METHODS FOR THE TREATMENT OF TRINUCLEOTIDE REPEAT EXPANSION DISORDERS ASSOCIATED WITH MLH3 ACTIVITY

Information

  • Patent Application
  • 20230042436
  • Publication Number
    20230042436
  • Date Filed
    December 02, 2019
    4 years ago
  • Date Published
    February 09, 2023
    a year ago
Abstract
The present disclosure features useful compositions and methods to treat repeat expansion disorders, e.g., in a subject in need thereof. In some aspects, the compositions and methods described herein are useful in the treatment of disorders associated with MLH3 activity.
Description
INCORPORATION BY REFERENCE OF SEQUENCE LISTING

The contents of the text file named “4398_006 PC03_SL_ST25.txt,” which was created on Nov. 25, 2019 and is 992,755 bytes in size, is hereby incorporated by reference in its entirety.


BACKGROUND

Trinucleotide repeat expansion disorders are genetic disorders caused by trinucleotide repeat expansions. Trinucleotide repeat expansions are a type of genetic mutation where nucleotide repeats in certain genes or introns exceed the normal, stable threshold for that gene. The trinucleotide repeats can result in defective or toxic gene products, impair RNA transcription, and/or cause toxic effects by forming toxic mRNA transcripts.


Trinucleotide repeat expansion disorders are generally categorized by the type of repeat expansion. For example, Type 1 disorders such as Huntington's disease are caused by CAG repeats which result in a series of glutamine residues known as a polyglutamine tract, Type 2 disorders are caused by heterogeneous expansions that are generally small in magnitude, and Type 3 disorders such as fragile X syndrome are characterized by large repeat expansions that are generally located outside of the protein coding region of the genes. Trinucleotide repeat expansion disorders are characterized by a wide variety of symptoms such as progressive degeneration of nerve cells that is common in the Type 1 disorders.


Subjects with a trinucleotide repeat expansion disorder or those who are considered at risk for developing a trinucleotide repeat expansion disorder have a constitutive nucleotide expansion in a gene associated with disease (i.e., the trinucleotide repeat expansion is present in the gene during embryogenesis). Constitutive trinucleotide repeat expansions can undergo expansion after embryogenesis (i.e., somatic trinucleotide repeat expansion). Both constitutive trinucleotide repeat expansion and somatic trinucleotide repeat expansion can be associated with presence of disease, age at onset of disease, and/or rate of progression of disease.


SUMMARY OF THE DISCLOSURE

The present invention features useful compositions and methods to treat trinucleotide repeat expansion disorders, e.g., in a subject in need thereof. In some aspects, the compositions and methods described herein are useful in the treatment of disorders associated with MLH3 activity.


Oligonucleotides


Some aspects of this disclosure are directed to a single-stranded oligonucleotide of 10-30 linked nucleosides in length, wherein the oligonucleotide comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene. In some aspects, the oligonucleotide comprises: (a) a DNA core sequence comprising linked deoxyribonucleosides; (b) a 5′ flanking sequence comprising linked nucleosides; and (c) a 3′ flanking sequence comprising linked nucleosides; wherein the DNA core comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene and is positioned between the 5′ flanking sequence and the 3′ flanking sequence; wherein the 5′ flanking sequence and the 3′ flanking sequence each comprises at least two linked nucleosides; and wherein at least one nucleoside of each flanking sequence comprises an alternative nucleoside.


In some aspects, the disclosure is directed to a single-stranded oligonucleotide of 10-30 linked nucleosides in length for inhibiting expression of a human MLH3 gene in a cell, wherein the oligonucleotide comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene. In some aspects, the oligonucleotide comprises: (a) a DNA core comprising linked deoxyribonucleosides; (b) a 5′ flanking sequence comprising linked nucleosides; and (c) a 3′ flanking sequence comprising linked nucleosides; wherein the DNA core comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene and is positioned between the 5′ flanking sequence and the 3′ flanking sequence; wherein the 5′ flanking sequence and the 3′ flanking sequence each comprises at least two linked nucleosides; and wherein at least one nucleoside of each flanking sequence comprises an alternative nucleoside.


In some aspects, the region of at least 10 nucleobases has at least 90% complementary to an MLH3 gene. In some aspects, the region of at least 10 nucleobases has at least 95% complementary to an MLH3 gene.


In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-576, 584-636, 681-740, 818-878, 952-1024, 1129-1158, 1177-1264, 1287-1318, 1351-1378, 1536-1598, 1623-1660, 1739-1764, 1782-1823, 1847-1908, 2026-2051, 2063-2094, 2115-2146, 2256-2290, 2387-2414, 2421-2592, 2727-2788, 2826-2937, 3005-3043, 3078-3107, 3159-3185, 3214-3239, 3244-3272, 3282-3308, 3426-3483, 3561-3587, 3642-3769, 3804-3839, 3950-3977, 4004-4040, 4052-4115, 4139-4199, 4241-4301, 4328-4365, 4420-4448, 4472-4536, 4669-4708, or 4784-4810 of the MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-576, 584-636, 681-740, 818-878, 952-1024, 1129-1158, 1177-1264, 1287-1318, 1351-1378, 1568-1598, 1623-1660, 1782-1823, 1870-1904, 2063-2094, 2115-2146, 2256-2287, 2387-2414, 2422-2592, 2727-2788, 2826-2937, 3009-3043, 3078-3107, 3159-3185, 3214-3272, 3282-3307, 3426-3483, 3561-3587, 3642-3767, 3804-3839, 3950-3977, 4004-4039, 4052-4115, 4139-4199, 4241-4301, 4329-4365, 4420-4448, 4472-4536, 4680-4708, or 4784-4810 of the MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-635, 681-740, 842-875, 953-1024, 1129-1158, 1179-1264, 1287-1316, 1351-1378, 1568-1598, 1623-1659, 1782-1823, 1870-1904, 2064-2091, 2115-2146, 2256-2287, 2387-2414, 2422-2592, 2727-2788, 2829-2937, 3010-3043, 3079-3107, 3159-3185, 3246-3271, 3282-3307, 3426-3474, 3561-3587, 3642-3707, 3804-3839, 3950-3977, 4004-4039, 4052-4114, 4139-4164, 4174-4199, 4241-4288, 4329-4365, 4421-4448, 4472-4536, 4680-4708, or 4784-4810 of the MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 331-362, 393-438, 479-505, 534-574, 587-612, 681-740, 847-873, 991-1024, 1210-1262, 1351-1378, 1571-1597, 1623-1648, 1874-1902, 2066-2091, 2256-2281, 2388-2414, 2470-2515, 2732-2788, 2853-2878, 2901-2927, 3282-3307, 3562-3587, 4056-4083, 4241-4266, or 4506-4531 of the MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 335-449, 587-612, 682-736, 848-873, 991-1016, 1179-1204, 1233-1260, 1351-1378, 1626-1651, 1874-1903, 2066-2091, 2115-2146, 2256-2287, 2389-2414, 2471-2499, 2762-2787, 2853-2878, 2911-2936, 3562-3587, 3814-3839, 4006-4031, 4056-4083, or 4244-4269 of the MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 355-393, 952-984, 1177-1205, 2026-2052, 2066-2094, 2470-2498, 3159-3185, 3458-3485, or 4259-4292 of the MLH3 gene.


In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 6-4710. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 110-111, 115-116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-322, 328-329, 366-368, 377-379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 749-753, 755, 757, 784, 786-788, 790, 828-830, 959, 972, 974-977, 1002, 1004-1005, 1007, 1009-1013, 1086, 1110-1111, 1126, 1149, 1172, 1176-1181, 1185, 1260, 1271-1274, 1276-1277, 1297, 1302, 1387-1390, 1392-1393, 1396, 1461-1463, 1473-1474, 1482, 1490-1491, 1495, 1498-1502, 1505, 1508, 1510-1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1596-1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1802, 1824-1826, 1832, 1835-1836, 1859, 1865-1866, 1870-1873, 1875, 1878, 1880-1882, 1911, 1914-1918, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090-2091, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345-2346, 2353-2355, 2394-2395, 2403-2404, 2460-2462, 2489-2492, 2495, 2499-2500, 2524-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2683-2685, 2687, 2690-2691, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2848-2852, or 2917-2918. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-236, 238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-320, 322, 328-329, 366-368, 377, 379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 750-753, 755, 757, 784, 786-788, 790, 828-830, 972, 974-977, 1002, 1004-1005, 1009-1013, 1110-1111, 1126, 1172, 1176-1181, 1271-1274, 1276-1277, 1297, 1302, 1387, 1390, 1392-1393, 1461-1463, 1474, 1482, 1490-1491, 1498-1502, 1505, 1508, 1510-1512, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1801, 1824-1826, 1832, 1835-1836, 1859, 1866, 1870-1873, 1878, 1880-1882, 1915-1917, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345, 2353, 2394-2395, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2684, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2849-2852, or 2917-2918. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 102, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 183, 185-189, 201, 211-212, 229-231, 235-236, 238, 241, 250, 254, 265-269, 282-283, 286-288, 294, 296, 319, 322, 328, 366-368, 377, 379, 381-399, 511, 514-517, 567-568, 591, 593-594, 599, 602, 666, 669-670, 703, 728, 750-753, 755, 757, 784, 786-788, 828-830, 972, 974-977, 1002, 1004-1005, 1009, 1011-1012, 1110-1111, 1126, 1172, 1176-1181, 1272-1274, 1297, 1302, 1387, 1392-1393, 1461-1463, 1474, 1482, 1498-1500, 1502, 1505, 1508, 1510-1511, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1725-1727, 1745-1746, 1800-1801, 1824, 1832, 1835-1836, 1859, 1866, 1870-1872, 1878, 1880-1882, 1916, 1924, 1946, 1949, 2000-2001, 2066, 2090, 2163, 2169-2171, 2178, 2181, 2186, 2255-2256, 2307, 2321, 2333, 2394, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561, 2591, 2616, 2644, 2646, 2649-2651, 2653-2654, 2661-2664, 2684, 2693-2695, 2726-2728, 2777-2780, 2782, 2784-2785, 2791-2792, 2794-2795, 2797, 2849-2850, 2852, or 2917-2918. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 160-161, 163-164, 166, 211-212, 230-231, 267-268, 282, 294, 322, 366-367, 391-394, 399, 514-515, 594, 602, 728, 750, 752-753, 755, 828, 830, 975-976, 1002, 1176-1179, 1274, 1387, 1462-1463, 1510, 1514, 1529-1530, 1726-1727, 1745-1746, 1824, 1871-1872, 2090, 2256, 2528-2530, 2644, or 2792. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 164, 186-187, 212, 235, 322, 367-368, 379, 384-385, 388-389, 391-392, 395, 515, 594, 703, 751-753, 828-830, 1005, 1176-1180, 1274, 1297, 1302, 1387, 1393, 1463, 1511, 1514, 1745, 1824, 1881, 2256, 2404, 2491, 2528, 2530, or 2646. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 174-176, 178, 180-187, 566-569, 573, 701-704, 1260-1261, 1274-1277, 1510-1513, 2000-2001, 2194, 2196, 2661-2664, or 2666.


In some aspects, the nucleobase sequence of the oligonucleotide consists of any one of SEQ ID NOs: 6-4710. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 110-111, 115-116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-322, 328-329, 366-367-368, 377-379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 749-753, 755, 757, 784, 786-788, 790, 828-830, 959, 972, 974-977, 1002, 1004-1005, 1007, 1009-1013, 1086, 1110-1111, 1126, 1149, 1172, 1176-1181, 1185, 1260, 1271-1274, 1276-1277, 1297, 1302, 1387-1390, 1392-1393, 1396, 1461-1463, 1473-1474, 1482, 1490-1491, 1495, 1498-1502, 1505, 1508, 1510-1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1596-1597, 1721-1722, 1724-1725-1726-1727, 1744-1746, 1797, 1800-1802, 1824-1826, 1832, 1835-1836, 1859, 1865-1866, 1870-1873, 1875, 1878, 1880-1882, 1911, 1914-1918, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090-2091, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345-2346, 2353-2355, 2394-2395, 2403-2404, 2460-2462, 2489-2492, 2495, 2499-2500, 2524-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2683-2685, 2687, 2690-2691, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2848-2852, or 2917-2918. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-236, 238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-320, 322, 328-329, 366-368, 377, 379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 750-753, 755, 757, 784, 786-788, 790, 828-830, 972, 974-977, 1002, 1004-1005, 1009-1013, 1110-1111, 1126, 1172, 1176-1181, 1271-1274, 1276-1277, 1297, 1302, 1387, 1390, 1392-1393, 1461-1462-1463, 1474, 1482, 1490-1491, 1498-1502, 1505, 1508, 1510-1512, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1801, 1824-1826, 1832, 1835-1836, 1859, 1866, 1870-1873, 1878, 1880-1882, 1915-1917, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345, 2353, 2394-2395, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2684, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2849-2852, or 2917-2918. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 102, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 183, 185-189, 201, 211-212, 229-231, 235-236, 238, 241, 250, 254, 265-269, 282-283, 286-288, 294, 296, 319, 322, 328, 366-368, 377, 379, 381-399, 511, 514-517, 567-568, 591, 593-594, 599, 602, 666, 669-670, 703, 728, 750-753, 755, 757, 784, 786-788, 828-830, 972, 974-977, 1002, 1004-1005, 1009, 1011-1012, 1110-1111, 1126, 1172, 1176-1181, 1272-1274, 1297, 1302, 1387, 1392-1393, 1461-1463, 1474, 1482, 1498-1500, 1502, 1505, 1508, 1510-1511, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1725-1727, 1745-1746, 1800-1801, 1824, 1832, 1835-1836, 1859, 1866, 1870-1872, 1878, 1880-1882, 1916, 1924, 1946, 1949, 2000-2001, 2066, 2090, 2163, 2169-2171, 2178, 2181, 2186, 2255-2256, 2307, 2321, 2333, 2394, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561, 2591, 2616, 2644, 2646, 2649-2651, 2653-2654, 2661-2664, 2684, 2693-2695, 2726-2728, 2777-2780, 2782, 2784-2785, 2791-2792, 2794-2795, 2797, 2849-2850, 2852, or 2917-2918. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 160-161, 163-164, 166, 211-212, 230-231, 267-268, 282, 294, 322, 366-367, 391-394, 399, 514-515, 594, 602, 728, 750, 752-753, 755, 828, 830, 975-976, 1002, 1176-1179, 1274, 1387, 1462-1463, 1510, 1514, 1529-1530, 1726-1727, 1745-1746, 1824, 1871-1872, 2090, 2256, 2528-2530, 2644, or 2792. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 164, 186-187, 212, 235, 322, 367-368, 379, 384-385, 388-389, 391-392, 395, 515, 594, 703, 751-753, 828-830, 1005, 1176-1180, 1274, 1297, 1302, 1387, 1393, 1463, 1511, 1514, 1745, 1824, 1881, 2256, 2404, 2491, 2528, 2530, or 2646. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 174-176, 178, 180-187, 566-569, 573, 701-704, 1260-1261, 1274-1277, 1510-1513, 2000-2001, 2194, 2196, 2661-2664, or 2666.


In some aspects, the oligonucleotide exhibits at least 50% mRNA inhibition at 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 60% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 70% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 85% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 50% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 60% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 70% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 85% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. The cell assay can comprise transfecting a mammalian cell, such as HEK293, NIH3T3, or HeLa, with oligonucleotides using Lipofectamine 2000 (Invitrogen) and measuring mRNA levels compared to a mammalian cell transfected with a mock oligonucleotide.


In some aspects, the oligonucleotide comprises at least one alternative internucleoside linkage. In some aspects, the at least one alternative internucleoside linkage is a phosphorothioate internucleoside linkage. In some aspects, the at least one alternative internucleoside linkage is a 2′-alkoxy internucleoside linkage. In some aspects, the at least one alternative internucleoside linkage is an alkyl phosphate internucleoside linkage.


In some aspects, the oligonucleotide comprises at least one alternative nucleobase. In some aspects, the alternative nucleobase is 5′-methylcytosine, pseudouridine, or 5-methoxyuridine.


In some aspects, the oligonucleotide comprises at least one alternative sugar moiety. In some aspects, the alternative sugar moiety is 2′-OMe or a bicyclic nucleic acid.


In some aspects, the oligonucleotide further comprises a ligand conjugated to the 5′ end or the 3′ end of the oligonucleotide through a monovalent or branched bivalent or trivalent linker.


In some aspects, the oligonucleotide comprises a region complementary to at least 17 contiguous nucleotides of a MLH3 gene. In some aspects, the oligonucleotide comprises a region complementary to at least 19 contiguous nucleotides of a MLH3 gene. In some aspects, the oligonucleotide comprises a region complementary to 19 to 23 contiguous nucleotides of a MLH3 gene. In some aspects, the oligonucleotide comprises a region complementary to 19 contiguous nucleotides of a MLH3 gene. In some aspects, the oligonucleotide comprises a region complementary to 20 contiguous nucleotides of a MLH3 gene. In some aspects, the oligonucleotide is from about 15 to 25 nucleosides in length. In some aspects, the oligonucleotide is 20 nucleosides in length.


Pharmaceutical Compositions and Methods of Treatment Using the Same


In some aspects, the application is directed to a pharmaceutical composition comprising one or more of the oligonucleotides described herein and a pharmaceutically acceptable carrier or excipient.


In some aspects, the application is directed to a composition comprising one or more of the oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome.


In some aspects, the application is directed to a method of inhibiting transcription of MLH3 in a cell, the method comprising contacting the cell with one or more of the oligonucleotides described herein, a pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome; for a time sufficient to obtain degradation of an mRNA transcript of a MLH3 gene, inhibiting expression of the MLH3 gene in the cell.


In some aspects, the application is directed to a method of treating, preventing, or delaying the progression a trinucleotide repeat expansion disorder in a subject in need thereof, the method comprising contacting the cell with one or more of the oligonucleotides described herein, a pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome; for a time sufficient to obtain degradation of an mRNA transcript of a MLH3 gene, inhibiting expression of the MLH3 gene in the cell.


In some aspects, the application is directed to a method of reducing the level and/or activity of MLH3 in a cell of a subject identified as having a trinucleotide repeat expansion disorder, the method comprising contacting the cell with one or more of the oligonucleotides described herein, a pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome, for a time sufficient to obtain degradation of an mRNA transcript of a MLH3 gene, inhibiting expression of the MLH3 gene in the cell.


In some aspects, the application is directed to a method for inhibiting expression of an MLH3 gene in a cell comprising contacting the cell with one or more of the oligonucleotides described herein, a pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome; for a time sufficient to obtain degradation of an mRNA transcript of a MLH3 gene, inhibiting expression of the MLH3 gene in the cell, and maintaining the cell for a time sufficient to obtain degradation of a mRNA transcript of an MLH3 gene, thereby inhibiting expression of the MLH3 gene in the cell.


In some aspects, the application is directed to a method of decreasing trinucleotide repeat expansion in a cell, the method comprising contacting the cell with one or more of the oligonucleotides described herein, a pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome; for a time sufficient to obtain degradation of an mRNA transcript of a MLH3 gene, inhibiting expression of the MLH3 gene in the cell.


In some aspects, the cell is in a subject. In some aspects, the subject is a human. In some aspects, the cell is a cell of the central nervous system or a muscle cell.


In some aspects, the subject is identified as having a trinucleotide repeat expansion disorder. In some aspects, the trinucleotide repeat expansion disorder is a polyglutamine disease. In some aspects, the polyglutamine disease is selected from the group consisting of dentatorubropallidoluysian atrophy, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia type 1, spinocerebellar ataxia type 2, spinocerebellar ataxia type 3, spinocerebellar ataxia type 6, spinocerebellar ataxia type 7, spinocerebellar ataxia type 17, and Huntington's disease-like 2. In some aspects, the trinucleotide repeat expansion disorder is Huntington's disease.


In some aspects, the trinucleotide repeat expansion disorder is a non-polyglutamine disease. In some aspects, the non-polyglutamine disease is selected from the group consisting of fragile X syndrome, fragile X-associated tremor/ataxia syndrome, fragile XE mental retardation, Friedreich's ataxia, myotonic dystrophy type 1, spinocerebellar ataxia type 8, spinocerebellar ataxia type 12, oculopharyngeal muscular dystrophy, Fragile X-associated premature ovarian failure, FRA2A syndrome, FRA7A syndrome, and early infantile epileptic encephalopathy. In some aspects, the trinucleotide repeat expansion disorder is Friedreich's ataxia. In some aspects, the trinucleotide repeat expansion disorder is myotonic dystrophy type 1.


In some aspects, the application is directed one or more of the oligonucleotides described herein, a pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome, for use in the prevention or treatment of a trinucleotide repeat expansion disorder.


In some aspects, the one or more of the oligonucleotides described herein, the pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome is administered intrathecally.


In some aspects, the one or more of the oligonucleotides described herein, the pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome is administered intraventricularly.


In some aspects, the one or more of the oligonucleotides described herein, the pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome is administered intramuscularly.


