Eph family of receptors, curr. Opin. Cell. Bio. 9:5):608-615 (1997)). However, high affinity ligands of EPHA3 include ephrin-A2 (which is expressed highly in the pancreas) and ephrin-A5 (which is highly expressed in heart and kidney). The extracellular domains of mouse and human EphA3 share greater than 96% amino acid identity. Only membrane-bound or Fc-clustered ligands are capable of activating the receptor in vitro. Soluble monomeric ligands bind the receptor but do not induce receptor autophosphorylation and activation. (Flanagan, J. G. and P. Vanderhaegen, The ephrins and Eph receptors in neural development, ann. Rev. neuro sci. 21:309-345 (1998)).


Type II Diabetes and Sample Selection


The term “type II diabetes” as used herein refers to non-insulin-dependent diabetes. Type II diabetes refers to an insulin-related disorder in which there is a relative disparity between endogenous insulin production and insulin requirements, leading to elevated hepatic glucose production, elevated blood glucose levels, inappropriate insulin secretion, and peripheral insulin resistance. Type II diabetes has been regarded as a relatively distinct disease entity, but type II diabetes is often a manifestation of a much broader underlying disorder (Zimmet et al (2001) Nature 414: 782-787), which may include metabolic syndrome (syndrome X), diabetes (e.g., type II diabetes, type II diabetes, gestational diabetes, autoimmune diabetes), hyperinsulinemia, hyperglycemia, impaired glucose tolerance (IGT), hypoglycemia, B-cell failure, insulin resistance, dyslipidemias, atheroma, insulinoma, hypertension, hypercoaguability, microalbuminuria, and obesity and obesity-related disorders such as visceral obesity, central fat, obesity-related type II diabetes, obesity-related atherosclerosis, heart disease, obesity-related insulin resistance, obesity-related hypertension, microangiopathic lesions resulting from obesity-related type II diabetes, ocular lesions caused by microangiopathy in obese individuals with obesity-related type U diabetes, and renal lesions caused by microangiopathy in obese individuals with obesity-related type II diabetes.


Some of the more common adult onset diabetes symptoms include fatigue, excessive thirst, frequent urination, blurred vision, a high rate of infections, wounds that heal slowly, mood changes and sexual problems. Despite these known symptoms, the onset of type II diabetes is often not discovered by health care professionals until the disease is well developed. Once identified, type II diabetes can be recognized in a patient by measuring fasting plasma glucose levels and/or casual plasma glucose levels, measuring fasting plasma insulin levels and/or casual plasma insulin levels, or administering oral glucose tolerance tests or hyperinsulinemic euglycemic clamp tests.


Based in part upon selection criteria set forth above, individuals having type II diabetes can be selected for genetic studies. Also, individuals having no history of metabolic disorders, particularly type II diabetes, often are selected for genetic studies as controls. The individuals selected for each pool of case and controls, were chosen following strict selection criteria in order to make the pools as homogenous as possible. Selection criteria for the study described herein included patient age, ethnicity, BMI, GAD (Glutamic Acid Decarboxylase) antibody concentration, and HbA1c (glycosylated hemoglobin A1c) concentration. GAD antibody is present in association with islet cell destruction, and therefore can be utilized to differentiate insulin dependent diabetes (type I diabetes) from non-insulin dependent diabetes (type II diabetes). HbA1c levels will reveal the average blood glucose over a period of 2-3 months or more specifically, over the life span of a red blood cell, by recording the number of glucose molecules attached to hemoglobin.


Polymorphic Variants Associated with Type II Diabetes


A genetic analysis provided herein linked type II diabetes with polymorphic variant nucleic acid sequences in the human genome. As used herein, the term “polymorphic site” refers to a region in a nucleic acid at which two or more alternative nucleotide sequences are observed in a significant number of nucleic acid samples from a population of individuals. A polymorphic site may be a nucleotide sequence of two or more nucleotides, an inserted nucleotide or nucleotide sequence, a deleted nucleotide or nucleotide sequence, or a microsatellite, for example. A polymorphic site that is two or more nucleotides in length may be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more, 20 or more, 30 or more, 50 or more, 75 or more, 100 or more, 500 or more, or about 1000 nucleotides in length, where all or some of the nucleotide sequences differ within the region. A polymorphic site is often one nucleotide in length, which is referred to herein as a “single nucleotide polymorphism” or a “SNP.”


Where there are two, three, or four alternative nucleotide sequences at a polymorphic site, each nucleotide sequence is referred to as a “polymorphic variant” or “nucleic acid variant.” Where two polymorphic variants exist, for example, the polymorphic variant represented in a minority of samples from a population is sometimes referred to as a “minor allele” and the polymorphic variant that is more prevalently represented is sometimes referred to as a “major allele.” Many organisms possess a copy of each chromosome (e.g., humans), and those individuals who possess two major alleles or two minor alleles are often referred to as being “homozygous” with respect to the polymorphism, and those individuals who possess one major allele and one minor allele are normally referred to as being “heterozygous” with respect to the polymorphism. Individuals who are homozygous with respect to one allele are sometimes predisposed to a different phenotype as compared to individuals who are heterozygous or homozygous with respect to another allele.


In genetic analysis that associate polymorphic variants with type II diabetes, samples from individuals having type II diabetes and individuals not having type II diabetes often are allelotyped and/or genotyped. The term “allelotype” as used herein refers to a process for determining the allele frequency for a polymorphic variant in pooled DNA samples from cases and controls. By pooling DNA from each group, an allele frequency for each SNP in each group is calculated. These allele frequencies are then compared to one another. The term “genotyped” as used herein refers to a process for determining a genotype of one or more individuals, where a “genotype” is a representation of one or more polymorphic variants in a population.


A genotype or polymorphic variant may be expressed in terms of a “haplotype,” which as used herein refers to two or more polymorphic variants occurring within genomic DNA in a group of individuals within a population. For example, two SNPs may exist within a gene where each SNP position includes a cytosine variation and an adenine variation. Certain individuals in a population may carry one allele (heterozygous) or two alleles (homozygous) having the gene with a cytosine at each SNP position. As the two cytosines corresponding to each SNP in the gene travel together on one or both alleles in these individuals, the individuals can be characterized as having a cytosine/cytosine haplotype with respect to the two SNPs in the gene.


As used herein, the term “phenotype” refers to a trait which can be compared between individuals, such as presence or absence of a condition, a visually observable difference in appearance between individuals, metabolic variations, physiological variations, variations in the function of biological molecules, and the like. An example of a phenotype is occurrence of type II diabetes.


Researchers sometimes report a polymorphic variant in a database without determining whether the variant is represented in a significant fraction of a population. Because a subset of these reported polymorphic variants are not represented in a statistically significant portion of the population, some of them are sequencing errors and/or not biologically relevant. Thus, it is often not known whether a reported polymorphic variant is statistically significant or biologically relevant until the presence of the variant is detected in a population of individuals and the frequency of the variant is determined. Methods for detecting a polymorphic variant in a population are described herein, specifically in Example 2. A polymorphic variant is statistically significant and often biologically relevant if it is represented in 5% or more of a population, sometimes 10% or more, 15% or more, or 20% or more of a population, and often 25% or more, 300/a or more, 35% or more, 40% or more, 45% or more, or 50% or more of a population.


A polymorphic variant may be detected on either or both strands of a double-stranded nucleic acid. Also, a polymorphic variant may be located within an intron or exon of a gene or within a portion of a regulatory region such as a promoter, a 5′ untranslated region (UTR), a 3′ UTR, and in DNA (e.g., genomic DNA (gDNA) and complementary DNA (cDNA)), RNA (e.g., mRNA, tRNA, and rRNA), or a polypeptide. Polymorphic variations may or may not result in detectable differences in gene expression, polypeptide structure or polypeptide function.


It was determined that polymorphic variations associated with an increased risk of type H diabetes exist in an EPHA3 locus. An incident polymorphic variant described in Table 1 was associated with type II diabetes.


















TABLE 1








Position in








SNP

Chromosome
SEQ ID
Contig
Contig
Sequence

Sequence
Allelic


Reference
Chromosome
Position
NO: 1
Identification
Position
Identification
Locus
Position
Variability







rs1512183
3
89425955
50155
NT_022459
23199742
NM_005233
EphA3
intron
T/A









Public information pertaining to the polymorphism and the genomic sequence that includes the polymorphism are indicated. The genomic sequence identified in Table 1 may be accessed at the http address www.ncbi.nih.gov/entrez/query.fcgi, for example, by using the publicly available SNP reference number (e.g., rs1512183). The chromosome position refers to the position of the SNP within NCBI's Genome build 34, which may be accessed at the following http address: www.ncbi.nlm.nih.gov/mapview/map_search.cgi?chr=hum_chr.inf&query=. The “Contig Position” provided in Table 1 corresponds to a nucleotide position set forth in the contig sequence, and designates the polymorphic site corresponding to the SNP reference number. The sequence containing the polymorphisms also may be referenced by the “Sequence Identification” set forth in Table 1. The “Sequence Identification” corresponds to cDNA sequence that encodes associated polypeptides (e.g., EPHA3) of the invention. The position of the SNP within the cDNA sequence is provided in the “Sequence Position” column of Table 1. Also, the allelic variation at the polymorphic site is specified in Table 1, where the allelic variant identified as associated with type II diabetes is a thymine. All nucleotide sequences referenced and accessed by the parameters set forth in Table 1 are incorporated herein by reference.


The polymorphic variant in Table 1 and others proximal to it were associated with Type II diabetes. In the EPHA3 locus, polymorphic variants corresponding to those selected from the group consisting of rs3792573, rs3792572, rs1398195, rs3828462, rs3805091, rs1512185, rs1028013, rs987748, rs1398197, rs1028011, rs2881488, rs1473598, rs1512183, rs157607, rs1157608, rs192965, rs1912966, rs1982096, AA at position 66765 in SEQ ID NO:1, AB at position 66794 in SEQ ID NO:1, rs1054750, rs211737, rs1499780, rs2117138, rs2346840, rs2048518, rs2048519, rs2048520, rs2048521, rs3762718, rs2196083, rs1512187, rs972030, rs2346837, rs1036286, rs1036285, rs1512188, rs1112189, rs1567657, rs1567658, and rs1028012 were tested for association with occurrence of type II diabetes. Polymorphic variants rs1512183, rs1512185, rs1028013, rs987748, rs2881488, rs1157607, rs1157608, rs1912965, rs1912966, rs1054750, rs1499780, rs1117138, rs2346840, rs2048518, rs2048519, rs2048521, rs3762718, rs2196083, rs972030, rs1036286, rs1036285, rs1512188, rs1512189, rs1567657, rs1567658, rs1028012, AA at position 66765 in SEQ ID NO: 1, AB at position 66794 in SEQ ID NO: 1 were in particular associated with an increased risk of type II diabetes. At these positions in SEQ ID NO: 1 an adenine at position 18716, a cytosine at position 29369, a thymine at position 39131, a guanine at position 45589, a thymine at position 50155, a thymine at position 51465, a guanine at position 51565, a guanine at position 63433, an adenine at position 63565, a cytosine at position 66826, a cytosine at position 71173, a guanine at position 76623, a guanine at position 78368, a cytosine at position 79006, an adenine at position 79079, an adenine at position 79354, a guanine at position 80167; a cytosine at position 81647, a thymine at position 83599, a thymine at position 88778, a guanine at position 89162, a guanine at position 91284, a guanine at position 91433, an adenine at position 93620, an adenine at position 93707, and a thymine at position 94523 was associated with risk of type II diabetes. An arginine at position 924 in an EPHA3 polypeptide (SEQ ID NO: 4) was associated with an increased risk of type II diabetes, which corresponds to position 66794 in SEQ ID NO: 1. Also, a histidine at position 914 in an EPHA3 polypeptide (SEQ ID NO: 4) was associated with an increased risk of type II diabetes, which corresponds to position 66765 in SEQ ID NO: 1. In addition, rs1512183 was associated with an increase in C-peptide levels in males and females.


Based in part upon analyses summarized in FIGS. 1A-1F, regions with significant association have been identified in an EPHA3 locus associated with type II diabetes. Any polymorphic variants associated with type II diabetes in a region of significant association can be utilized for embodiments described herein. The following reports such regions, where “begin” and “end” designate the boundaries of the region according to chromosome positions within NCBI's Genome build 34. The chromosome on which the EPHA3 locus resides and an incident polymorphism in the locus also are noted.



















Incident
chr
begin
end
size
















FEMALES













rs1512183
3
89377456
89470323
92867







MALES













rs1512183
3
89421389
89469420
48031







COMBINED













rs1512183
3
89394516
89470323
75807










For example, polymorphic variants in a region spanning chromosome positions 89336543 to 89428043 in the EPHA3 locus have significant association based upon a combined analysis of genetic information from males and females.


Additional Polymorphic Variants Associated with Type II Diabetes


Also provided is a method for identifying polymorphic variants proximal to an incident, founder polymorphic variant associated with type II diabetes Thus, featured herein are methods for identifying a polymorphic variation associated with type II diabetes that is proximal to an incident polymorphic variation associated with type II diabetes, which comprises identifying a polymorphic variant proximal to the incident polymorphic variant associated with type II diabetes, where the incident polymorphic variant is in an EPHA3 nucleotide sequence. The nucleotide sequence often comprises a polynucleotide sequence selected from the group consisting of (a) a polynucleotide sequence of SEQ ID NO: 1; (b) a polynucleotide sequence that encodes a polypeptide having an amino acid sequence encoded by a polynucleotide sequence of SEQ ID NO: 1; and (c) a polynucleotide sequence that encodes a polypeptide having an amino acid sequence that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1 or a polynucleotide sequence 90% or more identical to the polynucleotide sequence of SEQ ID NO: 1. The presence or absence of an association of the proximal polymorphic variant with type II diabetes then is determined using a known association method, such as a method described in the Examples hereafter. In an embodiment, the incident polymorphic variant is a polymorphic variant associated with type II diabetes described herein. In another embodiment, the proximal polymorphic variant identified sometimes is a publicly disclosed polymorphic variant, which for example, sometimes is published in a publicly available database. In other embodiments, the polymorphic variant identified is not publicly disclosed and is discovered using a known method, including, but not limited to, sequencing a region surrounding the incident polymorphic variant in a group of nucleic samples. Thus, multiple polymorphic variants proximal to an incident polymorphic variant are associated with type II diabetes using this method.


The proximal polymorphic variant often is identified in a region surrounding the incident polymorphic variant. In certain embodiments, this surrounding region is about 50 kb flanking the first polymorphic variant (e.g. about 50 kb 5′ of the first polymorphic variant and about 50 kb 3′ of the first polymorphic variant), and the region sometimes is composed of shorter flanking sequences, such as flanking sequences of about 40 kb, about 30 kb, about 25 kb, about 20 kb, about 15 kb, about 10 kb, about 7 kb, about 5 kb, or about 2 kb 5′ and 3, of the incident polymorphic variant. In other embodiments, the region is composed of longer flanking sequences, such as flanking sequences of about 55 kb, about 60 kb, about 65 kb, about 70 kb, about 75 kb, about 80 kb, about 85 kb, about 90 kb, about 95 kb, or about 100 kb 5′ and 3, of the incident polymorphic variant.


In certain embodiments, polymorphic variants associated with type II diabetes are identified iteratively. For example) a first proximal polymorphic variant is associated with type II diabetes using the methods described above and then another polymorphic variant proximal to the first proximal polymorphic variant is identified (e.g., publicly disclosed or discovered) and the presence or absence of an association of one or more other polymorphic variants proximal to the first proximal polymorphic variant with type II diabetes is determined.


The methods described herein are useful for identifying or discovering additional polymorphic variants that may be used to further characterize a gene, region or loci associated with a condition, a disease (e.g., type II diabetes), or a disorder. For example, allelotyping or genotyping data from the additional polymorphic variants may be used to identify a functional mutation or a region of linkage disequilibrium. In certain embodiments, polymorphic variants identified or discovered within a region comprising the first polymorphic variant associated with type II diabetes are genotyped using the genetic methods and sample selection techniques described herein, and it can be determined whether those polymorphic variants are in linkage disequilibrium with the first polymorphic variant. The size of the region in linkage disequilibrium with the first polymorphic variant also can be assessed using these genotyping methods. Thus, provided herein are methods for determining whether a polymorphic variant is in linkage disequilibrium with a first polymorphic variant associated with type II diabetes, and such information can be used in prognosis/diagnosis methods described herein.


Isolated Nucleic Acids


Featured herein are isolated EPHA3 nucleic acid variants depicted in SEQ ID NO: 1-3, and substantially identical nucleic acids thereof. A nucleic acid variant may be represented on one or both strands in a double-stranded nucleic acid or on one chromosomal complement (heterozygous) or both chromosomal complements (homozygous)).


As used herein, the term “nucleic acid” includes DNA molecules (e.g., a complementary DNA (cDNA) and genomic DNA (gDNA)) and RNA molecules (e.g., mRNA, rRNA, siRNA and tRNA) and analogs of DNA or RNA, for example, by use of nucleotide analogs. The nucleic acid molecule can be single-stranded and it is often double-stranded. The term “isolated or purified nucleic acid” refers to nucleic acids that are separated from other nucleic acids present in the natural source of the nucleic acid. For example, with regard to genomic DNA, the term “isolated” includes nucleic acids which are separated from the chromosome with which the genomic DNA is naturally associated. An “isolated” nucleic acid is often free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′ and/or 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of 5′ and/or 3′ nucleotide sequences which flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. As used herein, the term “gene” refers to a nucleotide sequence that encodes a polypeptide. In certain embodiments, the nucleic acid comprises an adenine or guanine at position 66765 in SEQ ID NO: 1 (corresponding chromosome position 89442565 from NCBI's build 34), which are associated with an increased risk and decreased risk of type II diabetes, respectively. The nucleic acid also may comprise a cytosine or thymine at position 66794 in SEQ ID NO: 1 (corresponding chromosome position 89442594 from NCBI's build 34), which are associated with an increased risk and decreased risk of type I diabetes, respectively.


The nucleic acid often comprises a part of or all of a nucleotide sequence in SEQ ID NO: 1, 2 and/or 3, or a substantially identical sequence thereof. Such a nucleotide sequence sometimes is a 5′ and/or 3′ sequence flanking a polymorphic variant described above that is 5-10000 nucleotides in length, or in some embodiments 5-5000, 5-1000, 5-500, 5-100, 5-75, 5-50, 5-45, 5-40, 5-35, 5-30, 5-25 or 5-20 nucleotides in length. In certain embodiments, the nucleic acid comprises one or more of the following nucleotides: an adenine or guanine at position 66765 in SEQ ID NO: 1 (corresponding chromosome position 89442565 from NCBI's build 34) or a cytosine or thymine at position 66794 in SEQ ID NO: 1 (corresponding chromosome position 89442594 from NCBI's build 34). Other embodiments are directed to methods of identifying a polymorphic variation at one or more positions in a nucleic acid (e.g., genotyping at one or more positions in the nucleic acid), such as at a position corresponding to position 66765 in SEQ ID NO: 1 or position 66794 in SEQ ID NO: 1.


Also included herein are nucleic acid fragments. These fragments often are a nucleotide sequence identical to a nucleotide sequence of SEQ ID NO: 1-3, a nucleotide sequence substantially identical to a nucleotide sequence of SEQ ID NO: 1-3, or a nucleotide sequence that is complementary to the foregoing. The nucleic acid fragment may be identical, substantially identical or homologous to a nucleotide sequence in an exon or an intron in a nucleotide sequence of SEQ ID NO: 1, and may encode a domain or part of a domain of a polypeptide. Sometimes, the fragment will comprises one or more of the polymorphic variations described herein as being associated with type II diabetes. Examples of EPHA3 nucleic acid fragments include but are not limited to those that encode an Ephrin receptor ligand binding domain (310-831 bp of SEQ ID NO: 2 and 172-696 bp of SEQ ID NO: 3); fibronectin type III domains (1210-1476 bp and 1534-1779 bp of SEQ ID NO: 2 and 1072-1338 bp and 1396-1641 bp of SEQ ID NO: 3>; a tyrosine kinase, catalytic domain (2086-2859 bp of SEQ ID NO: 2), and a sterile alpha motif (SAM) (2947-3150 bp of SEQ ID NO: 2). The nucleic acid fragment is often 50, 100, or 200 or fewer base pairs in length, and is sometimes about 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 2000, 3000, 4000, 5000, 10000, 15000, or 20000 base pairs in length. A nucleic acid fragment that is complementary to a nucleotide sequence identical or substantially identical to a nucleotide sequence in SEQ ID NO: 1-3 and hybridizes to such a nucleotide sequence under stringent conditions is often referred to as a “probe.” Nucleic acid fragments often include one or more polymorphic sites, or sometimes have an end that is adjacent to a polymorphic site as described hereafter.


An example of a nucleic acid fragment is an oligonucleotide. As used herein, the term “oligonucleotide” refers to a nucleic acid comprising about 8 to about 50 covalently linked nucleotides, often comprising from about 8 to about 35 nucleotides, and more often from about 10 to about 25 nucleotides. The backbone and nucleotides within an oligonucleotide may be the same as those of naturally occurring nucleic acids, or analogs or derivatives of naturally occurring nucleic acids, provided that oligonucleotides having such analogs or derivatives retain the ability to hybridize specifically to a nucleic acid comprising a targeted polymorphism. Oligonucleotides described herein may be used as hybridization probes or as components of prognostic or diagnostic assays, for example, as described herein.


Oligonucleotides are typically synthesized using standard methods and equipment, such as the ABI™3900 High Throughput DNA Synthesizer and the EXPEDITE™ 8909 Nucleic Acid Synthesizer, both of which are available from Applied Biosystems (Foster City, Calif.). Analogs and derivatives are exemplified in U.S. Pat. Nos. 4,469,863; 5,536,821; 5,541,306; 5,637,683; 5,637,684; 5,700,922; 5,717,083; 5,719,262; 5,739,308; 5,773,601; 5,886,165; 5,929,226; 5,977,296; 6,140,482; WO 00/56746; WO 01/14398, and related publications. Methods for synthesizing oligonucleotides comprising such analogs or derivatives are disclosed, for example, in the patent publications cited above and in U.S. Pat. Nos. 5,614,622; 5,739,314; 5,955,599; 5,962,674; 6,117,992; in WO 00/75372; and in related publications.


Oligonucleotides may also be linked to a second moiety. The second moiety may be an additional nucleotide sequence such as a tail sequence (e.g., a polyadenosine tail), an adapter sequence (e.g., phage M13 universal tail sequence), and others. Alternatively, the second moiety may be a non-nucleotide moiety such as a moiety which facilitates linkage to a solid support or a label to facilitate detection of the oligonucleotide. Such labels include, without limitation, a radioactive label, a fluorescent label, a chemiluminescent label, a paramagnetic label, and the like. The second moiety may be attached to any position of the oligonucleotide, provided the oligonucleotide can hybridize to the nucleic acid comprising the polymorphism.


Uses for Nucleic Acid Sequence


Nucleic acid coding sequences (e.g., SEQ ID NO: 2-3) may be used for diagnostic purposes for detection and control of polypeptide expression. Also, included herein are oligonucleotide sequences such as antisense RNA, small-interfering RNA (siRNA) and DNA molecules and ribozymes that function to inhibit translation of a polypeptide. Antisense techniques and RNA interference techniques are known in the art and are described herein.


Ribozymes are enzymatic ANA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, hammerhead motif ribozyme molecules may be engineered that specifically and efficiently catalyze endonucleolytic cleavage of RNA sequences corresponding to or complementary to EPHA3 nucleotide sequences. Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences, GUA, GUU and GUC. Once identified, short RNA sequences of between fifteen (15) and twenty (20) ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for predicted structural features such as secondary structure that may render the oligonucleotide sequence unsuitable. The suitability of candidate targets may also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays.


Antisense RNA and DNA molecules, siRNA and ribozymes may be prepared by any method known in the art for the synthesis of RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides well known in the art such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and ill vivo transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.


DNA encoding a polypeptide also may have a number of uses for the diagnosis of diseases, including type II diabetes, resulting from aberrant expression of a target gene described herein. For example, the nucleic acid sequence may be used in hybridization assays of biopsies or autopsies to diagnose abnormalities of expression or function (e.g., Southern or Northern blot analysis, in situ hybridization assays).


In addition, the expression of a polypeptide during embryonic development may also be determined using nucleic acid encoding the polypeptide. As addressed, infra, production of functionally impaired polypeptide is the cause of various disease states, such as Type II diabetes. In situ hybridizations using polypeptide as a probe may be employed to predict problems related to type II diabetes. Further, as indicated, infra, administration of human active polypeptide, recombinantly produced as described herein, may be used to treat disease states related to functionally impaired polypeptide. Alternatively, gene therapy approaches may be employed to remedy deficiencies of functional polypeptide or to replace or compete with dysfunctional polypeptide.


Expression Vectors, Host Cells, and Genetically Engineered Cells


Provided herein are nucleic acid vectors, often expression vectors, which contain an EPHA3 nucleotide sequence or a substantially identical sequence thereof. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked and can include a plasmid, cosmid, or viral vector. The vector can be capable of autonomous replication or it can integrate into a host DNA. Viral vectors may include replication defective retroviruses, adenoviruses and adeno-associated viruses for example.


A vector can include an EPHA3 nucleotide sequence in a form suitable for expression of an encoded target polypeptide or target nucleic acid in a host cell. A “target polypeptide” is a polypeptide encoded by an EPHA3 nucleotide sequence or a substantially identical nucleotide sequence thereof. The recombinant expression vector typically includes one or more regulatory sequences operatively linked to the nucleic acid sequence to be expressed. The term “regulatory sequence” includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence, as well as tissue-specific regulatory and/or inducible sequences. The design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of polypeptide desired, and the like. Expression vectors can be introduced into host cells to produce target polypeptides, including fusion polypeptides.


Recombinant expression vectors can be designed for expression of target polypeptides in prokaryotic or eukaryotic cells. For example, target polypeptides can be expressed in E. coli, insect cells (e.g., using baculovirus expression vectors), yeast cells, or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


Expression of polypeptides in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion polypeptides. Fusion vectors add a number of amino acids to a polypeptide encoded therein, usually to the amino terminus of the recombinant polypeptide. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant polypeptide; 2) to increase the solubility of the recombinant polypeptide; and 3) to aid in the purification of the recombinant polypeptide by acting as a ligand in affinity purification. Often, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant polypeptide to enable separation of the recombinant polypeptide from the fusion moiety subsequent to purification of the fusion polypeptide. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith & Johnson, Gene 67: 31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding polypeptide, or polypeptide A, respectively, to the target recombinant polypeptide.


Purified fusion polypeptides can be used in screening assays and to generate antibodies specific for target polypeptides. In a therapeutic embodiment, fusion polypeptide expressed in a retroviral expression vector is used to infect bone marrow cells that are subsequently transplanted into irradiated recipients. The pathology of the subject recipient is then examined after sufficient time has passed (e.g., six (6) weeks).


Expressing the polypeptide in host bacteria with an impaired capacity to proteolytically cleave the recombinant polypeptide is often used to maximize recombinant polypeptide expression (Gottesman, S., Gene Expression Technology: Methods in Enzymology, Academic Press, San Diego, Calif. 185: 119-128 (1990)). Another strategy is to alter the nucleotide sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al., Nucleic Acids Res. 20: 2111-2118 (1992)). Such alteration of nucleotide sequences can be carried out by standard DNA synthesis techniques.


When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. Recombinant mammalian expression vectors are often capable of directing expression of the nucleic acid in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Non-limiting examples of suitable tissue-specific promoters include an albumin promoter (liver-specific; Pinkert et al., Genes Dev. 1: 268-277 (1987)), lymphoid-specific promoters (Calame & Eaton, Adv. Immunol 43: 235-275 (1988)), promoters of T cell receptors (Winoto & Baltimore, EMBO J. 8: 729-733 (1989)) promoters of immunoglobulins (Banerji et al., Cell 33: 729-740 (1983); Queen & Baltimore, Cell 33: 741-748 (1983) neuron-specific promoters (e.g., the neurofilament promoter; Byrne & Ruddle, Proc. Natl. Acad. Sci. USA 86: 5473-5477 (1989)), pancreas-specific promoters (Edlund et al., Science 230: 912-916 (1985), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are sometimes utilized, for example, the murine hox promoters Kessel & Gruss, Science 249: 374-379 (1990)) and the alpha-fetopolypeptide promoter (Camper & Tilghman, Genes Dev. 3: 537-546 (1989)).


An EPHA3 nucleic acid may also be cloned into an expression vector in an antisense orientation. Regulatory sequences (e.g., viral promoters and/or enhancers operatively linked to an EPHA3 nucleic acid cloned in the antisense orientation can be chosen for directing constitutive, tissue specific or cell type specific expression of antisense RNA in a variety of cell types. Antisense expression vectors can be in the form of a recombinant plasmid, phagemid or attenuated virus. For a discussion of the regulation of gene expression using antisense genes see, e.g., Weintraub et al., Antisense RNA as a molecular tool for genetic analysis, Reviews—Trends in Genetics, Vol. 1(1) (1986).


Also provided herein are host cells that include an EPHA3 nucleotide sequence within a recombinant expression vector or a fragment of such a nucleotide sequence which facilitate homologous recombination into a specific site of the host cell genome. The terms “host cell” and “recombinant host cell” are used interchangeably herein. Such terms refer not only to the particular subject cell but rather also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell can be any prokaryotic or eukaryotic cell. For example, a target polypeptide can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.


Vectors can be introduced into host cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, transduction/infection, DEAE-dextran-mediated transfection, lipofection, or electroporation.


A host cell provided herein can be used to produce (i.e., express) a target polypeptide or a substantially identical polypeptide thereof. Accordingly, further provided are methods for producing a target polypeptide using host cells described herein. In one embodiment, the method includes culturing host cells into which a recombinant expression vector encoding a target polypeptide has been introduced in a suitable medium such that a target polypeptide is produced. In another embodiment, the method further includes isolating a target polypeptide from the medium or the host cell.


Also provided are cells or purified preparations of cells which include an EPHA3 transgene, or which otherwise misexpress target polypeptide. Cell preparations can consist of human or non-human cells, e.g., rodent cells, e.g., mouse or rat cells, rabbit cells, or pig cell. In preferred embodiments, the cell or cells include an EPHA3 transgene (e.g., a heterologous form of an EPHA3 gene, such as a human gene expressed in non-human cells). The transgene can be misexpressed, e.g., overexpressed or underexpressed. In other preferred embodiments, the cell or cells include a gene which misexpress an endogenous target polypeptide (e.g., expression of a gene is disrupted, also known as a knockout). Such cells can serve as a model for studying disorders which are related to mutated or mis-expressed alleles or for use in drug screening. Also provided are human cells (e.g., a hematopoietic stem cells) transformed with an EPHA3 nucleic acid.


Also provided are cells or a purified preparation thereof (e.g., human cells) in which an endogenous EPHA3 nucleic acid is under the control of a regulatory sequence that does not normally control the expression of the endogenous gene corresponding to an EPHA3 nucleotide sequence. The expression characteristics of an endogenous gene within a cell (e.g., a cell line or microorganism) can be modified by inserting a heterologous DNA regulatory element into the genome of the cell such that the inserted regulatory element is operably linked to the corresponding endogenous gene. For example, an endogenous corresponding gene (e.g., a gene which is “transcriptionally silent,” not normally expressed, or expressed only at very low levels) may be activated by inserting a regulatory element which is capable of promoting the expression of a normally expressed gene product in that cell. Techniques such as targeted homologous recombinations, can be used to insert the heterologous. DNA as described in, e.g., Chappel, U.S. Pat. No. 5,272,071; WO 91/06667, published on May 16, 1991.


Transgenic Animals


Non-human transgenic animals that express a heterologous target polypeptide (e.g., expressed from an EPHA3 nucleic acid or substantially identical sequence thereof) can be generated. Such animals are useful for studying the function and/or activity of a target polypeptide and for identifying and/or evaluating modulators of the activity of EPHA3 nucleic acids and encoded polypeptides. As used herein, a “transgenic animal” is a non-human animal such as a mammal (e.g., a non-human primate such as chimpanzee, baboon, or macaque; an ungulate such as an equine, bovine, or caprine; or a rodent such as a rat, a mouse, or an Israeli sand rat, a bird (e.g., a chicken or a turkey), an amphibian (e.g., a frog, salamander, or newt), or an insect (e.g., Drosophila melanogaster), in which one or more of the cells of the animal includes a transgene. A transgene is exogenous DNA or a rearrangement (e.g., a deletion of endogenous chromosomal DNA) that is often integrated into or occurs in the genome of cells in a transgenic animal. A transgene can direct expression of an encoded gene product in one or more cell types or tissues of the transgenic animal, and other transgenes can reduce expression (e.g., a knockout). Thus, a transgenic animal can be one in which an endogenous nucleic acid homologous to an EPHA3 nucleic acid has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal (e.g., an embryonic cell of the animal) prior to development of the animal.


Intronic sequences and polyadenylation signals can also be included in the transgene to increase expression efficiency of the transgene. One or more tissue-specific regulatory sequences can be operably linked to an EPHA3 nucleotide sequence to direct expression of an encoded polypeptide to particular cells. A transgenic founder animal can be identified based upon the presence of an EPHA3 nucleotide sequence in its genome and/or expression of encoded mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals, carrying an EPHA3 nucleotide sequence can further be bred to other transgenic animals carrying other transgenes.


Target polypeptides can be expressed in transgenic animals or plants by introducing, for example, an EPHA3 nucleic acid into the genome of an animal that encodes the target polypeptide. In preferred embodiments the nucleic acid is placed under the control of a tissue specific promoter, e.g., a milk or egg specific promoter, and recovered from the milk or eggs produced by the animal. Also included is a population of cells from a transgenic animal.


Target Polypeptides


Also featured herein are isolated target polypeptides, which are encoded by an EPHA3 nucleotide sequence (e.g., SEQ ID NO: 1-3) or a substantially identical nucleotide sequence thereof such as the polypeptides having amino acid sequences in SEQ ID NO: 4 or 5. The term “polypeptide” as used herein includes proteins and peptides. An “isolated” or “purified” polypeptide or protein is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. In one embodiment, the language “substantially free” means preparation of a target polypeptide having less than about 30%, 20%, 10% and more preferably 5% (by dry weighty, of non-target polypeptide (also referred to herein as a “contaminating protein”), or of chemical precursors or non-target chemicals. When the target polypeptide or a biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, specifically, where culture medium represents less than about 20%, sometimes less than about 10%, and often less than about 5% of the volume of the polypeptide preparation. Isolated or purified target polypeptide preparations are sometimes 0.01 milligrams or more or 0.1 milligrams or more, and often 1.0 milligrams or more and 10 milligrams or more in dry weight.


An EPHA3 polypeptide may be an isoform. For example, transcript variant 1 of EPHA3 is a 135 kDa, 983 amino acid type I transmembrane glycoprotein that contains a 20 amino acid signal sequence, a 521 amino acid extracellular region (21-541), a 24 amino acid transmembrane domain (542-564) and a 418 amino acid cytoplasmic segment (565-983 of SEQ ID NO: 4). Transcript variant 2 (SEQ ID NO: 5) uses an alternate splice site in the 3′ coding region, compared to variant 1, that results in a frameshift. It encodes an isoform which has a shorter and distinct C-terminus compared to variant 1. Transcript variant 2 (also known as an isoform b variant) lacks a transmembrane domain, contains a 20 amino acid signal sequence and may be a secreted form of the EPHA3 receptor. The isoform b variant of EPHA3 is capable of binding Ephrin-A2 or Ephrin-A5. Also, the 521 amino acid extracellular domain (21-541 of SEQ ID NO:4) is capable of binding Ephrin-A5. The EPHA3 polypeptide also may include an arginine at position 924 in SEQ ID NO: 4, which is a form associated with risk of type II diabetes, or a tryptophan at position 924 in SEQ ID NO: 4, which is a form associated with less risk of type II diabetes. The EPHA3 polypeptide also may include a histidine at position 914 in SEQ ID NO: 4, which is a form associated with risk of type II diabetes, or an arginine at position 914 in SEQ ID NO: 4, which is a form associated with less risk of type II diabetes. Positions 914 and 924 lie in a SAM domain described hereafter.


Further included herein are target polypeptide fragments. The polypeptide fragment may be a domain or part of a domain of a target polypeptide. For example, EPHA3 domains include but are not limited to an Ephrin receptor ligand binding (Eph_ldb) domain from about amino acids 29-202 of SEQ ID NO: 4 or 5; fibronectin type 3 (FN3) domains from about amino acids 326417 and 437-521 of SEQ ID NO: 4, and amino acids 329-417 and 437-518 of SEQ ID NO: 5; tyrosine kinase, catalytic (TyrKc) domain from about amino acids 621-878 of SEQ ID NO: 4; and a sterile alpha motif (SAM) from about amino acids 908-975 of SEQ ID NO: 4. The polypeptide fragment may have increased, decreased or unexpected biological activity. The polypeptide fragment is often 50 or fewer, 100 or fewer, or 200 or fewer amino acids in length, and is sometimes 300, 400, 500, 600, 700, or 900 or fewer amino acids in length.


Substantially identical target polypeptides may depart from the amino acid sequences of target polypeptides in different manners. For example, conservative amino acid modifications may be introduced at one or more positions in the amino acid sequences of target polypeptides. A “conservative amino acid substitution” is one in which the amino acid is replaced by another amino acid having a similar structure and/or chemical function. Families of amino acid residues having similar structures and functions are well known. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, typtophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Also, essential and non-essential amino acids may be replaced. A “non-essential” amino acid is one that can be altered without abolishing or substantially altering the biological function of a target polypeptide, whereas altering an “essential” amino acid abolishes or substantially alters the biological function of a target polypeptide. Amino acids that are conserved among target polypeptides are typically essential amino acids.


Also, target polypeptides may exist as chimeric or fusion polypeptide. As used herein, a target “chimeric polypeptide” or target “fusion polypeptide” includes a target polypeptide linked to a non-target polypeptide. A “non-target polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a polypeptide which is not substantially identical to the target polypeptide, which includes, for example, a polypeptide that is different from the target polypeptide and derived from the same or a different organism. The target polypeptide in the fusion polypeptide can correspond to an entire or nearly entire target polypeptide or a fragment thereof. The non-target polypeptide can be fused to the N-terminus or C-terminus of the target polypeptide.


Fusion polypeptides can include a moiety having high affinity for a ligand. For example, the fusion polypeptide can be a GST-target fusion polypeptide in which the target sequences are fused to the C-terminus of the EST sequences, or a polyhistidine-target fusion polypeptide in which the target polypeptide is fused at the N- or C-terminus to a string of histidine residues. Such fusion polypeptides can facilitate purification of recombinant target polypeptide. Expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide), and a nucleotide sequence in SEQ ID NO: 1-3, or a substantially identical nucleotide sequence thereof; can be cloned into an expression vector such that the fusion moiety is linked in-frame to the target polypeptide. Further, the fission polypeptide can be a target polypeptide containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression, secretion, cellular internalization, and cellular localization of a target polypeptide can be increased through use of a heterologous signal sequence. Fusion polypeptides can also include all or a part of a serum polypeptide (e.g., an IgG constant region or human serum albumin).


Target polypeptides can be incorporated into pharmaceutical compositions and administered to a subject in vivo. Administration of these target polypeptides can be used to affect the bioavailability of a substrate of the target polypeptide and may effectively increase target polypeptide biological activity in a cell. Target fusion polypeptides may be useful therapeutically for the treatment of disorders caused by, for example, (i) aberrant modification or mutation of a gene encoding a target polypeptide; (ii) mis-regulation of the gene encoding the target polypeptide; and (iii) aberrant post-translational modification of a target polypeptide. Also, target polypeptides can be used as immunogens to produce anti-target antibodies in a subject, to purify target polypeptide ligands or binding partners, and in screening assays to identify molecules which inhibit or enhance the interaction of a target polypeptide with a substrate.


In addition, polypeptides can be chemically synthesized using techniques known in the art (See, e.g., Creighton, 1983 Proteins. New York, N.Y.: W.H. Freeman and Company; and Hunkapiller et al., (1994) Nature July 12-18; 310(5973):105-11). For example, a relative short fragment can be synthesized by use of a peptide synthesizer. Furthermore, if desired, non-classical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the fragment sequence. Non-classical amino acids include, but are not limited to, to the D-isomers of the common amino acids, 2,4-diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoroamino acids, designer amino acids such as b-methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotary).


Polypeptides and polypeptide fragments sometimes are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH4; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; and the like. Additional post-translational modifications include, for example, N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of prokaryotic host cell expression. The polypeptide fragments may also be modified with a detectable label such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the polypeptide.


Also provided are chemically modified derivatives of polypeptides that can provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (see e.g., U.S. Pat. No. 4,179,337). The chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like. The polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.


The polymer may be of any molecular weight, and may be branched or unbranched. For polyethylene glycol, the preferred molecular weight is between about 1 kDa and about 100 kDa (the term “about” indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing. Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog).


The polymers should be attached to the polypeptide with consideration of effects on functional or antigenic domains of the polypeptide. There are a number of attachment methods available to those skilled in the art (e.g., EP 0 401 384 (coupling PEG to G-CSF) and Malik et al. (1992) Exp Hematol. September; 20(8): 1028-35 (pegylation of GM-CSF using tresyl chloride)). For example, polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule may be bound. The amino acid residues having a free amino group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues, glutamic acid residues and the C-terminal amino acid residue. Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. For therapeutic purposes, the attachment sometimes is at an amino group, such as attachment at the N-terminus or lysine group.


Proteins can be chemically modified at the N-terminus. Using polyethylene glycol as an illustration of such a composition, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, and the like), the proportion of polyethylene glycol molecules to protein (polypeptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein. The method of obtaining the N-terminally pegylated preparation (i.e., separating this moiety from other monopegylated moieties if necessary) may be by purification of the N-terminally pegylated material from a population of pegylated protein molecules. Selective proteins chemically modified at the N-terminus may be accomplished by reductive alkylation, which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved.


Substantially Identical Nucleic Acids and Polypeptides


Nucleotide sequences and polypeptide sequences that are substantially identical to an EPHA3 nucleotide sequence and the target polypeptide sequences encoded by those nucleotide sequences, respectively, are included herein. The term “substantially identical” as used herein refers to two or more nucleic acids or polypeptides sharing one or more identical nucleotide sequences or polypeptide sequences, respectively. Included are nucleotide sequences or polypeptide sequences that are 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more (each often within a 1%, 2%, 3% or 4% variability) identical to an EPHA3 nucleotide sequence or the encoded target polypeptide amino acid sequences. One test for determining whether two nucleic acids are substantially identical is to determine the percent of identical nucleotide sequences or polypeptide sequences shared between the nucleic acids or polypeptides.


Calculations of sequence identity are often performed as follows. Sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The length of a reference sequence aligned for comparison purposes is sometimes 30% or more, 40% or more, 50% or more, often 60% or more, and more often 70% or more, 80% or more, 90% or more, or 100% of the length of the reference sequence. The nucleotides or amino acids at corresponding nucleotide or polypeptide positions, respectively, are then compared among the two sequences. When a position in the first sequence is occupied by the same nucleotide or amino acid as the corresponding position in the second sequence, the nucleotides or amino acids are deemed to be identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, introduced for optimal alignment of the two sequences.


Comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. Percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of Meyers & Miller, CABIOS 4: 11-17 (1989), which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. Also, percent identity between two amino acid sequences can be determined using the Needleman & Wunsch, J. Mol. Biol. 48: 444-453 (1970) algorithm which has been incorporated into the GAP program in the GCG software package (available at the http address www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. Percent identity between two nucleotide sequences can be determined using the GAP program in the GCG software package (available at http address www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A set of parameters often used is a Blossum 62 scoring matrix with a gap open penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.


Another manner for determining if two nucleic acids are substantially identical is to assess whether a polynucleotide homologous to one nucleic acid will hybridize to the other nucleic acid under stringent conditions. As use herein, the term “stringent conditions” refers to conditions for hybridization and washing. Stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y., 6.3.1-6.3.6 (19891. Aqueous and non-aqueous methods are described in that reference and either can be used. An example of stringent hybridization conditions is hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 50° C. Another example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 55° C. A further example of stringent hybridization conditions is hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 60° C. Often, stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 65° C. More often, stringency conditions are 0.5M sodium phosphate, 71% SDS at 65° C., followed by one or more washes at 0.2×SSC, 1% SDS at 65° C.


An example of a substantially identical nucleotide sequence to a nucleotide sequence in SEQ ID NO: 1-3 is one that has a different nucleotide sequence but still encodes the same polypeptide sequence encoded by the nucleotide sequence in SEQ ID NO: 1-3. Another example is a nucleotide sequence that encodes a polypeptide having a polypeptide sequence that is more than 70% or more identical to, sometimes more than 75% or more, 80% or more, or 85% or more identical to, and often more than 90% or more and 95% or more identical to a polypeptide sequence encoded by a nucleotide sequence in SEQ ID NO: 1-3. As used herein, “SEQ ID NO: 1-3” typically refers to one or more sequences in SEQ ID NO: 1, 2 and/or 3. Many of the embodiments described herein are applicable to (a) a nucleotide sequence of SEQ ID NO; 1, 2 and/or 3; (b) a nucleotide sequence which encodes a polypeptide consisting of an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1, 2 and/or 3; (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1, 2 and/or 3, or a nucleotide sequence about 90% or more identical to a nucleotide sequence of SEQ ID NO: 1, 2 and/or 3; (d) a fragment of a nucleotide sequence of (a), (b), or (c); and/or a nucleotide sequence complementary to the nucleotide sequences of (a), (b), (c) and/or (d), where nucleotide sequences of (b) and (c), fragments of (b) and (c) and nucleotide sequences complementary to (b) and (c) are examples of substantially identical nucleotide sequences. Examples of substantially identical nucleotide sequences include nucleotide sequences from subjects that differ by naturally occurring genetic variance, which sometimes is referred to as background genetic variance (e.g., nucleotide sequences differing by natural genetic variance sometimes are 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to one another).


Nucleotide sequences in SEQ ID NO: 1-3 and amino acid sequences of encoded polypeptides can be used as “query sequences” to perform a search against public databases to identify other family members or related sequences, for example. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul et al., J. Mol. Biol. 215: 403-10 (1990). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to nucleotide sequences in SEQ ID NO: 1-3. BLAST polypeptide searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to polypeptides encoded by the nucleotide sequences of SEQ ID NO: 1-3. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., Nucleic Acids Res. 25(17): 3389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used (see the http address www.ncbi.nlm.nih.gov).


A nucleic acid that is substantially identical to a nucleotide sequence in SEQ ID NO: 1-3 may include polymorphic sites at positions equivalent to those described herein when the sequences are aligned. For example, using the alignment procedures described herein, SNPs in a sequence substantially identical to a sequence in SEQ ID NO: 1-3 can be identified at nucleotide positions that match with or correspond to (i.e., align) nucleotides at SNP positions in each nucleotide sequence in SEQ ID NO: 1-3. Also, where a polymorphic variation results in an insertion or deletion, insertion or deletion of a nucleotide sequence from a reference sequence can change the relative positions of other polymorphic sites in the nucleotide sequence.


Substantially identical nucleotide and polypeptide sequences include those that are naturally occurring, such as allelic variants (same locus), splice variants, homologs (different locus), and orthologs (different organism) or can be non-naturally occurring. Non-naturally occurring variants can be generated by mutagenesis techniques, including those applied to polynucleotides, cells, or organisms. The variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions (as compared in the encoded product). Orthologs, homologs, allelic variants, and splice variants can be identified using methods known in the art. These variants normally comprise a nucleotide sequence encoding a polypeptide that is 50% or more, about 55% or more, often about 70-75% or more or about 80-85% or more, and sometimes about 90-95% or more identical to the amino acid sequences of target polypeptides or a fragment thereof. Such nucleic acid molecules can readily be identified as being able to hybridize under stringent conditions to a nucleotide sequence in SEQ ID NO: 1-3 or a fragment of this sequence. Nucleic acid molecules corresponding to orthlogs, homologs, and allelic variants of a nucleotide sequence in SEQ ID NO: 1-3 can further be identified by mapping the sequence to the same chromosome or locus as the nucleotide sequence in SEQ ID NO: 1-3.


Also, substantially identical nucleotide sequences may include codons that are altered with respect to the naturally occurring sequence for enhancing expression of a target polypeptide in a particular expression system. For example, the nucleic acid can be one in which one or more codons are altered, and often 10% or more or 20% or more of the codons are altered for optimized expression in bacteria (e.g., E. coli.), yeast (e.g., S. cervesiae), human (e.g., 293 cells), insect or rodent (e.g., hamster) cells.


Methods for Identifying Subjects at Risk of Diabetes and Risk of Diabetes in a Subject


Methods for prognosing and diagnosing type II diabetes and its related disorders (e.g., metabolic disorders, syndrome X, obesity, hypertension, insulin resistance, hyperglycemia) are included herein. These methods include detecting the presence or absence of one or more polymorphic variations in a nucleotide sequence associated with type II diabetes, such as variants in or around the locus set forth herein, or a substantially identical sequence thereof, in a sample from a subject, where the presence of a polymorphic variant described herein is indicative of a risk of type II diabetes or one or more type II diabetes related disorders (e.g., metabolic disorders, syndrome X, obesity, hypertension, insulin resistance, hyperglycemia). Determining a risk of type U diabetes refers to determining whether an individual is at an increased risk of type II diabetes (e.g., intermediate risk or higher risk).


Thus, featured herein is a method for identifying a subject who is at risk of type II diabetes, which comprises detecting a type II diabetes-associated aberration in a nucleic acid sample from the subject. An embodiment is a method for detecting risk of type II diabetes in a subject, which comprises detecting the presence or absence of a polymorphic variation associated with type II diabetes at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject, where the nucleotide sequence comprises a polynucleotide sequence selected from the group consisting of: (a) a nucleotide sequence of SEQ ID NO: 1-3; (b) a nucleotide sequence which encodes a polypeptide consisting of an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-3; (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-3, or a nucleotide sequence about 90% or more identical to a nucleotide sequence of SEQ ID NO: 1-3; and (d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising the polymorphic site; whereby the presence of the polymorphic variation is indicative of a predisposition to type II diabetes in the subject. In certain embodiments, polymorphic variants at the positions described herein are detected for determining a risk of type II diabetes, and polymorphic variants at positions in linkage disequilibrium with these positions are detected for determining a risk of type II diabetes.


Results from prognostic tests may be combined with other test results to diagnose type II diabetes related disorders, including metabolic disorders, syndrome X, obesity, hypertension, insulin resistance, hyperglycemia. For example, prognostic results may be gathered, a patient sample may be ordered based on a determined predisposition to type II diabetes, the patient sample is analyzed, and the results of the analysis may be utilized to diagnose the type II diabetes related condition (e.g., metabolic disorders, syndrome X, obesity, hypertension, insulin resistance, hyperglycemia). Also type II diabetes diagnostic methods can be developed from studies used to generate prognostic methods in which populations are stratified into subpopulations having different progressions of a type II diabetes related disorder or condition. In another embodiment, prognostic results may be gathered, a patient's risk factors for developing type II diabetes (e.g., age, weight, race, diet) analyzed, and a patient sample may be ordered based on a determined predisposition to type II diabetes.


Risk of type II diabetes sometimes is expressed as a probability, such as an odds ratio, percentage, or risk factor. The risk sometimes is expressed as a relative risk with respect to a population average risk of type F diabetes, and sometimes is expressed as a relative risk with respect to the lowest risk group. Such relative risk assessments often are based upon penetrance values determined by statistical methods and are particularly useful to clinicians and insurance companies for assessing risk of type II diabetes (e.g., a clinician can target appropriate detection, prevention and therapeutic regimens to a patient after determining the patient's risk of type II diabetes, and an insurance company can fine tune actuarial tables based upon population genotype assessments of type II diabetes risk). Risk of type II diabetes sometimes is expressed as an odds ratio, which is the odds of a particular person having a genotype has or will develop type II diabetes with respect to another genotype group (e.g., the most disease protective genotype or population average). The risk often is based upon the presence or absence of one or more polymorphic variants described herein, and also may be based in part upon phenotypic traits of the individual being tested. In an embodiment, two or more polymorphic variations are detected in an EPHA3 locus. In certain embodiments, 3 or more, or 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 or more polymorphic variants are detected in the sample. Methods for calculating risk based upon patient data are well known (wee, e.g., Agresti, Categorical Data Analysis, 2nd Ed. 2002. Wiley). Allelotyping and genotyping analyses may be carried out in populations other than those exemplified herein to enhance the predictive power of the prognostic method.


The nucleic acid sample typically is isolated from a biological sample obtained from a subject. For example, nucleic acid can be isolated from blood, saliva, sputum, urine, cell scrapings, and biopsy tissue. The nucleic acid sample can be isolated from a biological sample using standard techniques, such as the technique described in Example 2. As used herein, the term “subject” refers primarily to humans but also refers to other mammals such as dogs, cats, and ungulates (e.g., cattle, sheep, and swine). Subjects also include avians (e.g., chickens and turkeys), reptiles, and fish (e.g., salmon), as embodiments described herein can be adapted to nucleic acid samples isolated from any of these organisms. The nucleic acid sample may be isolated from the subject and then directly utilized in a method for determining the presence of a polymorphic variant, or alternatively, the sample may be isolated and then stored (e.g., frozen) for a period of time before being subjected to analysis.


The presence or absence of a polymorphic variant is determined using one or both chromosomal complements represented in the nucleic acid sample. Determining the presence or absence of a polymorphic variant in both chromosomal complements represented in a nucleic acid sample from a subject having a copy of each chromosome is useful for determining the zygosity of an individual for the polymorphic variant (i.e., whether the individual is homozygous or heterozygous for the polymorphic variant). Any oligonucleotide-based diagnostic may be utilized to determine whether a sample includes the presence or absence of a polymorphic variant in a sample. For example, primer extension methods, ligase sequence determination methods (e.g. U.S. Pat. Nos. 5,679,524 and 5,952,174, and WO 01/27326), mismatch sequence determination methods (e.g., U.S. Pat. Nos. 5,851,770; 5,958,692; 6,110,684; and 6,183,958), microarray sequence determination methods, restriction fragment length polymorphism (RFLP), single strand conformation polymorphism detection (SSCP) (e.g., U.S. Pat. Nos. 5,891,625 and 6,013,499), PCR-based assays (e.g., TAQMAN® PCR System (Applied Biosystems)), and nucleotide sequencing methods may be used.


Oligonucleotide extension methods typically involve providing a pair of oligonucleotide primers in a polymerase chain reaction (PCR) or in other nucleic acid amplification methods for the purpose of amplifying a region from the nucleic acid sample that comprises the polymorphic variation. One oligonucleotide primer is complementary to a region 3′ of the polymorphism and the other is complementary to a region 5′ of the polymorphism. A PCR primer pair may be used in methods disclosed in U.S. Pat. Nos. 4,683,195; 4,683,202, 4,965,188; 5,656,493; 5,998,143; 6,140,054; WO 01/27327; and WO 01/27329 for example. PCR primer pairs may also be used in any commercially available machines that perform PCR, such as any of the GENEAMP® Systems available from Applied Biosystems. Also, those of ordinary skill in the art will be able to design oligonucleotide primers based upon an EPHA3 nucleotide sequence using knowledge available in the art.


Also provided is an extension oligonucleotide that hybridizes to the amplified fragment adjacent to the polymorphic variation. As used herein, the term “adjacent” refers to the 3′ end of the extension oligonucleotide being often 1 nucleotide from the 5′ end of the polymorphic site, and sometimes 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from the 5′ end of the polymorphic site, in the nucleic acid when the extension oligonucleotide is hybridized to the nucleic acid. The extension oligonucleotide then is extended by one or more nucleotides, and the number and/or type of nucleotides that are added to the extension oligonucleotide determine whether the polymorphic variant is present. Oligonucleotide extension methods are disclosed, for example, in U.S. Pat. Nos. 4,656,117; 4,851,331; 5,679,524; 5,834,189; 5,876,934; 5,908,755; 5,912,118; 5,976,802; 5,981,186; 6,004,744; 6,013,431; 6,017,702; 6,046,005; 6,087,095; 6,210,891; and WO 01/20039. Oligonucleotide extension methods using mass spectrometry are described, for example, in U.S. Pat. Nos. 5,547,835; 5,605,798; 5,691,141; 5,849,542; 5,869,242; 5,928,906; 6,043,031; and 6,194,144, and a method often utilized is described herein in Example 2.


A microarray can be utilized for determining whether a polymorphic variant is present or absent in a nucleic acid sample. A microarray may include any oligonucleotides described herein, and methods for making and using oligonucleotide microarrays suitable for diagnostic use are disclosed in U.S. Pat. Nos. 5,492,806; 5,525,464; 5,589,330; 5,695,940; 5,849,483; 6,018,041; 6,045,996; 6,136,541; 6,142,681; 6,156,501; 6,197,506; 6,223,127; 6,225,625; 6,229,911; 6,239,273; WO 00/52625; WO 01/25485; and WO 01/29259. The microarray typically comprises a solid support and the oligonucleotides may be linked to this solid support by covalent bonds or by non-covalent interactions. The oligonucleotides may also be linked to the solid support directly or by a spacer molecule. A microarray may comprise one or more oligonucleotides complementary to a polymorphic site set forth herein.


A kit also may be utilized for determining whether a polymorphic variant is present or absent in a nucleic acid sample. A kit often comprises one or more pairs of oligonucleotide primers useful for amplifying a fragment of a nucleotide sequence of SEQ ID NO: 1-3 or a substantially identical sequence thereof where the fragment includes a polymorphic site. The kit sometimes comprises a polymerizing agent, for example, a thermostable nucleic acid polymerase such as one disclosed in U.S. Pat. No. 4,889,818 or U.S. Pat. No. 6,077,664. Also, the kit often comprises an elongation oligonucleotide that hybridizes to an EPHA3 nucleotide sequence in a nucleic acid sample adjacent to the polymorphic site. Where the kit includes an elongation oligonucleotide, it also often comprises chain elongating nucleotides, such as dATP, dTTP, dGTP, dCTP, and dITP, including analogs of dATP, dTTP, dGTP, dCTP and dITP, provided that such analogs are substrates for a thermostable nucleic acid polymerase and can be incorporated into a nucleic acid chain elongated from the extension oligonucleotide. Along with chain elongating nucleotides would be one or more chain terminating nucleotides such as ddATP, ddTTP, ddGTP, ddCTP, and the like. (In an embodiment, the kit comprises one or more oligonucleotide primer pairs a polymerizing agent, chain elongating nucleotides, at least one elongation oligonucleotide, and one or more chain terminating nucleotides. Kits optionally include buffers, vials, microtiter plates, and instructions for use.


