METHODS FOR THE DETECTION, VISUALIZATION AND HIGH RESOLUTION PHYSICAL MAPPING OF GENOMIC REARRANGEMENTS IN BREAST AND OVARIAN CANCER GENES AND LOCI BRCA1 AND BRCA2 USING GENOMIC MORSE CODE IN CONJUNCTION WITH MOLECULAR COMBING

Information

  • Patent Application
  • 20180340235
  • Publication Number
    20180340235
  • Date Filed
    June 01, 2018
    6 years ago
  • Date Published
    November 29, 2018
    6 years ago
Abstract
Methods for detecting genomic rearrangements in BRCA1 and BRCA2 genes at high resolution using Molecular Combing and for determining a predisposition to a disease or disorder associated with these rearrangements including predisposition to ovarian cancer or breast cancer. Primers useful for producing probes for this method and kits for practicing the methods.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The invention relates to a method for detecting genomic rearrangements in BRCA1 and BRCA2 genes and loci at high resolution using Molecular Combing and relates to a method of determining a predisposition to diseases or disorders associated with these rearrangements including predisposition to ovarian cancer or breast cancer.


Description of the Related Art

Breast cancer is the most common malignancy in women, affecting approximately 10% of the female population. Incidence rates are increasing annually and it is estimated that about 1.4 million women will be diagnosed with breast cancer annually worldwide and about 460,000 will die from the disease. Germline mutations in the hereditary breast and ovarian cancer susceptibility genes BRCA1 (MIM#113705) and BRCA2 (MIM#600185) are highly penetrant (King et al., 2003), (Nathanson et al., 2001). Screening is important for genetic counseling of individuals with a positive family history and for early diagnosis or prevention in mutation carriers. When a BRCA1 or BRCA2 mutation is identified, predictive testing is offered to all family members older than 18 years. If a woman tests negative, her risk becomes again the risk of the general population. If she tests positive, a personalized surveillance protocol is proposed:


it includes mammographic screening from an early age, and possibly prophylactic surgery. Chemoprevention of breast cancer with anti-estrogens is also currently tested in clinical trial and may be prescribed in the future.


Most deleterious mutations consist of either small frameshifts (insertions or deletions) or point mutations that give rise to premature stop codons, missense mutations in conserved domains, or splice-site mutations resulting in aberrant transcript processing (Szabo et al., 2000). However, mutations also include more complex rearrangements, including deletions and duplications of large genomic regions that escape detection by traditional PCR-based mutation screening combined with DNA sequencing (Mazoyer, 2005).


Techniques capable of detecting these complex rearrangements include Southern blot analysis combined with long-range PCR or the protein truncation test (PTT), quantitative multiplex PCR of short fluorescent fragments (QMPSF) (Hofmann et al., 2002), real-time PCR, fluorescent DNA microarray assays, multiplex ligation-dependent probe amplification (MLPA)(Casilli et al., 2002), (Hofmann et al., 2002) and high-resolution oligonucleotide array comparative genomic hybridization (aCGH) (Rouleau et al., 2007), (Staaf et al., 2008). New approaches that provide both prescreening and quantitative information, such as qPCR-HRM and EMMA, have recently been developed and genomic capture combined with massively parallel sequencing has been proposed for simultaneous detection of small mutations and large rearrangements affecting 21 genes involved in breast and ovarian cancer (Walsh et al., 2010).


Molecular Combing is a powerful FISH-based technique for direct visualization of single DNA molecules that are attached, uniformly and irreversibly, to specially treated glass surfaces (Herrick and Bensimon, 2009); (Schurra and Bensimon, 2009). This technology considerably improves the structural and functional analysis of DNA across the genome and is capable of visualizing the entire genome at high resolution (in the kb range) in a single analysis. Molecular Combing is particularly suited to the detection of genomic imbalances such as mosaicism, loss of heterozygosity (LOH), copy number variations (CNV), and complex rearrangements such as translocations and inversions (Caburet et al., 2005), thus extending the spectrum of mutations potentially detectable in breast cancer genes. Molecular Combing has been successfully employed for the detection of large rearrangements in BRCA1 ((Gad et al., 2001), (Gad et al., 2002a), (Gad t al., 2003) and BRCA2 (Gad t al., 2002b), using a first-generation “color bar coding” screening approach. However, these techniques lack resolution and cannot precisely detect large rearrangements in and around BRCA1 and BRCA2.


In distinction to the prior art techniques, as disclosed herein, the inventors provide a novel Genetic Morse Code Molecular Combing procedure that provides for high resolution visual inspection of genomic DNA samples, precise mapping of mutated exons, precise measurement of mutation size with robust statistics, simultaneous detection of BRCA1 and BRCA2 genetic structures or rearrangements, detection of genetic inversions or translocations, and substantial elimination of problems associated with repetitive DNA sequences such as Alu sequences in BRCA1 and BRCA2 loci.


BRIEF SUMMARY OF THE INVENTION

The BRCA1 and BRCA2 genes are involved, with high penetrance, in breast and ovarian cancer susceptibility. About 2% to 4% of breast cancer patients with a positive family history who are negative for BRCA1 and BRCA2 point mutations can be expected to carry large genomic alterations (deletion or duplication) in one of the two genes, and especially BRCA1. However, large rearrangements are missed by direct sequencing. Molecular Combing is a powerful FISH-based technique for direct visualization of single DNA molecules, allowing the entire genome to be examined at high resolution in a single analysis. A novel predictive genetic test based on Molecular Combing is disclosed herein. For that purpose, specific BRCA1 and BRCA2 “Genomic Morse Codes” (GMC) were designed, covering coding and non-coding regions and including large genomic portions flanking both genes. The GMC is a series of colored signals distributed along a specific portion of the genomic DNA which signals arise from probe hybridization with the probes of the invention. The concept behind the GMC has been previously defined in WIPO patent application WO/2008/028931 (which is incorporated by reference), and relates to the method of detection of the presence of at least one domain of interest on a macromolecule to test.


A measurement strategy is disclosed for the GMC signals, and has been validated by testing 6 breast cancer patients with a positive family history and 10 control patients. Large rearrangements, corresponding to deletions and duplications of one or several exons and with sizes ranging from 3 kb to 40 kb, were detected on both genes (BRCA1 and BRCA2). Importantly, the developed GMC allowed to unambiguously localize several tandem repeat duplications on both genes, and to precisely map large rearrangements in the problematic Alu-rich 5′-region of BRCA1. This new developed Molecular Combing genetic test is a valuable tool for the screening of large rearrangements in BRCA1 and BRCA2 and can optionally be combined in clinical settings with an assay that allows the detection of point mutations.


A substantial technical improvement compared to the prior color bar coding approach is disclosed here that is based on the design of second-generation high-resolution BRCA1 and BRCA2 Genomic Morse Codes (GMC). Importantly, repetitive sequences were eliminated from the DNA probes, thus reducing background noise and permitting robust measurement of the color signal lengths within the GMC. Both GMC were statistically validated on samples from 10 healthy controls and then tested on six breast cancer patients with a positive family history of breast cancer. Large rearrangements were detected, with a resolution similar to the one obtained with a CGH (1-3 kb). The detected mutation demonstrates the robustness of this technology, even for the detection of problematic mutations, such as tandem repeat duplications or mutations located in genomic regions rich of repetitive elements. The developed Molecular Combing platform permits simultaneous detection of large rearrangements in BRCA1 and BRCA2, and provides novel genetic tests and test kits for breast and ovarian cancer.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color.



FIGS. 1A and 1B: Dot plot alignments of the human BRCA1 and BRCA2 genomic regions. Dot plot matrix showing self-alignment of the 207-kb genomic regions derived from the BAC RP11-831F13 (ch17:41172482-41379594) encoding BRCA1(1A), and the 172-kb genomic regions derived from the BAC RP11-486017 (ch13: 32858070-33030569) encoding BRCA2 (1B), based on the GRCh37 genome assembly (also called hg19, April 2009 release) and using JDotter software (URL: http://_athena.bioc.uvic.ca/tools/JDotter). The main diagonal represents alignment of the sequence with itself, while the lines out of the main diagonal represent similar or repetitive patterns within the sequence. The dark regions contain large numbers of repetitive sequences, whereas the bright regions contain none. The genes are represented as arrows in the 5′→3′ direction. The sizes and BAC coordinates of the genomic regions, encoding for repetitive sequences, not included in the DNA probes are indicated in the tables on the left. The bottom panels indicate the name and the size (in kb) of the DNA probes (35 for BRCA1 and 27 for BRCA2) without potentially disturbing repetitive sequences, derived from the bioinformatics analysis.



FIGS. 2A, 2B, 2C and 2D: In silico-generated Genomic Morse Codes designed for high-resolution physical mapping of the BRCA1 and BRCA2 genomic regions. Probes colors are represented here as grayscale variations: blue probes are shown as black boxes, green probes as white boxes and red probes as gray boxes. (2A) The complete BRCA1 GMC covers a genomic region of 200 kb and is composed of 18 signals (S1B1-S18B) of a distinct color (green, red or blue). Each signal is composed of 1 (e.g., S2B1) to 3 small horizontal bars (e.g., S15B1), each bar corresponding to a single DNA probe. The region encoding the BRCA1gene (81.2 kb) is composed of 7 “motifs” (g1b1-g7b1). Each motif is composed of 1 to 3 small horizontal bars and a black “gap” (no signal). (2B) Zoom-in on the BRCA1 gene-specific signals and relative positions of the exons. (2C) The complete BRCA2 GMC covers a genomic region of 172 kb and is composed of 14 signals (S1B2-S14B2) of a distinct color (green, red or blue). Each signal is composed of 1 (e.g., S14B2) to 5 small horizontal bars (e.g., S1B2). The region encoding the BRCA2 gene (84.2 kb) is composed of 5 motifs 24 (g1b2-g5b2). Each motif is composed of 2 to 4 small horizontal bars and a black gap. (2D) Zoom-in on the BRCA2 gene-specific signals and relative positions of the exons. Deletions or insertions, if present, will appear in the region covered by the motifs.



FIGS. 3A and 3B: Validation of BRCA1 and BRCA2 Genomic Morse Code signals in control patients. Original microscopy images consist of three channel images where each channel is the signal from a given fluorophore—these are acquired separately in the microscopy procedure. These channels are represented here as different shades on a grayscale: blue probes are shown in black, green probes in white and red probes in dark gray, while background (absence of signal) is light gray. In diagrams, the same convention as in FIG. 2 is used. The aspect ratio was not preserved, signals have been “widened” (i.e. stretched perpendicularly to the direction of the DNA fiber) in order to improve the visibility of the probes. Typical BRCA1 (3A) and BRCA2 (3B) Genomic Morse Code signals and measured motif lengths (kb) in one control patient (absence of large rearrangements) are reported. The BRCA1 and BRCA2 signals obtained after microscopic visualization are shown at the top of the tables, including the position of the motifs related to the gene of interest. Typically 20 to 40 images (n images) were selected, and motifs were measured with GVLab software. For each motif, the following values were determined: the theoretical calculated length (calculated (kb)), the mean measured length (μ(kb)), the standard deviation (SD (kb)), the coefficient of variation (CV (%)), the difference between μ and calculated (delta), and the stretching factor (SF=(calculated/μ)×2). In the absence of mutations, SF values are comprised between 1.8 and 2.2 and delta values are comprised between −1.9 kb and 1.9 kb (see Material and Methods in Example 1 for details).



FIGS. 4A, 4B, and 4C: Known BRAC1 large rearrangements detected in breast cancer patients.





As in FIGS. 2 and 3, diagrams and microscopy images are represented in shades of gray, with the following correspondence: blue is shown as black, green as white and red as dark gray (on a light gray background) and aspect ratio in microscopy images may have been modified for clarity. DNA isolated from EBV-immortalized B lymphocytes collected from breast cancer patients was analyzed by Molecular Combing to confirm known large rearrangements previously characterized by aCGH (see Table 3). Three large rearrangements out of seven are shown in the figure: (4A) Dup ex 13 (case 1), visible as a tandem repeat duplication of the blue signal S7B1. The g481 motif (16.5 kb) was first measured on a mixed population of 40 images, comprising wild type and mutated alleles, and following values were obtained: μ(BRCA1wt+BRCA1mt signals)=19 kb±3.5 kb, delta=2.5 kb (duplication is confirmed since delta≥2 kb). The images were then divided in two groups: 21 images were classified as BRCA1wt, and 19 images were classified as BRCA1mt. The size was then calculated as the difference between the motif mean sizes of the two alleles: μ(BRCA1wt)=16.1±1.6 kb, μ(BRCA1mt)=22.2±2.0 kb, mutation size=μ(BRCA1mt)−μ(BRCA1wt)=6.1±1.6 kb. The bottom panel shows the MLPA fragment display (left) and the normalized MLPA results (right), arrows indicating exons interpreted as duplicated. (4B) Del ex 8-13 (case 6), visible as a deletion of the blue signal S71B, including a large genomic portion between signals S7B1 and S7B1. The g4B1 (16.5 kb) and the g5b1 (19.7 kb) motifs were first measured on a mixed population of 23 images, yielding following values. For g4b1: μ(BRCA1wt+BRCA1mt)=17.5±4.0 kb, delta=−2.2 kb (delta≤−2 kb); 13 images were then classified as BRCA1wt and 10 images as BRCA1mt: μ(BRCA1wt)=20.8±1.6 kb, μ(BRCA1mt)=13.3±1.1 kb, μ(BRCA1mt)−μ(BRCA1wt)=−7.5±1.6 kb. For g5b1; μ(BRCA1wt+BRCA1mt)=12.8±5.5 kb, delta=−3.7 kb (delta≤−2 kb); 13 images were then classified as BRCA1wt and 10 images as BRCA1mt: μ(BRCA1wt)=18.3±1.3 kb, μ(BRCA1mt)=5.8±0.5 kb, μ(BRCA1mt)−μ(BRCA1wt)=−12.5±1.0 kb. Total mutation size=mutation size g4B1+mutation size g5b1=−20±2.8 kb. (4C) Del ex 2 (case 2), visible as a deletion of the green signal S10B1, as well as a large genomic portion of the 5′ region upstream of BRCA1, including S11B1 and S12B1. To confirm the presence of the deletion in the BRCA1 gene, the g7B1 (17.7 kb) motif was first measured on a mixed population of 20 images, yielding following values: μ(BRCA1wt+BRCA1mt)=12.3±2.9 kb, delta=−5.4 kb (deletion is confirmed since delta≤−2 kb). To measure mutations size within the BRCA1 gene, 11 images were then classified as BRCA1wt and 9 images as BRCA1mt, yielding following values: μ(BRCA1wt) 18.1±0.7 kb, μ(BRCA1mt)=8.1±1.6 kb, mutation size=μ(BRCA1mt)−μ(BRCA1wt)=−10±1.5 kb. To include the deleted genomic region upstream of BRCA1 and determine the whole mutation size, we had to measure the genomic region between the signals S8B1 and S14B1 (89.9 kb). The S8B1-S14B1 region was first measured on 19 images, yielding following values: μ(BRCA1wt+BRCA1mt)=62.3±18.4 kb, delta=−27.6 kb. 11 images were then classified as BRCA1wt, and 8 images as BRCA1mt, yielding following values: μ(BRCA1wt)=92.2±3.2 kb, μ(BRCA1mt)=51.4±2.2 kb, mutation size=μ(BRCA1mt)−μ(BRCA1wt)=−40.8±3.5 kb. The BRCA1 signals, derived from both the wild-type (=BRCA1wt) and the mutated allele (=BRCA1mt), obtained after microscopic visualization, are shown in the top panels. The position, nature (deletion or duplication) and size (in kb) of the detected large rearrangements are indicated in orange. The zoom-in on the BRCA1 gene-specific signals and the relative positions of the mutated exons are shown in the bottom panels. mt, mutated allele; wt, wild-type allele.



FIG. 5. GMC used for BRCA1. Another example of a high resolution genomic morse code to analyze the BRCA1 gene region is shown here. As in FIG. 2, diagrams are represented with the following correspondence: blue probes are shown as black, green as white and red as dark gray.



FIG. 6: Duplication in exons 18-20 of BRCA1


The GMC described in FIG. 2, with probe labels modified as shown in the diagram, was hybridized on this sample. As in FIGS. 2 and 3, diagrams and microscopy images are represented in shades of gray, with the following correspondence: blue is shown as black, green as white and red as dark gray (on a light gray background) and aspect ratio in microscopy images may have been modified for clarity. By visual inspection, there appears to be a tandem duplication of the red signal S5B1. After measurement, the mutation was estimated to have a size of 6.7±1.2 kb, restricted to a portion of the genome that encodes for exons 18 to 20. The estimated mutation size is fully in line with the 8.7 kb reported in the literature (Staaf, 2008). Details on the measurement and statistical analysis can be found in Example 1.



FIGS. 7A and 7B provide examples of Alu sequences excluded from the BRCA1 (FIG. 7A) and BRCA2 (FIG. 7B) GMCs. FIG. 7A includes SEQ ID NOS: 136 and 137, and FIG. 7B includes SEQ ID NOS: 138 and 139.


DETAILED DESCRIPTION OF THE INVENTION
Definitions

Physical mapping: is the creation of a genetic map defining the position of particular elements, mutations or markers on genomic DNA, employing molecular biology techniques. Physical mapping does not require previous sequencing of the analyzed genomic DNA.


FISH: Fluorescent in situ hybridization.


Molecular Combing: a FISH-based technique for direct visualization of single DNA molecules that are attached, uniformly and irreversibly, to specially treated glass surfaces.


Predictive genetic testing: screening procedure involving direct analysis of DNA molecules isolated from human biological samples (e.g.: blood), used to detect gene mutations associated with disorders that appear after birth, often later in life. These tests can be helpful to people who have a family member with a genetic disorder, but who have no features of the disorder themselves at the time of testing. Predictive testing can identify mutations that increase a person's chances of developing disorders with a genetic basis, such as certain types of cancer.


Polynucleotides: This term encompasses naturally occurring DNA and RNA polynucleotide molecules (also designated as sequences) as well as DNA or RNA analogs with modified structure, for example, that increases their stability. Genomic DNA used for Molecular Combing will generally be in an unmodified form as isolated from a biological sample. Polynucleotides, generally DNA, used as primers may be unmodified or modified, but will be in a form suitable for use in amplifying DNA. Similarly, polynucleotides used as probes may be unmodified or modified polynucleotides capable of binding to a complementary target sequence. This term encompasses polynucleotides that are fragments of other polynucleotides such as fragments having 5, 10, 15, 20, 30, 40, 50, 75, 100, 200 or more contiguous nucleotides.


BRCA1 locus: This locus encompasses the coding portion of the human BRCA1 gene (gene ID: 672, Reference Sequence NM_007294) located on the long (q) arm of chromosome 17 at band 21, from base pair 41,196,311 to base pair 41,277,499, with a size of 81 kb (reference genome Build GRCh37/hg19), as well as its introns and flanking sequences. Following flanking sequences have been included in the BRCA1 GMC: the 102 kb upstream of the BRCA1 gene (from 41,277,500 to 41,379,500) and the 24 kb downstream of the BRCA1 gene (from 41,196,310 to 41,172,310). Thus the BRCA1 GMC covers a genomic region of 207 kb.


BRCA2 locus: This locus encompasses the coding portion of the human BRCA2 gene (gene ID: 675, Reference Sequence NM_000059.3) located on the long (q) arm of chromosome 13 at position 12.3 (13q12.3), from base pair 32,889,617 to base pair 32,973,809, with a size of 84 kb (reference genome Build GRCh37/hg19), as well as its introns and flanking sequences. Following flanking sequences have been included in the BRCA2 GMC: the 32 kb upstream of the BRCA2 gene (from 32,857,616 to 32,889,616) and the 56 kb downstream of the BRCA2 gene (from 32,973,810 to 33,029,810). Thus the BRCA2 GMC covers a genomic region of 172 kb.


Germline rearrangements: genetic mutations involving gene rearrangements occurring in any biological cells that give rise to the gametes of an organism that reproduces sexually, to be distinguished from somatic rearrangements occurring in somatic cells.


Point mutations: genetic mutations that cause the replacement of a single base nucleotide with another nucleotide of the genetic material, DNA or RNA. Often the term point mutation also includes insertions or deletions of a single base pair.


Frameshift mutations: genetic mutations caused by indels (insertions or deletions) of a number of nucleotides that is not evenly divisible by three from a DNA sequence. Due to the triplet nature of gene expression by codons, the insertion or deletion can change the reading frame (the grouping of the codons), resulting in a completely different translation from the original.


Tandem repeats duplications: mutations characterized by a stretch of DNA that is duplicated to produce two or more adjacent copies, resulting in tandem repeats.


Tandem repeat array: a stretch of DNA consisting of two or more adjacent copies of a sequence resulting in gene amplification. A single copy of this sequence in the repeat array is called a repeal unit. Gene amplifications occurring naturally are usually not completely conservative, i.e. in particular the extremities of the repeated units may be rearranged, mutated and/or truncated. In the present invention, two or more adjacent sequences with more than 90% homology are considered a repeat array consisting of equivalent repeat units. Unless otherwise specified, no assumptions are made on the orientation of the repeat units within a tandem repeat array.


Complex Rearrangements: any gene rearrangement that can be distinguished from simple deletions or duplications. Examples are translocations or inversions.


Probe: This term is used in its usual sense for a polynucleotide of the invention that hybridizes to a complementary polynucleotide sequences (target) and thus serves to identify the complementary sequence. Generally, a probe will be tagged with a marker, such as a chemical or radioactive market that permits it to be detected once bound to its complement. The probes described herein are generally tagged with a visual marker, such as a fluorescent dye having a particular color such as blue, green or red dyes. Probes according to the invention are selected to recognize particular portions or segments of BRCA1 or BRCA2, their exons or flanking sequences. For BRCA1, probes generally range in length between 200 bp and 5,000 bp. For BRCA2, probes generally range in length between 200 bp and 6,000 bp. The name and the size of probes of the invention are described in FIG. 2. Representative probes according to the invention, such as BRCA1-1A (3,458 bp) or BRCA2-1 (2,450 bp), are described in Tables 1 and 2. In a particular embodiment of the invention, the probes are said to be “free of repetitive nucleotidic sequences”. Such probes may be located in genomic regions of interest which are devoid of repetitive sequences as defined herein.


Detectable label or marker: any molecule that can be attached to a polynucleotide and which position can be determined by means such as fluorescent microscopy, enzyme detection, radioactivity, etc, or described in the US application nr. US2010/0041036A1 published on 18 Feb. 2010.


Primer: This term has its conventional meaning as a nucleic acid molecule (also designated sequence) that serves as a starting point for polynucleotide synthesis. In particular, Primers may have 20 to 40 nucleotides in length and may comprise nucleotides which do not base pair with the target, providing sufficient nucleotides in their 3′-end, especially at least 20, hybridize with said target. The primers of the invention which are described herein are used to produce probes for BRCA1 or BRCA2, for example, a pair of primers is used to produce a PCR amplicon from a bacterial artificial chromosome as template DNA. The sequences of the primers used herein are referenced as SEQ ID 1 to SEQ ID 130 in in Table 8. In some cases (details in table 1), the primers contained additional sequences to these at their 5′ end for ease of cloning. These additional sequences are SEQ ID 134 (containing a poly-A and a restriction site for AscI) for forward primers and SEQ ID 135 (containing a poly-A and a restriction site for PacI) for reverse primers.


Tables 1 and 2 and 8 describe representative primer sequences and the corresponding probe coordinates.


Genomic Morse Code(s): A GMC is a series of“dots” (DNA probes with specific sizes and colors) and “dashes” (uncolored spaces with specific sizes located between the DNA probes), designed to physically map a particular genomic region. The GMC of a specific gene or locus is characterized by a unique colored “signature” that can be distinguished from the signals derived by the GMCs of other genes or loci. The design of DNA probes for high resolution GMC requires specific bioinformatics analysis and the physical cloning of the genomic regions of interest in plasmid vectors. Low resolution CBC has been established without any bioinformatics analysis or cloning procedure.


Repetitive nucleotidic sequences: the BRCA1 and BRCA2 gene loci contain repetitive sequences of different types: SINE, LINE, LTR and Alu. The repetitive sequences which are present in high quantity in the genome sequence but are absent from the probes, i.e. were removed from the BRCA1 and BRCA2 GMCs of the invention, are mainly Alu sequences, having lengths of about 300 bμ(see Figure S1, S1, S2 and S3 for more details). This mainly means that the percentage of the remaining Alu-sequences within the DNA probes compared to percentage present in the reference genome is less than 10% and preferably less than 2%. Accordingly, a polynucleotide is said to be “free of repetitive nucleotidic sequences” when at least one type of repetitive sequences (e.g., Alu, SINE, LINE or LTR) selected from the types of repetitive sequences cited above is not contained in the considered probe, meaning that said probes contains less than 10%, preferably less than 2% compared to percentage present in the reference genome. Examples of Alu repeats found in the BRCA1 and 2 genes are given in FIGS. 7A and 7B, while tables 3 and 4 list the repeats identified by RepeatMasker contained in the BAC clone RP11-831F13 covering the genomic region of BRCA1 (FIG. 7A) or in the BAC clone RP11-486017 covering the genomic region of BRCA2 (FIG. 7B). In both cases, Alu repeats are counted separately in regions where our probes hybridize and in the regions excluded from this probe design.


The term “intragenic large rearrangement” as used herein refers to deletion and duplication events that can be observed in a gene sequence, said sequence comprising in a restricted view introns and exons; and in an extended view introns, exons, the 5′ region of said gene and the 3′ region of said gene. The intragenic large rearrangement can also cover any gain or loss of genomic material with a consequence in the expression of the gene of interest.


The term “locus” as used herein refers to a specific position of a gene or other sequence of interest on a chromosome. For BRCA1 and BRCA2, this term refer to the BRCA1 and BRCA2 genes, the introns and the flanking sequences refer to BRCA1/BRCA2+introns and flanking sequences


The term “nucleic acid” as used herein means a polymer or molecule composed of nucleotides, e.g., deoxyribonucleotides or ribonucleotides, or compounds produced synthetically such as PNA which can hybridize with naturally occurring nucleic acids in a sequence specific manner analogous to that of two naturally occurring nucleic acids, e.g., can participate in Watson-Crick base pairing interactions. Nucleic acids may be single- or double-stranded or partially duplex.


The terms “ribonucleic acid” and “RNA” as used herein mean a polymer or molecule composed of ribonucleotides.


The terms “deoxyribonucleic acid” and “DNA” as used herein mean a polymer or molecule composed of deoxyribonucleotides.


The term “sample” as used herein relates to a material or mixture of materials, typically, although not necessarily, in fluid form, containing one or more components of interest. For Molecular Combing, the sample will contain genomic DNA from a biological source, for diagnostic applications usually from a patient. The invention concerns means, especially polynucleotides, and methods suitable for in vitro implementation on samples.


The terms “nucleoside” and “nucleotide” are intended to include those moieties that contain not only the known purine and pyrimidine bases, but also other heterocyclic bases that have been modified. Such modifications include methylated purines or pyrimidines, acylated purines or pyrimidines, alkylated riboses or other heterocycles. In addition, the terms “nucleoside” and “nucleotide” include those moieties that contain not only conventional ribose and deoxyribose sugars, but other sugars as well. Modified nucleosides or nucleotides also include modifications on the sugar moiety, e.g., wherein one or more of the hydroxyl groups are replaced with halogen atoms or aliphatic groups, or are functionalized as ethers, amines, or the like.


The term “stringent conditions” as used herein refers to conditions that are compatible to produce binding pairs of nucleic acids, e.g., surface bound and solution phase nucleic acids, of sufficient complementarity to provide for the desired level of specificity in the assay while being less compatible to the formation of binding pairs between binding members of insufficient complementarity to provide for the desired specificity. Stringent assay conditions are the summation or combination (totality) of both hybridization and wash conditions.


A “stringent hybridization” and “stringent hybridization wash conditions” in the context of nucleic acid hybridization (e.g., as required for Molecular Combing or for identifying probes useful for GMC) are sequence dependent, and are different under different experimental parameters. Stringent hybridization conditions that can be used to identify nucleic acids within the scope of the invention can include for example hybridization in a buffer comprising 50% formamide, 5×SSC, and 1% SDS at 42° C., or hybridization in a buffer comprising 5.times.SSC and 1% SDS at 65° C., both with a wash of 0.2×SSC and 0.1% SDS at 65° C. Exemplary stringent hybridization conditions can also include a hybridization in a buffer of 40% formamide, 1M NaCl, and 1% SDS at 37° C., and a wash in IX SSC at 45° C. Alternatively, hybridization to filter-bound DNA in 0.5 MNaHP04, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C. can be employed. Yet additional stringent hybridization conditions include hybridization at 60° C. or higher and 3×SSC (450 mM sodium chloride/45 mM sodium citrate) or incubation at 42° C. in a solution containing 30% formamide, 1 M NaCl, 0.5% sodium sarcosine, 50 mM MES, pH 6.5. Those of ordinary skill will readily recognize that alternative but comparable hybridization and wash conditions can be utilized to provide conditions of similar stringency.


A probe or primer located in a given genomic locus means a probe or a primer which hybridizes to the sequence in this locus of the human genome. Generally, probes are double stranded and thus contain a strand that is identical to and another that is reverse complementary to the sequence of the given locus. A primer is single stranded and unless otherwise specified or indicated by the context, its sequence is identical to that of the given locus. When specified, the sequence may be reverse complementary to that of the given locus. In certain embodiments, the stringency of the wash conditions that set forth the conditions that determine whether a nucleic acid is specifically hybridized to a surface bound nucleic acid. Wash conditions used to identify nucleic acids may include for example a salt concentration of about 0.02 molar at pH 7 and a temperature of at least about 50° C. or about 55° C. to about 60° C.; or a salt concentration of about 0.15 M NaCl at 72° C. for about 15 minutes; or a salt concentration of about 0.2×SSC at a temperature of at least about 50° C. or about 55° C. to about 60° C. for about 15 to about 20 minutes; or, the hybridization complex is washed twice with a solution with a salt concentration of about 2×SSC containing 0.1% SDS at room temperature for 15 minutes and then washed twice by 0.1×SSC containing 0.1% SDS at 68° C. for 15 minutes; or, equivalent conditions. Stringent conditions for washing can also be for example 0.2×SSC/0.1% SDS at 42′C. A specific example of stringent assay conditions is rotating hybridization at 65° C. in a salt based hybridization buffer with a total monovalent cation concentration of 1.5 M followed by washes of 0.5×SSC and 0.1×SSC at room temperature.


Stringent assay conditions are hybridization conditions that are at least as stringent as the above representative conditions, where a given set of conditions are considered to be at least as stringent if substantially no additional binding complexes that lack sufficient complementarity to provide for the desired specificity are produced in the given set of conditions as compared to the above specific conditions, where by “substantially no more” is meant less than about 5-fold more, typically less than about 3-fold more. Other stringent hybridization conditions are known in the art and may be employed, as appropriate.


“Sensitivity” describes the ability of an assay to detect the nucleic acid of interest in a sample. For example, an assay has high sensitivity if it can detect a small concentration of the nucleic acid of interest in sample. Conversely, a given assay has low sensitivity if it only detects a large concentration of the nucleic acid of interest in sample. A given assay's sensitivity is dependent on a number of parameters, including specificity of the reagents employed (such as types of labels, types of binding molecules, etc.), assay conditions employed, detection protocols employed, and the like. In the context of Molecular Combing and GMC hybridization, sensitivity of a given assay may be dependent upon one or more of: the nature of the surface immobilized nucleic acids, the nature of the hybridization and wash conditions, the nature of the labeling system, the nature of the detection system, etc.


Design of high-resolution BRCA1 and BRCA2 Genomic Morse Codes Molecular Combing has already been used to detect large rearrangements in the BRCA1 and BRCA2 genes, but the hybridization DNA probes originally used were part of a low resolution “color bar coding” screening approach and were composed of cosmids, PACs and long-range PCR products only partially covering the BRCA1 and BRCA2 loci. Of importance, the DNA probes also encoded repetitive sequences particularly abundant at the two loci (Gad et al., 2001), (Gad et al., 2002b). As a consequence, detection of the probes often resulted in the superposition of individual colored signals (e.g., yellow spots resulting from superposition of green and red signals) and in strong background noise, undermining the quality of the images and preventing the development of a robust strategy to measure the signals length. Such a low resolution screening approach did not allow the unambiguous visualization of complex mutations, such as tandem repeat duplications (Schurra and Bensimon, 2009), (Herrick and Bensimon, 2009).


The inventors found that high-resolution Genomic Morse Codes (GMC) that were designed by covering more of the BRCA1 and BRCA2 genomic regions and by removing the disturbing repetitive sequences from the DNA probes resolved the problems associated with the prior color bar coding approach.


To visualize the repetitive sequences, dot-plot alignments of the BAC clones used for DNA probe cloning were first performed, based on the Genome Reference Consortium GRCh37genome assembly (also called hg19, April 2009 release). Based on Repeat Masker analysis (www.repeatmasker.org), the percentages of Alu repetitive DNA in the BRCA1- and BRCA2-encoding BACs were 35% and 17%, respectively (data not shown). This resulted in a dark dot-plot matrix dense in repetitive sequences for BRCA1 (1.6 Alu sequences per 1 kb of DNA, compared to an average in the human genome of only 0.25 Alu/kb), and a brighter dot-plot matrix for BRCA2 (0.64 Alu/kb of DNA) (FIGS. 1A and 1B).


35 genomic regions in the BRCA1 locus and 27 regions in the BRCA2 locus that had significantly less repetitive sequences were identified and were used to design and clone DNA hybridization probes compatible with the visualization process associated with Molecular Combing. The name, size and color of the DNA hybridization probes, and the exons covered by the probes, are shown in FIG. 1 and listed in Tables 1 (BRCA1) and 2 (BRCA2). Adjacent DNA probes of the same color form a signal. Thus, a Genomic Morse Code is composed of sequences of colored signals distributed along a specific portion of the genomic DNA. Colors were chosen to create unique non-repetitive sequences of signals, which differed between BRCA1 and BRCA2. The sizes and the BAC coordinates of the genomic regions, encoding for repetitive sequences, excluded from the BRCA1/BRCA2 GMC DNA probes are shown in Tables 3 & 4. 257 Alu sequences were excluded from the BRCA1 GMC and 85 Alu sequences were excluded from the BRCA2 GMC. Examples of removed Alu sequences from both GMCs are shown in FIG. 7.


