Methods for the inhibition of respiratory syncytial virus transmission

Information

  • Patent Grant
  • 6440656
  • Patent Number
    6,440,656
  • Date Filed
    Tuesday, June 7, 1994
    30 years ago
  • Date Issued
    Tuesday, August 27, 2002
    22 years ago
Abstract
Fusion of the viral envelope, or infected cell membranes with uninfected cell membranes, is an essential step in the viral life cycle. Recent studies involving the human immunodeficiency virus type 1 (HIV-1) demonstrated that synthetic peptides (designated DP-107 and DP-178) derived from potential helical regions of the transmembrane (TM) protein, gp41, were potent inhibitors of viral fusion and infection. A computerized antiviral searching technology (C.A.S.T.) that detects related structural motifs (e.g., ALLMOTI5, 107×178×4, and PLZIP) in other viral proteins was employed to identify similar regions in the respiratory syncytial virus (RSV). Several conserved heptad repeat domains that are predicted to form coiled-coil structures with antiviral activity were identified in the RSV genome. Synthetic peptides of 16 to 39 amino acids derived from these regions were prepared and their antiviral activities assessed in a suitable in vitro screening assay. These peptides proved to be potent inhibitors of RSV fusion. Based upon their structural and functional equivalence to the known HIV-1 inhibitors DP-107 and DP-178, these peptides should provide a novel approach to the development of targeted therapies for the treatment of RSV infections.
Description




1. INTRODUCTION




The present invention relates to DP-178 (SEQ ID:1), a peptide corresponding to amino acids 638 to 673 of the HIV-1


LAI


transmembrane protein (TM) gp41, and portions, analogs, and homologs of DP-178 (SEQ ID:1), all of which exhibit anti-viral activity. Such anti-viral activity includes, but is not limited to, the inhibition of HIV transmission to uninfected CD-4


+


cells. Further, the invention relates to the use of DP-178 (SEQ ID:1) and DP-178 fragments and/or analogs or homologs as inhibitors of human and non-human retroviral, especially HIV, transmission to uninfected cells. Still further, the invention relates to the use of DP-178 as a HIV subtype-specific diagnostic. The present invention also relates to antiviral peptides analogous to DP-107, a peptide corresponding to amino acids 558 to 595 of the HIV-1


LAI


transmembrane protein (TM) gp41, that are present in other enveloped viruses. The present invention further relates to methods for identifying antiviral compounds that disrupt the interaction between DP-178 and DP-107, and/or between DP-107-like and DP-178-like peptides. The invention is demonstrated by way of a working example wherein DP-178 (SEQ ID:1), and a peptide whose sequence is homologous to DP-178 are each shown to be potent, non-cytotoxic inhibitors of HIV-1 transfer to uninfected CD-4


+


cells. The invention is further demonstrated by working examples wherein peptides having antiviral and/or structural similarity to DP-107 and DP-178 are identified.




2. BACKGROUND OF THE INVENTION




2.1. The Human Immenodeficiency Virus




The human immunodeficiency virus (HIV) has been implicated as the primary cause of the slowly degenerative immune system disease termed acquired immune deficiency syndrome (AIDS) (Barre-Sinoussi, F. et al., 1983, Science 220:868-870; Gallo, R. et al., 1984, Science 224:500-503). there are at least two distinct types of HIV: HIV-1 (Barre-Sinoussi, F. et al., 1983, Science 220:868-870; Gallo R. et al., 1984, Science 224:500-503) and HIV-2 (Clavel, F. et al., 1986, Science 233:343-346; Guyader, M. et al., 1987, Nature 326:662-669). Further, a large amount of genetic heterogeneity exists within populations of each of these types. Infection of human CD-4


+


T-lymphocytes with an HIV virus leads to depletion of the cell type and eventually to opportunistic infections, neurological dysfunctions, neoplastic growth, and ultimately death.




HIV is a member of the lentivirus family of retroviruses (Teich, N. et al., 1984, RNA Tumor Viruses, Weiss, R. et al., eds., CSH-Press, pp. 949-956). Retroviruses are small enveloped viruses that contain a diploid, single-stranded RNA genome, and replicate via a DNA intermediate produced by a virally-encoded reverse transcriptase, an RNA-dependent DNA polymerase. (Varmus, H., 1988, Science 240:1427-1439). Other retroviruses include, for example, oncogenic viruses such as human T-cell leukemia viruses (HTLV-I,-II,-III), and feline leukemia virus.




The HIV viral particle consists of a viral core, composed of capsid proteins, that contains the viral RNA genome and those enzymes required for early replicative events. Myristylated Gag protein forms an outer viral shell around the viral core, which is, in turn, surrounded by a lipid membrane envelope derived from the infected cell membrane. The HIV envelope surface glycoproteins are synthesized as a single 160 Kd precursor protein which is cleaved by a cellular S protease during viral budding into two glycoproteins, gp41 and gp120. gp41 is a transmembrane protein and gp120 is an extracellular protein which remains non-covalently associated with gp41, possibly in a trimeric or multimeric form (Hammarskjold, M. and Rekosh, D., 1989, Biochem. Biophys. Acta 989:269-280).




HIV is targeted to CD-4


+


cells because the CD-4 cell surface protein acts as the cellular receptor for the HIV-1 virus (Dalgleish, A. et al., 1984, Nature 312:763-767; Klatzmann et al., 1984, Nature 312:767-768; Maddon et al., 1986, Cell 47:333-348). Viral entry into cells is dependent upon gp120 binding the cellular CD-4


+


receptor molecules (McDougal, J. S. et al., 1986, Science 231:382-385; Maddon, P. J. et al., 1986, Cell 47:333-348) and thus explains HIV's tropism for CD-4


+


cells, while gp41 anchors the envelope glycoprotein complex in the viral membrane.




2.2. HIV Treatment




HIV infection is pandemic and HIV associated diseases represent a major world health problem. Although considerable effort is being put into the successful design of effective therapeutics, currently no curative anti-retroviral drugs against AIDS exist. In attempts to develop such drugs, several stages of the HIV life cycle have been considered as targets for therapeutic intervention (Mitsuya, H. et al., 1991, FASEB J. 5:2369-2381). For example, virally encoded reverse transcriptase has been one focus of drug development. A number of reverse-transcriptase-targeted drugs, including 2′,3′-dideoxynucleoside analogs such as AZT, ddI, ddC, and d4T have been developed which have been shown to been active against HIV (Mitsuya, H. et al., 1991, Science 249:1533-1544). While beneficial, these nucleoside analogs are not curative, probably due to the rapid appearance of drug resistant HIV mutants (Lander, B. et al., 1989, Science 243:1731-1734). In addition, the drugs often exhibit toxic side effects such as bone marrow suppression, vomiting, and liver function abnormalities.




Attempts are also being made to develop drugs which can inhibit viral entry into the cell, the earliest stage of HIV infection. Here, the focus has thus far been on CD4, the cell surface receptor for HIV. Recombinant soluble CD4, for example, has been shown to inhibit infection of CD-4


+


T-cells by some HIV-1 strains (Smith, D. H. et al., 1987, Science 238:1704-1707). Certain primary HIV-1 isolates, however, are relatively less sensitive to inhibition by recombinant CD-4 (Daar, E. et al., 1990, Proc. Natl. Acad. Sci. USA 87:6574-6579). In addition, recombinant soluble CD-4 clinical trials have produced inconclusive results (Schooley, R. et al., 1990, Ann. Int. Med. 112:247-253; Kahn, J. O. et al., 1990, Ann. Int. Med. 112:254-261; Yarchoan, R. et al., 1989, Proc. Vth Int. Conf. on AIDS, p. 564, MCP 137).




The late stages of HIV replication, which involve crucial virus-specific secondary processing of certain viral proteins, have also been suggested as possible anti-HIV drug targets. Late stage processing is dependent on the activity of a viral protease, and drugs are being developed which inhibit this protease (Erickson, J., 1990, Science 249:527-533). The clinical outcome of these candidate drugs is still in question.




Attention is also being given to the development of vaccines for the treatment of HIV infection. The HIV-1 envelope proteins (gp160, gp120, gp41) have been shown to be the major antigens for anti-HIV antibodies present in AIDS patients (Barin, et al., 1985, Science 228:1094-1096). Thus far, therefore, these proteins seem to be the most promising candidates to act as antigens for anti-HIV vaccine development. To this end, several groups have begun to use various portions of gp160, gp120, and/or gp41 as immunogenic targets for the host immune system. See for example, Ivanoff, L. et al., U.S. Pat. No. 5,141,867; Saith, G. et al., WO 92/22,654; Shafferman, A., WO 91/09,872; Formoso, C. et al., WO 90/07,119. Clinical results concerning these candidate vaccines, however, still remain far in the future.




Thus, although a great deal of effort is being directed to the design and testing of anti-retroviral drugs, a truly effective, non-toxic treatment is still needed.




3. SUMMARY OF THE INVENTION




The present invention relates to DP-178 (SEQ ID:1), a 36-amino acid synthetic peptide corresponding to amino acids 638 to 673 of the transmembrane protein (TM) gp41 from the HIV-1 isolate LAI, which exhibits potent anti-HIV-1 activity. As evidenced by the example presented below, in Section 6, the DP-178 (SEQ ID:1) anti-viral activity is so high that, on a weight basis, no other known anti-HIV agent is effective at concentrations as low as those at which DP-178 (SEQ ID:1) exhibits its inhibitory effects. The invention further relates to those portions, analogs, and homologs of DP-178 which also show such antiviral activity. The antiviral activity of such DP-178 portions, analogs, and homologs, includes, but is not limited to the inhibition of HIV transmission to uninfected CD-4


+


cells. The invention relates to the use of DP-178 (SEQ ID:1) and DP-178 fragments and/or analogs or homologs. Such uses may include, but are not limited to, the use of the peptides as inhibitors of human and non-human retroviral, especially HIV, transmission to uninfected cells, and as type and/or subtype-specific diagnostic tools.




An embodiment of the invention is demonstrated below wherein an extremely low concentration of DP-178 (SEQ ID:1), and very low concentrations of a DP-178 homolog (SEQ ID:3) are shown to be potent inhibitors of HIV-1 mediated CD-4


+


cell-cell fusion (i.e., syncytial formation) and infection of CD-4


+


cells by cell-free virus. Further, it is shown that DP-178 (SEQ ID:1) is not toxic to cells, even at concentrations 3 logs higher than the inhibitory DP-178 (SEQ ID:1) concentration.




The invention also relates to analogous DP178 peptides in other enveloped viruses that demonstrate similar antiviral properties.




The invention further relates to peptides analogous to DP-107 (SEQ ID NO:25), a peptide corresponding to amino acids 558-595 of the HIV-1


LAI


transmembrane protein (TM) of gp41, that are present in other enveloped viruses, and demonstrate antiviral properties. The present invention is based, in part, on the surprising discovery that the DP-107 and DP-108 domains of the gp41 protein non-covalently complex with each other, and that their interaction is necessary for the normal activity of the virus. The invention, therefore, further relates to methods for identifying antiviral compounds that disrupt the interaction between DP-107 and DP-178, and/or between DP-107-like and DP-178-like peptides.




Embodiments of the invention are demonstrated, below, wherein peptides having structural and/or similarity to DP-107 and DP-178 are identified.




3.1. Definitions




Peptides are defined herein as organic compounds comprising two or more amino acids covalently joined by peptide bonds. Peptides may be referred to with respect to the number of constituent amino acids, i.e., a dipeptide contains two amino acid residues, a tripeptide contains three, etc. Peptides containing ten or fewer amino acids may be referred to as oligopeptides, while those with more than ten amino acid residues are polypeptides.




Peptide sequences defined herein are represented by one-letter symbols for amino acid residues as follows:




A (alanine)




R (arginine)




N (asparagine)




D (aspartic acid)




C (cysteine)




Q (glutamine)




E (glutamic acid)




G (glycine)




H (histidine)




I (isoleucine)




L (leucine)




K (lysine)




M (methionine)




F (phenylalanine)




P (proline)




S (serine)




T (threonine)




W (tryptophan)




Y (tyrosine)




V (valine)











4. BRIEF DESCRIPTION OF THE FIGURES




FIG.


1


. Amino acid sequence of DP-178 (SEQ ID:1) derived from HIV


LAI


; DP-178 homologs derived from HIV-1


SF2


(DP-185; SEQ ID:3), HIV-1


RF


(SEQ ID:4), and HIV-1


MN


(SEQ ID:5); DP-178 homologs derived from amino acid sequences of two prototypic HIV-2 isolates, namely, HIV-2


rod


(SEQ ID:6) and HIV-2


NIHZ


(SEQ ID:7); control peptides: DP-180 (SEQ ID:2), a peptide incorporating the amino acid residues of DP-178 in a scrambled sequence; DP-118 (SEQ ID:10) unrelated to DP-178, which inhibits HIV-1 cell free virus infection; DP-125 (SEQ ID:8), unrelated to DP-178, was also previously shown to-inhibit HIV-1 cell free virus infection (Wild et al., 1992, Proc. Natl. Acad. Sci USA 89:10,537-10,541); DP-116 (SEQ ID:9), unrelated to DP-178 had previously been shown to be negative for inhibition of HIV-1 infection using the cell-free virus infection assay (Wild, et al., 1992, Proc. Natl. Acad. Sci USA 89:10,537-10,541). Throughout the figures, the one letter amino acid code is used.




FIG.


2


. Inhibition of HIV-1 cell-free virus infection by synthetic peptides. IC50 refers to the concentration of peptide that inhibits RT production from infected cells by 50% compared to the untreated control. Control: the level of RT produced by untreated cell cultures infected with the same level of virus as treated cultures.




FIG.


3


. Inhibition of HIV-1 and HIV-2 cell-free virus infection by the synthetic peptide DP-178 (SEQ ID:1). IC50: concentration of peptide that inhibits RT production by 50% compared to the untreated control. Control: Level of RT produced by untreated cell cultures infected with the same level of virus as treated cultures.




FIG.


4


A. Fusion Inhibition Assay. DP-178 (SEQ ID:1) inhibition of HIV-1 prototypic isolate-mediated syncytia formation. Data represents the number of virus-induced syncytia per cell.




FIG.


4


B. Fusion Inhibition Assay. DP-180 (SEQ ID:2): scrambled control peptide. DP-185 (SEQ ID:3): DP-178 homolog derived from HIV-1


SF2


isolate. Control: number of syncytia produced in the absence of peptide.




FIG.


5


. Fusion inhibition assay: HIV-1 vs. HIV-2. Data represents the number of virus-induced syncytia per well. ND: not done.




FIG.


6


. Cytotoxicity study of DP-178 (SEQ ID:1) and DP-116 (SEQ ID:9) on CEM cells. Cell proliferation data is shown.




FIG.


7


. Schematic representation of HIV-gp41 and maltose binding protein (MBP)-gp41 fusion proteins. DP107 and DP178 are synthetic peptides based on the two putative helices of gp41. The letter P in the DP107 boxes denotes an Ile to Pro mutation at amino acid number 578. Amino acid residues are numbered according to Meyers et al., Human Retroviruses and AIDS, 1991, Theoret. Biol. and Biophys. Group, Los Alamos Natl. Lab., Los Alamos, N.Mex.





FIG. 8. A

point mutation alters the conformation and anti-HIV activity of M41.




FIG.


9


. Abrogation of DP178 anti-HIV activity. Cell fusion assays were carried out in the presence of 10 nM DP178 and various concentrations of M41Δ178 or M41PΔ178.




FIG.


10


. Binding of DP178 to leucine zipper of gp41 analyzed by ELISA.





FIGS. 11A-B

. Models for a structural transition in the HIV-1 TM protein. Two models are proposed which indicate a structural transition from a native oligomer to a fusogenic state following a trigger event (possibly gp120 binding to CD4). Common features of both models include (1) the native state is held together by noncovalent protein-protein interactions to form the heterodimer of gp120/41 and other interactions, principally though gp41 interactive sites, to form homo-oligomers on the virus surface of the gp120/41 complexes; (2) shielding of the hydrophobic fusogenic peptide at the N-terminus (F) in the native state; and (3) the leucine zipper domain (DP107) exists as a homo-oligomer coiled coil only in the fusogenic state. The major differences in the two models include the structural state (native or fusogenic) in which the DP107 and DP178 domains are complexed to each other. In the first model (A;

FIG. 11A

) this interaction occurs in the native state and in B during the fusogenic state. When triggered, the fusion complex in the model depicted in (A) is generated through formation of coiled-coil interactions in homologous DP107 domains resulting in an extended α-helix. This conformational change positions the fusion peptide for interaction with the cell membrane. In the second model (B; FIG.


11


B), the fusogenic complex is stabilized by the association of the DP178 domain with the DP107 coiled-coil.




FIG.


12


. Motif design using heptad repeat positioning of amino acids of known coiled-coils.




FIG.


13


. Motif design using proposed heptad repeat positioning of amino acids of DP-107 and DP-178.




FIG.


14


. Hybrid motif design crossing GCN4 and DP-107.




FIG.


15


. Hybrid motif design crossing GCN4 and DP-178.




FIG.


16


. Hybrid motif design 107×178×4, crossing DP-107 and DP-178. This motif was found to be the most consistent at identifying relevant DP-107-like and DP-178-like peptide regions.




FIG.


17


. Hybrid motif design ALLMOTI5, crossing GCN4, DP-107, and DP-178.




FIG.


18


. Hybrid motif design crossing GCN4, DP-107, DP-178, c-Fos c-Jun, c-Myc, and Flu Loop 36.




FIG.


19


. Motifs designed to identify N-terminal proline-leucine zipper motifs.




FIG.


20


. Search results (SEQ ID NO:26) for HIV-1 (BRU isolate) envelope protein gp41. Sequence search motif designations: Spades (): 107×178×4; Hearts (♥) ALLMOTI5; Clubs (): PLZIP; Diamonds (♦): transmembrane region (the putative transmembrane domains were identified using a PC/Gene program designed to search for such peptide regions). Asterisk (*): Lupas method. The amino acid sequences identified by each motif are bracketed by the respective characters. Representative sequences chosen based on all searches are underlined and in bold. DP-107 and DP-178 sequences are marked, and additionally double-underlined and italicized.




FIG.


21


. Search results (SEQ ID NO:27) for human respiratory syncytial virus (RSV) strain A2 fusion glycoprotein F1. Sequence search motif designations are as in FIG.


20


.




FIG.


22


. Search results (SEQ ID NO:28) for simian immunodeficiency virus (SIV) envelope protein gp41 (AGM3 isolate). Sequence search motif designations are as in FIG.


20


.




FIG.


23


. Search results (SEQ ID NO:29) for canine distemper virus (strain Onderstepoort) fusion glycoprotein 1. Sequence search motif designations are as in FIG.


20


.




FIG.


24


. Search results (SEQ ID NO:30) for newcastle disease virus (strain Australia-Victoria/32) fusion glycoprotein F1. Sequence search motif designations are as in FIG.


20


.




FIG.


25


. Search results (SEQ ID NO:31) for human parainfluenza 3 virus (strain NIH 47885) fusion glycoprotein F1. Sequence search motif designations are as in FIG.


20


.




FIG.


26


. Search results (SEQ ID NO:32) for influenza A virus (strain A/AICHI/2/68) hemagglutinin precursor HA2. Sequence search designations are as in FIG.


20


.




FIG.


27


. Coiled-coil structural similarity and anti-RSV antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 48-amino acid RSV F2 peptide (SEQ ID NO:33) which spans sequences identified utilizing the computer-assisted searches described herein. For the exact location and motifs utilized, see FIG.


21


. “+” symbols are relative indicators of either structural similarity or antiviral activity, with a greater number of “+” symbols indicating a higher relative similarity or antiviral activity.




FIG.


28


. Coiled-coil structural similarity and anti-RSV antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 53-amino acid RSV F1 peptide (SEQ ID NO:34) which spans sequences identified utilizing the computer-assisted searches described herein. See

FIG. 21

for the exact location and motifs used. “+” symbols are as described for FIG.


27


.




FIG.


29


. Coiled-coil structural similarity and anti-human parainfluenza 3 virus (HPF3) antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 56-amino acid HPF3 peptide (SEQ ID NO:35) which spans sequences identified utilizing computer-assisted searches described herein. For the exact location and motifs utilized, see FIG.


25


. “+” symbols are as described in FIG.


27


.




FIG.


30


. Coiled-coil structural similarity and anti-HPF3 antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 70-amino acid HPF3 peptide (SEQ ID NO:36) which spans sequences identified utilizing the computer-assisted searches described herein. For the exact location and motifs utilized, see FIG.


25


. “+” symbols are as described in FIG.


27


.











5. DETAILED DESCRIPTION OF THE INVENTION




Described herein are peptides that exhibit potent antiviral activity. These peptides include DP-178 (SEQ ID:1), a gp41-derived 36 amino acid peptide, fragments and/or analogs of DP-178, and peptides which are homologous to DP-178. In addition, these peptides may include peptides exhibiting anti-viral activity which are analogous to DP-107, a 38 amino acid peptide corresponding to residues 558 to 595 of the HIV-1


LAI


transmembrane (TM) gp41 protein, and which are present in other enveloped viral proteins. Also described here are assays for testing the antiviral activities of such peptides. The present invention is based, in part, of the surprising discovery that the DP-107 and DP-178 domains of the gp41 protein complex with each other via non-covalent protein-protein interactions which are necessary for normal activity of the virus. As such, methods are described for the identification of antiviral compounds that disrupt the interaction between DP-107 and DP-178 peptides, and between DP-107-like and DP-178-like peptides. Finally, the use of the peptides of the invention as inhibitors of non-human and human viral and retroviral, especially HIV, transmission are detailed, as is the use of the peptides as diagnostic indicators of the presence of specific, viruses, especially retroviruses.




While not limited to any theory of operation, the following model is proposed to explain the potent anti-HIV activity of DP178, based, in part, on the experiments described in the working examples, infra. In the viral protein, gp41, DP178 corresponds to a putative α-helix region located in the C-terminal end of the gp41 ectodomain, and appears to associate with a distal site on gp41 whose interactive structure is influenced by the leucine zipper motif, a coiled-coil structure, referred to as DP107. The association of these two domains may reflect a molecular linkage or “molecular clasp” intimately involved in the fusion process. It is of interest that mutations in the C-terminal α-helix motif of gp41 (i.e., the D178 domain) tend to enhance the fusion ability of gp41, whereas mutations in the leucine zipper region (i.e., the DP107 domain) decrease or abolish the fusion ability of the viral protein. It may be that the leucine zipper motif is involved in membrane fusion while the C-terminal α-helix motif serves as a molecular safety to regulate the availability of the leucine zipper during virus-induced membrane fusion.




On the basis of the foregoing, two models are proposed of gp41-mediated membrane fusion which are schematically shown in

FIG. 11A-B

. The reason for proposing two models is that the temporal nature of the interaction between the regions defined by DP 107 and DP178 cannot, as yet, be pinpointed. Each model envisions two conformations for gp41-one in a “native” state as it might be found on a resting virion. The other in a “fusogenic” state to reflect conformational changes triggered following binding of gp120 to CD4 and just prior to fusion with the target cell membrane. The strong binding affinity between gp120 and CD4 may actually represent the trigger for the fusion process obviating the need for a pH change such as occurs for viruses that fuse within intracellular vesicles. The two major features of both models are: (1) the leucine zipper sequences (DP107) in each chain of oligomeric envelope are held apart in the native state and are only allowed access to one another in the fusogenic state so as to form the extremely stable coiled-coils, and (2) association of the DP178 and DP107 sites as they exist in gp41 occur either in the native or fusogenic state.

FIG. 11A

depicts DP178/DP107 interaction in the native state as a molecular class. On the other hand, if one assumes that the most stable form of the envelope occurs in the fusogenic state, the model in

FIG. 11B

can be considered.




When synthesized as peptides, both DP107 and DP178 are potent inhibitors of HIV infection and fusion, probably by virtue of their ability to form complexes with viral gp41 and interfere with its fusogenic process; e.g., during the structural transition of the viral protein from the native structure to the fusogenic state, the DP178 and DP107 peptides may gain access to their respective binding sites on the viral gp41, and exert a disruptive influence. DP107 peptides which demonstrate anti-HIV activity are described in-Applicants' co-pending application Ser. No. 07/927,532, filed Aug. 7, 1992, which is incorporated by reference herein in its entirety.




As shown in the working examples, infra, a truncated recombinant gp41 protein corresponding the ectodomain of gp41 containing both DP107 and DP178 domains (excluding the fusion peptide, transmembrane region and cytoplasmic domain of gp41) did not inhibit HIV-1 induced fusion. However, when a single mutation was introduced to disrupt the coiled-coil structure of the DP107 domain—a mutation which results in a total loss of biological activity of DP107 peptides—the inactive recombinant protein was transformed to an active inhibitor of HIV-1 induced fusion. This transformation may result from liberation of the potent DP178 domain from a molecular clasp with the leucine zipper, DP107 domain.




For clarity of discussion, the invention will be described for DP178 peptide inhibitors of HIV. However, the principles may be analogously applied to other fusogenic enveloped viruses, including but not limited to those viruses containing the peptides listed in Tables V through X, below.




5.1. DP-178 and DP-178-like Peptides




The peptide DP-178 (SEQ ID:1) of the invention corresponds to amino acid residues 638 to 673 of the transmembrane protein gp41 from the HIV-1


LAI


isolate, and has the 36 amino acid sequence (reading from amino to carboxy terminus):




NH


2


-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-COOH (SEQ ID: 1)




In addition to the full-length DP-178 (SEQ ID:1) 36-mer, the peptides of the invention may include truncations of the DP-178 (SEQ ID:1) peptide which exhibit antiviral activity. Such truncated DP-178 (SEQ ID:1) peptides may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36-mer polypeptide), and may include but are not limited to those listed in Tables I and II, below. Peptide sequences in these tables-are listed from amino (left) to carboxy (right) terminus. “X” may represent an amino group (—NH


2


) and “Z” may represent a carboxyl (—COOH) group. Alternatively, as described below, “X” and/or “Z” may represent a hydrophobic group, an acetyl group, a FMOC group, an amido group, or a covalently attached macromolecule.












TABLE I









DP-178 (SEQ ID:1) CARBOXY TRUNCATIONS

























X-YTS-Z







X-YTSL-Z







X-YTSLI-Z







X-YTSLIH-Z







X-YTSLIHS-Z







X-YTSLIHSL-Z







X-YTSLIHSLI-Z







X-YTSLIHSLIE-Z







X-YTSLIHSLIEE-Z







X-YTSLIHSLIEES-Z







X-YTSLIHSLIEESQ-Z







X-YTSLIHSLIEESQN-Z







X-YTSLIHSLIEESQNQ-Z







X-YTSLIHSLIEESQNQQ-Z







X-YTSLIHSLIEESQNQQE-Z







X-YTSLIHSLIEESQNQQEK-Z







X-YTSLIHSLIEESQNQQEKN-Z







X-YTSLIHSLIEESQNQQEKNE-Z







X-YTSLIHSLIEESQNQQEKNEQ-Z







X-YTSLIHSLIEESQNQQEKNEQE-Z







X-YTSLIHSLIEESQNQQEKNEQEL-Z







X-YTSLIHSLIEESQNQQEKNEQELL-Z







X-YTSLIHSLIEESQNQQEKNEQELLE-Z







X-YTSLIHSLIEESQNQQEKNEQELLEL-Z







X-YTSLIHSLIEESQNQQEKNEQELLELD-Z







X-YTSLIHSLIEESQNQQEKNEQELLELDK-Z







X-YTSLIHSLIEESQNQQEKNEQELLELDKW-Z







X-YTSLIHSLIEESQNQQEKNEQELLELDKWA-Z







X-YTSLIHSLIEESQNQQEKNEQELLELDKWAS-Z







X-YTSLIHSLIEESQNQQEKNEQELLELDKWASL-Z







X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLW-Z







X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWN-Z







X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNW-Z







X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z













The one letter amino acid code is used.











Additionally,











“X” may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.











“Z” may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.





















TABLE II









DP-178 (SEQ ID:1) AMINO TRUNCATIONS

























                                 X-NWF-Z







                                X-WNWF-Z







                               X-LWNWF-Z







                              X-SLWNWF-Z







                             X-ASLWNWF-Z







                            X-WASLWNWF-Z







                           X-KWASLWNWF-Z







                          X-DKWASLWNWF-Z







                         X-LDKWASLWNWF-Z







                        X-ELDKWASLWNWF-Z







                       X-LELDKWASLWNWF-Z







                      X-LLELDKWASLWNWF-Z







                     X-ELLELDKWASLWNWF-Z







                    X-QELLELDKWASLWNWF-Z







                   X-EQELLELDKWASLWNWF-Z







                  X-NEQELLELDKWASLWNWF-Z







                 X-KNEQELLELDKWASLWNWF-Z







                X-EKNEQELLELDKWASLWNWF-Z







               X-QEKNEQELLELDKWASLWNWF-Z







              X-QQEKNEQELLELDKWASLWNWF-Z







             X-NQQEKNEQELLELDKWASLWNWF-Z







            X-QNQQEKNEQELLELDKWASLWNWF-Z







           X-SQNQQEKNEQELLELDKWASLWNWF-Z







          X-ESQNQQEKNEQELLELDKWASLWNWF-Z







         X-EESQNQQEKNEQELLELDKWASLWNWF-Z







        X-IEESQNQQEKNEQELLELDKWASLWNWF-Z







       X-LIEESQNQQEKNEQELLELDKWASLWNWF-Z







      X-SLIEESQNQQEKNEQELLELDKWASLWNWF-Z







     X-HSLIEESQNQQEKNEQELLELDKWASLWNWF-Z







    X-IHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z







   X-LIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z







  X-SLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z







 X-TSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z







X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z













The one letter amino acid code is used.











Additionally,











“X” may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.











“Z” may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.













The antiviral peptides of the invention also include analogs of DP-178 and/or DP-178 truncations which may include, but are not limited to, peptides comprising the DP-178 (SEQ ID:1) sequence, or DP-178 truncated sequence, containing one or more amino acid substitutions, insertions and/or deletions. Analogs of DP-178 homologs, described below, are also within the scope of the invention. The DP-178 analogs of the invention exhibit antiviral activity, and may, further, possess additional advantageous features, such as, for example, increased bioavailability, and/or stability, or reduced host immune recognition.




HIV-1 and HIV-2 envelope proteins are structurally distinct, but there exists a striking amino acid conservation within the DP-178-corresponding regions of HIV-1 and HIV-2. The amino acid conservation is of a periodic nature, suggesting some conservation of structure and/or function. Therefore, one possible class of amino acid substitutions would include those amino acid changes which are predicted to stabilize the structure of the DP-178 peptides of the invention.




Amino acid substitutions may be of a conserved or non-conserved nature. Conserved amino acid substitutions consist of replacing one or more amino acids of the DP-178 (SEQ ID:1) peptide sequence with amino acids of similar charge, size, and/or hydrophobicity characteristics, such as, for example, a glutamic acid (E) to aspartic acid (D) amino acid substitution. When only conserved substitutions are made, the resulting peptide is functionally equivalent to DP-178 (SEQ ID:1) or the DP-178 peptide from which it is derived. Non-conserved substitutions consist of replacing one or more amino acids of the DP-178 (SEQ ID:1) peptide sequence with amino acids possessing dissimilar charge, size, and/or hydrophobicity characteristics, such as, for example, a glutamic acid (E) to valine (V) substitution.




Amino acid insertions may consist of single amino acid residues or stretches of residues ranging from 2 to 15 amino acids in length. One or more insertions may be introduced into DP-178 (SEQ ID:1), DP-178 fragments, analogs and/or DP-178 homologs (described below).




Deletions of DP-178 (SEQ ID:1), DP-178 fragments, analogs, and/or DP-178 homologs (described below) are also within the scope of the invention. Such deletions consist of the removal of one or more amino acids from the DP-178 or DP-178-like peptide sequence, with the lower limit length of the resulting peptide sequence being 4 to 6 amino acids. Such deletions may involve a single contiguous or greater than one discrete portion of the peptide sequences.




The peptides of the invention may further include homologs of DP-178 (SEQ ID:1) and/or DP-178 truncations which exhibit antiviral activity. Such DP-178 homologs are peptides whose amino acid sequences are comprised of the amino acid sequences of peptide regions of other (i.e., other than HIV-1


LAI


) viruses that correspond to the gp41 peptide region from which DP-178 (SEQ ID:1) was derived. Such viruses may include, but are not limited to, other HIV-1 isolates and HIV-2 isolates. DP-178 homologs derived from the corresponding gp41 peptide region of other (i.e., non HIV-1


LAI


) HIV-1 isolates may include, for example, peptide sequences as shown below.




NH


2


-YT


NT


I


YT


L


L


EESQNQQEKNEQELLELDKWASLWNWF-COOH (DP-185; SEQ ID:3);




NH


2


-YT


GI


I


YN


L


L


EESQNQQEKNEQELLELDKWA


N


LWNWF-COOH (SEQ ID:4);




NH


2


-YTSLI


Y


SL


L


E


K


SQIQQEKNEQELLELDKWASLWNWF-COOH (SEQ ID:5).




SEQ ID:3 (DP-185), SEQ ID:4, and SEQ ID:5 are derived from-HIV-1


SF2


, HIV-1


RF


, and HIV-1


MN


isolates, respectively. Underlined amino acid residues refer to those residues that differ from the corresponding position in the DP-178 (SEQ ID:1) peptide. One such DP-178 homolog, DP-185 (SEQ ID:3), is described in the Working Example presented in Section 6, below, where it is demonstrated that DP-185 (SEQ ID:3) exhibits antiviral activity. The DP-178 homologs of the invention may also include truncations, amino acid substitutions, insertions, and/or deletions, as described above.




In addition, striking similarities, as shown in

FIG. 1

, exist within the regions of HIV-1 and HIV-2 isolates which correspond to the DP-178 sequence. A DP-178 homolog derived from the HIV-2


NIHZ


. isolate has the 36 amino acid sequence (reading from amino to carboxy terminus):




NH


2


-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-COOH (SEQ ID:7)




Table III and Table IV show some possible truncations of the HIV-2


NIHZ


DP-178 homolog, which may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36-mer polypeptide). Peptide sequences in these tables are listed from amino (left) to carboxy (right) terminus. “X” may represent an amino group (—NH


2


) and “Z” may represent a carboxyl (—COOH) group. Alternatively, as described below, “X” and/or “Z” may represent a hydrophobic group, an acetyl group, a FMOC group, an amido group, or a covalently attached macromolecule, as described below.












TABLE III









HIV-2


NIHZ


DP-178 homolog carboxy truncations.

























X-LEA-Z







X-LEAN-Z







X-LEANI-Z







X-LEANIS-Z







X-LEANISQ-Z







X-LEANISQS-Z







X-LEANISQSL-Z







X-LEANISQSLE-Z







X-LEANISQSLEQ-Z







X-LEANISQSLEQA-Z







X-LEANISQSLEQAQ-Z







X-LEANISQSLEQAQI-Z







X-LEANISQSLEQAQIQ-Z







X-LEANISQSLEQAQIQQ-Z







X-LEANISQSLEQAQIQQE-Z







X-LEANISQSLEQAQIQQEK-Z







X-LEANISQSLEQAQIQQEKN-Z







X-LEANISQSLEQAQIQQEKNM-Z







X-LEANISQSLEQAQIQQEKNMY-Z







X-LEANISQSLEQAQIQQEKNMYE-Z







X-LEANISQSLEQAQIQQEKNMYEL-Z







X-LEANISQSLEQAQIQQEKNMYELQ-Z







X-LEANISQSLEQAQIQQEKNMYELQK-Z







X-LEANISQSLEQAQIQQEKNMYELQKL-Z







X-LEANISQSLEQAQIQQEKNMYELQKLN-Z







X-LEANISQSLEQAQIQQEKNMYELQKLNS-Z







X-LEANISQSLEQAQIQQEKNMYELQKLNSW-Z







X-LEANISQSLEQAQIQQEKNMYELQKLNSWD-Z







X-LEANISQSLEQAQIQQEKNMYELQKLNSWDV-Z







X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVF-Z







X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFT-Z







X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTN-Z







X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNW-Z







X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z













The one letter amino acid code is used.











Additionally,











“X” may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.











“Z” may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.





















TABLE IV









HIV-2


NIHZ


DP-178 homolog amino truncations.

