An individual identified as being at risk of type II diabetes may be heterozygous or homozygous with respect to the allele associated with a higher risk of type II diabetes. A subject homozygous for an allele associated with an increased risk of Type II diabetes is at a comparatively high risk of type II diabetes, a subject heterozygous for an allele associated with an increased risk of type II diabetes is at a comparatively intermediate risk of type II diabetes, and a subject homozygous for an allele associated with a decreased risk of type II diabetes is at a comparatively low risk of type II diabetes. A genotype may be assessed for a complementary strand, such that the complementary nucleotide at a particular position is detected.


Also featured are methods for determining risk of type II diabetes and/or identifying a subject at risk of type II diabetes by contacting a polypeptide or protein encoded by an EPHA3 nucleotide sequence from a subject with an antibody that specifically binds to an epitope associated with increased risk of type II diabetes in the polypeptide. In an embodiment, the antibody specifically binds to an epitope comprising an arginine at position 924 in an EPHA3 polypeptide (SEQ ID NO: 4).


Applications of Prognostic and Diagnostic Results to Pharmacogenomic Methods


Pharmacogenomics is a discipline that involves tailoring a treatment for a subject according to the subject's genotype as a particular treatment regimen may exert a differential effect depending upon the subject's genotype. For example, based upon the outcome of a prognostic test described herein, a clinician or physician may target pertinent information and preventative or therapeutic treatments to a subject who would be benefited by the information or treatment and avoid directing such information and treatments to a subject who would not be benefited (e.g., the treatment has no therapeutic effect and/or the subject experiences adverse side effects).


The following is an example of a pharmacogenomic embodiment. A particular treatment regimen can exert a differential effect depending upon the subject's genotype. Where a candidate therapeutic exhibits a significant interaction with a major allele and a comparatively weak interaction with a minor allele (e.g., an order of magnitude or greater difference in the interaction), such a therapeutic typically would not be administered to a subject genotyped as being homozygous for the minor allele, and sometimes not administered to a subject genotyped as being heterozygous for the minor allele. In another example, where a candidate therapeutic is not significantly toxic when administered to subjects who are homozygous for a major allele but is comparatively toxic when administered to subjects heterozygous or homozygous for a minor allele, the candidate therapeutic is not typically administered to subjects who are genotyped as being heterozygous or homozygous with respect to the minor allele.


The methods described herein are applicable to pharmacogenomic methods for preventing, alleviating or treating type II diabetes conditions such as metabolic disorders, syndrome X, obesity, hypertension, insulin resistance, hyperglycemia. For example, a nucleic acid sample from an individual may be subjected to a prognostic test described herein. Where one or more polymorphic variations associated with increased risk of type II diabetes are identified in a subject, information for preventing or treating type II diabetes and/or one or more type II diabetes treatment regimens then may be prescribed to that subject.


In certain embodiments, a treatment or preventative regimen is specifically prescribed and/or administered to individuals who will most benefit from it based upon their risk of developing type II diabetes assessed by the methods described herein. Thus, provided are methods for identifying a subject predisposed to type II diabetes and then prescribing a therapeutic or preventative regimen to individuals identified as having a predisposition. Thus, certain embodiments are directed to a method for reducing type II diabetes in a subject, which comprises: detecting the presence or absence of a polymorphic variant associated with type II diabetes in a nucleotide sequence in a nucleic acid sample from a subject where the nucleotide sequence comprises a polynucleotide sequence selected from the group consisting of: (a) a nucleotide sequence of SEQ ID NO: 1-3; (b) a nucleotide sequence which encodes a polypeptide consisting of an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-3; (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-3, or a nucleotide sequence about 90% or more identical to a nucleotide sequence of SEQ ID NO: 1-3; and (d) a fragment of a polynucleotide sequence of (a), (b), or (c); and prescribing or administering a treatment regimen to a subject from whom the sample originated where the presence of a polymorphic variation associated with type II diabetes is detected in the nucleotide sequence. In these methods, predisposition results may be utilized in combination with other test results to diagnose type II diabetes associated conditions, such as metabolic disorders, syndrome X, obesity, hypertension, insulin resistance, hyperglycemia.


Certain preventative treatments often are prescribed to subjects having a predisposition to type II diabetes and where the subject is diagnosed with type II diabetes or is diagnosed as having symptoms indicative of early stage type II diabetes, (e.g., impaired glucose tolerance, or IGT). For example, recent studies have highlighted the potential for intervention in IGT subjects to reduce progression to type II diabetes. One such study showed that over three years lifestyle intervention (targeting diet and exercise) reduced the risk of progressing from IGT to diabetes by 58% (The Diabetes Prevention Program. (1999) Diabetes Care 22:623-634). In a similar Finnish study, the cumulative incidence of diabetes after four years was 11% in the intervention group and 23% in the control group. During the trial, the risk of diabetes was reduced by 58% in the intervention group (Tuomilehto et al. (2001) N. Eng. J. Med. 344:1343-1350). Clearly there is great benefit in the early diagnosis and subsequent preventative treatment of type II diabetes.


The treatment sometimes is preventative (e.g., is prescribed or administered to reduce the probability that a type II diabetes associated condition arises or progresses), sometimes is therapeutic, and sometimes delays, alleviates or halts the progression of a type II diabetes associated condition Any known preventative or therapeutic treatment for alleviating or preventing the occurrence of a type II diabetes associated disorder is prescribed and/or administered. For example, the treatment sometimes includes changes in diet, increased exercise, and the administration of therapeutics such as sulphonylureas (and related insulin secretagogues), which increase insulin release from pancreatic islets; metformin (Glucophage™), which acts to reduce hepatic glucose production; peroxisome proliferator-activated receptor-gamma (PPAR) agonists (thiozolidinediones such as Avandia® and Actos®), which enhance insulin action; alpha-glucosidase inhibitors (e.g., Precose®, Voglibose®, and Miglitol®), which interfere with gut glucose absorption; and insulin itself, which suppresses glucose production and augments glucose utilization (Moller Nature 414, 821-827 (2001)).


As therapeutic approaches for type U diabetes continue to evolve and improve, the goal of treatments for type II diabetes related disorders is to intervene even before clinical signs (e.g., impaired glucose tolerance, or IGT) first manifest. Thus, genetic markers associated with susceptibility to type II diabetes prove useful for early diagnosis, prevention and treatment of type II diabetes.


As type II diabetes preventative and treatment information can be specifically targeted to subjects in need thereof (e.g., those at risk of developing type II diabetes or those that have early stages of type II diabetes), provided herein is a method for preventing or reducing the risk of developing type II diabetes in a subject, which comprises: (a) detecting the presence or absence of a polymorphic variation associated with type II diabetes at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject; (b) identifying a subject with a predisposition to type II diabetes, whereby the presence of the polymorphic variation is indicative of a predisposition to type II diabetes in the subject; and (c) if such a predisposition is identified, providing the subject with information about methods or products to prevent or reduce type II diabetes or to delay the onset of type II diabetes. Also provided is a method of targeting information or advertising to a subpopulation of a human population based on the subpopulation being genetically predisposed to a disease or condition, which comprises: (a) detecting the presence or absence of a polymorphic variation associated with type II diabetes at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject; (b) identifying the subpopulation of subjects in which the polymorphic variation is associated with type II diabetes; and (c) providing information only to the subpopulation of subjects about a particular product which may be obtained and consumed or applied by the subject to help prevent or delay onset of the disease or condition.


Pharmacogenomics methods also may be used to analyze and predict a response to a type II diabetes treatment or a drug. For example, if pharmacogenomics analysis indicates a likelihood that an individual will respond positively to a type II diabetes treatment with a particular drug, the drug may be administered to the individual. Conversely, if the analysis indicates that an individual is likely to respond negatively to treatment with a particular drug, an alternative course of treatment may be prescribed. A negative response may be defined as either the absence of an efficacious response or the presence of toxic side effects. The response to a therapeutic treatment can be predicted in a background study in which subjects in any of the following populations are genotyped: a population that responds favorably to a treatment regimen, a population that does not respond significantly to a treatment regimen, and a population that responds adversely to a treatment regiment (e.g., exhibits one or more side effects). These populations are provided as examples and other populations and subpopulations may be analyzed. Based upon the results of these analyses, a subject is genotyped to predict whether he or she will respond favorably to a treatment regimen, not respond significantly to a treatment regimen, or respond adversely to a treatment regimen.


The tests described herein also are applicable to clinical drug trials. One or more polymorphic variants indicative of response to an agent for treating type II diabetes or to side effects to an agent for treating type II diabetes may be identified using the methods described herein. Thereafter, potential participants in clinical trials of such an agent may be screened to identify those individuals most likely to respond favorably to the drug and exclude those likely to experience side effects. In that way, the effectiveness of drug treatment may be measured in individuals who respond positively to the drug, without lowering the measurement as a result of the inclusion of individuals who are unlikely to respond positively in the study and without risking undesirable safety problems.


Thus, another embodiment is a method of selecting an individual for inclusion in a clinical trial of a treatment or drug comprising the steps of: (a) obtaining a nucleic acid sample from an individual; (b) determining the identity of a polymorphic variation which is associated with a positive response to the treatment or the drug, or at least one polymorphic variation which is associated with a negative response to the treatment or the drug in the nucleic acid sample, and (ca including the individual in the clinical trial if the nucleic acid sample contains said polymorphic variation associated with a positive response to the treatment or the drug or if the nucleic acid sample lacks said polymorphic variation associated with a negative response to the treatment or the drug. In addition, the methods described herein for selecting an individual for inclusion in a clinical trial of a treatment or drug encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination. The polymorphic variation may be in a sequence selected individually or in any combination from the group consisting of (i) a nucleotide sequence of SEQ ID NO: 1-3; (ii) a nucleotide sequence which encodes a polypeptide consisting of an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-3; (iii) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-3, or a nucleotide sequence about 90% or more identical to a nucleotide sequence of SEQ ID NO: 1-3; and (iv) a fragment of a polynucleotide sequence of (i), (ii), or (iii) comprising the polymorphic site. The including step (c) optionally comprises administering the drug or the treatment to the individual if the nucleic acid sample contains the polymorphic variation associated with a positive response to the treatment or the drug and the nucleic acid sample lacks said biallelic marker associated with a negative response to the treatment or the drug.


Also provided herein is a method of partnering between a diagnostic/prognostic testing provider and a provider of a consumable product, which comprises: (a) the diagnostic/prognostic testing provider detects the presence or absence of a polymorphic variation associated with type U diabetes at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject; (b) the diagnostic/prognostic testing provider identifies the subpopulation of subjects in which the polymorphic variation is associated with type B diabetes; (c) the diagnostic/prognostic testing provider forwards information to the subpopulation of subjects about a particular product which may be obtained and consumed or applied by the subject to help prevent or delay onset of the disease or condition; and (d) the provider of a consumable product forwards to the diagnostic test provider a fee every time the diagnostic/prognostic test provider forwards information to the subject as set forth in step (c) above.


Compositions Comprising Diabetes-Directed Molecules


Featured herein is a composition comprising a cell from a subject having type II diabetes or at risk of type II diabetes and one or more molecules specifically directed and targeted to a nucleic acid comprising an EPHA3 nucleotide sequence or amino acid sequence. Such directed molecules include, but are not limited to, a compound that binds to an EPHA3 nucleotide sequence or amino acid sequence referenced herein; a nucleic acid that hybridizes to an EPHA3 nucleic acid under stringent conditions, a RNAi or siRNA molecule having a strand complementary to an EPHA3 nucleotide sequence; an antisense nucleic acid complementary to an RNA encoded by an EPHA3 nucleotide sequence; a ribozyme that hybridizes to an EPHA3 nucleotide sequence; a nucleic acid aptamer that specifically binds a polypeptide encoded by EPHA3 nucleotide sequence; and an antibody that specifically binds to a polypeptide encoded by EPHA3 nucleotide sequence or binds to a nucleic acid having such a nucleotide sequence. In specific embodiments, the diabetes directed molecule interacts with a nucleic acid or polypeptide variant associated with diabetes, such as variants referenced herein. In other embodiments, the diabetes directed molecule interacts with a polypeptide involved in a signal pathway of a polypeptide encoded by an EPHA3 nucleotide sequence, or a nucleic acid comprising such a nucleotide sequence.


In certain embodiments, the diabetes directed molecule is an antibody that specifically binds to an EPHA3 isoform, for example, to an epitope comprising an arginine or tryptophan at position 924 in an EPHA3 polypeptide (SEQ ID NO: 4) or a histidine or arginine at position 914. The antibody sometimes specifically binds to EPHA3 and inhibits an interaction (e.g., binding) between EPHA3 and an EPHA3 binding partner or ligand, such as Ephrin-A5 or Ephrin-A2. In certain embodiments, the antibody specifically binds to an EPHA3 binding partner or ligand (e.g., the antibody specifically binds to Ephrin-A2 or Ephrin-A5) and inhibits binding between EPHA3 and that binding partner or ligand. In another embodiment, the antibody specifically binds to a metalloprotease enzyme (e.g., a disintegrin and metalloproteinase domain 10 (ADAM10)) that catalyzes the aggregation between EPHA3 and its binding partner or ligand (e.g., Ephrin-A2). Hattori et al. shows ephrin-A2 forms a stable complex with the metalloprotease Kuzbanian or ADAM10 (NM001110) (Science. 2000 Aug. 25; 299(5483):1360-5). Binding inhibition may be partial (e.g., 50% of less binding, 25% of less binding, 20% or less binding, or 5% or less binding) or complete. In some embodiments, a composition described herein includes an EPHA3 binding partner or ligand, such as Ephrin-A2, Ephrin-A5 or the peptide fragments disclosed in U.S. Pat. No. 6,063,903. The diabetes directed molecule sometimes is an EPHA3 polypeptide fragment. In certain embodiments, isoform b of EPHA3 (SEQ ID NO-5), the extracellular domain of isoform a (21-541 of SEQ ID NO:4), or a fragment of the foregoing, specifically binds to an EPHA3 binding partner ligand (e.g., Ephrin-A2 or Ephrin-A5) and inhibits binding between EPHA3 and that binding partner or ligand.


Compositions sometimes include an adjuvant known to stimulate an immune response, and in certain embodiments, an adjuvant that stimulates a T-cell lymphocyte response. Adjuvants are known, including but not limited to an aluminum adjuvant (e.g., aluminum hydroxide); a cytokine adjuvant or adjuvant that stimulates a cytokine response (e.g., interleukin (II)-12 and/or γ-interferon cytokines); a Freund-type mineral oil adjuvant emulsion (e.g., Freund's complete or incomplete adjuvant); a synthetic lipoid compound; a copolymer adjuvant (e.g., TitreMax); a saponin; Quil A; a liposome; an oil-in-water emulsion (e.g., an emulsion stabilized by Tween 80 and pluronic polyoxyethylene/polyoxypropylene block copolymer (Syntex Adjuvant Formulation), TitreMax; detoxified endotoxin (MPL) and mycobacterial cell wall components (TDW, CWS) in 2% squalene (Ribi Adjuvant System)); a muramyl dipeptide; an immune-stimulating complex (ISCOM, e.g., an Ag-modified saponin/cholesterol micelle that forms stable cage-like structure); an aqueous phase adjuvant that does not have a depot effect (e.g., Gerbu adjuvant); a carbohydrate polymer (e.g., AdjuPrime); L-tyrosine; a manide-oleate compound (e.g., Montanide); an ethylene-vinyl acetate copolymer (e.g., Elvax 40W1,2); or lipid A, for example. Such compositions are useful for generating an immune response against a diabetes directed molecule (e.g., an HLA-binding subsequence within a polypeptide encoded by an EPHA3 nucleotide sequence). In such methods, a peptide having an amino acid subsequence of a polypeptide encoded by an EPHA3 nucleotide sequence is delivered to a subject, where the subsequence binds to an HLA molecule and induces a CTL lymphocyte response. The peptide sometimes is delivered to the subject as an isolated peptide or as a minigene in a plasmid that encodes the peptide. Methods for identifying HLA-binding subsequences in such polypeptides are known (see e.g., publication WO02/20616 and PCT application US98/01373 for methods of identifying such sequences).


The cell may be in a group of cells cultured in vitro or in a tissue maintained in vitro or present in an animal in vivo (e.g., a rat, mouse, ape or human). In certain embodiments, a composition comprises a component from a cell such as a nucleic acid molecule (e.g. genomic DNA), a protein mixture or isolated protein, for example. The aforementioned compositions have utility in diagnostic, prognostic and pharmacogenomic methods described previously and in diabetes therapeutics described hereafter. Certain diabetes directed molecules are described in greater detail below.


Compounds


Compounds can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive (see, e.g., Zuckermann et al., J. Med. Chem. 37: 2678-85 (1994)); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; “one-bead one-compound” library methods; and synthetic library methods using affinity chromatography selection. Biological library and peptoid library approaches are typically limited to peptide libraries, while the other approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam, Anticancer Drug Des. 12: 145, (1997)). Examples of methods for synthesizing molecular libraries are described, for example, in DeWitt et al., Proc. Natl. Acad. Sci. U.S.A. 90: 6909 (1993>; Erb et al., Proc. Natl. Acad. Sci. USA 91: 11422 (1994); Zuckermann et al., J. Med. Chem. 37: 2678 (1994); Cho et al., Science 261: 1303 (1993); Carrell et al., Angew. Chem. Int. Ed. Engl. 33: 2059 (1994); Carell et al., Angew. Chem. Int. Ed. Engl. 33: 2061 (1994); and in Gallop et al., J. Med. Chem. 37: 1233 (1994).


Libraries of compounds may be presented in solution (e.g., Houghten, Biotechniques 13: 412-421 (1992), or on beads (Lam, Nature 354: 82-84 (1991)), chips (Fodor, Nature 364: 555-556 (1993)), bacteria or spores (Ladner, U.S. Pat. No. 5,223,409), plasmids (Cull et al., Proc. Natl. Acad. Sci. USA 89: 1865-1869 (1992>) or on phage (Scott and Smith, Science 249: 386-390 (1990); Devlin, Science 249: 404-406 (1990); Cwirla et al., Proc. Natl. Acad. Sci. 87: 6378-6382 (1990); Felici, J. Mol. Biol. 222: 301-310 (1991); Ladner supra.).


A compound sometimes alters expression and sometimes alters activity of a polypeptide target and may be a small molecule. Small molecules include, but are not limited to, peptides, peptidomimetics (e.g., peptoids), amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.


In certain embodiments, compounds include, but are not limited to, inhibitors of tyrosine protein kinases that inhibit EPHA3. Tyrosine kinases include epidermal growth factor receptor protein kinase (EGFR), vascular endothelial growth factor receptor protein kinase (VEGFR), or kinase insert domain receptor (KDR). Thus, EPHA3 compounds include inhibitors of EGFR, VEGFR and KDR, for which structures and methods of synthesis are described in PCT international patent publications: WO0132651, WO0047212, WO9813354, WO9813350, WO9732856, WO9730035 and WO9730035. Examples of compound structures are provided hereafter.


In certain embodiments, diabetes directed molecules include compounds of formula I:







where Z represents —O—, —NH— or —S—; m is an integer from 1 to 5; R1 represents hydrogen, hydroxy, halogeno, nitro, trifluoromethyl, cyano, C1-3alkyl, C1-3alkoxy, C1-3alkylthio, or —NR5R6 (wherein R5 and R6, which may be the same or different, each represents hydrogen or C1-3alkyl); R2 represents hydrogen, hydroxy, halogeno, methoxy, amino or nitro; R3 represents hydroxy, halogeno, C1-3alkyl, C1-3alkoxy, C1-3alkanoyloxy, trifluoromethyl, cyano, amino or nitro; X1 represents —O—, —CH2—, —S—, —SO—, —SO2—, —NR7—, —NR8CO—, —CONR9—, —SO2NR30— or —NR11SO2—, (where R7, R8, R9, R10 and R11 each represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl); and R4 represents a group which is alkenyl, alkynyl or optionally substituted alkyl, which alkyl group may contain a heteroatom linking group, which alkenyl, alkynyl or alkyl group may carry a terminal optionally substituted 5 or 6 membered saturated carbocyclic or heterocyclic group and salts thereof. Processes for their preparation, pharmaceutical compositions containing a compound of the formula, and pharmaceutically acceptable salts are described in further detail in WO 9730035.


In some embodiments, diabetes directed molecules include compounds of formula II:







where R1 represents hydrogen or methoxy; R1 represents methoxy, ethoxy, 2-methoxyethoxy, 3-methoxypropoxy, 2-ethoxyethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 2-hydroxyethoxy, 3-hydroxypropoxy, 2-(N,N-dimethylamino)ethoxy, 3-(N,N-dimethylamino)propoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-(piperazin-1-yl)ethoxy, 3-(piperazin-1-yl)propoxy, 4-(piperazin-1-yl)butoxy, 2-(4-methylpiperazin-1-yl)ethoxy, 3-(4-methylpiperazin-1-yl)propoxy or 4-(4-methylpiperazin-1-yl)butoxy; and the phenyl group bearing (R3)2 is selected from: 2-fluoro-5-hydroxyphenyl, 4-bromo-2-fluorophenyl, 2,4-difluorophenyl, 4-chloro-2-fluorophenyl, 2-fluoro-4-methylphenyl, 2-fluoro-4-methoxyphenyl, 4-bromo-3-hydroxyphenyl, 4-fluoro-3-hydroxyphenyl, 4-chloro-3-hydroxyphenyl, 3-hydroxy-4-methylphenyl, 3-hydroxy-4-methoxyphenyl and 4-cyano-2-fluorophenyl); and salts thereof. Processes for their preparation, pharmaceutical compositions containing a compound of the formula and pharmaceutically acceptable salts are described in further detail in WO 9732856.


In certain embodiments, diabetes directed molecules include compounds of formula III:







where R2 represents hydroxy, halogeno, C1-3alkyl, C1-3alkoxy, C1-3alkanoyloxy, trifluoromethyl, cyano, amino or nitro; n is an integer from 0 to 5; Z represents —O—, —NH—, —S— or —CH2-; G1 represents phenyl or a 5-10 membered heteroaromatic cyclic or bicyclic group; Y1, Y2, Y3 and Y4 each independently represents carbon or nitrogen; R1 represents fluoro or hydrogen; m is an integer from 1 to 3; R3 represents hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl; C1-3alkyl, —NR4R5 (wherein R4 and R5 can each be hydrogen or C1-3alkyl), or a group R6—X1— wherein X1 represents —CH2- or a heteroatom linker group and R6 is an alkyl, alkenyl or alkynyl chain optionally substituted by for example hydroxy, amino, nitro, alkyl, cycloalkyl, alkoxyalkyl, or an optionally substituted group selected from pyridone, phenyl and a heterocyclic ring, which alkyl, alkenyl or alkynyl chain may have a heteroatom linker group, or R6 is an optionally substituted group selected from pyridone, phenyl and a heterocyclic ring and salts thereof. Processes for their preparation, pharmaceutical compositions containing a compound of the formula and pharmaceutically acceptable salts are described in further detail in WO 9813350.


In some embodiments, diabetes directed molecules may include compounds of formula IV:







where m is an integer from 1 to 2; R1 represents hydrogen, hydroxy, halogeno, nitro, trifluoromethyl, cyano, C1-3alkyl, C1-3alkoxy, C1-3alkylthio, or —NR5R6 (wherein R5 and R6, which may be the same or different, each represents hydrogen or C1-3alkyl); R2 represents hydrogen, hydroxy, halogeno, methoxy, amino or nitro; R3 represents hydroxy, halogeno, C1-3alkyl, C1-3 alkoxy, C1-3alkanoyloxy, trifluoromethyl, cyano, amino or nitro; X1 represents —O—, —CH2-, —S—, —SO—, —SO2-, —NR7CO—, —CONR8—, —SO2NR9—, —NR10SO2- or —NR11— (wherein R7R8, R9, R10 and R11 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl); R4 represents an optionally substituted 5 or 6 membered saturated carbocyclic or heterocyclic group or a group which is alkenyl, alkynyl or optionally substituted alkyl, which alkyl group may contain a heteroatom linking group, which alkenyl, alkynyl or alkyl group may carry a terminal optionally substituted group selected from alkyl and a 5 or 6 membered saturated carbocyclic or heterocyclic group, and salts thereof. Processes for their preparation, pharmaceutical compositions containing a compound of the formula and pharmaceutically acceptable salts are described in WO 9813354.


In certain embodiments, diabetes directed molecules include compounds of formula V:







where m is an integer from 1 to 3; R1 represents halogeno or C1-3alkyl; X1 represents —O—; R2 is selected from one of the following three groups: 1) C1-5alkylR3 (wherein R3 is piperidin-4-yl which may bear one or two substituents selected from hydroxy, halogeno, C1-4alkyl, C1-4-hydroxyalkyl and C-1-4alkoxy; 2) C2-5alkenylR3 (wherein R3 is as defined hereinbefore); 3) C2-5alkynylR3 (where R3 is as defined hereinbefore); and where any alkyl, alkenyl or alkynyl group may bear one or more substituents selected from hydroxy, halogeno and amino; and salts thereof. Processes for their preparation, pharmaceutical compositions containing a compound of the formula and pharmaceutically acceptable salts are described in further detail in WO 0132651.


In some embodiments, diabetes directed molecules include compounds of formula VI:







where ring C is an 8, 9, 10, 12 or 13-membered bicyclic or tricyclic moiety which optionally may contain 1-3 heteroatoms selected independently from O, N and S; Z is —O—, —NH—, —S—, —CH2- or a direct bond; n (which characterizes R1) is 0-5; m (which characterizes R2) is 0-3; R2 represents hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl, C1-3alkyl, C1-3alkoxy, C1-3alkylsulphanyl, —NR3R4 (wherein R3 and R4, which may be the same or different, each represents hydrogen or C1-3alkyl), or R5X1— (wherein X1 and R5 are as defined herein; R1 represents hydrogen, oxo, halogeno, hydroxy, C1-4alkoxy, C1-4alkyl, C1-4-alkoxymethyl, C1-4alkanoyl, C1-4haloalkyl, cyano, amino, C2-5alkenyl, C2-5alkynyl, C1-3alkanoyloxy, nitro, C1-4alkanoylamino, C1-4-alkoxycarbonyl, C1-4alkylsulphanyl, C1-4alkylsulphinyl, C1-4alkylsulphonyl, carbamoyl, N—C1-4-alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, aminosulphonyl, N—C1-4alkylaminosulphonyl, N,N-di(C1-4alkyl)aminosulphonyl, N—(C1-4alkylsulphonyl)amino, N—(C1-4alkylsulphonyl)-N—(C1-4alkyl)amino, N,N-di(C1-4alkylsulphonyl)amino, a C3-7alklylene chain joined to two ring C carbon atoms, C1-4alkanoylaminoC1-4alkyl, carboxy or a group R56X10 (wherein X10 and R56 are as defined herein); and salts thereof. Processes for their preparation, pharmaceutical compositions containing a compound of the formula and pharmaceutically acceptable salts are described in further detail in WO 0047212.


In certain embodiments, diabetes directed molecules include compounds of formula VII:







where R1 is C1-C3 alkyl optionally substituted with between one and three R50 substituents; R2 is selected from —H, halogen, tribalomethyl, —CN, —NH2, —NO2, —R3, —N(R3)R4, —S(O)0-2R4, —SO2N(R3)R4, —CO2R3, —C(═ON(R3)R4, —N(R3)SO2R4, —N(3)C(═O)R3, —N(R3)CO2R4, —C(═O)R, optionally substituted lower alkyl, optionally substituted lower alkenyl, and optionally substituted lower alkynyl; R3 is —H or R4; R4 is selected from optionally substituted lower alkyl, optionally substituted aryl, optionally substituted lower arylakyl, optionally substituted heterocyclyl, and optionally substituted lower heterocyclylalkyl; or R3 and R4, when taken together with a common nitrogen to which they are attached, form an optionally substituted five- to seven-membered heterocyclyl, said optionally substituted five- to seven-membered heterocyclyl optionally containing at least one additional heteroatom selected from N, O, S, and P; q is zero to five; Z is selected from —OCH2—, —O—, —S(O)0-2, —N(R5)CH2—, and —NR5—; R5 is —H or optionally substituted lower alkyl; M1 is —H, C1-C8 alkyl-L2-L1- optionally substituted by R50, G(CH2)0-3—, or R53(R54)N(CH2)0-3—; wherein G is a saturated five- to seven-membered heterocyclyl containing one or two annular heteroatoms and optionally substituted with between one and three R50 substituents; L′ is —C═O— or —SO2—; L2 is a direct bond, —O—, or NH—; and R53 and R54 are independently C1-C3 alkyl optionally substituted with between one and three R50 substituents; M2 is a saturated or mono- or poly-unsaturated C3-C14 mono- or fused-polycyclic hydrocarbyl optionally containing one, two, or three annular heteroatoms per ring and optionally substituted with between zero and four R50 substituents; and M3 is —NR9—, —O—, or absent; M4 is CH2—, —CH2CH2,—, —CH2CH2CH2—, or absent; R9 is —H or optionally substituted lower alkyl; (50 is —H, halo, trihalomethyl, —OR3, —N(R3)R4, —S(O)0-2R4, —SO2N(R3)R4, —CO2R3, —C(═O)N(R3)R4, —C(═NR25)(R3)R4, —C(═NR25)R4, —N(R3)S(O)2R4—N(R3)C(O)R3, —NCO2R3, —C(═O)R3, optionally substituted alkoxy, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted lower arylalkyl, optionally substituted heterocyclyl, and optionally substituted lower heterocyclylalkyl; or two of R50, when taken together on the same carbon are oxo; or two of R50, when taken together with a common carbon to which they are attached, form an optionally substituted three- to seven-membered spirocyclyl, said optionally substituted three- to seven-membered spirocyclyl optionally containing at least one additional heteroatom selected from N, O, S, and P; and R25 is selected from —H, —CN, —NO2, —OR3, —S(O)0-2R4, —CO2R3, optionally substituted lower alkyl, optionally substituted lower alkenyl, and optionally substituted lower alkynyl, and salts thereof. Processes for their preparation, pharmaceutical compositions containing a compound of the formula and pharmaceutically acceptable salts are described in further detail in WO 2004006846.


Certain embodiments pertain to the following compounds, pharmaceutically acceptable salts thereof, and compositions comprising the foregoing.










In other embodiments, examples of compounds include, but are not limited to, EphA2 and EphB4 inhibitors. Examples of EphA2 and EphB4 inhibitors are described in PCT international patent publication WO2004006846. Examples of compound structures are shown below,













and some embodiments are directed to pharmaceutically acceptable salts and formulations of the foregoing.


In certain embodiments, a compound specifically binds to EPHA3 and inhibits an interaction (e.g., binding) between EPHA3 and an EPHA3 binding partner or ligand, such as Ephrin-A5 or Ephrin-A2. In some embodiments, the compound specifically binds to an EPHA3 binding partner or ligand (e.g., the antibody specifically binds to Ephrin-A2 or Ephrin-A5) and inhibits binding between EPHA3 and that binding partner or ligand. In an embodiment, the compound specifically binds to a metalloprotease enzyme (e.g., a disintegrin and metalloproteinase domain 10 (ADAM10)) that catalyzes the aggregation between EPHA3 and its binding partner or ligand (e.g., Ephrin-A2).


Antisense Nucleic Acid Molecules, Ribozymes, RNAi siRNA and Modified Nucleic Acid Molecules


An “antisense” nucleic acid refers to a nucleotide sequence complementary to a “sense” nucleic acid encoding a polypeptide, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. The antisense nucleic acid can be complementary to an entire coding strand (e.g., SEQ ID NO: 2-3), or to a portion thereof or a substantially identical sequence thereof. In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence (e.g., 5′ and 3′ untranslated regions in SEQ ID NO: 1).


An antisense nucleic acid can be designed such that it is complementary to the entire coding region of an mRNA encoded by a nucleotide sequence (e.g., SEQ ID NO: 1-3), and often the antisense nucleic acid is an oligonucleotide antisense to only a portion of a coding or noncoding region of the mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of the mRNA, e.g., between the −10 and +10 regions of the target gene nucleotide sequence of interest. An antisense oligonucleotide can be, for example, about 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or more nucleotides in length. The antisense nucleic acids, which include the ribozymes described hereafter, can be designed to target an EPHA3 nucleotide sequence, often a variant associated with diabetes, or a substantially identical sequence thereof. Among the variants, minor alleles and major alleles can be targeted, and those associated with a higher risk of diabetes are often designed, tested, and administered to subjects.


An antisense nucleic acid can be constructed using chemical synthesis and enzymatic ligation reactions using standard procedures. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Antisense nucleic acid also can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).


When utilized as therapeutics, antisense nucleic acids typically are administered to a subject (e.g., by direct injection at a tissue site) or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a polypeptide and thereby inhibit expression of the polypeptide, for example, by inhibiting transcription and/or translation. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then are administered systemically. For systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, for example, by linking antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. Antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. Sufficient intracellular concentrations of antisense molecules are achieved by incorporating a strong promoter, such as a pol II or pol III promoter, in the vector construct.


Antisense nucleic acid molecules sometimes are alpha-anomeric nucleic acid molecules. An alpha-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual beta-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids. Res. 15: 6625-6641 (1987)). Antisense nucleic acid molecules can also comprise a 2'-o-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15: 6131-6148 (1987)) or a chimeric RNA-DNA analogue (Inoue et al., FEBS Lett. 215: 327-330 (1987)). Antisense nucleic acids sometimes are composed of DNA or PNA or any other nucleic acid derivatives described previously.


In another embodiment, an antisense nucleic acid is a ribozyme. A ribozyme having specificity for an EPHA3 nucleotide sequence can include one or more sequences complementary to such a nucleotide sequence, and a sequence having a known catalytic region responsible for mRNA cleavage (see e.g., U.S. Pat. No. 5,093,246 or Haselhoff and Gerlach, Nature 334: 585-591 (1988)). For example, a derivative of a Tetrahymena L-19 IVS RNA is sometimes utilized in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a mRNA (see e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742). Also, target mRNA sequences can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (see e.g., Bartel & Szostak, Science 261: 1411-1418 (1993)).


Diabetes directed molecules include in certain embodiments nucleic acids that can form triple helix structures with an EPHA3 nucleotide sequence or a substantially identical sequence thereof, especially one that includes a regulatory region that controls expression of a polypeptide. Gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of a nucleotide sequence referenced herein or a substantially identical sequence (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of a gene in target cells (see e.g., Helene, Anticancer Drug Des. 6(6): 569-84 (1991); Helene et al. Ann. N.Y. Acad. Sci-660: 27-36 (1992); and Maher, Bioassays 14(12): 807-15 (1992). Potential sequences that can be targeted for triple helix formation can be increased by creating a so-called “switchback” nucleic acid molecule. Switchback molecules are synthesized in an alternating 5′-3′, 3′-5′ manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.


Diabetes directed molecules include RNAi and siRNA nucleic acids. Gene expression may be inhibited by the introduction of double-stranded RNA (dsRNA), which induces potent and specific gene silencing, a phenomenon called RNA interference or RNAi. See, e.g., Fire et al. U.S. Pat. No. 6,506,559; Tuschl et al. PCT International Publication No. WO 01/75164; Kay et al. PCT International Publication No. WO 03/01018 OA 1; or Bosher J M, Labouesse, Nat Cell Biol 2000 February; 2(2):E31-6. This process has been improved by decreasing the size of the double-stranded RNA to 20-24 base pairs (to create small-interfering RNAs or siRNAs) that “switched off” genes in mammalian cells without initiating an acute phase response, i.e., a host defense mechanism that often results in cell death (see, e.g., Caplen et al. Proc Natl Acad Sci USA. 2001 Aug. 14; 98(17):9742-7 and Elbashir et al. Methods 2002 February; 26(2):199-213). There is increasing evidence of post-transcriptional gene silencing by RNA interference (RNAi) for inhibiting targeted expression in mammalian cells at the mRNA level, in human cells. There is additional evidence of effective methods for inhibiting the proliferation and migration of tumor cells in human patients, and for inhibiting metastatic cancer development (see, e.g., U.S. Patent Application No. US2001000993183; Caplen et al. Proc Natl Acad Sci USA; and Abderrahmani et al. Mol Cell Biol 2001 Nov. 21(21):7256-67).


An “siRNA” or “RNAi” refers to a nucleic acid that forms a double stranded RNA and has the ability to reduce or inhibit expression of a gene or target gene when the siRNA is delivered to or expressed in the same cell as the gene or target gene. “siRNA” refers to short double-stranded RNA formed by the complementary strands. Complementary portions of the siRNA that hybridize to form the double stranded molecule often have substantial or complete identity to the target molecule sequence. In one embodiment, an siRNA refers to a nucleic acid that has substantial or complete identity to a target gene and forms a double stranded siRNA.


When designing the siRNA molecules, the targeted region often is selected from a given DNA sequence beginning 50 to 100 nucleotides downstream of the start codon. See, e.g., Elbashir et al., Methods 26:199-213 (2002). Initially, 5′ or 3′ UTRs and regions nearby the start codon were avoided assuming that UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP or RISC endonuclease complex. Sometimes regions of the target 23 nucleotides in length conforming to the sequence motif AA(N19)TT (N, an nucleotide, and regions with approximately 30% to 70% G/C-content (often about 50% G/C-content) often are selected. If no suitable sequences are found, the search often is extended using the motif NA(N21). The sequence of the sense siRNA sometimes corresponds to (N19) TT or N21 (position 3 to 23 of the 23-nt motif), respectively. In the latter case, the 3′ end of the sense siRNA often is converted to TT. The rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3′ overhangs. The antisense siRNA is synthesized as the complement to position 1 to 21 of the 23-nt motif. Because position 1 of the 23-nt motif is not recognized sequence-specifically by the antisense siRNA, the 3′-most nucleotide residue of the antisense siRNA can be chosen deliberately. However, the penultimate nucleotide of the antisense siRNA (complementary to position 2 of the 23-nt motif) often is complementary to the targeted sequence. For simplifying chemical synthesis, TT often is utilized. siRNAs corresponding to the target motif NAR(N17)YNN, where R is purine (A,G) and Y is pyimidine (C,U), often are selected. Respective 21 nucleotide sense and antisense siRNAs often begin with a purine nucleotide and can also be expressed from pol III expression vectors without a change in targeting site. Expression of RNAs from pol III promoters often is efficient when the first transcribed nucleotide is a purine.


The sequence of the siRNA can correspond to the full length target gene, or a subsequence thereof. Often, the siRNA is about 15 to about 50 nucleotides in length (e.g., each complementary sequence of the double stranded siRNA is 15-50 nucleotides in length, and the double stranded siRNA is about 15-50 base pairs in length, sometimes about 20-30 nucleotides in length or about 20-25 nucleotides in length, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. The siRNA sometimes is about 21 nucleotides in length. Methods of using siRNA are well known in the art, and specific siRNA molecules may be purchased from a number of companies including Dharmacon Research, Inc. An siRNA molecule sometimes is of a different chemical composition as compared to native RNA that imparts increased stability in cells (e.g., decreased susceptibility to degradation), and sometimes includes one or more modifications in siSTABLE RNA described at the http address www.dharmacon.com.


Antisense, ribozyme, RNAi and siRNA nucleic acids can be altered to form modified nucleic acid molecules. The nucleic acids can be altered at base moieties, sugar moieties or phosphate backbone moieties to improve stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of nucleic acid molecules can be modified to generate peptide nucleic acids (see Hyrup et al., Bioorganic & Medicinal Chemistry 4 (1): 5-23 ((1996)). As used herein, the terms “peptide nucleic acid” or “PNA” refers to a nucleic acid mimic such as a DNA mimic, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of a PNA can allow for specific hybridization to DNA and RNA under conditions of low ionic strength. Synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described, for example, in Hyrup et al., (1996) supra and Perry-O'Keefe et al., Proc. Natl. Acad. Sci. 93: 14670-675 (1996).


PNA nucleic acids can be used in prognostic, diagnostic, and therapeutic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, for example, inducing transcription or translation arrest or inhibiting replication. PNA nucleic acid molecules can also be used in the analysis of single base pair mutations in a gene, (e.g., by PNA-directed PCR clamping); as “artificial restriction enzymes” when used in combination with other enzymes, (e.g., S1 nucleases (Hyrup (1996) supra)); or as probes or primers for DNA sequencing or hybridization Syrup et al., (1996) supra; Perry-O'Keefe supra).


In other embodiments, oligonucleotides may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across cell membranes (see e.g., Letsinger et al., Proc. Natl. Acad. Sci. USA 86: 6553-6556 (1989); Lemaitre et al., Proc. Natl. Acad. Sci. USA 84: 648-652 (1987); PCT Publication No. WO88/09810) or the blood-brain barrier (see, erg, PCT Publication No. WO89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (See, e.g., Krol et al., Bio-Techniques 6: 958-976 (1988)) or intercalating agents. (See, e.g., Zon, Pharm. Res. 5: 539-549 (1988)). To this end, the oligonucleotide may be conjugated to another molecule, (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent).


Also included herein are molecular beacon oligonucleotide primer and probe molecules having one or more regions complementary to an EPHA3 nucleotide sequence or a substantially identical sequence thereof two complementary regions one having a fluorophore and one a quencher such that the molecular beacon is useful for quantifying the presence of the nucleic acid in a sample. Molecular beacon nucleic acids are described, for example, in Lizardi et al., U.S. Pat. No. 5,854,033; Nazarenko et al., U.S. Pat. No. 5,866,336, and Livak et al., U.S. Pat. No. 5,876,930.


Antibodies


The term “antibody” as used herein refers to an immunoglobulin molecule or immunologically active portion thereof, i.e., an antigen-binding portion. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab′)2 fragments which can be generated by treating the antibody with an enzyme such as, pepsin. An antibody sometimes is a polyclonal, monoclonal, recombinant (e.g., a chimeric or humanized), fully human, non-human (e.g., murine), or a single chain antibody. An antibody may have effector function and can fix complement, and is sometimes coupled to a toxin or imaging agent.


A full-length polypeptide or antigenic peptide fragment encoded by a nucleotide sequence referenced herein can be used as an immunogen or can be used to identify antibodies made with other immunogens, e.g., cells, membrane preparations, and the like. An antigenic peptide often includes at least 8 amino acid residues of the amino acid sequences encoded by a nucleotide sequence referenced herein, or substantially identical sequence thereof, and encompasses an epitope. Antigenic peptides sometimes include 10 or more amino acids, 15 or more amino acids, 20 or more amino acids, or 30 or more amino acids. Hydrophilic and hydrophobic fragments of polypeptides sometimes are used as immunogens.


Epitopes encompassed by the antigenic peptide are regions located on the surface of the polypeptide (e.g., hydrophilic regions) as well as regions with high antigenicity. For example, an Emini surface probability analysis of the human polypeptide sequence can be used to indicate the regions that have a particularly high probability of being localized to the surface of the polypeptide and are thus likely to constitute surface residues useful for targeting antibody production. The antibody may bind an epitope on any domain or region on polypeptides described herein.


Also, chimeric, humanized, and completely human antibodies are useful for applications which include repeated administration to subjects. Chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, can be made using standard recombinant DNA techniques. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in Robinson et al International Application No. PCT/US86/02269; Akira, et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al., European Patent Application 173,494; Neuberger et al., PCT International Publication No. WO 86/01533; Cabilly et al., U.S. Pat. No. 4,816,567; Cabilly et al., European Patent Application 125,023; Better et al., Science 240: 1041-1043 (1988); Liu et al., Proc. Natl. Acad. Sci. USA 84: 3439-3443 (1987); Liu et al., J. Immunol. 139: 3521-3526 (1987); Sun et al., Proc. Natl. Acad. Sci. USA 84: 214-218 (1987); Nishimura et al, Canc. Res. 47: 999-1005 (1987); Wood et al., Nature 314: 446-449 (1985); and Shaw et al., J. Natl. Cancer Inst. 80: 1553-1559 (1988); Morrison, S. L., Science 229: 1202-1207 (1985); Oi et al., BioTechniques 4: 214 (1986); Winter U.S. Pat. No. 5,225,539; Jones et al., Nature 321: 552-525 (1986); Verhoeyan et al., Science 239: 1534; and Beidler et al., J. Immunol. 141: 4053-4060 (1988).


Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Such antibodies can be produced using transgenic mice that are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. See, for example, Lonberg and Huszar, Int. Rev. Immunol. 13: 65-93 (1995); and U.S. Pat. Nos. 5,625,126; 5,633,425; 5,569,825; 5,661,016; and 5,545,806. In addition, companies such as Abgenix, Inc. (Fremont, Calif.) and Medarex, Inc. (Princeton, N.J.), can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above. Completely human antibodies that recognize a selected epitope also can be generated using a technique referred to as “guided selection.” In this approach a selected non-human monoclonal antibody (e.g., a murine antibody) is used to guide the selection of a completely human antibody recognizing the same epitope. This technology is described for example by Jespers et al., Bio/Technology 12: 899-903 (1994).


An antibody can be a single chain antibody. A single chain antibody (scFV) can be engineered (see, e.g., Colcher et al., Ann. N Y Acad. Sci. 880: 263-80 (1999); and Reiter, Clin. Cancer Res. 2: 245-52 (1996)). Single chain antibodies can be dimerized or multimerized to generate multivalent antibodies having specificities for different epitopes of the same target polypeptide.


Antibodies also may be selected or modified so that they exhibit reduced or no ability to bind an Fc receptor. For example, an antibody may be an isotype or subtype, fragment or other mutant, which does not support binding to an Fc receptor (e.g., it has a mutagenized or deleted Fc receptor binding region).


Also, an antibody (or fragment thereof) may be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive metal ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thiotepa chlorambucil, melphalan, carmustine (BCNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).


Antibody conjugates can be used for modifying a given biological response. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a polypeptide such as tumor necrosis factor, γ-interferon, α-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors. Also, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Pat. No. 4,676,980, for example.


An antibody (e.g., monoclonal antibody) can be used to isolate target polypeptides by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, an antibody can be used to detect a target polypeptide (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the polypeptide. Antibodies can be used diagnostically to monitor polypeptide levels in tissue as part of a clinical testing procedure, e.g., to determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance (i.e., antibody labeling). Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H. Also, an antibody can be utilized as a test molecule for determining whether it can treat diabetes, and as a therapeutic for administration to a subject for treating diabetes.


An antibody can be made by immunizing with a purified antigen, or a fragment thereof, e.g., a fragment described herein, a membrane associated antigen, tissues, e.g., crude tissue preparations, whole cells, preferably living cells, lysed cells, or cell fractions.


Included herein are antibodies which bind only a native polypeptide, only denatured or otherwise non-native polypeptide, or which bind both, as well as those having linear or conformational epitopes. Conformational epitopes sometimes can be identified by selecting antibodies that bind to native but not denatured polypeptide. Also featured are antibodies that specifically bind to a polypeptide variant associated with diabetes. In other embodiments, antibodies may be directed to EPHA43 ligands, namely Ephrin-A2 or Ephrin-A5. Antibodies directed to Ephrin-A5 are disclosed in U.S. Pat. No. 6,169,167.


Methods for Identifying Candidate Therapeutics for Treating Type II Diabetes


Current therapies for the treatment of type II diabetes have limited efficacy, limited tolerability and significant mechanism-based side effects, including weight gain and hypoglycemia. Few of the available therapies adequately address underlying defects such as obesity and insulin resistance (Moller D. Nature. 414:821-827 (2001)). Current therapeutic approaches were largely developed in the absence of defined molecular targets or even a solid understanding of disease pathogenesis. Therefore, provided are methods of identifying candidate therapeutics that target biochemical pathways related to the development of diabetes.


Thus, featured herein are methods for identifying a candidate therapeutic for treating type II diabetes. The methods comprise contacting a test molecule with a target molecule in a system. A “target molecule” as used herein refers to an EPHA3 nucleic acid, a substantially identical nucleic acid thereof, or a fragment thereof, an encoded polypeptide of the foregoing or a binding partner. The methods also comprise determining the presence or absence of an interaction between the test molecule and the target molecule, where the presence of an interaction between the test molecule and the nucleic acid or polypeptide identifies the test molecule as a candidate type 1 diabetes therapeutic. The interaction between the test molecule and the target molecule may be quantified.


In certain embodiments, the target molecule is an EPHA3 polymorphic variant, such as a polypeptide comprising an arginine at position 924 in SEQ ID NO: 4. In other embodiments, the target molecule is a binding partner or ligand of EPHA3, such as Ephrin-A2, Ephrin-A5, or a peptide fragments disclosed in U.S. Pat. No. 6,063,903. In certain screening assay embodiments, an interaction, such as binding, between EPHA3 and a binding partner or ligand is monitored and test molecules are assessed for their effect on the interaction. For example, see the assays disclosed in U.S. Pat. Nos. 5,674,691 and 6,599,709. Some assay embodiments monitor the effect of a test molecule on certain cell functions, such as glucose uptake by cells; glucose transport molecule activity or levels in cells (e.g., GLUT4 levels or activities in cells); triacylglycerol content in cells; resistin levels or activities in cells; levels or activities of molecules involved in resistin levels in cells such as PPAR gamma, PI3 kinase, Akt and C/EBP alpha; levels or activities of EPHA3 binding partners or ligands such as Ephrin-A2 and Ephrin-A5; and levels or activities of EPHA3-related enzymes such as ADAM10. ADAM10 cDNA and amino acid sequences are publicly accessible and are provided in SEQ ID Nos: 8 and 9, respectively. Hattori et al. describes such assays in Science. 2000 Aug. 25; 289(5483):1360-5.


In assay embodiments in which EPHA3 binding partners, ligands and signal pathway members are monitored, the modulatory effect on the following specific interactions sometimes is assessed: EPHA3 and its natural ligand ephrin-A5 and/or EPHA3 and its natural ligand ephrin-A2 and/or two or more EPHA3 moieties and/or domains of EPHA3 and/or within one or more domain(s) of an EPHA3 moiety and/or EPHA3 and downstream moieties with which EPHA3 interacts. In specific embodiments, the test molecule sometimes is an antibody or protein that may specifically bind to EPHA3 or an EPHA3 binding partner, ligand or signal pathway member. Such antibodies and proteins are disclosed in U.S. Pat. Nos. 6,169,167; 6,063,903; 6,057,124; 5,798,448; and Ahsan M, et al. Biochem Biophys Res Commun. 2002 Jul. 12; 295(2):348-53 A soluble form of EPHA3 (e.g., isoform b of EPHA3) which binds to ephrin-A5 and/or ephrin-2, preventing or diminishing the binding of ephrin-A5 to membrane bound EPHA3, may be used. Variant 2 of EPHA3 (SEQ ID NO:3) uses an alternate splice site in the 3′ coding region, compared to variant 1, that results in a frameshift. It encodes isoform b (SEQ ID NO:5) which has a shorter and distinct C-terminus compared to isoform a. This isoform lacks a transmembrane domain and may be a secreted form of the Epha3 receptor. Inter-EPHA3 interactions may also be inhibited by use of the foregoing moieties. Ehprin-A5 cDNA and amino acid sequences are publicly accessible and are provided in SEQ ID Nos: 6 and 7; respectively.


Specific assay embodiments include but are not limited to monitoring the modulatory effect of a test molecule on (a) circulating (e.g., blood, serum or plasma) levels (e.g., concentration) of glucose, where test molecules that lower the glucose levels often are selected; (b) cell or tissue sensitivity to insulin, particularly in muscle, adipose, liver or brain, where molecules that increase sensitivity often are selected; (c) progression from impaired glucose tolerance to insulin resistance, where molecules that inhibit progression often are selected; (d) glucose uptake in skeletal muscle cells, where molecules, that increase glucose uptake often are selected; (e) glucose uptake in adipose cells, where molecules that increase uptake often are selected; (f) glucose uptake in neuronal cells, where molecules that increase uptake often are selected; (g) glucose uptake in red blood cells, where molecules that increase uptake often are selected; (h) glucose uptake in the brain, where molecules that increase uptake often are selected; and (i) postprandial increase in plasma glucose following a meal, particularly a high carbohydrate meal, where molecules that reduce significantly the postprandial increase often are selected.


Test molecules and candidate therapeutics include, but are not limited to, compounds, antisense nucleic acids, siRNA molecules, ribozymes; polypeptides or proteins encoded by an EPHA3 nucleotide sequence, or a substantially identical sequence or fragment thereof, and immunotherapeutics (e.g., antibodies and HLA-presented polypeptide fragments). Antibodies directed to Ephrin-A5, an EPHA3 ligand, are disclosed in U.S. Pat. No. 6,169,167. A test molecule or candidate therapeutic may act as a modulator of target molecule concentration or target molecule function in a system. A “modulator” may agonize (i.e., up-regulates) or antagonize (i.e., down-regulates) a target molecule concentration partially or completely in a system by affecting such cellular functions as DNA replication and/or DNA processing (e.g., DNA methylation or DNA repair), RNA transcription and/or RNA processing (e.g., removal of intronic sequences and/or translocation of spliced mRNA from the nucleus), polypeptide production (e.g., translation of the polypeptide from mRNA), and/or polypeptide post-translational modification (e.g., glycosylation, phosphorylation, and proteolysis of pro-polypeptides). A modulator may also agonize or antagonize a biological function of a target molecule partially or completely, where the function may include adopting a certain structural conformation, interacting with one or more binding partners, ligand binding, catalysis (e.g., phosphorylation, dephosphorylation, hydrolysis, methylation, and isomerization), and an effect upon a cellular event (e.g., effecting progression of type II diabetes). In certain embodiments, a candidate therapeutic increases glucose uptake in cells of a subject (e.g., in certain cells of the pancreas).


As used herein, the term “system” refers to a cell free in vitro environment and a cell-based environment such as a collection of cells, a tissue, an organ, or an organism. A system if “contacted” with a test molecule in a variety of manners, including adding molecules in solution and allowing them to interact with one another by diffusion, cell injection, and any administration routes in an animal. As used herein, the term “interaction” refers to an effect of a test molecule on test molecule, where the effect sometimes is binding between the test molecule and the target molecule, and sometimes is an observable change in cells, tissue, or organism.


There are many standard methods for detecting the presence or absence of interaction between a test molecule and a target molecule. For example, titrametric, acidimetric, radiometric, NMR, monolayer, polarographic, spectrophotometric, fluorescent, and ESR assays probative of a target molecule interaction may be utilized.


Test molecule/target molecule interactions can be detected and/or quantified using assays known in the art. For example, an interaction can be determined by labeling the test molecule and/or the target molecule, where the label is covalently or non-covalently attached to the test molecule or target molecule. The label is sometimes a radioactive molecule such as 125I, 131I, 35S or 3H, which can be detected by direct counting of radioemission or by scintillation counting. Also, enzymatic labels such as horseradish peroxidase, alkaline phosphatase, or luciferase may be utilized where the enzymatic label can be detected by determining conversion of an appropriate substrate to product. In addition, presence or absence of an interaction can be determined without labeling. For example, a microphysiometer (e.g., Cytosensor) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indication of an interaction between a test molecule and target molecule McConnell, H. M. et al., Science 257: 1906-1912 (1992)).


In cell-based systems, cells typically include an EPHA3 nucleic acid, an encoded polypeptide, or substantially identical nucleic acid or polypeptide thereof, and are often of mammalian origin, although the cell can be of any origin. Whole cells, cell homogenates, and cell fractions (e.g., cell membrane fractions) can be subjected to analysis. Where interactions between a test molecule with a target polypeptide are monitored, soluble and/or membrane bound forms of the polypeptide may be utilized. Where membrane-bound forms of the polypeptide are used, it may be desirable to utilize a solubilizing agent. Examples of such solubilizing agents include non-ionic detergents such as n-octyglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)-n, 3-[(3-cholamidopropyl)dimethylaminio]-1-propane sulfonate (CHAPS), 3-[-(3-cholamidopropyl)dimethylamminio]-2-hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate.


An interaction between a test molecule and target molecule also can be detected by monitoring fluorescence energy transfer (FET) (see, e.g., Lakowicz et al., U.S. Pat. No. 5,631,169; Stavrianopoulos et al. U.S. Pat. No. 4,868,103). A fluorophore label on a first, “donor” molecule is selected such that its emitted fluorescent energy will be absorbed by a fluorescent label on a second, “acceptor” molecule, which in turn is able to fluoresce due to the absorbed energy. Alternately, the “donor” polypeptide molecule may simply utilize the natural fluorescent energy of tryptophan residues. Labels are chosen that emit different wavelengths of light, such that the “acceptor” molecule label may be differentiated from that of the “donor”. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, the spatial relationship between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the “acceptor” molecule label in the assay should be maximal. An FET binding event can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter).


In another embodiment, determining the presence or absence of an interaction between a test molecule and a target molecule can be effected by monitoring surface plasmon resonance (see, e.g., Sjolander & Urbaniczk, Anal. Chem. 63: 2338-2345 (1991) and Szabo et al., Curr. Opin. Struct. Biol 5: 699-705 (1995)). “Surface plasmon resonance” or “biomolecular interaction analysis (BIA)” can be utilized to detect biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the mass at the binding surface (indicative of a binding event) result in alterations of the refractive index of light near the surface (the optical phenomenon of surface plasmon resonance (SPR)), resulting in a detectable signal which can be used as an indication of real-time reactions between biological molecules.


In another embodiment the target molecule or test molecules are anchored to a solid phase, facilitating the detection of target molecule/test molecule complexes and separation of the complexes from free, uncomplexed molecules. The target molecule or test molecule is immobilized to the solid support. In an embodiment, the target molecule is anchored to a solid surface, and the test molecule, which is not anchored, can be labeled, either directly or indirectly, with detectable labels discussed herein. In certain embodiments, EPHA3, EPHA3-related test peptides, or a compound according to the invention is non-diffusably bound to an insoluble support having isolated sample-receiving areas (for example, a microtiter plate, an array, or the like.). The insoluble support may be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microliter plates, arrays, membranes and beads. These are typically made of glass, plastic (for example, polystyrene), polysaccharides, nylon or nitrocellulose, Teflon™, and the like. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Exemplary methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to “sticky” or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.


