Methods for improving the accuracy of dimensioning-system measurements

Information

  • Patent Grant
  • 10859375
  • Patent Number
    10,859,375
  • Date Filed
    Friday, December 6, 2019
    5 years ago
  • Date Issued
    Tuesday, December 8, 2020
    4 years ago
Abstract
Methods to improve the accuracy of non-contact measurements of an object's dimensions using a dimensioning system are disclosed. The methods include a method for creating a mathematical model (i.e., error model) based on an observed correlation between errors in an estimated dimension and the characteristics of the measurement used to obtain the estimated dimension. These error models may be created for various dimensions and stored for future use. The methods also include a method for using the stored error models to reduce the error associated with a particular dimensioning-system measurement. Here an error model is used to create an estimated error. The estimated error is then removed from the estimate of the dimension to produce a final estimate of the dimension that is more accurate.
Description
FIELD OF THE INVENTION

The present invention relates to systems for determining an object's physical dimensions (i.e., dimensioning systems) and, more specifically, to methods for creating and using error models to improve the accuracy of dimensioning system measurements.


BACKGROUND

Determining an item's dimensions is often necessary as part of a logistics process (e.g., shipping, storage, etc.). Physically measuring objects, however, is time consuming and may not result in accurate measurements. For example, in addition to human error, measurement errors may result when measuring irregularly shaped objects or when combining multiple objects into a single measurement. As a result, non-contact dimensioning systems have been developed to automate, or assist with, this measurement. These dimensioning systems sense an object's shape/size in three-dimensions (3D) and then use this 3D data to compute an estimate of an object's dimensions (e.g., length, width, height, etc.).


Accurate dimensioning is highly valued. For example, regulatory certification often demands highly accurate measurements when dimensioning is used for commercial transactions (e.g., determining shipping costs). Unfortunately, there are errors in the dimensions estimated by dimensioning system. One way to reduce these errors is to (i) constrain the size/shape of measured objects and (ii) place strict requirements on the measurement setup. These constraints, however, limit the flexibility of the dimensioning system and the speed at which a measurement may be taken. Therefore, a need exists for methods to reduce the errors associated with estimated dimensions returned from a dimensioning system.


SUMMARY

Accordingly, in one aspect, the present invention embraces a method for removing errors from a dimensioning-system measurement. First, a dimensioning system is provided to perform a dimensioning-system measurement of an object in an environment. The dimensioning-system measurement results in three-dimensional (3D) data corresponding to the object/environment. Next, a particular dimension to be estimated is selected. Then, using the 3D data, an intermediate estimate of the particular dimension is created. In addition, values for predictor variables, pertaining to the aspects of the dimensioning-system measurement, are obtained. To remove errors from the intermediate estimate the method first estimates and then removes the errors.


To create an error estimate for the particular dimension, the method retrieves the particular dimension's error model, which relates the one or more predictor variables to an estimated error, from a library of error models. Then, the error estimate for the particular dimension is computed using the error model and the values obtained for the one or more predictor variables.


To remove the errors from the dimensioning-system measurement, the method subtracts the error estimate from the intermediate estimate of the particular dimension to obtain a final estimate for the particular dimension.


In an exemplary embodiment of the method, the predictor variables include variables that describe intrinsic properties of the dimensioning system, such as the dimensioning-system's acquisition parameters.


In another exemplary embodiment of the method, the predictor variables include variables that describe intrinsic properties of the object, such as the object's size, shape, and/or appearance.


In another exemplary embodiment of the method, the predictor variables include variables that describe intrinsic properties of the environment, such as the light level of the environment.


In another exemplary embodiment of the method, the predictor variable include variables that describe extrinsic aspects of the dimensioning-system measurement, such as the physical relationships between (i) the dimensioning system and the object, (ii) the dimensioning system and the environment, and/or (iii) the object and the environment.


In another exemplary embodiment of the method, the error model includes a linear equation relating the error estimate to the one or more predictor variables.


In another exemplary embodiment of the method, the error model includes a non-linear equation relating the error estimate to the one or more predictor variables.


In another exemplary embodiment of the method, (i) the 3D data includes a minimum-volume-bounding box (MVBB), and (ii) the particular dimension is the length, width, or height of the MVBB.


In another exemplary embodiment of the method, (i) the 3D data includes a minimum-volume-bounding box (MVBB) having a length, a width, and a height, and (ii) the method estimates and removes errors for each particular dimension of the MVBB (i.e., the length, the width, and the height).


In another exemplary embodiment of the method, the library of error models includes classes of error models; wherein each class corresponds to (i) a particular operating environment and/or (ii) a feature-set corresponding to the object. In this case, the method's step of retrieving an error model from the library includes selecting a class of error models from the library and retrieving an error model for a particular dimension from the selected class of error models.


In another aspect, the present invention embraces a method for creating an error model for a measured feature. First, a dimensioning system and a calibration object, having a feature with a known size, are provided. Next, measurements of the feature are gathered using the dimensioning system. Errors for the measurements (i.e., measured errors) are then calculated by comparing each measurement to the known size. In addition, predictor variables, which describe aspects of the measurements, are defined, and a mathematical model relating the predictor variables to an estimated error for the measurements is derived. The mathematical model includes predictor variables and predictor coefficients, wherein each predictor variable corresponds to a particular predictor coefficient. Next, by adjusting the predictor coefficients, the mathematical model is fit to the measured errors. The mathematical model is then refined to create the error model for the measured feature.


In an exemplary embodiment of the method, the error model is stored for future use.


In another exemplary embodiment of the method, the mathematical model is a linear combination of predictor variables and predictor coefficients or a nonlinear equation using predictor variables.


In another exemplary embodiment of the method, the predictor variables describe aspects of the measurements including intrinsic properties of the dimensioning system, the object, and/or the environment.


In another exemplary embodiment of the method, the predictor variables describe aspects of the measurements including physical relationships between (i) the dimensioning system and the object, (ii) the dimensioning system and the environment, and/or (iii) the object and the environment.


In another exemplary embodiment of the method, refining the mathematical model includes removing insignificant predictor variables and their corresponding predictor coefficients.


In another exemplary embodiment of the method, fitting the mathematical model to the errors includes a linear regression.


In another exemplary embodiment of the method, refining the mathematical model includes (i) obtaining residuals by comparing the estimated errors to the errors; (ii) creating a histogram of the residuals; and (iii) rejecting or accepting the mathematical model based on the normality of the histogram.


In another exemplary embodiment, the feature is the object's length, width, or height.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically depicts and exemplary dimensioning system according to an embodiment of the present invention.



FIG. 2 graphically illustrates the principle of sensing three dimensions using a spatially offset pattern projector and range camera according to an embodiment of the present invention.



FIG. 3 graphically illustrates exemplary predictor variables for a dimensioning system measurement according to an embodiment of the present invention.



FIG. 4 graphically depicts a flow diagram illustrating a method for creating an error model for a feature measured by a dimensioning system according to an embodiment of the present invention.



FIG. 5 graphically depicts a flow diagram illustrating a method for removing errors from a dimensioning-system measurement according to an embodiment of the present invention.



FIG. 6 graphically depicts the retrieval of an error model from a library of error models according to an embodiment of the present invention.





DETAILED DESCRIPTION

The present invention embraces improving the accuracy of dimensioning-system measurements through the use of mathematical models to estimate error (i.e., error models). The error models are created and then used to create an error estimate associated with a particular dimension/measurement. This error estimate may then be removed from the dimensioning system's estimate in order to improve the accuracy of the measurement. Some advantages of using error models to correct measurement errors in dimensioning are (i) improved measurement accuracy, (ii) improved measurement precision (i.e., repeatability), (iii) added flexibility (e.g., measuring a wider variety of objects), and (iv) easier/faster measurement acquisition (e.g., setup).


In general, dimensioning systems sense an object to gather 3D data corresponding to the object's shape/size, and then use this 3D data to compute the object's dimensions. In some cases, the 3D data is used to create a minimum bounding box (MVBB), which is a computer model of a box that surrounds the object (e.g., an irregularly shaped object) or a collection of objects (e.g., multiple boxes on a pallet). In these cases, the dimensioning system may return the dimensions of the MVBB.


A variety of techniques may be used to actively sense an object (e.g., structured-light, ultrasound, x-ray, etc.) and create 3D data (e.g., time-of-flight, triangulation, etc.). All of these techniques are within the scope of the present invention, however one exemplary embodiment (i.e., the triangulation of a structured-light pattern) will be described in relation to the disclosed methods.


The exemplary dimensioning system senses an object by projecting a light pattern (i.e., pattern) into a field-of-view. Objects within the field-of-view will distort the appearance of the reflected light-pattern. The dimensioning system captures an image of the reflected light-pattern and analyzes the pattern distortions in the captured image to compute the 3D data necessary for estimating the object's dimensions.


A block diagram of the dimensioning system is shown in FIG. 1. The dimensioning system 10 includes a pattern projector 1 that is configured to project a light (e.g., infrared light) pattern into a field-of-view 2. The light pattern typically comprises points of light arranged in a pattern (i.e., point cloud). The points of light may be (i) sized identically or differently and (ii) may be arranged in some order or pseudo-randomly. The pattern projector may create the light pattern using a light source (e.g., laser, LED, etc.), a pattern creator (e.g., a mask, a diffractive optical element, etc.), and one or more lenses.


The dimensioning system 10 also includes a range camera 3 configured to capture an image of the projected light pattern that is reflected from the range camera's field-of-view 4. The field-of-view of the range camera 4 and the field-of-view of the pattern projector 2 should overlap but may not necessarily have identical shapes/sizes. The range camera 3 includes one or more lenses to form a real image of the field-of-view 4 onto an image sensor. Light filtering (e.g., infrared filter) may be also be used to help detect the reflected pattern by removing stray light and/or ambient light. An image sensor (e.g., CMOS sensor, CCD sensor, etc.) is used to create a digital image of the light pattern. The range camera may also include the necessary processing (e.g. DSP, FPGA, ASIC, etc.) to obtain 3D data from the light-pattern image.


As shown in FIG. 2, the pattern projector 1 and the range camera 3 are spatially offset (e.g., stereoscopically arranged). The spatial offset 8 (i.e., the baseline) allows for changes in the range 5 of an object 6 to be detected as an image offset 7 on the range camera's image sensor. The spatial offset 8 may be adjusted to change the image offset 7 to change the resolution at which range differences 5 may be detected. In this way, image offsets in the point-cloud pattern may be converted into 3D data for objects within the dimensioning system's field-of-view.


Accurate dimensioning requires that (i) the sensing obtains sufficient, high-quality 3D data and (ii) that the dimensioning system's algorithms can convert the 3D data into precise estimates of the object's dimensions. This accuracy may be affected by many different variables. The variables (i.e., predictor variables) may be classified into two categories: intrinsic and extrinsic. FIG. 3 graphically illustrates exemplary predictor variables for a dimensioning system measurement according to an embodiment of the present invention.


Intrinsic variables describe properties related to the essential nature, constitution, or operation of a particular element in the dimensioning system measurement. A particular element may be the dimensioning system, the object, or the environment in which the object resides (i.e., the environment). Furthermore, a particular element may include subsystems within the dimension system such as the range camera 3 or the pattern projector 1.


