Methods for pre-stressing and capping bioprosthetic tissue

Information

  • Patent Grant
  • 9101691
  • Patent Number
    9,101,691
  • Date Filed
    Monday, June 9, 2008
    17 years ago
  • Date Issued
    Tuesday, August 11, 2015
    10 years ago
Abstract
A treatment for bioprosthetic tissue used in implants or for assembled bioprosthetic heart valves to reduce in vivo calcification is disclosed. The method includes preconditioning, pre-stressing, or pre-damaging fixed bioprosthetic tissue in a manner that mimics the damage associated with post-implant use, while, and/or subsequently applying a calcification mitigant such as a capping agent or a linking agent to the damaged tissue. The capping agent suppresses the formation of binding sites in the tissue that are exposed or generated by the damage process (service stress) and otherwise would, upon implant, attract calcium, phosphate, immunogenic factors, or other precursors to calcification. The linking agent will act as an elastic reinforcement or shock-absorbing spring element in the tissue structure at the site of damage from the pre-stressing. In one method, tissue leaflets in assembled bioprosthetic heart valves are preconditioned by simulating actual flow conditions for a predetermined number of cycles, during or after which the valve is exposed to the capping agent.
Description
FIELD OF THE INVENTION
Background of the Invention

Heart valve replacement may be indicated when there is a narrowing of the native heart valve, commonly referred to as stenosis, or when the native valve leaks or regurgitates, such as when the leaflets are calcified. In one therapeutic solution, the native valve may be excised and replaced with either a biologic or a mechanical valve.


Tissue-type or “bioprosthetic” valves have flexible leaflets supported by a base structure that project into the flow stream and function much like those of a natural human heart valve by coapting against each other to ensure one-way blood flow. In tissue-type valves, a whole xenograft valve (e.g., porcine) or a plurality of xenograft leaflets (e.g., bovine pericardium) typically provide fluid occluding surfaces. Synthetic leaflets have also been proposed. Two or more flexible leaflets mount within a peripheral support structure, for example as seen in the CARPENTIER-EDWARDS Porcine Heart Valve and PERIMOUNT Pericardial Heart Valve available from Edwards Lifesciences of Irvine, Calif.


Implantable biological tissues can be formed of human tissues preserved by freezing (i.e., cryopreserving) the homograft tissues, or of animal tissues preserved by chemically fixing (i.e., tanning) the xenograft tissues. The type of biological tissues used as bioprostheses, include cardiac valves, blood vessels, skin, dura mater, pericardium, small intestinal submucosa (“SIS tissue”), ligaments and tendons. These biological tissues typically contain connective tissue proteins (i.e., collagen and elastin) that act as the supportive framework of the tissue. The pliability or rigidity of each biological tissue is largely determined by the relative amounts of collagen and elastin present within the tissue and/or by the physical structure and configuration of its connective tissue framework. Collagen is the most abundant connective tissue protein present in most tissues. Each collagen molecule is made up of three (3) polypeptide chains intertwined in a coiled helical configuration.


The techniques used for chemical fixation of biological tissues typically involve the exposure of the biological tissue to one or more chemical fixatives (i.e., tanning agents) that form cross-linkages between the polypeptide chains within a given collagen molecule (i.e., intramolecular crosslinkages), or between adjacent collagen molecules (i.e., intermolecular crosslinkages). Examples of chemical fixative agents that have been utilized to cross-link collagenous biological tissues include: formaldehyde, glutaraldehyde, dialdehyde starch, hexamethylene diisocyanate and certain polyepoxy compounds.


One problem associated with the implantation of many bioprosthetic materials is that the connective tissue proteins (i.e., collagen and elastin) within these materials can become calcified following implantation within the body. Such calcification can result in undesirable stiffening or degradation of the bioprosthesis.


Of the various chemical fixatives available, glutaraldehyde (also referred to as simply “glut”) has been the most widely used since the discovery of its antiimmunological and antidegenerative effects by Dr. Alain Carpentier in 1968. See Carpentier, A., J. Thorac. Cardiovascular Surgery, 58: 467-69 (1969). In addition, glutaraldehyde is one of the most efficient sterilization agents. Glutaraldehyde is therefore used as the fixative and the sterilant for many commercially available bioprosthetic products, such as in the bioprosthetic heart valve available from Edwards Lifesciences of Irvine, Calif.


Various techniques have been proposed for mitigating the in vivo calcification of glutaraldehyde-fixed bioprostheses or for otherwise improving the glutaraldehyde fixation process. Included among these are the methods described in U.S. Pat. No. 4,729,139 (Nashef); U.S. Pat. No. 4,885,005 (Nashef et al.); U.S. Pat. No. 4,648,881 (Carpentier et al.); U.S. Pat. No. 5,002,566 (Carpentier); EP 103947 (Pollock et al.), and U.S. Pat. No. 5,215,541 (Nashef et al.), The techniques proposed in U.S. Pat. No. 5,862,806 (Cheung) include dehydration of Glutaraldehyde treated tissues prior to the application of a chemical reducing agent such as Sodium cyanoborohydride or sodium borohydride. The calcification mitigation techniques found in U.S. Pat. No. 6,471,723 involve addition of a variety of amine functions in an effort to detoxify the aldehyde groups in glutaraldehyde-fixed tissue. These chemicals are not permanently attached to the tissue and will diffuse out of the tissue over time. The use of reducing agents in conjunction with ethanol treatment is shown in Connolly, J., J. Heart Valve Disease, 13: 487-493 (2004) as being beneficial for mitigating calcification. This publication indicates that the use of reducing agents does not adversely affect the morphology or tissue shrinkage temperature of the tissue.


Recently a new technique of calcium mitigation by elevated temperature fixation of the tissue in glutaraldehyde has been developed and was described in U.S. Pat. No. 6,561,970 (Carpentier et al.), and in combination with relative tissue/fluid movement in U.S. Pat. No. 5,931,969 (Carpentier et al.). Another technique involving adjusting the pH of a glutaraldehyde fixation solution is disclosed in U.S. Pat. No. 6,878,168 (Carpentier et al.). A commercial embodiment, the Edwards Lifesciences XenoLogiX™ Tissue Treatment, eliminates up to 98% of phospholipids in an attempt to reduce calcium binding sites. In the Carpentier-Edwards ThermaFix™ Advanced Heart Valve Tissue Process also from Edwards Lifesciences, both thermal and chemical treatments are used to remove unstable glutaraldehyde molecules which reduces calcium binding sites, resulting in a marked reduction in calcium uptake versus glutaraldehyde-only controls.


Although some of these known techniques have proven to be somewhat effective, there remains a need for further improvements to lessen the propensity for long-term post-implantation calcification of fixed bioprosthetic tissues for use in implants, in particular heart valves. The prior art does not address the changes within the tissue that can occur as a result of the service (implant) environment.


SUMMARY OF THE INVENTION

The present invention accounts for certain detrimental changes within the tissue that can occur as a result of the service (implant) environment. Namely, when the tissue is cyclically stressed during normal service, certain potential binding sites for calcification, immune system attack, etc. are created. The present invention involves pre-stressing the tissue to expose such binding sites, and then capping or otherwise neutralizing such sites.


A method of treating bioprosthetic implant tissue to reduce in vivo calcification of the present invention comprises at least partially cross-linking bioprosthetic implant tissue, then stressing the cross-linked tissue; and applying a calcification mitigant to the stressed, cross-linked tissue. The calcification mitigant may be a capping agent solution having at least one constituent that can bind to calcium, phosphate, or immunogenic factor binding sites. Alternatively, the calcification mitigant is a linking agent solution including a long elastic molecule.


If the calcification mitigant comprises a capping agent, it is desirably selected from the group consisting of: an amine, an amino acid, an amino sulfonate, a hydrophilic multifunctional polymer, a hydrophobic multifunctional polymer, α-dicarbonyl, a hydrazides, a N,N-disuccinimidyl carbonate, a carbodiimide, 2-chloro-1-methylpyridinium iodide (CMPI), an antibiotic, a cell recruiting agent, a hemocompatibility agent, an antiinflammatory agent, an antiproliferative agent, an immunogenic suppressing agent, a reducing agent, and a mono-, di- or polyepoxy alkane.


The calcification mitigant is desirably delivered in one or a combination of the following solutions: an aqueous solution such as an aqueous buffered solution, water, alcohols, glycerol, or plasticizers, an organic solvent, and an organic buffered solution.


The tissue is preferably fully cross-linked prior to stressing. In one embodiment, the tissue comprises precut heart valve leaflets mounted and flexed in a suitable flow apparatus. Alternatively, the tissue may be bulk sheets of tissue flexed in a suitable apparatus. Still further, the bioprosthetic implant tissue may be a bioprosthetic heart valve, and the step of stressing comprises subjecting the heart valve to pulsed fluid flow therethrough. Desirably, the heart valve is subjected to pulsed fluid flow for at least 100 cycles.