In some aspects, the application is directed to a method of treating, preventing, or delaying progression a disorder in a subject in need thereof wherein the subject is suffering from trinucleotide repeat expansion disorder, comprising administering to said subject one or more of the oligonucleotides described herein, the pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome.


In some aspects, the method of treating, preventing, or delaying progression of a disorder in a subject further comprises administering an additional therapeutic agent. In some aspects, the additional therapeutic agent is another oligonucleotide that hybridizes to an mRNA encoding the Huntingtin gene.


In some aspects, the method of treating, preventing, or delaying progression of a disorder in a subject progression delays progression of the trinucleotide repeat expansion disorder by at least 120 days, for example, at least 6 months, at least 12 months, at least 2 years, at least 3 years, at least 4 years, at least 5 years, at least 10 years or more, when compared with a predicted progression.


In some aspects, the application is directed to one or more of the oligonucleotides described herein, the pharmaceutical composition of one or more of the oligonucleotides described herein, or the composition of one or more oligonucleotides described herein and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome for use in preventing or delaying progression of a trinucleotide repeat expansion disorder in a subject


Definitions

For convenience, the meaning of some terms and phrases used in the specification, examples, and appended claims are provided below. Unless stated otherwise, or implicit from context, the following terms and phrases include the meanings provided below. The definitions are provided to aid in describing particular aspects, and are not intended to limit the claimed technology, because the scope of the technology is limited only by the claims. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this technology belongs. If there is an apparent discrepancy between the usage of a term in the art and its definition provided herein, the definition provided within the specification shall prevail.


In this application, unless otherwise clear from context, (i) the term “a” can be understood to mean “at least one”; (ii) the term “or” can be understood to mean “and/or”; and (iii) the terms “including” and “comprising” can be understood to encompass itemized components or steps whether presented by themselves or together with one or more additional components or steps.


As used herein, the terms “about” and “approximately” refer to a value that is within 10% above or below the value being described. For example, the term “about 5 nM” indicates a range of from 4.5 to 5.5 nM.


The term “at least” prior to a number or series of numbers is understood to include the number adjacent to the term “at least”, and all subsequent numbers or integers that could logically be included, as clear from context. For example, the number of nucleotides in a nucleic acid molecule must be an integer. For example, “at least 18 nucleotides of a 21-nucleotide nucleic acid molecule” means that 18, 19, 20, or 21 nucleotides have the indicated property. When at least is present before a series of numbers or a range, it is understood that “at least” can modify each of the numbers in the series or range. “At least” is also not limited to integers (e.g., “at least 5%” includes 5.0%, 5.1%, 5.18% without consideration of the number of significant figures.


As used herein, “no more than” or “less than” is understood as the value adjacent to the phrase and logical lower values or integers, as logical from context, to zero. For example, an oligonucleotide with “no more than 3 mismatches to a target sequence” has 3, 2, 1, or 0 mismatches to a target sequence. When “no more than” is present before a series of numbers or a range, it is understood that “no more than” can modify each of the numbers in the series or range.


As used herein, the term “administration” refers to the administration of a composition (e.g., a compound or a preparation that includes a compound as described herein) to a subject or system. Administration to an animal subject (e.g., to a human) can be by any appropriate route, such as one described herein.


As used herein, a “combination therapy” or “administered in combination” means that two (or more) different agents or treatments are administered to a subject as part of a defined treatment regimen for a particular disease or condition. The treatment regimen defines the doses and periodicity of administration of each agent such that the effects of the separate agents on the subject overlap. In some aspects, the delivery of the two or more agents is simultaneous or concurrent and the agents can be co-formulated. In some aspects, the two or more agents are not co-formulated and are administered in a sequential manner as part of a prescribed regimen. In some aspects, administration of two or more agents or treatments in combination is such that the reduction in a symptom, or other parameter related to the disorder is greater than what would be observed with one agent or treatment delivered alone or in the absence of the other. The effect of the two treatments can be partially additive, wholly additive, or greater than additive (e.g., synergistic). Sequential or substantially simultaneous administration of each therapeutic agent can be effected by any appropriate route including, but not limited to, oral routes, intravenous routes, intramuscular routes, and direct absorption through mucous membrane tissues. The therapeutic agents can be administered by the same route or by different routes. For example, one therapeutic agent of the combination can be administered by intravenous injection while another therapeutic agent of the combination can be administered orally.


As used herein, the term “MLH3” refers to mutL homolog 3, a DNA mismatch repair protein, having an amino acid sequence from any vertebrate or mammalian source, including, but not limited to, human, bovine, chicken, rodent, mouse, rat, porcine, ovine, primate, monkey, and guinea pig, unless specified otherwise. The term also refers to fragments and variants of native MLH3 that maintain at least one in vivo or in vitro activity of a native MLH3. The term encompasses full-length unprocessed precursor forms of MLH3 as well as mature forms resulting from post-translational cleavage of the signal peptide. MLH3 is encoded by the MLH3 gene. The nucleic acid sequence of an exemplary Homo sapiens (human) MLH3 gene is set forth in NCBI Reference No. NM_001040108.1 or in SEQ ID NO: 1. The term “MLH3” also refers to natural variants of the wild-type MLH3 protein, such as proteins having at least 85% identity (e.g., 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.9% identity, or more) to the amino acid sequence of wild-type human MLH3, which is set forth in NCBI Reference No. NP_001035197.1 or in SEQ ID NO: 2. The nucleic acid sequence of an exemplary Mus musculus (mouse) MLH3 gene is set forth in NCBI Reference No. NM_175337.2 or in SEQ ID NO: 3. The nucleic acid sequence of an exemplary Rattus norvegicus (rat) MLH3 gene is set forth in NCBI Reference No. NM_001108043.1 or in SEQ ID NO: 4. The nucleic acid sequence of an exemplary Macaca fascicularis (cyno) MLH3 gene is set forth in NCBI Reference XM_005561790.2 or in SEQ ID NO: 5.


The term “MLH3” as used herein, also refers to a particular polypeptide expressed in a cell by naturally occurring DNA sequence variations of the MLH3 gene, such as a single nucleotide polymorphism in the MLH3 gene. Numerous SNPs within the MLH3 gene have been identified and can be found at, for example, NCBI dbSNP (see, e.g., www.ncbi.nlm.nih.gov/snp). Non-limiting examples of SNPs within the MLH3 gene can be found at, NCBI dbSNP Accession Nos.: rs28757011; rs28756991; rs28756990; rs28756982; rs28756981; rs17782839; rs7156586; rs175081; rs175080; rs175057; rs175049; rs108621; rs13712; and rs7303.


As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of an MLH3 gene, including mRNA that is a product of RNA processing of a primary transcription product. In one aspect, the target portion of the sequence will be at least long enough to serve as a substrate for oligonucleotide-directed (e.g., antisense oligonucleotide (ASO)-directed) cleavage at or near that portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a MLH3 gene. The target sequence can be, for example, from about 9-36 nucleotides in length, e.g., about 15-30 nucleotides in length. For example, the target sequence can be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 or from about 15-30 nucleotides, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be.


“G,” “C,” “A,” “T,” and “U” each generally stand for a naturally-occurring nucleotide that contains guanine, cytosine, adenine, thymidine, and uracil as a base, respectively. However, it will be understood that the term “nucleotide” can refer to an alternative nucleotide, as further detailed below, or a surrogate replacement moiety. The skilled person is well aware that guanine, cytosine, adenine, and uracil can be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base can base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine can be replaced in the nucleotide sequences of oligonucleotides described herein by a nucleotide containing, for example, inosine. In another example, adenine and cytosine anywhere in the oligonucleotide can be replaced with guanine and uracil, respectively to form G-U Wobble base pairing with the target mRNA. Sequences containing such replacement moieties are suitable for the compositions and methods described herein.


The terms “nucleobase” and “base” include the purine (e.g. adenine and guanine) and pyrimidine (e.g. uracil, thymine, and cytosine) moiety present in nucleosides and nucleotides which form hydrogen bonds in nucleic acid hybridization. The term nucleobase also encompasses alternative nucleobases which can differ from naturally-occurring nucleobases, but are functional during nucleic acid hybridization. In this context “nucleobase” refers to both naturally occurring nucleobases such as adenine, guanine, cytosine, thymidine, uracil, xanthine, and hypoxanthine, as well as alternative nucleobases. Such variants are for example described in Hirao et al (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid Chemistry Suppl. 37 1.4.1.


The term “nucleoside” refers to a monomeric unit of an oligonucleotide or a polynucleotide having a nucleobase and a sugar moiety. A nucleoside can include those that are naturally-occurring as well as alternative nucleosides, such as those described herein. The nucleobase of a nucleoside can be a naturally-occurring nucleobase or an alternative nucleobase. Similarly, the sugar moiety of a nucleoside can be a naturally-occurring sugar or an alternative sugar.


The term “alternative nucleoside” refers to a nucleoside having an alternative sugar or an alternative nucleobase, such as those described herein.


In some aspects, the nucleobase moiety is modified by changing the purine or pyrimidine into a modified purine or pyrimidine, such as substituted purine or substituted pyrimidine, such as an “alternative nucleobase” selected from isocytosine, pseudoisocytosine, 5-methyl cytosine, 5-thiozolo-cytosine, 5-propynyl-cytosine, 5-propynyl-uridine, 5-bromouridine 5-thiazolo-uridine, 2-thio-uridine, pseudouridine, 1-methylpseudouridine, 5-methoxyuridine, 2′-thio-thymine, inosine, diaminopurine, 6-aminopurine, 2-aminopurine, 2,6-diaminopurine, and 2-chloro-6-aminopurine.


The nucleobase moieties can be indicated by the letter code for each corresponding nucleobase, e.g. A, T, G, C, or U, wherein each letter can include alternative nucleobases of equivalent function. In some aspects, e.g., for gapmers, 5-methyl cytosine LNA nucleosides can be used.


A “sugar” or “sugar moiety,” includes naturally occurring sugars having a furanose ring. A sugar also includes an “alternative sugar,” defined as a structure that is capable of replacing the furanose ring of a nucleoside. In some aspects, alternative sugars are non-furanose (or 4′-substituted furanose) rings or ring systems or open systems. Such structures include simple changes relative to the natural furanose ring, such as a six-membered ring, or can be more complicated as is the case with the non-ring system used in peptide nucleic acid. Alternative sugars can include sugar surrogates wherein the furanose ring has been replaced with another ring system such as, for example, a morpholino or hexitol ring system. Sugar moieties useful in the preparation of oligonucleotides having motifs include, without limitation, β-D-ribose, β-D-2′-deoxyribose, substituted sugars (such as 2′, 5′ and bis substituted sugars), 4′-S-sugars (such as 4′-S-ribose, 4′-S-2′-deoxyribose and 4′-S-2′-substituted ribose), bicyclic alternative sugars (such as the 2′-O—CH2-4′ or 2′-O—(CH2)2-4′ bridged ribose derived bicyclic sugars) and sugar surrogates (such as when the ribose ring has been replaced with a morpholino or a hexitol ring system). The type of heterocyclic base and internucleoside linkage used at each position is variable and is not a factor in determining the motif. In most nucleosides having an alternative sugar moiety, the heterocyclic nucleobase is generally maintained to permit hybridization.


A “nucleotide,” as used herein, refers to a monomeric unit of an oligonucleotide or polynucleotide that comprises a nucleoside and an internucleosidic linkage. The internucleosidic linkage can include a phosphate linkage. Similarly, “linked nucleosides” can be linked by phosphate linkages. Many “alternative internucleosidic linkages” are known in the art, including, but not limited to, phosphate, phosphorothioate, and boronophosphate linkages. Alternative nucleosides include bicyclic nucleosides (BNAs) (e.g., locked nucleosides (LNAs) and constrained ethyl (cEt) nucleosides), peptide nucleosides (PNAs), phosphotriesters, phosphorothionates, phosphoramidates, and other variants of the phosphate backbone of native nucleoside, including those described herein.


An “alternative nucleotide,” as used herein, refers to a nucleotide having an alternative nucleoside or an alternative sugar, and an internucleoside linkage, which can include alternative nucleoside linkages.


The terms “oligonucleotide” and “polynucleotide,” as used herein, are defined as it is generally understood by the skilled person as a molecule comprising two or more covalently linked nucleosides. Such covalently bound nucleosides can be referred to as nucleic acid molecules or oligomers. Oligonucleotides are commonly made in the laboratory by solid-phase chemical synthesis followed by purification. When referring to a sequence of the oligonucleotide, reference is made to the sequence or order of nucleobase moieties, or modifications thereof, of the covalently linked nucleotides or nucleosides. The oligonucleotide can be man-made. For example, the oligonucleotide can be chemically synthesized, and be purified or isolated. Oligonucleotide is also intended to include (i) compounds that have one or more furanose moieties that are replaced by furanose derivatives or by any structure, cyclic or acyclic, that can be used as a point of covalent attachment for the base moiety, (ii) compounds that have one or more phosphodiester linkages that are either modified, as in the case of phosphoramidate or phosphorothioate linkages, or completely replaced by a suitable linking moiety as in the case of formacetal or riboacetal linkages, and/or (iii) compounds that have one or more linked furanose-phosphodiester linkage moieties replaced by any structure, cyclic or acyclic, that can be used as a point of covalent attachment for the base moiety. The oligonucleotide can comprise one or more alternative nucleosides or nucleotides (e.g., including those described herein). It is also understood that oligonucleotide includes compositions lacking a sugar moiety or nucleobase but is still capable of forming a pairing with or hybridizing to a target sequence.


“Oligonucleotide” refers to a short polynucleotide (e.g., of 100 or fewer linked nucleosides).


“Chimeric” oligonucleotides or “chimeras,” as used herein, are oligonucleotides which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide or nucleoside in the case of an oligonucleotide. Chimeric oligonucleotides also include “gapmers.”


The oligonucleotide can be of any length that permits specific degradation of a desired target RNA through an RNase H-mediated pathway, and can range from about 10-30 nucleosides in length, e.g., about 15-30 nucleosides in length or about 18-20 nucleosides in length, for example, about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleosides in length, such as about 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleosides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated


As used herein, the term “oligonucleotide comprising a nucleobase sequence” refers to an oligonucleotide comprising a chain of nucleotides or nucleosides that is described by the sequence referred to using the standard nucleotide nomenclature.


The term “contiguous nucleobase region” refers to the region of the oligonucleotide which is complementary to the target nucleic acid. The term can be used interchangeably herein with the term “contiguous nucleotide sequence” or “contiguous nucleobase sequence.” In some aspects, all the nucleotides of the oligonucleotide are present in the contiguous nucleotide or nucleoside region. In some aspects, the oligonucleotide comprises the contiguous nucleotide region and can comprise further nucleotide(s) or nucleoside(s), for example a nucleotide linker region which can be used to attach a functional group to the contiguous nucleotide sequence. The nucleotide linker region can be complementary to the target nucleic acid. In some aspects, the internucleoside linkages present between the nucleotides of the contiguous nucleotide region are all phosphorothioate internucleoside linkages. In some aspects, the contiguous nucleotide region comprises one or more sugar-modified nucleosides.


The term “gapmer,” as used herein, refers to an oligonucleotide which comprises a region of RNase H recruiting oligonucleotides (gap or DNA core) which is flanked 5′ and 3′ by regions which comprise one or more affinity enhancing alternative nucleosides (wings or flanking sequence). Various gapmer designs are described herein. Headmers and tailmers are oligonucleotides capable of recruiting RNase H where one of the flanks is missing, i.e. only one of the ends of the oligonucleotide comprises affinity enhancing alternative nucleosides. For headmers the 3′ flanking sequence is missing (i.e. the 5′ flanking sequence comprises affinity enhancing alternative nucleosides) and for tailmers the 5′ flanking sequence is missing (i.e. the 3′ flanking sequence comprises affinity enhancing alternative nucleosides). A “mixed flanking sequence gapmer” refers to a gapmer wherein the flanking sequences comprise at least one alternative nucleoside, such as at least one DNA nucleoside or at least one 2′ substituted alternative nucleoside, such as, for example, 2′-O-alkyl-RNA, 2′-O-methyl-RNA, 2′-alkoxy-RNA, 2′-O-methoxyethyl-RNA (MOE), 2′-amino-DNA, 2′-Fluoro-RNA, 2′-F-ANA nucleoside(s), or bicyclic nucleosides (e.g., locked nucleosides or constrained ethyl (cEt) nucleosides). In some aspects, the mixed flanking sequence gapmer has one flanking sequence which comprises alternative nucleosides (e.g. 5′ or 3′) and the other flanking sequence (3′ or 5′ respectfully) comprises 2′ substituted alternative nucleoside(s).


A “linker” or “linking group” is a connection between two atoms that links one chemical group or segment of interest to another chemical group or segment of interest via one or more covalent bonds. Conjugate moieties can be attached to the oligonucleotide directly or through a linking moiety (e.g. linker or tether). Linkers serve to covalently connect a third region, e.g. a conjugate moiety to an oligonucleotide (e.g. the termini of region A or C). In some aspects, the conjugate or oligonucleotide conjugate can comprise a linker region which is positioned between the oligonucleotide and the conjugate moiety. In some aspects, the linker between the conjugate and oligonucleotide is biocleavable. Phosphodiester containing biocleavable linkers are described in more detail in WO 2014/076195 (herein incorporated by reference).


As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide or nucleoside sequence in relation to a second nucleotide or nucleoside sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide or nucleoside sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can, for example, be stringent conditions, where stringent conditions can include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C., or 70° C., for 12-16 hours followed by washing (see, e.g., “Molecular Cloning: A Laboratory Manual, Sambrook, et al. (1989) Cold Spring Harbor Laboratory Press). Other conditions, such as physiologically relevant conditions as can be encountered inside an organism, can be used. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides or nucleosides.


“Complementary” sequences, as used herein, can include, or be formed entirely from, non-Watson-Crick base pairs and/or base pairs formed from non-natural and alternative nucleotides or nucleosides, in so far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs include, but are not limited to, G:U Wobble or Hoogstein base pairing. Complementary sequences between an oligonucleotide and a target sequence as described herein, include base-pairing of the oligonucleotide or polynucleotide comprising a first nucleotide or nucleoside sequence to an oligonucleotide or polynucleotide comprising a second nucleotide or nucleoside sequence over the entire length of one or both nucleotide or nucleoside sequences. Such sequences can be referred to as “fully complementary” with respect to each other herein. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they can form one or more, but generally not more than 5, 4, 3 or 2 mismatched base pairs upon hybridization for a duplex up to 30 base pairs, while retaining the ability to hybridize under the conditions most relevant to their ultimate application, e.g., inhibition of gene expression via an RNase H-mediated pathway. “Substantially complementary” can refer to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding MLH3). For example, a polynucleotide is complementary to at least a part of a MLH3 mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding MLH3.


As used herein, the term “region of complementarity” refers to the region on the oligonucleotide that is substantially complementary to all or a portion of a gene, primary transcript, a sequence (e.g., a target sequence, e.g., an MLH3 nucleotide sequence), or processed mRNA, so as to interfere with expression of the endogenous gene (e.g., MLH3). Where the region of complementarity is not fully complementary to the target sequence, the mismatches can be in the internal or terminal regions of the molecule. Generally, the most tolerated mismatches are in the terminal regions, e.g., within 5, 4, 3, or 2 nucleotides of the 5′- and/or 3′-terminus of the oligonucleotide.


As used herein, an “agent that reduces the level and/or activity of MLH3” refers to any polynucleotide agent (e.g., an oligonucleotide, e.g., an ASO) that reduces the level of or inhibits expression of MLH3 in a cell or subject. The phrase “inhibiting expression of MLH3,” as used herein, includes inhibition of expression of any MLH3 gene (such as, e.g., a mouse MLH3 gene, a rat MLH3 gene, a monkey MLH3 gene, or a human MLH3 gene) as well as variants or mutants of a MLH3 gene that encode a MLH3 protein. Thus, the MLH3 gene can be a wild-type MLH3 gene, a mutant MLH3 gene, or a transgenic MLH3 gene in the context of a genetically manipulated cell, group of cells, or organism.


By “reducing the activity of MLH3,” is meant decreasing the level of an activity related to MLH3 (e.g., by reducing the amount of trinucleotide repeats in a gene associated with a trinucleotide repeat expansion disorder that is related to MLH3 activity). The activity level of MLH3 can be measured using any method known in the art (e.g., by directly sequencing a gene associated with a trinucleotide repeat expansion disorder to measure the levels of trinucleotide repeats).


By “reducing the level of MLH3,” is meant decreasing the level of MLH3 in a cell or subject, e.g., by administering an oligonucleotide to the cell or subject. The level of MLH3 can be measured using any method known in the art (e.g., by measuring the levels of MLH3 mRNA or levels of MLH3 protein in a cell or a subject).