To facilitate Genomic Morse Code recognition and measurement, signals located on the genes were grouped together in specific patterns called “motifs”. An electronic reconstruction of the designed BRCA1 and BRCA2 Genomic Morse Codes is shown in FIG. 2. In this design, the BRCA1 Genomic Morse Code covers a region of 200 kb, including the upstream genes NBR1, NBR2, LOC100133166, and TMEM106A, as well as the pseudogene ψBRCA1. The complete BRCA1 Genomic Morse Code is composed of 18 signals (S1B1-S18B), and the 8 BRCA1-specific signals are grouped together in 7 motifs (g1b1-g7b1) (FIGS. 2 A and B). The BRCA2 Genomic Morse Code covers a genomic region of 172 kb composed of 14 signals (S1B2-S14B2), and the 7 BRC42-specific signals are grouped together in 5 motifs (g1b2-g5b2) (FIGS. 2C and 2D). Deletions or insertions, if present, are detected in the genomic regions covered by the motifs.


Validation of BRCA1 and BRCA2 Genomic Morse Code Signals in Control Patients


The newly designed Genomic Morse Codes were first validated on genomic DNA isolated from 10 randomly chosen control patients. Typical visualized signals and measured motif lengths for one control donor are reported in FIG. 3, with BRCA1 at the top and BRCA2 at the bottom. For each Genomic Morse Code, 20 to 30 images were typically analyzed by measuring the length of the different motifs (see nr. images in FIG. 3). Importantly, for all the motifs, the measured values were always similar to the calculated values (compare μ and calculated in FIG. 3). The robustness of BRCA1 and BRCA2 signal measurement was determined by calculating the mean of the measured motif lengths in all 10 control patients, and by comparing the mean measured values with the calculated values (see Table S1). For BRCA1, we obtained delta values (difference between μ and calculated) in the range of −0.2 kb and +0.8 kb, whereas BRCA2 delta values were in the range of −0.3 kb and +0.4 kb, underlining the precision of the developed measurement approach and confirming that the resolution of Molecular Combing is around ±1 kb (Michalet et al., 1997). Molecular Combing allows DNA molecules to be stretched uniformly with a physical distance to contour length correlation of 1 μm, equivalent to 2 kb (Michalet et al., 1997). As a consequence, in the absence of large rearrangements, the derived stretching factor (SF) has a value close to 2 kb/□μm (±0.2). This was confirmed in all the analyzed control donors, with SF values in the range of 1.8-2.2 kb/μm (see SF in FIG. 3). Accordingly, in the presence of large rearrangements in both BRCA1 and BRCA2, SF values are expected to be ≥2.3 kb/μm (for deletions) or ≤1.7 kb/μm (for duplications) and the corresponding delta values are expected to be ≥2 kb (for duplications) or ≤−2 kb (for deletions). Importantly, the presence of a large rearrangement is always validated by visual inspection of the corresponding Genomic Morse Code.


Detection of Known BRCA1 Large Rearrangements in Breast Cancer Patients


Molecular Combing was then applied to 6 samples from patients with a severe family history of breast cancer and known to bear large rearrangements either on BRCA1 or BRCA2 (preliminary screening performed by MLPA or QMPSF). Importantly, the Molecular Combing analysis was a blind test, meaning that for each of the patient the identity of the mutation was unknown before the test, since it was revealed to the operator only after having completed the test on all the samples. 6 different large rearrangements were identified (see Table 5). Importantly, all 6 known mutations have been recently characterized by aCGH and break-point sequencing (Rouleau 2007) and were correctly identified and characterized by Molecular Combing. Complete characterization of the 3 most significant known BRCA1 large rearrangements is reported in FIG. 4 and is described here below.


Duplication of Exon 13 (BRCA1)


By visual inspection via Molecular Combing, this mutation appears as a partial tandem duplication of the blue signal S7B1 (FIG. 4A, top panel). After measurement, the mutation was estimated to have a size of 6.1 kb, restricted to a portion of the DNA probe BRCA1-8 that encodes exon 13. The estimated mutation size is fully in line with the 6.1 kb reported in the literature (Puget 1999), and according to the Breast Cancer Information Core database, this mutation belongs to the 10 most frequent mutations in BRCA1 (Szabo 2000). Duplications are difficult to detect with quantitative methods such as MLPA, often giving rise to false-positive signals (Cavalieri 2007, Staaf 2008). The characterized patient was therefore also analyzed by MLPA, and the duplication of exon 13 was confirmed. More importantly, we also detected a duplication of exons 1A+1B (FIG. 4A, bottom panel), but this mutation could not be detected by Molecular Combing (a duplication of exon 13, if present, would yield two distinct S10B1 signals). Therefore, we consider the exon 1A+1B mutation detected by MLPA to be a false-positive signal. The risk of false-positive signals is more limited in Molecular Combing.


Deletion from Exon 8 to Exon 13 (BRCA1)


By visual inspection, the mutation appeared as a visible as a deletion of the blue signal S7B1, including a large genomic portion between signals S7B1 and S8B1 (FIG. 4B). After measurement, the mutation was estimated to have a size of 26.7 kb in a portion of the BRCA1 gene that encodes from exon 8 to exon 13. The size reported in the literature is 23.8 kb, and this is a recurrent mutation in the French population (Mazoyer 2005, Rouleau 2007).


Deletion of the 5′ Region to Exon 2 (BRCA1)


By visual inspection, the mutation appeared as a deletion of the green signal S10B1, as well as a large genomic portion of the 5′ region upstream of BRCA1, including S11B1 and S12B1 (FIG. 4C). After measurement, the mutation was estimated to have a size of 37.1 kb, encompassing the portion of the BRCA1 gene that encodes exon 2, the entire NBR2 gene (signal S11B1), the genomic region between NBR2 and the pseudogene ψBRCA1 (signal S12B1), and a portion of ψBRCA1 (signal S13B1). Importantly, the reported size of this type of rearrangement is highly variable, originally in the range of 13.8 to 36.9 kb (Mazoyer 2005) and more recently between 40.4 and 58.1 kb (Rouleau 2007). Six different exon 1-2 deletions have been reported, 16 times, in a number of different populations (Sluiter 2010). The rearrangement reported here has been described three times with an identical size (36 934 bp). The hotspot for recombination is explained by the presence of ψBRCA1. Molecular combing proved capable of characterizing events even in this highly homologous region.


The results reported herein disclose and exemplify the development of a novel genetic test based on Molecular Combing for the detection of large rearrangements in the BRCA1 and BRCA2 genes. Large rearrangements represent 10-15% of deleterious germline mutations in the BRCA1 gene and 1-7% in the BRCA2 gene (Mazoyer, 2005). Specific high-resolution GMC were designed and were tested on a series of 16 biological samples; the robustness of the associated measurement strategy was statistically validated on 10 control samples, and 6 different large rearrangements were detected and characterized in samples from patients with a severe family history of breast cancer. The robustness of the newly designed GMC, devoid of repetitive sequences, is endorsed by the fact that our Molecular Combing method confirmed the results obtained with high-resolution zoom-in aCGH (11 k) on the same samples (Rouleau et al., 2007), with a resolution in the 1-2 kb range.


Tandem repeat duplications are the most difficult large rearrangements to detect. Contrary to other techniques, such as aCGH and MLPA, the capacity of Molecular Combing to visualize hybridized DNA probes at high resolution permits precise mapping and characterization of tandem repeat duplications, as shown here in case 1 (BRCA1 Dup Ex 13). aCGH can be used to determine the presence and size of duplications, but not the exact location and orientation of tandem repeat duplications. In PCR-based techniques such as MLPA, duplications are considered to be present when the ratio between the number of duplicated exons in the sample carrying a mutation and the number of exons in the control sample is at least 1.5, reflecting the presence of 3 copies of a specific exon in the mutated sample and 2 copies in the wild-type sample. The ratio of 1.5 is difficult to demonstrate unambiguously by MLPA, which often gives false-positive signals, as observed in case 1 (BRCA1 Dup Ex 13). The limits of MLPA have been underlined in several recent studies (Cavalieri et al., 2008), (Staaf et al., 2008). MLPA is limited to coding sequences and can also give false-negative scores, due to the restricted coverage of the 21 probes (Cavalieri et al., 2008). In addition, MLPA provides only limited information on the location of deletion or duplication breakpoints in the usually very large intronic or affected flanking regions, thus necessitating laborious mapping for sequence characterization of the rearrangements. Staaf et al recently suggested that MLPA should be regarded as a screening tool that needs to be complemented by other means of mutation characterization, such as a CGH (Staaf et al., 2008). We propose Molecular Combing as such a replacement technology for MLPA or aCGH, as it unambiguously identifies and visualizes duplications.


Another advantage of Molecular Combing as disclosed herein was its capacity to cover non-coding regions, including the 5′ region of the BRCA1 gene and the genomic region upstream of BRCA1 that comprises the NBR2gene, the ψBRCA1 pseudogene and the NBR1 gene. Recent studies show that it is very difficult to design exploitable PCR or aCGH probes in this rearrangement-prone genomic region (Rouleau et al., 2007), (Staaf et al., 2008), because of the presence of duplicated regions and the high density of Alu repeats. Genomic rearrangements typically arise from unequal homologous recombination between short interspersed nuclear elements (SINEs), including Alu repeats, long interspersed nuclear elements (LINEs), or simple repeat sequences.


Molecular Combing permits precise physical mapping within this difficult regions, as shown here in cases three and two (BRCA1 Del Ex 2), where we measured mutation sizes of 38.5 kb and 37.1 kb, respectively. As cases 3 and 2 belong to the same family, the detected mutation was the same in both cases, as confirmed by aCGH (Rouleau et al., 2007). The measurement difference of 1.4 kb between these two cases is acceptable, being within the 1-2 kb definition range of the molecular combing assay. The mutation was originally described by Puget et al, who determined the mutation size (37 kb) with a first-generation molecular combing “color bar coding” screening method (Puget et al., 2002). Size estimated with aCGH was in the 40.4-58.1 kb range, because of the low density of exploitable oligonucleotide sequences in this genomic region and the reduced sensitivity of 22some oligonucleotides due to sequence homology (Rouleau et al., 2007). Molecular combing can therefore be used for the analysis of hard-to-sequence genomic regions that contain large numbers of repetitive elements. Here we demonstrate that the high concentration of Alu sequences in BRCA1 does not represent an obstacle for molecular combing.


Detection of Previously Uncharacterized BRCA1 Large Rearrangements in Breast Cancer Patients


Further samples were tested, and we characterized by Molecular Combing rearrangements which other techniques had failed to accurately describe. One such example is detailed below.


Triplication of Exons 1a, 1b and 2 of BRCA1 and a Portion of NBR2.


We analyzed sample #7 (provided by the Institut Claudius Régaud, Toulouse, France) by Molecular Combing, using the set of probes described in FIG. 5. By visual inspection, two alleles of the BRCA1 gene were identified, differing in the length of the motif g7b1 which extends from the end of the S9B1 probe to the opposite end of the S11B1 probe. The mutation appears to be a triplication involving portions of the SYNT1 probe (SEQ ID 133) and the S10B1 probe, as was confirmed in probe color swapping experiments. This triplication of a DNA segment with a size comprised between 5 and 10 kb involves exons 1a, 1b and 2 of the BRCA1 gene and possibly part of the 5′ extremity of the NBR2 gene.


Such a triplication has not been reported in this genomic region yet. This may be due to the previous lack of relevant technologies to detect the mutation. Therefore, we designed tests specific to this mutation. These tests may be used to screen for this triplication or to confirm this triplication in samples where a rearrangement is suspected in this region. There are several types of possible tests, such as PCR, quantitative PCR (qPCR), MLPA, aCGH, sequencing . . . .


Results of quantification techniques, which provide a number of copies of a given sequence (qPCR, MLPA, aCGH, . . . ) will not provide direct assessment of the tandem nature of the additional copies of the sequence. The triplication reported here may be suspected when sequences within exons 1a, 1b and/or 2 of BRCA1 and/or the sequences between these exons are present in multiple (more than two per diploid genome) copies. Generally speaking, when these results are above the threshold determined for duplicated sequence (which have three copies in total of the duplicated sequence), the sample should be suspected to bear a triplication on a single allele (rather than duplications of the sequence in two separate alleles. Confirmation of the triplication and its tandem nature may be obtained either through a PCR test or through a Molecular Combing test as described in this and the examples section.


As this is a more direct method, we detail some PCR designs here, in the example sections. The man skilled in the art may adapt these tests through common, generally known, molecular biology methods, e.g. by modifying primer locations within the sequence ranges mentioned, and/or modifying experimental conditions (annealing temperature, elongation time, . . . for PCR). Also, these tests may be included in “multiplex” tests where other mutations are also sought. For example, one or several pair(s) of primers designed to detect the triplication and described below may be used simultaneously with one or several other pair(s) of primers targeting distinct amplicons. In addition to these adaptations, several common variants exist for the molecular tests described. Nevertheless, these variants remain functionally identical to the described tests and the adaptation of our designs to these variants is easily achievable by the man skilled in the art. For example, sequencing may be replaced by targeted resequencing, where the region of interest is isolated for other genomic regions before the sequencing step, so as to increase coverage in the region of interest. As another example, semi-quantitative PCR, where DNA is quantity after amplification is assessed by common agarose electrophoresis, may replace QMPSF.


These results demonstrate that the developed Molecular Combing platform is a valuable tool for genetic screening of tandem repeat duplications, CNVs, and other complex rearrangements in BRCA1 and BRCA2, such as translocations and inversions, particularly in high-risk breast cancer families.


A prominent application of the developed molecular diagnostic tool is as a predictive genetic test. However, the methods and tools disclosed herein may be applied as or in a companion diagnostic test, for instance, for the screening of BRCA-mutated cells in the context of the development of PARP inhibitors. Such a genetic test can be applied not only to clinical blood samples, but also to circulating cells and heterogeneous cell populations, such as tumor tissues.


EXAMPLES
Example 1

Materials and Methods


Preliminary Patient Screening


The Genomic Morse Code was validated on 10 samples from patients with no deleterious mutations detected in BRCA1 or BRCA2 (control patients). The genetic test was validated on 6 samples from patients with positive family history of breast cancer and known to bear large rearrangements affecting either BRCA1 or BRCA2. Total human genomic DNA was obtained from EBV-immortalized lymphoblastoid cell lines. Preliminary screening for large rearrangements was performed with the QMPSF assay (Quantitative Multiplex PCR of Short Fluorescent Fragments) in the conditions described by Casilli et al and Tournier et al (Casilli et al., 2002) or by means of MLPA (Multiplex Ligation-Dependent Probe Amplification) using the SALSA MLPA kits P002 (MRC Holland, Amsterdam, The Netherlands) for BRCA1 and P045 (MRC-Holland) for BRCA42. All 16 patients gave their written consent for BRCA1 and BRCA2 analysis.


Molecular Combing


Sample Preparation


Total human genomic DNA was obtained from EBV-immortalized lymphoblastoid cell lines. A 45-μL suspension of 10′ cells in PBS was mixed with an equal volume of 1.2% Nusieve GTG agarose (Lonza, Basel, Switzerland) prepared in 1×PBS, previously equilibrated at 50° C. The plugs were left to solidify for 30 min at 4° C., then cell membranes are solubilised and proteins digested by an overnight incubation at 50° C. in 250 μL of 0.5 M EDTA pH 8.0, 1% Sarkosyl (Sigma-Aldrich, Saint Louis, Mo., USA) and 2 mg/mL proteinase K (Eurobio, Les Ulis, France), and the plugs were washed three times at room temperature in 10 mM Tris, 1 mM EDTA pH 8.0. The plugs were then either stored at 4° C. in 0.5 M7EDTA pH 8.0 or used immediately. Stored plugs were washed three times for 30 minutes in 10 mM Tris, 1 mM EDTA pH 8.0 prior to use.


Probe Preparation


All BRC4A and BRC42 probes were cloned into pCR2.1-Topo or pCR-XL-Topo (Invitrogen) plasmids by TOPO cloning, using PCR amplicons as inserts. Amplicons were obtained using bacterial artificial chromosomes (BACs) as template DNA. The following BACs were used: for BRCA1, the 207-kb BACRP11-831F13 (ch17: 41172482-41379594, InVitrogen, USA); and for BRCA2, the 172-kb BAC RP11-486017 (ch13: 32858070-33030569, InVitrogen, USA). See Tables 1 and 2 for primer sequences and probe coordinates. Primer sequences are referenced as SEQ ID 1 to SEQ ID 130. In some cases (as detailed in table 1), additional artificial sequences were added to the 5′ end of the primer for ease of cloning. These artificial sequences are SEQ ID 134 (ForwardPrimerPrefix) for forward primers and SEQ ID 135 (ReversePrimerPrefix) for forward primers, both containing a poly-A and a restriction site for, respectively, AscI and PacI.


SEQ ID 131 (BRCA1-1A), SEQ ID 132 (BRCA1-1B) and SEQ ID 133 (BRCA1-SYNT1) are are examples of probe sequences.


Whole plasmids were used as templates for probe labeling by random priming. Briefly, for biotin (Biota) labeling, 200 ng of template was labeled with the DNA Bioprime kit (Invitrogen) following the manufacturers instructions, in an overnight labeling reaction. For Alexa-488 (A488) or digoxigenin (Dig) labeling, the same kit and protocol were used, but the dNTP mixture was modified to include the relevant labeled dNTP, namely Dig-11-dUTP (Roche Diagnostics, Meylan, France) or A488-7-OBEA dCTP (Invitrogen) and its unlabelled equivalent, both at 100 μM, and all other dNTPs at 200 μM. Labeled probes were stored at −20° C. For each coverslip, 5 μL of each labeled probe ( 1/10th of a labeling reaction product) was mixed with 10 μg of human Cot-1 and 10 μg of herring sperm DNA (both from Invitrogen) and precipitated in ethanol. The pellet was then resuspended in 22 μL of 50% formamide, 30% Blocking Aid (Invitrogen). 1×SSC, 2.5% Sarkosyl. 0.25% SDS, and 5 mM NaCl.


Genomic DNA Combing and Probe Hybridization


Genomic DNA was stained by 1 h incubation in 40 mM Tris, 2 mM EDTA containing 3 μM Yoyo-1 (Invitrogen, Carlsbad, Calif., USA) in the dark at room temperature. The plug was then transferred to 1 mL of 0.5 M MES pH 5.5, incubated at 68° C. for 20 min to melt the agarose, and then incubated at 42° C. overnight with 1.5 U beta agarase 1 (New England Biolabs, Ipswich, Mass., USA). The solution was transferred to a combing vessel already containing 1 ml of 0.5 M MES pH 5.5, and DNA combing was performed with the Molecular Combing System on dedicated coverslips (Combicoverslips) (both from Genomic Vision, Paris, France).


Combicoverslips with combed DNA are then baked for 4 h at 60° C. The coverslips were either stored at −20° C. or used immediately for hybridisation. The quality of combing (linearity and density of DNA molecules) was estimated under an epi-fluorescence microscope equipped with an FITC filter set and a 40× air objective. A freshly combed coverslip is mounted in 20 μL of a 1 ml ProLong-gold solution containing 1 μL of Yoyo-1 solution (both from Invitrogen). Prior to hybridisation, the coverslips were dehydrated by successive 3 minutes incubations in 70%, 90% and 100% ethanol baths and then air-dried for 10 min at room temperature. The probe mix (20 μL; see Probe Preparation) was spread on the coverslip, and then left to denature for 5 min at 90° C. and to hybridise overnight at 37° C. in a hybridizer (Dako). The coverslip was washed three times for 5 min in 50% formamide, 1×SSC, then 3×3 min in 2×SSC.


Detection was performed with two or three successive layers of flurophore or streptavidin-conjugated antibodies, depending on the modified nucleotide employed in the random priming reaction (see above). For the detection of biotin labeled probes the antibodies used were Streptavidin-A594 (InVitrogen, Molecular Probes) for the 1st and 3rd layer, biotinylated goat anti-Streptavidin (Vector Laboratories) for the 2nd layer; For the detection of A488-labelled probes the antibodies used were rabbit anti-A488 (InVitrogen, Molecular Probes) for the 1st and goat anti-rabbit A488 (InVitrogen, Molecular Probes) for the 2nd layer; For the detection of digoxygenin labeled probes the antibodies used were mouse anti-Dig (Jackson Immunoresearch) for the 1st layer, ratanti-mouse AMCA (Jackson Immunoresearch) for the 2nd layer and goat anti-mouse A350 (InVitrogen, Molecular Probes) for the 3rd Layer.


A 20 minute incubation step was performed at 37° C. in a humid chamber for each layer, and three successive 3 minutes washes in 2×SSC, 0.1% Tween at room temperature between layers. Three additional 3 minutes washes in PBS and dehydration by successive 3 minutes washes in 70%, 90% and 100% ethanol were performed before mounting the coverslip.


Image Acquisition


Image acquisition was performed with a customized automated fluorescence microscope (Image Xpress Micro, Molecular Devices, Sunnyvale, Calif., USA) at 40× magnification, and image analysis and signal measurement were performed with the software ImageJ (http://_rsbweb.nih.gov/ij) and JMeasure (Genomic Vision, Paris, France). Hybridisation signals corresponding to the BRCA1 and BRCA2 probes were selected by an operator on the basis of specific patterns made by the succession of probes. For all motifs signals belonging to the same DNA fibre, the operator set the ends of the segment and determined its identity and length (kb), on a 1:1 scale image. The data were then output as a spreadsheet. In the final analysis, only intact motif signals were considered, confirming that no fibre breakage had occurred within the BRCA1 or BRCA2 motifs.


Statistical Analysis


Molecular Combing allows DNA molecules to be stretched uniformly with a physical distance to contour length correlation of 1 μm, equivalent to 2 kb (Michalet et al., 1997). As a consequence, in the absence of large rearrangements, the derived stretching factor (SF) has a value close to 2 kb/μm (±0.2).


All 7 BRCA1 motifs (g1b1-g7b1) and all 5 BRCA2 motifs (g1b2-g5b2) were measured in all 20 biological samples. The mean value size of all motifs measured in the 10 healthy controls, including the associated statistical analysis, is reported in Table S1. The size of all motifs measured in the 6 breast cancer patients, including the associated statistical analysis, is reported in Table S2. For each motif, the following values were determined: the number of measured images (n), the theoretical calculated length (calculated (kb)), the mean measured length (μ(kb)), the standard deviation (SD (kb)), the coefficient of variation (CV(%)), the difference between μ and calculated (delta), and the stretching factor (SF=(calculated/μ)×2) (Michalet et al., 1997). In the absence of mutations, delta values are comprised between −1.9 kb and 1.9 kb, and SF values are comprised between 1.8 and 2.2. The presence of a large rearrangement on BRCA1 or BRCA2 was first identified by visual inspection of the corresponding GMC. From numerous datasets, we established that in the presence of large rearrangements in both BRCA1 and BRCA2, delta ≥2 kb (for duplications) or delta≤−2 kb (for deletions), ad the corresponding SF≥2.3 kb/μm (for deletions) or SF≤1.7 kb/μm (for duplications). To confirm the presence of a large rearrangement, the motif(-s) of interest was (were) first measured on a total population of images (typically between 20 and 40), comprising wild-type (wt) and mutated (mt) alleles. In presence of large rearrangements, and aiming to measure the mutation size, the images were then divided in two groups, corresponding to the wt and the mt alleles. Within each of the two groups of n images, following values were calculated: μ(kb), SD (kb), CV(%). The μ value of the wild-type allele was then compared with the μ value of the mutated allele. To this aim, we calculated the standard error of the mean (SEM=SD/√n) and the 95% confidence interval (95% CI=μ±2×SEM). The mutation size was then calculated as a difference between the mean size of the two alleles: mutation size=μ(BRCA1mt)−μ(BRCA1wt). The related error was calculated according to following formula:





error(((μ+2×SEMmt)−(μwt−2×SEMwt))−((μmt−2×SEMmt)−(μwt+2×SEMwt)))/2.


Example 2: Comparison of Genetic Morse Code and Molecular Combing of the Invention to Prior Color Bar Code Procedure

Part 1. Previous Application of Molecular Combing on Characterization of BRCA1 and BRCA2 Large Rearrangements: Design of Low Resolution Color Bar Codes (CBCs)


Molecular Combing has already been used by Gad et al. (Gad GenChrCan 2001, Gad JMG 2002) to detect large rearrangements in the BRCA1 and BRCA2 genes. The hybridization DNA probes originally used were part of a low resolution “color bar coding” screening approach composed of cosmids, PACs and long-range PCR products. Some probes were small and ranged from 6 to 10 kb, covering a small fraction the BRCA1 and BRCA2 loci. Other probes were very big (PAC 103014 measuring 120 kb for BRCA1 and BAC 486017 measuring 180 kb for BRCA2) and were covering the whole loci, including all the repetitive sequences. Thus, no bioinformatic analysis to identify potentially disturbing repetitive sequences has been even performed. More importantly, no repetitive sequence has been ever excluded from the design of the CBCs. This often resulted in incomplete characterizations of the screened mutations (see Part 3). As a consequence, detection of the probes often resulted in the superposition of individual colored signals (e.g., yellow/white spots resulting from superposition of different colored signals) and in strong background noise, undermining the quality of the images and preventing the development of a robust strategy to measure the signals length. In addition, no DNA probe was r isolated and cloned in an insert vector. The BRCA1 Color Bare Code (CBC) was composed of only 7 DNA probes ((Gad, et at, Genes Chromosomes and cancer 31:75-84 (2001))), whereas the BRCA2 CBC was composed of only 8 DNA probes (Gad, et al, J Med Genet (2002)). This low number of DNA probes did not allow high resolution physical mapping.( ).


Importantly, such a low resolution screening approach did not allow the unambiguous visualization of complex mutations, such as tandem repeat duplications or triplications. In contrast, full characterization of tandem repeat duplications and triplications is possible with the high-resolution GMC (see Example 1). Moreover, the accurate physical mapping of all the mutated exons was often problematic, requiring additional laborious sequencing experiments. This often resulted in incomplete characterizations of the screened mutations (see Chapter 3).


Part 2. New Application of Molecular Combing on Characterization of BRCA1 and BRCA2 Large Rearrangements: Design of High Resolution Genomic Morse Codes (GMCs) and Development of a Genetic Test.


An important point of novelty for the present invention is the design and cloning of hi h-resolution Genomic Morse Codes (GMC) for both BRCA1 and BRCA2 genomic regions. The BRCA1 GMC is composed of 35 DNA probes (FIG. 1), whereas the BRCA2 GMC is composed of 27 DNA probes (FIG. 2).


Comparative FIG. 1: in-silico generated (top) and microscopy observed (bottom) high resolution BRCA1 GMC.


Comparative FIG. 2: in-silico generated (top) and microscopy observed (bottom) high resolution GMC of BRCA2.


35 genomic regions in BRCA1 and 27 regions in BRCA2 devoid of repetitive sequences were identified, and were used to design and clone the corresponding DNA hybridization probes. All the details of the employed DNA hybridization probes (name, size, coordinates, color and the nature of the covered exons) are listed above. The cloned DNA probes allow the accurate physical mapping of deleted exons and permit the simultaneous detection of large rearrangements in BRCA1 and BRCA2. The above described improvement in resolution, permitted the inventors to translate their observations into the development of a robust predictive genetic test for breast and ovarian cancer (see example 1).


Part 3: High Resolution GMC's Allow the Unambiguous Detection and Visualization of Complex Imitation (e.g.: Tandem Repeal Duplications and Triplications) that Can't be Characterized by Low Resolution CBC


The following are selected examples of complex mutations that could not be characterized (or only partially) by low resolution CBC, but could be precisely and unambiguously characterized by high resolution GMC:


3.1 BRCA1 Dup Ex 18-20


The image generated by (Gad et al (case IC171712 in FIG. 1 of Gad et al, Oncogene 2001) has a low resolution and the nature and particularly the identity of the deleted exons cannot be defined by visual inspection. As a consequence, the size of the mutation has not been determined, confirming that the generated images were problematic for measurements.


GMC: (See Table S2 of Example 1)


By visual inspection, this mutation appears as a tandem duplication of the red signal S5B1. After measurement, the mutation was estimated to have a size of 6.7±1.2 kb, restricted to a portion of the genome that encodes for exons 18 to 20. The estimated mutation size is fully in line with the 8.7 kb reported in the literature (Staaf, 2008). Details on the measurement and statistical analysis can be found in Example 1.


Comparative FIG. 3: characterization of the BRCA1 mutation Dup ex 18-20 via CBC (top) and GMC (bottom).


3.2 BRCA1 Del Ex 8-13


CBC:


The image generated by Gad et al (case IC657 in FIG. 1 of Gad et al, Oncogene 2001) has a low resolution and the nature of the deleted exons cannot be unambiguously defined by visual inspection. The size of the mutation after measurement was 20.0±9.6 kb, having an important standard deviation.


GMC: (see FIG. 4B, Example 1)


By visual inspection, the mutation clearly appeared as a deletion of the blue signal S7B1, including a large genomic portion between signals S7B1 and S8B1. After measurement, the mutation was estimated to have a size of 20±2.8 kb, having a smaller error.


3.3 BRCA1 Dup Ex 13 (6.1 kb)


CBC:


No microscopy image related to mutation has been ever provided. The estimated mutation size was 5.8±1.8 kb (case IARC3653 in FIG. 3 of Gad et al, Oncogene 2001), but is not supported by visual inspection.


GMC: (See FIG. 4A, Example 1)


By visual inspection via Molecular Combing, this mutation appears as a partial tandem duplication of the blue signal S7B1. After measurement, the mutation was estimated to have a size of 6.1±1.6 kb, restricted to a portion of the DNA probe BRCA1-8 that encodes exon 13. The estimated mutation size is fully in line with the 6.1 kb reported in the literature (Puget, 1999), and according to the Breast Cancer Information Core database, this mutation belongs to the 10 most frequent mutations in BRCA1 (Szabo, 2000). Therefore, there is perfect correlation between the images and the measurements, and correlation with values present in literature. 3.4 Tandem repeat triplication of exons 1a, 1b and 2 of BRCA1 and a portion of NBR2.


CBC:

No tandem triplication has been ever reported using the CBC.


GMC:





    • By visual inspection via Molecular Combing, two alleles of the BRCA1 gene were identified in a sample provided by the Institut Claudius Regaud, Toulouse, France, differing in the length of the motif g7b which extends from the end of the S9B1 probe to the opposite end of the S11B1 probe. The mutation appeared to be a triplication involving portions of the SYNT1 and the S10B1 probe, as confirmed in probe color swapping experiments. This triplication of a DNA segment with a size comprised between 5 and 10 kb, and probably between 6 and 8 kb, involves exons 1a, 1b and 2 of the BRCA1 gene and possibly part of the 5′ extremity of the NBR2 gene.

    • The CBC would have at best detected this mutation as an increase of the length of a single probe, and thus would not have been able to characterize the mutation as a tandem triplication. Contrarily to Molecular Combing, none of the current molecular diagnostics technology, such as MLPA or aCGH, could assess whether the duplication or triplication is in tandem (within BRCA1) or dispersed (out of BRCA1). This observation makes a clear difference in terms of risk evaluation, since there is no evidence that repeated genomic portions out of the BRCA1 locus are clinically significant. Molecular Combing highlights that the mutation occurs within the BRCA gene, thus being of clinical significance.





The following important advantages of GMC compared to CBC are evident from the examples above:

    • high resolution visual inspection
    • precise mapping of mutated exons
    • precise measurement of mutation size with robust statistics
    • simultaneous detection of BRCA1 and BRCA2
    • detection of inversions and translocation
    • absence of disturbing repetitive sequence (Alu sequences) for GMCs BRCA1 and BRCA2.


Tests Specific to Detect a Triplication in the 5′ Region of BRCA1


PCR tests to detect unambiguously the triplication described above or a close triplication may distinguish non triplicated from triplicated alleles through either one of two ways:

    • a—appearance of PCR fragments with the triplicated allele that do not appear with a non-triplicated allele or;
    • b—change of size of a PCR fragment.


The organization of the sequences in a triplication may be used to design primer pairs such that the PCR amplification is only possible in a tandem repeat. If one of the primers is located in the amplified sequence and is in the same orientation as the BRCA gene (5′ to 3′) and the other is the reverse complementary of a sequence within the amplified sequence located upstream of the first primer (i.e. the direction from the location of the first to the second primer is the same as the direction from the 3′ to the 5′ end of the BRCA gene), the PCR in a non-mutated sample will not be possible as the orientation of the primers do not allow it. Conversely, in a triplicated sample, the first primer hybridizing on a repeat unit is oriented correctly relative to the second primer hybridizing in the repeat unit immediately downstream of the first primer's repeat unit. Thus, the PCR is possible. In a triplicated sample, two PCR fragments should be obtained using a pair of primers designed this way. In a sample with a duplication, only one fragment would appear. The size of the smaller PCR fragment (or the only fragment in the case of a duplication), s, is the sum of the following distances:


D, measured from the first (downstream) primer to the downstream (3′ direction relative to the BRCA1 gene) breakpoint, and


U, measured from the second (upstream) primer to the upstream (5′ direction relative to the BRCA gene) breakpoint.


This measurement thus provides a location range for both breakpoints, the downstream breakpoint being at a distance smaller than or equal to s from the location of the downstream primer (in the downstream direction) and the upstream breakpoint at a distance smaller than or equal to s from the location of the upstream primer (in the upstream direction). Besides, since the size of the triplicated sequence (L) is the sum of U+D and the distance between the two primers, L may be readily deduced from the size of the PCR fragment.


The size of the larger fragment is the sum of L and the size of the smaller fragment. Thus, by substracting the size of the smaller fragment from the size of the larger one, the size of the triplicated sequence is readily assessable in a second, independent assessment. This reduces the uncertainty on the location of the breakpoints. Thus, a test designed this way will allow a precise characterization of the triplication. Given the location of the triplication identified here, primer pairs used to detect the triplication could include combinations of one or several of the following downstream and upstream primers (the primer designed as the downstream primer is in the direct orientation relative to the BRCA1 gene and while the upstream primer is reverse complementary to the first strand of the BRCA1 gene). In choosing a combination of primers, in addition to the prescriptions below, one must choose the primer locations so the downstream primer is located downstream of the upstream primer:


A downstream primer may be located:

    • i) in the region between exons 2 and 3 of BRCA1, preferably at a distance from 2-4 kb from the 3′ end of exon 2, more preferably at a distance from 2.5-3 kb from the 3′ end of exon 2
    • ii) in the region between exons 2 and 3 of BRCA1, within 2 kb from the 3′ end of exon 2, preferably within 1.5 kb and more preferably within 1 kb from the 3′ end of exon 2


An upstream primer may be located:

    • i) in the region between the BRCA1 gene and the NBR2 gene, within 2 kb from exon 1a of BRCA1, preferably within 1.5 kb and more preferably within 1 kb of exon 1a of BRCA1;
    • ii) within exon 1a of BRCA1 or within exon 1b or in the region between exons 1a and 1b;
    • iii) in the region between exons 1b and 2, or in exon 2, or in the region between exons 2 and 3.
    • An example of such a combination is the primer pair consisting of primers BRCA1-Synt1-R (SEQ ID 126) and BRCA1-A3A-F (SEQ ID 25);


The combinations above are not meant to be exhaustive and the man skilled in the art may well choose other location for the upstream and downstream primers, provided the orientation and relative location of the primers is chosen as described. Several combinations of primers may be used in separate experiments or in a single experiment (in which case all of the “upstream” primers must be located upstream of all of the “downstream” primers. If more than three primers are used simultaneously (multiplex PCR*, the number of PCR fragments obtained will vary depending on the exact location of the breakpoint (no PCR fragment at all will appear in non mutated samples) and the characterization of the mutation will be difficult. Therefore, it is advisable to perform additional experiments with separate primer pairs if at least one fragment is observed in the multiplex PCR.