In a preferred embodiment, the step of stressing comprises subjecting the bioprosthetic implant tissue to a simulated post-implant physiological environment. Additionally, the step of stressing comprises subjecting the bioprosthetic implant tissue to at least one stress-accelerating environmental parameter. For instance, the stress-accelerating environmental parameter may comprise a rapid pulsed fluid flow in a range of 4-1500 Hz, an elevated temperature range of 26-65° C., an acidic solution of pH of 4-7, an alkaline solution of pH 8-10, an oxidizing solution, or at least two of the preceding.


Preferably, the step of stressing is done until the newly exposed sites to be capped on the bioprosthetic tissue increase by at least 10%. Another measure is to stress the tissue until the level of damage in the bioprosthetic implant tissue increases by about 10%. Alternatively, the stressing is done at least until the rate of acid production in the bioprosthetic implant tissue decreases by about 10%.


The steps of first stressing the tissue and then applying a calcification mitigant thereto may be done multiple times. In addition, the steps of first stressing the tissue and then applying a calcification mitigant thereto may be done at least twice with different calcification mitigants.


Another aspect of the invention is a method of treating bioprosthetic implant tissue to reduce in vivo calcification, comprising cyclically stressing the bioprosthetic implant tissue until the rate of acid production in the bioprosthetic implant tissue decreases by about 10%, and then applying a calcification mitigant to the stressed tissue. Desirably, the bioprosthetic implant tissue comprises a bioprosthetic heart valve, and the step of stressing comprises subjecting the heart valve to pulsed fluid flow therethrough. The step of stressing may be done until the rate of increase of the acid level of the bioprosthetic implant tissue levels off. The calcification mitigant may be a capping agent solution having at least one constituent that can bind to calcium or phosphate, and/or immunogenic binding sites. Alternatively, the calcification mitigant comprises a linking agent solution including a long elastic molecule.


Another aspect of the invention is method of treating a bioprosthetic heart valve to reduce in vivo calcification, comprising mounting a bioprosthetic heart valve in a simulated fluid flow system, subjecting the bioprosthetic heart valve to pulsed fluid flow for at least 100 cycles, then applying a calcification mitigant to the bioprosthetic heart valve. Desirably, the bioprosthetic heart valve is subjected to pulsed fluid flow for at least 100,000 cycles. The steps of first subjecting the bioprosthetic heart valve to pulsed fluid flow and then applying a calcification mitigant thereto may be done multiple times. The steps of first subjecting the bioprosthetic heart valve to pulsed fluid flow and then applying a calcification mitigant thereto may be done at least twice with different calcification mitigants. Preferably, the step of subjecting is done until the rate of increase of the acid level of the bioprosthetic implant tissue levels off. The calcification mitigant may be a capping agent solution having at least one constituent that can bind to calcium or phosphate, and/or immunogenic binding sites. Alternatively, the calcification mitigant comprises a linking agent solution including a long elastic molecule.


A further understanding of the nature and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph showing the aldehyde and acid content in bovine pericardial tissue after several different chemical treatments;



FIG. 2 is a graph correlating the calcium content of in vivo tissue with the corresponding acid and aldehyde content for tissue treated three different ways;



FIG. 3 is a graph illustrating the acid content of glutaraldehyde treated tissue prior to and after being damaged (minced);



FIG. 4 is a graph showing the acid content of tissue treated in one particular way and subjected to increasing amounts of flexion cycles;



FIG. 5 is a graph showing the acid content of tissue treated in the same way as the tissue in the graph of FIG. 4 and subjected to increasing amounts of flexion cycles, and then after having been treated with a calcification mitigant, in this case a capping agent;



FIG. 6 is a graph showing the level of acid generation with increasing cycles from a whole prosthetic heart valve in an accelerated wear tester (AWT); and



FIG. 7 is a graph showing how the present calcification mitigation process greatly reduces the acid levels in a tissue strip subjected to flexion cycles.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Unlike the prior art that focuses only on “as-processed tissue” and without any consideration of how the tissue calcification propensity can change from imposed service stresses, the present invention provides an improved bioprosthetic tissue treatment process that is believed to greatly reduce the potential for calcification after implantation. “Bioprosthetic tissue” in this sense means at least bovine pericardium and whole porcine valves which are commonly used in bioprosthetic heart valves that must endure years and even decades without calcifying. Other tissues that may be improved by the treatment include blood vessels, skin, dura mater, pericardium, small intestinal submucosa (“SIS tissue”), ligaments and tendons. “Implants” in the present application refers not only to heart valves but also to vascular prostheses and grafts, tissue grafts, bone grafts, and orbital implant wraps, among others.


A “bioprosthetic heart valve” in the present application refers to a fully assembled prosthetic valve made at least partly from bioprosthetic tissue. Some whole porcine valves are used in so-called “stentless” bioprosthetic valves in which there is very little if any synthetic material added for support or anchoring purposes. A “stented” bioprosthetic valve typically has some form of synthetic (e.g., polymer or metallic) support for the leaflets, which, as stated, may be the leaflets of a whole porcine xenograft or separate bovine pericardial leaflets.


Prior tissue treatment processes address crosslinking, microbes, and other aspects of the tissue in a “static” setting, and typically involve immersion of the tissue in glutaraldehyde, Tween (polyoxyethylene 20 sorbitan monooleate), ethanol, formaldehyde, and other agents in order to mitigate post-implant calcification. Some prior art processes include the addition of various chemicals either in a static or dynamic (agitation) setting to reduce the toxicity of the crosslinked tissue or mitigate calcification via the use of metal ions (i.e. Al3+ or Fe3+—see U.S. Pat. No. 5,746,775 Levy) or bulk blocking agents (i.e. 2-amino oleic acid—see U.S. Pat. No. 4,976,733 Giradot). But each of these prior art process methods are only applied to initially processed tissue and not to tissue or tissue devices in a “service setting”. The prior art processes are limited to the addition of chemical or biological agents to the crosslinked tissue that are temporarily attached to the tissue, or they are limited to reduction or oxidation of the tissue alone without any addition of “capping agents” (see U.S. Pat. No. 5,862,806 Cheung).


Unlike the various prior art tissue processes, where the goal is to fix (i.e. crosslink, etc.) the tissue, this invention describes an additional process whereby acids and other potential binding sites formed from the fixation processes as well as the “binding sites” and “potential binding sites” that are generated from flexion of fixed tissue and other in vivo service-related, stress-induced damage are “capped”. Tissue typically treated with glutaraldehyde, Tween (polyoxyethylene 20 sorbitan monooleate), ethanol, formaldehyde, and other agents can provide useful fixation of the tissue. However, fixation of the tissue will also generate “binding sites” capable of interacting with or attracting calcium, phosphate, immunogenic factors, or other precursors to calcification. For example, there are many negatively charged carboxylic acid groups formed after glutaraldehyde fixation of the tissue and these groups are capable of attracting calcium ions (due to their negative charge and electrostatic interactions with positively charged ions) leading to calcification of the tissue or adverse cellular interactions.


Carboxylic acid groups like that found in glutamic acid or gamma carboxy glutamic acid are known to bind calcium atoms (Hauschka et al. PNAS 1975 72:3925). Calcium binding proteins such as bone sialoprotein contain carboxylic acid rich domains designed to attract and bind calcium, leading to hydroxyapatite formation (calcification). The overall level and location of acid groups in these proteins determines the ability of the protein to efficiently bind calcium and form hydroxyapatite (calcification). The term “acid potential” of the tissue refers to the level of these chemical functional groups within the fixed tissue that can or may eventually form acid groups or “binding sites” through any means such as oxidation, dehydration, hydration, or similar processes.


The present invention exploits the fact that subjecting already treated tissue to stress or flexion (micro-fibril damage of the fixed tissue) will generate additional acid binding sites. This is demonstrated by intentionally damaging such tissue, where such damage increases the binding sites dramatically as shown in FIG. 3. Cyclic flexion of glutaraldehyde crosslinked tissue will also increase the level of acids in the tissue compared to static or unflexed tissue (FIG. 4). The flexed or stressed tissue now has a higher “acid potential” and increased propensity for calcification or stimulation of immunogenic responses. The “capping” of both statically formed and stress-induced sites will decrease the overall “acid potential” of the tissue and reduce the risk of calcification and immunogenic response, and is the basic premise of this invention.