Intrinsic variables related to the object may describe the object's shape or appearance. For example, the object may be classified by shape (e.g., a box, a cylinder, etc.) and the class of shape may be an intrinsic variable 11. The object may have sides that are not flat (e.g., curved) and the mean curvature of the object may be an intrinsic variable 12. Other object intrinsic variables include (but are not limited to) estimated height 13, estimated length 14, estimated width 15, average color (e.g., red, green, blue), and reflectivity.


Intrinsic variables related to the dimensioning system may include (but are not limited to) the base line (i.e., the spatial offset between the range camera and the pattern projector).


Intrinsic variables related to the range camera may include (but are not limited to) the focal length (i.e., of the range camera's lens), lens distortion, the optical center of the image (i.e., where the range camera's optical axis intersects with the range camera's image sensor), the orientation of the object on the image sensor, the range-camera's image height/width, and the maximum number of pattern points detected per frame.


Intrinsic variables related to the pattern projector may include (but are not limited to) the pattern density, the projected divergence angle, and the pattern type.


Intrinsic variables related to the environment may include (but are not limited to) the environment's light level and/or properties of the ground plane. The ground plane (i.e., ground) is the surface in the environment on which the object rests during the measurement. The ground typically fills much of the dimensioning system's field of view and serves as a baseline from which certain dimensions may be obtained. For example, a mathematical projection of an object surface to the ground may help determine one or more dimensions. As a result intrinsic variables related to the ground are typically defined and may include (but are not limited to) the ground's reflectivity and the area of the ground.


Extrinsic variables external factors affecting the dimensioning-system measurement. For example, extrinsic variables may describe the physical relationships between (i) the dimensioning system and the object, (ii) the dimensioning system and the environment, or (iii) the object and the environment. Extrinsic variables may also describe how an object intersects with the pattern projected by the dimensioning system. In addition, extrinsic variables may describe the position (e.g., pitch, roll, height) of the dimensioning system with respect to the ground 16. As shown in FIG. 3, other extrinsic variables include (but are not limited to) the dimensioning system's height 17, the object's center of gravity (i.e., COG) 18, the minimum distance between the dimensioning system and the object 19, and the maximum distance between the dimensioning system and the object 20.


Arbitrarily shaped objects (e.g., an object with a radius or a curvature) may be measured with a dimensioning system. While these measurements may include dimensions for curved or irregular surfaces (e.g., radius, curvature, etc.), a typical measurement includes estimating three dimensions (i.e., length, width, height) of computer-generated box that surrounds the object (i.e., the MVBB). For example, when measuring a box (e.g., a package), the edges of the MVBB coincide with the edges of the box.


The accuracy for each estimated dimension is determined by the amount of error associated with each dimension's estimate. Further, different errors may be associated with each estimated dimension. For example, there may be one error associated with the estimated length, another error associated with the estimated width, and still another error associated with the estimated height. The difference in errors may result from how each are estimated. For example, a height dimension may be estimated using a height-estimation algorithm, while a width dimension may be estimate using a width-estimation algorithm. Further, each algorithm may use different portions of the 3D data for its estimate. In many cases, however, an estimate for a particular dimension (e.g., obtained by a particular dimensioning system using a particular measurement setup) has roughly the same associated error from measurement to measurement.


Certain predictor variables, such as those described previously, may correlate well with the error associated with a measurement of a dimension. Understanding this correlation can help to accurately predict (i.e., estimate) the error associated future measurements of the dimension. This understanding is expressed as a mathematical equation (i.e., error model) that relates one or more predictor variables to an estimated error. Thus an error model may be created and then used to remove (or reduce) the error associated with a dimensioning-system measurement. Further, since different dimensions may have distinct error models, a library of error models may be created and stored in memory for future use.


A flow diagram illustrating a method for creating an error model is shown in FIG. 4. A dimensioning system is setup to measure a calibration object 25. The calibration object has a feature (or features) with a known size (e.g., a box with a known length, width, and height). The dimensioning system then gathers repeated measurements of one of the calibration object's features (e.g., the height of the box) 30. It should be noted that no changes are made to the dimensioning system setup between measurements. Each estimate of the feature (e.g., each height measurement) is then compared to the known value of the feature's size 32 in order to create multiple samples of the error (e.g., multiple samples of the error associated with measuring height).


Predictor variables used to describe aspects (e.g., intrinsic properties, physical relationships, etc.) of the measurements are defined 33. The predictor variables are used to derive a mathematical equation (e.g., mathematical model) for the estimated error 34. The mathematical model includes predictor variables and predictor variable coefficients that are assigned to each predictor variable. The mathematical model may be a linear combination of predictor variables and predictor coefficients (e.g., see FIG. 6) or may be a nonlinear equation using predictor variables.


The mathematical model is then fit to the multiple samples of the error associated with the measurements of the feature 37. Here, various fitting algorithms, such as linear regression, may be used. In addition, the fitting may require multiple iterations and refinement.


The linear regression algorithm adjusts the predictor coefficients so that the error model best matches the samples of the observed error. Here, the value of each adjusted predictor coefficient corresponds to the significance of that predictor variable's impact on the error estimate. The fitting may result with some predictor coefficients adjusted to a high absolute value and some predictor coefficients adjusted to an approximately zero value.


The linear regression algorithm may also return information regarding the error model. For example, a standard error (SE) for each coefficient may be returned. The SE helps to determine the precision of the coefficients. In addition, a p-value for each coefficient may be returned. The p-value helps to determine if the results are statistically significant.


After fitting, the error model may be refined 38 using various methods. One method includes analyzing the predictor coefficients and the information returned by the fitting algorithm. For example, insignificant predictor coefficients/variables may be removed from the error model. Another method for refinement includes comparing the estimated error (obtained using the mathematical model) to the measured errors (obtained in the multiple measurements). The result of this comparison includes a set of residual errors (i.e., residuals). A histogram of the residuals may then be created and analyzed. For example, the normality of the histogram (i.e., the correlation to a normal distribution) may determine if the error model is acceptable for use.


The final result of the one or more iterations of fitting/refining 38 is an error model 39. The error model 39 may be stored in a computer readable medium and retrieved later by a processor for computing the error associated with future measurements of the feature (e.g., height).


A flow diagram illustrating a method for using an error model to reduce the errors associated with a dimensioning measurement is shown in FIG. 5. The method begins with setting up the dimensioning system measurement 40. This setup includes positioning an object 41 in an environment (e.g., on a ground plane) 42 and then arranging the dimensioning system 26 and/or object so that the object is within the dimensioning system's field of view. The object is then sensed by the dimensioning system to obtain 3D data describing the object (and the environment) 45. A particular dimension is then selected for estimation (i.e., measurement) 46.


Here the method splits into two branches. In one branch, the 3D data is used to create an intermediate estimate of the size (e.g., length, width, height, etc.) of the selected dimension 47. In the other branch, an error model for the selected dimension is retrieved from a library of error models 48. The values for the predictor variables that are used in the retrieved error model are obtained (e.g., from the 3D data and/or from intrinsic/extrinsic information regarding the measurement) 49. Then, using the error model and the values for the predictor variables, an estimate of the error associated with the measurement is computed 50.


The error associated with the intermediate estimate of the size of the selected dimension is then reduced or removed by subtracting the error estimate from the intermediate estimate 51. What results is a final estimate of the selected dimension 52.


It should be noted that the 3D data gathered 45 allows for the measurement (i.e., estimation) of a plurality of dimensions, and while the method illustrated in FIG. 5 shows the process for obtain a final estimate of one of these dimensions, this method may be iterated in order to measure the other dimensions of the object.


As mentioned previously, the library of error models may store error models for each dimension. To expand the usability of this method, the library may also store collections (i.e., classes) of error models to suit various operating conditions. For example, a class of error models may be created to accommodate a particular operating environment and/or a feature set of an object (e.g., boxes, cylinders, etc.). This approach may improve the estimation of errors and allow for more flexibility.



FIG. 6 graphically depicts the retrieval of an error model 62 from a library of error models 61. The retrieval process begins with the selection of a particular class of error models 60. Then, based on the dimension selected for measurement, a particular error model 62 may be selected from the class of error models 60.



FIG. 6 also illustrates an exemplary error model. In this example, the error estimate for a particular dimension is equal to a linear combination of predictor variables and predictor coefficients. The predictor coefficients are derived during the model creation process (e.g., see FIG. 4) and are stored as part of the model. The predictor variable values are obtained during the measurement (e.g., see FIG. 5). The values for the predictor variables are not stored with the model and typically change from measurement to measurement.