Importantly, with the design described in the preceeding paragraphs, the orientation of the triplicated sequence is of minor importance: indeed, in a triplication, at least two of the repeat units will share the same orientation and at least one PCR fragments should be amplified. This holds true for a duplication, as in the case of an inverted repeat, a PCR fragment would be obtained from a one of the primers hybridizing in two separate locations with reverse (facing) orientations, while a direct tandem repeat would generate a PCR fragment from the two primers as described above.


Another type of PCR test to reveal the triplication and its tandem nature requires the amplification of a fraction of or of the entire repeat array, using primer pairs spanning the repeated sequence (both primers remaining outside the amplified sequence), or spanning a breakpoint (one primer is within and the other outside the amplified sequence) or entirely included in the amplified sequence. These tests will generate a PCR fragment of given size in a normal sample, while in a sample with a triplication on one allele, one or more additional PCR fragment will appear, including one the size of the “normal” fragment plus twice the size of the repeat sequence. If a mutation is present, these tests will often lead to results than can have several interpretations. If a single experiment is performed and reveals a mutation, a (series of) complementary test(s) may be performed following the designs presented herein to confirm the correct interpretation. Given the location of the triplication identified here, primer pairs used to detect the triplication could include a combination of one or several of of the following primers, with at least one down stream and one upstream primer. The primer designed as the downstream primer is reverse complementary relative to the BRCA1 gene sequence and while the upstream primer is in direct orientation relative to the BRCA1 gene. In choosing a combination of primers, in addition to the prescriptions below, one must choose the primer locations so the downstream primer is located downstream of the upstream primer:


A downstream primer may be located:

    • i) in exon 3 of the BRCA1 gene; or
    • ii) in the region between exons 2 and 3 of BRCA1, preferably more than 2 kb and less than 10 kb from the 3′ end of exon 2, more preferably more than 3 kb and less than 8 kb and even more preferably more than 4 kb and less than 6 kb from the 3′ end of exon 2.


An upstream primer may be located:

    • i) in the region between the BRCA1 gene and the NBR2 gene, less than 10 kb from exon 1a of BRCA1 and more than 1 kb from exon 1a of BRCA1, preferably more less than 8 kb than 2 kb and more preferably less than 6 and more than 4 kb of exon 1a of BRCA1; or
    • ii) in exon 1a, exon 1b or in the region between exons 1a and 1b of BRCA1; or iii) in exon 2 or in the region between exons 1b and 2 of BRCA1 or in the region between exons 2 and 3.
    • iii)
    • iv)
    • Examples of such combinations are the primer pairs consisting of primers BRCA1-A3A-F (SEQ ID 25) and BRCA1-A3A-R (SEQ ID 26) and of primers BRCA1-Synt1-F (SEQ ID 125) and BRCA1-Synt1-R (SEQ ID 126)
    • v) a downstream primer as described in i) and an upstream primer as described in ii)
    • vi) a downstream primer as described in i) and an upstream primer as described in iii)
    • vii) a downstream primer as described in ii) and an upstream primer as described in i)


Specific Embodiments of the Invention Include the Following:


1. A nucleic acid composition for detecting simultaneously one or more large or complex mutations or genetic rearrangements in the locus BRCA1 or BRCA2 comprising at least two colored-labeled probes containing more than 200 nucleotides and specific of each said gene, said probes being visually detectable at high resolution and free of repetitive nucleotidic sequences.


2. A nucleic acid composition according to embodiment 1 for detecting simultaneously one or more large or complex mutations or genetic rearrangements in the locus BRCA1 or BRCA2 comprising at least three colored-labeled probes containing more than 200 nucleotides and specific of each said gene, said probes being visually detectable at high resolution and free of repetitive nucleotidic sequences.


3. A nucleic acid composition according to embodiments 1 or 2 for detecting simultaneously one or more large or complex mutations or genetic rearrangements in BRCA1 or BRCA2 gene comprising at least three color-labeled probes containing more than 600 nucleotides and specific of each said gene, said probes being visually detectable at high resolution and free of repetitive nucleotidic sequences.


4. A composition according embodiments 1, 2 or 3, wherein the probes are all together visualized on a monostranded-DNA fiber or on a polynucleotidic sequence of interest or on a genome to be tested.


5. A composition according embodiments 1, 2, 3 or 4 comprising at least fivecolor-labeled signal probes specific of BRCA1 or BRCA2 locus allowing detection of the following mutations: duplication, deletion, inversion, insertion, translocation or large rearrangement.


6. A composition according embodiments 1 to 4 comprising at least seven color-labeled signal probes specific of BRCA1 or BRCA2 locus allowing to detect following mutations: duplication, deletion, inversion, insertion, translocation or large rearrangement.


7. A composition according embodiments 1 to 4 comprising at least nine color-labeled signal probes specific of BRCA1 or BRCA2 locus allowing to detect following mutations: duplication, triplication, deletion, inversion, insertion, translocation or large rearrangement.


8. A composition according embodiments 1 to 7 comprising at least fourteen-color-labeled signal probes specific of BRCA1 or BRCA2 locus allowing to detect following mutations: duplication, triplication, deletion, inversion, insertion, translocation or large rearrangement.


9. A composition according embodiments 1 to 8 comprising at least eighteen color-labeled signal probes specific of BRCA1 or BRCA2 locus allowing to detect following mutations: duplication, triplication, deletion, inversion, insertion, translocation or large rearrangement.


10. A composition according to embodiments 1 to 9 wherein the genetic rearrangement or mutation detected is more than 1.5 kilobase (kb),


11. A predictive genetic test of susceptibility of breast or ovarian cancer in a subject involving the detection (presence or absence) and optionally the characterization of one or more specific large genetic rearrangement or mutation in the coding or non coding sequences of the BRCA1 or BRCA2 locus, the rearrangement being visualized by any of the composition according to embodiments 1 to 10.


12. A method of detection for the sensitivity of a subject to a therapeutic procedure comprising the identification of one or more genetic rearrangements or mutations in the coding or non-coding sequences of BRCA1 or BRCA2 gene or locus by visualizing by molecular combing said genetic rearrangement by using any of the composition according to embodiments 1 to 10.


13. A method of detection of at least one large genetic rearrangement or mutation by molecular combing technique in a fluid or circulating cells or a tissue of a biological sample comprising the steps of


a) contacting the genetic material to be tested with at least two colored labeled probes according to embodiments 1 to 10 visualizing with high resolution the hybridization of step a) and optionally


b) comparing the result of step b) to the result obtained with a standardized genetic material carrying no rearrangement or mutation in BRCA1 or BRCA2 gene or locus.


14. A composition comprising:


two or more oligonucleotide probes according to embodiments 1 to 10;


probes complementary to said oligonucleotide probes;


probes that hybridize to said probes of embodiments 1 to 10 under stringent conditions;


probes amplified by PCR using pairs of primers described in Tables 1 or 2 (SEQ ID 1 to SEQ ID 130); or


probes comprising BRCA1-1A (SEQ ID NO: 131), BRCA1-1B (SEQ ID NO: 132), or BRCA1-SYNT1 (SEQ ID NO:133)


15. A set of primers selected from the group of primers consisting of SEQ ID 71 to SEQ ID 70 and SEQ ID 125 to SEQ ID 130 for BRCA1


16. A set of primers selected from the group of primers consisting of SEQ ID 71 to SEQ ID 124 for BRCA2.


17. An isolated or purified probe produced by amplifying BRCA1 or BRCA2 coding, intron


or flanking sequences using a primer pair of embodiment 15 or 16.


18. An isolated or purified probe comprising a polynucleotide sequence of SEQ ID NO: 131 (BRCA1-1A), SEQ ID NO: 132 (BRCA1-13) or SEQ ID NO: 133 (SYNT1), or that hybridizes to SEQ ID NO: 131 or to SEQ ID NO: 132 or to SEQ ID NO: 133 under stringent conditions.


19. A composition comprising at least two polynucleotides each of which binds to a portion of the genome containing a BRCA1 and/or BRCA2 gene, wherein each of said at least two polynucleotides contains at least 200 contiguous nucleotides and contains less than 10% of Alu repetitive nucleotidic sequences.


20. The composition of embodiment 19, wherein said at least two polynucleotides bind to a portion of the genome containing BRCA1.


21. The composition of embodiment 19, wherein said at least two polynucleotides bind to a portion of the genome containing BRCA2.


22. The composition of embodiment 19, wherein each of said at least two polynucleotides contains at least 500 up to 6,000 contiguous nucleotides and contains less than 10% of Alu repetitive nucleotidic sequences.


23. The composition of embodiment 19, wherein the at least two polynucleotides are each tagged with a detectable label or marker.


24. The composition of embodiment 19, comprising at least two polynucleotides that are each tagged with a different detectable label or marker.


25. The composition of embodiment 19, comprising at least three polynucleotides that are each tagged with a different detectable label or marker.


26. The composition of embodiment 19, comprising at least four polynucleotides that are each tagged with a different detectable label or marker.


27. The composition of embodiment 19, comprising three to ten polynucleotides that are each independently tagged with the same or different visually detectable markers.


28. The composition of embodiment 19, comprising eleven to twenty polynucleotides that are each independently tagged with the same or different visually detectable markers.


29. The composition of embodiment 19, comprising at least two polynucleotides each tagged with one of at least two different detectable labels or markers.


30. A method for detecting a duplication, triplication, deletion, inversion, insertion, translocation or large rearrangement in a BRCA1 or BRCA2 locus, BRCA1 or BRCA gene, BRCA1 or BRCA flanking sequence or intron, comprising: isolating a DNA sample, molecularly combing said sample, contacting the molecularly combed DNA with the composition of embodiment 5 as a probe for a time and under conditions sufficient for hybridization to occur, visualizing the hybridization of the composition of embodiment 5 to the DNA sample, and comparing said visualization with that obtain from a control sample of a normal or standard BRCA1 or BRCA2 locus, BRCA1 or BRCA gene, BRCA1 or BRCA flanking sequence or intron that does not contain a rearrangement or mutation.


31. The method of embodiment 30, wherein said probe is selected to detect a rearrangement or mutation of more than 1.5 kb.


32. The method of embodiment 30, further comprising predicting or assessing a predisposition to ovarian or breast cancer based on the kind of genetic rearrangement or mutation detected in a coding or noncoding BRCA1 or BRCA 2 locus sequence.


33. The method of embodiment 30, further comprising determining the sensitivity of a subject to a therapeutic treatment based on the kind of genetic rearrangement or mutation detected in a coding or noncoding BRCA1 or BRCA 2 locus sequence.


34. A kit for detecting a duplication, deletion, triplication, inversion, insertion, translocation or large rearrangement in a BRCA1 or BRCA2 locus, BRCA1 or BRCA2 gene, BRCA1 or BRCA2 flanking sequence or intron comprising at least two polynucleotides each of which binds to a portion of the genome containing a BRCA1 or BRCA2 gene, wherein each of said at least two polynucleotides contains at least 200 contiguous nucleotides and is free of repetitive nucleotidic sequences, wherein said at least two or polynucleotides are tagged with visually detectable markers and are selected to identify a duplication, deletion, inversion, insertion, translocation or large rearrangement in a particular segment of a BRCA1 or BRCA2 locus, BRCA1 or BRCA2 gene, BRCA1 or BRCA2 flanking sequence or intron; and optionally a standard describing a hybridization profile for a subject not having a duplication, deletion, inversion, insertion, translocation or large rearrangement in a BRCA1 or BRCA2 locus, BRCA1 or BRCA gene, BRCA1 or BRCA flanking sequence or intron; one or more elements necessary to perform Molecular Combing, instructions for use, and/or one or more packaging materials.


35. The kit of embodiment 34, wherein said at least two or polynucleotides are selected to identify a duplication, deletion, inversion, insertion, translocation or large rearrangement in a particular segment of a BRCA1 or BRCA2 locus, BRCA1 or BRCA2 gene, BRCA1 or BRCA2 flanking sequence or intron associated with ovarian cancer or breast cancer.


36. The kit of embodiment 34, wherein said at least two or polynucleotides are selected to identify a duplication, deletion, inversion, insertion, translocation or large rearrangement in a particular segment of a BRCA1 or BRCA2 locus, BRCA1 or BRCA2 gene, BRCA1 or BRCA2 flanking sequence or intron associated with a kind of ovarian cancer or breast cancer sensitive to a particular therapeutic agent, drug or procedure.


37. A method for detecting an amplification of a genomic sequence spanning the 5′ end of the BRCA1 gene and consisting of at least three copies of the sequence in a sample containing genomic DNA. Accordingly, the invention relates in particular to a method for in vitro detecting in a sample containing genomic DNA, a repeat array of multiple tandem copies of a repeat unit consisting of genomic sequence spanning the 5′ end of the BRCA gene wherein said repeat array consists of at least three copies of the repeat unit and said method comprises:

    • providing conditions enabling hybridization of a first primer with the 5′ end of the target genomic sequence and hybridization of a second primer with the 3′ end of said target sequence, in order to enable polymerization by PCR starting from said primers;
    • amplifying the sequences hybridized with the primers;
    • detecting, in particular with a probe, the amplicons thereby obtained and determining their size or their content, in particular their nucleotide sequence.


38. A method of embodiment 37, where the amplified sequence is at least 2 kb long.


39. A method of embodiment 37, where the amplified sequence is at least 5 kb long.


40. A method of embodiment 37, where the amplified sequence is at most 20 kb long.


41. A method of embodiment 37, where the amplified sequence is at most 10 kb long.


42. A method of embodiment 37, where the amplified sequence is at least 210 kb and at most 20 kb long.


43. A method of embodiment 37, where the amplified sequence is at least 5 kb and at most 10 kb long.


44. A method of any one of embodiments 37 to 43 where the amplified sequence comprises at least one of exons 1a, 1b and 2 of the BRCA1 gene.


45. A method of any one of embodiments 37 to 43where the amplified sequence comprises exons 1a, 1b and 2 of the BRCA1 gene.


46. A method of any one of embodiments 37-45 where the detection of the gene amplification is achieved by quantifying copies of a sequence included in the amplified region.


47. A method of any one of embodiments 37-46 where the detection of the gene amplification is achieved by measuring the size of a genomic sequence encompassing the amplified sequence.


48. A method of any one of embodiments 37-47 where the detection of the gene amplification is achieved by making use of polymerase chain reaction or other DNA amplification techniques.


49. A method of any one of embodiments 37 to 48 where the detection of the gene amplification is achieved by quantitative polymerase chain reaction


50. A method of any one of embodiments 37-48 where the detection of the gene amplification is achieved by multiplex, ligation-dependent probe amplification (MLPA).


51. A method of any one of embodiments 37-48 where the detection of the gene amplification is achieved by array-based comparative genomic hybridization (aCGH).


52. A method of any one of embodiments 37-48 where the detection of the gene amplification is achieved by quick multiplex PCR of short fragments (QMPSF)


53. A method of any one of embodiments 37-48 wherein the downstream and upstream primers are respectively selected from the group of:


for a downstream primer:

    • a polynucleotide sequence in the region between exons 2 and 3 of BRCA1, preferably at a distance from 2-4 kb from the 3′ end of exon 2, more preferably at a distance from 2.5-3 kb from the 3′ end of exon 2 or
    • a polynucleotide sequence in the region between exons 2 and 3 of BRCA1, within 2 kb from the 3′ end of exon 2, preferably within 1.5 kb and more preferably within 1 kb from the 3′ end of exon 2 for an upstream primer:
    • a polynucleotide sequence in the region between the BRCA1 gene and the NBR2 gene, within 2 kb from exon 1a of BRCA1, preferably within 1.5 kb and more preferably within 1 kb of exon 1a of BRCA1 or,
    • a polynucleotide sequence within exon 1a of BRCA1 or within exon 1b or in the region between exons 1a and 1b or,
    • a polynucleotide sequence in the region between exons 1b and 2, or in exon 2, or in the region between exons 2 and 3


54. A method of any one of embodiments 37-48 using two or more primers chosen from BRCA1-A3A-F (SEQ ID 25), BRCA-A3A-R (SEQ ID 26), BRCA-Synt1-F (SEQ ID 125) and BRCA1-Synt1-R (SEQ ID 126) or their reverse complementary sequences. 55. A method of any one of embodiments 37-48 using the Synt1 probe (SEQ ID NO: 133).









TABLE 1







Description of the DNA probes encoding the BRAC1 GMC


















Probe











Probe
size
Forward
Reverse






BRCA1


name
(bp)
Primer1
Primer2
Start3
End3
Signal
Motif
Color4
Gene
Exons





BRAC1-
3548
aaaaggcgcgccGGGACGGAAAGCTATGATGT
aaaattaattaaGGGCCAGAGGTGACAGGTCCTA
  4237
 7784
S1B1

G




1A















BRAC1-
3561
aaaaggcgcgccCCTCTGACCTGATCCCTTGA
aaaattaattaaATCAGCAACAGTCCCATTCC
  7842
 11402
S1B1

G




1B















BRAC1-2
1900
aaaaggcgcgccGCCCAGACTAGTGTTTCTTAA
aaaattaattaaGGCATGAGGCAGCAATTTAG
 12936
 14935
S1B1

G






CC













BRAC1-3
4082
aaTCTTTGAATCTGGGCTCTGCaaggcgcgcc
aaaattaattaaGCTGTTGCTTTCTTTGAGGTG
 20012
 24093
S2B1
g1b1
R
BRAC1
25 + 26





BRAC1-4
2600
aaaaggcgcgccCACAGGTATGTGGGCAGAGA
aaaattaattaaCCTCTGTTGATGGGGTCATAG
 28528
 31129
S3B1
g2b1
R
BRAC1
22 + 23





BRAC1-5
1400
aaaaggcgcgccTTTGGTAGACCAGGTGAAATG
aaaattaattaaCAAATTATGTGTGGAGGCAGA
 38009
 42947
S4B1
g3b1
G
BRAC1





A













BRAC1-6
2924
aaaaggcgcgccGAAGAACGTGCTCTTTTCACG
aaaattaattaaAAAGTCTGATAACAGCTCCGAGA
 45870
 45898
S5B1
g3b1
G
BRAC1
19





BRAC1-7
2200
aaaaggcgcgccTTCGATTCCCTAAGATCGTTT
aaaattaattaaCACAGTTCTGTGTAATTTAATTTCG
 48151
 50350
S6B1
g3b1
G
BRAC1
15 + 16




C
AT






+ 17





BRAC1-8
3839
aAGGGAAGGCTCAGATACAAACaaaggcgcgcc
aaaattaattaaTGCCATAGATAGAGGGCTTTTT
 58754
 62592
S7B1
g4b1
B
BRAC1
13 + 14





BRAC1-9
2688
aaaaggcgcgccGCCATCTTCTTTCTCCTGCT
aaaattaattaaTTGACCTATTGCTGAATGTTGG
 64151
 66836
S7B1
g4b1
B
BRAC1






BRAC1-
2917
aaaaggcgcgccTTTTACCAAGGAAGGATTTTC
aaaattaattaaGCTTGATCACAGATGTATGTATGAG
 83652
 86568
S8B1
g5b1
B
BRAC1
5 +


11

G
TT






6 + 7





BRAC1-
2014
aCCCCAGGGCTTTAAAGGTTAaaaggcgcgcc
aaaattaattaaTAGGGGTGGATATGGGTGAA
 93876
 95889
S9B1
g6b1
B
BRAC1
3


12















BRAC1-
1279
aaaaggcgcgccacttcttcaacgcgaagagc
aaaattaattaagacaggctgtggggtttct
103601
104879
S10B1
g7b1
G
BRAC1
1a +


13A









1b + 2





BRAC1-
3563
aaaaggcgcgccTATCTGCTGGCCACTTACCA
aaaattaattaaTCTCGAGCCTTGAACATCCT
113539
117101
S11B1

R
BRAC1



15















BRAC1-
 965
aaaaggcgcgccCGCTCAGCTTTCATTCCAGT
aaaattaattaaAAACGTTCACATGTATCCCCTAA
117852
118816
S11B1

R
NBR2



16















BRAC1-
1574
aaaaggcgcgccCCTGGCCAGTACCCAGTAGT
aaaattaattaaCTGAGCCCAGAGTTTCTGCT
119183
120756
S11B1

R
NBR2



17















BRAC1-
1376
aaaaggcgcgccGGGCCCAAAAACCAGTAAGA
aaaattaattaaGGGATTGAGCGTTCACAGAT
127190
128565
S12B1

B
NBR2



18















BRAC1-
1969
aaaaggcgcgccGCCATCCAGTCCAGTCTCAT
aaaattaattaaTGCAGTTCTACCCTCCACTTG
130024
131891
S12B1

B




19















BRAC1-
3912
aaaaggcgcgccCGGGTAAGTGGTGAGCTTTC
aaaattaattaaGACTGTCATTTAAAGGCACTTTTT
148370
152281
S13B1

G
ψBRCAA



22








+












NBR2






BRAC1-
2990
aaaaggcgcgccTGGCTAGTGTTTTGGCCTGT
aaaattaattaaTTCAGTGTTGCTTCTCCATTTC
154738
157727
S14B1

R
NBR1



23















BRAC1-
1813
aaaaggcgcgccTGTCAGACTAGCCACAGTAAC
aaaattaattaaAAGCGCTTCTTCATATTCTCC
158538
160350
S14B1

R
NBR1



24

CA













BRAC1-
 735
aaaaggcgcgccACCACACTCTTCTGTTTTGAT
aaaattaattaaGGCACATGTACACCATGGAA
165696
166430
S15B1

G
NBR1



25

GT













BRAC1-
3233
aaaaggcgcgccTTGTGTAGGTTGCCCGTTC
aaaattaattaaTTCAGAGAGCTGGGCCTAAA
167936
171168
S15B1

G
NBR1



26















BRAC1-
2419
aaaaggcgcgccggaggcaatctggaattgaa
aaaattaattaaggatccatgattgctgcttt
172299
174717
S15B1

G
NBR1



27















BRAC1-
 970
aaaaggcgcgccCCCTCTAGATACTTGTGTCCT
aaaattaattaaTCTGGCAGTCACAATTCAGG
277722
278701
S16B1

B




29

TTTG













BRAC1-
 951
aTCCCATGACTGCATCATCTTaaaggcgcgcc
aaaattaattaaTTGAGATCAGGTCGATTCCTC
281267
22217
S16B1

B




30















BRAC1-
 629
aaaaggcgcgccAAAACTCAACCCAAACAGTCA
aaaattaattaaCCAAGAATCACGAAGAGAGAGA
282779
283407
S16B1

B




31















BRAC1-
 601
aaaaggcgcgccGACCTCATAGAGGTAGTGGAA
aaaattaattaaGCTCAAAGCCTTTAGAAGAAACA
283805
284405
S16B1

B




32

AGAA













BRAC1-
 648
aaaaggcgcgccGCACTGGGGAAAAGGTAGAA
aaaattaattaaCTCTTCAACCCAGACAGATGC
284755
285402
S16B1

B




33















BRAC1-
 962
aaaaggcgcgccCAATACCCAATACAATGTAAA
aaaattaattaaCTGGGGATACTGAAACTGTGC
289229
290190
S17B1

B




34

TGC













BRAC1-
4638
aaaaggcgcgccATCAAGAAGCCTTCCCAGGT
aaaattaattaaTCCTTGGACGTAAGGAGCTG
290944
295581
S17B1






35















BRAC1-
2944
aaaaggcgcgccTTCAGAACTTCCAAATACGGA
aaaattaattaaGATGGAGCTGGGGTGAAAT
296903
299846
S17B1

B
TMEM106A



36

CT













BRAC1-
1302
aaaaggcgcgccCGTGAGATTGCTCACAGGAC
aaaattaattaaCAAGGCATTGGAAAGGTGTC
302021
303322
S18B1

G
TMEM106A



37















BRAC1-
1464
aaaaggcgcgccAGAGGAATAGACCATCCAGAA
aaaattaattaaTCCTCCAGCACTAAAAACTGC
304919
306382
S18B1

G




38

GT





Notes:



112 bases (aaaaggcgcgcc)containing the restriction site sequence for AscI (GGCGCGCC) have been added for cloning purposes




212bases (aaaattaattaa) containing the restriction site sequence for PacI (TTAATTAA) have been added for cloning purposes




3ccordinates relative to BAC RP11-831F13, according to NCBI Build 36.1 (hg18);




4B = blue, G = green, R = red














TABLE 2







Description of the DNA probes encoding the BRAC2 GMC


















Probe











Probe
size
Forward
Reverse






BRCA2


name
(bp)
primer
primer
Start1
End1
Signal
Motif
Color2
Gene
Exons





BRAC2-
2450
AAATGGAGGTCAGGGAACAA
TGGAAAGTTTGGGTATGCAG
39
2488
S1B2

R




1















BRAC2-
4061
TCTCAATGTGCAAGGCAATC
TCTTGACCATGTGGCAAATAA
3386
7446
S1B2

R




2















BRAC2-
3822
AATCACCCCAACCTTCAGC
GCCCAGGACAAACATTTTCA
8935
12756
S1B2

R




3a















BRAC2-
3930
CCCTCGCATGTATGATCTGA
CCTCCTGAAGTCCCTGGAAACG
12808
16737
S1B2

R




3b















BRAC2-
3953
TGAAATCTTTTCCCTCTCATCC
AGATTGGGCACATCGAAAG
16756
20708
S1B2

R




3c















BRAC2-5
1903
GGTCTTGAACACCTGCTACCC
CACTCCGGGGGTCCTAGAT
31031
32933
S2B2
g1b2
B
BRAC2
1 + 2





BRAC2-6
4103
TCTTTAACTGTTCTGGGTCACAA
TGGCTAGAATTCAAAACACTGA
35073
39175
S2B2
g1b2
B
BRAC2
3





BRAC2-7
1854
TTGAAGTGGGGCTTTTTAAGTTACAC
CCAGCCAATTCAACATCACA
39617
41470
S2B2
g1b2
B
BRAC2
4





BRAC2-
5206
TTGGGACAATTCTGAGGAAAT
TGCAGGTTTTGTTAAGAGTTTCA
52411
57616
S3B2
g2b2
G
BRAC2
11


11















BRAC2-
5734
TGGCCAAATGACTGCATTAGG
TCTTGAAGGCAAACTCTTCCA
59208
64941
S4B2
g3b2
G
BRAC2
12 + 13


12















BRAC2-
3251
GGAATTGTTGAAGTCACTGAGTTGT
ACCACCAAAGGGGGAAAAC
68200
71450
S5B2
g3b2
R
BRAC2
14


13















BRAC2-
1681
CAAGTCTTCAGAATGCCAGAGA
TAAACCCCAGGACAAACAGC
72505
74185
S5B2
g3b2
R
BRAC2
15 + 16*


14















BRAC2-
4216
GGCTGTTTGTTGAGGAGAGG
GAAACCAGGAAATGGGGTTT
76757
80972
S6B2
g4b2
R
BRAC2
17 + 18


15















BRAC2-
2572
TGTTAGGGAGGAAGGAGCAA
GGATGTAACTTGTTACCCTTGAAA
93846
96417
S7B2
g4b2
R
BRAC2
22 +


18









23 + 24





BRAC2-
2125
TCAATAGCATGAATCTGTTGTGAA
GAGGTCTGCCACAAGTTTCC
96951
99075
S7B2
g4b2
R
BRAC2



19















BRAC2-
2559
GGCCCACTGGAGGTTTAAT
TTCCTTTCAATTTGTACAGAAACC
99537
102095
S7B2
g5b2
R
BRAC2
25*


20















BRAC2-
1568
TGAATCAATGTGTGTGTGCAT
GTGTAGGGTCCAGCCCTATG
102609
104176
S8B2

B
BRAC2



21















BRAC2-
3787
CTGAGGCTAGGAAAGCTGGA
CTGAGGCTAGGAAAGCTGGA
104612
108398
S8B2
g5b2
B
BRAC2



22a















BRAC2-
3606
GGTTTATCCCAGGATAGAATGG
AGAAAATGTGGGGTGTAAACAG
108408
112013
S8B2
g5b2
B
BRAC2
26


22b















BRAC2-
5052
CAGCAAACTTCAGCCATTGA
GGGACATGGCAACCAAATAC
123134
128185
S9B2

R




25















BRAC2-
2353
GCACTTTCACGTCCTTTGGT
CGTCGTATTCAGGAGCCATT
130493
132845
S10B2

R




26















BRAC2-
2058
CCCAGCTGGCAAACTTTTT
TCGGAGGTAATTCCCATGAC
133176
135233
S10B2

R




27















BRAC2-
4158
TCAAGAGCCATGCTGACATC
AGGTAGGGTGGGGAAGAAGA
137121
141278
S11B2

R




28a















BRAC2-
2335
TGAGTCTACTTTGCCCATAGAGG
TTTTGCTTTCGGGAGCTTTA
153394
155728
S12B2

G




29















BRAC2-
2121
TTTTTGCCTGCTTCATCCTC
GGTTTTTAAACCTGCAGATGAA
160291
161435
S13B2

B




30















BRAC2-
4803
TGAAATTTTGTTATGTGGTGCAT
TTTGAAATCTGTGGAGGTCTAGCC
161435
166237
S13B2

B




31















BRAC2-
2609
GTACCAAGGGTGGCAGAAAG
ATGGTGTTGGTTGGGTAGGA
169818
172426
S14B2

B




32





Notes:



3ccordinates relative to BAC RP11-486017, according to NCBI Build 36.1 (hg18)



4B = blue, G = green, R = red
















TABLE 3








Total Alu sequences in probes
 30 (10%)




Total Alu sequences in excluded regions
270 (90%)
























position in query



position in repeat
link-
Alu






















%
%
%
sequence (hg18)

matching
repeat
(left)
end
begin
age
seq























score
div.
del.
ins.
begin
end
(left)
+
repeat
class/family
begin
end
(left)
id
(count)

























excluded region 1
2519
7.1
1.0
0.0
132
441
−308672
+
AluSp
SINE/Alu
1
313
0
1
7



25
72.0
0.0
0.0
1136
1160
−307953
+
AT_rich
Low_Cplxty
1
25
0
2




22
58.3
0.0
0.0
1627
1662
−307451
+
GC_rich
Low_Cplxty
1
36
0
3




223
19.3
3.5
0.0
1708
1764
−307349
+
(CGG)n
Simple
2
60
0
4




21
57.1
0.0
000
1959
1896
−307127
+
GC_rich
Low_Cplxty
1
28
0
5




2280
7.5
2.7
0.7
2142
2434
−306679
+
AluSz
SINE/Alu
1
299
−13
6




2216
10.4
0.0
1.4
2436
2733
−306380
+
AluSx1
SINE/Alu
1
294
−18
7




2480
4.4
2.0
0.3
2734
3026
−306087
+
AluY
SINE/Alu
1
198
−13
8




1117
15.8
0.6
0.0
3305
3475
−305638
C
AluJr
SINE/Alu
−11
301
130
9




364
13.5
0.0
0.0
3482
3533
−305580
C
MER66A
LTR/ERV1
−140
338
287
10




749
11.9
5.9
0.8
3557
3674
−305439
C
AluJr
SINE/Alu
−187
125
2
9




1741
6.0
17.9
1.0
3746
3996
−305117
C
AluY
SINE/Alu
−18
293
1
11



probe 1A
273
26.3
2.9
0.8
4677
4880
−304233
+
G-rich
Low_Cplxty
1
208
0
12
1



22
40.9
0.0
0.0
5327
5348
−303765
+
GC_rich
Low_Cplxty
1
22
0
13




2231
9.6
0.7
0.3
5904
6205
−302908
+
AluSx
SINE/Alu
1
303
−9
14



excluded region 2














0


probe 1B
2512
6.3
0.3
3.2
9150
9467
−299646
+
AluY
SINE/Alu
1
309
−2
15
2



313
24.8
17.9
0.0
9930
10046
−299067
C
L2b
LINE/L2
0
3375
3238
16




374
31.1
1.9
6.6
10058
10260
−298853
C
L2b
LINE/L2
−179
3208
3005
16




958
15.6
0.0
7.1
10508
10687
−298426
+
FRAM
SINE/Alu
8
175
−1
17



excluded region 3
1420
7.5
0.0
0.6
11598
11771
−297342
C
AluSc
SINE/Alu
−2
307
135
18
7



2332
8.4
0.7
0.3
11783
12078
−297035
C
AluSp
SINE/Alu
−16
297
1
19




486
10.1
0.0
15.1
12079
12129
−296984
C
AluSc
SINE/Alu
−218
91
47
18




1515
13.5
0.9
0.5
12130
12344
−296769
C
AluSx
SINE/Alu
−94
218
3
20




2169
8.4
1.4
1.7
12353
12507
−296606
C
AluY
SINE/Alu
−20
291
133
21




2672
4.7
0.0
0.0
12508
12807
−296306
C
AluY
SINE/Alu
−11
300
1
22




2169
8.4
1.4
1.7
12808
12941
−296172
C
AluY
SINE/Alu
−179
132
3
21



probe 2
2169
8.4
1.4
1.7
12808
12941
−296172
C
AluY
SINE/Alu
−179
132
3
21
2



486
10.1
0.0
15.1
12942
12979
−296134
C
AluSc
SINE/Alu
−177
132
99
18




381
34.8
4.9
0.6
13095
13256
−295857
+
MIRc
SINE/MIR
18
186
−82
23




219
29.5
2.8
2.8
13304
13411
−295702
C
L2c
LINE/L2
−202
3185
3078
24




449
3.2
0.0
0.0
13485
13546
−295567
+
SVA_E
Other
1318
1379
−3
25




601
28.4
18.6
0.0
14578
14771
−294342
+
MIRb
SINE/MIR
24
253
−15
26



excluded region 4
1845
17.3
1.6
2.3
15074
15380
−293733
+
AluJr
SINE/Alu
1
305
−7
27