By “modulating the activity of a MutLy heterodimer comprising MLH3,” is meant altering the level of an activity related to a MutLy heterodimer (e.g., e.g., by altering the amount of trinucleotide repeats in a gene associated with a trinucleotide repeat expansion disorder that is related to a MutLy heterodimer. The activity level of a MutLy heterodimer can be measured using any method known in the art (e.g., by directly sequencing a gene associated with a trinucleotide repeat expansion disorder to measure the levels of trinucleotide repeats).


As used herein, the term “inhibitor” refers to any agent which reduces the level and/or activity of a protein (e.g., MLH3). Non-limiting examples of inhibitors include polynucleotides (e.g., oligonucleotide, e.g., ASOs). The term “inhibiting,” as used herein, is used interchangeably with “reducing,” “silencing,” “downregulating,” “suppressing,” and other similar terms, and includes any level of inhibition.


As used herein, the term “selective for MLH3 over MLH1” refers to a compound which inhibits the level and/or activity of MLH3 at least 5% (e.g., at least 10%, at least 25%, at least 50%, at least 75%, or at least 100%) greater than the compound inhibits the level and/or activity of MLH1.


The phrase “contacting a cell with an oligonucleotide,” such as an oligonucleotide, as used herein, includes contacting a cell by any possible means. Contacting a cell with an oligonucleotide includes contacting a cell in vitro with the oligonucleotide or contacting a cell in vivo with the oligonucleotide. The contacting can be done directly or indirectly. Thus, for example, the oligonucleotide can be put into physical contact with the cell by the individual performing the method, or alternatively, the oligonucleotide agent can be put into a situation that will permit or cause it to subsequently come into contact with the cell.


Contacting a cell in vitro can be done, for example, by incubating the cell with the oligonucleotide. Contacting a cell in vivo can be done, for example, by injecting the oligonucleotide into or near the tissue where the cell is located, or by injecting the oligonucleotide agent into another area, e.g., the bloodstream or the subcutaneous space, such that the agent will subsequently reach the tissue where the cell to be contacted is located. For example, the oligonucleotide can contain and/or be coupled to a ligand, e.g., GalNAc3, that directs the oligonucleotide to a site of interest, e.g., the liver. Combinations of in vitro and in vivo methods of contacting are also possible. For example, a cell can be contacted in vitro with an oligonucleotide and subsequently transplanted into a subject.


In one aspect, contacting a cell with an oligonucleotide includes “introducing” or “delivering the oligonucleotide into the cell” by facilitating or effecting uptake or absorption into the cell. Absorption or uptake of an ASO can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. Introducing an oligonucleotide into a cell can be in vitro and/or in vivo. For example, for in vivo introduction, oligonucleotides can be injected into a tissue site or administered systemically. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein below and/or are known in the art.


As used herein, “lipid nanoparticle” or “LNP” is a vesicle comprising a lipid layer encapsulating a pharmaceutically active molecule, such as a nucleic acid molecule, e.g., an oligonucleotide. LNP refers to a stable nucleic acid-lipid particle. LNPs typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). LNPs are described in, for example, U.S. Pat. Nos. 6,858,225; 6,815,432; 8,158,601; and 8,058,069, the entire contents of which are hereby incorporated herein by reference.


As used herein, the term “liposome” refers to a vesicle composed of amphiphilic lipids arranged in at least one bilayer, e.g., one bilayer or a plurality of bilayers. Liposomes include unilamellar and multilamellar vesicles that have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the oligonucleotide composition. The lipophilic material isolates the aqueous interior from an aqueous exterior, which typically does not include the oligonucleotide composition, although in some examples, it can. Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids.


“Micelles” are defined herein as a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.


The term “antisense,” as used herein, refers to a nucleic acid comprising an oligonucleotide or polynucleotide that is sufficiently complementary to all or a portion of a gene, primary transcript, or processed mRNA, so as to interfere with expression of the endogenous gene (e.g., MLH3). “Complementary” polynucleotides are those that are capable of base pairing according to the standard Watson-Crick complementarity rules. Specifically, purines will base pair with pyrimidines to form a combination of guanine paired with cytosine (G:C) and adenine paired with either thymine (A:T) in the case of DNA, or adenine paired with uracil (A:U) in the case of RNA. It is understood that two polynucleotides can hybridize to each other even if they are not completely complementary to each other, provided that each has at least one region that is substantially complementary to the other.


As used herein, the terms “effective amount,” “therapeutically effective amount,” and “a “sufficient amount” of an agent that reduces the level and/or activity of MLH3 (e.g., in a cell or a subject) described herein refer to a quantity sufficient to, when administered to the subject, including a human, effect beneficial or desired results, including clinical results, and, as such, an “effective amount” or synonym thereto depends on the context in which it is being applied. For example, in the context of treating a trinucleotide repeat expansion disorder, it is an amount of the agent that reduces the level and/or activity of MLH3 sufficient to achieve a treatment response as compared to the response obtained without administration of the agent that reduces the level and/or activity of MLH3. The amount of a given agent that reduces the level and/or activity of MLH3 described herein that will correspond to such an amount will vary depending upon various factors, such as the given agent, the pharmaceutical formulation, the route of administration, the type of disease or disorder, the identity of the subject (e.g., age, sex, and/or weight) or host being treated, and the like, but can nevertheless be routinely determined by one of skill in the art. Also, as used herein, a “therapeutically effective amount” of an agent that reduces the level and/or activity of MLH3 of the present disclosure is an amount which results in a beneficial or desired result in a subject as compared to a control. As defined herein, a therapeutically effective amount of an agent that reduces the level and/or activity of MLH3 of the present disclosure can be readily determined by one of ordinary skill by routine methods known in the art. Dosage regimen can be adjusted to provide the optimum therapeutic response.


“Prophylactically effective amount,” as used herein, is intended to include the amount of an oligonucleotide that, when administered to a subject having or predisposed to have a trinucleotide repeat expansion disorder, is sufficient to prevent or ameliorate the disease or one or more symptoms of the disease. Ameliorating the disease includes slowing the course of the disease or reducing the severity of later-developing disease. The “prophylactically effective amount” can vary depending on the oligonucleotide, how the agent is administered, the degree of risk of disease, and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated. A prophylactically effective amount can refer to, for example, an amount of the agent that reduces the level and/or activity of MLH3 (e.g., in a cell or a subject) described herein or can refer to a quantity sufficient to, when administered to the subject, including a human, delay the onset of one or more of the trinucleotide repeat disorders described herein by at least 120 days, for example, at least 6 months, at least 12 months, at least 2 years, at least 3 years, at least 4 years, at least 5 years, at least 10 years or more, when compared with the predicted onset.


A “therapeutically-effective amount” or “prophylactically effective amount” also includes an amount (either administered in a single or in multiple doses) of an oligonucleotide that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. Oligonucleotides employed in the methods described herein can be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.


As used herein, the term “region of complementarity” refers to the region on the oligonucleotide that is substantially complementary to all or a portion of a gene, primary transcript, a sequence (e.g., a target sequence, e.g., an MLH3 nucleotide sequence), or processed mRNA, so as to interfere with expression of the endogenous gene (e.g., MLH3). Where the region of complementarity is not fully complementary to the target sequence, the mismatches can be in the internal or terminal regions of the molecule. Generally, the most tolerated mismatches are in the terminal regions, e.g., within 5, 4, 3, or 2 nucleotides of the 5′- and/or 3′-terminus of the oligonucleotide.


An “amount effective to reduce trinucleotide repeat expansion” of a particular gene refers to an amount of the agent that reduces the level and/or activity of MLH3 (e.g., in a cell or a subject) described herein, or to a quantity sufficient to, when administered to the subject, including a human, to reduce the trinucleotide repeat expansion of a particular gene (e.g., a gene associated with a trinucleotide repeat expansion disorder described herein).


As used herein, the term “a subject identified as having a trinucleotide repeat expansion disorder” refers to a subject identified as having a molecular or pathological state, disease or condition of or associated with a trinucleotide repeat expansion disorder, such as the identification of a trinucleotide repeat expansion disorder or symptoms thereof, or to identification of a subject having or suspected of having a trinucleotide repeat expansion disorder who can benefit from a particular treatment regimen.


As used herein, “trinucleotide repeat expansion disorder” refers to a class of genetic diseases or disorders characterized by excessive trinucleotide repeats (e.g., trinucleotide repeats such as CAG) in a gene or intron in the subject which exceed the normal, stable threshold, for the gene or intron. Nucleotide repeats are common in the human genome and are not normally associated with disease. In some cases, however, the number of repeats expands beyond a stable threshold and can lead to disease, with the severity of symptoms generally correlated with the number of repeats. Trinucleotide repeat expansion disorders include “polyglutamine” and “non-polyglutamine” disorders.


By “determining the level of a protein” is meant the detection of a protein, or an mRNA encoding the protein, by methods known in the art either directly or indirectly. “Directly determining” means performing a process (e.g., performing an assay or test on a sample or “analyzing a sample” as that term is defined herein) to obtain the physical entity or value. “Indirectly determining” refers to receiving the physical entity or value from another party or source (e.g., a third-party laboratory that directly acquired the physical entity or value). Methods to measure protein level generally include, but are not limited to, western blotting, immunoblotting, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunoprecipitation, immunofluorescence, surface plasmon resonance, chemiluminescence, fluorescent polarization, phosphorescence, immunohistochemical analysis, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, liquid chromatography (LC)-mass spectrometry, microcytometry, microscopy, fluorescence activated cell sorting (FACS), and flow cytometry, as well as assays based on a property of a protein including, but not limited to, enzymatic activity or interaction with other protein partners. Methods to measure mRNA levels are known in the art.


“Percent (%) sequence identity” with respect to a reference polynucleotide or polypeptide sequence is defined as the percentage of nucleic acids or amino acids in a candidate sequence that are identical to the nucleic acids or amino acids in the reference polynucleotide or polypeptide sequence, after aligning the sequences and introducing gaps (DNA core sequences), if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid or amino acid sequence identity can be achieved in various ways that are within the capabilities of one of skill in the art, for example, using publicly available computer software such as BLAST, BLAST-2, or Megalign software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For example, percent sequence identity values can be generated using the sequence comparison computer program BLAST. As an illustration, the percent sequence identity of a given nucleic acid or amino acid sequence, A, to, with, or against a given nucleic acid or amino acid sequence, B, (which can alternatively be phrased as a given nucleic acid or amino acid sequence, A that has a certain percent sequence identity to, with, or against a given nucleic acid or amino acid sequence, B) is calculated as follows:





100 multiplied by (the fraction X/Y)


where X is the number of nucleotides or amino acids scored as identical matches by a sequence alignment program (e.g., BLAST) in that program's alignment of A and B, and where Y is the total number of nucleic acids in B. It will be appreciated that where the length of nucleic acid or amino acid sequence A is not equal to the length of nucleic acid or amino acid sequence B, the percent sequence identity of A to B will not equal the percent sequence identity of B to A.


By “level” is meant a level or activity of a protein, or mRNA encoding the protein (e.g., MLH3), optionally as compared to a reference. The reference can be any useful reference, as defined herein. By a “decreased level” or an “increased level” of a protein is meant a decrease or increase in protein level, as compared to a reference (e.g., a decrease or an increase by about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 100%, about 150%, about 200%, about 300%, about 400%, about 500%, or more; a decrease or an increase of more than about 10%, about 15%, about 20%, about 50%, about 75%, about 100%, or about 200%, as compared to a reference; a decrease or an increase by less than about 0.01-fold, about 0.02-fold, about 0.1-fold, about 0.3-fold, about 0.5-fold, about 0.8-fold, or less; or an increase by more than about 1.2-fold, about 1.4-fold, about 1.5-fold, about 1.8-fold, about 2.0-fold, about 3.0-fold, about 3.5-fold, about 4.5-fold, about 5.0-fold, about 10-fold, about 15-fold, about 20-fold, about 30-fold, about 40-fold, about 50-fold, about 100-fold, about 1000-fold, or more). A level of a protein can be expressed in mass/vol (e.g., g/dL, mg/mL, μg/mL, or ng/mL) or percentage relative to total protein or mRNA in a sample.


The term “pharmaceutical composition,” as used herein, represents a composition containing a compound described herein formulated with a pharmaceutically acceptable excipient, and can be manufactured or sold with the approval of a governmental regulatory agency as part of a therapeutic regimen for the treatment of disease in a mammal. Pharmaceutical compositions can be formulated, for example, for oral administration in unit dosage form (e.g., a tablet, capsule, caplet, gelcap, or syrup); for topical administration (e.g., as a cream, gel, lotion, or ointment); for intravenous administration (e.g., as a sterile solution free of particulate emboli and in a solvent system suitable for intravenous use); for intrathecal injection; for intracerebroventricular injections; for intraparenchymal injection; or in any other pharmaceutically acceptable formulation.


A “pharmaceutically acceptable excipient,” as used herein, refers any ingredient other than the compounds described herein (for example, a vehicle capable of suspending or dissolving the active compound) and having the properties of being substantially nontoxic and non-inflammatory in a patient. Excipients can include, for example: antiadherents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents), film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing inks, sorbents, suspensing or dispersing agents, sweeteners, and waters of hydration. Exemplary excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid, crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose, lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben, microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch, propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, sucrose, talc, titanium dioxide, vitamin A, vitamin E, vitamin C, and xylitol.


As used herein, the term “pharmaceutically acceptable salt” means any pharmaceutically acceptable salt of the compound of any of the compounds described herein. For example, pharmaceutically acceptable salts of any of the compounds described herein include those that are within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and animals without undue toxicity, irritation, allergic response and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, pharmaceutically acceptable salts are described in: Berge et al., J. Pharmaceutical Sciences 66:1-19, 1977 and in Pharmaceutical Salts: Properties, Selection, and Use, (Eds. P. H. Stahl and C. G. Wermuth), Wiley-VCH, 2008. The salts can be prepared in situ during the final isolation and purification of the compounds described herein or separately by reacting a free base group with a suitable organic acid.


The compounds described herein can have ionizable groups so as to be capable of preparation as pharmaceutically acceptable salts. These salts can be acid addition salts involving inorganic or organic acids or the salts can, in the case of acidic forms of the compounds described herein, be prepared from inorganic or organic bases. Frequently, the compounds are prepared or used as pharmaceutically acceptable salts prepared as addition products of pharmaceutically acceptable acids or bases. Suitable pharmaceutically acceptable acids and bases and methods for preparation of the appropriate salts are well-known in the art. Salts can be prepared from pharmaceutically acceptable non-toxic acids and bases including inorganic and organic acids and bases. Representative acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptonate, glycerophosphate, hemisulfate, heptonate, hexanoate, hydrobromide, hydrochloride, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, toluenesulfonate, undecanoate, and valerate salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, and magnesium, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, and ethylamine.


By a “reference” is meant any useful reference used to compare protein or mRNA levels or activity. The reference can be any sample, standard, standard curve, or level that is used for comparison purposes. The reference can be a normal reference sample or a reference standard or level. A “reference sample” can be, for example, a control, e.g., a predetermined negative control value such as a “normal control” or a prior sample taken from the same subject; a sample from a normal healthy subject, such as a normal cell or normal tissue; a sample (e.g., a cell or tissue) from a subject not having a disease; a sample from a subject that is diagnosed with a disease, but not yet treated with a compound described herein; a sample from a subject that has been treated by a compound described herein; or a sample of a purified protein (e.g., any described herein) at a known normal concentration. By “reference standard or level” is meant a value or number derived from a reference sample. A “normal control value” is a pre-determined value indicative of non-disease state, e.g., a value expected in a healthy control subject. Typically, a normal control value is expressed as a range (“between X and Y”), a high threshold (“no higher than X”), ora low threshold (“no lower than X”). A subject having a measured value within the normal control value for a particular biomarker is typically referred to as “within normal limits” for that biomarker. A normal reference standard or level can be a value or number derived from a normal subject not having a disease or disorder (e.g., a trinucleotide repeat expansion disorder); a subject that has been treated with a compound described herein. In some aspects, the reference sample, standard, or level is matched to the sample subject sample by at least one of the following criteria: age, weight, sex, disease stage, and overall health. A standard curve of levels of a purified protein, e.g., any described herein, within the normal reference range can be used as a reference.


As used herein, the term “subject” refers to any organism to which a composition can be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include any animal (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans). A subject can seek or be in need of treatment, require treatment, be receiving treatment, be receiving treatment in the future, or be a human or animal who is under care by a trained professional for a particular disease or condition.


As used herein, the terms “treat,” “treated,” and “treating” mean both therapeutic treatment and prophylactic or preventative measures wherein the object is to prevent or slow down (lessen) an undesired physiological condition, disorder, or disease, or obtain beneficial or desired clinical results. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms; diminishment of the extent of a condition, disorder, or disease; stabilized (i.e., not worsening) state of condition, disorder, or disease; delay in onset or slowing of condition, disorder, or disease progression; amelioration of the condition, disorder, or disease state or remission (whether partial or total), whether detectable or undetectable; an amelioration of at least one measurable physical parameter, not necessarily discernible by the patient; or enhancement or improvement of condition, disorder, or disease. Treatment includes eliciting a clinically significant response without excessive levels of side effects. Treatment also includes prolonging survival as compared to expected survival if not receiving treatment.


As used herein, the terms “variant” and “derivative” are used interchangeably and refer to naturally-occurring, synthetic, and semi-synthetic analogues of a compound, peptide, protein, or other substance described herein. A variant or derivative of a compound, peptide, protein, or other substance described herein can retain or improve upon the biological activity of the original material.


The details of one or more aspects are set forth in the description below. Other features, objects, and advantages will be apparent from the description and from the claims.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a distribution plot showing the somatic expansion of a human HTT transgene in the striatum as measured by the instability index in R6/2 mice at 4, 8, 12, and 16 weeks of age (4 male and 4 female per age group). The bars are mean values and error bars indicate standard deviation.



FIG. 2 is a distribution plot showing the somatic expansion of a human HTT transgene in the cerebellum as measured by the instability index in R6/2 mice at 4, 8, 12, and 16 weeks of age (4 male and 4 female per age group).





DETAILED DESCRIPTION

The present inventors have found that inhibition or depletion of MLH3 level and/or activity in a cell is effective in the treatment of a trinucleotide repeat expansion disorder. Accordingly, useful compositions and methods to treat trinucleotide repeat expansion disorders, e.g., in a subject in need thereof are provided herein.


I. Trinucleotide Repeat Expansion Disorders


Trinucleotide repeat expansion disorders are a family of genetic disorders characterized by the pathogenic expansion of a repeat region within a genomic region. In such disorders, the number of repeats exceeds that of a gene's normal, stable threshold, expanding into a diseased range.


Trinucleotide repeat expansion disorders generally can be categorized as “polyglutamine” or “non-polyglutamine.” Polyglutamine disorders, including Huntington's disease (HD) and several spinocerebellar ataxias, are caused by a CAG (glutamine) repeats in the protein-coding regions of specific genes. Non-polyglutamine disorders are more heterogeneous and can be caused by CAG trinucleotide repeat expansions in non-coding regions, as in Myotonic dystrophy, or by the expansion of trinucleotide repeats other than CAG that can be in coding or non-coding regions such as the CGG repeat expansion responsible for Fragile X Syndrome.


Trinucleotide repeat expansion disorders are dynamic in the sense that the number of repeats can vary from generation-to-generation, or even from cell-to-cell in the same individual. Repeat expansion is believed to be caused by polymerase “slipping” during DNA replication. Tandem repeats in the DNA sequence can “loop out” while maintaining complementary base pairing between the parent strand and daughter strands. If the loop structure is formed from the daughter strand, the number of repeats will increase.


Conversely, if the loop structure is formed from the parent strand, the number of repeats will decrease. It appears that expansion is more common than reduction. In general, the length of repeat expansion is negatively correlated with prognosis; longer repeats are correlated with an earlier age of onset and worsened disease severity. Thus, trinucleotide repeat expansion disorders are subject to “anticipation,” meaning the severity of symptoms and/or age of onset worsen through successive generations of affected families due to the expansion of these repeats from one generation to the next.


Trinucleotide repeat expansion disorders are well known in the art. Exemplary trinucleotide repeat expansion disorders and the trinucleotide repeats of the genes commonly associated with them are included in Table 1.