One measure of inhibition is Ki. For compounds with IC50's less than 1 μM, the Ki or Kd is defined as the dissociation rate constant for the interaction of the agent with EPHA3. Exemplary compositions have Ki's of, for example, less than about 100 μM, less than about 10 μM, less than about 1 μM, and further for example having Ki's of less than about 100 nM, and still further, for example, less than about 10 nM. The Ki for a compound is determined from the IC50 based on three assumptions. First, only one compound molecule binds to the enzyme and there is no cooperativity. Second, the concentrations of active enzyme and the compound tested are known (i.e., there are no significant amounts of impurities or inactive forms in the preparations). Third, the enzymatic rate of the enzyme-inhibitor complex is zero. The rate (i.e., compound concentration) data are fitted to the equation:






V
=


V
max




E
0



[

I
-



(


E
0

+

I
0

+

K
d


)

-






E
0

+

I
0

+

K
d


)

2

-

4


E
0



I
0






2


E
0




]







Where V is the observed rate, Vmax, is the rate of the free enzyme, I0 is the inhibitor concentration, E0 is the enzyme concentration, and Kd is the dissociation constant of the enzyme-inhibitor complex.


Another measure of inhibition is GI50, defined as the concentration of the compound that results in a decrease in the rate of cell growth by fifty percent. Exemplary compounds have GI50's of, for example, less than about 1 μM, less than about 10 μM, less than about 1 μM, and further, for example, having GI50's of less than about 100 nM, still further having GI50's of less than about 10 nM. Measurement of GI50 is done using a cell proliferation assay.


It may be desirable to immobilize a target molecule, an anti-target molecule antibody, and/or test molecules to facilitate separation of target molecule/test molecule complexes from uncomplexed forms, as well as to accommodate automation of the assay. The attachment between a test molecule and/or target molecule and the solid support may be covalent or non-covalent (see, e.g., U.S. Pat. No. 6,022,688 for non-covalent attachments). The solid support may be one or more surfaces of the system, such as one or more surfaces in each well of a microtiter plate, a surface of a silicon wafer, a surface of a bead (see, e.g., Lam, Nature 354: 82-84 (1991)) that is optionally linked to another solid support, or a channel in a microfluidic device, for example. Types of solid supports, linker molecules for covalent and non-covalent attachments to solid supports, and methods for immobilizing nucleic acids and other molecules to solid supports are well known (see, e.g., U.S. Pat. Nos. 6,261,776; 5,900,481; 6,133,436; and 6,022,688; and WIPO publication WO 01/18234).


In an embodiment, target molecule may be immobilized to surfaces via biotin and streptavidin. For example, biotinylated target polypeptide can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). In another embodiment, a target polypeptide can be prepared as a fusion polypeptide. For example, glutathione-S-transferase/target polypeptide fusion can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, which are then combined with a test molecule under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, or the matrix is immobilized in the case of beads, and complex formation is determined directly or indirectly as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of target molecule binding or activity is determined using standard techniques.


In an embodiment, the non-immobilized component is added to the coated surface containing the anchored component. After the reaction is complete, unreacted components are removed (e.g., by washing) under conditions such that a significant percentage of complexes formed will remain immobilized to the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of manners. Where the previously non-immobilized component is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the previously non-immobilized component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface, e.g., by adding a labeled antibody specific for the immobilized component, where the antibody, in turn, can be directly labeled or indirectly labeled with, e.g., a labeled anti-Ig antibody.


In another embodiment an assay is performed utilizing antibodies that specifically bind target molecule or test molecule but do not interfere with binding of the target molecule to the test molecule. Such antibodies can be derivatized to a solid support, and unbound target molecule may be immobilized by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.


Cell free assays also can be conducted in a liquid phase. In such an assay, reaction products are separated from unreacted components, by any of a number of standard techniques, including but not limited to: differential centrifugation (see, e.g., Rivas, G., and Minton, Trends Biochem Sci August; 18(8): 284-7 (1993)); chromatography (gel filtration chromatography, ion-exchange chromatography); electrophoresis (see, e.g., Ausubel et al., eds. Current Protocols in Molecular Biology, J Wiley: New York (1999)); and immunoprecipitation (see, e.g., Ausubel et al. eds., supra). Media and chromatographic techniques are known to one skilled in the art (see, e.g., Heegaard, J Mol. Recognit. Winter; 11(1-6): 141-8 (1998); Hage & Tweed, J. Chromatogr. B Biomed. Sci. Appl. October 10; 699 (1-2): 499-525 (1997)). Further, fluorescence energy transfer may also be conveniently utilized, as described herein, to detect binding without further purification of the complex from solution.


In another embodiment, modulators of target molecule expression are identified. For example, a cell or cell free mixture is contacted with a candidate compound and the expression of target mRNA or target polypeptide is evaluated relative to the level of expression of target mRNA or target polypeptide in the absence of the candidate compound. When expression of target mRNA or target polypeptide is greater in the presence of the candidate compound than in its absence, the candidate compound is identified as an agonist of target mRNA or target polypeptide expression. Alternatively, when expression of target mRNA or target polypeptide is less (e.g., less with statistical significance) in the presence of the candidate compound than in its absence, the candidate compound is identified as an antagonist or inhibitor of target mRNA or target polypeptide expression. The level of target mRNA or target polypeptide expression can be determined by methods described herein.


In another embodiment, binding partners that interact with a target molecule are detected. The target molecules can interact with one or more cellular or extracellular macromolecules, such as polypeptides in vivo, and these interacting molecules are referred to herein as “binding partners” Binding partners can agonize or antagonize target molecule biological activity. Also, test molecules that agonize or antagonize interactions between target molecules and binding partners can be useful as therapeutic molecules as they can up-regulate or down-regulated target molecule activity in Vivo and thereby treat type II diabetes.


Binding partners of target molecules can be identified by methods known in the art. For example, binding partners may be identified by lysing cells and analyzing cell lysates by electrophoretic techniques. Alternatively, a two-hybrid assay or three-hybrid assay can be utilized (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al., Cell 72:223-232 (1993); Madura et al., J. Biol. Chem. 268: 12046-12054 (1993>; Bartel et al., Biotechniques 14: 920-924 (1993>; Iwabuchi et al., Oncogene 8: 1693-1696 (1993); and Brent WO94/10300). A two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. The assay often utilizes two different DNA constructs. In one construct, an EPHA3 nucleic acid (sometimes referred to as the “bait”) is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In another construct, a DNA sequence from a library of DNA sequences that encodes a potential binding partner (sometimes referred to as the “prey”) is fused to a gene that encodes an activation domain of the known transcription factor. Sometimes, an EPHA3 nucleic acid can be fused to the activation domain. If the ‘bait’ and the “prey” molecules interact in vivo, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to identify the potential binding partner.


In an embodiment for identifying test molecules that antagonize or agonize complex formation between target molecules and binding partners, a reaction mixture containing the target molecule and the binding partner is prepared, under conditions and for a time sufficient to allow complex formation. The reaction mixture often is provided in the presence or absence of the test molecule. The test molecule can be included initially in the reaction mixture, or can be added at a time subsequent to the addition of the target molecule and its binding partner. Control reaction mixtures are incubated without the test molecule or with a placebo. Formation of any complexes between the target molecule and the binding partner then is detected. Decreased formation of a complex in the reaction mixture containing test molecule as compared to in a control reaction mixture indicates that the molecule antagonizes target molecule/binding partner complex formation. Alternatively, increased formation of a complex in the reaction mixture containing test molecule as compared to in a control reaction mixture indicates that the molecule agonizes target molecule/binding partner complex formation. In another embodiment, complex formation of target molecule/binding partner can be compared to complex formation of mutant target molecule/binding partner (e.g., amino acid modifications in a target polypeptide). Such a comparison can be important in those cases where it is desirable to identify test molecules that modulate interactions of mutant but not non-mutated target gene products.


The assays can be conducted in a heterogeneous or homogeneous, format. In heterogeneous assays, target molecule and/or the binding partner are immobilized to a solid phase, and complexes are detected on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the molecules being tested. For example, test compounds that agonize target molecule/binding partner interactions can be identified by conducting the reaction in the presence of the test molecule in a competition format. Alternatively, test molecules that agonize preformed complexes, e.g. molecules with higher binding constants that displace one of the components from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed.


In a heterogeneous assay embodiment, the target molecule or the binding partner is anchored onto a solid surface (e.g., a microtiter plate), while the non-anchored species is labeled, either directly or indirectly. The anchored molecule can be immobilized by non-covalent or covalent attachments. Alternatively, an immobilized antibody specific for the molecule to be anchored can be used to anchor the molecule to the solid surface. The partner of the immobilized species is exposed to the coated surface with or without the test molecule. After the reaction is complete, unreacted components are removed (e.g., by washing) such that a significant portion of any complexes formed will remain immobilized on the solid surface. Where the non-immobilized species is pre-labeled, the detection of label immobilized on the surface is indicative of complex. Where the non-immobilized species is not pre-labeled, an indirect label can be used to detect complexes anchored to the surface; e.g., by using a labeled antibody specific for the initially non-immobilized species. Depending upon the order of addition of reaction components, test compounds that inhibit complex formation or that disrupt preformed complexes can be detected.


In another embodiment, the reaction can be conducted in a liquid phase in the presence or absence of test molecule, where the reaction products are separated from unreacted components, and the complexes are detected (e.g., using an immobilized antibody specific for one of the binding components to anchor any complexes formed in solution, and a labeled antibody specific for the other partner to detect anchored complexes). Again, depending upon the order of addition of reactants to the liquid phase, test compounds that inhibit complex or that disrupt preformed complexes can be identified.


In an alternate embodiment, a homogeneous assay can be utilized. For example, a preformed complex of the target gene product and the interactive cellular or extracellular binding partner product is prepared. One or both of the target molecule or binding partner is labeled, and the signal generated by the label(s) is quenched upon complex formation (e.g., U.S. Pat. No. 4,109,496 that utilizes this approach for immunoassays). Addition of a test molecule that competes with and displaces one of the species from the preformed complex will result in the generation of a signal above background. In this way, test substances that disrupt target molecule/binding partner complexes can be identified.


Candidate therapeutics for treating type II diabetes are identified from a group of test molecules that interact with a target molecule. Test molecules are normally ranked according to the degree with which they modulate (e.g., agonize or antagonize) a function associated with the target molecule (e.g., DNA replication and/or processing, RNA transcription and/or processing, polypeptide production and/or processing, and/or biological function/activity, and then top ranking modulators are selected. Also, pharmacogenomic information described herein can determine the rank of a modulator. The top 10% of ranked test molecules often are selected for further testing as candidate therapeutics, and sometimes the top 15%, 20%, or 25% of ranked test molecules are selected for further testing as candidate therapeutics. Candidate therapeutics typically are formulated for administration to a subject.


Therapeutic Formulations


Formulations and pharmaceutical compositions typically include in combination with a pharmaceutically acceptable carrier one or more target molecule modulators. The modulator often is a test molecule identified as having an interaction with a target molecule by a screening method described above. The modulator may be a compound, an antisense nucleic acid, a ribozyme, an antibody, or a binding partner. Also, formulations may comprise a target polypeptide or fragment thereof in combination with a pharmaceutically acceptable carrier.


As used herein, the term “pharmaceutically acceptable carrier” includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions. Pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.


A pharmaceutical composition typically is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g. intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerin, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphate and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


Oral compositions generally include an inert diluent or an edible carrier. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, e.g., gelatin capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellants e.g., a gas such as carbon dioxide, or a nebulizer.


Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. Molecules can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


In one embodiment, active molecules are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. Materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


It is advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.


Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Molecules which exhibit high therapeutic indices are preferred. While molecules that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.


The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such molecules lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any molecules used in the methods described herein, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.


As defined herein, a therapeutically effective amount of protein or polypeptide (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, sometimes about 0.01 to 25 mg/kg body weight, often about 0.1 to 20 mg/kg body weight, and more often about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The protein or polypeptide can be administered one time per week for between about 1 to 10 weeks, sometimes between 2 to 8 weeks, often between about 3 to 7 weeks, and more often for about 4, 5, or 6 weeks. The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments.


With regard to polypeptide formulations, featured herein is a method for treating type II diabetes in a subject, which comprises contacting one or more cells in the subject with a first polypeptide, where the subject comprises a second polypeptide having one or more polymorphic variations associated with cancer, and where the first polypeptide comprises fewer polymorphic variations associated with cancer than the second polypeptide. The first and second polypeptides are encoded by a nucleic acid which comprises a nucleotide sequence in SEQ ID NO: 1-3; a nucleotide sequence which encodes a polypeptide consisting of an amino acid sequence encoded by a nucleotide sequence referenced in SEQ ID NO: 1-3; a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-3 and a nucleotide sequence 90% or more identical to a nucleotide sequence in SEQ ID NO: 1-3. The subject often is a human.


For antibodies, a dosage of 0.1 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg is often utilized. If the antibody is to act in the brain, a dosage of 5 mg/kg to 100 mg/kg is often appropriate. Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible. Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is described by Cruikshank et al., J. Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193 (1997).


Antibody conjugates can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a polypeptide such as tumor necrosis factor, .alpha.-interferon, .beta.-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors. Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Pat. No. 4,676,980.


For compounds, exemplary doses include milligram or microgram amounts of the compound per kilogram of subject or sample weight, for example, about 1 microgram per kilogram to about 500 milligrams per kilogram, about 160 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram. It is understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid described herein, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.


With regard to nucleic acid formulations, gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Pat. No. 5,328,470) or by stereotactic injection (see e.g., Chen et al, (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057). Pharmaceutical preparations of gene therapy vectors can include a gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells (e.g., retroviral vectors) the pharmaceutical preparation can include one or more cells which produce the gene delivery system. Examples of gene delivery vectors are described herein.


Therapeutic Methods


A therapeutic formulation described above can be administered to a subject in need of a therapeutic for inducing a desired biological response. Therapeutic formulations can be administered by any of the paths described herein. With regard to both prophylactic and therapeutic methods of treatment such treatments may be specifically tailored or modified, based on knowledge obtained from pharmacogenomic analyses described herein.


As used herein, the term “treatment” is defined as the application or administration of a therapeutic formulation to a subject, or application or administration of a therapeutic agent to an isolated tissue or cell line from a subject with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect type II diabetes, symptoms of type II diabetes or a predisposition towards type II diabetes. A therapeutic formulation includes, but is not limited to, small molecules, peptides, antibodies, ribozymes and antisense oligonucleotides. In certain embodiments, a peptide therapeutic formulation comprises isoform b of EPHA3 (SEQ ID NO:5) or the extracellular domain of isoform a (21-541 of SEQ ID NO:4) that specifically binds to an EPHA3 binding partner ligand (e.g., Ephrin-A2 or Ephrin-A5) and inhibits binding between EPHA3 and that binding partner or ligand. Thus, provided herein is a method which comprises administering a peptide therapeutic formulation comprising isoform b of EPHA3 (SEQ ID NO:5) or the extracellular domain of isoform a (21-541 of SEQ ID NO:4) for the improvement of glucose control in type II diabetes patients. Administration of a therapeutic formulation can occur prior to the manifestation of symptoms characteristic of type II diabetes, such that Type II diabetes is prevented or delayed in its progression. The appropriate therapeutic composition can be determined based on screening assays described herein.


In related aspects, embodiments include methods of causing or inducing a desired biological response in an individual comprising the steps of: providing or administering to an individual a composition comprising a polypeptide described herein, or a fragment thereof, or a therapeutic formulation described herein, wherein said biological response is selected from the group consisting of: (a) modulating circulating (either blood, serum or plasma) levels (concentration) of glucose, wherein said modulating is preferably lowering; (b) increasing cell or tissue sensitivity to insulin, particularly muscle, adipose, liver or brain; (c) inhibiting the progression from impaired glucose tolerance to insulin resistance; (d) increasing glucose uptake in skeletal muscle cells; (e) increasing glucose uptake in adipose cells; (f) increasing glucose uptake in neuronal cells; (g) increasing glucose uptake in red blood cells; (h) increasing glucose uptake in the brain; and (i) significantly reducing the postprandial increase in plasma glucose following a meal, particularly a high carbohydrate meal.


In other embodiments, a pharmaceutical or physiologically acceptable composition can be utilized as an insulin sensitizer, or can be used in: a method to improve insulin sensitivity in some persons with type II diabetes in combination with insulin therapy; a method to improve insulin sensitivity in some persons with type II diabetes without insulin therapy; or a method of treating individuals with gestational diabetes. Gestational diabetes refers to the development of diabetes in an individual during pregnancy, usually during the second or third trimester of pregnancy. In further embodiments, the pharmaceutical or physiologically acceptable composition can be used in a method of treating individuals with impaired fasting glucose (IFG). Impaired fasting glucose (IFG) is a condition in which fasting plasma glucose levels in an individual are elevated but not diagnostic of overt diabetes (i.e. plasma glucose levels of less than 126 mg/dl and greater than or equal to 10 mg/dl).


In other embodiments, the pharmaceutical or physiologically acceptable composition can be used in a method of treating and preventing impaired glucose tolerance (IGT) in an individual. By providing therapeutics and methods for reducing or preventing IGT (i.e., for normalizing insulin resistance) the progression to type II diabetes can be delayed or prevented. Furthermore, by providing therapeutics and methods for reducing or preventing insulin resistance, provided are methods for reducing and/or preventing the appearance of Insulin-Resistance Syndrome (IRS). In further embodiments, the pharmaceutical or physiologically acceptable composition can be used in a method of treating a subject having polycystic ovary syndrome (PCOS). PCOS is among the most common disorders of premenopausal women, affecting 5-10% of this population. Insulin-sensitizing agents (e.g., troglitazone) have been shown to be effective in PCOS and that, in particular, the defects in insulin action, insulin secretion, ovarian steroidogenosis and fibrinolysis are improved (Ehrman et al. (1997) J Clin Invest 100:1230, such as in insulin-resistant humans Accordingly, provided are methods for reducing insulin resistance, normalizing blood glucose thus treating and/or preventing PCOS.


In certain embodiments, the pharmaceutical or physiologically acceptable composition can be used in a method of treating a subject having insulin resistance, where a subject having insulin resistance is treated to reduce or cure the insulin resistance. As insulin resistance is also often associated with infections and cancer, preventing or reducing insulin resistance may prevent or reduce infections and cancer.


In other embodiments, the pharmaceutical compositions and methods described herein are useful for: preventing the development of insulin resistance in a subject, e.g., those known to have an increased risk of developing insulin resistance; controlling blood glucose in some persons with type II diabetes in combination with insulin therapy; increasing cell or tissue sensitivity to insulin, particularly muscle, adipose, liver or brain; inhibiting or preventing the progression from impaired glucose tolerance to insulin resistance; improving glucose control of type II diabetes patients alone, without an insulin secretagogue or an insulin sensitizing agent; and administering a complementary therapy to type II diabetes patients to improve their glucose control in combination with an insulin secretagogue (preferably oral form) or an insulin sensitizing (preferably oral form) agent. In the latter embodiment, the oral insulin secretagogue sometimes is 1,1-dimethyl-2-(2-morpholino phenyl)guanidine fumarate (BTS67582) or a sulphonylurea selected from tolbutamide, tolazamide, chlorpropamide, glibenclamide, glimepiride, glipizide and glidazide. The insulin sensitizing agent sometimes is selected from metformin, ciglitazone, troglitazone and pioglitazone.


Further embodiments include methods of administering a pharmaceutical or physiologically acceptable composition concomitantly or concurrently, with an insulin secretagogue or insulin sensitizing agent, for example, in the form of separate dosage units to be used simultaneously, separately or sequentially (e.g., before or after the secretagogue or before or after the sensitizing agent). Accordingly, provided is a pharmaceutical or physiologically acceptable composition and an insulin secretagogue or insulin sensitizing agent as a combined preparation for simultaneous, separate or sequential use for the improvement of glucose control in type II diabetes patients.


Thus, any test known in the art or a method described herein can be used to determine that a subject is insulin resistant, and an insulin resistant patient can then be treated according to the methods described herein to reduce or cure the insulin resistance. Alternatively, the methods described herein also can be used to prevent the development of insulin resistance in a subject, e.g., those known to have an increased risk of developing insulin-resistance.


In certain embodiments the therapeutic molecule administered to a subject to treat type II diabetes specifically interacts with (e.g., binds to) an EPHA3 polymorphic variant, such as a polypeptide comprising an arginine at position 924 in SEQ ID NO: 4, or sometimes a tryptophan at position 924. In other embodiments, the therapeutic molecule specifically interacts with a binding partner, ligand or signal partner of EPHA3, such as Ephrin-A2 and/or Ephrin-A5. In other embodiments, the therapeutic molecule specifically interacts with a EPHA3-related enzyme such as ADAM10. In other embodiments, the therapeutic molecule also modulates other tyrosine kinases, such as EGF (NM001963), Src (NM005417), VEGF (NM03376) or KDR (NM002253). In yet another embodiment, the therapeutic molecule also modulates proteins that shares homology with EPHA3, such as EphA2 (NM004431) or EphB4 (N004444). The therapeutic molecule sometimes modulates certain cell functions and/or activities or levels of certain cellular molecules, such as glucose uptake by cells; glucose transport molecule activity or levels in cells (e.g., GLUT4 levels or activities in cells); triacylglycerol content in cells; resistin levels or activities in cells; levels or activities of molecules involved in resistin levels in cells such as PPAR gamma, PI3 kinase, Akt and C/EBP alpha; and levels or activities of EPHA3 binding partners or ligands such as Ephrin-A2 and Ephrin-A5. In certain embodiments, the type II diabetes therapeutic molecule modulates interactions between the following cellular molecules: EPHA3 and its natural ligand ephrin-A5 and/or EPHA3 and its natural ligand ephrin-A2 and/or two or more EPHA3 moieties and/or domains of EPHA3 and/or within one or more domain(s) of an EPHA3 moiety and/or EPHA3 and downstream moieties with which EPHA3 interacts. The therapeutic molecule sometimes modulates one or more of the following: (a) circulating (e.g., blood, serum or plasma) levels (e.g., concentration) of glucose, where the therapeutic molecule often lowers glucose levels; (b) cell or tissue sensitivity to insulin, particularly in muscle, adipose, liver or brain, where the therapeutic molecule often increases sensitivity; (c) progression from impaired glucose tolerance to insulin resistance, where the therapeutic molecule often inhibits the progression; (d) glucose uptake in skeletal muscle cells, where the therapeutic molecule often increases glucose uptake; (e) glucose uptake in adipose cells, where the therapeutic molecule often increases uptake; (f) glucose uptake in neuronal cells, where the therapeutic molecule often increases uptake; (g) glucose uptake in red blood cells, where the therapeutic molecule often increases uptake; (h) glucose uptake in the brain, where the therapeutic molecule often increases uptakes; and (i) postprandial increase in plasma glucose following a meal, particularly a high carbohydrate meal, where the therapeutic molecule often reduces significantly the postprandial increase.


In specific embodiments, the test molecule is an antibody or protein that specifically binds to EPHA3 or an EPHA3 binding partner, ligand or signal pathway member. Such antibodies and proteins are disclosed in U.S. Pat. Nos. 6,169,167; 6,063,903; 6,057,124; 5,798,448; and Ahsan M, et al. Biochem Biophys Res. Commun. 2002 Jul. 12; 295(2):348-53. A soluble form of EPHA3 which binds to ephrin-A5 and/or ephrin-A, preventing or diminishing the binding of ephrin-A5 to membrane bound EPHA3, may be used. Inter-EPHA3 interactions may also be inhibited by use of the foregoing moieties.


As discussed, successful treatment of type II diabetes can be brought about by techniques that serve to agonize target molecule expression or function, or alternatively, antagonize target molecule expression or function. These techniques include administration of modulators that include, but are not limited to, small organic or inorganic molecules; antibodies (including, for example, polyclonal, monoclonal, humanized, anti-idiotypic, chimeric or single chain antibodies, and Fab, F(ab′)2 and Fab expression library fragments, scFV molecules, and epitope-binding fragments thereof); and peptides, phosphopeptides, or polypeptides.


Further, antisense and ribozyme molecules that inhibit expression of the target gene can also be used to reduce the level of target gene expression, thus effectively reducing the level of target gene activity. Still further, triple helix molecules can be utilized in reducing the level of target gene activity. Antisense, ribozyme and triple helix molecules are discussed above. It is possible that the use of antisense, ribozyme, and/or triple helix molecules to reduce or inhibit mutant gene expression can also reduce or inhibit the transcription (triple helix) and/or translation (antisense, ribozyme) of mRNA produced by normal target gene alleles, such that the concentration of normal target gene product present can be lower than is necessary for a normal phenotype. In such cases, nucleic acid molecules that encode and express target gene polypeptides exhibiting normal target gene activity can be introduced into cells via gene therapy method. Alternatively, in instances in that the target gene encodes an extracellular polypeptide, it can be preferable to co-administer normal target gene polypeptide into the cell or tissue in order to maintain the requisite level of cellular or tissue target gene activity.


Another method by which nucleic acid molecules may be utilized in treating or preventing type II diabetes is use of aptamer molecules specific for target molecules. Aptamers are nucleic acid molecules having a tertiary structure which permits them to specifically bind to ligands (see, e.g., Osborne, et al, Curr. Opin. Chem. Biol. 1(1): 5-9 (1997); and Patel, D. J., Curr. Opin. Chem. Biol June; 1 (1): 3246 (1997)).


Yet another method of utilizing nucleic acid molecules for type II diabetes treatment is gene therapy, which can also be referred to as allele therapy. Provided herein is a gene therapy method for treating type II diabetes in a subject, which comprises contacting one or more cells in the subject or from the subject with a nucleic acid having a first nucleotide sequence. Genomic DNA in the subject comprises a second nucleotide sequence having one or more polymorphic variations associated with type II diabetes (e.g., the second nucleic acid has a nucleotide sequence in SEQ ID NO: 1-3). The first and second nucleotide sequences typically are substantially identical to one another, and the first nucleotide sequence comprises fewer polymorphic variations associated with type II diabetes than the second nucleotide sequence. The first nucleotide sequence may comprise a gene sequence that encodes a full-length polypeptide or a fragment thereof. The subject is often a human. Allele therapy methods often are utilized in conjunction with a method of first determining whether a subject has genomic DNA that includes polymorphic variants associated with type II diabetes.


In another allele therapy embodiment, provided herein is a method which comprises contacting one or more cells in the subject or from the subject with a polypeptide encoded by a nucleic acid having a first nucleotide sequence. Genomic DNA in the subject comprises a second nucleotide sequence having one or more polymorphic variations associated with type II diabetes (e.g., the second nucleic acid has a nucleotide sequence in SEQ ID NO: 1-3). The first and second nucleotide sequences typically are substantially identical to one another, and the first nucleotide sequence comprises fewer polymorphic variations associated with type II diabetes than the second nucleotide sequence. The first nucleotide sequence may comprise a gene sequence that encodes a full-length polypeptide or a fragment thereof. The subject is often a human.


For antibody-based therapies, antibodies can be generated that are both specific for target molecules and that reduce target molecule activity. Such antibodies may be administered in instances where antagonizing a target molecule function is appropriate for the treatment of type II diabetes.


In circumstances where stimulating antibody production in an animal or a human subject by injection with a target molecule is harmful to the subject, it is possible to generate an immune response against the target molecule by use of anti-idiotypic antibodies (see, e.g., Herlyn, Ann. Med.; 31(1): 66-78 (1999); and Bhattacharya-Chatterjee & Foon, Cancer Treat. Res.; 94: 51-68 (1998)). Introducing an anti-idiotypic antibody to a mammal or human subject often stimulates production of anti-anti-idiotypic antibodies, which typically are specific to the target molecule. Vaccines directed to type II diabetes also may be generated in this fashion.


In instances where the target molecule is intracellular and whole antibodies are used, internalizing antibodies may be preferred. Lipofectin or liposomes can be used to deliver the antibody or a fragment of the Fab region that binds to the target antigen into cells. Where fragments of the antibody are used, the smallest inhibitory fragment that binds to the target antigen is preferred. For example, peptides having an amino acid sequence corresponding to the Fv region of the antibody can be used. Alternatively, single chain neutralizing antibodies that bind to intracellular target antigens can also be administered. Such single chain antibodies can be administered, for example, by expressing nucleotide sequences encoding single-chain antibodies within the target cell population (see, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA 90: 7889-7893 (1993)).


Modulators can be administered to a patient at therapeutically effective doses to treat type II diabetes. A therapeutically effective dose refers to an amount of the modulator sufficient to result in amelioration of symptoms of type II diabetes. Toxicity and therapeutic efficacy of modulators can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Modulators that exhibit large therapeutic indices are preferred. While modulators that exhibit toxic side effects can be used, care should be taken to design a delivery system that targets such molecules to the site of affected tissue in order to minimize potential damage to uninfected cells, thereby reducing side effects.


Data obtained from cell culture assays and animal studies can be used in formulating a range of dosages for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods described herein, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans, Levels in plasma can be measured, for example, by high performance liquid chromatography.


Another example of effective dose determination for an individual is the ability to directly assay levels of “free” and “bound” compound in the serum of the test subject. Such assays may utilize antibody mimics and/or “biosensors” that have been created through molecular imprinting techniques. Molecules that modulate target molecule activity are used as a template, or “imprinting molecule”, to spatially organize polymerizable monomers prior to their polymerization with catalytic reagents. The subsequent removal of the imprinted molecule leaves a polymer matrix which contains a repeated “negative image” of the compound and is able to selectively rebind the molecule under biological assay conditions. A detailed review of this technique can be seen in Ansell et al., Current Opinion in Biotechnology 7: 89-94 (1996) and in Shea, Trends in Polymer Science 2: 166-173 (1994). Such “imprinted” affinity matrixes are amenable to ligand-binding, assays, whereby the immobilized monoclonal antibody component is replaced by an appropriately imprinted matrix. An example of the use of such matrixes in this way can be seen in Vlatakis, et al., Nature 361: 645-647 (1993). Through the use of isotope-labeling, the “free” concentration of compound which modulates target molecule expression or activity readily can be monitored and used in calculations of IC50. Such “imprinted” affinity matrixes can also be designed to include fluorescent groups whose photon-emitting properties measurably change upon local and selective binding of target compound. These changes readily can be assayed in real time using appropriate fiberoptic devices, in turn allowing the dose in a test subject to be quickly optimized based on its individual IC56. An example of such a “biosensor” is discussed in Kriz et al., Analytical Chemistry 67: 2142-2144 (1995).


The examples set forth below are intended to illustrate but not limit the invention.


EXAMPLES

In the following studies a group of subjects was selected according to specific parameters pertaining to type II diabetes. Nucleic acid samples obtained from individuals in the study group were subjected to genetic analyses that identified associations between type II diabetes and certain polymorphic variants in human genomic DNA. This procedure was repeated in a second group and third group of subjects that served as replication cohorts. See Examples 3-4. Polymorphic variants proximal to the incident SNP were identified and analyzed in cases and controls. See Example 5. Methods are described for producing EPHA3 polypeptides encoded by the nucleic acids of SEQ ID NO: 1-3 in vitro or in vivo, which can be utilized in methods that screen test molecules for those that interact with EPHA3 polypeptides. Test molecules identified as being interactors with EPHA3 polypeptides can be screened further as type II diabetes therapeutics.


Example 1
Samples and Pooling Strategies

Sample Selection


Blood samples were collected from individuals diagnosed with type U diabetes, which were referred to as case samples. Also, blood samples were collected from individuals not diagnosed with type II diabetes or a history of type II diabetes; these samples served as gender and age-matched controls. A database was created that listed all phenotypic trait information gathered from individuals for each case and control sample. Genomic DNA was extracted from each of the blood samples for genetic analyses.


DNA Extraction from Blood Samples


Six to ten milliliters of whole blood was transferred to a 50 ml tube containing 27 ml of red cell lysis solution (RCL). The tube was inverted until the contents were mixed. Each tube was incubated for 10 minutes at room temperature and inverted once during the incubation. The tubes were then centrifuged for 20 minutes at 3000×g and the supernatant was carefully poured off. 100-200 μl of residual liquid was left in the tube and was pipetted repeatedly to resuspend the pellet in the residual supernatant. White cell lysis solution (WCL) was added to the tube and pipetted repeatedly until completely mixed. While no incubation was normally required, the solution was incubated at 37° C. or room temperature if cell clumps were visible after mixing until the solution was homogeneous. 2 ml of protein precipitation was added to the cell lysate. The mixtures were vortexed vigorously at high speed for 20 see to mix the protein precipitation solution uniformly with the cell lysate, and then centrifuged for 10 minutes at 3000×g. The supernatant containing the DNA was then poured into a clean 15 ml tube, which contained 7 ml of 100% isopropanol. The samples were mixed by inverting the tubes gently until white threads of DNA were visible. Samples were centrifuged for 3 minutes, at 2000×g and the DNA was visible as a small white pellet. The supernatant was decanted and 5 ml of 70% ethanol was added to each tube. Each tube was inverted several times to wash the DNA pellet, and then centrifuged for 1 minute at 2000×g. The ethanol was decanted and each tube was drained on clean absorbent paper. The DNA was dried in the tube by inversion for 10 minutes, and then 1000 μl of 1×TE was added. The size of each sample was estimated, and less TE buffer was added during the following DNA hydration step if the sample was smaller. The DNA was allowed to rehydrate overnight at room temperature, and DNA samples were stored at 2-8° C.


DNA was quantified by placing samples on a hematology mixer for at least 1 hour. DNA was serially diluted (typically 1:80, 1:160, 1:320, and 1:640 dilutions) so that it would be within the measurable range of standards. 125 μl of diluted DNA was transferred to a clear U-bottom microtitre plate, and 125 μl of 1×TE buffer was transferred into each well using a multichannel pipette. The DNA and 1×TE were mixed by repeated pipetting at least 15 times, and then the plates were sealed. 50 μl of diluted DNA was added to wells A5-H12 of a black flat bottom microtitre plate. Standards were inverted six times to mix them, and then 50 μl of 1×TE buffer was pipetted into well A1, 1000 ng/ml of standard was pipetted into well A2,500 ng/ml of standard was pipetted into well A3, and 250 ng/ml of standard was pipetted into well A4. PicoGreen (Molecular Probes, Eugene, Oreg.) was thawed and freshly diluted 1:200 according to the number of plates that were being measured. PicoGreen was vortexed and then 50411 was pipetted into all wells of the black plate with the diluted DNA. DNA and PicoGreen were mixed by pipetting repeatedly at least 10 times with the multichannel pipette. The plate was placed into a Fluoroskan Ascent Machine (microplate fluorometer produced by Labsystems) and the samples were allowed to incubate for 3 minutes before the machine was run using filter pairs 485 nm excitation and 538 nm emission wavelengths. Samples having measured DNA concentrations of greater than 450 ng/4 μl were re-measured for conformation. Samples having measured DNA concentrations of 20 ng/μl or less were re-measured for confirmation.


Pooling Strategies


Samples were placed into one of four groups based on disease status. The four groups were female case samples, female control samples, male case samples and male control samples. A select set of samples from each group were utilized to generate pools, and one pool was created for each group. Each individual sample in a pool was represented by an equal amount of genomic DNA. For example, where 25 ng of genomic DNA was utilized in each PCR reaction and there were 200 individuals in each pool, each individual would provide 125 pg of genomic DNA. Inclusion or exclusion of samples for a pool was based upon the following criteria and detailed in the tables below: patient ethnicity, diagnosis with type II diabetes, GAD antibody concentration, HbA1c concentration, body, mass (BMI), patient age, date of primary diagnosis, and age of individual as of primary diagnosis. (See Table 2 below). Cases with elevated GAD antibody titers and low age of diagnosis were excluded to increase the homogeneity of the diabetes sample in terms of underlying pathogenesis. Controls with elevated HbA1c were excluded to remove any potentially undiagnosed diabetics. Control samples were derived from non-diabetic individuals with no family history of type II diabetes. Secondary phenotypes were also measured in the diabetic cases, including HDL levels, LDL levels, triglyceride levels, insulin levels, C-peptide levels, nephropathy status, and neuropathy status, to name a few. The phenotype data collected may be used to perform secondary analysis of the cases in order to elucidate the potential pathway of a disease gene.












TABLE 2






No. of





individuals
Actual no. of




fulfilling
samples
No. of



exclusion
excluded after
samples


Exclusion Criteria
criteria
each stage
remaining


















ALL SAMPLES Lack of
34
34
1591


availability of sample


ALL SAMPLES Non-German
261
239
1352


ethnicity


CASES GAD Ab > 0.9
102
84
1268


CONTROLS HbA1c ≧ 6 or
21
20
1248


BMI > 40


CASES age < 90
17
6
1242


CASES Age of
150
203
1039


Diagnosis < 35,


CONTROLS Family History
170


of Diabetes


CONTROLS Age-matching
43
43
996


to case pool









The selection process yielded the pools described in Table 3, which were used in the studies described herein.














TABLE 3







Female
Female
Male
Male



case
control
cases
control






















Pool size
244
244
254
254



(Number)



Pool Criteria
case
control
case
control



(ex: case/control)



Mean Age
52.49
49.02
49.78
50.57



(ex: years)










Example 2
Association of Polymorphic Variants with Type II Diabetes

A whole-genome screen was performed to identify particular SNPs associated with occurrence of type II diabetes. As described in Example 1, two sets of samples were utilized female individuals having type II diabetes (female cases) and samples from female individuals not having type II diabetes or any history of type II diabetes (female controls), and male individuals having type B: diabetes (male cases) and samples from male individuals not having type I diabetes or any history of type II diabetes (male controls). The initial screen of each pool was performed in an allelotyping study, in which certain samples in each group were pooled. By pooling DNA from each group, an allele frequency for each SNP in each group was calculated. These allele frequencies were then compared to one another. Particular SNPs were considered as being associated with type II diabetes when allele frequency differences calculated between case and control pools were statistically significant. SNP disease association results obtained from the allelotyping study were then validated by genotyping each associated SNP across all samples from each pool. The results of the genotyping were then analyzed, allele frequencies for each group were calculated from the individual genotyping results, and a p-value was calculated to determine whether the case and control groups had statistically significantly differences in allele frequencies for a particular SNP. When the genotyping results agreed with the original allelotyping results, the SNP disease association was considered validated at the genetic level.


SNP Panel Used for Genetic Analyses


A whole-genome SNP screen began with an initial screen of approximately 25,000 SNPs over each set of disease and control samples using a pooling, approach. The pools studied in the screen are described in Example 1. The SNPs analyzed in this study were part of a set of 25,488 SNPs confined as being statistically polymorphic as each is characterized as having a minor allele frequency of greater than 10%. The SNPs in the set reside in genes or in close proximity to genes, and many reside in gene exons. Specifically, SNPs in the set are located in exons, introns, and within 5,000 base-pairs upstream of a transcription start site of a gene. In addition, SNPs were selected according, to the following criteria: they are located in ESTs; they are located in Locuslink or Ensemble genes; and they are located in Genomatix promoter predictions. An additional 3088 SNPs were included with these 25,488 SNPs and these additional SNPs had been chosen on the basis of gene location, with preference to non-synonymous coding SNPs located in disease candidate genes. SNPs in the set were also selected on the basis of even spacing across the genome, as depicted in Table 4.










TABLE 4





General Statistics
Spacing Statistics


















Total # of SNPs
 25,488
Median
 37,058 bp


# of Exonic SNPs
>4,335 (17%)
Minimum*
 1,000 bp


# SNPs with refSNP
20,776 (81%)
Maximum*
3,000,000 bp 


ID


Gene Coverage
>10,000
Mean
122,412 bp


Chromosome
All
Std Deviation
373,325 bp


Coverage





*Excludes outliers






Allelotyping and Genotyping Results

The genetic studies summarized above and described in more detail below identified allelic variants associated with type II diabetes. The allelic variants identified from the SNP panel described in Table 4 are summarized below in Table 5.


















TABLE 5








Position








SNP

Chromosome
in SEQ ID
Contig
Contig
Sequence

Sequence
Allelic


Reference
Chromosome
Position
NO: 1
Identification
Position
Identification
Locus
Position
Variability







rs1512183
3
89425955
50155
NT_022459
23199742
NM_005233
EphA3
intron
T/A









Table 5 includes information pertaining to the incident polymorphic variant associated with type II diabetes identified herein. Public information pertaining to the polymorphism and the genomic sequence that includes the polymorphism are indicated. The genomic sequences identified in Table 5 may be accessed at the http address www.ncbi.nih.gov/entrez/query.fcgi, for example, by using the publicly available SNP reference number (e.g., rs1512183). The chromosome position refers to the position of the SNP within NCBI's Genome Build 34, which may be accessed at the following http address: www.ncbi.nlm.nih.gov/mapview/mapsearch.cgi?chr=hum_chr.inf&query=. The “Contig Position” provided in Table 5 corresponds to a nucleotide position set forth in the contig sequence; and designates the polymorphic site corresponding to the SNP reference number. The sequence containing the polymorphisms also may be referenced by, the “Sequence Identification” set forth in Table 5. The “Sequence Identification” corresponds to cDNA sequence that encodes associated polypeptides (e.g., EPHA3) of the invention. The position of the SNP within the cDNA sequence is provided in the “Sequence Position” column of Table 5. Also, the allelic variation at the polymorphic site and the allelic variant identified as associated with type II diabetes is specified in Table 5. All nucleotide sequences referenced and accessed by the parameters set forth in Table 5 are incorporated herein by reference.


Assay for Verifying, Allelotyping and Genotyping SNPs


A MassARRAY™ system (Sequenom, Inc.) was utilized to perform SNP genotyping in a high-throughput fashion. This genotyping platform was complemented by a homogeneous single-tube assay method (hME™ or homogeneous MassEXTEND® (Sequenom, Inc.)) in which two genotyping primers anneal to and amplify a genomic target surrounding a polymorphic site of interest. A third primer (the MassEXTEND® primer), which is complementary to the amplified target up to but not including the polymorphism, was then enzymatically extended one or a few bases through the polymorphic site and then terminated.


For each polymorphism, SpectroDESIGNER™ software (Sequenom, Inc.) was used to generate a set of PCR primers and a MassEXTEND® primer which where used to genotype the polymorphism. Other primer design software could be used or one of ordinary skill in the art could manually design primers based on his or her knowledge of the relevant factors and considerations in designing such primers. Table 6 shows PCR primers and Table 7 shows an extension probe used for analyzing the polymorphism set forth in Table 5. The initial PCR amplification reaction was performed in a 5 μl total volume containing 1×PCR buffer with 1.5 mM MgCl2 (Qiagen), 200 μM each of dATP, dGTP, dCTP, dCTP (Gibco-BRL) 2.5 ng of genomic DNA, 0.1 units of HotStar DNA polymerase (Qiagen), and 200 nM each of forward and reverse PCR primers specific for the polymorphic region of interest.









TABLE 6







PCR Primers










SNP





Reference
Forward PCR primer
Reverse PCR primer





rs1512183
CAGGGCTTAG
CTCGTTCTTCA




AGTTTATTGAG
TCACTATTT









Samples were incubated at 95° C. for 15 minutes, followed by 4 cycles of 9500 for 20 seconds, 56° C. for 30 seconds, and 72° C. for 1 minute, finishing with a 3 minute final extension at 72° C. Following amplification, shrimp alkaline phosphatase (SAP) (0.3 units in a 2× volume) (Amersham Pharmacia) was added to each reaction (total reaction volume was 7 μl) to remove any residual dNTPs that were not consumed in the PCR step. Samples were incubated for 20 minutes at 37° C., followed by 5 minutes at 85° C. to denature the SAP.


Once the SAP reaction was complete, a primer extension reaction was initiated by adding a polymorphism-specific MassEXTEND® primer cocktail to each sample. Each MassEXTEND® cocktail included a specific combination of dideoxynucleotides (ddNTPs) and deoxynucleotides (dNTPs) used to distinguish polymorphic alleles from one another. Methods for verifying, allelotyping and genotyping SNPs are disclosed, for example, in U.S. Pat. No. 6,258,538, the content of which is hereby incorporated by reference. In Table 7, ddNTPs are shown and the fourth nucleotide not shown is the dNTP.









TABLE 7







Extension Primers










SNP





Reference
Extend Probe
Termination Mix












rs1512183
ACTATTTTAATTCTTTTTCTGTG
CGT









The MassEXTEND® reaction was performed in a total volume of 9 μl, with the addition of 1× ThermoSequenase buffer, 0.576 units of ThermoSequenase (Amersham Pharmacia), 600 nM MassEXTEND® primer, 2 mM of ddATP and/or ddCTP and/or ddGTP and/or ddTTP, and 2 mM of dATP or dCTP or dGTP or dTTP. The deoxy nucleotide (dNTP) used in the assay normally was complementary to the nucleotide at the polymorphic site in the amplicon. Samples were incubated at 94° C. for 2 minutes, followed by 55 cycles of 5 seconds at 94° C., 5 seconds at 52° C., and 5 seconds at 72° C.


Following incubation, samples were desalted by adding 16 μl of water (total reaction volume was 25 μl), 3 mg of SpectoCLEAN™ sample cleaning beads (Sequenom, Inc.) and allowed to incubate for 3 minutes with rotation. Samples were then robotically dispensed using a piezoelectric dispensing device (SpectroJET™ (Sequenom, Inc.)) onto either 96-spot or 384-spot silicon chips containing a matrix that crystallized each sample (SpectroCHIP® (Sequenom Inc.)). Subsequently, MALDI-TOF mass spectrometry (Biflex and Autoflex MALDI-TOF mass spectrometers (Bruker Daltonics) can be used) and SpectroTYWER RT™ software (Sequenom, Inc.) were used to analyze and interpret the SNP genotype for each sample.


Genetic Analysis


The minor allelic frequency for the polymorphism set forth in Table 5 was verified as being 10% or greater using the extension assay described above in a group of samples isolated from 92 individuals originating from the state of Utah in the United States, Venezuela and France (Coriell cell repositories).


Genotyping results for the allelic variant set forth in Table 5 are shown for female pools in Table 8 and for male pools in Table 9. In Table 8, “F case” and “F control” refer to female case and female control groups, and in Table 9, “M case” and “M control” refer to male case and male control groups.









TABLE 8







Female Genotyping Results












SNP



Odds
Disease Associated


Reference
F case
F control
p-value
Ratio
Allele





rs1512183
A = 0.706
A = 0.801
0.0007
0.59
T



T = 0.294
T = 0.199
















TABLE 9







Male Genotyping Results












SNP



Odds
Disease Associated


Reference
M case
M control
p-value
Ratio
Allele





rs1512183
A = 0.736
A = 0.790
0.0478
0.74
T



T = 0.264
T = 0.210









The single marker alleles set forth in Table 5 were considered validated, since the genotyping data for the females and males were significantly associated with type II diabetes, and because the genotyping results agreed with the original allelotyping results. Particularly significant associations with type II diabetes are indicated by a calculated p-value of less than 0.05 for genotype results, which are set forth in bold text.


Odds ratio results are shown in Tables 8 and 9. An odds ratio is an unbiased estimate of relative risk which can be obtained from most case-control studies. Relative risk (RR) is an estimate of the likelihood of disease in the exposed group (susceptibility allele or genotype carriers) compared to the unexposed group (pot carriers). It can be calculated by the following equation:






RR=IA/Ia


IA is the incidence of disease in the A carriers and Ia is the incidence of disease in the non-carriers.


RR>1 indicates the A allele increases disease susceptibility.


RR<1 indicates the a allele increases disease susceptibility.


For example, RR=1.5 indicates that carriers of the A allele have 1.5 times the risk of disease than non-carriers, i.e., 50% more likely to get the disease.


Case-control studies, do not allow the direct estimation of IA and Ia, therefore relative risk cannot be directly estimated. However, the odds ratio (OR) can be calculated using the following equation:





OR=(nDAnda)/(ndAnDa)=pDA(1−pdA)/pdA(1−pDA), or






OR=((case f)/(1−case f)/((control f)/(1−control f),


where f=susceptibility allele frequency.


An odds ratio can be interpreted in the same way a relative risk is interpreted and can be directly estimated using the data from case-control studies, i.e., case and control allele frequencies. The higher the odds ratio value, the larger the effect that particular allele has, on the development of breast cancer. Possessing an allele associated with a relatively high odds ratio translates to having a higher risk of developing or having type II diabetes.


Example 3
Samples and Pooling Strategies for the Replication Cohort

The single marker polymorphism set forth in Table 5 was genotyped again in two replication cohorts to further validate its association with type II diabetes. Like the original study population described in Examples 1 and 2, the replication cohorts consisted of type II diabetics (cases) and non-diabetics (controls). The case and control samples were selected and genotyped as described below.


Sample Selection and Pooling Strategies Newfoundland


Blood samples were collected from individuals diagnosed with type II diabetes, which were referred to as case samples. Also, blood samples were collected from individuals not diagnosed with type II diabetes or a history of type II diabetes; these samples served as gender and age-matched controls. All of the samples were collected from individuals residing in Newfoundland, Canada. Residents of Newfoundland represent a preferred population for genetic studies because of their relatively small founder population and resulting homogeneity.


Genetic linkage studies from Newfoundland have proved particularly useful for mapping disease genes for both monogenic and complex diseases as evidenced in studies of autosomal dominant polycystic kidney disease, von Hippel-Lindau disease, ankylosing spondylitis, major depression, Grave's eye disease, retinitis pignentosa, hereditary nonopolyposis colorectal cancer, Kallman syndrome, ocular albinism type I, late infantile type 2 neuronatceroid lipofuscinosis, Bardet-Biedl syndrome, adenine phosphoriboysl-transferase deficiency, and arthropathy-camptodactyly syndrome, Familial multiple endocrine neoplasia type 1 (MEN1). Thus Newfoundland's genetically enriched population provides a unique setting to rapidly identify disease-related genes in selected complex diseases.


Phenotypic trait information was gathered from individuals for each case and control sample, and genomic DNA was extracted from each of the blood samples for genetic analyses.


Samples were placed into one of four groups based on disease status. The four groups were female case samples, female control samples, mate case samples, and male control samples. A select set of samples from each group were utilized to generate pools, and one pool was created for each group.


Patients were included in the case pools if a) they were diagnosed with type II diabetes as documented in their medical record, b) they were treated with either insulin or oral hypoglycemic agents, and c) they were of Caucasian ethnicity. Patients were excluded in the case pools if a) they were diabetic or had a history of diabetes, b) they suffered from diet controlled glucose intolerance, or c) they (or any their relatives) were diagnosed with MODY or gestational diabetes.


Phenotype information included, among others, patient ethnicity, country or origin of mother and father, diagnosis with type II diabetes (date of primary diagnosis, age of individual as of primary diagnosis), body weight, onset of obesity, retinopathy, glaucoma, cataracts, nephropathy, heart disease, hypertension, myocardial infarction, ulcers, required treatment (onset of insulin treatment, oral hypoglycemic agent), blood glucose levels, and MODY.


In total, the final selection consisted of 199 female cases, 241 Female Controls, 140 Male Case, and 62 Male Controls as set forth in Table 10.














TABLE 10







Female
Female
Male
Male



case
control
cases
control






















Pool size
199
241
140
62



(Number)



Pool Criteria
case
control
case
control



(ex: case/control)



Mean Age
 58
 49
 59
51



(ex: years)










Sample Selection and Pooling Strategies Denmark


The polymorphism described in Table 5 was genotyped again in a second replication cohort, consisting of individuals of Danish ancestry, to further validate its association with type II diabetes. Blood samples were collected from individuals diagnosed with type II diabetes, which were referred to case samples. Also, blood samples were collected from individuals not diagnosed with Type II diabetes or a history of type II diabetes; these samples served as gender and age-matched controls.


Phenotypic trait information was gathered from individuals for each case and control sample, and genomic DNA was extracted from each of the blood samples for genetic analyses.


Samples were placed into one of four groups based on disease status. The four groups were female case samples, female control samples, male case samples and male control samples. A select set of samples from each group were utilized to generate pools, and one pool was created for each group.


In total, the final selection consisted of 197 female cases (average age 63) and 277 male cases (average age 60) as set forth in Table 11. All cases had been diagnosed with Type II diabetes in their mid 50's, and were of Danish ancestry. Members selected for the cohort were recruited through the outpatient clinic at Steno Diabetes Center, Copenhagen. Diabetes was diagnosed according to the 1985 World Health Organization criteria. For the controls, 152 females (average age 50), and 136 males (average age 55) were selected. All control subjects underwent a 2-hour oral glucose tolerance test (OGTT) and were deemed to be glucose tolerant, and all were of Danish ancestry. In addition, all control subjects were living in the same area of Copenhagen as the type II diabetic patients.


Additional phenotype were measured in both the case and control group. Phenotype information included, among others, e.g. body mass index, waist/hip ratio, blood pressure, serum insulin, glucose, C-peptide, cholesterol, hdl, triglyceride, HbAlC, urine, creatinine, free fatty acids (mmol/l), GAD antibodies.














TABLE 11







Female
Female
Male
Male



case
control
cases
control






















Pool size
197
152
277
136



(Number)



Pool Criteria
case
control
case
control



(ex: case/control)



Mean Age
 63
 50
 59
 55



(ex: years)










DNA Extraction from Blood Samples


Blood samples for DNA preparation were taken in 5 EDTA tubes. If it was not possible to get a blood sample from a patient, a sample from the cheek mucosa was taken. Red blood cells were lysed to facilitate their separation from the white blood cells. The white cells were pelleted and lysed to release the DNA. Lysis was done in the presence of a DNA preservative using an anionic detergent to solubilize the cellular components. Contaminating RNA was removed by treatment with an RNA digesting enzyme. Cytoplasmic and nuclear proteins were removed by salt precipitation.


Genomic DNA was then isolated by precipitation with alcohol (2-propanol and then ethanol) and rehydrated in water. The DNA was transferred to 2-ml tubes and stored at 4° C. for short-term storage and at −70° C. for long-term storage.


Example 4
Association of Polymorphic Variants with Type II Diabetes in the Replication Cohorts

The associated SNP from the initial scan was re-validated by, genotyping the associated SNP across the replication cohorts described in Example 3. The results of the genotyping were then analyzed, allele frequencies for each group were calculated from the individual genotyping results, and a p-value was calculated to determine whether the case and control groups had statistically significant differences in allele frequencies for a particular SNP. The replication genotyping results with a calculated p-value of less than 0.05 were considered particularly significant, which are set forth in bold text. See. Tables 12 and 13 herein.


Assay for Verifying, Allelotyping, and Genotyping SNPs


Genotyping of the replication cohort was performed using the same methods used for the original genotyping, as described herein. A MassARRAY™ system (Sequenom, Inc.) was utilized to perform SNP genotyping in a high-throughput fashion. This genotyping platform was complemented by a homogeneous, single-tube assay method (hME™ or homogeneous MassEXTEND® (Sequenom, Inc.)) in which two genotyping primers anneal to and amplify a genomic target surrounding a polymorphic site of interest. A third primer (the MassEXTEND® primer), which is complementary to the amplified target up to but not including the polymorphism, was then enzymatically extended one or a few bases through the polymorphic site and then terminated.


For each polymorphism, SpectroDESIGNER™ software (Sequenom, Inc.) was used to generate a set of PCR primers and a MassXTEND® primer which where used to genotype the polymorphism. Other primer design software could be used or one of ordinary skill in the art could manually design primers based on his or her knowledge of the relevant factors and considerations in designing such primers. Table 6 shows PCR primers and Table 7 shows extension probes used for analyzing (e.g., genotyping) polymorphisms in the replication cohorts. The initial PCR amplification reaction was performed in a 5 μl total volume containing 1×PCR buffer with 1.5 mM MgCl2 (Qiagen), 200 μM each of dATP, dGTP, dCTP, dTTP (Gibco-BRL), 2.5 ng of genomic DNA, 0.1 units of HotStar DNA polymerase (Qiagen), and 200 nM each of forward and reverse PCR primers specific for the polymorphic region of interest.


Samples were incubated at 95° C. for 15 minutes, followed by 45 cycles of 95° C. for 20 seconds, 56° C. for 30 seconds, and 72° C. for 1 minute, finishing with a 3 minute final extension at 72° C. Following amplification, shrimp alkaline phosphatase (SAP) (0.3 units in a 2 μl volume) (Amersham Pharmacia) was added to each reaction (total reaction volume was 7 μl) to remove any residual dNTPs that were not consumed in the PCR step. Samples were incubated for 20 minutes at 37° C., followed by 5 minutes at 85° C. to denature the SAP.


Once the SAP reaction was complete, a primer extension reaction was initiated by adding a polymorphism-specific. MassEXTEND® primer cocktail to each sample. Each MassEXTEND® cocktail included a specific combination of dideoxynucleotides (ddNTPs) and deoxynucleotides (dNTPs) used to distinguish polymorphic alleles from one another. Methods for verifying, allelotyping and genotyping SNPs are disclosed, for example, in U.S. Pat. No. 6,258,538, the content of which is hereby incorporated by reference. In Table 7, ddNTPs are shown and the fourth nucleotide not shown is the dNTP.


The MassEXTEND® reaction was performed in a total volume of 9 μl, with the addition of 1× ThermoSequenase buffer, 0.576 units of ThermoSequenase (Amersham Pharmacia), 600 nM MassEXTEND® primer, 2 mM of ddATP and/or ddCTP and/or ddGTP and/or ddTTP, and 2 mM of dATP or dCTP or dGTP or dTTP. The deoxy nucleotide (dNTP) used in the assay normally was complementary to the nucleotide at the polymorphic site in the amplicon. Samples were incubated at 94° C. for 2 minutes, followed by 55 cycles of 5 seconds at 94° C., 5 seconds at 52° C., and 5 seconds at 72° C.


Following incubation, samples were desalted by adding 16 μl of water (total reaction volume was 25 μl), 3 mg of SpectroCLEAN™ sample cleaning beads (Sequenom, Inc.) and allowed to incubate for 3 minutes with rotation. Samples were then robotically dispensed using a piezoelectric dispensing device (SpectroJET™ (Sequenom, Inc.)) onto either 96-spot or 384-spot silicon chips containing a matrix that crystallized each sample (SpectroCUW® (Sequenom, Inc.)). Subsequently, MALDI-TOF mass spectrometry (Biflex and Autoflex MALDI-TOF mass spectrometers (Bruker Daltonics) can be used) and SpectroTYPER RT™ software (Sequenom, Inc.) were used to analyze and interpret the SNP genotype for each sample.


