This technology generally relates to enterprise networks and, more particularly, to methods and devices for improved workload scheduling.
Federated identity environments provide a way of securely exchanging identity information across internet domains. Traditional load balancing enables load distribution, however when applications are deployed in a federated identity environment, then the existing technology does not perform any load balancing. Prior technologies have failed to address the issue of load balancing of user traffic across multiple service provider server devices by selecting a service provider server based on network parameters for servicing the user access request.
A method for load balancing in a federated identity environment implemented by one or more enhanced identity provider server devices includes receiving a redirected authentication request from a client to access one of a plurality of service provider servers. A token is generated when the authentication request is successfully authenticated. One or more network parameter values of the one of the plurality of service provider server devices are compared against one or more network parameter values associated with each of the other plurality of service provider server devices. One of the other plurality of service provider server devices is selected based on the comparison and one or more selection rules. The client is redirected to the selected one of the other plurality of service provider server devices with the generated token for accessing one or more applications associated with the selected one of the plurality of service provider server devices.
An enhanced identity provider apparatus comprising a memory with programmed instructions stored thereon and one or more processors configured to be capable of executing the stored programmed instructions to receive a redirected authentication request from a client to access one of a plurality of service provider servers. A token is generated when the authentication request is successfully authenticated. One or more network parameter values of the one of the plurality of service provider server devices are compared against one or more network parameter values associated with each of the other plurality of service provider server devices. One of the other plurality of service provider server devices is selected based on the comparison and one or more selection rules. The client is redirected to the selected one of the other plurality of service provider server devices with the generated token for accessing one or more applications associated with the selected one of the plurality of service provider server devices.
A non-transitory computer readable medium having stored thereon instructions for load balancing in a federated identity environment comprising executable code which when executed by one or more processors, causes the one or more processors to receive a redirected authentication request from a client to access one of a plurality of service provider servers. A token is generated when the authentication request is successfully authenticated. One or more network parameter values of the one of the plurality of service provider server devices are compared against one or more network parameter values associated with each of the other plurality of service provider server devices. One of the other plurality of service provider server devices is selected based on the comparison and one or more selection rules. The client is redirected to the selected one of the other plurality of service provider server devices with the generated token for accessing one or more applications associated with the selected one of the plurality of service provider server devices.
This technology has a number of advantages including providing methods, non-transitory computer readable media, and enhanced identity provider apparatus that provides optimized load balancing. With this technology, load balancing of user traffic across multiple service providers is provided to select a service provider server based on multiple parameters for servicing user access request. Additionally, this technology optimizes servicing of requests by selecting a service provider based on the current status of network utilization to provide a more optimal end-user experience.
Referring to
Referring to
The processor(s) of the E-IdP device 12 may execute programmed instructions stored in the memory 26 of the E-IdP device 12 for the any number of the functions identified above. The processor(s) of the E-IdP device 12 may include one or more CPUs or general purpose processors with one or more processing cores, for example, although other types of processor(s) can also be used.
The memory 26 of the E-IdP device 12 stores these programmed instructions for one or more aspects of the present technology as described and illustrated herein, although some or all of the programmed instructions could be stored elsewhere. A variety of different types of memory storage devices, such as random access memory (RAM), read only memory (ROM), hard disk, solid state drives, flash memory, or other computer readable medium which is read from and written to by a magnetic, optical, or other reading and writing system that is coupled to the processor(s) 24, can be used for the memory 26.
Accordingly, the memory 26 of the E-IdP device 12 can store one or more applications that can include computer executable instructions that, when executed by the E-IdP device 12, cause the E-IdP device 12 to perform actions, such as collecting and monitoring the current load, health and geographical location of a plurality of service provider server devices 14(1)-14(n) and load balancing the user traffic across multiple service provider server devices 14(1)-14(n) for improved availability and manageability of the applications, for example, and to perform other actions described and illustrated below with reference to
Even further, the application(s) may be operative in a cloud-based computing environment. The application(s) can be executed within or as virtual machine(s) or virtual server(s) that may be managed in a cloud-based computing environment. Also, the application(s), and even the E-IdP device 12 itself, may be located in virtual server(s) running in a cloud-based computing environment rather than being tied to one or more specific physical network computing devices. Also, the application(s) may be running in one or more virtual machines (VMs) executing on the E-IdP device 12. Additionally, in one or more embodiments of this technology, virtual machine(s) running on the E-IdP device 12 may be managed or supervised by a hypervisor.
In this particular example, the memory of the E-IdP device 12 includes a memory 26 for processing received authentication requests and a user identity information storage although the memory 26 can include other policies, modules, databases, or applications, for example. The E-IdP device 12 receives an authentication request to access one of a plurality of service provider server devices 14(1)-14(n) and the E-IdP device 12 may act as an authentication module, to authenticate the user requests before accessing applications at one of the backend application server devices 20(1)-20(n) associated with one of the plurality of service provider server devices 14(1)-14(n). The E-IdP device 12 may have access to user's identity information stored within the user identity information storage 28. The E-IdP device 12 collects user identity information from the client devices 16(1)-16(n) and accesses stored user identity information to authenticate the user. Upon authentication the E-IdP device 12 generates a token associated with the request. The E-IdP device 12 also collects and monitors current load parameter, health parameter, and geographical location parameter of the plurality of service provider server devices 14(1)-14(n).
The user identity information storage 28 may store information associated with users identity and is utilized to authenticate the user request. The user identity information includes, for example, user ID, username, password, mobile number, personal preferences, user location information or user preferences.
The communication interface 22 of the E-IdP device 12 operatively couples and communicates between the E-IdP device 12, the service provider server devices 14(1)-14(n), and/or the client devices 16(1)-16(n), which are all coupled together by the communication network(s) 18, although other types and/or numbers of communication networks 18 or systems with other types and/or numbers of connections and/or configurations to other devices and/or elements can also be used.
By way of example only, the communication network(s) 18 can include local area network(s) (LAN(s)) or wide area network(s) (WAN(s)), and can use TCP/IP over Ethernet and industry-standard protocols, although other types and/or numbers of protocols and/or communication networks 18 can be used. The communication network(s) 18 in this example can employ any suitable interface mechanisms and network communication technologies including, for example, teletraffic in any suitable form (e.g., voice, modem, and the like), Public Switched Telephone Network (PSTNs), Ethernet-based Packet Data Networks (PDNs), combinations thereof, and the like. The communication network(s) 18 can also include direct connection(s) (e.g., for when a device illustrated in
While the E-IdP device 12 is illustrated in this example as including a single device, the E-IdP device 12 in other examples can include a plurality of devices or blades each having one or more processors (each processor with one or more processing cores) that implement one or more steps of this technology. In these examples, one or more of the devices can have a dedicated communication interface or memory. Alternatively, one or more of the devices can utilize the memory, communication interface, or other hardware or software components of one or more other devices included in the E-IdP device 12.
Additionally, one or more of the devices that together comprise the E-IdP device 12 in other examples can be standalone devices or integrated with one or more other devices or apparatuses, such as one of the service provider server devices 14(1)-14(n), for example. Moreover, one or more of the devices of the E-IdP device 12 in these examples can be in a same or a different communication network 18 including one or more public, private, or cloud networks, for example.
Each of the service provider server devices 14(1)-14(n) of the network traffic management system 10 in this example includes one or more processors, a memory, and a communication interface, which are coupled together by a bus or other communication link, although other numbers and/or types of network devices could be used. Each of the plurality of service provider server devices 14(1)-14(n) are coupled to corresponding backend application server devices 20(1)-20(n). In yet another example, each of the plurality of service provider server devices 14(1)-14(n) are coupled to one or more backend application server devices 20(1)-20(n). The service provider server devices 14(1)-14(n) in this example process requests received from the client devices 16(1)-16(n) via the communication network(s) 18 according to the HTTP-based application RFC protocol, for example. Various applications may be operating on the service provider server devices 14(1)-14(n) and transmitting data (e.g., files or Web pages) to the client devices via the E-IdP device 12 in response to requests from the client devices 16(1)-16(n). The service provider server devices 14(1)-14(n) may be hardware or software or may represent a system with multiple service provider server devices 14(1)-14(n) in a pool, which may include internal or external networks.
Although the service provider server devices are illustrated as single devices, one or more actions of each of the service provider server devices may be distributed across one or more distinct network computing devices that together comprise one or more of the service provider server devices. Moreover, the service provider server devices are not limited to a particular configuration. Thus, the service provider server devices may contain a plurality of network computing devices that operate using a master/slave approach, whereby one of the network computing devices of the service provider server devices operate to manage and/or otherwise coordinate operations of the other network computing devices. The service provider server devices may operate as a plurality of network computing devices within a cluster architecture, a peer-to peer architecture, virtual machines, or within a cloud architecture, for example.
Each of the backend application server devices of the network traffic management system in this example includes one or more processors, a memory including one or more applications, and a communication interface, which are coupled together by a bus or other communication link, although other numbers and/or types of network devices could be used. The one or more client devices may access the one or more applications associated with the backend application server device. The backend application server device in this example process requests received from the client devices via the communication network(s) 18 according to the HTTP-based application RFC protocol, for example. Various applications may be operating on the backend application server devices and transmitting data (e.g., files or Web pages) to the client devices in response to requests from the client devices. The backend application server device may be hardware or software or may represent a system with multiple backend application servers in a pool, which may include internal or external networks.
Although the backend application server device may be single devices, one or more actions of each of the backend application server devices may be distributed across one or more distinct network computing devices that together comprise one or more of the backend application server devices. In yet another example, each of the backend application server devices can operate within the service provider server device rather than as a stand-alone server communicating with the service provider server device. Moreover, each of the backend application server devices are not limited to a particular configuration. Thus, each of the backend application server devices may contain a plurality of network computing devices that operate using a master/slave approach, whereby one of the network computing devices of the backend application server devices operate to manage and/or otherwise coordinate operations of the other network computing devices. Each of the backend application server devices may operate as a plurality of network computing devices within a cluster architecture, a peer-to peer architecture, virtual machines, or within a cloud architecture, for example. Each of the backend application server devices may also communicate with the client devices, service provider server devices and the E-IdP device 12.
Thus, the technology disclosed herein is not to be construed as being limited to a single environment and other configurations and architectures are also envisaged. For example, the E-IdP device 12 depicted in
The client devices 16(1)-16(n) of the network traffic management system 10 in this example include any type of computing device that can receive, render, and facilitate user interaction with a webtop, such as mobile computing devices, desktop computing devices, laptop computing devices, tablet computing devices, virtual machines (including cloud-based computers), or the like. Each of the client devices 16(1)-16(n) in this example includes a processor, a memory, and a communication interface, which are coupled together by a bus or other communication link, although other numbers and/or types of network devices could be used. In one example, the client devices 16(1)-16(n) may communicate with the backend application server devices 20(1)-20(n). In another example the client devices 16(1)-16(n) may communicate with the E-IdP device 12 directly. Further in another example the client devices 16(1)-16(n) may communicate with each of the service provider server devices 14(1)-14(n) directly.
The client devices 16(1)-16(n) may run interface applications, such as standard Web browsers or standalone client applications, which may provide an interface to make requests for, and receive content stored on, one or more of the service provider server devices 14(1)-14(n) via the communication network(s) 18. The client devices 16(1)-16(n) may further include a display device, such as a display screen or touchscreen, and/or an input device, such as a keyboard for example.