                                 X-NWL-Z







                                X-TNWL-Z







                               X-FTNWL-Z







                              X-VFTNWL-Z







                             X-DVFTNWL-Z







                            X-WDVFTNWL-Z







                           X-SWDVFTNWL-Z







                          X-NSWDVFTNWL-Z







                         X-LNSWDVFTNWL-Z







                        X-KLNSWDVFTNWL-Z







                       X-QKLNSWDVFTNWL-Z







                      X-LQKLNSWDVFTNWL-Z







                     X-ELQKLNSWDVFTNWL-Z







                    X-YELQKLNSWDVFTNWL-Z







                   X-MYELQKLNSWDVFTNWL-Z







                  X-NMYELQKLNSWDVFTNWL-Z







                 X-KNMYELQKLNSWDVFTNWL-Z







                X-EKNMYELQKLNSWDVFTNWL-Z







               X-QEKNMYELQKLNSWDVFTNWL-Z







              X-QQEKNMYELQKLNSWDVFTNWL-Z







             X-IQQEKNMYELQKLNSWDVFTNWL-Z







            X-QIQQEKNMYELQKLNSWDVFTNWL-Z







           X-AQIQQEKNMYELQKLNSWDVFTNWL-Z







          X-QAQIQQEKNMYELQKLNSWDVFTNWL-Z







         X-EQAQIQQEKNMYELQKLNSWDVFTNWL-Z







        X-LEQAQIQQEKNMYELQKLNSWDVFTNWL-Z







       X-SLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z







      X-QSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z







     X-SQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z







    X-ISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z







   X-NISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z







  X-ANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z







 X-EANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z







X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z













The one letter amino acid code is used.











Additionally,











“X” may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.











“Z” may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.













5.2. DP-107 and DP-178 Analogous Antiviral Peptides




Peptide sequences functionally corresponding, and thus analogous to, the DP-178 sequences of the invention, described, above, in Section 5.1 may be found in other, non-HIV-1 envelope viruses. Further, peptide sequences functionally corresponding, and thus analogous to, DP-107, an HIV-1-derived antiviral peptide, may also be found in other, non-HIV-1 envelope viruses. DP-107 is a 38 amino acid peptide corresponding to residues 558 to 595 of HIV-1


LAI


transmembrane (TM) gp41 protein, which exhibits potent anti-viral activity. DP-107 is more fully described in Applicant's co-pending U.S. patent application Ser. No. 07/927,532. These DP-107-like and DP-178-like analogous peptides and present in TM proteins of envelope viruses and preferably exhibit antiviral activity, most preferably antiviral activity which is specific to the virus in which their native sequences are found.




DP-107-like and DP-178-like peptides may be identified, for example, by utilizing a computer-assisted search strategy such as that described and demonstrated, below, in the Examples presented in Sections 9 through 16. The search strategy identifies regions in other viruses that are similar in predicted secondary structure to DP-107 and DP-178.




This search strategy is described fully, below, in the Example presented in Section 9. While this search strategy is based, in part, on a primary amino acid motif deduced from DP-107 and DP-178, it is not based solely on searching for primary amino acid sequence homologies, as such protein sequence homologies exist within, but not between major groups of viruses. For example, primary amino acid sequence homology is high within the TM protein of different strains of HIV-1 or within the TM protein of different isolates of simian immunodeficiency virus (SIV). Primary amino acid sequence homology between HIV-1 and SIV, however, is low enough so as not to be useful. It is not possible, therefore, to find DP-107 or DP-178-like peptides within other viruses, whether structurally, or otherwise, based on primary sequence homology, alone.




Further, while it would be potentially useful to identify primary sequence arrangements of amino acids based on the physical chemical characteristics of different classes of amino acids rather than based on the specific amino acids themselves, for instance, a by concentrating on the coiled-coil nature of the peptide sequence, a computer algorithm designed by Lupas et al. to identify such coiled-coil propensities of regions within proteins (Lupas, A., et al., 1991 Science 252:1162-1164) is inadequate for identifying protein regions analogous to DP-107 or DP-178.




Specifically, analysis of HIV-1 gp160(containing both gp120 and gp41) using the Lupas algorithm does not identify the coiled-coil region within DP-107. It does, however, identify a region within DP-178 beginning eight amino acids N-terminal to the start of DP-178 and ending eight amino acids from the C-terminus. The DP-107 peptide has been shown experimentally to form a stable coiled coil. A search based on the Lupas search algorithm, therefore, would not have identified the DP-107 coiled-coil region. Conversely, the Lupas algorithm identified the DP-178 region as a potential coiled-coil motif. However, the peptide DP-178 derived from this region failed to form a coiled coil in solution. A possible explanation for the inability of the Lupas search algorithm to accurately identify coiled-coil sequences within the HIV-1 TM, is that the Lupas algorithm is based on the structure of coiled coils from proteins that are not structurally or functionally similar to the TM proteins of viruses, antiviral peptides (e.g. DP-107 and DP-178) of which are an object of this invention.




The computer search strategy of the invention, as demonstrated in the Examples presented below, in Sections 9 through 16, successfully identifies regions of viral TM proteins similar to DP-107 or DP-178. This search strategy was designed to be used with a commercially-available sequence database packages, preferably PC/Gene. A series of motifs were designed and engineered to range in stringency from very strict to very broad, as discussed in Section 9.




Among the protein sequence search motifs which may be utilized in such a computer-assisted DP-107-like and DP-178-like antiviral peptide search are the 107×178×4 motif, the ALLMOTI5 motif, and the PLZIP series of motifs, each of which is described in the Example presented in Section 9, below, with 107×178×4 being preferred.




Coiled-coiled sequences are thought to consist of heptad amino acid repeats. For ease of description, the amino acid positions within the heptad repeats are sometimes referred to as A through G, with the first position being A, the second B, etc. The motifs used to identify DP-107-like and DP-178-like sequences herein are designed to specifically search for and identify such heptad repeats. In the descriptions of each of the motifs described, below, amino acids enclosed by brackets, i.e., [ ], designate the only amino acid residues that are acceptable at the given position, while amino acids enclosed by braces, i.e., { }, designate the only amino acids which are unacceptable at the given heptad position. When a set of bracketed or braced amino acids is followed by a number in parentheses i.e., ( ), it refers to the number of subsequent amino acid positions for which the designated set of amino acids hold, e.g., a (2) means “for the next two heptad amino acid positions”.




The ALLMOTI5 is written as follows:




{CDGHP]-{CFP} (2)-{CDGHP}-{CFP} (3)-




{CDGHP]-{CFP} (2)-{CDGHP}-{CFP} (3)-




{CDGHP]-{CFP}(2)-{CDGHP} -{CFP}(3)-




{CDGHP]-{CFP} (2)-{CDGHP}-{CFP} (3)-




{CDGHP]-{CFP} (2)-{CDGHP}-{CFP} (3)-




Translating this motif, it would read: “at the first (A) position of the heptad, any amino acid residue except C, D, G, H, or P is acceptable, at the next two (B,C) amino acid positions, any amino acid residue except C, F, or P is acceptable, at the fourth heptad position (D), any amino acid residue except C, D, G, H, or P is acceptable, at the next three (E, F, G) amino acid positions, any amino acid residue except C, F, or P is acceptable”. This motif is designed to search for five consecutive heptad repeats (thus the repeat of the first line five times), meaning that it searches for 35-mer sized peptides. It may also be designed to search for 28-mers, by only repeating the initial motif four times. With respect to the ALLMOTI5 motif, a 35-mer search is preferred. Those viral sequences identified via such an ALLMOTI5 motif are listed in Table V, below, at the end of this Section. The viral sequences listed in Table V potentially exhibit antiviral activity, may be useful in the identification of antiviral compounds, and are intended to be within the scope of the invention.




The 107×178×4 motif is written as follows:




[EFIKLNQSTVWY]-{CFMP} (2)-[EFIKLNQSTVWY]-{CFMP} (3)-




[EFIKLNQSTVWY]-{CFMP} (2)-[EFIKLNQSTVWY]-{CFMP} (3)-




[EFIKLNQSTVWY]-{CFMP} (2)-[EFIKLNQSTVWY]-{CFMP} (3)-




[EFIKLNQSTVWY]-{CFMP} (2)-[EFIKLNQSTVWY]-{CFMP} (3)-




Translating this mofif, it would read: “at the first (A) position of the heptad, any amino acid residue except E, F, I, K, L, N, Q, S, T, V, W, or Y is acceptable, at the next two (B,C) amino acid positions, any amino acid residue except C, F, M or P is accepatble, at the fourth position (D), any amino acid residue except E, F, I, K, L, N, Q, S, T, V, W, or Y is acceptable, at the next three (E, F, G) amino acid positions, any amino acid residue except C, F, M or P is acceptable”. This motif is designed to search for four consecutive heptad repeats (thus the repeat of the first line four times), meaning that it searches for 28-mer sized peptides. It may also be designed to search for 35-mers, by repeating the initial motif five times. With respect to the 107×178×4 motif, a 28-mer search is preferred. Those viral sequences identified via such a 107×178×4 motif are listed in Table V, below, at the end of this is Section. The viral sequences listed in Table V potentially exhibit antiviral activity, may be useful in the the identification of antiviral compounds, and are intended to be within the scope of the invention.




The PLZIP series of motifs are as listed in FIG.


19


. These motifs are designed to identify leucine zipper coiled-coil like heptads wherein at least one proline residue is present at some predefined distance N-terminal to the repeat. These PLZIP motifs find regions of proteins with similarities to HIV-1 DP-178 generally located just N-terminal to the transmembrane anchor. These motifs may be translated according to the same convention described above. Each line depicted in

FIG. 19

represents a single, complete search motif. “X” in these motifs refers to any amino acid residue. In instances wherein a motif contains two numbers within parentheses, this refers to a variable number of amino acid residues. For example, X (1,12)is translated to “the next one to twelve amino acid residues, inclusive, may be any amino acid”.




Tables VI through X, below, at the end of this Section, list hits from such PLZIP motifs. The viral sequences listed in Table VI through X potentially exhibit antiviral activity, may be useful in the the identification of antiviral compounds, and are intended to be within the scope of the invention.




The Examples presented in Sections 17 and 18, below, demonstrate that respiratory syncytial virus and parainfluenza virus sequences identified via such a computer search exhibit antiviral and/or structural characteristics similar to those of DP-107 or DP-178.




The DP-107-like and DP-178-like analogous peptides may, further, contain any of the additional groups described for DP-178, above, in Section 5.1. For example, these peptides may include any of the additional amino-terminal groups which “X”of Tables I through IV may represent, and may also include any of the carboxy-terminal groups which “Z” of Tables I through IV may represent.




Additionally, such DP-107-like and DP-178-like peptides may further include DP-107-like or DP-178-like peptides, such as those listed in Tables V through X, above, containing one or more amino acid substitutions, insertions, and/or deletions. Also, analogs of such DP-107-like and DP-178-like peptides are intended to be within the scope of the invention. Such analogs of the invention may exhibit increased antiviral activity, and may, further, posses increased bioavailability, and/or stability, or reduced immune recognition.




The DP-107-like and DP-178-like amino acid substitutions, insertions and deletions, are as described for DP-178, above, in Section 5.1. Analog modifications are as described, below, in Section 5.3.












TABLE V











Search Results Summary for 107 × 178 × 4 and






ALLMOTI5 Motifs












107 × 178 × 4




ALLMOTI5






LIBRARY FILE




LIBRARY FILE



























PENV_AVIRE




420-468








PENV1_FRSFV




341-375












PENV_AVISN




426-474








FENV2_FRSPV




341-378






PENV_BAEVM




395-452








PENV_AVIRE




420-472






PENV_BIV06




544-603




631-695







PENV_AVISN




426-478






PENV_BIV27




573-632




660-724







PENV_BAEVM




390-456






PENV_BLVAF




304-377








PENV_BIV06




530-610




635-695






PENV_BLVAU




304-377








PENV_BIV27




559-639




664-724






PENV_BLVAV




304-377








PENV_BLVAF




304-379






PENV_BLVB2




311-377








PENV_BLVAU




304-379






PENV_BLVB5




304-377








PENV_BLVAV




304-379






PENV_BLVJ




304-377








PENV_BLVB2




304-379






PENV_CAEVG




165-192








PENV_BLVB5




304-379






PENV_EIAV1




688-712








PENV_BLVJ




304-379






PENV_EIAV2




668-695








PENV_CAEVC




157-196




615-720




751-785




847-895






PENV_EIAV3




668-712








PENV_CAEVG




154-193




613-718




749-783




845-893






PENV_EIAV5




669-696








PENV_EIAV1




436-525




559-593




668-716






PENV_EIAV9




668-712








PENV_EIAV2




436-525




559-593




658-692






PENV_EIAVC




668-712








PENV_EIAV3




436-525




559-593




658-716






PENV_EIAVW




668-712








PENV_EIAV5




437-526




560-594




659-693






PENV_EIAVY




668-712








PENV_EIAV9




436-525




559-593




658-716






PENV_FENV1




517-544








PENV_EIAVC




436-525




559-593




658-716






PENV_FIVPE




650-680




 722-749.