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A method for creating an error model for a feature measured by a dimensioning system, the method comprising: providing a dimensioning system and a calibration object, the calibration object having a feature with a known size;gathering, using the dimensioning system, measurements of the feature;
  • 2. The method according to claim 1, further comprising storing the error model in memory for future use.
  • 3. The method according to claim 1, wherein the mathematical model is a linear combination of predictor variables and predictor coefficients.
  • 4. The method according to claim 1, wherein the aspects of the measurements comprise intrinsic properties of the dimensioning system, the object, and/or the object's environment.
  • 5. The method according to claim 1, wherein the aspects of the measurements comprise (i) a physical relationship between the dimensioning system and the object, (ii) physical relationship between the dimensioning system and the object's environment, and/or (iii) a physical relationship between the object and the object's environment.
  • 6. The method according to claim 1, wherein refining the mathematical model comprises removing insignificant predictor variables and their corresponding predictor coefficients.
  • 7. The method according to claim 1, wherein the fitting the mathematical model comprises a linear regression.
  • 8. The method according to claim 7, wherein refining the mathematical model comprises: obtaining residuals by comparing the estimated error to the errors;creating a histogram of the residuals; andrejecting or accepting the mathematical model based on the normality of the histogram.
  • 9. The method according to claim 1, wherein the feature is the object's length, width, or height.
  • 10. The method according to claim 1, wherein the mathematical model is a nonlinear equation using predictor variables.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of and claims the benefit of U.S. patent application Ser. No. 14/873,613, filed Oct. 2, 2015, for Methods for Improving the Accuracy of Dimensioning-System Measurements, which claims the benefit of U.S. Patent Application Ser. No. 62/062,175 for System and Methods for Dimensioning, (filed Oct. 10, 2014), each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (1273)
Number Name Date Kind
3971065 Bayer Jul 1976 A
4026031 Siddall et al. May 1977 A
4279328 Ahlbom Jul 1981 A
4398811 Nishioka et al. Aug 1983 A
4495559 Gelatt et al. Jan 1985 A
4634278 Ross et al. Jan 1987 A
4730190 Win et al. Mar 1988 A
4803639 Steele et al. Feb 1989 A
4914460 Caimi et al. Apr 1990 A
4974919 Muraki et al. Dec 1990 A
5111325 Dejager May 1992 A
5175601 Fitts Dec 1992 A
5184733 Arnarson et al. Feb 1993 A
5198648 Hibbard Mar 1993 A
5220536 Stringer et al. Jun 1993 A
5243619 Albers et al. Sep 1993 A
5331118 Jensen Jul 1994 A
5359185 Hanson Oct 1994 A
5384901 Glassner et al. Jan 1995 A
5477622 Skalnik Dec 1995 A
5548707 Lonegro et al. Aug 1996 A
5555090 Schmutz Sep 1996 A
5561526 Huber et al. Oct 1996 A
5590060 Granville et al. Dec 1996 A
5592333 Lewis Jan 1997 A
5606534 Stringer et al. Feb 1997 A
5619245 Kessler et al. Apr 1997 A
5655095 Lonegro et al. Aug 1997 A
5661561 Wurz et al. Aug 1997 A
5699161 Woodworth Dec 1997 A
5729750 Ishida Mar 1998 A
5730252 Herbinet Mar 1998 A
5732147 Tao Mar 1998 A
5734476 Dlugos Mar 1998 A
5737074 Haga et al. Apr 1998 A
5748199 Palm May 1998 A
5767962 Suzuki et al. Jun 1998 A
5802092 Endriz Sep 1998 A
5808657 Kurtz et al. Sep 1998 A
5831737 Stringer et al. Nov 1998 A
5850370 Stringer et al. Dec 1998 A
5850490 Johnson Dec 1998 A
5869827 Rando Feb 1999 A
5870220 Migdal et al. Feb 1999 A
5900611 Hecht May 1999 A
5923428 Woodworth Jul 1999 A
5929856 Lonegro et al. Jul 1999 A
5938710 Lanza et al. Aug 1999 A
5959568 Woolley Sep 1999 A
5960098 Tao Sep 1999 A
5969823 Wurz et al. Oct 1999 A
5978512 Kim Nov 1999 A
5979760 Freyman et al. Nov 1999 A
5988862 Kacyra et al. Nov 1999 A
5991041 Woodworth Nov 1999 A
6009189 Schaack Dec 1999 A
6025847 Marks Feb 2000 A
6035067 Ponticos Mar 2000 A
6049386 Stringer et al. Apr 2000 A
6053409 Brobst et al. Apr 2000 A
6064759 Buckley et al. May 2000 A
6067110 Nonaka et al. May 2000 A
6069696 McQueen et al. May 2000 A
6115114 Berg et al. Sep 2000 A
6137577 Woodworth Oct 2000 A
6176837 Foxlin Jan 2001 B1
6177999 Wurz et al. Jan 2001 B1
6189223 Haug Feb 2001 B1
6232597 Kley May 2001 B1
6236403 Chaki et al. May 2001 B1
6246468 Dimsdale Jun 2001 B1
6333749 Reinhardt et al. Dec 2001 B1
6336587 He et al. Jan 2002 B1
6369401 Lee Apr 2002 B1
6373579 Ober et al. Apr 2002 B1
6429803 Kumar Aug 2002 B1
6457642 Good et al. Oct 2002 B1
6507406 Yagi et al. Jan 2003 B1
6517004 Good et al. Feb 2003 B2
6519550 D'Hooge et al. Feb 2003 B1
6535776 Tobin et al. Mar 2003 B1
6661521 Stern Dec 2003 B1
6674904 McQueen Jan 2004 B1
6705526 Zhu et al. Mar 2004 B1
6773142 Rekow Aug 2004 B2
6781621 Gobush et al. Aug 2004 B1
6804269 Lizotte et al. Oct 2004 B2
6824058 Patel et al. Nov 2004 B2
6832725 Gardiner et al. Dec 2004 B2
6858857 Pease et al. Feb 2005 B2
6912293 Korobkin Jun 2005 B1
6922632 Foxlin Jul 2005 B2
6971580 Zhu et al. Dec 2005 B2
6995762 Pavlidis et al. Feb 2006 B1
7057632 Yamawaki et al. Jun 2006 B2
7085409 Sawhney et al. Aug 2006 B2
7086162 Tyroler Aug 2006 B2
7104453 Zhu et al. Sep 2006 B1
7128266 Zhu et al. Oct 2006 B2
7137556 Bonner et al. Nov 2006 B1
7159783 Walczyk et al. Jan 2007 B2
7161688 Bonner et al. Jan 2007 B1
7205529 Andersen et al. Apr 2007 B2
7214954 Schopp May 2007 B2
7233682 Levine Jun 2007 B2
7277187 Smith et al. Oct 2007 B2
7307653 Dutta Dec 2007 B2
7310431 Gokturk et al. Dec 2007 B2
7313264 Crampton Dec 2007 B2
7353137 Vock et al. Apr 2008 B2
7413127 Ehrhart et al. Aug 2008 B2
7509529 Colucci et al. Mar 2009 B2
7527205 Zhu et al. May 2009 B2
7586049 Wurz Sep 2009 B2
7602404 Reinhardt et al. Oct 2009 B1
7614563 Nunnink et al. Nov 2009 B1
7639722 Paxton et al. Dec 2009 B1
7726206 Terrafranca et al. Jun 2010 B2
7726575 Wang et al. Jun 2010 B2
7780084 Zhang et al. Aug 2010 B2
7788883 Buckley et al. Sep 2010 B2
7912320 Minor Mar 2011 B1
7974025 Topliss Jul 2011 B2
8009358 Zalevsky et al. Aug 2011 B2
8027096 Feng et al. Sep 2011 B2
8028501 Buckley et al. Oct 2011 B2
8050461 Shpunt et al. Nov 2011 B2
8055061 Katano Nov 2011 B2
8061610 Nunnink Nov 2011 B2
8072581 Breiholz Dec 2011 B1
8102395 Kondo et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8149224 Kuo et al. Apr 2012 B1
8194097 Xiao et al. Jun 2012 B2
8201737 Palacios et al. Jun 2012 B1
8212158 Wiest Jul 2012 B2
8212889 Chanas et al. Jul 2012 B2
8224133 Popovich et al. Jul 2012 B2
8228510 Pangrazio et al. Jul 2012 B2
8230367 Bell et al. Jul 2012 B2
8294969 Plesko Oct 2012 B2
8301027 Shaw et al. Oct 2012 B2
8305458 Hara Nov 2012 B2
8310656 Zalewski Nov 2012 B2
8313380 Zalewski et al. Nov 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8320621 McEldowney Nov 2012 B2
8322622 Liu Dec 2012 B2
8339462 Stec et al. Dec 2012 B2
8350959 Topliss et al. Jan 2013 B2
8351670 Ijiri et al. Jan 2013 B2
8366005 Kotlarsky et al. Feb 2013 B2
8368762 Chen et al. Feb 2013 B1
8371507 Haggerty et al. Feb 2013 B2
8374498 Pastore Feb 2013 B2
8376233 Horn et al. Feb 2013 B2
8381976 Mohideen et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Van et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8437539 Komatsu et al. May 2013 B2
8441749 Brown et al. May 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8463079 Ackley et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein, Jr. Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8570343 Halstead Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8576390 Nunnink Nov 2013 B1
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8594425 Gurman et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre, Jr. Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz, Sr. Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8792688 Unsworth Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van et al. Aug 2014 B2
8810779 Hilde Aug 2014 B1
8820630 Qu et al. Sep 2014 B2
8822806 Cockerell et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue et al. Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein, Jr. Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8897596 Passmore et al. Nov 2014 B1
8903172 Smith Dec 2014 B2
8908277 Pesach et al. Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915441 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8928896 Kennington et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 El et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8993974 Goodwin Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9014441 Truyen et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber et al. Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9061527 Tobin et al. Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9066087 Shpunt Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9076459 Braho et al. Jul 2015 B2
9079423 Bouverie et al. Jul 2015 B2
9080856 Laffargue Jul 2015 B2
9082023 Feng et al. Jul 2015 B2
9082195 Holeva et al. Jul 2015 B2
9084032 Rautiola et al. Jul 2015 B2
9087250 Coyle Jul 2015 B2
9092681 Havens et al. Jul 2015 B2
9092682 Wilz et al. Jul 2015 B2
9092683 Koziol et al. Jul 2015 B2
9093141 Liu Jul 2015 B2
9098763 Lu et al. Aug 2015 B2
9104929 Todeschini Aug 2015 B2
9104934 Li et al. Aug 2015 B2
9107484 Chaney Aug 2015 B2
9111159 Liu et al. Aug 2015 B2
9111166 Cunningham, IV Aug 2015 B2
9135483 Liu et al. Sep 2015 B2
9137009 Gardiner Sep 2015 B1
9141839 Xian et al. Sep 2015 B2
9142035 Rotman et al. Sep 2015 B1
9147096 Wang Sep 2015 B2
9148474 Skvoretz Sep 2015 B2
9158000 Sauerwein, Jr. Oct 2015 B2
9158340 Reed et al. Oct 2015 B2
9158953 Gillet et al. Oct 2015 B2
9159059 Daddabbo et al. Oct 2015 B2
9165174 Huck Oct 2015 B2
9171278 Kong et al. Oct 2015 B1
9171539 Funyak et al. Oct 2015 B2
9171543 Emerick et al. Oct 2015 B2
9183425 Wang Nov 2015 B2