TABLE 1







Exemplary Trinucleotide Repeat Expansion Disorders









Disease
Gene
Nucleotide Repeat





ARX-nonsyndromic X-linked mental retardation
ARX
GCG


(XLMR)


Baratela-Scott Syndrome
XYLT1
GGC


Blepharophimosis/Ptosis/Epicanthus inversus
FOXL2
GCG


syndrome type II


Cleidocranial dysplasia (CCD)
RUNX2
GCG


Congenital central hypoventilation
PHOX-2B
GCG


Congenital central hypoventilation syndrome
PHOX2B
GCG


(CCHS)


Creutzfeldt-Jakob disease
PRNP


Dentatorubral-pallidoluysian atrophy (DRPLA)/Haw
ATN1
CAG


River syndrome


Early infantile epileptic encephalopathy (Ohtahara
ARX
GCG


syndrome)


FRA2A syndrome
AFF3
CGC


FRA7A syndrome
ZNF713
CGG


Fragile X mental retardation (FRAX-E)
AFF2/FMR2
GCC


Fragile X Syndrome (FXS)
FMR1
CGG


Fragile X-associated Primary Ovarian Insufficiency
FMR1
CGG


(FXPOI)


Fragile X-associated Tremor Ataxia Syndrome
FMR1
CGG


(FXTAS)


Friedreich ataxia (FRDA)
FXN
GAA


Fuchs' Corneal Endothelial Dystrophy (FECD)
TCF4
CTG


Hand-foot genital syndrome (HFGS)
HOXA13
GCG


Holoprosencephaly disorder (HPE)
ZIC2
GCG


Huntington disease-like 2 (HDL2)
JPH3
CTG


Huntington's Disease (HD)
HTT
CAG


Infantile spasm syndrome/West syndrome (ISS)
ARX
GCG


Jacobsen syndrome


KCNN3-associated (e.g., schizophrenia)
KCNN3
CAG


Multiple Skeletal dysplasias
COMP
GAC


Myotonic Dystrophy type 1 (DM1)
DMPK
CTG


Myotonic Dystrophy type 2 (DM2)
CNBP
CCTG


NCOA3-associated (e.g., increased risk of prostate
NCOA3
CAG


cancer)


Neuronal intranuclear inclusion disease (NIID)
NOTCH2NLC
GGC


Oculopharyngeal Muscular Dystrophy (OPMD)
PABPN1
GCG


Spastic ataxia - Charlevoix-Saguenay


Spinal Muscular Bulbar Atrophy (SMBA)
AR
CAG


Spinocerebellar ataxia type 1 (SCA1)
ATXN1
CAG


Spinocerebellar ataxia type 10 (SCA10)
ATXN10
ATTCT


Spinocerebellar ataxia type 12 (SCA12)
PPP2R2B
CAG


Spinocerebellar ataxia type 17 (SCA17)
TBP/ATXN17
CAG


Spinocerebellar ataxia type 2 (SCA2)
ATXN2
CAG


Spinocerebellar ataxia type 3 (SCA3)/Machado-
ATXN3
CAG


Joseph Disease


Spinocerebellar ataxia type 45 (SCA45)
FAT2
CAG


Spinocerebellar ataxia type 6 (SCA6)
CACNA1A
CAG


Spinocerebellar ataxia type 7 (SCA7)
ATXN7
CAG


Spinocerebellar ataxia type 8 (SCA8)
ATXN8
CTG


Syndromic neurodevelopmental disorder with
MAB21L1
CAG


cerebellar, ocular, craniofacial, and genital features


(COFG syndrome)


Synpolydactyly (SPD I)
HOXD13
GCG


Synpolydactyly (SPD II)
HOXD12
GCG









The proteins associated with trinucleotide repeat expansion disorders are typically selected based on an experimental association of the protein associated with a trinucleotide repeat expansion disorder to a trinucleotide repeat expansion disorder. For example, the production rate or circulating concentration of a protein associated with a trinucleotide repeat expansion disorder can be elevated or depressed in a population having a trinucleotide repeat expansion disorder relative to a population lacking the trinucleotide repeat expansion disorder. Differences in protein levels can be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry. Alternatively, the proteins associated with trinucleotide repeat expansion disorders can be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including, but not limited to, DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (qPCR).


II. Evidence for the Involvement of Mismatch Repair Pathway in Trinucleotide Repeat Expansion


There is growing evidence that DNA repair pathways, particularly mismatch repair (MMR), are involved in the expansion of trinucleotide repeats. A recent genome-wide association (GWA) analysis led to the identification of loci harboring genetic variations that alter the age at neurological onset of Huntington's disease (HD) (GEM-HD Consortium, Cell. 2015 Jul. 30; 162(3):516-26). The study identified MLH1, the human homolog of the E. coli DNA mismatch repair gene mutL. A subsequent GWA study in polyglutamine disease patients found significant association of age at onset when grouping all polyglutamine diseases (HD and SCAs) with DNA repair genes as a group, as well as significant associations for specific SNPs in FAN1 and PMS2 with the diseases (Bettencourt et al., (2016) Ann. Neurol., 79: 983-990). These results were consistent with those from an earlier study comparing differences in repeat expansion in two different mouse models of Huntington's Disease, which identified Mlh1 and Mlh3 as novel critical modifiers of CAG instability (Pinto et al., (2013) Mismatch Repair Genes Mlh1 and Mlh3 Modify CAG Instability in Huntington's Disease Mice: Genome-Wide and Candidate Approaches. PLoS Genet 9(10): e1003930). Another member of the mismatch repair pathway, 8-oxo-guanine glycosylase (OGG1) has also been implicated in expansion, as somatic expansion was found to be reduced in transgenic mice lacking OGG1 (Kovtun I. V. et al. (2007) Nature 447, 447-452). However, another study found that human subjects containing a Ser326Cys polymorphism in hOGG1, which results in reduced OGG1 activity, results in increased mutant huntingtin (Coppede et al., (2009) Toxicol., 278: 199-203). Likewise, complete inactivation of Fan1, another component of the DNA repair pathway, in a mouse HD model produces somatic CAG expansions (Long et al. (2018) J. Hum Genet., 103: 1-9). MSH3, another component of the mismatch repair pathway, has been reported to be linked to somatic expansion: polymorphisms in Msh3 was associated with somatic instability of the expanded CTG trinucleotide repeat in myotonic dystrophy type 1 (DM1) patients (Morales et al., (2016) DNA Repair 40: 57-66). Furthermore, natural polymorphisms in Msh3 and Mlh1 have been revealed as mediators of mouse strain specific differences in CTG•CAG repeat instability (Pinto et al. (2013) ibid; Tome et al., (2013) PLoS Genet. 9 e1003280). Further evidence of Msh2 and Msh3's involvement in expansion repeats was reported in a study in which short hairpin RNA (shRNA) knockdown of either MSH2 or MSH3 slowed, and ectopic expression of either MSH2 or MSH3 induced GAA trinucleotide repeat expansion of the Friedreich Ataxia (FRDA) gene in fibroblasts derived from FRDA patients (Halabi et al., (2012) J. Biol. Chem. 287, 29958-29967). In spite of some inconsistent results provided above, there is strong evidence that the MMR pathway plays some role in the expansion of trinucleotide repeats in various disorders. Moreover, they are the first to recognize that the inhibition of the MMR pathway provides for the treatment or prevention of these repeat expansion disorders; however, no therapy is currently available or in development which modulates MMR for purposes of treating or preventing these repeat expansion disorders.


III. Oligonucleotide Agents


Agents described herein that reduce the level and/or activity of MLH3 in a cell can be, for example, a polynucleotide, e.g., an oligonucleotide. These agents reduce the level of an activity related to MLH3, or a related downstream effect, or reduce the level of MLH3 in a cell or subject.


In some aspects, the agent that reduces the level and/or activity of MLH3 is a polynucleotide. In some aspects, the polynucleotide is a single-stranded oligonucleotide, e.g., that acts by way of an RNase H-mediated pathway. Oligonucleotides include DNA and DNA/RNA chimeric molecules, typically about 10 to 30 nucleotides in length, which recognize polynucleotide target sequences or sequence portions through hydrogen bonding interactions with the nucleotide bases of the target sequence (e.g., MLH3). An oligonucleotide molecule can decrease the expression level (e.g., protein level or mRNA level) of MLH3. For example, an oligonucleotide includes oligonucleotides that targets full-length MLH3. In some aspects, the oligonucleotide molecule recruits an RNase H enzyme, leading to target mRNA degradation.


In some aspects, the oligonucleotide decreases the level and/or activity of a positive regulator of function. In other aspects, the oligonucleotide increases the level and/or activity of an inhibitor of a positive regulator of function. In some aspects, the oligonucleotide increases the level and/or activity of a negative regulator of function.


In some aspects, the oligonucleotide decreases the level and/or activity or function of MLH3. In some aspects, the oligonucleotide inhibits expression of MLH3. In other aspects, the oligonucleotide increases degradation of MLH3 and/or decreases the stability (i.e., half-life) of MLH3. The oligonucleotide can be chemically synthesized.


The oligonucleotide includes an oligonucleotide having a region of complementarity (e.g., a contiguous nucleobase region) which is complementary to at least a part of an mRNA formed in the expression of a MLH3 gene. The region of complementarity can be about 30 nucleotides or less in length (e.g., about 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, or 18 nucleotides or less in length). Upon contact with a cell expressing the MLH3 gene, the oligonucleotide can inhibit the expression of the MLH3 gene (e.g., a human, a primate, a non-primate, or a bird MLH3 gene) by at least about 10% as assayed by, for example, a PCR or branched DNA (bDNA)-based method, or by a protein-based method, such as by immunofluorescence analysis, using, for example, Western Blotting or flowcytometric techniques.


Similarly, the region of complementarity to the target sequence can be between 10 and 30 linked nucleosides in length, e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 or between 10-29, 10-28, 10-27, 10-26, 10-25, 10-24, 10-23, 10-22, 10-21, 10-20, 10-19, 10-18, 10-17, 10-16, 10-15, 10-14, 10-13, 10-12, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 linked nucleosides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated.


An oligonucleotide can be synthesized by standard methods known in the art as further discussed below, e.g., by use of an automated DNA synthesizer, such as are commercially available from, for example, Biosearch, Applied Biosystems, Inc.


The oligonucleotide compound can be prepared using solution-phase or solid-phase organic synthesis or both. Organic synthesis offers the advantage that the oligonucleotide comprising unnatural or alternative nucleotides can be easily prepared. Single-stranded oligonucleotides can be prepared using solution-phase or solid-phase organic synthesis or both.


In one aspect, an oligonucleotide described herein includes a region of at least 10 contiguous nucleobases having at least 80% (e.g., at least 85%, at least 90%, at least 95%, or at least 99%) complementary to at least 10 contiguous nucleotides of a MLH3 gene. In some aspects, the oligonucleotide comprises a sequence complementary to at least 17 contiguous nucleotides, 19-23 contiguous nucleotides, 19 contiguous nucleotides, or 20 contiguous nucleotides of a MLH3 gene. The oligonucleotide sequence can be selected from the group of sequences provided in any one of SEQ ID NOs: 6-4710.


In one aspect, the sequence is substantially complementary to a sequence of an mRNA generated in the expression of a MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-576, 584-636, 681-740, 818-878, 952-1024, 1129-1158, 1177-1264, 1287-1318, 1351-1378, 1536-1598, 1623-1660, 1739-1764, 1782-1823, 1847-1908, 2026-2051, 2063-2094, 2115-2146, 2256-2290, 2387-2414, 2421-2592, 2727-2788, 2826-2937, 3005-3043, 3078-3107, 3159-3185, 3214-3239, 3244-3272, 3282-3308, 3426-3483, 3561-3587, 3642-3769, 3804-3839, 3950-3977, 4004-4040, 4052-4115, 4139-4199, 4241-4301, 4328-4365, 4420-4448, 4472-4536, 4669-4708, and 4784-4810 of the MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-576, 584-636, 681-740, 818-878, 952-1024, 1129-1158, 1177-1264, 1287-1318, 1351-1378, 1568-1598, 1623-1660, 1782-1823, 1870-1904, 2063-2094, 2115-2146, 2256-2287, 2387-2414, 2422-2592, 2727-2788, 2826-2937, 3009-3043, 3078-3107, 3159-3185, 3214-3272, 3282-3307, 3426-3483, 3561-3587, 3642-3767, 3804-3839, 3950-3977, 4004-4039, 4052-4115, 4139-4199, 4241-4301, 4329-4365, 4420-4448, 4472-4536, 4680-4708, and 4784-4810 of the MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-635, 681-740, 842-875, 953-1024, 1129-1158, 1179-1264, 1287-1316, 1351-1378, 1568-1598, 1623-1659, 1782-1823, 1870-1904, 2064-2091, 2115-2146, 2256-2287, 2387-2414, 2422-2592, 2727-2788, 2829-2937, 3010-3043, 3079-3107, 3159-3185, 3246-3271, 3282-3307, 3426-3474, 3561-3587, 3642-3707, 3804-3839, 3950-3977, 4004-4039, 4052-4114, 4139-4164, 4174-4199, 4241-4288, 4329-4365, 4421-4448, 4472-4536, 4680-4708, and 4784-4810 of the MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 331-362, 393-438, 479-505, 534-574, 587-612, 681-740, 847-873, 991-1024, 1210-1262, 1351-1378, 1571-1597, 1623-1648, 1874-1902, 2066-2091, 2256-2281, 2388-2414, 2470-2515, 2732-2788, 2853-2878, 2901-2927, 3282-3307, 3562-3587, 4056-4083, 4241-4266, and 4506-4531 of the MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 335-449, 587-612, 682-736, 848-873, 991-1016, 1179-1204, 1233-1260, 1351-1378, 1626-1651, 1874-1903, 2066-2091, 2115-2146, 2256-2287, 2389-2414, 2471-2499, 2762-2787, 2853-2878, 2911-2936, 3562-3587, 3814-3839, 4006-4031, 4056-4083, and 4244-4269 of the MLH3 gene. In some aspects, the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 355-393, 952-984, 1177-1205, 2026-2052, 2066-2094, 2470-2498, 3159-3185, 3458-3485, and 4259-4292 of the MLH3 gene.


In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 6-4710. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 110-111, 115-116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-322, 328-329, 366-368, 377-379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 749-753, 755, 757, 784, 786-788, 790, 828-830, 959, 972, 974-977, 1002, 1004-1005, 1007, 1009-1013, 1086, 1110-1111, 1126, 1149, 1172, 1176-1181, 1185, 1260, 1271-1274, 1276-1277, 1297, 1302, 1387-1390, 1392-1393, 1396, 1461-1463, 1473-1474, 1482, 1490-1491, 1495, 1498-1502, 1505, 1508, 1510-1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1596-1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1802, 1824-1826, 1832, 1835-1836, 1859, 1865-1866, 1870-1873, 1875, 1878, 1880-1882, 1911, 1914-1918, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090-2091, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345-2346, 2353-2355, 2394-2395, 2403-2404, 2460-2462, 2489-2492, 2495, 2499-2500, 2524-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2683-2685, 2687, 2690-2691, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2848-2852, and 2917-2918. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-236, 238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-320, 322, 328-329, 366-368, 377, 379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 750-753, 755, 757, 784, 786-788, 790, 828-830, 972, 974-977, 1002, 1004-1005, 1009-1013, 1110-1111, 1126, 1172, 1176-1181, 1271-1274, 1276-1277, 1297, 1302, 1387, 1390, 1392-1393, 1461-1463, 1474, 1482, 1490-1491, 1498-1502, 1505, 1508, 1510-1512, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1801, 1824-1826, 1832, 1835-1836, 1859, 1866, 1870-1873, 1878, 1880-1882, 1915-1917, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345, 2353, 2394-2395, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2684, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2849-2852, and 2917-2918. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 102, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 183, 185-189, 201, 211-212, 229-231, 235-236, 238, 241, 250, 254, 265-269, 282-283, 286-288, 294, 296, 319, 322, 328, 366-368, 377, 379, 381-399, 511, 514-517, 567-568, 591, 593-594, 599, 602, 666, 669-670, 703, 728, 750-753, 755, 757, 784, 786-788, 828-830, 972, 974-977, 1002, 1004-1005, 1009, 1011-1012, 1110-1111, 1126, 1172, 1176-1181, 1272-1274, 1297, 1302, 1387, 1392-1393, 1461-1463, 1474, 1482, 1498-1500, 1502, 1505, 1508, 1510-1511, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1725-1727, 1745-1746, 1800-1801, 1824, 1832, 1835-1836, 1859, 1866, 1870-1872, 1878, 1880-1882, 1916, 1924, 1946, 1949, 2000-2001, 2066, 2090, 2163, 2169-2171, 2178, 2181, 2186, 2255-2256, 2307, 2321, 2333, 2394, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561, 2591, 2616, 2644, 2646, 2649-2651, 2653-2654, 2661-2664, 2684, 2693-2695, 2726-2728, 2777-2780, 2782, 2784-2785, 2791-2792, 2794-2795, 2797, 2849-2850, 2852, and 2917-2918. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 160-161, 163-164, 166, 211-212, 230-231, 267-268, 282, 294, 322, 366-367, 391-394, 399, 514-515, 594, 602, 728, 750, 752-753, 755, 828, 830, 975-976, 1002, 1176-1179, 1274, 1387, 1462-1463, 1510, 1514, 1529-1530, 1726-1727, 1745-1746, 1824, 1871-1872, 2090, 2256, 2528-2530, 2644, and 2792. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 164, 186-187, 212, 235, 322, 367-368, 379, 384-385, 388-389, 391-392, 395, 515, 594, 703, 751-753, 828-830, 1005, 1176-1180, 1274, 1297, 1302, 1387, 1393, 1463, 1511, 1514, 1745, 1824, 1881, 2256, 2404, 2491, 2528, 2530, and 2646. In some aspects, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 174-176, 178, 180-187, 566-569, 573, 701-704, 1260-1261, 1274-1277, 1510-1513, 2000-2001, 2194, 2196, 2661-2664, and 2666.


In some aspects, the nucleobase sequence of the oligonucleotide consists of any one of SEQ ID NOs: 6-4710. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 110-111, 115-116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-322, 328-329, 366-367-368, 377-379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 749-753, 755, 757, 784, 786-788, 790, 828-830, 959, 972, 974-977, 1002, 1004-1005, 1007, 1009-1013, 1086, 1110-1111, 1126, 1149, 1172, 1176-1181, 1185, 1260, 1271-1274, 1276-1277, 1297, 1302, 1387-1390, 1392-1393, 1396, 1461-1463, 1473-1474, 1482, 1490-1491, 1495, 1498-1502, 1505, 1508, 1510-1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1596-1597, 1721-1722, 1724-1725-1726-1727, 1744-1746, 1797, 1800-1802, 1824-1826, 1832, 1835-1836, 1859, 1865-1866, 1870-1873, 1875, 1878, 1880-1882, 1911, 1914-1918, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090-2091, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345-2346, 2353-2355, 2394-2395, 2403-2404, 2460-2462, 2489-2492, 2495, 2499-2500, 2524-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2683-2685, 2687, 2690-2691, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2848-2852, and 2917-2918. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-236, 238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-320, 322, 328-329, 366-368, 377, 379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 750-753, 755, 757, 784, 786-788, 790, 828-830, 972, 974-977, 1002, 1004-1005, 1009-1013, 1110-1111, 1126, 1172, 1176-1181, 1271-1274, 1276-1277, 1297, 1302, 1387, 1390, 1392-1393, 1461-1462-1463, 1474, 1482, 1490-1491, 1498-1502, 1505, 1508, 1510-1512, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1801, 1824-1826, 1832, 1835-1836, 1859, 1866, 1870-1873, 1878, 1880-1882, 1915-1917, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345, 2353, 2394-2395, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2684, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2849-2852, and 2917-2918. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 102, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 183, 185-189, 201, 211-212, 229-231, 235-236, 238, 241, 250, 254, 265-269, 282-283, 286-288, 294, 296, 319, 322, 328, 366-368, 377, 379, 381-399, 511, 514-517, 567-568, 591, 593-594, 599, 602, 666, 669-670, 703, 728, 750-753, 755, 757, 784, 786-788, 828-830, 972, 974-977, 1002, 1004-1005, 1009, 1011-1012, 1110-1111, 1126, 1172, 1176-1181, 1272-1274, 1297, 1302, 1387, 1392-1393, 1461-1463, 1474, 1482, 1498-1500, 1502, 1505, 1508, 1510-1511, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1725-1727, 1745-1746, 1800-1801, 1824, 1832, 1835-1836, 1859, 1866, 1870-1872, 1878, 1880-1882, 1916, 1924, 1946, 1949, 2000-2001, 2066, 2090, 2163, 2169-2171, 2178, 2181, 2186, 2255-2256, 2307, 2321, 2333, 2394, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561, 2591, 2616, 2644, 2646, 2649-2651, 2653-2654, 2661-2664, 2684, 2693-2695, 2726-2728, 2777-2780, 2782, 2784-2785, 2791-2792, 2794-2795, 2797, 2849-2850, 2852, and 2917-2918. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 160-161, 163-164, 166, 211-212, 230-231, 267-268, 282, 294, 322, 366-367, 391-394, 399, 514-515, 594, 602, 728, 750, 752-753, 755, 828, 830, 975-976, 1002, 1176-1179, 1274, 1387, 1462-1463, 1510, 1514, 1529-1530, 1726-1727, 1745-1746, 1824, 1871-1872, 2090, 2256, 2528-2530, 2644, and 2792.