PENV_EIAVW




436-525




559-593




658-716






PENV_FIVSD




639-668




720-747







PENV_EIAVY




436-525




559-593




658-716






PENV_FIVT2




640-679




721-748







PENV_FENV1




503-555




567-604






PENV_FLVC6




509-538








PENV_FIVPE




610-690




715-756






PENV_FLVGL




490-519








PENV_FIV8D




601-688




713-754






PENV_FLVLB




510-539








PENV_FIVT2




609-689




714-755






PENV_FLVSA




487-516








PENV_FLVC6




497-549




661-595






PENV_FOAMV




318-355




866-893







PENV_FLVGL




478-530




542-576






PENV_FSVGA




510-539








PENV_FLVLB




498-550




562-598






PENV_FSVGB




490-519








PENV_FLVSA




475-527




539-573






PENV_FSVSM




493-522








PENV_FOAMV




321-355




563-693




866-903






PENV_GALV




523-564








PENV_FRSFB




318-354






PENV_HTL1A




342-376








PENV_FSVGA




498-550




562-596






PENV_HTL1C




342-376








PENV_FSVGB




476-530




542-576






PENV_HTL1M




342-376








PENV_FSVSM




481-524




545-579






PENV_HTLV2




336-370








PENV_FSVST




498-532






PENV_HV1A2




544-592




630-682




790-825






PENV_GALV




523-575




587-621






PENV_HV1B1




545-594




631-683




791-818






PENV_HTL1A




321-383






PENV_HV1B8




540-589




626-678




786-813






PENV_HTL1C




316-383






PENV_HV1BN




582-590




628-679




787-815






PENV_HTL1M




321-383






PENV_HV1BR




550-599




636-688




798-823






PENV_HTLV2




317-377






PENV_HV1C4




557-608




643-695




803-835






PENV_HV1A2




497-593




612-711




766-845






PENV_HV1EL




543-591




628-680







PENV_HV1B1




509-594




610-712




767-843






PENV_HV1H2




545-594




631-683




791-818






PENV_HV1B8




500-589




605-707




762-838






PENV_HV1H3




545-594




631-683




791-818






PENV_HV1BN




501-590




609-708




783-831






PENV_HV1J3




556-605




642-694




802-829






PENV_HV1BR




510-599




615-717




772-841






PENV_HV1JR





622-675




783-811






PENV_HV1C4




510-806




626-724




779-855






PENV_HV1KB




555-596




637-677




776-824






PENV_HV1EL




502-591




607-709




768-829






PENV_HV1MA




547-595




633-707




794-826






PENV_HV1H2




505-594




610-712




767-836






PENV_HV1MF




543-592




629-681




789-816






PENV_HV1H3




505-594




610-712




767-843






PENV_HV1MN




567-595




632-684




791-819






PENV_HV1J3




517-605




622-723




778-843






PENV_HV1ND




536-583




621-673




783-813






PENV_HV1JR




497-586




603-704




759-835






PENV_HV1OY




544-593




630-704




789-820






PENV_HV1KB




511-545




585-599




618-718




772-848






PENV_HV1PV




545-594




631-683




791-818






PENV_HVIMA




507-596




617-714




770-825






PENV_HV1RH




554-602




640-692




800-832






PENV_HV1MF




503-592




622-710




765-841






PENV_HV181




536-585




622-674




782-809






PENV_HV1MN




506-595




617-713




774-841






PENV_HV183




541-589




627-679




787-815






PENV_HV1ND




495-584




801-702




757-825






PENV_HV18C




545-593




631-683







PENV_HV1OY




497-593




610-711




766-842






PENV_HV1W1




545-593




631-683




791-818






PENV_HV1PV




605-594




610-712




767-843






PENV_HV1W2




538-584




622-674




782-809






PENV_HV1RH




507-603




619-721




776-852






PENV_HV1Z2




542-591




628-680




790-820






PENV_HV1S1




496-585




602-703




758-830






PENV_HV1Z6




545-593




630-682




792-622






PENV_HV1S3




494-590




607-708




763-837






PENV_HV1Z8




573-601




634-678




797-828






PENV_HV1SC




498-594




611-712




767-834






PENV_HV1ZH




545-594




627-666




791-823






PENV_HV1W1




498-594




611-712




767-836






PENV_HV2BE




532-591




621-648




653-697






PENV_HV1W2




489-584




602-703




758-827






PENV_HV2CA




534-593




623-650




655-699






PENV_HV1Z2




502-591




607-709




764-831






PENV_HV2D1




523-550




555-582




644-688






PENV_HV1Z6




504-593




609-711




766-840






PENV_HV2G1




524-551




555-583




613-640




645-693





PENV_HV1Z8




512-601




617-675




682-719




774-831






PENV_HV2NZ




524-551




556-583




613-640




662-889





PENV_HV1ZH




522-594




612-712




777-839






PENV_HV2RO




533-592




622-698







PENV_HV2BE




510-595




617-680






PENV_HV2S2




527-554




559-586




648-682






PENV_HV2CA




512-597




619-709






PENV_HV2SB




557-584




614-673







PENV_HV2D1




501-586




608-698






PENV_HV2ST




527-554




559-586




648-692






PENV_HV2G1




502-587




609-699






PENV_MCFF




473-612








PENV_HV2NZ




488-587




609-699






PENV_MCFF3




488-515








PENV





HV2RO




511-596




616-708






PENV_MLVAV




517-544








PENV_HV2S2




505-590




612-702






PENV_MLVCB




510-539








PENV_HV2SB




526-588




614-700






PENV_MLVF5




523-553








PENV_HV2ST




505-590




612-702






PENV_MLVFF




523-553








PENV_IPMAE




367-422




465-527






PENV_MLVFP




523-553








PENV_JSRV




403-455




571-605






PENV_MLVHO




510-540








PENV_MCFF




473-525




537-571






PENV_MLVKI




40-81








PENV_MCFF3




474-526




538-572






PENV_MLVMO




502-543








PENV_MLVAV




503-555




567-601






PENV_MLVRD




497-538








PENV_MLVCB




498-550




562-596






PENV_MLVRK




497-538








PENV_MLVF5




520-564




576-610






PENV_MMTVB




458-485




562-589







PENV_MLVFF




520-564




576-610






PENV_MMTVG




458-465




562-589







PENV_MLVFP




520-564




576-610






PENV_MPMV




422-470








PENV_MLVHO




504-551




563-597






PENV_MSVFB




57-84








PENV_MLVKI




40-92




104-138






PENV_OMVVS




42-69




196-223




780-807






PENV_MLVMO




502-554




566-600






PENV_RMCFV




487-517








PENV_MLVRD




497-549




551-595






PENV_SFV1




14-41




866-901







PENV_MLVRK




497-549




561-598






PENV_SFV3L




18-45




319-357




673-700




863-898





PENV_MMTVB




477-539




556-612






PENV_SIVA1




661-588




592-619




652-679




697-724





PENV_MMTVG




477-539




556-612






PENV_SIVAG




566-593




597-624




658-685




703-730





PENV_MPMV




408-474






PENV_SIVAI




548-603




634-708







PENV_MSVFB




43-95




107-141






PENV_SIVAT




590-617




651-678







PENV_OMVVS




22-64




185-223




664-746




780-816






PENV_SIVCZ




526-584




627-654







PENV_RMCFV




484-528




540-574






PENV_SIVGB




589-650




784-816







PENV_RSFFV




342-376






PENV_SIVM1




550-609




671-715







PENV_SFV1




 1-41




101-140




154-205




321-355




563-651




658-693




866-904






PENV_SIVM2




156-215




277-289







PENV_SFV3L




 5-46




158-209




319-357




560-706




863-901






PENV_SIVMK




553-608








PENV_SIVA1




269-310




551-823




643-693






PENV_SIVML




549-608








PENV_SIVAG




558-628




651-899




808-852






PENV_SIVS4




553-612




642-669




691-718






PENV_SIVAI




257-291




336-370




535-607




627-684




792-840






PENV_SIVSP




554-595




646-722







PENV_SIVAT




264-298




549-621




644-692




796-833






PENV_SMRVH




400-462








PENV_SIVCZ




283-291




330-365




512-584




669-703




803-837






PENV_SRV1




409-471








PENV_SIVGB




586-654




677-725






PENV_VILV




773-800








PENV_SIVM1




114-151




465-506




528-613




635-725




809-864






PENV_VILV1




780-807








PENV_SIVM2




 71-116




134-219




245-331






PENV_VILV2




782-809








PENV_SIVMK




464-505




540-812




638-724






PHEMA_CVBLY




208-242








PENV_SIVML




464-505




540-612




638-724






PHEMA_CVBM




208-242








PENV_SIVS4




466-509




517-616




638-728




812-853






PHEMA_CVBQ




208-242








PENV_SIVSP




470-513




521-620




642-732




811-848






PHEMA_CVHOC




208-242








PENV_SMRVH




400-466






PHEMA_IAAIC




387-453








PENV_SRV1




409-475






PHEMA_IABAN




371-437








PENV_VILV




21-62




184-222




637-740




773-809






PHEMA_IABUD




381-451








PENV_VILV1




21-62




184-222




643-746




780-816






PHEMA_IACKA




381-451








PENV_VILV2




21-62




184-222




645-748




782-818






PHEMA_IACKG




382-441




494-528







PHEMA_CVBLY




208-242






PHEMA_IACKP




396-426








PHEMA_CVBM




208-242






PHEMA_IACKG




396-426








PHEMA_CVBQ




208-242






PHEMA_IACKV




384-443








PHEMA_CVHOC




208-242






PHEMA_IADA1




381-451








PHEMA_IAAIC




380-458






PHEMA_IADA2




423-453




499-543







PHEMA_IABAN




364-440






PHEMA_IADA3




387-453








PHEMA_IABUD




378-454






PHEMA_IADA4




418-478








PHEMA_IACKA




378-454






PHEMA_IADCZ




381-451








PHEMA_IACKG




108-142




375-475




494-528






PHEMA_IADE1




402-453




506-533







PHEMA_IACKP




360-452




487-532






PHEMA_IADH1




371-437








PHEMA_IACKQ




360-452




487-532






PHEMA_IADH2




371-437








PHEMA_IACKS




377-469




504-549






PHEMA_IADH3




371-437








PHEMA_IACKV




112-146




377-469






PHEMA_IADH4




371-437








PHEMA_IADA1




377-454






PHEMA_IADH5




371-437








PHEMA_IADA2




377-476




495-547






PHEMA_IADH6




371-437








PHEMA_IADA3




380-453






PHEMA_IADH7




371-437








PHEMA_IADA4




379-478




506-548






PHEMA_IADIR




415-446








PHEMA_IADCZ




378-454






PHEMA_IADM2




387-453








PHEMA_IADE1




21-55




377-472






PHEMA_IADNZ




381-451








PHEMA_IADH1




364-440






PHEMA_IADU3




387-453








PHEMA_IADH2




364-440






PHEMA_IAEN7




387-453








PHEMA_IADH3




364-440






PHEMA_IAFPR




384-442








PHEMA_IADH4




364-440






PHEMA_IAGRE




381-451








PHEMA_IADH5




364-440






PHEMA_IAGU2




505-532








PHEMA_IADH6




364-440






PHEMA_IAGUA




504-531








PHEMA_IADH7




364-440






PHEMA_IAHAL




386-452








PHEMA_IADIR




379-471




506-551






PHEMA_IAHC6




388-457








PHEMA_IADM1




21-55






PHEMA_IAHC7




388-457








PHEMA_IADM2




380-456






PHEMA_IAHCD




388-457








PHEMA_IADNY




21-55






PHEMA_IAHDE




388-457








PHEMA_IADNZ




378-454






PHEMA_IAHFO




386-452








PHEMA_IADU1




21-55






PHEMA_IAHK6




386-452








PHEMA_IADU3




380-456






PHEMA_IAHK7




386-452








PHEMA_IAEN7




380-456






PHEMA_IAHLE




388-457








PHEMA_IAFPR




377-477






PHEMA_IAHLO




388-457








PHEMA_IAGRE




378-454






PHEMA_IAHMI




386-452








PHEMA_IAGU2




378-473






PHEMA_IAHNM




386-452








PHEMA_IAGUA




377-476






PHEMA_IAHNN




388-457








PHEMA_IAHAL




379-455






PHEMA_IAHPR




388-457








PHEMA_IAHC6




112-146




360-484




503-537






PHEMA_IAHRO




386-452








PHEMA_IAHC7




112-146




360-484




503-537






PHEMA_IAHSA




386-452








PHEMA_IAHCD




360-484




503-537






PHEMA_IAHSP




388-457








PHEMA_IAHDE




360-484




503-537






PHEMA_IAHSW




388-457








PHEMA_IAHFO




379-455






PHEMA_IAHTE




386-452








PHEMA_IAHK6




379-455






PHEMA_IAHTO




386-455








PHEMA_IAHK7




379-455






PHEMA_IAHUR




386-452








PHEMA_IAHLE




112-146




360-484




503-537






PHEMA_IAKIE




425-478








PHEMA_IAHLO




112-146




360-484




503-537






PHEMA_IALEN




425-478








PHEMA_IAHMI




379-455






PHEMA_IAMAA




380-450








PHEMA_IAHNM




379-455






PHEMA_IAMAB




385-455








PHEMA_IAHNN




112-146




360-484




503-537






PHEMA_IAMAO




387-453








PHEMA_IAHPR




112-146




360-484




503-537






PHEMA_IAME1




387-453








PHEMA_IAHRO




379-455






PHEMA_IAME2




387-453








PHEMA_IAHSA




379-455






PHEMA_IAME6




371-437








PHEMA_IAHSP




112-146




360-484




503-537






PHEMA_IAMIN




382-441








PHEMA_IAHSW




112-146




360-484




503-537






PHEMA_IANT6




387-453








PHEMA_IAHTE




379-455






PHEMA_IAPIL




505-534








PHEMA_IAHTO




379-455






PHEMA_IAPUE




425-478








PHEMA_IAHUR




379-455






PHEMA_IARUD




351-451








PHEMA_IAJAP




375-467




502-547






PHEMA_IASE2




381-451








PHEMA_IAKIE




376-478




506-541






PHEMA_IASH2




506-547








PHEMA_IALEN




376-478




506-548






PHEMA_IASTA




384-443








PHEMA_IAMAA




377-453






PHEMA_IATKI




415-445








PHEMA_IAMAB




382-458






PHEMA_IATKM




381-451








PHEMA_IAMAO




380-456






PHEMA_IATKO




507-534








PHEMA_IAME1




380-456






PHEMA_IATKP




424-454




493-539







PHEMA_IAME2




380-456






PHEMA_IATKR




381-422








PHEMA_IAME6




384-440






PHEMA_IATKW




419-449




600-538







PHEMA_IAMIN




108-142




375-475






PHEMA_IAUDO




387-453








PHEMA_IANT6




380-456






PHEMA_IAUSS




425-478








PHEMA_IAPIL




378-477




496-534






PHEMA_IAVI7




388-454








PHEMA_IAPUE




376-478




506-548






PHEMA_IAWIL




424-477








PHEMA_IARUD




378-454






PHEMA_IAZCO




387-453








PHEMA_IASE2




378-454






PHEMA_IAZH2




371-437








PHEMA_IASH2




379-474




506-552






PHEMA_IAZH3




371-437








PHEMA_IASTA




112-148




377-469






PHEMA_IAZIN




418-478




506-547







PHEMA_IATKI




379-471




508-551






PHEMA_IAZNJ




418-478




506-547







PHEMA_IATKM




378-454






PHEMA_IAZUK




387-453








PHEMA_IATKO




392-470




504-548






PHEMA_INBBE




400-431




439-463







PHEMA_IATKP




378-454




493-540






PHEMA_INBBO




390-421




429-473







PHEMA_IATKR




30-84




374-474






PHEMA_INBEN




398-429




437-481







PHEMA_IATKW




373-472




487-539






PHEMA_INBHK




391-418




429-473







PHEMA_IATRA




21-55






PHEMA_INBLE




399-430




438-482







PHEMA_IAUDO




387-458






PHEMA_INBMD




389-420




428-472







PHEMA_IAUSS




376-478




608-548






PHEMA_INBME




393-424




432-476







PHEMA_IAVI7




381-457






PHEMA_INBOR




398-429




437-481







PHEMA_IAWIL




375-477




605-547






PHEMA_INBSI




399-429




437-481







PHEMA_IAZCO




380-456






PHEMA_INBUS




391-422




430-474







PHEMA_IAZH2




364-440






PHEMA_INBVI




393-424




432-476







PHEMA_IAZH3




364-440






PHEMA_INBVK




400-431




439-483







PHEMA_IAZIN




379-478




506-548






PHEMA_INCCA




495-571








PHEMA_IAZNJ




379-478




506-548






PHEMA_INCEN




483-559








PHEMA_IAZUK




380-456






PHEMA_INCGL




483-559








PHEMA_INBBE




388-473






PHEMA_INCHY




482-558








PHEMA_INBBO




378-463






PHEMA_INCJH




496-572








PHEMA_INBEN




386-471






PHEMA_INCKV




482-558








PHEMA_INBHK




381-463






PHEMA_INCMI




482-558








PHEMA_INBLE




387-472






PHEMA_INCNA




482-559








PHEMA_INBMD




377-462






PHEMA_INCP1




483-559








PHEMA_INBME




381-468






PHEMA_INCP2




483-559








PHEMA_INBOR




386-471






PHEMA_INCP3




483-559








PHEMA_INBSI




386-471






PHEMA_INCTA




483-559








PHEMA_INBUS




379-464






PHEMA_INCYA




483-559








PHEMA_INBVI




381-466






PHEMA_NDVA




64-91








PHEMA_INBVK




388-473






PHEMA_NDVB




64-91








PHEMA_INCCA




483-571






PHEMA_NDVD




64-91








PHEMA_INCEN




471-559






PHEMA_NDVH




64-91








PHEMA_INCGL




471-559






PHEMA_NDV1




64-91








PHEMA_INCHY




470-558






PHEMA_NDVM




64-91








PHEMA_INCJH




484-572






PHEMA_NDVQ




64-91








PHEMA_INCKY




470-558






PHEMA_NDVTG




64-91








PHEMA_INCMI




470-558






PHEMA_NDVU




64-91








PHEMA_INCNA




470-558






PHEMA_PHODV




39-66




46-73







PHEMA_INCP1




471-559






PHEMA_PI1HW




79-110




366-393







PHEMA_INCP2




471-559






PHEMA_PI3B




66-93








PHEMA_INCP3




471-559






PHEMA_PI3H4




27-61








PHEMA_INCTA




471-559






PHEMA_PI3HA




27-61








PHEMA_INCYA




471-559






PHEMA_PI3HT




27-76








PHEMA_MEASE




46-90






PHEMA_PI3HU




23-70








PHEMA_MEASH




46-90






PHEMA_PI3HV




27-61








PHEMA_MEASI




46-87






PHEMA_PI3HW




27-61








PHEMA_MEASY




46-87






PHEMA_PI3HX




27-61








PHEMA_MUMPM




34-99






PHEMA_RACVI




166-214




256-283







PHEMA_MUMPR




34-99






PHEMA_SEND5




 79-106








PHEMA_MUMPS




34-99






PHEMA_SENDF




 79-106








PHEMA_NDVA




 8-52




477-529






PHEMA_SENDH




 79-106








PHEMA_NDVB




 1-49






PHEMA_SENDJ




 79-106








PHEMA_NDVD




 1-49






PHEMA_SENDZ




 79-106








PHEMA_NDVM




 1-49






PHEMA_SV41




22-52




394-421







PHEMA_NDVQ




 1-49






PHEMA_VACCC




119-146




175-202




216-243






PHEMA_NDVTG




 1-49






PHEMA_VACCI




109-146




175-202




216-243






PHEMA_NDVU




 1-49






PHEMA_VACCT




119-146




175-202




216-243






PHEMA_PHODV




39-73






PHEMA_VACCV




109-146




175-202




215-242






PHEMA_PI1HW




 66-110






PVENV_DHVI1




318-366








PHEMA_PI2H




247-281






PVENV_EAV




120-147








PHEMA_PI2HT




247-281






PVENV_THOGV




313-347








PHEMA_PI3B




38-93






PVF03_VACCC




 71-110




185-212







PHEMA_PI3H4




 13-110




394-428






PVF03_VACCV




 71-110




185-212







PHEMA_PI3HA




 20-110




394-428






PVF05_VACCP




33-60








PHEMA_PI3HT




 13-110




394-428






PVF05_VACCV




33-60








PHEMA_PI3HU




 13-110




394-428






PVF11_VACCC




274-321








PHEMA_PI3HV




 13-110




394-428






PVF11_VACCP




270-317








PHEMA_PI3HW




 13-110




394-428






PVF12_VACCC




10-37




113-140




554-581






PHEMA_PI3HX




 13-110




394-428






PVF12_VACCP




10-37




113-140




554-481






PHEMA_PI4HA




54-88






PVF16_VACCC




35-62




152-179







PHEMA_RACVI




166-214




256-290






PVF16_VACCP




35-62




152-179







PHEMA_RINDK




46-87






PVFP4_FOWPV




146-173








PHEMA_RINDL




46-87




191-225






PVFU8_ORFNZ




59-86








PHEMA_SEND5




 57-110






PVFU8_VACCC




37-64








PHEMA_SENDF




 57-110






PVFU8_VACCV




37-64








PHEMA_SENDH




 57-110






PVG01_VACCC




225-252




301-335







PHEMA_SENDJ




 57-110






PVG01_VACCV




164-191




240-274







PHEMA_SENDZ




 57-110






PVG01_VARV




225-252




301-335







PHEMA_SV41




18-52




387-421






PVG02_VACCV




 96-123








PHEMA_SV5




27-82






PVG02_VARV




 96-123








PHEMA_SV5LN




27-82






PVG03_HSVEB




146-176








PVENV_BEV




195-229






PVG03_HSVEK




146-176








PVENV_DHVI1




318-366






PVG05_VACCC




48-75




131-161




225-289




355-389





PVENV_MCV1




252-286






PVG05_VARV




48-75




124-161




255-289




355-389





PVENV_MCV2




252-286






PVG07_HSVI1




71-98








PVENV_THOGV




313-354






PVG09_VACCC




308-338








PVENV_VACCC




257-295






PVG09_VACCV




271-301








PVENV_VACCI




257-295






PVG09_VARV




308-338








PVENV_VACCP




257-295






PVG12_SFV1R




11-45








PVENV_VACCV




257-295






PVG17_HSVI1




177-204








PVF01_VACCC




46-80




124-158






PVG18_HSVI1




174-208








PVF01_VACCV




46-80




124-158






PVG1_SPV1R




260-287








PVF03_VACCC




 71-110






PVG1_SPV4




287-314




383-410







PVF03_VACCV




 71-110






PVG22_HSVI1




373-400




581-622




668-705




766-824





PVF05_VACCC




 81-129




282-320






PVG24_HSVI1




31-58








PVF05_VACCP




 81-129




282-320






PVG28_HSVI1




253-290




497-528







PVF05_VACCV




 81-129




293-321






PVG2R_AMEPV




33-64




 91-118







PVF11_VACCC




217-258




269-315






PVG2_SPV1R




285-326








PVF11_VACCP




213-254




265-311






PVG2_SPV4




146-173




175-205




262-310






PVF12_VACCC




 1-67




102-143




199-236




350-388




544-581






PVG34_HSVI1




95-122








PVF12_VACCP




 1-67




102-143




199-236




350-388




544-581






PVG37_HSVI1




442-469








PVF16_VACCC




155-194






PVG39_HSVI1




651-678




1088-1115







PVF16_VACCP




155-194






PVG3L_AMEPV




 2-29








PVFP3_FOWPV




 1-43






PVG3_SPV1R




15-49








PVFP4_FOWPV




139-173




239-273






PVG3_SPV4




18-52




 87-148







PVFP7_FOWPV




23-57






PVG45_HSVSA




138-165








PVFPL_FOWP1




 77-111






PVG46_HSVI1




142-169




346-373




897-924




 973-1007





PVFUS_VACCC




30-64






PVG48_HSVSA




360-394








PVFUS_VACCV




30-64






PVG4R_AMEPV




 4-31








PVG01_BPP22




94-135




400-468




475-513




608-659






PVG4_SPV1R




116-146








PVG01_HSVI1




271-306




512-563




591-647




730-764






PVG51_HSVI1




34-61




 87-114







PVG01_VACCC




301-339






PVG52_HSVSA




47-74








PVG01_VACCV




240-276






PVG56_HSVI1




582-609








PVG01_VARV




301-339






PVG5_SPV1R




65-92








PVG03_HSVEB




143-177






PVG5_SPV4




56-83








PVG03_HSVEK




143-177






PVG63_HSVI1




550-584








PVG03_VARV




64-98






PVG64_HSVI1




477-504








PVG05_VACCC




117-168




255-289




355-389






PVG65_HSVI1




1213-1254








PVG05_VARV




117-158




255-289




355-389






PVG66_HSVI1




362-406








PVG06_HSVI1




 61-109






PVG67_HSVI1




1342-1369








PVG07_HSVI1




 69-103






PVG68_HSVI1




261-288








PVG07_VACCC




114-175




324-358






PVG72_HSVI1




447-481








PVG07_VARV




114-175




324-358






PVG75_HSVI1




388-422








PVG09_VACCC




304-338






PVG76_HSVI1




200-227








PVG09_VACCV




267-301






PVG7_SPV4




14-44








PVG09_VARV




304-338






PVGF1_IBVB




1230-1260




2408-2435







PVG10_HSVI1




63-97






PVGL2_CVBF




399-426




642-676




1022-1084




1278-1305





PVG12_SPV1R




11-45






PVGL2_CVBL9




399-426





1022-1084




1278-1305





PVG16_HSVSA




58-95






PVGL2_CVBLY




399-426




642-676




1022-1084




1278-1305





PVG17_HSVI1




 92-129




177-211






PVGL2_CVBM




399-426




642-676




1022-1084




1278-1305





PVG18_HSVI1




174-208




215-256






PVGL2_CVBQ




399-426




642-676




1022-1084




1278-1305





PVG1L_AMEPV




407-441






PVGL2_CVBV




399-426




642-676




1022-1084




1278-1305





PVG1_SPV1R




136-170




256-297




320-357






PVGL2_CVH22




770-797




809-875




1056-1112






PVG1_SPV4




287-321






PVGL2_CVM4




643-684




1030-1092







PVG22_HSVI1




117-158




437-629




660-892




 899-1056






PVGL2_CVMA6




36-63




591-632




 978-1040






PVG24_HSVI1




 7-72




 74-108






PVGL2_CVMJH




502-543




889-951







PVG27_HSVI1




164-219






PVGL2_CVPFS




 69-110




692-733




1072-1145




1353-1389





PVG28_HSVI1




253-290






PVGL2_CVPPU




 69-107




690-731




1067-1143




1351-1387





PVG2R_AMEPV




29-63




184-218






PVGL2_CVPR8




468-509




845-921




1129-1165






PVG2_SPV1R




222-256




285-328






PVGL2_CVPRM




468-509




845-921




1129-1165






PVG2_SPV4




255-310






PVGL2_EBV




 68-102








PVG33_HSVI1




149-183






PVGL2_FIPV




189-233




454-481




709-736




1072-1148




1356-1392




PVG34_HSVI1




345-379






PVGL2_IBV6




809-836




876-903




1057-1091






PVG35_HSVI1




17-90






PVGL2_IBVB




808-836




875-902




1056-1090






PVG37_HSVI1




435-472






PVGL2_IBVD2




809-836




876-903




1057-1091






PVG38_HSVI1




 84-118






PVGL2_IBVK




808-836




875-902




1056-1090






PVG39_HSVI1




124-158




266-300






PVGL2_IBVM




808-835




875-902




1056-1090






PVG3_SPV1R




 8-49




162-196




203-244






PVGLB_EBV




 95-122




631-658







PVG3_SPV4




 6-54




 87-121






PVGLB_HCMVA




25-88




397-424




440-467




851-878





PVG43_HSVI1




116-150




282-296




394-361




643-677






PVGLB_HCMVT




50-88




397-424




435-462




852-879





PVG45_HSVSA




121-162






PVGLB_HSVB1




427-454








PVG46_HSVI1




45-88




939-1078




1251-1321






PVGLB_HSVB2




447-474








PVG48_HSVI1




169-207






PVGLB_HSVBC




426-453








PVG48_HSVSA




360-417




611-866




733-787






PVGLB_HSVE1




443-470




934-961







PVG49_HSVSA




 68-102






PVGLB_HSVE4




486-513




616-643







PVG4R_AMEPV




 4-38






PVGLB_HSVEA




443-470




934-961







PVG4_SPV4




 89-130






PVGLB_HSVEB




443-470




934-961







PVG51_HSVI1




34-73




 89-123






PVGLB_HSVEL




443-470




933-960







PVG51_HSVSA




29-70




123-157




162-196






PVGLB_HSVMD




 93-120




352-379







PVG53_HSVI1




 67-127






PVGLB_MCMVS




381-408




441-475







PVG54_HSVI1




355-396






PVGLC_HSV11




469-510








PVG55_HSVI1




101-135






PVGLC_HSV1K




469-510








PVG56_HSVSA




126-178






PVGLC_HSVEB




124-151








PVG58_HSVI1




151-192




578-612




644-678




750-784




846-880




1111-1145






PVGLC_HSVMB




63-97








PVG59_HSVI1




10-72




 89-123






PVGLC_HSVMG




62-96








PVG59_HSVSA




169-209






PVGLC_HSVMM




63-97








PVG5_SPV1R




 65-103






PVGLC_VZVD




295-322








PVG61_HSVI1




265-299






PVGLC_VZVS




295-322








PVG63_HSVI1




546-584






PVGLE_HSV2




111-148








PVG85_HSVI1




805-839




1213-1254






PVGLF_BRSVA




38-65




154-202




216-243




442-469




486-531




PVG66_HSVI1




154-188




328-410






PVGLF_BRSVC




38-65




154-202




216-243




444-471




488-533




PVG67_HSVI1




379-413




501-546




1321-1369




1476-1541






PVGLF_BRSVR




38-65




154-202




216-243




444-471




488-533




PVG68_HSVI1




245-288






PVGLF_CDVO




262-293




340-387







PVG72_HSVI1




447-484




723-767




912-949






PVGLF_HRSV1




38-65




154-203




442-471




488-515





PVG75_HSVI1




271-305




388-422






PVGLF_HRSVA




38-65




154-202




213-243




488-518





PVG8_SPV1R




 5-51






PVGLF_HRSVL




38-65




154-202




216-243




444-471




488-515




PVGF1_IBVB




142-179




1233-1267




2119-2156




3388-3424




3475-3513




3517-3556




3761-3795






PVGLF_HRSVR




38-65




154-202




213-243




442-471




488-518




PVGH3_HCMVA




10-44






PVGLF_MEASE




228-262








PVGL2_CVBF




642-676




850-885




 993-1088




1263-1305






PVGLF_MEASI




231-265








PVGL2_CVBL9




850-885




 993-1109




1263-1305






PVGLF_MEASY




228-262








PVGL2_CVBLY




642-676




850-885




993-1109




1263-1305






PVGLF_MUMPM




20-54




447-488







PVGL2_CVBM




642-676




858-885




993-1109




1263-1305






PVGLF_MUMPR




20-54




447-488







PVGL2_CVBQ




642-676




850-885




993-1109




1263-1305






PVGLF_MUNP8




151-178




426-511







PVGL2_CVBV




642-676




850-885




993-1109




1263-1305






PVGLF_NDVA




151-178




426-512







PVGL2_CVH22




770-916




1055-1112






PVGLF_NDVB




151-178




426-512







PVGL2_CVM4




643-684




1001-1117




1270-1315






PVGLF_NDVI




151-178




426-512







PVGL2_CVMA5




591-632




949-1079




1217-1283






PVGLF_NDVM




151-178




426-512







PVGL2_CVMJH




502-543




860-976




1129-1174






PVGLF_NDVT




151-178




428-512







PVGL2_CVPFS




 69-110




448-482




692-733




889-923




1040-1166




1352-1380






PVGLF_NDVTG




151-178




426-512







PVGL2_CVPPU




 69-110




446-480




690-731




667-921




1038-1184




1351-1387






PVGLF_NDVU




151-178




428-512







PVGL2_CVPR8




224-258




468-509




665-899




816-892




1120-1185






PVGLF_PHODV




36-83




221-262




309-336






PVGL2_CVPRM




224-258




468-509




665-899




818-962




1128-1165






PVGLF_PI1HC




147-174




210-266







PVGL2_EBV




 68-102






PVGLF_PI2H




 90-117




141-175




238-266




463-528





PVGL2_FIPV




169-245




451-486




695-736




892-926




1043-1189




1355-1392






PVGLF_PI2HG




 90-117




141-175




238-266




483-528





PVGL2_IBV6




791-905




1057-1091






PVGLF_PI2HT




 90-117




141-176




238-266




483-528





PVGL2_IBVB




437-478




772-904




1056-1090






PVGLF_PI3B




115-182




207-241




459-497






PVGL2_IBVD2




773-905




1057-1091






PVGLF_PI3H4




115-182




207-241




457-497






PVGL2_IBVK




437-478




772-904




1056-1090






PVGLF_RINDK




224-265




458-485







PVGL2_IBVM




437-478




772-904




1056-1090






PVGLF_RINDL




224-265




458-506







PVGLB_HCMVA




43-88




128-162




436-484




844-878






PVGLF_SEND6




122-149




211-245




480-507






PVGLB_HCMVT




22-88




128-162




437-485




845-879






PVGLF_SENDF




122-149




211-245




480-507






PVGLB_HSVI1




828-890






PVGLF_SENDH




122-149




211-245




480-507






PVGLB_HSV1F




827-889






PVGLF_SENDJ




122-149




211-245




480-507






PVGLB_HSV1K




827-889






PVGLF_SENDZ




122-149




211-245




480-507






PVGLB_HSV1P




828-890






PVGLF_SV41




144-185




241-269




459-496






PVGLB_HSV23




828-890






PVGLF_SV5




137-171




417-444







PVGLB_HSV2H




828-890






PVGLF_TRTV




124-161




193-200




457-484






PVGLB_HSV2S




817-871






PVGLG_BEFV




523-557








PVGLB_HSV6U




37-71




165-223






PVGLG_BRSVC




 92-123








PVGLB_HSVB1




859-913






PVGLG_HRSV1




63-93








PVGLB_HSVB2




440-474




848-902






PVGLG_HRSV4




 66-107








PVGLB_HSVBC




863-900






PVGLG_HRSV5




243-273








PVGLB_HSVE1




642-678




911-961






PVGLG_HRSV8




66-93








PVGLB_HSVE4




474-515




847-900






PVGLG_HSVE4




271-298








PVGLB_HSVEA




542-676




911-961






PVGLG_HSVEB




383-410








PVGLB_HSVEB




542-676




911-961






PVGLG_RABVT




489-519








PVGLB_HSVEL




642-678




910-960






PVGLG_VSVIG




472-499








PVGLB_HSVMD




390-435




649-683




787-845






PVGLH_EBV




649-676




619-648







PVGLB_HSVSA




240-288




406-447






PVGLH_HCMVA




107-136




270-297







PVGLB_MCMV6




208-260




427-476




693-778




860-894






PVGLH_HCMVT




106-135








PVGLB_PRVIF




847-881






PVGLH_HSV6G




82-89




360-403







PVGLB_VZVD




 92-133




596-630




809-867






PVGLH_HSVSA




388-416








PVGLC_HSV11




469-510






PVGLI_HCMVA




 47-111








PVGLC_HSV1K




469-510






PVGLM_BUNGE




512-546




914-941




1128-1255






PVGLC_HSV2




442-476






PVGLM_BUNL7




913-950








PVGLC_HSV23




443-477






PVGLM_BUNYW




340-374




504-535




662-709






PVGLC_HSVBC




235-269






PVGLM_DUGBV




945-972








PVGLC_HSVEB




182-218






PVGLM_HANTB




 73-100




693-720







PVGLC_HSVMB




63-97






PVGLM_HANTH




 75-102








PVGLC_HSVMG




62-96






PVGLM_HANTL




 75-102








PVGLC_HSVMM




63-97






PVGLM_HANTV




 75-102








PVGLC_PRVIF




183-235






PVGLM_PHV




69-96








PVGLC_VZVD




280-321






PVGLM_PUUMH




 72-110








PVGLC_VZVS




280-321






PVGLM_PUUMS




 72-110








PVGLD_HSVEA




 89-123






PVGLM_SEOUR




 73-100




513-540




694-721






PVGLD_HSVEB




139-173






PVGLM_SEOUS




 73-100




513-540




894-721






PVGLD_HSVEK




139-173






PVGLN_BEFV




523-584








PVGLE_HSV11




111-145






PVGLP_BEV




48-82




1145-1179




1184-1211




1505-1532





PVGLE_HSV2




111-159






PVGLX_HSVEB




17-44




413-444







PVGLF_BRSVA




146-202




804-545






PVGLX_PRVRI




427-481








PVGLF_BRSVC




146-202




267-302




506-547






PVGLY_JUNIN




14-41








PVGLF_BRSVR




146-202




267-302




505-554






PVGLY_LASSG




 86-113








PVGLF_CDVO




228-297




340-381




568-602






PVGLY_MOPEI




 86-113




316-346







PVGLF_HRSV1




118-203




267-302




506-549






PVGLY_PIARV




334-375








PVGLF_HRSVA




116-202




267-302




506-549






PVGLV_TACV




109-138




315-350







PVGLF_HRSVL




116-202




267-302




506-547






PVGLY_TACV5




303-338








PVGLF_HRSVR




116-202




267-302




506-549






PVGLY_TACV7




302-337








PVGLF_MEASE




116-184




228-269




452-500






PVGLY_TACVT




303-338








PVGLF_MEASI




119-187




231-272




455-503






PVGLZ_HSVEK




17-44








PVGLF_MEASY




116-184




228-269




452-500






PVGNM_BPMV




403-430








PVOLF_MUMPM




20-54




103-179




235-272




447-502






PVGNM_CPSMV




192-221








PVGLF_MUMPR




20-54




103-179




235-272




447-502






PVGP8_EBV




104-149








PVGLF_MUMPS




20-54




103-179




235-272




447-502






PVM1_REOVL




290-317








PVGLF_NDVA




117-182




231-272




426-512






PVM21_REOVD




625-662








PVGLF_NDVS




122-182




231-272




426-517






PVM22_REOVD




624-661








PVGLF_NDVI




133-182




236-272




426-517






PVM2_REOVJ




624-881








PVGLF_NDVM




117-182




231-272




426-512






PVM3_REOVD




169-186




343-370




450-483




631-690





PVGLF_NDVT




117-182




231-272




426-517






PVMA2_BRSVA




124-152








PVGLF_NDVTG




122-182




231-272




425-517






PVMA2_HRSVA




124-151








PVGLF_NDVU




122-182




231-272




426-512






PVMAT_BRSVA




219-248








PVGLF_PHODV




29-63




197-266




309-350




533-581






PVMAT_HRSVA




219-248








PVGLF_PI1HC




123-174




207-267




459-503






PVMAT_INCJJ




151-185








PVGLF_PI2H




 93-183




477-528






PVMAT_NDVA




247-274








PVGLF_PI2HG




 93-183




477-528






PVMAT_PI2HT




 96-123








PVGLF_PI2HT




 93-185




477-528






PVMAT_PI3B




201-231








PVGLF_PI3B




117-182




207-241




456-518






PVMAT_PI3H4




201-231








PVGLF_PI3H4




117-182




207-241




462-532






PVMAT_SV41




323-353








PVGLF_RINDK




112-180




224-265




448-493






PVME1_CVBM




175-209








PVGLF_RINDL




112-180




224-265




448-508






PVME1_CVTKE




175-209








PVGLF_SEND5




127-188




211-271




463-533






PVME1_IBV6




21-48




184-218







PVGLF_SENDF




127-188




211-271




463-533






PVME1_IBVB




21-48




184-218







PVGLF_SENDH




127-188




218-271




463-533






PVME1_IBVB2




21-48




184-218







PVGLF_SENDJ




127-188




211-271




463-533






PVME1_IBVK





184-218







PVGLF_SENDZ




127-188




211-271




463-533






PVMP_CAMVC





220-254




273-324






PVGLF_SV41




 96-188




454-508






PVMP_CAMVD




29-56




220-254




273-324






PVGLF_SV5




103-171




241-275




451-487






PVMP_CAMVE





227-254




273-324






PVGLF_TRTV




105-161




190-224




457-498






PVMP_CAMVN





220-254




273-324






PVGLG_BEFV




506-812






PVMP_CAMVS





220-254




273-324






PVGLG_BRSVC




30-70




104-138






PVMP_CAMVW





220-254




273-324






PVGLG_HRSV1




30-81






PVMP_CERV




26-53




100-127







PVGLG_HRSV2




30-85






PVMP_SOCMV




 4-31




 78-118







PVGLG_HRSV3




30-85






PVMSA_HPBHE




294-328








PVGLG_HRSV4




 30-107






PVMT1_DHVI1




38-65




237-284







PVGLG_HRSV5




30-85






PVMT8_MYXVL




163-190








PVGLG_HRSV6




30-85






PVMT9_MYXVL




465-492








PVGLG_HRSV7




30-85












PVGLG_HRSV8




30-81












PVGLG_HRSVA




30-67












PVGLG_HRSVL




25-85












PVGLG_HSVE4




271-306












PVGLG_SIGMA




344-381




484-498












PVGLG_SYNV




488-523












PVGLG_VHSVO




363-397












PVGLG_VSVIG




476-510












PVGLH_EBV




53-87




160-201




336-380




653-694












PVGLH_HCMVA




103-137




270-311




893-741












PVGLH_HCMVT




102-136




692-740












PVGLH_HSV11




447-481












PVGLH_HSV1E




447-481












PVGLH_HSVBG




357-406












PVGLH_HSVBC




364-416












PVGLH_HSVE4




334-379




414-455












PVGLH_HSVEB




327-372




407-448












PVGLH_HSVSA




32-88




374-453




664-712












PVGLH_MCMVS




440-474












PVGLH_PRVKA




226-260












PVGLH_PRVN3




226-260












PVGLH_PRVRI




226-260












PVGLH_VZVD




455-506












PVGLI_HCMVA




 47-111




323-359












PVGLM_BUNGE




512-567




685-737




1228-1262












PVGLM_BUNL7




643-677




916-950












PVGLM_BUNSH




643-677












PVGLM_BUNYW




340-374




504-563




905-939












PVGLM_DUGBV




937-989




1239-1300












PVGLM_HANTB




693-727












PVGLM_HANTH




 72-106












PVGLM_HANTL




 72-106












PVGLM_HANTV




 72-108












PVGLM_PHV




 73-111












PVGLM_PTPV




149-251












PVGLM_SEOUR




694-728












PVGLM_SEOUS




693-730












PVGLN_BEFV




377-414




513-569












PVGLP_BEV




43-82




 90-124




622-856




1128-1236












PVGLX_HSVEB




177-262












PVGLX_PRVRI




420-461












PVGLY_JUNIN




301-349












PVGLY_LASSG




317-360




388-422












PVGLY_LASSJ




316-361




389-423












PVGLY_LYCVA




333-367




395-432












PVGLY_LYCVW




124-158




333-367




395-432












PVGLY_MOPEI




316-359












PVGLY_PIARV




334-375












PVGLY_TACV




315-363












PVGLY_TACV5




303-351




382-416












PVGLY_TACV7




302-350




381-415












PVGLY_TACVT




303-351




382-416












PVGNB_CPMV




835-869