The inventors have discovered that bioprosthetic materials, especially tissues used for heart valve leaflets, experience significant post-implant damage which tends to undo some of the beneficial effects of any tissue fixation treatment process. Specifically, after implantation, repeated stress flexion of the tissue leaflets in its in vivo “service”-type environment can create micro-damage to the collagen fibrils and other areas of the leaflets, depending on the severity of the flexion. This progressive leaflet damage process can create new binding sites or potential binding sites that are precursors to calcification and immunogenic related pathways. The present invention describes a method to cap such stress-induced binding sites prior to implantation into the body.


An objective of the invention is the permanent “capping” of the acid groups which would dramatically reduce their ability to attract calcium, phosphate, immunogenic factors, or other groups. This can be accomplished by, for example, capping of acid groups once they are formed or as they are formed through repeated flexion or stress. The term “capping” refers to the blocking, removal, or alteration of some group that would have previously had an adverse effect on the bioprosthesis function. For example, the addition of 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC), N-hydroxysulfosuccinimide (sulfo-NHS), and ethanolamine will effectively cap the acid groups with a non-reactive alcohol group.


In addition to acid binding sites, tissue treated with glutaraldehyde or other aldehyde containing agents also yields a tissue with many free aldehyde groups, which cause increased toxicity, higher calcification, and creation of immunogenic responses. These aldehyde groups can easily oxidize into carboxylic acid groups (described above) via air oxidation, in vivo blood oxidation, macrophage oxidation, and other similar oxidation pathways. Additionally, as the case for acid binding sites, additional aldehydes can be generated which create more binding sites or acid groups through increased and repeated flexion or stress of the fixed tissue. For example, tissue treated with glutaraldehyde and subsequently stressed or flexed will facilitate the generation of acids from aldehydes as well. Thus, an additional target of the invention includes the permanent capping of aldehyde groups which are potential binding sites in a way that would prevent their ability to transform into acids or other groups and thus further mitigate the potential for calcification in the body (in vivo). In addition to acids and aldehydes there are other possible binding sites such as immunogenic and antigenic factors that are included within the scope of this invention.


The invention's capping process includes the chemical reduction of the tissue which, when applied to the tissue in the presence of a capping agent either prior to, during, or after flexion, will permanently connect the capping agent to the target group. For example, the addition of taurine to the tissue during flexion will cause the taurine group to cap the aldehyde groups as they are formed and the reducing agent, sodium cyanoborohydride, will reduce the temporary Schiff base bond between the aldehyde and the taurine group. The aldehyde group is ultimately replaced with a sulfonate group which may be beneficial for tissue hydration, flexibility, and cell interactions. Another preferred strategy is to cap the acid groups and includes the addition of EDC, sulfo-NHS and ethanolamine. Of course, other capping agents can be used instead of ethanolamine and other reducing agents other than sodium cyanoborohydride are known by those skilled in the art and which are included in the scope of this patent. This new “capped” group will drastically reduce the attraction of calcium, phosphate, immunogenic factors, or other similar agents.


Exemplary capping agents may be selected from the following list: amines, including alkyl amines, amino alcohols, ethanolamine; amino acids, including, lysine, hydroxylysine; amino sulfonates, including, taurine, amino sulfates, dextran sulfate, chondroitin sulfate; hydrophilic multifunctional polymers, including polyvinyl alcohol, polyethyleneimine; hydrophobic multifunctional polymers, α-dicarbonyls including methylglyoxal, 3-deoxyglucosone; glyoxal; hydrazides, including adipic; hydrazide, N,N-disuccinimidyl carbonate; carbodiimides, including, 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC), N-cyclohexyl-N′-(2-morpholinoethyl)carbodiimide (CMC), 1,3-dicyclohexyl carbodiimide (DCC); 2-chloro-1-methylpyridinium iodide (CMPI); an antibiotic; a cell recruiting agent; a hemocompatibility agent, such as heparin; an antiinflammatory agent; an antiproliferative agent; an immunogenic suppressing agent; a reducing agent, including sodium cyanoborohydride, sodium borohydride, sodium bisulfite+acetylacetone, formic acid+formaldehyde; and mono-, di- or polyepoxy alkanes.


By “linking” the binding sites with a long elastic molecule containing at least two or more complimentary reactive functional groups specific for either the newly formed functional groups produced by a stress damage (capping function), or other available nearby functional group, creates a long molecule cross-link that will act as an elastic reinforcement or shock-absorbing spring element in the tissue structure at the site of damage. This will then prevent the cascade failure described above. In the case of adjacent attachment sites, the initial damage (functional group i.e. acid) sites of potential calcification may benefit from being capped in the manner as described for the “capping” of the acid groups, and may be “linked” in concurrent or subsequent treatments. The terms “capping” or “linking” agents all refer to agents for treating pre-stressed tissue to mitigate future potential calcification (i.e., calcification mitigants).


The following table provides various exemplary linking agents, as well as their probable targets and co-reactants, and potential secondary treatments and their co-reactants:



















Functional







Group X-

Possible


Polymer/

link
Co-
Secondary
Co-


oligamer
Examples
Target
reactant(s)
treatment(s)
reactants







SYNTHETICS







Amines

Aldehydes
EDC/SNHS
Reduction
NaCNBH3




Acids
DSC




Alcohols


difunctional
Aminopropyl-



terminated



polytetrahydrofuran


polyfunctional
polyethyleneimine


Heparin/
NaCNBH3






reduction


Acids

Amines
EDC/SNHS




Alcohols
CMPI


difunctional
Polyethylene glycol



diacid-terminated


polyfunctional
Polyisobutylene-co-


Capping
Ethanolamine



maleic acid


Sulfonation
Taurine


Alcohols

Acids
CMPI




Amines
DSC


difunctional
Polyurethane-diol



terminated


polyfunctional
Polyvinyl alcohol


Sulfonation
Triethylamine +







sulfur







trioxide


Oxiranes

Amines
pH 8




Acids
NaBF4




Aldehydes


difunctional
Polyethylene glycol



diglycidal ether


polyfunctional
Poly(o-cresyl)



glycidyl ether-co-



formaldehyde


Silicones
Hydroxyl-
Acids
CMPI



terminated
Amines
DSC



polydimethyl



siloxane


NATURAL


Glycosaminoglycans
Heparin



Hyaluronic Acid



Chondroitin Sulfate


Polysaccharides
HetaStarch



Cellulose



Dextran



Chitosan


Proteins
Collagen



Elastin



Thrombin



Laminin



Connectin





Where:


EDC: 1-ethy-3-[3-ldimethylaminopropyl] carbodiimide hydrochloride


SNHS: N-hydroxysulfosuccinamide


DSC: N,N-disuccinimidyl carbonate


CMPI: 2-chloro-1-methylpyridinium iodide


NaBF4: sodium tetafluroborate


NaCNH3: sodium cyanoborohydride






The effect of preferred capping agents is to not only block functional groups that will attract calcium, phosphate, immunogenic factors, or other similar agents, but to replace those groups with a superior “biological functionality”. Biological functionality is defined as the effect of tissue components on the local biology of the implanted material. Improved biological functionality of a tissue treatment may include reduction in overall charge of the tissue, better hemocompatibility, increased tissue hydration, better cell interactions, better flexibility, etc. For example, capping aldehyde functions with taurine would block the aldehyde group from oxidizing into an acid and replace it with a sulfonate group which may be beneficial for tissue hydration, flexibility, and cell interactions. The desired biological functionality of the capped tissue will determine the type of capping compounds employed.


The capping strategy is also designed to block the biological functionality of components of the tissue that may contribute to adverse cellular reactions. Some of these targets include, but are not limited to α-gal, MHC-1 associated proteins, HLA antigens and the like. Thus, the invention is also directed to the capping or blocking of proteins, carbohydrates, lipids, and other components of the tissue that may contribute to cellular reactions. For example, the α-gal carbohydrate may be blocked by treatment with 2-chloro-1-methylpyridinium iodide (CMPI) and other agents that neutralize the hydroxyl groups which are known by those skilled in the art. Another example includes MHC-1 associated proteins that may be capped or effectively neutralized by treatment with EDC and taurine. Also included in the invention capping process is the targeting of proteins, carbohydrates or lipids associated with cell and vessel remnants. For example, fibronectin may be capped or blocked by the addition of methylglyoxal to the tissue. This dicarbonyl is known to bind critical arginine functions within proteins and impairs the biological functionality of these proteins.


In another aspect, the invention provides for automatic capping upon sterilization. For example, the treatment of the tissue with specific capping agents (e.g. glucose and taurine) prior to gamma irradiation sterilization would produce activation of the capping agents upon irradiation. The capping agents added to the tissue would effectively cap targets within the tissue immediately, but sterilization (i.e. with ethylene oxide or gamma irradiation) would generate new binding sites that would then be capped by the residual capping agents within the tissue. Gamma irradiation of collagen is known to cleave peptide bonds within the backbone and produce new functional groups that may have adverse effects on the tissue. These new functional groups are targets or binding sites described in this invention and may be capped or blocked by the capping agents listed herein.