Although the exemplary network traffic management system 10 with the E-IdP device 12, service provider server devices 14(1)-14(n), backend application server devices 20(1)-20(n), client devices 16(1)-16(n), and communication network(s) 18 are described and illustrated herein, other types and/or numbers of systems, devices, components, and/or elements in other topologies can be used. It is to be understood that the systems of the examples described herein are for exemplary purposes, as many variations of the specific hardware and software used to implement the examples are possible, as will be appreciated by those skilled in the relevant art(s).
One or more of the components depicted in the network traffic management system 10, such as the E-IdP device 12, client devices 16(1)-16(n), service provider server devices 14(1)-14(n) or backend application server devices 20(1)-20(n), for example, may be configured to operate as virtual instances on the same physical machine. In other words, one or more of the E-IdP device 12, client devices 16(1)-16(n), service provider server devices 14(1)-14(n) or backend application server devices 20(1)-20(n) may operate on the same physical device rather than as separate devices communicating through communication network(s) 18. Additionally, there may be more or fewer E-IdP device 12, client devices 16(1)-16(n), service provider server devices 14(1)-14(n) or backend application server devices 20(1)-20(n) than illustrated in
In addition, two or more computing systems or devices can be substituted for any one of the systems or devices in any example. Accordingly, principles and advantages of distributed processing, such as redundancy and replication also can be implemented, as desired, to increase the robustness and performance of the devices and systems of the examples. The examples may also be implemented on computer system(s) that extend across any suitable network using any suitable interface mechanisms and traffic technologies, including by way of example only teletraffic in any suitable form (e.g., voice and modem), wireless traffic networks, cellular traffic networks, Packet Data Networks (PDNs), the Internet, intranets, and combinations thereof.
The examples may also be embodied as one or more non-transitory computer readable media having instructions stored thereon for one or more aspects of the present technology as described and illustrated by way of the examples herein. The instructions in some examples include executable code that, when executed by one or more processors, cause the processors to carry out steps necessary to implement the methods of the examples of this technology that are described and illustrated herein.
An exemplary method of load balancing in a federated identity environment and devices thereof will now be described with reference to
In step 315, the E-IdP device 12 determines whether the request from the requesting one of the client devices 16(1)-16(n) is authenticated. If in step 315, the E-IdP device 12 determines that the request is not authenticated, then the No branch is taken to step 320.
In step 320, the E-IdP device 12 sends a redirected error notification message to the requesting one of the client devices 16(1)-16(n). This redirected error notification message redirects the requesting one of the client devices 16(1)-16(n) with the error message to the intended service provider server device 14(1) which provides a notification that the request is not authenticated and this example of the method may end.
If back in step 315, the E-IdP device 12 determines that the request from the requesting one of the client devices 16(1)-16(n) is authenticated, then the Yes branch is taken to step 325. In step 325, the E-IdP device 12 generates a token used for validation as described in greater detail further below. After generating the token the method proceeds to step 330.
In step 330, the E-IdP device 12 periodically monitors one or more parameters of the plurality of service provider servers 14(1)-14(n). The E-IdP device 12 periodically monitors one or more network parameters for the plurality of service provider server devices 14(1)-14(n) which are utilized to perform the comparison. By way of example, the one or more network parameters may include, a current load parameter, a server health parameter, and/or geographic location parameter associated with the plurality of service provider server devices 14(1)-14(n), although other types and/or numbers of parameters may be used. The E-IdP device 12 periodically monitors one or more network parameter and collects one or more network parameter data values associated with the one or more network parameters. By way of example, the one or more network parameter data values may include, a current load value, a server health value, and/or geographic location value associated with the plurality of service provider server devices 14(1)-14(n), although other types and/or numbers of parameter data values may be used. The collected one or more network parameters values for the plurality of service provider server devices 14(1)-14(n) are utilized in step 335 below.
In step 335, the E-IdP device 12 compares the collected one or more network parameter values associated with the intended service provider server device 14(1) against corresponding other one or more network parameter values associated with the other of the plurality of service provider server devices 14(2)-14(n). By way of example, the one or more network parameter data values may include, a current load value, a server health value, and/or geographic location value associated with the plurality of service provider server devices 14(1)-14(n), although other types and/or numbers of parameter values may be used. By way of example, the E-IdP device 12 compares the current load value associated with the service provider server device-114(1) with each of the corresponding current load values associated with the service provider server devices 14(2)-14(n). By way of example, the E-IdP device 12 compares the CPU utilization value associated with the service provider server device-114(1) with each of the corresponding CPU utilization values associated with the service provider server devices 14(2)-14(n). In another example, the E-IdP device 12 compares the server health value associated with the service provider server device-114(1) with corresponding each of the server health value associated with the service provider server devices 14(2)-14(n). In yet another example, the E-IdP device 12 compares the geographic location value associated with the service provider server device-114(1) with each of the corresponding geographic location value associated with the service provider server devices 14(2)-14(n). The detecting of the hardware deficiencies or failures in the service provider server devices 14(1)-14(n) is performed to identify potential issues in the service provider server devices 14(1)-14(n).
Further, the E-IdP device 12 performs the comparing, for example, by comparing the current load parameter value of the intended service provider server device 14(1) with the current load parameter value of the other service provider server devices 14(2)-14(n). The current load parameter value of the plurality of service provider server devices 14(1)-14(n) may be the current load capacity of the server determined based on the number of processes waiting in a queue to access a processor of the associated service provider server devices 14(1)-14(n) for a specific time period. The smaller the current load means more resources available to process the requests and hence better performance state of the service provider server devices 14(1)-14(n). Based on the comparison in step 335 the capacity of current load for each of the plurality of service provider server devices 14(1)-14(n) is determined. By way of example, the current load parameter value for the intended service provider server device 14(1) may be determined at 60% of its capacity and further the current load parameter value associated with the other service provider server devices 14(2)-14(n) are all determined to be less than 60% of their capacity. In another example, the current load parameter value for the intended service provider server device 14(1) may be determined at 60% of its capacity and further the current load parameter value associated with the other service provider server devices 14(2)-14(n) are all determined to be more than 60% of their capacity. Further, by way of another example, the comparison may also determine the current load parameter value associated with the intended service provider server device 14(1) is the same as that of the other service provider server device 14(2)-14(n).
The health parameter associated with service provider server devices 14(1)-14(n) for example helps in determining the performance of the service provider server devices 14(1)-14(n). The health parameters include server response time of the service provider server devices 14(1)-14(n), hardware failures or deficiencies associated with the service provider server devices 14(1)-14(n), CPU utilization associated with the service provider server devices 14(1)-14(n), server heartbeats associated with the service provider server devices 14(1)-14(n). Although, any other parameters associated with determining health of the service provider server devices may also be included. The monitoring of the server response times is performed to determine potential latency issues for the service provider server devices 14(1)-14(n). By way of example, the comparison may be determine that the server response time of the intended service provider server device 14(1) is 50 ms and the server response time associated with each of the other service provider server devices 14(2)-14(n) is less than 50 ms. In another example, the comparison may be determine that the server response time of the intended service provider server device 14(1) is 50 ms and the server response time associated with each of the other service provider server devices 14(2)-14(n) is more than 50 ms. Further, by way of another example, the comparison may also determine the server response time parameter value associated with the intended service provider server device 14(1) is the same as that of the other service provider server device 14(2)-14(n).
The monitoring of the CPU utilization of a server is performed to determine memory utilization of the server, high CPU utilization may cause alerts of performance issues with the service provider server devices 14(1)-14(n). By way of example, the comparison may be determine that the CPU utilization of the intended service provider server device 14(1) is 65% of its usage capacity and the CPU utilization associated with each of the other service provider server devices 14(2)-14(n) is less than 65%. In another example, the comparison may be determine that the CPU utilization of the intended service provider server device 14(1) is 65% of its usage capacity and the CPU utilization associated with each of the other service provider server devices 14(2)-14(n) is more than 65%. Further, by way of another example, the comparison may also determine the CPU utilization parameter value associated with the intended service provider server device 14(1) is the same as that of the other service provider server device 14(2)-14(n).
The heartbeat of the service provider server devices 14(1)-14(n) may be determined by sending a network ping command or a heartbeat message to the service provider server devices 14(I)-14(n), and a response to the ping command provides information of the service provider server devices 14(1)-14(n) being alive and accepting communications. By way of example, the comparison may be determine that the response time to the ping for determining the heartbeat of the intended service provider server device 14(1) is 20 ms and the response time to the ping for determining the heartbeat associated with each of the other service provider server devices 14(2)-14(n) is less than 20 ms. In another example, the comparison may be determine that the response time to the ping for determining the heartbeat of the intended service provider server device 14(1) is 20 ms and the response time to the heartbeat message for determining the heartbeat associated with each of the other service provider server devices 14(2)-14(n) is more than 20 ms. Further, by way of another example, the comparison may also determine the response time parameter value associated with the intended service provider server device 14(1) is the same as that of the other service provider server device 14(2)-14(n).
The geographic location parameter of the service provider server devices 14(1)-14(n) may be determined as a distance between geographic location of the service provider server devices 14(1)-14(n) potentially servicing the request and the requesting one of the client devices 16(1)-16(n) requesting to access the application. Lesser the distance lesser would be the latency, number of hops, and lesser would be a potential of hardware failure as the number of hardware components are reduced with lesser distance. By way of example, the comparison may be determine that the geographic distance between the intended service provider server device 14(1) and the requesting one of the client devices 16(1)-16(n) is less than and the distance associated with each of the other service provider server devices 14(2)-14(n). In another example, the comparison may be determine that the geographic distance between the intended service provider server device 14(1) and the requesting one of the client devices 16(1)-16(n) is more than and the distance associated with each of the other service provider server devices 14(2)-14(n). Further, by way of another example, the comparison may also determine the geographic distance associated with the intended service provider server device 14(1) is the same as that of the other service provider server device 14(2)-14(n).
In another embodiment, if in the comparison step 335 of
In yet another embodiment, the comparison may be performed by comparing more than one parameters of the service provider server devices 14(1)-14(n) based on priorities assigned to the parameters. By way of example, the comparison may be performed by comparing the current load parameter, the health parameter and the geographic location parameter for the intended service provider server and the other service providers based on priorities assigned to each of the parameters. The current load parameter may be assigned the highest priority rank of 1 followed by the health parameter having a lower priority rank of 2 and the geographic location parameter having the least priority rank of 3. Although other types and/or numbers of other parameter comparison may be performed with any number of priorities.
In step 340, the E-IdP device 12 selecting from the plurality of service provider server devices 14(1)-14(n) based on the comparison and one or more selection rules stored in the memory 26. The stored selection rules, may include, selecting the service provider server device with the least current load parameter value, selecting the service provider server device with the least response time, selecting the service provider service device with the least CPU utilization, selecting the service provider service device with the least response time for heartbeat messages, selecting the service provider service device with least geographic distance between the client devices 16(1)-16(n) and the service provider server devices 14(1)-14(n). Further, the selection rules may include, when the one or more network parameter values between the intended service provider server device 14(1) and the other service provider server devices 14(2)-14(n) are equal, then selecting the intended service provider server device 14(1). Based on the selection rules, the E-IdP device 12 selects of a service provider server device that would process the request from the service provider server devices 14(1)-14(n).