PVGNM_BPMV




143-177




403-437












PVGNM_CPMV




160-201












PVGNM_CPSMV




192-226




758-792




674-915












PVGNM_RCMV




837-871




912-946












PVGP8_EBV




 94-149












PVM01_VACCC




 5-56












PVM1_REOVL




287-321












PVM21_REOVD




416-450




619-663












PVM22_REOVD




416-450




618-662












PVM2_REOVJ




416-450




618-662












PVM2_REOVL




416-450




618-662












PVM3_REOVD




135-190




337-371




623-558




618-690












PVMA2_BRSVA




42-90












PVMA2_HRSVA




42-90












PVMAT_CDVO




193-234












PVMAT_INCJJ




 73-114




151-208












PVMAT_NDVA




310-359












PVMAT_NDVB




324-358












PVMAT_PI3B




 99-133




204-252












PVMAT_PI3H4




 99-133




204-252












PVMAT_RABVA




 69-103












PVMAT_RABVC




 69-103












PVMAT_RABVE




 69-103












PVMAT_RABVN




 69-103












PVMAT_RABVP




 69-103












PVMAT_RASVS




 69-103












PVMAT_SYNV




246-280












PVMAT_VSVIG




198-232












PVME1_CVBM




175-209












PVME1_CVPFS




 98-140




212-267












PVME1_CVPPU




212-257












PVME1_CVPRM




212-257












PVME1_CVTKE




28-62




175-209












PVME1_FIPV




212-267












PVME1_IBV6




21-55




177-218












PVMEI_IBVB




21-55




177-218












PVME1_IBVB2




21-55




177-218












PVME1_IBVK




36-94












PVMP_CAMVC




187-254




270-324












PVMP_CAMVD




187-254




270-324












PVMP_CAMVE




187-254




270-324












PVMP_CAMVN




187-254




270-324












PVMP_CAMVS




187-254




270-324












PVMP_CAMVW




187-254




270-324












PVMP_CERV




212-246












PVMP_FMVD




217-251












PVMP_SOCMV




 76-118












PVMSA_HPBDB




272-313




324-361












PVMSA_HPBOC




271-312




323-360












PVMSA_HPBDU




234-275




289-323












PVMSA_HPBOW




272-313




324-361












PVMSA_HPBGS




210-244












PVMSA_HPBHE




294-328












PVMSA_WHV1




208-242












PVMSA_WHV59




213-247












PVMSA_WHV7




213-247












PVMSA_WHVBI




213-247












PVMT1_DHVI1




201-235












PVMT1_IAANN




 92-126




174-222












PVMT1_IABAN




 92-126




174-222












PVMT1_IACAO




31-79












PVMT1_IAFOW




 92-126




174-222












PVMT1_IAFPR




 92-126




174-222












PVMT1_IAFPW




 92-126




174-222












PVMT1_IALE1




 92-126




174-222












PVMT1_IALE2




 92-126




174-222












PVMT1_IAMAN




 92-126




174-222












PVMT1_IAPOC




 92-126




174-222












PVMT1_IAPUE




 92-126




174-222












PVMT1_IAUDO




 92-126




174-222












PVMT1_IAWIL




 92-126




174-222












PVMT1_IAZI1




 92-126




174-222












PVMT1_INBAC




175-209












PVMT1_INBAD




175-209












PVMT1_INBLE




175-209












PVMT1_INBSI




175-209












PVMT2_INBAC




132-184












PVMT2_INBAD




132-184












PVMT2_INBLE




132-184












PVMT2_INBSI




132-184












PVMT8_MTXVL




46-80




145-197






















TABLE VI











Search Results Summary for PCTLZIP, P1CTLZIP, and P2CTLZIP Motifs













PCTLZIP




P1CTLZIP




P2CTLZIP






LIBRARY FILE




LIBRARY FILE




LIBRARY FILE
























PENV_FOAMV




481-496





PENV_BIVO6




434-450







PENV_BIVO6




526-542







PENV_HV1MA




438-453





PENV_BIV27




463-479







PENV_BIV27




554-571






PENV_HV1MP




163-188





PENV_FOAMV




481-496




864-880






PENV_FENV1




30-47




630-647






PENV_HVIRH




445-480





PENV_HV1KB




762-788







PENV_FIVPE




781-798






PEMV_HV18C




188-201





PENV_HV1MA




437-453







PENV_FIVSD




779-798






PENV_HVIZ2




123-138





PENV_HV1MP




183-199







PENV_FIVT2




780-797






PENV_HVIZH




438-453





PENV_HV1RH




444-460







PENV_FRVC6




38-55




824-841






PENV_HV28E




750-785





PENV_HV1S1




738-754







PENV_FLVGL




806-822






PENV_HV2D1




741-758





PENV_HVISC




168-201







PENV_FLVLB




825-842






PENV_HV231




741-758





PENV_HV1Z2




123-138







PENV_FLVSA




802-619






PENV_HV2NZ




742-757





PENV_HV1Z3




117-133







PENV_FOAMV




710-727




967-974






PENV_HV2RO




751-766





PENV_HVIZH




437-453







PENV_FSVGA




825-642






PENV_HV2S8




743-758





PENV_HV2BE




750-765







PENV_FSVGB




806-822






PENV_HV2ST




745-780





PENV_HV2D1




741-758







PENV_FBVSM




608-625






PENV_JSRV




104-119





PENV_HV2G1




741-758







PENV_HV1OY




123-140






PENV_MMTVB




618-633





PENV_HV2NZ




742-767







PENV_HV1Z2




410-427






PENV_MMTVG




618-633





PENV_HV2RO




751-788







PENV_HV1Z3




154-171






PENV_SIVMK




139-154





PENV_HV2S8




743-758







PENV_HV2CA




750-787






PENV_SIVML




139-154





PENV_HV2ST




745-760







PENV_MCFF




600-617






PHEMA_CVBLY




391-408





PENV_JSRV




104-119




541-567






PENV_MCFF3




601-618






PHEMA_CVBM




391-408





PENV_MCFF




397-413







PENV_MLVAV




630-647






PHEMA_CVSQ




391-408





PENV_MCFF3




397-413







PENV_MLVCB




626-642






PHEMA_CVHOC




391-408





PENV_MLVAV




427-443







PENV_MLVF5




639-656






PHEMA_CVMA5




402-417





PENV_MLVCB




423-438







PENV_MLVFF




639-656






PHEMA_CVMS




403-418





PENV_MLVHO




424-440







PENV_MLVFP




639-656






PHEMA_INBAA




295-310





PENV_MLVMO




426-442







PENV_MLVNO




626-643






PHEMA_INBBE




303-318





PENV_MLVRD




424-440







PENV_MLVKI




167-164






PHEMA_INBBO




293-309





PENV_MLVRK




424-440







PENV_MLVMO




629-646






PHEMA_INBEN




301-318





PENV_MMTVB




816-833







PENV_MLVRD




624-641






PHEMA_INBFU




288-301





PENV_MMTVG




618-633







PENV_MLVRK




624-641






PHEMA_INBGL




286-311





PENV_SFV1




884-880







PENV_MSVFB




170-187






PHEMA_INBHK




293-308





PENV_SFV3L




881-577







PENV_RMCFV




603-620






PHEMA_INBIB




266-303





PENV_SIVGB




93-109







PENV_SPV1




710-727




957-974






PHEMA_INBID




299-314





PENV_SIVMK




139-154




802-818






PENV_SFV3L




707-724




954-971






PHEMA_INBLE




302-317





PENV_SIVML




139-154




801-817






PENV_SIVM1




766-783






PHEMA_INBMD




292-307





PENV_SIVS4




808-822







PENV_SIVMK




765-782






PHEMA_INBME




298-311





PENV_SIVBP




810-826







PENV_SWML




764-781






PHEMA_INBNA




288-303





PHEMA_CDVO




38-62







PENV_SIVS4




769-786






PHEMA_INBOR




301-318





PHEMA_CVBLY




391-408







PENV_SIVSP




773-790






PHEMA_INBSI




301-318





PHEMA_CVBM




391-408







PENV_SMRVH




638-553






PHEMA_INSBJ




299-313





PHEMA_CVBQ




391-408







PENV_SMSAV




42-69






PHEMA_INBUS




294-309





PHEMA_CVHOC




391-408







PHEMA_CDVO




38-53




200-217






PHEMA_INBVI




296-311





PHEMA_CVMA6




402-417







PHEMA_CVBLV




391-408






PHEMA_INBVK




303-318





PHEMA_CVMS




403-418







PHEMA_CVSM




391-408






PHEMA_INBYB




286-301





PHEMA_IAAIC




237-253







PHEMA_CVBQ




391-408






PHEMA_MUMPM




133-148





PHEMA_IABAN




221-237







PHEMA_CVHOC




391-408






PHEMA_MUMPR




133-148





PHEMA_IABUD




234-250







PHEMA_IAAIC




322-339






PHEMA_MUMPS




133-148





PHEMA_IACKA




234-250







PHEMA_IABAN




320-323






PHEMA_PIHW




345-380





PHEMA_IACKG




231-247







PHEMA_IABUD




320-337






PHEMA_PI2N




65-80





PHEMA_IACKV




230-248







PHEMA_IACKA




320-337






PHEMA_PI2HT




65-80





PHEMA_IADA1




234-250







PHEMA_IACKG




316-333






PHEMA_RINDK




366-383





PHEMA_IADA3




237-253







PHEMA_IACKP




302-319






PHEMA_SV5




7-94





PHEMA_IADCZ




234-250







PHEMA_IACKQ




302-319






PHEMA_SV5CM




7-94





PHEMA_IADH1




221-237







PHEMA_IACKS




319-336






PHEMA_SV5CP




7-94





PHEMA_IADH2




221-237







PHEMA_IACKV




315-332






PHEMA_SV5LN




7-94





PHEMA_IADH3




221-237







PHEMA_IADA1




320-337






PVENV_DHVI1




42-57





PHEMA_IADH4




221-237







PHEMA_IADA3




322-339






PVFP7_CAPVK




89-104





PHEMA_IADH5




221-237







PHEMA_IADCZ




320-337






PVFUS_VACC6




72-87





PHEMA_IADH6




221-237







PHEMA_IADH1




306-323






PVGOI_BPP22




242-257





PHEMA_IADH7




221-237







PHEMA_IADH2




306-323






PVGO1_HSVEB




169-184





PHEMA_IADM2




237-253







PHEMA_IAOH3




306-323






PVGQ1_HSVI1




210-226




317-332




PHEMA_IADNZ




234-250







PHEMA_IADN4




306-323






PV006_BPT4




184-199





PHEMA_IAEN6




221-237







PHEMA_IADH6




306-323






PVOD7_BPT4




885-900





PHEMA_IAEN7




237-253







PHEMA_IADN7




306-323






PVGOS_HSVI1




134-149





PHEMA_IAFPR




230-248







PHEMA_IADM2




322-339






PVGIO_BPPH2




183-196





PHEMA_IAHAL




236-252







PHEMA_IADMZ




320-337






PVG1O_BPPZA




183-196





PHEMA_IANAR




235-251







PHEMA_IADU3




322-339






PVGIO_HSVSA




109-124





PHEMA_IAHC8




230-246







PHEMA_IAEN6




306-323






PVG16_BPP1




81-96





PHEMA_IAHC7




230-246







PHEMA_IAEN7




322-339






PVG18_BPT4




463-483





PHEMA_IAHCD




230-246







PHEMA_IAFPR




315-332






PVG2S_BPT4




97-112





PHEMA_IAHDE




230-246







PHBMA_IAGRE




320-337






PVG29_HSVI1




20-35





PHEMA_IAHFO




236-252







PHEMA_IAGU2




320-337






PVG3O_BPPH6




11-94





PHEMA_IAHK6




236-252







PHEMA_IAGUA




319-336






PVG3O_BPOX2




22-37





PHEMA_IAHK7




236-252







PHEMA_IAHAL




321-338






PVG36_NBVSA




108-123





PHEMA_IAHLE




230-246







PHEMA_IAHC6




315-332






PVG37_BPT2




1253-1268





PHEMA_IAHLO




230-246







PHEMA_IAHC7




315-332






PVG37_HBVI1




284-299





PHEMA_IAHMI




236-252







PHEMA_IAHCD




315-332






PVG55_HSVI1




22-37




143-158




PHEMA_IAHNM




236-252







PHEMA_IAHDE




315-332






PVGS6_HSVI1




268-283





PHEMA_IANRO




236-252







PHEMA_IAHFO




321-338






PVGS8_HSVI1




102-117





PHEMA_IAHSA




236-252







PHEMA_IAHK6




321-338






PVG59_HSVI1




267-292





PHEMA_IAHSP




230-246







PHEMA_IAHK7




321-339






PVG65_HSVI1




518-533





PHEMA_IAHSW




230-246







PHEMA_IAHLE




315-332






PVG9_BPPH2




234-279





PHEMA_IAHTE




236-252







PHEMA_IAHLO




316-332






PVG9_BPPZA




234-279





PHEMA_IAHTO




236-252







PHEMA_IAHMI




321-338






PVG9_SPV1R




57-72





PHEMA_IAHUR




236-252







PHEMA_IAHNM




321-338






PVGF_BPPHX




234-249





PHEMA_IAKIE




235-251







PHEMA_IAHNN




315-332






PVGL2_CVBF




264-279





PHEMA_IALEN




235-251







PHEMA_IANPR




315-332






PVGL2_CVBL9




264-279





PHEMA_IAMAA




233-249







PHEMA_IAHRO




321-338






PVGL2_CVBLY




264-279





PHEMA_IAMAB




236-254







PHEMA_IANSA




321-338






PVGL2_CVBM




264-279





PHEMA_IAMAO




237-253







PNEMA_IANSP




315-332






PVGL2_CVBQ




264-279





PHEMA_IAME1




237-253







PHEMA_IANSW




315-332






PVGL2_CVBV




264-279





PHEMA_IAME2




237-253







PHEMA_IANTE




321-339






PVGL2_CVPFS




442-467





PHEMA_IAMEG




221-237







PHEMA_IAHTO




321-339






PVGL2_CVPPU




440-465




504-519




PHEMA_IAMIN




85-101




231-247






PHEMA_IAHUR




321-339






PVGL2_CVPRB




218-233





PHEMA_IANT8




237-263







PHEMA_IAJAP




317-334






PVGL2_CVPRM




218-233





PHEMA_IAOU7




221-237







PHEMA_IAMAA




319-338






PVGL2_IBV8




1056-1071





PHEMA_IARUD




234-250







PHEMA_IAMAB




324-341






PVGL2_IBVB




1055-1070





PHEMA_IASE2




234-250







PHEMA_IAMAO




322-339






PVGL2_IBVD2




1058-1071





PHEMA_IASH2




234-250







PHEMA_IAME1




322-339






PVGL2_IBVK




1055-1070





PHEMA_IASTA




230-246







PHEMA_IAME2




322-339






PVGL2_IBVM




1055-1070





PHEMA_IATAI




235-251







PHEMA_IAME8




308-323






PVGLB_HSVSA




701-718





PHEMA_IATKM




234-250







PHEMA_IAMIN




306-333






PVGLB_PRVIF




203-216





PHEMA_IATKO




233-249







PHEMA_IANT8




322-339






PVGLC_MSVBC




475-490





PHEMA_IATKR




230-246







PMEMA_IAPIL




320-337






PVGLC_HSVE4




444-469





PHEMA_IATKW




229-245







PHEMA_IAQU7




338-323






PVGLC_HSVEB




427-442





PHEMA_IAUDO




237-253







PHEMA_IARUD




320-337






PVGLC_PRVIF




448-461





PHEMA_IAUSS




236-251







PHEMA_IASE2




320-337






PVGLD_HSV11




79-94





PHEMA_IAVI7




238-264







PHEMA_IASH2




321-338






PVGLF_HSV2




79-94





PHEMA_IAXIA




235-251







PHEMA_IASTA




315-332






PVGLF_BRSVA




265-280





PHEMA_IAZCO




237-263







PHEMA_IATKM




320-337






PVGLF_BRSVC




265-280





PHEMA_IAZH2




221-237







PHEMA_IAUDO




322-339




380-397






PVGLF_BRSVR




265-280





PHEMA_IAZH3




221-237







PHEMA_IAVI7




323-340






PVGLF_HRSV1




265-280





PHEMA_IAZUK




237-253







PHEMA_IAZCO




322-339






PVGLF_HRSVA




265-280





PHEMA_INBAA




115-131




295-310






PHEMA_IAZH2




306-323






PVGLF_HRSVL




265-280





PHEMA_INBBE




123-139




303-316






PHEMA_IAZH3




306-323






PVGLF_HRSVR




265-280





PHEMA_INBBO




118-132




293-308






PHEMA_IAZUK




322-339






PVGLF_MUMPS




5-94





PHEMA_INBEN




123-139




301-318






PHEMA_MUMPM




101-118






PVGLF_VZVD




279-293





PHEMA_INBFU




109-124




286-301






PHEMA_MUMPR




101-118






PVGLM_HANTB




900-915





PHEMA_INBGL




119-135




268-311






PHEMA_MUMPS




101-118






PVGLM_PTPV




743-758





PHEMA_INBHK




118-132




293-306






PHEMA_NDVA




93-110






PVGLM_SEOUR




901-918





PHEMA_INBIB




108-124




289-303






PHEMA_NDVB




93-110






PVGLM_SEOUS




900-916





PHEMA_INBID




120-138




299-314






PHEMA_NDVD




93-110






PVGLY_LASGG




428-441





PHEMA_INBLE




123-139




302-317






PHEMA_NDVH




93-110






PVGLY_LASSJ




427-442





PHEMA_INBMD




113-129




292-307






PHEMA_NDVI




93-110






PVGLY_MOPEI




425-440





PHEMA_INBME




116-132




296-311






PHEMA_NDVM




93-110






PVM3_REOVD




521-538





PHEMA_INBNA




108-124




288-303






PHEMA_NDVQ




93-110






PVMSA_HPSG8




380-396





PHEMA_INBOR




123-139




301-316






PHEMA_NDVTG




93-110






PVMSA_HPBV9




187-202





PHEMA_INBSI




123-139




301-316






PHEMA_NDVU




93-110






PVMSA_WHV1




378-393





PHEMA_INBSJ




119-135




298-313






PHEMA_PHODV




38-53






PVMSA_WHV59




383-398





PHEMA_INBUS




116-132




294-309






PHEMA_PI1HW




486-503






PVMSA_WHV7




383-398





PHEMA_INBVI




116-132




298-311






PHEMA_PI3B




111-128






PVMSA_WHV8




383-398





PHEMA_INBVK




123-139




303-318






PHEMA_PI3H4




111-128






PVMSA_WHV8I




383-398





PHEMA_INBYB




108-124




280-301






PHEMA_PI3HA




111-128






PVMSA_WHVW8




234-249





PHEMA_MUMPM




133-148







PHEMA_PI3HT




111-128






PVMT2_IAANN




25-40





PHEMA_MUMPR




133-148







PHEMA_PI3HU




111-128






PVMT2_IABAN




25-40





PHEMA_MUMPS




133-148







PHEMA_PI3HV




111-128






PVMT2_IAFOW




25-40





PHEMA_PI1HW




345-380







PHEMA_PI3HW




111-128






PVMT2_IAFPR




25-40





PHEMA_PI2H




65-81







PHEMA_PI3HX




111-128






PVMT2_IAFPW




25-40





PHEMA_PI2HT




65-81







PHEMA_PI4HA




50-87






PVMT2_IALE1




25-40





PHEMA_PI3B




324-340







PHEMA_SV41




85-102






PVMT2_LALE2




25-40





PHEMA_PI3H4




324-340







PHEMA_SV5




84-101






PVMT2_IAMAN




25-40





PHEMA_PI3HA




324-340







PHEMA_SV5CM




84-101






PVMT2_IAPUE




25-40





PHEMA_PI3HT




324-340







PHEMA_SV5CP




84-101






PVMT2_IASIN




25-40





PHEMA_PI3HU




324-340







PHEMA_SV5LN




84-101






PVMT2_IAUDO




25-40





PHEMA_PI3HV




324-340







PVFDS_VACCC




280-297






PVMT2_IAWIL




25-40





PHEMA_PI3HW




324-340







PVVDB_VACCP




280-297






PVMT2_MYXVL




228-241





PHEMA_PI3HX




324-340







PVFOS_VACCV




281-298









PHEMA_RINDK




380-383







PVFO9_VACCC




176-193









PHEMA_BV5




7-94







PVFD9_VACCV




176-193









PHEMA_SV5CM




7-94







PVG27_HSVSA




209-226









PHEMA_SV5CP




7-94







PVG2S_H8VI1




173-190









PHEMA_SV5LH




7-94







PVG39_HSVI1




648-686









PVENV_DHVI1




42-57







PVG43_H8VI1




109-128




521-536









PVENV_EAV




25-41







PVG87_HSVI1




171-188









PVFP2_FOWPV




88-104







PVG72_HSVI1




1252-1289









PVFP7_CAPVK




89-104







PVGF1_HBVB




3073-3090









PVFUS_VACC6




72-87







PVGLB_IBV6




1094-1111









PVGO1_HSVEB




169-184







PVGLB_HSVE1




738-753









PVGO1_HSVI1




209-225




317-332






PVGLB_HSVE4




675-892









PVGO8_HSVI1




134-149







PVGLB_HSVEA




738-753









PVG1O_HSVSA




109-124







PVGLB_HSVEB




738-753









PVG1I_HSVI1




103-119







PVGLB_HSVEL




738-753









PVG12_HSVI1




270-288







PVGLB_ILTV6




597-814









PVGI_SPV1R




76-92







PVGLB_ILTVS




807-824









PVG29_HSVI1




20-35







PVGLB_ILTVT




807-824









PVG3B_BPOX2




22-37







PVGLC_PRVIF




180-197









PVG3S_HSVSA




108-123







PVGLE_VZVD




489-498









PVG37_HSVI1




284-299







PVGL_SV5




401-418









PVG41_HSVI1




244-260







PVGLH_HCMVA




355-392









PVVG46_HSVI1




1244-1260







PVGLH_HCMVT




364-381









PVG55_HBVI1




22-37




143-158






PVGLH_HSV11




245-282




603-820









PVG56_HSVI1




268-283







PVGLH_HSV1E




245-282




603-820









PVG58_HSVI1




101-117







PVGLI_HSV11




43-80









PVG58_HSVSA




130-148




330-348






PVGLM_BUNL7




81-98









PVG59_HSVI1




267-282







PVGLM_BUNSH




81-98









PVG65_HSVI1




362-378




518-533






PVGLM_PUUMH




712-729









PVG71_HSVSA




89-105







PVGLM_PUUMS




712-729









PVG9_BPPN2




234-249







PVGLM_RVFV




344-381









PVG9_BPPZA




234-249







PVGLM_RVFVZ




344-381









PVG9_SPV1R




57-72







PVGLV_LASSG




12-94









PVGF1_IBVB




2210-2226







PVGLY_LASSJ




12-94









PVGL2_CVBF




123-139




174-190




264-279





PVGLV_LYCVA




12-94









PVGL2_CVBL9




123-139




174-190




264-279





PVGLY_LYCVW




12-94









PVGL2_CVBLY




123-139




174-190




264-279





PVGLY_MOPEI




12-94









PVGL2_CVBM




123-139




174-190




264-279





PVM1_REOVD




280-297









PVGL2_CVBQ




31-47




123-139




174-190




264-279




PVM1_REOVL




280-297









PVGL2_CVBV




123-139




174-190




264-279





PVMAT_COVO




148-185









PVGL2_CVM4




95-111




1267-1283






PVMAT_MEASI




187-104









PVGL2_CVMA5




95-111




1215-1231






PVMP_CAMVC




147-164









PVGL2_CVMJH




95-111




1126-1142






PVMP_CAMVD




147-164









PVGL2_CVPFS




442-457




800-816




1274-1290





PVMP_CAMVE




147-164









PVGL2_CVPPU




440-456




504-519




798-814




1272-1288




PVMP_CAMVN




147-164









PVGL2_CVPR8




218-233




576-592




1050-1066





PVMP_CAMVS




147-164









PVGL2_CVPRM




218-233




576-592




1050-1066





PVMP_CAMVW




147-164









PVGL2_FIPV




803-819




1277-1293






PVMSA_HPBVO




111 -94









PVGL2_IBV6




1056-1071







PVMSA_HPBV2




185-202









PVGL2_IBV8




1055-1070







PVMSA_HPBV4




185-202









PVGL2_IBVD2




1058-1071







PVMSAHPBVA




174-191









PVGL2_IBVK




1055-1070







PVMSA_HPBVD




11-94









PVGL2_IBVM




1055-1070







PVMSA_PBV1




174-191









PVGLS_HSVSA




701-718







PVMSA_HPBVL




174-197









PVGLS_PRVIF




203-218







PVMSA_HPBVN




11-94









PVGLB_VZVD




522-538







PVMSA_HPBVO




174-191









PVGLC_HSVBC




475-490







PVMSA_HPBVP




185-202









PVGLC_HSVE4




444-459







PVMSA_HPBVR




185-202









PVGLC_HSVEB




427-442







PVMSA_HPBVS




11-94









PVGLC_PRVIF




446-461







PVMSA_HPBVW




174-191









PVGLC_VZVD




150-165







PVMBA_HPBWY




174-191









PVGLC_VZVS




150-168







PVMSA_PSVZ1




174-191









PVGLD_HSV11




79-94







PVMT2_IAANN




25-42









PVGLD_HSV2




79-94







PVMT2_IABAN




25-42









PVGLE_PRVRI




3-94







PVMT2_IAFOW




25-42









PVGLF_BRSVA




205-221




265-280






PVMT2_IAFFR




25-42









PVGLF_BRBVC




205-221




265-280






PVMT2_IAFPW




25-42









PVGLF_BRSVR




205-221




265-280






PVMT2_IALEI




25-42









PVGLF_CDVO




398-414







PVMT2_IALE2




25-42









PVGLF_HRSVI1




205-221




265-280






PVMT2_IAMAM




25-42









PVGLP_HRSVA




205-221




265-280






PVMT2_IAPUE




25-42









PVGLF_HRBVL




205-221




265-280






PVMT2_IASIN




25-42









PVGLF_HRSVR




205-221




265-280






PVMT2_IAUDO




25-42









PVGLF_MEASE




286-302







PVMT2_IAWIL




25-42









PVGLF_MEASI




289-306









PVGLF_MEASY




286-302









PVGLF_MUMPM




276-292









PVGLF_MUMPR




276-292









PVGLF_MUMPS




5-94




278-292









PVGLF_NDVA




273-289









PVGLP_NDVS




273-289









PVGLP_NDVM




273-289









PVGLP_NDVT




273-289









PVGLF_NDVTG




273-289









PVGLF_NDVU




273-289









PVGLP_PHODV




269-285




387-383









PVGLF_RINDK




282-298









PVGLF_RINDL




282-298









PVGLF_TRTV




175-191









PVGLI_VZVD




276-293









PVGLM_HANTB




355-371




900-915









PVGLM_HANTH




499-515









PVGLM_HANTL




499-515









PVGLM_HANTV




499-515









PVGLM_PTPV




743-758









PVGLM_PUUMH




509-525









PVGLM_PUUMS




509-525









PVGLM_SEOUR




355-371




901-916









PVGLM_SEOUS




355-371




900-915









PVGLM_UUK




826-842









PVGLP_BEV




669-886









PVGLY_LASSG




12-94




428-441









PVGLY_LASSJ




12-94




427-442









PVGLY_LYCVA




12-94









PVGLY_LVCVW




12-94









PVGLY_MOPEI




12-94




425-440









PVGLY_PIARV




12-94









PVGNM_CPMV




1021-1037









PVM3_REOVD




521-530









PVMAT_MUMPS




191-207









PVMAT_NDVA




135-151









PVMAT_NDVB




135-151









PVMAT_PI2HT




189-206









PVMAT_SV41




189-206









PVMAT_SV6




98-114




132-148









PVMP_CAMVC




118-134









PVMP_CAMVD




118-134









PVMP_CAMVE




118-134









PVMP_CAMVN




118-134









PVMP_CAMVS




118-134









PVMP_CAMVW




118-134









PVMP_FMVD




115-131









PVMSA_HPBGS




380-396









PVMSA_HPBV9




187-202









PVMSA_WHV1




378-393









PVMSA_WHV59




383-398









PVMSA_WHV7




383-398









PVMSA_WHV8




383-398









PVMSA_WHV8I




383-398









PVMSA_WHVW6




234-249









PVMT2_IAANN




25-40









PVMT2_IABAN




25-40









PVMT2_IAFOW




25-40









PVMT2_IAFPR




25-40









PVMT2_IAFPW




25-40









PVMT2_IALE1




25-40









PVMT2_IALE2




25-40









PVMT2_IAMAN




25-40









PVMT2_IAPUE




25-40









PVMT2_IASIN




25-40









PVMT2_IAUDO




25-40









PVMT2_IAWIL




25-40









PVMT9_MYXVL




226-241






















TABLE VII











Search Results Summary for P3CTLZIP, P4CTLZIP,






P5CTLZIP, and P6CTLZIP Motifs














P3CTLZIP




P4CTLZIP




P5CTLZIP




P6CTLZIP






LIBRARY FILE




LIBRARY FILE




LIBRARY FILE




LIBRARY FILE


























PENV_BIV27




147-165





PENV1_FRSFV




380-399





PENV1_FRSFV




380-400





PENV_BIV06




47-68




625-546







PENV_CAEVC




810-828





PENV_AVISU




 98-117





PENV2_FRSFV




380-400





PENV_BIV27




47-68




147-168




564-575






PENV_CAEVG




808-826





PENV_BIV27




147-166





PENV_BAEVM




170-190





PENV_FENV1




225-246




630-651






PENV_HV2BE




750-768





PENV_HV1ZH




123-142





PENV_FIVPE




781-801





PENV_FLVC6




624-645






PENV_HV2D1




741-759





PENV_HV2D2




 9-29





PENV_FIVSD




779-799





PENV_FLVGL




447-468




605-626






PENV_HV2G1




741-759





PENV_HV2SB




778-797





PENV_FIVT2




780-800





PENV_FLVLB




467-488




625-646






PENV_HV2NZ




742-760





PENV_JSRV




541-560





PENV_FLVGL




 9-29





PENV_FLVSA




444-465




602-623






PENV_HV2RO




751-769





PENV_RSVP




533-552





PENV_FOAMV




255-275




924-944




PENV_FOAMV




153-174




957-978






PENV_HV2SB




743-761





PHEMA_VACCC




173-192





PENV_FSVGA




 9-29





PENV_FSVGA




467-488




625-646






PENV_HV2ST




745-763





PHEMA_VACCI




173-192





PENV_HV1C4




428-448





PENV_FSVGB




447-468




605-626






PENV_JSRV




376-394





PHEMA_VACCT




173-192





PENV_HV2CA




750-770





PENV_FSVSM




450-471




608-629






PHEMA_PI2H




118-136





PHEMA_VACCV




173-192





PENV_MLVF5




400-420





PENV_FSVST




467-488






PHEMA_PI2HT




118-136





PVENV_BEV




62-81





PENV_MMTVB




643-663





PENV_GALV




52-73




519-540






PHEMA_6V41




55-73





PVENV_MCV1




61-80





PENV_MMTVG




643-663





PENV_HV2BE




750-771






PVENV_THOGV




473-491





PVENV_MCV2




61-80





PENV_OMVVS




75-95





PENV_HV2G1




741-782






PVG16_BPP22




 83-101





PVFUS_ORFNZ




29-48





PENV_RSVP




42-62





PENV_HV2NZ




742-763






PVG24_BPT4




115-133





PVG01_HSVEB




169-188





PENV_SFV1




924-944





PENV_HV2RO




751-772






PVG36_HSVSA




344-362





PVG01_VACCC




376-395





PENV_SFV3L




921-941





PENV_HV2ST




745-766






PVG40_HSVI1




14-32





PVG01_VACCV




315-334





PENV_SIVM1




766-786





PENV_MCFF




600-621






PVG50_HSVSA




 5-94





PVG01_VARV




376-395





PENV_SIVMK




765-785





PENV_MCFF3




601-622






PVG51_BPT4




63-81





PVG06_BPT4




627-646





PENV_SIVML




764-784





PENV_MLVAV




630-651






PVG51_HSVI1




 84-102





PVG10_HSVI1




35-54





PENV_SIVS4




769-789





PENV_MLVCB




625-646






PVG65_HSVI1




165-173





PVG11_HSVI1




103-122




150-169




PENV_SIVSP




773-793





PENV_MLVF5




639-660






PVGF1_IBVB




2788-2806




3374-3392




PVG1_BPPH2




31-50





PHEMA_CDVO




493-513





PENV_MLVFF




639-660






PVGL2_CVH22




1053-1071





PVG1_SPV1R




659-678





PHEMA_CVBLY




391-411





PENV_MLVFP




639-660






PVGL2_IBV6




1056-1074





PVG20_BPT4




231-250





PHEMA_CVBM




391-411





PENV_MLVHO




626-647






PVGL2_IBVB




1055-1073





PVG32_VZVD




 90-109





PHEMA_CVBQ




391-411





PENV_MLVKI




167-188






PVGL2_IBVD2




1056-1074





PVG36_BPK3




132-151





PHEMA_CVHOC




391-411





PENV_MLVMO




629-650






PVGL2_IBVK




1055-1073





PVG37_BPT2




19-38




629-648




PHEMA_CVMA5




402-422





PENV_MLVRD




624-645






PVGL2_IBVM




1055-1073





PVG37_BPT4




19-38




625-644




PHEMA_IACKG




 81-101





PENV_MLVRK




624-645






PVGLB_HSVB1




560-578




689-707




PVG39_HSVI1




1038-1057





PHEMA_IADMA




 81-101





PENV_MSVFB




170-191






PVGLB_HSVBC




692-710





PVG41_HSVI1




62-81





PHEMA_MUMPM




397-417





PENV_RMCFV




603-624






PVGLB_HSVSA




584-602





PVG43_BPPF3




380-399





PHEMA_MUMPR




397-417





PENV_SFV1




957-978






PVGLB_ILTV6




740-758





PVG46_BPPF1




337-356





PHEMA_MUMPS




397-417





PENV_SFV3L




157-178




954-975






PVGLB_ILTVS




750-768





PVG59_HSVI1




142-161





PHEMA_PHODV




493-513





PENV_SIVAI




437-458






PVGLB_ILTVT




750-768





PVG61_HSVI1




117-136





PHEMA_PI1HW




322-342





PENV_SIVAG




442-463






PVGLC_VZVD




431-449





PVG67_HSVI1




318-337




1072-1091




PHEMA_PI2H




13-33





PENV_SIVA1




421-442






PVGLC_VZVS




431-449





PVGF1_IBVB




1587-1606




2108-2127




PHEMA_PI2HT




13-33





PENV_SIVAT




435-456






PVGLF_PI3H4




 2-94





PVGL2_CVBF




 991-1010





PHEMA_RINDL




497-517





PENV_SMSAV




42-63






PVGLH_HSV6G




314-332





PVGL2_CVBL9




 991-1010





PHEMA_SEND5




322-342





PHEMA_CVMA5




402-423






PVGLH_HSVE4




814-832





PVGL2_CVBLY




 991-1010





PHEMA_SENDF




322-342





PHEMA_IADE1




266-287






PVGLH_HSVEB




807-826





PVGL2_CVBM




 991-1010





PHEMA_SENDH




322-342





PHEMA_MUMPM




225-246






PVGLI_HSV11




 5-94





PVGL2_CVBQ




 991-1010





PHEMA_SENDJ




322-342





PHEMA_MUMPR




225-246






PVGNM_BPMV




678-696





PVGL2_CVBV




 991-1010





PHEMA_SENDZ




322-342





PHEMA_MUMPS




225-246






PVM01_VACCC




134-152




177-195




PVGL2_CVH22




768-787




1115-1134




PVENV_LELV




27-47




148-168




PHEMA_PHODV




213-234






PVM01_VACCV




 83-101




126-144




PVGL2_CVM4




 999-1018





PVENV_THOGV




356-376





PHEMA_PI2H




13-34






PVM1_REOVD




227-245





PVGL2_CVMA5




947-966





PVG01_VACCC




298-318





PHEMA_PI2HT




13-34






PVM1_REOVL




227-245





PVGL2_CVMJH




856-877





PVG01_VACCV




237-257





PHEMA_SV5




 7-28




379-400






PVMAT_HRSVA




44-62





PVGL2_CVPFS




64-83




1038-1057




PVG01_VARV




298-318





PHEMA_SV5CM




 7-28




379-400






PVMAT_NDVA




190-208





PVGL2_CVPPU




64-83




1036-1055




PVG06_VACCC




31-51





PHEMA_SV5CP




 7-28




379-400






PVMAT_NDVB




190-208





PVGL2_CVPR8




814-833





PVG06_VARV




31-51





PHEMA_SV5LN




 7-28




379-400






PVMP_CAMVC




183-201





PVGL2_CVPRM




814-833





PVG09_BPPF1




25-45





PVG01_HSVEB




169-190






PVMP_CAMVD




183-201





PVGL2_FIPV




1041-1060





PVG12_HSVI1




151-171





PVG01_HSVI1




589-610






PVMP_CAMVE




183-201





PVGL2_IBV6




588-607




771-790




PVG22_HSVI1




300-320





PVG23_HSVI1




314-335






PVMP_CAMVN




183-201





PVGL2_IBVB




587-606




770-789




PVG39_HSVI1




648-668




970-990




PVG37_BPOX2




65-86






PVMP_CAMVS




183-201





PVGL2_IBVD2




588-607




771-790




PVG51_HSVI1




29-49





PVG43_HSVI1




157-178






PVMP_CAMVW




183-201





PVGL2_IBVK




587-606




770-789




PVG63_HSVI1




336-356





PVG55_HSVI1




288-309






PVMP_FMVD




180-198





PVGL2_IBVM




587-606




770-789




PVG65_HSVI1




117-137





PVG55_HSVSA




 85-106









PVGLB_HCMVA




706-725





PVG74_HSVSA




124-144





PVG56_HSVI1




1155-1176









PVGLB_HCMVT




707-726





PVGL2_IBV6




328-348





PVG58_HSVSA




266-287









PVGLB_HSV6U




117-136





PVGL2_IBVB




327-347





PVG60_HSVI1




30-51









PVGLB_ILTV6




256-275





PVGL2_IBVD2




328-346





PVG63_HSVI1




238-259









PVGLB_ILTVS




266-285





PVGL2_IBVD3




328-348





PVGF1_IBVB




1856-1877









PVGLB_ILTVT




266-285





PVGL2_IBVK




327-347





PVGH3_HCMVA




157-178









PVGLC_HSV11




 3-94




467-486




PVGL2_IBVM




327-347




378-398




PVGL2_CVBF




1259-1280









PVGLC_HSV1K




 3-94




467-486




PVGL2_IBVU2




310-330





PVGL2_CVBL9




1259-1280









PVGLC_HSVBC




475-494





PVGLB_EBV




732-752





PVGL2_CVBLY




1259-1280









PVGLG_CHAV




436-455





PVGLB_HCMVA




750-770





PVGL2_CVBM




1259-1280









PVGLG_RABVH




372-391





PVGLB_HCMVT




751-771





PVGL2_CVBQ




1259-1280









PVGLI_HSVEB




44-63





PVGLB_HSV23




79-99





PVGL2_CVBV




1259-1280









PVGLI_VZVO




278-297





PVGLB_HSV2H




79-99





PVGL2_CVM4




1317-1338









PVGLM_BUNGE




117-136





PVGLB_HSV2S




65-85





PVGL2_CVMA5




1265-1286









PVGLM_PHV




152-171





PVGLB_HBV6U




72-92





PVGL2_CVMJH




1176-1197









PVGLM_PTPV




 997-1016





PVGLB_HSVB2




279-299





PVGLB_HSV11




 83-104









PVGLM_PUUMH




155-174





PVGLB_HSVSA




63-83





PVGLB_HSV1F




 82-103









PVGLM_PUUMS




155-174





PVGLB_MCMVS




738-758





PVGLB_HSV1K




 82-103









PVGLM_RVFV




830-849





PVGLF_PI3H4




283-303





PVGLB_HBV1P




 83-104









PVGLM_RVFVZ




830-849





PVGLG_RABVE




454-474





PVGLB_MCMVS




135-156









PVGLM_UUK




655-674





PVGLG_RABVH




454-474





PVGLC_PRVIF




446-467









PVGLY_LYCVW




 89-108





PVGLG_RABVP




454-474





PVGLF_CDVO




336-357









PVGNB_CPMV




1165-1184





PVGLG_RABVS




454-474





PVGLF_MEASE




224-245









PVM3_REOVD




521-540





PVGLG_RABVT




454-474





PVGLF_MEASI




227-248









PVME1_CVBM




171-190





PVGLH_MCMVS




670-690





PVGLF_MEASY




224-245









PVME1_CVH22




136-155





PVGLM_BUNL7




1325-1345





PVGLF_MUMPM




446-467









PVME1_CVPFS




174-193





PVGLM_BUNSH




1325-1345





PVGLF_MUMPR




446-467









PVME1_CVPPU




174-193





PVGLM_BUNYW




 996-1016





PVGLF_MUMPS




446-467









PVME1_CVPRM




174-193





PVGLM_HANTB




 999-1019





PVGLF_PHODV




305-326









PVME1_CVTKE




171-190





PVGLM_HANTH




1000-1020





PVGLF_PI1HC




456-477












PVGLM_HANTL




1001-1021





PVGLF_PI2H




450-471












PVGLM_HANTV




1001-1021





PVGLF_PI2HG




450-471












PVGLM_RVFVZ




1156-1176





PVGLF_PI2HT




450-471












PVGLM_SEOUR




1000-1020





PVGLF_PI3B




405-426




453-474












PVGLM_SEOUS




 999-1019





PVGLF_PI3H4




453-474












PVGLM_UUK




925-945





PVGLF_RINDK




220-241












PVGLY_LYCVA




12-32





PVGLF_RINDL




220-241












PVGLY_LYCVW




12-32





PVGLF_SEND5




460-481












PVGLY_PIARV




12-32





PVGLF_SENDF




460-481












PVGNB_CPMV




141-161





PVGLF_SENDH




460-481












PVMAT_MUMPS




310-330





PVGLF_SENDJ




460-481












PVMAT_NDVA




309-329





PVGLF_SENDZ




460-481












PVMAT_NDVB




309-329





PVGLF_SV41




453-474












PVMAT_PI2HT




308-328





PVGLF_SV5




446-467












PVMAT_PI4HA




312-332





PVGLH_HCMVA




691-712












PVMAT_PI4HB




312-332





PVGLH_HCMVT




690-711












PVMAT_SV41




308-328





PVGLH_HSVE4




304-325












PVMAT_SV5




308-328





PVGLH_HSVEB




297-318












PVME1_IBV6




74-94





PVGLH_HSVSA




658-679












PVME1_IBVB




74-94





PVGL1_HSV2




 2-23












PVME1_IBVB2




74-94





PVGL1_HSV23




 2-23












PVME1_IBVK




74-94





PVGLM_BUNGE




197-218












PVMSA_HPBDB




201-221





PVGLM_BUNL7




190-211












PVMSA_HPBGS




209-229





PVGLM_BUNSH




190-211












PVMSA_HPBHE




293-313





PVGLM_BUNYW




193-214












PVMSA_WHV1




207-227





PVGLY_LASSG




237-258












PVMSA_WHV59




212-232





PVGLY_LASSJ




238-259












PVMSA_WHV7




212-232





PVGP8_EBV




67-88












PVMSA_WHV8




212-232





PVM01_VACCC




261-302












PVMSA_WHVBI




212-232





PVM01_VACCV




230-251












PVMSA_WHVW6




63-83





PVMAT_HRSVA




139-160















PVMAT_RINDK




200-221




239-260















PVMAT_TRTV




122-143















PVME1_CVHOC




64-85















PVMSA_HPBDB




201-222















PVMSA_HPBVO




70-91















PVMSA_HPBV2




244-265















PVMSA_HPBV4




244-265















PVMSA_HPBV9




244-265















PVMSA_HPBVA




233-254















PVMSA_HPBVD




70-91















PVMSA_HPBVI




233-254















PVMSA_HPBVJ




233-254















PVMSA_HPBVL




233-254















PVMSA_HPBVN




70-91















PVMSA_HPBVO




233-254















PVMSA_HPBVP




244-265















PVMSA_HPBVR




244-265















PVMSA_HPBVS




70-91















PVMSA_HPBVW




233-254















PVMSA_HPBVY




223-254















PVMSA_HPBVZ




233-254















PVMT2_IAANN




25-46















PVMT2_IABAN




25-46















PVMT2_IAFOW




25-46















PVMT2_IAFPR




25-46















PVMT2_IAFPW




25-46















PVMT2_IALE1




25-46















PVMT2_IALE2




25-46















PVMT2_IAMAN




25-46















PVMT2_IAPUE




25-46















PVMT2_IASIN




25-46















PVMT2_IAUDO




25-46















PVMT2_IAWIL




25-46






















TABLE VIII











Search Results Summary for P7CTLZIP,






P8CTLZIP, and P9CTLZIP Motifs













P7CTLZIP




P8CTLZIP




P9CTLZIP






LIBRARY FILE




LIBRARY FILE




LIBRARY FILE






















PEN_BAEVM




202-224





PENV1_FRSFV




380-403





PENV_BLVAF




303-327







PENV_HV1B1




498-520





PNEV2_FRSFV




380-403





PENV_BLVAU




303-327






PENV_HV1B8




493-516





PENV_BIV06




178-201





PENV_BLVAV




303-327






PENV_HV1BN




494-516





PENv_BIV27




207-230





PENV_BLVB2




303-327






PENV_HV1BR




503-526





PENV_FOAMV




664-887





PENV_BLVB6




303-327






PENV_HV1EL




495-517





PENV_HV1Z3




175-198





PENV_BLVJ




303-327






PENV_HV1H2




498-520





PENV_HV2BE




 3-26




781-804




PENV_FIVPE




781-806






PENV_HV1H3




498-520





PENV_HV2CA




750-773





PENV_FIVSD




779-803






PENV_HV1J3




510-532





PENV_HV2D1




 3-26




772-795




PENV_FIVT2




780-804






PENV_HV1JR




490-512





PENV_HV2G1




772-795





PHEMA_CVBLY




391-415






PENV_HV1KB




504-529





PENV_HV2NZ




777-800





PHEMA_CVBM




391-415






PENV_HV1MA




500-522





PENV_JSRV




541-564





PHEMA_CVBQ