In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 164, 186-187, 212, 235, 322, 367-368, 379, 384-385, 388-389, 391-392, 395, 515, 594, 703, 751-753, 828-830, 1005, 1176-1180, 1274, 1297, 1302, 1387, 1393, 1463, 1511, 1514, 1745, 1824, 1881, 2256, 2404, 2491, 2528, 2530, and 2646. In some aspects, the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 174-176, 178, 180-187, 566-569, 573, 701-704, 1260-1261, 1274-1277, 1510-1513, 2000-2001, 2194, 2196, 2661-2664, and 2666. In some aspects,


In some aspects, the oligonucleotide exhibits at least 50% mRNA inhibition at 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 60% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 70% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 85% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 50% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 60% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 70% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell. In some aspects, the oligonucleotide exhibits at least 85% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.


The cell assay can comprise transfecting mammalian cells, such as HEK293, NIH3T3, or HeLa cells, with the desired concentration of oligonucleotide (e.g., 2 nM or 20 nM) using Lipofectamine 2000 (Invitrogen) and comparing MLH3 mRNA levels of transfected cells to MLH3 levels of control cells. Control cells can be transfected with oligonucleotides not specific to MLH3 or mock transfected. mRNA levels can be determined using RT-qPCR and MLH3 mRNA levels can be normalized to GAPDH mRNA levels. The percent inhibition can be calculated as the percent of MLH3 mRNA concentration relative to the MLH3 concentration of the control cells.


In some aspects, the oligonucleotide or contiguous nucleotide region thereof, has a gapmer design or structure also referred herein merely as “gapmer.” In a gapmer structure the oligonucleotide comprises at least three distinct structural regions a 5′-flanking sequence (also known as a 5′-wing), a DNA core sequence (also known as a gap) and a 3′-flanking sequence (also known as a 3′-wing), in ‘5->3’ orientation. In this design, the 5′ and 3′ flanking sequences comprise at least one alternative nucleoside which is adjacent to a DNA core sequence, and can in some aspects comprise a contiguous stretch of 2-7 alternative nucleosides, or a contiguous stretch of alternative and DNA nucleosides (mixed flanking sequences comprising both alternative and DNA nucleosides).


The length of the 5′-flanking sequence region can be at least two nucleosides in length (e.g., at least at least 2, at least 3, at least 4, at least 5, or more nucleosides in length). The length of the 3′-flanking sequence region can be at least two nucleosides in length (e.g., at least 2, at least 3, at least at least 4, at least 5, or more nucleosides in length). The 5′ and 3′ flanking sequences can be symmetrical or asymmetrical with respect to the number of nucleosides they comprise. In some aspects, the DNA core sequence comprises about 10 nucleosides flanked by a 5′ and a 3′ flanking sequence each comprising about 5 nucleosides, also referred to as a 5-10-5 gapmer.


Consequently, the nucleosides of the 5′ flanking sequence and the 3′ flanking sequence which are adjacent to the DNA core sequence are alternative nucleosides, such as 2′ alternative nucleosides. The DNA core sequence comprises a contiguous stretch of nucleotides which are capable of recruiting RNase H, when the oligonucleotide is in duplex with the MLH3 target nucleic acid. In some aspects, the DNA core sequence comprises a contiguous stretch of 5-16 DNA nucleosides. In other aspects, the DNA core sequence comprises a region of at least 10 contiguous nucleobases having at least 80% (e.g., at least 85%, at least 90%, at least 95%, or at least 99%) complementarity to a MLH3 gene. In some aspects, the gapmer comprises a region complementary to at least 17 contiguous nucleotides, 19-23 contiguous nucleotides, or 19 contiguous nucleotides of a MLH3 gene. The gapmer is complementary to the MLH3 target nucleic acid, and can therefore be the contiguous nucleoside region of the oligonucleotide.


The 5′ and 3′ flanking sequences, flanking the 5′ and 3′ ends of the DNA core sequence, can comprise one or more affinity enhancing alternative nucleosides. In some aspects, the 5′ and/or 3′ flanking sequence comprises at least one 2′-O-methoxyethyl (MOE) nucleoside. In some aspects, the 5′ and/or 3′ flanking sequences, contain at least two MOE nucleosides. In some aspects, the 5′ flanking sequence comprises at least one MOE nucleoside. In some aspects, both the 5′ and 3′ flanking sequence comprise a MOE nucleoside. In some aspects, all the nucleosides in the flanking sequences are MOE nucleosides. In other aspects, the flanking sequence can comprise both MOE nucleosides and other nucleosides (mixed flanking sequence), such as DNA nucleosides and/or non-MOE alternative nucleosides, such as bicyclic nucleosides (BNAs) (e.g., LNA nucleosides or cET nucleosides), or other 2′ substituted nucleosides. In this case the DNA core sequence is defined as a contiguous sequence of at least 5 RNase H recruiting nucleosides (such as 5-16 DNA nucleosides) flanked at the 5′ and 3′ end by an affinity enhancing alternative nucleoside, such as an MOE nucleoside.


In other aspects, the 5′ and/or 3′ flanking sequence comprises at least one BNA (e.g., at least one LNA nucleoside or cET nucleoside). In some aspects, 5′ and/or 3′ flanking sequence comprises at least 2 bicyclic nucleosides. In some aspects, the 5′ flanking sequence comprises at least one BNA. In some aspects, both the 5′ and 3′ flanking sequence comprise a BNA. In some aspects, all the nucleosides in the flanking sequences are BNAs. In other aspects, the flanking sequence can comprise both BNAs and other nucleosides (mixed flanking sequences), such as DNA nucleosides and/or non-BNA alternative nucleosides, such as 2′ substituted nucleosides. In this case the DNA core sequence is defined as a contiguous sequence of at least five RNase H recruiting nucleosides (such as 5-16 DNA nucleosides) flanked at the 5′ and 3′ end by an affinity enhancing alternative nucleoside, such as a BNA, such as an LNA, such as beta-D-oxy-LNA.


The 5′ flank attached to the 5′ end of the DNA core sequence comprises, contains, or consists of at least one alternative sugar moiety (e.g., at least three, at least four, at least five, at least six, at least seven, or more alternative sugar moieties). In some aspects, the flanking sequence comprises or consists of from 1 to 7 alternative nucleobases, such as from 2 to 6 alternative nucleobases, such as from 2 to 5 alternative nucleobases, such as from 2 to 4 alternative nucleobases, such as from 1 to 3 alternative nucleobases, such as one, two, three or four alternative nucleobases. In some aspects, the flanking sequence comprises or consists of at least one alternative internucleoside linkage (e.g., at least three, at least four, at least five, at least six, at least seven, or more alternative internucleoside linkages).


The 3′ flank attached to the 3′ end of the DNA core sequence comprises, contains, or consists of at least one alternative sugar moiety (e.g., at least three, at least four, at least five, at least six, at least seven, or more alternative sugar moieties). In some aspects, the flanking sequence comprises or consists of from 1 to 7 alternative nucleobases, such as from 2 to 6 alternative nucleobases, such as from 2 to 5 alternative nucleobases, such as from 2 to 4 alternative nucleobases, such as from 1 to 3 alternative nucleobases, such as one, two, three, or four alternative nucleobases. In some aspects, the flanking sequence comprises or consists of at least one alternative internucleoside linkage (e.g., at least three, at least four, at least five, at least six, at least seven, or more alternative internucleoside linkages).


In an aspect, one or more or all of the alternative sugar moieties in the flanking sequence are 2′ alternative sugar moieties.


In a further aspect, one or more of the 2′ alternative sugar moieties in the wing regions are selected from 2′-O-alkyl-sugar moieties, 2′-O-methyl-sugar moieties, 2′-amino-sugar moieties, 2′-fluoro-sugar moieties, 2′-alkoxy-sugar moieties, MOE sugar moieties, LNA sugar moieties, arabino nucleic acid (ANA) sugar moieties, and 2′-fluoro-ANA sugar moieties.


In one aspect, all the alternative nucleosides in the flanking sequences are bicyclic nucleosides. In a further aspect, the bicyclic nucleosides in the flanking sequences are independently selected from the group consisting of oxy-LNA, thio-LNA, amino-LNA, cET, and/or ENA, in either the beta-D or alpha-L configurations or combinations thereof.


In some aspects, the one or more alternative internucleoside linkages in the flanking sequences are phosphorothioate internucleoside linkages. In some aspects, the phosphorothioate linkages are stereochemically pure phosphorothioate linkages. In some aspects, the phosphorothioate linkages are Sp phosphorothioate linkages. In other aspects, the phosphorothioate linkages are Rp phosphorothioate linkages. In some aspects, the alternative internucleoside linkages are 2′-alkoxy internucleoside linkages. In other aspects, the alternative internucleoside linkages are alkyl phosphate internucleoside linkages.


The DNA core sequence can comprise, contain, or consist of at least 5-16 consecutive DNA nucleosides capable of recruiting RNase H. In some aspects, all of the nucleosides of the DNA core sequence are DNA units. In further aspects, the DNA core region can consist of a mixture of DNA and other nucleosides capable of mediating RNase H cleavage. In some aspects, at least 50% of the nucleosides of the DNA core sequence are DNA, such as at least 60%, at least 70% or at least 80%, or at least 90% DNA. In some aspects, all of the nucelosides of the DNA core sequence are RNA units.


The oligonucleotide comprises a contiguous region which is complementary to the target nucleic acid. In some aspects, the oligonucleotide can further comprise additional linked nucleosides positioned 5′ and/or 3′ to either the 5′ and 3′ flanking sequences. These additional linked nucleosides can be attached to the 5′ end of the 5′ flanking sequence or the 3′ end of the 3′ flanking sequence, respectively. The additional nucleosides can, in some aspects, form part of the contiguous sequence which is complementary to the target nucleic acid, or in other aspects, can be non-complementary to the target nucleic acid.


The inclusion of the additional nucleosides at either, or both of the 5′ and 3′ flanking sequences can independently comprise one, two, three, four, or five additional nucleotides, which can be complementary or non-complementary to the target nucleic acid. In this respect, the oligonucleotide can, in some aspects, comprise a contiguous sequence capable of modulating the target which is flanked at the 5′ and/or 3′ end by additional nucleotides. Such additional nucleosides can serve as a nuclease susceptible biocleavable linker, and can therefore be used to attach a functional group such as a conjugate moiety to the oligonucleotide. In some aspects, the additional 5′ and/or 3′ end nucleosides are linked with phosphodiester linkages, and can be DNA or RNA. In another aspect, the additional 5′ and/or 3′ end nucleosides are alternative nucleosides which can for example be included to enhance nuclease stability or for ease of synthesis.


In other aspects, the oligonucleotides utilize “altimer” design and comprise alternating 2′-fluoro-ANA and DNA regions that are alternated every three nucleosides. Altimer oligonucleotides are discussed in more detail in Min, et al., Bioorganic & Medicinal Chemistry Letters, 2002, 12(18): 2651-2654 and Kalota, et al., Nuc. Acid Res. 2006, 34(2): 451-61 (herein incorporated by reference).


In other aspects, the oligonucleotides utilize “hemimer” design and comprise a single 2′-modified flanking sequence adjacent to (on either side of the 5′ or the 3′ side of) a DNA core sequence. Hemimer oligonucleotides are discussed in more detail in Geary et al., 2001, J. Pharm. Exp. Therap., 296: 898-904 (herein incorporated by reference).


In some aspects, an oligonucleotide has a nucleic acid sequence with at least 50% (e.g., at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%) sequence identity to the nucleic acid sequence of any one of SEQ ID NOs: 6-4710. In some aspects, an oligonucleotide has a nucleic acid sequence with at least 85% sequence identity to the nucleic acid sequence of any one of SEQ ID NOs: 6-4710.


It will be understood that, although the sequences in SEQ ID NOs: 6-4710 are described as unmodified and/or un-conjugated sequences, the nucleosides of the oligonucleotide can comprise any one of the sequences set forth in any one of SEQ ID NOs: 6-4710 that is an alternative nucleoside and/or conjugated as described in detail below.


The skilled person is well aware that oligonucleotides having a structure of between about 18-20 base pairs can be particularly effective in inducing RNase H-mediated degradation. However, one can appreciate that shorter or longer oligonucleotides can be effective. In the aspects described above, by virtue of the nature of the oligonucleotide sequences provided herein, oligonucleotides described herein can include shorter or longer oligonucleotide sequences. It can be reasonably expected that shorter oligonucleotides minus only a few linked nucleosides on one or both ends can be similarly effective as compared to the oligonucleotides described above. Hence, oligonucleotides having a sequence of at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more contiguous linked nucleosides derived from one of the sequences provided herein, and differing in their ability to inhibit the expression of a MLH3 gene by not more than about 5, 10, 15, 20, 25, or 30% inhibition from an oligonucleotide comprising the full sequence, are contemplated to be within the scope.


The oligonucleotides described herein can function via nuclease mediated degradation of the target nucleic acid, where the oligonucleotides are capable of recruiting a nuclease, such as an endonuclease like endoribonuclease (RNase) (e.g., RNase H). Examples of oligonucleotide designs which operate via nuclease mediated mechanisms are oligonucleotides which typically comprise a region of at least 5 or 6 DNA nucleosides and are flanked on one side or both sides by affinity enhancing alternative nucleosides, for example gapmers, headmers, and tailmers.


The RNase H activity of an oligonucleotide refers to its ability to recruit RNase H when in a duplex with a complementary RNA molecule. WO01/23613 provides in vitro methods for determining RNase H activity, which can be used to determine the ability to recruit RNase H. Typically an oligonucleotide is deemed capable of recruiting RNase H if it, when provided with a complementary target nucleic acid sequence, has an initial rate, as measured in pmol/l/min, of at least 5%, such as at least 10% or more than 20% of the of the initial rate determined when using an oligonucleotide having the same base sequence as the modified oligonucleotide being tested, but containing only DNA monomers, with phosphorothioate linkages between all monomers in the oligonucleotide, and using the methodology provided by Example 91-95 of WO01/23613 (hereby incorporated by reference).


Furthermore, the oligonucleotides described herein identify a site(s) in a MLH3 transcript that is susceptible to RNase H-mediated cleavage. As used herein, an oligonucleotide is said to target within a particular site of an RNA transcript if the oligonucleotide promotes cleavage of the transcript anywhere within that particular site. Such an oligonucleotide will generally include at least about 5-10 contiguous linked nucleosides from one of the sequences provided herein coupled to additional linked nucleoside sequences taken from the region contiguous to the selected sequence in a MLH3 gene.


Inhibitory oligonucleotides can be designed by methods well known in the art. While a target sequence is generally about 10-30 linked nucleosides in length, there is wide variation in the suitability of particular sequences in this range for directing cleavage of any given target RNA.


Oligonucleotides with homology sufficient to provide sequence specificity required to uniquely degrade any RNA can be designed using programs known in the art


Systematic testing of several designed species for optimization of the inhibitory oligonucleotide sequence can be undertaken in accordance with the teachings provided herein. Considerations when designing interfering oligonucleotides include, but are not limited to, biophysical, thermodynamic, and structural considerations, base preferences at specific positions, and homology. The making and use of inhibitory therapeutic agents based on non-coding oligonucleotides are also known in the art.


Various software packages and the guidelines set out herein provide guidance for the identification of optimal target sequences for any given gene target, but an empirical approach can be taken in which a “window” or “mask” of a given size (as a non-limiting example, 21 nucleotides) is literally or figuratively (including, e.g., in silico) placed on the target RNA sequence to identify sequences in the size range that can serve as target sequences. By moving the sequence “window” progressively one nucleotide upstream or downstream of an initial target sequence location, the next potential target sequence can be identified, until the complete set of possible sequences is identified for any given target size selected. This process, coupled with systematic synthesis and testing of the identified sequences (using assays as described herein or as known in the art) to identify those sequences that perform optimally can identify those RNA sequences that, when targeted with an oligonucleotide agent, mediate the best inhibition of target gene expression. Thus, while the sequences identified herein represent effective target sequences, it is contemplated that further optimization of inhibition efficiency can be achieved by progressively “walking the window” one nucleotide upstream or downstream of the given sequences to identify sequences with equal or better inhibition characteristics.


Further, it is contemplated that for any sequence identified herein, further optimization could be achieved by systematically either adding or removing linked nucleosides to generate longer or shorter sequences and testing those sequences generated by walking a window of the longer or shorter size up or down the target RNA from that point. Again, coupling this approach to generating new candidate targets with testing for effectiveness of oligonucleotides based on those target sequences in an inhibition assay as known in the art and/or as described herein can lead to further improvements in the efficiency of inhibition.


Further still, such optimized sequences can be adjusted by, e.g., the introduction of alternative nucleosides, alternative sugar moieties, and/or alternative internucleosidic linkages as described herein or as known in the art, including alternative nucleosides, alternative sugar moieties, and/or alternative internucleosidic linkages as known in the art and/or discussed herein to further optimize the molecule (e.g., increasing serum stability or circulating half-life, increasing thermal stability, enhancing transmembrane delivery, targeting to a particular location or cell type, increasing interaction with silencing pathway enzymes, increasing release from endosomes) as an expression inhibitor. An oligonucleotide agent as described herein can contain one or more mismatches to the target sequence. In one aspect, an oligonucleotide as described herein contains no more than 3 mismatches. If the oligonucleotide contains mismatches to a target sequence, in some aspects, the area of mismatch is not located in the center of the region of complementarity. If the oligonucleotide contains mismatches to the target sequence, in some aspects, the mismatch should be restricted to be within the last 5 nucleotides from either the 5′- or 3′-end of the region of complementarity. For example, for a 30-linked nucleoside oligonucleotide agent, the contiguous nucleobase region which is complementary to a region of a MLH3 gene, generally does not contain any mismatch within the central 5-10 linked nucleosides. The methods described herein or methods known in the art can be used to determine whether an oligonucleotide containing a mismatch to a target sequence is effective in inhibiting the expression of a MLH3 gene. Consideration of the efficacy of oligonucleotides with mismatches in inhibiting expression of a MLH3 gene is important, especially if the particular region of complementarity in a MLH3 gene is known to have polymorphic sequence variation within the population.


Construction of vectors for expression of polynucleotides for use can be accomplished using conventional techniques which do not require detailed explanation to one of ordinary skill in the art. For generation of efficient expression vectors, it is necessary to have regulatory sequences that control the expression of the polynucleotide. These regulatory sequences include promoter and enhancer sequences and are influenced by specific cellular factors that interact with these sequences, and are well known in the art.


A. Alternative Oligonucleosides


In one aspect, one or more of the linked nucleosides or internucleosidic linkages of the oligonucleotide, is naturally occurring, and does not comprise, e.g., chemical modifications and/or conjugations known in the art and described herein. In another aspect, one or more of the linked nucleosides or internucleosidic linkages of an oligonucleotide described herein, is chemically modified to enhance stability or other beneficial characteristics. Without being bound by theory, it is believed that certain modifications can increase nuclease resistance and/or serum stability, or decrease immunogenicity. For example, oligonucleotides can contain nucleotides found to occur naturally in DNA or RNA (e.g., adenine, thymidine, guanosine, cytidine, uridine, or inosine) or can contain alternative nucleosides or internucleosidic linkages which have one or more chemical modifications to one or more components of the nucleotide (e.g., the nucleobase, sugar, or phospho-linker moiety). Oligonucleotides can be linked to one another through naturally occurring phosphodiester bonds, or can contain alternative linkages (e.g., covalently linked through phosphorothioate (e.g., Sp phosphorothioate or Rp phosphorothioate), 3′-methylenephosphonate, 5′-methylenephosphonate, 3′-phosphoamidate, 2′-5′ phosphodiester, guanidinium, S-methylthiourea, 2′-alkoxy, alkyl phosphate, or peptide bonds).


In some aspects, substantially all of the nucleosides or internucleosidic linkages of an oligonucleotide are alternative nucleosides. In other aspects, all of the nucleosides or internucleosidic linkages of an oligonucleotide described herein are alternative nucleosides. Oligonucleotides in which “substantially all of the nucleosides are alternative nucleosides” are largely but not wholly modified and can include not more than five, four, three, two, or one naturally-occurring nucleosides. In still other aspects, oligonucleotides can include not more than five, four, three, two, or one alternative nucleosides.


The nucleic acids can be synthesized and/or modified by methods well established in the art, such as those described in “Current protocols in nucleic acid chemistry,” Beaucage, S. L. et al. (Edrs.), John Wiley & Sons, Inc., New York, N.Y., USA, which is hereby incorporated herein by reference. Alternative nucleotides and nucleosides include those with modifications including, for example, end modifications, e.g., 5′-end modifications (phosphorylation, conjugation, inverted linkages) or 3′-end modifications (conjugation, DNA nucleotides, inverted linkages, etc.); base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides), or conjugated bases; sugar modifications (e.g., at the 2′-position or 4′-position) or replacement of the sugar; and/or backbone modifications, including modification or replacement of the phosphodiester linkages. The nucleobase can be an isonucleoside in which the nucleobase is moved from the C1 position of the sugar moiety to a different position (e.g. C2, C3, C4, or C5). Specific examples of oligonucleotide compounds useful in the aspects described herein include, but are not limited to alternative nucleosides containing modified backbones or no natural internucleoside linkages. Nucleotides and nucleosides having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, alternative RNAs that do not have a phosphorus atom in their internucleoside backbone can be considered to be oligonucleosides. In some aspects, an oligonucleotide will have a phosphorus atom in its internucleoside backbone.