Genetic Analysis


The minor allelic frequency for the polymorphism set forth in Table 5 was verified as being 10% or greater using the extension assay described above in a group of samples isolated from 92 individuals originating from the state of Utah in the United States, Venezuela and France (Coriell cell repositories).


Replication genotyping results in both cohorts are shown for female pools in Table 12 and for male pools in Table 13.









TABLE 12







Female Replication Genotyping Results












SNP
Replication



Odds


Reference
Population
F case
F control
p-value
Ratio





rs1512183
Newfoundland
T = 0.320
T = 0.248
0.021
0.72




A = 0.680
A = 0.752


rs1512183
Denmark
T = 0.249
T = 0.212
0.273
0.84




A = 0.751
A = 0.788
















TABLE 13







Male Replication Genotyping Results













Replication



Odds


SNP Reference
Population
M case
M
p-value
Ratio















rs1512183
Newfoundland
T = 0.289
T = 0.242
0.324
0.68




A = 0.711
A = 0.758


rs1512183
Denmark
T = 0.203
T = 0.250
0.144
1.3




A = 0.797
A = 0.750









Meta-analysis was performed on rs1512183 based on genotype results provided in Tables 8, 9, 12 and 13. FIG. 2 depicts the combined meta analysis odds ratio for rs1512183 in males, females and combined genders (see Examples 1-4). In FIG. 2, “TBN” is the abbreviation for the discovery cohort, “NFL” is the abbreviation for the Newfoundland replication cohort, and “Steno” is the abbreviation for the Denmark replication cohort. The boxes are centered over the odds ratio for each sample, with the size of the box correlated to the contribution of each sample to the combined meta analysis odds ratio. The lines extending from each box are the 95% confidence interval values. The diamond is centered over the combined meta analysis odds ratio with the ends of the diamond depicting the 95% confidence interval values. The meta-analysis further illustrates the strong association each of the incident SNPs has with Type II diabetes across multiple case and control samples.


The subjects available for discovery from Germany included 498 cases and 498 controls. The subjects available for replication from Newfoundland included 350 type 2 diabetes cases and 300 controls. The subjects available for replication from Denmark included 474 type 2 diabetes cases and 287 controls. Meta analyses, combining the results of the German discovery sample and both the Canadian and Danish replication sample, were carried out using a random effects (DerSimonian-Laird) procedure.


The absence of a statistically significant association in the replication cohort for males should not be interpreted as minimizing the value of the original finding. There are many reasons why a biologically derived association identified in a sample from one population would not replicate in a sample from another population. The most important reason is differences in population history. Due to bottlenecks and founder effects, there may be, common disease predisposing, alleles present in one population that are relatively rare in another, leading to a lack of association in the candidate region. Also, because common diseases such as diabetes are the result of susceptibilities in many genes and many environmental risk factors, differences in population-specific genetic and environmental backgrounds could mask the effects of a biologically relevant allele. For these and other reasons, statistically strong results in the original, discovery sample that did not replicate in the replication Newfoundland sample may be further evaluated in additional replication cohorts and experimental systems.


Example 5
EPHA3 Proximal SNPs

The SNP rs1512183 associated with type II diabetes in the examples above fits within the EPHA3 gene. EPHA3 is an ephrin-like tyrosine kinase that has two isoforms produced by alternate splicing: transcript variant 1 is a membrane protein, and transcript variant 2 is secreted (see SEQ ID NO: 2 and 3). High affinity ligands of EPHA3 include ephrin-A2 (which is expressed highly in the pancreas) and ephrin-A5 (which is highly expressed in heart and kidney).


Forty additional allelic variants proximal to rs1512183 were identified and subsequently allelotyped in diabetes case and control sample sets as described in Examples 1 and 2. The polymorphic variants are set forth in Table 14. The chromosome position provided in column three of Table 14 is based on Genome “Build 34” of NCBI's GenBank. The “genome letter” corresponds to the particular allele that appears in NCBI's build 34 genomic sequence of the region (chromosome 3: positions 89375801-89470550), and the “deduced iupac” corresponds to the single letter IUPAC code for the EPHA3 polymorphic variants as they appear in SEQ ID NO:1. The “genome letter” may differ from the alleles (A1/A2) provided in Table 14 if the genome letter is on one strand and the alleles are on the complementary strand, thus they have different strand orientations (i.e., reverse vs forward).















TABLE 14






Position








in



SEQ ID
Chro-
Chromosome
Alleles
genome
deduced


dbSNP
NO: 1
mosome
Position
(A1/A2)
letter
iupac





















3792573
225
3
89376025
A/C
t
K


3792572
1656
3
89377456
A/T
t
W


1398195
5432
3
89381232
C/T
g
R


3828462
5652
3
89381452
G/T
a
M


3805091
6343
3
89382143
G/T
a
M


1512185
18716
3
89394516
A/G
g
R


1028013
29369
3
89405169
T/C
t
Y


 987748
39131
3
89414931
T/G
c
M


1398197
43529
3
89419329
T/C
g
R


1028011
43720
3
89419520
T/C
a
R


2881488
45589
3
89421389
C/G
c
S


1473598
48922
3
89424722
A/C
a
M


1512183
50155
3
89425955
T/A
a
W


1157607
51465
3
89427265
C/T
c
Y


1157608
51565
3
89427365
T/G
t
K


1912965
63433
3
89439233
G/A
a
R


1912966
63565
3
89439365
A/T
t
W


1982096
64496
3
89440296
C/T
t
Y


AA
66765
3
89442565
G/A
g
R


AB
66794
3
89442594
T/C
t
Y


1054750
66826
3
89442626
C/T
t
Y


2117137
70606
3
89446406
C/T
a
R


1499780
71173
3
89446973
C/G
g
S


2117138
76623
3
89452423
G/A
a
R


2346840
78368
3
89454168
T/G
t
K


2048518
79006
3
89454806
C/T
t
Y


2048519
79079
3
89454879
G/A
g
R


2048520
79349
3
89455149
T/C
t
Y


2048521
79354
3
89455154
G/A
g
R


3762718
80167
3
89455967
T/G
t
K


2196083
81647
3
89457447
T/C
t
Y


1512187
82179
3
89457979
T/C
c
Y


 972030
83599
3
89459399
G/T
g
K


2346837
87700
3
89463500
T/C
c
Y


1036286
88778
3
89464578
T/G
c
M


1036285
89162
3
89464962
A/G
t
Y


1512188
91284
3
89467084
A/G
a
R


1512189
91433
3
89467233
A/G
a
R


1567657
93620
3
89469420
A/G
g
R


1567658
93707
3
89469507
T/A
t
W


1028012
94523
3
89470323
C/T
c
Y









Assay for Verifying and Allelotyping SNPs


The methods used to verify and allelotype the forty proximal SNPs of Table 14 are the same methods described in Examples 1 and 2 herein. The primers and probes used in these assays are provided in Table 15 and Table 16, respectively.











TABLE 15





dbSNP rs#
Forward PCR primer
Reverse PCR primer


















3792573
CTTTTACACGCTCTGCTATG
TGACCATGTCATTCCTATGC






3792572
ATTGGGAGGTGAGTTCACAG
AGCAATCAGTGGCAGCAAAG





1398195
TCTTGGCAAAAAAGACAAGC
CAACAGTTTCTCATGCTAGG





3828462
GGATAGCAGCTGCTCTTTTG
AGGGCAAATAGGGAATGCAG





3805091
TACCATAGGAGTTACATTGC
CCCTGAGTTTVAAAAAAGTG





1512185
AACAAACCGACAAATGTCAC
AGGTTTAAGATTTCCTGTAC





1028013
ATCAGCATTCCTGGAGTAAG
TATGAGGTATGGTTATGAAG





 987748
CCATTATCTGCTAATAGGTAG
GATAAGAGTCUGAATCTGTG





1393197
CATCACCAGAAGCTATAGCC
TCACCTCCCAGAGAACAATC





1028011
ATAATGTAACTGGGTGGCTC
CTTGCAAGACTTGGAAACAG





2881488
CAGTGGAAAAAAGAAGGAAG
TAATTACTCTGAGAGGCACC





1473598
GTCAGCAGGGCTTTTTAAAC
GATATAGTTTCAGTCACCTG





1157607
GGGMCACTACAGAAAAGGGC
CCTATAGTCTAGCAAAACCG





1157608
ATAGATCAGGGATCCTCAGC
TTTGCCTTCTGCTTTGCCAC





1912965
CTGTCCACTAGACTAAACTC
TCTCTGAGAG1TAGTAAAAC





1912966
ATTGCAACATTGGTTCTGAC
CCTCCACTACACAAATGACC





1982096
ATAATGGCTACTTTTCAGGG
GCAATGATCTTGTTAACCACC





1054750
CAGCACACTGCAAGGAAATC
GTCATCTGTGGAAATCTTGG





2117137
TGAACTGAAGCACTCATCCC
GGTGCAGCTATGAAGAAGTG





1499780
ACTATTATTTTAGGAAGGGGAAAG
CTTCTTCCAATACCATATCC





2117138
TCCCCAGATAATTCTGTCAC
CAAAGTTAATAAACACAACTG





2346840
GCTAGCTACATAGTTAAGTTC
ATTGCAAAGAAGGCCACCTG





2048518
GCTCTACCTTGGTTAATGCC
GGGATTTACCACTTGTGAAG





2048519
GATCAGACTGTAGGGTATGC
CTTCACAAGTGGTAAATCCC





2048520
CTAAGGTGGCATTGTTAGGG
TCTCAAGTTGACTCACTTGG





2048521
CTAAGGTGGCATTGTTAGGG
TCTCAAGTTGACTCACTTGG





3762718
GTAGTTCTCTGAGTAUCCAC
GGACCTGAAGMTGATTAGAG





2196083
GAACATGTTTGCTTGAAGGG
GGAACAGGCAGTTATCCTTG





1512187
TTGAGTATTAAGGGCTCTCC
TTGGACACAATCCTTCAGAG





 972030
TTGTCTCTGACCCAGAAACC
AAGCCAACAATTTGGCCTGC





2346837
AAGAGCACGAAGAACACAAG
ACTATTCAGGACCCTCTTGC





1036286
AAGTCCTGCTGTGCATTTTG
GTACTCTGAACCAAATGAGC





1036285
GAAGTCGGGAACATTTTGTG
AGTGTCATAAATGTCCAGGC





1512188
GAGGCAGATGTAGAAACAAG
AAGCAAGTCACTGTACAGAC





1512189
GCATACCATGAAATTCACCC
ACTGTGTTGATGCTAGCAAG





1567657
GGCTAAGGAAAAACTGAAACC
ATGCTTTCTCTGATGTTGGG





1567658
TCAGAACTCCAAAGAGCAAG
TCCTAAGATGGTTTGGTGAC





1028012
TTCCCTACTCACCACATAGC
TGCTCAGGTAACAGTTCTGG





















TABLE 16







dbSNP
Extend
Term




rs#
Primer
Mix









3792573
GAAAGTTATAAAGAGCCAAAAT
ACT








3792572
CTGTTTCACTATTCACTTTC
CGT







1398195
AAAAAAGACAAGCTAGGGCT
ACG







3528462
GCTCTTTTGTTGTAGCTGT
CGT







3805091
GTTACATTGCAATTTCCTTT
CGT







1512185
AAAGCATTTCTTTTCGAGA
ACT







1028013
ACTTAGAATGCTGCCTC
ACT







 987748
TGCTAATAGGTAGCTTATTAGAC
ACT







1398197
GAAGCTATAGCCTACCGCAA
ACT







1028011
TGGGTGGCTCCTGGTTT
ACT







2881488
AGATGAATTTTGTCAGGGG
ACT







1473598
ACAACCAAAAGGAGATTTTTTTA
ACT







1157607
AGGATACTTCCAAATCACAT
ACG







1157608
CCCCCGTGCCATGGACTGCT
ACT







1912965
AACTCAATTACCTCAATCCTTT
ACG







1912966
CATTGGTTCTGACTCTATTT
CGT







1982096
CTACTTTTCAGGGTTGTTA
ACG







1054750
AAGGAAATCTTCACGGG
ACG







2117137
TTGCAATCAAAAGAGAACTG
ACG







1499780
GAAGGGGAAGGGAAGA
ACT







2117138
TTGCAATCAAAAGAGAACTG
ACG







2346840
AATATGITTTTTAACACAGAATGA
ACT







2048518
TGAGTATGGTGGAAGTACTAG
ACG







2048519
AGGGTATGCCTGAGCAAG
ACG







2048520
ACTGAAGAAAAGGCAGAG
ACT







2048521
TTAGACACTGAAGAAAAGG
ACG







3762718
ATGCATCATAGCTTTTGACTTTTT
ACT







2196083
CTTGAAOGGTTCACTGT
ACT







1512187
AGGGCTCTCCAGACCAA
ACT







 972030
GAAACCTCATGACAACTG
CGT







2346837
GTGCTTAAAACTCCTCTTAT
ACT







1036286
TATGATTTTGACTTTTCAAAGTT
ACT







1036285
CCTAATAACTTATGTCTTACACA
ACT







1512188
AAGGTGTAAGTTTCATAAATGG
ACT







1512189
AATTCACCCATTTAAGTGTATA
ACT







1567657
AAAAACTGAAACCTGAAACT
ACT







1567658
CCAAAGAGCAAGAAAGCTTTAA
CGT







1028012
CACATAGCAAATATATGACACAA
ACG










Genetic Analysis


Allelotyping results are shown for female (F), male (M), and combined cases and controls in Table 17, 18 and 19 respectively. The allele frequency for the A2 allele is noted in the fifth and sixth columns for diabetes case pools and control pools, respectively, where “AF” is allele frequency. The allele frequency for the A1 allele can be easily calculated by subtracting the A2 allele frequency from 1 (A1 AF=1-A2 AF). For example, the SNP rs3792572 has the following case and control allele frequencies: case A1 (A)=0.568; case A2 (T)=0.432; control A1 (A)=0.655; and control A2 (T)=0.345, where the nucleotide is provided in parenthesis. Some SNPs may be labeled “untyped” because of failed assays.









TABLE 17







Female Allelotyping Results
















Position






Diabetes



in SEQ
Chromosome
A1/A2
Female A2
Female A2
Female
Female
Associated


dbSNP
ID NO: 1
Position
Allele
Case AF
Control AF
p-Value
OR
Allele


















3792573
225
89376025
[A/C]
0.002
0.002
0.97610
0.89
A


3792572
1,656
89377456
[A/T]
0.432
0.345

0.01355

1.45
T


1398195
5,432
89381232
[C/T]
0.001
0.001
0.94899
0.57
C


3828462
5,652
89381452
[G/T]
0.998
0.998
0.99029
1.05
T


3805091
6,343
89382143
[G/T]
0.991
0.980
0.30023
2.36
T


1512185
18,716
89394516
[A/G]
0.576
0.689

0.00080

0.61
A


1028013
29,369
89405169
[T/C]
0.257
0.183

0.01145

1.54
C


987748
39,131
89414931
[T/G]
0.364
0.489

0.00039

0.60
T


1398197
43,529
89419329
[T/C]
0.879
0.902
0.29098
0.79
T


1028011
43,720
89419520
[T/C]
0.841
0.823
0.54141
1.13
C


2881488
45,589
89421389
[C/G]
0.273
0.207

0.02527

1.43
G


1473598
48,922
89424722
[A/C]
0.001
0.000
0.96969
1.66
C


1157607
51,465
89427265
[C/T]
0.286
0.196

0.00276

1.64
T


1157608
51,565
89427365
[T/G]
0.227
0.164

0.03123

1.49
G


1912965
63,433
89439233
[G/A]
0.614
0.716

0.00128

0.63
G


1912966
63,565
89439365
[A/T]
0.650
0.726

0.01868

0.70
A


1982096
64,496
89440296
[C/T]
0.915
0.951
0.05630
0.56
C


1054750
66,826
89442626
[C/T]
0.707
0.756
0.12386
0.78
C


2117137
70,606
89446406
[C/T]
0.478
0.556

0.02971

0.73
C


1499780
71,173
89446973
[C/G]
0.514
0.651

0.00008

0.57
C


2117138
76,623
89452423
[G/A]
0.643
0.703
0.05989
0.76
G


2346840
78,368
89454168
[T/G]
0.223
0.169

0.05000

1.41
G


2048518
79,006
89454806
[C/T]
0.655
0.730

0.01811

0.70
C


2048519
79,079
89454879
[G/A]
0.292
0.216

0.02150

1.49
A


2048520
79,349
89455149
[T/C]
0.018
0.006
0.24350
3.06
C


2048521
79,354
89455154
[G/A]
0.322
0.252

0.02290

1.41
A


3762718
80,167
89455967
[T/G]
0.217
0.159

0.03599

1.46
G


2196083
81,647
89457447
[T/C]
0.241
0.166

0.00807

1.59
C


1512187
82,179
89457979
[T/C]
0.991
0.994
0.71104
0.62
T


972030
83,599
89459399
[G/T]
0.351
0.266

0.01187

1.50
T


2346837
87,700
89463500
[T/C]
0.997
0.999
0.82719
0.39
T


1036286
88,778
89464578
[T/G]
0.854
0.919

0.00429

0.51
T


1036285
89,162
89464962
[A/G]
0.267
0.194

0.01271

1.51
G


1512188
91,284
89467084
[A/G]
0.256
0.184

0.01715

1.53
G


1512189
91,433
89467233
[A/G]
0.311
0.228

0.00834

1.53
G


1567657
93,620
89469420
[A/G]
0.541
0.655

0.00085

0.62
A


1567658
93,707
89469507
[T/A]
0.254
0.200
0.06059
1.36
A


1028012
94,523
89470323
[C/T]
0.237
0.178

0.03523

1.44
T
















TABLE 18







Male Allelotyping Results
















Position



Male A2


Diabetes



in SEQ
Chromosome
A1/A2
Male A2
Control
Male
Male
Associated


dbSNP
ID NO: 1
Position
Allele
Case AF
AF
p-Value
OR
Allele


















3792573
225
89376025
[A/C]
0.002
0.000
0.80788
4.89
C


3792572
1,656
89377456
[A/T]
0.410
0.388
0.52606
1.09
T


1398195
5,432
89381232
[C/T]
0.001
0.002
0.89083
0.30
C


3828462
5,652
89381452
[G/T]
0.999
1.000
0.93099
0.02
G


3805091
6,343
89382143
[G/T]
0.996
0.996
0.97331
0.90
G


1512185
18,716
89394516
[A/G]
0.665
0.723
0.08628
0.76
A


1028013
29,369
89405169
[T/C]
0.213
0.170
0.12147
1.33
C


987748
39,131
89414931
[T/G]
untyped
0.480


1398197
43,529
89419329
[T/C]
0.919
0.896
0.24720
1.33
C


1028011
43,720
89419520
[T/C]
0.880
0.849
0.23952
1.30
C


2881488
45,589
89421389
[C/G]
0.248
0.192

0.04777

1.39
G


1473598
48,922
89424722
[A/C]
0.000
0.001
0.94560
0.00
A


1157607
51,465
89427265
[C/T]
0.242
0.195
0.11191
1.32
T


1157608
51,565
89427365
[T/G]
0.247
0.197
0.07481
1.34
G


1912965
63,433
89439233
[G/A]
0.629
0.666
0.28523
0.85
G


1912966
63,565
89439365
[A/T]
0.661
0.742

0.01409

0.68
A


1982096
64,496
89440296
[C/T]
0.957
0.911

0.04603

2.19
T


1054750
66,826
89442626
[C/T]
0.686
0.749
0.05024
0.73
C


2117137
70,606
89446406
[C/T]
0.510
0.517
0.85039
0.97
C


1499780
71,173
89446973
[C/G]
0.571
0.639
0.05268
0.75
C


2117138
76,623
89452423
[G/A]
0.635
0.701

0.04460

0.74
G


2346840
78,368
89454168
[T/G]
0.222
0.172
0.07047
1.37
G


2048518
79,006
89454806
[C/T]
0.638
0.714

0.02368

0.71
C


2048519
79,079
89454879
[G/A]
0.259
0.219
0.25605
1.25
A


2048520
79,349
89455149
[T/C]
0.004
0.003
0.87086
1.54
C


2048521
79,354
89455154
[G/A]
0.307
0.250
0.08642
1.33
A


3762718
80,167
89455967
[T/G]
0.226
0.182
0.11149
1.31
G


2196083
81,647
89457447
[T/C]
0.223
0.163

0.02500

1.47
C


1512187
82,179
89457979
[T/C]
0.995
0.995
0.97683
1.08
C


972030
83,599
89459399
[G/T]
0.327
0.288
0.24448
1.20
T


2346837
87,700
89463500
[T/C]
0.993
0.995
0.86322
0.76
T


1036286
88,778
89464578
[T/G]
0.909
0.933
0.32768
0.72
T


1036285
89,162
89464962
[A/G]
untyped
0.194


1512188
91,284
89467084
[A/G]
0.247
0.194
0.05761
1.36
G


1512189
91,433
89467233
[A/G]
0.292
0.225

0.02826

1.42
G


1567657
93,620
89469420
[A/G]
0.598
0.674

0.01723

0.72
A


1567658
93,707
89469507
[T/A]
0.266
0.214
0.09116
1.33
A


1028012
94,523
89470323
[C/T]
0.221
0.190
0.28643
1.21
T
















TABLE 19







Combined Allelotyping Results
















Position



A2


Diabetes



in SEQ
Chromosome
A1/A2
A2 Case
Control


Associated


dbSNP
ID NO: 1
Position
Allele
AF
AF
p-Value
OR
Allele


















3792573
225
89376025
[A/C]
0.002
0.001
0.87897
1.65
C


3792572
1,656
89377456
[A/T]
0.413
0.367
0.05913
1.21
T


1398195
5,432
89381232
[C/T]
0.000
0.002
0.85746
0.26
C


3828462
5,652
89381452
[G/T]
0.999
0.999
0.97553
0.82
G


3805091
6,343
89382143
[G/T]
0.993
0.988
0.57801
1.72
T


1512185
18,716
89394516
[A/G]
0.621
0.706

0.00035

0.68
A


1028013
29,369
89405169
[T/C]
0.235
0.176

0.00387

1.43
C


987748
39,131
89414931
[T/G]
0.364
0.484

0.00008

0.61
T


1398197
43,529
89419329
[T/C]
0.900
0.899
0.95556
1.01
C


1028011
43,720
89419520
[T/C]
0.861
0.837
0.21158
1.20
C


2881488
45,589
89421389
[C/G]
0.260
0.199

0.00270

1.41
G


1473598
48,922
89424722
[A/C]
0.000
0.000
0.98139
0.74
A


1157607
51,465
89427265
[C/T]
0.255
0.196

0.00483

1.40
T


1157608
51,565
89427365
[T/G]
0.237
0.181

0.00553

1.41
G


1912965
63,433
89439233
[G/A]
0.622
0.691

0.00357

0.74
G


1912966
63,565
89439365
[A/T]
0.658
0.734

0.00079

0.70
A


1982096
64,496
89440296
[C/T]
0.940
0.930
0.50606
1.17
T


1054750
66,826
89442626
[C/T]
0.697
0.752

0.01365

0.76
C


2117137
70,606
89446406
[C/T]
0.492
0.536
0.07688
0.84
C


1499780
71,173
89446973
[C/G]
0.543
0.645

0.00004

0.65
C


2117138
76,623
89452423
[G/A]
0.639
0.702

0.00587

0.75
G


2346840
78,368
89454168
[T/G]
0.223
0.171

0.00773

1.39
G


2048518
79,006
89454806
[C/T]
0.646
0.722

0.00091

0.70
C


2048519
79,079
89454879
[G/A]
0.275
0.218

0.01709

1.36
A


2048520
79,349
89455149
[T/C]
0.011
0.004
0.31706
2.59
C


2048521
79,354
89455154
[G/A]
0.315
0.251

0.00473

1.38
A


3762718
80,167
89455967
[T/G]
0.222
0.171

0.00925

1.38
G


2196083
81,647
89457447
[T/C]
0.231
0.165

0.00054

1.53
C


1512187
82,179
89457979
[T/C]
0.993
0.995
0.84511
0.78
T


972030
83,599
89459399
[G/T]
0.336
0.277

0.01286

1.32
T


2346837
87,700
89463500
[T/C]
0.995
0.997
0.78608
0.65
T


1036286
88,778
89464578
[T/G]
0.882
0.926

0.00687

0.60
T


1036285
89,162
89464962
[A/G]
0.267
0.194

0.00396

1.51
G


1512188
91,284
89467084
[A/G]
0.252
0.189

0.00235

1.44
G


1512189
91,433
89467233
[A/G]
0.301
0.227

0.00064

1.47
G


1567657
93,620
89469420
[A/G]
0.570
0.665

0.00005

0.67
A


1567658
93,707
89469507
[T/A]
0.258
0.207

0.01627

1.33
A


1028012
94,523
89470323
[C/T]
0.229
0.184

0.02803

1.31
T









Allelotyping results were considered particularly significant with a calculated p-value of less than or equal to 0.05 for allelotype results. These values are indicated in bold. The allelotyping p-values were plotted in FIGS. 1A-C for females, males and combined, respectively. The position of each SNP on the chromosome is presented on the x-axis. The y-axis gives the negative logarithm (base 10) of the p-value comparing the estimated allele in the case group to that of the control group. The minor allele frequency of the control group for each SNP designated by an X or other symbol on the graphs in FIGS. 1A-C can be determined by consulting Tables 17, 18 and 19. For example, the left-most X on the left graph is at position 89376025. By proceeding down the Table from top to bottom and across the graphs from left to right the allele frequency associated with each symbol shown can be determined.


To aid the interpretation, multiple lines have been added to the graph. The broken horizontal lines are drawn at two common significance levels, 0.05 and 0.01. The vertical broken lines are drawn every 20 kb to assist in the interpretation of distances between SNPs. Two other lines are drawn to expose linear, trends in the association of SNPs to the disease. The light gray, line (or generally bottom-most curve) is a nonlinear smoother through the data points on the graph using a local polynomial regression method (W. S. Cleveland, E. Grosse and W. M. Shyu (1992) Local regression models. Chapter 8 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.). The black line provides a local test for excess statistical significance to identify regions of association. This was created by use of a 10 kb sliding window with 1 kb step sizes. Within each window, a chi-square goodness of fit test was applied to compare the proportion of SNPs that were significant at a test wise level of 0.01, to the proportion that would be expected by chance alone (0.05 for the methods used here). Resulting p-values that were less than 10−8 were truncated at that value.


Finally, the exons and introns of the genes in the covered region are plotted, below each graph at the appropriate chromosomal positions. The gene boundary is indicated by the broken horizontal line. The exon positions are shown as thick, unbroken bars. An arrow is place at the 3′ end of each gene to show the direction of transcription.


Proximal SNP Replication


The proximal SNPs disclosed above were also allelotyped in the Newfoundland replication cohort described in Examples 3 and 4. Allelotyping results are shown for female (F), male (M), and combined cases and controls in Table 20, 21 and 22 respectively. The allele frequency for the A2 allele is noted in the fifth and sixth columns for diabetes case pools and control pools, respectively, where “AF” is allele frequency. The allele frequency for the A1 allele can be easily calculated by subtracting the A2 allele frequency from 1 (A1 AF=1-A2 AF). Some SNPs may be labeled “untyped” because of failed assays.









TABLE 20







Female Replication Allelotyping Results




















Female






Position


Female
A2


Diabetes



in SEQ
Chromosome
A1/A2
A2 Case
Control
Female
Female
Associated


dbSNP
ID NO: 1
Position
Allele
AF
AF
p-Value
OR
Allele


















3792573
225
89376025
[A/C]
0.001
0.001
0.97557
1.24
C


3792572
1,656
89377456
[A/T]
0.403
0.358
0.16071
1.21
T


1398195
5,432
89381232
[C/T]
0.000
0.001
0.94608
0.04
C


3828462
5,652
89381452
[G/T]
0.994
1.000
0.50046
0.00
G


3805091
6,343
89382143
[G/T]
0.991
0.990
0.90766
1.13
T


1512185
18,716
89394516
[A/G]
0.572
0.623
0.11500
0.81
A


1028013
29,369
89405169
[T/C]
0.258
0.227
0.27338
1.18
C


987748
39,131
89414931
[T/G]
0.407
0.466
0.07313
0.79
T


1398197
43,529
89419329
[T/C]
0.887
0.907
0.35510
0.81
T


1028011
43,720
89419520
[T/C]
0.838
0.835
0.89168
1.02
C


2881488
45,589
89421389
[C/G]
0.282
0.248
0.23045
1.19
G


1473598
48,922
89424722
[A/C]
0.000
0.001
0.97462
0.66
A


1157607
51,465
89427265
[C/T]
0.282
0.225

0.04679

1.35
T


1157608
51,565
89427365
[T/G]
0.245
0.227
0.51251
1.10
G


1912965
63,433
89439233
[G/A]
0.590
0.608
0.66254
0.93
G


1912966
63,565
89439365
[A/T]
0.641
0.687
0.14751
0.81
A


1982096
64,496
89440296
[C/T]
0.941
0.970
0.09041
0.50
C


1054750
66,826
89442626
[C/T]
0.674
0.679
0.87433
0.97
C


2117137
70,606
89446406
[C/T]
0.476
0.510
0.33319
0.87
C


1499780
71,173
89446973
[C/G]
0.541
0.589
0.14521
0.82
C


2117138
76,623
89452423
[G/A]
0.604
0.642
0.24560
0.85
G


2346840
78,368
89454168
[T/G]
0.247
0.222
0.35703
1.15
G


2048518
79,006
89454806
[C/T]
0.625
0.642
0.61569
0.93
C


2048519
79,079
89454879
[G/A]
0.324
0.258

0.02843

1.38
A


2048520
79,349
89455149
[T/C]
0.008
0.006
0.80839
1.39
C


2048521
79,354
89455154
[G/A]
0.328
0.289
0.20537
1.20
A


3762718
80,167
89455967
[T/G]
0.249
0.214
0.23888
1.22
G


2196083
81,647
89457447
[T/C]
0.263
0.234
0.29363
1.17
C


1512187
82,179
89457979
[T/C]
0.996
0.997
0.92664
0.81
T


972030
83,599
89459399
[G/T]
0.401
0.329

0.02073

1.36
T


2346837
87,700
89463500
[T/C]
0.998
0.995
0.72396
2.99
C


1036286
88,778
89464578
[T/G]
0.885
0.883
0.88961
1.03
G


1036285
89,162
89464962
[A/G]
0.293
0.262
0.28131
1.17
G


1512188
91,284
89467084
[A/G]
0.282
0.247
0.21329
1.20
G


1512189
91,433
89467233
[A/G]
0.328
0.292
0.22606
1.18
G


1567657
93,620
89469420
[A/G]
0.528
0.581
0.09039
0.81
A


1567658
93,707
89469507
[T/A]
0.297
0.247
0.07396
1.29
A


1028012
94,523
89470323
[C/T]
0.250
0.184

0.03574

1.48
T
















TABLE 21







Male Replication Allelotyping Results
















Position



Male A2


Diabetes



in SEQ
Chromosome
A1/A2
Male A2
Control
Male
Male
Associated


dbSNP
ID NO: 1
Position
Allele
Case AF
AF
p-Value
OR
Allele


















3792573
225
89376025
[A/C]
0.001
0.005
0.64968
0.20
A


3792572
1,656
89377456
[A/T]
0.384
0.375
0.79686
1.04
T


1398195
5,432
89381232
[C/T]
0.000
0.000
0.99247
0.81
C


3828462
5,652
89381452
[G/T]
1.000
0.997
0.77722
5.61
T


3805091
6,343
89382143
[G/T]
0.960
0.977
0.25633
0.57
G


1512185
18,716
89394516
[A/G]
0.582
0.671

0.01394

0.68
A


1028013
29,369
89405169
[T/C]
0.245
0.211
0.28863
1.21
C


987748
39,131
89414931
[T/G]
0.405
0.471
0.10715
0.76
T


1398197
43,529
89419329
[T/C]
0.902
0.905
0.90047
0.96
T


1028011
43,720
89419520
[T/C]
0.842
0.881
0.18933
0.72
T


2881488
45,589
89421389
[C/G]
0.262
0.243
0.55724
1.11
G


1473598
48,922
89424722
[A/C]
0.000
0.000
0.99974
0.94
A


1157607
51,465
89427265
[C/T]
0.263
0.197
0.05327
1.45
T


1157608
51,565
89427365
[T/G]
0.213
0.213
0.98899
1.00
T


1912965
63,433
89439233
[G/A]
0.613
0.635
0.56821
0.91
G


1912966
63,565
89439365
[A/T]
0.658
0.725
0.06349
0.73
A


1982096
64,496
89440296
[C/T]
0.965
0.951
0.40260
1.44
T


1054750
66,826
89442626
[C/T]
0.702
0.712
0.78304
0.96
C


2117137
70,606
89446406
[C/T]
0.520
0.500
0.61596
1.08
T


1499780
71,173
89446973
[C/G]
0.555
0.637

0.03618

0.71
C


2117138
76,623
89452423
[G/A]
0.639
0.665
0.48442
0.89
G


2346840
78,368
89454168
[T/G]
0.220
0.207
0.67619
1.08
G


2048518
79,006
89454806
[C/T]
0.671
0.675
0.92537
0.98
C


2048519
79,079
89454879
[G/A]
0.290
0.225
0.07283
1.41
A


2048520
79,349
89455149
[T/C]
0.015
0.003
0.22937
5.64
C


2048521
79,354
89455154
[G/A]
0.302
0.258
0.22624
1.24
A


3762718
80,167
89455967
[T/G]
0.212
0.184
0.38850
1.19
G


2196083
81,647
89457447
[T/C]
0.231
0.198
0.28951
1.22
C


1512187
82,179
89457979
[T/C]
0.994
0.998
0.63697
0.28
T


972030
83,599
89459399
[G/T]
0.375
0.295

0.02255

1.43
T


2346837
87,700
89463500
[T/C]
0.995
0.999
0.62573
0.19
T


1036286
88,778
89464578
[T/G]
0.866
0.919

0.04633

0.56
T


1036285
89,162
89464962
[A/G]
0.257
0.229
0.38929
1.16
G


1512188
91,284
89467084
[A/G]
0.250
0.212
0.27185
1.24
G


1512189
91,433
89467233
[A/G]
0.306
0.269
0.28293
1.20
G


1567657
93,620
89469420
[A/G]
0.546
0.642

0.01337

0.67
A


1567658
93,707
89469507
[T/A]
0.245
0.217
0.37933
1.17
A


1028012
94,523
89470323
[C/T]
0.233
untyped
















TABLE 22







Combined Replication Allelotyping Results
















Position



A2


Diabetes



in SEQ
Chromosome
A1/A2
A2 Case
Control


Associated


dbSNP
ID NO: 1
Position
Allele
AF
AF
p-Value
OR
Allele


















3792573
225
89376025
[A/C]
0.001
0.002
0.83108
0.48
A


3792572
1,656
89377456
[A/T]
0.394
0.364
0.19668
1.14
T


1398195
5,432
89381232
[C/T]
0.000
0.000
0.95138
0.32
C


3828462
5,652
89381452
[G/T]
0.997
0.999
0.68794
0.29
G


3805091
6,343
89382143
[G/T]
0.976
0.985
0.28217
0.61
G


1512185
18,716
89394516
[A/G]
0.577
0.639

0.00842

0.77
A


1028013
29,369
89405169
[T/C]
0.252
0.222
0.14710
1.18
C


987748
39,131
89414931
[T/G]
0.406
0.468

0.01677

0.78
T


1398197
43,529
89419329
[T/C]
0.894
0.906
0.45175
0.87
T


1028011
43,720
89419520
[T/C]
0.840
0.851
0.58005
0.92
T


2881488
45,589
89421389
[C/G]
0.273
0.247
0.21430
1.15
G


1473598
48,922
89424722
[A/C]
0.000
0.000
0.97548
0.56
A


1157607
51,465
89427265
[C/T]
0.273
0.216

0.00877

1.37
T


1157608
51,565
89427365
[T/G]
0.230
0.222
0.70870
1.04
G


1912965
63,433
89439233
[G/A]
0.601
0.617
0.55456
0.93
G


1912966
63,565
89439365
[A/T]
0.649
0.700

0.03038

0.79
A


1982096
64,496
89440296
[C/T]
0.952
0.963
0.36677
0.77
C


1054750
66,826
89442626
[C/T]
0.687
0.690
0.89251
0.98
C


2117137
70,606
89446406
[C/T]
0.497
0.507
0.69741
0.96
C


1499780
71,173
89446973
[C/G]
0.547
0.605

0.02146

0.79
C


2117138
76,623
89452423
[G/A]
0.620
0.650
0.22149
0.88
G


2346840
78,368
89454168
[T/G]
0.234
0.217
0.39179
1.11
G


2048518
79,006
89454806
[C/T]
0.647
0.653
0.79171
0.97
C


2048519
79,079
89454879
[G/A]
0.308
0.247

0.00827

1.36
A


2048520
79,349
89455149
[T/C]
0.011
0.005
0.32737
2.43
C


2048521
79,354
89455154
[G/A]
0.316
0.278
0.10828
1.20
A


3762718
80,167
89455967
[T/G]
0.232
0.204
0.19864
1.18
G


2196083
81,647
89457447
[T/C]
0.248
0.222
0.19882
1.16
C


1512187
82,179
89457979
[T/C]
0.995
0.997
0.72710
0.57
T


972030
83,599
89459399
[G/T]
0.389
0.318

0.00195

1.37
T


2346837
87,700
89463500
[T/C]
0.997
0.997
0.97694
1.05
C


1036286
88,778
89464578
[T/G]
0.876
0.895
0.26522
0.83
T


1036285
89,162
89464962
[A/G]
0.276
0.251
0.23640
1.14
G


1512188
91,284
89467084
[A/G]
0.267
0.235
0.14196
1.18
G


1512189
91,433
89467233
[A/G]
0.318
0.284
0.13534
1.17
G


1567657
93,620
89469420
[A/G]
0.537
0.602

0.00739

0.77
A


1567658
93,707
89469507
[T/A]
0.273
0.237
0.08628
1.21
A


1028012
94,523
89470323
[C/T]
0.242
0.184

0.01783

1.42
T









Allelotyping results were considered particularly significant with a calculated p-value of less than or equal to 0.05 for allelotype results. These values are indicated in bold. The allelotyping p-values were plotted in FIGS. 1D-F for females, males and combined, respectively. The position of each SNP on the chromosome is presented on the x-axis. The y-axis gives the negative logarithm (base 10) of the p-value comparing the estimated allele in the case group to that of the control group. The minor allele frequency of the control group for each SNP designated by an X or other symbol on the graphs in FIGS. 1D-F can be determined by consulting Tables 20, 21 and 22. For example, the left-most X on the left graph is at position 89376025. By proceeding down the Table from top to bottom and across the graphs from left to right the allele frequency associated with each symbol shown can be determined.


Secondary Phenotype Association


A secondary phenotype analysis was performed to look for associations between EPHA3 SNPs and additional diabetes-related phenotypes. This analysis revealed an association between rs1512183 and C peptide levels both in fasting (by 27%, P<0.08) and post-prandial states (15%, P<0.009). This association exists both within the male and female diabetic cases. C peptide (in nmol/L) is a measure of endogenous insulin production. C-peptide blood levels can indicate whether or not a person is producing insulin and roughly how much. This is because insulin is initially synthesized in the form of proinsulin. In this form, the alpha and beta chains of active insulin are linked by a third polypeptide chain called the connecting peptide, or c-peptide, for short. Because both insulin and c-peptide molecules are secreted, for every molecule of insulin in the blood, there is one of c-peptide. Therefore, levels of c-peptide in the blood can be measured and used as an indicator of insulin production in those cases where exogenous insulin (from injection) is present and mixed with endogenous insulin (that produced by the body) a situation that would make meaningless a measurement of insulin itself. The c-peptide test can also be used to help assess if high blood glucose is due to reduced insulin production or to reduced glucose intake by the cells.


A significant increase in C peptide levels exist in the TT homozygotes, where T is the allele associated with type II diabetes. Therefore, this polymorphism results in an insulin resistant state, and compensatory hyperinsulinemia is observed.


Identification of a Coding, Non-Synonymous SNP at Amino Acid Position 924 in EPHA3


A SNP was identified by fragmentation at chromosome position 89442594, which codes for a non-synonymous SNP at amino acid position 924 in the EPHA3 protein (see SEQ ID NO: 4). Fragmentation is described by Hartmer et al. (Nucleic Acids Res. 2003 May 1; 31(9):e47), Bocker (Bioinformatics. 2003 July; 19 Suppl 1:I44-I53), in U.S. patent application 60/466,006 filed 25 Apr. 2003 and in U.S. patent application 60/429,895 filed 27 Nov. 2002. The following primers were used for fragmentation analysis of this particular SNP: AGTTCCTGCCGATGTTAGT and CTGTGGAAATCTGGCTATT. From fragmentation, the following genotypes were determined from the 12 individuals (6 cases and 6 controls):













TABLE 23





Sample_Type
Sample_Gender
Sample_Source
Allele 1
Allele 2







cas
F
TBN
C
C


cas
F
TBN
C
C


cas
F
TBN
C
C


cas
M
TBN
C
C


cas
M
TBN
C
C


cas
M
TBN
C
C


con
F
TBN
T
T


con
F
TBN
T
T


con
F
TBN
Unk
Unk


con
M
TBN
T
T


con
M
TBN
T
T


con
M
TBN
T
T









More specifically, the thymine/cytosine polymorphic variation at position 201 of exon 16 in EPHA3 codes for a tryptophan (W) to arginine (R) amino acid change at position 924 of the polypeptide sequence (see SEQ ID NO: 4) The W924R change occurs in the SAM domain, and represents a dramatic change as typtophan is highly hydrophobic and arginine is hydrophilic and positively charged under physiological conditions.


The SNP at chromosome position 89442594 is polymorphic and was genotyped in the German diabetic population samples described herein using the primers provided in Tables 24 and 25.












TABLE 24





Ref
Forward
Reverse



SNP ID
PCR primer
PCR primer

















AB
CCGTGAAGATTTCCTTGCAG
GTGGATATCACTACCTTCCG



















TABLE 25





Reference
Extend
Term



SNP ID
Probe
Mix

















AB
CTTGCAGTGTGCTGTCC
ACT









Tables 26, 27 and 28 show the genotyping results for the SNP at position 89442594 in the Discovery and Newfoundland cohorts for females, males and combined.









TABLE 26







Female Genotyping Results












SNP




Odds


Reference
Population
F case
F control
p-value
Ratio















AB
Discovery
T = 0.529
T = 0.639
0.000563
1.58




C = 0.471
C = 0.361


AB
Newfoundland
T = 0.569
T = 0.605
0.459
1.16




C = 0.431
C = 0.395
















TABLE 27







Male Genotyping Results












SNP




Odds


Reference
Population
M case
M control
p-value
Ratio















AB
Discovery
T = 0.573
T = 0.593
0.525
1.09




C = 0.427
C = 0.407


AB
Newfoundland
T = 0.602
T = 0.549
0.284
0.8




C = 0.398
C = 0.451
















TABLE 28







Combined Genotyping Results












SNP




Odds


Reference
Population
A case
A control
p-value
Ratio















AB
Discovery
T = 0.551
T = 0.616
0.00409
1.3




C = 0.449
C = 0.384


AB
Newfoundland
T = 0.585
T = 0.577
0.813
0.97




C = 0.415
C = 0.423









The C allele is more frequent in case samples and codes for an arginine at position 924 of EPHA3, therefore arginine is associated with an increased risk of diabetes, while tryptophan is associated with a decreased risk. The tryptophan allele is not conserved amongst species, as the mouse version of the gene possess an arginine at this locus.


Deep Sequencing Reveals Non-synonymous SNP at Amino Acid Position 914 in EPHA3


Deep sequencing was performed on EPHA3 to identify novel SNPs located in the gene. Methods of deep sequencing (or high-throughput comparative sequence analysis) are described by Hartmer et al. (Nucleic Acids Res. 2003 May 1; 31(9):e47) and by Bocker. (Bioinformatics. 2003 July; 19 Suppl 1:I44-I53). Deep sequencing of EPHA3 revealed an allelic variant in exon 16 that codes for an arginine to histidine change at amino acid position 914 of transcript variant 1 of EPHA3 (chromosome position 89442565 of Build 34). See Table 23, below, which shows the allele frequencies for male and female cases. The forward primer used is AGTTCCTGCCGATGTTAGT and the reverse primer used is CTGTGGAAATCTTGGCTATT. Amino acid 914 is located in the SAM domain and is not conserved amongst species. The mouse and rat versions of the gene possess a histidine at this locus and the chicken version of the gene possesses an arginine at the position. Both amino acids are hydrophilic, although arginine normally is fully charged under physiological conditions while histidine normally is partially charged.


Tables 29, 30 and 31 show the genotyping results for the SNP at position 89442565 in the Discovery and Newfoundland cohorts for females, males and combined.









TABLE 29







Female Genotyping Results












SNP




Odds


Reference
Population
F case
F control
p-value
Ratio





AA
Discovery
G = 0.895
G = 0.898
0.848
1.04




A = 0.105
A = 0.102


AA
Newfoundland
G = 0.919
G = 0.917
0.939
0.98




A = 0.081
A = 0.083
















TABLE 30







Male Genotyping Results












SNP




Odds


Reference
Population
F case
F control
p-value
Ratio





AA
Discovery
G = 0.900
G = 0.883
0.393
0.84




A = 0.100
A = 0.117


AA
Newfoundland
G = 0.902
G = 0.893
0.757
0.91




A = 0.098
A = 0.107
















TABLE 31







Combined Genotyping Results












SNP




Odds


Reference
Population
F case
F control
p-value
Ratio





AA
Discovery
G = 0.897
G = 0.890
0.627
0.93




A = 0.103
A = 0.110


AA
Newfoundland
G = 0.911
G = 0.909
0.929
0.98




A = 0.089
A = 0.091









Example 6
EPHA3 Expression Profile

Expression of EPHA3 isoforms and its ligands ephrin-A2 and ephrin-A5 was determined in a panel of cDNA generated from tumorigenic cell lines and normal tissues. The transmembrane isoform of EPHA3, isoform 1, was expressed at higher levels than the soluble isoforms, isoform 2. Specifically, EPHA3, isoform 1, expression was initially detected in normal brain, adipose prostate, liver, cardiac muscle tissues, and several tumorigenic cell lines of neuronal, hematopoietic, mammary and prostate origins. Ephrin-A5 was expressed at higher levels than ephrin-A2 in the same panel of cDNA, and expression in normal tissue was detected for ephrin-A5 in adipose, brain and liver tissues. To analyze these expressions in greater detail, additional cDNA was generated from new samples of skeletal muscle, liver and pancreas. Full length EPHA3 was detected in adipose, two liver tissues, pancreas, skeletal muscle and prostate. Ephrin-A5 expression was detected in adipose, skeletal muscle and prostate, while ephrin-A2 was only detected in liver tissue.


Immunohistochemistry.


Blood glucose level is tightly regulated by the interplay of several tissues including the brain, liver, pancreas, small intestine, skeletal muscle and adipose tissues. Changes in blood glucose level is sensed by the pancreas, which results in the secretion of hormones that reinstate normal blood glucose levels through the stimulation of glucose production in the liver or absorption from the intestine, and uptake and metabolism in peripheral tissues, particularly adipose and skeletal muscles Several of these tissues are composed of a small percentage of specialized cells that are responsible for these specific functions. As a result, detection of expression of candidate genes that may be involved in the pathology of diabetes can be overlooked when looking at whole tissue. To determine specific cellular expression within a tissue, gene expression was detected using immunohistochemistry.


Methods


Mice were perfused with 4% paraformaldehyde/PBS solution. After perfusion, pancreas, and white adipocyte tissue from the peritoneal cavity, was dissected out, and additionally fixed for 3 hours in 4% paraformaldehyde/PBS solution. Pancreatic tissues were then washed with PBS, and sucrose treated overnight in sucrose/PBS solution. After rinsing in PBS, tissues were embedded in OCT, and frozen overnight at −80 deg. 7u tissue sections were generated using a cryosection, and stored at −0 deg. For white adipocyte tissues, tissues were washed with PBS after additional fixing, and dehydrated in a series of ethanol and xylene treatments. Adipocytes were then embedded in paraffin blocks.


Prior to staining, cryosections were thawed at room temperature and sections washed three times in PBS. For paraffin sections, sections were deparaffinized with xylene and ethanol treatments, and subsequently hydrated with PBS . . . . Sections were blocked in 4% donkey serum in PBS (blocking solution) for one hour. Blocking solution was aspirated, and slide incubated with primary antibodies, anti-EPHA3, -ephrin-M, and -ephrin-A5 at 1:50 and anti-insulin at 1:100 in blocking solution for 24 hours. Samples were washed three times in PBS. After washes, slides stained with anti-EPHA3, -ephrin-A2, and -ephrin-A5 were incubated with secondary antibodies, anti-TRITC and sections stained with anti-insulin were incubated with an anti-FITC secondary antibody for one hour. Slides were washed three times. Excess fluid was removed from sections, and mounted using a non-fading mounting media.


Results


Using primary antibodies specific to EPHA3, ephrin-A5 and ephrin-M, expression was detected in mouse adipocytes. Sections of mouse pancreas probed with primary antibodies against EPHA3 and ephrin-A5 showed specific fluorescent signal in the islet regions of the pancreas. However, sections of mouse pancreas stained with anti-ephrin-A2 antibodies did not show any expression. Pancreatic islets are cellular structures within the pancreas that contain insulin-secreting cells, and therefore stain positive for insulin. To verify specificity of staining in islets, double staining with antibodies against insulin and EPHA3, or with ephrin-A5, was performed.


Results showed specific staining and colocalization of insulin with ephrin-A5, and with EPHA3 in mouse pancreatic islets indicating expression in this area of the pancreas. It was determined EPHA3 and ephrin-A5, but not ephrin-A2, were expressed in islets of mouse pancreas as demonstrated by single staining with EPHA3 and ephrin-A5, and co-staining with insulin EPHA3 ephrin-A5, and ephrin-A2 expression also were detected in mouse white adipose tissue. The absence of fluorescent signal from sections stained with secondary antibodies alone underscore the specificity of these results. The specific expression of EPHA3 and its ligands, ephrin-A5 and ephrin-A2, in both the islets of pancreas and white adipose tissue—tissues centrally involved in the control of glucose and energy homeostasis—further indicates a role for EPHA3 and its ligands in type II diabetes.


Example 7
Glucose Uptake Assay

One of the many responses of adipocytes and muscle cells after exposure, to insulin is the transport of glucose intracellularly. This transport is mediated by GLUT4, an insulin-regulatable glucose transporter. Insulin binding to insulin receptors on the cell surface results in autophosphorylation and activation of the intrinsic tyrosine kinase activity of the insulin receptor. Phosphorylated tyrosine residues on the insulin receptor and its endogenous targets activate several intracellular signaling pathways that eventually lead to the translocation of GLUT4 from intracellular stores to the extracellular membrane.


Methods


Cells were plated in 6-well dishes, and grown to confluency. Cells were then differentiated with DMEM plus 10% fetal calf serum (FCS), 10 ug/mL insulin, 390 ng/mL dexamethasone and 112 ug/mL isobutylmethylxanthine for 2 days. After 2 days of differentiation, media was changed to maintenance media DMEM plus 10% FCS and 5 ug/mL insulin. Media was changed every 2 days thereafter. Cells were assayed for insulin-mediated glucose uptake 10 days after differentiation. On the day of the assay, cells were washed once with PBS, and serum starved by adding 2 mL of DMEM plus 2 mg/mL BSA for 3 hours. During serum starvation, recombinant rat ephrin-A5/Fc chimeric ligand was preclustered. In a solution of PBS plus 2 mg/mL BSA, recombinant rat ephrin-A5/Fc chimera was added to a concentration of 1.75 ug/mL, and anti-human IgG, Fc γ fragment specific antibody to a final concentration of 17.5 ug/mL. After 3 hours of serum starvation, media was replaced with 2 mL of preclustered ephrin-A5, and incubated for 10, 40 and 90 min at 37 deg. After 10 min, porcine insulin was added to a final concentration of 100 nM for 10 min at 37 deg. For every 2 mL of media, 100 uL of PBS-2-DOG label was added to, give a final concentration of 2 uCi. Cells were immediately placed on ice, washed three times with ice cold PBS, and lysed with 0.7 mL of 0.2 N NaOH. Lysates were read in a Wallac 1450 Microbeta Liquid Scintillation and Luminescence Counter.


Results


Differentiated 3T3-L1, when treated with 100 nM insulin for 10 minutes, resulted in a 22-fold increase in uptake of radioactive glucose. When cells were pretreated with pre-clustered ephrin-A5 for 10 min prior to insulin treatment, a 20% decrease in uptake of radioactive glucose was observed. However, when pretreated for 40 minutes, no change in glucose uptake compared to cells treated with insulin alone was observed. The inhibition was reinstated after 90 min of preincubation with pre-clustered ephrin-A5, where a 15% decrease in glucose uptake was observed. These results fall within a range of inhibition seen in similar metabolic-related experiments performed by others. For example, a range of inhibition of 18%-35% was reported for the inhibition of AKT using siRNA (Katome et al. JBC, July 2003; 278:28312-28323). AKT is downstream of PI3-Kinase which is one of the substrates for the insulin receptor. In addition, Cho et al. (Han Cho et al. Science 2001 Jun. 1; 292:1728-1731) report that target disruption of AKT2 causes insulin resistance and type II diabetes phenotype.


Ephrin-A5 binds with high affinity, to EPHA3. This binding has been shown to activate the intrinsic receptor tyrosine kinase activity of EPHA3. This activation results in inhibition of one of the steps leading to the translocation of GLUT4 to the membrane, or of the insulin mediated increase in the intrinsic transport activity of GLUT4. The cumulative and overall decrease in glucose transport as a result of EPHA3 activation can lead to chronic hyperglycemia and eventual onset of diabetes.


Example 8
Triacylglycerol (TG) Assay

A direct metabolic consequence of glucose transport intracellularly is its incorporation into the fatty acid and glycerol moieties of triacylglycerol (TG). TGs are highly concentrated stores of metabolic energy, and are the major energy reservoir of cells. In mammals, the major site of accumulation of triacylglycerols is the cytoplasm of adipose cells. Adipocytes are specialized for the synthesis, and storage of TG, and for their mobilization into fuel molecules that are transported to other tissues through the bloodstream. It is likely that changes in the transport of glucose intracellularly can affect cytoplasmic stores of triacylglycerols.


Methods


Cells were plated in 6-well dishes, and grown to confluency. When cells reached confluency, cells were differentiated with DMEM plus 10% fetal calf serum (FCS), 10 ug/mL insulin, 390 ng/mL dexamethasone and 112 ug/mL isobutylmethylxanthine for 2 days. After 2 days of differentiation, media was changed to maintenance media DMEM plus 10%. FCS and 5 ug/1 nm insulin. On the day of the assay (day 9 post-differentiation), cells were washed once with PBS, and serum starved by adding 2 mL of DMEM plus 2 mg/ml BSA for 3 hours. During serum starvation, recombinant rat ephrin-A5/Fc chimeric ligand was preclustered. In a solution of PBS plus 2 mg/ml BSA recombinant rat ephrin-A5/Fc chimeria was added to a concentration of 1.75 ug/mL, and anti-human IgG, Fc γ fragment specific antibody to a final concentration of 17.5 ug/mL. After 3 hours of serum starvation, media was replaced with pre-clustered ephrin-A5 solution, and incubated for 10 minutes at 37 degrees. Cells were then treated with 100 nM porcine insulin for 2 hours at 37 degrees. Cells were immediately placed on ice, and washed twice with ice cold PBS. Cells were lysed with 1% SDS, 1.2 mM Tris, pH 7.0 and heat treated at 95 degrees for 5 minutes. Samples were assayed using INFINITY Tryglyceride reagent. In a 96-well, flat bottom, transparent microtiter plate, 3 uL of sample were added to 300 uL of INFINITY Triglyceride Reagent. Samples were incubated at room temperature for 10 minutes. The assay was read at 500-550 nm.


Results


Differentiated 3T3-L1 treated with 100 nM insulin showed an increase in TG stores by about 23%. When cells were pretreated with ephrin-A5 for 10 minutes prior to insulin treatment a 10% decrease in insulin-mediated TG stores was observed. Adipocytes transport glucose intracellularly when exposed to insulin. Transported glucose are primarily converted to triglycerides, the primary source of cellular energy for adipocytes. Because ephrin-A5 binds with high affinity to EPHA3, pretreatment with ephrin-A5 is thought to activate EPHA3, which then inhibits glucose transport intracellularly. The decrease in glucose imported contributes to the observed decrease in measured intracellular triglycerides. Alternatively, activation of EPHA3 by ephrin-A5 binding results in the transcriptional inhibition of genes necessary for the conversion of glucose to triglyceride. This downregulation of genes necessary for lipogenesis contributes to the observed decrease in measured TG.


Example 9
Quantitative Assessment of mResistin Levels

Resistin is a secreted factor specifically expressed in white adipocyte. It was initially discovered in a screen for genes downregulated in adipocytes by PPAR gamma, and expression was found to be attenuated by insulin. Elevated levels of resistin have been measured in genetically obese, and high fat fed obese mice. It is therefore thought that resistin contributes to peripheral tissue insulin unresponsiveness, one of the pathological hallmarks of diabetes.


Methods


3T3-L1 cells were differentiated for 3 days as previously described and maintained for three days prior to splitting. At day 5 post-differentiation, differentiated cells were plated in 10 cm dish at a cell density of 3×106 cells. Cells were then serum starved on day 7 after initiation of differentiation. On day 8, cells were treated with pre-clustered recombinant rat ephrin-A5/Fc chimera as described above for 10 min and treated with 10 nM insulin for 2 hours. Cells were harvested, mRNA extracted using magnetic DYNAL beads and reverse transcribed to cDNA using. Superscript First-Strand Synthesis as described by the manufacturer. The following primers: forward primer; 5′ GTC GCT TCC TGA TGT CGG TCA 3′, and reverse primer, 5′ GGC CAG CCT GGA CTA TAT GAG 3′, were used in 15 uL PCR reaction using 55 deg annealing temperature and 30 cycles of amplification.