391-415






PENV_HV1MF




496-518





PENV_SFV1




884-887





PHEMA_CHVOC




391-415






PENV_HV1ND




488-510





PENV_SFV3L




861-804





PHEMA_INCCA




442-446






PENV_HV1PV




496-520





PENV_SIVM1




803-826





PHEMA_INCEN




430-454






PENV_HV1S1




489-511





PENV_SIVMK




802-825





PHEMA_INCGL




430-454






PENV_HV1Z2




123-145




495-517




PENV_SIVML




801-824





PHEMA_INCHY




429-453






PENV_HV1Z6




497-519





PENV_SIVS4




806-829





PHEMA_INCJH




443-467






PENV_HV1Z8




505-527





PENV_SIVSP




810-833





PHEMA_INCKY




429-453






PENV_HV1ZH




498-520





PHEMA_CDVO




200-223





PHEMA_INCMI




429-453






PENV_JSRV




376-398





PHEMA_PI2H




65-88





PHEMA_INCNA




429-453






PENV_MPMV




213-235





PHEMA_PI2HT




65-88





PHEMA_INCP1




430-454






PENV_SRV1




213-235





PVF11_VACCC




161-184





PHEMA_INCP2




430-454






PHEMA_IAAIC




37-59





PVF15_VACCC




25-48





PHEMA_INCP3




430-454






PHEMA_IABAN




21-43





PVF15_VACCP




 3-26





PHEMA_INCTA




430-454






PHEMA_IADA3




37-59





PVG1L_AMEPV




313-336





PHEMA_INCYA




430-454






PHEMA_IADH2




21-43





PVG28_HSVI1




491-514





PHEMA_MUMPM




101-125






PHEMA_IADH3




21-43





PVG43_HSVI1




322-345





PHEMA_MUMPR




101-125






PHEMA_IADH4




21-43





PVG52_HSVI1




229-252





PHEMA_MUMPS




101-125






PHEMA_IADH5




21-43





PVG67_HSVI1




722-745





PHEMA_PI1HW




29-53






PHEMA_IADH6




21-43





PVGL2_CVBF




10-33





PVENV_BEV




62-88






PHEMA_IADH7




21-43





PVGL2_CVBL9




651-674





PVF05_BACCC




280-304






PHEMA_IADM2




37-59





PVGL2_CVBLY




10-33





PVF05_VACCP




380-304






PHEMA_IADMA




28-50





PVGL2_CVM4




1267-1280





PVF05_VACCV




281-305






PHEMA_IADU3




37-59





PVGL2_CVMA5




1215-1238





PVF09_VACCC




176-200






PHEMA_IAEN6




21-43





PVGL2_CVMJH




1126-1149





PVF09_VACCV




176-200






PHEMA_IAEN7




37-59





PVGL2_CVPFS




1274-1297





PVGO1_VZVD




58-82






PHEMA_IAMAO




37-59





PVGL2_CVPPU




1272-1295





PVG10_HSVSA




355-379






PHEMA_IAME1




37-59





PVGL2_CVPR8




1050-1073





PVG12_HSVSA




68-92






PHEMA_IAME2




37-59





PVGL2_CVPRM




1050-1073





PVG19_HSVI1




 88-112






PHEMA_IAME6




21-43





PVGL2_FIPV




1277-1300





PVG28_HSVI1




173-197






PHEMA_IANT6




37-59





PVGL2_IBV6




196-219





PVG43_HSVI1




109-133






PHEMA_IAQU7




21-43





PVGL2_IBVB




95-218





PVG87_HSVI1




108-132




1005-1029






PHEMA_IATKM




33-55





PVGL2_IBVD2




196-219





PVG72_HSVI1




720-744






PHEMA_IAUDO




37-59





PVGL2_IBVD3




196-219





PVGF1_IBVB




3601-3826






PHEMA_IAVI7




38-60





PVGL2_IBVK




195-218





PVGL8_HSVMD




589-613






PHEMA_IAX31




37-59





PVGL2_IBVM




195-218





PVGLB_ILTV8




597-621






PHEMA_IAZCO




37-59





PVGL2_IBVU1




178-201





PVGLB_ILTV3




607-631






PHEMA_IAZH2




21-43





PVGL2_IBVU2




178-201





PVGLB_ILTVT




607-631






PHEMA_IAZH3




21-43





PVGL2_IBVU3




178-201





PVGLE_HSVI1




413-437






PHEMA_IAZUK




37-59





PVGLB_HCMVA




525-558





PVGLE_VZVD




489-493






PHEMA_PHODV




36-58





PVGLB_HCMVT




536-559





PVGLF_SVS




401-425






PHEMA_PI2H




65-87





PVGLS_HSVSA




483-506





PVGLH_HCMVA




574-599






PHEMA_PI2HT




65-87





PVGLB_MCMV8




566-589





PVGLH_HCMVT




573-597






PVFP7_CAFVK




 89-111





PVGLC_HSVI1




467-490





PVGLH_HSV11




443-467




803-827






PVFUS_VACC6




72-94





PVGLC_HSV1K




467-490





PVGLH_HSV1E




443-467




803-827






PVGO1_HSVI1




317-339





PVGLC_HSV2




435-458





PVGLM_BUNL7




31-55






PVGO3_VACCC




50-72





PVGLC_HSV23




436-459





PVGLM_BUNSH




31-55






PVGO3_VARV




50-72





PVGLM_BUNL7




1387-1410





PVGLM_HANTH




694-718






PVGO4_VACCC




11-33





PVGLM_BUNSH




1387-1410





PVGLM_RVFV




344-368






PVGO4_VARV




11-33





PVGLM_UUK




966-989





PVGLM_RVFVZ




344-368






PVG19_HSVI1




 88-110





PVGLY_JUNIN




12-35





PVGLM_UUK




561-585






PVG28_HSVI1




173-195





PVGLY_LASSG




12-35





PVGNM_CPMV




311-335






PVG29_HSVI1




20-42





PVGLY_LASSJ




12-35





PVGP2_EBV




657-681






PVG46_HSVI1




134-156





PVGLY_LYCVA




12-35





PVGP3_EBV




854-878






PVG48_HSVSA




71-93





PVGLY_LYCVW




12-35





PVM1_REOVD




380-304






PVG58_HSVSA




266-288





PVGLY_MOPEI




12-35





PVM1_REOVL




280-304






PVG59_HSVI1




267-289





PVGLY_TACV




12-35





PVM21_REOVD




188-192






PVG5_SPV4




42-64





PVGLY_TACV5




12-35





PVM22_REOVD




168-192






PVG60_HSVI1




53-75





PVGLY_TACV7




12-35





PVM2_REOVJ




168-192






PVG85_HSVI1




1347-1369





PVGLY_TACVT




12-35





PVM2_REOVL




168-192






PVG6_SPV1R




60-82





PVGNM_CPMV




741-764





PVMAT_MEAS1




 87-111






PVGL2_IBV6




1055-1078





PVM1_REOVD




324-347




454-477




PVMAT_SSPVB




314-338






PVGL2_IBVB




1055-1077





PVM1_REOVL




454-477





PVME1_CVBM




137-161






PVGL2_IBVD2




1056-1078





PVMAT_MUMPS




227-250





PVME1_CVHOC




137-161






PVGL2_IBVK




1055-1077





PVMSA_HPBDB




269-292





PVME1_CVTKE




137-161






PVGL2_IBVM




1055-1077





PVMSA_HPBDC




268-291





PVME1_IBV6




74-98






PVGLB_HSV6U




117-139





PVMSA_HPBDU




231-254





PVME1_IBVB




74-98






PVGLV_HSVB2




745-767





PVSMA_HPBDW




269-292





PVME1_IBVB2




74-98






PVGLC_HSVMB




399-421





PVMSA_HPBHE




236-259





PVME1_IBVK




74-98






PVGLC_HSVMG




398-420








PVMSA_HPBG8




271-295






PVGLC_HSVMM




399-421








PVMSA_WHV1




269-293






PVGLF_BRSVA




265-287




482-504







PVMSA_WHV59




274-298






PVGLF_BRSVC




484-506








PVMSA_WHV7




274-298






PVGLF_BRSVR




484-506








PVMSA_WHV8




274-298






PVGLF_HRSV1




484-506








PVMSA_WHV8I




274-298






PVGLF_HRSVA




484-506








PVMSA_WHVW6




125-149






PVGLF_HRSVL




484-506






PVGLF_HRSVR




484-506






PVGLF_TRTV




452-474






PVGLG_IHNV




77-99






PVGLG_VHSV0




406-428






PVGLH_H3VE4




814-836






PVGLH_HSVEB




807-829






PVGLI_HCMVA




158P14 180






PVGLM_PTPV




743-765






PVGLP_BEV




430-452




1546-1568






PVGLY_LASSG




428-448






PVGLY_LASSJ




427-449






PVGLY_MOPEI




425-447






PVGP2_EBV




657-679






PVGP3_EBV




854-878






PVM1_REOVD




414-436






PVM1_REOVL




414-438






PVM3_REOVD




304-326






PVMAT_PI1HC




195-217






PVMAT_PI2HT




132-164






PVMAT_SENDF




195-217






PVMAT_SENDH




195-217






PVMAT_SENDZ




195-217






PVMAT_SV41




132-154






PVMEM_EBV




131-153






PVMP_CERV




293-315






















TABLE IX









Search Results Summary for P12CTLZIP Motif
































P12LZIPC















LIBRARY FILE






PENV1_FRSFV




380-407






PENV2_FRSPV




380-407






PENV_AVISU




98-117






PENV_BAEVM




202-224






PENV_BIVO6




525-546






PENV_BIV27




147-168




207-230




463-479




554-575






PENV_BLVAF




303-327






PENV_BLVAU




303-327






PENV_BLVAV




303-327






PENV_BLVB2




303-327






PENV_BLVB6




303-327






PENV_BLVJ




303-327






PENV_FENV1




30-47




225-246




630-651






PENV_FLVC6




38-55




624-645






PENV_FLVGL




9-29




447-468




606-626






PENV_FLVLB




467-488




613-646






PENV_FLVSA




444-465




602-623






PENV_FOAMV




153-174




255-275




300-325




481-496




710-727




864-887




924-951




957-978






PENV_FSVGA




9-29




467-488




625-646






PENV_FSVGB




447-468




605-626






PENV_FSVSM




450-471




608-629






PENV_FSVST




467-488






PENV_GALV




52-73




519-540






PENV_HV181




498-520






PENV_HV188




493-515






PENV_HV18N




494-516






PENV_HV18R




503-525






FENV_HV1C4




428-448






PENV_HV1EL




495-517






PENV_HV1H2




498-520






PENV_HV1H3




498-520






PENV_HV1J3




510-532






PENV_HV1JR




490-512






PENV_HV1KB




604-626




552-579




752-768






PENV_HV1MA




438-453




500-522






PENV_HV1MF




496-518






PENV_HV1ND




488-510






PENV_HV1OY




123-140






PENV_HV1PV




498-520






PENV_HV1RH




445-460






PENV_HV1S1




489-511




7380-754






PENV_HV1Z2




123-145




410-427




495-517






PENV_HV1Z3




117-133




175-198






PENV_WV1Z6




497-519






PENV_HV1Z8




505-527






PENV_HV1ZH




123-142




438-453




498-520






PENV_HV2BE




3-26




750-775




781-804






PENV_HV2CA




750-777






PENV_HV2D1




3-26




741-766




772-795






PENV_HV2D2




9-28






PENV_HV2G1




741-766




772-795






PENV_HV2NZ




742-767




777-800






PENV_HV2RO




751-776






PENV_HV2SB




743-768




778-804






PENV_HV2ST




745-770






PENV_JSRV




104-119




299-325




376-398




541-564






PENV_MCFF




600-621






PENV_MCFF3




601-622






PENV_MLVAV




630-651






PENV_MLVCB




625-646






PENV_MLVF5




639-660






PENV_MLVFF




639-660






PENV_MLVFP




639-660






PENV_MLVHO




626-647






PENV_MLVKI




187-188






PENV_MLVMO




629-650






PENV_MLVRD




624-645






PENV_MLVRK




624-645






PENV_MMTVB




643-663






PENV_MMTVG




643-663






PENV_MPMV




213-235






PENV_MSVFB




170-191






PENV_OMVVS




75-100




658-683






PENV_RMCFV




603-624






PENV_RSVP




42-69




533-552






PENV_SFV1




300-325




710-727




864-887




924-951




957-978






PENV_SFV3L




157-178




304-329




707-724




861-884




921-948




954-975






PENV_SIVA1




437-458






PENV_SIVAG




442-463






PENV_SIVAI




421-442






PENV_SIVAT




435-456






PENV_SIVGB




93-109






PENV_SIVM1




766-793




803-826






PENV_SIVM2




139-154




765-792




802-825






PENV_SIVMK




139-154




764-791




801-824






PENV_SIVML




769-789




806-829






PENV_SIVS4




773-793




810-833






PENV_SMSAV




42-63






PENV_SRV1




213-235






PHEMA_CDVO




36-53




200-223






PHEMA_CVBLY




391-415






PHEMA_CVBM




391-415






PHEMA_CVBQ




391-415






PHEMA_CYNOC




391-415






PHEMA_CVMA5




402-123






PHEMA_CVMS




403-418






PHEMA_IAAIC




37-59




322-339






PHEMA_IABAN




21-43




306-323






PHEMA_IABUD




320-337






PHEMA_IACKA




320-337






PHEMA_IACKG




81-101




316-333






PHEMA_IACKP




302-319






PHEMA_IACKQ




302-319






PHEMA_IACKS




319-336






PHEMA_IACKV




230-246




315-332






PHEMA_IADA1




320-337






PHEMA_IADA2




319-336






PHEMA_IADA3




37-59




322-339






PHEMA_IADCZ




320-337






PHEMA_IADE1




266-287






PHEMA_IADH1




306-323






PHEMA_IADH2




21-43




306-323






PHEMA_IADH3




21-43




306-323






PHEMA_IADH4




21-43




306-323






PHEMA_IADH5




21-43






PHEMA_IADH6




21-43




306-323






PHEMA_IADH7




21-43




306-323






PHEMA_IADM2




37-59




322-339






PHEMA_IADMA




26-50




81-101






PHEMA_IADNZ




320-337






PHEMA_IADU3




37-59




322-339






PHEMA_IAEN6




21-43




306-323






PHEMA_IAEN7




37-59




322-339






PHEMA_IAFPR




230-246




315-332






PHEMA_IAGRE




320-337






PHEMA_IAGU2




320-337






PHEMA_IAGUA




319-336






PHEMA_IAHAL




321-338






PHEMA_IAHAR




230-246




315-332






PHEMA_IAHC6




230-246




315-332






PHEMA_IAHC7




230-246




315-332






PHEMA_IAHCD




230-246




315-332






PHEMA_IAHDE




230-246




315-332






PHEMA_IAHFO




236-252




321-338






PHEMA_IAHK6




321-338






PHEMA_IAHK7




236-252




321-338






PHEMA_IAHLE




230-246




315-332






PHEMA_IAHLO




230-246




315-332






PHEMA_IAHMI




236-252




321-338






PHEMA_IAHNM




236-252




321-338






PHEMA_IAHNN




315-332






PHEMA_IAHPR




315-332






PHEMA_IAHRO




236-252




321-338






PHEMA_IAHSA




236-252




321-338






PHEMA_IAHSP




230-246




315-332






PHEMA_IAHSW




230-246




315-332






PHEMA_IAHTE




236-252




321-338






PHEMA_IAHTO




236-252




321-338






PHEMA_IAHUR




236-252




321-338






PHEMA_IAJAP




317-334






PHEMA_IAMAA




197-223




319-336






PHEMA_IAMAB




202-228




324-341






PHEMA_IAMAO




37-59




322-339






PHEMA_IAME1




37-59




322-339






PHEMA_IAME2




37-59




322-339






PHEMA_IAME6




21-43






PHEMA_IAMIN




85-101




231-247




316-333






PHEMA_IANT6




37-59




322-339






PHEMA_IAPIL




320-337






PHEMA_IAQU7




21-43




306-323






PHEMA_IARUD




320-337






PHEMA_IASE2




320-337






PHEMA_IASH2




321-338






PHEMA_IASTA




230-246




315-332






PHEMA_IATAI




33-55




320-337






PHEMA_IATKI




233-249






PHEMA_IATKR




230-246






PHEMA_IATKW




229-245






PHEMA_IAUDO




37-59




322-339




380-397






PHEMA_IAVI7




38-60




323-340






PHEMA_IAX31




37-59






PHEMA_IAZCO




37-59




322-339






PHEMA_IAZH2




21-43




306-323






PHEMA_IAZH3




21-43




306-323






PHEMA_IAZUK




37-59




322-339






PHEMA_INBAA




115-131




295-310






PHEMA_INBBE




123-139




303-318






PHEMA_INBBO




116-132




293-308






PHEMA_INBEN




123-139




301-316






PHEMA_INBFU




108-124




266-301






PHEMA_INBGL




119-135




296-311






PHEMA_INBHK




116-132




293-308






PHEMA_INBIB




108-124




288-303






PHEMA_INBID




120-136




299-314






PHEMA_INBLE




123-139




302-317






PHEMA_INBMD




113-129




292-307






PHEMA_INBME




116-132




296-311






PHEMA_INBNA




108-124




288-303






PHEMA_INBOR




123-139




301-316






PHEMA_INBSI




123-139




301-316






PHEMA_INBSJ




119-135




298-313






PHEMA_INBUS




116-132




294-309






PHEMA_INBVI




116-132




296-311






PHEMA_INBVK




123-139




303-318






PHEMA_INBYB




108-124




288-301






PHEMA_INCCA




442-466






PHEMA_INCEN




430-454






PHEMA_INCGL




430-454






PHEMA_INCHY




429-453






PHEMA_INCJH




443-467






PHEMA_INCKY




429-153






PHEMA_INCMI




429-153






PHEMA_INCNA




429-453






PHEMA_INCP1




430-454






PHEMA_INCP2




430-454






PHEMA_INCP3




430-454






PHEMA_INCTA




430-454






PHEMA_INCYA




430-454






PHEMA_MUMPM




133-148




225-246




387-394




397-417






PHEMA_MUMPR




101-125




133-148




225-246




397-417






PHEMA_MUMPS




101-125




133-148




225-246




367-394




397-417






PHEMA_NDVA




93-110






PHEMA_NDVB




93-110






PHEMA_NDVD




93-110






PHEMA_NDVH




93-110






PHEMA_NDVI




93-110






PHEMA_NDVM




93-110






PHEMA_NDVQ




93-110






PHEMA_NDVTG




93-110






PHEMA_NDVU




93-110






PHEMA_PHODV




36-56




213-234




493-513






PHEMA_PI1HW




29-53




322-342




345-360




486-503






PHEMA_PI2H




13-40




65-88




118-136






PHEMA_PI2HT




13-40




65-88




118-136






PHEMA_PI3B




111-128




272-299




324-340






PHEMA_PI3H4




111-128




272-299




324-340






PHEMA_PI3HA




111-128




272-299




324-340






PHEMA_PI3HT




111-128




272-299




324-340






PHEMA_PI3HU




111-128




272-299




324-340






PHEMA_PI3HV




111-128




272-299




324-340






PHEMA_PI3HW




111-128




272-299




324-340






PHEMA_PI3HX




111-128




272-299




324-340






PHEMA_PI4HA




50-67






PHEMA_RINDK




368-383






PHEMA_RINDL




4-30






PHEMA_SEND5




322-342






PHEMA_SENDF




322-342






PHEMA_SENDH




322-342






PHEMA_SENDJ




322-342






PHEMA_SENDZ




322-342






PHEMA_SV41




55-73




85-102




107-132






PHEMA_SV5




7-28




84-101




379-400






PHEMA_SV5CM




7-28




84-101




379-400






PHEMA_SV5CP




7-28




84-101




379-400






PHEMA_SV5LN




7-28




84-101




379-400






PHEMA_VACCC




173-192






PHEMA_VACCI




173-192






PHEMA_VACCT




173-192






PHEMA_VACCV




173-192






PVENV_BEV




62-86




87-114






PVENV_DNVI1




42-57




484-511






PVENV_EAV




25-41






PVENV_LELV




27-47




148-168






PVENV_MCV1




61-80






PVENV_MCV2




61-80




306-333






PVENV_THOGV




196-221




356-383




473-491






PVFO5_VACCC




280-305






PVFO5_VACCP




280-305






PVFO5_VACCV




280-305






PVFO9_VACCC




176-200






PVFO9_VACCV




176-200






PVF11_VACCC




161-184






PVF15_VACCC




25-48






PVF15_VACCP




3-26






PVFP1_FOWPV




297-323






PVFP2_FOWPV




68-104






PVFP7_CAPVK




89-111






PVFP7_FOWPV




65-90






PVFP8_CAPVK




51-76






PVFUS_ORFNZ




29-48






PVFUS_VACC6




72-94






PVGO1_HSVEB




169-195






PVGO1_HSVI1




210-225




317-339




589-616






PVGO1_VACCC




298-318




376-395






PVGO1_VACCV




237-257




315-334






PVGO1_VARV




298-318




376-395






PVGO1_VZVD




58-82






PVGO3_VACCC




50-72






PVGO3_VARV




50-72






PVGO4_VACCC




11-33






PVGO4_VARV




11-33






PVGO6_VACCC




31-51






PVGO6_VARV




31-51






PVGO8_HSVI1




134-149




159-185






PVG10_HSVI1




35-54






PVG10_HSVSA




109-124




355-379






PVG11_HSVI1




103-122




150-176






PVG12_HSVI1




151-178




270-286






PVG12_HSVSA




68-92






PVG15_HSVEB




194-209






PVG19_HSVI1




88-112






PVG1L_AMEPV




313-336






PVG1_SPV1R




76-92




359-676






PVG22_HSVI1




300-327






PVG23_HSVI1




314-335






PVG27_HSVI1




158-184






PVG27_HSVSA




209-226






PVG28_HSVI1




173-197




491-518






PVG28_HSVSA




14-40






PVG29_HSVI1




20-42






PVG30_HSVI1




166-191






PVG32_VZVD




90-109






PVG36_HSVSA




108-123




344-362






PVG37_HSVI1




284-299






PVG39_HSVI1




646-675




970-990




1038-1065






PVG40_HSVI1




14-32






PVG41_HSVI1




11-38




62-81




244-260






PVG43_HSVI1




109-133




157-178




322-345




521-538






PVG46_HSVI1




134-156




580-607




937-963




1244-1270






PVG48_HSVSA




71-93






PVG50_HSVI1




5-30




58-83






PVG50_HSVSA




63-81




95-117




206-233






PVG51_HSVI1




29-49




84-102






PVG52_HSVI1




229-252






PVG55_HSVI1




22-37




143-168




288-309






PVG55_HSVSA




85-106






PVG56_HSVI1




1155-1176






PVG58_HSVSA




130-146




266-288




293-319




330-346






PVG59_HSVI1




142-161




267-289






PVG5_SPV4




42-84






PVG60_HSVI1




30-51




53-75






PVG61_HSVI1




76-102




117-136






PVG63_HSVI1




238-259




336-383






PVG64_HSVI1




420-445






PVG65_HSVI1




117-137




155-173




362-378




518-533




1147-1174




1347-1369






PVG67_HSVI1




108-132




171-188




318-344




722-745




1005-1029




1072-1091




1315-1341






PVG6_SPV1R




60-82






PVG70_HSVI1




184-209






PVG71_HSVSA




69-105






PVG72_HSVI1




445-471




535-561




720-744




1252-1269






PVG74_HSVSA




124-151






PVG9_SPV1R




57-72






PVGF1_IBVB




1587-1606




1856-1877




2108-2127




2210-2226




2788-2806




2973-2999




3073-3090




3374-3390




3601-















3625






PVGH3_HCMVA




157-178






PVGL2_CVBF




10-33




123-139




174-190




264-279




991-1017




1259-1280






PVGL2_CVBL9




123-139




174-190




264-279




651-674




991-1017




1259-1280






PVGL2_CVBLY




10-33




123-139




174-190




264-279




991-1017




1259-1280






PVGL2_CVBM




123-139




174-190




264-279




991-1017




1259-1280






PVGL2_CVBQ




31-47




123-139




174-190




991-1017




1259-1280






PVGL2_CVBV




123-139




174-190




264-279




991-1017




1259-1280






PVGL2_CVH22




768-794




1053-1071




1115-1134






PVGL2_CVM4




95-111




999-1025




1267-1290




1317-1338






PVGL2_CVMA5




95-111




947-973




1215-1238




1265-1286






PVGL2_CVMJH




95-111




858-884




1126-1149




1178-1197






PVGL2_CVPFS




64-83




442-457




800-816




1038-1064




1274-1297






PVGL2_CVPPU




64-83




440-455




504-519




798-814




1036-1082




1272-1295






PVGL2_CVPR8




218-233




576-592




814-840




1050-1073






PVGL2_CVPRM




218-233




576-592




814-840




1050-1073






PVGL2_FIPV




803-819




1041-1067




1277-1300






PVGL2_IBV6




196-219




588-607




771-797




1056-1081




1094-1111






PVGL2_IBVb




195-218




587-606




770-796




1055-1080






PVGL2_IBVD2




196-219




588-607




771-797




1056-1081






PVGL2_IBVD3




196-219






PVGL2_IBVK




195-218




587-606




770-796




1065-1080






PVGL2_IBVM




195-218




378-398




587-606




770-795




1065-1080






PVGL2_IBVU1




178-201






PVGL2_IBVU2




178-201






PVGL2_IBVU3




178-201






PVGLB_EBV




732-752






PVGLB_HCMVA




535-558




706-732




750-777






PVGLB_HCMVT




536-559




707-733




751-778






PVGLB_HSV11




83-104






PVGLB_HSV1F




82-103






PVGLB_HSV1K




82-103






PVGLB_HSV1P




83-104






PVGLB_HSV23




79-99






PVGLB_HSV2H




79-99






PVGLB_HSV28




65-85






PVGLB_HSV6U




72-92




117-144






PVGLB_HSVB1




560-578




689-707






PVGLB_HSVB2




279-299




745-767






PVGLB_JSVBC




692-710






PVGLB_HSVE1




738-753






PVGLB_HSVE4




675-692






PVGLB_HSVEA




736-753






PVGLB_HSVEB




736-753






PVGLB_HSVEL




736-753






PVGLB_HSVMD




589-613






PVGLB_HSVSA




483-506




584-602




701-716






PVGLB_ILTV6




256-275




597-621




740-758






PVGLB_ILTVS




266-285




607-631




750-768






PVGLB_ILTVT




266-285




607-631




750-768






PVGLB_MCMVS




135-156




566-589




738-765






PVGLB_PRVIF




203-218






PVGLB_VXVD




522-538






PVGLC_HSV11




467-493






PVGLC_HSV1K




3-22




467-493






PVGLC_HSV2




435-458






PVGLC_HSV23




436-459






PVGLC_HSVBC




475-494






PVGLC_HSVE4




444-459






PVGLC_HSVEB




427-442






PVGLC_HSVMB




399-421






PVGLC_HSVMG




398-420






PVGLC_HSVMM




399-421






PVGLC_PRVIF




180-197




446-472






PVGLC_VZVD




431-449






PVGLC_VZVS




431-449






PVGLD_HSV11




79-94






PVGLD_HSV2




79-94






PVGLE_HSV11




104-129




413-437






PVGLE_VZVD




469-493






PVGLF_BRSVA




205-221




265-287




482-504






PVGLF_BRSVC




205-221




265-287




484-506






PVGLF_BRSVR




205-221




265-287




484-508






PVGLF_CDVO




336-361




398-414




583-589






PVGLF_HRSV1




205-221




265-287




484-506






PVGLF_HRSVA




205-221




265-287




484-506






PVGLF_HRSVL




205-221




265-287




484-506






PVGLF_HRSVR




205-221




265-287




484-506






PVGLF_MEASE




224-245




286-302




451-477






PVGLF_MEASI




277-248




289-305




454-480






PVGLF_MEASY




224-245




286-302




451-477






PVGLF_MUMPM




276-292




446-467






PVGLF_MUMPR




276-292




446-467






PVGLF_MUMPS




5-20




276-292




446-467






PVGLF_NDVA




273-289






PVGLF_NDVB




273-289






PVGLF_NDVM




273-289






PVGLF_NDVT




273-289






PVGLF_NDVTG




273-289






PVGLF_NDVU




273-289






PVGLF_PHODV




269-285




305-326




367-383




531-558






PVGLF_PI1HC




456-477






PVGLF_PI2H




450-471






PVGLF_PI2HG




450-471






PVGLF_PI2HT




450-471






PVGLF_PI3B




283-310




405-426




453-474






PVGLF_PI3H4




2-20




283-310




453-474






PVGLF_RINDK




220-241




282-298




447-473






PVGLF_RINDL




220-241




282-298




447-473






PVGLF_SEND5




460-481






PVGLF_SENDF




460-481






PVGLF_SENDH




460-481






PVGLF_SENDJ




460-481






PVGLF_SENDZ




460-481






PVGLF_SV41




453-474






PVGLF_SV5




401-425




446-467






PVGLF_TRTV




175-191




452-474






PVGLG_IHNV




77-99






PVGLG_RABVE




454-474






PVGLG_RABVH




372-391




454-474






PVGLG_RABVP




454-474






PVGLG_RABVS




454-474






PVGLG_RABVT




454-474






PVGLG_VHSV0




406-428






PVGLH_HCMVA




211-237




365-382




574-598




691-712






PVGLH_HCMVT




210-236




364-381




573-597




690-711






PVGLH_HSV11




245-262




443-467




803-827






PVGLH_HSV1E




245-262




443-467




803-827






PVGLH_HSV6G




314-332






PVGLH_HSVE4




304-325




814-836






PVGLH_HSVEB




297-318




807-832






PVGLH_HSVSA




454-479




656-679






PVGLH_MCMVS




670-890






PVGLI_HCMVA




168-160






PVGLI_HSV11




43-60






PVGLI_HSVEB




44-63






PVGLI_VZVD




278-297






PVGLM_BUNGE




117-136




197-222






PVGLM_BUNL7




31-55




81-98




190-211




1325-1345




1387-1410






PVGLM_BUNSH




31-55




81-98




190-211




1325-1345




1387-1410






PVGLM_BUNYW




193-216




1379-1404






PVGLM_HANTB




355-371




692-717




900-915




999-1019






PVGLM_HANTH




499-515




694-718




1000-1020






PVGLM_HANTL




499-515




694-718




1001-1021






PVGLM_HANTV




499-515




694-718




1001-1021






PVGLM_PHV




152-171






PVGLM_PTPV




743-765




997-1016




1275-1302






PVGLM_PUUMH




155-174




509-525




712-729






PVGLM_PUUMS




155-174




509-525




712-729




1092-1117






PVGLM_RVFV




53-80




344-368




830-858






PVGLM_RVFVZ




53-80




344-366




830-858




1156-1176






PVGLM_SEOUR




355-371




693-718




901-916




1000-1020






PVGLM_SEOUS




355-371




692-717




900-915




999-1019






PVGLM_UUK




581-585




855-874




826-842




925-952




966-989






PVGLP_BEV




430-452




889-885




1099-1124




1546-1588






PVGLX_PRVRI




149-176






PVGLY_JUNIN




12-38






PVGLY_LASSG




12-38




237-258




426-448






PVGLY_LASSJ




12-38




238-259




427-449






PVGLY_LYCVA




12-38






PVGLY_LYCVW




12-38




69-108






PVGLY_MOPEI




12-38




425-447






PVGLY_PIARV




12-38




441-466






PVGLY_TACV




12-38






PVGLY_TACV5




12-38






PVGLY_TACV7




12-38






PVGLY_TACVT




12-38






PVGNB_CPMV




141-161




568-594




757-783




1110-1135




1165-1184






PVGNM_BPMV




678-696






PVGNM_CPMV




311-335




741-764




1021-1037






PVGP2_EBV




657-681






PVGP3_EBV




854-878






PVGP8_EBV




67-88






PVMO1_VACCC




134-159




177-195




281-302






PVMO1_VACCV




83-108




126-144




230-251






PVM1_REOVD




141-168




227-245




280-304




324-347




414-436




454-477






PVM1_REOVL




141-168




227-245




280-304




414-436




454-477






PVM21_REOVD




168-192






PVM22_REOVD




168-192






PVM2_REOVJ




168-192






PVM2_REOVL




168-192






PVM3_REOVD




304-326




521-540






PVMAT_BRSVA




37-62






PVMAT_CDVO




148-165




283-309






PVMAT_HRSVA




44-62




139-180






PVMAT_LPMV




311-338






PVMAT_MEASE




283-309






PVMAT_MEASH




283-309






PVMAT_MEASI




87-111






PVMAT_MEASU




283-309






PVMAT_MUMPS




191-207




227-250




310-330






PVMAT_NDVA




135-151




190-208




309-329






PVMAT_NDVB




135-151




190-208




309-329






PVMAT_PI1HC




195-217






PVMAT_PI2HT




132-154




189-205




308-328






PVMAT_PI4HA




312-332






PVMAT_PI4HB




312-332






PVMAT_RINDK




200-221




239-260




283-309






PVMAT_SENDF




195-217






PVMAT_SENDH




195-217






PVMAT_SENDZ




195-217






PVMAT_SSPVB




283-309




314-336






PVMAT_SV41




132-154




189-205




308-328






PVMAT_SV5




98-114




132-148




308-335






PVMAT_SVCV




141-167






PVMAT_TRTV




122-143






PVME1_CVBM




9-36




137-161




171-190






PVME1_CVH22




136-155






PVME1_CVHOC




9-36




64-85




137-161






PVME1_CVMA5




10-37






PVME1_CVMJH




10-37






PVME1_CVPFS




174-193






PVME1_CVPPU




174-193






PVME1_CVPRM




174-193






PVME1_CVTKE




9-36




137-161




171-190






PVME1_IBV6




74-98






PVME1_IBVB




74-101






PVME1_IBVB2




74-101






PVME1_IBVK




74-98






PVMEM_EBV




131-157




178-203






PVMP_CAMVC




118-134




147-164




183-201






PVMP_CAMVD




118-134




147-164




183-201






PVMP_CAMVE




118-134




147-164




183-201






PVMP_CAMVN




118-134




147-164




183-201






PVMP_CAMVS




118-134




147-164




183-201






PVMP_CAMVW




118-134




147-164




183-201






PVMP_CERV




293-318






PVMP_FMVD




115-131




180-198






PVMP_SOCMV




122-147




273-299






PVMSA_HPBDB




201-228




269-295






PVMSA_HPBDC




194-221




268-294






PVMSA_HPBDU




157-184




231-257






PVMSA_HPBDW




194-221




269-295






PVMSA_HPBGS




209-236




271-295




380-395






PVMSA_HPSHE




236-262




293-320






PVMSA_HPBV0




70-96






PVMSA_HPBV2




185-202




244-270






PVMSA_HPBV4




185-202




244-270






PVMSA_HPBV9




244-270






PVMSA_HPBVA




174-191




233-259






PVMSA_HPBVD




11-28




70-96






PVMSA_HPBVI




233-259






PVMSA_HPBVJ




174-191




233-259






PVMSA_HPBVL




174-191




233-259






PVMSA_HPBVN




11-28




70-96






PVMSA_HPBVO




174-191




233-259






PVMSA_HPBVP




185-202




244-270






PVMSA_HPBVR




185-202




244-270






PVMSA_HPBVS




11-28




70-96






PVMSA_HPBVW




174-191




233-259






PVMSA_HPBVY




174-191




233-259






PVMSA_HPBVZ




174-191




233-259






PVMSA_WHV1




207-234




269-293




378-393






PVMSA_WHV59




212-239




274-298




383-398






PVMSA_WHV7




212-239




274-298




383-398






PVMSA_WHV8




212-239




274-298




383-398






PVMSA_WHV8I




212-239




274-298




383-398






PVMSA_WHVW6




125-149




234-249






PVMT2_IAANN




25-46






PVMT2_IABAN




25-46






PVMT2_IAFOW




25-46






PVMT2_IAFPR




25-46






PVMT2_IAFPW




25-46






PVMT2_IALE1




25-46






PVMT2_IALE2




25-46






PVMT2_IAMAN




25-46






PVMT2_IAPUE




25-46






PVMT2_IASIN




25-46






PVMT2_IAUDO




25-46






PVMT2_IAWIL




25-46






PVMT9_MYXVL




226-241






















TABLE X











Search Results Summary for P23CTLZIP Motif











P23LZIPC






LIBRARY FILE



















PENV_AVISU




 98-136










PENV_BAEVM




202-240




526-564






PENV_BIV06




434-472




526-553




628-659






PENV_BIV27




554-582




657-688






PENV_CAEVG




44-78






PENV_EIAV1




795-828






PENV_EIAV2




795-828






PENV_EIAV3




795-828






PENV_EIAV6




796-829






PENV_EIAV9




795-828






PENV_EIAVC




795-828






PENV_EIAVW




795-828






PENV_EIAVY




798-828






PENV_FIVPE




128-166






PENV_FIVT2




46-74






PENV_FLVGL




447-475






PENV_FLVLB




487-495






PENV_FLVBA




444-472






PENV_FOAMV




44-78




481-519




552-584






PENV_FRSFB




315-350






PENV_FSVGA




467-495






PENV_FSVGB




447-475






PENV_FSVSM




450-478






PENV_FSVST




467-495






PENV_GALV




519-554






PENV_HV1A2




729-762






PENV_HV1B1




730-763






PENV_HV1B8




725-758






PENV_HV1BN




743-781






PENV_HV1BR




735-768






PENV_HV1C4




742-776






PENV_HV1EL




254-286




727-780






PENV_HV1H2




730-763






PENV_HV1H3




730-763






PENV_HV1J3




741-774






PENV_HV1JR




722-755






PENV_HV1KB




552-586




762-790






PENV_HV1MA




268-289




733-766






PENV_HV1MF




728-761






PENV_HV1MN




392-430




731-764






PENV_HV1ND




248-279






PENV_HV10Y




729-762






PENV_HV1PV




730-763






PENV_HV1RH




739-772






PENV_HV1SC




730-763






PENV_HV1W1




730-763






PENV_HV1W2




721-754






PENV_HV1Z2




264-286




727-780






PENV_HV1Z3




260-281






PENV_HV1Z6




255-286




729-762






PENV_HV2BE




781-811






PENV_HV2D1




772-802






PENV_HV2G1




772-802






PENV_HV2NZ




777-814






PENV_HV2SB




743-775






PENV_JSRV




299-332




484-515






PENV_MMTVB




435-472






PENV_MMTVG




435-472






PENV_RSVP




533-570






PENV_SFV1




44-78




492-530






PENV_SFV3L




48-82




550-588






PENV_SIVCZ




745-776






PENV_SIVGB




247-277




353-386






PENV_SIVM1




788-800






PENV_SIVMK




765-799






PENV_SIVML




511-545




764-798






PENV_SIVS4




468-486






PENV_SIVSP




462-490




810-840






PHEMA_CDVO




200-234






PHEMA_IABUD




23-55






PHEMA_IACKA




23-56






PHEMA_IACKV




517-547






PHEMA_IADA1




23-56






PHEMA_IADCZ




23-55






PHEMA_IADH6




293-323






PHEMA_IADNZ




23-55






PHEMA_IAFPR




15-51






PHEMA_IAGRE




23-55






PHEMA_IAMAA




22-54






PHEMA_IAMAB




27-59






PHEMA_IARUD




23-55






PHEMA_IASE2




23-55






PHEMA_IASTA




517-547






PHEMA_MUMPM




19-52




101-132






PHEMA_MUMPR




19-52




101-132






PHEMA_MUMPS




19-52




101-132






PHEMA_NDVA




60-88






PHEMA_NDVB




60-88






PHEMA_NDVD




60-88






PHEMA_NDVH




60-88






PHEMA_NDVI




60-88






PHEMA_NDVM




60-88






PHEMA_NDVQ




60-88






PHEMA_NDVTG




60-88






PHEMA_NDVU




60-88






PHEMA_PI1HW




29-60




196-233






PHEMA_PI2H




13-46




334-369






PHEMA_PI2HT




13-46




334-369






PHEMA_PI3B




194-231






PHEMA_PI3H4




194-231






PHEMA_PI3HA




194-231






PHEMA_PI3HT




194-231






PHEMA_PI3HU




194-231






PHEMA_PI3HV




194-231






PHEMA_PI3HW




194-231






PHEMA_PI3HX




194-231






PHEMA_PI4HA




245-280




338-376






PHEMA_RACVI




255-293






PHEMA_RINDL




282-313






PHEMA_SEND5




16-54




196-233






PHEMA_SENDF




16-54




196-233






PHEMA_SENDH




16-54




196-233






PHEMA_SENDJ




16-54




196-233






PHEMA_SENDZ




23-54




196-233






PHEMA_SV41




55-84




330-365






PHEMA_SV5




 7-36






PHEMA_SV5CM




 7-41






PHEMA_SV5CP




 7-41






PHEMA_SV5LN




 7-35






PHEMA_VACCC




258-294






PHEMA_VACCI




259-294






PHEMA_VACCT




258-294






PHEMA_VACCV




258-294






PVENV_BEV




16-51




 87-117






PVENV_DHVI1




297-335






PVENV_MCV1




203-236






PVENV_MCV2




203-236






PVENV_VACCC




208-241






PVENV_VACCI




208-241






PVENV_VACCP




208-241






PVENV_VACCV




208-241






PVF03_VACCC




 2-40




61-93






PVF03_VACCV




 2-40




61-93






PVFP1_FOWPV




297-330






PVFP4_FOWPV




237-267






PVFP7_CAPVK




 89-118






PVFU8_VACCC




28-61






PVFU8_VACCV




28-61






PVG01_HSVI1




317-346






PVG02_HSVEB




163-196






PVG02_VACCV




 92-120






PVG02_VARV




 92-120






PVG03_HSVI1




108-136






PVG06_HSVI1




54-83






PVG06_VACCC




 99-136






PVG06_VARV




 99-136






PVG07_VACCC




113-145






PVG07_VARV




113-145






PVG09_VACCC




303-338






PVG09_VACCV




266-301






PVG09_VARV




303-338






PVG11_HSVI1




150-183






PVG12_HSV11




206-243






PVG12_HSVSA




 68-106






PVG1_SPV1R




254-292




303-337




414-452






PVG22_HSVI1




300-337




647-678






PVG23_HSVI1




 70-108






PVG26_HSVI1




 94-125






PVG27_HSVSA




36-74






PVG28_HSVI1




491-521






PVG28_HSVSA




 7-40






PVG2R_AMEPV




180-217






PVG2_SPV4




209-244






PVG35_HSVI1




15-46




190-226






PVG36_HSVSA




151-185






PVG39_HSVI1




543-577




648-682






PVG40_HSVSA




187-216






PVG41_HSVI1




11-45




202-233






PVG42_HSVI1




 91-125






PVG43_HSVI1




109-140




157-185






PVG46_HSVI1




888-925






PVG48_HSVSA




329-357






PVG50_HSVSA




113-141






PVG51_HSVI1




29-64




 84-120






PVG52_HSVI1




 96-134






PVG55_HSVI1




100-129






PVG56_HSVI1




631-667




1091-1126






PVG58_HSVI1




342-375




480-508






PVG58_HSVSA




25-60




195-233






PVG59_HSVI1




 82-118






PVG61_HSVI1




 76-109






PVG64_HSVI1




55-89




363-401




420-452






PVG65_HSVI1




801-836




1190-1326






PVG67_HSVI1




150-188




1150-1185






PVG6_SPV1R




60-89






PVG71_HSVSA




128-158






PVG72_HSVI1




445-478




720-751




1158-1189




1252-1285






PVG75_HSVI1




263-291




387-422






PVG78_H8VI1




187-221






PVG7_SPV1R




18-46






PVGF1_IBVB




1719-1747




1856-1891




2108-2146




3601-3633






PVGH3_HCMVA




 80-115




157-185






PVGL2_CVBF




1259-1294






PVGL2_CVBL9




651-681




1259-1294






PVGL2_CVBLY





1259-1294






PVGL2_CVBM





1259-1294






PVGL2_CVBQ





1259-1294






PVGL2_CVBV





1259-1294






PVGL2_CVH22




1053-1088






PVGL2_CVM4




1287-1304






PVGL2_CVMA5




1215-1252






PVGL2_CVMJH




1128-1163






PVGL2_CVPFS




632-665




736-764




1328-1383






PVGL2_CVPPU




630-663




734-762




1326-1381






PVGL2_CVPR8




512-540




1104-1139






PVGL2_CVPRM




408-441




1104-1139






PVGL2_FIPV




635-668




739-767




1331-1366






PVGL2_IBVB




153-188






PVGLB_HCMVA




116-147




708-743






PVGLB_HCMVT




116-147




707-744






PVGLB_HSVGU




 72-110






PVGLB_HSVB1




254-288






PVGLB_HSVB2




264-299




745-774






PVGLB_HSVBC




253-287






PVGLB_ILTV6




442-472






PVGLB_ILTV8




452-482






PVGLB_IVTVT




452-482






PVGLB_MCMV8




135-163




738-776






PVGLC_HSV11




487-500






PVGLC_HSV1K




487-500






PVGLC_HSV2




435-465






PVGLC_HSV23




436-466






PVGLC_HSVBC




475-507






PVGLC_VZVD




351-388




513-548






PVGLC_VZVS




351-388




513-548






PVGLD_HSVEA




340-370






PVGLD_HSVEB




41-70




390-420






PVGLD_HSVEK




41-70




390-420






PVGLE_HSVE4




 95-125






PVGLE_HSVEB




 63-100




390-420






PVGLE_HSVEL




 63-100




392-422






PVGLE_PRVRI




332-369






PVGLF_BRSVA




265-301




482-511






PVGLF_BRSVC




484-513






PVGLF_BRSVR




484-513






PVGLF_CDVO




562-596






PVGLF_HRSV1




484-513






PVGLF_HRSVA




484-513






PVGLF_HRSVL




484-513