Except for some agitation or pressurization during fixation, the tissue for use in valves and assembled valves of the prior art is not subjected to the amount of stress or damage that occurs after implantation. Indeed, after fixation and valve assembly, the tissues are typically statically immersed in the treatment solutions. In the context of the present invention, “fully fixed bioprosthetic tissue”, as mentioned previously, means tissue that has been subjected to at least some cross-linking and/or other treatments to render it stable and durable, essentially ready for implant. Different tissues and different cross-linking treatments require varying time periods to fully fix bioprosthetic tissue, and the duration of the fixation process is therefore, relative. Fixation of bioprosthetic tissue desirably involves treatment with a cross-linking agent, typically glutaraldehyde; or in the case of EDC/SNHS chemistry, hexane diamine and/or suberic acid; or for Denacol (epoxy) chemistry, butanediol diglycidyl ether.


One aspect of the present invention is a process in which fixed bioprosthetic tissue or an assembled valve is preconditioned, pre-stressed, or pre-damaged (where “pre-” refers to pre-implant) and then subjected to a capping agent. Such pre-implant stressing is in addition to the stresses caused by any agitation or pressurization required for fixation.


This, in one embodiment, the methods disclosed herein preempt post-implant damage and subsequent propensity for calcification by pre-stressing the bioprosthetic tissue and then “capping” any new calcification sites. For example, one embodiment of the invention involves damaging (“preconditioning”) or stressing a partially fixed bioprosthetic tissue heart valve leaflets and other tissue components (similar to that imposed on the valve post-implantation) prior to implantation, and then suppressing or capping any freshly exposed binding sites that might otherwise initiate calcification. For example, the heart valve leaflets may be repeatedly stressed (e.g., flexed) while immersed in a solution of capping agents that can cap new, freshly exposed calcium or phosphate binding sites (acids, aldehydes, etc.), or sites that can attract antigens and various adverse cell and protein constituents that can initiate an immunologic response (i.e. cell remnants, blood vessel cells, etc.). Alternatively, the heart valve leaflets may be pre-stressed, such as by repeated flexion, and then immersed in the capping agent solution, or some combination of these.


Immunogenic factors are defined as anything causing or involved in stimulating an immunogenic response. This includes any chemical or biological agent capable of inducing an immune type response. For example, vessel and cell membrane components left in the tissue may cause some type of immunogenic or antigenic response from the body's natural immune system. The invention includes capping agents capable of masking, replacing, or blocking these immunogenic elements in the tissue either statically or dynamically. For example, a whole valve could be flexed after fixation and then capped with a non-immunogenic or more hemocompatible capping agent such as heparin. This is different from prior art processes that add heparin to fixed tissue without any flexion of the valve or any consideration of the post-process service conditions. The invention process can be supplemented with a decellularization process to reduce immunologic or antigenic binding sites and potential binding sites and is also within the scope of this invention.


To better understand the principles underlying the treatment techniques of the present invention, a number of graphs in FIGS. 1-5 are presented based on actual testing. As mentioned above, the invention generally comprises treating stressed or damaged (flexed) tissue so that calcium or phosphate binding sites, or other such sites which could trigger calcification, are capped. The correlation between acid binding sites and tissue calcification is compelling (FIG. 2 and Hauschka et al. PNAS 1975 72:3925) and it is a well known fact that acid templating directs mineralization in a variety of species. Thus, an increasing amount of free acids and/or aldehydes in the tissue at the time of implant correlates with the number of such binding sites, and therefore increases the potential for calcification. The amount of free acids and aldehydes present in tissue can be measured by known methods, in particular a standard spectrophotometric assay.



FIG. 1 is a graph showing both the free aldehyde and free acid content in bovine pericardial tissue as measured by the aforementioned technique. It should be understood that all of the tests referred to herein involve glutaraldehyde fixed bovine pericardial tissue. The tissues studied have all been chemically treated, one with glutaraldehyde only, and two others with tissue treatments that have been used by Edwards Lifesciences to prepare commercial bioprosthetic tissue for implant. However, other cross-linking and tissue processing methods can be used and are within the scope of this invention.


The aldehyde and acid content of the tissues is measured subsequent to the chemical treatments, and without any damage or stress imparted to the tissue. On the right side of the graph of FIG. 1, the tissue samples have been treated in glutaraldehyde only, in particular in a solution of 0.625% glutaraldehyde for a period of 14 days. A total of 10 samples were treated and subsequently tested. The measurements showed an average level of about 40 nanomoles of aldehydes and about 17 nanomoles of acids per milligram of dry weight of the tissue.


The middle of the graph of FIG. 1 shows the results from testing a total of 10 tissue samples subjected to Treatment A, which is commercially known as the XenoLogiX™ tissue treatment process from Edwards Lifesciences of Irvine, Calif. Treatment A involves first fixing with glutaraldehyde then treating twice with a sterilant including a cross-linking agent such as formaldehyde, a surfactant such as Tween-80 polyoxyethylene sorbitan monooleate), and a denaturant such as ethyl alcohol. Both the aldehyde and acid content of the tissue subjected to treatment A were less than glutaraldehyde alone, with the aldehyde content decreasing by about 25% and the acid content by about 50%. This reduction has been attributed to the further reduction of phospholipids which are sources of acid binding sites.


The left side of FIG. 1 shows the results from testing a total of 10 samples subjected to Treatment B, which is commercially known as the Carpentier-Edwards ThermaFix™ tissue treatment process from Edwards Lifesciences. Treatment B is essentially the same as Treatment A, with the addition of a heat treating step after fixing and prior to sterilizing. Both the aldehyde and acid content of the tissue subjected to Treatment B were less than glutaraldehyde alone, with the aldehyde content decreasing by about 33% and the acid content by more than 50%. In addition, Treatment B reduces both the aldehyde and acid content relative to Treatment A by between 10-20%.



FIG. 2 is a graph that repeats the results of aldehyde/acid content measurements for the three tissue treatments shown in FIG. 1, and also superimposes measurements of calcium uptake from like tissue samples implanted subcutaneously in rabbits from a separate study. These acid levels are measured in the tissue prior to implant and are likely to increase in vivo. FIG. 2 reveals that the amount of calcium found in the implanted tissues essentially correlates with the levels of aldehydes/acids from the three tissue treatments. That is, as the level of free aldehydes and free acids in the various tissue samples decreases, the amount of calcium absorbed upon implant also decreases. Again, it is understood that a number of factors contribute to calcium uptake, but that the availability of certain calcium and phosphate binding sites, among others, is a prime indicator of future calcification. The graph of FIG. 2 therefore suggests that decreasing the levels of aldehydes/acids in the tissue will reduce the propensity for the tissue to calcify.


As mentioned above, it is now understood that post-implant damage or stressing of the bioprosthetic tissue produces a significant increase in the acid and aldehyde calcification binding sites. Evidence of this phenomenon is provided in the graph of FIG. 3. Specifically, as explained above, the level of acids in the tissue correlates directly with the propensity to calcify after implant. FIG. 3 indicates the acid levels in various tissue samples prior to and after damage thereto. The four types of tissue samples are fresh untreated tissue, glutaraldehyde-fixed tissue, and tissue treated with either Treatment A or B. For the damaged condition, the tissue was minced into small pieces. Note that the acid levels in the minced tissue samples greatly exceed that in the non-damaged tissue. Cyclic damage during in vivo service can also generate damage and the production of additional binding sites.


Of course, bioprosthetic tissue used for implants is not subjected to the extreme damage of mincing, nevertheless increased acid levels from increased stress or damage occurs from repeated (cyclic) motion of the leaflets in the service environment. This is shown by FIG. 4 which shows the measured acid content in a number of tissue samples subjected to treatment A after having been subjected to increasing amounts of flexion cycles. Each of the tissue samples was first prepared according to Treatment A. If one assumes a normal average heart rate of 72 beats per minute, the number of cycles per day equals 72×60×24=103,680. At this rate, the final measurement of 7×107 corresponds to 675 days, or less than two years. FIG. 4 shows, as expected, that increased amount of flexion (micro collagen fibril damage) increases the level of acid binding sites. The acid levels increase fairly rapidly, initially, and then gradually level off. Thus after an initial “wear in” period, the rate of micro damage and associated production of acid binding sites decreased. This effect is analogous to the initial “wear in” period of a car engine.



FIG. 5 is a graph showing another representation of the level of charged acid production in tissue as it is cyclicly damaged. Also shown in FIG. 5 is an example of “capping” pre-flexed (“pre-conditioned”) tissue after a given amount of flexion cycles (1 million in this case). Importantly, when this pre-conditioned and capped tissue is then flexed further in a similar manner, the production of further acid binding sites is significantly mitigated even after an additional million flex cycles. The acid capping treatment used in this experiment involved a 60 minute incubation of the flexed tissue in 90 mM EDC, 5 mM sulfo-NHS, and 50 mM ethanolamine. After the tissue had gone through the acid capping process, the tissue was placed back in the flex tester and flexed an additional 1 million cycles. The tissue strips (n=8) were then removed and the acids were measured.