Results


Differentiated 3T3-L1 cells treated with insulin showed a decrease in resistin mRNA levels. When cells were pretreated with ephrin-A5 prior to insulin treatment, the observed inhibition in resistin levels as a result of insulin treatment was relieved. C/EBP alpha, a transcription factor upregulated in the early steps of adipocyte differentiation, has been found to positively regulate resistin mRNA expression. In addition, overexpression of PPAR gamma, and PI3-kinase and Akt, signaling intermediates downstream of the insulin receptor, down-regulates resistin levels. It is formally possible that EPHA3 activation as a result of ephrin-A5 binding results in the inactivation of the activity of PPAR gamma, or the inhibition of the insulin-PI3-K-Akt pathway, or may conversely activate positive regulators such as C/EBP alpha. The additional effect of an increase in secreted resistin levels as a result of ephrin-A5 treatment can result in the loss or decrease in sensitivity of peripheral tissues, such as adipocyte, to insulin. This loss or decrease in insulin sensitivity can affect eventual transport and metabolism of glucose and result in a diabetic phenotype.


Example 10
In Vitro Tests of Metabolic-Related Activity

In vitro assays described hereafter are useful for identifying therapeutics for treating human diabetes. As used in Examples hereafter directed to in vitro assays, rodent models and studies in humans, the term “test molecule” refers to a molecule that is added to a system, where an agonist effect, antagonist effect, or lack of an effect of the molecule on EPHA3 function or a related physiological function in the system is assessed. An example of a test molecule is a test compound, such as a test compound described in the section “Compositions Comprising Diabetes-Directed Molecules” above. Another example of a test molecule is a test peptide, which includes, for example, an EPHA3-related test peptide such as a soluble, extracellular form of EPHA3 (e.g., isoform b of EPHA3 and the extracellular domain of isoform a of EPHA3), an EPHA3 binding partner or ligand (e.g., Ephrin-A2 or Ephrin-A5), or a functional fragment of the foregoing. A concentration range or amount of test molecule utilized in the assays and models is selected from a variety of available ranges and amounts. For example, a test molecule sometimes is introduced to an assay system in a concentration range between 1 nanomolar and 100 micromolar or a concentration range between 1 nanograms/mL and 100 micrograms/mL. An effect of a test molecule on EPHA3 function or a related physiological function often is determined by comparing an effect in a system administered the test molecule against an effect in system not administered the test molecule. Described directly hereafter are examples of in vitro assays.


Effect on Muscle Differentiation


C2C12 cells (murine skeletal muscle cell line; ATCC CRL 1772, Rockville, Md.) are seeded sparsely (about 15-20%) in complete DMEM (w/glutamine, pen/strep, etc)+10% FCS. Two days later they become 80-90% confluent. At this time, the media is changed to DMEM+2% horse serum to allow differentiation. The media is changed daily. Abundant myotube formation occurs after 34 days of being in 2% horse serum, although the exact time course of C2C12 differentiation depends on how long they have been passaged and how they have been maintained, among other factors.


To test the effect of the presence of test molecules on muscle differentiation, test molecules (e.g., test peptides added in a range of 1 to 2.5 μg/mL) are added the day after seeding when the cells are still in DMEM with 10% FCS. Two days after plating the cells (one day after the test molecule was first added), at about 80-90% confluency, the media is changed to DMEM+2% horse serum plus the test molecule.


Effect on Muscle Cell Fatty Acid Oxidation


C2C12 cells are differentiated in the presence or absence of 2 μg/mL test molecules for 4 days. On day 4, oleate oxidation rates are determined by measuring conversion of 1-14C-oleate (0.2 mM) to 14CO2 for 90 min. This experiment can be used to screen for active polypeptides and peptides as well as agonists and antagonists or activators and inhibitors of EPHA3 polypeptides or binding partners.


The effect of test molecules on the rate of oleate oxidation can be compared in differentiated C2C12 cells (murine skeletal muscle cells; ATCC, Manassas, Va. CRL-1772) and in a hepatocyte cell line (Hepal-6; ATCC, Manassas, Va. CRL-1830). Cultured cells are maintained according to manufacturer's instructions. The oleate oxidation assay is performed as previously described (Muoio et al (1999) Biochem J 338; 783-791). Briefly, nearly confluent monocytes are kept in low serum differentiation media (DMEM, 2.5% Horse serum) for 4 days, at which time formation of myotubes becomes maximal. Hepatocytes are kept in the same DMEM medium supplemented with 10% FCS for 2 days. One hour prior to the experiment the media is removed and 1 mL of preincubation media (MEM, 2.5% Horse serum, 3 mM glucose, 4 mM Glutamine, 25 mM Hepes, 1% FFA free BSA, 0.25 mM Oleate, 5 μg/mL gentamycin) is added. At the start of the oxidation experiment 14C-Oleic acid (1 μCi/mL, American Radiolabelled Chemical Inc., St. Louis, Mo.) is added and cells are incubated for 90 min at 37° C. in the absence/presence of test molecule (e.g., 2.5 μg/mL of EPHA3-related test peptide). After the incubation period 0.75 mL of the media is removed and assayed for 14C-oxidation products as described below for the muscle EFA oxidation experiment.


Triglyceride and Protein Analysis Following Oleate Oxidation in Cultured Cells


Following-transfer of media for oleate oxidation assay, cells are placed on ice. To determine triglyceride and protein content, cells are washed with 1 mL of 1×PBS to remove residual media. To each well 300 μL of cell dissociation solution (Sigma) is added and incubated at 37° C. for 10 min. Plates are tapped to loosen cells, and 0.5 mL of 1×PBS was added. The cell suspension is transferred to an Eppendorf tube, each well is rinsed with an additional 0.5 mL of 1×PBS, and is transferred to the appropriate Eppendorf tube. Samples are centrifuged at 1000 rpm for 10 minutes at room temperature. Each supernatant is discarded and 750 μL of 1×PBS/2% CHAPS is added to cell pellet. The cell suspension is vortexed and placed on ice for 1 hour. Samples are then centrifuged at 13000 rpm for 20 min at 4° C. Each supernatant is transferred to a new tube and frozen at −20° C. until analyzed. Quantitative measure of triglyceride level in each sample is determined using Sigma Diagnostics GPO-TRINDER enzymatic kit. The procedure outlined in the manual is followed, with the following exceptions: the assay is performed in 48 well plate, 350 μL of sample volume is assayed, a control blank consists of 350 μL PBS/2% CHAPS, and a standard contains 10 μL standard provide in the kit with 690 μL PBS/2% CRAPS. Analysis of samples is carried out on a Packard Spectra Count at a wavelength of 550 nm. Protein analysis is carried out on 25 μL of each supernatant sample using the BCA protein assay (Pierce) following manufacturer's instructions. Analysis of samples is carried out on a Packard Spectra Count at a wavelength of 550 nm.


Stimulation of Insulin Secretion in HIT-T15 Cells


HIT-T15 (ATCC CRL#1777) is an immortalized hamster insulin-producing cell line. It is known that stimulation of cAAP in HIT-T15 cells causes an increase in insulin secretion when the glucose concentration in the culture media is changed from 3 mM to 15 mM. Thus, test molecules also are tested for their ability to stimulate glucose-dependent insulin secretion (GSIS) in HIT-T15 cells. In this assay, 30,000 cells/well in a 12-well plate are incubated in culture media containing 3 mM glucose and no serum for 2 hours. The media is then changed, wells receive media containing either 3 mM or 15 mM glucose, and in both cases the media contains either vehicle (DMSO) or test molecule at a concentration of interest. Some wells receive media containing 1 micromolar forskolin as a positive control. All conditions are tested in triplicate. Cells are incubated for 30 minutes, and the amount of insulin secreted into the media is determined by ELISA, using a kit from either Peninsula Laboratories (Cat # ELIS-7536) or Crystal Chem. Inc. (Cat # 90060).


Stimulation of Insulin Secretion in Isolated Rat Islets


As with HT-TI 5 cells, it is known that stimulation of cAMP in isolated rat islets causes an increase in insulin secretion when the glucose concentration in the culture media is changed from 60 mg/dl to 300 mg/dl. Ligands are tested for their ability to stimulate GSIS in rat islet cultures. This assay is performed as follows:

    • 1. Select 75-150 islet equivalents (IEQ) for each assay condition using a dissecting microscope. Incubate overnight in low-glucose culture medium. (Optional.)
    • 2. Divide the islets evenly into triplicate samples of 25-40 islet equivalents per sample. Transfer to 40 μm mesh sterile cell strainers in wells of a 6-well plate with 5 ml of low (60 mg/dl) glucose Krebs-Ringers Buffer MRB) assay medium.
    • 3. Incubate 30 minutes (1 hour if overnight step skipped) at 37° C. and 5% CO2. Save the supernatants if a positive control for the RIA is desired.
    • 4. Move strainers with islets to new wells with 5 ml/well low glucose KRB. This is the second pre-incubation and serves to remove residual or carryover insulin from the culture medium. Incubate 30 minutes.
    • 5. Move strainers to next wells (Low 1) with 4 or 5 ml low glucose KRB. Incubate at 37° C. for 30 minutes. Collect supernatants into low-binding polypropylene tubes pre-labelled for identification and keep cold.
    • 6. Move strainers to high glucose wets (300 mg/dl, which is equivalent to 16.7 mM). Incubate and collect supernatants as before. Rinse islets in their strainers in low-glucose to remove residual insulin. If the rinse if to be collected for analysis, use one rinse well for each condition (i.e. set of triplicates.)
    • 7. Move strainers to final wells with low-glucose assay medium (Low 2). Incubate and collect supernatants as before.
    • 8. Maintaining a cold temperature, centrifuge supernatants at 1800 rpm for 5 minutes at 4-8° C. to remove small islets/islet pieces that escape the 40 mm mesh. Remove all but lower 0.5-1 ml and distribute in duplicate to pre-labelled low-binding tubes. Freeze and store at <−20° C. until insulin concentrations can be determined.
    • 9. Insulin determinations are performed as above, or by Linco Labs as a custom service, using a rat insulin RIA (Cat. #RI-13K).


Example 11
Effect of EPHA3-Related Test Peptides on Mice Fed a High-Fat Diet

Following is a representative rodent model for identifying therapeutics for treating human diabetes. Experiments are performed using approximately 6 week old C57Bl/6 mice (8 per group). All mice are housed individually. The mice are maintained on a high fat diet throughout each experiment. The high fat diet (cafeteria diet; D12331 from Research Diets, Inc.) has the following composition: protein kcal % 16, sucrose kcal % 26, and fat kcal % 58. The fat is primarily composed of coconut oil, hydrogenated.


After the mice are fed a high fat diet for 6 days, micro-osmotic pumps are inserted using isoflurane anesthesia, and are used to provide test molecule, saline, and a control molecule (e.g., an irrelevant peptide) to the mice subcutaneously (s.c.) for 18 days. For example, EPHA3-related test peptides are provided at doses of 100, 50, 25, and 2.5 μg/day and an irrelevant peptide is provided at 10 μg/day. Body weight is measured on the first, third and fifth day of the high fat diet, and then daily after the start of treatment. Final blood samples are taken by cardiac puncture and are used to determine triglyceride (TG), total cholesterol (TC), glucose, leptin, and insulin levels. The amount of food consumed per day is also determined for each group.


Example 12
In Vivo Effects of Test Molecules on Glucose Homeostasis in Mice

Following are representative rodent models for identifying therapeutics for treating human diabetes.


Oral Glucose Tolerance Test (oGTT)


Male C57bl/6N mice at age of 8 weeks are fasted for 18 hours and randomly grouped (n=11) to receive an EPHA3-related test peptide, a test molecule at indicated doses, or with control extendin-4 (ex-4, 1 mg/kg), a GLP-1 peptide analog known to stimulate glucose-dependent insulin secretion. Thirty minutes after administration of EPHA3-related test peptides, test compound and control ex-4, mice are administered orally with dextrose at 5 g/kg dose. Test molecule is delivered orally via a gavage needle (p.o. volume at 100 ml). Control Ex-4 is delivered intraperitoneally. Levels of blood glucose are determined at regular time points using Glucometer Elite XL (Bayer).


Acute Response of db Mice to Test Molecule


Male db mice (C57BL/KsOlahsd-Leprdb, diabetic, Harlan) at age of 10 weeks are randomly grouped (n=6) to receive vehicle (oral gavage), EPHA3-related test peptides (at concentration of interest), test molecule (e.g., 60 mg/kg, or another concentration of interest, oral savage), or Ex-4 (1 mg/kg, intraperitoneally). After peptide and/or compound administration, food is removed and blood glucose levels are determined at regular time intervals. Reduction in blood glucose at each time point may be expressed as percentage of original glucose levels, averaged from the number of animals for each group. Results show the effect EPHA3-related test peptides and test molecules for improving glucose homeostasis in diabetic animals.


Example 13
Effect of Test Molecules on Plasma Free Fatty Acid in C57 BL/6 Mice

Following is a representative rodent model for identifying therapeutics for treating human diabetes. The effect of test molecules on postprandial lipemia (PPL) in normal C57BL6/J mice is tested.


The mice used in this experiment are fasted for 2 hours prior to the experiment after which a baseline blood sample is taken. All blood samples are taken from the tail using EDTA coated capillary tubes (50 μL each time point). At time 0 (8:30 AM), a standard high fat meal (6 g butter, 6 g sunflower oil, 10 g nonfat dry milk, 10 g sucrose, 12 mL distilled water prepared fresh following Nb#6, JF, pg. 1) is given by gavage (vol.=1% of body weight) to all animals.


Immediately following the high fat meal, a test molecule is injected i.p. in 100 μL saline (e.g., 25 μg of test peptide). The same dose (25 μg/mL in 100 μL) is again injected at 45 min and at 1 hr 45 min. Control animals are injected with saline (3×100 μL). Untreated and treated animals are handled in an alternating mode.


Blood samples are taken in hourly intervals, and are immediately put on ice. Plasma is prepared by centrifugation following each time point. Plasma is kept at −20° C. and free fatty acids (FFA), triglycerides (TG) and glucose are determined within 24 hours using standard test kits (Sigma and Wako). Due to the limited amount of plasma available, glucose is determined in duplicate using pooled samples. For each time point, equal volumes of plasma from all 8 animals per treatment group are pooled.


Example 14
Effect of Test Molecules an Plasma FFA, TG and Glucose in C57 BL/6 Mice

Following is a representative rodent model for identifying therapeutics for treating human diabetes. The experimental procedure is similar to that described in Example 13. Briefly, 14 mice are fasted for 2 hours prior to the experiment after which a baseline blood sample is taken. All blood samples are taken from the tail using EDTA coated capillary tubes (50 μL each time point). At time 0 (9:00 AM), a standard high fat meal (see Example 4) is given by gavage (vol.=1% of body weight) to all animals. Immediately following the high fat meal, 4 mice are injected with a test molecule i.p. in 100 μL saline (e.g., 25 μg of test peptide). The same dose is again injected at 45 min and at 1 hr 45 min. A second treatment group receives 3 times a higher amount of the test molecule (e.g., 50 μg of test peptide at the same intervals. Control animals are injected with saline (e.g., 3×100 μL). Untreated and treated animals are handled in an alternating mode.


Blood samples are immediately put on ice. Plasma is prepared by centrifugation following each time point. Plasma is kept at −20° C. and free fatty acids FFA), triglycerides, (TG) and glucose are determined within 24 hours using standard test kits (Sigma and Wako).


Example 15
Effect of Test Molecules on EFA following Epinephrine Injection

Following is a representative rodent model for identifying therapeutics for treating human diabetes. In mice, plasma free fatty acids increase after intragastric administration of a high fat/sucrose test meal. These free fatty acids are mostly produced by the activity of lipolytic enzymes i.e. lipoprotein lipase (LPL) and hepatic lipase (HL). In this species, these enzymes are found in significant amounts both bound to endothelium and freely circulating in plasma. Another source of plasma free fatty acids is hormone sensitive lipase (HSL) that releases free fatty acids from adipose tissue after β-adrenergic stimulation. To test whether test molecules also regulate the metabolism of free fatty acid released by HSL, mice are injected with epinephrine.


Two groups of mice are given epinephrine (5 μg) by intraperitoneal injection. A treated group is injected with a test molecule (e.g., 25 μg of test peptide) one hour before and again together with epinephrine, while control animals receive saline. Plasma is isolated and free fatty acids and glucose are measured as described above.


Example 16
Effect of Test Molecules on Muscle FFA Oxidation

Following is a representative rodent model for identifying therapeutics for treating human diabetes. To investigate the effect of test molecules on muscle free fatty acid oxidation, intact hind limb muscles from C57BL/6J mice are isolated and EPA oxidation is measured using oleate as substrate (Clee, S. M. et al. Plasma and vessel wall lipoprotein lipase have different roles in atherosclerosis. J Lipid Res 41, 521-531 (2000); Muoio, D. M., Dohm, G. L., Tapscott, E. B. & Coleman, R. A. Leptin opposes insulin's effects on fatty acid partitioning in muscles isolated from obese ob/ob mice. Am J Physiol 276, E913-921 (1999)) Oleate oxidation in isolated muscle is measured as previously described (Cuendet et al (1976) J Clin Invest 58:1078-1088; Le Marchand-Brustel, Y., Jeanrenaud, B. & Freychet, P. Insulin binding and effects in isolated soleus muscle of lean and obese mice. Am J Physiol 234, E348-E358 (1978). Briefly, mice are sacrificed by cervical dislocation and soleus and EDL muscles are rapidly isolated from the hind limbs. The distal tendon of each muscle is tied to a piece of suture to facilitate transfer among different media. All incubations are carried out at 30° C. in 1.5 mL of Krebs-Henseleit bicarbonate buffer (118.6 mM NaCl, 4.76 mM KCl, 1.19 mM KH2PO4, 1.19, mM MgSO4, 2.54 mM CaCl2, 25 mM NaHCO3, 10 mM Hepes, pH 7.4) supplemented with 4% FFA free bovine serum albumin (fraction V, RIA grade, Sigma) and 5 mM glucose (Sigma). The total concentration of oleate (Sigma) throughout the experiment is 0.25 mM. All media are oxygenated (95% O2; 5% CO2) prior to incubation. The gas mixture is hydrated throughout the experiment by bubbling through a gas washer (Kontes Inc., Vineland, N.J.).


Muscles are rinsed for 30 min in incubation media with oxygenation. The muscles are then transferred to fresh media (1.5 mL) and incubated at 30° C. in the presence of 1 μCi/mL [1-14C] oleic acid (American Radiolabelled Chemicals). The incubation vials containing this media are sealed with a rubber septum from which a center well carrying a piece of Whatman paper (1.5 cm×11.5 cm) is suspended.


After an initial incubation period of 10 min with constant oxygenation, gas circulation is removed to close the system to the outside environment and the muscles are incubated for 90 min at 30° C. At the end of this period, 0.45 mL of Solvable (Packard Instruments, Meriden, Conn.) is injected onto the Whatman paper in the center well and oleate oxidation by the muscle is stopped by transferring the vial onto ice.


After 5 min, the muscle is removed from the medium, and an aliquot of 0.5 mL medium is also removed. The vials are closed again and 1 mL of 35% perchloric acid is injected with a syringe into the media by piercing through the rubber septum. The CO2 released from the acidified media is collected by a Solvable in the center well. After a 90 min collection period at 30° C., the Whatman paper is removed from the center well and placed in scintillation vials containing 15 mL of scintillation fluid (HionicFlour, Packard Instruments, Meriden, Conn.). The amount of 14C radioactivity is quantitated by liquid scintillation counting. The rate of oleate oxidation is expressed as nmol oleate produced in 90 min/g muscle.


To test the effect of test molecules on oleate oxidation, the each test molecule is added to the media (e.g., a final concentration of 25 μg/mL of test peptide) and maintained in the media throughout the procedure.


Example 17
Effect of Test Molecules on FFA following Intralipid Injection

Following is a representative rodent model for identifying therapeutics for treating human diabetes. Two groups of mice are intravenously (tail vein) injected with 30 μL bolus of Intralipid-20% (Clintec) to generate a sudden rise in plasma FFAs, thus by-passing intestinal absorption. (Intralipid is an intravenous fat emulsion used in nutritional therapy). A treated group (treated with test molecule) is injected with a test molecule (e.g., 25 μg of a test peptide) at 30 and 60 minutes before Intralipid is given, while control animals receive saline. Plasma is isolated and FFAs are measured as described previously. The effect of a test molecule on the decay in plasma FFAs following the peak induced by Intralipid injection is then monitored.


Example 18
In Vivo Tests for Metabolic-related Activity in Rodent Diabetes Models

Following are representative rodent models for identifying therapeutics for treating human diabetes. As metabolic profiles differ among various animal models of obesity and diabetes, analysis of multiple models is undertaken to separate the effects of test molecules on hyperglycemia, hyperinsulinemia, hyperlipidemia and obesity. Mutations within colonies of laboratory animals and different sensitivities to dietary regimens have made the development of animal models with non-insulin dependent diabetes associated with obesity and insulin resistance possible. Genetic models such as db/db and ob/ob (See Diabetes, (1982) 31(1): 1-6) in mice and fa/fa in zucker rats have been developed by the various laboratories for understanding the pathophysiology of disease and testing the efficacy of new antidiabetic compounds (Diabetes, (1983) 32: 830-838; Annu Rep Sanlyo Res Lab (1994) 46: 1-57). The homozygous animals, C57 BL/KsJ-db/db mice developed by Jackson Laboratory, US, are obese, hyperglycemic, hyperinsulinemic and insulin resistant (J Clin Invest, (1990) 85: 962-967), whereas heterozygous animals are lean and normoglycemic. The db/db mice progressively develop insulinopenia with age, a feature commonly observed in late stages of human type II diabetes when blood sugar levels are insufficiently controlled. The state of the pancreas and its course vary according to the models. Since this is a model of type II diabetes mellitus, test molecules are tested for blood sugar and triglycerides lowering activities. Zucker (fa/fa) rats are severely obese, hyperinsulinemic, and insulin resistant (Coleman, Diabetes 31:1, 1982; E. Shafrir, in Diabetes Mellitus; U. Rifkin and D. Porte, Jr. Eds. (Elsevier Science Publishing Co., Inc., New York, ed. 4, 1990), pp 299-340), and the fa/fa mutation may be the rat equivalent of the murine db mutation (Friedman et al., Cell 69:217-220, 1992; Truet et al., Proc. Nat. Acad. Sci. USA 88:7806, 1991). Tubby (tub/tub) mice are characterized by obesity, moderate insulin resistance and hyperinsulinemia without significant hyperglycemia (Coleman et al., J. Heredity 81:424, 1990).


Previously, leptin was reported to reverse insulin resistance and diabetes mellitus in mice with congenital lipodystrophy (Shimomura et al. Nature 401: 73-76 (1999). Leptin is found to be less effective in a different lipodystrophic rodent model of lipoatrophic diabetes (Gavrilova et al Nature 403: 850 (2000); hereby incorporated herein in its entirety including any drawings, figures, or tables).


The streptozotocin (STZ) model for chemically-induced diabetes is tested to examine the effects of hyperglycemia in the absence of obesity. STZ-treated animals are deficient in insulin and severely hyperglycemic (Coleman, Diabetes 31:1, 1982; E. Shafrir, in Diabetes Mellitus; H. Rifkin and D. Porte, Jr. Eds. (Elsevier Science Publishing Co., Inc., New York, ed. 4, 1990), pp. 299-340). The monosodium glutamate (MSG) model for chemically-induced obesity (Olney, Science 164:719, 1969; Cameron et al., Clin Exp Pharmacol Physiol 5:41, 1978), in which obesity is less severe than in the genetic models and develops without hyperphagia, hyperinsulinemia and insulin resistance, is also examined. Also, a non-chemical, non-genetic model for induction of obesity includes feeding rodents a high fat/high carbohydrate (cafeteria diet)-diet ad libitum.


Test molecules are tested for reducing hyperglycemia in any or all of the above rodent diabetes models or in humans with type II diabetes or other metabolic diseases described previously or models based on other mammals. In some assays, the test molecule sometimes is combined with another compatible pharmacologically active antidiabetic agent such as insulin, leptin (U.S. provisional application No. 60/155,506), or troglitazone, either alone or in combination. Tests described in Gavrilova et al. ((2000) Diabetes 49:1910-6; (2000) Nature 403:850) using A-ZIP/F-1 mice sometimes are utilized, test molecules are administered intraperitoneally, subcutaneously, intramuscularly or intravenously. Glucose and insulin levels of the mice are tested, food intake and liver weight monitored, and other factors, such as leptin, FFA, and TG levels, often are measured in these tests.


In Vivo Assay for Anti-hyperglycemic Activity of Test Molecules


Genetically altered obese diabetic mice (db/db) (male, 7-9 weeks old) are housed (7-9 mice/cage) under standard laboratory conditions at 22° C. and 50% relative humidity, and maintained on a diet of Purina rodent chow and water ad libitum. Prior to treatment blood is collected from the tail vein of each animal and blood glucose concentrations are determined using One Touch Basic Glucose Monitor System (Lifescan). Mice that have plasma glucose levels between 250 to 500 mg/dl are used. Each treatment group consists of seven mice that are distributed so that the mean glucose levels are equivalent in each group at the start of the study. db/db mice are dosed by micro-osmotic pumps, inserted using isoflurane anesthesia, to provide test molecules, saline, and an irrelevant peptide to the mice subcutaneously (s.c.). Blood is sampled from the tail vein hourly for 4 hours and at 24, 30 h post-dosing and analyzed for blood glucose concentrations. Food is withdrawn from 0-4 b post dosing and reintroduced thereafter. Individual body weights and mean food consumption (each cagey are also measured after 24 h. Significant differences between groups (comparing test molecule treated to saline-treated) are evaluated using a Student t-test.


Example 19
Tests of Metabolic-Related Activity in Humans

Tests of the efficacy of test molecules in humans are performed in accordance with a physician's recommendations and with established guidelines. The parameters tested in mice are also tested in humans (e.g. food intake, weight, TGO TC, glucose, insulin, leptin, FFA). It is expected that the physiological factors are modified over the short term. Changes in weight gain sometimes require a longer period of time. In addition, diet often is carefully monitored. Test molecules often are administered in daily doses (e.g., about 6 mg test peptide per 70 kg person or about 10 mg per day). Other doses are tested, for instance 1 mg or 5 mg per day up to 20 mg, 50 mg, or 100 mg per day.


Example 20
Kinase Activity Assays

Tyrosine kinase activity is determined by 1) measurement of kinase-dependent ATP consumption in the presence of a generic substrate such as polyglutamine, tyrosine (pEY), by luciferase/luciferin-mediated chemiluminescence or; 2) incorporation of radioactive phosphate derived from 33P-ATP into a generic substrate which has been adsorbed onto the well surface of polystyrene microtiter plates. Phosphorylated substrate products are quantified by scintillation spectrometry.


Materials and Methods

Kinase activity and compound inhibition are investigated using one or more of the four assay formats described below. A brief summary of exemplary assay conditions is listed in Table 32, where [E] is the enzyme concentration and [ATP] is the ATP concentration.


An EPHA3 enzyme construct comprised the human EPHA3 intracellular domain (amino acids 571-986) containing juxtamembrane, kinase and SAM regions. It was expressed in E. coli as a recombinant protein. 6×His and NusA expression tags were used in pET28a and pET44a vectors (Novagen), respectively. Expression was carried out in Rosetta DE cells with IPTG induction followed by recombinant protein purification on a Ni-column using imidazole elution buffer.









TABLE 32







Assay Conditions






















Incubation






Assay




Time

Enzyme
Enzyme


Enzyme
Format
[E]
[ATP]
Substrate
[Substrate]
(min)
Assay Buffer
Construct/Preparation
Source





EPHA3
Delfia
30 nM 
30 μM 
Src-biotin
  1 μM
180
10 mM HEPES
Human EphA3 pET28a-EphA3
Produced as









pH 7.4, 2 mM

described









MgCl2, 10 mM

above









MnCl2, 1 mM









DTT, 0.01%









Pluronic F-127


EphB4
Radio-
5 μM
5 μM
poly-AEKY
  2 μg/well
150
20 mM TrisHCl,
Kinase domain E605-e890 with
PanVera



metric





Ph 7.5, 10 mM
N-terminal His6 tag is









MgCl2, 0.1 mM
expressed in baculovirus and









NaVO3, 0.01%
puriied by IMAC









Triton
chromatography


EphA2
LCCA
20 μM 
3 μM
poly-EY
1.6 μM
180
20 mM TrisHCl,
N598-R890 with N-terminal
PanVera









pH 7.5, 10 mM
His6 tag is expressed in









MgCl2, 3 mM
baculovirus and purified by IMA









MnCL2, 0.01%
Chromatography









Triton


EGFR
LCCA
7 μM
3 μM
poly-EY
1.6 μM
210
20 mM TrisHCl,
Amino acids H672-A1210, N-
ProQuinase




11 μM 




pH 7.5, 10 mM
terminally fused to GST-HIS6-









MgCl2, 3 mM
Thrombin cleavage site,









MnCl2, 1 mM
expressed in baculovirus, one-









DTT, 0.01% Triton
step affinity purification using










GSH-agarose


KDR
LCCA
5 μM
3 μM
poly = EY
1.6 μM
240
20 mM TrisHCl,
Human KDR c-DNA, Amino
ProQuinase




6 μM




pH 7.5, 10 mM
Acids D807-V1356, N-









MgCl2, 3 mM
terminally fused to GST. One-









MnCl2, 1 mM
step affinity purification using









DTT, 0.01% Triton
GSH-agarose









The ATP concentrations are selected near the Michaelis-Menten constant (KM) for each individual kinase. Dose-response experiments are performed at ten different inhibitor concentrations in a 384-well plate format. The data are fitted to a standard four-parameter equation listed below:






Y=Min+(Max−Min)/(1+XIC50)̂H


where Y is the observed signal, X is the inhibitor concentration, Min is the background signal in the absence of enzyme (0% enzyme activity), Max is the signal in the absence of inhibitor (100% enzyme activity), IC50 is the inhibitor concentration at 50% enzyme inhibition and H represents the empirical Hill's slope to measure the cooperatively. Typically H is close to unity. These parameters are obtained by nonlinear regression algorithm built into ActivityBase software (available from ID Business Solutions Ltd., of Guildford, Surrey, UK).



33P Phosphoryl Transfer Assay (Radiometric)

Greiner 384-well white clear bottom high binding plates (available from Greiner Bio-One, Inc., of Longwood, Fla.) are coated with 2 μg/well of protein or peptide substrate in a 50 μL volume overnight at ambient temperature. The coating buffer contains 40 μg/mL substrate, 22.5 mM Na2CO3, 27.5 mM NaHCO3, 150 μM NaCl and 3 mM NaN3. The coating solution is aspirated and the plates are washed once with 50 μL of assay buffer and padded dry. Subsequently compounds and enzymes are mixed with γ33 P-ATP (3.3 μCi/nmol) in a total volume of 20 μL in suitable assay buffers (see Table 33). For example the final reaction solution contains 20 mM Tris HCl, pH 7.5, 10 mM MgCl2, 0.01% Triton X-100, 0.1 mM NaV3, 5 nM enzyme and 5 μM ATP.


The mixture is incubated at ambient temperature for 1.5-2.5 hrs; as indicated in Table 32 and stopped by aspirating using an EMBLA 96-head washer. The plates are subsequently washed 6-12 times with PBST or TBS buffer. Scintillation fluid (50 μl/well) is then added, the plates are sealed and activity assessed by liquid scintillation spectrometry on a Perkin Elmer MicroBeta TriLux (available from PerkinElmer Life and Analytical Sciences, Inc., of Boston Mass.).


Luciferase-Coupled Chemiluminescent Assay (LCCA)

In the LCCA assays, kinase activity is measured by the ATP consumption that is accurately measured by luciferase-coupled chemiluminescence. Greiner 384-well white clear bottom medium binding plates are used for LCCA. Briefly the kinase reaction is initiated by mixing compounds, ATP and kinases in a 20 μL volume. The mixture is incubated at ambient temperature for 24 hrs as indicated in Table 32. At the end of the kinase reaction, a 20 μl luciferase-luciferin mix is added and the chemiluminescent signal is read on a Wallac Victor reader. The luciferase-luciferin mix consists of 50 mM HEPES, pH 7.8, 8.5 μg/mL oxalic acid (pH 7.8), 5 (or 50) mM DTT, 0.4% Triton X-100, 0.25 mg/mL coenzyme A, 63 μM AMP, 28 μg/mL luciferin and 40,000 units of light/mL luciferase. For the LCCA assays, the ATP consumption has been kept at 25-45%, where the decrease in substrate concentration has less than 35% effect on IC50 values compared to the “theoretical” values with no substrate turnover. The IC50 values correlates well with those of radiometric assays.


AlphaScreen

In AlphaScreen, when the donor and acceptor beads are close in proximity, a series of photochemical events will give rise to a fluorescent signal upon light activation. Here we use biotinylated poly-(Glu, Tyr) 4.1 as the kinase substrate, streptavidin-coated donor beads and anti-phosphortyrosine antibody PY100-coated acceptor beads. Upon phosphorylation, the peptide substrate can bind to both donor and acceptor beads, thus gives rise to fluorescence. Compounds, ATP, biotinylated poly-(Glu, Tyr) and kinases are mixed in a volume of 20 μL for 1 hr at ambient temperature using Greiner 384-well white clear bottom medium binding plates. Then 10 μL solution containing 15-30 mg/mL AlphaScreen beads, 75 mM Hepes, pH 7.4, 300 mM NaCl, 120 mM EDTA, 0.3% BSA and 0.03% Tween-20 is added to each well. After 2-16 hr incubation of the beads, plates are read in a Perkin Elmer AlphaQuest reader (available from PerkinElmer Life and Analytical Sciences, Inc., of Boston Mass.). The IC50 values correlate well with those of radiometric assays.


Enzymes may be purchased from Proqinase (of Freiburg, Germany) and Panvera (of Madison, Wis.).


Delfia Screen

The DELFIA method is a solid-phase, non-homogeneous system that measures enzymatic activity by quantitating the phosphorylation of an immobilized substrate. The DELFIA method described herein yielded the results shown in Table 33. The compound names are provided in the “Compositions Comprising Diabetes-Directed Molecules” section.


In this experiment, EPHA3 (30 nM) was incubated with biotinylated substrate, biotin-Src-peptide (1 μM)+ATP (30 μM) in an assay medium (10 mM HEPES pH 7.4, 2 mM MgCl2, 10 μM MnCl2, 1.0 mM DTT, 0.01% Pluronic F-127) in the presence of test compounds. After 3 hr incubation at 37° C., the reaction was stopped (5 mM EDTA) and the substrate phosphorylation was quantified in DELFIA assay using Eu-labeled anti-phosphotyrosine antibody.









TABLE 33







EPHA3 Potency










Compound




Name
IC50 (μM)














sqnm-12
0.2



sqnm-9
0.2



sqnm-14
0.2



sqnm-10
0.3



sqnm-11
0.4



sqnm-5
0.5



sqnm-15
0.8



sqnm-7
0.9



sqnm-6
0.4 to 2.0



sqnm-1
2



sqnm-8
2



sqnm-4
4.5



sqnm-16
11










All of the compounds provided in Table 33 represent EPHA3 inhibitors that may be used in methods for treating type II diabetes as described herein. Particularly potent EHPA3 inhibitors have a potency of less than 1.0 mM (e.g., sqnm-12, sqnm-9, sqnm-14, sqnm-10, sqnm-11, sqnm-5, sqnm-15, sqnm-7 and sqnm-6).


Example 21
mRNA and Protein Expression Analysis

MCF-7 cells were plated on 6-well dish and transfected with 40 nM siRNA designed against EPHA3. The EPHA3 siRNA molecules are provided in Table 34 below, where siGL2 and Lipofectamine serve as negative controls:













TABLE 34








SEQ






ID


siRNA
siRNA Target
Sequence Specificity
NO:


















siEphA3_125
EPHA3
GCGGAGCATGGTAACTTCT






siEphA3_519
EPHA3
GCTCAAGTTCACTCTACGA





siEphA3_530
EPHA3
CTCTACGAGACTGCAATAG





siEphA3_626
EPHA3
AATTTCGAGAGCATCAGTT





siGL2
GL2
CGUACGAGGAAUACUUCGA









48 hours after transfection RNA samples were harvested using a RNeasy Mini Kit and mRNA was converted to cDNA using random hexamers and oligo-dT primers with SuperScript. Amount of mRNA was quantitated by qGE using the following primers forward, 5′ ACGTTGGATGGGTGTGGAGTACAGTTCTTG3′, and reverse, 5′ ACGTTOGATGCGGTGACACCAACCTTTTTC3′, extend primer, 5, TTTTTCATGTCATCTGTG3′, and competitive primer, 5′ CGGTGACACCAACCTTTTTCATGTCATCTGTG[C]AAATCTTGGCTATTGTGTCACAAGA ACTGTACTCCACACC3′. To measure protein expression, cells were harvested on Day 3 post-transfection. Cells were collected and stained with 5 ug/mL mouse anti-EPHA3 antibody and stained with biotin conjugated goat anti-mouse streptavidin and PE-conjugated streptavidin.


Results


EPHA3 mRNA was quantitated by qGE to verify that siRNA treatment resulted in a decrease in EPHA3 mRNA. Also, EPHA3 protein was quantitated by flow cytometry using antibody specific to EPHA3. Cells transfected with active siRNA to EPHA3 (see Table 34) showed a decrease in mRNA compared to control as measured by qGE. The decrease in mRNA resulted in a corresponding decrease in EPHA3 protein as detected by flow cytometry measurement. These results show that each siRNA molecule in Table 34 decreases EPHA3 mRNA and protein expression.


Example 22
In Vitro Production of EPHA3 Polypeptides

EPHA3 polypeptides encoded by the polynucleotides in SEQ ID NO: 1-3, or a substantially identical nucleotide sequence thereof, may be produced by the methods described herein. cDNA is cloned into a pIVEX 2.3-MCS vector (Roche Biochem) using a directional cloning method. A cDNA insert is prepared using PCR with forward and reverse primers having 5, restriction site tags (in frame) and 5-6 additional nucleotides in addition to 3′ gene-specific portions, the latter of which is typically about twenty to about twenty-five base pairs in length. A Sal I restriction site is introduced by the forward primer and a Sma I restriction site is introduced by the reverse primer. The ends of PCR products are cut with the corresponding restriction enzymes (i.e., Sal I and Sma I) and the products are gel-purified. The pIVEX 2.3-MCS vector is linearized using the same restriction enzymes, and the fragment with the correct sized fragment is isolated by gel-purification. Purified PCR product is ligated into the linearized pIVEX 2.3-MCS vector and E. coli cells transformed for plasmid amplification. The newly constructed expression vector is verified by restriction mapping and used for protein production.



E. coli lysate is reconstituted with 0.25 ml of Reconstitution Buffer, the Reaction Mix is reconstituted with 0.8 ml of Reconstitution Buffer; the Feeding Mix is reconstituted with 10.5 ml of Reconstitution Buffer; and the Energy Mix is reconstituted with 0.6 ml of Reconstitution Buffer. 0.5 ml of the Energy Mix was added to the Feeding Mix to obtain the Feeding Solution. 0.75 ml of Reaction Mix, 50 μl of Energy Mix, and 10 μg of the template DNA is added to the E. coli lysate.


Using the reaction device (Roche Biochem), 1 ml of the Reaction Solution is loaded into the reaction compartment. The reaction device is turned upside-down and 10 ml of the Feeding Solution is loaded into the feeding compartment. All lids are closed and the reaction device is loaded into the RTS500 instrument. The instrument is run at 30° C. for 24 hours with a stir bar speed of 150 rpm. The pIVEX 2.3 MCS vector includes a nucleotide sequence that encodes six consecutive histidine amino acids on the C-terminal end of the EPHA3 polypeptide for the purpose of protein purification. EPHA3 polypeptide is purified by contacting the contents of reaction device with resin modified with Ni2+ ions. EPHA3 polypeptide is eluted from the resin with a solution containing free Ni2+ ions.


Example 23
Cellular Production of EPHA3 Polypeptides

Nucleic acids are cloned into DNA plasmids having phage recombination cites and EPHA3 polypeptides are expressed therefrom in a variety of host cells. Alpha phase genomic DNA contains short sequences known as attP sites, and E. coli genomic DNA contains unique, short sequences known as attB sites. These regions share homology, allowing for integration of phage DNA into E. coli via directional, site-specific recombination using the phage protein Int and the E. coli protein IHF. Integration produces two new att sites, L and R, which flank the inserted prophage DNA. Phage excision from E. coli genomic DNA can also be accomplished using these two proteins with the addition of a second phage protein, X is. DNA vectors have been produced where the integration/excision process is modified to allow for the directional integration or excision of a target DNA fragment into a backbone vector in a rapid in vitro react ion (Gateway™ Technology (Invitrogen, Inc.)).


A first step is to transfer the nucleic acid insert into a shuttle vector that contains attL sites surrounding the negative selection gene, ccdB (e.g. pENTER vector, Invitrogen, Inc.). This transfer process is accomplished by digesting the nucleic acid from a DNA vector used for sequencing, and to ligate it into the multicloning site of the shuttle vector, which will place it between the two attL sites while removing the negative selection gene ccdB. A second method is to amplify the nucleic acid by the polymerase chain reaction (PCR) with primers containing attB sites. The amplified fragment then is integrated into the shuttle vector using Int and IHF. A third method is to utilize a topoisomerase-mediated process, in which the nucleic acid is amplified via PCR using gene-specific primers with the 5′ upstream primer containing an additional CACC sequence (e.g., TOPO® expression kit (Invitrogen, Inc.)). In conjunction with Topoisomerase I, the PCR amplified fragment can be cloned into the shuttle vector via the attL sites in the correct orientation.


Once the nucleic acid is transferred into the shuttle vector, it can be cloned into an expression vector having attR sites. Several vectors containing attR sites for expression of EPHA3 polypeptide as a native polypeptide, N-fusion polypeptide, and C-fusion polypeptides are commercially available (e.g., pDEST (Invitrogen, Inc.)), and any vector can be converted into an expression vector for receiving a nucleic acid from the shuttle vector by introducing an insert having an attR site flanked by an antibiotic resistant gene for selection using the standard methods described above. Transfer of the nucleic acid from the shuttle vector is accomplished by directional recombination using Int, IHF, and X is (LR clonase). Then the desired sequence can be transferred to an expression vector by carrying out a one hour incubation at room temperature with Int, IHF, and X is, a ten minute incubation at 37° C. with proteinase K, transforming bacteria and allowing expression for one hour, and then plating on selective media. Generally, 90% cloning efficiency is achieved by this method. Examples of expression vectors are pDEST 14 bacterial expression vector with att7 promoter, pDEST 15 bacterial expression vector with a T7 promoter and a N-terminal GST tag, pDEST 17 bacterial vector with a T7 promoter and a N-terminal polyhistidine affinity tag, and pDEST 12.2 mammalian expression vector with a CMV promoter and neo resistance gene. These expression vectors or others like them are transformed or transfected into cells for expression of the EPHA3 polypeptide or polypeptide variants. These expression vectors are often transfected, for example, into murine-transformed cell lines (e.g., adipocyte cell line 3T3-L1, (ATCC), human embryonic kidney cell line 293, and rat cardiomyocyte cell line H9C2).


Provided hereafter is an EPHA3 genomic nucleotide sequence (SEQ ID NO: 1). Polymorphic variants are designated in IUPAC format. The following nucleotide representations are used throughout the specification and figures: “A” or “a” is adenosine, adenine, or adenylic acid; “C” or “c” is cytidine, cytosine, or cytidylic acid; “G” or “g” is guanosine, guanine, or guanylic acid; “T” or “t” is thymidine, thymine, or thymidylic acid; and “I” or “i” is inosine, hypoxanthine, or inosinic acid. SNPs are designated by the following convention: “R” represents A or G, “M” represents A or C; “W” represents A or T; “Y” represents C or T; “S” represents C or G; “K” represents G or T; “V” represents A, C or G; “H” represents A, C, or T; “D” represents A, G, or T; “B” represents C, C, or T; and “N” represents A, G, C, or T.