PVGLF_HRSVR




484-513






PVGLF_MEASE




224-256




451-484






PVGLF_MEASI




227-259




454-487






PVGLF_MEASY




224-256




451-484






PVGLF_MUMPM




446-475






PVGLF_MUMPR




446-474






PVGLF_MUMPS




 5-38




446-474






PVGLF_NDVI




132-165






PVGLF_PHODV




531-565






PVGLF_PI1HC




456-484






PVGLF_PI3B




453-481






PVGLF_PI3H4




453-481






PVGLF_RINDK




220-252




447-480






PVGLF_RINDL




220-252




447-480






PVGLF_SEND5




460-488






PVGLF_SENDF




460-488






PVGLF_SENDH




460-488






PVGLF_SENDJ




460-488






PVGLF_SENDZ




460-488






PVGLF_SV5




446-474






PVGLF_TRTV




452-481






PVGLG_HSVEB




327-364






PVGLG_SYNV




524-553






PVGLG_VSVIG




450-488






PVGLG_VSVJO




457-492






PVGLG_VSVO




450-488






PVGLG_VSVSJ




450-488






PVGLH_HCMVA




691-719






PVGLH_HCMVT




690-718






PVGLH_HCV6G




640-677






PVGLH_HSVE4




814-850






PVGLH_HSVEB




807-843






PVGLI_HCMVA




158-194






PVGLM_BUNGE




197-227




438-468




 982-1020




1049-1084






PVGLM_BUNL7




190-220






PVGLM_BUNSH




190-220




344-381






PVGLM_BUNYW




193-228




434-472




823-854






PVGLM_DUGBV




244-273




637-672




888-915




935-965




1403-1441






PVGLM_HANTB




610-641




1081-1119






PVGLM_HANTH




188-222




612-643




1082-1120






PVGLM_HANTL




188-222




612-643




1083-1121






PVGLM_HANTV




188-222




612-643




1083-1121






PVGLM_PHV




616-649




1088-1121






PVGLM_PTPV




949-982




1275-1309






PVGLM_PUUMH




620-653




1092-1125






PVGLM_PUUMS




620-653




1092-1125






PVGLM_RVFV




620-653




830-883






PVGLM_RVFVZ




620-653




830-863




1156-1185






PVGLM_SEOUR




605-641




1082-1120






PVGLM_SEOUS




610-641




1081-1119






PVGLM_UUK




431-468




966-995






PVGLF_BEV




1491-1526






PVGLY_JUNIN




12-45






PVGLY_LASSG




237-265






PVGLY_LASSJ




238-288






PVGLY_PIARV




12-50






PVGLY_TACV




12-50






PVGLY_TACV5




12-50




89-124






PVGLY_TACV7




12-50




89-124






PVGLY_TACVT




12-50




89-124






PVGNB_CPMV




1527-1555






PVGNM_BPMV




137-167




280-327




837-888






PVGNM_CPMV




209-242




741-771






PVGNM_CPSMV




60-88




479-515






PVGNM_RCMV




766-799






PVGP2_EBV




 78-111






PVGP3_EBV




 78-111






PVM1_REOVD




280-318




324-361






PVM1_REOVL




280-318






PVM21_REOVD




168-199






PVM22_REOVD




168-199






PVM2_REOVJ




168-199






PVM2_REOVL




168-199






PVM3_REOVD




333-364






PVMAT_SV5




308-342






PVMTA_TRTV




122-150






PVME1_CVBM




 64-102






PVME1





CVHOC




 64-102






PVME1_CVMA5




 65-103






PVME1_CVMJH




 65-103






PVME1_CVTKE




 64-102






PVMEM_EBV




178-213






PVMP_CERV




 93-126






PVMP_SOCMV




66-98




273-303






PVMSA_HPBDB




201-238




269-302






PVMSA_HPBDC




194-227




268-301






PVMSA_HPBDU




157-190




231-264






PVMSA_HPBDW




194-227




269-302






PVMSA_HPBGS




209-243




271-307






PVMSA_HPBHE




159-195




236-269






PVMSA_HPBV0




70-98






PVMSA_HPVB2




244-272






PVMSA_HPVB4




244-272






PVMSA_HPBV9




244-272






PVMSA_HPBVA




233-261






PVMSA_HPBVD




70-98






PVMSA_HPBVI




233-261






PVMSA_HPBVJ




233-261






PVMSA_HPBVL




233-261






PVMSA_HPBVN




70-98






PVMSA_HPBVO




233-261






PVMSA_HPBVP




244-272






PVMSA_HPBVR




244-272






PVMSA_HPBVS




70-98






PVMSA_HPBVW




233-261






PVMSA_HPBVY




233-261






PVMSA_HPBVZ




233-261






PVMSA_WHV1




207-241




269-305






PVMSA_WHV59




212-246




274-310






PVMSA_WHV7




212-246




274-310






PVMSA_WHV8




212-246




274-310






PVMSA_WHV81




212-246




274-310






PVMSA_WHVW6




125-161






PVMT2


—L IAZI1






10-44






PVMT8_MYXVL




 5-34




141-170






PVMT9_MYXVL




246-282














5.3. Synthesis of Peptides




The peptides of the invention may be synthesized or prepared by techniques well known in the art. See, for example, Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman and Co., NY, which is incorporated herein by reference in its entirety. Short peptides, for example, can be synthesized on a solid support or in solution. Longer peptides amy be made using recombinant DNA techniques. Here, the nucleotide sequences encoding the peptides of the invention may be synthesized, and/or cloned, and expressed according to techniques well known to those of ordinary skill in the art. See, for example, Sambrook, et al., 1989, Molecular Cloning, A Laboratory Manual, Vols. 1-3, Cold Spring Harbor Press, N.Y.




The peptides of the invention may alternatively be synthesized such that one or more of the bonds which link the amino acid residues of the peptides are non-peptide bonds. These alternative non-peptide bonds may be formed by utilizing reactions well known to those in the art, and may include, but are not limited to imino, ester, hydrazide, semicarbazide, and azo bonds, to name but a few. In yet another embodiment of the invention, peptides comprising the sequences described above may be synthesized with additional chemical groups present at their amino and/or carboxy termini, such that, for example, the stability, bioavailability, and/or inhibitory activity of the peptides is enhanced. For example, hydrophobic groups such as carbobenzoxyl, dansyl, or t-butyloxycarbonyl groups, may be added to the peptides' amino termini. Likewise, an acetyl group or a 9-fluorenylmethoxy-carbonyl group may be placed at the peptides' amino termini. (See “X” in Tables I to IV, above.) Additionally, the hydrophobic group, t-butyloxycarbonyl, or an amido group may be added to the peptides' carboxy termini. (See “Z” in Tables I to IV, above.) Further, the peptides of the invention may be synthesized such that their steric configuration is altered. For example, the D-isomer of one or more of the amino acid residues of the peptide may be used, rather than the usual L-isomer. Still further, at least one of the amino acid residues of the peptides of the invention may be substituted by one of the well known non-naturally occurring amino acid residues. Alterations such as these may serve to increase the stability, bioavailability and/or inhibitory action of the peptides of the invention.




Any of the peptides described above may, additionally, have a non-peptide macromolecular carrier group covalently attached to their amino and/or carboxy termini. Such macromolecular carrier groups may include, for example, lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates. “X”, in Tables I to IV, above, may therefore additionally represent any of the above macromolecular carrier groups covalently attached to the amino terminus of a peptide. Likewise, “Z”, in Tables I to IV, may additionally represent any of the macromolecular carrier groups described above.




5.4. Assays for Antiviral Activity




The antiviral activity exhibited by the peptides of the invention may be measured, for example, by easily performed in vitro assays, such as those described below, which can test the peptides' ability to inhibit syncytia formation, or their ability to inhibit infection by cell-free virus. Using these assays, such parameters as the relative antiviral activity of the peptides, exhibit against a given strain of virus and/or the strain specific inhibitory activity of the peptide can be determined. A cell fusion assay may be utilized to test the peptides' ability to inhibit HIV-induced syncytia formation in vitro. Such an assay may comprise culturing uninfected CD-4


+


cells (such as Molt or CEM cells, for example) in the presence of chronically HIV-infected cells and a peptide to be assayed. For each peptide, a range of peptide concentrations may be tested. This range should include a control culture wherein no peptide has been added. Standard conditions for culturing, well known to those of ordinary skill in the art, are used. After incubation for an appropriate period (24 hours at 37° C., for example) the culture is examined microscopically for the presence of multinucleated giant cells, which are indicative of cell fusion and syncytia formation.




A reverse transcriptase (RT) assay may be utilized to test the peptides' ability to inhibit infection of CD-4


+


cells by cell-free HIV. Such an assay may comprise culturing an appropriate concentration (i.e., TCID


50


) of virus and CD-4


+


cells in the presence of the peptide to be tested. Culture conditions well known to those in the art are used. As above, a range of peptide concentrations may be used, in addition to a control culture wherein no peptide has been added. After incubation for an appropriate period (e.g., 7 days) of culturing, a cell-free supernatant is prepared, using standard procedures, and tested for the present of RT activity as a measure of successful infection. The RT activity may be tested using standard techniques such as those described by, for example, Goff et al. (Goff, S. et al., 1981, J. Virol. 38:239-248) and/or Willey et al. (Willey, R. et al., 1988, J. Virol. 62:139-147). These references are incorporated herein by reference in their entirety.




Standard methods which are well-known to those of skill in the art may be utilized for assaying non-retroviral activity. See, for example, Pringle et al. (Pringle, C. R. et al., 1985, J. Medical Virology 17:377-386) for a discussion of respiratory syncytial virus and parainfluenza virus activity assay techniques. Further, see, for example, “Zinsser Microbiology”, 1988, Joklik, W. K. et al., eds., Appleton & Lange, Norwalk, Conn., 19th ed., for a general review of such techniques. These references are incorporated by reference herein in its entirety.




5.5. Uses of the Peptides of the Invention




The DP-178 (SEQ ID:1) peptides of the invention, and DP-178 fragments, analogs, and homologs, exhibit potent antiviral activity. The DP-107-like and DP-178-like peptides of the invention preferably exhibit antiviral activity. As such, the peptides may be used as inhibitors of human and non-human viral and retroviral, especially HIV, transmission to uninfected cells.




The human retroviruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to all strains of HIV-1 and HIV-2 and the human T-lymphocyte viruses (HTLV-I and II). The non-human retroviruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to bovine leukosis virus, feline sarcoma and leukemia viruses, simian immunodeficiency, sarcoma and leukemia viruses, and sheep progress pneumonia viruses.




Non retroviral viruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to human respiratory syncytial virus, canine distemper virus, newcastle disease virus, human parainfluenza virus, and influenza viruses. Further, any virus or retrovirus containing peptides listed in Tables V through X above, may be inhibited by the peptides of the invention.




As discussed more fully, below, in Section 5.5.1 and in the Example presented, below, in Section 8, DP-107 and DP-178, and DP-107-like and DP-178-like peptides form non-covalent protein-protein interactions which are required for normal activity of the virus. Thus, the peptides of the invention may also be utilized as components in assays for the identification of compounds that interfere with such protein-protein interactions and may, therefore, act as antiviral agents. These assays are discussed, below, in Section 5.5.1.




5.5.1. Antiviral Compound Screening Assays for Compounds that Interact with the PKD1 Gene Product




As demonstrated in the Example presented in Section 8, below, DP-107 and DP-178 portions of the TM protein gp41 form non-covalent protein-protein intereactions. As also demonstrated, the maintenance of such interactions is necessary for normal viral infectivity. Thus, compounds which bind DP-107, bind DP-178, and/or act to disrupt normal DP-107/DP-178 protein-protein interactions may act as patent antiviral agents. Described below are assays for the identification of such compounds. Note that, while, for case and clarity of discussion, DP-107 and DP-178 peptides will be used as components of the assays described, but it is to be understood that any of the DP-107-like or DP-178-like peptides described, above, in Sections 5.1 and 5.2 may also be utilized as part of these screens for antiviral compounds.




Compounds which may be tested for an ability to bind DP-107, DP-178, and/or disrupt DP-107/DP-178 interactions, and which therefore, potentially represent antiviral compounds, include, but are not limited to, peptides made of D- and/or L-configuration amino acids (in, for example, the form of random peptide libraries; see Lam, K. S. et al., 1991, Nature 354:82-84), phosphopeptides (in, for example, the form of random or partially degenerate, directed phosphopeptide libraries; see, for example, Songyang, Z. et al., 1993, Cell 72:767-778), antibodies, and small organic or inorganic molecules. Synthetic compounds, natural products, and other sources of potentially effective materials may be screened in a variety of ways, as described in this Section. The compounds, antibodies, or other molecules identified may be tested for an ability to inhibit viral activity, utilizing, for example, viral assays such as those described, above, in Section 5.4.




Among the peptides which may be tested are soluble peptides comprising DP-107 and/or DP-178 domains, and peptides comprising DP-107 and/or DP-178 domains having one or more mutations within one or both of the domains, such as the M41-P peptide described, below, in the Example presented in Section 8, which contains a isoleucine to proline mutation within the DP-178 sequence.




In one embodiment of such screening methods is a method for identifying a compound to be tested for antiviral ability comprising:




(a) exposing at least one compound to a peptide comprising a DP-107 peptide for a time sufficient to allow binding of the compound to the DP-107 peptide;




(b) removing non-bound compounds; and




(c) determining the presence of the compound bound to the DP-107 peptide, thereby identifying an agent to be tested for antiviral ability.




In a second embodiment of such screening methods is a method for identifying a compound to be tested for antiviral ability comprising:




(a) exposing at least one compound to a peptide comprising a DP-178 peptide for a time sufficient to allow binding of the compound to the DP-178 peptide;




(b) removing non-bound compounds; and




(c) determining the presence of the compound bound to the DP-178 peptide, thereby identifying an agent to be tested for antiviral ability.




One method utilizing these types of approaches that may be pursued in the isolation of such DP-107-binding or DP-178-binding compounds is an assay which would include the attachment of either the DP-107 or the DP-178 peptide to a solid matrix, such as, for example, agarose or plastic beads, microtiter plate wells, petri dishes, or membranes composed of, for example, nylon or nitrocellulose. In such an assay system, either the DP-107 or DP-178 protein may be anchored onto a solid surface, and the compound, or test substance, which is not anchored, is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. The anchored component may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished simply by coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody, preferably a monoclonal antibody, specific for the protein may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.




In order to conduct the assay, the labeled compound is added to the coated surface containing the anchored DP-107 or DP-178 peptide. After the reaction is complete, unreacted components are removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the compound is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the labeled component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the compound (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody).




Alternatively, such an assay can be conducted in a liquid phase, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for DP-107 or DP-178, whichever is appropriate for the given assay, or ab antibody specific for the compound, i.e., the test substance, in order to anchor any complexes formed in solution, and a labeled antibody specific for the other member of the complex to detect anchored complexes.




By utilizing procedures such as this, large numbers of types of molecules may be simultaneously screened for DP-107 or DP-178-binding capability, and thus potential antiviral activity.




Further, compounds may be screened for an ability to inhibit the formation of or, alternatively, disrupt DP-107/DP-178 complexes. Such compounds may then be tested for antiviral capability. For ease of description, DP-107 and DP-178 will be referred to as “binding partners.” Compounds that disrupt such interactions may exhibit antiviral activity. Such compounds may include, but are not limited to molecules such as antibodies, peptides, and the like described above.




The basic principle of the assay systems used to identify compounds that interfere with the interaction between the DP-107 and DP-178 peptides involves preparing a reaction mixture containing peptides under conditions and for a time sufficient to allow the two peptides to interact and bind, thus forming a complex. In order to test a compound for disruptive activity, the reaction is conducted in the presence and absence of the test compound, i.e., the test compound may be initially included in the reaction mixture, or added at a time subsequent to the addition of one of the binding partners; controls are incubated without the test compound or with a placebo. The formation of any complexes between the binding partners is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test compound indicates that the compound interferes with the interaction of the DP-107 and DP-178 peptides.




The assay for compounds that interfere with the interaction of the binding partners can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring one of the binding partners onto a solid phase and detecting complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested. For example, test compounds that interfere with the interaction between the binding partners, e.g., by competition, can be identified by conducting the reaction in the presence of the test substance; i.e., by adding the test substance to the reaction mixture prior to or simultaneously with the binding partners. On the other hand, test compounds that disrupt preformed complexes, e.g. compounds with higher binding constants that displace one of the binding partners from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed. The various formats are described briefly below.




In a heterogeneous assay system, one binding partner, e.g., either the DP-107 or DP-178 peptide, is anchored onto a solid surface, and its binding partner, which is not anchored, is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. The anchored species may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished simply by coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody specific for the protein may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.




In order to conduct the assay, the binding partner of the immobilized species is added to the coated surface with or without the test compound. After the reaction is complete, unreacted components are removed (e.g., by washing) and any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the binding partner was pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the binding partner is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the binding partner (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds which inhibit complex formation or which disrupt preformed complexes can be detected.




Alternatively, the reaction can be conducted in a liquid phase in the presence or absence of the test compound, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for one binding partner to anchor any complexes formed in solution, and a labeled antibody specific for the other binding partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test compounds which inhibit complex or which disrupt preformed complexes can be identified.




In an alternate embodiment of the invention, a homogeneous assay can be used. In this approach, a preformed complex of the DP-107 and DP-178 peptides is prepared in which one of the binding partners is labeled, but the signal generated by the label is quenched due to complex formation (see, e.g., U.S. Pat. No. 4,109,496 by Rubenstein which utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the binding partners from the preformed complex will result in the generation of a signal above background. In this way, test substances which disrupt DP-107/DP-178 protein-protein interaction can be identified.




5.6 Pharmaceutical Formulations, Dosages and Modes of Administration




With respect to HIV, the peptides of the invention may be used as a therapeutic in the treatment of AIDS. The peptides of the invention may be administered using techniques well known to those in the art. Preferably, agents are formulated and administered systemically. Techniques for formulation and administration may be found in “Remington's Pharmaceutical Sciences”, 18th ed., 1990, Mack Publishing Co., Easton, Pa. Suitable routes may include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections, just to name a few. Most preferably, administration is intravenous. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiological saline buffer. For such transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.




In addition, the peptides may be used as a prophylactic measure in previously uninfected individuals after acute exposure to an HIV virus. Examples of such prophylactic use of the peptides may include, but are not limited to, prevention of virus transmission from mother to infant and other settings where the likelihood of HIV transmission exists, such as, for example, accidents in health care settings wherein workers are exposed to HIV-containing blood products. The peptides of the invention in such cases may serve the role of a prophylactic vaccine, wherein the host raises antibodies against the peptides of the invention, which then serve to neutralize HIV viruses by, for example, inhibiting further HIV infection. Administration of the peptides of the invention as a prophylactic vaccine, therefore, would comprise administering to a host a concentration of peptides effective in raising an immune response which is sufficient to neutralize HIV, by, for example, inhibiting HIV ability to infect cells. The exact concentration will depend upon the specific peptide to be administered, but may be determined by using standard techniques for assaying the development of an immune response which are well known to those of ordinary skill in the art. The peptides to be used as vaccines are usually administered intramuscularly.




The peptides may be formulated with a suitable adjuvant in order to enhance the immunological response. Such adjuvants may include, but are not limited to mineral gels such as aluminum hydroxide; surface active substances such as lysolecithin, pluronic polyols, polyanions; other peptides; oil emulsions; and potentially useful human adjuvants such as BCG and Corynebacterium parvum. Many methods may be used to introduce the vaccine formulations described here. These methods include but are not limited to oral, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, and intranasal routes.




Alternatively, an effective concentration of polyclonal or monoclonal antibodies raised against the peptides of the invention may be administered to a host so that no uninfected cells become infected by HIV. The exact concentration of such antibodies will vary according to each specific antibody preparation, but may be determined using standard techniques well known to those of ordinary skill in the art. Administration of the antibodies may be accomplished using a variety of techniques, including, but not limited to those described in this section.




Effective dosages of the peptides of the invention to be administered may be determined through procedures well known to those in the art which address such parameters as biological half-life, bioavailability, and toxicity. Given the data presented below in Section 6, DP-178, for example, may prove efficacious in vivo at doses required achieve circulating levels of long per ml of peptide.




A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit large therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal disruption of the PTK/adaptor protein complex, or a half-maximal inhibition of the cellular level and/or activity of a complex component) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography (HPLC).




The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g. Fingl et al., 1975, in “The Pharmacological Basis of Therapeutics”, Ch. 1 p1).




It should be noted that the attending physician would know how to and when to terminate, interrupt, or adjust administration due to toxicity, or to organ dysfunctions. Conversely, the attending physician would also know to adjust treatment to higher levels if the clinical response were not adequate (precluding toxicity). The magnitude of an administrated dose in the management of the oncogenic disorder of interest will vary with the severity of the condition to be treated and to the route of administration. The dose and perhaps dose frequency, will also vary according to the age, body weight, and response of the individual patient. A program comparable to that discussed above may be used in veterinary medicine.




As demonstrated in the Example presented below in Section 6, the antiviral activity of the peptides of the invention may show a pronounced type and subtype specificity, i.e., specific peptides may be effective in inhibiting the activity of only specific viruses. This feature of the invention presents many advantages. One such advantage, for example, lies in the field of diagnostics, wherein one can use the antiviral specificity of the peptide of the invention to ascertain the identity of a viral isolate. With respect to HIV, one may easily determine whether a viral isolate consists of an HIV-1 or HIV-2 strain. For example, uninfected CD-4


+


cells may be co-infected with an isolate which has been identified as containing HIV the DP-178 (SEQ ID:1) peptide, after which the retroviral activity of cell supernatents may be assayed, using, for example, the techniques described above in Section 5.2. Those isolates whose retroviral activity is completely or nearly completely inhibited contain HIV-1. Those isolates whose viral activity is unchanged or only reduced by a small amount, may be considered to not contain HIV-1. Such an isolate may then be treated with one or more of the other DP-178 peptides of the invention, and subsequently be tested for its viral activity in order to determine the identify of the viral isolate.




Use of pharmaceutically acceptable carriers to formulate the compounds herein disclosed for the practice of the invention into dosages suitable for systemic administration is within the scope of the invention. With proper choice of carrier and suitable manufacturing practice, the compositions of the present invention, in particular, those formulated as solutions, may be administered parenterally, such as by intravenous injection. The compounds can be formulated readily using pharmaceutically acceptable carriers well known in the art into dosages suitable for oral administration. Such carriers enable the compounds of the invention to be formulated as tablets, pills, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.




Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.




In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. The preparations formulated for oral administration may be in the form of tablets, dragees, capsules, or solutions.




The pharmaceutical compositions of the present invention may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.




Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.




Pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.




Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.




Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added.




6. EXAMPLE




DP-178 (SEQ ID:1) is a Potent Inhibitor of HIV-1 Infection




In this example, DP-178 (SEQ ID:1) is shown to be a potent inhibitor of HIV-1 mediated CD-4


+


cell-cell fusion and infection by cell free virus. In the fusion assay, this peptide completely blocks virus induced syncytia formation at concentrations of from 1-10 ng/ml. In the infectivity assay the inhibitory concentration is somewhat higher, blocking infection at 90 ng/ml. It is further shown that DP-178 (SEQ ID:1) shows that the antiviral activity of DP-178 (SEQ ID:1) is highly specific for HIV-1. Additionally, a synthetic peptide, DP-185 (SEQ ID:3), representing a HIV-1-derived DP-178 homolog is also found to block HIV-1-mediated syncytia formation.




6.1. Materials and Methods




6.1.1. Peptide Synthesis




Peptides were synthesized using Fast Moc chemistry on an Applied Biosystems Model 431A peptide synthesizer. Amidated peptides were prepared using Rink resin (Advanced Chemtech) while peptides containing free carboxy termini were synthesized on Wang (p-alkoxy-benzyl-alcohol) resin (Bachem). First residues were double coupled to the appropriate resin and subsequent residues were single coupled. Each coupling step was followed by acetic anhydride capping. Peptides were cleaved from the resin by treatment with trifluoracetic acid (TFA) (10 ml), H


2


O (0.5 ml), thioanisole (0.5 ml), ethanedithiol (0.25 ml), and crystalline phenol (0.75 g). Purification was carried out by reverse phase HPLC. Approximately 50 mg samples of crude peptide were chromatographed on a Waters Delta Pak C18 column (19mm×30 cm, 15μ spherical) with a linear gradient; H


2


O/acetonitrile 0.1% TFA. Lyophilized peptides were stored desiccated and peptide solutions were made in water at about 1 mg/ml. Electrospray mass spectrometry yielded the following results: DP-178 (SEQ ID:1):4491.87 (calculated 4491.94); DP-180 (SEQ ID:2):4491.45 (calculated 4491.94); DP-185 (SEQ ID:3):not done (calculated 4546.97).




6.1.2. Virus




The HIV-1


LAI


virus was obtained from R. Gallo (Popovic, M. et al., 1984, Science 224:497-508) and propagated in CEM cells cultured in RPMI 1640 containing 10% fetal calf serum. Supernatant from the infected CEM cells was passed through a 0.2 μm filter and the infectious titer estimated in a microinfectivity assay using the AA5 cell line to support virus replication. For this purpose, 25 μl of serial diluted virus was added to 75 μl AA5 cells at a concentration of 2×10


5


/ml in a 96-well microtitre plate. Each virus dilution was tested in triplicate. Cells were cultured for eight days by addition of fresh medium every other day. On day 8 post infection, supernatant samples were tested for virus replication as evidenced by reverse transcriptase activity released to the supernatant. The TCID


50


was calculated according to the Reed and Muench formula (Reed, L. J. et al., 1938, Am. J. Hyg. 27:493-497). The titer of the HIV-1


LAI


and HIV-1


MN


stocks used for these studies, as measured on the AA5 cell line, was approximately 1.4×106 and 3.8×10


4


TCID


50


/ml, respectively.




6.1.3. Cell Fusion Assay




Approximately 7×10


4


Molt cells were incubated with 1×10


4


CEM cells chronically infected with the HIV-1


LAI


virus in 96-well plates (one-half area cluster plates; Costar, Cambridge, Mass.) in a final volume of 100 μl culture medium as previously described (Matthews, T. J. et al., 1987, Proc. Natl. Acad. Sci. USA 84: 5424-5428). Peptide inhibitors were added in a volume of 10 μl and the cell mixtures were incubated for 24 hr. at 37° C. At that time, multinucleated giant cells were estimated by microscopic examination at a 40× magnification which allowed visualization of the entire well in a single field.




6.1.4. Cell Free Virus Infection Assay




Synthetic peptides were incubated at 37° C. with either 247 TCID


50


(for experiment depicted in FIG.


2


), or 62 TCID


50


(for experiment depicted in

FIG. 3

) units of HIV-1


LAI


virus or 25 TCID


50


units of HIV-2


NIH2


and CEM CD4


+


cells at peptide concentrations of 0, 0.04, 0.4, 4.0, and 40 μg/ml for 7 days. The resulting reverse transcriptase (RT) activity in counts per minute was determined using the assay described, below, in Section 6.1.5. See, Reed, L. J. et al., 1938, Am. J. Hyg. 27: 493-497 for an explanation of TCID


50


calculations.




6.1.5. Reverse Transcriptase Assay




The micro-reverse transcriptase (RT) assay was adapted from Goff et al. (Goff, S. et al., 1981, J. Virol. 38:239-248) and Willey et al. (Willey, R. et al., 1988, J. Virol. 62:139-147). Supertanants from virus/cell cultures are adjusted to 1% Triton-X100. A 10 μl sample of supernatant was added to 50 μl of RT cocktail in a 96-well U-bottom microtitre plate and the samples incubated at 37° C. for 90 min. The RT cocktail contained 75 mM KCl, 2 mM dithiothreitol, 5 mM MgCl


2


, 5 μg/ml poly A (Pharmacia, cat. No. 27-4110-01), 0.25 units/ml oligo dT (Pharmacia, cat. No. 27-7858-01), 0.05% NP40, 50 mM Tris-HCl, pH 7.8, 0.5 μM non-radioactive dTTP, and 10 μCi/ml


32


P-dTTP (Amersham, cat. No. PB.10167).




After the incubation period, 40 μl of reaction mixture was applied to a Schleicher and Schuell (S+S) NA45 membrane (or DE81 paper) saturated in 2×SSC buffer (0.3M NaCl and 0.003M sodium citrate) held in a S+S Minifold over one sheet of GB003 (S+S) filter paper, with partial vacuum applied. Each well of the minifold was washed four times with 200 μl 2×SSC, under full vacuum. The membrane was removed from the minifold and washed 2 more times in a pyrex dish with an excess of 2×SSC. Finally, the membrane was drained on absorbent paper, placed on Whatman #3 paper, covered with Saran wrap, and exposed to film overnight at −70° C.




6.2. Results




6.2.1. Peptide Inhibition of Infected Cell-induced Syncytia Formation




The initial screen for antiviral activity assayed peptides' ability to block syncytium formation induced by overnight co-cultivation of uninfected Molt4 cells with chronically HIV-1 infected CEM cells. The results of several such experiments are presented herein. In the first of these experiments, serial DP-178 (SEQ ID:1) peptide concentrations between 10 μg/ml and 12.5 ng/ml were tested for blockade of the cell fusion process. For these experiments, CEM cells chronically infected with either HIV-1


LAI


, HIV-1


MN


, HIV-1


RF


, or HIV-1


SF2


virus were cocultivated overnight with uninfected Molt 4 cells. The results (

FIG. 4

) show that DP-178 (SEQ ID:1) afforded complete protection against each of the HIV-1 isolates down to the lowest concentration of DP-178 (SEQ ID:1) used. For HIV


LAI


inhibition, the lowest concentration tested was 12.5 ng/ml; for all other HIV-1 viruses, the lowest concentration of DP-178 (SEQ ID:1) used in this study was 100 ng/ml. A second peptide, DP-180 (SEQ ID:2), containing the same amino acid residues as DP-178 (SEQ ID:1) but arranged in a random order exhibited no evidence of anti-fusogenic activity even at the high concentration of 40 μg/ml (FIG.


4


). These observations indicate that the inhibitory effect of DP-178 (SEQ ID:1) is primary sequence-specific and not related to non-specific peptide/protein interactions. The actual endpoint (i.e., the lowest effective inhibitory concentration) of DP-178 inhibitory action is within the range of 1-10 ng/ml.




The next series of experiments involved the preparation and testing of a DP-178 (SEQ ID:1) homolog for its ability to inhibit HIV-1-induced syncytia formation. As shown in

FIG. 1

, the sequence of DP-185 (SEQ ID:3) is slightly different from DP-178 (SEQ ID:1) in that its primary sequence is taken from the HIV-1


SF2


isolate and contains several amino acid differences relative to DP-178 (SEQ ID:1) near the N terminus. As shown in

FIG. 4

, DP-185 (SEQ ID:3), exhibits inhibitory activity even at 312.5 ng/ml, the lowest concentration tested.




The next series of experiments involved a comparison of DP-178 (SEQ ID:1) HIV-1 and HIV-2 inhibitory activity. As shown in

FIG. 5

, DP-178 (SEQ ID:1) blocked HIV-1-mediated syncytia formation at peptide concentrations below 1 ng/ml. DP-178 (SEQ ID:1) failed, however, to block HIV-2 mediated syncytia formation at concentrations as high as 10 μg/ml. This striking 4 log selectivity of DP-178 (SEQ ID:1) as an inhibitor of HIV-1-mediated cell fusion demonstrates an unexpected HIV-1 specificity in the action of DP-178 (SEQ ID:1). DP-178 (SEQ ID:1) inhibition of HIV-1-mediated cell fusion, but the peptide's inability to inhibit HIV-2 medicated cell fusion in the same cell type at the concentrations tested provides further evidence for the high degree of selectivity associated with the antiviral action of DP-178 (SEQ ID:1).




6.2.2. Peptide Inhigition of Infection by Cell-free Virus




DP-178 (SEQ ID:1) was next tested for its ability to block CD-4


+


CEM cell infection by cell free HIV-1 virus. The results, shown in

FIG. 2

, are from an experiment in which DP-178 (SEQ ID:1) was assayed for its ability to block infection of CEM cells by an HIV-1


LAI


isolate. Included in the experiment were three control peptides, DP-116 (SEQ ID:9), DP-125 (SEQ ID:8), and DP-118 (SEQ ID:10). DP-116 (SEQ ID:9) represents a peptide previously shown to be inactive using this assay, and DP-125 (SEQ ID:8; Wild, C. et al., 1992, Proc. Natl. Acad, Sci. USA 89:10,537) and DP-118 (SEQ ID:10) are peptides which have previously been shown to be active in this assay. Each concentration (0, 0.04, 0.4, 4, and 40 μg/ml) of peptide was incubated with 247 TCID


50


units of HIV-1


LAI


virus and CEM cells. After 7 days of culture, cell-free supernatant was tested for the presence of RT activity as a measure of successful infection. The results, shown in

FIG. 2

, demonstrate that DP-178 (SEQ ID:1) inhibited the de novo infection process mediated by the HIV-1 viral isolate at concentrations as low as 90 ng/ml (IC50=90 ng/ml). In contrast, the two positive control peptides, DP-125 (SEQ: ID:8) and DP-118 (SEQ ID:10), had over 60-fold higher IC50 concentrations of approximately 5 μg/ml.