Specifically, the selection rules, may include, by way of example, selecting one of the other service provider server devices 14(2)-14(n) when the comparison indicates that the current load parameter value for the intended service provider server device 14(1) may be determined at 60% of its capacity and further the current load parameter value associated with the other service provider server devices 14(2)-14(n) are all determined to be less than 60% of their capacity. In this example, from the other service provider server devices 14(2)-14(1) the E-IdP device 12 selects the service provider server device with the least current load parameters. By way of example, E-IdP device 12 selects the service provider server device 14(2) as it is determined in step 335 that the service provider server device 14(2) has a current load parameters value of 40% and is the least in comparison to all of the other service provider server devices 14(1), 14(3)-14(n). By way of example, another selecting rules may include, selecting the intended service provider server device 14(1) when the comparison of step 335 determines that the current load parameter value for the intended service provider server device 14(1) may be determined at 60% of its capacity and further the current load parameter value associated with the other service provider server devices 14(2)-14(n) are all determined to be more than 60% of their capacity. In this example, as the intended service provider server device 14(1) has the least current load parameter value it is selected.
In another example, the selection rules, may include, by way of example, selecting one of the other service provider server devices 14(2)-14(n) when the comparison of step 335 determines that the response time of the intended service provider server device 14(1) is 50 ms and the response time associated with each of the other service provider server devices 14(2)-14(n) is less than 50 ms. In this example, from the other service provider server devices 14(2)-14(1) the E-IdP device 12 selects the service provider server device with the least response time value. By way of example, E-IdP device 12 selects the service provider server device 14(2) as it is determined in step 335 that the service provider server device 14(2) has a response time value of 30 ms and is the least response time in comparison to all of the other service provider server devices 14(1), 14(3)-14(n). By way of example, another selecting rules may include, selecting the intended service provider server device 14(1) when the response time of the intended service provider server device 14(1) is 50 ms and the response time associated with each of the other service provider server devices 14(2)-14(n) is more than 50 ms. In this example, from the other service provider server devices 14(1)-14(n) the E-IdP device 12 selects the service provider server device with the least response time value. By way of example, E-IdP device 12 selects the service provider server device 14(1) as it is determined in step 335 that the service provider server device 14(1) has a response time value of 50 ms, which is the least response time in comparison to all of the other service provider server devices 14(2)-14(n).
In another example, the selection rules, may include, by way of example, selecting one of the other service provider server devices 14(2)-14(n) when the comparison of step 335 determines that the CPU utilization of the intended service provider server device 14(1) is 65% and the CPU utilization associated with each of the other service provider server devices 14(2)-14(n) is less than 65%. In this example, from the other service provider server devices 14(2)-14(1) the E-IdP device 12 selects the service provider server device with the least CPU utilization value. By way of example, E-IdP device 12 selects the service provider server device 14(2) as it is determined in step 335 that the service provider server device 14(2) has a CPU utilization value of 45% and is the least CPU utilization in comparison to all of the other service provider server devices 14(1), 14(3)-14(n). By way of example, another selecting rules may include, selecting the intended service provider server device 14(1) when the CPU utilization of the intended service provider server device 14(1) is 65% and the CPU utilization associated with each of the other service provider server devices 14(2)-14(n) is more than 65%. In this example, from the other service provider server devices 14(1)-14(n) the E-IdP device 12 selects the service provider server device with the least CPU utilization value. By way of example, E-IdP device 12 selects the service provider server device 14(1) as it is determined in step 335 that the service provider server device 14(1) has a CPU utilization value of 65%, which is the least CPU utilization in comparison to all of the other service provider server devices 14(2)-14(n).
In another example, the selection rules, may include, by way of example, selecting one of the other service provider server devices 14(2)-14(n) when the comparison of step 335 determines that the geographic distance between the intended service provider server device 14(1) and the requesting one of the client devices 16(1)-16(n) is more than and the geographic distance between each of the other service provider server devices 14(2)-14(n) and the requesting one of the client devices 16(1)-16(n). In this example, from the other service provider server devices 14(2)-14(1) the E-IdP device 12 selects the service provider server device with the least geographic distance between each of the other service provider server devices 14(2)-14(n) and the requesting one of the client devices 16(1)-16(n). By way of example, E-IdP device 12 selects the service provider server device 14(2) as it is determined in step 335 that the service provider server device 14(2) has the least geographic distance between each of the other service provider server devices 14(2)-14(n) and the requesting one of the client devices 16(1)-16(n) in comparison to all of the other service provider server devices 14(1), 14(3)-14(n). By way of example, another selecting rules may include, selecting the intended service provider server device 14(1) geographic distance between the intended service provider server device 14(1) and the requesting one of the client devices 16(1)-16(n) is less than and the geographic distance between each of the other service provider server devices 14(2)-14(n) and the requesting one of the client devices 16(1)-16(n). In this example, from the other service provider server devices 14(1)-14(n) the E-IdP device 12 selects the service provider server device with the least geographic distance between each of the other service provider server devices 14(1)-14(n) and the requesting one of the client devices 16(1)-16(n). By way of example, E-IdP device 12 selects the service provider server device 14(1) as it is determined in step 335 that the service provider server device 14(1) has the least geographic distance to the requesting one of the client devices 16(1)-16(n) in comparison to all of the other service provider server devices 14(2)-14(n).
In step 345, the E-IdP device 12 determines if in step 340 one of the other plurality of service provider server devices 14(2)-14(n) are selected in step 340. By way of example, when the E-IdP device 12 determines that in step 340 one of the other plurality of service provider server devices 14(2)-14(n) is selected over the intended service provider server device 14(1), then the method takes the Yes branch and proceeds to step 350. By way of example, E-IdP device 12 selects the service provider server device 14(2) as it is determined in step 335 that the service provider server device 14(2) has a current load parameters value of 40% which is the least current load parameter value in comparison to all of the other service provider server devices 14(1), 14(3)-14(n) and the method proceeds to step 350.
In step 350, the E-IdP device 12 redirects the requesting one of the client devices 16(1)-16(n) to the selected one of the one or more other of the plurality of service provider server devices 14(2)-14(n) with the generated token for accessing one or more applications associated with the selected one of one or more other of the plurality of service provider server devices 14(2)-14(n). The E-IdP device 12 may send a redirect request to the requesting one of the client devices 16(1)-16(n), which redirects the requesting one of the client devices 16(1)-16(n) to the selected one of the other plurality of service provider server devices 14(2)-14(n) with the generated token. As part of a registration process the E-IdP device 12 registers URI for each of the other plurality of service provider server devices 14(2)-14(n) in the memory and based on a service provider server selected, the requesting one of the client devices 16(1)-16(n) are redirected back to the registered redirect URI associated with the selected service provider server device. The redirect request redirects the requesting one of the client devices 16(1)-16(n) to the selected one of the other plurality of service provider server devices 14(2)-14(n) with the token for accessing one or more applications associated with the selected one of the plurality of service provider server devices 14(2)-14(n) and the method proceeds to step 360 and ends.
If back in step 345 the E-IdP device 12 determines, that the determined selection in step 340 is not selecting one of the other plurality of service provider server devices 14(2)-14(n) then the method takes the No branch and proceeds to step 355. By way of example, when the E-IdP device 12 determines that in step 340 intended service provider server devices 14(1) is selected over the other plurality of service provider server devices 14(2)-14(n), then the method takes the No branch and proceeds to step 355. By way of example, E-IdP device 12 selects the service provider server device 14(1) as it is determined in step 335 that the service provider server device 14(1) has a current load parameters value of 40% which is the least current load parameter value in comparison to all of the other service provider server devices 14(2)-14(n) and the method proceeds to step 355.
In step 355, the E-IdP device 12 redirects the requesting one of the client devices 16(1)-16(n) to the selected intended service provider server device 14(1) with the generated token for accessing one or more applications associated with the selected intended service provider server device 14(1). The E-IdP device 12 may send a redirect request to the requesting one of the client devices 16(1)-16(n), which redirects the requesting one of the client devices 16(1)-16(n) to the selected intended service provider server device 14(1) with the generated token. As part of a registration process the E-IdP device 12 registers URI for each of the plurality of service provider server devices 14(1)-14(n) in the memory and based on a service provider server selected, the requesting one of the client devices 16(1)-16(n) are redirected back to the registered redirect URI associated with the selected service provider server devices. The redirect request redirects the requesting one of the client devices 16(1)-16(n) to the selected intended service provider server device 14(1) with the token for accessing one or more applications associated with the selected intended service provider server device 14(1) and the method proceeds to step 360 and ends.
An exemplary method of load balancing in a federated identity environment and devices thereof will now be described with reference to
In step 1, the client device sends an application access request to an intended service provider server-1 to access application associated with the service provider server-1. As the request is sent to the service provider server-1, the service provider server-1 is intended to service the request by providing the client access to one or more backend application servers associated with the service provider server-1. The service provider server-1 is also referred to in the examples herein as the intended service provider server.
In step 2, upon receiving the application access request, the service provider server-1 sends a redirected authentication request that redirects the client device to an E-IdP device 12 for user authentication. The redirected authentication request redirects the client device to the E-IdP device 12 for user authentication.
In step 3, the client device follows the redirected authentication request to the E-IdP device 12 for user authentication. The redirected authentication request redirects the client device to the E-IdP device 12 for authentication. The E-IdP device 12 receives the redirected authentication request from the client device.
In step 4 the received redirected authentication request from the client device which was redirected by the service provider server-1 is authenticated. After receiving the authentication request, the E-IdP device 12 collects identity information from the user of the client device to authenticate the user of the client device and a determination is made when the request is authenticated. The E-IdP device 12 performs authentication of the request by associating the stored user identity information with the collected user identification information to authenticate the request. After the E-IdP device 12 performs authentication of the request, a token is generated which is utilized later for validation of the request.
In step 5, the E-IdP device 12 sends a redirected error notification request, when it is determined that the authentication request fails authentication and that the request is not authenticated in step 4. The E-IdP device 12 sends a redirected error notification request that redirects the client device to the service provider server-1.
In step 6, the client device follows the redirected error notification request to the service provider-1 notifying the service provider server-1 that the request has failed authentication.
In step 7 the E-IdP device 12 generates a token, when it is determined that the request is authenticated back in step 4. The E-IdP device 12 generates a token in response to the request being authenticated, and this token is utilized for validation. The utilization of token for validation is explained below.
In step 8, the E-IdP device 12 periodically monitors one or more parameters of the plurality of service provider server device 1-n and performs comparison between the service provider server device-1 and the other plurality of service provider server devices 2-n. The E-IdP device 12 periodically monitors one or more network parameters for the plurality of service provider server device 1-n which are utilized to perform the comparison. By way of example, the one or more network parameters may include, a current load parameter, a server health parameter, and/or geographic location parameter associated with the plurality of service provider server devices 1-n, although other types and/or numbers of parameters may be used. The E-IdP device 12 periodically monitors one or more network parameter and collects one or more network parameter data values associated with the one or more network parameters. By way of example, the one or more network parameter data values may include, a current load value, a server health value, and/or geographic location value associated with the plurality of service provider server devices 1-n, although other types and/or numbers of parameter data values may be used. The collected one or more network parameters values for the plurality of service provider server devices 1-n are utilized for comparison.
The E-IdP device 12 compares the collected one or more network parameter values associated with the intended service provider server device 1 against corresponding other one or more network parameter values associated with the other of the plurality of service provider server devices 2-n. By way of example, the one or more network parameter data values may include, a current load value, a server health value, and/or geographic location value associated with the plurality of service provider server devices 1-n, although other types and/or numbers of parameter values may be used. By way of example, the E-IdP device 12 compares the current load value associated with the service provider server device-1 with each of the corresponding current load values associated with the service provider server devices 2-n. By way of example, the E-IdP device 12 compares the CPU utilization value associated with the service provider server device-1 with each of the corresponding CPU utilization values associated with the service provider server devices 2-n. In another example, the E-IdP device 12 compares the server health value associated with the service provider server device-1 with corresponding each of the server health value associated with the service provider server devices 2-n. In yet another example, the E-IdP device 12 compares the geographic location value associated with the service provider server device-1 with each of the corresponding geographic location value associated with the service provider server devices 2-n. The detecting of the hardware deficiencies or failures in the service provider server devices 1-n is performed to identify potential issues in the service provider server devices 1-n.