9189669 Zhu et al. Nov 2015 B2
9195844 Todeschini et al. Nov 2015 B2
9202458 Braho et al. Dec 2015 B2
9208366 Liu Dec 2015 B2
9208367 Smith Dec 2015 B2
9219836 Bouverie et al. Dec 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224024 Bremer et al. Dec 2015 B2
9224027 Van et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9233470 Bradski et al. Jan 2016 B1
9235553 Fitch et al. Jan 2016 B2
9235899 Kirmani et al. Jan 2016 B1
9239950 Fletcher Jan 2016 B2
9245492 Ackley et al. Jan 2016 B2
9248640 Heng Feb 2016 B2
9250652 London et al. Feb 2016 B2
9250712 Todeschini Feb 2016 B1
9251411 Todeschini Feb 2016 B2
9258033 Showering Feb 2016 B2
9261398 Amundsen et al. Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9262660 Lu et al. Feb 2016 B2
9262662 Chen et al. Feb 2016 B2
9262664 Soule et al. Feb 2016 B2
9269036 Bremer Feb 2016 B2
9270782 Hala et al. Feb 2016 B2
9273846 Rossi et al. Mar 2016 B1
9274806 Barten Mar 2016 B2
9274812 Doren et al. Mar 2016 B2
9275388 Havens et al. Mar 2016 B2
9277668 Feng et al. Mar 2016 B2
9280693 Feng et al. Mar 2016 B2
9282501 Wang et al. Mar 2016 B2
9286496 Smith Mar 2016 B2
9292969 Laffargue et al. Mar 2016 B2
9297900 Jiang Mar 2016 B2
9298667 Caballero Mar 2016 B2
9298964 Li et al. Mar 2016 B2
9299013 Curlander et al. Mar 2016 B1
9301427 Feng et al. Mar 2016 B2
9304376 Anderson Apr 2016 B2
9310609 Rueblinger et al. Apr 2016 B2
9313377 Todeschini et al. Apr 2016 B2
9317037 Byford et al. Apr 2016 B2
9319548 Showering et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342723 Liu et al. May 2016 B2
9342724 McCloskey et al. May 2016 B2
9342827 Smith May 2016 B2
9355294 Smith et al. May 2016 B2
9360304 Xue et al. Jun 2016 B2
9361882 Ressler et al. Jun 2016 B2
9365381 Colonel et al. Jun 2016 B2
9366861 Johnson Jun 2016 B1
9367722 Xian et al. Jun 2016 B2
9373018 Colavito et al. Jun 2016 B2
9375945 Bowles Jun 2016 B1
9378403 Wang et al. Jun 2016 B2
D760719 Zhou et al. Jul 2016 S
9383848 Daghigh Jul 2016 B2
9384374 Bianconi Jul 2016 B2
9390596 Todeschini Jul 2016 B1
9396375 Qu et al. Jul 2016 B2
9398008 Todeschini et al. Jul 2016 B2
9399557 Mishra et al. Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
D762647 Fitch et al. Aug 2016 S
9405011 Showering Aug 2016 B2
9407840 Wang Aug 2016 B2
9411386 Sauerwein, Jr. Aug 2016 B2
9412242 Van et al. Aug 2016 B2
9418252 Nahill et al. Aug 2016 B2
9418269 Havens et al. Aug 2016 B2
9418270 Van et al. Aug 2016 B2
9423318 Liu et al. Aug 2016 B2
9424749 Reed et al. Aug 2016 B1
D766244 Zhou et al. Sep 2016 S
9443123 Hejl Sep 2016 B2
9443222 Singel et al. Sep 2016 B2
9448610 Davis et al. Sep 2016 B2
9454689 McCloskey et al. Sep 2016 B2
9464885 Lloyd et al. Oct 2016 B2
9465967 Xian et al. Oct 2016 B2
9470511 Maynard et al. Oct 2016 B2
9478113 Xie et al. Oct 2016 B2
9478983 Kather et al. Oct 2016 B2
D771631 Fitch et al. Nov 2016 S
9481186 Bouverie et al. Nov 2016 B2
9486921 Straszheim et al. Nov 2016 B1
9488986 Solanki Nov 2016 B1
9489782 Payne et al. Nov 2016 B2
9490540 Davies et al. Nov 2016 B1
9491729 Rautiola et al. Nov 2016 B2
9497092 Gomez et al. Nov 2016 B2
9507974 Todeschini Nov 2016 B1
9519814 Cudzilo Dec 2016 B2
9521331 Bessettes et al. Dec 2016 B2
9530038 Xian et al. Dec 2016 B2
D777166 Bidwell et al. Jan 2017 S
9557166 Thuries et al. Jan 2017 B2
9558386 Yeakley Jan 2017 B2
9564035 Ackley et al. Feb 2017 B2
9572901 Todeschini Feb 2017 B2
9582696 Barber et al. Feb 2017 B2
9595038 Cavalcanti et al. Mar 2017 B1
9606581 Howe et al. Mar 2017 B1
D783601 Schulte et al. Apr 2017 S
9616749 Chamberlin Apr 2017 B2
9618993 Murawski et al. Apr 2017 B2
D785617 Bidwell et al. May 2017 S
D785636 Oberpriller et al. May 2017 S
9646189 Lu et al. May 2017 B2
9646191 Unemyr et al. May 2017 B2
9652648 Ackley et al. May 2017 B2
9652653 Todeschini et al. May 2017 B2
9656487 Ho et al. May 2017 B2
9659183 Zhu et al. May 2017 B2
9659198 Giordano et al. May 2017 B2
9665757 Feng et al. May 2017 B2
D790505 Vargo et al. Jun 2017 S
D790546 Zhou et al. Jun 2017 S
D790553 Fitch et al. Jun 2017 S
9680282 Hanenburg Jun 2017 B2
9697401 Feng et al. Jul 2017 B2
9701140 Alaganchetty et al. Jul 2017 B1
9709387 Fujita et al. Jul 2017 B2
9715614 Todeschini et al. Jul 2017 B2
9734493 Gomez et al. Aug 2017 B2
9736459 Mor et al. Aug 2017 B2
9741136 Holz Aug 2017 B2
9752864 Laffargue et al. Sep 2017 B2
9762793 Ackley et al. Sep 2017 B2
9767581 Todeschini Sep 2017 B2
9794392 Hejl Oct 2017 B2
9823059 Li et al. Nov 2017 B2
9828223 Svensson et al. Nov 2017 B2
9852102 Kohtz et al. Dec 2017 B2
9861182 Oberpriller et al. Jan 2018 B2
9892876 Bandringa Feb 2018 B2
9897434 Ackley et al. Feb 2018 B2
9924006 Schoon et al. Mar 2018 B2
9930050 Yeakley et al. Mar 2018 B2
9984685 Braho et al. May 2018 B2
10019334 Caballero et al. Jul 2018 B2
10021043 Sevier Jul 2018 B2
10060729 Laffargue et al. Aug 2018 B2
10121466 Pecorari Nov 2018 B2
10139495 Payne Nov 2018 B2
10269342 Braho et al. Apr 2019 B2
10327158 Wang et al. Jun 2019 B2
10410029 Powilleit Sep 2019 B2
20010027995 Patel et al. Oct 2001 A1
20010032879 He et al. Oct 2001 A1
20020036765 McCaffrey et al. Mar 2002 A1
20020054289 Thibault et al. May 2002 A1
20020067855 Chiu et al. Jun 2002 A1
20020105639 Roelke Aug 2002 A1
20020109835 Goetz Aug 2002 A1
20020113946 Kitaguchi et al. Aug 2002 A1
20020118874 Chung et al. Aug 2002 A1
20020158873 Williamson Oct 2002 A1
20020167677 Okada et al. Nov 2002 A1
20020179708 Zhu et al. Dec 2002 A1
20020186897 Kim et al. Dec 2002 A1
20020196534 Lizotte et al. Dec 2002 A1
20030038179 Tsikos et al. Feb 2003 A1
20030053513 Vatan et al. Mar 2003 A1
20030063086 Baumberg Apr 2003 A1
20030078755 Leutz et al. Apr 2003 A1
20030091227 Chang et al. May 2003 A1
20030156756 Gokturk et al. Aug 2003 A1
20030163287 Vock et al. Aug 2003 A1
20030197138 Pease et al. Oct 2003 A1
20030225712 Cooper et al. Dec 2003 A1
20030235331 Kawaike et al. Dec 2003 A1
20040008259 Gokturk et al. Jan 2004 A1
20040019274 Galloway et al. Jan 2004 A1
20040024754 Mane et al. Feb 2004 A1
20040066329 Zeitfuss et al. Apr 2004 A1
20040073359 Ichijo et al. Apr 2004 A1
20040083025 Yamanouchi et al. Apr 2004 A1
20040089482 Ramsden et al. May 2004 A1
20040098146 Katae et al. May 2004 A1
20040105580 Hager et al. Jun 2004 A1
20040118928 Patel et al. Jun 2004 A1
20040122779 Stickler et al. Jun 2004 A1
20040132297 Baba et al. Jul 2004 A1
20040155975 Hart et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040184041 Schopp Sep 2004 A1
20040211836 Patel et al. Oct 2004 A1
20040214623 Takahashi et al. Oct 2004 A1
20040233461 Armstrong et al. Nov 2004 A1
20040258353 Gluckstad et al. Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050117215 Lange Jun 2005 A1
20050128193 Lueder Jun 2005 A1
20050128196 Popescu et al. Jun 2005 A1
20050168488 Montague Aug 2005 A1
20050187887 Nicolas et al. Aug 2005 A1
20050211782 Martin et al. Sep 2005 A1
20050240317 Kienzle-Lietl Oct 2005 A1
20050257748 Kriesel et al. Nov 2005 A1
20050264867 Cho et al. Dec 2005 A1
20060036556 Knispel Feb 2006 A1
20060047704 Gopalakrishnan Mar 2006 A1
20060078226 Zhou Apr 2006 A1
20060108266 Bowers et al. May 2006 A1
20060109105 Varner et al. May 2006 A1
20060112023 Horhann et al. May 2006 A1
20060151604 Zhu et al. Jul 2006 A1
20060159307 Anderson et al. Jul 2006 A1
20060159344 Shao et al. Jul 2006 A1
20060213999 Wang et al. Sep 2006 A1
20060230640 Chen Oct 2006 A1
20060232681 Okada Oct 2006 A1
20060255150 Longacre, Jr. Nov 2006 A1
20060269165 Viswanathan Nov 2006 A1
20060276709 Khamene et al. Dec 2006 A1
20060291719 Ikeda et al. Dec 2006 A1
20070003154 Sun et al. Jan 2007 A1
20070025612 Iwasaki et al. Feb 2007 A1
20070031064 Zhao et al. Feb 2007 A1
20070063048 Havens et al. Mar 2007 A1
20070116357 Dewaele May 2007 A1
20070127022 Cohen et al. Jun 2007 A1
20070143082 Degnan Jun 2007 A1
20070153293 Gruhlke et al. Jul 2007 A1
20070165013 Goulanian et al. Jul 2007 A1
20070171220 Kriveshko Jul 2007 A1
20070177011 Lewin et al. Aug 2007 A1
20070181685 Zhu et al. Aug 2007 A1
20070237356 Dwinell et al. Oct 2007 A1
20070291031 Konev et al. Dec 2007 A1
20070299338 Stevick et al. Dec 2007 A1
20080013793 Hillis et al. Jan 2008 A1
20080035390 Wurz Feb 2008 A1
20080047760 Georgitsis Feb 2008 A1
20080050042 Zhang et al. Feb 2008 A1
20080054062 Gunning et al. Mar 2008 A1
20080056536 Hildreth et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080065509 Williams Mar 2008 A1
20080077265 Boyden et al. Mar 2008 A1
20080079955 Storm Apr 2008 A1
20080156619 Patel et al. Jul 2008 A1
20080164074 Wurz Jul 2008 A1
20080185432 Caballero et al. Aug 2008 A1
20080204476 Montague Aug 2008 A1
20080212168 Olmstead et al. Sep 2008 A1
20080247635 Davis et al. Oct 2008 A1
20080273191 Kim et al. Nov 2008 A1
20080273210 Hilde Nov 2008 A1
20080278790 Boesser et al. Nov 2008 A1
20090038182 Lans et al. Feb 2009 A1
20090039167 Wang et al. Feb 2009 A1
20090046296 Kilpatrick et al. Feb 2009 A1
20090059004 Bochicchio Mar 2009 A1
20090081008 Somin et al. Mar 2009 A1
20090095047 Patel et al. Apr 2009 A1
20090114818 Casares et al. May 2009 A1
20090134221 Zhu et al. May 2009 A1
20090161090 Campbell et al. Jun 2009 A1
20090189858 Lev et al. Jul 2009 A1
20090195790 Zhu et al. Aug 2009 A1
20090225333 Bendall et al. Sep 2009 A1
20090237411 Gossweiler et al. Sep 2009 A1
20090268023 Hsieh Oct 2009 A1
20090272724 Gubler et al. Nov 2009 A1
20090273770 Bauhahn et al. Nov 2009 A1
20090313948 Buckley et al. Dec 2009 A1
20090318815 Barnes et al. Dec 2009 A1
20090323084 Dunn et al. Dec 2009 A1
20090323121 Valkenburg et al. Dec 2009 A1
20100035637 Varanasi et al. Feb 2010 A1
20100060604 Zwart et al. Mar 2010 A1
20100091104 Sprigle et al. Apr 2010 A1
20100113153 Yen et al. May 2010 A1
20100118200 Gelman et al. May 2010 A1
20100128109 Banks May 2010 A1
20100161170 Siris Jun 2010 A1
20100171740 Andersen et al. Jul 2010 A1
20100172567 Prokoski Jul 2010 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100194709 Tamaki et al. Aug 2010 A1
20100202702 Benos et al. Aug 2010 A1
20100208039 Stettner Aug 2010 A1