In a separate experiment, the HIV-1 and HIV-2 inhibitory action of DP-178 (SEQ ID:1) was tested with CEM cells and either HIV-1


LAI


or HIV-2


NIHZ


. 62 TCID


50


HIV-1


LAI


or 25 GCID


50


HIV-2


NIHZ


were used in these experiments, and were incubated for 7 days. As may be seen in

FIG. 3

, DP-178 (SEQ ID:1) inhibited HIV-1 infection with an IC50 of about 31 ng/ml. In contrast, DP-178 (SEQ ID:1) exhibited a much higher IC50 for HIV-2


NIHZ


, thus making DP-178 (SEQ ID:1) two logs more potent as a HIV-1 inhibitor than a HIV-2 inhibitor. This finding is consistent with the results of the fusion inhibition assays described, above, in Section 6.2.1, and further supports a significant level of selectivity (i.e., for HIV-1 over HIV-2).




7. EXAMPLE




The HIV-1 Inhibitor, DP-178 SEQ ID NO:1, is Non-cytotoxic




In this Example, the 36 amino acid synthetic peptide inhibitor DP-178 (SEQ ID:1) is shown to be non-cytotoxic to cells in culture, even at the highest peptide concentrations (40 μg/ml) tested.




7.1. Materials and Methods




Cell proliferation and toxicity assay: Approximately 3.8×10


5


CEM cells for each peptide concentration were incubated for 3 days at 37° C. in T25 flasks. Peptides tested were DP-178 (SEQ ID:1) and DP-116 (SEQ ID:9), as described in FIG.


1


. The concentrations of each peptide used were 0, 2.5, 10, and 40 μg/ml. Cell counts were taken at incubation times of 0, 24, 48, and 72 hours.




7.2. Results




Whether the potent HIV-1 inhibitor DP-178 (SEQ ID:1) exhibited any cytotoxic effects was assessed by assaying the peptide's effects on the proliferation and viability of cells in culture. CEM cells were incubated in the presence of varying concentrations of DP-178 (SEQ ID:1), and DP-116 (SEQ ID:9), a peptide previously shown to be ineffective as a HIV inhibitor (Wild, C. et al., 1992, Proc. Natl. Acad. Sci. USA 89:10,537-10,541). Additionally, cells were incubated in the absence of either peptide.




The results of the cytotoxicity study demonstrate that DP-178 (SEQ ID: 1) exhibits no cytotoxic effects on cells in culture. As can be seen, below, in Table XI, even the proliferation and viability characteristics of cells cultured for 3 days in the presence of the highest concentration of DP-178 (SEQ ID:1) tested (40 μg/ml) do not significantly differ from the DP-116 (SEQ ID:9) or the no-peptide controls. The cell proliferation data is also represented in graphic form in FIG.


6


. As was demonstrated in the Working Example presented above in Section 6, DP-178 (SEQ ID:1) completely inhibits HIV-1 mediated syncytia formation at peptide concentrations between 1 and 10 ng/ml, and completely inhibits cell-free viral infection at concentrations of at least 90 ng/ml. Thus, this study demonstrates that even at peptide concentrations greater than 3 log higher than the HIV inhibitory dose, DP-178 (SEQ ID:1) exhibits no cytotoxic effects.
















TABLE XI














% Viability








Peptide




at time (hours)
















Peptide




Concentration μg/ml




0




24




48




72



















DP178




40




98




97




95




97






(SEQ




10




98




97




98




98






ID:1)




2.5




98




93




96




96






DP116




40




98




95




98




97






(SEQ




10




98




95




93




98






ID:9)




2.5




98




96




98




99






No




0




98




97




99




98






Peptide














8. EXAMPLE




The Interaction of DP178 and DP107




Soluble recombinant forms of gp41 used in the example described below provide evidence that the DP178 peptide associates with a distal site on gp41 whose interactive structure is influenced by the DP107 leucine zipper motif. A single mutation disrupting the coiled-coil structure of the leucine zipper domain transformed the soluble recombinant gp41 protein from an inactive to an active inhibitor of HIV-1 fusion. This transformation may result from liberation of the potent DP178 domain from a molecular clasp with the leucine zipper, DP107, determinant. The results also indicate that the anti-HIV activity of various gp41 derivatives (peptides and recombinant proteins) may be due to their ability to form complexes with viral gp41 and interfere with its fusogenic process.




8.1. Materials and Methods




8.1.1. Construction of Fusion Proteins and GP41 Mutants




Construction of fusion proteins and mutants shown in

FIG. 7

was accomplished as follows: the DNA sequence corresponding to the extracellular domain of gp41 (540-686) was cloned into the Xmn I site of the expression vector pMal-p2 (New England Biolab) to give M41. The gp41 sequence was amplified from pgtat (Malim et al., 1988, Nature 355: 181-183) by using polymerase chain reaction (PCR) with upstream primer 5′-ATGACGCTGACGGTACAGGCC-3′ (primer A)(SEQ ID:11) and downstream primer 5′-TGACTAAGCTTAATACCACAGCCAATTTGTTAT-3′ (primer B)(SEQ ID:12). M41-P was constructed by using the T7-Gen in vitro mutagenesis kit from United States Biochemicals (USB) following the supplier's instructions. The mutagenic primer (5′-GGAGCTGCTTGGGGCCCCAGAC-3′) introduces (SEQ ID:13) an Ile to Pro mutation in M41 at position 578. M41Δ107 was made using a deletion mutagenic primer 5′-CCAAATCCCCAGGAGCTGCTCGAGCTGCACTATACCAGAC-3′ (primer C)(SEQ ID:14) following the USB T7-Gen mutagenesis protocol. M41Δ178 was made by cloning the DNA fragment corresponding to gp41 amino acids 540-642 into the Xmn I site of pMal-p2. Primer A and 5′-ATAGCTTCTAGATTAATTGTTAATTTCTCTGTCCC-3′ (primer D)(SEQ ID:15) were used in the PCR with the template pgtat to generate the inserted DNA fragments. M41-P was used as the template with primer A and D in PCR to generate M41-PΔ178. All inserted sequences and mutated residues were checked by restriction enzyme analysis and confirmed by DNA sequencing.




8.1.2. Purification and Chatacterization of Fusion Proteins




The fusion proteins were purified according to the protocol described in the manufacturer's brochure of protein fusion and purification systems from New England Biolabs (NEB). Fusion proteins (10 ng) were analyzed by electrophoresis on 8% SDS polyacrylamide gels. Western blotting analysis was performed as described by Sambrook et al, 1989, Molecular Cloning: A Laboratory Manual, 2d Ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., Ch. 18, pp. 64-75. An HIV-1 positive serum diluted 1000-fold, or a human Fab derived from repertoire cloning was used to react with the fusion proteins. The second antibody was HRP-conjugated goat antihuman Fab. An ECL Western blotting detection system (Amersham) was used to detect the bound antibody. A detailed protocol for this detection system was provided by the manufacturer. Rainbow molecular weight marker (Amersham) were used to estimate the size of fusion proteins.




8.1.3. Cell Fusion Assays for Anti-HIV Activity




Cell fusion assays were performed as previously described (Matthews et al., 1987, Proc. Natl. Acad. Sci. USA 84: 5424-5481). CEM cells (7×10


4


) were incubated with HIV-1


IIIB


. chronically infected CEM cells (10


4


) in 96-well flat-bottomed half-area plates (Costar) in 100 μl culture medium. Peptide and fusion proteins at various concentrations in 10 μl culture medium were incubated with the cell mixtures at 37° C. for 24 hours. Multinucleated syncytia were estimated with microscopic examination. Both M41 and M41-P did not show cytotoxicity at the concentrations tested and shown in FIG.


8


.




Inhibition of HIV-1 induced cell-cell fusion activity was carried out in the presence of 10 nM DP178 and various concentrations of M41Δ178 or M41-PΔ178 as indicated in FIG.


9


. There was no observable syncytia in the presence of 10 nM DP178. No peptide or fusion protein was added in the control samples.




8.1.4. ELISA Analysis of DP178 Binding to the Leucine Zipper Motif of GP41




The amino acid sequence of DP178 used is: YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF. For enzyme linked immunoassay (ELISA), M41Δ178 or M41-PΔ178 (5 μg/ml) in 0.1M NaHCO


3


, pH 8.6, were coated on 96 wells Linbro ELISA plates (Flow Lab, Inc.) overnight. Each well was washed three times with distilled water then blocked with 3% bovine serum albumin (BSA) for 2 hours. After blocking, peptides with 0.5% BSA in TBST (40 mM Tris-HCl pH7.5, 150 mM NaCl, 0.05% Tween 20) were added to the ELISA plates and incubated at room temperature for 1 hour. After washing three times with TBST, Fab-d was added at a concentration of 10 ng/ml with 0.5% BSA in TBST. The plates were washed three times with TBST after incubation at room temperature for 1 hour. Horse radish peroxidase (HRP) conjugated goat antihuman Fab antiserum at a 2000 fold dilution in TBST with 0.5% BSA was added to each well and incubated at room temperature for 45 minutes. The plates were then washed four times with TBST. The peroxidase substrate o-phenylene diamine (2.5 mg/ml) and 0.15% H


2


O


2


were added to develop the color. The reaction was stopped with an equal volume of 4.5 N H


2


SO


4


after incubation at room temperature for 10 minutes. The optical density of the stopped reaction mixture was measured with a micro plate reader (Molecular Design) at 490 nm. Results are shown in FIG.


10


.




8.2. Results




8.2.1. The Expression and Characterization of the Ectodomain of GP41




As a step toward understanding the roles of the two helical regions in gp41 structure and function, the ectodomain of gp41 was expressed as a maltose binding fusion protein (M41) (FIG.


7


). The fusogenic peptide sequence at the N-terminal of gp41 was omitted from this recombinant protein and its derivatives to improve solubility. The maltose binding protein facilitated purification of the fusion proteins under relatively mild, non-denaturing conditions. Because the M41 soluble recombinant gp41 was not glycosylated, lacked several regions of the transmembrane protein (i.e., the fusion peptide, the membrane spanning, and the cytoplasmic domains), and was expressed in the absence of gp120, it was not expected to precisely reflect the structure of native gp41 on HIV-1 virions. Nevertheless, purified M41 folded in a manner that preserved certain discontinuous epitopes as evidenced by reactivity with human monoclonal antibodies, 98-6, 126-6, and 50-69, previously shown to bind conformational epitopes on native gp41 expressed in eukaryotic cells (Xu et al., 1991, J. Virol. 65: 4832-4838; Chen, 1994, J. Virol. 68:2002-2010). Thus, at least certain regions of native gp41 defined by these antibodies appear to be reproduced in the recombinant fusion protein M41. Furthermore, M41 reacted with a human recombinant Fab (Fab-d) that recognizes a conformational epitope on gp41 and binds HIV-1 virions as well as HIV-1 infected cells but not uninfected cells as analyzed by FACS. Deletion of either helix motif, i.e., DP107 or DP178, of the M41 fusion protein eliminated reactivity with Fab-d. These results indicate that both helical regions, separated by 60 amino acids in the primary sequence, are required to maintain the Fab-d epitope.




8.2.2. Anti-HIV Activity of the Recombinant Ectodomain of GP41




The wild type M41 fusion protein was tested for anti-HIV-1 activity. As explained, supra, synthetic peptides corresponding to the leucine zipper (DP107) and the C-terminal putative helix (DP178) show potent anti-HIV activity. Despite inclusion of both these regions, the recombinant M41 protein did not affect HIV-1 induced membrane fusion at concentrations as high as 50 AM (Table XII, below).












TABLE XII











DISRUPTION OF THE LEUCINE ZIPPER OF






GP41 FREES THE ANTI-HIV MOTIF

















DP107




DP178




M41




M41-P




M41-PΔ178




















Cell fusion




1 μM




 1 nM




>50 μM




83 nM




>50 μM






(IC


90


)






Fab-D














3.5 × 10


−9






2.5 × 10


−8













binding (k


D


)






HIV infectiv-




1 μM




80 nM




>16 μM




66 nM




 >8 μM






ity (IC


90


)











1 The affinity constants of Fab-d binding to the fusion proteins were determined using a protocol described by B. Friguet et al., 1985, J. Immunol. Method. 77:305-319.










— = No detectable binding of Fab-d to the fusion proteins.













Antivirul Infectivity Assays. 20 μl of serially diluted virus stock was incubated for 60 minutes at ambient temperature with 20 μl of the indicated concentration of purified recombinant fusion protein in RPMI 1640 containing 10% fetal bovine serum and antibiotics in a 96-well microtiter plate. 20 μl of CEM4 cells at 6×10


5


cells/ml were added to each well, and cultures were incubated at 37° C in a humidified CO


2


incubator. Cells were cultured for 9 postinfection, supernatant samples were assayed for reverse transcriptase (RT) activity, as described below, to monitor viral replication. The 50% tissue culture infectious dose (TCID


50


) was calculated for each condition according to the formula of Reed & Muench, 1937, Am. J. Hyg. 27:493-497. RT activity was determined by a modification of the published methods of Goff et al., 1981, J. Virol. 38:239-248 and Willey et al., 1988, J. Virol. 62:139-147 as described in Chen et al., 1993, AIDS Res. Human Retroviruses 9:1079-1086.




Surprisingly, a single amino acid substitution, proline in place of isoleucine in the middle of the leucine zipper motif, yielded a fusion protein (M41-P) which did exhibit antiviral activity (Table XII and FIG.


8


). As seen in Table XII, M41-P blocked syncytia formation by 90% at approximately 85 nM and neutralized HIV-1


IIIB


infection by 90% at approximately 70 nM concentrations. The anti-HIV-1 activity of M41-P appeared to be mediated by the C-terminal helical sequence since deletion of that region from M41-P yielded an inactive fusion protein, M41-PΔ178 (Table XII). That interpretation was reinforced by experiments demonstrating that a truncated fusion protein lacking the DP178 sequence, M41Δ178, abrogated the potent anti-fusion activity of the DP178 peptide in a concentration-dependent manner (FIG.


9


). The same truncated fusion protein containing the proline mutation disrupting the leucine zipper, M41-PΔ178, was not active in similar competition experiments (FIG.


9


). The results indicate that the DP178 peptide associates with a second site on gp41 whose interactive structure is dependent on a wild type leucine zipper sequence. A similar interaction may occur within the wild type fusion protein, M41, and act to form an intramolecular clasp which sequesters the DP178 region, making it unavailable for anti-viral activity.




A specific association between these two domains is also indicated by other human monoclonal Fab-d studies. For example, Fab-d failed to bind either the DP178 peptide or the fusion protein M41Δ178, but its epitope was reconstituted by simply mixing these two reagents together (FIG.


10


). Again, the proline mutation in the leucine zipper domain of the fusion protein, M41-PΔ178, failed to reconstitute the epitope in similar mixing experiments.




9. EXAMPLE




Method for Computer-Assisted Identification of DP-107-like and DP-178-like Sequences




A number of known coiled-coil sequences have been well described in the literature and contain heptad repeat positioning for each amino acid. Coiled-coil nomenclature labels each of seven amino acids of a heptad repeat A through G, with amino acids A and D tending to be hydrophobic positions. Amino acids E and G tend to be charged. These four positions (A, D, E, and G) form the amphipathic backbone structure of a monomeric alpha-helix. The backbones of two or more amphipathic helices interact with each other to form di-, tri-, tetrameric, etc., coiled-coil structures. In order to begin to design computer search motifs, a series of well characterized coiled coils were chosen including yeast transcription factor GCN4 (SEQ ID:20), Influenza Virus hemagglutinin loop 36 (SEQ ID:24), and human proto-oncogenes c-Myc (SEQ ID:23), c-Fos (SEQ ID:21), and c-Jun (SEQ ID:22). For each peptide sequence, a strict homology for the A and D positions, and a list of the amino acids which could be excluded for the B, C, E, F, and G positions (because they are not observed in these positions) was determined. Motifs were tailored to the DP-107 and DP-178 sequences by deducing the most likely possibilities for heptad positioning of the amino acids of HIV-1 Bru DP-107, which is known to have coiled-coil structure, and HIV-1 Bru DP-178, which is still structurally undefined. The analysis of each of the sequences is contained in FIG.


12


. For example, the motif for GCN4 was designed as follows:




1. The only amino acids (using standard single letter amino acid codes) found in the A or D positions of GCN4 were [LMNV].




2. All amino acids were found at B, C, E, F, and G positions except {CFGIMPTW}.




3. The PESEARCH motif would, therefore, be written as follows:




[LMNV]-{CFGIMPTW} (2)-[LMNV]-{CFGIMPTW} (3)-




[LMNV]-{CFGIMPTW} 2)-[LMNV]-{CFGIMPTW} 3)-




[LMNV]-{CFGIMPTW} 2)-[LMNV]-{CFGIMPTW} 3)-




[LMNV]-{CFGIMPTW} 2)-[LMNV]-{CFGIMPTW} 3)




Translating or reading the motif: “at the first A position either L, M, N, or V must occur; at positions B and C (the next two positions) accept everything except C, F, G, I, M, P, T, or W; at the D position either L, M, N, or V must occur; at positions E, F, and G (the next 3 positions) accept everything except C, F, G, I, M, P, T, or W.” This statement is contained four times in a 28-mer motif and five times in a 35-mer motif. The basic motif key then would be: [LMNV]-{CFGIMPTW}. The motif keys for the remaining well described coiled-coil sequences are summarized in FIG.


12


.




The motif design for DP-107 and DP-178 was slightly different than the 28-mer model sequences described above due to the fact that heptad repeat positions are not defined and the peptides are both longer than 28 residues.

FIG. 13

illustrates several possible sequence alignments for both DP-107 and DP-178 and also includes motif designs based on 28-mer, 35


−mer


, and full-length peptides. Notice that only slight differences occur in the motifs as the peptides are lengthened. Generally, lengthening the base peptide results in a less stringent motif. This is very useful in broadening the possibilities for identifying DP-107-or DP-178-like primary amino acid sequences referred to in this document as “hits”.




In addition to making highly specific motifs for each type peptide sequence to be searched, it is also possible to make “hybrid” motifs. These motifs are made by “crossing” two or more very stringent motifs to make a new search algorithm which will find not only both “parent” motif sequences but also any peptide sequences which have similarities to one, the other, or both “parents”. For example, in Table 3 the “parent” sequence of GCN4 is crossed with each of the possible “parent” motifs of DP-107. Now the hybrid motif must contain all of the amino acids found in the A and D positions of both parents, and exclude all of the amino acids not found in either parent at the other positions. The resulting hybrid from crossing GCN4 or [LMNV] {CFGIMPTW} and DP-107 (28-mer with the first L in the D position) or [ILQT] {CDFIMPST}, is [ILMNQTV] {CFIMPT}. Notice that now only two basic hybrid motifs exist which cover both framing possibilities, as well as all peptide lengths of the parent DP-107 molecule.

FIG. 15

represents the hybridizations of GCN4 with DP-178.

FIG. 16

represents the hybridizations of DP-107 and DP-178. It is important to keep in mind that the represented motifs, both parent and hybrid, are motif keys and not the depiction of the full-length motif needed to actually do the computer search.




Hybridizations can be performed on any combination of two or more motifs. Table 5 summarizes several three-motif hybridizations including GCN4, DP-107 (both frames), and DP-178 (also both frames). Notice that the resulting motifs are now becoming much more similar to each other. In fact, the first and third hybrid motifs are actually subsets of the second and fourth hybrid motifs respectively. This means that the first and third hybrid motifs are slightly more stringent than the second and fourth. It should also be noted that with only minor changes in these four motifs, or by hybridizing them, a single motif could be obtained which would find all of the sequences. However, it should be remembered that stringency is also reduced. Finally, the most broad-spectra and least-stringent hybrid motif is described in

FIG. 18

which summarizes the hybridization of GCN4, DP-107 (both frames), DP-178 (both frames), c-Fos, c-Jun, c-Myc, and Flu loop 36.




A special set of motifs was designed based on the fact that DP-178 is located only approximately ten amino acids upstream of the transmembrane spanning region of gp41 and just C-terminal to a proline which separates DP-107 and DP-178. It has postulated that DP-178 may be an amphipathic helix when membrane associated, and that the proline might aid in the initiation of the helix formation. The same arrangement was observed in Respiratory Syncytial Virus; however, the DP-178-like region in this virus also had a leucine zipper just C-terminal to the proline. Therefore, designed N-terminal proline-leucine zipper motifs were designed to analyze whether any other viruses might contain this same pattern. The motifs are summarized in FIG.


19


.




The PC/Gene protein database contains 5879 viral amino acid sequences (library file PVIRUSES; CD-ROM release 11.0). Of these, 1092 are viral envelope or glycoprotein sequences (library file PVIRUSE1). Tables V through X contain lists of protein sequence names and motif hit locations for all the motifs searched.




10. EXAMPLE




Computer-assisted Identification of DP-107 and DP-178-like Sequences in Human Immunodeficiency Virus





FIG. 20

represents search results for HIV-1 BRU isolate gp41 (PC/Gene protein sequence PENV_HV1BR). Notice that the hybrid motif which crosses DP-107 and DP-178 (named 107×178×4; the same motif as found in

FIG. 16

found three hits including amino acids 550-599, 636-688, and 796-823. These areas include DP-107 plus eight N-terminal and four C-terminal amino acids; DP-178 plus seven N-terminal and ten C-terminal amino acids; and an area inside the transmembrane region (cytoplasmic).

FIG. 20

(SEQ ID:26) also contains the results obtained from searching with the motif named ALLMOTI5, for which the key is found in

FIG. 17

({CDGHP} {CFP}×5). This motif also found three hits including DP-107 (amino acids 510-599), DP-178 (615-717), and a cytoplasmic region (772-841). These hits overlap the hits found by the motif 107×178×4 with considerable additional sequences on both the amino and carboxy termini. This is not surprising in that 107×178×4 is a subset of the ALLMOTI5 hybrid motif. Importantly, even though the stringency of ALLMOTI5 is considerably less than 107×178×4, it still selectively identifies the DP-107 and DP-178 regions of gp41 shown to contain sequences for inhibitory peptides of HIV-1. The results of these two motif searches are summarized in Table V under the PC/Gene protein sequence name PENV HV1BR. The proline-leucine zipper motifs also gave several hits in HIV-1 BRU including 503-525 which is at the very C-terminus of gp120, just upstream of the cleavage site (P7LZIPC and P12LZIPC); and 735-768 in the cytoplasmic domain of gp41 (P23LZIPC). These results are found in Tables VIII, IX, and X under the same sequence name as mentioned above. Notice that the only area of HIV-1 BRU which is predicted by the Lupas algorithm to contain a coiled-coil region, is from amino acids 635-670. This begins eight amino acids N-terminal to the start and ends eight amino acids N-terminal to the end of DP-178. DP-107, despite the fact that it is a known coiled coil, is not predicted to contain a coiled-coil region using the Lupas method.




11. EXAMPLE




Computer-assisted Identification of DP-107-like and DP-178-like Sequences in Human Respiratory Syncytial Virus





FIG. 21

represents search results (SEQ ID:27) for Human Respiratory Syncytial Virus (RSV; Strain A2) fusion glycoprotein F1 (PC/Gene protein sequence name PVGLF_HRSVA). Motif 107×178×4 finds three hits including amino acids 152-202, 213-243, and 488-515. The arrangement of these hits is similar to what is found in HIV-1 except that the motif finds two regions with similarities to DP-178, one just downstream of what would be called the DP-107 region or amino acids 213-243, and one just upstream of the transmembrane region (also similar to DP-178) or amino acids 488-515. Motif ALLMOTI5 also finds three areas including amino acids 116-202, 267-302, and 506-549. The proline-leucine zipper motifs also gave several hits including amino acids 205-221 and 265-287 (P1LZIPC 265-280, P12LZIPC), and 484-513 (P7LZIPC and P12LZIPC 484-506, P23LZIPC). Notice that the PLZIP motifs also identify regions which share location similarities with DP-178 of HIV-1.




12. EXAMPLE




Computer-assisted Identification of DP-107-like and DP-178-like Sequences in Simian Immunodeficiency Virus




Motif hits (SEQ ID:28) for Simian immunodeficiency Virus gp41 (AGM3 isolate; PC/Gene protein sequence name PENV_SIVAG) are shown in FIG.


22


. Motif 107×178×4 finds three hits including amino acids 566-593, 597-624, and 703-730. The first two hits only have three amino acids between them and could probably be combined into one hit from 566-624 which would represent a DP-107-like hit. Amino acids 703 to 730 would then represent a DP-178-like hit. ALLMOTI5 also finds three hits including amino acids 556-628 (DP-107-like), 651-699 (DP-178-like), and 808-852 which represents the transmembrane spanning region. SIV also has one region from 655-692 with a high propensity to form a coiled coil as predicted by the Lupas algorithm. Both 107×178×4 and ALLMOTI5 motifs find the same region. SIV does not have any PLZIP motif hits in gp41.




13. EXAMPLE




Computer-assisted Identification of DP-107-like and DP-178 Like Sequences in Canine Distemper Virus




Canine Distemper Virus (strain Onderstepoort) fusion glycoprotein F1 (PC/Gene Protein sequence name PVGLF_CDVO) has regions similar to Human RSV which are predicted to be DP-107-like and DP-178-like (

FIG. 23

, SEQ ID:29). Motif 107×178×4 highlights one area just C-terminal to the fusion peptide at amino acids 252-293. Amino acids 252-286 are also predicted to be coiled coil using the Lupas algorithm. Almost 100 amino acids C-terminal to the first region is a DP-178-like area at residues 340-367. ALLMOTI5 highlights three areas of interest including: amino acids 228-297, which completely overlaps both the Lupas prediction and the DP-107-like 107×178×4 hit; residues 340-381, which overlaps the second 107×178×4 hit; and amino acids 568-602, which is DP178-like in that it is located just N-terminal to the transmembrane region. It also overlaps another region (residues 570-602) predicted by the Lupas method to have a high propensity to form a coiled coil. Several PLZIP motifs successfully identified areas of interest including P6 and P12LZIPC which highlight residues 336-357 and 336-361 respectively; P1 and P12LZIPC which find residues 398-414; and P12 and P23LZIPC which find residues 562-589 and 562-592 respectively.




14. EXAMPLE




Computer-assisted Identification of DP-107-like and DP-178-like Sequences in Newcastle Disease Virus





FIG. 24

shows the motif hits (SEQ ID NO:30) found in Newcastle Disease Virus (strain Australia-Victoria/32; PC Gene protein sequence name PVGLF_NDVA). Motif 107×178×4 finds two areas including a DP-107-like hit at amino acids 151-178 and a DP-178-like hit at residues 426-512. ALLMOTI5 finds three areas including residues 117-182, 231-272, and 426-512. The hits from 426-512 include a region which is predicted by the Lupas method to have a high coiled-coil propensity (460-503). The PLZIP motifs identify only one region of interest at amino acids 273-289 (P1 and 12LZIPC).




15. EXAMPLE




Computer-assisted Identification of DP-107-like and DP-178-like Sequences in Human Parainfluenza Virus




Both motifs 107×178×4 and ALLMOTI5 exhibit DP-107-like hits in the same region, 115-182 and 117-182 respectively, of Human Parainfluenza Virus (strain NIH 47885; PC/Gene protein sequence name PVGLF_p13H4; (

FIG. 25

, SEQ ID NO:31). In addition, the two motifs have a DP-178-like hit just slightly C-terminal at amino acids 207-241. Both motifs also have DP-178-like hits nearer the transmembrane region including amino acids 457-497 and 462-512 respectively. Several PLZIP motif hits are also observed including 283-303 (P5LZIPC), 283-310 (P12LZIPC), 453-474 (P6LZIPC), and 453-481 (P23LZIPC). The Lupas algorithm predicts that amino acids 122-176 have a propensity to form a coiled-coil.




16. EXAMPLE




Computer-assisted Identification of DP-107-like and DP-178-like Sequences of Influenza A Virus





FIG. 26

illustrates the Lupas prediction (SEQ ID NO:32) for a coiled coil in Influenza A Virus (strain A/Aichi/2/68) at residues 379-436, as well as the motif hits for 107×178×4 at amino acids 387-453, and for ALLMOTI5 at residues 380-456. Residues 383-471 (38-125 of HA2) were shown by Carr and Kim to be an extended coiled coil when under acidic pH (Carr and Kim, 1993, Cell 73: 823-832). The Lupas algorithyan predicts a coiled-coil at residues 379-436. All three methods successfully predicted the region shown to actually have coiled-coil structure; however, ALLMOTI5 predicted the greatest portion of the 88 residue stretch.




17. EXAMPLE




RSV Antiviral Compounds




In the Example presented herein, respiratory syncytial virus (RSV) peptide sequences identified by utilizing the computer-assisted coiled-coil peptide sequence searches described in Example 9, above, are shown to encode peptide domains that exhibit structural similarity to actual, known coiled-coil peptides, and are, additionally found to exhibit antiviral activity.




17.1 Materials and Methods




Structural analyses consisted of circular dichroism (CD) studies, which were conducted according to the methods described in the Applicants' co-pending U.S. patent application Ser. No 08/073,028.




Anti-RSV antiviral activity was assayed as described in Pringle, C. R. et al., 1985, J. Medical Vir. 17:377-386.




A 48 amino acid RSV F2 peptide (SEQ ID NO:33) and a 53 amino acid F1-178 (SEQ ID NO:34) peptide are utilized which span sequences that were identified via the computer assisted peptide sequence search strategies described in Example 9, above. See

FIG. 21

for the exact position of these sequences and for the motifs utilized.




17.2 Results




35-mer oligopeptides were synthesized which constituted portions of the 48 amino acid RSV F2 peptide sequence (

FIG. 27

) and portions of the 53 amino acid F1-178 peptide sequence (FIG.


28


). The oligopeptides were assayed, via CD analysis, for structural similarity to known coiled-coil structures, and for anti-RSV activity. As shown in

FIGS. 27 and 28

, a number of these oligopeptides exhibited substantial coiled-coil structural similarity and/or antiviral activity.




Thus, the computer assisted searches described, herein, in Example 9, for example, successfully identified viral peptide domains that represent highly promising anti-RSV antiviral compounds.




18. EXAMPLE




HPF3 Antiviral Compounds




In the Example presented herein, human parainfluenza virus 3 (HPF3) peptide sequences identified by utilizing the computer-assisted coiled-coil peptide sequence searches described in Example 9, above, are shown to encode peptide domains that exhibit structural similarity to actual, known coiled-coil peptides, and are, additionally found to exhibit antiviral activity.




18.1 Materials and Methods




Structural analyses consisted of circular dichroism (CD) studies, which were conducted according to the methods described in the Applicants' co-pending U.S. patent application Ser. No 08/073,028.




Anti-HPF3 antiviral activity was assayed as described in Pringle, C. R. et al., 1985, J. Medical Vir. 17:377-386.




A 56 amino acid and 70 amino acid HPF3 peptide are utilized which span sequences that were identified via the computer assisted peptide sequence search strategies described in Example 9, above. See

FIG. 25

for the exact positions of these sequences and for the motifs utilized.




18.2 Results




35-mer oligopeptides were synthesized which constituted portions of the 56 amino acid (SEQ ID NO:35) sequence (

FIG. 29

) and portions of the 70 amino acid HPF3 peptide (SEQ ID NO:36) sequence (FIG.


30


). The oligopeptides were assayed, via CD analysis, for structural similarity to known coiled-coil structures, and for anti-HPF3 activity. As shown in

FIGS. 29 and 30

, a number of these oligopeptides exhibited substantial coiled-coil structural similarity and/or antiviral activity.




Thus, the computer assisted searches described, herein, in Example 9, for example, successfully identified viral peptide domains that represent highly promising anti-HPF3 antiviral compounds.




The present invention is not to be limited in scope by the specific embodiments described which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.







111





36 amino acids


amino acid


unknown




peptide



1
Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid


unknown




peptide



2
Ser Ser Glu Ser Phe Thr Leu Leu Glu Gln Trp Asn Asn Trp Lys Leu
1 5 10 15
Gln Leu Ala Glu Gln Trp Leu Glu Gln Ile Asn Glu Lys His Tyr Leu
20 25 30
Glu Asp Ile Ser
35






36 amino acids


amino acid


unknown




peptide



3
Tyr Thr Asn Thr Ile Tyr Thr Leu Leu Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid


unknown




peptide



4
Tyr Thr Gly Ile Ile Tyr Asn Leu Leu Glu Glu Ser Gln Asn Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Asn Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid


unknown




peptide



5
Tyr Thr Ser Leu Ile Tyr Ser Leu Leu Glu Lys Ser Gln Thr Gln Gln
1 5 10 15
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
Trp Asn Trp Phe
35






36 amino acids


amino acid


unknown




peptide



6
Leu Glu Ala Asn Ile Ser Lys Ser Leu Glu Gln Ala Gln Ile Gln Gln
1 5 10 15
Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp Ile Phe
20 25 30
Gly Asn Trp Phe
35






36 amino acids


amino acid


unknown




peptide



7
Leu Glu Ala Asn Ile Ser Gln Ser Leu Glu Gln Ala Gln Ile Gln Gln
1 5 10 15
Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp Val Phe
20 25 30
Thr Asn Trp Leu
35






41 amino acids


amino acid


unknown




peptide



8
Cys Gly Gly Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu
1 5 10 15
Leu Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu
20 25 30
Ala Val Glu Arg Tyr Leu Lys Asp Gln
35 40






17 amino acids


amino acid


unknown




peptide



9
Leu Gln Ala Arg Ile Leu Ala Val Glu Arg Tyr Leu Lys Asp Gln Gln
1 5 10 15
Gln






38 amino acids


amino acid


unknown




peptide



10
Gln Gln Leu Leu Asp Val Val Lys Arg Gln Gln Glu Met Leu Arg Leu
1 5 10 15
Thr Val Trp Gly Thr Lys Asn Leu Gln Ala Arg Val Thr Ala Ile Glu
20 25 30
Lys Tyr Leu Lys Asp Gln
35






21 base pairs


nucleic acid


single


linear




DNA (genomic)



11
ATGACGCTGA CGGTACAGGC C 21






33 base pairs


nucleic acid


single


linear




DNA (genomic)



12
TGACTAAGCT TAATACCACA GCCAATTTGT TAT 33






22 base pairs


nucleic acid


single


linear




DNA (genomic)



13
GGAGCTGCTT GGGGCCCCAG AC 22






40 base pairs


nucleic acid


single


linear




DNA (genomic)



14
CCAAATCCCC AGGAGCTGCT CGAGCTGCAC TATACCAGAC 40






35 base pairs


nucleic acid


single


linear




DNA (genomic)



15
ATAGCTTCTA GATTAATTGT TAATTTCTCT GTCCC 35






50 amino acids


amino acid


unknown




peptide




Peptide



/label= A
/note= “x comprises an amino group, an acetyl
group, a 9-fluoromethyoxymethyl-carbonyl group, a
hydrophobic group, or a macromolecule carrier






Peptide


50



/label= B
/note= ” x comprises a carboxyl group, an amido
group, a hydrophobic group, or a macromolecular
carrier group.“





16
Xaa Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn
1 5 10 15
Lys Cys Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu
20 25 30
Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu Met Gln Ser
35 40 45
Thr Xaa
50






39 amino acids


amino acid


unknown




peptide




Peptide



/label= A
/note= ”x comprises an amino group, an acetyl
group, a 9-fluoromethyoxymethyl-carbonyl group, or
a macromolecule carrier group.“






Peptide


39



/label= B
/note= ”x comprises a carboxyl group, an amido
group, a hydrophobic group, or a macromolecular
carrier group.“





17
Xaa Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser
1 5 10 15
Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg
20 25 30
Lys Ser Asp Glu Leu Leu Xaa
35






37 amino acids


amino acid


unknown




peptide




Peptide



/label= A
/note= ”x comprises an amino group, an acetly
group, a 9-fluoromethyoxymethyl-carbonyl group, a
hydrophobic group, or a macromolecule carrier






Peptide


37



/label= B
/note= “x comprises a carboxyl group, an amido
group, a hydrophobic group, or a macromolecular
carrier group.”