Based on the foregoing empirical results, the inventors believe that the post-implant damage imparted on bioprosthetic tissue greatly contributes to the propensity for calcification of tissue. In particular, heart valve leaflets are subjected to millions of stress cycles per year, namely flexion of the leaflets during the systole-diastole cycles. This repeated flexion of the tissue leaflets creates localized micro-damage to the collagen fibrils and other structures of the tissue leaflets, depending on the severity of the local flexion and other stresses. This progressive leaflet damage process can create new binding sites not previously detected or recognized, as potential attachment sites of calcium and phosphate ions, thereby initiating calcification.


To demonstrate the aforementioned principles on whole prosthetic heart valves, FIG. 6 is a graph showing the level of acid generation with increasing cycles in a heart valve in an accelerated wear tester (AWT). The particular valve tested was the Carpentier-Edwards® Perimount Magna™ Aortic Heart Valve, and the AWT was a standard accelerated wear tester used to validate durability of current products. In a preferred embodiment, a modified wear tester would be used to simulate the cyclic flexion of the implant environment that is simpler than the AWT's presently used for validation. The results indicate the increased amount of flexion (micro collagen fibril damage) increases the level of acid binding sites.



FIG. 7 is a graph showing how the present calcification mitigation process greatly reduces the acid levels in a tissue strip subjected to millions of flexion cycles. Bovine pericardium tissue strips were subjected to simple flexion. At one million cycles, some samples were treated in accordance with the present invention to mitigate the stress damage (“cap” the acid binding sites). In particular, the tissue was treated with an aldehyde capping agent comprising 50 mM taurine and 50 mM borohydride. The difference in subsequently measured acid content between the capped samples and the samples not treated at one million cycles is about 20 nmoles/μg tissue. The inventors believe that this difference in acid levels will greatly reduce the level and speed of post-implant calcification in the capped samples. Likewise, a whole heart valve subjected to the pre-stress and calcification mitigant process described herein will also exhibit a reduction in calcification, and thus an improvement in durability and life.


To help prevent this post-implant damage-calcification process, the present invention involves preconditioning, pre-damaging, or pre-stressing tissue and mitigating by linking or capping the resulting increased calcification initiation sites.


The preferred embodiments include, but are not limited to, a whole valve which is placed in an accelerated heart valve simulated service tester or other device to simulate the repeated leaf motion characteristic of that seen by the valve after implantation into the patient (service condition), such as in the following processes:

    • 1. The fixed tissue valve is cycled in a simulated service environment until the rate of acid binding sites begins to decrease (i.e. about 0.5 to 2 million cycles), and then capped.
    • 2. The fixed tissue valve is cycled in a simulated service environment until the rate of acid binding sites begins to decrease and while in a solution containing a capping agent.
    • 3. Embodiments 1 and 2, but where a sterilization step is added during or after the flexion/capping process.
    • 4. Embodiments 1 and 2, but where the processing is accelerated to reduce overall processing time.
    • 5. Embodiments 1, 2, 3, 4, and 5 but where the capping agent is for the other newly formed binding sites such as aldehydes or biological-immune related sites.
    • 6. The aldehyde capping solution may contain an amine (50 mM taurine) and a reducing agent (50 mM sodium borohydride) in 100 mM 3-(N-morpholino)propanesulfonic acid (MOPS) buffer at pH 7.4.
    • 7. The acid capping solution may contain about 50-200 mM EDC, about 1-10 mM sulfo-NHS, and 10-100 mM ethanolamine.


While the invention has been described in its preferred embodiments, it is to be understood that the words which have been used are words of description and not of limitation. Therefore, changes may be made within the appended claims without departing from the true scope of the invention.