20100211355 Horst et al. Aug 2010 A1
20100217678 Goncalves Aug 2010 A1
20100220849 Colbert et al. Sep 2010 A1
20100220894 Ackley et al. Sep 2010 A1
20100223276 Al-Shameri et al. Sep 2010 A1
20100245850 Lee et al. Sep 2010 A1
20100254611 Arnz Oct 2010 A1
20100265880 Rautiola et al. Oct 2010 A1
20100274728 Kugelman Oct 2010 A1
20100303336 Abraham et al. Dec 2010 A1
20100315413 Izadi et al. Dec 2010 A1
20100321482 Cleveland Dec 2010 A1
20110019155 Daniel et al. Jan 2011 A1
20110040192 Brenner et al. Feb 2011 A1
20110040407 Lim et al. Feb 2011 A1
20110043609 Choi et al. Feb 2011 A1
20110075936 Deaver Mar 2011 A1
20110081044 Peeper et al. Apr 2011 A1
20110099474 Grossman et al. Apr 2011 A1
20110169999 Grunow et al. Jul 2011 A1
20110180695 Li et al. Jul 2011 A1
20110188054 Petronius et al. Aug 2011 A1
20110188741 Sones et al. Aug 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20110234389 Mellin Sep 2011 A1
20110235854 Berger et al. Sep 2011 A1
20110243432 Hirsch, Jr. Oct 2011 A1
20110249864 Venkatesan et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110260965 Kim et al. Oct 2011 A1
20110279916 Brown et al. Nov 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110286628 Goncalves et al. Nov 2011 A1
20110288818 Thierman et al. Nov 2011 A1
20110297590 Ackley et al. Dec 2011 A1
20110301994 Tieman Dec 2011 A1
20110303748 Lemma et al. Dec 2011 A1
20110310227 Konertz et al. Dec 2011 A1
20110310256 Shishido Dec 2011 A1
20120014572 Wong et al. Jan 2012 A1
20120024952 Chen Feb 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057345 Kuchibhotla Mar 2012 A1
20120067955 Rowe Mar 2012 A1
20120074227 Ferren et al. Mar 2012 A1
20120081714 Pangrazio et al. Apr 2012 A1
20120082383 Kruglick Apr 2012 A1
20120111946 Golant May 2012 A1
20120113223 Hilliges et al. May 2012 A1
20120113250 Farlotti et al. May 2012 A1
20120126000 Kunzig et al. May 2012 A1
20120140300 Freeman Jun 2012 A1
20120168509 Nunnink et al. Jul 2012 A1
20120168511 Kotlarsky et al. Jul 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120179665 Baarman et al. Jul 2012 A1
20120185094 Rosenstein et al. Jul 2012 A1
20120190386 Anderson Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120218436 Rhoads et al. Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20120224026 Bayer et al. Sep 2012 A1
20120224060 Gurevich et al. Sep 2012 A1
20120228382 Havens et al. Sep 2012 A1
20120236212 Itoh et al. Sep 2012 A1
20120236288 Stanley Sep 2012 A1
20120242852 Hayward et al. Sep 2012 A1
20120248188 Kearney Oct 2012 A1
20120256901 Bendall Oct 2012 A1
20120261474 Kawashime et al. Oct 2012 A1
20120262558 Boger et al. Oct 2012 A1
20120280908 Rhoads et al. Nov 2012 A1
20120282905 Owen Nov 2012 A1
20120282911 Davis et al. Nov 2012 A1
20120284012 Rodriguez et al. Nov 2012 A1
20120284122 Brandis Nov 2012 A1
20120284339 Rodriguez Nov 2012 A1
20120284593 Rodriguez Nov 2012 A1
20120293610 Doepke et al. Nov 2012 A1
20120293625 Schneider et al. Nov 2012 A1
20120294478 Publicover et al. Nov 2012 A1
20120294549 Doepke Nov 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120300991 Free Nov 2012 A1
20120313848 Galor et al. Dec 2012 A1
20120314030 Datta et al. Dec 2012 A1
20120314058 Bendall et al. Dec 2012 A1
20120314258 Moriya Dec 2012 A1
20120316820 Nakazato et al. Dec 2012 A1
20130019278 Sun et al. Jan 2013 A1
20130038881 Pesach et al. Feb 2013 A1
20130038941 Pesach et al. Feb 2013 A1
20130043312 Van Horn Feb 2013 A1
20130050426 Sarmast et al. Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130076857 Kurashige et al. Mar 2013 A1
20130082104 Kearney et al. Apr 2013 A1
20130093895 Palmer et al. Apr 2013 A1
20130094069 Lee et al. Apr 2013 A1
20130101158 Lloyd et al. Apr 2013 A1
20130156267 Muraoka et al. Jun 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130200150 Reynolds et al. Aug 2013 A1
20130201288 Billerbeck et al. Aug 2013 A1
20130208164 Cazier et al. Aug 2013 A1
20130211790 Loveland et al. Aug 2013 A1
20130222592 Gieseke Aug 2013 A1
20130223673 Davis et al. Aug 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130291998 Konnerth Nov 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedrao Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308013 Li et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130317642 Asaria et al. Nov 2013 A1
20130326425 Forstall et al. Dec 2013 A1
20130329012 Bartos et al. Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130332524 Fiala et al. Dec 2013 A1
20130342342 Sabre et al. Dec 2013 A1
20130342343 Harring et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001258 Chan et al. Jan 2014 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140019005 Lee et al. Jan 2014 A1
20140021259 Moed et al. Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140031665 Pinto et al. Jan 2014 A1
20140034731 Gao et al. Feb 2014 A1
20140034734 Sauerwein, Jr. Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039674 Motoyama et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140058612 Wong et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140062709 Hyer et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140064624 Kim et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067104 Osterhout Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071430 Hansen et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140079297 Tadayon et al. Mar 2014 A1
20140091147 Evans et al. Apr 2014 A1
20140097238 Ghazizadeh Apr 2014 A1
20140097249 Gomez et al. Apr 2014 A1
20140097252 He et al. Apr 2014 A1
20140098091 Hori Apr 2014 A1
20140098243 Ghazizadeh Apr 2014 A1
20140098244 Ghazizadeh Apr 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140104664 Lee et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein, Jr. Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125577 Hoang et al. May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140135984 Hirata May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140139654 Takahashi May 2014 A1
20140140585 Wang May 2014 A1
20140142398 Patil et al. May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140152975 Ko Jun 2014 A1
20140157861 Jonas et al. Jun 2014 A1
20140158468 Adami Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168380 Heidemann et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140177931 Kocherscheidt et al. Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140192187 Atwell et al. Jul 2014 A1
20140192551 Masaki Jul 2014 A1
20140197238 Liu et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140201126 Zadeh et al. Jul 2014 A1
20140203087 Smith et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140205150 Ogawa Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140225918 Mittal et al. Aug 2014 A1
20140225985 Klusza et al. Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140240454 Hirata et al. Aug 2014 A1
20140247279 Nicholas et al. Sep 2014 A1
20140247280 Nicholas et al. Sep 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140267609 Laffargue Sep 2014 A1
20140268093 Tohme et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140270361 Amma et al. Sep 2014 A1
20140278387 Digregorio Sep 2014 A1
20140278391 Braho et al. Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140306833 Ricci Oct 2014 A1
20140307855 Withagen et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140313527 Askan Oct 2014 A1
20140319219 Liu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140320408 Zagorsek et al. Oct 2014 A1
20140320605 Johnson Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140333775 Naikal et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140347533 Toyoda Nov 2014 A1
20140350710 Gopalakrishnan et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20140379613 Nishitani et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009100 Haneda et al. Jan 2015 A1
20150009301 Ribnick et al. Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150016712 Rhoads et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150036876 Marrion et al. Feb 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150039878 Barten Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150042791 Metois et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150060544 Feng et al. Mar 2015 A1
20150062160 Sakamoto et al. Mar 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150062369 Gehring et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150070158 Hayasaka Mar 2015 A1
20150070489 Hudman et al. Mar 2015 A1
20150071819 Todeschini Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150116498 Vartiainen et al. Apr 2015 A1
20150117749 Smith et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150130928 Maynard et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150163474 You et al. Jun 2015 A1
20150169925 Chen et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150178523 Gelay et al. Jun 2015 A1
20150178534 Jovanovski et al. Jun 2015 A1
20150178535 Bremer et al. Jun 2015 A1
20150178536 Hennick et al. Jun 2015 A1
20150178537 El et al. Jun 2015 A1
20150178900 Kim et al. Jun 2015 A1
20150181093 Zhu et al. Jun 2015 A1
20150181109 Gillet et al. Jun 2015 A1
20150182844 Jang Jul 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150193645 Colavito et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150201181 Moore et al. Jul 2015 A1
20150204662 Kobayashi et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150213590 Brown et al. Jul 2015 A1
20150213647 Laffargue et al. Jul 2015 A1
20150219748 Hyatt et al. Aug 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150229838 Hakim et al. Aug 2015 A1
20150243030 Pfeiffer Aug 2015 A1
20150248578 Utsumi Sep 2015 A1
20150253469 Le et al. Sep 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150260830 Ghosh et al. Sep 2015 A1
20150269403 Lei et al. Sep 2015 A1
20150276379 Ni et al. Oct 2015 A1
20150301181 Herschbach et al. Oct 2015 A1
20150308816 Laffargue Oct 2015 A1
20150310243 Ackley et al. Oct 2015 A1
20150310389 Crimm et al. Oct 2015 A1
20150316368 Moench et al. Nov 2015 A1