EPHA3 Region GENOMIC



>3:89375801-89470550









1
tgtacttaat cagcatttac cgcaagaaca acatatgcaa ataagagcat aaaagaggct






61
gttccaggaa ttgtgtgtat tttaaaatat ctagagatta ggatgcttat ggagtttgta





121
ggagatgtgg ctggggattt aaacatgaaa cagattctaa atggctttta cacgctctgc





181
tatgaaattt gcatcttatc ctgaaagtta taaagagcca aaatKttcct atgcaaaact





241
tttatgaata ggaatgacat ggtcaaattc atggtttaga aggaatatta tgaaagataa





301
aatgtgtgga aagcatacaa atagagacca aattaggaat ttctaattat aattcagaag





361
ataaatgaag acttaaacta ggatatttaa gagtgtttgg tgattaactg gaggcagaat





421
gattaggaga tggagaggag aaggttattt tatatttatg gtctagattc ttgctcctca





481
aaatgttgtg gtctggaatc agcagaatca gcactgcctg tgtgttcata agaaatatac





541
aatctcattc cccactccgg aatgactgaa tctgaaactg cttttccaga gattcttgag





601
tggtttttgt gaacattaaa gtttgagaag cattggtctg ggtcaagagt cagtaaactt





661
ttttctgtaa taggccagat aataaatatt ttaggctttg tgcacatcat tctctattgc





721
tgctactcaa cttgcccatt ctagcataaa atcagtcata gacaatatac aaattaatga





781
atgattgtgg ctatattcca ataaaattgt atttatagac agcaaaattt gaatttccta





841
gatttagaat tttcacatgt catgaaatct cattcttttg actttttaca actgttaaaa





901
gaaatgtgaa accattctaa gctcgtgagc tgtacaaaaa caggggacgg gcaagatttg





961
gctcctgggc ttttttgcca accatttgtc taggtgaata aatgggccat ttataaaggt





1021
aggaaataga gggacagttt gttggtggta tgtgttgagg tccatgtatt atatcacttt





1081
tcaaatgaat atggatattg gagttaaaac aagcttaatt agaaagcttt ttataattgt





1141
atgctgagaa atcttcctct cttctctaag atcctcccat aacttctggt tcattcaacg





1201
agttttttgc cattgaggac agagaaaccc agtacagcat attttggaca ggagacattt





1261
aaataatgtt tgattgatgt cattgaaaca aagtatgtac ccatattaat taggtagaaa





1321
tttcaagcaa aattatggga aatgtctatt tttttaaaca ttaagtaaag aatactttca





1381
acattgtatc agacattaag ccatacttca ggtaaaagta gaacacatat taattaatta





1441
atgaatcaat caactgttcc atgtagatgt tagtcatgat tataatacct gttcttattt





1501
tttctcttca acctcacagc tttctccatc tctggtgaaa gtagccaagt ggtcatgatc





1561
gccatttcag cggcagtagc aattattctc ctcactgttg tcatctatgt tttgattggg





1621
aggtgagttc acagtctgtt tcactattca ctttcWttgt tgctttgttt gctgccactg





1681
attgctgtta aaatgtgaag agtgtgctca ataaaatatt ttaacaaata agaatgtctc





1741
cacttgtagt ttaggtcctc tctttctcct ccttttcttt gtttctccat ccttagtttt





1801
gattttctgc tctacattaa attcctgtcc ccactctttt aacatacacc cctcctcttc





1861
tctcttctga cactactcct agtttttact ttctttctct aattatctcc tcactcttca





1921
aataacccca gatttccttg acactttctc acccagaaca ggggtaacac tgcacagcac





1981
taatcattac ccatagagac tttacccttc attccttcta acagaagttg ttaaaaaata





2041
ctataaacac attctaaagc cattataaaa actgaactgg agggtctgca cagtgggaag





2101
caactctgtg tatctcctca ttaggcagct ttccagggtt cccagagaga ggggctttct





2161
tcagaggatt ttgaaaatat gaagttatta aactttcact aaagcattta attgtttgag





2221
gaaaatgttt tatttttatg ctttgcacat tctgagcata ggtaactatt ttaaatatat





2281
tcctcttatg tgttcgcttt ccttgattta cctccaggtt ctgtggctat aagtcaaaac





2341
atggggcaga tgaaaaaaga cttcattttg gcaatgggca ttgtaagttt ctaaacttgg





2401
ctttttgttt tgcttcaccg ttttagcttt agcagttatt gatttacaat tggttaactt





2461
cctcctgaca aagagacttc aaaagtagtt ttatggaaaa actgagtaca ttaaatttat





2521
tttagaaaaa gagggaaatt catggttctg cattaaataa tttttacatg tgtacatttc





2581
agcatactta agctaaaata aagggtaatc tgtggtttac attcaaataa cgcacatgct





2641
aggtagtaga aactagtctg ctctgcatgg ctgaaatgca aagcgtatct tcaatttcct





2701
tattactagt cctttgctaa actctaaata ggagactttt ctctttccta actgccaagt





2761
aaatataaac aacctctgtt tatttgaagt gccttatccc attttatcaa ccaacctaga





2821
aagagccttt aaaataaact gtttattttg cagttacatg atatccaact agtagtaaag





2881
ccagaacttt ctctccacat tttaatttac ccttttaatt ttttttaaat acacatttca





2941
gaaacaaagt gtttacaact aacaaaaaga ctttttttct ttttctggtg aaacgaatca





3001
ttccaggtgt tttgcgttcc aaactatggc tcagcttagt gtggcaatta ctaatcagta





3061
gcttaaatag catgttctca tggaaattag tacaaagact gtactcatgc ttatgtgctc





3121
caaaataatc tcaatataac taatgtagtc ttgtaagcat taattttttt agtattcact





3181
attgccttct aaaattattt gcaaattgac atgatacttt gtatcagccg ttggattatc





3241
atctaaaaat gatagcttta gttgtaactc aagtaaaaaa cttgactacc tgttgctaaa





3301
ctgcaggaag catacagtag cttgaaaata atgcctttca aaatataaat tgatatgaga





3361
agaaagcagt ataggagttt gaagaagcat tattttgttc atccaattgc agcgtctata





3421
aaataattca cacaaaaaag ccaaagtact acattcctaa aatcaacatc acatcagtcc





3481
agattaatta ggtgaccaac tcaaaagtct aaaaagaatg cctgaacaag ttacaggatc





3541
cttgtctttc tttttctcaa tgggcccaca aaacactagt gttacaattt ttatgcataa





3601
attagagcag tggcattctt gtggattaag tcacactcaa tttgacttgg acaattgtaa





3661
atatcatctt tagagcaaga ccatgctgat ttgatttttt ttttatggga agactacata





3721
ttacgaattt tgagctttgg taaatttctg tgtgccaatt attaaacagg ttcctctatc





3781
gtcccagtct gttttgctat tgtttttatg gtggattttt gttgaaactt taattttttt





3841
caaatgcaca atatccttat gacaaacaaa agagaaatgc atttcatcct ggctgcaaag





3901
gcataaagta acttatatgc atgtcataaa ctttctgcat cttaatacta cagctggttt





3961
atttcagacc ttttatttgg tattacttta aaaagctcta gctacgaact gttccctatt





4021
gccttgttac aaatcctata atattgcttc aaaaggaaag aaatgtgttt cacctcctaa





4081
gatcctgtcc ccttgccctt tctggctggg cctttttact tctttgctat ccttagggca





4141
actcatgctg gtaaaatgga aatgtaaatt attgtgtttg cacagaatga gctgtaaagt





4201
agtgcagctt aacacgtgtg catgtgttta ttacctggtt ttcatgacag agcccagtta





4261
ctctgtatgt tgcccttaat tattggtgtg aagggattat gtgcctcgca gcatgaatca





4321
cctgattcct ggaatctctg gggtcagcag ttaaagatca gcagccagtg cttctacagc





4381
gaacagacca ttttacttgg gggtgtatat gtttatgttt gtttttttcc cccaaatgtc





4441
ttatggatgg aaaagaaatt caccttattt taattaatag aaattaatag gattcatttt





4501
atttgggaat ggttatttaa ttttcaaatt atttagtaat agtagtattg catataggta





4561
tccatcatac atatattctc tacaagctga ctggtactta agggtaaatc taaatcacac





4621
aatttcaagt ctgtttaagg ccaatgctta tttaaaatat gtgagacatt gttcctaaca





4681
actcatttta taatctttgt aaattctgat ggcaggaaat ctcccccacg ttaatttcct





4741
taacttcagc aaagtaaagg agttataatt atgtacaaaa cagttccatt ttaccttatg





4801
cttaaagtat cattttattt ccttgaaaaa gattgctaga tttctttacc ttactgttac





4861
taagtaaagg caaataaaaa ctggaagatc acacattata gggttgatct gatatgagtt





4921
ttcatcctta aaatgtaact aaattgacta aatgaaaaga ctccaacaag attttatttc





4981
ctaacatatt ttagtaatgg ttacttactt ttacaatttt tcttactcca catctagaaa





5041
agtatgatag cttttcctta atcttaaaga agtttcttct tttaaaggta aagggtttta





5101
gtactggtaa tgttagaagt tattttaatg taacaataaa gcacaacaga ttactgtatt





5161
aaagggtgac tctcccatct gtatttatag gaaggattca tgcttatatg gaagaagcat





5221
ataagctgat ctgtgagctc aaaagtaatg gacatttcta agtctaaatt ctaccattag





5281
gaaacatcaa ttatattaat aattgtaaat aaatgttctt aacaataaaa acgctcatta





5341
gggcaatgag ctctatcaat acattgagtg agaactatgc aacagtttct catgctaggc





5401
atttgaatag tatagctttt tttttttctc aRagccctag cttgtctttt ttgccaagat





5461
attcaagatg aaaaactcta aaagtgaagt tctcacttca acagctacta cactcagagt





5521
ttgtccaaag caagggacag aacttgtatt tcccaatttc tgtggatatt gacttctaga





5581
tagtggtgtc ctttcaaatt atccacacct cgcctcaagc tggatagcag ctgctctttt





5641
gttgtagctg tMtcagcacc aggcagaagt aggagtcgtg ttagcttttc ttctgcattc





5701
cctatatgcc ctctcaccac catccctgct ttctattatg ctgtgtcaaa gtcatgcaaa





5761
taatagctga ggaaaataga gtttttaccc aacctctctc tcagccacca tttcttttac





5821
aacagtttat tctcacactt acgttttttt actcaaaatc tctatgaaag cttcacaaga





5881
acataaatcg taatgcatta taaccatggg tttcatgaag ttgtcttgta gttcaaagaa





5941
ttgatcattt gttaacacat actgtgaaat cctagacttg ttggcctaat gttcattgta





6001
ctgaggcttc ccagaaaaac tgcgggcatc tgcagtctcc acaactattt aatacaaact





6061
acaaaactaa ctcaaagaaa cgattggttc acgcagggtg ttcaattgca actttcccat





6121
aattctccca ttatgaagta atattggaaa cagtaatatc tgatttcatt tgttataatt





6181
taatgtaatg aatgaaaata tatttcacta ttaagtatcc atattctgtg ctaaaacaca





6241
ctattaagta tacatattat gtgctatgaa tgttatcaaa attaaaagca aaatcagtag





6301
tcttagcaga tataccatag gagttacatt gcaatttcct ttMattttag atcatattta





6361
tatagtttag tagatcttag aatcactttt ttaaaactca gggtttttgt ttagagaaag





6421
ttaatttatt gaaaattgca aattgtctcc actgttattt ttccaaatta taggaatctt





6481
attaatatta aatcaaatta aaatgattat cctgtatcag ttgtctgtaa tattttaact





6541
acaggatatg aacattttta ccttcagaat aatttaatga ataaatataa tatgaaggag





6601
atttttattt aataaattac atatatgact tacgtttgga acttagctcc ttagcgccat





6661
tattcaactc atagacaata tttattttac ttctaattat gttataaagc tatacaatat





6721
gattatattt aactgatact atattggtgt gtatacatgt atgtattata tatacacacc





6781
aatataatat ataatacata catgtataca catactaaca gcttaaagta gatttgtaat





6841
tacagtggga cattttgatt gtgaatgtta atataagcag tacagtgtca gaaggtatgc





6901
cattatatat catttaattt atctataatt gcagccatta tctcacctta taattgtatt





6961
gaattatttt ccaatcttgc attgtaatac atatctggtt attataacat ttgtgtaatc





7021
ataaatatgc aatagcataa tggtgttcac tcactgttgc tcctggtagt aatgactagg





7081
tctaatcagt tctgaattat ctttcttctt aagatcccct tttttgagta tgcattttcc





7141
ttctgatgtt tttgcaaaga aagctcctca ttgtggttcc tttatataat tcatcataga





7201
gaacatgttt tcttaaattt ttcaacacag tccaatgtca ctgccagttt ctgtgatact





7261
acagaataaa ctgaaggttg tgcaccttat ggggtaggga tttttttaaa ccaataatgc





7321
cataaaattt gatctataat tgtttgtaca aatctagcta caattgcgcc tttctttctt





7381
tcctcaaaca gtaaaacttc caggtctcag gacttatgtt gacccacata catatgaaga





7441
ccctacccaa gctgttcatg agtttgccaa ggaattggat gccaccaaca tatccattga





7501
taaagttgtt ggagcaggta accacaatga ccctactgcc aacttagtac tgtatgtgaa





7561
tcacgattgc tcagtctctg aaacctaagt atattgctaa agaaatggga attttctgat





7621
ttcatgatca aaggcaagta ataaataagt gcaatattta atggaatgta atgagttcaa





7681
aggtgccaga cttacaggct cacagaccat ggctgctttt gatttattaa atttctgatg





7741
tgacagcagc aacaactcaa tattaccata gctgtgctga tcgtgtgtca caaaacctat





7801
ttggctaaat aaggataact ggataaaagt ctatttcaat ttagacaacc caggtaattt





7861
gaagttttca ttttcaattt tagaatcatg tttggaatta aaagaacaaa caacacaaag





7921
taatatcatg actcatctta cataaatttt atcacaacta tcttgggtgg atattttaaa





7981
taatataagg tgctccattt taatgcttgc ttgactttga atagtcttat gtgttaaagc





8041
tttttttaat aaatatacct ttgttctaat tattaattta aacaatgata aatttgttaa





8101
caatcaccta ttaagtggtt aataacagtt gcatatttat aagaaaaatt tcatatattt





8161
gtaaaataac agtattttat atatttacac ataaacacat gatatgtgca gtatgcatgg





8221
aagtaaaact actattcaaa agtaaaaatg aaccatgctc aacaataaaa aattttgtac





8281
catcatctaa tccttcaatg tcactcccca aagcaaacat aaactagtta tgttgataca





8341
ggaattctct gtgtaacatc agatcacatt ttctgcaagt accgtattta catatttatg





8401
agtgatgtgt ctttacaaaa atgtacatgt aatgctttgt ttctttttct atacaccaaa





8461
gtagtactga aaaatcaagc agtagttagt atgcgaacag gacaatcttg taaatataat





8521
gttaatttac tagagcttct cttctaatta tcttaatttc ttatcctaaa atttacatgt





8581
gcaggtaata ttaaaatatg aaacttgtgt tcatagaaag aaaatggagt agtaacttct





8641
tttttacaat ctaagacttg agagtaaaca tattcgctgt acatctgtgc tgatccagtg





8701
ccaaaacaga tatatattgt ttactctgtt tcatttcttc agtcctgact tctgaacagc





8761
tccatgatgc agaagggttt agtctggctg gttttaatgt ttcctcacaa gagtgcactt





8821
ttctccagca cggagcctgc ggtagcaaat gcagcacgag gactttgaac actcaactgg





8881
agaatatgtt gagaggagga aaaggttact tatgctaagc cactgtccaa aagccaggca





8941
gacattatta tgatgttgaa atttaggtac ctctccactg ataaaatatc tttatatagt





9001
tattattgac agactcagat atacagaaca tagtgatttg ggaaaaagca caccactgaa





9061
aatagcagct gataaatgag ataaggggag gtctatttat actgaatcac ttaatccctg





9121
atgctcatta aagattagaa tagagactac ttcctatttc tgtcttcaag tatatatgtt





9181
aatgattaga tatatgccca tgttcagggt tttgcagcca atattcacat ttgccatgtt





9241
aagaacaaca aaactgtact tatttgcaaa taggtatacc ttcaaggtta gttatacttt





9301
tcctgaaata attcaataca atatacacac ccaattctag actgccttga tgacctttca





9361
gagggtttgt atttaccaag ttagaaaatg aaattattat tcctaaaagc taacaatttg





9421
ttaaacattt tgttttgtaa aatgtaaaat atgtacacaa ataaattaaa tagtgtaata





9481
ataaataaac ctgtatgtta ctcatttcta aaatagcttt tataacaatg aacaaatggc





9541
aaccttggtt ggtatataca tttacctact tcctacattc ttaatcttaa aaaaaatatg





9601
ttatttataa aaatttaata attattctaa attgattacc aactggcttc cattgttaga





9661
aaggcaaacc tttcagccaa ctacataact ttcagagtca attaaattta cagaaagaat





9721
atatatatat atatatatat ataagctaat tctcttaaat ttctgtcaga aattttacat





9781
aaatgaattg atgttatgga aactctcttg tatacattgg actatagaaa gaattatact





9841
tatactataa atgataaaat taagacatat gaattagctt cccacagtag tagattacta





9901
gaagtgagga attcatgact acaattccta attttactcc tcaatccaac cattctttca





9961
acgattgaat actaaaaatt tctgaagaaa gtaaatactt agtaagtcct taatttatcc





10021
tgtgcattcc catgatattt aattttatta tcctttttag ataggtatta ttatctccat





10081
ttcagcacgt gaataaacaa aagctgagaa tttgaataga cttgtttgga tcaaatgaaa





10141
aaccaaaatt tgaatcttat actttccaaa tttaaagccc atgctggaca ctggagatca





10201
tagtagtgtc ttcttcatag tatttttttt tgaggattaa acaagataag ttgtgcaggg





10261
gacttagctg acacagaagc attgttcaat atgtgttttt attatgctta ctttatgaaa





10321
acagtagaag gagggtaggc tttaaagcta gtgttggagg gagtcattct atttaaatgt





10381
cggctttttt taattgttta aatgaaatta gcataagaaa ttttattttg agcagctttt





10441
acattgtgca ttttaatcag aatacagtcc ccattcttat aaatatacct atttcaaaga





10501
gcaaataaaa ttgccgcact tattagaatt aaaaaatcaa gatctggcag ccatgctttt





10561
atctagaaat gacaagatat gaatttttgt ttcatatggg tgcaaagtta attgaataag





10621
acaatataaa acttggccag atgaaactat tgcaaattgc atttgcccag tctttgttaa





10681
cttttacaat acagttcttt tattttttat ttttaatctt tttctatttt tagcagcttt





10741
attgagatac aatttaccaa ccataaagtt cagctattta agtatacaat tcagtgattt





10801
ttagtatatt ttcagagttg taataaccat aattgctatc ccaatgcagt tattttaaat





10861
tattaaaaat ataattgaat taatattaag catttctatg tcttttataa tatattggcg





10921
gctatttcta gtgtttaact gatgaaataa tcacattact aaatgtgggg aattttaaaa





10981
actagcattg ctgaaacaca attttcatga atttcgaagg taaatatata catgtacatg





11041
tttatgtgtc caggtgtccc acttacaaca aagaacactc ttaattggct catttaaaat





11101
ttgaactcct acttttcata tctctagtat gctatccttt acaaatatat gtccagtaag





11161
acatgagcct tgttatcgcc atcattacca taaccatctc ttacattaac atagaatttg





11221
gcattttata aagcactttc atattcattt gtcagtttga tttaaacaga aactcttaaa





11281
gggtagttag gcaatttatc ctttaggtgg gtctgaactc agagagataa atagtgacca





11341
acacttagat gtcacctact gtgtgtctgg cactgtttca agtacttaac atacattagt





11401
tcctttaatc ccacaacagc tttatgaggt agatacaata agtgtccccc atagagatag





11461
gaaaagatag gtacagagag gttaagttac ttaaaatcac acagctaata tgtggcagag





11521
tcagaattgg acccgaagca attcggctgc aggatccatg ctcttaacca gagttctgta





11581
ctatcactcc tgtaaactga caagtgacat gtcacttaga atatgtgatg atgacatcta





11641
catttaaaac atgctctatt ataccatgat gatgtatgat aatggcagaa ctttctggtt





11701
ttcccaagct tagtgtttac acaaagtgaa acaaagtaaa tgggagcgct ctgataatgt





11761
tcggataacc ctatatgagg aaagaaactc ttactcttgt ttacaattct gagaataatt





11821
ttatcacacc ataacttctc tttctcctaa tattctcata tctaaatggc atattcttcc





11881
ttcgaattag caagagcaat gaactttctc aagttctact ccctgattct ttctgtatcc





11941
taaggaacac tatagctgta gatatcatta tcttctctac acttcctcaa agggaataaa





12001
ctagtcctgt cttgtttacc attatatata tctctgtgtg ttttatactg tatgcaatac





12061
agttgctatt atgaatattt attaaataaa tgcatgaata tctgcttttg gattttaagt





12121
gactttgcca aattaaagca taagtcattg ctttgaaaac agggcaagag tggatttctg





12181
gggatgagtc aagcctgggg aaggttaaag cttcccaggg agagagacac catttgtagt





12241
aatgtagctg gcaaatcaat aggacaacct gctacttttg tggttcaaac cacttgcttg





12301
aaaacaaaaa tagagaagaa tcatatcact tcaatctgac tgacacgtag ggcatgaagc





12361
tcatagaaaa ttcacagaga gaaaattgga ccaagattat gattccactc catcaagagc





12421
caaaaattaa tcatataatt aattctaaaa tatttcaaga aaagctcatt tgacattaaa





12481
aactattttt aatgtgatgc aaaacatatc tgataatcca cactatgtta gaagttcttc





12541
tgtgaacaaa ggacattcta tagaactccc atgtggcaat catcatggca gcatgggtac





12601
agataaataa atgtaaaggg tatctgctct aagtgagctc caaatgtaat gaattgatga





12661
ttagtaaatc tctcagtaaa aatgtatttt gaaggtagtg tccatactag ttctaggcag





12721
ttttatatca actggactat aatatttaaa agtcagtaac actctatatg ggacaaattc





12781
tggattaatt gcacattgaa gacttttttt tttaaattga agaagatgaa tctaaaatat





12841
ttctacagta tttagataag gcatgttgtt tttatttgat actgttatat tgttgttgtc





12901
ctccagaagc ccagagactt ttatagctgg tatgtcagta aagcaacaca ccaatactcc





12961
aataaaataa attgatagca gatgctttcc ttctcatttt tagagtctga atatatagcc





13021
atattggccc tcggtaaaaa cagaattgtt aaaatatctg aaatttaatc caatgctcac





13081
atttaatcac tgttggtgct gtcctgttaa tttctctgag gtaatggtag ctatgacaac





13141
aaggggtaaa aaatctaaca tatgcagctt tcaacttatc tctcctttta cattacatta





13201
tttatagtgt cgtactttaa agtatatgga attttcacaa ggttcatttt ccaacagggg





13261
gtgactatcc tgaggttttc taggcagttt catatgatta tctttcaaaa taatttggag





13321
tactagagtg tacatcttgc aggtcaaagg cacaaatatt ttaaatggaa attttgaaat





13381
aaaacagttg ctctctactg atgaattttt attatagaat tccttacatt ttgttgctgt





13441
tctgctttat aacaggtgaa tttggagagg tgtgcagtgg tcgcttaaaa cttccttcaa





13501
aaaaagagat ttcagtggcc attaagaccc tgaaagttgg ctacacagaa aagcagagga





43561
gagacttcct gggagaagca agcattatgg gacagtttga ccaccccaat atcattcgac





13621
tggaaggagt tgttaccaaa agtaagtaaa gtagtcataa gacctgtgtt tccgtatgtt





13681
gagcaaaggt tgtttaaacc caaccccaac catttaagaa ttttggcttt ttttcataag





13741
tatctcagtt ttaccaaaaa gaaaagttta ggaatagcat gcctttcttt gacagtagag





13801
cagaccttta aataatattc tattgacagt actgttttag acctcaaaaa attttaaaaa





13861
aatactagaa gccacatatt agaccattta aaggtacgct gattagcaga cagttaagag





13921
aagaattgtg gggaattctc ggctatgtaa gtagcaaaga aaaacaatga ctcaagcttg





13981
acaggaactc ccagctagct gccttttctt ttattgttca tcagttttat ttaaaagtta





14041
caaatcttta acctcctccc accccctgca tccctgcctt taggaaaatt ttgggagtct





14101
aggaaatgct tctgagctgt acagattgga atcacaatag acccaaggcc gtttcttggt





14161
tctctgtgga ttttaaatag ttctgatcta gaaacccagg tggattctta ctgctctgtg





14221
gaagctctgg ctcacagccc atgatagaga tgtgaactta tttccatgat ggtttctcca





14281
gcaggtctca aaagggatcc tgtgaggcgg atctgtgatt tttggctcca atccctatat





14341
aagtctcttg agaatactct gggacatttt tcctcaagat tttggagctc aggatgaaga





14401
ataagtgaaa ttggcagcaa actttttaga gtgaaagaca acatatggca gggaatttgg





14461
catcctttag gggataattc attggcacca catttacata ctctatcgtt accaacagac





14521
atatttttca taattatatt tctctttacc attttataga gcattttcca aatggcacta





14581
atacttattc tcactttagc atgactaaaa aggcatttcc ttcctcatga gagcatggtt





14641
taattgaaat agactttgat ttccttttga gttttcattt ataaaaagtg gaattaagaa





14701
tttaacaatg tggaatagtt caacatacat tgtaagtcca tattaattct tataaggctt





14761
tttatttgtt tgcctatgta ctctacaaaa ccaggcctta ttaatagaaa tattttctga





14821
taaaaaacat ttttaaattt taagttaata attaataaaa atgggcataa ttagtaagga





14881
ttgggaaagt gtatgaatcc tttgttcttt ctgagcaagg ctatactgtt ttatgtctgt





14941
acagttacag tatcatgtct cattgggatt ttagtgtcat ttagccattt aatgttctcc





15001
attacatctg catcaagtgg tggttgcctt ttagctcttg agcctcctgg gaagagaaaa





15061
ctcccttgta cttatgaagc cattcttata actctcaatt tttacaagtt tttcattatg





15121
aagtatctgt tatgtgccca cattatacta tgacattatt tcattcttac cactaccctg





15181
tgaattagac atgataattt ctctcttaca tttgaacaaa caataactgt aaagggtaat





15241
tagcttgtat aactagaaaa tgctagaggt agcactggga acttgttctg ttcatttcac





15301
cacataccca actctgaacc caaacaggtt tctacttgtc ttttcctgta ttctacttat





15361
tcttttatat cgttacttta aaaatcttct ctaacatagt gagacattac tcaatcttca





15421
aaaatttctg gaactattaa taatccttaa tatctaaaac aaaatataaa ctctcaaaga





15481
gggcaaaaac ccatgttatt tgatgacaag tgactaaaat aaatcctgga tcataacaga





15541
tacttaattt accaatgttg aaaaattaaa aaaaatattg atgaaggaag gaaggaagaa





15601
agaaaagaag gaaggaaggg aggacacaac aatatctttt aacaataggt ctttctttag





15661
tatttgattc attaaattga atacactttt caaaggagtg catttaaata actacttcta





15721
tcacccagag agtgatgaaa aaaaatgatt actttttagc ttgaatagaa tcataatcta





15781
acttcttcaa catgtgtaat taagaaaaaa atgagctaag agtcactatc acacaaatat





15841
taggttctaa tttaagctta ctaataaact cactctatta ttttgtcagt catgagttga





15961
aaatgcattt actggatgat aagcaacatt aaactataaa tgttgtggca aatttccttt





16021
agatataaaa ctgaaacaat taaatataga ttatggtaga ctgacaaatc tatgaaacaa





16081
tctctaagac aaaaaatgta gaaaaatgca ctaaaatgac ttttaaaaat tgcaggtatt





16141
atatattaaa catcttacta aaaccgactc tgtaacattc taatatggat tacaactgcc





16201
ttattcttag ggtgagagtt ctaaatttga tatatctccc tggtcaaata agcatgtaag





16261
aagctgccaa atctgactat ataaatccca gtcatctcat atattgtaaa tataatagag





16321
tagtagccct agaattagat tttgaactcc ttggtggcat atttataagc tcttagtctg





16381
gcacccggta acatctgaga ggaaatagaa actccttaca ataaagttga tatgttgtat





16441
ttaacacaca cacacacaca cacacacaca cacacacaca cacagagcga ttgtgtttcc





16501
aaaagaagct atttattcta ctgctattat tgtctttgtt tcctgagatt tctaaaacaa





16561
tccacctgca gagatcagaa agcacatata tacatgcaca catgcacaca cacacacaca





16621
actagagtga tgcagagctt ataatttaat gaacaaaata atattttcaa aagcaggcat





16681
atcagtatct agattaataa tcaatgatct gagttcaagt tctgaaacaa ccttactact





16741
ctgagaactc ctacaaatca gacaattcac acataattca tttcttcgct tgtaacaaaa





16801
ttaaacagta ctactttact atttttagat actaaagatc aaatgagatt acataagaat





16861
atattaagtg gcaaagaact gtgcaaatct aaattactcc tctggttgtt tgagatttta





16921
ccaatcaatt tgggtgtata gaaaaaaatt cttgaaaata attctttttt tgctcaaaga





16981
taaatctgtt tattattgtt attcgattgt gtgctttgaa acactaggtc aaatacaatg





17041
tatcattttc aaatcatttg aagaaaactt ttcttaaagc tttttattca gtcattgtat





17101
tttcatttag ccacaaacaa ttttaatgtt tttgagcctg atggtcttaa acaggagaag





17161
gtgagagagt ctctgatctt caaagtagca gaaagcgggg ggcacaggct ctgctcacaa





17221
caaggtacta acatgtgtta tcaattttag ctgaagttca aaaggataga acttgttctt





17281
agcaaatgtt tgatatttct gccataacac cattagtcaa ataatgttca gactccaaga





17341
acaccttcca ttggccactt ttcacctagc gaaatagaag gaattatatt ggatgagatt





17401
aatgtatttt gtcttgcatt attttcagga aattttaaaa aattaccatg taacttaagt





17461
gtaactttgc attattgagg aatgtcatgg gcagaacgtt aagatgattt tcataattaa





17521
aacttatctg tagtggcatg agtatccact ttcactaaaa gcttagccat tggcttccag





17581
ttgcctgttt ccctgcatgt acggtaagga cacatttctg gaataagagg tcatcattta





17641
gtaacaatgc caaattctag ttattttctg tttgtttctc tctaaaaata ttctaaattt





17701
gtcttaagtg tactacactt catgtcatct taaaagacaa tacatacgtt gtacttacta





17761
tactagtaat ttacagagat agtttgttag gataacaaat tttggaaact ctaatgaccc





17821
aagttttatc atggattcat ggctgcaaat tgttaaaatg agttcagaac atgtctgtct





17881
aagtaaccac atcaacaaaa ttaaaaaatc actgctcgat atattagaaa aatataagac





17941
agggaatgtt atttttacat atttaaacag cttttgttac ttcttcatca ctgtccactt





18001
atgtcccttg gatgaatagg ccattttgac ttatagaaaa gtgtggtatt gtgtattttt





18061
ctcatttata tgtataggat ggttttctga tatttttgaa aaattaagat caacttacaa





18121
aatttgttag agcacgattt gtgtgtgccc aaagacacca tttctagagc actggtttac





18181
atatacagta aatctcctag agaaagaaga aatatgatga agcactagtt tagtagctgt





18241
ctgaataact gtggtcttac acaacctttg cagaaaggga aaaaaagtat cacctctaaa





18301
tgccgaggct agtaatatct tgataccaaa ctatacagct attatcagaa agtataataa





18361
cattattgta atgcataaac aaaaatttaa taacactaga ataattgtga agccatatct





18421
gaaagtgtat caaaaasgat actacaccat ttcccaagtg tagtttattc caagtatgaa





18481
aagttggttt tgtatttaac aattctaaaa actcataaca ttaataggta ataagaaagt





18541
tctatcttaa taaatgcaaa aaataaacta ttttaatttt aattttttat tagcacatca





18601
tacatagaaa acatgtattc ctgataaagg tatgtaaaca gcccccaaac aaacacaaac





18661
aaacccacaa atgtcacatt taatagtaaa actttaaaag catttctttt cgagaRaaaa





18721
caaaaagcct gttgttatta ttatttcaat tcaatattgt acaggaaatc ttaaaccttt





18781
ttttttgact tttacaaata aatcagctcc tttatttgca ttattttgag cactctgata





18841
atgacagtct tcactgatat ttttgaaatc ctgttttttg ttaaataagc ttttccaatt





18901
aggcaagcaa ataaataaaa gaaagcttgg aaaggagaaa aaaacaaaac tttttatgaa





18961
atcaaacaac atattaagag tattatatac attcattcca cttactgtat gccttacatt





19021
attgtgctta ctgcatgact cagctctaac tagcataatg gacagtaaat tagttgttat





19081
ctttgaagat gttaaatttc gtttcaagtt aagcataaat aaatataaat atttttcaag





19141
cagctgaaag taaagcattc tatgtgttag gattgataga gtagggttgg ttaaggaagt





19201
cttggagaaa gtgtttctca tcctgatttt gaagaaagaa attatctcta gccagtctga





19261
aattatagac ctaatttgat caattgtaac tggcacagtg gtaggtgttg gatttagaac





19321
tacagacaaa tgggcttggt ctttgctctc attaactcat agacgtaata ggggtcattt





19381
ccacacaata atgtcttgat taaaatggaa tttggaagac gttgccctgt aattttataa





19441
tgacttaata agaaacccac aaaaaaaaat accctaactc agctcaatat ttcatttcaa





19501
tatttcagtt caatattcat tacaatattt ttatcagtta ggtatgatat gtgaaaatct





19561
atgatacatt ttttattctc atcaaagatg attcaaatct tctttcctgg aaataggcaa





19621
attttgtcaa tttttttcaa ctttccatct cccgtttttt ttttttttcc ttccatcctg





19681
acactgatta tatagattgc tagcggctaa ggtcaaaggt tttgatttta taatataccc





19741
tcattagagt gtgtttaatc cttttgaaaa taagacatag agtgttagac ccaatgactg





19801
ttgttaatag ggagttaata gcatttccat ttgaaattat taaatgtaaa tatttaataa





19861
tgtttcaata tctgataaac agtttgtttg aatgaaaata ttttaatctg aaaaacaaag





19921
tttgttagaa aatttcaaag aaaatatctt tatgactgac tatatatgta tatatatatg





19981
cgtatgtatg tgtatatatt tcacattatt ctactctata agaaatgtga ttgagaaggt





20041
tgtgttaaaa tagctggtgc tgaatctgga attcttagac attttgaatc atatttcttc





20101
tgtcatcaag cggcgattca atgactagta atagctccga gccactgggg atagttggga





20161
aaaggaactg attataacag actgatttgc ttccctttac tttacaattg tgaaagatca





20221
tcattttatc taaactcata aatcaacttg agaacaaaag caaaactcca ctgcaaattt





20281
tgttttgctc atttttgatg gtttcatttc agcaagtcat agaacagtac tttcattgag





20341
tttagtatgt atacccagat gtgttttggg gtttctgaga gccgcaaatg atacaagctt





20401
tgtctggagg aagacgatca tgtcatttgt aaatcaaaat acacctggaa gagcatgcaa





20461
acttgagtac aaatacatgg cataatgcgc agatgagctg gcattttata aataatttcc





20521
caccacattt aatgcatgtt ggaactagtt ctcgccacta cagaagtctc tttttcttta





20561
accctattta ccataatcaa aatcacaagg gaaaccctaa gtcaagatac tgtttcccaa





20641
ggtagaatat ttgtaattct gtttactctt tgtatatttg atttgcagaa tctttgaacg





20701
taatgcaaag cacattttca gacttgccca tcttaactga tgtgtttaca aatacctgaa





20761
ttctagagtt aaatgcacgc tgatgtgatt tctgaatggt catggggctt tgacttaatt





20821
gactggtttg atttttcagc tacttttatt tcccttccca aacatcccac tagacatgct





20881
aatgagaaat ggtcataagg ctgggagcca gaaggaaagg agtgataagt aaaggtctga





20941
gtagtataaa aatgcagtaa ctggccaatg atattgagag ttggtggtgt gaggcaaaat





21001
atctgtgact gcatttgaag tgtgcattga attttggtaa catatcattc ctcccagcac





21061
tgtatgaagg aggaaagaca gaaactgatg gtgatttata gaaagtacac atatgcagga





21121
ttttattcat tcattcattt attcattcat ttcatttcag gccaggcatc tagaatcaaa





21181
cagtctctag ggaactgata ctaattcagg agagatctaa gtttccaagg aaatggtgaa





21241
tcttcccttt ctttttgaat attgtttaat caaagtttag ttggaatttt gataaagcaa





21301
attctggggg ctcaaggttt tgactgaagc aatttttcag atattactac attaactaga





21361
tagatgttac atggtgcctt aaagacataa atcagtgtct taacggaaaa tagatcaatg





21421
tatcaagtgg ttgtaacatg tataaaagtt atctcaaaaa ctatagaatt taaatagatt





21481
tttccttaat aaataagaca taattcctgg aatatattca aattactgaa tgtaaaagta





21541
taaccttcat gatgctaact cataatttac attttgtaca aatcaaagag ttttttacac





21601
atgaaaggaa aaaatcaaga aaaggaagtt attttctagc atcagaatgg caaactaacc





21661
tcatgataaa taagacacat aggaggaaaa gttgtgttat acagttatgt gtacattaat





21721
gtttgtttaa catctgttat ttgcttatga gttttcagca gtactcggtt aatactcaac





21781
tcacgtcttc tggacttgga aaaggagtga ttttccttcc tgtaaaatgc tggacttata





21841
actaaaatag tataagaata ataaagtaag ggaattacag tgtggtaata tgtataggtt





21901
ttgaaattag agacagtcgt gtttaaaatt ttcttgactg ctatctaatt gtattacctc





21961
aacaagttgc ttaaacccac aatgttttct gggtaggaat cagtaaaatg ggaataatgc





22021
atattgctaa agcataagta agctgtgagg attaagtgat ataacaaatg tcaagtacct





22081
aatgcaatgt tacataattc taatcatgaa aaaaaaatta ccagtatttc ttttatatca





22141
aagcatcctt tttttggtat ttttcttttt aaaatgttag ttttacataa tcttcttaat





22201
tgttaccata atgtatatag aattatattt tcagctttgt ataatattac gctgtaacaa





22261
ttgtctaaag tgcttaagtc ttaaggtcat cattttaatt taaaatcatc catagcttta





22321
acatgcaata actgactaaa tcattatctg tagtggaaca tttgttatat tcatagctct





22381
gtgtatccac tatacttagc acctttgtgt ctgatgcttt ttcatatgtt acatttttcc





22441
ctcattatca gtttccgaaa gtgacagcat agtgtgtaca ggttgcaact tttagcttta





22501
taacttgtta gatgtatgat gacaagcaag ttaattagcc tctgtgtctc agttttctca





22561
tgtgtaaaat ggaaataata atacttaata tgttaatata taaattaatt acaccagcat





22621
catgctcaca ataagtacta tttaaataca ttaaaatgct gggttaaagg tttcatggta





22681
ttttaggcta catatttgca aactggttat tacaagttac tgccaatagc aattttaatt





22741
tcagttttat tttccnttta aacatagcat tcatttcata atttttaagt gttaaacaaa





22801
ttttgtaaat aattataact attattctga attgttttgt agaactcgtg tagaatccat





22861
aaaggcagaa attttgatct acttgctccc cactaagcgg cacaaaagag aacacctagc





22921
acagtgccct acacgtatat atgtgtgtgt gaacatatag cacatataaa tacccataga





22981
aagaataaat aaatgttaaa ttcctaacat tatcttgggc ttggaggcag aaatatttgc





23041
tgttgaagat aagtgagaat ttaattaaag agaggaaagg ggcatatttt ttgtttactt





23101
gaaaggcctg tcaaaccaat ttagatgcta ttggtcatgg gcctttgttc tggaaaccaa





23161
tcttctccaa tttttgtggt ttttaaagtt ttattttcta atgaaaccta gggcttttta





23221
aaatttttaa aaattagaag acaggcaaag ttcttacatc tctataatcc tcaggtaaat





23281
ccaactatat tatatatgtt cattgtataa tacttgaact gtactgatta ttatttatta





23341
tttactgtat atctaggtaa gccagttatg attgtcacag aatacatgga gaatggttcc





23401
ttggatagtt tcctacgtgt aagtaagatg cacacacata catatatatg aataaattgc





23461
tgaaaacatt agagacaccc tccaatattg tgccaagcaa ttcagtaatc taagtttaaa





23521
gtaaaactga aatcttctga ggctaaatag acagagaagg gctgtaaaat tgcatctttt





23581
tttgcagcat tcaaatgtta atggtttata tttttaaaac aaatttgtga gttcttcttc





23641
aaaagactct ttttatactg ccaagattca cactcgttaa ataaaaataa aaaagaatcc





23701
taaagcaagt aataaaaccc actgatgtaa gacagaaagt ctctttttta agtaatctca





23761
gtctgatata attatttaat cacagtctga tataagacag accatctact ttccaaacag





23821
tgctgtcaga aaataagcat gtgctataat gctaaagtat atatagtttt aatttagata





23881
tatcattttg ctgttagata tgtacattaa ttttttagat tgagaagctt tatacgttta





23941
tctatcatct atctatctat ctatctatct atatatatat ctatatatat atattttttg





24001
agatggagtt ttactcttgt tgcccaggca atggtgcaat ggtgcaatgg tgcaatggtg





24061
caatggtgca atggtgcaat cttggctcac tgcaatcccc gcctgctggg ttcaagtgat





24121
tttcctgcct cagccttcca aatagcaggg attacaggcg cccaccatca tgcctggcta





24181
gtttttgtat ttttagtaga ggtggtgttt caccatgttg gccaggctgg tttagaaccc





24241
ctgacctcag atgatccgcc ctcctcagcc tcccaaattg ataggattac aggcatgagc





24301
caccgcacat ggccatattt tgacatacta tatttcacca taagaaagtg aatatattaa





24361
atttacatct atttcaacaa atgttatgtt caacaatttc atgaagttca agacaatacc





24421
aattaccagt cattgcaggc gataagaaaa gacataggcc ctgtcctcaa ggtgcttttg





24481
ttgctatata aattgagatg ggcagatgac agaaagatag atagataaat agataaagaa





24541
aatatgtagt atcattcata atcatggagg aaaattttaa attttctaag actgagaaag





24601
gatatgcttt atattaaaat ccattagcca aataaaaatt ttaatagcaa ttattttcat





24661
aatcgttatt tcaaaaataa acatttccaa aatcaggtga gttaaaatat tatgataaat





24721
attctttcaa aattatcgtt tgtaattaaa catggaattt tatataaata cattatctat





24781
acattttaaa ccttatgttt ctattttaat ccaagattaa attagattgg aagctggatt





24841
atgtgattta gtttcttatt gctttctatt ttgtgactac aattcagaag tgggtagaaa





24901
aacaaatatc caataaatat ttttgactaa ttatgaacta attatttatg ataatgttta





24961
aaaatgtagc atccacctta tttgaaacaa ttcataaaat atcaggaaac aaagaagggg





25021
aaatgaaaat tcaatcaaac aaataaatat caacctaaac tagccacaag attcatttca





25081
cttttttgtt cttaacctta atgagtctga gcaggagtta gtttttttgt cacataagga





25141
ccaggaaagt ccttgctttt aaactgaagt caaagaacgt taagatactt cctgttacaa





25201
agtatttgat aacatagcca gtgtgttatt ttgtttcagc cttgtatcca tttgccacat





25261
atctttgtct tgagtgctta ggactaaagt gtgtatagtc agtcttgtta caaaattcaa





25321
tatgtgagat tttaaccaat aaagatatat ctttaagaaa taggaacgta tcttaattgt





25381
acatttgaaa tgcttcccag aaacacgatg cccagtttac tgtcattcag ctagtgggga





25441
tgcttcgagg gatagcatct ggcatgaagt acctgtcaga catgggctat gttcaccgag





25501
acctcgctgc tcggaacatc ttgatcaaca gtaacttggt gtgtaaggtt tctgatttcg





25561
gactttcgcg tgtcctggag gatgacccag aagctgctta tacaacaaga gtgagtaact





25621
tagattttct ccttttttat cattgttttc catcttgtat catgttgatt tgtaaataag





25681
tagaaatcat gacccaaaac gtgttgtcaa ttatgctttc cacaatagaa aacatatctt





25741
aaaattaaaa tattattatt tattctgggt aaatagatgg tcactgttta acatttaatg





25801
attttaactc tgaaattcta tacctcagtt taatgttccc caccaaaagc agcaagattc





25861
tcacattcct caaatcttga tatttttaaa tgtacccatc ttttcaccat ggttgagtca





25921
ccctgagcta gcagattgga taaattctaa ggaccttatc ccagtacata tcattttaaa





25981
gcactttcaa atcaattttt taataagtaa tacctattta tactgtaaaa atgtcaaaac





26041
agacctataa agaaaagttg tccataattg tgccatccac agacaacatt tataagattg





26101
tgagtcaatt cttacaaatt tttcttcata ctcatatgta caaacttgtt catgaatata





26161
ttatttaaat acaattattc ataatacaat tgtatgccat ttctctcctt accaatacac





26221
ttcttgaata tatttcattg tcaataaata atctttaaat ttttacatgt agtaggttgc





26281
tgtattctat attgttgtat cttttttaaa gcaaacccta attagtgagc aaattattat





26341
tatatttaat ttttccatat tttataccaa tgtatgtgat ctgcctgcat tcataattgt





26401
tatgagcctc atgattttct aatgatacat tcctaaaaat gaatgttttg tgtcaaagat





26461
tacgtgaata ttttaaaagc acactttact acactcttga taaaactagg tattttcatt





26521
aattttacta ttatcagtta ggataaattg aatgtatatg ttttaatttg catccattta





26581
attcaaaatg catttgaatt ttttgtgagc ttttctgttg ttgttttgtt ttgtgtttgt





26641
tttttgtttt ttaggcaggg tctcactctg tcacccaggc tggagtgcag tggcacaatt





26701
acgactcatt gtagcagcct caaactcctg gcctcaagtg attctcccgg gctcaagtga





26761
tcctccctac tcagcctgat gagtagctgg gattacaggc atggaccacc agccccagct





26221
aatttttaag tttttcttta aagaaaatta tttccatggt agaaatttag aaaatataga





26881
taaaaaacaa gtaaatgtct aataatcatt actattaata ctacacaaac ataattatta





26941
gcattttaaa tttagccttt cgattttttt aaataaattt tcacaaataa ataactcctc





27001
ttttggcata aagttacaaa aatgggatta tactttatat actgatatat aaaatgattt





27061
caacataccg ataatttagg cactttactt atatataaat caatgccatt ttgttttctg





27121
ccctgtttta acttaaaaat ataaaataca taagtttcca gatgattaaa tatttttaca





27181
atattcaata atgtctaata ctctattcat atacataatt taattaaata aagcactatt





27241
aattgggcag aattacaata ttttcatatt atgagtgata ctttgatgtc atgatatcta





27301
ttttgtgtct gtccatgatt acctccttgg gatatttcta tagaattaaa attacaggat





27361
caaaacgtat acaagtatgt gagaattttt ggcgtatata ttgcccaatt gtctttgctg





27421
tagtttgtta tcaattttct ctcctaatgg cagtatcttt ctccatattc tcatcagata





27481
agagaatagg tggttccaaa gatggtagtc ttctgctgtt tcttattatc taattttaaa





27541
agtttattcc cgattaaaaa aaaaagctca tcctatttgc aaatcactcg agaactccaa





27601
taatcaaaat tgtcacatgg catgcatatc atgctataat aaagaaccta atatgccaga





27661
tagcatttca tccacaagta aagccgcaat aatagaacca ctgaataata atgacacaat





27721
gctgttggga tatttctaga tgcattgata taggaggtag gactctccca atggctttta





27781
ataataaacc attttgtttt tccaattttc aaatatactc tgtagtgcat ttactttgtt





27841
catgaatcta aatttttttt taatctgagt attttttaaa aagtacttag acacttaaaa





27901
tgtgtcctac ataaaaatgt tgttcttaac aaacacaatt caaatggata agagcaagac





27961
aaattaagac aaatttctta tcttgtagct agttgaatta aatttacaag tgactacaat





28021
tatatagata tgaacatgat gaaattgcca aacatgggat caatacctca acagtgcttt





28081
ttagttctcc ttctctgatc accagaaaaa ttagtcagcc aatgtatctg caacaaagca





28141
tcattttaat aactgagcta ccaattcagt agacactata tgcagcaagt gatacttaac





28201
agtcttaggg aatgtatttc attctactca cttctactct ttttctaagg ctatccctct





28261
taacctgtca tgacataagt acttctaaga gtccatgaaa agtatcatgc ttacttatat





28321
tgtccgtgtt acaacaatca tattatgcca gaaaaatact tttaggttaa ataaaaacta





26381
tttgataaaa aaattatttg aaatgttaaa tttctggtta ttcagtcagg ttctaatttc





28441
tatgccatat taaattattt atttatttat ttatttatta atttttgaga cagagcctca





28501
cgttgtctcc catgctggag tgcagtggcg cagtgtcggt tcactgcaac ctctgcctcc





28561
cagattcaag caactctcat gcctcagcct cacaagtagt ttggataaca gtggcttgcc





28621
actacgcctg gctaattttt gtatttttag tacagacggg gttactccat gttggccagt





28681
ctagtctcaa actgctgatc tcaggtgatc cacctgcctc agcctctgaa agtgctggga





28741
ttacaggcgt gagccactgt taccagcccc atattaaatt attatgtgag agcatctctg





28801
tccccataag taggcttgat tgccaggata ctcaaaagaa tagtttctct ggcaggaatt





28861
ggaaacattt gtccaacttt agatgattca tactctggag aacacagggg gttaactcta





28921
aatgtttcct ttacactgat tgttgttttg tcagggcctc tttagtgtta gaagaaaagt





28981
gtcgtatgga aattgctctt taacatttct gaaataaaag tgaaacaggc tctttgcatt





29041
tctgttccag tcactgaaga ttcttaaaaa cacactgaac aaataggctc attaaccaca





29101
aataaatagc tgtttcgagt tcttcagggt tcatctttgt atttccttgg aactccctca





29161
aaatatccat gggagtcctg gctttcttcc gagaagctgt aatttgcatg tgcgtttcta





29221
gagtaattta aacatcattg atttaatctc tcataatagg ccttattgag tacaataagt





29281
ttatagttta ctctaaatat gaggtatggt tatgaagtaa taagaagact tcaatttttt





29341
aaaaaaacaa atataccaaa cagctaaaYg aggcagcatt ctaagttttc cttttggaaa





29401
taaatatata cttactacag gaatgctgat attgcacaaa atgttttggg aatttctctt





29461
ttggaattat atttaaagct aaattataac tgatgcatta atcaaacatt tttaagcagg





29521
tagtattttg ggatataggc ttgactaaga taaaatctgg tctcgataag cagagtgggg





29581
tggctcacgc ctataatctt gacacttcga gaggccaagg caggaggaca tcttaagctc





29641
aggagtttga gaccagcctg ggcaacatag caagacttca tctctgttaa aaaatatata





29701
tatatataaa tatatattta tatatataaa taatatataa tatatataca cttttatata





29761
taaatgctat atctatataa atactatatc tatataaagt atatatatac tatatagtat





29821
atataatttt atatataaat acatctatat atatataaat aaattatata tgttatatat





29881
aaatactata tatatgtgtg tatatgtatt aaaataatat aggacaggtg cggtggctca





29941
tgcctgtaat cccagcactt tgagaggcta aagcaggcag atcacctgag gtcagaagct





30001
caagaccagc ctggccaaca tggtgaaacc ccgtgtctac taaaaataca aaaattagct





30061
gggtgtggtg gtgtgcgcct gtaatcccag ctacttggga ggctgaggca taagaactgc





30121
ttgaacctgg gaggcagagg ttgcagcgaa cggagattgt gacattgcac tctagcctgg





30181
gggacagagt gagaatccat ctcaataata ataataataa ttaattaata aaaataaaaa





30241
catatattag gcatggagac gctcacctgt ggtcccaact actcaggagg ctgaggtgga





30301
aagatcactt gagtccagga ggttgaagct gcagtgagct aaagcctggg gatcgagcag





30361
gacccttttt caaaaaataa ataaataata ataaatttaa aaggaagaag aaaagaaaaa





30421
gaaaaaatac tattacattt ttgtgtatat attgtctgtt tgtcaaccca aagcaatata





30481
cccagcttag acatctgtct tgtttatttg atttagtgtg ctctgattat tgttatttca





30541
gaaaaacaag ttcatcattc aaaacaattt gctgaggcat tccttttgga taagagatcc





30601
tggttaatct gcattaaaaa gtcagtcaca ttaataaagt ttaacgcagt tcatctagtg





30661
tctgaagttt ctacaatttg gagattaaca tttggtgcct caatgcaatg acccttccct





30721
ggttgctcct ctgaaagtta ctgcctgtag gtagagcgta gttgcactga agagtcatga





30781
aggacatttg aatcaatgtc agtggaaaag aatactgaac atagaatgtc tgtcgctctt





30841
gttttaaaac atctctgtga gtgacaggca gaatagagga atgtatagaa attatataat





30901
ctaattatgt atttaaaact tcttaaactt tgaagagtat ttgaggagtt gaggaaacac





30961
ctaagctcaa aacttaattt atcagacagt caaagatatt ttctcacact gtgttctata





31021
ctgtcttagg tgtatcacaa gctttccttc cttatgttct cgacagcatg ccggatatga





31081
aagggtcagc taagatagta ctatacattt ttatgtttat tttctctttt acataaggat





31141
attgtgtaag gactaagatt tttttcccca atactcactt gttgttattt cttctcattt





31201
cttactgctg tgttacgcag aaattgcaaa tgttgatatt ttccattata caatgttatt





31261
atgcatcctg taaaactcca ctgtactctc atgggatgtt cagaatgaat aaggctatga





31321
agtttcagta ttattatgaa aatagtttct atcttgtgga cccctaaaat gctcttgggg





31381
acccacatac atgctcggat gacagattga aagccactgt tatagatact ttactaggaa





31441
aaaagtccct taataactaa atgaatattt ttgccgttat tcactgatat aaatctaaat





31501
tatggcatag ttttatgtga tataatatat tttaaagaag tagctttgaa agcagaactg





31561
cagctgcata ccaaagtttg caaatcatct tgaaagtccc tggatttcgt ttgggatgga





31621
tatgattaga ccatttagct ccacaaattt aaatcatcaa agaagttttg tgtctgaaaa





31681
aaaaaacaga aaaattaatt cctttcctct ggtttctcat catgtgactt tgaaagtata





31741
attataaaat gtttgttata tttttgccct ggtctactaa tttacttcat tctaacagaa





31801
tcatgacact attgtagaac agtttgccac tgaatgattt ttcaattttt gcttctatga





31861
aattttatct ttaactggtt agtatttttg tatatatgca ttcatgcatc tatatagatg





31921
aatatttcta tattcatatg ttgaaataca tggaatccaa aattccaaaa tggtagtgtt





31981
taattttctg ttttatacag gatcaagtta ctgaaagcac agacttttat cttatttaga





32041
tgctgggtaa gccatcactt caattcttcc tatgtcctta agttcatttt gggagcataa





32101
ttaccacata aactgagttg gaaagtttga gaaaacaaat tgaattgtcc ttggctatat





32161
tctccattat tcgatttttt tcttttcatt tctattctga agttgcctac ttagtaagta





32221
ctaactagat tttgttacaa cattttattt tacataataa tttatttggc tttttagatc





32281
tgtgactctg ccatattgat gccagatata ttctatacaa ctttgttttg tttgatttca





32341
tttttgtttt tttgttttgt tttgttttgt tttttttgag atggagtctc actctgtcgc





32401
ccaggctgga gtgcagtggt gggatctcgg ctcactgcaa gctctgcctc ccgggttcac





32461
gccattctcc tgcctcagcc tccggagtag ctgggaccac aggggcccat cactacaccc





32521
ggctaatttt tttttgtatt tttagtagag acggggtttc accatgttag ccaggatggt





32581
ctcgatctcc tgacctcgtg atccgccagc ctcggcctcc caaagtgctg ggattacagg





32641
tgtgagccac cgtgcctggc ctgtttgatt tcattttaag gataaggcaa aaaaagaaaa





32701
gtggctaagc aagtggttaa aagctaagag gttaaatatt tcctttcagg taactccaat





32761
ctaagaacat aaataacaga aaacaggagc ctttgttctg taacattttc aagaaccaaa





32821
aaaaccatgc ttatcaaaat tggtataata caaaagacac atattaattt gataagtaat





32881
atatgtcgca tgtcatttat acctaaatga aaaaggtaat aacaaaatat ctaatttgtg





32941
tccttcatat agtaacagta ttttaaactg tgaaccaaaa aaagtcaact acgaatttat





33001
tgcctcccct tatgatcaat atgaatatgc ctgcatgtag catcagaaaa tacagccact





33061
tattcaataa ctagaaaact ctcaaaggtt cagtgatttt aataattaat gttgaatcga





33121
cacttaatga aaagtctagt actttctacc catctatttc agagagatga gtagcatgaa





33181
catttaaaca tgtaaaaaac aactatccag gtttatgtgg tgaaaaatta caactataat





33241
tgtgaagtgg aacacaggag cacacaagta aaggcagaaa agtaaaatga ggaatgcagg





33301
cagtctgtag agaatgcaat tttatatagg atcgtcagag aaattggtaa aatgacacta





33361
gagcagaaaa tgggtttgaa tgaaggagca aatactgagg ctaaagaaac attaattttg





33421
ctttcactaa ttttcaattg aatagaataa ttttaataat tgcactgatt ccaagaggcc





33481
caccttgcag gaagacaatg taagtcatta gattaattat ttagctcaga ctaaatgtca





33541
agataatagt aactagtcct ctttttctat tggtgatgca tgcctttagt cccagctact





33601
caggaggctg acgtgggagg gtcgcttgag cccaggaggt cagggctgca gtgagccttg





33661
attatgccat tgcactttag gctggggcaa cagagtgaga ttttatctca aaacaattat





33721
tagaatgaat ttagtattat ttctatcatt tcaattgcaa attgtcagta tcccctgcta





33781
cgtttctact aatttaccat cgcttcttca aaaaattgtg ttcagagtgc tacaatttca





33841
gactttgaaa tgaatcacta taacttttaa aaattagaga ttttaaaaac tggagattga





33901
atatatataa aaaatacaaa atttgacatt taaaacctca ttgaactttt aaaaaagcaa





33961
gactcatatt aaggcacaca cacacacaca cacacacaca cacacatata tatatgtatg





34021
tatgtatata gacttactcc ccgatgtttg cattattttt gtagaagata gatatcatac





34021
ataagattac ttagttttta cactgtttca tgagagtccg aaagtaacat aagcattatg





34141
agtttgtttt ttatttcctg gttagccatt ataataattt ggaatatgga gattttcctg





34201
tatttcaagt aatgcttaat catttcacat gatgttgaaa gatctcaaaa gttcgaagaa





34261
tgaggttttg ctacctaaag gatcatttat ctctgatctc ttgtggcaat caacatttgc





34321
tgaaactatt ctctcagtgg cgctgagatt tgaactgctg gggataagac tagatgcttc





34381
ctttgggagc cttcttggat cacccttcac cttgttgtct gcagtgaatg aattttagtc





34441
cttgacaata catagatgct aaatctttta gccaaataat ttatctctat agttccactt





34501
ttaacctgag aagctaatat ttccctccag gttaaatact caattacttg ggtttactca





34561
gataaactct ccaaagtcct ttgtcactct aaatatgacc tgacaaagct caaaaacagg





34621
aaatgtgaat tataaccagc aaacctttcc taaattggca ggcagagatt tgtacatata





34681
attacagaaa catttggcag ctatgtgata ttatgcctca atacccagaa atttcagcaa





34741
ttacactcct tctctttaga aatcagaact tgaagccccg taacccatac cgcatgagct





34801
gacttcagtt aagctcctga aaaattcagg cttttagcca catgtctcat tgaactgtct





34861
aaattcatcg agcttaggga actgaattgc agaatctttc aagaacaggg ttaccgtgtg





34921
attcctcatc taactgctgt atctaggcaa agtggacaag gttttagact tcaactaat





34981
cctggagtgg agtttagcag ttatgtagtg cctttttcca gagaatcact agcatcttta





35041
cctgtagcac tttattcatc tcctttacct tttctgtaaa actctataga cgtaaatcga





35101
ggtgacaccc atgtggatat gcaatttatt ccaaagttag tctttcttta agagtccaaa





35161
ataattaaca ttgaaaatgt cagcatcctt gatactcatg taggtttaag atagaaagtt





35221
caaagagcta tggtcataag tcagcaaagc tgttaagctg ttagataaaa ctgaatgtaa





35281
agtcaaattt tatatagtcc atgaccctgt ttttgaatga caagacagct gtgcagagag





35341
gttaagacac ctggctaaaa ttaaacagga aggtcaaaac tgaggccaga aaccaagact





35401
cctgattctt attaaacttc agaatccaaa tggagcaaat gactaaactt accctgtacc





35461
tccagttatt tagctataca tagatgagaa gtcagcactt ggaggaactg gctgaaggtt





35521
tggcactgga gatgtaagga gcaaacatta gcttctgatt ctgttaagtt tgaattggaa





35581
gtctttctga aattgaggtt ttagatacac tccatatgct atgattctgg gcttgctcca





35641
agcaactgga agcttttctg aaatacataa atatatcttg ggagcttaca ttaggatata





35701
gagaccagta aaagtaaatg cttcatttta aatgtttaaa tatggttaaa aaacacatct





35761
tcataaataa ttgttatagt gactagctga gcttttataa tattctaaat gcctagtgtg





35821
gcacatccct ctaaagcatc tacattttaa aaatgtcctt cacatatata agctaggaaa





35281
gcaatttcta aaccagaaaa aaataacact catgcaatat gagcttgaat ttgttaaggt





35941
gggaggtgag aagggaagag gaatttttgt ggtcacaatc aagaacagaa atatgcatac





36001
gctctgtgat gaattacttg taggaaactt agactcctat atattcaatt tattttagtt





36061
tgatagtctc agaactacag atcctcagct taaatgcagc aagtcttatt gtaaagtgtg





36121
actcagttaa aatttattgc cccagcttct tcttttaacc atatttcaga accaaattgg





36181
gccctcaagg actcttattc gtgtctctct atgccaataa tgtttacgtt tttgtagctg





36241
tagacagtgt ttgctgttgg agcaagcact tgtatcttac taaaatgctt ggttacttat





36301
acctccattt aataaaaaaa ttgatgctta atttataaag ttaatttaag ttttactagc





36361
aaacttaaat taacaggaag ttatcctaaa aaagaaaaag aaaaggaagg aagataggaa





36421
aaaagaagaa aggagaaaat aaaataaaac ataaaaaaat tccagaaggg atattattac





36481
atcatcaaaa cccaagtatt aggagattgg ctctggtgaa cttgacccct gtttttctat





36541
tagtaaaggt atagcctgtg acaggggtat aaaatatccc tagaaagttg atttcactta





36601
gtcaatataa aatcccacat aatttgtaga cctcatgtgg attactttcc cttgatgatt





36661