1568
15.0
10.5
1.0
15388
15653
−293460
+
AluJb
SINE/Alu
1
291
−21
28




352
26.1
6.5
2.0
15654
15791
−293322
+
MIR3
SINE/MIR
35
178
−30
29




689
11.4
0.0
0.0
16242
16346
−292767
C
L1MB5
LINE/L1
0
6174
6070
30




2643
5.6
0.0
0.0
16374
16678
−292435
C
AluY
SINE/Alu
−6
305
1
31




2125
10.7
3.8
0.3
16912
17200
−291913
C
AluSq2
SINE/Alu
−13
299
1
32




381
2.2
0.0
0.0
17660
17705
−291408
+
(CA)n
Simple
2
47
0
33




280
25.0
14.8
3.4
17883
17993
−291120
+
MIR3
SINE/MIR
44
166
−102
34




2337
11.2
0.0
0.3
18230
18541
−290572
+
AluSq2
SINE/Alu
1
311
−1
35




201
35.9
0.0
11.3
18752
18908
−290205
C
L2c
LINE/L2
−1
3386
3246
36




254
32.5
5.9
2.6
19294
19505
−289608
+
L2b
LINE/L2
3073
3286
−89
37




217
21.9
0.0
0.0
19530
19570
−289543
+
(CA)n
Simple
2
42
0
38




2506
8.1
0.0
0.0
19616
19923
−289190
C
AluY
SINE/Alu
3
308
1
39




639
21.8
3.1
2.2
19966
20118
−288995
+
MIRb
SINE/MIR
6
162
−106
40



probe 3
639
21.8
3.1
2.2
19966
20118
−288995
+
MIRb
SINE/MIR
6
162
−106
40
0



1555
15.4
8.4
2.6
20654
20974
−288139
C
MER44A
DNA/TcMT
0
339
1
41




381
16.3
15.1
7.4
21186
21311
−287802
C
MER5A
DNA/hAT-
−54
135
1
42













Charlie








229
22.5
6.5
4.2
21507
21599
−287514
C
X8_LINE
LINE/CR1
−29
267
173
43




200
38.8
3.6
2.9
22836
22973
−286140
+
MIR
SINE/MIR
49
187
−75
44




1354
22.8
13.0
2.1
23166
23655
−285458
+
MLT1E2
LTR/ERVL-
2
541
−86
45













MaLR








399
20.9
0.0
6.0
23697
23808
−285305
C
MIR
SINE/MIR
−75
193
97
46



excluded region 5
2288
12.0
0.7
0.0
24330
24637
−284476
C
AluSx1
SINE/Alu
0
312
3
47
11



2339
9.7
0.3
0.3
25459
25758
−283355
C
AluSx
SINE/Alu
−12
300
1
48




1409
9.1
0.0
0.0
25759
25933
−283180
C
AluSq2
SINE/Alu
−4
308
134
49




1785
12.8
0.0
1.6
25934
26184
−282929
C
AluSx
SINE/Alu
−12
300
54
50




916
10.5
0.0
2.5
26186
26309
−282804
+
AluSx
SINE/Alu
178
298
−14
51




1897
16.1
0.7
1.0
26638
26936
−282177
C
AluJr
SINE/Alu
−14
298
1
52




189
21.1
13.8
7.6
27056
27142
−281971
C
L2a
LINE/L2
−3
3423
3332
53




713
22.6
2.4
3.6
27280
27307
−281806
C
AluJb
SINE/Alu
−144
168
141
54




1795
13.9
7.9
0.7
27308
27587
−281526
C
AluJb
SINE/Alu
−12
300
1
55




713
22.6
2.4
3.6
27588
27728
−281385
C
AluJb
SINE/Alu
−172
140
1
54




2417
7.8
0.0
1.7
27734
28039
−281074
C
AluSc
SINE/Alu
−7
302
2
56




2080
14.0
1.0
1.9
28040
28353
−280760
C
AluSz
SINE/Alu
−1
311
1
57



probe 4
200
17.6
0.0
0.0
29069
29102
−280011
+
C-rich
Low_Cplxty
146
179
0
58
1



2386
8.5
1.3
1.6
29863
30169
−278944
+
AluSc8
SINE/Alu
1
306
−6
59



excluded region 6
2494
7.4
0.0
0.0
31175
31470
−277643
C
AluSg
SINE/Alu
−14
296
1
60
16



886
20.8
3.0
0.5
31677
31814
−277299
+
MER3
DNA/hAT-
1
142
−67
611













Charlie








1112
16.3
0.0
1.8
31815
31980
−277133
C
AluJo
SINE/Alu
−13
299
137
62




886
20.8
3.0
0.5
31981
32044
−277069
+
MER3
DNA/hAT-
143
207
−2
61













Charlie








396
0.0
0.0
0.0
32317
32360
−276753
+
(CA)n
Simple
2
45
0
63




2102
9.2
0.0
0.0
32415
32675
−276438
C
AluSx3
SINE/Alu
−15
297
37
64




2319
9.0
0.0
1.7
32917
33217
−275896
+
AluY
SINE/Alu
1
296
−15
65




2269
10.2
2.4
0.0
33230
33524
−275589
+
AluSp
SINE/Alu
1
302
−11
66




1969
16.6
0.0
0.3
33980
34275
−274838
C
AluJb
SINE/Alu
−16
296
2
67




2311
8.8
0.3
2.3
34281
34585
−274528
C
AluSq2
SINE/Alu
−13
299
1
68




199
36.4
1.5
0.0
34736
34801
−274312
+
MIRc
SINE/MIR
60
126
−142
69




809
26.0
0.7
9.3
34870
34901
−274212
+
MIR
SINE/MIR
5
33
−229
70




1727
18.2
0.0
5.9
34902
35038
−274075
+
AluSx
SINE/Alu
1
136
−176
71




1897
14.9
0.0
0.4
35039
35313
−273800
+
AluSx
SINE/Alu
1
274
−38
72




1727
18.2
0.0
5.9
35314
35496
−273617
+
AluSx
SINE/Alu
137
303
−9
71




809
26.0
0.7
9.3
35497
35710
−273403
+
MIR
SINE/MIR
34
230
−32
70




1810
17.4
1.3
1.6
35711
36014
−273099
C
AluJb
SINE/Alu
−9
303
1
73




809
26.0
0.7
9.3
36015
36046
−273067
+
MIR
SINE/MIR
231
262
0
70




670
20.9
3.3
12.7
36048
36228
−272885
+
FRAM
SINE/Alu
1
166
0
74




437
34.5
4.7
6.3
36250
36506
−272607
+
MIRb
SINE/MIR
2
254
−14
75




2289
9.9
0.0
3.9
36764
37086
−272027
+
AluSx1
SINE/Alu
1
311
−1
76




2440
4.5
0.0
1.1
37090
37406
−271707
+
AluY
SINE/Alu
1
311
0
77




1364
10.9
0.0
0.0
37407
37581
−271532
+
AluSc8
SINE/Alu
133
307
−5
78




1601
18.5
0.3
4.8
37615
37916
−271197
+
AluJr
SINE/Alu
2
290
−22
79



probe 5
325
27.1
8.8
10.6
38602
38717
−270396
+
L2c
LINE/L2
2331
2446
−973
80
1



2107
10.4
0.3
3.2
38718
39005
−270108
+
AluSx1
SINE/Alu
1
280
−32
81




414
0.0
0.0
0.0
39006
39051
−270062
+
(CAA)n
Simple
3
48
0
82




325
27.1
8.8
10.6
39052
39115
−269998
+
L2c
LINE/L2
2447
2409
−910
80




218
28.1
9.7
3.2
39093
39298
−269815
+
L2c
LINE/L2
2464
2682
−737
80



excluded region 7
218
28.1
9.7
3.2
39093
39298
−269815
+
L2c
LINE/L2
2464
2682
−737
80
9



198
0.0
0.0
0.0
39435
39456
−269657
+
(TTA)n
Simple
2
23
0
83




1165
10.7
0.0
0.0
39457
39605
−269508
C
AluSx
SINE/Alu
−27
285
137
84




1808
10.0
11.9
1.0
39609
39877
−269236
C
AluSp
SINE/Alu
−15
298
1
85




984
11.4
0.0
0.8
39890
40020
−269093
C
AluSx
SINE/Alu
−179
133
4
84




1982
13.2
0.3
5.6
40025
40342
−268771
C
AluSz
SINE/Alu
−10
302
1
86




2106
14.2
0.6
0.6
40380
40690
−268423
+
AluSz
SINE/Alu
1
311
−1
87




460
35.3
7.3
3.8
40691
41046
−268067
+
L2c
LINE/L2
3015
3382
−5
80




2297
10.7
0.0
0.7
41122
41420
−267693
C
AluSz
SINE/Alu
−15
297
1
88




205
30.4
0.0
0.0
41578
41633
−267480
+
(TA)n
Simple
1
56
0
89




1733
20.1
0.3
0.3
41635
41928
−267185
C
AluJr4
SINE/Alu
−16
296
3
90




2129
12.4
0.7
0.0
42139
42429
−266684
C
AluSx
SINE/Alu
−16
296
4
91




2203
10.4
1.0
0.0
42431
42719
−266394
C
AluSp
SINE/Alu
−15
298
7
92



probe 6
189
0.0
0.0
0.0
44176
44196
−264917
+
(CAG)n
Simple
2
22
0
93
2



2434
8.6
0.0
0.0
44364
44664
−264449
C
AluY
SINE/Alu
−9
302
2
94




2200
10.7
1.6
1.3
44923
45230
−263883
+
AluSp
SINE/Alu
1
308
−5
95




804
27.1
11.1
9.7
45271
45749
−263364
C
L3
LINE/CR1
−188
3911
3427
96



excluded region 8
2148
13.0
0.3
0.0
45943
46243
−262870
C
AluSg
SINE/Alu
−7
303
2
97
6



2489
7.2
0.3
0.3
46349
46653
−262460
C
AluSq2
SINE/Alu
−7
305
1
98




2380
8.9
0.0
1.6
46776
47089
−262024
C
AluSc
SINE/Alu
0
309
1
99




413
12.9
2.7
4.2
47300
47372
−261741
+
L1PA8
LINE/L1
6086
6157
−15
100




436
5.8
0.0
0.0
47373
47424
−261689
C
AluSz6
SINE/Alu
−12
300
249
101




198
0.0
0.0
0.0
47427
47448
−261665
+
(A)n
Simple
1
22
0
102




2545
6.1
0.0
0.0
47532
47826
−261287
+
AluY
SINE/Alu
1
295
−16
103




827
16.6
0.0
6.1
47965
48103
−261010
+
FLAM_C
SINE/Alu
1
131
−12
104



probe 7
2366
9.4
0.3
0.0
49470
49768
−259345
C
AluSp
SINE/Alu
−13
300
1
105
1



21
42.9
0.0
0.0
50235
50255
−258858
+
AT_rich
Low_Cplxty
1
21
0
106



excluded region 9
352
36.9
5.3
1.6
50840
51026
−258087
+
L1M5
LINE/L1
5465
5658
−584
107
16



307
30.7
16.0
0.6
51006
51149
−257964
+
L1MC
LINE/L1
5649
5814
−2068
108




2314
7.3
0.0
1.8
51258
51580
−257533
+
AluY
SINE/Alu
1
311
0
109




2432
6.5
0.0
0.3
51642
51931
−257182
+
AluSp
SINE/Alu
1
289
24
110




1598
17.3
0.3
5.7
51946
52103
−257010
C
AluJb
SINE/Alu
−19
293
142
111




2332
9.0
0.3
1.4
52104
52403
−256710
C
AluSp
SINE/Alu
−16
297
1
112




1569
17.0
0.3
5.7
52404
52538
−256575
C
AluJb
SINE/Alu
−171
141
15
111




754
14.3
0.9
0.0
52591
52702
−256411
+
AluJr
SINE/Alu
6
118
−194
113




198
10.3
0.0
0.0
53274
53302
−255811
+
(TA)n
Simple
1
29
0
114




2130
12.4
0.0
0.7
53303
53592
−255521
C
AluSx
SINE/Alu
−24
288
1
115




1263
13.1
1.1
0.0
54309
54483
−254630
+
AluSx1
SINE/Alu
135
311
−1
116




514
11.2
1.6
5.1
54497
54618
−254495
+
GA-rich
Low_Cplxty
63
180
0
117




210
15.2
0.0
0.0
54620
54652
−254461
+
A-rich
Low_Cplxty
1
33
0
118




190
27.9
0.0
0.0
55008
55050
−254063
C
L2c
LINE/L2
−15
3372
3330
119




1334
8.6
0.0
0.0
55101
55262
−253851
C
AluSx1
SINE/Alu
−14
298
137
120




1447
17.3
2.4
0.8
55382
55629
−253484
+
AluJb
SINE/Alu
37
288
−24
121




21
39.3
0.0
0.0
56454
56481
−252632
+
AT_rich
Low_Cplxty
1
28
0
122




2264
11.3
0.0
1.0
56869
57169
−251944
C
AluSx1
SINE/Alu
−14
298
1
123




2295
9.9
0.6
0.6
57258
57570
−251543
C
AluSP
SINE/Alu
0
313
1
124




660
16.5
0.0
12.2
57575
27624
−251489
C
FLAM_C
SINE/Alu
−10
123
81
125




2194
11.5
0.3
0.3
57625
57920
−251193
C
AluSx1
SINE/Alu
−16
296
1
126




660
16.5
0.0
12.2
57921
58007
−251106
C
FLAM_C
SINE/Alu
−53
80
1
125




1846
11.2
10.0
0.0
58454
58743
−250370
+
AluSQ2
SINE/Alu
1
312
0
127



probe 8
211
30.5
3.4
0.0
59728
59786
−249327
C
L2b
LINE/L2
−7
3368
3308
128
3



1431
8.3
0.0
0.6
59852
60031
−249082
C
AluSb
SINE/Alu
−133
180
2
129




1870
13.5
1.8
2.1
60059
60340
−248773
+
AluJo
SINE/Alu
1
281
−31
130




398
16.9
2.2
5.8
60348
60436
−248677
+
FLAM_A
SINE/Alu
42
127
−15
131



excluded region 10
1908
14.1
5.0
0.0
62695
62991
−246122
C
AluSz
SINE/Alu
0
312
1
132
4



219
26.6
7.8
0.0
63055
63118
−245995
C
L2a
LINE/L2
−5
3421
3353
133




2274
8.9
0.7
2.0
63394
63567
−245546
C
AluSx
SINE/Alu
−5
307
134
134




2444
8.1
0.0
0.0
63568
63865
−245248
C
AluY
SINE/Alu
−13
298
1
135




2274
8.9
0.7
2.0
63866
64000
−245113
C
AluSx
SINE/Alu
−179
133
2
134



probe 9
951
10.3
0.8
0.0
64794
64919
−244194
+
AluSx4
SINE/Alu
179
305
−7
136
1



447
25.2
3.4
0.0
65518
65636
−243477
C
L1ME2z
LINE/L1
−3
6441
6319
137




390
4.2
0.0
0.0
65637
65684
−243429
+
(CA)n
Simple
1
48
0
138




319
27.9
1.2
0.0
65785
65870
−243243
+
L2c
LINE/L2
3295
3381
−6
139




468
29.4
4.9
2.4
66559
66913
−242200
+
L1ME4a
LINE/L1
5471
5849
−275
140



excluded region 11
468
29.4
4.9
2.4
66559
66913
−242200
+
L1ME4a
LINE/L1
5471
5849
−275
140
29



2423
10.3
0.3
0.0
66917
67227
−241886
+
AluSp
SINE/Alu
1
312
−1
141




1271
20.6
1.3
7.2
67277
67586
−241527
C
AluJb
SINE/Alu
−18
294
2
142




1136
14.8
3.9
1.1
67686
67910
−241203
C
L1MB3
LINE/L1
−142
6149
5936
143




319
20.7
0.0
1.7
67920
67978
−241135
C
MER66C
LTR/ERV1
−133
422
365
144




637
14.4
0.0
0.0
67980
68076
−241037
C
L1MB3
LINE/L1
−239
5941
5845
143




2023
12.9
0.0
3.4
68567
68869
−240244
+
AluSx1
SINE/Alu
1
293
−19
145




1001
10.2
0.0
0.0
69082
69208
−239905
C
AluSQ
SINE/Alu
−11
302
176
146




1879
16.8
1.0
0.7
69264
69566
−239547
+
AluJb
SINE/Alu
1
304
−8
147




233
30.9
0.6
0.0
69730
69811
−239302
+
MIRb
SINE/MIR
64
155
−113
148




2043
11.6
0.0
0.4
69909
70185
−238928
C
AluSx1
SINE/Alu
−11
301
26
149




2040
15.7
0.3
0.3
74836
75147
−233966
+
AluJb
SINE/Alu
1
312
0
150




2323
11.2
0.0
0.0
75632
75942
−233171
+
AluSz
SINE/Alu
2
312
0
151




1259
12.3
0.0
0.0
75957
76126
−232987
+
AluSc5
SINE/Alu
130
299
−13
152




317
18.6
11.4
0.0
76427
76496
−232617
+
MIR3
SINE/MIR
125
202
−6
153




818
16.1
2.8
6.4
76513
76691
−232422
+
L1PREC2
LINE/L1
5984
6156
−4
154




213
14.6
3.9
6.0
76911
76961
−232152
C
L2b
LINE/L2
−8
3367
3318
155




859
14.5
1.5
0.8
77008
77138
−231975
+
AluSz
SINE/Alu
2
133
−179
156




792
26.0
4.7
0.4
77151
77382
−231731
+
MIR
SINE/MIR
20
261
−1
157




1679
14.3
6.3
2.0
77567
77852
−231261
C
AluJr
SINE/Alu
−14
298
1
158




39
73.2
0.0
1.8
77874
77905
−231208
+
AT_rich
Low_Cplxty
1
32
0
159




2010
11.5
1.0
3.5
77906
78201
−230912
C
AluSx
SINE/Alu
−23
289
1
160




39
73.2
0.0
1.8
78202
78225
−230888
+
AT_rich
Low_Cplxty
1
24
0
161




719
20.3
0.0
0.0
78226
78343
−230770
C
AluJo
SINE/Alu
−194
118
1
162




2399
7.0
0.3
2.0
78356
78657
−230456
C
AluSp
SINE/Alu
−15
298
2
163




2302
11.2
0.3
0.3
78796
79106
−230007
C
AluSp
SINE/Alu
−2
311
1
164




813
14.2
2.5
0.0
79584
79703
−229410
+
AluJr
SINE/Alu
1
123
−189
165




1195
11.6
0.0
3.6
79875
80047
−229066
C
AluSc8
SINE/Alu
−16
296
130
166




891
8.6
2.8
2.2
80061
80238
−228875
+
(TA)n
Simple
2
180
0
167




2249
9.9
0.7
0.0
80275
80566
−228547
C
AluSx
SINE/Alu
−18
294
1
168




2011
15.6
0.0
0.0
80729
81029
−228084
C
AluSg
SINE/Alu
−8
302
2
169




2222
11.8
0.3
0.0
81042
81337
−227776
C
AluSz
SINE/Alu
−15
297
1
170




1207
21.6
6.4
5.7
81444
81606
−227507
C
AluJb
SINE/Alu
−4
298
134
171




2190
9.2
0.0
0.3
81607
81890
−227223
C
AluY
SINE/Alu
−12
299
17
172




2382
8.4
0.0
0.0
81894
82190
−226923
C
AluSc5
SINE/Alu
−15
297
1
173




1612
18.7
2.8
0.7
82193
82481
−226632
C
AluJo
SINE/Alu
−16
296
2
174




1207
21.6
6.4
5.7
82482
82605
−226508
C
AluJb
SINE/Alu
−169
133
2
171




2381
9.5
0.0
0.0
82721
83024
−226089
+
AluSx
SINE/Alu
1
304
−8
175




629
20.6
2.8
0.0
83049
83155
−225958
C
FLAM_A
SINE/Alu
−32
110
1
176




1596
9.9
0.0
0.0
83361
83561
−225552
+
AluSx
SINE/Alu
1
201
−111
177




402
9.6
0.0
0.0
83562
83613
−225500
+
AluSx
SINE/Alu
251
302
−10
177




207
0.0
0.0
0.0
83620
83642
−225471
+
(GAA)n
Simple
2
24
0
178



probe 11
23
56.7
0.0
0.0
83927
83956
−225157
+
AT_rich
Low_Cplxty
1
30
0
179
2



756
19.5
4.0
0.6
84063
84237
−224876
C
MER104
DNA/TcMar-
0
181
1
180













Tc2








1710
19.9
0.0
1.0
84774
85075
−224038
C
AluJr
SINE/Alu
−12
300
2
181




298
26.3
15.7
0.7
85233
85366
−223747
C
L2a
LINE/L2
0
3426
3273
182




1918
12.8
4.3
0.3
85401
86581
−223432
+
AluJb
SINE/Alu
18
309
−3
183




700
18.2
0.0
6.0
86439
86596
−222517
+
L1M4
LINE/L1
4729
4877
−1269
184



excluded region 12
700
18.2
0.0
6.0
86439
86596
−222517
+
L1M4
LINE/L1
4729
4877
−1269
184
18



2561
5.3
0.3
0.0
86599
86898
−222215
C
AluY
SINE/Alu
−10
301
1
185




1921
12.4
6.0
1.6
86905
87203
−221910
C
AluSz6
SINE/Alu
0
312
1
186




645
18.4
0.0
5.2
87205
87347
−221766
+
L1M4
LINE/L1
4873
5008
−1138
184




1844
13.9
3.5
0.3
87599
87885
−221228
+
AluSz
SINE/Alu
1
296
−16
187




2072
10.9
3.0
1.6
87965
88268
−220845
+
AluSz6
SINE/Alu
1
308
−4
188




2020
8.0
8.4
0.0
88269
88554
−220559
+
AluSp
SINE/Alu
1
313
0
189




249
11.9
0.0
0.0
88567
88608
−220505
+
(TCTA)n
Simple
1
42
0
190




1260
19.2
0.5
1.4
88609
88832
−220281
C
AluJr
SINE/Alu
−90
222
1
191




2443
7.5
0.0
0.0
89435
89729
−219384
C
AluY
SINE/Alu
−16
295
1
192




231
23.6
6.4
2.6
89730
89827
−219286
+
Trigger10
DNA/TcMT
101
204
−1639
193




1848
18.3
0.3
0.7
89841
90140
−218973
+
AluJb
SINE/Alu
1
299
−13
194




836
13.2
2.5
0.0
90229
90349
−218764
+
AluSz
SINE/Alu
1
124
−188
195




2379
9.7
0.0
0.0
90355
90652
−218461
+
AluSx
SINE/Alu
1
298
−14
196




771
27.4
5.0
8.2
90653
90773
−218340
+
Trigger10
DNA/TcMT
841
948
−895
197




2275
11.6
0.0
0.0
90774
91074
−218039
+
AluSx
SINE/Alu
1
301
−11
198




2415
7.0
0.0
0.3
91077
91407
−217706
+
AluY
SINE/Alu
2
311
0
199




771
27.4
5.0
8.2
91408
91630
−217483
+
Trigger10
DNA/TcMT
949
1180
−663
197




2276
9.3
1.0
0.0
91631
91920
−217193
C
AluSx4
SINE/Alu
−18
294
2
200




771
27.4
5.0
8.2
91921
91972
−217141
+
Trigger10
DNA/TcMT
1181
1229
−614
197




1010
20.2
1.6
0.0
91975
92162
−216651
+
AluJr4
SINE/Alu
109
299
−13
201




217
26.7
1.6
1.6
92163
92223
−216890
+
(CATATA)n
Simple
5
65
0
202




2319
9.6
0.7
0.0
92336
92638
−216475
C
AluSp
SINE/Alu
−8
305
1
203




1942
13.2
0.4
0.4
92899
93202
−215911
C
AluSc8
SINE/Alu
0
312
1
204




2094
11.2
3.1
0.3
93338
93623
−215490
+
AluSx1
SINE/Alu
2
295
−17
205




887
20.1
0.0
0.0
93624
93767
−215346
C
AluJo
SINE/Alu
−32
280
137
206




252
33.6
6.9
0.0
93795
93910
−215203
+
Trigger15a
DNA/TcMT
530
653
−62
207



probe 12
252
33.6
6.9
0.0
93795
93910
−215203
+
Trigger15a
DNA/TcMT
530
653
−62
207




468
11.4
8.6
0.0
93927
93996
−215117
C
AluSq2
SINE/Alu
−13
299
224
208




395
24.4
2.5
2.5
93999
94116
−214997
C
Charlie4z
DNA/hAT-
−46
121
4
209













Charlie








2373
8.8
0.3
0.0
94759
95052
−214061
+
AluSx4
SINE/Alu
2
296
−16
210




23
43.5
0.0
0.0
95358
95380
−213733
+
AT_rich
Low_Cplxty
1
23
0
211




258
25.6
10.1
1.2
95449
95527
−213586
C
L2c
LINE/L2
−16
3371
3286
212




377
18.3
9.1
7.7
95752
95905
−213208
C
L1MC5
LINE/L1
−36
7925
7770
213



excluded region 13
377
18.3
9.1
7.7
95752
95605
−213208
C
L1MC5
LINE/L1
−36
7925
7770
213
15



728
16.7
11.4
1.1
95916
96047
−213066
C
AluJo
SINE/Alu
−26
286
140
214




2235
10.5
0.3
0.3
96061
96354
−212759
C
AluSq2
SINE/Alu
−18
294
1
215




823
23.1
9.4
1.1
96357
96637
−212476
C
LIMC5
LINE/L1
−444
7517
7255
213




2036
13.5
0.0
1.0
96696
96992
−212121
+
AluSx4
SINE/Alu
1
194
−18
216




2148
11.7
0.3
1.3
96996
97302
−211811
+
AluSg
SINE/Alu
1
304
−6
217




738
27.7
8.5
2.2
97396
97904
−211209
C
L2a
LINE/L2
−12
3414
2870
218




1585
12.8
0.0
20.1
97915
98272
−210841
C
AluJr4
SINE/Alu
−14
298
1
219




1845
13.4
4.1
2.4
98298
98588
−210525
C
AluSx4
SINE/Alu
−15
297
2
220




497
11.0
33.0
0.0
98722
98821
−210292
+
FLAM_C
SINE/Alu
1
133
−10
221




237
31.1
10.1
0.0
98916
99034
−210079
+
MIR3
SINE/MIR
5
135
−73
222




2590
5.3
0.0
0.0
100020
100320
−208793
+
AluYk4
SINE/Alu
1
301
−11
223




1949
8.9
3.7
2.2
100331
100600
−208513
+
AluSg
SINE/Alu
2
275
−35
224




2347
7.8
0.0
0.0
100630
100937
−208176
+
AluY
SINE/Alu
1
311
0
225




2326
10.1
0.7
0.0
100941
101248
−207865
+
AluSp
SINE/Alu
3
312
−1
226




590
26.8
13.0
0.5
101876
102152
−206961
C
L2a
LINE/L2
−2
3424
3117
227




1614
16.1
1.7
2.8
102162
102300
−206813
+
AluJb
SINE/Alu
1
134
−168
228




2330
9.8
0.0
3.6
102301
102617
−206496
+
AluY
SINE/Alu
1
306
−5
229




1614
16.1
1.7
2.8
102618
102771
−206342
+
AluJb
SINE/Alu
135
291
−11
228




2237
9.1
2.0
0.0
102886
103183
−205930
C
AluSc5
SINE/Alu
−8
304
1
230



probe 13A
270
0.0
0.0
0.0
104284
104313
−204800
+
(TTTTG)n
Simple
1
30
0
231
1



1650
4.5
5.5
0.0
104318
104516
−204597
C
AluSx
SINE/Alu
−37
275
66
232



excluded region 14
8064
14.0
7.8
5.5
106203
107278
−201835
+
LTR12C
LTR/ERV1
3
1140
−439
233
10



2324
10.0
0.0
0.3
107279
107586
−201527
+
AluY
SINE/Alu
2
308
−3
234




8064
14.0
7.8
5.5
107587
108052
−201061
+
LTR12C
LTR/ERV1
1141
1579
0
233




939
10.0
0.0
6.1
108354
108493
−200620
C
FLAM_C
SINE/Alu
−11
132
1
235




2397
8.1
0.0
1.6
109001
109308
−199805
C
AluY
SINE/Alu
−7
304
2
236




790
13.7
1.6
1.6
109726
109849
−199264
C
FLAM_C
SINE/Alu
−19
124
1
237




2100
13.8
0.3
0.0
109852
110149
−198964
C
AluSz
SINE/Alu
−13
299
1
238




696
27.4
7.1
0.9
110153
110362
−198751
C
MIRc
SINE/MIR
−1
267
45
239




248
31.0
6.2
0.0
110411
110523
−198590
C
L1M5
LINE/L1
−747
5447
5328
240




189
7.4
0.0
0.0
110917
110943
−198170
+
(TAA)n
Simple
2
28
0
241




1606
7.3
0.0
0.0
111079
111269
−197844
+
AluY
SINE/Alu
104
294
−17
242




2148
15.1
0.0
0.0
111309
111619
−197494
C
AluSz6
SINE/Alu
−1
311
1
243




431
16.2
14.1
0.0
111625
111723
−197390
C
MIRb
SINE/MIR
−67
201
89
244




327
26.0
0.0
12.2
112010
112101
−197012
+
MIRc
SINE/MIR
37
118
−150
245




1373
9.8
0.6
0.0
112104
112286
−196827
C
AluSc
SINE/Alu
0
309
127
246




2444
7.5
0.0
2.9
112288
112607
−196506
C
AluY
SINE/Alu
0
311
1
247




251
22.8
3.5
1.7
112610
112667
−196446
+
MIR
SINE/MIR
104
162
−100
245




180
29.8
18.2
1.0
112901
112988
−196125
+
MER5A
DNA/hAT-
68
170
−19
248













Charlie








2303
12.0
0.0
0.0
113162
113470
−195643
C
AluSz
SINE/Alu
−3
309
1
249



probe 15
804
14.4
1.6
0.0
115549
115673
−193440
+
FLAM_C
SINE/Alu
2
128
−15
250
1



7181
6.4
0.7
0.1
115705
116977
−192136
+
L1PA5
LINE/L1
4875
6154
0
251



excluded region 15
1884
13.3
1.9
0.4
117135
117404
−191709
+
AluSz
SINE/Alu
1
274
−38
252
2



180
0.0
0.0
0.0
117411
117430
−191683
+
(CAAAA)n
Simple
1
20
0
253




2240
12.3
1.0
0.0
117441
117749
−191364
+
AluSq2
SINE/Alu
1
312
0
254




224
37.7
0.0
0.0
117758
117834
−191279
+
L2
LINE/L2
458
534
−2885
255



probe 16
652
29.2
9.5
7.2
118175
118595
−190518
+
LTR33B
LTR/ERVL
53
482
−21
256
0



722
16.5
0.0
2.5
118599
118722
−190391
+
MER21C
LTR/ERVL
1
121
−817
257




2342
12.3
0.0
2.8
118771
118897
−190216
C
L1PREC2
LINE/L1
0
6160
6034
258



excluded region 16
2262
9.2
2.7
0.0
118898
119189
−189924
C
AluSg4
SINE/Alu
−12
300
1
259
1


probe 17
2262
9.2
2.7
0.0
118898
119189
−189924
C
AluSg4
SINE/Alu
−12
300
1
259
1



2342
12.3
0.0
2.8
119190
119429
−189684
C
L1PREC2
LINE/L1
−127
6033
5803
258




1975
21.0
10.4
1.1
119430
120015
−189062
+
MER21C
LTR/ERVL
111
790
−148
257




279
35.6
6.5
1.6
120054
120343
−188770
+
L2c
LINE/L2
3030
3349
−38
260




440
17.1
4.2
6.9
120617
120735
−188378
+
MLT1M
LTR/ERVL-
83
198
−474
261













MaLR







excluded region 17
1069
13.8
0.0
1.3
120857
121016
−188097
+
AluJo
SINE/Alu
135
292
−20
262
12



28
62.9
0.0
0.0
121035
121069
−188044
+
AT_rich
Low_Cplxty
1
35
0
263




2240
6.4
1.1
0.0
121072
121338
−187775
+
AluY
SINE/Alu
3
272
−39
264




2197
11.4
0.0
0.7
121453
121749
−187364
C
AluSx
SINE/Alu
−17
295
1
265




265
28.2
1.4
1.4
121841
121912
−187201
+
MIRb
SINE/MIR
197
268
0
266




503
30.5
4.4
5.3
121998
122246
−186867
+
MIRb
SINE/MIR
19
265
−3
267




1266
11.9
0.0
1.1
122278
122453
−186660
C
AluSp
SINE/Alu
−13
300
127
268




726
22.5
0.0
0.0
122457
122629
−186484
+
(TATATG)n
Simple
4
176
0
269




23
34.8
0.0
0.0
122630
122652
−186461
+
AT_rich
Low_Cplxty
1
23
0
270




940
11.3
0.8
0.0
122653
122776
−186337
C
AluSp
SINE/Alu
−188
125
1
268




26
60.6
0.0
0.0
123439
123471
−185642
+
AT_rich
Low_Cplxty
1
33
0
271




2378
7.4
0.0
1.0
123475
123773
−185340
+
AluY
SINE/Alu
1
296
−15
272




784
13.1
0.0
0.0
124275
124381
−184732
+
AluSx
SINE/Alu
1
107
−205
273




2735
4.2
0.0
0.0
124853
125161
−183952
C
AluY
SINE/Alu
−2
309
1
274




2424
8.1
0.0
0.0
125836
126131
−182982
C
AluY
SINE/Alu
−3
308
13
275




1876
10.7
1.6
5.1
126545
126728
−182385
C
AluSx
SINE/Alu
−17
295
108
276




2573
5.1
0.0
0.0
126729
127023
−182090
C
AluY
SINE/Alu
−15
296
2
277




1876
10.7
1.6
5.1
127024
127143
−181970
C
AluY
SINE/Alu
−205
107
1
276



probe 18
25
72.0
0.0
0.0
127246
127270
−181843
+
AT_rich
Low_Cplxty
1
25
0
278
1



240
21.1
16.9
4.0
127577
127665
−181448
+
MIR3
SINE/MIR
94
193
−15
279




1262
8.1
1.7
1.1
127666
127838
−181275
+
AluSp
SINE/Alu
124
297
−16
280




2123
13.3
16.2
0.4
127864
128270
−180843
C
LTR7C
LTR/ERV1
0
471
1
281




576
20.3
3.1
3.9
128487
128614
−180499
C
MER2B
DNA/TcMT
0
336
210
282



excluded region 18
576
20.3
3.1
3.9
128487
128614
−180499
C
MER2B
DNA/TcMT
0
336
210
282
4