20150325036 Lee Nov 2015 A1
20150327012 Bian et al. Nov 2015 A1
20150332075 Burch Nov 2015 A1
20150332463 Galera et al. Nov 2015 A1
20150355470 Herschbach Dec 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160048725 Holz et al. Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160062473 Bouchat et al. Mar 2016 A1
20160063429 Varley et al. Mar 2016 A1
20160065912 Peterson Mar 2016 A1
20160070982 Jachalsky et al. Mar 2016 A1
20160088287 Sadi et al. Mar 2016 A1
20160090283 Svensson et al. Mar 2016 A1
20160090284 Svensson et al. Mar 2016 A1
20160092805 Geisler et al. Mar 2016 A1
20160094016 Beach et al. Mar 2016 A1
20160101936 Chamberlin Apr 2016 A1
20160102975 McCloskey et al. Apr 2016 A1
20160104019 Todeschini et al. Apr 2016 A1
20160104274 Jovanovski et al. Apr 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue et al. Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160117627 Raj et al. Apr 2016 A1
20160117631 McCloskey et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160125873 Braho et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160138247 Conway et al. May 2016 A1
20160138248 Conway et al. May 2016 A1
20160138249 Conway et al. May 2016 A1
20160147408 Bevis et al. May 2016 A1
20160164261 Warren Jun 2016 A1
20160169665 Deschenes et al. Jun 2016 A1
20160171597 Todeschini Jun 2016 A1
20160171666 McCloskey Jun 2016 A1
20160171720 Todeschini Jun 2016 A1
20160171775 Todeschini et al. Jun 2016 A1
20160171777 Todeschini et al. Jun 2016 A1
20160174674 Oberpriller et al. Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160178685 Young et al. Jun 2016 A1
20160178707 Young et al. Jun 2016 A1
20160178915 Mor et al. Jun 2016 A1
20160179132 Harr Jun 2016 A1
20160179143 Bidwell et al. Jun 2016 A1
20160179368 Roeder Jun 2016 A1
20160179378 Kent et al. Jun 2016 A1
20160180130 Bremer Jun 2016 A1
20160180133 Oberpriller et al. Jun 2016 A1
20160180136 Meier et al. Jun 2016 A1
20160180594 Todeschini Jun 2016 A1
20160180663 McMahan et al. Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160180713 Bernhardt et al. Jun 2016 A1
20160185136 Ng et al. Jun 2016 A1
20160185291 Chamberlin Jun 2016 A1
20160186926 Oberpriller et al. Jun 2016 A1
20160187186 Coleman et al. Jun 2016 A1
20160187187 Coleman et al. Jun 2016 A1
20160187210 Coleman et al. Jun 2016 A1
20160188861 Todeschini Jun 2016 A1
20160188939 Sailors et al. Jun 2016 A1
20160188940 Lu et al. Jun 2016 A1
20160188941 Todeschini et al. Jun 2016 A1
20160188942 Good et al. Jun 2016 A1
20160188943 Franz Jun 2016 A1
20160188944 Wilz et al. Jun 2016 A1
20160189076 Mellott et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160189088 Pecorari et al. Jun 2016 A1
20160189092 George et al. Jun 2016 A1
20160189284 Mellott et al. Jun 2016 A1
20160189288 Todeschini et al. Jun 2016 A1
20160189366 Chamberlin et al. Jun 2016 A1
20160189443 Smith Jun 2016 A1
20160189447 Valenzuela Jun 2016 A1
20160189489 Au et al. Jun 2016 A1
20160191684 Dipiazza et al. Jun 2016 A1
20160191801 Sivan Jun 2016 A1
20160192051 Dipiazza et al. Jun 2016 A1
20160202478 Masson et al. Jul 2016 A1
20160202951 Pike et al. Jul 2016 A1
20160202958 Zabel et al. Jul 2016 A1
20160202959 Doubleday et al. Jul 2016 A1
20160203021 Pike et al. Jul 2016 A1
20160203429 Mellott et al. Jul 2016 A1
20160203641 Bostick et al. Jul 2016 A1
20160203797 Pike et al. Jul 2016 A1
20160203820 Zabel et al. Jul 2016 A1
20160204623 Haggerty et al. Jul 2016 A1
20160204636 Allen et al. Jul 2016 A1
20160204638 Miraglia et al. Jul 2016 A1
20160210780 Paulovich et al. Jul 2016 A1
20160223474 Tang et al. Aug 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Wilz et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20160316190 McCloskey et al. Oct 2016 A1
20160323310 Todeschini et al. Nov 2016 A1
20160325677 Fitch et al. Nov 2016 A1
20160327614 Young et al. Nov 2016 A1
20160327930 Charpentier et al. Nov 2016 A1
20160328762 Pape Nov 2016 A1
20160328854 Kimura Nov 2016 A1
20160330218 Hussey et al. Nov 2016 A1
20160343163 Venkatesha et al. Nov 2016 A1
20160343176 Ackley Nov 2016 A1
20160364914 Todeschini Dec 2016 A1
20160370220 Ackley et al. Dec 2016 A1
20160372282 Bandringa Dec 2016 A1
20160373847 Vargo et al. Dec 2016 A1
20160377414 Thuries et al. Dec 2016 A1
20160377417 Jovanovski et al. Dec 2016 A1
20170010141 Ackley Jan 2017 A1
20170010328 Mullen et al. Jan 2017 A1
20170010780 Waldron et al. Jan 2017 A1
20170016714 Laffargue et al. Jan 2017 A1
20170018094 Todeschini Jan 2017 A1
20170018294 Song Jan 2017 A1
20170046603 Lee et al. Feb 2017 A1
20170047864 Stang et al. Feb 2017 A1
20170053146 Liu et al. Feb 2017 A1
20170053147 Germaine et al. Feb 2017 A1
20170053647 Nichols et al. Feb 2017 A1
20170055606 Xu et al. Mar 2017 A1
20170060316 Larson Mar 2017 A1
20170061961 Nichols et al. Mar 2017 A1
20170064634 Van et al. Mar 2017 A1
20170083730 Feng et al. Mar 2017 A1
20170091502 Furlong et al. Mar 2017 A1
20170091706 Lloyd et al. Mar 2017 A1
20170091741 Todeschini Mar 2017 A1
20170091904 Ventress, Jr. Mar 2017 A1
20170092908 Chaney Mar 2017 A1
20170094238 Germaine et al. Mar 2017 A1
20170098947 Wolski Apr 2017 A1
20170100949 Celinder et al. Apr 2017 A1
20170103545 Holz Apr 2017 A1
20170108838 Todeschini et al. Apr 2017 A1
20170108895 Chamberlin et al. Apr 2017 A1
20170115490 Hsieh et al. Apr 2017 A1
20170115497 Chen et al. Apr 2017 A1
20170116462 Ogasawara Apr 2017 A1
20170118355 Wong et al. Apr 2017 A1
20170121158 Wong et al. May 2017 A1
20170123598 Phan et al. May 2017 A1
20170124369 Rueblinger et al. May 2017 A1
20170124396 Todeschini et al. May 2017 A1
20170124687 McCloskey et al. May 2017 A1
20170126873 McGary et al. May 2017 A1
20170126904 D'Armancourt et al. May 2017 A1
20170132806 Balachandreswaran May 2017 A1
20170139012 Smith May 2017 A1
20170139213 Schmidtlin May 2017 A1
20170140329 Bernhardt et al. May 2017 A1
20170140731 Smith May 2017 A1
20170147847 Berggren et al. May 2017 A1
20170148250 Angermayer et al. May 2017 A1
20170150124 Thuries May 2017 A1
20170169198 Nichols Jun 2017 A1
20170171035 Lu et al. Jun 2017 A1
20170171703 Maheswaranathan Jun 2017 A1
20170171803 Maheswaranathan Jun 2017 A1
20170180359 Wolski et al. Jun 2017 A1
20170180577 Nguon et al. Jun 2017 A1
20170181299 Shi et al. Jun 2017 A1
20170182942 Hardy et al. Jun 2017 A1
20170190192 Delario et al. Jul 2017 A1
20170193432 Bernhardt Jul 2017 A1
20170193461 Celinder et al. Jul 2017 A1
20170193727 Van et al. Jul 2017 A1
20170200108 Au et al. Jul 2017 A1
20170200275 McCloskey et al. Jul 2017 A1
20170200296 Jones et al. Jul 2017 A1
20170309108 Sadovsky et al. Oct 2017 A1
20170336870 Everett et al. Nov 2017 A1
20180018627 Ross et al. Jan 2018 A1
Foreign Referenced Citations (64)
Number Date Country
2004212587 Apr 2005 AU
201139117 Oct 2008 CN
3335760 Apr 1985 DE
10210813 Oct 2003 DE
102007037282 Mar 2008 DE
1111435 Jun 2001 EP
1443312 Aug 2004 EP
1112483 May 2006 EP
1232480 May 2006 EP
2013117 Jan 2009 EP
2216634 Aug 2010 EP
2286932 Feb 2011 EP
2372648 Oct 2011 EP
2381421 Oct 2011 EP
2533009 Dec 2012 EP
2562715 Feb 2013 EP
2722656 Apr 2014 EP
2779027 Sep 2014 EP
2833323 Feb 2015 EP
2843590 Mar 2015 EP
2845170 Mar 2015 EP
2966595 Jan 2016 EP
3006893 Apr 2016 EP
3007096 Apr 2016 EP
3012601 Apr 2016 EP
3270342 Jan 2018 EP
2503978 Jan 2014 GB
2525053 Oct 2015 GB
2531928 May 2016 GB
04-129902 Apr 1992 JP
2006-096457 Apr 2006 JP
2007-084162 Apr 2007 JP
2008-210276 Sep 2008 JP
2014-210646 Nov 2014 JP
2015-174705 Oct 2015 JP
10-2010-0020115 Feb 2010 KR
10-2011-0013200 Feb 2011 KR
10-2011-0117020 Oct 2011 KR
10-2012-0028109 Mar 2012 KR
9640452 Dec 1996 WO
0077726 Dec 2000 WO
0114836 Mar 2001 WO
2006095110 Sep 2006 WO
2007012554 Feb 2007 WO
2007015059 Feb 2007 WO
2007125554 Nov 2007 WO
2011017241 Feb 2011 WO
2012175731 Dec 2012 WO
2013021157 Feb 2013 WO
2013033442 Mar 2013 WO
2013163789 Nov 2013 WO
2013166368 Nov 2013 WO
2013173985 Nov 2013 WO
2013184340 Dec 2013 WO
2014019130 Feb 2014 WO
2014023697 Feb 2014 WO
2014102341 Jul 2014 WO
2014110495 Jul 2014 WO
2014149702 Sep 2014 WO
2014151746 Sep 2014 WO
2015006865 Jan 2015 WO
2016020038 Feb 2016 WO
2016061699 Apr 2016 WO
2016085682 Jun 2016 WO
Non-Patent Literature Citations (184)
Entry
European Search Report from related EP Application No. 16168216.6, dated Oct. 20, 2016, 8 pages.
European Search Report in related EP Application No. 15190315.0, dated Apr. 1, 2016, 7 pages.
European Search Report in related EP Application No. 17175357.7, dated Aug. 17, 2017, pp. 1-7.
European search report dated Mar. 3, 2016 for EP Application No. 15189214.
European search report dated Mar. 8, 2016 for EP Application No. 15188440.
Examination Report for related European Application No. 15188440.0 dated Feb. 6, 2018, 5 pages.
Examination Report in European Application No. 16152477.2 dated Jun. 18, 2019, pp. 1-6.
Examination Report in European Application No. 17175357.7 dated Jun. 26, 2019, pp. 1-5.
Examination Report in European Application No. 19171976.4 dated Jun. 19, 2019, pp. 1-8.
Examination Report in GB Application No. 1607394.2 dated Jul. 5, 2019, pp. 1-4.
Examination Report in related EP Application No. 13193181.8 dated Mar. 20, 2019, pp. 1-4.
Examination Report in related EP Application No. 13785171.3 dated Apr. 2, 2019, pp. 1-5.
Examination Report in related EP Application No. 15190315, dated Jan. 26, 2018, 6 pages.
Examination Report in related GB Application No. GB1517843.7, dated Jan. 19, 2018, 4 pages.
Examination Report in related UK Application No. GB1517842.9 dated Dec. 21, 2018, pp. 1-7.
Examination Report in related UK Application No. GB1517842.9 dated Mar. 8, 2019, pp. 1-4.
Examiner initiated interview summary (PTOL-413B) dated Apr. 13, 2018 for U.S. Appl. No. 14/870,488.
Examiner initiated interview summary (PTOL-413B) dated Mar. 11, 2019 for U.S. Appl. No. 16/140,953.
Examiner initiated interview summary (PTOL-413B) dated Nov. 15, 2016 for U.S. Appl. No. 14/872,176.
Extended European search report in related EP Application 16199707.7, dated Apr. 10, 2017, 15 pages.