Further, the E-IdP device 12 performs the comparing, for example, by comparing the current load parameter value of the intended service provider server device 1 with the current load parameter value of the other service provider server devices 2-n. The current load parameter value of the plurality of service provider server devices 1-n may be the current load capacity of the server determined based on the number of processes waiting in a queue to access a processor of the associated service provider server devices 1-n for a specific time period. The smaller the current load means more resources available to process the requests and hence better performance state of the service provider server devices 1-n. Based on the comparison the capacity of current load for each of the plurality of service provider server devices 1-n is determined. By way of example, the current load parameter value for the intended service provider server device 1 may be determined at 60% of its capacity and further the current load parameter value associated with the other service provider server devices 2-n are all determined to be less than 60% of their capacity. In another example, the current load parameter value for the intended service provider server device 1 may be determined at 60% of its capacity and further the current load parameter value associated with the other service provider server devices 2-n are all determined to be more than 60% of their capacity. Further, by way of another example, the comparison may also determine the current load parameter value associated with the intended service provider server device 1 is the same as that of the other service provider server device 2-n.
The health parameter associated with service provider server devices 1-n for example helps in determining the performance of the service provider server devices 1-n. The health parameters include server response time of the service provider server devices 1-n, hardware failures or deficiencies associated with the service provider server devices 1-n, CPU utilization associated with the service provider server devices 1-n, server heartbeats associated with the service provider server devices 1-n. Although, any other parameters associated with determining health of the service provider server devices may also be included. The monitoring of the server response times is performed to determine potential latency issues for the service provider server devices 1-n. By way of example, the comparison may be determine that the server response time of the intended service provider server device 1 is 50 ms and the server response time associated with each of the other service provider server devices 2-n is less than 50 ms. In another example, the comparison may be determine that the server response time of the intended service provider server device 1 is 50 ms and the server response time associated with each of the other service provider server devices 2-n is more than 50 ms. Further, by way of another example, the comparison may also determine the server response time parameter value associated with the intended service provider server device 1 is the same as that of the other service provider server device 2-n.
The monitoring of the CPU utilization of a server is performed to determine memory utilization of the server, high CPU utilization may cause alerts of performance issues with the service provider server devices 1-n. By way of example, the comparison may be determine that the CPU utilization of the intended service provider server device 1 is 65% of its usage capacity and the CPU utilization associated with each of the other service provider server devices 2-n is less than 65%. In another example, the comparison may be determine that the CPU utilization of the intended service provider server device 1 is 65% of its usage capacity and the CPU utilization associated with each of the other service provider server devices 2-n is more than 65%. Further, by way of another example, the comparison may also determine the CPU utilization parameter value associated with the intended service provider server device 1 is the same as that of the other service provider server device 2-n.
The heartbeat of the service provider server devices 1-n may be determined by sending a network ping command or a heartbeat message to the service provider server devices 1-n, and a response to the ping command provides information of the service provider server devices 1-n being alive and accepting communications. By way of example, the comparison may be determine that the response time to the ping for determining the heartbeat of the intended service provider server device 1 is 20 ms and the response time to the ping for determining the heartbeat associated with each of the other service provider server devices 2-n is less than 20 ms. In another example, the comparison may be determine that the response time to the ping for determining the heartbeat of the intended service provider server device 1 is 20 ms and the response time to the heartbeat message for determining the heartbeat associated with each of the other service provider server devices 2-n is more than 20 ms. Further, by way of another example, the comparison may also determine the response time parameter value associated with the intended service provider server device 1 is the same as that of the other service provider server device 2-n.
The geographic location parameter of the service provider server devices 1-n may be determined as a distance between geographic location of the service provider server devices 1-n potentially servicing the request and the requesting one of the client devices 16(1)-16(n) requesting to access the application. Lesser the distance lesser would be the latency, number of hops, and lesser would be a potential of hardware failure as the number of hardware components are reduced with lesser distance. By way of example, the comparison may be determine that the geographic distance between the intended service provider server device 1 and the requesting one of the client devices 16(1)-16(n) is less than and the distance associated with each of the other service provider server devices 2-n. In another example, the comparison may be determine that the geographic distance between the intended service provider server device 1 and the requesting one of the client devices 16(1)-16(n) is more than and the distance associated with each of the other service provider server devices 2-n. Further, by way of another example, the comparison may also determine the geographic distance associated with the intended service provider server device 1 is the same as that of the other service provider server device 2-n.
In another embodiment, if in the comparison step 8 the one or more of the other service provider server devices 1-n has a current load parameter equal to the current load parameter of the intended service provider server devices 1-n, then the intended service provider server is selected. In another embodiment, when the one or more of the other service provider server devices 1-n has a current load parameter equal to the current load parameter of the intended service provider server, then the one or more of the other service provider servers devices 1-n may be selected over the intended service provider server. In another embodiment, more than one other service provider server devices 1-n may be selected.
In yet another embodiment, the comparison may be performed by comparing more than one parameters of the service provider server devices 1-n based on priorities assigned to the parameters. By way of example, the comparison may be performed by comparing the current load parameter, the health parameter and the geographic location parameter for the intended service provider server and the other service providers based on priorities assigned to each of the parameters. The current load parameter may be assigned the highest priority rank of 1 followed by the health parameter having a lower priority rank of 2 and the geographic location parameter having the least priority rank of 3. Although other types and/or numbers of other parameter comparison may be performed with any number of priorities.
In step 9, the E-IdP device 12 selecting one of the other plurality of service provider server devices 2-n based on the comparison of step 8 and one or more selection rules stored in the memory 26. The stored selection rules, may include, selecting the service provider server device with the least current load parameter value, selecting the service provider server device with the least response time, selecting the service provider service device with the least CPU utilization, selecting the service provider service device with the least response time for heartbeat messages, selecting the service provider service device with least geographic distance between the client devices 16(1)-16(n) and the service provider server devices 1-n. Further, the selection rules may include, when the one or more network parameter values between the intended service provider server device 1 and the other service provider server devices 2-n are equal, then selecting the intended service provider server device 1. Based on the selection rules, the E-IdP device 12 selects of a service provider server device that would process the request from the service provider server devices 1-n.
Specifically, the selection rules, may include, by way of example, selecting one of the other service provider server devices 2-n when the comparison indicates that the current load parameter value for the intended service provider server device 1 may be determined at 60% of its capacity and further the current load parameter value associated with the other service provider server devices 2-n are all determined to be less than 60% of their capacity. In this example, from the other service provider server devices 2-n the E-IdP device 12 selects the service provider server device with the least current load parameters. By way of example, E-IdP device 12 selects the service provider server device 2 as it is determined in step 8 that the service provider server device 2 has a current load parameters value of 40% and is the least in comparison to all of the other service provider server devices 1, 3-n. By way of example, another selecting rules may include, selecting the intended service provider server device 1 when the comparison of step 8 determines that the current load parameter value for the intended service provider server device 1 may be determined at 60% of its capacity and further the current load parameter value associated with the other service provider server devices 2-n are all determined to be more than 60% of their capacity. In this example, as the intended service provider server device 1 has the least current load parameter value it is selected.
In another example, the selection rules, may include, by way of example, selecting one of the other service provider server devices 2-n when the comparison of step 8 determines that the response time of the intended service provider server device 1 is 50 ms and the response time associated with each of the other service provider server devices 2-n is less than 50 ms. In this example, from the other service provider server devices 2-n the E-IdP device 12 selects the service provider server device with the least response time value. By way of example, E-IdP device 12 selects the service provider server device 2 as it is determined in step 8 that the service provider server device 2 has a response time value of 30 ms and is the least response time in comparison to all of the other service provider server devices 1, 3-n. By way of example, another selecting rules may include, selecting the intended service provider server device 1 when the response time of the intended service provider server device 1 is 50 ms and the response time associated with each of the other service provider server devices 2-n is more than 50 ms. In this example, from the other service provider server devices 1-n the E-IdP device 12 selects the service provider server device with the least response time value. By way of example, E-IdP device 12 selects the service provider server device 1 as it is determined in step 8 that the service provider server device 1 has a response time value of 50 ms, which is the least response time in comparison to all of the other service provider server devices 2-n.
In another example, the selection rules, may include, by way of example, selecting one of the other service provider server devices 2-n when the comparison of step 8 determines that the CPU utilization of the intended service provider server device 1 is 65% and the CPU utilization associated with each of the other service provider server devices 2-n is less than 65%. In this example, from the other service provider server devices 2-n the E-IdP device 12 selects the service provider server device with the least CPU utilization value. By way of example, E-IdP device 12 selects the service provider server device 2 as it is determined in step 8 that the service provider server device 2 has a CPU utilization value of 45% and is the least CPU utilization in comparison to all of the other service provider server devices 1, 3-n. By way of example, another selecting rules may include, selecting the intended service provider server device 1 when the CPU utilization of the intended service provider server device 1 is 65% and the CPU utilization associated with each of the other service provider server devices 2-n is more than 65%. In this example, from the other service provider server devices 1-n the E-IdP device 12 selects the service provider server device with the least CPU utilization value. By way of example, E-IdP device 12 selects the service provider server device 1 as it is determined in step 8 that the service provider server device 1 has a CPU utilization value of 65%, which is the least CPU utilization in comparison to all of the other service provider server devices 2-n.
In another example, the selection rules, may include, by way of example, selecting one of the other service provider server devices 2-n when the comparison of step 8 determines that the geographic distance between the intended service provider server device 1 and the requesting one of the client devices 16(1)-16(n) is more than and the geographic distance between each of the other service provider server devices 2-n and the requesting one of the client devices 16(1)-16(n). In this example, from the other service provider server devices 2-n the E-IdP device 12 selects the service provider server device with the least geographic distance between each of the other service provider server devices 2-n and the requesting one of the client devices 16(1)-16(n). By way of example, E-IdP device 12 selects the service provider server device 2 as it is determined in step 8 that the service provider server device 2 has the least geographic distance between each of the other service provider server devices 2-n and the requesting one of the client devices 16(1)-16(n) in comparison to all of the other service provider server devices 1, 3-n. By way of example, another selecting rules may include, selecting the intended service provider server device 1 geographic distance between the intended service provider server device 1 and the requesting one of the client devices 16(1)-16(n) is less than and the geographic distance between each of the other service provider server devices 2-n and the requesting one of the client devices 16(1)-16(n). In this example, from the other service provider server devices 1-n the E-IdP device 12 selects the service provider server device with the least geographic distance between each of the other service provider server devices 1-n and the requesting one of the client devices 16(1)-16(n). By way of example, E-IdP device 12 selects the service provider server device 1 as it is determined in step 8 that the service provider server device 1 has the least geographic distance to the requesting one of the client devices 16(1)-16(n) in comparison to all of the other service provider server devices 2-n.
In step 10, the E-IdP device 12 redirects the requesting one of the client devices 16(1)-16(n) to the selected one of the other plurality of service provider server devices 2-n with the generated token for accessing one or more applications associated with the selected one of one or more other of the plurality of service provider server devices 2-n. The E-IdP device 12 may send a redirect request to the requesting one of the client devices 16(1)-16(n), which redirects the requesting one of the client devices 16(1)-16(n) to the selected one of the other plurality of service provider server devices 2-n with the generated token. As part of a registration process the E-IdP device 12 registers URI for each of the other plurality of service provider server devices 2-n in the memory and based on a service provider server selected, the requesting one of the client devices 16(1)-16(n) are redirected back to the registered redirect URI associated with the selected service provider server device. The redirect request redirects the requesting one of the client devices 16(1)-16(n) to the selected one of the other plurality of service provider server devices 2-n with the token for accessing one or more applications associated with the selected one of the plurality of service provider server devices 2-n.