gtacaacatt taaagcagta gttcgcaaat ggggatgatt ttgttcccca gaagatactt





36721
ggtattgtct agaggcattt ttggctgtca caactgggga gatgctaatg taatctagat





36781
gacagcggca gaagtgctgc tagatatcct acaacgcaca ggacagccgt cacagcaaag





36841
aatgatctcg ggtgaaaggt caacagtgcc cttctagaga aaccttgcct acaaggttcc





36901
catcatgtgc aaagaatggg agtggggatc aaatgtttct ctcaggtact ttctattttt





36961
tcctgtccat attggactgc aagatgcatg ggacaatata gactacacca tttgtgaaaa





37021
aatgtgcaac agactagcca tctgttatca ggcctcctag aatgtgaaac ttcaagctat





37081
cacaaacata atgcaacaaa tcataagtct tgtgtgcctg ttaaaatttc attttcattt





37141
ggtttcaatt aaacacttaa attacttacc accctccacc ccaggctcta aatttcaaac





37201
atagccactt tagttgtgat gttctatttt cattttatta agacatcatg gagtaaaatc





37261
atacatagat gtatatctct agaagataaa tatatcagat attttagtca gtatataagt





37321
cttacccttg tgtaattttt ttaatgtttt aacattttac ttagcctcat tctacaaagg





37381
ggtaacgtcc atgtgtgtag actaaaatta ttttttaatt aattgtattt ttaggttggt





37441
gaagtagcta caacattaat attgaagcag ttgatgtaga atgtgtattg tttatggagt





37501
caaatgaaaa tctttatagc attctacgaa ctctaaaaca cataatccat acaacatcct





37561
gtgacatatt tttgtaattc tacagatact ctaaaaaagt tgatgctcag tgaatcttat





37621
actaactatc gttgtggagt tcttaaaatg tattaatgta acaacactat taaatagtag





37681
cataagaaaa aagaggacat tagaaagcag tatgatttaa gaaaataaac tattatgttt





37741
atattggctc attcacattc acatatatta tgaaaaacta gatttaactc attatcaact





37801
gaaaatgaac tgcaccttta aaatgcacaa aattatcaga aatctttaga aaaatctact





37861
ttcccaggtc cacaaaataa atcattattc tcacttgaca gaacaacgtg cttttttgca





37921
agcaacaaag ttttgtaaac agcagaggta gaaaataaga catactttaa actgggggaa





37981
tacagtggtg aagggggcca ggtggttatt cctctggaca tcccagatta ggcaggataa





38041
taaagcagta gaaagatcac agaggatgga atgaccaact cttgctggaa gactcctaaa





38101
tgttcaccca aagagtttac atttgaccaa gatgttcaga taagaacttt acccagttac





38161
agaaaaaagg aaaaaaagcc tcccaaaaag aaagaccatg tatttgggaa gatagcatgc





38221
tcacaggggg aattcaatta agatcagtga gcatctgttg aatgcctgca ctgcacattt





38281
gccaagataa taccaagata atactacaga gagcaagaaa actgctctct gtagtgaatg





38341
tgtattgttt atggagaaca tagtttcatg tgagttaata ctccttatct tcagctttat





38401
aatctattca gtttttcata agcttatgat ttgaaataat ggttcgggtt tactattttt





38461
atttgttgca attgatatga caggcactac tgctactact tttactagtg tagaacataa





38521
agagtttgaa actacaatga agaatttaaa gagtttatga gaatgtatgt atctatcttt





38581
tcttaaattc cataataatt ttgctcgttc gaaatttcac ctgtagtttg attttttttt





38641
ttacttcaaa ttaaatgtgt acaatgttgg tttattattc ttttattttt aaagccagag





38701
caatttgata ttatttgctt gccatagaat aagataattt ttaaaaattt ctttttatct





38761
gatttagtat taattgctaa atttgaattg tactttgtag ttaacagtga gctttccctt





38821
gtagcatctt ttaataaatt tgttatattg acagtaaatg taacaattaa agggaattga





38881
aaggaaggaa caggcataac atttattgaa tgctctatta aggagcagac actttttaaa





38941
tggctttata tatattataa attcatgaca aatgacaaaa ttttctaaat aataatatat





39001
aattctcaat catctttatt ctcttcctgt ttccctcaat gatggatggc atcatttaca





39061
atatggttag atagaaaaga gataagagtc ttgaatctgt gattatttca ttattggagc





39121
taaactaatc Mgtctaataa gctacctatt agcagataat ggaaattctc taatgaaaag





39181
gctaaatgtt tcatgaatat tgaatacatt ctgggctaaa cagctaactc ttggccaggt





39241
gcgatggctc acacctgtgt aacaccagca ctttggtagg tggaggtggg aaaatgactt





39301
gaggccaaga gttagagact agcctgacca acatggcaaa accttgtctc tatcaaaaat





39361
ccaaatatta gccaggcttg gtggcgcaca cctctaatcc cagctactaa ggaggctgag





39421
gcacaagaat tgcttgagcc tgagaggggg aggttgcagt gagccgagaa cgcactgcac





39481
caccgcattc cagacctaac tgtctatgga cttcaacact aaaattgggc aaagcaaatc





39541
acttattcac atcttcttct aaagaaagag tttaaattag ccccagctct tcttttagac





39601
tgagttgttt ggatatcata tataaaaata taaattaaga gtttttcatt aaaaataaaa





39661
ataaatatgt ttacttctaa gtatataagc tcaattaact gtgacctggg acagaatctg





39721
gccagcgagg aaaagaactg gtacaccaaa agttgatcaa tagtagtatc tggataaatt





39781
acggaaacat ttaaagcact gcaccctggt ttcattgttg aactgattga atgccactta





39841
attttcgagt gtttgtaata acatgtccaa aataaaatga aaataaatga gattgcccca





39901
cttccttatg ctttcccaca agggcagcaa ctgaaccctt gatatagtta agagacaaaa





39961
aggaaaagtg taaatcaaaa acctgaatga cacaagtgaa aagaccatac ctacatttcc





40021
aaagctagca aaacttgtag caagaggcct ttgccatttc acaggtatct actgcacaat





40081
gtggccaaga tacttttcca aggtaccaca gtgagctaag agccagaata ttttgttaaa





40141
aattagtacg aaggtaaaga tagtataaag gtcacctgat cagcaagtat gttacattga





40201
aaggtttaaa gttgtcattc taacaataat atgtgtgtgt gtgtgtgcag gctacaacaa





40261
ttacaaaaca caaccagaag agcagaattg aaaatttaag tttttcttat taaaataaat





40321
tactatacat ttttccaaac atgcatccca tttgtttaaa ttttaagcat tttaataaga





40381
tttacacagg ttacacaaat agaccacatg taattgggaa atattctgga aataatttgc





40441
ttgaatctgt aaccatgtat ttcattagag aacatactgt ataagtccca ggcaagttaa





40501
gagattcagg tgagtgaagc tttccttgaa gatatgatca tgcgaccaca gcagatacct





40561
ctccaacatt attatgtctg tatttacaac agagcaaaag aggattctcc ttccaagctt





40621
aagcagaaat atggctctgt tcttcctaaa aatgatcacc tttcagtata tcattatttt





40681
aagaaattct attaatctca atgctcttct ctctggaaaa tggtgaagaa acacttaaaa





40741
tgaaacaact cttctgtgtt tctttttaac cctgattgaa ttaaccaaat aaatacactt





40801
ctctttcatg gctgtcatca acctattgtt tttttcttat gactctattt taatttcaac





40861
tagagaccat ggtaaggcaa caaatatctg ggcctaatat tttctaaata ggtacaaagt





40921
tttcagcata gaaagggctt ttttttttct tttttctttt ttttagtgcc atttaagtac





40981
acttcacaat ttcagtatta ctgaaagtat actgacatga tcctttcagt ataagtatac





41041
ttatatacct tcagtaatac tgaaagtata cttatacgct ttcagtaatt tggttctgga





41101
aaaagagaag tagcaaaggc agttagaaaa atgacaagtg tctataacag acctaagata





41161
tttaattgag atttttaaga tactgtacct cccttgtcct atgaatacag ctctgtttga





41221
cttttgttaa ttctctgagt tcttaagaag gagaaagtag gcccaatgat tccatttggc





41281
atcctgagta gattctgttc aatgccacat gtctaagtcc acttttgtcg atgtcaaggg





41341
gtagtatttg aaattttgaa ttataaaaac ataaacttga tctaggcata tgtagatgag





41401
tgctttggga gttttagtgc acgttgcaca ctgtagttta tctccctaac ttccgaggct





41461
atcttttctc tggctccggt ctctccaatt tcatttgttt tacttcatca gtagaaactg





41521
tcaactattc ttcacctggt agcttcttag gaaggttgcg ctcactgtgt gtctttgcag





41581
gcttattctt cctgctgatg gtgtttttcc atttcctcaa ttctctgcac tgtttcttgc





41641
attcttcatg actgtgtaag ctctaccttt tcaaagagct tctggcagta ctctccctga





41701
acagctcatt tgtgccaaaa caccaaggag aagtgctcag ttttactgag ttagttccaa





41761
tcttataact ctcctagcca ggataaagtt tcccaagtgc atctgtgatt aaataaaaat





41821
ttgacatttt agcttcctct tccattatat ttcttcacac aggaaactgt tcttctagaa





41861
catacagttt tcccctctgt gctttgattt atgccatttg ctcagaatat gagagtattg





41941
agctaacatt tattgagtcc ttactatgtc ctaggaagaa gactaaatat tttactgaaa





42001
tttgtcgttt agtcccacat aaatactctg aaccaggact attacattct caataacaga





42061
tgaggacagt cctgcacaac aaggcttaga aacttgtccc ctaaattgct aatccatttg





42121
tgtaaagcac tatattgccc ccttgagcat cacttcaaat ccagtggcat gctatgaggt





42181
ccgatagaaa tcggtcacat tttgacgaac acggcttaag attttgagga tgtgagttct





42241
ttctttgaaa tatccatccc ttttttctta tatcaaatat tgtacttatc tttcaagtga





42301
cttcacttga aattgaggtc acttaattca taagtgccct cctcagtctc tctagtgaga





42361
atcttggctc cacgctccac attacggtgg ctttcactac tgtctttcta ctcagggtaa





42421
gttccatgga ccagcatcac atggagattg ttggaaatgc agacactggc tacacactca





42481
acctcctgaa tcaaaatttt cattttactg ggagtaagct gtatatgatt tatatgcatt





42541
ataaagtttg aaaagcaatg tgctagatac ctatttcgtt ctgtatctag tttttcagag





42601
taactcatta ttactcctgt ttgcctgaca cttacgaaac aaaagagcca gtatgttatt





42661
tatcagtttc acccaaatta actagcataa tacttcctat atggttgaca atcagtacat





42721
ctttattaaa tgtatttatt gaactaagag caaattccat agacattaca cttttatatc





42781
tcccataact tataaaagca atattatttt cctctaaatt ataagttctg ggaatgtaat





42241
tattatgtct atctaattta tatggtgctt gcctactatc cagaagacac ttcaatgact





42901
aatgatgaag cacacagtaa attaatcaag atgattattg tgttgaagag agttttttaa





42961
aatataattt tattttgagt ttatttaggt aacaaacacc tgtaagtact tatgtgccag





43021
ggagtggtct aagttcttta caaatactga cttattaaca ttctgaactt cgattgcttg





43081
gtcaagcata aatctaggtt aaatcaataa aagttgattt gtgatacctc ttttaattct





43141
aatacatgtc atgtcacatc tgcttcaggt tgttttgttg cagatgatta attaacctgc





43201
catagttgat ataaaatgtc aatatttaag caattttctt ttttatatat aatttcaaaa





43261
tccttccaaa ttatttggaa gtaaaatttg ctgtaaatgg tatgctactt ctgcttggta





43321
ttgaaataga ataacatcaa aatgtttcac agaaatgcat attccatttc agaacagaaa





43381
tactatgaga aattctgtcc ggtttcagat tatgttatgt atattatatg ttctatgcat





43441
tgctgattta tgtagacatg attttatatt caaagggagg gaagatccca atcaggtgga





43501
catcaccaga agctatagcc taccgcaaRt tcacgtcagc cagcgatgta tggagttatg





43561
ggattgctct ctgggaggtg atgtcttatg gagagagacc atactgggag atgtccaatc





43621
aggatgtaag tatttgtggt ctatgagtta tgagttcaga tgaaaagatc aagctgtgca





43681
aggaagtgga acataatgta actgggtggc tcctggtttR taacactgaa ataaaatatt





43741
tagcagcaat gaaactgttt ccaagtcttg caaggatatt atattaattg aattgttctt





43801
acagatttac atatttccct caagcaaggg tttagaaata agacaaaaga aacatttgta





43861
gtgaaaacgt aatgaaaaaa gtgaccaata agataacctc tagattctaa tgcacattga





43921
agtttgaaag tcactgcttt acaccattga aaagtactaa tgaactaata gttacttaat





43981
tttacagcac ttaggatttt acaaaaaaaa ttactataat ttggaaggca ccatttgaac





44041
tgcagtataa ctaaaacctg tatagtaatt ttgtccatat tcattcatat atgttttcca





44101
tagagaacta tataaccaaa taataatttc tttataacac caaatttgct ctatcattta





44161
acatttcttt ttattttaac ccaaaaagga tctttacata ctctttccta aatttatgtt





44221
atttcaatct tcctttatat aatattttag gcatacataa cgtcttattt atttgatcag





44281
ttgttatcct tttaggcaac taaaaatgag aagttttccc acttaccttt aaaataagca





44341
tatttgtgag ccccgcccat gaaaacgtaa actaagtgac acttcctgaa aacttcctgg





44401
ttcctgaaaa ctttgcttct cacacaggta attaaagctg tagatgaggg ctatcgactg





44461
caacccccca tggactgccc agctgccttg tatcagctga tgctggactg ctggcagaaa





44521
gacaggaaca acagacccaa gtttgagcag attgttagta ttctggacaa gcttatccgg





44581
aatcccggca gcctgaagat catcaccagt gcagccgcaa ggtgacacat tcaatttgtt





44641
atctggcatt cactctgaaa tttgtgtttg ctatctccaa gatgttaatt tttttagccc





44701
acccccaaaa tgcattattt gaagcttgta ttccaccata ttagagagat gtatttcccc





44761
tttctttttt aatctttaga actaattctc gtcctcctta atagtaatga tgaaattctg





44821
agatattttt taacatctat cttgactcta cattcaggct tgtttaagtc tttgggaaat





44881
aggaatactg gaggggtgcg gtggctcgtg cctgtaatcc aagcactttg gtggatcact





44941
tgaggtcagg agttcgagac cagcctggcc aacatagtga aatgccgttt ctactaaaaa





45001
tacaaaaatt agcctggtgt ggtggcaggc acctgtaatc ctagctactc gggaggctga





45061
ggcaggagaa tctgtgaacc tgggaggcag aggttgcaac gagctgatat catgccactg





45121
cactccagcc tggtcaacag agcgagactc tctctctaaa taaataaata tactgaacac





45181
atacttcttt tcacccttca tgaataaaga agtcctgatt catctttcat tcaaaataaa





45241
gaaaaagaaa ttatccaaaa tattgcactg gctagcaaaa tgcaaatttt ccccagttaa





45301
ttaaacaaat atttgtctag tctatattgc gtatcaatta ctttgctaga caccattgaa





45361
gataaaacta agagtaagat aaagccagtg tccctggaca acaacacaaa tgttaatact





45421
ctgcagctgt aatgcaatcc tggatgcaca aagtctattt aattttatgc atattctttt





45481
aggttaagaa tcactgagtt ctctcagtgg ttagaacaat gtaaattaaa gtgtatctac





45541
aaagtacagt ggaaaaaaga aggaagaaga gatgaatttt gtcaggggsc atataagaag





45601
aaaataaata ttaatatatt tggtgcctct cagagtaatt aaaggcaaag atatcttgtt





45661
taataatttt gattctcatt gtaagcataa gaaaaaaagg ttcttttaca ttttgataat





45721
gcattctctt acaggctttt aatttttctc tctgatttat cacatgagtt agtacatgtt





45781
ttatactttt gaaacattcc tcttgacaac tatagagaga agcatttcag acctatttgg





45841
gacctctagc tatgtgccta ctcaatggct tggacttgtg agttcaatag tatattgatt





45901
ggtacaatgg agttttatca gtaacgatga cttgtgggtc attctgcctt ctttgcataa





45961
ccagttgctt ctcaatatcg cttctcaact gtgttagttt tgggtctcaa taatagtatc





46021
ccgccctgtt gtttccattg ctacaaagct tagtgactaa agctggcgtt caatgcatgg





46081
gaaattcctt gcattttgtc ttaagttatc tgtttgaaga tcaagcaggg cgtgtgtgtg





46141
tgtgtgtgtg tgtgtgtttg tgtgtgtgtg tgttggtgag tgaatatgta ggtacattac





46201
aagtttgatt aaccatgcct tagtatcata tttttgtgaa aaaaatcaat catatttaaa





46261
acaatatttt aagatgtcta aaatcaatgc ccctgaaatc cacagggaat aaaatagcaa





46321
aattttaaca tataaacgtt ttttatccat tcttctgtca gtggatacct atgttgattt





46381
catatcttgg ctattgtgaa taatgctgca atgaacatgg gaatatagat atctctttga





46441
aatactgact tcatttcctt tggctatata cccagagtgg gattgctgga tcatatggtg





46501
attctatttt tagttttttg tggaacctcc atacattttt ccatatggct gttccaattt





46561
acattccctt acatgccaat gttccctttc tccacatctt cactaacagt tgttatcttt





46621
tgactttttg ataatagcca tcctaacaag tgtgaggttc tagctcattg tggttttgat





46681
tttcatttct ctaatgacta gcgatgttga gtacctttac ataaacctgt tggccatttg





46741
tcttcctcag aaaaaaatgt ctattcaggt cctttgccca tttttaatag gggtattatt





46801
atttttgcta tcaaattcta tgagttcctt atatattttg gatattagcc acctatgaga





46261
tatattgact gtaaatattt tctcttcttc tgtggattgc ctttcatttt cttgttttct





46921
ttactgtgca gaaaattttt aatttgatat aatccctcct gtttaatttg gcttttgttc





46981
ctatgatttt ggtgtcatct ctacaaaatt gttaccaaga ccagtgtcat agagctttct





47041
tcctgtattt cctgctagaa gctttacagt attaggtctt cagtttatcc attttgtgtt





47101
gattatatta aatgaacatt acctgttttt tacataatag tttaataagt taagtaggag





47161
aatcataaac aagatcttaa tatcagtata taagaatcat agattattta ttgataataa





47221
cacttagtag gaatcactat gattgaattt agtaataagt ccttaaataa aactaaccat





47281
aacttattcc ataaggataa atatctatcc caaacttcac agagactgta tagactctta





47341
gaaattcacc tgacagttta acaactaaca ggataacaaa cctgtccttt cctgggccat





47401
atggtcctca ttctgtaccc tgaaggcatt tattttgatc tttacagcat agatagtaat





47461
cacagaaaaa aaaagacttt acctatcata aaaacattca aaccattttc aaagctaact





47521
catgtaatgt aatgtaatgt aggggtatat aataccagtt tcacagagaa aagtagtctt





47581
actatcagat cataatatgt gaggctatgt cctagcatcc aaattttaac atactttcat





47641
aattcacttt tccactctta ttgaaatata tcaaatactt tttcttatat atttttcttt





47701
aatacatgaa ctaatttgat gtattttgtc ataaaacata attttagaaa aaaatcaata





47761
ttttctatga aaagacaacc atctcaatgt acagaatata aacatttggg caattatatt





47821
tatattttta cttattacca ttaaaatgca cgatgggtta gattttgtca taatacattt





47881
atttttaaca acctcacatt actatatgca actatgtcaa gaagtttttt tctctttaga





47941
aaatttgctt tcctactttt gacaatgatt atttcatcct tttcataact gattaaaatg





48001
acctccttct ttaattttta gtgatgtcct tgccaaatgc tttattgaga aaataagcca





48061
ttagatggga acttcccaca gcaaaacaga aatgtagtgg cacctgcacc tacccatatc





42121
gtccttcttt cctctaatta taaaaggcag tgtccctcta tttgttagag gctaatcctc





48181
tactcttcct ctctccctgt ctccctctct ctcttctgca tatccaggct ctttttttct





48241
gtaggatcat tgccacaaac agatgttcta ttatattctt tctcattata ttattcttat





48301
caccagggga acatattaca catacaaata tccaggtcta tcccaagaat ctccaggaaa





48361
agagaatgga gtttggatgt tttataaaaa tgccaggtga tttttttctc ctctggaaaa





48421
tttaggtgat attgcttgtc aatattaccc ctgctggccc cacatctctg ccaactactt





42481
ccctacttct ataacactct tcacagccaa acttctcaaa taatggactc acagacataa





48541
agtcaatatt ctgaaaattt atcaattttc tccccctagc ctgatccttc cactgcctaa





48601
ttaattgcat acaccagcag ctacccattc acctaaccag gaattagagc aactcttggt





48661
acctctttct tcccctctac actgtgatca tctggatcaa tgagatctat ctctatccct





48721
tttcactgaa aacactctcc tcatggctgt ttcgtcttct gacctggacc actgcaatag





48781
gctcctaact tgtcccctgc tttgattgct ttcaaactcc aaacattttt tttgcacagc





48841
ctccagaatc ttcttatcaa aacatatatg atatagtttc agtcacctgt ttataatcaa





48901
tattgaattc acgttacact tMtaaaaaaa tctccttttg gttgtttaaa aagccctgct





48961
gactgggtgg agtgactcaa aactgcaata ccagctattc aggagactgg ggctggagga





49021
taacttgtgg ccaggagttg gagaccagtt tgggtgttat agcaagaccc ccatccctac





49081
aaattttttt ttaaatgggc caggcatggt ggtgtttgcc agtggtccta gctactcagg





49141
aggctgtagc agaaggattg cttaagtcca ggagtttgag gttacagtga gcaatggtaa





49201
caacactgca ctcagcctgg gtgacagagc aagacactgt ctcttgaaaa aaattataaa





49261
ttaattaaaa aagaaaattt tgaaaagtct tgcttctaca atgttattat cttattcaaa





49321
taaattttat tcgaaaacta tttttatata atacaatgag atgactatag tcaataatac





49381
cttaattgtg tattttaaaa taaatggtgt tttctgccac tcttgtaaac aacagacaag





49441
tacagaccag aggaaggaaa taagtaaatg gccgtgatgg gcgataaagg aatagctgcg





49501
aaagagtctg aggagctgat gtttgagacc tgcaggaagg gaatgagcca gctgtgtaac





49561
ctcctcctca ccaaaaagaa tattcttggc acaggattaa aaaatgcaaa agtcttgaga





49621
tgagaaaggg tttggagagt tctaggaagt ggcagagaat aatatgactg aagggagtct





49681
gtcatgaacc taaggaggta aacagaagcc agagcacttg aggctacaca ggccatggtg





49741
aggactttga aatatttttc aaatgcatga ggaattcatt aggcatctga accagagaag





49801
taagatgatt tgatttatat gactgctttg tagagggagg agcaaaagta tgaggaggtg





49861
ggggtcattt taacctttcg acttgtgcca ccttcatcta aacaatactc taacctcagc





49921
ggctacttct agttccttca gaaaacaaaa gcatttcaga agattgtagc acatgctgtt





49981
tgccttgtct cagattctcc tttgcacctt tcttccttaa ggaagcaact tacacatcat





50041
gtatgtgttg actcattctg tggcagcacc agtgaaataa agtttaacat cattattctt





50101
ttacagagca ccacattctc gttcttcatc actattttaa ttctgttttc tgtgWttgtg





50161
tctgtgtatt ctttttaact atccattttc tcaataaact ctaagccctg tgagagcaca





50221
caccatgctt ctctcgtatt accagtgcag attgataatg ggtgctctgt aaatgtctcc





50281
taaataccta ataaatatgt gctgacatca ttagtaaatt tacatttcaa aagatgcaat





50341
ttatagaaaa aattccagtg tttttctgct ctctgaacag atttttttaa tagacattga





50401
tcatatggta aaagcctaga cctgttctcc taagcaaaat tctgcatgtg tacctttctg





50461
tcaactcaac tccagaaata cactcctaaa aatttaatag gagacttcaa aactgaattc





50521
gtggctggta caaagcattc aagtttctga atggtgtagt tattcagatc agtgcataga





50581
actgtgttta tacacgtacc ctgtagtgtc ttttaagaaa aacaacatca ttctgataga





50641
aatgatgttt cttcagtctt tctggattta gtacatttta tggtcaaatt ttattttttt





50701
cttggtggct aagtaccttt tgaaactaat tgtttgaatt taaaaacgtt gttgcatata





50761
ccgcaataga agtcttttta taatgcatca tttcactttt cagccttcat tagagttgat





50821
gatttatagc agtaccattc tcaaagaatc ttccgcttag agtgtctcca tgaatatcgt





50881
cactggaagt ggggaaggtg gaaaagctga tggtcagggt gggccagatc aaacaattac





50941
ttagatgctg caaagaatca taataaggga aggacagtta cattaaactt tgtgttatgc





51001
ttgttcccta gtaattgatt gctttttcta aaagtagagt aaatcagagg agatgtgagg





51061
gttttaagtt ttgatagtac atcagtacaa ggctacagat gtttattcaa caataaccgt





51121
gtgtgagaca ttatgttagg tcctgtgatg attatatagg taccagatgt agcttccata





51281
ctcaacagct tacgtttaaa tgtggaagaa aaaagaatat ttagaacact ataatacccc





51241
tcagaacatg taattattag agcaaaaata aaaggagttc gggaatcccg aggggaggtg





51301
agtttacttt tatatttgga gttttctggt atttgtatgc aaaagggact tttggatagt





51361
ggatgaaatt gaaatttcta caggtaggta acaggaaaac aggctggggg aacactacag





51421
aaaagggaag acatgcaaat aggtaggata cttccaaatc acatYgcata atacggtttt





51481
gctagactat aggataaaaa aaggaaatta tggggaaaaa gcctgataga tcagggatcc





51541
tcagcccccg tgccatggac tgctKccagg ccatggcctg ttacgaacca ggtggcaaag





51601
cagaaggcaa acggcgggct ggtgagcatt accgcctgag ctctacttac tgcagatcag





51661
caggggcatt agattatcat aggagagcaa accctgttgt gaaccgcaca cacgaggagt





51721
ctaggttatg cgctcctcat gataatctaa tgcctgatga tctgaggcag aacagtttca





51781
tactgaaacc atcccccacc acaccaccat tcgtggaaaa attgtcttcc atgaaactgg





51841
cccctggtgc caaacaggtt ggggaccgct gcgatagatg attcgtcagg tgatggaaga





51901
ctaaatgtca tttctagaca tttgggcttt tatccataag gaaaggggag acactgaagt





51961
tactgaagtg atatgttgca ctgtgtttag ggaatagttc tttggcagct acttctaaaa





52021
agggctggag atgaagggat tcatacgaga gaattaagct ttcaatagtc taagaaaagg





52081
atctgctatg ctagagcagg gaaagtagac agtgtgtgaa ttcaatatgt tttattaaag





52141
tgagttctat aggacatagt gactgagatg tgcagagtga cagagaaagt atcagagaat





52201
acttccaggt tctgaatgtg gagcctttga gatcagcctt ctcattgaca gtggtaggaa





52261
gaacagaagg aagaacaggt ctgccatgca gataagcatt cttggcaaca gtcaagaaac





52321
taatttaaat gtttgaatgc ctcctgtttc cattgtatgt aacaaggtgt agtggcagcc





52381
aatccagatt ttaggcacct tgtaaggggg ctgtggagcc aatcagtgac aggaaatggc





52441
aatacaagaa ggaaaacaaa tacgaaacat tcactaatat ctcagaatat taactcacta





52501
cgttgactgc caccaagaga gaaagaaaat tccctttatt ttgagctttg gagagcagtg





52561
ccagttatat cacagaagaa tgtgaaatgg taggtagaaa cgaggaacaa tcagggtgat





52621
aggatgaggt ttagactact gcagaaaacc acagtgcaag gcatttccaa aaagtagatt





52681
caaacggtat taacaaaagc tgaaaaaggg aaagaaaaac aaaaactgag ggaatagact





52741
tccagttaaa taatagaagg atttataatc cattgggtat atacccagta atgggattgc





52801
tgggtcaaat ggtatttctg gttctatgtc tttgtggaat cgccacactc tcttctataa





52861
tggttgaact aatttacacg cccaccaaca gtgtaaaagc attcctattt ctctgcatct





52921
tcgctggcat ctgttgtttc tagacttttt aatgatcgcc attctaactg gcgtgcacac





52981
gtatgtttgt tgcaggacta tttacaatag caaaaacttg gaaccaaccc aaatgcccat





53041
caatgataga ctgaataaag aaaacgtagc acatatacac catggaatac tatgcagcca





53101
taaaaagaat gagttcatgt cctttgcagg gacgtggatg aagctggaga ccatcattct





53161
cagcaaacta acacaggaac agaaaaccaa acactgcatg ttctcactca taagtgggag





53221
ttgaacaatg agaacgcatg gactcaggga gaggaacatc acacaccagg gcctattgga





53281
gggtgaaggg aaagggaaag gatagcattc tgacaaatac ctaatgcatg tggagcttaa





53341
aacctagatg atgtgttgat aggtgcagca aaccaccaag tcacatgtat acctatgtaa





53401
caaacctgca ggttcaacac atgtacccca gaacttaagg taaaatttta aaaaagatag





53461
aaggaacatt gaggtattaa gaaaactatt ctgaattttg gaataatata tattacattg





53521
tgagagacct aattataaaa ttggataatg aaaaggcaag gcaaaacaag aagatgtgca





53581
taaaagaatg aaaacaaaag aagctctcct ctcttttttt ataagaatca aagaaatgtt





53641
tcttctttct tctctttctc ttcctctttt tcttactctt tctttctttc tttctctttc





53701
tttcttccct tctttctctc cttccttctc tccttccttc tctccttcct tccttccttc





53761
cttccttcct tccttcgttc cttcctttct tcctttcttt ctttcttgac agtgtttcac





53821
tcttgtcgcc cgggctggca tgcaatggtg ccatcctccg cctcctgggt tcaggcgatt





53881
ctcctgcctc agcctcctga gtatctggaa ttataggcac tccccaccat gcctgactaa





53941
tgtttgtatt cttagtggag atggggtttc accgtgttga ccaggctggt ctcgaactcc





54001
tgacctcagg tgatccactt gccttggcct ttcaaattgc tgagaattca ggcttaagcc





54061
accacatcca gcccaaaggg atgtttttta aagattgttc ttgatagaaa atgccaccat





54121
gaaaataaat agaaaatagt cttaaaataa aaatattctt taacttccca acacattgtt





54181
ttgtacatat aagagaaata cacatttatt ttttaaaaac atattttgaa agattataat





54241
ataacttcta gatttaaata aatttattca cttattttat aactgaagct aaattaaaaa





54301
ttgactaata acagaaaaat gagaatgtgt ttctattcaa gtagtaagat acacttttta





54361
tttttgaaga tatgagattt ttattattga caatattaat tttgaagaga tgtatgtgtg





54421
tgcatatgtg tgtaaaatga aatagagaaa taatttcttc ttaagttcac agaatttcca





54481
ctagccaggt attgaattct tctatactgt tgtaaattga taaaattcaa attcttgaca





54541
caaaaaaatt agataataca ttcaaaatat ttagaacgag gttttaaatg gaaggcaaca





54601
caattcatga cacagactta agcaatatat ttaataatat ttagaacaag gttctgcaga





54661
cccaattata tttagttaat ttaattgaaa tgtttttaaa tatattgttt cattgcattg





54721
atcactaact ttgaagggat ttatttttat taacttgcag catagaaagg agtaaaaata





54781
aacaatactc atattttccc cagttaatga aaataaacaa gtattagtaa aaagcttctg





54841
atctctaaga gtacataata gaattctttt tgagaataac tgctgttttg acaaatacca





54901
tatccttcaa gacaaatcga acaaccaaaa gacaatctgc ctttatttct caaaatgact





54961
ttgacctcaa attctgaaac tgacagggtg actttgctca gtgaataaat atgatacaga





55021
accttttaga gggaatcgaa tatgacgaat acccaagtga tatctctgtc tctctttttt





55081
ttttttttta ttatactcta agttttaggg tacatgtgca cattgtgcag gttagttaca





55141
tatgtataca tgtgccatgc tggtgcgctg cacccactaa tgtgtcatct agcattaggt





55201
atatatccca atgctatccc tcccccctcc cccgacccca ccacagtccc Cagagtgtga





55261
tattcccctt cctgtgtcca tgtgatctca ttgttcaatt cccacctatg agtgagaata





55321
tgcggtgttt ggttttttat tcttgcgata gtttactgag aatgatggtt tccaatttca





55381
tccatgtccc tacaaaggat atgaactcat cattttttat ggctgcatag tattccatgg





55441
tgtatatgtg ccacattttc ttaatccagt ctatcattgt tggacatttg ggttggttcc





55501
aagtctttgc tattgagaat agtgccgcaa taaacatacg tgtgcatgtg tctttatagc





55561
agcatgattt atactcattt gggtatatac ccagtaatgg gatggctggg tcaaatggta





55621
tttctagttc tagatccctg aggaatcgcc acactgactt ccacaatggt tgaactagtt





55681
tacagtccca ccaacagtgt aaaagtgttc ctatttctcc gcatcctctc cagcacctgt





55741
tgtttcctga ctttttaatg attgccattc taactggtgt gagatgatat ctcatagtgg





55801
ttttgatttg catttctctg atggccagtg atgatgagca tttcttcatg tgttttttgg





55861
ctgcataaat gtcttctttt gagaagtgtc tgttcatgtc cttcacccac tttttgatgg





55921
ggttgtttgt ttttttcttg taaatttgtt tgagttcatt gtagattctg gatattagac





55981
ctttgtcaga tgagtaggtt gcaaaaattt tctcccatgt tgtaggttgc ctgttcactc





56041
tgatggtagt ttcttttgct gtgcagaagc tctttagttt aattagatcc catttgtcaa





56101
ttttgtcttt tgttgccatt gcttttggtg ttttggacat gaagtccttg cccacgccta





56161
tgtcctgaat ggtaatgcct aggttttctt ctagggtttt tatggtttta ggtttaacgt





56221
ttaaatcttt aatccatctt gaattgattt ttgtataagg tgtaaggaag ggatccagtt





56281
tcagctttct acatatggct agccagtttt cccagcacca tttattaaat aaggaatcct





56341
ttccccattg cttgtttttc tcaggtttgt caaagatcag atagttgtag atatgcggca





56401
ttatttctga gggctctgtt ctgttccatt gatctatatc tctgttttgg taccagtacc





56461
atgctgtttt ggttactgta gccttggagt atagtttgaa gtcaggtagt gtgatgcctc





56521
cagctttgtt cttttggctt aggattgact tggcaatgcg ggctcttttt tggttccats





56581
tgaactttaa agtagttttt tccaattctg tgaagaaagt cattggtagc ttgatgggga





56641
tggcattgaa tctgtaaatt accttgggca gtatggccat tttcacgata ttgattcttc





56701
ctacccatga gcatggaatg ttcttccatt tgtttgtctc ctcttttatt tccttgagca





56761
gtggtttgta gttctccttg aagaggtcct tcacatccct tgtaagttgg attcctaggt





56821
attttattct ctttgaagca attgtgaatg ggagttcacc catgatttgg ctctctgttt





56881
gtctgttgtt ggtgtataag aatgcttgtg atttttgtac attgattttg tatcctgaga





56941
ctttgctgaa gttgcttatc agcttaagga gattttgggc tgagacgatg gggttttcta





57001
gataaacaat catgtcgtct gcaaacaggg acaatttgac ttcctctttt cctaattgaa





57061
taccctttat ttccttctcc tgcctgattg ccctggccag aacttccaac actatgttga





57121
ataggagcgg tgagagaggg catccctgtc ttgtgccggt tttcaaaggg aatgcttcca





57181
gtttttgccc attcagtatg atattggctg tgggtttgtc atagatagct cttattattt





57241
tgaaatacgt cccatcaata cctaatttat tgagagtttt tagcatgaag ggttgttgaa





57301
ttttgtcaaa ggctttttct gcatctattg agataatcat gtggtttttg tctttggctc





57361
tatttatatg ctggattaca tttattgatt tgcgtatatt gaaccagcct tgcatcccag





57421
ggatgaagcc cacttgatca tggtggataa gctttttgat gtgctgctgg attcggtttg





57481
ccagtatttt attgaggatt tttgcatcaa tgttcatcaa ggatattggt ctaaaattct





57541
cttttttggt tgtgtctctg cccggctttg gtatcagaat gatgctggcc tcataaaatg





57601
agttagggag gattccctct ttttctattg attggaatag tttcagaagg aatggtacca





57661
gttcctcctt gtacctctgg tagaattcgg ctgtgaatcc atctggtcct ggactctttt





57721
tggttggtaa actattgatt attgccacaa tttcagagcc tgttattggt cgattcagag





57781
attcaacttc ttcctggttt agtcttggga gagtgtatgt gtcgaggaat gtatccattt





57841
cttctagatt ttctagttta tttgcgtaga ggtgtttgta gtattctctg atggtagttt





57901
gtatttctgt gggataggtg gtgatatccc ctttatcatt ttttattgtg tctatttgat





57961
tcttctctct ttttttcttt attagtcttg ctagcggtct atcaattttg ttgatccttt





58021
caaaaaacca gctcctggat tcattgattt tttgaagggt tttttgtgtc tctatttact





58081
tcagttctgc tctgatttta gttatttctt gccttctgct agcttttgaa tgtgtttgct





58141
cttgcttttc tagttctttt aattgtgatg ttagggtgtc aattttggat ctttcctgct





58201
ttctcttgta ggcatttagt gctataaatt tccctctaca cactgctttg aatgtgtccc





58261
agagattctg gtatgtggtg tctttgttct cgttggtttc aaagaacatc tttatttctg





58321
ccttcatttc gttatgtacc cagtagtcat tcaggagcag gttgttcagt ttccatgtag





58381
ttgagaggct ttgagtgaga ttcttaatcc tgagttctag tttgattgca ctgtggtctg





58441
agagatagtt tgttataatt tctgttcttt tacatttgct gaggagagct ttacttccaa





58501
ctatgtggtc aattttggaa taggtgtggt gtggtgctga aaaaaatgta tattctgttg





58561
atttggggtg gagagttctg tagatgtcta ttaggtctgc ttggtgcaga gctgagttca





58621
attcctgggt atccttgttg actttctgtc tcgttgatct gtctaatgtt gacagtgggg





58681
tgttaaagtc taccattatt aatgtgtggg agtctaagtc tctttgtagg tcactgagga





58741
cttgctttat gaatctgggt gctcctgtat tgggtgcata aatatttagg atagttagct





58801
cctcttgttg aattgatccc tttaccatta tgtaatggcc ttctttgtct cttttgatct





58861
ttgttggttt aaagtctgtt ttatcagaga ctaggattgc aacccctgcc tttttttgtt





58921
ttccattggc ttggtagatc ttcctccatc cttttatttt gagcctatgt gtgtctctgc





58881
acgtgagatg ggtttcctga atacagcaca ctgatgggtc ttgactcttt atccaacttg





59041
ccagtctgtg tcttttaatt gcagaattta gtccatttat atttaaagtt aatattgtta





59101
tgtgtgaatt tgatcctgtc attatgatgt tagctggtga ttttgctcat tagttgatgc





59161
agtttcttcc tagtctcgat ggtctttaca ttttggcatg attttgcagc ggctggtacc





59221
ggttgttcct ttccatgttt agagcttcct tcaggagctc ttttagggca ggcctggtgg





59281
tgacaaaatc tctcaacatt tgcttgtcta taaagtattt tatttctcct tcacttatga





59341
agcttagttt ggctggatat gaaattctgg gttgaaaatt cttttcttta agaatgttga





59401
atattggccc ccactctctt ctggcttgta gggtttctgc cgagagatcc gctgttagtc





59461
tgatgggctt tcctttgagg gtaacccgac ctttctctct ggctgccctt aacatttttt





59521
ccttcatttc aactttggtg aatctgacaa ttatgtgtct tggagttgct cttctcgagg





59581
agtatctttg tggcgttctc tgtatttcct gaatctgaac gttggcctgc cttgctagat





59641
tggggaagtt ctcctggata atatcctgca gagtgttttc caacttggtt ccattctcca





59701
catcactttc aggtacacca atcagacgta gatttggtct tttcacatag tcccatattt





59761
cttggaggct ttgctcattt ctttttattc ttttttctct aaacttccct tctcgcttca





59821
tttcattcat ttcatcttcc attgctgata ccctttcttc cagttgatcg cataggctac





59881
tgaggcttct gcattcttca cgtagttctc gagccttggt tttcagctcc atcagctcct





59941
ttaagcactt atctgtattg gttattctag ttatacattc ttctaaattt ttttcaaagt





60001
tttcaacttc tttgcctttg gtttgaatgt cctcccgtag ctcagagtaa tttgatcgtc





60061
tgaagccttc ttctctcagc tcgtcaaaat cattctccat ccagctttgt tctgttgctg





60121
gtgaggaact gcgttccttt ggaggaggag aggcgctcag cgttttagag tttccagttt





60181
ttctgttctg ttttttcccc atctttgtgg ttttatctac ttttggtctt tgatgatggt





60241
gatgtacaga tgggttttcg gtgtagatgt cctttctggt tgttagtttt ccttctaaca





60301
gacaggaccc tcagctgcag gtctgttgga ataccctgcc gtgtgaggtg tcagtgtgcc





60361
cctgctgggg ggtgcctccc agttaggctg ctcgggggtc aggagtcagg gacccacttg





60421
aggaggcagt ctgcctgttc tcagatctcc agctgcgtgc tgggagaacc actgctctct





60481
tcaaagctgt cagacaggga cacttaagtc tgcagaggtt actgctgtct ttttgtttgt





60541
ctgtgccctg cccccagagg tggagcctac agaggaagga aggcctcctt gagctgtggt





60601
gggctccacc cagttcgagc ttcctggctg ctttgtttac ctaagcaagc ctgggcaatg





60661
gcgggcgccc ctcccccagc ctcgttgccg ccttgcagtt tgatctcaga ctgctgtgct





60721
agcaatcagc gagactccgt gggcgtagga ccctccgagc caggtgtggg atatagtctt





60781
gtggtgcgcc gtttcttaag ccggtctgaa aagcgcaata ttcgggtggg agtgacccga





60841
ttttccaggt gcgtccgtca cccctttctt tgactcggaa agggaactcc ctgacccctt





60901
gcgcttccca ggtgaggcaa tgcctcgccc tgcttcggct cgcgcacggt gcgcacacac





60961
actggcctgc gcccactgtc tggcactccc tagtgagatg aacccggtac ctcagatgga





61021
aatgcagaaa tcaccgtctt atgcgtcgct cacgctggga gctgtagacc ggagctgttc





61081
ctattcggcc atcttggctc ctccctcctg tctctctttt ttaatcttaa aatcaaaaca





61141
gctaatttta ccacacggag gaattaaaac aggtgtaacg gctataactt caaagatttt





61201
tgtccttaag gcctagagat aattaaaata aacacaatga ctttatttct ccttaatgtg





61261
tcatttatgt actaggttcc tgttgggaac tgtatatatt caaaattatt tttagttact





61321
gatgaaaaat taaattcatt ttatcgtatc tggattttta attttagtga taaagatcaa





61381
ggtcatcggc aatcaacatt aaaataaatt ggcaaatata agattttccc cctgaaatac





61441
attggggaaa catttgaaat tttaaaaaac agttataaaa tgtacggaaa aaatatatta





61501
ctattctcaa acaataataa attcagatac aattattagt attttggctt taaaaagttg





61561
ctttttagat ttaatgtatt tcctgaaact attcacaaca aataaaaaat aattataatg





61621
ttacagtatg catctccaat gttattacct ccttgtagac ataataggca tatacttatt





61681
cattcaagaa atgtgtatta gttattattt ttgatatttg aggagtaaat ctctttgtaa





61741
tcaaaaggag tctattaagt gagaaatgga taactagaga ttcagaattc taaggtagca





61801
ttgaaataag attattacca gaagatattc ctgggattgg cagttgttta ttgagctttt





61861
tccccagtat ctggtgctaa tttttatgca cctatttaca gctaaaatag gaattgatgg





61921
gaagaaaata tatatgtacc tctctaatgc aacagtataa aacacatgaa agaataattc





61981
acaaatctta atagaaagag agagaaagaa agggaagaaa gttatttttc acttcccctg





62041
agcaaatatg taatttccat gatttctttt taatgactgc ggtctgtagc cagtaggtac





62101
tgatttatga aaagctgtaa aagatcaggt ggagctctgt aggacatcgt ttacagctgc





62161
atggattgaa acctatctaa tttgtctagt aaaagtgtga gctcacggtg cacatcaccc





62221
agcctataaa tttccccttc agaccaatgt ctggggctgg gtctgaaaaa acgccaatgc





62281
ctgcagctgc tcaaaggccc agattccctt ggtgcgcatg aagagacatc acaggctctt





62341
cacagtgaga gacaaattcc tatccattga taaactctcc agatgtcctc tctgaggagg





62401
aaaggaacca atttttattt gaaatcccca gagaaatcct ggaagtggaa aaatgatact





62461
ttgcagggct agttattctg aggtcattgg cattaaaatt aggtcatttt tttttgtctt





62521
ggatgcactt tgatccaagt cataaacaga caaactcagt tggggtcact aatccttaat





62581
ccacacgtcc tgttctattt caatttgttt atactaattt tctctaaact cttgttgagt





62641
ctggctaaag tgttgagtgt aaaagtacaa actattdtga actgagaaga aagaattctg





62701
cattttgcta ttaggcacac ttcataaata ttctgaataa atgtcctggg gtttgattct





62761
tcatacccac aaacccataa ataaaaaagt attactatta atgggactaa aacttgacat





62821
aagattctgt gctccagcta ctgtagacag agaaactgtg gcgtgtgcgc gcgcatgcct





62881
gtagatagtt taatgtcttg tctcattcta ggtttcacat gatttttctt ctaaaatctt





62941
ctcacacctg atttaatgct attcttatca attttttagt ggttcaatga cttatccaat





63001
gagtctaatg taatgtctaa tgcttgctag tgacaaagac tatttcactc atgataacta





63061
tgctgaaaca acccatgaat attgtgtaca ttttggtgta tatctgtaat tactcaagtt





63121
cttaggaaaa gaataaaaat acaaaatttt caattataaa aataagctgt ttttcttcct





63181
aagatgagta atttaaaaaa tcataaagtc gtttgcatat atgtttcaga agaagataac





63241
ttatgaaatg ttatattgat attttatagt tttcctgata ttgctaaagg aaaaaattaa





63301
tatttatata atatggccca atcctttttt agataatctc tgagagttag taaaactaaa





63361
ctatatcaga gaaatagaaa ttataaactc cataattaag attttcaatt tataatttga





63421
acttgtgaag taRaaaggat tgaggtaatt gagtttagtc tagtggacag aagtttgaag





63481
aatccttccc tttcaacttc cctccactac acaaatgacc atcacagaga ggggactatt





63541
aatctatatt ttccacagag tatgWaaata gagtcagaac caatgttgca attttttttt





63601
cctgaaactc agggttaaaa ctgcactaaa atgtgaccat ttttatcaaa tacgtttcat





63661
gcatcgctgt aaaaatccag atagtgaatt cacaaacttc tcatatgttc caagtaatag





63721
catgtaggtg tagggcacga tctaaaatta tcctggctca cgaatcaact ttacacttga





63781
gcaggtcttt tgtacataag agagtaagtt gaagaatatc accagaagtg gtataaacct





63841
ctcaattaaa agacctattt aagtgtgcgc agagctggca cagatttgct tcatagattt





63901
tctcatttag aacaggagct tttaccacat atcctagatg gtaatcaatg attgctactc





63961
atatgtaaaa cattatacag ttttatttca tgtatattgt tcattttgct atttcatgct





64021
atttctaaag atattgaaat tagcccctta gagacctaaa tttatgtcta aaataaggat





64081
aaatgcatgt cgatatatta tttgttttgg tgtcttctca ccacaaattc taaactttga





64141
atttaaacac ttcaaatgac agacttcact tagactaatc tttcatttca agtatataag





64201
aaaaatatga agttctagtt ttaatactcc taattttgga gatttttatt gaaagattct





64261
gaagaactaa aacggcaaaa aatcaaaaca taccctctta attattaaat aaagattaaa





64321
ttatatataa agttttaaca ttaatactat attttattac aataatgaaa aaaatcacag





64381
acagcagaat agcacttctg ttttcaagca tttgcagtgg aatgattgtg aagttgtaaa





64441
agttactgac tattctaatg aagcccctaa taatggctac ttttcagggt tgttaYacta





64501
ttatgtacat aatattatat atgactaaat ttctagttac ttaaaatggt ggttaacaag





64561
atcattgcat tcccagcatt atatataaac tgatatttac tctgctattt tctttttgaa





64621
gttttcagaa gtttaaccat ttcaccattt acataagaat aatgaacagc taacacatag





64681
tgcttattat gagccagcac tgttctaagt gcttcccaca tatgctcatt taatcttcat





64741
ttgtgtgaaa ttgatatcct caccatcatc cccattttac agatgaggaa acagacaaga





64801
aattcaccaa ggtcacacaa atagtatgtg gtatacctgg gattcaaccc aggccttacg





64861
gttccagtat ctgtgcacta aacttcaggg catataaaca tcgaatatgc cacatgatgg





64921
aatcataaat catttaagaa aaaacagggg aaatgcaata tgaacaaagt tttacctaaa





64981
tggcacagtg taccagtcaa gaatgtggac tgtggtatag aataatgtgg gtctaaaggc





65041
cagctctgcc tcttttgcct gaggaaactt agcttcgtaa cttaatgtga tttagtttca





65101
gcttctttat ctatctcaga ggatagcatc agtgcctaac aggtactgta aggattaagg





65161
tccttcatgt ctgtgtaata ttcttagcat gatgcctgcc acatcgagtg cacatgaacg





65221
tttgatataa tatgaaaaca agggccttaa aaacttattt ctgtcattgt tattattcat





65281
ccaaaactaa aggcttttat aactaccttg tgcccaagct cccttcctta ggagaaaaga





65341
agagagaagt caatatattg ttcaccragt gactggctcc agtcttataa gtcaaaggac





65401
aattaaagag gccactaaga gctgaagaaa aaaaaaaaca caccaaagac atttcaccaa





65461
cagtctgctt cttttgcctc ttcagggagg caaacattgt ctcattcatt tcctttatgc





65521
ctcttctgtt ccattgattt accaggtctt gcaggtggtt atagatagat gtttaggcct





65581
gtatttatat aaaaaaatcc tagaaggaag tcctttttct ttctctcttt ctttttgaga





65641
cggagtttcg ctcctgttgc ccaggctgga gtgcaatggc atgaactcgg ctcaccgcaa





65701
ccttcgcctc ccaggttcaa gcgattctcc tgcttcagcg tcccgagtag ctgggattac





65761
aggcatgtgc caccatggct aatttggtat ttttagtaga gatggagttt ctccatgttg





65821
gtgaggttgg tctcgaactc ctgacctcag gtgacccgcc ggcctcaacc tcacaaagtg





65881
ctgggattac aggagtgagc cactgcgccc ggcccttttt cttaaagctg attgtattgt





65941
gcaatataaa tcacaattac aatccctctc tgagtctctg tgtgtgtgtg tgtatgtgtg





66001
tgtgtatata tataaaatat tatgtatata tcatgtgtat ataaacacat tacatatata





66061
atgtatatat catgaataat gtgttgcata tatatatcat gaacttcatt tggtgtcaag





66121
tatgcaagaa tgttttttct tatcagtcat ctactttttt ctattatttt ttatttttaa





66181
tgacatgcag cattatttaa ctctgtattg agtttatgtc ctgctgtgag tgtagcctag





66241
attgttcaag ccattcttta gacagcaacc tgtgcaatgt caaacaaaca aacaaacatc





66301
cagtgggaaa tacttaaaat attgaaactg aatccatcat caaagcagac agcaaagaat





66361
tcagtgtgtc ctgcctactg taaccgtatc ctaaattact accatttttg ctagtgatta





66421
aattcaatga taataaaata tgtatggata tatttatgtc tttcactgga aaattttcag





66481
tgatttaaaa gcatttgtgg atggagaagg ggagaactta gacaagatga ttacacggcg





66541
ttcctccaag ctgccagctt gaacagatga agctttcatg gcagataaat tccacaaatg





66601
aaaggaacac catatgaagt ctggaagttc ctgccgatgt tagtgtcaaa ttttgacaca





66661
cagcaactct gctgactcct gatctgtctc cctttggtgt tttttttctt gcaggccatc





66721
aaaccttctt ctggaccaaa gcaatgtgga tatcactacc ttccRcacaa caggtgactg





66781
gcttaatggt gtcYggacag cacactgcaa ggaaatcttc acgggYgtgg agtacagttc





66841
ttgtgacaca atagccaaga tttccacaga gtaagaaaaa aaaattcatt aagaagaatg





66901
aaggattctt ttgaactttc ttggcttgac atgaaagatt tgtaacatct tggcttgaca





66961
tgttacaaat attagtggta gatctgaggt actgactacc gcctggaact gctaatcagg





67021
gccctgggtc tccttgtggc ccacagcttc tggattgata catattgatg tgtcttcctc





67081
tctcaagata gggcccagga tcggtgtctt tagatatgac cttcagatca accaacagat





67141
tcacacccat aaccacactg cagactcaag cccctaattt aaaacataag cagacataga





67201
ttgatgatta ttatatttct gcattttgtg atttttctgt tatttttact aaagcttaac





67261
atctgtgaat caggaaaatt gagagccaag tagataatgt ggtatacaag gaaacatatt





67321
aaagtctaaa actggttttc atagttgcta aataaacata acaacatgta ttcatcattg





67381
tctaccctgt aaaggatatc atgctagaaa atgaagttat aattaggttt aagatagaat





67441
ttttgggttt tcctcaaaag gcttattgcc agatgagaaa gaaaaaatat gcgtcataat





67501
attaatatta attgatagct ttatgtgtta aaaaccaata ataatcaagt ataatatgct





67561
gtattttgtg gacaatcatc tttgggtaac aggaatcttt tgatatgaga aacacatgga





67621
ctcaaggaaa ggtggtatat aaagaatcaa gtgaatccag tgaatagtca aaaatttggt





67681
tcttattcac aaagtagagt gtttgggaat tgataaatta agagttggaa gtcacattct





67741
tcatctcact gtgattgaga accaatttac ttcacttcct aatgtgacta cataattttt





67801
tctttttctg cacagtgaca ttttctggat tcccatgcgc atagctaaaa actggctttc





67861
taaactcttg gtcatatagc cttatagtgc cattcaactg accagggtcc aactccctta





67921
atctaagtta ccaggagaga aagtaggact ggctcagtcc cacttgtaca ttggcacctc





67981
caaagtcata tgtttactag tatctagtca tttatcttca aaagaagtag aatgaggtag





68041
tatgaacttg gctctagggg ccttttcctg aagataagat ggagaactgt cccaaagaaa





68101
gaagtgtata ctggatagat acaccaaaag ttgtccagca tgttgtcgct tgcatggtct





68161
attgggaaac tgttcatctt tgtgtcagtc tttctttgat ctttgttaaa ttaaataaac





68221
cctttagtcc cccaagttta agtattatca tctcccacta atatttaaat atttaaatat





68281
tgttgaatat ataaagactt tcattgccac cctgtcaatc attcaacatc actgtgaaaa





68341
ataacagatt agatgccaga aaagaacatg ccatgtaatt aatagatata agtgcccaac





68401
aaacaaataa ataagtttat aatttatggt gtaacattac aatcagaaag acataaagcc





68461
aaagaaggac ttacaggaac agtttacgat tattgaagaa gaggacttgt tctaaaaaaa





6B521
taaacttacc ctagtcaatt taacatgcac cagcattctt gttcaaagtg gaatgtggtg





68581
tttattgaat agacttctga cccaatcgac agtacacttg ggtttctgtg gtacttattt





68641
tgatcagata cagtctcagg atatagtcat gtgtttaaat atttttataa attcttattt





68701
tagtaatata aacagttagg gttatgatac acaaaacacc tgctgtagag cacagaagca





68761
tagcgaaaag caaacacaaa gttgaacatg tccacatcac tgccagattt tcaaaggcaa





68821
agttatgcaa atgtttactc tcaataaaat atcaacactc aaaactttta gatattgaaa





68881
cactatattg aaatgtatga ggcagaacac tgttgataag attaactgct agtttgcaat





68941
tcaaatattg tcagccatta taagctatga atgtgataag aaagctattt gctttaaaaa





69001
agtgaatgac agcatttgtc atactttcca agttagcgac attacttatg tcagcaatac





69061
catgttggac gtcaaactct ttttggctga ttggaatatt tttacttaat tgttattatt





69121
atttgaacaa cctgtgaata tacattcaag atgaaaactg acttttcctg aaagacagct





69281
ttttcaggtt tgtcctgcac actgagtcag gtggtatgga tatgtccata ttgcactccc





69241
cacaatattc cttcttctgt cctttctcct caattcaggg acaatatagg attaacacct





69301
ttgccctaac actccttctt gaaaggagct gcttttttcc ttgagtcttc atagtgtcat





69361
gcacctcatg ctcctaattt atattacaaa aagagaattt attaaaagtc tttaacatac





69421
taataatttg ggtaaatata atgaggcaac attttcagca taaatgctgt aaaatattga





69421
gctagatatt ttagctttct ttcgggttcc tggcttattg tttgaatttg attgctttca





69541
gtctgtattt tctttgtgcc atccagactc aattcagaaa tgatttgctc gaccaaataa





69601
ctgtggagat cctcctagaa tagaaaaaga tacctttatt cctattcagg ctgtcaaagt





69661
ataggaaaag atcaataaaa tttcacattc aaatgcatat taatttattt tcgttagttt





69721
agagatttca ttgacatgca agctactcaa gttatctcat ttttgaacaa agcccagaac





69781
acatgcaatt ttgtttaata aatacatatt tcaagacatt atttcataac ctaagatgga





69841
tttaggaagg ttaaagtgag aaaggaagag agaaagggaa aggttagagt ggctgtgact





69901
gtggaactag aaagagaatt aagtgtgtgg aatgaatatt aagcagattc attgccacat





69961
gtcattatcc tgcacccttg gatgccattt tcaaagtgtc atcacctatc cctttgcctt





70021
tgaagtacca gataacactt taacctctgg tctcagtctg gagctgctct ttagtcttga





70081
acttttccgc cactcttctg aacaggacag tcaaaatgaa atgagcacac agagtgttat





70141
ggagacagca gcaactgggg gttccaaatt attttggaca tgcagagtag tggacagaag





70201
atattcgggc aagaatagag agactagagg gtgtttaaaa gccctagcta aggaataacc





70261
caaatggata attactttaa ttctcttttc aaaagtccaa tataatcatt tgcattaagt





70321
aaaaaaattg tatataaaac atttatatgt agtatattta tataaatata taaaaatata





70381
tattatatat tatatataat atataatgtt tatatattgt agataacata tataaacatg





70441
tatatatata taaacatgta tatatataag catattatat atatatatgt ttgcttatat





70501
tgggttcaca gatacagaat gtaaaacagt tttttgcaga acatttcttg aggaatacac





70561
tcaggaggtg cagctatgaa gaagtgatga ggaatgtctc aaatcRgtct gtgaactcag





70621
catcacattt ttttttccag ccacttgggg atgagtgctt cagttcagaa ggaagatcag





70681
ggccaaacat catagcaagc agcactcagt aactatgctt aaatttctca aagagctcag





70741
gcaattactg cattggaata tataaatatt atatatatat atttactcat ataatataaa





70801
tattatatat atttactttc catgactatt attattttta tttatttatt tatttattta





70861
tttatttaat ttttttgagg cggattctcg ctctgtcgcc caggctggag tgcagtggcg





70921
cgatctcggc tcactgcaag ctccgcctcc tgggttcacg ccattctcct gcctcagcct





70981
ccggagtagc tgggagtaca ggcgcccgcc accacgcccc gctaattttt ttgtattttt





71041
aatagagacg gggtatcacc gcgttagtca ggatggtctt gctctcctga cctcgtgatt





71101
cacccgcctc ggcctcccaa agtgctggga ttacattcca tgactattat tttaggaagg





71161
ggaaagggaa gaSacaaagg acaaaaaatc atctagtcat aaaacatagg atatggtatt





71221
ggaagaagat gaaagaaaaa agaaagagtg agaatctatt gatttgcata cccatacttg





71281
tatctgtcct gttttctggc tctagactca aaaactgact ttgctgtcgt ttggggataa





71341
gtggagaaat gtttattctt tgttttaaag gtagattcat ggtatgttta tcaaaatcct





71401
gtaacgcaca ttctcaaagg cagggatcaa cagaagtagc atacattact ccaagtgaag





71461
gcttccatca tccgcagtac actaagcgtg gcaagcctca cattcccata catccccact





71521
agccttcctg agaaagagta tgatcagata gggcctaagg caaggcacaa gctctccaga





71581
gaggatttat cagccctttg acagtcagca gggagggaac ctgaaggtca tcaggaacct





71641
tctcagccca gatggtagga attcagtaga gtctcggtta atttaatgcc ctaatgctta





71701
aataacaact acatttattc tcaaatggtt acctattgtt ttcttgaaca cctttattgc





71761
ctaggaaccc atttcttaag aaatcgatta atccatttct gtgtagttga attcccaatt





71821
ttttctttct ttatgctcag tataaaggaa tcccctctgt gtgtgtctgt gtgtctgtgt





71881
ctgtgtgtgg tgtgttcaca cgtgttcttt tttccttgcc attctcaatt ttcctggctc





71941
tccttgacaa atgatacttt acgccctggt catctttacc cagaaaaata tattttgtat





72001
gtttctttct ttagcaaatt tgtattgagc ccactaactg gcagccattg tttaggttgc





72061
tgttggtaaa cagagtacga gaaaaaaaaa agaatcccag ttcacatgga atttaccttc





72121
ttgtggagta agatagggaa taaagaaaat aaatcagaaa gaaagtcaat atgtcagatg





72181
gtaataaatg ctttggaaga aaatgaaaca agaaaagaaa acagaaagtg cagatacaag





72241
tacagaaaag ttttaaaata ttaaatagga gggttgggga agatttcatt agagggggat





72301
gtttgagcat ctctcaatcc tgaaagacag gaatatatga actaattact tgaaacaaga





72361
atatataatt aaccatttgc acattagctg tcttttttac ctaaatgaaa ttccttatgt





72421
ttttataatc tttattttaa tgcctacttt ctgactttaa attattatat atttaataaa





72481
agagataggt ctttgtcatt gtttttctac tttgaaagaa ctgtgtactt taatgagatt





72541
attccagtta tctatggctg cacagcagcc tccccgaaaa cttaaaggct aaaacagcaa





72601
gaggtttatt atacatcata gtgttgtggg ttataaatga gggcagagct caggtgggtg





72661
attctttgtg ctctgaggtt gatgttgaca gaagcttaca gctgccaaat ggactgatct





72721
ggtgtggagg gctggagatg ctttcatttc gacgtctgcc ttggtacagt tagctgtaca





72781
gctggtctca cctgggattg taggccaagg tgcttacata tggcctctcc tgtgaaatag





72841
tatcaggtag tcagactttt tatatggcag ctctagagcc cccagagagg atatctcaag





72901
caataagtag aggctggcag tttcctaaga cctgaatgaa gaaagtgata caatgtcaat





72961
tctggcgtac tctgttagct gaagcagtcc ccagattcaa gggaaagaga taaaacccca





73021
caaagaatgt gtgatcattg atattagttt cctaaggctg ccacaagaag ttaccacaaa





73081
tttattggct taaacaacag aagttttttc ttagaattct ggtggcagaa gtctgaaatc





73141