Extended European Search Report in related EP Application No. 16175410.0, dated Dec. 13, 2016, 5 pages.
Extended European Search report in related EP Application No. 17189496.7 dated Dec. 5, 2017; 9 pages.
Extended European Search report in related EP Application No. 17190323.0 dated Jan. 19, 2018; 6 pages.
Final Office Action for U.S. Appl. No. 14/865,797, dated Apr. 18, 2019, 18 pages.
Final Office Action for U.S. Appl. No. 14/865,797, dated Apr. 19, 2017, 10 pages.
Final Office Action for U.S. Appl. No. 14/865,797, dated Apr. 3, 2018, 10 pages.
Final Office Action for U.S. Appl. No. 14/873,613, dated Dec. 5, 2018, 11 pages.
Final Office Action for U.S. Appl. No. 14/873,613, dated Mar. 27, 2018, 11 pages.
First Office Action in related CN Application No. 201510860188.1 dated Jan. 18, 2019, pp. 1-14.
Fukaya et al., “Characteristics of Speckle Random Pattern and Its Applications”, pp. 317-327, Nouv. Rev. Optique, t.6, n. 6. (1975).
Grabowski, Ralph; “New Commands in AutoCADS 2010: Part 11 Smoothing 3D Mesh Objects” Dated 2011, 6 pages.
Great Britain Combined Search and Examination Report in related Application GB1517842.9, dated Apr. 8, 2016, 8 pages.
Great Britain Search Report for related Application On. GB1517843.7, dated Feb. 23, 2016; 8 pages.
Gupta, Alok; Range Image Segmentation for 3-D Objects Recognition, May 1988, Technical Reports (CIS), Paper 736, University of Pennsylvania Department of Computer and Information Science, retrieved from Http://repository.upenn.edu/cis_reports/736, Accessed May 31, 2015, 157 pages.
H. Sprague Ackley, “Automatic Mode Switching in a Volume Dimensioner”, U.S. Appl. filed Jun. 15, 2016, 53 pages, Not yet published., U.S. Appl. No. 15/182,636.
Hetzel, Gunter et al.; “3D Object Recognition from Range Images using Local Feature Histograms,”, Proceedings 2001 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai, Hawaii, Dec. 8-14, 2001; pp. 394-399, XP010584149, ISBN: 978-0-7695-1272-3.
Hood, Frederick W.; William A. Hoff, Robert King, Evaluation of an Interactive Technique for Creating Site Models from Range Data, Apr. 27-May 1, 1997 Proceedings of the ANS 7th Topical Meeting on Robotics & Remote Systems, Augusta GA, 9 pages.
Houle et al., “Vehical Positioning and Object Avoidance”, U.S. Appl. [not yet published], filed Jan. 27, 2016, 59 pages., U.S. Appl. No. 15/007,522.
Intention to Grant for related European Application No. 15188440.0 dated Mar. 16, 2020, 8 pages.
Intention to Grant in counterpart European Application No. 14157971.4 dated Apr. 14, 2015, pp. 1-8.
International Search Report for PCT/US2013/039438, dated Oct. 1, 2013, 7 pages.
Kazantsev, Aleksei et al. “Robust Pseudo-Random Coded Colored STructured Light Techniques for 3D Object Model Recovery”; ROSE 2008 IEEE International Workshop on Robotic and Sensors Environments (Oct. 17-18, 2008) , 6 pages.
Leotta, Matthew J.; Joseph L. Mundy; Predicting High Resolution Image Edges with a Generic, Adaptive, 3-D Vehicle Model; IEEE Conference on Computer Vision and Pattern Recognition, 2009; 8 pages.
Leotta, Matthew, Generic, Deformable Models for 3-D Vehicle Surveillance, May 2010, Doctoral Dissertation, Brown University, Providence RI, 248 pages.
Lloyd et al., “System for Monitoring the Condition of Packages Throughout Transit”, U.S. Appl. No. filed Sep. 25, 2015, 59 pages, not yet published., U.S. Appl. No. 14/865,575.
Lloyd, Ryan and Scott McCloskey, “Recognition of 3D Package Shapes for Singe Camera Melrology” IEEE Winier Conference on Applications of computer Visiona, IEEE, Mar. 24, 2014, pp. 99-106, (retrieved on Jun. 16, 2014).
Lowe David G., “Filling Parameterized Three-Dimensional Models to Images”, IEEE Transaction on Pattern Analysis and Machine Intelligence, IEEE Computer Society, USA, vol. 13, No. 5, May 1, 1991, pp. 441-450.
M.Zahid Gurbuz, Selim Akyokus, Ibrahim Emiroglu, Aysun Guran, An Efficient Algorithm for 3D Rectangular Box Packing, 2009, Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, pp. 131-134.
McCloskey et al., “Image Transformation for Indicia Reading,” U.S. Appl. No. filed Oct. 30, 2015, 48 pages, not yet published., U.S. Appl. No. 14/928,032.
Mike Stensvold, “get the Most Out of Variable Aperture Lenses”, published on www.OutdoorPhotogrpaher.com; dated Dec. 7, 2010; 4 pages, [As noted on search report retrieved from URL: http;//www.outdoorphotographer.com/gear/lenses/get-the-most-out-ofvariabl- e-aperture-lenses.html on Feb. 9, 2016].
Notice of Allowance and Fees Due (PTOL-85) dated May 5, 2020 for U.S. Appl. No. 14/873,613.
CN Office Action dated May 20, 2020 for CN Application No. 201510860188.
English Translation of CN Office Action dated May 20, 2020 for CN Application No. 201510860188.
Advisory Action (PTOL-303) dated Jul. 24, 2017 for U.S. Appl. No. 14/865,797.
Advisory Action (PTOL-303) dated Jun. 12, 2018 for U.S. Appl. No. 14/865,797.
Advisory Action for related U.S. Appl. No. 14/873,613 dated Jun. 7, 2018, 2 pages.
Advisory Action for related U.S. Appl. No. 14/873,613 dated Mar. 5, 2019, 3 pages.
Applicant Initiated Interview Summary (PTOL-413) dated Apr. 9, 2019 for U.S. Appl. No. 14/865,797.
Benos et al., “Semi-Automatic Dimensioning with Imager of a Portable Device,” U.S. Appl. No. 61/149,912, filed Feb. 4, 2009 (now expired), 56 pages.
Boavida et al., “Dam monitoring using combined terrestrial imaging systems”, 2009 Civil Engineering Survey Dec./Jan. 2009, pp. 33-38 {Cited in Notice of Allowance dated Sep. 15, 2017 in related matter}.
Bosch Tool Corporation, “Operating/Safety Instruction for DLR 130”, dated Feb. 2, 2009, 36 pages.
Caulier, Yannick et al., “A New Type of Color-Coded Light Structures for an Adapted and Rapid Determination of Point Correspondences for 3D Reconstruction.” Proc. of SPIE, vol. 8082 808232-3; 2011; 8 pages.
Chinese Notice of Reexamination in related Chinese Application 201520810313.3, dated Mar. 14, 2017, English Computer Translation provided, 7 pages.
Collings et al., “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices”, Journal of Display Technology, IEEE Service Center, New, York, NY, US, vol. 7, No. 3, Mar. 1, 2011 (Mar. 1, 2011), pp. 112-119.
Combined Search and Examination Report in related UK Application No. GB1817189.2 dated Nov. 14, 2018, pp. 1-4.
Combined Search and Examination Report in related UK Application No. GB1900752.5 dated Feb. 1, 2019, pp. 1-5.
Decision to Grant in counterpart European Application No. 14157971.4 dated Aug. 6, 2015, pp. 1-2.
Dimensional Weight—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensional.sub.—weight, download date Aug. 1, 2008, 2 pages.
Dimensioning—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensioning, download date Aug. 1, 2008, 1 page.
Drummond, Tom; Roberto Cipolla, Real-Time Visual Tracking of Complex Structures, Jul. 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 7; 15 pages.
Eksma Optics, Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from http://eksmaoptics.com/optical-systems/f-theta-lenses/f-theta-lens-for-10- 64-nm/, 2 pages.
El-Hakim et al., “A Knowledge-based Edge/Object Measurement Technique”, Retrieved from the Internet: URL: https://www.researchgate.net/profile/Sabry_E1-Hakim/publication/44075058_A_Knowledge_Based_EdgeObject_Measurement_Technique/links/00b4953b5faa7d3304000000.pdf [retrieved on Jul. 15, 2016] dated Jan. 1, 1993, 9 pages.
El-Hakim et al., “Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering”, published in Optical Engineering, Society of Photo-Optical Instrumentation Engineers, vol. 32, No. 9, Sep. 1, 1993, 15 pages.
EP Extended Search Report in related EP Applicaton No. 17174843.7 dated Oct. 17, 2017, 5 pages {Only new art cited herein}.
EP Search and Written Opinion Report in related matter EP Application No. 14181437.6, dated Mar. 26, 2015, 7 pages.
EP Search Report in related EP Application No. 17171844 dated Sep. 18, 2017. 4 pages [Only new art cited herein}.
European Exam Report in related , EP Application No. 16168216.6, dated Feb. 27, 2017, 5 pages, [References have been previously cited; WO2011/017241 and U.S. 2014/0104413].
European Exam Report in related EP Application 16172995.9, dated Jul. 6, 2017, 9 pages.
European Exam Report in related EP Application 16172995.9, dated Mar. 15, 2018, 7 pages.
European Exam Report in related EP Application No. 15176943.7, dated Apr. 12, 2017, 6 pages.
European Exam Report in related EP Application No. 15188440.0, dated Apr. 21, 2017, 4 pages.
European Exam Report in related EP Application No. 16152477.2, dated Jun. 20, 2017, 4 pages.
European Examination report in related EP Application No. 14181437.6, dated Feb. 8, 2017, 5 pages.
European extended Search Report in related Application No. 17207882.6 dated Apr. 26, 2018, 10 pages.
European extended Search report in related EP Application 13785171.3, dated Sep. 19, 2016, 8 pages.
European extended search report in related EP Application 16190833.0, dated Mar. 9, 2017, 8 pages [only new art has been cited; U.S. Publication 2014/0034731 was previously cited].
European Extended Search Report in related EP Application 17205030.4, dated Mar. 22, 2018, 8 pages.
European Extended Search Report in related EP application 18184864.9, dated Oct. 30, 2018, 7 pages.
European Extended search report in related EP Application No. 15190306.9, dated Sep. 9, 2016, 15 pages.
European Extended Search Report in Related EP Application No. 16172995.9, dated Aug. 22, 2016, 11 pages.
European Extended Search Report in related EP Application No. 16173429.8, dated Dec. 1, 2016, 8 pages.
European Extended Search Report in related EP Application No. 16190017.0, dated Jan. 4, 2017, 6 pages.
European Extended Search Report in related EP Application No. 17201794.9, dated Mar. 16, 2018, 10 pages.
European Office Action for application EP 13186043, dated Jun. 12, 2014(now EP2722656 (Apr. 23, 2014)), Total of 6 pages.
European Patent Office Action for Application No. 14157971A-1906, dated Jul. 16, 2014, 5 pages.