Claims
  • 1. A method of treating bioprosthetic implant tissue to reduce in vivo calcification, comprising: at least partially cross-linking bioprosthetic implant tissue with glutaraldehyde or other aldehyde containing agents; then stressing the cross-linked tissue by repeatedly flexing it, wherein the stressing is performed to expose potential binding sites for calcification; and applying a calcification mitigant to the stressed, cross-linked tissue, thereby reducing in vivo calcification of the bioprosthetic implant.
  • 2. The method of claim 1, wherein the calcification mitigant comprises a capping agent solution having at least one constituent that can bind to calcium, phosphate, or immunogenic factor binding sites.
  • 3. The method of claim 1, wherein the calcification mitigant comprises a linking agent solution including a long elastic molecule containing two or more reactive functional groups specific for tissue functional groups produced by the stressing.
  • 4. The method of claim 1, wherein the calcification mitigant comprises a capping agent selected from the group consisting of: an amine, an amino acid, an amino sulfonate, a hydrophilic multifunctional polymer, a hydrophobic multifunctional polymer, α-dicarbonyl, a hydrazides, a N,N-disuccinimidyl carbonate, a carbodiimide, 2-chloro-1-methylpyridinium iodide (CMPI), an antibiotic, a cell recruiting agent, a hemocompatibility agent, an antiinflammatory agent, an antiproliferative agent, an immunogenic suppressing agent, a reducing agent, and a mono-, di- or polyepoxy alkane.
  • 5. The method of claim 1 where the calcification mitigant is delivered in one or a combination of the selected solutions: an aqueous solution, an organic solvent, and an organic buffered solution.
  • 6. The method of claim 1 where the tissue is fully cross-linked prior to stressing.
  • 7. The method of claim 1 where the tissue comprises pre-cut heart valve leaflets mounted and flexed in a suitable flow producing apparatus.
  • 8. The method of claim 1 where the tissue comprises bulk sheets of tissue flexed in a suitable apparatus.
  • 9. The method of claim 1, wherein the step of stressing comprises subjecting the bioprosthetic implant tissue to pulsed fluid flow to cause the tissue to repeatedly flex.
  • 10. The method of claim 9, wherein the step of stressing comprises subjecting the tissue to at least 100 cycles of the pulsed fluid flow.
  • 11. The method of claim 9, wherein the step of stressing comprises subjecting the bioprosthetic implant tissue to a simulated post-implant physiological environment.
  • 12. The method of claim 9, wherein the step of stressing comprises subjecting the bioprosthetic implant tissue to at least one stress-accelerating environmental parameter.
  • 13. The method of claim 12 wherein the stress-accelerating environmental parameter comprises rapid pulsed fluid flow in a range of 4-1500 Hz.
  • 14. The method of claim 12 wherein the stress-accelerating environmental parameter is an elevated temperature range of 26-65° C.
  • 15. The method of claim 12 wherein the stress-accelerating environmental parameter is an acidic solution of pH of 4-7.
  • 16. The method of claim 12 wherein the stress-accelerating environmental parameter is an alkaline solution of pH 8-10.
  • 17. The method of claim 12 wherein the stress-accelerating environmental parameter is an oxidizing solution.
  • 18. The method of claim 12 wherein the stress-accelerating environmental parameter comprises at least two selected from the group consisting of: rapid pulsed fluid flow in a range of 4-1500 Hz; an elevated temperature range of 26-65° C.; an acidic solution of pH of 4-7; an alkaline solution of pH 8-10; and an oxidizing solution.
  • 19. The method of claim 1 wherein the step of stressing is performed until the newly exposed sites to be capped on the bioprosthetic tissue increase by at least 10%.
  • 20. The method of claim 1 wherein the step of stressing is performed at least until the level of damage in the bioprosthetic implant tissue increases by about 10%.
  • 21. The method of claim 1 wherein the step of stressing is performed at least until the rate of acid production in the bioprosthetic implant tissue decreases by about 10%.
  • 22. The method of claim 1, wherein the steps of first stressing the tissue and then applying a calcification mitigant thereto are performed multiple times.
  • 23. The method of claim 1, wherein the steps of first stressing the tissue and then applying a calcification mitigant thereto are performed at least twice with different calcification mitigants.
  • 24. A method of treating bioprosthetic implant tissue to reduce in vivo calcification, comprising: cyclically stressing a glutaraldehyde or other aldehyde-fixed bioprosthetic implant tissue by repeatedly flexing it to produce additional acid binding sites until the rate of acid production in the bioprosthetic implant tissue decreases by at least 10%; then applying a calcification mitigant to the stressed tissue, thereby reducing in vivo calcification of the bioprosthetic implant.
  • 25. The method of claim 24, wherein the bioprosthetic implant tissue comprises a bioprosthetic heart valve, and the step of stressing comprises subjecting the heart valve to pulsed fluid flow therethrough to cause the tissue to repeatedly flex.
  • 26. The method of claim 24, wherein the step of stressing is performed until the rate of increase of the acid level of the bioprosthetic implant tissue levels off.
  • 27. The method of claim 24, wherein the calcification mitigant comprises a capping agent solution having at least one constituent that can bind to calcium or phosphate, and/or immunogenic binding sites.
  • 28. The method of claim 24, wherein the calcification mitigant comprises a capping agent selected from the group consisting of: an amine, an amino acid, an amino sulfonate, a hydrophilic multifunctional polymer, a hydrophobic multifunctional polymer, α-dicarbonyl, a hydrazides, a N,N-disuccinimidyl carbonate, a carbodiimide, 2-chloro-1-methylpyridinium iodide (CMPI), an antibiotic, a cell recruiting agent, a hemocompatibility agent, an antiinflammatory agent, an antiproliferative agent, an immunogenic suppressing agent, a reducing agent, and a mono-, di- or polyepoxy alkane.
  • 29. The method of claim 24, wherein the calcification mitigant comprises a linking agent solution including a long elastic molecule containing two or more reactive functional groups specific for tissue functional groups produced by the stressing.
  • 30. A method of treating a bioprosthetic heart valve to reduce in vivo calcification, comprising: mounting a bioprosthetic heart valve comprising a pericardial tissue in a simulated fluid flow system; subjecting the bioprosthetic heart valve to at least 100 cycles of pulsed fluid flow to cause the pericardial tissue to repeatedly flex and to produce additional acid binding sites on the pericardial tissue; and applying a calcification mitigant to the bioprosthetic heart valve, thereby reducing in vivo calcification of the bioprosthetic heart valve.
  • 31. The method of claim 30, wherein the bioprosthetic heart valve is subjected to at least 100,000 cycles of the pulsed fluid flow.
  • 32. The method of claim 30, wherein the steps of first subjecting the bioprosthetic heart valve to pulsed fluid flow and then applying a calcification mitigant thereto are performed multiple times.
  • 33. The method of claim 30, wherein the steps of subjecting the bioprosthetic heart valve to pulsed fluid flow and applying a calcification mitigant thereto are performed at least twice with different calcification mitigants.
  • 34. The method of claim 30, wherein the step of subjecting is performed until the rate of increase of the acid level of the bioprosthetic implant tissue levels off.
  • 35. The method of claim 30, wherein the calcification mitigant comprises a capping agent solution having at least one constituent that can bind to calcium, phosphate, or immunogenic factor binding sites.
  • 36. The method of claim 30, wherein the calcification mitigant comprises a linking agent solution including a long elastic molecule containing two or more reactive functional groups specific for tissue functional groups produced by the subjecting.
  • 37. The method of claim 1, wherein the calcification mitigant comprises a capping agent, where the capping agent is an amine.
  • 38. The method of claim 24, wherein the calcification mitigant comprises a capping agent, where the capping agent is an amine.
  • 39. The method of claim 30, wherein the step of subjecting the bioprosthetic heart valve to pulsed fluid flow and applying a calcification mitigant thereto are performed simultaneously.
  • 40. The method of claim 24, wherein the bioprosthetic implant tissue is pericardium.
  • 41. A method of treating a biological implant tissue to reduce in vivo calcification comprising: at least partially-crosslinking biological implant tissue with glutaraldehyde or other aldehyde containing agents; stressing the biological implant tissue by subjecting the tissue to pulsed fluid flow to cause the tissue to repeatedly flex and to produce acid binding sites on the tissue; and applying a calcification mitigant to the tissue, thereby reducing in vivo calcification of the biological implant.
  • 42. The method of claim 41, wherein the stressing comprises subjecting the tissue to at least 100 cycles of the pulsed fluid flow.
  • 43. The method of claim 42, wherein the stressing comprises subjecting the tissue to at least 100,000 cycles of the pulsed fluid flow.
  • 44. The method of claim 41, wherein the stressing comprises subjecting the biological implant tissue to at least one stress-accelerating environmental parameter.
  • 45. The method of claim 41, wherein the stressing is performed at least until the rate of acid production in the biologic implant tissue decreases by at least 10%.
  • 46. The method of claim 41, wherein the calcification mitigant is provided in one or a combination of an aqueous solution, an organic solvent, and an organic buffered solution.
  • 47. The method of claim 41, wherein the calcification mitigant comprises a capping agent solution having at least one constituent that binds calcium, phosphate, or immunogenic factor binding sites.
  • 48. The method of claim 41, wherein the calcification mitigant comprises a linking agent comprising a long elastic molecule containing two or more reactive functional groups.
  • 49. The method of claim 41, wherein the calcification mitigant comprises a capping agent selected from the group consisting of: an amine, an amino acid, an amino sulfonate, a hydrophilic multifunctional polymer, a hydrophobic multifunctional polymer, α-dicarbonyl, a hydrazide, a N,N-disuccimidyl carbonate, a carbodiimide, 2-chloro-1-methylpyridinium iodide (CMPI), an antibiotic, a cell recruiting agent, a hemocompatibility agent, an anti-inflammatory agent, an antiproliferative agent, an immunogenic suppressing agent, a reducing agent, and a mono-, di- or polyepoxy alkane.
  • 50. The method of claim 41, wherein the steps of stressing the tissue and then applying the calcification mitigant are performed multiple times.
Parent Case Info

The present Application for Patent claims priority to U.S. Provisional Application No. 60/943,118 entitled, “METHODS FOR PRE-STRESSING AND CAPPING BIOPROSTHETIC TISSUE,” filed Jun. 11, 2007, and assigned to the assignee hereof ad hereby expressly incorporated by reference herein.