In step 11, the client device follows the redirect request from the E-IdP device 12 to the selected service provider server-n with the token generated in step 7.
In step 12, the selected service provider server-n performs the validation of the token. The service provider server-n performs a validation of the token to determine if the token is valid.
In step 13, the service provider server-n sends an error notification to the client device, when back in step 12 the validation fails and it is determined that the token is not valid. The service provider server-n sends an error notification to the client device, notifying the client device that the validation has failed.
In step 14 the service provider server-n allows the client device access to one or more applications, upon successful validation of the token back in step 12. The service provider server-n allows the client device access to one or more applications that are protected by the backend application server associated the service provider server-n.
In step 15 the client accesses the applications protected by the selected service provider-n, and in step 16 the selected service provider-n provides the client device access to applications at the backend server application associated with the service provider server-n. As a result based on the comparison the selected service provider server-n services the client device, this provides the advantage of dynamically servicing requests based on the current network status of the parameters of the service provider servers. This optimized process of processing requests and content delivery to client devices provides an optimal end-user experience.
In another example, back in step 9 of
With this technology, load balancing of user traffic across multiple service providers is provided to select a service provider server based on multiple parameters for servicing user access request. Additional advantages of this technology include improved availability and manageability of applications by providing optimized load balancing and servicing of requests to select a service provider based on current status of network utilization dynamically and intelligently to provide optimal end-user experience.
Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/504,664 filed May 11, 2017, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4993030 | Krakauer et al. | Feb 1991 | A |
5218695 | Noveck et al. | Jun 1993 | A |
5303368 | Kotaki | Apr 1994 | A |
5473362 | Fitzgerald et al. | Dec 1995 | A |
5511177 | Kagimasa et al. | Apr 1996 | A |
5537585 | Blickenstaff et al. | Jul 1996 | A |
5548724 | Akizawa et al. | Aug 1996 | A |
5550965 | Gabbe et al. | Aug 1996 | A |
5583995 | Gardner et al. | Dec 1996 | A |
5586260 | Hu | Dec 1996 | A |
5590320 | Maxey | Dec 1996 | A |
5623490 | Richter et al. | Apr 1997 | A |
5649194 | Miller et al. | Jul 1997 | A |
5649200 | Leblang et al. | Jul 1997 | A |
5668943 | Attanasio et al. | Sep 1997 | A |
5692180 | Lee | Nov 1997 | A |
5721779 | Funk | Feb 1998 | A |
5724512 | Winterbottom | Mar 1998 | A |
5806061 | Chaudhuri et al. | Sep 1998 | A |
5832496 | Anand et al. | Nov 1998 | A |
5832522 | Blickenstaff et al. | Nov 1998 | A |
5838970 | Thomas | Nov 1998 | A |
5862325 | Reed et al. | Jan 1999 | A |
5884303 | Brown | Mar 1999 | A |
5893086 | Schmuck et al. | Apr 1999 | A |
5897638 | Lasser et al. | Apr 1999 | A |
5905990 | Inglett | May 1999 | A |
5917998 | Cabrera et al. | Jun 1999 | A |
5920873 | Van Huben et al. | Jul 1999 | A |
5926816 | Bauer et al. | Jul 1999 | A |
5937406 | Balabine et al. | Aug 1999 | A |
5991302 | Berl et al. | Nov 1999 | A |
5995491 | Richter et al. | Nov 1999 | A |
5999664 | Mahoney et al. | Dec 1999 | A |
6012083 | Savitsky et al. | Jan 2000 | A |
6029168 | Frey | Feb 2000 | A |
6044367 | Wolff | Mar 2000 | A |
6047129 | Frye | Apr 2000 | A |
6072942 | Stockwell et al. | Jun 2000 | A |
6078929 | Rao | Jun 2000 | A |
6085234 | Pitts et al. | Jul 2000 | A |
6088694 | Burns et al. | Jul 2000 | A |
6104706 | Richter et al. | Aug 2000 | A |
6128627 | Mattis et al. | Oct 2000 | A |
6128717 | Harrison et al. | Oct 2000 | A |
6161145 | Bainbridge et al. | Dec 2000 | A |
6161185 | Guthrie et al. | Dec 2000 | A |
6181336 | Chiu et al. | Jan 2001 | B1 |
6202156 | Kalajan | Mar 2001 | B1 |
6223206 | Dan et al. | Apr 2001 | B1 |
6233648 | Tomita | May 2001 | B1 |
6237008 | Beal et al. | May 2001 | B1 |
6256031 | Meijer et al. | Jul 2001 | B1 |
6282610 | Bergsten | Aug 2001 | B1 |
6289345 | Yasue | Sep 2001 | B1 |
6308162 | Ouimet et al. | Oct 2001 | B1 |
6324581 | Xu et al. | Nov 2001 | B1 |
6329985 | Tamer et al. | Dec 2001 | B1 |
6339785 | Feigenbaum | Jan 2002 | B1 |
6349343 | Foody et al. | Feb 2002 | B1 |
6374263 | Bunger et al. | Apr 2002 | B1 |
6389433 | Bolosky et al. | May 2002 | B1 |
6393581 | Friedman et al. | May 2002 | B1 |
6397246 | Wolfe | May 2002 | B1 |
6412004 | Chen et al. | Jun 2002 | B1 |
6438595 | Blumenau et al. | Aug 2002 | B1 |
6466580 | Leung | Oct 2002 | B1 |
6469983 | Narayana et al. | Oct 2002 | B2 |
6477544 | Bolosky et al. | Nov 2002 | B1 |
6487561 | Ofek et al. | Nov 2002 | B1 |
6493804 | Soltis et al. | Dec 2002 | B1 |
6516350 | Lumelsky et al. | Feb 2003 | B1 |
6516351 | Borr | Feb 2003 | B2 |
6542909 | Tamer et al. | Apr 2003 | B1 |
6549916 | Sedlar | Apr 2003 | B1 |
6553352 | Delurgio et al. | Apr 2003 | B2 |
6556997 | Levy | Apr 2003 | B1 |
6556998 | Mukherjee et al. | Apr 2003 | B1 |
6560230 | Li et al. | May 2003 | B1 |
6601101 | Lee et al. | Jul 2003 | B1 |
6606663 | Liao et al. | Aug 2003 | B1 |
6612490 | Herrendoerfer et al. | Sep 2003 | B1 |
6654346 | Mahalingaiah et al. | Nov 2003 | B1 |
6721794 | Taylor et al. | Apr 2004 | B2 |
6728265 | Yavatkar et al. | Apr 2004 | B1 |
6775672 | Mahalingam et al. | Apr 2004 | B2 |
6738357 | Richter et al. | May 2004 | B1 |
6738790 | Klein et al. | May 2004 | B1 |
6742035 | Zayas et al. | May 2004 | B1 |
6744776 | Kalkunte et al. | Jun 2004 | B1 |
6748420 | Quatrano et al. | Jun 2004 | B1 |
6754215 | Arikawa et al. | Jun 2004 | B1 |
6757706 | Dong et al. | Jun 2004 | B1 |
6775673 | Mahalingam et al. | Aug 2004 | B2 |
6775679 | Gupta | Aug 2004 | B2 |
6782450 | Arnott et al. | Aug 2004 | B2 |
6801960 | Ericson et al. | Oct 2004 | B1 |
6826613 | Wang et al. | Nov 2004 | B1 |
6839761 | Kadyk et al. | Jan 2005 | B2 |
6847959 | Arrouye et al. | Jan 2005 | B1 |
6847970 | Keller et al. | Jan 2005 | B2 |
6850997 | Rooney et al. | Feb 2005 | B1 |
6871245 | Bradley | Mar 2005 | B2 |
6880017 | Marce et al. | Apr 2005 | B1 |
6889249 | Miloushev et al. | May 2005 | B2 |
6914881 | Mansfield et al. | Jul 2005 | B1 |
6922688 | Frey, Jr. | Jul 2005 | B1 |
6934706 | Mancuso et al. | Aug 2005 | B1 |
6938039 | Bober et al. | Aug 2005 | B1 |
6938059 | Tamer et al. | Aug 2005 | B2 |
6959373 | Testardi | Oct 2005 | B2 |
6961815 | Kistler et al. | Nov 2005 | B2 |
6973455 | Vahalia et al. | Dec 2005 | B1 |
6973549 | Testardi | Dec 2005 | B1 |
6975592 | Seddigh et al. | Dec 2005 | B1 |
6985936 | Agarwalla et al. | Jan 2006 | B2 |
6985956 | Luke et al. | Jan 2006 | B2 |
6986015 | Testardi | Jan 2006 | B2 |
6990114 | Erimli et al. | Jan 2006 | B1 |
6990547 | Ulrich et al. | Jan 2006 | B2 |
6990667 | Ulrich et al. | Jan 2006 | B2 |
6996841 | Kadyk et al. | Feb 2006 | B2 |
7003533 | Noguchi et al. | Feb 2006 | B2 |
7006981 | Rose et al. | Feb 2006 | B2 |
7010553 | Chen et al. | Mar 2006 | B2 |
7013379 | Testardi | Mar 2006 | B1 |
7020644 | Jameson | Mar 2006 | B2 |
7020669 | McCann et al. | Mar 2006 | B2 |
7024427 | Bobbitt et al. | Apr 2006 | B2 |
7039061 | Connor et al. | May 2006 | B2 |
7051112 | Dawson | May 2006 | B2 |
7054998 | Arnott et al. | May 2006 | B2 |
7072917 | Wong et al. | Jul 2006 | B2 |
7075924 | Richter et al. | Jul 2006 | B2 |
7089286 | Malik | Aug 2006 | B1 |
7111115 | Peters et al. | Sep 2006 | B2 |
7113962 | Kee et al. | Sep 2006 | B1 |
7120728 | Krakirian et al. | Oct 2006 | B2 |
7120746 | Campbell et al. | Oct 2006 | B2 |
7127556 | Blumenau et al. | Oct 2006 | B2 |
7133967 | Fujie et al. | Nov 2006 | B2 |
7143146 | Nakatani et al. | Nov 2006 | B2 |
7146524 | Patel et al. | Dec 2006 | B2 |
7152184 | Maeda et al. | Dec 2006 | B2 |
7155466 | Rodriguez et al. | Dec 2006 | B2 |
7165095 | Sim | Jan 2007 | B2 |
7167821 | Hardwick et al. | Jan 2007 | B2 |
7171469 | Ackaouy et al. | Jan 2007 | B2 |
7173929 | Testardi | Feb 2007 | B1 |
7194579 | Robinson et al. | Mar 2007 | B2 |
7234074 | Cohn et al. | Jun 2007 | B2 |
7236491 | Tsao et al. | Jun 2007 | B2 |
7280536 | Testardi | Oct 2007 | B2 |
7284150 | Ma et al. | Oct 2007 | B2 |
7293097 | Borr | Nov 2007 | B2 |
7293099 | Kalajan | Nov 2007 | B1 |
7293133 | Colgrove et al. | Nov 2007 | B1 |
7343351 | Bishop et al. | Mar 2008 | B1 |
7343398 | Lownsbrough | Mar 2008 | B1 |
7346664 | Wong et al. | Mar 2008 | B2 |
7383288 | Miloushev et al. | Jun 2008 | B2 |
7401220 | Bolosky et al. | Jul 2008 | B2 |
7406484 | Srinivasan et al. | Jul 2008 | B1 |
7415488 | Muth et al. | Aug 2008 | B1 |