1973
10.5
4.9
5.6
128631
128935
−180178
C
AluY
SINE/Alu
8
303
1
283




1150
5.9
0.0
0.0
128936
129070
−180043
C
AluSz
SINE/Alu
177
135
1
284




187
33.4
7.1
9.9
129286
129324
−179789
+
L2
LINE/L2
2142
2181
−1238
285




2251
10.0
0.0
1.0
129325
129624
−179489
C
AluSg4
SINE/Alu
14
298
2
286




187
33.4
7.1
9.9
129625
129648
−179465
+
L2
LINE/L2
2182
2192
−1227
285




1745
16.7
3.5
0.0
129649
129935
−179178
C
AluJb
SINE/Alu
15
297
1
287




187
33.4
7.1
9.9
129936
130109
−179004
+
L2
LINE/L2
2193
2374
−1045
285



probe 19
187
33.4
7.1
9.9
129936
130109
−179004
+
L2
LINE/L2
2193
2374
−1045
285
2



548
25.0
0.0
0.0
130353
130464
−178649
+
MER81
DNA/hAT-
2
113
−1
288













Bkjk








397
20.0
3.0
1.0
130604
130704
−178409
+
LTR88b
LTR/Gypsy?
722
824
−13
289




1038
18.1
0.0
0.6
130839
131004
−179109
+
AluSz6
SINE/Alu
7
171
−141
290




207
0.0
0.0
0.0
131023
131045
−178068
+
(CAAAAA)n
Simple
2
24
0
291




1739
17.6
0.0
2.7
131144
131445
−177668
+
AluJr
SINE/Alu
1
294
−18
292



excluded region 19
1739
17.6
0.0
2.7
131144
131445
−177668
+
AluJr
SINE/Alu
1
294
−18
292
18



683
21.3
8.9
2.2
131485
131652
−177461
C
MIRb
SINE/MIR
−35
233
55
293




290
24.9
15.2
3.1
131818
131962
−177151
+
L2c
LINE/L2
3225
3386
−1
294




2015
12.0
0.6
1.3
131975
132108
−177005
+
AluSx
SINE/Alu
1
135
−177
295




2358
8.6
0.0
3.0
132109
132421
−176692
+
AluY
SINE/Alu
1
304
−7
296




2015
12.0
0.6
1.3
132422
132598
−176515
+
AluSx
SINE/Alu
136
310
−2
295




369
16.2
0.0
2.9
132682
132751
−176362
C
L1MC5
LINE/L1
−523
7438
7371
297




3496
8.6
2.0
1.4
132752
133237
−175876
+
LTR15
LTR/ERV1
1
671
−4
298




378
23.8
13.4
0.5
133242
133382
−175731
C
L1MC5
LINE/L1
−547
7495
7255
297




2042
13.2
0.3
0.7
133441
133736
−175377
+
AluSx
SINE/Alu
1
295
−17
299




2238
9.5
0.0
0.0
133740
134023
−175090
+
AluSg
SINE/Alu
1
284
−26
300




371
4.7
0.0
0.0
134037
134079
−175034
+
AluSz6
SINE/Alu
244
286
−26
301




694
29.0
9.4
4.0
134183
134701
−174412
C
L2a
LINE/L2
0
3375
2870
302




1211
10.9
39.0
1.0
134705
134933
−174180
C
AluSx3
SINE/Alu
−14
298
1
303




651
22.9
0.8
0.0
134943
135064
−174049
C
AluSz
SINE/Alu
−187
125
3
303




1658
16.3
4.3
2.1
135083
135358
−173755
C
AluSz
SINE/Alu
−30
282
1
304




2301
11.2
0.3
0.0
135492
135794
−173319
+
AluSx
SINE/Alu
1
304
−8
305




375
28.3
11.6
1.6
135871
136110
−173003
+
MIRc
SINE/MIR
2
268
0
306




2136
11.4
1.0
0.7
136954
137251
−171862
+
AluSc8
SINE/Alu
1
299
−13
307




2368
7.1
1.0
0.3
137253
137549
−171564
+
AluSp
SINE/Alu
3
301
−12
308




801
26.6
8.3
0.7
138199
138452
−170661
C
L2a
LINE/L2
−1
3425
3153
309




1432
15.2
6.6
0.3
138490
138606
−170507
+
AluJb
SINE/Alu
1
117
−195
310




195
6.9
0.0
0.0
138607
138635
−170478
+
(CA)n
Simple
2
30
0
311




1432
15.2
6.6
0.3
138636
138788
−170325
+
AluJb
SINE/Alu
118
287
−25
310




254
12.8
0.0
0.0
138792
138831
−170282
+
L1ME3
LINE/L1
6124
6162
0
312




1283
15.2
0.6
4.5
138839
139162
−169951
C
SVA_F
Other
−615
760
449
313




2029
2.1
0.0
0.0
139163
139395
−169718
+
SVA_C
Other
1152
1384
0
314




1528
7.5
0.0
1.5
139579
139781
−169332
C
AluY
SINE/Alu
−13
298
99
315




3520
7.6
0.2
2.8
139782
140256
−168857
C
LTR2
LTR/ERV1
0
463
1
316




7381
7.3
2.1
0.0
140257
141186
−167927
C
Harleq-int
LTR/ERV1
0
7847
6898
316




34120
6.3
0.8
0.3
141187
145402
−163711
C
Harleq-int
LTR/ERV1
−996
5900
1666
316




384
4.2
0.0
0.0
145423
145470
−163643
+
L1PA3
LINE/L1
6103
6150
−5
317




637
8.0
4.9
1.9
145480
145581
−163532
C
Harleq-int
LTR/ERV1
−5222
1674
1570
316




5813
9.7
2.9
2.2
145595
146781
−162332
C
Harleq-int
LTR/ERV1
−5816
1080
1
316




3514
7.8
0.4
0.2
146783
147234
−161879
C
LTR2
LTR/ERV1
−10
453
1
316




775
7.8
0.0
0.0
147235
147336
−161777
C
AluY
SINE/Alu
−209
102
1
315




2256
9.6
0.3
0.7
147892
148194
−160919
+
AluSp
SINE/Alu
1
302
−11
318



probe 22
2246
7.9
3.5
0.0
148712
149001
−160112
C
AluSg
SINE/Alu
−9
301
2
319
2



21
42.9
0.0
0.0
150814
150834
−158279
+
GC_rich
Low_Cplxty
1
21
0
320




740
14.6
0.0
6.6
151349
151478
−157635
C
FLAM_C
SINE/Alu
−21
122
1
321



excluded region 20
2502
6.8
0.0
0.3
152355
152661
−156452
C
AluY
SINE/Alu
−5
306
1
322
5



794
13.7
1.6
1.6
152695
152818
−156295
C
FLAM_C
SINE/Alu
−19
124
1
323




2085
13.3
1.3
0.0
152821
153120
−155993
C
AluSz
SINE/Alu
−8
304
1
324




563
32.8
6.6
1.5
153132
153370
−155743
C
MIRc
SINE/MIR
−10
258
3
325




791
18.7
9.2
4.2
153566
153838
−155275
+
L1M5C
LINE/L1
7642
7927
−34
326




2240
9.6
0.0
0.7
153858
154145
−154968
+
AluSc8
SINE/Alu
3
293
−19
327




28
67.9
0.0
0.0
154149
154176
−154937
+
AT_rich
Low_Cplxty
1
28
0
328




2160
9.6
2.2
3.9
154350
154662
−154451
+
AluY
SINE/Alu
1
308
−3
329



probe 23
216
27.8
3.8
1.2
154848
154927
−154186
+
L2a
LINE/L2
3302
3383
−43
330
1



298
25.0
4.6
4.6
155156
155264
−153849
+
L2b
LINE/L2
3256
3364
−11
331




1947
15.3
0.3
0.7
156525
156824
−152289
+
AluJb
SINE/Alu
1
299
−13
332




252
27.7
8.2
5.8
156901
157034
−152079
C
L1MC
LINE/L1
−2228
5654
5518
333




441
0.0
0.0
0.0
157109
157157
−151956
+
(CA)n
Simple
2
50
0
334




315
28.3
5.2
0.0
157159
157290
−151823
C
L1M5
LINE/L1
−655
5468
5326
335



excluded region 21
813
14.2
0.0
3.5
157768
157887
−151226
C
AluJo
SINE/Alu
−196
116
1
336
3



2245
13.2
0.0
0.0
157903
158212
−150901
C
AluSz
SINE/Alu
−2
310
1
337




958
19.8
6.9
0.9
158305
158506
−150607
C
AluJr
SINE/Alu
−12
300
87
338



probe 24
515
29.2
0.6
1.3
158572
158727
−150386
C
MIR
SINE/MIR
−106
156
2
339
0



559
23.7
7.7
1.8
159274
159428
−149685
C
Tigger16b
DNA/TcMT
−16
321
158
340




276
19.7
0.0
0.0
159632
159697
−149416
C
L1MA9
LINE/L1
−19
6293
6228
341




1903
14.2
6.8
0.3
159698
160008
−149105
C
Tigger3a
DNA/TcMT
0
348
18
342




304
29.1
1.7
10.2
160014
160193
−148920
C
L1MA9
LINE/L1
−93
6219
6054
341




26
69.0
0.0
0.0
160250
160275
−148838
+
AT_rich
Low_Cplxty
1
26
0
343



excluded region 22
30
60.0
0.0
0.0
160373
160402
−148711
+
AT_rich
Low_Cplxty
1
30
0
344
16



1901
16.8
0.3
0.3
160410
160707
−148406
C
AluJb
SINE/Alu
−14
298
1
345




2429
6.6
2.3
0.0
160926
161228
−147885
+
AluY
SINE/Alu
1
30
−1
346




2151
12.8
0.3
1.0
161239
161
−147570
+
AluSq2
SINE/Alu
1
303
−9
347




812
17.1
0.0
1.6
16155
161
−147426
C
FLAM_A
SINE/Alu
−13
129
3
348




2239
11.0
0.3
1.3
16174
162
−147057
C
AluSz6
SINE/Alu
−6
306
1
349




637
9.0
0.8
11.5
162165
162
−146824
C
L1MA9
LINE/L1
−33
6279
6167
350




2152
13.0
0.0
0.0
162300
162598
−146515
C
AluSx
SINE/Alu
−12
300
2
351




853
17.8
0.0
0.0
162600
162728
−146385
C
FLAM_C
SINE/Alu
−14
128
1
352




2348
9.8
0.0
0.0
162759
163053
−146060
C
AluSc
SINE/Alu
−13
296
2
353




753
24.7
0.0
0.7
163054
163199
−145914
C
AluJb
SINE/Alu
−32
280
136
354




1899
16.7
2.0
0.0
163202
163494
−145619
C
AluSz6
SINE/Alu
−12
300
2
355




21
67.9
0.0
0.0
163511
163538
−145575
+
AT_rich
Low_Cplxty
1
28
0
356




1411
15.6
1.9
12.5
163577
163884
−145229
C
AluJo
SINE/Alu
−23
289
11
357




2314
10.8
0.0
0.0
163906
164201
−144912
C
AluSx
SINE/Alu
16
296
1
358




2470
9.1
0.3
0.0
164346
164653
−144460
+
AluSc
SINE/Alu
1
309
0
359




629
21.8
7.3
0.0
164831
164954
−144159
+
AluJb
SINE/Alu
4
136
176
360




1493
17.2
4.8
2.0
164955
165244
−143869
+
AluJo
SINE/Alu
2
299
−13
361




2231
9.3
0.0
1.4
165251
165587
−143526
+
AluSq2
SINE/Alu
1
312
0
362



probe 25
5877
8.3
2.5
6.2
166057
166719
−142394
C
L1PA7
LINE/L1
−1
6153
5491
363
0


excluded region 23
5877
8.3
2.5
6.2
166057
166719
−142394
C
L1PA7
LINE/L1
−1
6153
5491
363
3



2432
7.4
0.0
0.7
166720
167015
−142098
C
AluY
SINE/Alu
−17
294
1
364




5877
8.3
2.5
6.2
167016
167038
−142075
C
LIPA7
LINE/L1
−664
5490
5490
363




2296
11.5
0.0
0.0
167039
167343
−141770
C
AluSx3
SINE/Alu
−7
305
1
365




5877
8.3
2.5
6.2
167344
167416
−141697
C
LIPA7
LINE/L1
−664
5490
5420
363




2527
8.4
0.0
0.0
167417
167725
−141388
C
AluY
SINE/Alu
−2
309
1
366




5877
7.4
1.0
0.3
167726
168297
−140834
C
L1PA7
LINE/L1
−735
5419
4870
363



probe 26
5877
7.4
1.0
0.3
167726
168297
−140834
C
L1PA7
LINE/L1
−735
5419
4870
363
2



1566
16.2
8.3
0.3
169630
169907
−139206
C
AluJb
SINE/Alu
−12
300
1
367




266
33.0
2.3
1.4
169960
170120
−138993
C
MIRb
SINE/MIR
−96
172
5
368




1633
22.3
0.0
0.7
170506
170806
−138307
+
AluJr
SINE/Alu
1
299
−13
369



excluded region 24
2359
8.0
0.3
0.7
171255
171556
−137557
C
AluY
SINE/Alu
−9
302
2
370
3



2345
8.4
0.0
1.0
141557
171854
−137259
C
AluSg
SINE/Alu
−12
298
4
371




2440
6.5
0.0
2.6
171895
172204
−136909
C
AluY
SINE/Alu
−9
302
1
372



probe 27
500
17.8
10.2
1.4
173641
173784
−135329
+
L1MC4a
LINE/L1
7729
7994
−1
373
0


excluded region 25
1743
15.8
0.3
6.0
174758
174905
−134208
+
AluJb
SINE/Alu
2
145
−167
374
8



2453
8.3
0.3
0.0
174906
175207
−133906
+
AluSp
SINE/Alu
1
303
−10
375




1743
15.8
0.3
6.0
175208
175375
−133738
+
AluJb
SINE/Alu
146
301
−11
374




2487
8.2
0.0
0.0
175378
175681
−133432
+
AluSg7
SINE/Alu
1
304
−8
376




1773
15.8
0.3
6.0
276759
276906
−32207
+
AluJb
SINE/Alu
2
145
−167
377




2466
8.3
0.3
0.0
276907
277207
−31906
+
AluSp
SINE/Alu
1
302
−11
378




1773
15.8
0.3
6.0
277208
277375
−31738
+
AluJb
SINE/Alu
146
301
−11
377




2510
8.5
0.0
0.0
277378
277684
−31429
+
AluSg7
SINE/Alu
1
307
−5
379



probe 29














0


excluded region 26
2477
7.4
0.0
0.0
278774
279071
−30042
+
AluY
SINE/Alu
1
298
−13
380
6



2212
9.4
0.3
5.3
279406
279724
−29389
+
AluSp
SINE/Alu
1
304
−9
381




2283
10.4
0.3
0.0
279909
280205
−28908
+
AluSg
SINE/Alu
1
298
−12
382




2288
9.1
0.0
0.7
280216
280501
−28612
+
AluY
SINE/Alu
1
284
−27
383




235
22.6
7.0
2.2
280538
280623
−28490
+
L1ME4a
LINE/L1
5948
6037
−87
384




1552
21.2
4.2
0.3
280624
280910
−28203
C
AluJb
SINE/Alu
−14
298
1
385




2217
8.9
1.4
0.7
280919
281210
−27903
C
AluY
SINE/Alu
−1
294
1
386



probe 30
288
7.0
0.0
0.0
281782
281824
−27289
+
(GGA)n
Simple
1
43
0
387
0


excluded region 27
2005
17.0
0.0
0.0
282404
282703
−26410
C
AluSz6
SINE/Alu
−11
301
2
388
1


probe 31














0


excluded region 28
2341
8.6
0.7
0.7
283434
283734
−25379
+
AluSx1
SINE/Alu
1
301
−11
389
1


probe 32














0


excluded region 29
331
28.5
9.8
2.3
283817
283938
−25175
+
MIRb
SINE/MIR
18
148
−120
390
0


probe 33
328
29.2
3.2
14.3
285397
285474
−23639
+
MIRb
SINE/MIR
3
70
−198
392
0


excluded region 30
328
29.2
3.2
14.3
285397
285474
−23639
+
MIRb
SINE/MIR
3
70
−198
392
10



2457
7.7
0.0
0.3
285475
285773
−23340
C
AluY
SINE/Alu
−13
298
1
393




328
29.2
3.2
14.3
285774
285818
−23295
+
MIRb
SINE/MIR
71
114
−154
392




408
34.7
8.7
2.2
285879
285923
−23190
C
L2c
LINE/L2
−38
3349
3305
394




1815
17.3
0.0
3.3
285924
286070
−23043
+
AluJb
SINE/Alu
1
145
−167
395




2404
7.7
0.3
0.3
286071
286369
−22744
+
AluSc5
SINE/Alu
1
299
−13
396




1815
17.3
0.0
3.3
286370
286532
−22581
+
AluJb
SINE/Alu
146
301
−11
395




408
34.7
8.7
2.2
286533
286611
−22502
C
L2c
LINE/L2
−83
3304
3221
394




2426
8.9
0.0
0.0
286612
286903
−22210
+
AluSg
SINE/Alu
1
292
−18
397




408
31.6
7.5
2.4
286904
287093
−22020
C
L2c
LINE/L2
−167
3220
3009
394




1897
18.1
0.0
0.3
287133
287435
−21678
+
AluSz6
SINE/Alu
1
302
−10
398




2477
8.5
0.7
0.0
287436
287740
−21373
+
AluSg
SINE/Alu
1
307
−3
399




236
28.4
6.8
6.1
287743
287888
−21225
C
L2c
LINE/L2
−495
2924
2778
394




2425
7.2
0.7
0.0
287918
288210
−20903
+
AluSx4
SINE/Alu
5
299
−13
400




1966
14.8
0.0
0.7
288319
288601
−20512
+
AluJb
SINE/Alu
1
281
−31
401




198
19.2
9.4
1.8
288602
288648
−20465
C
L2c
LINE/L2
−823
2596
2545
394




370
33.9
7.3
3.9
288662
288761
−20352
C
L2c
LINE/L2
−927
2492
2386
394




1455
18.4
8.1
5.3
288762
288900
−20213
C
MER2
DNA/TcMT
−1
344
212
402




1649
18.9
1.0
1.7
288901
289197
−19916
C
AluJr
SINE/Alu
−17
295
1
403




1455
18.4
8.1
5.3
289192
289390
−19723
C
MER2
DNA/TcMT
−134
211
3
402



probe 34
1455
18.4
8.1
5.3
289192
289390
−19723
C
MER2
DNA/TcMT
−134
211
3
402
0



370
31.2
4.9
4.4
289391
289699
−19414
C
L2c
LINE/L2
−1034
2385
2033
394




274
29.6
20.4
8.6
289992
290173
−18940
C
MIRb
SINE/MIR
−48
220
16
404




254
16.1
1.4
10.9
290149
290218
−18895
+
MIR
SINE/MIR
96
159
−103
405



excluded region 31
254
16.1
1.4
10.9
290149
290218
−18895
+
MIR
SINE/MIR
96
159
−103
405*
2



1998
16.9
0.0
0.3
290222
290534
−18579
+
AluJb
SINE/Alu
1
312
0
406




2584
6.3
0.0
0.0
290614
290913
−18200
C
AluY
SINE/Alu
−11
300
1
407



probe 35
25
76.1
0.0
0.0
291372
291417
−17696
+
AT_rich
Low_Cplxty
1
46
0
408
0



21
38.1
0.0
0.0
291399
291419
−17694
+
AT_rich
Low_Cplxty
1
21
0
409




228
6.7
0.0
0.0
293811
293840
−15273
+
(CAGCC)n
Simple
3
32
0
410



excluded region 32
1075
11.7
0.0
1.4
295607
295751
−13362
+
FLAM_C
SINE/Alu
1
143
0
411
3



2297
12.3
0.0
0.3
296215
296522
−12591
+
AluSx1
SINE/Alu
1
307
−5
412




2261
8.2
0.7
0.0
296524
296803
−12310
+
AluSg
SINE/Alu
22
303
−7
413



probe 36
611
31.6
6.1
1.2
296940
297170
−11943
C
MIRb
SINE/MIR
−1
267
26
414
1



796
17.6
2.3
0.0
299588
299718
−9395
C
FLAM_C
SINE/Alu
−8
135
2
415




2282
9.0
0.3
0.3
299917
300205
−8908
+
AluSq4
SINE/Alu
1
289
−23
416
3



1752
16.3
2.0
1.7
300991
301290
−7823
+
AluSz6
SINE/Alu
2
302
−10
417




2156
13.3
0.7
0.3
301631
301930
−7183
C
AluSz6
SINE/Alu
−10
302
2
418



probe 37














0



1844
12.7
7.6
0.0
303366
303641
−5472
+
AluSz6
SINE/Alu
1
297
−15
419
6



186
4.3
0.0
0.0
303712
303734
−5379
+
(TCTG)n
Simple
2
24
0
420




1799
15.9
0.0
0.7
303735
304005
−5108
C
AluSx3
SINE/Alu
−43
269
1
421




1627
16.8
0.6
8.1
304112
304299
−4814
C
AluJb
SINE/Alu
−3
309
129
422




2369
10.8
0.3
0.0
304300
304604
−4509
C
AluSc
SINE/Alu
−2
307
2
423




1627
16.8
0.6
8.1
304605
304742
−4371
C
AluJb
SINE/Alu
−18
128
14
422




365
16.1
8.5
0.0
304786
304873
−4240
C
FRAM
SINE/Alu
0
133
24
424



probe 38
219
3.6
0.0
0.0
305000
305027
−4086
+
(CA)n
Simple
2
29
0
425
0



201
7.4
0.0
0.0
305028
305054
−4059
+
(TC)n
Simple
2
28
0
426




262
36.0
0.0
0.0
305840
305978
−3135
+
(TGG)n
Simple
1
139
0
427



excluded region 35
980
19.5
0.0
1.2
306413
306573
−2540
C
AluJb
SINE/Alu
−18
294
134
438
9



1683
16.0
0.0
1.5
306574
306841
−2272
C
AluJr
SINE/Alu
−14
298
35
439




1081
16.8
6.0
8.0
306893
306924
−2189
C
Charlie5
DNA/hAT-
−1
2623
2600
430













Charlie








2498
7.1
0.0
0.0
306925
307220
−1893
+
AluSg
SINE/Alu
1
296
−14
431




351
0.0
0.0
0.0
307222
307260
−1853
+
(TA)n
Simple
2
40
0
432




1081
16.8
6.0
8.0
307261
307290
−1823
C
Charlie5
DNA/hAT-
−25
2599
2574
430













Charlie








2429
10.1
0.0
0.0
307291
307597
−1516
C
AluSg
SINE/Alu
−3
307
1
433




1081
16.8
6.0
8.0
307598
307634
−1479
C
Charlie5
DNA/hAT-
−51
2573
2537
430













Charlie








1814
18.1
3.4
0.0
307635
307932
−1181
+
AluJr
SINE/Alu
1
308
−4
434




1081
16.8
6.0
8.0
307933
307957
−1156
C
Charlie5
DNA/hAT-
−88
2536
2509
430













Charlie








1804
16.6
1.0
1.0
307958
308258
−855
C
AluJb
SINE/Alu
−11
301
1
435




1081
16.8
6.0
8.0
308259
308509
−604
C
Charlie5
DNA/hAT-
−116
2508
2251
430













Charlie








180
0.0
0.0
0.0
308538
308557
−556
+
(TTG)n
Simple
2
21
0
436




2319
9.2
0.0
0.3
308558
308843
−270
C
AluSx
SINE/Alu
−25
287
3
437




26
80.0
0.0
0.0
308875
308914
−199
+
AT_rich
Low_Cplxty
1
40
0
438




765
15.0
4.4
0.0
308915
309027
−86
+
AluJo
SINE/Alu
1
118
−194
439




435
14.5
0.0
0.0
309052
309113
0
C
AluSz6
SINE/Alu
−13
299
238
440



















TABLE 4








Total Alu sequences in probes
11 (10.5%)




Total Alu sequences in excluded regions
93 (89.4%)
























position in query



position in repeat
link-
Alu






















%
%
%
sequence (hg18)

matching
repeat
(left)
end
begin
age
seq























score
div.
del.
ins.
begin
end
(left)
+
repeat
class/family
begin
end
(left)
id
(count)

























Excluded














0


region 1

















Probe 1
398
34.5
9.7
1.3
240
456
−172044
C
L3
LINE/CR1
−715
3384
3150
1
0


Excluded
2477
7.0
0.6
1.0
2534
2845
−169655
+
AluY
SINE/Alu
1
311
0
2
2


region 2


















2391
8.5
0.0
2.3
2948
3254
−169246
+
AluSg
SINE/Alu
3
302
−8
3



Probe 2
21
42.9
0.0
0.0
4058
4078
−168422
+
AT_rich
Low_
1
21
0
4
0












complexity








181
13.3
0.0
0.0
5187
5216
−167284
C
L2b
LINE/L2
−2
3373
3344
5




21
53.6
0.0
0.0
5344
5371
−167129
+
AT_rich
Low_
1
28
0
6













complexity








25
44.0
0.0
0.0
6259
6283
−166217
+
AT_rich
Low_
1
25
0
7













complexity








36
69.4
0.0
0.0
6261
6296
−166204
+
AT_rich
Low_
1
36
0
8













complexity








300
32.4
7.6
6.2
6346
6569
−165931
C
L2c
LINE/L2
−139
3248
3022
9



Excluded
2134
12.3
3.6
0.3
7463
7763
−164737
C
AluSp
SINE/Alu
−2
311
1
10
3


region 3


















4581
12.2
3.9
2.7
7764
8038
−164462
+
Tigger1
DNA/TcMar-
1552
1829
−589
11













Tigger








2268
12.5
0.0
0.0
8039
8350
−164150
C
AluSz
SINE/Alu
0
312
1
12




4581
12.2
3.9
2.7
8351
8579
−163921
+
Tigger1
DNA/TcMar-
1830
2052
−366
11













Tigger








2100
12.2
0.4
0.4
8580
8896
−163604
+
AluSc
SINE/Alu
1
309
0
13




4581
12.6
5.9
2.5
8897
9223
−163277
+
Tigger1
DNA/TcMar-
2053
2418
0
11













Tigger







Probe 3a
4581
12.6
5.9
2.5
8897
9223
−163277
+
Tigger1
DNA/TcMar-
2053
2418
0
11
0












Tigger








722
28.2
6.0
0.9
9919
10136
−162364
C
MIRb
SINE/MIR
−14
254
26
14




566
16.8
1.6
2.4
11054
11181
−161319
+
L1MB8
LINE/L1
6051
6177
−1
15




216
15.8
0.0
0.0
11954
11991
−160509
+
T-rich
Low_
143
180
0
16













complexity







Excluded














0


region 4

















Probe 3b
1039
34.0
8.2
3.8
14509
15076
−157424
C
L2b
LINE/L2
0
3375
2752
17
0



580
10.9
8.9
0.0
15077
15177
−157323
+
L1MB1
LINE/L1
6070
6179
−1
18




1039
29.2
11.7
4.9
15178
15625
−156875
C
L2b
LINE/L2
−668
2751
2304
17




392
34.2
7.0
0.0
15699
15856
−156644
+
MER5B
DNA/hAT-
5
173
−5
19













Charlie








260
27.0
2.2
1.1
16498
16587
−155913
+
MER5B
DNA/hAT-
1
91
−87
20













Charlie








356
35.0
9.7
1.8
16639
17148
−155352
+
L2b
LINE/L2
687
1265
−2154
21



Excluded
356
35.0
9.7
1.8
16639
17148
−155352
+
L2b
LINE/L2
674
1265
−2154
21
0


region 5

















Probe 3c
582
29.9
8.9
3.0
17310
18031
−154469
+
L2b
LINE/L2
1332
2163
−1256
21
0



570
21.9
5.8
0.6
18054
18209
−154291
+
MER5A1
DNA/hAT-
2
165
−1
22













Charlie








615
26.7
6.3
7.5
18211
18297
−154203
+
L2b
LINE/L2
2215
2285
−1134
21




463
12.4
0.0
0.0
18298
18386
−154114
C
L1PB1
LINE/L1
0
6151
6063
23




615
26.7
6.3
7.5
18387
18553
−153947
+
L2b
LINE/L2
2286
2466
−953
21




616
28.0
8.3
2.9
18583
18810
−153690
C
MIR
SINE/MIR
0
262
23
24




251
27.6
7.8
4.5
18895
19023
−153477
+
L2b
LINE/L2
2618
2750
−669
21




180
24.4
18.9
0.9
19184
19278
−153222
+
L2b
LINE/L2
3029
3140
−235
21




288
25.5
5.2
0.0
19430
19517
−152983
+
MIR
SINE/MIR
108
206
−62
25




409
20.3
0.9
13.5
20554
20661
−151839
+
MER20
DNA/hAT-
6
101
−118
26













Charlie







Excluded
2283
10.6
0.0
0.7
20878
21178
−151322
C
AluSx1
SINE/Alu
−13
299
1
27
9


region 6


















2650
5.7
0.0
0.0
21294
21593
−150907
C
AluYk4
SINE/Alu
−12
300
1
28




411
30.1
0.0
0.0
21609
21711
−150789
C
MIR
SINE/MIR
−2
260
158
29




271
27.3
6.5
0.0
21747
21823
−150677
+
L1MEg
LINE/L1
117
198
−6002
30




1322
24.0
7.1
2.2
21910
22707
−149793
+
L1MEg
LINE/L1
667
1481
−4719
30




2394
10.8
0.0
0.0
22717
23021
−149479
+
AluSx
SINE/Alu
1
305
−7
31




367
22.0
15.0
5.0
23105
23289
−149211
+
L1MEg
LINE/L1
1665
1878
−4246
30




2251
12.5
1.6
0.0
23290
23594
−148906
+
AluSx1
SINE/Alu
1
310
−2
32




367
23.5
14.9
3.8
23595
23754
−148746
+
L1MEg
LINE/L1
1858
2035
−4165
30




21
66.7
0.0
0.0
23863
23883
−148617
+
AT_rich
Low_
1
21
0
33













complexity








2312
9.8
0.0
0.0
23884
24168
−148332
C
AluSg4
SINE/Alu
−27
285
1
34




354
27.4
23.6
0.1
24296
24462
−148038
+
MIRb
SINE/MIR
44
240
−28
35




2271
11.0
0.0
0.3
25061
25359
−147141
C
AluSq2
SINE/Alu
−14
298
1
36




204
31.0
5.5
4.3
25745
25835
−146665
+
L2c
LINE/L2
3252
3343
−44
37




189
38.0
1.8
2.7
26973
27083
−145417
+
L2
LINE/L2
2741
2850
−569
38




3579
15.7
3.5
1.5
28391
28663
−143837
+
L1MA9
LINE/L1
5556
5823
−489
39




2204
10.2
0.0
1.4
28664
28973
−143527
+
AluSx
SINE/Alu
1
312
0
40




3579
15.7
3.5
1.5
28974
29408
−143092
+
L1MA9
LINE/L1
5824
6279
−33
39




2250
11.5
0.0
1.9
29420
29733
−142767
C
AluSx
SINE/Alu
−3
309
2
41




388
29.1
18.1
0.4
30060
30252
−142248
+
MIRb
SINE/MIR
40
266
−2
42




2247
9.7
0.3
0.7
30637
30936
−141564
+
AluSP
SINE/Alu
1
299
−14
43



Probe 5
467
24.0
10.4
0.0
32206
32359
−140141
C
MER3
DNA/hAT-
−21
188
19
44
0












Charlie








637
15.5
13.4
4.7
32864
32983
−139517
C
Charlie1a
DNA/hAT-
0
1455
1322
45













Charlie







Excluded
637
15.5
13.4
4.7
32864
32983
−139517
C
Charlie1a
DNA/hAT-
0
1455
1322
45
2


region 7









Charlie








2301
10.8
0.0
0.3
32984
33289
−139211
+
AluSz
SINE/Alu
1
305
−7
46




637
16.9
15.4
3.0
33290
33571
−138929
C
Charlie1a
DNA/hAT-
−134
1321
988
45













Charlie








594
21.1
7.8
0.0
33607
33772
−138728
C
Charlie1a
DNA/hAT-
−590
865
687
45













Charlie








1745
21.7
7.6
1.8
33787
34341
−138159
C
Charlie1a
DNA/hAT-
−804
651
67
45













Charlie








2280
10.4
1.0
0.0
34508
34805
−137695
C
AluSc8
SINE/Alu
−11
301
1
47




25
69.2
0.0
0.0
34861
34899
−137601
+
AT_rich
Low_
1
39
0
48













complexity







Probe 6
551
28.8
9.0
2.0
35403
35590
−136910
+
MIRb
SINE/MIR
8
208
−60
49
0



346
34.6
12.2
4.0
35890
36193
−136307
C
L2c
LINE/L2
−79
3308
2981
50




243
37.6
5.5
5.5
36411
36666
−135834
+
L2c
LINE/L2
2910
3165
−222
51




186
15.2
15.2
0.0
36661
36706
−135794
C
L2a
LINE/L2
−98
3328
3276
52




278
36.5
4.1
0.8
36911
37059
−135441
+
MER5B
DNA/hAT-
7
153
−25
53













Charlie








232
39.2
2.9
0.0
37056
37157
−135343
C
L2c
LINE/L2
−648
2771
2667
50




293
29.1
12.7
9.0
37286
37553
−134947
C
L2c
LINE/L2
−2
3385
3109
54




22
59.1
0.0
0.0
37814
37835
−134665
+
AT_rich
Low_
1
22
0
55













complexity








1767
14.8
2.6
0.3
38038
38350
−134150
C
L1MC2
LINE/L1
−158
6186
5867
56




2581
4.4
10.9
0.0
38351
38783
−133717
C
MER9a3
LTR/ERVK
0
512
33
57




2503
12.5
5.4
0.2
38790
39214
−133286
C
L1MC2
LINE/L1
−471
5873
5427
56



Excluded
2503
12.5
5.4
0.2
38790
39214
−133286
C
L1MC2
LINE/L1
−471
5873
5427
56
1


region 8


















2575
6.6
0.0
0.0
39220
39520
−132980
C
AluY
SINE/Alu
−11
300
1
58



Probe 7
447
30.7
12.8
1.3
40106
40462
−132038
C
L2a
LINE/L2
0
3426
2972
59
1



1324
19.2
10.7
1.0
40694
40974
−131526
C
AluJr
SINE/Alu
−2
310
3
60



Excluded
2608
5.3
1.3
0.0
41606
41907
−130593
C
AluY
SINE/Alu
−5
306
1
61
10


region 9


















1898
14.0
0.4
0.0
43234
43497
−129003
+
AluSx
SINE/Alu
1
265
−47
62




2028
8.5
0.4
1.2
43498
43755
−128745
+
AluY
SINE/Alu
41
296
−15
63




1289
15.4
0.4
8.1
43837
44089
−128411
C
AluJb
SINE/Alu
−14
298
64
64




1897
13.9
0.0
0.0
44300
44565
−127935
C
AluSx1
SINE/Alu
−2
310
45
65




311
17.9
0.0
1.5
44716
44783
−127717
+
MER53
DNA/hAT
12
78
−115
66




491
14.9
0.0
1.1
44783
44870
−127630
+
MER53
DNA/hAT
107
193
0
67




480
14.4
4.8
11.0
45770
45894
−126606
C
MER44D
DNA/TcMar-
−2
703
586
68













Tigger








1057
7.7
1.6
2.7
45879
46064
−126436
C
MER44D
DNA/TcMar-
−79
626
444
68













Tigger








2405
12.7
5.6
1.2
46064
46728
−125772
C
Tigger7
DNA/TcMar-
−1653
838
145
69













Tigger








919
18.1
0.0
0.0
46776
46930
−125570
C
MER44D
DNA/TcMar-
−549
156
2
68













Tigger








1210
14.2
11.8
0.8
47131
47342
−125158
C
AluSx
SINE/Alu
0
312
78
70




967
18.1
0.0
0.0
47500
47648
−124852
+
AluJb
SINE/Alu
152
300
12
71




208
22.0
1.1
6.0
47867
47953
−124547
+
(TATG)n
Simple_
3
85
0
72













repeat








4691
7.6
0.2
0.6
49683
50307
−122193
C
L1PA10
LINE/L1
−11
6157
5536
73




1758
20.7
0.7
0.0
50462
50766
−121734
+
AluJr4
SINE/Alu
1
307
−5
74




2343
10.9
0.0
0.3
51130
51431
−121069
+
AluSz
SINE/Alu
1
301
−11
75




1741
18.6
1.4
0.3
51949
52244
−120256
C
AluJo
SINE/Alu
−9
303
5
76



Probe 11














0


Excluded
2243
0.4
0.0
0.8
57693
57950
−114550
+
AluYa5
SINE/Alu
41
296
−14
77
3


region 10


















203
29.1
9.0
3.8
57957
58056
−114444
+
MIRc
SINE/MIR
63
167
−101
78




2301
9.7
1.0
0.3
58059
58356
−114144
+
AluSx
SINE/Alu
1
300
−12
79




219
18.6
3.1
15.8
58361
58424
−114076
+
MIR
SINE/MIR
200
256
−6
80




1903
12.7
4.4
9.5
58558
58831
−113669
C
Tigger3a
DNA/TcMar-
0
348
61
81













Tigger








2336
9.7
0.0
1.0
58832
59130
−113370
+
AluSx
SINE/Alu
1
296
−16
82




1903
12.7
4.4
9.5
59131
59220
−113280
C
Tigger3a
DNA/TcMar-
−288
60
1
81













Tigger







Probe 12
1903
12.7
4.4
9.5
59131
59220
−113280
C
Tigger3a
DNA/TcMar-
−288
60
1
81
1