Alternative internucleoside linkages include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boronophosphates having normal 3′-5′ linkages, 2′-5′-linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts, and free acid forms are also included.


Representative U.S. patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,195; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,316; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,625,050; 6,028,188; 6,124,445; 6,160,109; 6,169,170; 6,172,209; 6,239,265; 6,277,603; 6,326,199; 6,346,614; 6,444,423; 6,531,590; 6,534,639; 6,608,035; 6,683,167; 6,858,715; 6,867,294; 6,878,805; 7,015,315; 7,041,816; 7,273,933; 7,321,029; and U.S. Pat. RE39464, the entire contents of each of which are hereby incorporated herein by reference.


Alternative internucleoside linkages that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S, and CH2 component parts.


Representative U.S. patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,64,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and, 5,677,439, the entire contents of each of which are hereby incorporated herein by reference.


In other aspects, suitable oligonucleotides include those in which both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, a mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar of a nucleoside is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, the entire contents of each of which are hereby incorporated herein by reference. Additional PNA compounds suitable for use in the oligonucleotides are described in, for example, in Nielsen et al., Science, 1991, 254, 1497-1500.


Some aspects include oligonucleotides with phosphorothioate backbones and oligonucleotides with heteroatom backbones, and in particular —CH2—NH—CH2—, —CH2—N(CH3)—O—CH2-[known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —N(CH3)—CH2—CH2-[wherein the native phosphodiester backbone is represented as —O—P—O—CH2-] of the above-referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above-referenced U.S. Pat. No. 5,602,240. In some aspects, the oligonucleotides featured herein have morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506. In other aspects, the oligonucleotides described herein include phosphorodiamidate morpholino oligomers (PMO), in which the deoxyribose moiety is replaced by a morpholine ring, and the charged phosphodiester inter-subunit linkage is replaced by an uncharged phophorodiamidate linkage, as described in Summerton, et al., Antisense Nucleic Acid Drug Dev. 1997, 7:63-70.


Alternative nucleosides and nucleotides can contain one or more substituted sugar moieties. The oligonucleotides, e.g., oligonucleotides, featured herein can include one of the following at the 2′-position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl can be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Exemplary suitable modifications include —O[(CH2)nO]mCH3, —O(CH2)nOCH3, —O(CH2)n—NH2, —O(CH2)nCH3, —O(CH2)n—ONH2, and —O(CH2)n—ON[(CH2)nCH3]2, where n and m are from 1 to about 10. In other aspects, oligonucleotides include one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. In some aspects, the modification includes a 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chin. Acta, 1995, 78:486-504) i.e., an alkoxy-alkoxy group. MOE nucleosides confer several beneficial properties to oligonucleotides including, but not limited to, increased nuclease resistance, improved pharmacokinetics properties, reduced non-specific protein binding, reduced toxicity, reduced immunostimulatory properties, and enhanced target affinity as compared to unmodified oligonucleotides.


Another exemplary alternative contains 2′-dimethylaminooxyethoxy, i.e., a —O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, as described in examples herein below, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—(CH2)2—O—(CH2)2—N(CH3)2. Further exemplary alternatives include: 5′-Me-2′-F nucleotides, 5′-Me-2′-OMe nucleotides, 5′-Me-2′-deoxynucleotides, (both R and S isomers in these three families); 2′-alkoxyalkyl; and 2′-NMA (N-methylacetamide).


Other alternatives include 2′-methoxy (2′-OCH3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2) and 2′-fluoro (2′-F). Similar modifications can also be made at other positions on the nucleosides and nucleotides of an oligonucleotide, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked oligonucleotides and the 5′ position of 5′ terminal nucleotide. Oligonucleotides can have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative U.S. patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, certain of which are commonly owned with the instant application. The entire contents of each of the foregoing are hereby incorporated herein by reference.


An oligonucleotide can include nucleobase (often referred to in the art simply as “base”) alternatives (e.g., modifications or substitutions). Unmodified or natural nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Alternative nucleobases include other synthetic and natural nucleobases such as 5-methylcytidine, 5-hydroxymethylcytidine, 5-formylcytidine, 5-carboxycytidine, pyrrolocytidine, dideoxycytidine, uridine, 5-methoxyuridine, 5-hydroxydeoxyuridine, dihydrouridine, 4-thiourdine, pseudouridine, 1-methyl-pseudouridine, deoxyuridine, 5-hydroxybutynl-2′-deoxyuridine, xanthine, hypoxanthine, 7-deaza-xanthine, thienoguanine, 8-aza-7-deazaguanosine, 7-methylguanosine, 7-deazaguanosine, 6-aminomethyl-7-deazaguanosine, 8-aminoguanine, 2,2,7-trimethylguanosine, 8-methyladenine, 8-azidoadenine, 7-methyladenine, 7-deazaadenine, 3-deazaadenine, 2,6-diaminopurine, 2-aminopurine, 7-deaza-8-aza-adenine, 8-amino-adenine, thymine, dideoxythymine, 5-nitroindole, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouridine, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uridine and cytidine, 6-azo uridine, cytidine and thymine, 4-thiouridine, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uridines and cytidines, 8-azaguanine and 8-azaadenine, and 3-deazaguanine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P. ed. Wiley-VCH, 2008; those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. L, ed. John Wiley & Sons, 1990, these disclosed by Englisch et al., (1991) Angewandte Chemie, International Edition, 30:613, and those disclosed by Sanghvi, Y S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., Ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligonucleotides. These include 5-substituted pyrimidines, 6-azapyrimidines, and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil, and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., Eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are exemplary base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.


Representative U.S. patents that teach the preparation of certain of the above noted alternative nucleobases as well as other alternative nucleobases include, but are not limited to, the above noted U.S. Pat. Nos. 3,687,808, 4,845,205; 5,130,30; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,681,941; 5,750,692; 6,015,886; 6,147,200; 6,166,197; 6,222,025; 6,235,887; 6,380,368; 6,528,640; 6,639,062; 6,617,438; 7,045,610; 7,427,672; and 7,495,088, the entire contents of each of which are hereby incorporated herein by reference.


In other aspects, the sugar moiety in the nucleotide can be a ribose molecule, optionally having a 2′-O-methyl, 2′-O-MOE, 2′-F, 2′-amino, 2′-O-propyl, 2′-aminopropyl, or 2′-OH modification.


An oligonucleotide can include one or more bicyclic sugar moieties. A “bicyclic sugar” is a furanosyl ring modified by the bridging of two atoms. A “bicyclic nucleoside” (“BNA”) is a nucleoside having a sugar moiety comprising a bridge connecting two carbon atoms of the sugar ring, thereby forming a bicyclic ring system. In some aspects, the bridge connects the 4′-carbon and the 2′-carbon of the sugar ring. Thus, in some aspects, an oligonucleotide can include one or more locked nucleosides. A locked nucleoside is a nucleoside having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting the 2′ and 4′ carbons. In other words, a locked nucleoside is a nucleoside comprising a bicyclic sugar moiety comprising a 4′-CH2—O-2′ bridge. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleosides to oligonucleotides has been shown to increase oligonucleotide stability in serum, and to reduce off-target effects (Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193). Examples of bicyclic nucleosides for use in the polynucleotides include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms. In some aspects, the polynucleotide agents include one or more bicyclic nucleosides comprising a 4′ to 2′ bridge. Examples of such 4′ to 2′ bridged bicyclic nucleosides, include but are not limited to 4′-(CH2)—O-2′ (LNA); 4′-(CH2)—S-2′; 4′-(CH2)2—O-2′ (ENA); 4′-CH(CH3)—O-2′ (also referred to as “constrained ethyl” or “cEt”) and 4′-CH(CH2OCH3)—O-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 7,399,845); 4′-C(CH3)(CH3)—O-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,283); 4′-CH2—N(OCH3)-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,425); 4′-CH2—O—N(CH3)2-2′ (see, e.g., U.S. Patent Publication No. 2004/0171570); 4′-CH2—N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group (see, e.g., U.S. Pat. No. 7,427,672); 4′-CH2—C(H)(CH3)-2′ (see, e.g., Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134); and 4′-CH2—C(═CH2)-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 8,278,426). The entire contents of each of the foregoing are hereby incorporated herein by reference.


Additional representative U.S. Patents and US Patent Publications that teach the preparation of locked nucleic acid nucleotides include, but are not limited to, the following: U.S. Pat. Nos. 6,268,490; 6,525,191; 6,670,461; 6,770,748; 6,794,499; 6,998,484; 7,053,207; 7,034,133; 7,084,125; 7,399,845; 7,427,672; 7,569,686; 7,741,457; 8,022,193; 8,030,467; 8,278,425; 8,278,426; 8,278,283; US 2008/0039618; and US 2009/0012281, the entire contents of each of which are hereby incorporated herein by reference.


Any of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and β-D-ribofuranose (see WO 99/14226).


An oligonucleotide can be modified to include one or more constrained ethyl nucleosides. As used herein, a “constrained ethyl nucleoside” or “cEt” is a locked nucleoside comprising a bicyclic sugar moiety comprising a 4′-CH(CH3)—O-2′ bridge. In one aspect, a constrained ethyl nucleoside is in the S conformation referred to herein as “S-cEt.”


An oligonucleotide can include one or more “conformationally restricted nucleosides” (“CRN”). CRN are nucleoside analogs with a linker connecting the C2′ and C4′ carbons of ribose or the C3 and —C5′ carbons of ribose. CRN lock the ribose ring into a stable conformation and increase the hybridization affinity to mRNA. The linker is of sufficient length to place the oxygen in an optimal position for stability and affinity resulting in less ribose ring puckering.


Representative publications that teach the preparation of certain of the above noted CRN include, but are not limited to, US Patent Publication No. 2013/0190383; and PCT publication WO 2013/036868, the entire contents of each of which are hereby incorporated herein by reference.


In some aspects, an oligonucleotide comprises one or more monomers that are UNA (unlocked nucleoside) nucleosides. UNA is unlocked acyclic nucleoside, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomer with bonds between C1′-C4′ have been removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar has been removed (see Nuc. Acids Symp. Series, 52, 133-134 (2008) and Fluiter et al., Mol. Biosyst., 2009, 10, 1039 hereby incorporated by reference).


Representative U.S. publications that teach the preparation of UNA include, but are not limited to, U.S. Pat. No. 8,314,227; and US Patent Publication Nos. 2013/0096289; 2013/0011922; and 2011/0313020, the entire contents of each of which are hereby incorporated herein by reference.


The ribose molecule can be modified with a cyclopropane ring to produce a tricyclodeoxynucleic acid (tricyclo DNA). The ribose moiety can be substituted for another sugar such as 1,5,-anhydrohexitol, threose to produce a threose nucleoside (TNA), or arabinose to produce an arabino nucleoside. The ribose molecule can be replaced with non-sugars such as cyclohexene to produce cyclohexene nucleoside or glycol to produce glycol nucleosides.


Potentially stabilizing modifications to the ends of nucleoside molecules can include N-(acetylaminocaproyl)-4-hydroxyprolinol (Hyp-C6-NHAc), N-(caproyl-4-hydroxyprolinol (Hyp-C6), N-(acetyl-4-hydroxyprolinol (Hyp-NHAc), thymidine-2′-O-deoxythymidine (ether), N-(aminocaproyl)-4-hydroxyprolinol (Hyp-C6-amino), 2-docosanoyl-uridine-3″-phosphate, inverted base dT(idT) and others. Disclosure of this modification can be found in PCT Publication No. WO 2011/005861.


Other alternatives chemistries of an oligonucleotide include a 5′ phosphate or 5′ phosphate mimic, e.g., a 5′-terminal phosphate or phosphate mimic of an oligonucleotide. Suitable phosphate mimics are disclosed in, for example US Patent Publication No. 2012/0157511, the entire contents of which are incorporated herein by reference.


Exemplary oligonucleotides comprise nucleosides with alternative sugar moieties and can comprise DNA or RNA nucleosides. In some aspects, the oligonucleotide comprises nucleosides comprising alternative sugar moieties and DNA nucleosides. Incorporation of alternative nucleosides into the oligonucleotide can enhance the affinity of the oligonucleotide for the target nucleic acid. In that case, the alternative nucleosides can be referred to as affinity enhancing alternative nucleotides.


In some aspects, the oligonucleotide comprises at least 1 alternative nucleoside, such as at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15 or at least 16 alternative nucleosides. In other aspects, the oligonucleotides comprise from 1 to 10 alternative nucleosides, such as from 2 to 9 alternative nucleosides, such as from 3 to 8 alternative nucleosides, such as from 4 to 7 alternative nucleosides, such as 6 or 7 alternative nucleosides. In an aspect, the oligonucleotide can comprise alternatives, which are independently selected from these three types of alternatives (alternative sugar moiety, alternative nucleobase, and alternative internucleoside linkage), or a combination thereof. In one aspect, the oligonucleotide comprises one or more nucleosides comprising alternative sugar moieties, e.g., 2′ sugar alternative nucleosides. In some aspects, the oligonucleotide comprises the one or more 2′ sugar alternative nucleoside independently selected from the group consisting of 2′-O-alkyl-RNA, 2′-O-methyl-RNA, 2′-alkoxy-RNA, 2′-O-methoxyethyl-RNA, 2′-amino-DNA, 2′-fluoro-DNA, arabino nucleic acid (ANA), 2′-fluoro-ANA, and BNA (e.g., LNA) nucleosides. In some aspects, the one or more alternative nucleoside is a BNA.


In some aspects, at least 1 of the alternative nucleosides is a BNA (e.g., an LNA), such as at least 2, such as at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 of the alternative nucleosides are BNAs. In a still further aspect, all the alternative nucleosides are BNAs.


In a further aspect the oligonucleotide comprises at least one alternative internucleoside linkage. In some aspects, the internucleoside linkages within the contiguous nucleotide sequence are phosphorothioate or boronophosphate internucleoside linkages. In some aspects, all the internucleotide linkages in the contiguous sequence of the oligonucleotide are phosphorothioate linkages. In some aspects, the phosphorothioate linkages are stereochemically pure phosphorothioate linkages. In some aspects, the phosphorothioate linkages are Sp phosphorothioate linkages. In other aspects, the phosphorothioate linkages are Rp phosphorothioate linkages.


In some aspects, the oligonucleotide comprises at least one alternative nucleoside which is a 2′-MOE-RNA, such as 2, 3, 4, 5, 6, 7, 8, 9, or 10 2′-MOE-RNA nucleoside units. In some aspects, the 2′-MOE-RNA nucleoside units are connected by phosphorothioate linkages. In some aspects, at least one of said alternative nucleoside is 2′-fluoro DNA, such as 2, 3, 4, 5, 6, 7, 8, 9, or 10 2′-fluoro-DNA nucleoside units. In some aspects, the oligonucleotide comprises at least one BNA unit and at least one 2′ substituted modified nucleoside. In some aspects, the oligonucleotide comprises both 2′ sugar modified nucleosides and DNA units. In some aspects, the oligonucleotide or contiguous nucleotide region thereof is a gapmer oligonucleotide.


B. Oligonucleotides Conjugated to Ligands


Oligonucleotides can be chemically linked to one or more ligands, moieties, or conjugates that enhance the activity, cellular distribution, or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., (1989) Proc. Natl. Acid. Sci. USA, 86: 6553-6556), cholic acid (Manoharan et al., (1994) Biorg. Med. Chem. Let., 4:1053-1060), a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., (1992) Ann. N.Y. Acad. Sci., 660:306-309; Manoharan et al., (1993) Biorg. Med. Chem. Let., 3:2765-2770), a thiocholesterol (Oberhauser et al., (1992) Nucl. Acids Res., 20:533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., (1991) EMBO J, 10:1111-1118; Kabanov et al., (1990) FEBS Lett., 259:327-330; Svinarchuk et al., (1993) Biochimie, 75:49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-phosphonate (Manoharan et al., (1995) Tetrahedron Lett., 36:3651-3654; Shea et al., (1990) Nucl. Acids Res., 18:3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., (1995) Nucleosides & Nucleotides, 14:969-973), or adamantane acetic acid (Manoharan et al., (1995) Tetrahedron Lett., 36:3651-3654), a palmityl moiety (Mishra et al., (1995) Biochim. Biophys. Acta, 1264:229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., (1996) J. Pharmacol. Exp. Ther., 277:923-937).


In one aspect, a ligand alters the distribution, targeting, or lifetime of an oligonucleotide agent into which it is incorporated. In some aspects, a ligand provides an enhanced affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ, or region of the body, as, e.g., compared to a species absent such a ligand.


Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin, N-acetylglucosamine, N-acetylgalactosamine, or hyaluronic acid); or a lipid. The ligand can be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.


Ligands can include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, vitamin A, biotin, or an RGD peptide or RGD peptide mimetic.


Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralen, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.


Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a hepatic cell. Ligands can include hormones and hormone receptors. They can include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, or multivalent fucose.


The ligand can be a substance, e.g., a drug, which can increase the uptake of the oligonucleotide agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.


In some aspects, a ligand attached to an oligonucleotide as described herein acts as a pharmacokinetic modulator (PK modulator). PK modulators include lipophiles, bile acids, steroids, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc. Exemplary PK modulators include, but are not limited to, cholesterol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, phospholipids, sphingolipids, naproxen, ibuprofen, vitamin E, biotin etc. Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases, or 20 bases, comprising multiple of phosphorothioate linkages in the backbone are also amenable as ligands (e.g. as PK modulating ligands). In addition, aptamers that bind serum components (e.g. serum proteins) are also suitable for use as PK modulating ligands in the aspects described herein.


Ligand-conjugated oligonucleotides can be synthesized by the use of an oligonucleotide that bears a pendant reactive functionality, such as that derived from the attachment of a linking molecule onto the oligonucleotide (described below). This reactive oligonucleotide can be reacted directly with commercially-available ligands, ligands that are synthesized bearing any of a variety of protecting groups, or ligands that have a linking moiety attached thereto.


The oligonucleotides used in the conjugates can be conveniently and routinely made through the well-known technique of solid-phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art can additionally or alternatively be employed. It is also known to use similar techniques to prepare other oligonucleotides, such as the phosphorothioates and alkylated derivatives.


In the ligand-conjugated oligonucleotides, such as the ligand-molecule bearing sequence-specific linked nucleosides, the oligonucleotides and oligonucleosides can be assembled on a suitable DNA synthesizer utilizing standard nucleotide or nucleoside precursors, or nucleotide or nucleoside conjugate precursors that already bear the linking moiety, ligand-nucleotide or nucleoside-conjugate precursors that already bear the ligand molecule, or non-nucleoside ligand-bearing building blocks.


When using conjugate precursors that already bear a linking moiety, the synthesis of the sequence-specific linked nucleosides is typically completed, and the ligand molecule is then reacted with the linking moiety to form the ligand-conjugated oligonucleotide. In some aspects, the oligonucleotides or linked nucleosides are synthesized by an automated synthesizer using phosphoramidites derived from ligand-nucleoside conjugates in addition to the standard phosphoramidites and non-standard phosphoramidites that are commercially available and routinely used in oligonucleotide synthesis.


i. Lipid Conjugates


In one aspect, the ligand or conjugate is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule can bind a serum protein, e.g., human serum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-kidney target tissue of the body. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a serum protein, e.g., HSA.


In another aspect, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. Exemplary vitamins include vitamin A, E, and K.


ii. Cell Permeation Agents


In another aspect, the ligand is a cell-permeation agent, such a helical cell-permeation agent. In one aspect, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. In some aspects, the helical agent is an alpha-helical agent, which can have a lipophilic and a lipophobic phase.


The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The attachment of peptide and peptidomimetics to oligonucleotide agents can affect pharmacokinetic distribution of the oligonucleotide, such as by enhancing cellular recognition and absorption. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.


A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp, or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP. An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP containing a hydrophobic MTS can be a targeting moiety. The peptide moiety can be a “delivery” peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK have been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Examples of a peptide or peptidomimetic tethered to an oligonucleotide agent via an incorporated monomer unit for cell targeting purposes is an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.


An RGD peptide for use in the compositions and methods can be linear or cyclic, and can be modified, e.g., glycosylated or methylated, to facilitate targeting to a specific tissue(s). RGD-containing peptides and peptidiomimemtics can include D-amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the integrin ligand. Some conjugates of this ligand target PECAM-1 or VEGF.


A cell permeation peptide is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α-helical linear peptide (e.g., LL-37 or Ceropin P1), a disulfide bond-containing peptide (e.g., α-defensin, β-defensin, or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-1 gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).


iii. Carbohydrate Conjugates


In some aspects of the compositions and methods described herein, an oligonucleotide further comprises a carbohydrate. The carbohydrate conjugated oligonucleotides are advantageous for the in vivo delivery of nucleic acids, as well as compositions suitable for in vivo therapeutic use, as described herein. As used herein, “carbohydrate” refers to a compound which is either a carbohydrate per se made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom; or a compound having as a part thereof a carbohydrate moiety made up of one or more monosaccharide units each having at least six carbon atoms (which can be linear, branched or cyclic), with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Representative carbohydrates include the sugars (mono-, di-, tri- and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides such as starches, glycogen, cellulose and polysaccharide gums. Specific monosaccharides include C5 and above (e.g., C5, C6, C7, or C8) sugars; di- and trisaccharides include sugars having two or three monosaccharide units (e.g., C5, C6, C7, or C8).