18
Xaa Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser
1 5 10 15
Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp
20 25 30
Ile Arg Arg Ser Xaa
35






37 amino acids


amino acid


unknown




peptide




Peptide



/label= A
/note= “x comprises an amino group, an acetly
group, a 9-fluoromethyoxymethyl-carbonyl group, a
hydrophobic group, or a macromolecule carrier






Peptide


37



/label= B
/note= ”x comprises a carboxyl group, an amido
group, a hydrophobic group, or a macromolecular
carrier group.“





19
Xaa Ala Leu Gly Val Ala Thr Ser Ala Gln Ile Thr Ala Ala Val Ala
1 5 10 15
Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu
20 25 30
Ala Ile Arg Asp Xaa
35






28 amino acids


amino acid


unknown




peptide



20
Met Lys Gln Leu Glu Asp Lys Val Glu Glu Leu Leu Ser Lys Asn Tyr
1 5 10 15
His Leu Glu Asn Glu Val Ala Arg Leu Lys Lys Leu
20 25






28 amino acids


amino acid


unknown




peptide



21
Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Leu Glu Asp Glu Lys Ser
1 5 10 15
Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu
20 25






28 amino acids


amino acid


unknown




peptide



22
Ile Ala Arg Leu Glu Glu Lys Val Lys Thr Leu Lys Ala Gln Asn Ser
1 5 10 15
Glu Leu Ala Ser Thr Ala Asn Met Leu Arg Glu Gln
20 25






28 amino acids


amino acid


unknown




peptide



23
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Leu Glu Lys Arg Arg Glu
1 5 10 15
Gln Leu Lys His Lys Leu Glu Gln Leu Arg Asn Ser
20 25






28 amino acids


amino acid


unknown




peptide



24
Ile Glu Lys Thr Asn Glu Lys Phe His Gln Ile Glu Lys Glu Phe Ser
1 5 10 15
Glu Val Glu Gly Arg Ile Gln Asp Leu Glu Lys Tyr
20 25






38 amino acids


amino acid


unknown




peptide



25
Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu Gln Leu
1 5 10 15
Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala Val Glu
20 25 30
Arg Tyr Leu Lys Asp Gln
35






338 amino acids


amino acid


unknown




protein



26
Phe Leu Gly Phe Leu Gly Ala Ala Gly Ser Thr Met Gly Ala Arg Ser
1 5 10 15
Met Thr Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln
20 25 30
Gln Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu
35 40 45
Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala
50 55 60
Val Glu Arg Tyr Leu Lys Asp Gln Gln Leu Leu Gly Ile Trp Gly Cys
65 70 75 80
Ser Gly Lys Leu Ile Cys Thr Thr Ala Val Pro Trp Asn Ala Ser Trp
85 90 95
Ser Asn Lys Ser Leu Glu Gln Ile Trp Asn Asn Met Thr Trp Met Glu
100 105 110
Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile
115 120 125
Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu
130 135 140
Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr Asn Trp
145 150 155 160
Leu Trp Tyr Ile Lys Ile Phe Ile Met Ile Val Gly Gly Leu Val Gly
165 170 175
Leu Arg Ile Val Phe Ala Val Leu Ser Ile Val Asn Arg Val Arg Gln
180 185 190
Gly Tyr Ser Pro Leu Ser Phe Gln Thr His Leu Pro Thr Pro Arg Gly
195 200 205
Pro Asp Arg Pro Glu Gly Ile Glu Glu Glu Gly Gly Glu Arg Asp Arg
210 215 220
Asp Arg Ser Ile Arg Leu Val Asn Gly Ser Leu Ala Leu Ile Trp Asp
225 230 235 240
Asp Leu Arg Ser Leu Cys Leu Phe Ser Tyr His Arg Leu Arg Asp Leu
245 250 255
Leu Leu Ile Val Thr Arg Ile Val Glu Leu Leu Gly Arg Arg Gly Trp
260 265 270
Glu Ala Leu Lys Tyr Trp Trp Asn Leu Leu Gln Tyr Trp Ser Gln Glu
275 280 285
Leu Lys Asn Ser Ala Val Ser Leu Leu Asn Ala Thr Ala Ile Ala Val
290 295 300
Ala Glu Gly Thr Asp Arg Val Ile Glu Val Val Gln Gly Ala Cys Arg
305 310 315 320
Ala Ile Arg His Ile Pro Arg Arg Ile Arg Gln Gly Leu Glu Arg Ile
325 330 335
Leu Leu






437 amino acids


amino acid


unknown




protein



27
Phe Leu Gly Phe Leu Leu Gly Val Gly Ser Ala Ile Ala Ser Gly Val
1 5 10 15
Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Lys
20 25 30
Ser Ala Leu Leu Ser Thr Asn Lys Ala Val Val Ser Leu Ser Asn Gly
35 40 45
Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile Asp
50 55 60
Lys Gln Leu Leu Pro Ile Val Asn Lys Gln Ser Cys Ser Ile Ser Asn
65 70 75 80
Ile Glu Thr Val Ile Glu Phe Gln Gln Lys Asn Asn Arg Leu Leu Glu
85 90 95
Ile Thr Arg Glu Phe Ser Val Asn Ala Gly Val Thr Thr Pro Val Ser
100 105 110
Thr Met Leu Thr Asn Ser Glu Leu Leu Ser Leu Ile Asn Asp Met Pro
115 120 125
Ile Thr Asn Asp Gln Lys Lys Leu Met Ser Asn Asn Val Gln Ile Val
130 135 140
Arg Gln Gln Ser Tyr Ser Ile Met Ser Ile Ile Lys Glu Glu Val Leu
145 150 155 160
Ala Tyr Val Val Gln Leu Pro Leu Tyr Gly Val Ile Asp Thr Pro Cys
165 170 175
Trp Lys Leu His Thr Ser Pro Leu Cys Thr Thr Asn Thr Lys Glu Gly
180 185 190
Ser Asn Ile Cys Leu Thr Arg Thr Asp Arg Gly Trp Tyr Cys Asp Asn
195 200 205
Ala Gly Ser Val Ser Phe Phe Pro Gln Ala Glu Thr Cys Lys Val Gln
210 215 220
Ser Asn Arg Val Phe Cys Asp Thr Met Asn Ser Leu Thr Leu Pro Ser
225 230 235 240
Glu Ile Asn Leu Cys Asn Val Asp Ile Phe Asn Pro Lys Tyr Asp Cys
245 250 255
Lys Ile Met Thr Ser Lys Thr Asp Val Ser Ser Ser Val Ile Thr Ser
260 265 270
Leu Gly Ala Ile Val Ser Cys Tyr Gly Lys Thr Lys Cys Thr Ala Ser
275 280 285
Asn Lys Asn Arg Gly Ile Ile Lys Thr Phe Ser Asn Gly Cys Asp Tyr
290 295 300
Val Ser Asn Lys Gly Met Asp Thr Val Ser Val Gly Asn Thr Leu Tyr
305 310 315 320
Tyr Val Asn Lys Gln Glu Gly Lys Ser Leu Tyr Val Lys Gly Glu Pro
325 330 335
Ile Ile Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp
340 345 350
Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe
355 360 365
Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser
370 375 380
Thr Thr Asn Ile Met Ile Thr Thr Ile Ile Ile Val Ile Ile Val Ile
385 390 395 400
Leu Leu Ser Leu Ile Ala Val Gly Leu Leu Leu Tyr Cys Lys Ala Arg
405 410 415
Ser Thr Pro Val Thr Leu Ser Lys Asp Gln Leu Ser Gly Ile Asn Asn
420 425 430
Ile Ala Phe Ser Asn
435






328 amino acids


amino acid


unknown




protein



28
Phe Leu Gly Phe Leu Gly Ala Ala Gly Thr Ala Met Gly Ala Ala Ala
1 5 10 15
Thr Ala Leu Thr Val Gln Ser Gln His Leu Leu Ala Gly Ile Leu Gln
20 25 30
Gln Gln Lys Asn Leu Leu Ala Ala Val Glu Ala Gln Gln Gln Met Leu
35 40 45
Lys Leu Thr Ile Trp Gly Val Lys Asn Leu Asn Ala Arg Val Thr Ala
50 55 60
Leu Glu Lys Tyr Leu Glu Asp Gln Ala Arg Leu Asn Ala Trp Gly Cys
65 70 75 80
Ala Trp Lys Gln Val Cys His Thr Thr Val Pro Trp Gln Trp Asn Asn
85 90 95
Arg Thr Pro Asp Trp Asn Asn Met Thr Trp Leu Glu Trp Glu Arg Gln
100 105 110
Ile Ser Tyr Leu Glu Gly Asn Ile Thr Thr Gln Leu Glu Glu Ala Arg
115 120 125
Ala Gln Glu Glu Lys Asn Leu Asp Ala Tyr Gln Lys Leu Ser Ser Trp
130 135 140
Ser Asp Phe Trp Ser Trp Phe Asp Phe Ser Lys Trp Leu Asn Ile Leu
145 150 155 160
Lys Ile Gly Phe Leu Asp Val Leu Gly Ile Ile Gly Leu Arg Leu Leu
165 170 175
Tyr Thr Val Tyr Ser Cys Ile Ala Arg Val Arg Gln Gly Tyr Ser Pro
180 185 190
Leu Ser Pro Gln Ile His Ile His Pro Trp Lys Gly Gln Pro Asp Asn
195 200 205
Ala Glu Gly Pro Gly Glu Gly Gly Asp Lys Arg Lys Asn Ser Ser Glu
210 215 220
Pro Trp Gln Lys Glu Ser Gly Thr Ala Glu Trp Lys Ser Asn Trp Cys
225 230 235 240
Lys Arg Leu Thr Asn Trp Cys Ser Ile Ser Ser Ile Trp Leu Tyr Asn
245 250 255
Ser Cys Leu Thr Leu Leu Val His Leu Arg Ser Ala Phe Gln Tyr Ile
260 265 270
Gln Tyr Gly Leu Gly Glu Leu Lys Ala Ala Ala Gln Glu Ala Val Val
275 280 285
Ala Leu Ala Arg Leu Ala Gln Asn Ala Gly Tyr Gln Ile Trp Leu Ala
290 295 300
Cys Arg Ser Ala Tyr Arg Ala Ile Ile Asn Ser Pro Arg Arg Val Arg
305 310 315 320
Gln Gly Leu Glu Gly Ile Leu Asn
325






438 amino acids


amino acid


unknown




protein



29
Phe Ala Gly Val Val Leu Ala Gly Val Ala Leu Gly Val Ala Thr Ala
1 5 10 15
Ala Gln Ile Thr Ala Gly Ile Ala Leu His Gln Ser Asn Leu Asn Ala
20 25 30
Gln Ala Ile Gln Ser Leu Arg Thr Ser Leu Glu Gln Ser Asn Lys Ala
35 40 45
Ile Glu Glu Ile Arg Glu Ala Thr Gln Glu Thr Val Ile Ala Val Gln
50 55 60
Gly Val Gln Asp Tyr Val Asn Asn Glu Leu Val Pro Ala Met Gln His
65 70 75 80
Met Ser Cys Glu Leu Val Gly Gln Arg Leu Gly Leu Arg Leu Leu Arg
85 90 95
Tyr Tyr Thr Glu Leu Leu Ser Ile Phe Gly Pro Ser Leu Arg Asp Pro
100 105 110
Ile Ser Ala Glu Ile Ser Ile Gln Ala Leu Ile Tyr Ala Leu Gly Gly
115 120 125
Glu Ile His Lys Ile Leu Glu Lys Leu Gly Tyr Ser Gly Ser Asp Met
130 135 140
Ile Ala Ile Leu Glu Ser Arg Gly Ile Lys Thr Lys Ile Thr His Val
145 150 155 160
Asp Leu Pro Gly Lys Phe Ile Ile Leu Ser Ile Ser Tyr Pro Thr Leu
165 170 175
Ser Glu Val Lys Gly Val Ile Val His Arg Leu Glu Ala Val Ser Tyr
180 185 190
Asn Ile Gly Ser Gln Glu Trp Tyr Thr Thr Val Pro Arg Tyr Ile Ala
195 200 205
Thr Asn Gly Tyr Leu Ile Ser Asn Phe Asp Glu Ser Ser Cys Val Phe
210 215 220
Val Ser Glu Ser Ala Ile Cys Ser Gln Asn Ser Leu Tyr Pro Met Ser
225 230 235 240
Pro Leu Leu Gln Gln Cys Ile Arg Gly Asp Thr Ser Ser Cys Ala Arg
245 250 255
Thr Leu Val Ser Gly Thr Met Gly Asn Lys Phe Ile Leu Ser Lys Gly
260 265 270
Asn Ile Val Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Ser Thr
275 280 285
Ser Thr Ile Ile Asn Gln Ser Pro Asp Lys Leu Leu Thr Phe Ile Ala
290 295 300
Ser Asp Thr Cys Pro Leu Val Glu Ile Asp Gly Ala Thr Ile Gln Val
305 310 315 320
Gly Gly Arg Gln Tyr Pro Asp Met Val Tyr Glu Gly Lys Val Ala Leu
325 330 335
Gly Pro Ala Ile Ser Leu Asp Arg Leu Asp Val Gly Thr Asn Leu Gly
340 345 350
Asn Ala Leu Lys Lys Leu Asp Asp Ala Lys Val Leu Ile Asp Ser Ser
355 360 365
Asn Gln Ile Leu Glu Thr Val Arg Arg Ser Ser Phe Asn Phe Gly Ser
370 375 380
Leu Leu Ser Val Pro Ile Leu Ser Cys Thr Ala Leu Ala Leu Leu Leu
385 390 395 400
Leu Ile Tyr Cys Cys Lys Arg Arg Tyr Gln Gln Thr Leu Lys Gln His
405 410 415
Thr Lys Val Asp Pro Ala Phe Lys Pro Asp Leu Thr Gly Thr Ser Lys
420 425 430
Ser Tyr Val Arg Ser Leu
435






436 amino acids


amino acid


unknown




protein



30
Phe Ile Gly Ala Ile Ile Gly Ser Val Ala Leu Gly Val Ala Thr Ala
1 5 10 15
Ala Gln Ile Thr Ala Ala Ser Ala Leu Ile Gln Ala Asn Gln Asn Ala
20 25 30
Ala Asn Ile Leu Arg Leu Lys Glu Ser Ile Thr Ala Thr Ile Glu Ala
35 40 45
Val His Glu Val Thr Asp Gly Leu Ser Gln Leu Ala Val Ala Val Gly
50 55 60
Lys Met Gln Gln Phe Val Asn Asp Gln Phe Asn Asn Thr Ala Gln Glu
65 70 75 80
Leu Asp Cys Ile Lys Ile Thr Gln Gln Val Gly Val Glu Leu Asn Leu
85 90 95
Tyr Leu Thr Glu Leu Thr Thr Val Phe Gly Pro Gln Ile Thr Ser Pro
100 105 110
Ala Leu Thr Gln Leu Thr Ile Gln Ala Leu Tyr Asn Ala Gly Gly Asn
115 120 125
Met Asp Tyr Leu Leu Thr Lys Leu Gly Val Gly Asn Asn Gln Leu Ser
130 135 140
Ser Leu Ile Gly Ser Gly Leu Ile Thr Gly Asn Pro Ile Leu Tyr Asp
145 150 155 160
Ser Gln Thr Gln Leu Leu Gly Ile Gln Val Thr Leu Pro Ser Val Gly
165 170 175
Asn Leu Asn Asn Met Arg Ala Thr Tyr Leu Glu Thr Leu Ser Val Ser
180 185 190
Thr Thr Lys Gly Phe Ala Ser Ala Leu Val Pro Lys Val Val Thr Gln
195 200 205
Val Gly Ser Val Ile Glu Glu Leu Asp Thr Ser Tyr Cys Ile Glu Thr
210 215 220
Asp Leu Asp Leu Tyr Cys Thr Arg Ile Val Thr Phe Pro Met Ser Pro
225 230 235 240
Gly Ile Tyr Ser Cys Leu Asn Gly Asn Thr Ser Ala Cys Met Tyr Ser
245 250 255
Lys Thr Glu Gly Ala Leu Thr Thr Pro Tyr Met Thr Leu Lys Gly Ser
260 265 270
Val Ile Ala Asn Cys Lys Met Thr Thr Cys Arg Cys Ala Asp Pro Pro
275 280 285
Gly Ile Ile Ser Gln Asn Tyr Gly Glu Ala Val Ser Leu Ile Asp Arg
290 295 300
His Ser Cys Asn Val Leu Ser Leu Asp Gly Ile Thr Leu Arg Leu Ser
305 310 315 320
Gly Glu Phe Asp Ala Thr Tyr Gln Lys Asn Ile Ser Ile Leu Asp Ser
325 330 335
Gln Val Ile Val Thr Gly Asn Leu Asp Ile Ser Thr Glu Leu Gly Asn
340 345 350
Val Asn Asn Ser Ile Ser Asn Ala Leu Asp Lys Leu Glu Glu Ser Asn
355 360 365
Ser Lys Leu Asp Lys Val Asn Val Lys Leu Thr Ser Thr Ser Ala Leu
370 375 380
Ile Thr Tyr Ile Ala Leu Thr Ala Ile Ser Leu Val Cys Gly Ile Leu
385 390 395 400
Ser Leu Val Leu Ala Cys Tyr Leu Met Tyr Lys Gln Lys Ala Gln Gln
405 410 415
Lys Thr Leu Leu Trp Leu Gly Asn Asn Thr Leu Gly Gln Met Arg Ala
420 425 430
Thr Thr Lys Met
435






430 amino acids


amino acid


unknown




protein



31
Phe Phe Gly Gly Val Ile Gly Thr Ile Ala Leu Gly Val Ala Thr Ser
1 5 10 15
Ala Gln Ile Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg
20 25 30
Ser Asp Ile Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala
35 40 45
Val Gln Ser Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys
50 55 60
Ser Val Gln Asp Tyr Val Asn Lys Glu Ile Val Pro Ser Ile Ala Arg
65 70 75 80
Leu Gly Cys Glu Ala Ala Gly Leu Gln Leu Gly Ile Ala Leu Thr Gln
85 90 95
His Tyr Ser Glu Leu Thr Asn Ile Phe Gly Asp Asn Ile Gly Ser Leu
100 105 110
Gln Glu Lys Gly Ile Lys Leu Gln Gly Ile Ala Ser Leu Tyr Arg Thr
115 120 125
Asn Ile Thr Glu Ile Phe Thr Thr Ser Thr Val Asp Lys Tyr Asp Ile
130 135 140
Tyr Asp Leu Leu Phe Thr Glu Ser Ile Lys Val Arg Val Ile Asp Val
145 150 155 160
Asp Leu Asn Asp Tyr Ser Ile Thr Leu Gln Val Arg Leu Pro Leu Leu
165 170 175
Thr Arg Leu Leu Asn Thr Gln Ile Tyr Arg Val Asp Ser Ile Ser Tyr
180 185 190
Asn Ile Gln Asn Arg Glu Trp Tyr Ile Pro Leu Pro Ser His Ile Met
195 200 205
Thr Lys Gly Ala Phe Leu Gly Gly Ala Asp Val Lys Glu Cys Ile Glu
210 215 220
Ala Phe Ser Ser Tyr Ile Cys Pro Ser Asp Pro Gly Phe Val Leu Asn
225 230 235 240
His Glu Met Glu Ser Cys Leu Ser Gly Asn Ile Ser Gln Cys Pro Arg
245 250 255
Thr Val Val Lys Ser Asp Ile Val Pro Arg Tyr Ala Phe Val Asn Gly
260 265 270
Gly Val Val Ala Asn Cys Ile Thr Thr Thr Cys Thr Cys Asn Gly Ile
275 280 285
Gly Asn Arg Ile Asn Gln Pro Pro Asp Gln Gly Val Lys Ile Ile Thr
290 295 300
His Lys Glu Cys Asn Thr Ile Gly Ile Asn Gly Met Leu Phe Asn Thr
305 310 315 320
Asn Lys Glu Gly Thr Leu Ala Phe Tyr Thr Pro Asn Asp Ile Thr Leu
325 330 335
Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn
340 345 350
Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp Ile Arg Arg Ser
355 360 365
Asn Gln Lys Leu Asp Ser Ile Gly Asn Trp His Gln Ser Ser Thr Thr
370 375 380
Ile Ile Ile Val Leu Ile Met Ile Ile Ile Leu Phe Ile Ile Asn Val
385 390 395 400
Thr Ile Ile Ile Ile Ala Val Lys Tyr Tyr Arg Ile Gln Lys Arg Asn
405 410 415
Arg Val Asp Gln Asn Asp Lys Pro Tyr Val Leu Thr Asn Lys
420 425 430






221 amino acids


amino acid


unknown




protein



32
Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly
1 5 10 15
Met Ile Asp Gly Trp Tyr Gly Phe Arg His Gln Asn Ser Glu Gly Thr
20 25 30
Gly Gln Ala Ala Asp Leu Lys Ser Thr Gln Ala Ala Ile Asp Gln Ile
35 40 45
Asn Gly Lys Leu Asn Arg Val Ile Glu Lys Thr Asn Glu Lys Phe His
50 55 60
Gln Ile Glu Lys Glu Phe Ser Glu Val Glu Gly Arg Ile Gln Asp Leu
65 70 75 80
Glu Lys Tyr Val Glu Asp Thr Lys Ile Asp Leu Trp Ser Tyr Asn Ala
85 90 95
Glu Leu Leu Val Ala Leu Glu Asn Gln His Thr Ile Asp Leu Thr Asp
100 105 110
Ser Glu Met Asn Lys Leu Phe Glu Lys Thr Arg Arg Gln Leu Arg Glu
115 120 125
Asn Ala Glu Glu Met Gly Asn Gly Cys Phe Lys Ile Tyr His Lys Cys
130 135 140
Asp Asn Ala Cys Ile Glu Ser Ile Arg Asn Gly Thr Tyr Asp His Asp
145 150 155 160
Val Tyr Arg Asp Glu Ala Leu Asn Asn Arg Phe Gln Ile Lys Gly Val
165 170 175
Glu Leu Lys Ser Gly Tyr Lys Asp Trp Ile Leu Trp Ile Ser Phe Ala
180 185 190
Ile Ser Cys Phe Leu Leu Cys Val Val Leu Leu Gly Phe Ile Met Trp
195 200 205
Ala Cys Gln Arg Gly Asn Ile Arg Cys Asn Ile Cys Ile
210 215 220






48 amino acids


amino acid


unknown




peptide



33
Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys
1 5 10 15
Cys Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp
20 25 30
Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu Met Gln Ser Thr
35 40 45






53 amino acids


amino acid


unknown




peptide



34
Gly Glu Pro Ile Ile Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp
1 5 10 15
Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser
20 25 30
Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala
35 40 45
Gly Lys Ser Thr Thr
50






56 amino acids


amino acid


unknown




peptide



35
Tyr Thr Pro Asn Asp Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro
1 5 10 15
Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu
20 25 30
Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly
35 40 45
Asn Trp His Gln Ser Ser Thr Thr
50 55






70 amino acids


amino acid


unknown




peptide



36
Gly Thr Ile Ala Leu Gly Val Ala Thr Ser Ala Gln Ile Thr Ala Ala
1 5 10 15
Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu
20 25 30
Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser
35 40 45
Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr Val
50 55 60
Asn Lys Glu Ile Val Pro
65 70






4 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





37
Phe Tyr Asp Pro
1






5 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





38
Phe Tyr Asp Pro Leu
1 5






6 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





39
Phe Tyr Asp Pro Leu Val
1 5






7 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





40
Phe Tyr Asp Pro Leu Val Phe
1 5






8 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





41
Phe Tyr Asp Pro Leu Val Phe Pro
1 5






9 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





42
Phe Tyr Asp Pro Leu Val Phe Pro Ser
1 5






10 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


10



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





43
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp
1 5 10






11 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


11



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





44
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu
1 5 10






12 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


12



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





45
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe
1 5 10






13 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


13



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





46
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp
1 5 10






14 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


14



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





47
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala
1 5 10






15 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


15



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





48
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser
1 5 10 15






16 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


16



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





49
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15






17 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


17



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





50
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser






18 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


18



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





51
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln






19 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


19



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





52
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val






20 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


20



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





53
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn
20






21 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


21



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





54
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu
20






22 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


22



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





55
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys
20






23 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


23



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





56
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile
20






24 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


24



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





57
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn
20






25 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


25



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





58
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln
20 25






26 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


26



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





59
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser
20 25






27 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


27



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





60
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
20 25






28 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


28



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





61
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala
20 25






29 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


29



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





62
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe
20 25






30 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


30



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





63
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile
20 25 30






31 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


31



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





64
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg
20 25 30






32 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic
group or a macromolecular carrier group.“






Modified-site


32



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





65
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys
20 25 30






33 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


33



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





66
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys
20 25 30
Ser






34 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


34



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





67
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys
20 25 30
Ser Asp






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


35



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





68
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys
20 25 30
Ser Asp Glu
35






36 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


36



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





69
Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile
1 5 10 15
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys
20 25 30
Ser Asp Glu Leu
35






4 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





70
Asp Glu Leu Leu
1






5 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





71
Ser Asp Glu Leu Leu
1 5






6 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





72
Lys Ser Asp Glu Leu Leu
1 5






7 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





73
Arg Lys Ser Asp Glu Leu Leu
1 5






8 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





74
Ile Arg Lys Ser Asp Glu Leu Leu
1 5






9 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





75
Phe Ile Arg Lys Ser Asp Glu Leu Leu
1 5






10 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


10



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





76
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
1 5 10






11 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


11



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





77
Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
1 5 10






12 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


12



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





78
Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
1 5 10






13 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


13



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





79
Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
1 5 10






14 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


14



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group, or
a macromolecular carrier group.“





80
Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
1 5 10






15 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


15



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





81
Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
1 5 10 15






16 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


16



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





82
Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
1 5 10 15






17 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


17



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





83
Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu
1 5 10 15
Leu






18 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


18



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





84
Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu
1 5 10 15
Leu Leu






19 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


19



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





85
Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp
1 5 10 15
Glu Leu Leu






20 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


20



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





86
Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser
1 5 10 15
Asp Glu Leu Leu
20






21 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


21



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





87
Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys
1 5 10 15
Ser Asp Glu Leu Leu
20






22 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


22



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





88
Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg
1 5 10 15
Lys Ser Asp Glu Leu Leu
20






23 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


23



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





89
Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile
1 5 10 15
Arg Lys Ser Asp Glu Leu Leu
20






24 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


24



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





90
Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe
1 5 10 15
Ile Arg Lys Ser Asp Glu Leu Leu
20






25 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


25



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





91
Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala
1 5 10 15
Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25






26 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


26



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





92
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25






27 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


27



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





93
Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser
1 5 10 15
Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25






28 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


28



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





94
Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln
1 5 10 15
Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25






29 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


29



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





95
Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn
1 5 10 15
Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25






30 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


30



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





96
Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile
1 5 10 15
Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25 30






31 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


31



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





97
Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys
1 5 10 15
Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25 30






32 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


32



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





98
Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu
1 5 10 15
Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25 30






33 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


33



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





99
Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn
1 5 10 15
Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu
20 25 30
Leu






34 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


34



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





100
Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val
1 5 10 15
Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu
20 25 30
Leu Leu






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


35



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





101
Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln
1 5 10 15
Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp
20 25 30
Glu Leu Leu
35






36 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


36



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





102
Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser
1 5 10 15
Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser
20 25 30
Asp Glu Leu Leu
35






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


35



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





103
Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser
1 5 10 15
Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser
20 25 30
Asp Glu Leu
35






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“
(ix) FEATURE
(A) NAME/KEY Modified-site
(B) LOCATION 35
(D) OTHER INFORMATION /label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





104
Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn
1 5 10 15
Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu
20 25 30
Leu His Asn
35






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


35



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





105
Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu
1 5 10 15
Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu
20 25 30
His Asn Val
35






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


35



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





106
Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys
1 5 10 15
Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His
20 25 30
Asn Val Asn
35






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


35



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





107
Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile
1 5 10 15
Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn
20 25 30
Val Asn Ala
35






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


35



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





108
Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn
1 5 10 15
Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val
20 25 30
Asn Ala Gly
35






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


35



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





109
Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln
1 5 10 15
Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn
20 25 30
Ala Gly Lys
35






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


35



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





110
Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
1 5 10 15
Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly
20 25 30
Lys Ser Thr
35






35 amino acids


amino acid





unknown




peptide




Modified-site



/label= A
/note= ”Preceeding this amino acid, there may be an
amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group.“






Modified-site


35



/label= B
/note= ”Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group.“





111
Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala
1 5 10 15
Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys
20 25 30
Ser Thr Thr
35







Claims
  • 1. A method for the inhibition of transmission of a respiratory syncytial virus to a cell, comprising contacting the cell with an effective concentration of an isolated peptide consisting of an amino acid sequence of a 16 to 39 amino acid residue region of a respiratory syncytial virus protein for an effective period of time, wherein:(a) said region is recognized by an ALLMOTI5, 107×178×4, or PLZIP sequence search motif; (b) said peptide further comprises an amino terminal X, and a carboxy terminal Z in which: X comprises an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group, or a macromolecular carrier group; and Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group; and (c) fusion of the virus to the cell is inhibited.
  • 2. A method for the inhibition of transmission of a respiratory syncytial virus to a cell, comprising contacting the cell with an effective concentration of a peptide for an effective period of time, wherein the peptide has the formula:X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDE-Z (SEQ ID NO:68); X-DPLVFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z (SEQ ID NO:101); X-YDPLVFPSDEFDASISQVNEKINQSLAFIRKSDEL-Z (SEQ ID NO:103); X-LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHN-Z (SEQ ID NO:104); X-VFPSDEFDASISQVNEKINQSLAFIRKSDELLHNV-Z (SEQ ID NO:105); X-FPSDEFDASISQVNEKINQSLAFIRKSDELLHNVN-Z (SEQ ID NO:106); X-PSDEFDASISQVNEKINQSLAFIRKSDELLHNVNA-Z (SEQ ID NO:107); X-SDEFDASISQVNEKINQSLAFIRKSDELLHNVNAG-Z (SEQ ID NO:108); X-DEFDASISQVNEKINQSLAFIRKSDELLHNVNAGK-Z (SEQ ID NO:109); X-FDASISQVNEKINQSLAFIRKSDELLHNVNAGKST-Z (SEQ ID NO:110); or X-DASISQVNEKINQSLAFIRKSDELLHNVNAGKSTT-Z (SEQ ID NO:111) in which: amino acid residues are presented by the single-letter code; X comprises an amino group, an acetyl group, a 9-fluoromethyoxymethyl-carbonyl group, a hydrophobic group, or a macromolecular carrier group; Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group; and wherein fusion of the virus to the cell is inhibited.
  • 3. The method of claim 2, wherein the peptide has the formula:X-DPLVFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z (SEQ ID NO. 101).
  • 4. The method of claim 2, wherein the peptide has the formula:X-YDPLVFPSDEFDASISQVNEKINQSLAFIRKSDEL-Z (SEQ ID NO. 103).
  • 5. The method of claim 2, wherein the peptide has the formula:X-LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHN-Z (SEQ ID NO. 104).
  • 6. The method of claim 2, wherein the peptide has the formula:X-VFPSDEFDASISQVNEKINQSLAFIRKSDELLHNV-Z (SEQ ID NO. 105).
  • 7. The method of claim 2, wherein the peptide has the formula:X-FPSDEFDASISQVNEKINQSLAFIRKSDELLHNVN-Z (SEQ ID NO. 106).
  • 8. The method of claim 2, wherein the peptide has the formula:X-PSDEFDASISQVNEKINQSLAFIRKSDELLHNVNA-Z (SEQ ID NO. 107).
  • 9. The method of claim 2, wherein the peptide has the formula:X-SDEFDASISQVNEKINQSLAFIRKSDELLHNVNAG-Z (SEQ ID NO. 108).
  • 10. The method of claim 2, wherein the peptide has the formula:X-DEFDASISQVNEKINQSLAFIRKSDELLHNVNAGK-Z (SEQ ID NO. 109).
  • 11. The method of claim 2, wherein the peptide has the formula:X-FDASISQVNEKINQSLAFIRKSDELLHNVNAGKST-Z (SEQ ID NO. 110).
  • 12. The method of claim 2, wherein the peptide has the formula:X-DASISQVNEKINQSLAFIRKSDELLHNVNAGKSTT-Z (SEQ ID NO. 111).
  • 13. The method of claim 2, wherein the peptide has the formula:X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDE-Z (SEQ ID NO. 68).
Parent Case Info

This is a Continuation-In-Part of U.S. patent application Ser. No. 08/073,028, filed Jun. 7, 1993, now U.S. Pat. No. 5,464,933, the entire contents of which are incorporated herein in its entirety.

Government Interests

This invention was made with Government support under Grant No. AI-30411-02 awarded by the National Institutes of Health. The Government may have certain rights in the invention.

Non-Patent Literature Citations (24)
Entry
Wild et al., “A synthetic peptide inhibitor of human immunodeficiency virus replication: Correlation between solution structure and viral inhibition,” Proc. Natl. Acad. Sci. USA 89:10537-10541 1992.*
Bousse et al., “A single amino acid change enhances the fusion promotion activity of human parainfluenza virus type 1 hemagglutinin-neuraminidase glycoprotein,” Virol. 209:654-657, 1995.*
Geysen et al., “Cognitive features of continuous antigenic determinants,” J. Molec. Recog. 1:33-41, 1988.*
Wildner et al., “Database screening for molecular mimicry,” Immunol. Today18(5):251-252, 1997.*
Roudier, J., “Response to Wildner et al. and Burns et al.,” Immunol. Today 18(5):252, 1997.*
Hall, C., “Prospects for a respiratory syncytial virus vaccine,” Science 265:1393-1394, 1994.*
Toms, G., “Respiratory syncytial virus- how soon will we have a vaccine?” Arch. Dis. Child. 72:1-3, 1995.*
Benet et al., “Pharmacokinetics: the dynamics of drug absorption, distribution, and elimination,” in The Pharamcological Basis of Therapeutics, Goodman et al., eds., Pergammon Press, New York, pp. 3-32, 1990.*
Flexner, C. and C. Hendrix, 1997, “Pharmacology of antiretroviral agents”, in AIDS: Biology, Diagnosis, Treatment and Prevention, fourth edition, DeVita, V.T., et al., eds., Lippincott-Raven Publishers, pp. 479-493.*
Yarchoan, R. and S. Broder, 1992 “Correlations between the in vitro and in vivo activity of anti-HIV agents: implications for future drug development”, J. Enzyme Inhib. 6:99-111.*
Gait, M.J. and J. Karn, 1995, “Progress in anti-HIV structure-based design”, TIBTECH 13:430-438.*
Suzuki et al., 1995, “Viral Interleukin 10 (IL-10), the human Herpes Virus 4 Cellular IL-10 Homologue, Induces Local Anergy to Allogenic and Syngeneic Tumors”, J of Experimental Medicine 182:477-486.
Wild et al., 1994, “Propensity for a Leucine Zipper-Like Domain of Human Immunodeficiency Virus Type 1 gp41 to Form Oligomers Correlates With a Role in Virus-Induced Fusion Rather Than Assembly of the Glycoprotein Complex”, Proc. Natl. Acad. Sci. USA 91:12676-80.
Bousse et al., 1994, “Regions on the Hemagglutinin-Neuraminidase Proteins of Human Parainfluenza Virus Type-1 and Sendai Virus Important for Membrane Fusion”, Virology 204:506-514.
Wang et al., “Ion Channel Activity of Influenza A Virus M2 Protein: Characteriztion of the Amantidine Block”, J of Virology 67:5585-94.
Lazinski et al., 1983, “Relating Structure to Function in the Hepatitis Delta Virus Antigen”, J of Virology 67:2672-80.
White, J.M., 1992, “Membrane Fusion”, Science 258:917-924.
Daar et al., 1990, “High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates”, Proc. Natl. Acad. Sci. USA 87:6574-6579.
Erickson et al., 1990, “Design, Activity, and 2.8 Å Crystal Structure of a C2 Symmetric Inhibitor Complexed to HIV-1 Protease”, Science 249:527-533.
Smith et al., 1987, “Blocking of HIV-1 Infectivity by a Soluble, Secreted Form of the CD4 Antigen”, Science 238:1704-1707.
Collins et al., 1984, “Nucleotide Sequence of the Gene Encoding the Fusion (F) Glycoprotein of Human Respiratory Syncytial Virus”, Proc. Natl. Acad. Sci. USA 81:7683-87.
Staden, 1994, “Searching for Motifs in Protein Sequences”, Chapter 12 in: Methods in Molecular Biology, vol. 25, Griffin et al., eds., Humana Press, Inc., Totowa, NJ, p. 131-139.
Staden, 1994, “Using Patterns to Analyze Protein Sequences”, Chapter 13 in: Methods in Molecular Biology, vol. 25, Griffin et al., eds., Humana Press, Inc., Totowa, NJ, p. 141-154.
Staden, 1990, “Searching for Patterns in Protein and Nucleic Acid Sequences”, Meth. Enzymol. 183:193-211.
Continuation in Parts (1)
Number Date Country
Parent 08/073028 Jun 1993 US
Child 08/255208 US