Tigger








270
39.8
0.0
0.0
60002
60119
−112381
+
L4
LINE/
1467
1584
−445
83













RTE-X








180
11.1
0.0
0.0
60235
30261
−112239
+
(A)n
Simple_
1
27
0
84













repeat








474
10.8
9.2
0.0
60778
60842
−111658
C
AluSq10
SINE/Alu
−236
76
6
85




612
13.2
0.9
0.0
60849
60962
−111538
C
Charlie1a
DNA/hAT-
−26
1429
1315
86













Charlie








1915
18.2
4.9
0.7
60965
61374
−111126
C
Charlie1a
DNA/hAT-
−617
838
412
86













Charlie








321
29.3
5.9
2.1
61403
61538
−110962
C
Charlie1a
DNA/hAT-
−1314
141
1
86













Charlie








1905
12.3
7.7
1.4
61652
61988
−110512
C
Tigger4b
DNA/TcMar-
−1
360
3
87













Tigger








656
22.7
6.7
8.5
62213
62511
−109989
C
L1MC4a
LINE/L1
−1844
6038
5745
88




309
32.5
6.3
3.3
63088
63262
−109238
C
MIRc
SINE/MIR
−19
249
70
89




307
26.2
21.7
1.0
63277
63442
−109058
+
HAL1
LINE/L1
42
241
−2266
90




820
26.3
16.0
3.2
63465
64265
−108235
+
HAL1
LINE/L1
271
1172
−1335
90




744
23.8
8.6
6.5
64278
64682
−107818
+
HAL1
LINE/L1
1215
1627
−880
90




646
29.9
9.2
1.7
64710
64981
−107519
+
HAL1
LINE/L1
1667
1958
−549
90



Excluded
646
29.9
9.2
1.7
64710
64981
−107519
+
HAL1
LINE/L1
1667
1958
−549
90
4


region 11


















2271
11.7
2.0
0.0
65009
65307
−107193
+
AluSz
SINE/Alu
1
305
−7
91




741
28.5
17.7
5.0
65308
65642
−106858
+
HAL1
LINE/L1
15
396
−2111
92




1932
12.4
0.4
0.0
65643
65900
−106600
+
AluSx
SINE/Alu
42
300
−12
93




741
25.5
7.2
8.2
65901
66135
−106365
+
HAL1
LINE/L1
397
625
−1882
92




533
26.8
6.3
2.2
66162
66382
−106118
+
HAL1
LINE/L1
743
972
−1535
92




226
27.4
8.6
9.6
66385
66535
−105965
+
HAL1
LINE/L1
1945
2094
−413
92




2516
7.3
0.0
1.3
66850
66850
−105650
+
AluY
SINE/Alu
1
311
0
94




226
27.4
8.6
9.6
66926
66926
−105574
+
HAL1
LINE/L1
2095
2166
−341
92




4820
10.2
2.1
0.0
67600
67600
−104900
+
LTR12_
LTR/ERV1
1
688
0
95




226
27.4
8.6
9.6
67698
67698
−104802
+
HAL1
LINE/L1
2167
2268
−239
92




2139
11.2
0.0
0.0
68168
68168
−104332
C
AluY
SINE/Alu
0
311
2
96



probe 13
460
25.0
6.8
1.9
69261
69261
−103239
+
L2a
LINE/L2
1657
1810
−1609
97
0



850
28.6
3.9
2.3
69391
69648
−102852
+
L2a
LINE/L2
2735
2996
−423
97




345
23.9
19.3
1.4
69670
69788
−102712
+
L2a
LINE/L2
3286
3425
−1
97




327
31.5
8.0
3.0
69875
70100
−102400
C
L2
LINE/L2
−923
2496
2260
98



Excluded
2153
8.9
2.0
1.0
71648
71776
−100724
+
AluSx
SINE/Alu
1
129
−183
99
3


region 12


















225
0.0
0.0
0.0
71777
71801
−100699
+
(TAAA)n
Simple_
2
26
0
100













repeat








2153
8.9
2.0
1.0
71802
71965
−100535
+
AluSx
SINE/Alu
130
296
−16
99




2223
8.1
0.0
9.2
72116
72437
−100063
C
AluSp
SINE/Alu
−18
295
1
101



Probe 14
967
25.5
2.0
3.7
73109
73356
−99144
C
MIR
SINE/MIR
−2
260
17
102
0


Excluded
2433
9.2
0.0
0.3
74262
74565
−97935
+
AluSx1
SINE/Alu
1
303
−9
103
5


region 13


















1011
11.4
0.0
0.7
74578
74717
−97783
+
AluJb
SINE/Alu
1
139
−173
104




2204
12.2
0.0
0.3
74720
75007
−97493
+
AluSx
SINE/Alu
2
288
−24
105




2390
11.0
0.7
0.0
75008
75315
−97185
+
AluSx
SINE/Alu
1
310
−2
106




1873
27.2
6.0
3.0
75901
76439
−96061
C
L2a
LINE/L2
−8
3418
2826
107




2284
9.4
1.4
0.0
76440
76725
−95775
C
AluSx
SINE/Alu
−22
290
1
108




1873
25.9
6.3
2.2
76726
77867
−94633
C
L2a
LINE/L2
−594
2825
1505
107



Probe 15
1873
25.9
6.3
2.2
76726
77867
−94633
C
L2a
LINE/L2
−594
2825
1505
107
1



24
54.8
0.0
0.0
77993
78023
−94477
+
AT_rich
Low_
1
31
0
109













complexity








1987
14.5
0.7
2.3
78087
78396
−94104
C
AluJr
SINE/Alu
−6
306
2
110




654
26.9
11.1
3.8
80306
80775
−91725
C
HAL1
LINE/L1
−1
2506
2003
111




366
24.7
22.2
0.4
80915
81145
−91355
C
HAL1
LINE/L1
−698
1809
1529
111



Excluded
366
24.7
22.2
0.4
80915
81145
−91355
C
HAL1
LINE/L1
−698
1809
1529
111
15


region 14


















362
14.3
0.0
0.0
81186
81241
−91259
C
AluJo
SINE/Alu
−10
302
247
112




810
18.7
0.0
0.0
81247
81369
−91131
C
AluJo
SINE/Alu
−189
123
1
113




2337
10.8
1.0
0.0
81439
81745
−90755
C
AluSq2
SINE/Alu
−2
310
1
114




222
12.8
0.0
0.0
81790
81828
−90672
+
(T)n
Simple_
1
39
0
115













repeat








645
22.8
3.0
3.0
71761
82095
−90405
C
HAL1
LINE/L1
−1173
1334
1100
111




2246
12.8
0.0
0.0
82608
82904
−89596
+
AluSz
SINE/Alu
1
297
−15
116




870
26.0
8.8
4.5
82945
83220
−89280
+
L1MC5
LINE/L1
6652
6915
−1046
117




2237
11.4
0.0
0.7
83221
83518
−88982
+
AluSx1
SINE/Alu
1
296
−16
118




870
26.0
8.8
4.5
83519
83591
−88909
+
L1MC5
LINE/L1
6916
7007
−954
117




1689
17.8
3.1
2.0
83592
83884
−88616
+
AluJb
SINE/Alu
3
298
−14
119




870
23.0
4.9
4.9
83885
84043
−88457
+
L1MC5
LINE/L1
7008
7187
−774
117




2385
8.7
0.0
0.3
84076
84374
−88126
C
AluSx3
SINE/Alu
−1
311
14
120




361
24.7
11.5
6.8
84442
84667
−87833
C
HAL1
LINE/L1
−1433
1074
839
111




2526
7.4
0.3
0.0
84867
85175
−87325
C
AluSg4
SINE/Alu
−2
310
1
121




524
30.4
1.8
0.6
85327
85495
−87005
C
HAL1
LINE/L1
−2066
441
271
111




510
25.4
7.2
6.6
85541
85640
−86860
+
MIR
SINE/MIR
78
186
−76
122




2302
10.3
0.0
0.0
85641
85941
−86559
C
AluSx1
SINE/Alu
−11
301
1
123




510
25.4
7.2
6.6
85942
86021
−86479
+
MIR
SINE/MIR
187
259
−3
122




1959
12.4
5.7
0.0
86679
86960
−85540
C
AluSq2
SINE/Alu
−14
298
1
124




3783
12.4
2.8
0.3
87785
88389
−84111
C
Tigger1
DNA/TcMar-
0
2418
1799
125













Tigger








2326
9.8
6.7
0.8
88390
88749
−83751
C
THE1D
LTR-ERVL-
0
381
1
126













MaLR








6464
20.4
3.7
4.3
88750
89064
−83436
C
THE1D-int
LTR-ERVL-
0
1651
1336
126













MaLR








1687
11.7
0.4
0.4
89065
89294
−83206
C
AluSz6
SINE/Alu
−16
296
67
127




2204
13.9
0.0
0.0
89295
89603
−82806
+
AluSg
SINE/Alu
2
310
0
128




6464
20.4
3.7
4.3
89604
90942
−81558
C
THE1D-int
LTR-ERVL-
−316
1335
5
126













MaLR








2155
11.9
7.3
1.1
90947
91303
−81197
C
THE1D
LTR-ERVL-
0
381
3
126













MaLR








2716
11.2
3.1
1.9
91308
91627
−80873
C
Tigger1
DNA/TcMar-
−617
1801
1473
125













Tigger








2474
7.4
0.3
0.0
91628
91926
−80574
C
AluSp
SINE/Alu
−12
301
2
129




276
11.2
3.1
1.9
91927
92061
−80439
C
Tigger1
DNA/TcMar-
−946
1472
1341
125













Tigger








691
18.0
2.0
4.8
92060
92209
−80291
C
Tigger1
DNA/TcMar-
−2271
147
2
130













Tigger








2112
13.6
0.7
0.3
92309
92610
−79890
+
AluSz
SINE/Alu
1
303
−9
131




23
65.2
0.0
0.0
93071
93093
−79407
+
AT_rich
Low_
1
23
0
132













complexity








259
25.2
8.8
1.4
93163
93299
−79201
+
Charlie16a
DNA/hAT-
195
341
−1
133













Charlie








2340
9.7
0.7
0.0
93378
93675
−78825
+
AluSq2
SINE/Alu
1
300
−12
134



Probe 18
202
33.9
10.4
2.4
94305
94419
−78081
+
MIR3
SINE/MIR
82
205
−3
135
0



206
12.9
0.0
0.0
94740
94770
−77730
+
(TTTA)n
Simple_
2
32
0
136













repeat








615
27.6
3.3
3.8
94907
95117
−77383
+
MIR
SINE/MIR
34
243
−19
137



Excluded
323
25.3
7.1
7.8
96452
96602
−75898
C
HAL1b
LINE/L1
−1336
673
523
138
1


region 15


















2395
10.5
0.0
0.0
96603
96907
−75593
C
AluY
SINE/Alu
−6
305
1
139




323
25.3
7.1
7.8
96908
97051
−75449
C
HAL1b
LINE/L1
−1487
522
380
138



Probe 19
323
25.3
7.1
7.8
96908
97051
−75449
C
HAL1b
LINE/L1
−1487
522
380
138
1



1346
25.5
13.0
3.7
97232
97965
−74535
C
L2a
LINE/L2
−1
3425
2625
140




795
20.8
10.2
0.0
97979
98175
−74325
C
L2a
LINE/L2
−869
2550
2334
140




1175
5.3
0.0
0.0
98188
98319
−74181
C
AluY
SINE/Alu
−179
132
1
141




957
25.0
3.7
5.0
98323
98646
−73854
C
L2a
LINE/L2
−1091
2328
2009
140




1822
28.0
5.5
2.8
98660
99147
−73353
C
L2a
LINE/L2
−1465
1954
1460
140



Excluded
1822
28.0
5.5
2.8
98660
99147
−73353
C
L2a
LINE/L2
−1465
1954
1460
140
1


region 16


















2307
7.8
3.8
0.0
98148
99440
−73060
+
AluY
SINE/Alu
1
304
−7
142




1822
28.8
8.3
1.8
99441
100520
−71980
C
L2a
LINE/L2
−1960
1459
259
140



Probe 20
1822
28.8
8.3
1.8
99441
100520
−71980
C
L2a
LINE/L2
−1960
1459
259
140
0



229
9.1
0.0
0.0
100540
100583
−71917
C
L1MA1
LINE/L1
0
6302
6259
143



Excluded
1871
12.6
0.0
0.0
102237
102490
−70010
+
AluSx
SINE/Alu
44
297
−15
144
1


region 17

















Probe 21
236
24.6
4.5
2.9
102761
102827
−69673
C
HAL1b
LINE/L1
−1785
224
157
138
0



1602
16.4
3.7
0.3
102909
103217
−69283
C
MLT1C
LTR-ERVL-
−19
448
130
145













MaLR








7752
5.3
1.0
0.2
103218
104175
−68325
+
LTR13A
LTR-ERVK
1
966
0
146



Excluded
7752
5.3
1.0
0.2
103218
104175
−68325
+
LTR13A
LTR-ERVK
1
966
0
146
1


region 18


















1602
16.4
3.7
0.3
104176
104189
−68311
C
MLT1C
LTR-ERVL-
−338
129
115
145













MaLR








1941
15.5
0.3
0.7
104190
104485
−68015
C
AluSx3
SINE/Alu
−16
296
2
147




1279
12.0
10.2
1.1
104490
104734
−67766
+
MER47A
DNA/TcMar-
30
296
−70
148













Tigger







Probe 22a
1279
12.0
10.2
1.1
104490
104734
−67766
+
MER47A
DNA/TcMar-
30
296
−70
148
1












Tigger








1976
26.4
3.6
4.5
104810
105732
−66768
C
L1MDa
LINE/L1
−3919
2699
1780
149




298
16.3
0.0
0.0
105741
105789
−66711
+
MER47
DNA/TcMar-
307
355
−11
150













Tigger








181
32.9
3.5
2.3
106217
106303
−66197
+
L2
LINE/L2
2804
2891
−528
151




667
17.2
9.0
0.0
106378
106499
−66001
+
AluJr
SINE/Alu
1
133
−179
152




584
28.8
7.0
1.0
106933
107118
−65382
C
MIRb
SINE/MIR
−63
205
9
153




979
25.1
18.2
0.2
107288
107655
−64845
C
LTR16
LTR-ERVL
−4
434
1
154



Excluded














0


region 19

















Probe 22b
850
11.8
48.0
1.0
108675
108675
−63825
+
AluSz
SINE/Alu
1
300
−12
155
1



2071
22.6
7.5
3.2
108679
109832
−62668
C
L1MC4a
LINE/L1
−5
7787
6672
156




1300
27.4
6.7
5.3
109826
110557
−61943
C
L1MC4a
LINE/L1
−1660
6222
5481
156




503
25.1
17.0
0.4
111505
111716
−60784
C
MIR
SINE/MIR
−14
248
2
157




26
76.9
0.0
0.0
111823
111848
−60652
+
AT_rich
Low_
1
26
0
158













complexity








25
18.0
0.0
0.0
111826
111850
−60650
+
AT_rich
Low_
1
25
0
159













complexity







Excluded
2266
11.9
0.0
0.7
112029
112338
−60162
C
AluSz6
SINE/Alu
−1
311
4
160
5


region 20


















434
30.8
9.8
1.8
112397
112439
−60061
C
MIRc
SINE/MIR
−18
250
211
161




347
21.8
1.3
0.0
112440
112517
−59983
+
MADE2
DNA/TcMar-
1
79
−1
162













Tigger








434
30.8
9.8
1.8
112518
112678
−59822
C
MIRc
SINE/MIR
−58
210
30
161




709
17.2
7.0
5.1
113509
113565
−58935
C
MIR
SINE/MIR
−48
214
158
163




1081
17.9
1.0
2.0
113566
113770
−58730
C
MER6B
DNA/TcMar-
−3
207
5
164













Tigger








709
17.2
7.0
5.1
113771
113884
−58616
C
MIR
SINE/MIR
−105
157
40
163




922
13.4
0.0
0.8
115087
115220
−57280
+
FLAM_C
SINE/Alu
1
133
−10
165




2194
12.4
0.0
0.3
115855
116153
−56347
C
AluSx
SINE/Alu
−14
298
1
166




21
52.4
0.0
0.0
116662
116682
−55818
+
AT_rich
Low_
1
21
0
167













complexity








228
22.7
0.0
0.0
118269
118312
−54188
C
MADNA
DNA/TcMar-
−263
373
280
168













Mariner








334
29.6
11.7
2.5
118335
118514
−53986
C
MADNA
DNA/TcMar-
−358
228
33
168













Mariner








258
28.7
4.7
4.7
119667
119816
−52684
C
MER5A1
DNA/hAT-
−7
159
10
169













Charlie








2160
12.5
0.0
0.0
121296
121598
−50902
+
AluSz6
SINE/Alu
1
303
−9
170




2590
4.8
0.3
2.6
121961
122276
−50224
C
AluY
SINE/Alu
−2
309
1
171




2312
9.6
0.3
1.0
122525
122837
−49663
C
AluSq2
SINE/Alu
−1
311
1
172



Probe 25
383
25.5
1.0
1.0
124840
124938
−47562
+
L3
LINE/CR1
2392
2490
1609
173




314
31.5
4.2
0.7
124992
125135
−47365
+
MIRc
SINE/MIR
119
267
−1
0




347
26.4
16.3
1.0
125363
125534
−46966
+
L3
LINE/CR1
2843
3040
−1059
174




274
30.5
0.9
3.8
125573
125681
−46819
C
L2c
LINE/L2
−15
3372
3267
173




501
32.6
2.8
3.6
125939
126189
−46311
+
L3
LINE/CR1
3577
3825
−274
175




399
25.0
5.7
0.2
126418
126549
−45951
C
MLT1H1
LTR/ERVL-
−368
181
1
173













MaLR








24
45.8
0.0
0.0
127392
127415
−45085
+
AT_rich
Low_
1
24
0
176













complexity








283
26.2
12.5
0.9
127944
128047
−44453
C
L1MC5
LINE/L1
−36
7925
7810
177




327
26.4
0.0
0.0
128140
128230
−44270
C
L1MC5
LINE/L1
−396
7565
7475
178



Excluded
327
26.4
0.0
0.0
128140
128230
−44270
C
L1MC5
LINE/L1
−396
7565
7475
178



region 21


















504
29.0
6.4
3.1
128273
128412
−44088
C
L1MC4
LINE/L1
−20
8022
7869
179
3



2235
10.0
0.3
4.5
128413
128733
−43767
+
AluSz6
SINE/Alu
1
308
−4
180




504
29.0
6.4
3.1
128734
128841
−43659
C
L1MC4
LINE/L1
−174
7868
7766
179




27
40.7
0.0
0.0
128958
128984
−43516
+
AT_rich
Low_
1
27
0
181













complexity








2216
10.3
0.0
0.7
129002
129293
−43207
C
AluSx1
SINE/Alu
−22
290
1
182




26
69.2
0.0
0.0
129304
129329
−43171
+
AT_rich
Low_
1
26
0
183













complexity








716
29.2
6.6
2.7
129439
129758
−42742
C
L1MC4
LINE/L1
−495
7547
7216
179




284
25.5
7.7
12.0
129803
129944
−42556
C
L1ME4a
LINE/L1
−90
6034
5888
184




2477
8.5
0.0
0.0
129945
130249
−42251
C
AluSx
SINE/Alu
−7
305
1
185




281
25.5
7.7
12.0
130250
130445
−42055
C
L1ME4a
LINE/L1
−237
5887
5710
184



Probe 26
348
38.5
0.5
2.2
130725
130910
−41590
C
MIRb
SINE/MIR
−35
233
51
186
0



494
23.5
3.3
1.6
130919
131039
−41461
C
L1M6
LINE/L1
−4691
1805
1683
187




379
28.8
9.6
4.4
131119
131336
−41164
C
MLT1J
LTR/ERVL-
−48
464
236
188













MaLR








22
63.6
0.0
0.0
131455
131476
−41024
+
AT_rich
Low_
1
22
0
189













complexity








559
27.4
4.7
5.1
131889
132146
−40354
+
L2a
LINE/L2
3170
3426
0
190




350
23.1
2.6
0.0
132152
132229
−40271
C
L1MES
LINE/L1
−321
5873
5794
191




443
28.0
21.4
3.8
132249
132461
−40039
C
MIR
SINE/MIR
−4
258
8
192




269
25.0
12.0
0.7
132474
132606
−39894
C
L1M5
LINE/L1
−339
5784
5637
193




582
25.6
0.8
0.0
132696
132828
−39672
+
L2a
LINE/L2
3293
3426
0
194



Excluded
2247
9.0
0.0
0.0
132904
133181
−39319
C
AluSg
SINE/Alu
−31
279
2
195
1


region 22

















Probe 27
2247
9.0
0.0
0.0
132904
133181
−39319
C
AluSg
SINE/Alu
−31
279
2
195
1



2851
6.5
2.2
0.3
133284
133639
−38861
+
THE1C
LTR/ERVL-
3
365
−10
196













MaLR








10891
9.9
3.9
0.6
133640
135167
−37333
+
THE1C-int
LTR/ERVL-
1
1578
−2
196













MaLR








2549
7.5
2.2
4.5
135168
135307
−37193
+
THE1C
LTR/ERVL-
19
160
−215
196













MaLR







Excluded
2549
7.5
2.2
4.5
135168
135307
−37193
+
THE1C
LTR/ERVL-
19
160
−215
196
2


region 23









MaLR








2027
12.1
.0
8.5
135308
135638
−36862
C
AluSx1
SINE/Alu
−6
306
2
197




2549
7.5
2.2
4.5
138639
135862
−36638
+
THE1C
LTR/ERVL-
161
275
0
196













MaLR








256
26.8
7.8
2.7
136283
136424
−36076
C
L1M6B
LINE/L1
−156
213
65
198




2419
8.7
0.0
0.7
136753
137063
−35437
C
AluSq2
SINE/Alu
−3
309
1
199



Probe 28a
289
30.0
4.7
5.4
137189
137336
−35164
C
L2a
LINE/L2
−4
3422
3276
200
1



258
29.4
6.7
1.8
137612
137715
−34785
+
MIRb
SINE/MIR
116
224
−44
201




397
25.0
3.8
2.5
139471
139630
−32870
C
Charlie18a
DNA/hAT-
−2
340
179
202













Charlie








1647
17.7
2.4
4.0
139631
140006
−32494
+
L1MB4
LINE/L1
5777
6146
−34
203




458
5.7
0.0
0.0
140640
140692
−31808
C
AluYb8
SINE/Alu
−260
58
66
204




245
20.4
2.0
0.0
140696
140744
−31756
C
L1M5
LINE/L1
−453
5671
5622
205




360
20.5
13.3
0.0
141105
141238
−31262
C
L1ME4a
LINE/L1
−7
6117
5952
206



Excluded
604
23.5
13.9
0.4
141588
141796
−30704
C
MIRc
SINE/MIR
−10
258
22
207
9


region 24


















355
33.1
1.8
3.6
141846
142014
−30486
C
MIR3
SINE/MIR
−23
185
20
208




290
30.1
1.1
0.0
142104
142196
−30304
C
MIR3
SINE/MIR
−1
207
114
209




245
23.2
11.5
6.1
142805
142882
−29618
C
L2c
LINE/L2
−20
3367
3286
210




189
7.4
0.0
0.0
143821
143847
−28653
+
(CTGGGG)n
Simple_
6
32
0
211













repeat








24
54.2
0.0
0.0
144054
144077
−28423
+
GC_rich
Low_
1
24
0
212













complexity








183
8.0
0.0
0.0
144078
144102
−28398
+
(CTG)n
Simple_
1
25
0
213













repeat








1181
17.2
11.5
1.5
145589
145671
−26829
+
MER33
DNA/hAT-
1
81
−243
214













Charlie








2001
15.5
0.0
0.3
145672
145974
−26526
+
AluJr
SINE/Alu
1
302
−10
215




1181
17.2
11.5
1.5
145975
146185
−26315
+
MER33
DNA/hAT-
82
324
0
214













Charlie








188
32.9
7.8
1.1
146389
146554
−25946
C
L2
LINE/L2
−1148
2271
2095
216




247
23.3
8.6
4.0
146683
146808
−25692
+
L2c
LINE/L2
3229
3358
17
217




2357
7.8
0.3
0.0
146879
147193
−25307
+
AluSp
SINE/Alu
1
313
0
218




295
29.2
6.9
0.0
147406
147535
−24965
+
HAL1
LINE/L1
150
288
−2219
219




793
22.6
5.8
4.9
147869
148110
−24390
C
MER46C
DNA/TcMar-
0
338
95
220













Tigger








1758
10.8
0.0
0.4
148122
148352
−24148
C
AluJb
SINE/Alu
81
231
2
221




722
16.0
7.9
7.5
148393
148639
−23861
+
LIMB2
LINE/L1
5942
6178
−5
222




298
22.6
0.0
0.0
148651
148712
−23788
C
MER46C
DNA/TcMar-
−274
64
3
220













Tigger








2096
9.5
4.7
1.6
149417
149712
−22788
+
AluSx1
SINE/Alu
1
605
7
223




2301
9.8
0.9
2.2
149713
150028
−22472
+
AluSq
SINE/Alu
1
612
−1
224




264
29.2
8.3
12.8
150088
150137
−22363
C
MIRb
SINE/MIR
−17
251
202
225




2099
11.0
0.3
7.2
150138
150465
−22035
C
AluSx
SINE/Alu
−5
307
1
226




266
27.9
6.0
7.6
150466
150634
−21866
C
MIRc
SINE/MIR
−67
201
38
224




278
21.4
15.0
4.8
151220
151310
−21190
+
L2a
LINE/L2
3303
3405
−21
227




2280
10.7
0.0
0.0
151311
151601
−20899
C
AluSx1
SINE/Alu
−21
291
1
228




278
21.4
15.0
4.8
151602
151622
−20878
+
L2a
LINE/L2
3406
3426
0
227




28
68.6
0.0
0.0
152478
152512
−19988
+
AT_rich
Low_
1
35
0
229













complexity








2204
11.1
1.3
0.0
152585
152906
−19594
+
AluSx
SINE/Alu
10
312
0
230




2129
11.3
0.0
0.7
152925
153250
−19250
C
AluSz
SINE/Alu
0
312
1
231



Probe 29
1328
11.5
3.0
4.3
154064
154300
−18200
C
L1MA6
LINE/L1
−7
6293
6060
232
1



1331
9.1
0.5
0.0
154301
154486
−18014
+
L1MA6
LINE/L1
5791
5977
323
232




1253
11.9
0.0
0.0
154521
154688
−17812
+
AluSp
SINE/Alu
137
304
9
233




186
4.3
0.0
0.0
154690
154712
−17788
+
(CA)n
Simple_
2
24
0
234













repeat








505
17.1
1.7
4.4
155541
155656
−16844
C
Charlie4Z
DNA/hAT-
0
167
55
235













Charlie







Excluded
2345
9.2
0.0
4.8
155799
156123
−16377
+
AluSg4
SINE/Alu
1
210
2
236
6


region 25


















2161
10.1
2.1
0.0
156545
156830
−15670
C
AluSx
SINE/Alu
20
292
1
237




2127
12.2
0.0
1.7
156920
157222
−15278
C
AluSz
SINE/Alu
14
298
1
238




2272
9.2
0.0
1.4
157475
157817
−14683
+
AluSx
SINE/Alu
6
312
0
239




2219
3.4
2.7
0.0
157830
157956
−14544
+
AluY
SINE/Alu
1
127
184
240




369
0.0
0.0
0.0
157957
157997
−14503
+
(TAAA)n
Simple_
2
42
0
241













repeat








2219
3.4
2.7
0.0
157998
158132
−14368
+
AluY
SINE/Alu
128
269
42
240



Probe 30
2231
12.0
0.3
0.7
160325
160633
−1867
C
AluSx1
SINE/Alu
−4
308
1
242
2



1987
14.8
0.3
5.8
160810
161034
−11466
C
Tigger3A
DNA/TcMar-
−20
328
106
243













Tigger








1922
13.6
0.0
0.7
161035
161313
−11187
+
AluSx
SINE/Alu
1
277
−35
244




270
0.0
0.0
0.0
161319
161348
−11152
+
(TAAA)n
Simple_
3
32
0
245













repeat








1987
14.8
0.3
5.8
161349
161461
−11039
C
Tigger3a
DNA/TcMar-
−243
105
2
243













Tigger







Probe 31
408
29.6
1.0
11.8
161656
161862
−10638
+
MER20B
DNA/hAT-
2
188
−595
246
0












Charlie








628
26.9
8.4
2.9
162861
163086
−9414
C
MIR
SINE/MIR
−23
239
2
247




542
30.2
3.3
0.9
163485
163698
−8802
C
L2
LINE/L2
−745
2674
2456
248




428
34.8
16.6
1.9
164306
164914
−7586
+
L3
LINE/CR1
655
1352
−2747
249




181
19.1
4.8
0.0
165048
165089
−7411
+
MIRb
SINE/MIR
144
187
−81
250




879
27.8
2.1
1.3
165105
165341
−7159
+
Tigger13a
DNA/TcMar-
12
250
−521
251













Tigger








450
29.4
10.1
0.0
165344
165571
−6929
+
Tigger13a
DNA/TcMar-
342
592
−179
252













Tigger








460
22.3
7.1
4.4
165562
165716
−6784
+
Tigger13a
DNA/TcMar-
607
765
−6
253













Tigger








308
24.3
0.0
0.0
165721
165786
−6714
+
MIRb
SINE/MIR
197
262
0
254




195
36.4
1.0
1.0
165816
165915
−6585
+
L3
LINE/CR1
1344
1443
−2656
249




585
27.5
20.2
0.7
166018
166396
−6104
+
L1M5
LINE/L1
2518
2973
−3173
255



Excluded
585
27.5
20.2
0.7
166018
166396
−6104
+
L1M5
LINE/L1
2518
2973
−3173
255
6


region 26


















2492
6.5
0.0
0.0
166397
166690
−5810
C
AluY
SINE/Alu
−16
295
2
256




1414
15.4
1.4
19.3
166699
166938
−5562
C
AluJb
SINE/Alu
−2
300
115
257




276
3.0
0.0
0.0
166939
166971
−5529
+
(TC)n
Simple_
2
34
0
258













repeat








1414
15.4
1.4
19.3
166972
167083
−5417
C
AluJb
SINE/Alu
−188
114
1
257




237
28.2
10.3
2.2
167084
167217
−5283
+
L1M5
LINE/L1
2981
3118
−3028
255




746
18.4
0.0
3.8
167220
167355
−5145
+
FLAM_C
SINE/Alu
2
132
−11
259




299
25.1
8.5
1.1
167398
167562
−4938
+
L1M5
LINE/L1
3219
3395
−2751
255




1486
16.0
0.0
3.7
167618
167867
−4633
C
AluJo
SINE/Alu
−20
292
52
260




771
30.1
6.1
5.2
167896
168116
−7384
+
L1M5
LINE/L1
3410
3626
−2520
255




2460
9.3
0.3
0.0
168117
168428
−4072
C
AluSp
SINE/Alu
0
313
1
261




771
30.1
6.1
5.2
168429
168679
−3821
+
L1M5L1M5
LINE/L1
3627
3886
−2260
255




706
21.9
4.8
8.3
168751
169044
−2456
+
L1M5L1M5
LINE/L1
3929
4208
−1938
255




2031
12.3
1.4
0.7
169045
169336
−3164
+
AluSx1
SINE/Alu
1
294
−18
262




716
22.1
1.1
5.0
169349
169534
−2966
+
L1M4L1M4
LINE/L1
2
180
−6362
263




927
20.2
1.2
1.7
169546
169548
−2782
C
FAM
SINE/Alu
−13
172
1
264




2029
23.8
8.0
2.8
169720
170776
−1724
+
L1M4
LINE/L1
188
1298
−5244
263



Probe 32
2029
23.8
8.0
2.8
169720
170776
−1724
+
L1M4
LINE/L1
188
1298
−5244
263
0



1480
20.6
5.8
0.0
170776
171221
−1279
+
L1M2
LINE/L1
1
472
−6377
265




607
26.4
0.7
0.0
171233
171376
−1124
+
L1M2b
LINE/L1
498
642
−6567
266




3991
25.2
2.7
3.3
171348
172500
0
+
L1M2
LINE/L1
581
1642
−5207
265



Excluded
3991
25.2
2.7
3.3
171348
172500
0
+
L1M2
LINE/L1
581
1642
−5207
265
0


region 27
















TABLE 5







Description of the 6 characterized large rearrangements as detected by MLPA and Molecular Combing

















Molecular






Sample
Gene
<LPA status
Combing
Breakpoints (bp)
Mechanism
Mutation name
Reference





1
BRCA1
Dup ex 13
6.1 ± 1.6 kb/
38483825-38489905
Alu-Alu
c.4186-1785_4358-
Puget et al.





Dup ex 13

HR
1667dup6081
(1999)


2
BRCA1
Del ex 2
40.8 ± 3.5 kb/
38483825-38 562 421;
Pseudogen-
c.-33024_80 +
Puget N. 2002





Del ex 2
BRCA1 38 525 728-
Alu
3832del36936
Am J Hum Genet






38 525 412


70: 858-865


3
BRCA1
Del ex 2
39.0 ± 2.6 kb/
38483825-38 562 421;
Pseudogen-
c.-33024_80 +
Puget N. 2002





Del ex 2
BRCA1 38 525 728-
Alu
3832del36936
Am J Hum Genet






38 525 412


70: 858-865


4
BRCA1
Dup ex
6.7 ± 1.2 kb/
3846054-38470596
Alu-Alu
c.5075-
Staaf et al.




18-20
Dup ex 18-20

HR
1093_5277 +
(2008)








2089dup10082



5
BRCA1
Del ex 15
4.1 ± 1.2 kb/
38476177_38481174
Alu-Alu
c.44844857_
Puget et al.





Del ex 15

HR
4676-1396del
(1999b)


6
BRCA1
Del ex 8-13
20 ± 2.8 kb/
38,507,324-38,483,560
Alu-Alu
442-1901_4358-
Puget et al.





Del ex 8-13

HR
1404del23763
(1999b)





All patients were previously characterized by high resolution aCGH, and the reported values were originally described by Rouleau et al (Rouleau 2007).