7415608 | Bolosky et al. | Aug 2008 | B2 |
7440982 | Lu et al. | Oct 2008 | B2 |
7457982 | Rajan | Nov 2008 | B2 |
7467158 | Marinescu | Dec 2008 | B2 |
7475146 | Bazot et al. | Jan 2009 | B2 |
7475241 | Patel et al. | Jan 2009 | B2 |
7477796 | Sasaki et al. | Jan 2009 | B2 |
7509322 | Miloushev et al. | Mar 2009 | B2 |
7512673 | Miloushev et al. | Mar 2009 | B2 |
7519813 | Cox et al. | Apr 2009 | B1 |
7562110 | Miloushev et al. | Jul 2009 | B2 |
7571168 | Bahar et al. | Aug 2009 | B2 |
7574433 | Engel | Aug 2009 | B2 |
7587471 | Yasuda et al. | Sep 2009 | B2 |
7590747 | Coates et al. | Sep 2009 | B2 |
7599941 | Bahar et al. | Oct 2009 | B2 |
7610307 | Havewala et al. | Oct 2009 | B2 |
7610390 | Yared et al. | Oct 2009 | B2 |
7624109 | Testardi | Nov 2009 | B2 |
7639883 | Gill | Dec 2009 | B2 |
7644109 | Manley et al. | Jan 2010 | B2 |
7653699 | Colgrove et al. | Jan 2010 | B1 |
7685177 | Hagerstrom et al. | Mar 2010 | B1 |
7689596 | Tsunoda | Mar 2010 | B2 |
7694082 | Golding et al. | Apr 2010 | B2 |
7711771 | Kirnos | May 2010 | B2 |
7734603 | McManis | Jun 2010 | B1 |
7743035 | Chen et al. | Jun 2010 | B2 |
7752294 | Meyer et al. | Jul 2010 | B2 |
7769711 | Srinivasan et al. | Aug 2010 | B2 |
7788335 | Miloushev et al. | Aug 2010 | B2 |
7793342 | Ebrahimi et al. | Sep 2010 | B1 |
7809691 | Karmarkar et al. | Oct 2010 | B1 |
7818299 | Federwisch et al. | Oct 2010 | B1 |
7822939 | Veprinsky et al. | Oct 2010 | B1 |
7831639 | Panchbudhe et al. | Nov 2010 | B1 |
7836493 | Xia et al. | Nov 2010 | B2 |
7849112 | Mane et al. | Dec 2010 | B2 |
7870154 | Shitomi et al. | Jan 2011 | B2 |
7877511 | Berger et al. | Jan 2011 | B1 |
7885970 | Lacapra | Feb 2011 | B2 |
7904466 | Valencia et al. | Mar 2011 | B1 |
7913053 | Newland | Mar 2011 | B1 |
7953701 | Okitsu et al. | May 2011 | B2 |
7958347 | Ferguson | Jun 2011 | B1 |
8005953 | Miloushev et al. | Aug 2011 | B2 |
8046547 | Chatterjee et al. | Oct 2011 | B1 |
8103622 | Karinta | Jan 2012 | B1 |
8112392 | Bunnell et al. | Feb 2012 | B1 |
8140695 | Nusbickel | Mar 2012 | B2 |
8271751 | Hinrichs, Jr. | Sep 2012 | B2 |
8326798 | Driscoll et al. | Dec 2012 | B1 |
8351600 | Resch | Jan 2013 | B2 |
20010007560 | Masuda et al. | Jul 2001 | A1 |
20010014891 | Hoffert et al. | Aug 2001 | A1 |
20010047293 | Waller et al. | Nov 2001 | A1 |
20010051955 | Wong | Dec 2001 | A1 |
20020035537 | Waller et al. | Mar 2002 | A1 |
20020059263 | Shima et al. | May 2002 | A1 |
20020065810 | Bradley | May 2002 | A1 |
20020073105 | Noguchi et al. | Jun 2002 | A1 |
20020083118 | Sim | Jun 2002 | A1 |
20020087887 | Busam et al. | Jul 2002 | A1 |
20020106263 | Winker | Aug 2002 | A1 |
20020120763 | Miloushev et al. | Aug 2002 | A1 |
20020133330 | Loisey et al. | Sep 2002 | A1 |
20020133491 | Sim et al. | Sep 2002 | A1 |
20020138502 | Gupta | Sep 2002 | A1 |
20020143909 | Botz et al. | Oct 2002 | A1 |
20020147630 | Rose et al. | Oct 2002 | A1 |
20020150253 | Brezak et al. | Oct 2002 | A1 |
20020156905 | Weissman | Oct 2002 | A1 |
20020161911 | Pinckney, III et al. | Oct 2002 | A1 |
20020188667 | Kirnos | Dec 2002 | A1 |
20020194342 | Lu et al. | Dec 2002 | A1 |
20030005280 | Bobde et al. | Jan 2003 | A1 |
20030009429 | Jameson | Jan 2003 | A1 |
20030012382 | Ferchichi et al. | Jan 2003 | A1 |
20030028514 | Lord et al. | Feb 2003 | A1 |
20030033308 | Patel et al. | Feb 2003 | A1 |
20030033535 | Fisher et al. | Feb 2003 | A1 |
20030061240 | McCann et al. | Mar 2003 | A1 |
20030065956 | Belapurkar et al. | Apr 2003 | A1 |
20030115218 | Bobbitt et al. | Jun 2003 | A1 |
20030115439 | Mahalingam et al. | Jun 2003 | A1 |
20030128708 | Inoue et al. | Jul 2003 | A1 |
20030135514 | Patel et al. | Jul 2003 | A1 |
20030149781 | Yared et al. | Aug 2003 | A1 |
20030156586 | Lee et al. | Aug 2003 | A1 |
20030159072 | Bellinger et al. | Aug 2003 | A1 |
20030171978 | Jenkins et al. | Sep 2003 | A1 |
20030177364 | Walsh et al. | Sep 2003 | A1 |
20030177388 | Botz et al. | Sep 2003 | A1 |
20030179755 | Fraser | Sep 2003 | A1 |
20030200207 | Dickinson | Oct 2003 | A1 |
20030204635 | Ko et al. | Oct 2003 | A1 |
20040003266 | Moshir et al. | Jan 2004 | A1 |
20040006575 | Visharam et al. | Jan 2004 | A1 |
20040010654 | Yasuda et al. | Jan 2004 | A1 |
20040017825 | Stanwood et al. | Jan 2004 | A1 |
20040025013 | Parker et al. | Feb 2004 | A1 |
20040028043 | Maveli et al. | Feb 2004 | A1 |
20040028063 | Roy et al. | Feb 2004 | A1 |
20040030857 | Krakirian et al. | Feb 2004 | A1 |
20040044705 | Stager et al. | Mar 2004 | A1 |
20040054748 | Ackaouy et al. | Mar 2004 | A1 |
20040054777 | Ackaouy et al. | Mar 2004 | A1 |
20040093474 | Lin et al. | May 2004 | A1 |
20040098383 | Tabellion et al. | May 2004 | A1 |
20040098595 | Aupperle et al. | May 2004 | A1 |
20040133573 | Miloushev et al. | Jul 2004 | A1 |
20040133577 | Miloushev et al. | Jul 2004 | A1 |
20040133606 | Miloushev et al. | Jul 2004 | A1 |
20040133607 | Miloushev et al. | Jul 2004 | A1 |
20040133650 | Miloushev et al. | Jul 2004 | A1 |
20040133652 | Miloushev et al. | Jul 2004 | A1 |
20040139355 | Axel et al. | Jul 2004 | A1 |
20040148380 | Meyer et al. | Jul 2004 | A1 |
20040153479 | Mikesell et al. | Aug 2004 | A1 |
20040181605 | Nakatani et al. | Sep 2004 | A1 |
20040199547 | Winter et al. | Oct 2004 | A1 |
20040213156 | Smallwood et al. | Oct 2004 | A1 |
20040236798 | Srinivasan et al. | Nov 2004 | A1 |
20040267830 | Wong et al. | Dec 2004 | A1 |
20050021615 | Arnott et al. | Jan 2005 | A1 |
20050050107 | Mane et al. | Mar 2005 | A1 |
20050091214 | Probed et al. | Apr 2005 | A1 |
20050108575 | Yung | May 2005 | A1 |
20050114291 | Becker-Szendy et al. | May 2005 | A1 |
20050114701 | Atkins et al. | May 2005 | A1 |
20050117589 | Douady et al. | Jun 2005 | A1 |
20050160161 | Barrett et al. | Jul 2005 | A1 |
20050175013 | Le Pennec et al. | Aug 2005 | A1 |
20050187866 | Lee | Aug 2005 | A1 |
20050198501 | Andreev et al. | Sep 2005 | A1 |
20050213587 | Cho et al. | Sep 2005 | A1 |
20050246393 | Coates et al. | Nov 2005 | A1 |
20050289109 | Arrouye et al. | Dec 2005 | A1 |
20050289111 | Tribble et al. | Dec 2005 | A1 |
20060010502 | Mimatsu et al. | Jan 2006 | A1 |
20060045096 | Farmer et al. | Mar 2006 | A1 |
20060074922 | Nishimura | Apr 2006 | A1 |
20060075475 | Boulos et al. | Apr 2006 | A1 |
20060080353 | Miloushev et al. | Apr 2006 | A1 |
20060106882 | Douceur et al. | May 2006 | A1 |
20060112151 | Manley et al. | May 2006 | A1 |
20060123062 | Bobbitt et al. | Jun 2006 | A1 |
20060140193 | Kakani et al. | Jun 2006 | A1 |
20060153201 | Hepper et al. | Jul 2006 | A1 |
20060161518 | Lacapra | Jul 2006 | A1 |
20060167838 | Lacapra | Jul 2006 | A1 |
20060179261 | Rajan | Aug 2006 | A1 |
20060184589 | Lees et al. | Aug 2006 | A1 |
20060190496 | Tsunoda | Aug 2006 | A1 |
20060200470 | Lacapra et al. | Sep 2006 | A1 |
20060206547 | Kulkarni et al. | Sep 2006 | A1 |
20060212746 | Amegadzie et al. | Sep 2006 | A1 |
20060218135 | Bisson et al. | Sep 2006 | A1 |
20060224636 | Kathuria et al. | Oct 2006 | A1 |
20060224687 | Popkin et al. | Oct 2006 | A1 |
20060230265 | Krishna | Oct 2006 | A1 |
20060242179 | Chen et al. | Oct 2006 | A1 |
20060259949 | Schaefer et al. | Nov 2006 | A1 |
20060268692 | Wright et al. | Nov 2006 | A1 |
20060271598 | Wong et al. | Nov 2006 | A1 |
20060277225 | Mark et al. | Dec 2006 | A1 |
20060282461 | Marinescu | Dec 2006 | A1 |
20060282471 | Mark et al. | Dec 2006 | A1 |
20070022121 | Bahar et al. | Jan 2007 | A1 |
20070024919 | Wong et al. | Feb 2007 | A1 |
20070027929 | Whelan | Feb 2007 | A1 |
20070027935 | Haselton et al. | Feb 2007 | A1 |
20070028068 | Golding et al. | Feb 2007 | A1 |
20070053297 | Wu et al. | Mar 2007 | A1 |
20070088702 | Fridella et al. | Apr 2007 | A1 |
20070098284 | Sasaki et al. | May 2007 | A1 |
20070136308 | Tsirigotis et al. | Jun 2007 | A1 |
20070139227 | Speirs, II et al. | Jun 2007 | A1 |
20070180314 | Kawashima et al. | Aug 2007 | A1 |
20070208748 | Li | Sep 2007 | A1 |
20070209075 | Coffman | Sep 2007 | A1 |
20070226331 | Srinivasan et al. | Sep 2007 | A1 |
20080021866 | Hinton | Jan 2008 | A1 |
20080046432 | Anderson et al. | Feb 2008 | A1 |
20080070575 | Claussen et al. | Mar 2008 | A1 |
20080104443 | Akutsu et al. | May 2008 | A1 |
20080114718 | Anderson et al. | May 2008 | A1 |
20080189468 | Schmidt et al. | Aug 2008 | A1 |
20080200207 | Donahue et al. | Aug 2008 | A1 |
20080208933 | Lyon | Aug 2008 | A1 |
20080209073 | Tang | Aug 2008 | A1 |
20080215836 | Sutoh et al. | Sep 2008 | A1 |
20080222223 | Srinivasan et al. | Sep 2008 | A1 |
20080243769 | Arbour et al. | Oct 2008 | A1 |
20080282047 | Arakawa et al. | Nov 2008 | A1 |
20080294446 | Guo et al. | Nov 2008 | A1 |
20090007162 | Sheehan | Jan 2009 | A1 |
20090013138 | Sudhakar | Jan 2009 | A1 |
20090037975 | Ishikawa et al. | Feb 2009 | A1 |
20090041230 | Williams | Feb 2009 | A1 |
20090055507 | Oeda | Feb 2009 | A1 |
20090077097 | Lacapra et al. | Mar 2009 | A1 |
20090089344 | Brown et al. | Apr 2009 | A1 |
20090094252 | Wong et al. | Apr 2009 | A1 |
20090106255 | Lacapra et al. | Apr 2009 | A1 |