European Patent Search Report for Application No. 14157971.4-1906, dated Jun. 30, 2014, 6 pages.
European Search Report and Search Opinion Received for EP Application No. 15188440.0, dated Mar. 8, 2016, 8 pages.
European Search Report and Search Opinion Received for EP Application No. 15189214.8, dated Mar. 3, 2016, 9 pages.
European Search Report for application No. EP13186043 dated Feb. 26, 2014 (now EP2722656 (Apr. 23, 2014)): Total pp. 7.
European Search Report for related Application EP 15190249.1, dated Mar. 22, 2016, 7 pages.
European Search Report for related EP Application No. 15188440.0, dated Mar. 8, 2016, 8 pages.
European Search Report for Related EP Application No. 15189214.8, dated Mar. 3, 2016, 9 pages.
European Search Report for related EP Application No. 16152477.2, dated May 24, 2016, 8 pages.
Mouaddib E. et al. “Recent Progress in Structured Light in order to Solve the Correspondence Problem in Stereo Vision” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Apr. 1997; 7 pages.
Non-Final Rejection dated Nov. 1, 2017 for U.S. Appl. No. 14/870,488.
Notice of Allowance and Fees Due (PTOL-85) dated Apr. 1, 2020 for U.S. Appl. No. 14/865,797.
Notice of Allowance and Fees Due (PTOL-85) dated Apr. 19, 2017 for U.S. Appl. No. 14/872,176.
Notice of Allowance and Fees Due (PTOL-85) dated Aug. 31, 2017 for U.S. Appl. No. 14/872,176.
Notice of Allowance and Fees Due (PTOL-85) dated Jan. 30, 2020 for U.S. Appl. No. 14/873,613.
Notice of Allowance and Fees Due (PTOL-85) dated Jul. 10, 2019 for U.S. Appl. No. 14/865,797.
Notice of Allowance and Fees Due (PTOL-85) dated Jun. 23, 2017 for U.S. Appl. No. 14/872,176.
Notice of Allowance and Fees Due (PTOL-85) dated Mar. 15, 2017 for U.S. Appl. No. 14/872,176.
Notice of Allowance and Fees Due (PTOL-85) dated May 2, 2018 for U.S. Appl. No. 14/870,488.
Notice of Allowance and Fees Due (PTOL-85) dated May 10, 2017 for U.S. Appl. No. 14/872,176.
Notice of Allowance and Fees Due (PTOL-85) dated Nov. 15, 2016 for U.S. Appl. No. 14/872,176.
Notice of Allowance and Fees Due (PTOL-85) dated Oct. 18, 2018 for U.S. Appl. No. 14/870,488.
Notice of Allowance for U.S. Appl. No. 14/865,797, dated Nov. 5, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/870,488, dated May 2, 2018, 21 pages.
Notice of Allowance for U.S. Appl. No. 14/872,176, dated Mar. 15, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/872,176, dated Nov. 15, 2016, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/873,613, dated Jun. 26, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/873,613, dated Sep. 16, 2019, 9 pages.
Notice of Allowance for U.S. Appl. No. 15/722,011, dated May 18, 2018, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/140,953, dated Mar. 14, 2019, 23 pages.
Notice of Allowance of U.S. Appl. No. 14/873,613, dated Jan. 13, 2020, 32 pages.
Office Action for U.S. Appl. No. 14/865,797, dated Aug. 11, 2016, 10 pages.
Office Action for U.S. Appl. No. 14/865,797, dated Aug. 27, 2018, 13 pages.
Office Action for U.S. Appl. No. 14/865,797, dated Oct. 4, 2017, 10 pages.
Office Action for U.S. Appl. No. 14/870,488, dated Nov. 1, 2017, 17 pages.
Office Action for U.S. Appl. No. 14/872,176, dated May 23, 2016, 7 pages.
Office Action for U.S. Appl. No. 14/873,613, dated Aug. 1, 2018, 11 pages.
Office Action for U.S. Appl. No. 14/873,613, dated Oct. 23, 2017, 12 pages.
Office Action for U.S. Appl. No. 15/722,011, dated Dec. 22, 2017, 8 pages.
Office Action for U.S. Appl. No. 16/140,953, dated Nov. 5, 2018, 22 pages.
Office Action for Chinese Application No. 201510860188.1, dated Aug. 28, 2019, 15 pages.
Office Action for European Application No. 15189214.8 dated Dec. 3, 2019.
Office Action in counterpart European Application No. 13186043.9 dated Sep. 30, 2015, pp. 1-7.
Office Action received for European Application No. 15188440.0, dated Apr. 21, 2017, 4 pages.
Padzensky, Ron; “Augmera; Gesture Control”, Dated Apr. 18, 2015, 15 pages.
Peter Clarke, Actuator Developer Claims Anti-Shake Breakthrough for Smartphone Cams, Electronic Engineering Times, p. 24, May 16, 2011.
Proesmans, Marc et al. “Active Acquisition of 3D Shape for Moving Objects” 0-7803-3258-X/96 1996 IEEE; 4 pages.
Ralph Grabowski, “Smothing 3D Mesh Objects,” New Commands in AutoCAD 2010: Part 11, Non Final Office Action dated May 19, 2017; 6 pages.
Reisner-Kollmann, Irene; Anton L. Fuhrmann, Werner Purgathofer, Interactive Reconstruction of Industrial Sites Using Parametric Models, May 2010, Proceedings of the 26th Spring Conference of Computer Graphics SCCG 10, 8 pages.
Salvi, Joaquim et al. “Pattern Codification Strategies in Structured Light Systems” published in Pattern Recognition; The Journal of the Pattern Recognition Society, Accepted Oct. 2, 2003; 23 pages.
Santolaria et al. “A one-step intrinsic and extrinsic calibration method for laster line scanner operation in aoordinate measuring machines”, dated Apr. 1, 2009, Measurement Science and Technology, IOP, Bristol, GB, vol. 20, No. 4; 12 pages.
Search Report and Opinion in Related EP Application 15176943.7, dated Jan. 8, 2016, 8 pages.
Search Report and Opinion in related GB Application No. 15171123.7, dated Feb. 19, 2016, 6 Pages.
Search Report in counterpart European Application No. 15182675.7, dated Dec. 4, 2015, 10 pages.
Second Chinese Office Action in related CN Application No. 201520810313.3, dated Mar. 22, 2016, 5 pages. English Translation provided.
Second Chinese Office Action in related CN Application No. 201520810685.6, dated Mar. 22, 2016, 5 pages, no references.
Second Chinese Office Action in related CN Application No. 2015220810562.2, dated Mar. 22, 2016, 5 pages. English Translation provided [No references].
Sill Optics, NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, http://www.silloptics.de/1/products/sill-encyclopedia/laser-optics/f-thet- a-lenses/, 4 pages.
Spiller, Jonathan; Object Localization Using Deformable Templates, Master's Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2007; 74 pages.
Theodoropoulos, Gabriel; “Using Gesture Recognizers to Handle Pinch, Rotate, Pan, Swipe, and Tap Gestures” dated Aug. 25, 2014, 34 pages.
Thorlabs, Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6430, 4 pages.
U.S. Appl. Eric Todeschini, filed Jul. 16, 2015, not published yet, Dimensioning and Imaging Items, 80 pages., U.S. Appl. No. 14/800,757.
U.S. Appl. H. Sprague Ackley, filed Jul. 7, 2015, not published yet, Mobile Dimensioner Apparatus for Use in Commerce; 57 pages., U.S. Appl. No. 14/793,149.
U.S. Appl. Tyler Doornenbal et al., filed Jul. 16, 2015, not published yet, Adjusting Dimensioning Results Using Augmented Reality, 39 pages., U.S. Appl. No. 14/801,023.
U.S. Patent Application for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.), U.S. Appl. No. 13/367,978.
U.S. Patent Application for Indicia Reader filed Apr. 1, 2015 (Huck), U.S. Appl. No. 14/676,109.
U.S. Patent Application for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.), U.S. Appl. No. 14/446,391.
U.S. Patent Application for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned., U.S. Appl. No. 14/277,337.
U.S. Patent Application for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.), U.S. Appl. No. 14/283,282.
UK Further Exam Report in related UK Application No. GB1517842.9, dated Sep. 1, 2017, 5 pages.
Ulusoy et al., One-Shot Scanning using De Bruijn Spaced Grids, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 7 pages [Cited in EP Extended search report dated Apr. 10, 2017].
Ulusoy, Ali Osman et al.; “One-Shot Scanning using De Bruijn Spaced Grids”, Brown University; 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1786-1792 [Cited in EPO Search Report dated Dec. 5, 2017}.
United Kingdom Combined Search and Examination Report dated Mar. 21, 2018, 5 pages.
United Kingdom Combined Search and Examination Report in related Application No. GB1620676.5, dated Mar. 8, 2017, 6 pages.
United Kingdom combined Search and Examination Report in related GB Application No. 1607394.2, dated Oct. 19, 2016, 7 pages.
United Kingdom Further Exam Report in related application GB1607394.2 dated Oct. 5, 2018; 5 pages.
United Kingdom Further Examination Report in related GB Patent Application No. 1517112.7 dated Jul. 17, 2018; 4 pages.
United Kingdom Further Examination Report in related GB Patent Application No. 1517842.9 dated Jul. 26, 2018; 5 pages.
United Kingdom Further Examination Report in related GB Patent Application No. 1620676.5 dated Jul. 17, 2018; 4 pages.
United Kingdom Search Report in related Application No. GB1700338.5, dated Jun. 30, 2017, 5 pages.
Ward, Benjamin, Interactive 3D Reconstruction from Video, Aug. 2012, Doctoral Thesis, Univesity of Adelaide, Adelaide, South Australia, 157 pages.
Wikipedia, “3D projection” Downloaded on Nov. 25, 2015 from www.wikipedia.com, 4 pages.
Wikipedia, “Microlens”, Downloaded from https://en.wikipedia.org/wiki/Microlens, pp. 3.
Wikipedia, YUV description and definition, downloaded from http://www.wikipeida.org/wiki/YUV on Jun. 29, 2012, 10 pages.
YUV Pixel Format, downloaded from http://www.fource.org/yuv.php on Jun. 29, 2012; 13 pages.
YUV to RGB Conversion, downloaded from http://www.fource.org/fccyvrgb.php on Jun. 29, 2012; 5 pages.
Zhang, Zhaoxiang; Tieniu Tan, Kaiqi Huang, Yunhong Wang; Three-Dimensional Deformable-Model-based Localization and Recognition of Road Vehicles; IEEE Transactions on Image Processing, vol. 21, No. 1, Jan. 2012, 13 pages.
Decision to grant a European patent dated Jul. 30, 2020 for EP Application No. 15188440.
Notice of Allowance and Fees Due (PTOL-85) dated Jul. 1, 2020 for U.S. Appl. No. 14/873,613.
Notice of Allowance and Fees Due dated Aug 12, 2020 for U.S. Appl. No. 14/865,797.
Related Publications (1)
Number Date Country
20200116478 A1 Apr 2020 US
Provisional Applications (1)
Number Date Country
62062175 Oct 2014 US
Continuations (1)
Number Date Country
Parent 14873613 Oct 2015 US
Child 16706255 US