In one aspect, a carbohydrate conjugate for use in the compositions and methods described herein is a monosaccharide.


In some aspects, the carbohydrate conjugate further comprises one or more additional ligands as described above, such as, but not limited to, a PK modulator and/or a cell permeation peptide.


Additional carbohydrate conjugates (and linkers) suitable for use include those described in PCT Publication Nos. WO 2014/179620 and WO 2014/179627, the entire contents of each of which are incorporated herein by reference.


iv. Linkers


In some aspects, the conjugate or ligand described herein can be attached to an oligonucleotide with various linkers that can be cleavable or non-cleavable.


Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NRB, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as, but not limited to, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(R8), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R8 is hydrogen, acyl, aliphatic or substituted aliphatic. In one aspect, the linker is between about 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 6-18, 7-18, 8-18, 7-17, 8-17, 6-16, 7-17, 8-16 or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, or 24 atoms.


A cleavable linking group is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In some aspects, the cleavable linking group is cleaved at least about 10 times, 20, times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, or more, or at least about 100 times faster in a target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).


Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential, or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selective for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linkage group, such as a disulfide bond can be susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable linking group that is cleaved at a preferred pH, thereby releasing a cationic lipid from the ligand inside the cell, or into the desired compartment of the cell.


A linker can include a cleavable linking group that is cleavable by a particular enzyme. The type of cleavable linking group incorporated into a linker can depend on the cell to be targeted. For example, a liver-targeting ligand can be linked to a cationic lipid through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase-rich. Other cell-types rich in esterases include cells of the lung, renal cortex, and testis.


Linkers that contain peptide bonds can be used when targeting cell types rich in peptidases, such as liver cells and synoviocytes.


In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between at least two conditions, where at least one condition is selected to be indicative of cleavage in a target cell and another conditions is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It can be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In some aspects, useful candidate compounds are cleaved at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


a. Redox Cleavable Linking Groups


In one aspect, a cleavable linking group is a redox cleavable linking group that is cleaved upon reduction or oxidation. An example of reductively cleavable linking group is a disulphide linking group (—S—S—). To determine if a candidate cleavable linking group is a suitable “reductively cleavable linking group,” or for example is suitable for use with a particular oligonucleotide moiety and particular targeting agent one can look to methods described herein. For example, a candidate can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell. The candidates can be evaluated under conditions which are selected to mimic blood or serum conditions. In one aspect, candidate compounds are cleaved by at most about 10% in the blood. In other aspects, useful candidate compounds are degraded at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions). The rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.


b. Phosphate-Based Cleavable Linking Groups


In another aspect, a cleavable linker comprises a phosphate-based cleavable linking group. A phosphate-based cleavable linking group is cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells. Examples of phosphate-based linking groups are —O—P(O)(ORk)—O—, —O—P(S)(ORk)—O—, —O—P(S)(SRk)—O—, —S—P(O)(ORk)—O—, —O—P(O)(ORk)—S—, —S—P(O)(ORk)—S—, —O—P(S)(ORk)—S—, —S—P(S)(ORk)—O—, —O—P(O)(Rk)—O—, —O—P(S)(Rk)—O—, —S—P(O)(Rk)—O—, —S—P(S)(Rk)—O—, —S—P(O)(Rk)—S—, —O—P(S)(Rk)—S—. These candidates can be evaluated using methods analogous to those described above.


c. Acid Cleavable Linking Groups


In another aspect, a cleavable linker comprises an acid cleavable linking group. An acid cleavable linking group is a linking group that is cleaved under acidic conditions. In some aspects, acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.75, 5.5, 5.25, 5.0, or lower), or by agents such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups. Examples of acid cleavable linking groups include but are not limited to hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). In one aspect, the carbon is attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


d. Ester-Based Linking Groups


In another aspect, a cleavable linker comprises an ester-based cleavable linking group. An ester-based cleavable linking group is cleaved by enzymes such as esterases and amidases in cells. Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups. Ester cleavable linking groups have the general formula —C(O)O—, or —OC(O)—. These candidates can be evaluated using methods analogous to those described above.


e. Peptide-Based Cleaving Groups


In yet another aspect, a cleavable linker comprises a peptide-based cleavable linking group. A peptide-based cleavable linking group is cleaved by enzymes such as peptidases and proteases in cells. Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene, or alkynelene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHRBC(O)—, where RA and RB are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.


In one aspect, an oligonucleotide is conjugated to a carbohydrate through a linker. Linkers include bivalent and trivalent branched linker groups. Linkers for oligonucleotide carbohydrate conjugates include, but are not limited to, those described in formulas 24-35 of PCT Publication No. WO 2018/195165.


Representative U.S. patents that teach the preparation of oligonucleotide conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941; 6,294,664; 6,320,017; 6,576,752; 6,783,931; 6,900,297; 7,037,646; 8,106,022, the entire contents of each of which are hereby incorporated herein by reference.


It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications can be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. Oligonucleotide compounds that are chimeric compounds are also contemplated. Chimeric oligonucleotides typically contain at least one region wherein the RNA is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide can serve as a substrate for enzymes capable of cleaving RNA:DNA. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxy oligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.


In certain instances, the nucleotides of an oligonucleotide can be modified by a non-ligand group. A number of non-ligand molecules have been conjugated to oligonucleotides in order to enhance the activity, cellular distribution, or cellular uptake of the oligonucleotide, and procedures for performing such conjugations are available in the scientific literature. Such non-ligand moieties have included lipid moieties, such as cholesterol (Kubo, T. et al., Biochem. Biophys. Res. Comm, 2007, 365(1):54-61; Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86:6553), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4:1053), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3:2765), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10:111; Kabanov et al., FEBS Lett., 1990, 259:327; Svinarchuk et al., Biochimie, 1993, 75:49), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651; Shea et al., Nucl. Acids Res., 1990, 18:3777), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923). Representative United States patents that teach the preparation of such oligonucleotide conjugates have been listed above. Typical conjugation protocols involve the synthesis of an oligonucleotide bearing an aminolinker at one or more positions of the sequence. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction can be performed either with the oligonucleotide still bound to the solid support or following cleavage of the oligonucleotide, in solution phase. Purification of the oligonucleotide conjugate by HPLC typically affords the pure conjugate.


IV. Pharmaceutical Uses


The oligonucleotide compositions described herein are useful in the methods described herein, and, while not bound by theory, are believed to exert their desirable effects through their ability to modulate the level, status, and/or activity of a MutLy heterodimer comprising MLH3, e.g., by inhibiting the activity or level of the MLH3 protein in a cell in a mammal.


An aspect relates to methods of treating disorders related to DNA mismatch repair such as trinucleotide repeat expansion disorders in a subject in need thereof. Another aspect includes reducing the level of MLH3 in a cell of a subject identified as having a trinucleotide repeat expansion disorder. Still another aspect includes a method of inhibiting expression of MLH3 in a cell in a subject. Further aspects include methods of decreasing trinucleotide repeat expansion in a cell. The methods include contacting a cell with an oligonucleotide, in an amount effective to inhibit expression of MLH3 in the cell, thereby inhibiting expression of MLH3 in the cell.


Based on the above methods, an oligonucleotide described herein, or a composition comprising such an oligonucleotide, for use in therapy, or for use as a medicament, or for use in treating disorders related to DNA mismatch repair such as trinucleotide repeat expansion disorders in a subject in need thereof, or for use in reducing the level of MLH3 in a cell of a subject identified as having a trinucleotide repeat expansion disorder, or for use in inhibiting expression of MLH3 in a cell in a subject, or for use in decreasing trinucleotide repeat expansion in a cell is contemplated. The uses include the contacting of a cell with the oligonucleotide, in an amount effective to inhibit expression of MLH3 in the cell, thereby inhibiting expression of MLH3 in the cell. Aspects described below in relation to the methods described herein are also applicable to these further aspects.


Contacting of a cell with an oligonucleotide can be done in vitro or in vivo. Contacting a cell in vivo with the oligonucleotide includes contacting a cell or group of cells within a subject, e.g., a human subject, with the oligonucleotide. Combinations of in vitro and in vivo methods of contacting a cell are also possible. Contacting a cell can be direct or indirect, as discussed above. Furthermore, contacting a cell can be accomplished via a targeting ligand, including any ligand described herein or known in the art. In some aspects, the targeting ligand is a carbohydrate moiety, e.g., a GalNAc3 ligand, or any other ligand that directs the oligonucleotide to a site of interest. Cells can include those of the central nervous system, or muscle cells.


Inhibiting expression of a MLH3 gene includes any level of inhibition of a MLH3 gene, e.g., at least partial suppression of the expression of a MLH3 gene, such as an inhibition by at least about 20%. In some aspects, inhibition is by at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.


The expression of a MLH3 gene can be assessed based on the level of any variable associated with MLH3 gene expression, e.g., MLH3 mRNA level or MLH3 protein level.


Inhibition can be assessed by a decrease in an absolute or relative level of one or more of these variables compared with a control level. The control level can be any type of control level that is utilized in the art, e.g., a pre-dose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, e.g., buffer only control or inactive agent control).


In some aspects, surrogate markers can be used to detect inhibition of MLH3. For example, effective treatment of a trinucleotide repeat expansion disorder, as demonstrated by acceptable diagnostic and monitoring criteria with an agent to reduce MLH3 expression can be understood to demonstrate a clinically relevant reduction in MLH3.


In some aspects of the methods described herein, expression of a MLH3 gene is inhibited by at least 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%, or to below the level of detection of the assay. In some aspects, the methods include a clinically relevant inhibition of expression of MLH3, e.g., as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to reduce the expression of MLH3.


Inhibition of the expression of a MLH3 gene can be manifested by a reduction of the amount of mRNA expressed by a first cell or group of cells (such cells can be present, for example, in a sample derived from a subject) in which a MLH3 gene is transcribed and which has or have been treated (e.g., by contacting the cell or cells with an oligonucleotide, or by administering an oligonucleotide to a subject in which the cells are or were present) such that the expression of a MLH3 gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has not or have not been so treated (control cell(s) not treated with an oligonucleotide or not treated with an oligonucleotide targeted to the gene of interest). The degree of inhibition can be expressed in terms of:









(

mRNA





in





control





cells

)

-

(

mRNA





in





treated





cells

)



(

mRNA





in





control





cells

)


×
100

%




In other aspects, inhibition of the expression of a MLH3 gene can be assessed in terms of a reduction of a parameter that is functionally linked to MLH3 gene expression, e.g., MLH3 protein expression or MLH3 signaling pathways. MLH3 gene silencing can be determined in any cell expressing MLH3, either endogenous or heterologous from an expression construct, and by any assay known in the art.


Inhibition of the expression of a MLH3 protein can be manifested by a reduction in the level of the MLH3 protein that is expressed by a cell or group of cells (e.g., the level of protein expressed in a sample derived from a subject). As explained above, for the assessment of mRNA suppression, the inhibition of protein expression levels in a treated cell or group of cells can similarly be expressed as a percentage of the level of protein in a control cell or group of cells.


A control cell or group of cells that can be used to assess the inhibition of the expression of a MLH3 gene includes a cell or group of cells that has not yet been contacted with an oligonucleotide described herein. For example, the control cell or group of cells can be derived from an individual subject (e.g., a human or animal subject) prior to treatment of the subject with an oligonucleotide.


The level of MLH3 mRNA that is expressed by a cell or group of cells can be determined using any method known in the art for assessing mRNA expression. In one aspect, the level of expression of MLH3 in a sample is determined by detecting a transcribed polynucleotide, or portion thereof, e.g., mRNA of the MLH3 gene. RNA can be extracted from cells using RNA extraction techniques including, for example, using acid phenol/guanidine isothiocyanate extraction (RNAzol B; Biogenesis), RNEASY™ RNA preparation kits (Qiagen) or PAXgene (PreAnalytix, Switzerland). Typical assay formats utilizing ribonucleic acid hybridization include nuclear run-on assays, RT-PCR, RNase protection assays, northern blotting, in situ hybridization, and microarray analysis. Circulating MLH3 mRNA can be detected using methods the described in PCT Publication WO2012/177906, the entire contents of which are hereby incorporated herein by reference. In some aspects, the level of expression of MLH3 is determined using a nucleic acid probe. The term “probe,” as used herein, refers to any molecule that is capable of selectively binding to a specific MLH3 sequence, e.g. to an mRNA or polypeptide. Probes can be synthesized by one of skill in the art, or derived from appropriate biological preparations. Probes can be specifically designed to be labeled. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.


Isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or northern analyses, polymerase chain reaction (PCR) analyses, and probe arrays. One method for the determination of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to MLH3 mRNA. In one aspect, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative aspect, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in an AFFYMETRIX gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in determining the level of MLH3 mRNA.


An alternative method for determining the level of expression of MLH3 in a sample involves the process of nucleic acid amplification and/or reverse transcriptase (to prepare cDNA) of for example mRNA in the sample, e.g., by RT-PCR (the experimental aspect set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189-193), self-sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), rolling circle replication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. In some aspects, the level of expression of MLH3 is determined by quantitative fluorogenic RT-PCR (i.e., the TAQMAN™ System) or the DUAL-GLO® Luciferase assay.


The expression levels of MLH3 mRNA can be monitored using a membrane blot (such as used in hybridization analysis such as northern, Southern, dot, and the like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Pat. Nos. 5,770,722; 5,874,219; 5,744,305; 5,677,195; and 5,445,934, which are incorporated herein by reference. The determination of MLH3 expression level can comprise using nucleic acid probes in solution.


In some aspects, the level of mRNA expression is assessed using branched DNA (bDNA) assays or real time PCR (qPCR). The use of this PCR method is described and exemplified in the Examples presented herein. Such methods can be used for the detection of MLH3 nucleic acids.


The level of MLH3 protein expression can be determined using any method known in the art for the measurement of protein levels. Such methods include, for example, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, fluid or gel precipitin reactions, absorption spectroscopy, a colorimetric assays, spectrophotometric assays, flow cytometry, immunodiffusion (single or double), immunoelectrophoresis, western blotting, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, electrochemiluminescence assays, and the like. Such assays can be used for the detection of proteins indicative of the presence or replication of MLH3 proteins.


In some aspects of the methods described herein, the oligonucleotide is administered to a subject such that the oligonucleotide is delivered to a specific site within the subject. The inhibition of expression of MLH3 can be assessed using measurements of the level or change in the level of MLH3 mRNA or MLH3 protein in a sample derived from a specific site within the subject. In some aspects, the methods include a clinically relevant inhibition of expression of MLH3, e.g., as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to reduce the expression of MLH3.


In other aspects, the oligonucleotide is administered in an amount and for a time effective to result in one of (or more, e.g., two or more, three or more, four or more of): (a) decrease the number of trinucleotide repeats, (b) decrease the level of polyglutamine, (c) decreased cell death (e.g., CNS cell death and/or muscle cell death), (d) delayed onset of the disorder, (e) increased survival of subject, and (f) increased progression free survival of a subject.


Treating trinucleotide repeat expansion disorders can result in an increase in average survival time of an individual or a population of subjects treated with an oligonucleotide described herein in comparison to a population of untreated subjects. For example, the survival time of an individual or average survival time of a population is increased by more than 30 days (more than 60 days, 90 days, or 120 days). An increase in survival time of an individual or in average survival time of a population can be measured by any reproducible means. An increase in survival time of an individual can be measured, for example, by calculating for an individual the length of survival time following the initiation of treatment with the compound described herein. An increase in average survival time of a population can be measured, for example, by calculating for the average length of survival time following initiation of treatment with the compound described herein. An increase in survival time of an individual can be measured, for example, by calculating for an individual length of survival time following completion of a first round of treatment with a compound or pharmaceutically acceptable salt of a compound described herein. An increase in average survival time of a population can be measured, for example, by calculating for a population the average length of survival time following completion of a first round of treatment with a compound or pharmaceutically acceptable salt of a compound described herein.


Treating trinucleotide repeat expansion disorders can result in a decrease in the mortality rate of a population of treated subjects in comparison to an untreated population. For example, the mortality rate is decreased by more than 2% (e.g., more than 5%, 10%, or 25%). A decrease in the mortality rate of a population of treated subjects can be measured by any reproducible means, for example, by calculating for a population the average number of disease-related deaths per unit time following initiation of treatment with a compound or pharmaceutically acceptable salt of a compound described herein. A decrease in the mortality rate of a population can be measured, for example, by calculating for a population the average number of disease-related deaths per unit time following completion of a first round of treatment with a compound or pharmaceutically acceptable salt of a compound described herein.


A. Delivery of anti-MLH3 Agents


The delivery of an oligonucleotide to a cell e.g., a cell within a subject, such as a human subject e.g., a subject in need thereof, such as a subject having a trinucleotide repeat expansion disorder can be achieved in a number of different ways. For example, delivery can be performed by contacting a cell with an oligonucleotide described herein either in vitro or in vivo. In vivo delivery can be performed directly by administering a composition comprising an oligonucleotide to a subject. These alternatives are discussed further below.


In general, any method of delivering a nucleic acid molecule (in vitro or in vivo) can be adapted for use with an oligonucleotide (see e.g., Akhtar S. and Julian R L., (1992) Trends Cell. Biol. 2(5):139-144 and WO94/02595, which are incorporated herein by reference in their entireties). For in vivo delivery, factors to consider in order to deliver an oligonucleotide molecule include, for example, biological stability of the delivered molecule, prevention of non-specific effects, and accumulation of the delivered molecule in the target tissue. The non-specific effects of an oligonucleotide can be minimized by local administration, for example, by direct injection or implantation into a tissue or topically administering the preparation. Local administration to a treatment site maximizes local concentration of the agent, limits the exposure of the agent to systemic tissues that can otherwise be harmed by the agent or that can degrade the agent, and permits a lower total dose of the oligonucleotide to be administered.


For administering an oligonucleotide systemically for the treatment of a disease, the oligonucleotide can include alternative nucleobases, alternative sugar moieties, and/or alternative internucleoside linkages, or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the oligonucleotide by endo- and exo-nucleases in vivo. Modification of the oligonucleotide or the pharmaceutical carrier can permit targeting of the oligonucleotide composition to the target tissue and avoid undesirable off-target effects. Oligonucleotide molecules can be modified by chemical conjugation to lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. In an alternative aspect, the oligonucleotide can be delivered using drug delivery systems such as a nanoparticle, a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of an oligonucleotide molecule (negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of an oligonucleotide by the cell. Cationic lipids, dendrimers, or polymers can either be bound to an oligonucleotide, or induced to form a vesicle or micelle that encases an oligonucleotide. The formation of vesicles or micelles further prevents degradation of the oligonucleotide when administered systemically. In general, any methods of delivery of nucleic acids known in the art can be adaptable to the delivery of the oligonucleotides described herein. Methods for making and administering cationic oligonucleotide complexes are well within the abilities of one skilled in the art (see e.g., Sorensen, D R., et al. (2003) J. Mol. Biol 327:761-766; Verma, U N. et al., (2003) Clin. Cancer Res. 9:1291-1300; Arnold, A S et al., (2007) J. Hypertens. 25:197-205, which are incorporated herein by reference in their entirety). Some non-limiting examples of drug delivery systems useful for systemic delivery of oligonucleotides include DOTAP (Sorensen, D R., et al (2003), supra; Verma, U N. et al., (2003), supra), Oligofectamine, “solid nucleic acid lipid particles” (Zimmermann, T S. et al., (2006) Nature 441:111-114), cardiolipin (Chien, P Y. et al., (2005) Cancer Gene Ther. 12:321-328; Pal, A. et al., (2005) Int J. Oncol. 26:1087-1091), polyethyleneimine (Bonnet M E. et al., (2008) Pharm. Res. August 16 Epub ahead of print; Aigner, A. (2006) J. Biomed. Biotechnol. 71659), Arg-Gly-Asp (RGD) peptides (Liu, S. (2006) Mol. Pharm. 3:472-487), and polyamidoamines (Tomalia, D A. et al., (2007) Biochem. Soc. Trans. 35:61-67; Yoo, H. et al., (1999) Pharm. Res. 16:1799-1804). In some aspects, an oligonucleotide forms a complex with cyclodextrin for systemic administration. Methods for administration and pharmaceutical compositions of oligonucleotides and cyclodextrins can be found in U.S. Pat. No. 7,427,605, which is herein incorporated by reference in its entirety. In some aspects, the oligonucleotides described herein are delivered by polyplex or lipoplex nanoparticles. Methods for administration and pharmaceutical compositions of oligonucleotides and polyplex nanoparticles and lipoplex nanoparticles can be found in U.S. Patent Application Nos. 2017/0121454; 2016/0369269; 2016/0279256; 2016/0251478; 2016/0230189; 2015/0335764; 2015/0307554; 2015/0174549; 2014/0342003; 2014/0135376; and 2013/0317086, which are herein incorporated by reference in their entirety.


i. Membranous Molecular Assembly Delivery Methods


The oligonucleotides can be delivered using a variety of membranous molecular assembly delivery methods including polymeric, biodegradable microparticle, or microcapsule delivery devices known in the art. For example, a colloidal dispersion system can be used for targeted delivery of an oligonucleotide agent described herein. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. Liposomes are artificial membrane vesicles that are useful as delivery vehicles in vitro and in vivo. It has been shown that large unilamellar vesicles (LUV), which range in size from 0.2-4.0 μm can encapsulate a substantial percentage of an aqueous buffer containing large macromolecules. Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes. As the merging of the liposome and cell progresses, the internal aqueous contents that include the oligonucleotide are delivered into the cell where the oligonucleotide can specifically bind to a target RNA and can mediate RNase H-mediated gene silencing. In some cases, the liposomes are also specifically targeted, e.g., to direct the oligonucleotide to particular cell types. The composition of the liposome is usually a combination of phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids can be used. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.