20090106263 | Khalid et al. | Apr 2009 | A1 |
20090132616 | Winter et al. | May 2009 | A1 |
20090204649 | Wong et al. | Aug 2009 | A1 |
20090204650 | Wong et al. | Aug 2009 | A1 |
20090204705 | Marinov et al. | Aug 2009 | A1 |
20090210431 | Marinkovic et al. | Aug 2009 | A1 |
20090210875 | Bolles et al. | Aug 2009 | A1 |
20090240705 | Miloushev et al. | Sep 2009 | A1 |
20090240899 | Akagawa et al. | Sep 2009 | A1 |
20090254592 | Marinov et al. | Oct 2009 | A1 |
20090265396 | Ram et al. | Oct 2009 | A1 |
20100017643 | Baba et al. | Jan 2010 | A1 |
20100077294 | Watson | Mar 2010 | A1 |
20100082542 | Feng et al. | Apr 2010 | A1 |
20100205206 | Rabines et al. | Aug 2010 | A1 |
20100211547 | Kamei et al. | Aug 2010 | A1 |
20100325634 | Ichikawa et al. | Dec 2010 | A1 |
20110083185 | Sheleheda et al. | Apr 2011 | A1 |
20110087696 | Lacapra | Apr 2011 | A1 |
20110093471 | Brockway et al. | Apr 2011 | A1 |
20110107112 | Resch | May 2011 | A1 |
20110119234 | Schack et al. | May 2011 | A1 |
20110320882 | Beaty et al. | Dec 2011 | A1 |
20120144229 | Nadolski | Jun 2012 | A1 |
20120150699 | Trapp et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
2003300350 | Jul 2004 | AU |
2080530 | Apr 1994 | CA |
2512312 | Jul 2004 | CA |
0605088 | Feb 1996 | EP |
0 738 970 | Oct 1996 | EP |
63010250 | Jan 1988 | JP |
6205006 | Jul 1994 | JP |
06-332782 | Dec 1994 | JP |
6-332782 | Dec 1994 | JP |
8021924 | Mar 1996 | JP |
08-328760 | Dec 1996 | JP |
08-339355 | Dec 1996 | JP |
9016510 | Jan 1997 | JP |
11282741 | Oct 1999 | JP |
2000-183935 | Jun 2000 | JP |
566291 | Dec 2008 | NZ |
WO 0239696 | May 2002 | WO |
WO 02056181 | Jul 2002 | WO |
WO 2004061605 | Jul 2004 | WO |
WO 2006091040 | Aug 2006 | WO |
WO 2008130983 | Oct 2008 | WO |
WO 2008147973 | Dec 2008 | WO |
Entry |
---|
“Ankeena is now part of Juniper Networks,” Obtained from http://www.ankeena.com/technology (Jun. 2, 2010). |
“Auspex Storage Architecture Guide,” Second Edition, 2001, Auspex Systems, Inc., www.auspex.com, last accessed on Dec. 30, 2002. |
“CSA Persistent File System Technology,” Colorado Software Architecture, Inc.: A White Paper, Jan. 1, 1999, p. 1-3, <http://www.cosoa.com/white_papers/pfs.php>. |
“Deploying the BIG-IP LTM With Multiple BIG-IP AAM and ASM Devices”, Deployment Guide, F5 Networks, Inc., Feb. 4, 2015, pp. 1-14. |
“Distributed File System: Logical View of Physical Storage: White Paper,” 1999, Microsoft Corp., www.microsoft.com <http://www.eu.microsoft.com/TechNet/prodtechnol/windows2000serv/maintain/DFSnt95>, pp. 1-26, last accessed on Dec. 20, 2002. |
“How DFS Works: Remote File Systems,” Distributed File System (DFS) Technical Reference, retrieved from the Internet on Feb. 13, 2009: URL:http://technetmicrosoft.com/en-us/library/cc782417.aspx>(2003). |
“NERSC Tutorials: I/O on the Cray T3E,” chapter 8, “Disk Striping,” National Energy Research Scientific Computing Center (NERSC), http://hpcf.nersc.gov, last accessed on Dec. 27, 2002. |
“Scaling Next Generation Web Infrastructure with Content-Intelligent Switching : White Paper,” Apr. 2000, Alteon WebSystems, Inc., (now Nortel Networks). |
“The AFS File System in Distributed Computing Environment,” www.transarc.ibm.com/Library/whitepapers/AFS/afsoverview.html, last accessed on Dec. 20, 2002. |
“VERITAS SANPoint Foundation Suite(tm) and SANPoint Foundation Suite(tm) HA: New VERITAS Volume Management and File System Technology for Cluster Environments,” Sep. 2001, VERITAS Software Corp. |
“Welcome to the RSYNC Web Pages,” Retrieved from the Internet URL: http://samba.anu.edu.au/rsync/ (Retrieved on Dec. 18, 2009). |
“Windows Clustering Technologies—An Overview,” Nov. 2000. |
Aguilera, Marcos K. et al., “Improving recoverability in multi-tier storage systems,” International Conference on Dependable Systems and Networks (DSN-2007), Jun. 2007, 10 pages, Edinburgh, Scotland. |
Anderson et al., “Serverless Network File System,” in the 15th Symposium on Operating Systems Principles, Dec. 1995, Association for Computing Machinery, Inc. |
Anderson, Darrell C. et al., “Interposed Request Routing for Scalable Network Storage,” ACM Transactions on Computer Systems 20(1):1-24 (Feb. 2002). |
Apple, Inc., “Mac OS X Tiger Keynote Intro. Part 2,” Jun. 2004, www.youtube.com <http://www.youtube.com/watch?v=zSBJwEmRJbY>, p. 1. |
Apple, Inc., “Tiger Developer Overview Series: Working with Spotlight,” Nov. 23, 2004, www.apple.com using www.archive.org <http://web.archive.org/web/20041123005335/developer.apple.com/macosx/tiger/spotlight.html>, pp. 1-11. |
Apple, Inc., Transcription of “Mac Os X Keynote Intro. Part 2” Jun. 2004, www.youtube.com http://www.youtube.com/watch?v=zSBJwEmRJbY, (with snapshots) pp. 1-6. |
Basney, Jim et al., “Credential Wallets: A Classification of Credential Repositories Highlighting MyProxy,” TPRC 2003, Sep. 19-21, 2003. |
Botzum, Keys, “Single Sign on—A Contrarian View,” Open Group Website, <http://www.opengroup.org/security/topics.htm>, Aug. 6, 2001, pp. 1-5. |
Cabrera et al., “Swift: A Storage Architecture for Large Objects,” In Proceedings of the-Eleventh IEEE Symposium on Mass Storage Systems, 7 pages, Oct 1991. |
Cabrera et al., “Swift: Using Distributed Disk Striping to Provide High I/O Data Rates,” Computing Systems 4(4):405-436 (Fall 1991). |
Cabrera et al., “Using Data Striping in a Local Area Network,” 1992, technical report No. UCSC-CRL-92-09 of the Computer & Information Sciences Department of University of California at Santa Cruz. |
Callaghan et al., “NFS Version 3 Protocol Specifications” (RFC 1813), Jun. 1995, The Internet Engineering Task Force (IETN). |
Carns et al., “PVFS: A Parallel File System for Linux Clusters,” in Proceedings of the Extreme Linux Track: 4th Annual Linux Showcase and Conference, pp. 317-327, Atlanta, Georgia, Oct. 2000, USENIX Association. |
Cavale, M. R., “Introducing Microsoft Cluster Service (MSCS) in the Windows Server 2003”, Microsoft Corporation, Nov. 2002. |
English Language Abstract of JP 08-328760 from Patent Abstracts of Japan, published Dec. 13, 1996. |
English Language Abstract of JP 08-339355 from Patent Abstracts of Japan, published Dec. 24, 1996. |
English Translation of Notification of Reason(s) for Refusal for JP 2002-556371 (Dispatch Date: Jan. 22, 2007). |
English Translation of paragraphs 17, 32, and 40-52 of JP 08-328760, published Dec. 13, 1996. |
Fan et al., “Summary Cache: A Scalable Wide-Area Protocol”, Computer Communications Review, Association Machinery, New York, USA, Oct. 1998, vol. 28, Web Cache Sharing for Computing No. 4, pp. 254-265. |
Farley, M., “Building Storage Networks,” Jan. 2000, McGraw Hill, ISBN 0072120509. |
Gibson et al., “File Server Scaling with Network-Attached Secure Disks,” in Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems (Sigmetrics '97), Association for Computing Machinery, Inc., Jun. 15-18, 1997. |
Gibson et al., “NASD Scalable Storage Systems,” Jun. 1999, USENIX99, Extreme Linux Workshop, Monterey, California. |
Gupta et al., “Algorithms for Packet Classification”, Computer Systems Laboratory, Stanford University, CA, Mar./Apr. 2001, pp. 1-29. |
Harrison, C., Copy of May 19, 2008 response to Communication pursuant to Article 96(2) EPC dated Nov. 9, 2007 in corresponding European patent application No. 02718824.2. |
Hartman, J., “The Zebra Striped Network File System,” 1994, Ph.D. dissertation submitted in the Graduate Division of the University of California at Berkeley. |
Haskin et al., “The Tiger Shark File System,” 1996, in proceedings of IEEE, Spring COMPCON, Santa Clara, CA, www.research.ibm.com, last accessed on Dec. 30, 2002. |
Heinz II G., “Priorities in Stream Transmission Control Protocol (SCTP) Multistreaming”, Thesis submitted to the Faculty of the University of Delaware, Spring 2003, pp. 1-35. |
Hu, J., Final Office action dated Sep. 21, 2007 for related U.S. Appl. No. 10/336,784. |
Hu, J., Office action dated Feb. 6, 2007 for related U.S. Appl. No. 10/336,784. |
Hwang et al., “Designing SSI Clusters with Hierarchical Checkpointing and Single I/0 Space,” IEEE Concurrency, Jan.-Mar. 1999, pp. 60-69. |
Ilvesmaki M., et al., “On the capabilities of application level traffic measurements to differentiate and classify Internet traffic”, Presented in SPIE's International Symposium ITcom, Aug. 19-21, 2001, pp. 1-11, Denver, Colorado. |
International Search Report for International Patent Application No. PCT/US02/00720 dated (Mar. 19, 2003). |
International Search Report for International Patent Application No. PCT/US03/41202 dated (Sep. 15, 2005). |
International Search Report for International Patent Application No. PCT/US2008/060449 dated (Sep. 4, 2008). |
International Search Report for International Patent Application No. PCT/US2008/064677 dated (Jun. 9, 2009). |
International Search Report for International Patent Application No. PCT/US 2008/083117 dated (Jun. 23, 2009). |
Internet Protocol,“Darpa Internet Program Protocol Specification”, (RFC: 791), Information Sciences Institute, University of Southern California, Sep. 1981, pp. 1-49. |