US Referenced Citations (310)
Number Name Date Kind
2393580 Weiskopf Jan 1946 A
2484813 Bower Oct 1949 A
2567929 Fessenden Sep 1951 A
3966401 Hancock et al. Jun 1976 A
4067091 Backman Jan 1978 A
4120649 Schechter Oct 1978 A
4120991 Ornstein et al. Oct 1978 A
4197658 Fraser Apr 1980 A
4207689 Romera-Sierra et al. Jun 1980 A
4244992 von Hagens Jan 1981 A
4294753 Urist Oct 1981 A
4323358 Lentz et al. Apr 1982 A
4328256 Romero-Sierra et al. May 1982 A
4347671 Dias et al. Sep 1982 A
4350492 Wright et al. Sep 1982 A
4372743 Lane Feb 1983 A
4378224 Nimni et al. Mar 1983 A
4402697 Pollock et al. Sep 1983 A
4405327 Pollock Sep 1983 A
4481009 Nashef Nov 1984 A
4553974 Dewanjee Nov 1985 A
4599084 Nashef Jul 1986 A
4624822 Arru et al. Nov 1986 A
4647283 Carpentier et al. Mar 1987 A
4648881 Carpentier et al. Mar 1987 A
4655773 Grassi Apr 1987 A
4676070 Linner Jun 1987 A
4729139 Nashef Mar 1988 A
4753652 Langer et al. Jun 1988 A
4758151 Arru et al. Jul 1988 A
4770665 Nashef Sep 1988 A
4776853 Klement et al. Oct 1988 A
4786287 Nashef et al. Nov 1988 A
4831065 Pietsch et al. May 1989 A
4838888 Nashef Jun 1989 A
4865871 Livesey et al. Sep 1989 A
4885005 Nashef et al. Dec 1989 A
4891319 Roser Jan 1990 A
4958008 Petite et al. Sep 1990 A
4975526 Kuberasampath et al. Dec 1990 A
4976733 Girardot Dec 1990 A
4994030 Glowczewskie, Jr. et al. Feb 1991 A
4994237 Login et al. Feb 1991 A
4996054 Pietsch et al. Feb 1991 A
5002566 Carpentier et al. Mar 1991 A
5011913 Benedict et al. Apr 1991 A
5024830 Linner Jun 1991 A
5044165 Linner et al. Sep 1991 A
5051401 Sikes Sep 1991 A
5068100 McClanahan Nov 1991 A
5080670 Imamura et al. Jan 1992 A
5094661 Levy et al. Mar 1992 A
5104405 Nimni Apr 1992 A
5108923 Benedict et al. Apr 1992 A
5116564 Jansen et al. May 1992 A
5147514 Mechanic Sep 1992 A
5149621 McNally et al. Sep 1992 A
5149653 Roser Sep 1992 A
5154007 Piunno et al. Oct 1992 A
5200399 Wettlaufer et al. Apr 1993 A
5215541 Nashef et al. Jun 1993 A
5279612 Eberhardt Jan 1994 A
5290558 O'Leary et al. Mar 1994 A
5296583 Levy Mar 1994 A
5329846 Bonutti Jul 1994 A
5332475 Mechanic Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5368608 Levy et al. Nov 1994 A
5397353 Oliver et al. Mar 1995 A
5424047 Zwingenberger et al. Jun 1995 A
5436291 Levy et al. Jul 1995 A
5437287 Phillips et al. Aug 1995 A
5447536 Giradot et al. Sep 1995 A
5447724 Helmus et al. Sep 1995 A
5460962 Kemp Oct 1995 A
5476516 Seifter et al. Dec 1995 A
5507813 Dowd et al. Apr 1996 A
5509932 Keogh et al. Apr 1996 A
5556379 Wolfinbarger Sep 1996 A
5558875 Wang Sep 1996 A
5595571 Jaffe et al. Jan 1997 A
5613982 Goldstein Mar 1997 A
5632778 Goldstein May 1997 A
5645587 Chanda et al. Jul 1997 A
5674298 Levy et al. Oct 1997 A
5679112 Levy et al. Oct 1997 A
5695820 Davis et al. Dec 1997 A
5697972 Kim et al. Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5720777 Jaffe et al. Feb 1998 A
5720894 Neev et al. Feb 1998 A
5733339 Giradot et al. Mar 1998 A
5746775 Levy et al. May 1998 A
5762600 Bruchman et al. Jun 1998 A
5766520 Bronshtein Jun 1998 A
5769780 Hata et al. Jun 1998 A
5776182 Bruchman et al. Jul 1998 A
5782914 Schankereli Jul 1998 A
5782915 Stone Jul 1998 A
5782931 Yang et al. Jul 1998 A
5843180 Jaffe et al. Dec 1998 A
5843181 Jaffe et al. Dec 1998 A
5843182 Goldstein Dec 1998 A
5855620 Bishopric et al. Jan 1999 A
5856102 Bierke-Nelson et al. Jan 1999 A
5856172 Greenwood et al. Jan 1999 A
5862806 Cheung Jan 1999 A
5865849 Stone Feb 1999 A
5873812 Ciana et al. Feb 1999 A
5879383 Bruchman et al. Mar 1999 A
5882850 Khor et al. Mar 1999 A
5899936 Goldstein May 1999 A
5902338 Stone May 1999 A
5904718 Jeffries May 1999 A
5911951 Giradot et al. Jun 1999 A
5913900 Stone Jun 1999 A
5919472 Trescony et al. Jul 1999 A
5921980 Kirn Jul 1999 A
5922027 Stone Jul 1999 A
5931969 Carpentier et al. Aug 1999 A
5935168 Yang et al. Aug 1999 A
5945319 Keogh Aug 1999 A
5977153 Camiener Nov 1999 A
5987720 Yamamoto Nov 1999 A
5993844 Abraham et al. Nov 1999 A
6008292 Lee et al. Dec 1999 A
6017741 Keogh Jan 2000 A
6024735 Wolfinbarger, Jr. Feb 2000 A
6063120 Stone May 2000 A
6066160 Colvin et al. May 2000 A
6093204 Stone Jul 2000 A
6093530 McIlroy et al. Jul 2000 A
6106555 Yang Aug 2000 A
6117979 Hendriks et al. Sep 2000 A
6121041 Mirsch, II et al. Sep 2000 A
6132472 Bonutti Oct 2000 A
6132473 Williams et al. Oct 2000 A
6132986 Pathak et al. Oct 2000 A
6156030 Neev Dec 2000 A
6156531 Pathak et al. Dec 2000 A
6165215 Rottenberg et al. Dec 2000 A
6166184 Hendriks et al. Dec 2000 A
6174331 Moe et al. Jan 2001 B1
6177514 Pathak et al. Jan 2001 B1
6190407 Ogle et al. Feb 2001 B1
6193749 Schroeder et al. Feb 2001 B1
6203755 Odland Mar 2001 B1
6206917 Williams et al. Mar 2001 B1
6210957 Carpentier et al. Apr 2001 B1
6214054 Cunanan et al. Apr 2001 B1
6214055 Simionescu et al. Apr 2001 B1
6231608 Stone May 2001 B1
6231614 Yang May 2001 B1
6251579 Moore et al. Jun 2001 B1
6254635 Schroeder et al. Jul 2001 B1
6258320 Persing et al. Jul 2001 B1
6267786 Stone Jul 2001 B1
6277555 Duran et al. Aug 2001 B1
6287338 Sarnowski et al. Sep 2001 B1
6290991 Roser et al. Sep 2001 B1
6293970 Wolfinbarger, Jr. et al. Sep 2001 B1
6302909 Ogle et al. Oct 2001 B1
6312474 Francis et al. Nov 2001 B1
6322593 Pathak et al. Nov 2001 B1
6322994 Reid Nov 2001 B1
6328762 Anderson et al. Dec 2001 B1
6334873 Lane et al. Jan 2002 B1
6352708 Duran et al. Mar 2002 B1
6364905 Simpson et al. Apr 2002 B1
6372228 Gregory Apr 2002 B1
6375680 Carlyle Apr 2002 B1
6376244 Atala Apr 2002 B1
6383732 Stone May 2002 B1
6391538 Vyavahare et al. May 2002 B1
6394096 Constantz May 2002 B1
6448076 Dennis et al. Sep 2002 B2
6468660 Ogle et al. Oct 2002 B2
6471723 Ashworth et al. Oct 2002 B1
6479079 Pathak et al. Nov 2002 B1
6482199 Neev Nov 2002 B1
6497725 Williams et al. Dec 2002 B2
6506339 Giradot et al. Jan 2003 B1
6509145 Torrianni Jan 2003 B1
6527979 Constantz et al. Mar 2003 B2
6531310 Mirsch, II et al. Mar 2003 B1
6534004 Chen et al. Mar 2003 B2
6547827 Carpentier et al. Apr 2003 B2
6561970 Carpentier et al. May 2003 B1
6569200 Wolfinbarger, Jr. et al. May 2003 B2
6582464 Gabbay Jun 2003 B2
6586006 Roser et al. Jul 2003 B2
6586573 Besman et al. Jul 2003 B1
6589591 Mansouri et al. Jul 2003 B1
6605667 Badejo et al. Aug 2003 B1
6613278 Mills et al. Sep 2003 B1
6617142 Keogh et al. Sep 2003 B2
6630001 Duran et al. Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6653062 DePablo et al. Nov 2003 B1
6682559 Myers et al. Jan 2004 B2
6685940 Andya et al. Feb 2004 B2
6696074 Dai et al. Feb 2004 B2
6734018 Wolfinbarger, Jr. et al. May 2004 B2
6753181 Atala Jun 2004 B2
6790229 Berreklouw Sep 2004 B1
6797000 Simpson et al. Sep 2004 B2
6828310 Barresi et al. Dec 2004 B2
6872226 Cali et al. Mar 2005 B2
6878168 Carpentier et al. Apr 2005 B2
6893666 Spievack May 2005 B2
6908591 MacPhee et al. Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6919172 DePablo et al. Jul 2005 B2
6933326 Griffey et al. Aug 2005 B1
7008763 Cheung Mar 2006 B2
7029434 Carpentier et al. Apr 2006 B2
7037333 Myers et al. May 2006 B2
7063726 Crouch et al. Jun 2006 B2
7078163 Torrianni Jul 2006 B2
7087723 Besman et al. Aug 2006 B2
7141064 Scott et al. Nov 2006 B2
7143769 Stoltz et al. Dec 2006 B2
7214344 Carpentier et al. May 2007 B2
7238200 Lee et al. Jul 2007 B2
7318998 Goldstein et al. Jan 2008 B2
7338757 Wolfinbarger, Jr. et al. Mar 2008 B2
7354749 Fisher et al. Apr 2008 B2
7358284 Griffey et al. Apr 2008 B2
7367969 Stoltz et al. May 2008 B2
RE40570 Carpentier et al. Nov 2008 E