TABLE 8







SEQ ID NO: 1
BRCA1-1A-F
DNA

Homo sapiens

GGGACGGAAAGCTATGATGT





SEQ ID NO: 2
BRCA1-1A-R
DNA

Homo sapiens

GGGCAGAGGTGACAGGTCTA





SEQ ID NO: 3
BRCA1-1B-F
DNA

Homo sapiens

CCTCTGACCTGATCCCTTGA





SEQ ID NO: 4
BRCA1-1B-R
DNA

Homo sapiens

ATCAGCAACAGTCCCATTCC





SEQ ID NO: 5
BRCA1-2-F
DNA

Homo sapiens

GCCCAGACTAGTGTTTCTTAACC





SEQ ID NO: 6
BRCA1-2-R
DNA

Homo sapiens

GGCATGAGGCAGCAATTTAG





SEQ ID NO: 7
BRCA1-3-F
DNA

Homo sapiens

TCTTTGAATCTGGGCTCTGC





SEQ ID NO: 8
BRCA1-3-R
DNA

Homo sapiens

GCTGTTGCTTTCTTTGAGGTG





SEQ ID NO: 9
BRCA1-4-F
DNA

Homo sapiens

CACAGGTATGTGGGCAGAGA





SEQ ID NO: 10
BRCA1-4-R
DNA

Homo sapiens

CCTCTGTTGATGGGGTCATAG





SEQ ID NO: 11
BRCA1-5-F
DNA

Homo sapiens

TTTGGTAGACCAGGTGAAATGA





SEQ ID NO: 12
BRCA1-5-R
DNA

Homo sapiens

CAAATTATGTGTGGAGGCAGA





SEQ ID NO: 13
BRCA1-6-F
DNA

Homo sapiens

GAAGAACGTGCTCTTTTCACG





SEQ ID NO: 14
BRCA1-6-R
DNA

Homo sapiens

AAAGTCTGATAACAGCTCCGAGA





SEQ ID NO: 15
BRCA1-7-F
DNA

Homo sapiens

TTCGATTCCCTAAGATCGTTTC





SEQ ID NO: 16
BRCA1-7-R
DNA

Homo sapiens

CACAGTTCTGTGTAATTTAATTTCGAT





SEQ ID NO: 17
BRCA1-8-F
DNA

Homo sapiens

AGGGAAGGCTCAGATACAAAC





SEQ ID NO: 18
BRCA1-8-R
DNA

Homo sapiens

TGCCATAGATAGAGGGCTTTTT





SEQ ID NO: 19
BRCA1-9-F
DNA

Homo sapiens

GCCATCTTCTTTCTCCTGCT





SEQ ID NO: 20
BRCA1-9-R
DNA

Homo sapiens

TTGACCTATTGCTGAATGTTGG





SEQ ID NO: 21
BRCA1-11-F
DNA

Homo sapiens

TTTTACCAAGGAAGGATTTTCG





SEQ ID NO: 22
BRCA1-11-R
DNA

Homo sapiens

GCTTGATCACAGATGTATGTATGAGTT





SEQ ID NO: 23
BRCA1-12-F
DNA

Homo sapiens

CCCCAGGGCTTTAAAGGTTA





SEQ ID NO: 24
BRCA1-12-R
DNA

Homo sapiens

TAGGGGTGGATATGGGTGAA





SEQ ID NO: 25
BRCA1-13A-F
DNA

Homo sapiens

ACTTCTTCAACGCGAAGAGC





SEQ ID NO: 26
BRCA1-13A-R
DNA

Homo sapiens

GACAGGCTGTGGGGTTTCT





SEQ ID NO: 27
BRCA1-15-F
DNA

Homo sapiens

TATCTGCTGGCCACTTACCA





SEQ ID NO: 28
BRCA1-15-R
DNA

Homo sapiens

TCTCGAGCCTTGAACATCCT





SEQ ID NO: 29
BRCA1-16-F
DNA

Homo sapiens

CGCTCAGCTTTCATTCCAGT





SEQ ID NO: 30
BRCA1-16-R
DNA

Homo sapiens

AAACGTTCACATGTATCCCCTAA





SEQ ID NO: 31
BRCA1-17-F
DNA

Homo sapiens

CCTGGCAGTACCCAGTAGT





SEQ ID NO: 32
BRCA1-17-R
DNA

Homo sapiens

CTGAGCCCAGAGTTTCTGCT





SEQ ID NO: 33
BRCA1-18-F
DNA

Homo sapiens

GGGCCCAAAAACCAGTAAGA





SEQ ID NO: 34
BRCA1-18-R
DNA

Homo sapiens

GGGATTGAGCGTTCACAGAT





SEQ ID NO: 35
BRCA1-19-F
DNA

Homo sapiens

GCCATCCAGTCCAGTCTCAT





SEQ ID NO: 36
BRCA1-19-R
DNA

Homo sapiens

TGCAGTTCTACCCTCCACTTG





SEQ ID NO: 37
BRCA1-22-F
DNA

Homo sapiens

CGGGTAAGTGGTGAGCTTTC





SEQ ID NO: 38
BRCA1-22-R
DNA

Homo sapiens

GACTGTCATTTAAAGGCACTTTTT





SEQ ID NO: 39
BRCA1-23-F
DNA

Homo sapiens

TGGCTAGTGTTTTGGCCTGT





SEQ ID NO: 40
BRCA1-23-R
DNA

Homo sapiens

TTCAGTGTTGCTTCTCCATTTC





SEQ ID NO: 41
BRCA1-24-F
DNA

Homo sapiens

TGTCAGACTAGCCACAGTACCA





SEQ ID NO: 42
BRCA1-24-R
DNA

Homo sapiens

AAGCGCTTCTTCATATTCTCC





SEQ ID NO: 43
BRCA1-25-F
DNA

Homo sapiens

ACCACACTCTTCTGTTTTGATGT





SEQ ID NO: 44
BRCA1-25-R
DNA

Homo sapiens

GGCACATGTACACCATGGAA





SEQ ID NO: 45
BRCA1-26-F
DNA

Homo sapiens

TTGTGTAGGTTGCCCGTTC





SEQ ID NO: 46
BRCA1-26-R
DNA

Homo sapiens

TTCAGAGAGCTGGGCCTAAA





SEQ ID NO: 47
BRCA1-27-F
DNA

Homo sapiens

GGAGGCAATCTGGAATTGAA





SEQ ID NO: 48
BRCA1-27-R
DNA

Homo sapiens

GGATCCTGATTGCTGCTTT





SEQ ID NO: 49
BRCA1-28-F
DNA

Homo sapiens

TCTCTGCTGTTTTTACAACTTTTTC





SEQ ID NO: 50
BRCA1-28-R
DNA

Homo sapiens

GGATCCATGATTGCTGCTTT





SEQ ID NO: 51
BRCA1-29-F
DNA

Homo sapiens

CCCTCTAGATACTTGTGTCCTTTTG





SEQ ID NO: 52
BRCA1-29-R
DNA

Homo sapiens

TCTGGCAGTCACAATTCAGG





SEQ ID NO: 53
BRCA1-30-F
DNA

Homo sapiens

TCCCATGACTGCATCATCTT





SEQ ID NO: 54
BRCA1-30-R
DNA

Homo sapiens

TTGAGATCAGGTCGATTCCTC





SEQ ID NO: 55
BRCA1-31-F
DNA

Homo sapiens

AAAACTCAACCCAAACAGTCA





SEQ ID NO: 56
BRCA1-31-R
DNA

Homo sapiens

CCAAGAATCACGAAGAGAGAGA





SEQ ID NO: 57
BRCA1-32-F
DNA

Homo sapiens

GACCTCATAGAGGTAGTGGAAAGAA





SEQ ID NO: 58
BRCA1-32-R
DNA

Homo sapiens

GCTCAAAGCCTTTAGAAGAAACA





SEQ ID NO: 59
BRCA1-33-F
DNA

Homo sapiens

GCACTGGGGAAAAGGTAGAA





SEQ ID NO: 60
BRCA1-33-R
DNA

Homo sapiens

CTCTTCAACCCAGACAGATGC





SEQ ID NO: 61
BRCA1-34-F
DNA

Homo sapiens

CAATACCCAATACAATGTAAATGC





SEQ ID NO: 62
BRCA1-34-R
DNA

Homo sapiens

CTGGGGATACTGAAACTGTGC





SEQ ID NO: 63
BRCA1-35-F
DNA

Homo sapiens

ATCAAGAAGCCTTCCAGGT





SEQ ID NO: 64
BRCA1-35-R
DNA

Homo sapiens

TCCTTGGACGTAAGGAGCTG





SEQ ID NO: 65
BRCA1-36-F
DNA

Homo sapiens

TTCAGAACTTCCAAATACGGACT





SEQ ID NO: 66
BRCA1-36-R
DNA

Homo sapiens

GATGGAGCTGGGGTGAAAT





SEQ ID NO: 67
BRCA1-37-F
DNA

Homo sapiens

CGTGAGATTGCTCACAGGAC





SEQ ID NO: 68
BRCA1-37-R
DNA

Homo sapiens

CAAGGCATTGGAAAGGTGTC





SEQ ID NO: 69
BRCA1-38-F
DNA

Homo sapiens

AGAGGAATAGACCATCCAGAAGT





SEQ ID NO: 70
BRCA1-38-R
DNA

Homo sapiens

TCCTCCAGCACTAAAAACTGC





SEQ ID NO: 71
BRCA2-1-F
DNA

Homo sapiens

AAATGGAGGTCAGGGAACAA





SEQ ID NO: 72
BRCA2-1-R
DNA

Homo sapiens

TGGAAAGTTTGGGTATGCAG





SEQ ID NO: 73
BRCA2-2-F
DNA

Homo sapiens

TCTCAATGTGCAAGGCAATC





SEQ ID NO: 74
BRCA2-2-R
DNA

Homo sapiens

TCTTGACCATGTGGCAAATAA





SEQ ID NO: 75
BRCA2-3a-F
DNA

Homo sapiens

AATCACCCCAACCTTCAGC





SEQ ID NO: 76
BRCA2-3a-R
DNA

Homo sapiens

GCCCAGGACAAACATTTTCA





SEQ ID NO: 77
BRCA2-3b-F
DNA

Homo sapiens

CCCTCGCATGTATGATCTGA





SEQ ID NO: 78
BRCA2-3b-R
DNA

Homo sapiens

CTCCTGAAGTCCTGGAAACG





SEQ ID NO: 79
BRCA2-3c-F
DNA

Homo sapiens

TGAAATCTTTTCCCTCTCATCC





SEQ ID NO: 80
BRCA2-3c-R
DNA

Homo sapiens

AGATTGGGCACATCGAAAAG





SEQ ID NO: 81
BRCA2-5-F
DNA

Homo sapiens

GGTCTTGAACACCTGCTACCC





SEQ ID NO: 82
BRCA2-5-R
DNA

Homo sapiens

CACTCCGGGGGTCTAGAT





SEQ ID NO: 83
BRCA2-6-F
DNA

Homo sapiens

TCTTTAACTGGGTCACAA





SEQ ID NO: 84
BRCA2-6-R
DNA

Homo sapiens

TGGCTAGAATTCAAAACACTGA





SEQ ID NO: 85
BRCA2-7-F
DNA

Homo sapiens

TTGAAGTGGGGTTTTTAAGTTACAC





SEQ ID NO: 86
BRCA2-7-R
DNA

Homo sapiens

CCAGCCAATTCAACCATCACA





SEQ ID NO: 87
BRCA2-11-F
DNA

Homo sapiens

TTGGGACAATTCTGAGGAAAT





SEQ ID NO: 88
BRCA2-11-R
DNA

Homo sapiens

TGCAGGTTTTGTTAAGAGTTTCA





SEQ ID NO: 89
BRCA2-12-F
DNA

Homo sapiens

TGGCAAATGACTGCATTAGG





SEQ ID NO: 90
BRCA2-12-R
DNA

Homo sapiens

TCTTGAAGGCAAACTCTTCCA





SEQ ID NO: 91
BRCA2-13-F
DNA

Homo sapiens

GGAATTGTTGAAGTCACTGAGTTGT





SEQ ID NO: 92
BRCA2-13-R
DNA

Homo sapiens

ACCACCAAAGGGGGAAAAC





SEQ ID NO: 93
BRCA2-14-F
DNA

Homo sapiens

CAAGTCTTCAGAATGCCAGAGA





SEQ ID NO: 94
BRCA2-14-R
DNA

Homo sapiens

TAAACCCCAGGACAAACAGC





SEQ ID NO: 95
BRCA2-15-F
DNA

Homo sapiens

GGCTGTTTGTTGAGGAGAGG





SEQ ID NO: 96
BRCA2-15-R
DNA

Homo sapiens

GAAACCAGGAAATGGGGTTT





SEQ ID NO: 97
BRCA2-18-F
DNA

Homo sapiens

TGTTAGGGAGGAAGGAGCAA





SEQ ID NO: 98
BRCA2-18-R
DNA

Homo sapiens

GGATGTAACTTGTTACCCTTGAAA





SEQ ID NO: 99
BRCA2-19-F
DNA

Homo sapiens

TCAATAGCATGAATCTGTTGTGAA





SEQ ID NO: 100
BRCA2-19-R
DNA

Homo sapiens

GAGGTCTGCCACAAGTTTCC





SEQ ID NO: 101
BRCA2-20-F
DNA

Homo sapiens

GGCCCACTGGAGGTTTAAT





SEQ ID NO: 102
BRCA2-20-R
DNA

Homo sapiens

TTCCTTTCAATTTGTACAGAAACC





SEQ ID NO: 103
BRCA2-21-F
DNA

Homo sapiens

TGAATCAATGTGTGTGTGCAT





SEQ ID NO: 104
BRCA2-21-R
DNA

Homo sapiens

GTGTAGGTCCAGCCCTATG





SEQ ID NO: 105
BRCA2-22a-F
DNA

Homo sapiens

CTGAGGCTAGGAAAGCTGGA





SEQ ID NO: 106
BRCA2-22a-R
DNA

Homo sapiens

CTGAGGCTAGGAAAGCTGGA





SEQ ID NO: 107
BRCA2-22b-F
DNA

Homo sapiens

GGTTTATCCCAGGATAGAATGG





SEQ ID NO: 108
BRCA2-22b-R
DNA

Homo sapiens

AGAAAATGTGGGGTGTAAACAG





SEQ ID NO: 109
BRCA2-25-F
DNA

Homo sapiens

CAGCAAACTTCAGCCATTGA





SEQ ID NO: 110
BRCA2-25-R
DNA

Homo sapiens

GGGACATGGCAACCAAATAC





SEQ ID NO: 111
BRCA2-26-F
DNA

Homo sapiens

GCACTTTCACGTCCTTTGGT





SEQ ID NO: 112
BRCA2-26-R
DNA

Homo sapiens

CGTCGTATTCAGGAGCCATT





SEQ ID NO: 113
BRCA2-27-F
DNA

Homo sapiens

CCCAGCTGGCAAACTTTTT





SEQ ID NO: 114
BRCA2-27-R
DNA

Homo sapiens

TCGGAGGTAATTCCCATGAC





SEQ ID NO: 115
BRCA2-28a-F
DNA

Homo sapiens

TCAAGAGCCATGCTGACATC





SEQ ID NO: 116
BRCA2-28a-R
DNA

Homo sapiens

AGGTAGGGTGGGGAAGAAGA





SEQ ID NO: 117
BRCA2-29-F
DNA

Homo sapiens

TGAGTCTACTTTGCCCATAGAGG





SEQ ID NO: 118
BRCA2-29-R
DNA

Homo sapiens

TTTTGCTTTCGGGAGCTTTA





SEQ ID NO: 119
BRCA2-30-F
DNA

Homo sapiens

TTTTTGCCTGCTTCATCCTC





SEQ ID NO: 120
BRCA2-30-R
DNA

Homo sapiens

GGTTTTTAAACCTGCACATGAA





SEQ ID NO: 121
BRCA2-31-F
DNA

Homo sapiens

TGAAATTTTGTTATGTGGTGCAT





SEQ ID NO: 122
BRCA2-31-R
DNA

Homo sapiens

TTTGAAATCTGTGGAGGTCTAGC





SEQ ID NO: 123
BRCA2-32-F
DNA

Homo sapiens

GTACCAAGGGTGGCAGAAAG





SEQ ID NO: 124
BRCA2-32-R
DNA

Homo sapiens

ATGGTGTTGGTTGGGTAGGA





SEQ ID NO: 125
BRCA1-SYNT1-
DNA

Homo sapiens

TTCAGAAAATACATCACCCAAGTTC



F








SEQ ID NO: 126
BRCA2-SYNT1-
DNA

Homo sapiens

TACCATTGCCTCTTACCCACAA



R








SEQ ID NO: 127
BRCA2-S3Big-
DNA

Homo sapiens

AACCTTGATTAACACTTGAGCTATTTT



F








SEQ ID NO: 128
BRCA2-S3Big-
DNA

Homo sapiens

CATGGGCATTAATTGCATGA



R








SEQ ID NO: 129
BRCA2-SExon21-
DNA

Homo sapiens

CCTGCATGCTCATAATGCTAGA



F








SEQ ID NO: 130
BRCA2-SExon21-
DNA

Homo sapiens

TTGGGATGGGTTTGAAGAGA



R













SEQ ID NO 131 BRCA1-1a DNA Homo sapiens


GGGACGGAAAGCTATGATGTCACCACCGTCCGGGTGGGTGTGCTGGGGTTCACCCTCCCATTTCCCCAA


GACCCCCTGCCAGGACATAGGCGGACGCGGGAGAGAAAACCAAAGAGGCTCCCTCCTTCCCCTAGCAT


CTCTCTCCCGCCGTGTTCAGGAAGTGGATGGCTGCCCCAGCTCTTGTCCGCACTGGTACACCTGCGTGCA


CGCGTGGGTACACAGCAGGCCCGAGCTTCGCGCTTGTGCCGCTCATATTCTACCCCTAAGAACTTCGCTT


GAACTCTGACCTGCCCTTATATCCGAGAAAGTCAAATAAGCCCAGTTCGGCCTGTCCCAAACCGGCAGG


GGCCCCTCAGACCACACCGGCGGGCTGGACCCCGGCTCTGAGGCCTCTGTTCCCAGGGCTCCGCCCAGA


TCTTCTGGGCCCCGCCCCCCGGCTGCGGGGGTGGGAGGAGGGGCCGGGGGGGCGCGGCCGCCTGGCT


GGGGGCGGGGCGGAGGGGGGGCCGCGGACCCGGGGCGGGGGCTCGGCGCGGGCCCGCGAGATGCC


GGTGTTGGCGGCCCGAGCGGCTGCAGTTGCAGGGGCGGGGGAGGCGGCGGCGGGGCCCGGGAGAGG


GGTGGCGTGGGGGACCGGCGCGTAGCCGGGACCATGGAGGGGCAGAGCGGCCGCTGCAAGATCGTG


GTGGTGGGAGACGCAGAGTGCGGCAAGACGGCGCTGCTGCAGGTGTTCGCCAAGGACGCCTATCCCG


GGGTGAGGGACCTGCGTCTTGGGAGGGGGACGCTAAGGCTGCTGGGGGGTGGGTGACAGGGGCCCT


GGCGACGGATGGGAATGGGTACTCGGGTAACCAGGGACAAGAGACAGGGGGTCGGAGGACGCGGGG


AGGCCTTGAGGGCTCAGGAAGGACTGCAGAGGATTGGGGTGGGAGGAATTAGGGAGCAGGGTGAGA


TAGATGGGGTTTGGGAGAACCAGAGCATCCGGGAGGGAGGGCGAGGGGAATGTCGGAGGTCCTGGG


CAATGGAGAGGGGAAGAACTAGGGGGCTGAAGGGACCAGAAGGGAACAGGAGGAGGTCTGGGAGCT


TAGCAGAGATTCTCCGGGGGGGGGGGGGGGGGGGCAGGAGCTCCCGGGATCTCCCCTTTGCCCAATCC


CAGACCAACTTGTGTCCAGGGGCTGGGCTGGACGGGGTGTGGGAGTGAGGAGGGCATTTATCTGGGG


TGAGGACTTGGAGAGATGATCTCATCTGGATCCATCCGTGTCTGCAGAGTTATGTCCCCACCGTGTTTGA


GAACTACACTGCGAGCTTTGAGATCGACAAGCGCCGCATTGAGCTCAACATGTGGGACACTTCAGGTAG


CCAAGTCCCTGGGGGTCACCCTGACTTCCAAGGCGGCCCACTCTGTCCCCTCCCTTGGTTAGACCCTTAG


GTTCCAGGTAAGCCCAGCCCATCCATCCAATTCCAACAGGAAGGGAAAAATCAATATTCTGCTAAAATCC


AGGGAAACTGAGGTAGAACTTGCAGAGCCTGACAGAAACCATGTCCTGAAGGAGAAAGCCTAGGATCT


GAGCCCCTCAGCTGGGTCCTGCCTACCTGGGAAAGTTGGGAAGGAATGGCTTTTAATTTGGAACATGTT


CCTTCAGAGATAAGACTGGGTTTAGAAAAGACATTTAGAGGCCAGGCACGGTGGCTCACGCCTGTAATC


CTAGCACTTTGGGAGGCTGGGGTGGGGGGATCACCTGAGGTCAGGAGTTTGAGACCAGCCTGGCCAAC


ATGGTTGAAACTCCGTCTCTACTAAAAATACAAAAATTAATCGCGCGTGTGGCACGTGCCTGTAATCTCA


GCTACCAGGAGGCTGAGGCAAGAGAATCGCTGGAACCTGGGAGGCGGAGGCTGCAGTGAGCCGAGAT


CATGCCGCTGCACTCCAGCCTGAGCGATAGAGCGAGACTCCATCTCAAAAAATAAAAAAGCAGAAAAG


ACATTTAGAATGTCTTGAGTGAGGGGTGGTCAGGAGGCTGTTTCTCTCCATTGAACTAGATAAATCTGA


GGTCAAGTCCCAGGAGAATGGGAGAGTGCTCTCCCTGCCACTGCTCTTTTCCTCCTCCCAACATAAGGAG


GGTTTTTATTTTTACAAGAGTTCCCTTCAGGGCTTTAGACTGCCAAAGCCCAGAAAGCACATGCAACATT


TTATGAGAATGTCTATAGATTTTATGAGCTTCTCAAAGGGGTCCAAACCTCAGTCAAGAATAAAAATTAT


TACTTTTTAAACCACTAGGGAAGCAGAGAGCCGTTTCCCACCATGTGACCTCCCTTCTGCCCGCTCCCCCA


CTTGGGAAACCCAGACTCCATGATGGGTATTAATGATGGGTATTAATGGTTGCTCTTTTCCATTCTCTGCT


CCCAGCATCCCTTGACCAGGATCTGTAAGGTCTCCCATTCCCTTCCAGGCCTCCCATCCACTCAGGCCCCT


CATGCCCTGTCTTCCTTCAGGTTCCTCTTACTATGATAATGTCCGGCCTCTGGCCTATCCTGATTCTGATGC


TGTGCTCATCTGCTTCGACATTAGCCGACCAGAAACACTGGACAGTGTTCTCAAGAAGGTGGGAGCCTG


GGGAAATAGGGCAGCTAGACTGAGGGGGACCAGACCACCATGGTCCTGACATAACATGGGCCAGGAG


GAGGGAGTGATGGCTGGGGTATGGCCATCAGCTGGTTAGCGAGTGAAGCTCTCATCCCTGCCACCCCTG


CCTCCAGCCCCCATCCCTCCCAGCCACCCCTTTCCTGAAAGTCCTCAGAGCTGGATACAGCAGCTAGGGG


AGGTGGGGGAGTGAAGGGAGAAGCACTCACAGGATTCCTTCTCTGCTCTTCCAACTCCTTGGCASGTGGG


AGTCCCAGATGGAGGGGATGGGATGGGAAGCCTGATCCTGGAGCTCAGGAAAGCCCTGTGGCCTCCTC


TCCAGGCCCCAGTTTCCATGACAAAAGCCAGGGGTGAATGGACAGAAGTCAGCTAGGGCAGCCCCAGT


TCCCAGGTGGGGGAGGGGAGGGTGGGATAAATTTGTTCCCAGGAGAGAGTATGGGAAAGGCGAGTG


GGAATGGGAAGTTTCCAGGCTGGCAGACCCTTCATAGCCACTGAGGGAGAAGAGTCCACAGGCCCACG


CCAGCCCTCTCCTCCCCGCTGCTTCTCTCTCACCCCATCCTGCTCTCAAACCAAGCCTAGCATTCTCACCTC


CTTCCTCATGTGGGAGAGTCCTGAGGGATACATGGTTTCTGCGTGCTTGAGGAAGAGAGGGCACACTGC


TGGCATGGCACAAAGGCTCACGCTGTGCCTCCCTCCACCCCTCCACAATTCTCTTTTCTTCTCCTACATAGT


GGCAAGGAGAGACTCAAGAGTTCTGCCCCAATGCCAAGGTTGTGCTGGTTGGCTGTAAACTGGACATG


CGGACTGACCTGGCCACACTGAGGGAGCTGTCCAAGCAGAGGCTTATCCCTGTTACACATGAGCAGGTG


GGACCCTTGACGTCTGACCTCATCCCAGCCTAGACCTGTCACCTCTGCCC





SEQ ID NO 132 BRCA1-1B DNA Homo sapiens 


CCTCTGACCTGATCCCTTGACTGCCCCCAGCCTTGACATTCAACCCCAGCCCACAGCCTCCATGCCCCTTT


CTAAGCTGCAGGCTAAGACCTATAACTTTCTCCCATGCACTCCTTCCTTTTCCAGGSCACTGTGCTGGCCA


AGCAGGTGGGGGCTGTGTCCTATGTTGAGTGCTCCTCCCGGTCCTCTGAGCGCAGCGTCAGGGATGTCT


TCCATGTGGCTACAGTGGCCTCCCTTGGCCGTGGCCATAGGCAGCTGCGCCGAACTGACTCACGCCGGG


GAATGCAGCGATCCGCTCAGCTGTCAGGACGGCCAGACCGGGGGAATGAGGGCGAGATACACAAGGA


TCGAGCCAAAAGCTGCAACCTCATGTGAGGGGCTAGGAGAGGGCAGAGTGTGAAGAGGGGTGGTGAG


GGACACAATTGTTCCCCTGCCTGCGCCCAGGCTTCCTGACCTCCTGATCCTGGCTGGGAAGTTAGGGCA


GGCAGAGCGAGCAATTCTGGGCAGGGGAGCTGGAGGGCAGAAGGGTATCATCGTTTCTCATCTCCTCC


TCCCTCCTCTTCTCCAGTGGATGTTGAGGGAGCTAACAGGGCTGGCATCTGGGGCATGAACTGGGATGG


GGCAGGTGGGCGTTAGGGAAGCTGGTATCAAATGGTGACCTTGGTGGAGTCTCCTATGTGAAGAGTAC


CCTCCCTCTCCACCCCCAGTCCCCATATCCTGGTTCTGGCCCAAGGAAAATGTCCATTCTATGACCTTCTCT


TTTCCTCTCCTCTCACTTCTGCAGCTATTCTCACACATCTAACCTCTAGGCAACATGCACTAAATTCAAAAG


CAAGGAGAAGCCCTTGCCCCCCATCAGTCCACCAGCCCTAGAACCTCCCTTGCCTCAACAGTCACCTAAT


AAAGCCCACCTCCATGGAAAACGGCTGTGGCTTTAGTTTTGTTGCTTTTTAAAAAAATCAATCTACCAATC


TTTAGCAGTAAGAGGGAAAGTTAGACCTCAGCTTGGGAACTTTCCTGTCCATGTCCACASATAGAGCAG


AGGACAAAGCCATAGGTTGGATCAGAAGTGTCCTTTTAGGAGTCAGAGTTGGGAGAAGGAGACATCCT


GGGACTGTTCATCCTAGTTAATGAAGTGGGCAATTCTCAGGcCATTAGGGGGTTTTAGAGCAGACCGAC


ATATAATTAGTCAGCATTTCTCAGCCCAGCCAGGCCTGCTGCTAGTGTGGGAGGGGTCCTGCTCACCATC


TGTACCCCTGGCTTGGAGCCTGCTGGTACCCTGGGGGTTGTGGGGATAAGGAGGCATCAGGCCGGGCG


CGCTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGCGGATCACAAGTTCAGGAGAT


CGAGACCATCCTGGCTAACACGGTGAAACCCCATCTCTACTAAAAATACAAAAAATTAGCCAGGCGCGG


TGGCAGTGCCTGTAGTCCCAGCTGCTCGGGAGGCTGAGGCAGGAGAATGGTGTGAACCCGGGTGAACC


TGGGAGGCGGAGCTTGCAGTGAGCCGAGATTGCGCCACTGCATTCTAGCCTGGATGACAGAGCAAGAC


TCTGTCTCCAAAAAAAAAAAAAAAAAAAAAAAAGAAGGCATCAAAAGCCTCCACATCACAGAAGCTACC


CCTGTACAGCGTGAAGTTTCCTAAGAGGTCAGTAGTTTGATTCTGGGGTCTCCTTAGAGGCTCAGGCCA


GGGACCTTTCTCTCCTCCCATGCTGAGTTTCATGATGGCTTTCAGGGGAGCATCAGCTGTTAGAGTCACC


CCTACCCTGTCCCTTAAAGGAAAGACGGTGGAGAGGACGGCTGAGCGCCTGTTGTCAGGAAAGACAGT


ACTGGTCTGTTTTCTCGGGAGTCTGGTTTCAGATTGTCCTGTATTCCCTTCCTGGCTCTGGTCCCACTGGC


CTCTTTCGGTGACATTCTCCCCCAGGAACCATCCCTGGCCCTTCCCTCCCCCAGCCCTAGCCAGTTCTCCC


AGACACACTGGAAGAGAACACTGACCTTACCCAACTATCTGCTGGGATCCCACCCAAATTTATAGCCCAT


TCCTCCCTCATTCATTCATTCAGCAAGTATGTACTGAACACCAACTGTGTGGCATACACTGGCTTGGGAG


ATTGCAAGGACCAGTCTCTAAGCTTTTGGAGGCCAGCCCAGTGTGGAAGAGAGGTACCTCAGGTGTGA


GGGTGCCATGGCTGAGGGATATTTGTACATGTATGGGATGCTATGGGAGCTCCTTGCAGCCTGAGAAG


CCAGTCCTGTGAGCCAGGTCCTGAGGGTTGAAGAGGAGTTTTCCGGGCAGGGAAGGGGTAGGAAAGG


CACTCTGGGCAGAGGGTACAGCATGTGTAAACACGTGGAGATGAGAATGAGCATAGCACTGTTGGGGC


TCCCATGGCAGGGAGAATAGAAGACAAGGCTAGGAAGGTACACTGAGGCTACTGCAGGGTCCACAGA


GGAATCAGAATTTCATTCTGAGGATGAATGAAATCATCCTCAGAGGATGAAGCCACCAGGAATTTCAGG


CAGAGAGTGAAGTGATCAGAGTTGTTTTTTGGATAGATGGTTATCTGGATGTGGTGTTGGAGCTGGGA


GATTTGGCTCTGAGGTGTGTCATTTAAAATAATAGCTTCTCGGCAGTGGCTCACACCTATAATCCCAGCC


AAGATTCCTCCTTTGGGAGGCCAAGCTGGGAGGATCGCTTGAGGCCAGGAGTTAGAGACTGCAGTGAG


CTATGATCATGCCATTGTCTTCCAGCCTGAGTGTCAGAGTGAGACCCTGTCTCTAAAAAAAATTAAAAAA


TAAAAAATAAAAAATAGCTTCTCCTTTCCCTTATGCCAGGTTCCAGTCTTGAGAGGAAAGGAATCCCTAC


CCACCACTCCCTGGATCATCAGATATCCCTATCCCAACCTCTCCTATGGGACTAGTTCATCTCAGCCAGTC


TCAAAGATTCTAGGATAACTTCAATGGCATTTGAAATTATCTAAGTGTGCTTGGATAACCACCCCCTCAA


ACTGAGACCTGGTTAGGGACTGACTCAAAGACCCTGAGTCCTCGGCTAAGGGTACAGGAGAGGGCAGG


GGCTCCAGGCCCAGCTAGGTGGATCTCCATCTGTCTCTGAGGACTGACCCTTTCCCCACAAGGACCTGCC


ATAAAAATCGACTTGCGATTTTTAGCTGAGTGGCTTCTCTTTTCCACTTTGGACTTCTCAGTGTATAGCAG


GTTCAAGCCTGCAACCACCAAAGTGCAGAGTGTGGAGTGTTTGTGCCCCCTCTTTCCTCCAACCTCCATA


TCCTGCCATGTGAGCTCAGGGAATGCAAATGCATTTAAATATCCATCTAAAGCAAACATAATTAGAAAAA


TCAATCAGCTGGAGGACCCCCCAAAGTTTAATACATTTTCAATACCACCAGGAATGGATTTTTGGTCCCTT


TCTGCAGGTCTGGGTTGCCAGACGTTTTATTTCTGGGGAGGAGGGCTCTGGGCTGAGGAGCTCAGTGG


GTGGGAGGAGGGAATGGGACTGTTGCTGAT





SEQ ID NO 133 BRCA1-sYNTI DNA Homo sapiens


TTCAGAAAATACATCACCCAAGTTCCCATCCCTACCTGTCTATCCACAAAACCAAGGCATTCCTGAGATTA


GTTCATTTATTATACTAATATAACAAGTGTTTATTAAGTATCTACTACTATATTCAAGTACTATTCTAGGAG


ATAGAAATGTAGCAGTTTACAAAATAAAGCCTGCTCTCATAGAGCTCATATTCTAGTGTGGTAGACAGTT


GATACGGAATTAAAGAATACATGGGAATAAGTGCATTAAAGAGAAAAATTAAGCAGGGTAAGGGGAA


ACAGGTAGTTCAATATCTATGTGGGGGTGAGATGTACATGGGGGGAGTCAGGAAAGGTTTCACTGAGG


TGAGACTAGAGGATAGCTTAATAATGTAAAGAAACACACTATGCAACAATTAGGGGAAGAGCATTCCAA


GAAAGAGGGAGCAGAGAAGGCAAACCCTGAGCAGGACCATGCCTGTGTATGCAGGACATCAGATAGG


TCAAGGTGCTAAAATGTAATAATCCAGGAGGATATTGTAGGGAAAGACTATCAGAGAGGTAGCTGGTA


ACTTCTGGTAGGAACCTATAGGCTATTTTAAATCTTTAGCTTTATTCTGGTCTTTTTAATTTTCTTTTTTTTT


TTCAGACAGAGTCTCGTTCTGTCGCCCAGGCTGGAGTGCAGTGGCACCATCTCGGCTCTCTGTAACCTCC


GCCTCCTGAATTCAAGTGATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTAAAGGCATGCACCACCA


TGCCTTGGCCTCCCAAAGTACTGGGATTACAGGAGTGAGCCACCATGCCAGCCATCTTTTTAATTTTTAAT


GTTAATTAATTTTTGTAGAGACAGGATCTCACTATGATGCCCATGCTGGTCTTGAATGCCTGGCATCAAG


CAATCTTCCTGCTTCGGCTTCCCAAAGTGCTGGGATTACAGGTGTGAGCTACTATACCCGGCCTTTAGCTT


TCTTCTGAATGTGAACCTTTTTTTTTTTTTTTGGAGATGGAGTCTCACTCACTCTGCTGCTCAGGCTGGAG


TGCAGTGGTGTGGTCTTGGCTCACTGCAACCTCTGCCTCTCGGATTGAAGTGATTCTTGTGCCTCAGCAT


TCCAAGTAGCTGGGACTACAGGCGCGTGCTGCCACACCCGGCTAATTTTTTTGTATTTTTGGTAGGGAAG


GGGTTTCACCATATTGCCCAGGCTGGTCTTGAAGTCCTGACCTCAAGTGATCCATCTGCCTCGACCGGGA


TTACAGGCGTGAGCCACTACACTTAGCTCTAAATGTGAATTTTTGAAACGGATTTTTTGGATAAAGTCCA


GGCAAGATATCAAAGAACGACTAACCTGGCAGTGTGACAAGAATGTGGTTTTTTCCTTAAATATTTAACT


TTTTAGAAAAGGATCACAAGGGCCAGGTGCGGTGGCTCACGCTGTAATCCCAGCATTTTGGGAGGCCAA


GGCGGGCCAGCCTGGGTGACAGAGAATCCATCTCAAAAAAAGAAAAAAAAAAAAGAAAAGGATCACA


AGAAAASCTTGTGGACAGTAACCTTATTGTGAAGGGTTGTAATACAACTCTTGTAATCATGGGGTTTTTG


ACATAGCACAGGGCAGTGAAAAGAAAAACAATGAACTAAGTCAGGAGGCTGGGTTTCTACTACCAGTT


GTGTATATAAGCAGAGCCACCTTGGGCTAACCACTCTACCTGAACCTGTTTCCTTCTCTTGCCATTCACCC


TGCCAGACTCCTTGGGCTATTGCAAGAATAAAATTAAATGCTACTTGGGAAAATGCTTCACAACCTGAGA


TGACTTGGGAAAAATGCTTCACAACCTGAGATAACTTGTACCAACATTGGTATTATTACTGGGACCAAAT


GTGACTTTAAAAAGAAAAACAACCTTGACAAAGAAAACTCTGATTGGTTACTAAATCCCTATTTCTGAGA


TAAGCTACATTTCAAAGAAATTCTCCGTAAAAGAAAAATTGGATTCAGTTATCATACCAGATGGCTTTCA


TTCTCACCACTGACTCAATTCTGAAACAATTATATTCAGTATGGTAATTATAATCTAAACTATATAAACA


CACTGTAAACACAAACTTTGAACAGATGAAAACTCCGATATGTAAAAAGGTAATGAATGTTGAAGGAAG


ACTGTGAAAAGGGAAAAGAAAAAAAATTAAAATGTTCCCCTTCTAGGTCCTGATGAGAGTAAATGTTTA


CTATAAAAATGATTCAAATATTTTAAACACTTTTCAAACCAGGCAATATTTTAGGCCTACTGTATATTTGC


ATTTTGAGCTTCCAATACGGATAAGTGACTGGAAAAAGCAGCTAGGTTTAGGTTGAAAAACAACAACCC


ACCGGGGAACACATTTTAGCAAATTCTTCTGAAAGTCAAAAATGTTATAGTCATAGGTAAAAAGTTACAA


AGAACTACCAATTGTCAGAAATAGCTGCCAATATTGACTTAGAAGACAGCAGAAAATTTTAGTTCAA


GAAACCTAAAACAGGCTGAAAACCTTACCTACCCTATAGCTACCACAAATAACACTGTTTCCAGTCATGA


TCATTCCTGATCACATATTAAGACATAACTGCAAATTGTGCTATACTGTACTATATTAAAAGGAAGTGAA


ATATGATCCCTATCCTAGAACTTTCCATACAAATGAATGTAAAACACCATAAAAATTAATCTTAAGGCCG


GGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGCGGATCACGAGGTCAGG


AAGTGGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAATACAAAAAATTAGCCGGGC


GTGGTGGTGGACGCCTGTAGTCCCAGCTACTTGGGGGGCCGAGGCAGGAGAATGGCGTGAACCCGGG


AGGCGGAGCTTGCAGTGAGCCGAGATGGCGCCACTGCACTCCGGCCTGGGTGAAAGAGCGAGACTCC


GTCTCAAAAACAAAACAAACAAAAATTAATCTTAAGCCAGGCGCAGTGGCTCACGCCAGCACTTTGGAA


GGCCGAGGCGGGTGGATCACGAGATCAGGACTTCAAGACCAGCCTGACCAACGTGATGAAACCCTATC


TCTACTAAAAATACAAAATTAGCCGGCCACGGTGGCGTGCGCCTATAATCCCAGCTACTCAGGAGGCTG


AGGCAGGAGAAGCGCTTGAACTTGAACCTGGCAGGCGGAGGTTGCAGTGAGCCAAGATGGCGCCACT


GCACTCCAGCCTGGGCGACAGAGCCAGACTCCAACCCCCCACCCCGAAAAAAAAAGGTCCAGGCCGGG


CGCAGTGGCTCAGGACTGTAATCCCAGCACTTTGGAAGGCTGAGGCGGGTGGATCACAAGGTCAGGAG


ATCGAGACCATCTTGGCTAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAAATTAGCCGGGCATA


GTGGTGGGCGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCCTGAACCCGGGAGG


CGGAGCTGGCAGTGAGCCAAGATCGTGCCACTGCACTCCAGCCTAGGCAGCAGAGCGAGACCGTGTCT


CAAAAAAACAAAACAAAACAAAACAAAAAGTCTGGGAGCGGTGGCTCACGCCTGTAATCCCAGCACTTT


CGGAGGCCAAGGCAGGAGGATCACCTGAGGTCAGGAGTTCGAGACCAACCTGACCAATATGGAGAAA


CCCTGTCTCTACTAAAAATACAAAATTAGCTGGTGTGATGGCACATGCCTGCAATCCCAGGTACTCCGGA


GGCTGAGGCAGCAGAATTGCTTGAACCCGGGAGGTGGAGGTTGTAGTGAGCCGAGATTGTGCCACTGC


ACTCCAGCCTGGGCAACAAGAGCCAAAGTCTGTCTCAAAAAAAAAAAAAAAAAAAAAAAAAGAAATTA


ATCTTAACAGGAAACAGAAAAAAGCAATGAAAAGCTAGAAAACATAATAGTTGATTGAAAATAACAATT


TAGCATTTTCATTCTTACATCTTTAATTTTTATGTATCTGAGTTTTTAATTGATGGTTTAATTTGCCAGAAT


GAGAAAGAACATCCTATTTTTATGACTCTCTCCCATGGAAATGAAACATAAATGTATCCAAATGCCACAC


TATTGAGGATTTTCCTGATCACTGATTGTCATGAGTAAGTTTTGTGCTTTTTCAAAAGCAGTTTTTTCCTAC


AATGTCATTTCCTGCTTCTCTGGCTCTGATTTTCAATAAATTGATAAATTGTGAATCCTGTTTTCUCTTATT


TTTGTTTAGCTATAATGTTGAAGGGCAAGGGAGAGGATGGTTATTTATAAATCTTGTATCGCTCTGAAAA


CACAACATACATtttCCTTAATCTGATTAACTTGACTTCAAATATGAAAAACAACTTTCATAAAGCAGAAA


AGAATTTACCCTTTTTTATTGTGGGTAAGAGGCAATGGTA





SEQ ID NO 134 ForwardPrimerPrefix DNA Artificial Sequence AAAAGGCGCGCC





SEQ ID NO 135 ReversePrimerPrefix DNA Artificial Sequence AAAATTAATTAA






REFERENCES



  • Caburet, S., Conti, C., Schurra, C., Lebofsky, R., Edelstein, S. J., and Bensimon, A. (2005). Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res 15, 1079-1085.

  • Casilli, F., Di Rocco, Z. C., Gad. S., Toumier, I., Stoppa-Lyonnet, D., Frebourg, T., and Tosi, M. (2002). Rapid detection of novel BRCA1 rearrangements in high-risk breast-ovarian cancer families using multiplex PCR of short fluorescent fragments. Hum Mutat 20, 218-226.

  • Cavalieri, S., Funaro, A., Pappi, P., Migone, N., Gatti, R. A., and Brusco, A. (2008). Large genomic mutations within the ATM gene detected by MLPA, including a duplication of 41 kb from exon 4 to 20. Ann Hum Genet 72, 10-18.

  • Gad, S., Aurias, A., Puget, N., Mairal, A., Schurra, C., Montagna, M., Pages, S., Caux, V., Mazoyer, S., Bensimon, A., et al. (2001). Color bar coding the BRCA1 gene on combed DNA: a useful strategy for detecting large gene rearrangements. Genes Chromosomes Cancer 31, 75-84.

  • Gad, S., Bieche, I., Barrois, M., Casilli, F., Pages-Berhouet, S., Dehainault, C., Gauthier-Villars, M., Bensimon, A., Aurias, A., Lidereau, R., et al. (2003). Characterization of a 161 kb deletion extending from the NBR1 to the BRCA1 genes in a French breast-ovarian cancer family. Hum Mutat 21, 654.

  • Gad, S., Caux-Moncoutier, V., Pages-Behouet, S., Gauthier-Villars, M., Coupier, I., Pujol, P., Frenay, M., Gilbert, B., Maugard, C., Bignon, Y. J., et al. (2002a). Significant contribution of large BRCA1 gene rearrangements in 120 French breast and ovarian cancer families. Oncogene 21, 6841-6847.

  • Gad, S., Klinger, M., Caux-Moncoutier, V., Pages-Berhouet, S., Gauthier-Villars, M., Coupier, I., Bensimon, A., Aurias, A., and Stoppa-Lyonnet, D. (2002b). Bar code screening on combed DNA for large rearrangements of the BRCA1 and BRCA2 genes in French breast cancer families. J Med Genet39, 817-821.

  • Herrick, J., and Bensimon, A. (2009). Introduction to molecular combing: genomics, DNA replication, and cancer. Methods Mol Biol 521, 71-101.

  • Hofmann, W., Wappenschmidt, B., Berhane, S., Schmutzler, R., and Schemeck, S. (2002). Detection of large rearrangements of exons 13 and 22 in the BRCA1 gene in German families. J Med Genet 39, E36.

  • King, M. C., Marks, J. H., and Mandell, J. B. (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643-646.



Mazoyer, S. (2005). Genomic rearrangements in the BRCA1 and BRCA2 genes. Hum Mutat 25, 415-422.

  • Nathanson, K. L., Wooster, R., and Weber, B. L. (2001). Breast cancer genetics: what we know and what we need. Nat Med 7, 552-556.
  • Puget, N., Gad, S., Perrin-Vidoz, L., Sinilnikova, O. M., Stoppa-Lyonnet, D., Lenoir, G. M., and Mazoyer, S. (2002). Distinct BRCA rearrangements involving the BRCA1l pseudogene suggest the existence of a recombination hot spot. Am J Hum Genet 70, 858-865.
  • Rouleau, E., Lefol, C., Tozlu, S., Andrieu, C., Guy, C., Copigny, F., Nogues, C., Bieche, I., and Lidereau, R. (2007). High-resolution oligonucleotide array-CGH applied to the detection and characterization of large rearrangements in the hereditary breast cancer gene BRCA1. Clin Genet 72, 199-207.
  • Schurra, C., and Bensimon, A. (2009). Combing genomic DNA for structural and functional studies. Methods Mol Biol 464, 71-90.
  • Staaf, J., Torngren, T., Rambech. E., Johansson, U., Persson, C., Sellberg, G., Tellhed, L., Nilbert, M., and Borg, A. (2008). Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH). Hum Mutat 29, 555-564.
  • Szabo, C., Masiello, A., Ryan, J. F., and Brody, L. C. (2000). The breast cancer information core:database design, structure, and scope. Hum Mutat 16, 123-131.
  • Walsh, T., Lee, M. K., Casadei, S., Thornton, A. M., Stray, S. M., Pennil, C., Nord, A. S., Mandell, J. B., Swisher, E. M., and King, M. C. (2010). Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci USA 107, 12629-12633.


Related Patents and Patent Applications



  • Lebofsky R, Walrafen P, Bensimon A: Genomic Morse Code U.S. Pat. No. 7,985,542 B2 (Application Ser. No. 11/516,673)

  • Murphy P D, Allen A C, Alvares C P, Critz B S, Olson S J, Schelter D B, Zeng B: Coding sequences of the human BRCA1 gene U.S. Pat. No. 5,750,400

  • Skolnick M H, Goldgar D E, Miki Y, Swenson 1, Kamb A, Harshman K D, Shattuck-eidens D M, Tavtigian S V, Wiseman R W, Futreal A P: 17q-linked breast and ovarian cancer susceptibility gene U.S. Pat. No. 5,710,001.


Claims
  • 1-22: (canceled)
  • 23: A composition comprising three to twenty distinct polynucleotide probes, wherein the probes are tagged with visual markers which are different from each other,wherein each probe hybridizes under stringent conditions to a sequence in the BRCA1 locus of the human genome, said stringent conditions being selected from the following conditions: (i) hybridization in a buffer comprising 50% formamide, 5×SSC and 1% SDS at 42° C., or hybridization in a buffer comprising 5×SSC and 1% SDS at 65° C., both with a wash of 0.2×SSC and 0.1% SDS at 65° C., (ii) hybridization in a buffer of 40% formamide, 1 M NaCl and 1% SDS at 37° C., and a wash in IX SSC at 45° C., (iii) hybridization to filter-bound DNA in 0.5M NaHPO4, 7% SDS, 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C., (iv) hybridization at 60° C. or higher and 3×SSC, (v) incubation at 42° C. in a solution containing 30% formamide, 1M NaCl, 0.5% sodium sarcosine, 50 mM MES, pH 6.5, (vi) wash conditions using a salt concentration of about 0.02 M at pH 7 and a temperature of at least about 50° C. or about 55° C. to about 60° C.; or a salt concentration of about 0.15M NaCl at 72° C. for about 15 minutes; or a salt concentration of about 0.2×SSC at a temperature of at least about 50° C. or about 55° C. to about 60° C. for about 15 to about 20 minutes; or the hybridization complex is washed twice with a solution with a salt concentration of about 2×SSC containing 0.1% SDS at room temperature for 15 minutes and then washed twice by 0.1×SSC containing 0.1% SDS at 68° C. for 15 minutes, and (vii) rotating hybridization at 65° C. in a salt based hybridization buffer with a total monovalent cation concentration of 1.5M followed by washes of 0.5×SSC and 0.1×SSC at room temperature,wherein each of said probes contains at least 200 contiguous nucleotides, andwherein three of said probes consist of SEQ ID NO: 131, SEQ ID NO: 132 and SEQ ID NO: 133.
  • 24: The composition of claim 23, wherein seventeen of said probes are probes amplified by PCR under stringent conditions as defined in claim 23 using pairs of primers selected from the group of (i) the BRCA1-2 primer consisting of SEQ ID NO: 5 and the BRCA1-2 primer consisting of SEQ ID NO: 6, (ii) the BRCA1-3 primer consisting of SEQ ID NO: 7 and the BRCA1-3 primer consisting of SEQ ID NO: 8, and (iii) the BRCA1-4 primer consisting of SEQ ID NO: 9 and the BRCA1-4 primer consisting of SEQ ID NO: 10, (iv) the BRCA1-5 primer consisting of SEQ ID NO: 11 and the BRCA1-5 primer consisting of SEQ ID NO: 12, (v) the BRCA1-6 primer consisting of SEQ ID NO: 13 and the BRCA1-6 primer consisting of SEQ ID NO: 14, (vi) the BRCA1-7 primer consisting of SEQ ID NO: 15 and the BRCA1-7 primer consisting of SEQ ID NO: 16, (vii) the BRCA1-8 primer consisting of SEQ ID NO: 17 and the BRCA1-8 primer consisting of SEQ ID NO: 18, (viii) the BRCA1-9 primer consisting of SEQ ID NO: 19 and the BRCA1-9 primer consisting of SEQ ID NO: 20, (ix) the BRCA1-11 primer consisting of SEQ ID NO: 21 and the BRCA1-11 primer consisting of SEQ ID NO: 22, (x) the BRCA1-12 primer consisting of SEQ ID NO: 23 and the BRCA1-12 primer consisting of SEQ ID NO: 24, (xi) the BRCA1-13A primer consisting of SEQ ID NO: 25 and the BRCA1-26 primer consisting of SEQ ID NO: 26, (xii) the BRCA1-15 primer consisting of SEQ ID NO: 27 and the BRCA1-15 primer consisting of SEQ ID NO: 28, (xiii) the BRCA1-16 primer consisting of SEQ ID NO: 29 and the BRCA1-16 primer consisting of SEQ ID NO: 30, (xiv) the BRCA1-17 primer consisting of SEQ ID NO: 31 and the BRCA1-17 primer consisting of SEQ ID NO: 32, (xv) the BRCA1-18 primer consisting of SEQ ID NO: 33 and the BRCA1-18 primer consisting of SEQ ID NO: 34, (xvi) the BRCA1-19 primer consisting of SEQ ID NO: 35 and the BRCA1-19 primer consisting of SEQ ID NO: 36, (xvii) the BRCA1-22 primer consisting of SEQ ID NO: 37 and the BRCA1-22 primer consisting of SEQ ID NO: 38, (xviii) the BRCA1-23 primer consisting of SEQ ID NO: 39 and the BRCA1-23 primer consisting of SEQ ID NO: 40, (xix) the BRCA1-24 primer consisting of SEQ ID NO: 41 and the BRCA1-24 primer consisting of SEQ ID NO: 42, (xx) the BRCA1-25 primer consisting of SEQ ID NO: 43 and the BRCA1-25 primer consisting of SEQ ID NO: 44, (xxi) the BRCA1-26 primer consisting of SEQ ID NO: 45 and the BRCA1-26 primer consisting of SEQ ID NO: 46, (xxii) the BRCA1-27 primer consisting of SEQ ID NO: 47 and the BRCA1-27 primer consisting of SEQ ID NO: 48, (xxiii) the BRCA1-28 primer consisting of SEQ ID NO: 49 and the BRCA1-28 primer consisting of SEQ ID NO: 50, (xxiv) the BRCA1-29 primer consisting of SEQ ID NO: 51 and the BRCA1-29 primer consisting of SEQ ID NO: 52, (xxv) the BRCA1-30 primer consisting of SEQ ID NO: 53 and the BRCA1-30 primer consisting of SEQ ID NO: 54, (xxvi) the BRCA1-31 primer consisting of SEQ ID NO: 55 and the BRCA1-31 primer consisting of SEQ ID NO: 56, (xxvii) the BRCA1-32 primer consisting of SEQ ID NO: 57 and the BRCA1-32 primer consisting of SEQ ID NO: 58, (xxviii) the BRCA1-33 primer consisting of SEQ ID NO: 59 and the BRCA1-33 primer consisting of SEQ ID NO: 60, (xxix) the BRCA1-34 primer consisting of SEQ ID NO: 61 and the BRCA1-34 primer consisting of SEQ ID NO: 62, (xxx) the BRCA1-35 primer consisting of SEQ ID NO: 63 and the BRCA1-35 primer consisting of SEQ ID NO: 64, (xxxi) the BRCA1-36 primer consisting of SEQ ID NO: 65 and the BRCA1-36 primer consisting of SEQ ID NO: 66, (xxxii) the BRCA1-37 primer consisting of SEQ ID NO: 67 and the BRCA1-37 primer consisting of SEQ ID NO: 68, (xxxiii) the BRCA1-38 primer consisting of SEQ ID NO: 69 and the BRCA1-38 primer consisting of SEQ ID NO: 70, (xxxiv) the BRCA1-S3Big primer consisting of SEQ ID NO: 127 and the BRCA1-S3Big primer consisting of SEQ ID NO: 128, (xxxv) the BRCA1-SExon21 primer consisting of SEQ ID NO: 129 and the BRCA1-SExon21 primer consisting of SEQ ID NO: 130, (xxxvi) the BRCA1-1A primer consisting of SEQ ID NO: 1 and the BRCA1-1A primer consisting of SEQ ID NO: 2, (xxxvii) the BRCA-1B primer consisting of SEQ ID NO: 3 and the BRCA1-1B primer consisting of SEQ ID NO: 4, and (xxxviii) the BRCA-SYNT1 primer consisting of SEQ ID NO: 125 and the BRCA1-SYNT1 primer consisting of SEQ ID NO: 126, and wherein said seventeen probes hybridize under stringent conditions as defined in claim 23 to a sequence in the BRCA1 locus of the human genome selected from the group consisting of BRCA1-2, BRCA1-3, BRCA1-4, BRCA1-5, BRCA1-6, BRCA1-7, BRCA1-8, BRCA1-9, BRCA1-11, BRCA1-12, BRCA1-13A, BRCA1-15, BRCA1-16, BRCA1-17, BRCA1-18, BRCA1-19, BRCA1-22, BRC1A-23, BRCA1-24, BRCA1-25, BRCA1-26, BRCA1-27, BRCA1-28, BRCA1-29, BRCA1-30, BRCA1-31, BRCA1-32, BRCA1-33, BRCA1-34, BRCA1-35, BRCA1-36, BRCA1-37, BRCA1-38, BRCA1-S3Big, BRCA1-SExon21, BRCA1-1A, BRCA1-1B and BRCA1-SYNT1.
  • 25: A kit for detecting a duplication, deletion, inversion, insertion, or translocation in a BRCA1 locus comprising three to twenty distinct polynucleotide probes, wherein each probe hybridizes under stringent conditions to a sequence of the BRCA1 locus of the human genome, said stringent conditions being selected from the following conditions: (i) hybridization in a buffer comprising 50% formamide, 5×SSC and 1% SDS at 42° C., or hybridization in a buffer comprising 5×SSC and 1% SDS at 65° C., both with a wash of 0.2×SSC and 0.1% SDS at 65° C., (ii) hybridization in a buffer of 40% formamide, 1 M NaCl and 1% SDS at 37° C., and a wash in IX SSC at 45° C., (iii) hybridization to filter-bound DNA in 0.5M NaHPO4, 7% SDS, 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C., (iv) hybridization at 60° C. or higher and 3×SSC, (v) incubation at 42° C. in a solution containing 30% formamide, 1M NaCl, 0.5% sodium sarcosine, 50 mM MES, pH 6.5, (vi) wash conditions using a salt concentration of about 0.02 M at pH 7 and a temperature of at least about 50° C. or about 55° C. to about 60° C.; or a salt concentration of about 0.15M NaCl at 72° C. for about 15 minutes; or a salt concentration of about 0.2×SSC at a temperature of at least about 50° C. or about 55° C. to about 60° C. for about 15 to about 20 minutes; or the hybridization complex is washed twice with a solution with a salt concentration of about 2×SSC containing 0.1% SDS at room temperature for 15 minutes and then washed twice by 0.1×SSC containing 0.1% SDS at 68° C. for 15 minutes, and (vii) rotating hybridization at 65° C. in a salt based hybridization buffer with a total monovalent cation concentration of 1.5M followed by washes of 0.5×SSC and 0.1×SSC at room temperature,wherein each of said probes contains at least 200 contiguous nucleotides,wherein said probes are tagged with visual markers which are different from each other, andwherein three of said probes consist of SEQ ID NO: 131, SEQ ID NO: 132 and SEQ ID NO: 133.
  • 26: The kit of claim 25 for detecting a duplication, deletion, inversion, insertion, or translocation in a particular segment of a BRCA1 locus-associated with ovarian cancer or breast cancer.
  • 27: The kit of claim 25 for detecting a duplication, deletion, inversion, insertion, or translocation in a particular segment of a BRCA1 locus-associated with a kind of ovarian cancer or breast cancer sensitive to a particular therapeutic agent, drug or procedure.
  • 28: The kit of claim 25, wherein seventeen of said probes are probes amplified by PCR under stringent conditions as defined in claim 3 using pairs of primers selected from the group of (i) the BRCA1-2 primer consisting of SEQ ID NO: 5 and the BRCA1-2 primer consisting of SEQ ID NO: 6, (ii) the BRCA1-3 primer consisting of SEQ ID NO: 7 and the BRCA1-3 primer consisting of SEQ ID NO: 8, and (iii) the BRCA1-4 primer consisting of SEQ ID NO: 9 and the BRCA1-4 primer consisting of SEQ ID NO: 10, (iv) the BRCA1-5 primer consisting of SEQ ID NO: 11 and the BRCA1-5 primer consisting of SEQ ID NO: 12, (v) the BRCA1-6 primer consisting of SEQ ID NO: 13 and the BRCA1-6 primer consisting of SEQ ID NO: 14, (vi) the BRCA1-7 primer consisting of SEQ ID NO: 15 and the BRCA1-7 primer consisting of SEQ ID NO: 16, (vii) the BRCA1-8 primer consisting of SEQ ID NO: 17 and the BRCA1-8 primer consisting of SEQ ID NO: 18, (viii) the BRCA1-9 primer consisting of SEQ ID NO: 19 and the BRCA1-9 primer consisting of SEQ ID NO: 20, (ix) the BRCA1-11 primer consisting of SEQ ID NO: 21 and the BRCA1-11 primer consisting of SEQ ID NO: 22, (x) the BRCA1-12 primer consisting of SEQ ID NO: 23 and the BRCA1-12 primer consisting of SEQ ID NO: 24, (xi) the BRCA1-13A primer consisting of SEQ ID NO: 25 and the BRCA1-26 primer consisting of SEQ ID NO: 26, (xii) the BRCA1-15 primer consisting of SEQ ID NO: 27 and the BRCA1-15 primer consisting of SEQ ID NO: 28, (xiii) the BRCA1-16 primer consisting of SEQ ID NO: 29 and the BRCA1-16 primer consisting of SEQ ID NO: 30, (xiv) the BRCA1-17 primer consisting of SEQ ID NO: 31 and the BRCA1-17 primer consisting of SEQ ID NO: 32, (xv) the BRCA1-18 primer consisting of SEQ ID NO: 33 and the BRCA1-18 primer consisting of SEQ ID NO: 34, (xvi) the BRCA1-19 primer consisting of SEQ ID NO: 35 and the BRCA1-19 primer consisting of SEQ ID NO: 36, (xvii) the BRCA1-22 primer consisting of SEQ ID NO: 37 and the BRCA1-22 primer consisting of SEQ ID NO: 38, (xviii) the BRCA1-23 primer consisting of SEQ ID NO: 39 and the BRCA1-23 primer consisting of SEQ ID NO: 40, (xix) the BRCA1-24 primer consisting of SEQ ID NO: 41 and the BRCA1-24 primer consisting of SEQ ID NO: 42, (xx) the BRCA1-25 primer consisting of SEQ ID NO: 43 and the BRCA1-25 primer consisting of SEQ ID NO: 44, (xxi) the BRCA1-26 primer consisting of SEQ ID NO: 45 and the BRCA1-26 primer consisting of SEQ ID NO: 46, (xxii) the BRCA1-27 primer consisting of SEQ ID NO: 47 and the BRCA1-27 primer consisting of SEQ ID NO: 48, (xxiii) the BRCA1-28 primer consisting of SEQ ID NO: 49 and the BRCA1-28 primer consisting of SEQ ID NO: 50, (xxiv) the BRCA1-29 primer consisting of SEQ ID NO: 51 and the BRCA1-29 primer consisting of SEQ ID NO: 52, (xxv) the BRCA1-30 primer consisting of SEQ ID NO: 53 and the BRCA1-30 primer consisting of SEQ ID NO: 54, (xxvi) the BRCA-31 primer consisting of SEQ ID NO: 55 and the BRCA1-31 primer consisting of SEQ ID NO: 56, (xxvii) the BRCA1-32 primer consisting of SEQ ID NO: 57 and the BRCA1-32 primer consisting of SEQ ID NO: 58, (xxviii) the BRCA1-33 primer consisting of SEQ ID NO: 59 and the BRCA1-33 primer consisting of SEQ ID NO: 60, (xxix) the BRCA1-34 primer consisting of SEQ ID NO: 61 and the BRCA1-34 primer consisting of SEQ ID NO: 62, (xxx) the BRCA1-35 primer consisting of SEQ ID NO: 63 and the BRCA1-35 primer consisting of SEQ ID NO: 64, (xxxi) the BRCA1-36 primer consisting of SEQ ID NO: 65 and the BRCA1-36 primer consisting of SEQ ID NO: 66, (xxxii) the BRCA1-37 primer consisting of SEQ ID NO: 67 and the BRCA1-37 primer consisting of SEQ ID NO: 68, (xxxiii) the BRCA1-38 primer consisting of SEQ ID NO: 69 and the BRCA1-38 primer consisting of SEQ ID NO: 70, (xxxiv) the BRCA1-S3Big primer consisting of SEQ ID NO: 127 and the BRCA1-S3Big primer consisting of SEQ ID NO: 128, (xxxv) the BRCA1-SExon21 primer consisting of SEQ ID NO: 129 and the BRCA1-SExon21 primer consisting of SEQ ID NO: 130, (xxxvi) the BRCA1-1A primer consisting of SEQ ID NO: 1 and the BRCA1-1A primer consisting of SEQ ID NO: 2, (xxxvii) the BRCA1-1B primer consisting of SEQ ID NO: 3 and the BRCA1-1B primer consisting of SEQ ID NO: 4, and (xxxviii) the BRCA1-SYNT1 primer consisting of SEQ ID NO: 125 and the BRCA1-SYNT1 primer consisting of SEQ ID NO: 126, and wherein said seventeen probes hybridize under stringent conditions as defined in claim 25 to a sequence in the BRCA1 locus of the human genome selected from the group consisting of BRCA1-2, BRCA1-3, BRCA1-4, BRCA1-5, BRCA1-6, BRCA1-7, BRCA1-8, BRCA1-9, BRCA1-11, BRCA1-12, BRCA1-13A, BRCA1-15, BRCA1-16, BRCA1-17, BRCA1-18, BRCA1-19, BRCA1-22, BRCA1-23, BRCA1-24, BRCA1-25, BRCA1-26, BRCA1-27, BRCA1-28, BRCA1-29, BRCA1-30, BRCA1-31, BRCA1-32, BRCA1-33, BRCA1-34, BRCA1-35, BRCA1-36, BRCA1-37, BRCA1-38, BRCA1-S3Big, BRCA1-SExon21, BRCA1-1A, BRCA1-1B and BRCA1-SYNT1.
  • 29: The kit of claim 25 for detecting a duplication or deletion in a BRCA1 locus selected from the group consisting of a duplication of exons 18-20 of BRCA1, a duplication of exon 13 of BRCA1, a deletion of exons 8-13 of BRCA1, a deletion of exon 2 of BRCA1 and a deletion of exon 15 of BRCA1.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. Ser. No. 14/528,616, filed Oct. 30, 2014, which is a continuation of U.S. Ser. No. 13/665,404, filed Oct. 31, 2012, which claims priority to U.S. Provisional Application No. 61/553,906, filed Oct. 31, 2011, the entire contents of which are incorporated herein by reference. On Oct. 30, 2012, International Application PCT/IB/2012/002422 was also filed with the same title, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61553906 Oct 2011 US
Continuations (2)
Number Date Country
Parent 14528616 Oct 2014 US
Child 15995954 US
Parent 13665404 Oct 2012 US
Child 14528616 US