Jacobson, Van, “A New Way to look at Networking” Video, Google Tech Talks, Aug. 30, 2006 (http://www.youtube.com/watch?v=oCZMoY3q2uM). |
Jacobson, Van, “Introduction to Content Centric Networking,” FISS 09, Presentation, Jun. 22, 2009, pp. 1-73, Bremen, Germany. |
Karamanolis, C. et al., “An Architecture for Scalable and Manageable File Services,” HPL-2001-173, Jul. 26, 2001. p. 1-114. |
Katsurashima, W. et al., “NAS Switch: A Novel CIFS Server Virtualization,” Proceedings, 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies, 2003 (MSST 2003), Apr. 2003. |
Kimball, C.E. et al., “Automated Client-Side Integration of Distributed Application Servers,” 13Th LISA Conf., 1999, pp. 275-282 of the Proceedings. |
Klayman, J., response filed by Japanese associate to office action dated Jan. 22, 2007 in corresponding Japanese patent application No. 2002-556371. |
Klayman, J., Nov. 13, 2008 e-mail to Japanese associate including instructions for response to office action dated May 26, 2008 in corresponding Japanese patent application No. 2002-556371. |
Klayman, J., Jul. 18, 2007 e-mail to Japanese associate including instructions for response to office action dated Jan. 22, 2007 in corresponding Japanese patent application No. 2002-556371. |
Kohl et al., “The Kerberos Network Authentication Service (V5),” RFC 1510, Sep. 1993. (http://www.ietf.org/rfc/rfc1510.txt?number=1510. |
Korkuzas, V., Communication pursuant to Article 96(2) EPC dated Nov. 9, 2007 in corresponding European patent application No. 02718824.2-2201. |
Lelil, S., “Storage Technology News: AutoVirt adds tool to help data migration projects,” Feb. 25, 2011, last accessed Mar. 17, 2011, <http://searchstorage.techtarget.com/news/article/0,289142,sid5_gci1527986,00.html>. |
Long et al., “Swift/RAID: A distributed RAID System”, Computing Systems, Summer 1994, vol. 7, pp. 333-359. |
Modiano E., “Scheduling Algorithms for Message Transmission Over a Satellite Broadcast System,” MIT Lincoln Laboratory Advanced Network Group, Nov. 1997, pp. 1-7. |
Noghani et al., “A Novel Approach to Reduce Latency on the Internet: ‘Component-Based Download’,” Proceedings of the Computing, Las Vegas, NV, Jun. 2000, pp. 1-6 on the Internet: Intl Conf. on Internet. |
Norton et al., “CIFS Protocol Version CIFS-Spec 0.9,” 2001, Storage Networking Industry Association (SNIA). |
Novotny, Jason et al., “An Online Credential Repository for the Grid: MyProxy,” 2001, pp. 1-8. |
Ott D., et al., “A Mechanism for TCP-Friendly Transport-level Protocol Coordination”, USENIX Annual Technical Conference, 2002, University of North Carolina at Chapel Hill, pp. 1-12. |
Padmanabhan V., et al., “Using Predictive Prefetching to Improve World Wide Web Latency”, SIGCOM, 1996, pp. 1-15. |
Pashalidis, Andreas et al., “A Taxonomy of Single Sign-On Systems,” 2003, pp. 249-264, Royal Holloway, University of London, Egham Sunray, TW20, 0EX, United Kingdom. |
Pashalidis, Andreas et al., “Impostor: a single sign-on system for use from untrusted devices,” Global Telecommunications Conference, 2004, GLOBECOM '04, IEEE, Issue Date: Nov. 29-Dec. 3, 2004.Royal Holloway, University of London. |
Patterson et al., “A case for redundant arrays of inexpensive disks (RAID)”, Chicago, Illinois, Jun. 1-3, 1998, in Proceedings of ACM SIGMOD conference on the Management of Data, pp. 109-116, Association for Computing Machinery, Inc., www.acm.org, last accessed on Dec. 20, 2002. |
Pearson, P.K., “Fast Hashing of Variable-Length Text Strings,” Comm. of the ACM, Jun. 1990, vol. 33, No. 6. |
Peterson, M., “Introducing Storage Area Networks,” Feb. 1998, InfoStor, www.infostor.com, last accessed on Dec. 20, 2002. |
Preslan et al., “Scalability and Failure Recovery in a Linux Cluster File System,” in Proceedings of the 4th Annual Linux Showcase & Conference, Atlanta, Georgia, Oct. 10-14, 2000, pp. 169-180 of the Proceedings, www.usenix.org, last accessed on Dec. 20, 2002. |
Response filed Jul. 6, 2007 to Office action dated Feb. 6, 2007 for related U.S. Appl. No. 10/336,784. |
Response filed Mar. 20, 2008 to Final Office action dated Sep. 21, 2007 for related U.S. Appl. No. 10/336,784. |
Rodriguez et al., “Parallel-access for mirror sites in the Internet,” InfoCom 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE Tel Aviv, Israel Mar. 26-30, 2000, Piscataway, NJ, USA, IEEE, US, Mar. 26, 2000 (Mar. 26, 2000), pp. 864-873, XP010376176 ISBN: 0-7803-5880-5 p. 867, col. 2, last paragraph—p. 868, col. 1, paragraph 1. |
Rosen E., et al., “MPLS Label Stack Encoding”, (RFC:3032) Network Working Group, Jan. 2001, pp. 1-22, (http://www.ietf.org/rfc/rfc3032.txt). |
RSYNC, “Welcome to the RSYNC Web Pages,” Retrieved from the Internet URL: http://samba.anu.edu.au/rsync/ (Retrieved on Dec. 18, 2009). |
Savage, et al., “AFRAID—A Frequently Redundant Array of Independent Disks,” 1996 USENIX Technical Conf., San Diego, California, Jan. 22-26, 1996. |
Soltis et al., The Design and Performance of Shared Disk File System for IRIX, 6th NASA Goddard Space Flight Center Conf. on Mass Storage & Technologies, IEEE Symposium on Mass Storage Systems, p. 1-17 (Mar. 1998). |
Soltis et al., “The Global File System,” in Proceedings of the Fifth NASA Goddard Space Flight Center Conference on Mass Storage Systems and Technologies, Sep. 17-19, 1996, College Park, Maryland. |
Sorenson, K.M., “Installation and Administration: Kimberlite Cluster Version 1.1.0, Rev. D.” Mission Critical Linux, Dec. 2000. |
Stakutis, C., “Benefits of SAN-based file system sharing,” Jul. 2000, InfoStor. |
Thekkath et al., “Frangipani: A Scalable Distributed File System,” in Proceedings of the 16th ACM Symposium on Operating Systems Principles, Oct. 1997, Association for Computing Machinery, Inc. |
Tulloch, Mitch, “Microsoft Encyclopedia of Security,” pp. 218, 300-301, Microsoft Press, 2003, Redmond, Washongton. |
Wang B., “Priority and Realtime Data Transfer Over the Best-Effort Internet”, Dissertation Abstract, Sep. 2005, ScholarWorks@UMASS. |
Wikipedia, “Content-centric networking”, pp. 1-4, Accessed Nov. 1, 2012, (en.wikipedia.org/wiki/Content-centric_networking). |
Wilkes, J., et al., “The HP AutoRAID Hierarchical Storage System,” ACM Transactions on Computer Systems, Feb. 1996, vol. 14, No. 1. |
Woo T.Y.C., “A Modular Approach to Packet Classification: Algorithms and Results”, Nineteenth Annual Conference of the IEEE Computer and Communications Societies 3(3):1213-22, Mar. 26-30, 2000, abstract only, (http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=832499). |
Zayas, E., “AFS-3 Programmer's Reference: Architectural Overview,” Transarc Corp., version 1.0 of Sep. 2, 1991, doc. No. FS-00-D160. |
“Windows Clustering Technologies—An Overview,” Nov. 2000, Microsoft Corp., www.microsoft.com, last accessed on Dec. 30, 2002. |
Apple, Inc., “Tiger Developer Overview Series: Working with Spotlight,” Nov. 23, 2004, www.apple.com using www.archive.org <http://web.archive.org/web/20041123005335/developer.apple.com/macosx/tiger/spotlight.html>, pp. 1-6. |
Callaghan et al., “NFS Version 3 Protocol Specifications” (RFC 1813), Jun. 1995, The Internet Engineering Task Force (IETN), www.ietf.org, last accessed on Dec. 30, 2002. |
Harrison, C., May 19, 2008 response to Communication pursuant to Article 96(2) EPC dated Nov. 9, 2007 in corresponding European patent application No. 02718824.2. |
Norton et al., “CIFS Protocol Version CIFS-Spec 0.9,” 2001, Storage Networking Industry Association (SNIA), www.snia.org, last accessed on Mar. 26, 2001. |
Pashalidis, Andreas et al., “A Taxonomy of Single Sign-On Systems,” 2003, pp. 1-16, Royal Holloway, University of London, Egham Sunray, TW20, 0EX, United Kingdom. |
RSYNC, “Welcome to the RSYNC Web Pages,” Retrieved from the Internet URL: http://samba.ami.edu.au/rsync/ (Retrieved on Dec. 18, 2009). |
Sorenson, K.M., “Installation and Administration: Kimberlite Cluster Version 1.1.0, Rev. D.” Mission Critical Linnux, (no year, month, day) http://oss.missioncriticallinnux.com/kimberlite/kimberlite.pdf, Dec. 2000. |
Stakutis, C., “Benefits of SAN-based file system sharing,” Jul. 2000, InfoStor, www.infostor.com, last accessed on Dec. 30, 2002. |
Uesugi, H., Nov. 26, 2008 amendment filed by Japanese associate in response to office action dated May 26, 2008 in corresponding Japanese patent application No. 2002-556371. |
Uesugi, H., English translation of office action dated May 26, 2008 in corresponding Japanese patent application No. 2002-556371. |
Uesugi, H., Jul. 15, 2008 letter from Japanese associate reporting office action dated May 26, 2008 in corresponding Japanese patent application No. 2002-556371. |
Wikipedia, “Content-centric networking”, pp. 1-4, 2009, (en.wikipedia.org/wiki/Content-centric_networking). |
Zayas, E., “AFS-3 Programmer's Reference: Architectural Overview,” Transarc Corp., version 1.0 of Sep. 2, 1991, doc. number FS-00-D160. |
Number | Date | Country | |
---|---|---|---|
62504664 | May 2017 | US |