7498565 Silberberg et al. Mar 2009 B2
7579381 Dove Aug 2009 B2
7594974 Cali et al. Sep 2009 B2
7648676 Mills et al. Jan 2010 B2
7682304 Heyninck-Jantz et al. Mar 2010 B2
7914569 Nguyen et al. Mar 2011 B2
7919112 Pathak et al. Apr 2011 B2
7972376 Dove et al. Jul 2011 B1
8007992 Tian et al. Aug 2011 B2
8043450 Cali et al. Oct 2011 B2
8075615 Eberhardt et al. Dec 2011 B2
8105375 Navia et al. Jan 2012 B2
8136218 Millwee et al. Mar 2012 B2
8308797 Paniagua et al. Nov 2012 B2
8357387 Dove et al. Jan 2013 B2
8361144 Fish et al. Jan 2013 B2
8377143 Hamby et al. Feb 2013 B2
8475827 Hamby et al. Jul 2013 B2
20010000804 Goldstein et al. May 2001 A1
20010020191 Williams et al. Sep 2001 A1
20010025196 Chinn et al. Sep 2001 A1
20010027344 Bonutti Oct 2001 A1
20010032024 Cunanan et al. Oct 2001 A1
20010039459 Stone Nov 2001 A1
20020001834 Keogh et al. Jan 2002 A1
20020091441 Guzik Jul 2002 A1
20020111532 Pathak et al. Aug 2002 A1
20030035843 Livesey et al. Feb 2003 A1
20030125805 Johnson et al. Jul 2003 A1
20030135284 Crouch et al. Jul 2003 A1
20030167089 Lane Sep 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040030381 Shu Feb 2004 A1
20040086543 Keogh et al. May 2004 A1
20040158320 Simionescu et al. Aug 2004 A1
20040193259 Gabbay Sep 2004 A1
20050010773 Lapstun et al. Jan 2005 A1
20050119736 Zilla et al. Jun 2005 A1
20050136510 Hendriks et al. Jun 2005 A1
20050211680 Li et al. Sep 2005 A1
20060084957 Delfyett et al. Apr 2006 A1
20060099326 Keogh et al. May 2006 A1
20060110370 Pathak et al. May 2006 A1
20060159641 Giradot et al. Jul 2006 A1
20060177426 Gibson et al. Aug 2006 A1
20060193885 Leonard Neethling et al. Aug 2006 A1
20060210960 Livesey et al. Sep 2006 A1
20060217804 Dove Sep 2006 A1
20060217805 Dove Sep 2006 A1
20070050014 Johnson Mar 2007 A1
20070073392 Heyninck-Jantz et al. Mar 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070254005 Pathak et al. Nov 2007 A1
20070292459 Cooper et al. Dec 2007 A1
20080302372 Davidson et al. Dec 2008 A1
20080319166 Shen Dec 2008 A1
20090041729 Wolfinbarger, Jr. et al. Feb 2009 A1
20090130162 Pathak et al. May 2009 A2
20090137999 Silberberg et al. May 2009 A1
20090188900 Cali et al. Jul 2009 A1
20090326524 Cali et al. Dec 2009 A1
20100036484 Hariton et al. Feb 2010 A1
20110092966 Guo et al. Apr 2011 A1
20110177150 Pathak et al. Jul 2011 A1
20110214398 Liburd et al. Sep 2011 A1
20110238167 Dove et al. Sep 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110300625 Paniagua et al. Dec 2011 A1
20110306124 Strasly et al. Dec 2011 A1
20110311493 Dove et al. Dec 2011 A1
20120035720 Cali et al. Feb 2012 A1
20120059487 Cunanan et al. Mar 2012 A1
20120067855 Guo et al. Mar 2012 A1
20120078356 Fish et al. Mar 2012 A1
20120095551 Navia et al. Apr 2012 A1
20120123557 Carpentier et al. May 2012 A1
20120185038 Fish et al. Jul 2012 A1
20120328905 Guo et al. Dec 2012 A1
20130122583 Neethling May 2013 A1
20130238088 Navia et al. Sep 2013 A1
Foreign Referenced Citations (17)
Number Date Country
0169259 Jan 1986 EP
2394673 Dec 2011 EP
8401894 Dec 1984 WO
9511047 Apr 1995 WO
9522361 Aug 1995 WO
9534332 Dec 1995 WO
9613227 May 1996 WO
9807452 Feb 1998 WO
9843556 Oct 1998 WO
0032252 Jun 2000 WO
WO 0032252 Jun 2000 WO
WO 03037227 May 2003 WO
2004082536 Sep 2004 WO
WO 2004082536 Sep 2004 WO
2006026325 Mar 2006 WO
WO 2006099334 Sep 2006 WO
2013009851 Jan 2013 WO
Non-Patent Literature Citations (21)
Entry
Sabbah et al. (1986) Mechanical stresses on closed cusps of porcine bioprosthetic valves: correlation with sites of calcification. Ann. Thorac. Surg. 42: 93-96.
Zilla, P., et al., “Carbodiimide Treatment Dramatically Potentiates the Anticalcific Effect of Alpha-Amino Oleic Acid on Glutaraldehyde-Fixed Aortic Wall Tissue,” The Annals of Thoracic Surgery, Elsevier, vol. 79, No. 3, ISSN: 0003-4975; Mar. 1, 2005.
International Search Report dated Oct. 15, 2009 in corresponding PCT application No. PCT/US2008/066411.
Carpentier, A., et al., “Biological Factors Affecting Long-Term Results of Valvular Heterografts,” Forty-ninth Meeting of the American Association for Thoracic Surgery, San Francisco, CA, Mar. 31-Apr. 2, 1969.
Chanda, J., et al., “Heparin in Calcification Prevention of Porcine Pericardial Bioprostheses,” Biomaterials, Elsevier Science Publishers, vol. 18, No. 16, ISSN: 0142-9612, Aug. 1, 1997.
Chvapil, M., et al., “Use of Chemically Purified and Cross-Linked Bovine Pericardium as a Ligament Substitute,” Journal of Biomedical Materials Research, vol. 21, No. 12, pp. 1383-1394, 1987, University of Arizona Health Science Center, Tucson, AZ.
Dahm, Manfred, et al., “Effects of Surface Seeding with Vital Cells on the Calcium Uptake of Biological Materials for Heart Valve Replacement,” J Heart Valve Dis, vol. 5, No. 2, Mar. 1996, 148-151.
Fahner, P., et al., “Systematic Review of Preservation Methods and Clinical Outcome of Infrainguinal Vascular Allografts,” Journal of Vascular Surgery, vol. 44, No. 3, pp. 518-524, 2006.
Fumoto, H., et al., “Performance of Bioprosthetic Valves After Glycerol Dehydration, Ethylene Oxide Sterilization, and Rehydration,” Innovations, vol. 6, No. 1, Jan./ Feb. 2011.
Grabenwoger, M. et al. “Decreased Tissue Reaction to Bioprosthetic Heart Valve Material after L-glutaimc acid Treatment. A Morphological Study.” J. Biomed Mater. Res. Sep. 1992;26(9):1231-40.
Grant, R.A., et al., “The Effects of Irradiation with High Energy Electrons on the Structure and Reactivity of Native and Cross-Linked Collagen Fibres,” J. Cell Sci. vol. 7, 99. 387-405, 1970.
Hauschka, P., et al., “Direct Identification of the Calcium- Binding Amino Acid, y-Carboxyglutamate, in Mineralized Tissue,” Proc. Nat. Acad. Sci, vol. 72, No. 10, pp. 3925-3929, Oct. 1975.
Jayakrishnan, A., et al., “Glutaraldehyde as a Fixative in Bioprostheses and Drug Delivery Matrices,” Biomaterials, vol. 17, Issue 5, 1996, pp. 471-484.
Khora, Eugene, “Methods for the Treatment of Collagenous Tissues for Bioprostheses,” Biomaterials, vol. 18, Issue 2, Jan. 1997, pp. 95-105.
Liao, K., et al., “Mechanical Stress: An Independent Determinant of Early Bioprosthetic Calcification in Humans,” Ann. Throac. Surg 2008;86:491-495.
Neethling, W, et al. Enhanced Biostability and Biocompatibility of Decellularized Bovine Pericardium, Crosslinked with an Ultra-Low Concentration Monomeric Aldehyde and Treated with ADAPT®, J. Heart Valve Dis. 2008; 17:456-464.
Olde Damink, L.H.H., et al., “Influence of Ethylene Oxide Gas Treatment on the in vitro Degradation Behavior of dermal Sheep Collagen,” Journal of Biomedical Materials Resarch, vol. 29, pp. 149-155, 1995.
R Parker, et al. Storage of Heart Valve Allografts in Glycerol With Subsequent Antibiotic Sterilisation, Thorax, 1978, 638-645, vol. 33:5, British Thoracic Society, London, UK.
Saegeman, V., et al., “Short and long term bacterial inhibiting effect of high concentrations of glycerol used in the prevention of skin allografts,” Science Direct, Burns, No. 34, Mar. 2008.
Schmidt, C., et al., “Acellular Vascular Tissues: Natural Biomaterials for Tissue Repair and Tissue Engineering,” Biomaterials, vol. 21, pp. 2215-2231, 2000.
Trantina-Yates AE, et al. “Detoxification of Top Enhanced, Diamine-Extended Glutaraldehyde Fixation Significantly Reduces Bioprosthetic Root Calcification in the Sheep Model,” J. Heart Valve Dis. Jan. 2003; 12 (1):93-100.
Related Publications (1)
Number Date Country
20080302372 A1 Dec 2008 US
Provisional Applications (1)
Number Date Country
60943118 Jun 2007 US