aagatgttgg cagtaccata attgctacag tctctagggg tgaattcttc ctcgtctctt





73201
ctagtttctg gtggatcctg gtattctctg gattgtggca acataactcc aatctctgac





73261
tccatttgta catcgccttc ttctctgtgt atcctattct cttataagga aactgtcact





73321
ggatttatgt accaccctaa tccagtaaga tattttccca atcggtgtat taattacatc





73381
tgcagtgacc ctctatccaa ataaaatcgc attttgaggt ttgggattga cagagatttt





73441
ggggaaactc tattcaaccc actacaccat ctatatagcc ttctacaaga tggtggaacg





73501
gtccggacat aacacagatg atgcaaatat cagacaatta ggtccacagt actagaatat





73561
aacatcgtgc aaattgtgct aattgaaaat ctcctgctta tacactatcg aggaaaccga





73621
ttcttatatt gttttctttt tttacagtga catgaaaaag gttggtgtca ccgtggttgg





73681
gccacagaag aagatcatca gtagcattaa agctctagaa acgcaatcaa agaatggccc





73741
agttcccgtg taaagcacgg gacggaagtg cttctggacg gaagtggtgg ctgtggaagg





73801
cgtagcatca tcctgcagac agacaataat tctggagata ctggtggaag ttccaagtcc





73861
aataagacac tcaaatatga gtacaaatgc cttaaaatgg aattgaaaaa ctctttattt





73921
tcccctatca tttattggat gggtgggtgg ggtatttttt tgtaattgct tttttaaata





73981
ttagttaatg gattaaattt aattcttcag cgtaaaatgg tgaagaacta gcatatagcc





74041
attgatcata aactgactat cataaaatca aaacaagtga aataacaaaa tggacatggt





74101
ggctttgttt aggtagagcc acaaaagaaa agacttgtaa tatttttata tacagaggaa





74161
atctgtaaca ggtattttgt ttcttttaaa gcaagcaaca cagaggaatt tatacctcaa





74221
actatctggc catatttact accttatcac tgcattattc tcttttatct gtttaaagca





74281
tatagagatg aagtttgtag ttgttttaag tactacacat ttttaaattg ttagcttcct





74341
taagtatatc atgtaaagaa atgtcttaat ttttgaaaaa agtacatatt tattttcttt





74401
tgaattgttt ttattgtttt ctatttatgc cttgatgatt taatatggat ttgttacagc





74461
caagtgccaa atgctctctc aaattgtcag caatttaact agacacagat aataatgggt





74521
ttctttcaga ttttttgaac catccactta catatatttt taaaaaatga aatccttttc





74581
ctgttcatac actaaccaaa tctctcaaat ctgttatccc aatcattgtt gcctctccgt





74641
ttattataaa ctgtatgctc acaacttagt gtaatatacc agcttgtatg caatggattt





74701
tcaaccagat aacatacctt tcctgctctg gtgcttagag actatcaact ccctccttta





74761
gtgaaggagc cgtgttagag cttccgagaa tagctccact ggagagaagt ggaatcctat





74821
atagaatgct gcactaattg acaacacagc atataggaca atgcatgagt aaaaaaaaaa





74881
acaattactg gctcactggc tttgaaaagt cacttactat tgttgctgaa acttgctgag





74941
ctgtttatag agaatgatga taacagaact tttcctctgt atcactggtg tttaggtgaa





75001
ttaattaaac attgtgatca ttagtaccag gtattattat ctttaagagt cttccacttc





75061
aatgcacatg gtgcagtttt ggtgtgtaac ttagaaggat tgaacttctt tgaatttact





75121
ggacataaca ttttcagaat agttggtcat ctagcaaccg cctcaaaatg tgtaagcagg





75181
agagaaattt ctcatcacag ggatttagac ttactattac ataaaggcta actatgagct





75241
tgctcattaa ttttgaaaag atgtacctgg tggatatcta gctagtaata tattctgaag





75301
caacatttta gctctattga tactctttct aatgctgata tgatcttgag tataagaaat





75362
gcatatgtca ctagaatgga taaaataatg ctgcaaactt aatgttctta tgcaaaatgg





75421
aacgctaatg aaacacagct tacaatcgca aatcaaaact cacaagtgct catctgttgt





75481
agatttagtg taataagact tagattgtgc tccttcggat atgattgttt ctcaaatctt





75541
ggcaatattc cttagtcaaa tcaggctact agaattctgt attggatata taagagcatg





75601
aaatttttaa aaatacactt gtgattataa aattaatcac aaatttcact tatacctgct





75651
atcagcagct agaaaacatt ttttttttaa atcaagtatt ttgtgtttgg aatgttagaa





75721
tgagatctga atgtggtttc aatctaattt tttcccagac tactattttc ttttttaggt





75781
actattctga gcatactcaa caaaacccat gcatttcata aactaataga agttgaggat





75841
tgttgaatct atttcactta ttttggctgt ggtttccatc tgaaagtaga ggttgtatac





75901
accatatact gttcttcatt ttattaatat ttttctcctt gacctctcat aaatttactt





75961
tacacaattc ttaccctgta catatgtaaa cataagtgta cgattcttaa ccatggagta





76021
gaggtactag aatgcttacg gccatctctt tgtacaggaa ctgcattgac tttcagtaaa





76081
cataaagcca caactcctac atgatgttat gtaccatatg atctgttttg tatcttaaat





76141
ttgatttaca tatattattt atttctggta actcactcag tttatgctgt gctaaatatc





76201
aatcaagcca tgtataaatg tgatatgatt ggcaatatgt gtttacttta aacttgtctt





76261
ttcaaaatat tactcagttt atgttgtaca atgtagatgg cctcttacta atgtaaaatg





76321
atttgtagtg gaaacattta tatttttata ataaacataa tgaaaatatt ttttacagat





76381
tggaatacag aagtggtctt tgaagttttt taaaaatata taaaactatg tgcttattta





76441
aacagcaaaa taatgaaatt tacataagtc acaaaaatat gcttctgggc ttttattctc





76501
cattagtgag gagggattta cattgtataa tccacatgtt tttggtctac atctcattat





76561
gaataagcca gaaaaataat cagtaaatgt tatttcaaag ttaataaaca caactgtaat





76621
agRcagttct cttttgattg caaataacag aaaacaaata aattggatta attttctaaa





76681
aaagaaaatg tttagaataa gtgacagaat tatctgggga taaactccct agctaagaga





76741
tcagacacag attgaaccag gaattcaaac aatgtcaaca gggttaattc tctcattctt





76801
tgtcttcttc ccttggccct attttttttc caactgggtt gatttgcaag ctataccttt





76861
ctacaaggta aaaaatacta ctctctttaa tctaattctg cattgcaact cctatgaaag





76921
aattactgtc tctctagttc caacagagat catgaggcct ttattggatc acaagcccta





76981
tcattttggg ctggagaatg aatcactcag attggcaagt actgactcct gtgcttgccc





77041
ttggagatag tgtgtggggt tatatgaaag tgatgctcag gggttagagg tgtaaaagta





77101
atttatgtcc aacagaaagt cagaatactg tttatgacaa acgaagaaag gaattctggc





77161
caggtcaaat aaagcaagta aaaattaaaa aaaaaaaaaa aagtacaact gcacacctga





77221
tactttgtat acaataggtc ccttgtcatt gcagtccact taaagaaaat gattatatat





77281
gaaaatcaaa aaaagctaat tcaaaaatat gcaaaataaa ataagtgatc aacattccca





77311
tagagaagga agtggttagg aagagattaa aaaaacaggt ctgatttgtg tttgccttga





77401
aggagaaata gcatttggtc aagttgagtg gagtagagaa taccttgtaa gcaggagata





77461
agttagttaa gttaagggga agagaagagg taaataatat atttattcat tcaataaata





77521
catagtatgc atgatcatga gccagttgtt ttgctatcat catttacaag ttacctcatt





77581
aaatagtttg caacagtgct gtgaatggag atgagctact tttatctgag aaaggactcc





77641
aggctcagaa tgtccaagtc accttcccaa ggtcacccta gtatgtagat agatatttca





77701
aactggaatc ttcctattct gtattcctcc catcatgtga tagctactat aatctccaca





77761
atgctctggg gacagtggca atgacaattt gcagaagagg cttgggggag actaggtcta





77821
atagactatg tgatgttaga aatctatttt ggtattctat gcacaaagat atacatatac





77881
cccaggatgg tggtaataga gatgtgaaga atggaaagca tacaaaaata tataaaagaa





77941
agaggattaa caaaatttac cgatttgttc tgagaattct tcgaaagata gaaatcaaag





78001
caaaacaaaa atttaggtct tgagtgtctg tggaaatgat ggcaccatta gtccaagtag





78061
agaataagga gaagtcagct taacatcatg ggtttgtcaa atatatagtg taagccagac





78121
tttaataagt tactaagtat tggggatgag aatctgaagc tttaagaaaa agaattcaag





78181
ggtaaaaatg tatatggaaa gatgtctttg aaagtatgta aagatctaca ttacaaatat





78241
ttatgtgttt cctatataga catatatttt tcttggaaga cctcttaggt taatgctagc





78301
tacatagtta agttctcaaa tattatcaac ttaaaataat aaaaatatgt tttttaacac





78361
agaatgaKcc aaagtaggtg tttgccaggt ggccttcttt gcaataatta agaatctaca





78421
ctttctccat cttgtcgagc cttgaaatcc tctacttcca gccaggaaaa tgaaggagag





72481
gatcatttgg ggggatttta tgaactctgc ttgtaagtgg tacataccac ttcttctctg





78541
gttccactgg caacaactca accacactgg catacttaac tgcaagagaa cataaagaga





78601
gttgtctgac agtgtgccta aataaaaatg gaaaatttct ggaatttata tcacaatctc





78661
tgccacaact ccttttaaca taaataatat gtcagaggca gattgttcta aaaagcttat





78721
cagagaaaca tcagtttctt gctaactgtg ccaatttctt ttcctctata ggcaaccatt





78781
tttcattctt ttctcttatt acataaatcc aatacctcta ctaatggcac ttgtcagcta





78841
tgtgagtaca ctgctcagat ttcctttcaa gagagtttct tgcaagagag cagttagctg





78901
acaactgtga gctgctatat tttcaaaatc cccagcatat ttttagcagg ccatgctcta





78961
ccttggttaa tgcctgtcaa tgactgagta tggtggaagt actagYgcca ggccatttct





79021
tcacaagtgg taaatccctt taacaagcgt attttgtgtt ctaatcatcc tgactgaaRc





79081
ttgctcaggc ataccctaca gtctgatctc actactactc aattttcctt ccttcactct





79141
ttccttttat aggtgtcaga actgtatttc tatctgcaag ctccttgtgt tttctcttaa





79201
accctgttcc aatgatgtta cccaggcatt tctagcaaaa aatatttgcg ggtttaattc





79261
tttctgtgtc tgattcttga aaatcttaaa cttagatgac tctcaagttg actcacttgg





79321
aaaactaaaa tgttatcctt cattcttcYc tctRcctttt cttcagtgtc taactgatcc





79381
cctaacaatg acaccttaga aacgctcact ctcatccctt ttctctactg cccagcagaa





79441
tctctgttgg atcctcatta cttttctgag ttacagatgg aatttcttaa attgtgcccc





79501
tgattctagt cttgatatct tcaacctaca aaagtaggtt gaatatgcag ccagactaat





79561
acggcaaagt taatgttgta gttcctcctc aggaggcttg caaacgcaaa tgcctcaggg





79621
aactggcagg ttatataaat gagtgaagca agtgaagagt gtggtgaccc ataaaagtgc





79681
cttttcttcc acgaaaagca aatttctcag gtgtaaggca acaccgatcc agtatgaatt





79741
cctggttttt ccttttcttt gtttttaagg tttaaggaaa ctaggtttta attttttaag





79801
tttttgtagg tacatggtaa gtgtatatat taattcttga tttttcaaga gaatccttaa





79861
tctgagtctt tgtggaaaaa tttctatata tttaaattat aacccactta tttatgaaca





79921
cacacacaca cacacacaca cacacacaca cactctgaat ttaccctgca gctgccaact





79981
ttttatttct aaaatacaga ctactcattg gtattggcac atgagaccta tcttgaataa





80041
aacccggctt ctctccttat tttctggtta aaccactacc tccttacact ctatacaact





80101
gtactgaccc acttgtagtt ctctgagtat tccactttct taatgcatca tagcttttga





80161
ctttttKgat cttttgtcta gaatcactta gccaatctct aatcattctt caggtcctct





80221
tatatcccta aaaactgggt taggtaaccc ttcctcgtgc agcagtagaa ccctgtactt





80281
aatactgaca cacactatct taaccaaaat tgcctattct ttatgcccta tctttacttc





80341
tagctgagga caccttgaac tgtgttttgc aaaccattgt tgttgcatca cctattgcaa





80401
ttttcctggt atataataaa cacaaaattt ttttgagttg aattaatata ttaaaacaat





80461
gtttgatggc attataaatg gcaatgtatc tgattatttt ttccccgtag gaaaaagtgt





80521
aaatttcctt cagctcaata aagctagtta atgttctagt tatatatctt ggatcattga





80581
atatactgat ctctgctaga actggttcat tttcatagaa ttttgtggac ttgtttcatt





80641
ggtctcaatg ctcccacttt tcttagtgca gttaagttgt ttaagtagac ccttgaacca





80701
gagcttagct ataaaaattt aacaaggtaa atgccaaagc ttttctgatc ctttctactc





80761
tctcactatg tacaaataat gtcaacatgc ctactaaaag ctacccttct tatgaggctt





80821
ctgggatgca cattctgttg acacacaggc tctagatgcc atttgggaaa ataagtggtg





80881
gagttagata tgccataaaa tgaagagttt ggaggtttgc agaagtcctc accctgaaat





80941
tctctgggaa aactcagtta catgttgatg aagaatagta ataattgaat cgcattttcc





81001
aacaaagtgg gctatcagct ttcctctttg aagaaaggta attttccact taacttagaa





81061
ataaagtggt gctagcaata gtaataatag aagaaaagaa gttgcttttc ttctattatc





81121
tgcatgttac atatatgtac acacacatat aaactaactt ttctgaataa ttataattga





81181
tgtacattga acttttactc tgtacaaagc ccttaacata tattatttga tctaattttt





81241
ccaagaactt aatgaaataa gtatgttgtt atccacttta taggttgcaa cttagaatac





81301
ctaataatca cacaaggtca tacagctagc aagcagaaga actgaagtca aaatcgctcc





81361
agatctcttg ttctgaacta ttatgttgta ttagctgtca gtataatatt acaacttgag





81421
gataaaatct gaaggacaat aataaaaact attccagaat taagatcttg ggtagtctct





81481
attttccact tttcaatgtg caattgtaat tcagtaattc tgctagtaga aacatagttc





81541
tgcagaatcc tttgattgtt actaccatgg tagaggaagg aacaggcagt tatccttgat





81601
ttcatctctg agaactccat ttcaacagca tgagatttgc ttgacaYaca gtgaaccctt





81661
caagcaaaca tgttcccttg aacattcaac aaataatcta atttggaaac accaaatacc





81721
acaaggaaaa agtagtactt ttgttctatt ttctgacaga tttccacacc agtgatttat





81781
ggacgtatgt taagtttagg attcttatat gaagccaaga aaaaaacctt tatatttttg





81841
aagcctatca tcctcaatga tggaagccaa acccttggaa tgttgctaaa atcaaggatg





81901
agagaataca gaatgtcatg tactatcaag aacttattga ctttcatatg gttctcattt





81961
attctcatac atggcaaatt gaaagccttg ggaggaagcc aatacaaatt gttacagata





82021
acactatcta aatttaactg ccataggtat gcttcatata ataaatatat atttcatatc





82021
agcaactcag caaggcaaaa attgaaacag actctagtca aaattcattt ggacacaatc





82141
cttcagagaa gactcaattt gccaatataa ttatttatYt tggtctggag agcccttaat





82201
actcaatttt atgtttctga ctctagagat tttatacaca cacacatata tatacacata





82261
catatataca cataaaatac tctatggaag ttagaacatt gaaatcataa caatatctta





82321
gggtaataaa attaagtttg aatacatgaa agtttagtac ctgcctgcag aatcaaatag





82381
attaatttgt tgatattttc aaatttttaa agacattttt gcaacagaat tttttcttgg





82441
tttaatgggt tcagtttgag gcatcatttg agcattaaag gctgtggcat gacattaatt





82501
tttagcctag tgtgatggtt catttatcaa gtgcttaaca gagtatctag tatacaatag





82561
gctagtaggc atacaattag tctttgccaa atgaatatta aatgtattgt tggaggacaa





82621
atgaacaata ttatctattt caacaattgt agcagagatt ctgtgcaaca tgcagttgct





82681
ttccatttag attaatgttt ctctgaaaca gaaagttttg tagaggaaag tcttatctaa





82741
cacatagaca gattcagggc ccagcacata gaataaaccc ataattgttg aataatacac





82801
atttataatg taaaatcact atgggtaaca aaggaatcct attatacact ttcctactct





82861
ggataaagag aaatatatat atttacatac atatatacac atacttaatt attaaatgga





82921
ttaattatat acatatataa atatgaatat aatatatata aatatgaaca caatatataa





82981
atacaaatat gaatacatat atacatatat ttatatatac ttatgaatac atatatacat





83041
gtttatatat acttataaat acatatatac atatatttat atatgtatat aaacaaattt





83101
atttatatat atacacatat atttatttat tatctggctt actaatactt aaagaattaa





83161
taaatgccaa agccagggat atgactaaaa aactaagata tctttccttt taagatagct





83221
atgattgcat aacatgagac actgtggttg cataatatca ttcagtgact taaaacaaca





83281
aaagtcactt atttcatgtt ttttgcaggt caggaattta tacatgggaa agcttgtctc





83341
tgctccatgt tgcctaaact tcagatggaa gactcaaact ctggcattgg attcttctga





83401
atatttattt gttcctctat ctggttattg gtgttggcta ttatcgggga ttcagctaag





83461
ctcacacgtg ccttcacaat gtggcggttg gttccaagta cagacatctg aagggagggg





83521
aggagaaaga ggaaggatgt gagattttac cctacttaca agccaacaat ttggcctgcc





83581
acattttcat ggatattgKc agttgtcatg aggtttctgg gtcagagaca aagaatagtt





83641
tggtactcac agcagtggca gtatccagtg tcaccatttt catacacgaa ttccccaagg





83701
cctaatttct acaaagttct gcaaagagag ccaagtcttg cctgcatatg caatgagttt





83761
tgttgaagaa aaggaaactc atgtttaagg aactacaatc ttttataatt ggctgcaagc





83821
aaaactgcct aacaatttct tcagagagaa atgtctttat catatcggag agttaacaaa





83881
tctaccattt gctgcaaagg ggagtactat gtctttattc caaggttatt taccatacaa





83941
atatctttga aaagataatg cggaaaagag ggcagttagt gcctctgctt gaaagatatg





84001
cagaaacatg aaagacccat agagaatctt ttcctccgaa agactccttt caatctttgt





84061
ggttaagaac aatgaataaa tttaatgtaa actcattaaa agatttaacc tcaaaaaatt





84121
ttaatatcca catttaagat ttctttagga gagaagaaat caactccctt accctcatcc





84181
tcctttggtt aggaatgact acacagcata gaaaacttgg gactgttagg cattaaacaa





84241
tcaaaagatt cttctcaaat taagataata gcttacatga atattttatg aaaaatagcc





84301
acatttgata ggcttttcat taaacctata tataatttgg gtagaattca cacctttaca





84361
atgttgagtt tttcaatcca cacatacggt atgcctcttt gtttatctac atcttctctg





84421
atgtctttca ttagcatttt gtaattttta gcataaagat cttatacaag tattttttta





84481
atttgtactt aagtacttca attcccttgg cataattata actgatatat atatatgtgt





84541
atatagatat acatatatat tatttattta tttatttatt tatttattta tttatttatt





84601
tttgagaact ctgtcaccca gactggagtg cagtgacaca atctcggctc accgctacct





84661
ctgcctacca ggctcaagct attctgctgc ctcggtctcc tgagtagctg ggactacagg





84721
agtgcaccac ttctgtccag ctaatttttg gatttttagt agagacagag tttcaccatg





84781
ttggccaggc tggtctggaa ctcctggcct taaataatct accagcctca gcctgacaaa





84241
gtgctgggat tacaggagtg agccacttct cctggcccta atattatatt tttaatttcg





84901
gtttctacct gttaattatt gaaacatgga aatgtgatta attctcttgg gtttggttat





84961
atattctact atctagttgc attcatacat tagttctaag tttttatttt gtagatgctt





85021
tgggattttt ctatgtagac aaccatgcca tccccaaact gtgaaatttt tacttttttc





85081
ccttccactt gtatgcattt ttatttcttt ttctttcttt attactctgg ctagaatttc





85141
tcctactatg ctaaataaag ttgtgagcag acatctttcc attgttccca gtcttaggaa





85201
gaaagctatc agtctttcac tactaagttt gatgttacct gaaatttttt gtagatattc





85261
cttatcaagt tgaagatatt cccctctatt tcaatttttc tgagagtttt ttttcatgaa





85321
aaagtgttga aatttttcag attttttttc tgcctcaatt agaatgatga tttttttttt





85381
ctttttgatt tggtgatcat actgattgat ttttgaatat ggaatttgtc ttgcatacct





85441
ggggcaaaat atgcattgtt catggtgtgt aatcatttaa tacattactg aattcaattt





85501
cctatgattt tgtagagcaa tttgtgttga actttctgac acatagatag gtgtagtttt





85561
tgcccatctt ttacttcttt aatttttctt tattttcttt gttgggcttt cgtatcagga





85521
taatactggc ctcataaaat aagttggaga acattctttt tttattttct gaaagagatt





85681
gtataaaatt gtgctaattc ttttgtaagt gttagagaat tctctagtga aattacctag





85741
gcctggagat ttctctctca agctatttta aattataaac tctatttaat aactacacaa





85801
ctatttagtt tatttcaagt tggttcattt tggtaatttg tagcttttga ggaatttctc





85861
aattttaaaa gaattgtcaa atgtgtgagt ataaaaatag tttgtattat tcccttgttg





85921
ttctaatcat tatgaaataa taccacttgt ttcattacca atgtttatga taattgtcat





85981
gactattttt tggattttta acacttttat taactttttg ggataaaatt tttgttttgt





86041
tggttttctc tattgttttt ctgtttgatt cttgtttgtg tgtgctgttt ataatttctt





86101
tcatttgctt gctttgggtt attattttct ctttttttct agtctcttaa ggagcttaga





86161
ttgtttattt gaagcatttt ctcttttcaa aaataatcat atagtattat aatttttctt





86221
ttattgctat tttagctgca tctcattaat attgatgttt gttttaattt tctttcaatt





86281
ctctgtatat tttatttgac ttcctttttt atccatggat tatttaaaag tgtgtttttt





86341
aattttcaaa tgtttagaga ttttcctctt gtctatcatt gatttcaaat ttgattctat





86401
taaaattaaa tagtatattc tgcatgatrt cgattatttt aaatctactg aggttagttt





86461
agtgagccag catatggtct atcctggtga atgtttggtg gacaattaaa tagactgcat





86521
attgtgctgt tattgagtgg aatgttttat caatgtaagt tgaatcttat tggttgacag





86581
tgtttttcca ttctcctcta tctttgctct ctttttatct aatgcttcta tttcctgcta





86641
acagtgggaa tttgaagttc tcaactacag gtatagattg gcccatttct tctttcagct





86701
ccatccaatt ttgctttgtg tattgaaaag ctctgttttt tttttttttt tttttttttt





86761
ttgcacatac acatttagga cacgatgtct cttgttagat taatcctgtc attactatgt





86821
aatacctttc tttgtcccta ctaattttct ttgctcttaa gtccacttta tgtgttatgc





86881
aattatatat atattacata tatttatatg taatatatat cattatatat tgtattgcct





86941
cagagctaaa gcaattttac ctcctaaggt aaaatagagt atgcaaacaa atattggcca





87001
aataccttac ttttaaaaat taatgtttgc ataacatatt ttcatccatc attttattct





87061
taacacatct gtgtcattat ttttgaagtg agcttttgta gattcaatgt agtggggtca





87121
tcgtttttat ccattctgtc aacctctgtc ttttaattga tgtatttatt ccatttattt





87181
gtcaagtaat tatattatgg cttaagtctg ctaatttact gtttgttttc tgtttcaaat





87241
tatgcccttt ctcttttctt gcttttctgt gggttccttg acctagtttt attttagaat





87301
tacatttttg tttataaaat ttttgaataa ttttgtataa ttttcttaat atgtgctcaa





87361
ggtatgacaa taaacacttg caacttcaaa aagacatgca aactcttaaa atgtttatgt





87421
gaacaaatat tatcttcttt acctgtggca aatgataact gggctagaga tttttataag





87481
ttcttccagt tctaacaatc tgtattatgt gatatttact gttataaatc tattaaaatt





87541
tgaaaatgac agtgctgtat ataacaaaat aaaagcctat gactctatcc atgctactta





87601
gcagggcttt ttgaactggt ttgtccagag tttaaagagt tatttcgaaa ctattcagga





87661
ccctcttgct tgcttgtggt aattcagaat tattcagtaY ataagaggag ttttaagcac





87721
ttgtgttctt cgtgctctta aaaataaatg caccctaatt tgcttcttgt attttttata





87781
attttacata gtaataaaga cttcaatagt tttaagattt gtaaaagtca ctattgtaat





87841
ataagctgac acctgtgatt ggtttatttg gttgtagatc actgaacaac tgagaaaaga





87901
aaaacaaaag cacagagtta gcaaagtttc tattatcacc aatataggcc aaaaattcca





87961
cgcatttatt cagtggcaac aagtaatgta ggttttttgt tgtttgtttg ctttttctga





88021
gatatctact ctgtgccagg catgatttga ggcctcagct atgttggtga aataggcagg





88081
taaagactgt agggaagatg gaattaaagt tactgttgaa gcccgaaaaa attctagttc





88141
tttttgatcc ttccaagagc tcagatgcta agatgatttg ttgttcccac aatccatgca





88201
tcattaaata aacccataat cactaagtaa actatatatt ttctgttctt tacattctga





88261
aagcttctaa gggacaccct tagccatgat actgtaaggt cttgaaaatt tggctaaaat





88321
catttctatt tgtatacctc tggatgtttt aaacactaca gggcttttaa aaagtgacat





88381
tttgaataga taagaaaata aacattggta tcagcaaata ttagatatta ctgtgagttc





88441
ttgctgttat gcttgttaaa aagtatcatg atggaaagaa atcaggattt agaatcaaac





88501
aaatctgtgt tcaagaccct tagctgtttt tgttagttga attcaatgct ggctgaactc





88561
taaagactca gttttttcac catgtaaaca ataatcatta tataaagcta atagagctgg





88621
aaagataaag tattatgggt aaactgcttt ccttagttta tctacttaag tagtgctatt





88681
tcctttcttt atttacttac cttgatccaa gtgaaagcct agttttagga tttactttta





88741
ccaaaattgt actctgaacc aaatgagctc aaaagttMaa ctttgaaaag tcaaaatcat





88801
agaaaatttt tacattgaaa ctgctcaata attgttttca aaatgcacag caggacttct





88861
cttatttacc atggtgaata aaatgacttt agtttttgac atttgaagta tataataata





88921
aaagttatag aagttagaaa gcttccttca gggaaatgga atatttttac ttcctatgaa





88981
agtgatattt tggtctcaat ttaagtaaca caaaacttag ttttcatttc ctggttttaa





89041
atgataagct gtatattcct agtttacagt aaaccacata tttttagaga gttagaaacg





89101
ttgcttcaaa gtggtagata ttaagtgtca taaatgtcca ggctgtaagt atggtttcct





89161
gYtgtgtaag acataagtta ttaggtttag tttgaaatga cacaaaatgt tcccgacttc





89221
taacaattaa aagaagaaat gtgaggctcc gagacaatct cggcaaattt gtattctgat





89281
taaaataatt atttgatcct atacagttca gtgcatggaa aaatgttgtc tagttactca





89341
attcaatgtg gttgttagag aagaaaatat gtctcttatg tggggtttga gcttcatgta





89401
gctttgtgat tgtatttgtt tactcacggt ggaaatctcc ttattaaatt gtgggcaaga





89461
ggcaacccat ggtggaaatc tccgtattaa attgtgggca agaggcactt ctattggttt





99521
ttctaacagt aactacttac ttcaggaagg attaggttaa aatactaaat gtagatctct





89581
agagttgatc ttgtaacaga actagaacac attgacttga tatttagaca tgtgcagaag





89641
gcaaaccatt tcataaaggg ctggatataa tttcttcttt cagttctaag tcaaaattta





89701
ataatttttt tctattttta ataaatatat gggcatatgc atctaatagt gaggtttggt





89761
aaagactctt cttcacttta gttttgcatg tgtgggcaac tgacctttat gttgttacaa





89821
aatactactt aaaaataaaa agctcaattc tgtacagaaa tgagccattg ttcgttgtta





89881
ggctctcatt agctgttata gtatcaacac tattgtcaac atgatgtgga tcttgaattg





83941
ttttcccgtc tccactgcta actgtgtgtt cctcttgttc ttcgggccag ttgaaccata





90001
catcttgtgt cctaaaacca tatggagcat gtttttgtat gaactctcat gattaaggac





90061
atctgtctca gcctctacgt ttgccttcag gggatctttg catcatttaa tggtacagtt





90121
aacagcatgt tttgcatcat gaagttggcc gtacagtttt tctgcggatt ctactgtttt





90181
cattccttaa aaaaacacat ggacgagtct atattttgtc tttctgtctc ccattctaac





90241
tttcttgctt ttcttcctcc ataattctat ttcttttttt tttctattaa tatttactgg





90301
ccatcacctt gtgtttagca ggtcttataa tattccaaaa ttgcacattt tcaaaactgt





90361
aaagattgac cacaatttct aaatgtaatt cacttttcct ttcaattgct tgttttgagt





90421
gtaatttgga taccctaaag ttcatgtgtt acttttctat ttattttgag taatatgatt





90481
cagattcaac tcctttagat attactgaaa atattcttaa gtgaattgat acaaaatatc





90541
cacattccta ataagttatc aaaccaaaat gttgctaact ctatactgaa attctactaa





90601
ttcttctgac tgtacagatt gattcgtcag tatatattag caagtattta attaaaatct





90661
attttaataa ctttaaatgg atatagtagc actctaaata ggaaatgcag tcattgaaac





90721
tctcaaacac tagggaatag atataaaata tgtgcattta atcaattata tgttgttgat





90781
ttttacttta taatctatga cttcctttgt tgatgtcaat attgactttc tttaaaaatc





90841
tctaaattat gaaaaagtct aagttattgt aatctacatt atagactttt tctagtatgt





90901
tttactcata ggtaaattgt tactagtccc attaattgca aaatgcagtg gtcatgtgtt





90961
tccaaataat ttcaaattgt agaaataaat acagacagtc tccatgaaag catattgatt





91021
caagaattct atttattgat atttatttac tcttcctaac atttatattt actattcata





91081
gtgcataatg tttgttcagc agaaatatca tcaaaaaact attgatgtgc cagttaccat





91141
gatgcaccga agatacagaa acgaacaaga tgtccccact ctggtgaagg agtctatttg





91201
ttgttggtat tgacagtgtg agaggcagat gtagaaacaa gattgacaga ctttgtattt





91261
aaaggtgtaa gtttcataaa tggRtacata gaaaaatgaa cacgtttaaa ttaatgatgt





91321
aaacatgtta atattcccaa atacaaatat aagtctgtac agtgacttgc ttttttaaaa





91381
agcattgaag tggaatttgc ataccatgaa attcacacat tttaagtgta taRtatgttg





91441
atttttgaca aattttaaaa tcttgctagc atcaacacag tctagtttta aaacccgttc





91501
ctcactccag aatgttccct tgtgcccttt tgcagtccct cactccacat tccagcccca





91561
aacaatcact gatctgcttt ttatctctgt agattttcct tttctagata tttcatgaaa





91621
atgcaataat aaataatgta taaatcatta aagatttata gcaaatgtag ttttgttacc





91681
cttttttcat gtttctcaaa ttgtttgtac aaggaaaatt atttcagttg gtattttgaa





91741
atgtgggaga ggcctttgac taagaacttt aggagtaaca cccctaactc tcattatctt





91801
cattttacag atatgaagac tgtgctttat aaaagatcag acatttggct aatgacactg





91861
ctactaagtg acaacagaga tttaaaacta gttctgtcta attctaaatc cactgataca





91921
gtttctcaga aagttgaaaa acttttaaca ttataaactc attgatagtg atggatattt





91981
gttcttttgt tgtttagtga ttacctcaag atctacaaca atgatcagca atacaatggg





92041
agttttagtt gtaatcagct gtttcatatt ttaataatta ttaaacactc atgtaccaaa





92101
tacaatgcta gctgccagaa attacaaaag gaataaggtt tgatataaag taccacatag





92161
gccaggcgca gtggctcaca tgtgtaacac caacactttg ggaggccgag gtgtgtggac





92221
cacctgaggt caggagttcg agacctgcct ggctaacatg gcgaaacctt gtctctacta





92281
aaaatgcact tagctgggtg tggtggcaga cacctataat tccagctact tgggaggctg





92341
aagcaggaga attgctcgaa ccctggaggc ggaggttaca gtgagccgag attgtgccat





92401
tgtactccag cctgggagaa agagcaagac tctgtctcag aacaaaaggt accatgtagt





92461
tttcacttgt tctaaaaatc tcctctcatt gtgtaactca agtataaaaa tccatattac





92521
atctgaaaaa ggagttattc ttctgaactc tatctaacct ccttaaagcc aagtatatgc





92581
cactttgcta tgtcagttga tttgacttat atttggtaca cagattgcat tttttttttt





92641
gtaggacaga agaactccct gtcaagctag tttaactgta ttacatctac caatattcaa





92701
ttatttaatt ttttcaaaag tgaatgcaat cataatacat ccaaatacaa cctgaaactg





92761
ttgggaagta atgcttagga caaaatttca atctggttta ctggaaaatt ttagcaataa





92821
gtaaaaatct taatgcgttt ccatatgcat ggtttcacac actttttatc aagtactaga





92881
aaaacactga atgctaatgc cattgaattt tgctgaatta gtgtactata taaccccttt





92941
catattaaag attttaccca cttaacctca ccagaagtag tgttttcaca gtgcatgatt





93001
atgacaaaga tagaatgata gggagagggg aaagtgccat caggttcagg gtcaacagaa





93061
aataaaactc gttctctttt tgtaatcagt tataattccc atttcaatca aaaaaattat





93121
tgtaaagtat tttcttgaaa tttgcttaaa tttttcattt ttaacaagaa acgttattta





93181
taaaacacat tacttgtgtg catataggtg ttgggtctga gaaagtatac attattaatt





93241
tgatgtgtta ttaaaagatt gctgtcaaaa atctgtttag ttaattgatg ctgtcaattg





93301
ctcgcattaa tacctaatac tcataatatt tgtacctaaa tttttcttat aaaattgttt





93361
ctcattggtt tttattcttt ttatttctcc tattttttaa aattgaagtt tgtagtcagg





93421
tcatgtgacc aaatcaagtc catcattcaa acacgtatca ggaaattgga aatttaaaaa





93482
tgacttatgc atggatatga tgccagaggc agagacaagg gggtgggggc tgtttctaaa





93541
taccttccaa taacaataaa aaaacggaag ttatttgtga tcttagaaga tggctaagga





93601
aaaactgaaa cctgaaactR aggaaacaaa agtttagaca agataatccc aacatcagag





93661
aaagcatttg tcattgtcag aactccaaag agcaagaaag ctttaaWcca tttcatggac





93721
cctaggactc atggtctagt aattcttatg tcaccaaacc atattaggat ctgtatgaaa





93781
ttacagtgtg tcaccactct acatctgcaa tcttaatgtt tccgtccttt gattgtatga





93841
caaggaaact cttgaaccag agcactgcac ttcacaggag tctgaaagaa ccagctgctc





93901
ataattttgg agttttatag ggctttttag tctcagaatc cctgtctgac ctatgtccat





93961
atccagaatt catttttttt catttccaga attattcaga aaaaactctt gctgtctttt





94021
aacgtcttaa aacatttttc aaaaaatata tagagagaat tagaaagcca atcatagact





94081
taccctcttt ctccgttgct tcttcagttg tgtaatagtc atgaaatctg gaatgaccat





94141
tttaaattat attcactgag tttgaaacaa aacgttttta gatggttttg ttcccttaaa





94201
aatgaatatt attgtctagc attaacattc acccaaattg atagcatatt gaattatgtg





94261
tgtagattct taaacgtttt gttgtgaaac atcaaaagaa atcactgact ttttatttaa





94321
cataaataaa ttaagggaag tttagaaatc taattgttgg aaaaataaac ttctaaacat





94381
aactcttcaa aagtctacgt gctcacattt tctattcccg aacaaaaact tttgcaaagc





94441
tctctgaaag ccttgtaaaa ggccaatgaa tttcatttag cattaatttc cctactcacc





94501
acatagcaaa tatatgacac aaYttatagt tctgttaaaa aaaagccaga actgttacct





94561
gagcaactgc ttataaaaga gcgaggcagc ttacgtttta tctatttttt gtgtgctttc





94621
tactaagttt tacaatctaa gtgtgttaga aataaaatca aattcattag gaatctctat





94681
gcataaaagg aaattaaata tcatactcaa tgacttgtgc cacctgtggc aaatagtttt





94741
acatgccaat






Following is a first EPHA3 complementary DNA sequence (cDNA;










SEQ ID NO: 2)









ggacagcacactgcaaggaaatcttcacgggtgtggagtacagttcttgt






gacacaatagccaagatttccacagatgacatgaaaaaggttggtgtcac





cgtggttgggccacagaagaagatcatcagtagcattaaagctctagaaa





cgcaatcaaagaatggcccagttcccgtgtaaagcacgggacggaagtgc





ttctggacggaagtggtggctgtggaaggcgtagcatcatcctgcagaca





gacaataattctggagatactggtggaagttccaagtccaataagacact





caaatatgagtacaaatgccttaaaatggaattgaaaaactctttatttt





cccctatcatttattggatgggtgggtggggtatttttttgtaattgctt





ttttaaatattagttaatggattaaatttaattcttcagcgtaaaatggt





gaagaactagcatatagccattgtacataaactgactatcataaaatcaa





aacaagtgaaataacaaaatggacatggtggctttgtttaggtagagcca





caaaagaaaagacttgtaatatttttatatacagaggaaatctgtaacag





gtattttgtttcttttaaagcaagcaacacagaggaatttatacctcaaa





ctatctggccatatttactaccttatcactgcattattctcttttatctg





tttaaagcatatagagatgaagtttgtagttgttttaagtactacacatt





tttaaattgttagcttccttaagtatatcatgtaaagaaatgtcttaatt





tttgaaaaaagtacatatttattttcttttgaattgtttttattgttttc





tatttatgccttgatgatttaatatggatttgttacagccaagtgccaaa





tgctctctcaaattgtcagcaatttaactagacacagataataatgggtt





tctttcagattttttgaaccatccacttacatatatttttaaaaaaatga





aatccttttcctgttcatacactaaccaaatctctcaaatctgttatccc





aatcattgttgcctctccgtttattataaactgtatgctcacaacttagt





gtaatataccagcttgtatgcaatggattttcaaccagataacatacctt





tcctgctctggtgcttagagactatcaactccctcctttagtgaaggagc





cgtgttagagcttccgagaatagctccactggagagaagtggaatcctat





atagaatgctgagtaaaaaaaaaaacaattactggctcactggctttgaa





aagtcacttactattgttgctgaaacttgctgagctgtttatagagaatg





atgataacagaacttttcctctgtatcactggtgtttaggtgaattaatt





aaacattgtgatcattagtaccaggtattattatctttaagagtcttcca





cttcaatgcacatggtgcagttttggtgtgtaacttagaaggattgaact





tctttgaatttactggacataacattttcagaatagttggtcatctagca





accgcctcaaaatgtgtaagcaggagagaaatttctcatcacagggattt





agacttactattacataaaggctaactatgagcttgctcattaattttga





aaagatgtacctggtggatatctagctagtaatatattctgaagcaacat





tttagctctattgatactctttctaatgctgatatgatcttgagtataag





aaatgcatatgtcactagaatggataaaataatgctgcaaacttaatgtt





cttatgcaaaatggaacgctaatgaaacacagcttacaatcgcaaatcaa





aactcacaagtgctcatctgttgtagatttagtgtaataagacttagatt





gtgctccttcggatatgattgtttctcaaatcttggcaatattccttagt





caaatcaggctactagaattctgtattggatatataagagcatgaaattt





ttaaaaatacacttgtgattataaaattaatcacaaatttcacttatacc





tgctatcagcagctagaaaacattttttttttaaatcaagtattttgtgt





ttggaatgttagaatgagatctgaatgtggtttcaatctaattttttccc





agactactattttcttttttaggtactattctgagcatactcaacaaaac





ccatgcatttcataaactaatagaagttgaggattgttgaatctatttca





cttattttggctgtggtttccatctgaaagtagaggttgtatacaccata





tactgttcttcattttattaatatttttctccttgacctctcataaattt





actttacacaattcttaccctgtacatatgtaaacataagtgtacgattc





ttaaccatggagtagaggtactagaatgcttacggccatctctttgtaca





ggaactgcattgactttcagtaaacataaagccacaactcctacatgatg





ttatgtaccatatgatctgttttgtatcttaaatttgatttacatatatt





atttatttctggtaactcactcagtttatgctgtgctaaatatcaatcaa





gccatgtataaatgtgatatgattggcaatatgtgtttactttaaacttg





tcttttcaaaatattactcagtttatgttgtacaatgtagatggcctctt





actaatgtaaaatgatttgtagtggaaacatttatatttttataataaac





ataatgaaaatattttttacagattggaaaaaaaaaaaaaaaaaaa.






Following is a second EPHA3 cDNA sequence










(SEQ ID NO: 3)









cttctccagcaatcagagcgctccccctcacatcagtggcatgcttcatg






gagatatgctcctctcactgccctctgcaccagcaacatggattgtcagc





tctccatcctcctccttctcagctgctctgttctcgacagcttcggggaa





ctgattccgcagccttccaatgaagtcaatctactggattcaaaaacaat





tcaaggggagctgggctggatctcttatccatcacatgggtgggaagaga





tcagtggtgtggatgaacattacacacccatcaggacttaccaggtgtgc





aatgtcatggaccacagtcaaaacaattggctgagaacaaactgggtccc





caggaactcagctcagaagatttatgtggagctcaagttcactctacgag





actgcaatagcattccattggttttaggaacttgcaaggagacattcaac





ctgtactacatggagtctgatgatgatcatggggtgaaatttcgagagca





tcagtttacaaagattgacaccattgcagctgatgaaagtttcactcaaa





tggatcttggggaccgtattctgaagctcaacactgagattagagaagta





ggtcctgtcaacaagaagggattttatttggcatttcaagatgttggtgc





ttgtgttgccttggtgtctgtgagagtatacttcaaaaagtgcccattta





cagtgaagaatctggctatgtttccagacacggtacccatggactcccag





tccctggtggaggttagagggtcttgtgtcaacaattctaaggaggaaga





tcctccaaggatgtactgcagtacagaaggcgaatggcttgtacccattg





gcaagtgttcctgcaatgctggctatgaagaaagaggttttatgtgccaa





gcttgtcgaccaggtttctacaaggcattggatggtaatatgaagtgtgc





taagtgcccgcctcacagttctactcaggaagatggttcaatgaactgca





ggtgtgagaataattacttccgggcagacaaagaccctccatccatggct





tgtacccgacctccatcttcaccaagaaatgttatctctaatataaacga





gacctcagttatcctggactggagttggcccctggacacaggaggccgga





aagatgttaccttcaacatcatatgtaaaaaatgtgggtggaatataaaa





cagtgtgagccatgcagcccaaatgtccgcttcctccctcgacagtttgg





actcaccaacaccacggtgacagtgacagaccttctggcacatactaact





acacctttgagattgatgccgttaatggggtgtcagagctgagctcccca





ccaagacagtttgctgcggtcagcatcacaactaatcaggctgctccatc





accttcctgacattaagaaagatcggaacctccagaaatagcatctcttt





gtcctggcaagaacctgaacatcctaatgggatcatattggactacgagg





tcaaatactatgaaaagcaggaacaagaaacaagttataccattctgagg





gcaagaggcacaaatgttaccatcagtagcctcaagcctgacactatata





cgtattccaaatccgagcccgaacagccgctggatatgggacgaacagcc





gcaagtttgagtttgaaactagtccagactgtatgtaattatttcaatgc





agtctagaggagggggcagggatcttgcaaaagatgtctgatcgtttatt





ctcactgtttctaagttttaaacaaatgtgatacatttaaggtatattgc





ttgggacattgcaatttgcagagccctgtgtctgtatacagtatttgtgt





ttgtgtgggtgtacattttgtgtttctttttttcttgtatgcaaatcaaa





catattctaatgcctgaaatgcttctgttttttttttttagccataaatt





gcttttgaggaacattatttaatatagtaacacacttccagtgtctgtca





tttcagatattccaggttcattgcgtgattcaatgaaccacaaaaaagaa





acttgctgatccatgagaatcttaattttgttttaatccttaacacattc





aatagcatatcacagagagaataaggattttctaaaatgtgttttatcac





ttcattcacattcagaagtaatttgaatagcctgttcctttaaccccaaa





tttggctaaaattggcctaaaactggcaaacatttttccagtaacttttc





tttttttcaaatgaattttcttcatacttaaaaaagccctttgctaaaat





ataattttcaaaaaggtaaaattatgtctatggcactaatataaaatgag





tagaagttaatgattttacttaactcatttttttctttctttcttttttt





ttttttttttttgagacggagtcttgctctgtcacccaggctggagtaca





gcagagcgatctcggctcactgcaagctcctgcaagctccgcctcctggc





ttcacgccattctccccctcagcctcccgagtagctgggactacag.






Following is a first EPHA3 amino acid sequence










(SEQ ID NO: 4)









MDCQLSILLLLSCSVLDSFGELIPQPSNEVNLLDSKTIQGELGWISYPS






HQWEEISGVDEHYTPIRTYQVCNVMDHSQNNWLRTNWVPRNSAQKIYVE





LKFTLRDCNSIPLVLGTCKETFNLYYMESDDDHGVKFREHQFTKIDTIA





ADESFTQMDLGDRILKLNTEIREVGPVNKKGFYLAFQDVGACVALVSVR





VYFKKCPFTVKNLAMFPDTVPMDSQSLVEVRGSCVNNSKEEDPPRMYCS





TEGEWLVPIGKCSCNAGYEERGFMCQACRPGFYKALDGNMKCAKCPPHS





STQESGSMNCRCENNYFRADKDPPSMACTRPPSSPRNVISNINETSVIL





DWSWPLDTGGRKDVTFNIICKKCGWNIKQCEPCSPNVRFLPRQFGLTNT





TVTVTDLLAHTNYTFEIDAVNGVSELSSPPRQFAAVSITTNQAAPSPVL





TIKKDRTSRNSISLSWQEPEHPMGIILDYEVKYYEKQEQETSYTILRAR





GTNVTISSLKPDTIYVFQIRARTAAGYGTNSRKFEFETSPDSFSISGES





SQVVMIAISAAVAIILLTVVIYVLIGRFCGYKSKHGADEKRLHFGNGHL





KLPGLRTYVDPHTYEDPTQAVHEFAKELDATNISIDKVVGAGEFGEVCS





GRLKLPSKKEISVAIKTLKVGYTEKQRRDFLGEASIMGQFDHPNIIRLE





GVVTKSKPVMIVTEYMENGSLDSFLRKHDAQFTVIQLVGMLRGIASGMK





YLSDMGYVHRDLAARNILINSNLVCKVSDFGLSRVLEDDPEAAYTTRGG





KIPIRWTSPEAIAYRKFTSASDVWSYGIVLWEVMSYGERPYWEMSNQDV





IKAVDEGYRLPPPMDCPAALYQLMLDCWQKDRNNRPKFEQIVSILDKLI





RNPGSLKIITSAAARPSNLLLDQSNVDITTFRTTGDWLNGVWTAHCKEI





FTGVEYSSCDTIAKISTDDMKKVGVTVVGPQKKIISSIKALETQSKNGP





VPV.






Following is a second EPHA3 amino acid sequence










(SEQ ID NO: 5)









MDCQLSILLLLSCSVLDSFGELIPQPSNEVNLLDSKTIQQELGWISYPS






HGWEEISGVDEHYTPIRTYQVCNVMDHSQNNWLRTNWVPRNSAQKIYVE





LKFTTLRDCNSIPLVLGTCKETFNLYYMESDDDHGVKFREHQFTIDTIA





ADESFTQMDLGDRILKLNTEIREVGPVNKKGFYLAFQDVGACVVALVSV





RVYFKKVPFTVKNLAMFPDTVPMDSQSLVEVRGSCVNNSKEEDPPRMYC





STEGEWLVPIGKCSCNAGYEERGFMCQACRPGFYKALDGNMKCAKCPPH





SSTQEDGSMNCRCENNYFRADKDPPSMACTRPPSSPRNVISNINETSVI





LDWSWPLDTGGRKDVTFNIICKKCGWNIKQCEPCSPNVRFLPRQFGLTN





TTVTVTDLLAHTNYTFEIDAVNGVSELSSPPRQFAAVSITTNQAAPSPV





LTIKKDRTSRNSISLSWQEPEHPNGIILDYEVKYYEKQEQETSYTILRA





RGTNVTISSLKPDTIYVFQIRARTAAGYGTNSRKFEFETSPDCMYYFNA





V.






Following is an Ephrin-A5 cDNA sequence










(SEQ ID NO: 6)









gcttctctccatcttgtgattcctttttcctcctgaaccctccagtgggg






gtgcgagtttgtctttatcaccccccatcccaccgccttcttttcttctc





gctctcctacccctccccagcttggtgggcgcctctttcctttctcgccc





cctttcatttttatttattcatatttatttggcgcccgctctctctctgt





ccctttgcctgcctccctccctccggatccccgctctctccccggagtgg





cgcgtcgggggctccgccgctggccaggcgtgatgttgcacgtggagatg





ttgacgctggtgtttctggtgctctggatgtgtgtgttcagccaggaccc





gggctccaaggccgtcgccgaccgctacgctgtctactggaacagcagca





accccagattccagaggggtgactaccatattgatgtctgtatcaatgac





tacctggatgttttctgccctcactatgaggactccgtcccagaagataa





gactgagcgctatgtcctctacatggtgaactttgatggctacagtgcct





gcgaccacacttccaaagggttcaagagatgggaatgtaaccggcctcac





tctccaaatggaccgctgaagttctctgaaaaattccagctcttcactcc





cttttctctaggatttgaattcaggccaggccgagaatatttctacatct





cctctgcaatcccagataatggaagaaggtcctgtctaaagctcaaagtc





tttgtgagaccaacaaatagctgtatgaaaactataggtgttcatgatcg





tgttttcgatgttaacgacaaagtagaaaattcattagaaccagcagatg





acaccgtacatgagtcagccgagccatcccgcggcgagaacgcggcacaa





acaccaaggatacccagccgccttttggcaatcctactgttcctcctggc





gatgcttttgacattatagcacagtctcctcccatcacttgtcacagaaa





acatcagggtcttggaacaccagagatccacctaactgctcatcctaaga





agggacttgttattgggttttggcagatgtcagatttttgttttctttct





ttcagcctgaattctaagcaacaacttcaggttgggggcctaaacttgtt





cctgcctccctcaccccaccccgccccacccccagccctggcccttggct





tctctcacccctcccaaattaaatggactccagatgaaaatgccaaattg





tcatagtgacaccagtggttcgtcagctcctgtgcattctcctctaagaa





ctcacctccgttagaccactgtgtcagcgggctatggacaaggaagaata





gtggcagatgcagccagcgctggctagggctgggagggttttgctctcct





atgcaatatttatgccttctcattcagaactgtaagatgatcgcgcaggg





catcatgtcaccatgtcaggtccggaggggaggtattaagaatagatacg





atattacaccatttcctataggagtatgtaaatgaacaggcttctaaaag





gttgagacactggttttttttttt.






Following is an Ephrin-A5 amino acid sequence










(SEQ ID NO: 7)









MLHVEMLTLVFLVLWMCVFSQDPGSKAVADRYAVYWNSSNPRFQRGDYHI






DVCINDYLDVFCPHYEDSVPEDKTERYVLYMVNFDGYSACDHTSKGFKRW





ECNRPHSPNGPLKFSEKFQLFTPFSLGFEFRPGREYFYISSAIPDNGRRS





CLKLKVFVRPTNSCMKTIGVHDRVFDVNDKVENSLEPADDTVHESAEPSR





GENAAQTPRIPSRLLAILLFLLAMLLTL.






Modifications may be made to the foregoing without departing from the basic aspects of the invention. Although the invention has been described in substantial detail with reference to one or more specific embodiments, those of skill in the art will recognize that changes may be made to the embodiments specifically disclosed in this application, yet these modifications and improvements are within the scope and spirit of the invention, as set forth in the claims which follow. Also, citation of the above publications or documents is not intended as an admission that and of the foregoing is pertinent prior art, nor does it constitute any admission as to the contents or date of these publications or documents. Each patent, patent application and other publication and document referenced is incorporated herein by reference in its entirety, including drawings, tables and cited documents.

Claims
  • 1. A method for identifying a subject at risk of type II diabetes, which comprises detecting the presence or absence of one or more polymorphic variations associated with type II diabetes in a nucleic acid sample from a subject, wherein the one or more polymorphic variations are detected in a nucleotide sequence in SEQ ID NO: 1 or a substantially identical sequence thereof, or a fragment of the foregoing; whereby the presence of the polymorphic variation is indicative of the subject being at risk of type II diabetes.
  • 2. The method of claim 1, which further comprises obtaining the nucleic acid sample from the subject.
  • 3. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions selected from the group consisting of rs1512183, rs1512185, rs1028013, rs987748, rs2881488, rs1157607, rs1157608, rs1912965, rs1912966, rs1054750, rs1499780, rs2117138, rs2346840, rs2048518, rs2048519, rs2048521, rs3762718, rs2196083, rs972030, rs1036286, rs1036285, rs1512188, rs1512189, rs1567657, rs1567658, rs1028012, position 66765 of SEQ ID NO: 1, and position 66794 of SEQ ID NO: 1.
  • 4. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions selected from the group consisting of rs 1512185, rs987748, rs1512183, rs1157607, rs1912966, rs1499780, rs2048519, rs972030, rs1567657 and rs1028012.
  • 5. The method of claim 1, wherein the polymorphic variation is detected at position 66794 of SEQ ID NO: 1.
  • 6. The method of claim 1, wherein a polymorphic variation is detected at position between positions 18716 to 94523 of SEQ ID NO: 1.
  • 7. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions in linkage disequilibrium with one or more positions in claim 3.
  • 8. The method of claim 1, wherein detecting the presence or absence of the one or more polymorphic variations comprises: hybridizing an oligonucleotide to the nucleic acid sample, wherein the oligonucleotide is complementary to a nucleotide sequence in the nucleic acid and hybridizes to a region adjacent to the polymorphic variation;extending the oligonucleotide in the presence of one or more nucleotides, yielding extension products; anddetecting the presence or absence of a polymorphic variation in the extension products.
  • 9. The method of claim 1, wherein the subject is a human.
  • 10. A method for identifying a polymorphic variation associated with type II diabetes proximal to an incident polymorphic variation associated with type II diabetes, which comprises: identifying a polymorphic variation proximal to the incident polymorphic variation associated with type II diabetes, wherein the polymorphic variation is detected in a nucleotide sequence in SEQ ID NO: 1 or a substantially identical sequence thereof, or a fragment of the foregoing;determining the presence or absence of an association of the proximal polymorphic variant with type II diabetes.
  • 11. The method of claim 10, wherein the incident polymorphic variation is at one or more positions in claim 3.
  • 12. The method of claim 10, wherein the proximal polymorphic variation is within a region between about 5 kb 5′ of the incident polymorphic variation and about 5 kb 3′ of the incident polymorphic variation.
  • 13. The method of claim 10, which further comprises determining whether the proximal polymorphic variation is in linkage disequilibrium with the incident polymorphic variation.
  • 14. The method of claim 10, which further comprises identifying a second polymorphic variation proximal to the identified proximal polymorphic variation associated with type II diabetes and determining if the second proximal polymorphic variation is associated with type II diabetes.
  • 15. The method of claim 14, wherein the second proximal polymorphic variant is within a region between about 5 kb 5′ of the incident polymorphic variation and about 5 kb 3′ of the proximal polymorphic variation associated with type II diabetes.
  • 16. An isolated nucleic acid which comprises a cytosine at a position corresponding to position of 66794 in SEQ ID NO: 1.
  • 17. An oligonucleotide comprising a nucleotide sequence complementary to a portion of the nucleic acid of claim 16, wherein the 3′ end of the oligonucleotide is adjacent to position 66794 in SEQ ID NO: 1.
  • 18. A microarray comprising an isolated nucleic acid of claim 16 linked to a solid support.
  • 19. An isolated polypeptide which comprises an amino acid sequence identical to or substantially identical to the amino acid sequence of SEQ ID NO: 4, or a fragment thereof, wherein the polypeptide or fragment thereof comprises a histidine corresponding to position 914 in SEQ ID NO: 4, an arginine corresponding to position 924 in SEQ ID NO: 4, or a histidine corresponding to position 914 in SEQ ID NO: 4 and an arginine corresponding to position 924 in SEQ ID NO: 4.
  • 20-42. (canceled)
  • 43. A method for treating type II diabetes, which comprises administering to a subject in need thereof a molecule that specifically interacts with an EPHA3 polypeptide, whereby the molecule is administered in an amount effective to treat the type II diabetes.
  • 44. The method of claim 43, wherein the molecule is an antibody that specifically binds to EPHA3.
  • 45. The method of claim 43, wherein the molecule is an antibody that inhibits an interaction between EPHA3 and an EPHA3 binding partner, ligand or signal partner.
  • 46. The method of claim 45, wherein the antibody inhibits binding between EPHA3 and Ephrin-A5.
  • 47. The method of claim 43, wherein the molecule modulates one or more levels or activities of cellular molecules selected from the group consisting of glucose uptake by cells; glucose transport molecule activity or levels in cells; triacylglycerol content in cells; resistin levels or activities in cells; levels or activities of PPARγ, PI3 kinase, Akt and C/EBPα in cells; levels of activities of Ephrin-A2 and Ephrin-A5; levels or activities of ADAM10; circulating levels of glucose; cell or tissue sensitivity to insulin; progression from impaired glucose tolerance to insulin resistance; glucose uptake in skeletal muscle cells; glucose uptake in adipose cells; glucose uptake in neuronal cells; glucose uptake in red blood cells; glucose uptake in the brain; and postprandial increase in plasma glucose following a meal.
  • 48. A composition comprising a cell from a subject having type II diabetes or at risk of type II diabetes and an antibody that specifically binds to a protein, polypeptide or peptide encoded by a nucleotide sequence identical to or 90% or more identical to a nucleotide sequence in SEQ ID NO: 1-3.
  • 49. The composition of claim 48, wherein the antibody specifically binds to an epitope comprising an arginine at position 924 in an EPHA3 polypeptide (SEQ ID NO: 4).
  • 50. The composition of claim 48, wherein the antibody inhibits the interaction between an EPHA3 polypeptide and a natural binding partner or ligand.
  • 51. The composition of claim 50, wherein the natural binding partner or ligand is Ephrin-A5.
  • 52. A composition comprising a cell from a subject having type II diabetes or at risk of type II diabetes and a RNA, DNA, PNA or ribozyme molecule comprising a nucleotide sequence identical to or 90% or more identical to a portion of a nucleotide sequence in SEQ ID NO: 1-3, or a complementary sequence of the foregoing.
  • 53. The composition of claim 52, wherein the RNA molecule is a short inhibitory RNA molecule.
  • 54. The method of claim 53, wherein the RNA molecule includes a strand comprising a nucleotide sequence selected from the group consisting of GCGGATGGTAACTTCT (SEQ ID NO: 135), GCTCAAGTTCACTCTACGA (SEQ ID NO: 136), CTCTACGAGACTGCAATAG (SEQ ID NO: 137) and AATTTCGAGCATCAGTT (SEQ ID NO: 138).
  • 55. A method of genotyping a nucleic acid which comprises determining the nucleotide corresponding to position 66794 of SEQ ID NO: 1 in the nucleic acid.
  • 56-59. (canceled)
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2004/023813 7/22/2004 WO 00 2/7/2008