A liposome containing an oligonucleotide can be prepared by a variety of methods. In one example, the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component. For example, the lipid component can be an amphipathic cationic lipid or lipid conjugate. The detergent can have a high critical micelle concentration and can be nonionic. Exemplary detergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine. The oligonucleotide preparation is then added to the micelles that include the lipid component. The cationic groups on the lipid interact with the oligonucleotide and condense around the oligonucleotide to form a liposome. After condensation, the detergent is removed, e.g., by dialysis, to yield a liposomal preparation of oligonucleotide.


If necessary, a carrier compound that assists in condensation can be added during the condensation reaction, e.g., by controlled addition. For example, the carrier compound can be a polymer other than a nucleic acid (e.g., spermine or spermidine). The pH can be adjusted to favor condensation.


Methods for producing stable polynucleotide delivery vehicles, which incorporate a polynucleotide/cationic lipid complex as a structural component of the delivery vehicle, are further described in, e.g., WO 96/37194, the entire contents of which are incorporated herein by reference. Liposome formation can include one or more aspects of exemplary methods described in Feigner, P. L. et al., (1987) Proc. Natl. Acad. Sci. USA 8:7413-7417; U.S. Pat. Nos. 4,897,355; 5,171,678; Bangham et al., (1965) M. Mol. Biol. 23:238; Olson et al., (1979) Biochim. Biophys. Acta 557:9; Szoka et al., (1978) Proc. Natl. Acad. Sci. 75: 4194; Mayhew et al., (1984) Biochim. Biophys. Acta 775:169; Kim et al., (1983) Biochim. Biophys. Acta 728:339; and Fukunaga et al., (1984) Endocrinol. 115:757. Commonly used techniques for preparing lipid aggregates of appropriate size for use as delivery vehicles include sonication and freeze-thaw plus extrusion (see, e.g., Mayer et al., (1986) Biochim. Biophys. Acta 858:161. Microfluidization can be used when consistently small (50 to 200 nm) and relatively uniform aggregates are desired (Mayhew et al., (1984) Biochim. Biophys. Acta 775:169). These methods are readily adapted to packaging oligonucleotide preparations into liposomes.


Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged nucleic acid molecules to form a stable complex. The positively charged nucleic acid/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al. (1987) Biochem. Biophys. Res. Commun., 147:980-985).


Liposomes, which are pH-sensitive or negatively charged, entrap nucleic acids rather than complex with them. Since both the nucleic acid and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid is entrapped within the aqueous interior of these liposomes. pH sensitive liposomes have been used to deliver nucleic acids encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al. (1992) Journal of Controlled Release, 19:269-274).


One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.


Examples of other methods to introduce liposomes into cells in vitro and in vivo include U.S. Pat. Nos. 5,283,185; 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Feigner, (1994) J. Biol. Chem. 269:2550; Nabel, (1993) Proc. Natl. Acad. Sci. 90:11307; Nabel, (1992) Human Gene Ther. 3:649; Gershon, (1993) Biochem. 32:7143; and Strauss, (1992) EMBO J. 11:417.


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising NOVASOME™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and NOVASOME™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporine A into different layers of the skin (Hu et al., (1994) S.T.P. Pharma. Sci., 4(6):466).


Liposomes can be sterically stabilized liposomes, comprising one or more specialized lipids that result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM1, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., (1987) FEBS Letters, 223:42; Wu et al., (1993) Cancer Research, 53:3765).


Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., (1987), 507:64) reported the ability of monosialoganglioside GM1, galactocerebroside sulfate, and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., (1988), 85:6949). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1 or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al).


In one aspect, cationic liposomes are used. Cationic liposomes possess the advantage of being able to fuse to the cell membrane. Non-cationic liposomes, although not able to fuse as efficiently with the plasma membrane, are taken up by macrophages in vivo and can be used to deliver oligonucleotides to macrophages.


Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated oligonucleotides in their internal compartments from metabolism and degradation (Rosoff, in “Pharmaceutical Dosage Forms,” Lieberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.


A positively charged synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fusing with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of oligonucleotide (see, e.g., Feigner, P. L. et al., (1987) Proc. Natl. Acad. Sci. USA 8:7413-7417, and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA).


A DOTMA analogue, 1,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospholipid to form DNA-complexing vesicles. LIPOFECTIN™ Bethesda Research Laboratories, Gaithersburg, Md.) is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise positively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleotides to form complexes. When enough positively charged liposomes are used, the net charge on the resulting complexes is also positive. Positively charged complexes prepared in this way spontaneously attach to negatively charged cell surfaces, fuse with the plasma membrane, and efficiently deliver functional nucleic acids into, for example, tissue culture cells. Another commercially available cationic lipid, 1,2-bis(oleoyloxy)-3,3-(trimethylammonia)propane (“DOTAP”) (Boehringer Mannheim, Indianapolis, Ind.) differs from DOTMA in that the oleoyl moieties are linked by ester, rather than ether linkages.


Other reported cationic lipid compounds include those that have been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5-carboxyspermylglycine dioctaoleoylamide (“DOGS”) (TRANSFECTAM™, Promega, Madison, Wis.) and dipalmitoylphosphatidylethanolamine 5-carboxyspermyl-amide (“DPPES”) (see, e.g., U.S. Pat. No. 5,171,678).


Another cationic lipid conjugate includes derivatization of the lipid with cholesterol (“DC-Choi”) which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., (1991) Biochim. Biophys. Res. Commun. 179:280). Lipopolylysine, made by conjugating polylysine to DOPE, has been reported to be effective for transfection in the presence of serum (Zhou, X. et al., (1991) Biochim. Biophys. Acta 1065:8). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions. Other commercially available cationic lipid products include DMRIE and DMRIE-HP (Vical, La Jolla, Calif.) and Lipofectamine (DOSPA) (Life Technology, Inc., Gaithersburg, Md.). Other cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.


Liposomal formulations are particularly suited for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer oligonucleotide into the skin. In some implementations, liposomes are used for delivering oligonucleotide to epidermal cells and also to enhance the penetration of oligonucleotide into dermal tissues, e.g., into skin. For example, the liposomes can be applied topically. Topical delivery of drugs formulated as liposomes to the skin has been documented (see, e.g., Weiner et al., (1992) Journal of Drug Targeting, vol. 2, 405-410 and du Plessis et al., (1992) Antiviral Research, 18:259-265; Mannino, R. J. and Fould-Fogerite, S., (1998) Biotechniques 6:682-690; Itani, T. et al., (1987) Gene 56:267-276; Nicolau, C. et al. (1987) Meth. Enzymol. 149:157-176; Straubinger, R. M. and Papahadjopoulos, D. (1983) Meth. Enzymol. 101:512-527; Wang, C. Y. and Huang, L., (1987) Proc. Natl. Acad. Sci. USA 84:7851-7855).


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising NOVASOME I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and NOVASOME II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into the dermis of mouse skin. Such formulations with oligonucleotides are useful for treating a dermatological disorder.


The targeting of liposomes is also possible based on, for example, organ-specificity, cell-specificity, and organelle-specificity and is known in the art. In the case of a liposomal targeted delivery system, lipid groups can be incorporated into the lipid bilayer of the liposome to maintain the targeting ligand in stable association with the liposomal bilayer. Various linking groups can be used for joining the lipid chains to the targeting ligand. Additional methods are known in the art and are described, for example in U.S. Patent Application Publication No. 20060058255, the linking groups of which are herein incorporated by reference.


Liposomes that include oligonucleotides can be made highly deformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome. For example, transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes can be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes that include oligonucleotides can be delivered, for example, subcutaneously by infection to deliver oligonucleotides to keratinocytes in the skin. To cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transfersomes can be self-optimizing (adaptive to the shape of pores, e.g., in the skin), self-repairing, and can frequently reach their targets without fragmenting, and often self-loading. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.


Other suitable formulations are described in U.S. provisional application Ser. No. 61/018,616, filed Jan. 2, 2008; 61/018,611, filed Jan. 2, 2008; 61/039,748, filed Mar. 26, 2008; 61/047,087, filed Apr. 22, 2008 and 61/051,528, filed May 8, 2008. PCT application No. PCT/US2007/080331, filed Oct. 3, 2007 also describes suitable formulations.


Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general, their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.


If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.


If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.


If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines, and phosphatides.


The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


The oligonucleotides for use in the methods can be provided as micellar formulations. Micelles are a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.


ii. Lipid Nanoparticle-Based Delivery Methods


Oligonucleotides can be fully encapsulated in a lipid formulation, e.g., a lipid nanoparticle (LNP), or other nucleic acid-lipid particle. LNPs are extremely useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site). LNPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in PCT Publication No. WO 00/03683. The particles typically have a mean diameter of about 50 nm to about 150 nm, more typically about 60 nm to about 130 nm, more typically about 70 nm to about 110 nm, most typically about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; U.S. Publication No. 2010/0324120 and PCT Publication No. WO 96/40964.


In one aspect, the lipid to drug ratio (mass/mass ratio) (e.g., lipid to oligonucleotide ratio) will be in the range of from about 1:1 to about 50:1, from about 1:1 to about 25:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1. Ranges intermediate to the above recited ranges are also contemplated.


Non-limiting examples of cationic lipids include N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP), N-(1-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA), N,N-dimethyl-2,3-dioleyloxy)propylamine (DODMA), 1,2-DiLinoleyloxy-N,N-dimethylaminopropane (DLinDMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLenDMA), 1,2-Dilinoleylcarbamoyloxy-3-dimethylaminopropane (DLin-C-DAP), (dimethylamino)acetoxypropane (DLin-DAC), 1,2-Dilinoleyoxy-3-morpholinopropane (DLin-MA), 1,2-Dilinoleoyl-3-dimethylaminopropane (DLinDAP), 1,2-Dilinoleylthio-3-dimethylaminopropane (DLin-S-DMA), 1-Linoleoyl-2-linoleyloxy-3-dimethylaminopropane (DLin-2-DMAP), 1,2-Dilinoleyloxy-3-trimethylaminopropane chloride salt (DLin-TMA.Cl), 1,2-Dilinoleoyl-3-trimethylaminopropane chloride salt (DLin-TAP.Cl), 1,2-Dilinoleyloxy-3-(N-methylpiperazino)propane (DLin-MPZ), or 3-(N,N-Dilinoleylamino)-1,2-propanediol (DLinAP), 3-(N,N-Dioleylamino)-1,2-propanedio (DOAP), 1,2-Dilinoleyloxo-3-(2-N,N-dimethylamino)ethoxypropane (DLin-EG-DMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA), 2,2-Dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane (DLin-K-DMA) or analogs thereof, (3aR,5s,6aS)—N,N-dimethyl-2,2-di((9Z,12Z)-octadeca-9,12-dienyetetrahydro-3aH-cyclopenta[d][1,3]dioxol-5-amine (ALN100), (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl4-(dimethylamino)butanoate (MC3), 1,1′-(2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl)piperazin-1-yeethylazanediyedidodecan-2-01 (Tech G1), or a mixture thereof. The cationic lipid can comprise, for example, from about 20 mol to about 50 mol % or about 40 mol % of the total lipid present in the particle.


The ionizable/non-cationic lipid can be an anionic lipid or a neutral lipid including, but not limited to, distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoyl-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE), dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (DOPE-mal), dipalmitoyl phosphatidyl ethanolamine (DPPE), dimyristoylphosphoethanolamine (DMPE), distearoyl-phosphatidyl-ethanolamine (DSPE), 16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, 1-stearoyl-2-oleoyl-phosphatidyethanolamine (SOPE), cholesterol, or a mixture thereof. The non-cationic lipid can be, for example, from about 5 mol % to about 90 mol %, about 10 mol %, or about 60 mol % if cholesterol is included, of the total lipid present in the particle.


The conjugated lipid that inhibits aggregation of particles can be, for example, a polyethyleneglycol (PEG)-lipid including, without limitation, a PEG-diacylglycerol (DAG), a PEG-dialkyloxypropyl (DAA), a PEG-phospholipid, a PEG-ceramide (Cer), or a mixture thereof. The PEG-DAA conjugate can be, for example, a PEG-dilauryloxypropyl (C12), a PEG-dimyristyloxypropyl (C14), a PEG-dipalmityloxypropyl (C16), or a PEG-distearyloxypropyl (Cm). The conjugated lipid that prevents aggregation of particles can be, for example, from 0 mol % to about 20 mol % or about 2 mol % of the total lipid present in the particle.


In some aspects, the nucleic acid-lipid particle further includes cholesterol at, e.g., about 10 mol % to about 60 mol % or about 50 mol % of the total lipid present in the particle.


B. Combination Therapies


An oligonucleotide can be used alone or in combination with at least one additional therapeutic agent, e.g., other agents that treat trinucleotide repeat expansion disorders or symptoms associated therewith, or in combination with other types of therapies to treat trinucleotide repeat expansion disorders. In combination treatments, the dosages of one or more of the therapeutic compounds can be reduced from standard dosages when administered alone. For example, doses can be determined empirically from drug combinations and permutations or can be deduced by isobolographic analysis (e.g., Black et al., Neurology 65:S3-S6 (2005)). In this case, dosages of the compounds when combined should provide a therapeutic effect.


In some aspects, the oligonucleotide agents described herein can be used in combination with at least one additional therapeutic agent to treat a trinucleotide repeat expansion disorder associated with gene having a trinucleotide repeat (e.g., any of the trinucleotide repeat expansion disorders and associated genes having a trinucleotide repeat listed in Table 1). In some aspects, at least one of the additional therapeutic agents can be an oligonucleotide (e.g., an ASO) that hybridizes with the mRNA of gene associated with a trinucleotide repeat expansion disorder (e.g., any of the genes listed in Table 1). In some aspects, the trinucleotide repeat expansion disorder is Huntington's disease (HD). In some aspects, the gene associated with a trinucleotide repeat expansion disorder is Huntingtin (HTT). Several allelic variants of the Huntingtin gene have been implicated in the etiology of Huntington's disease. In some cases, these variants are identified on the basis of having unique HD-associated single nucleotide polymorphisms (SNPs). In some aspects, the oligonucleotide hybridizes to an mRNA of the Huntingtin gene containing any of the HD-associated SNPs known in the art (e.g., any of the HD-associated SNPs described in Skotte et al., PLoS One 2014, 9(9): e107434, Carroll et al., Mol. Ther. 2011, 19(12): 2178-85, Warby et al., Am. J. Hum. Gen. 2009, 84(3): 351-66 (herein incorporated by reference)). In some aspects, the oligonucleotide that is an additional therapeutic agent hybridizes to an mRNA of the Huntingtin gene lacking any of the HD-associated SNPs. In some of the aspects, the oligonucleotide hybridizes to an mRNA of the Huntingtin gene having any of the SNPs selected from the group of rs362307 and rs365331. In some aspects, the oligonucleotide that is an additional therapeutic agent can be a modified oligonucleotide (e.g., an oligonucleotide including any of the modifications described herein). In some aspects, the modified oligonucleotide that is an additional therapeutic agent comprises one or more phosphorothioate internucleoside linkages. In some aspects, the modified oligonucleotide that is an additional therapeutic agent comprises one or more 2′-MOE moieties. In some aspects, the oligonucleotide that is an additional therapeutic agent hybridizes to the mRNA of the Huntingtin gene has a sequence selected from the SEQ ID NOs. 6-285 of U.S. Pat. No. 9,006,198; SEQ ID NOs. 6-8 of US Patent Application Publication No. 2017/0044539; SEQ ID NOs. 1-1565 of US Patent Application Publication 2018/0216108; and SEQ ID NOs. 1-2432 of PCT Publication WO 2017/192679, the sequences of which are hereby incorporated by reference.


In some aspects, at least one of the additional therapeutic agent is a chemotherapeutic agent (e.g., a cytotoxic agent or other chemical compound useful in the treatment of a trinucleotide repeat expansion disorder).


in some aspects, at least one of the additional therapeutic agents can be a therapeutic agent which is a non-drug treatment. For example, at least one of the additional therapeutic agents is physical therapy.


In any of the combination aspects described herein, the two or more therapeutic agents can be administered simultaneously or sequentially, in either order. For example a first therapeutic agent can be administered immediately, up to 1 hour, up to 2 hours, up to 3 hours, up to 4 hours, up to 5 hours, up to 6 hours, up to 7 hours, up to, 8 hours, up to 9 hours, up to 10 hours, up to 11 hours, up to 12 hours, up to 13 hours, 14 hours, up to hours 16, up to 17 hours, up 18 hours, up to 19 hours up to 20 hours, up to 21 hours, up to 22 hours, up to 23 hours up to 24 hours or up to 1-7, 1-14, 1-21 or 1-30 days before or after one or more of the additional therapeutic agents.


V. Pharmaceutical Compositions


The oligonucleotides described herein can be formulated into pharmaceutical compositions for administration to human subjects in a biologically compatible form suitable for administration in vivo.


The compounds described herein can be used in the form of the free base, in the form of salts, solvates, and as prodrugs. All forms are within the methods described herein. In accordance with the methods described herein, the described oligonucleotides or salts, solvates, or prodrugs thereof can be administered to a patient in a variety of forms depending on the selected route of administration, as will be understood by those skilled in the art. The compounds described herein can be administered, for example, by oral, parenteral, intrathecal, intracerebroventricular, intraparenchymal, buccal, sublingual, nasal, rectal, patch, pump, or transdermal administration and the pharmaceutical compositions formulated accordingly. Parenteral administration includes intravenous, intraperitoneal, subcutaneous, intramuscular, transepithelial, nasal, intrapulmonary, intrathecal, intracerebroventricular, intraparenchymal, rectal, and topical modes of administration. Parenteral administration can be by continuous infusion over a selected period of time.


A compound described herein can be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it can be enclosed in hard or soft shell gelatin capsules, or it can be compressed into tablets, or it can be incorporated directly with the food of the diet. For oral therapeutic administration, a compound described herein can be incorporated with an excipient and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, and wafers. A compound described herein can be administered parenterally. Solutions of a compound described herein can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can be prepared in glycerol, liquid polyethylene glycols, DMSO, and mixtures thereof with or without alcohol, and in oils. Under ordinary conditions of storage and use, these preparations can contain a preservative to prevent the growth of microorganisms. Conventional procedures and ingredients for the selection and preparation of suitable formulations are described, for example, in Remington's Pharmaceutical Sciences (2012, 22nd ed.) and in The United States Pharmacopeia: The National Formulary (USP 41 NF 36), published in 2018. The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that can be easily administered via syringe. Compositions for nasal administration can conveniently be formulated as aerosols, drops, gels, and powders. Aerosol formulations typically include a solution or fine suspension of the active substance in a physiologically acceptable aqueous or non-aqueous solvent and are usually presented in single or multidose quantities in sterile form in a sealed container, which can take the form of a cartridge or refill for use with an atomizing device. Alternatively, the sealed container can be a unitary dispensing device, such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve which is intended for disposal after use. Where the dosage form includes an aerosol dispenser, it will contain a propellant, which can be a compressed gas, such as compressed air or an organic propellant, such as fluorochlorohydrocarbon. The aerosol dosage forms can take the form of a pump-atomizer. Compositions suitable for buccal or sublingual administration include tablets, lozenges, and pastilles, where the active ingredient is formulated with a carrier, such as sugar, acacia, tragacanth, gelatin, and glycerine. Compositions for rectal administration are conveniently in the form of suppositories containing a conventional suppository base, such as cocoa butter


The compounds described herein can be administered to an animal, e.g., a human, alone or in combination with pharmaceutically acceptable carriers, as noted herein, the proportion of which is determined by the solubility and chemical nature of the compound, chosen route of administration, and standard pharmaceutical practice.


VI. Dosages


The dosage of the compositions (e.g., a composition including an oligonucleotide) described herein, can vary depending on many factors, such as the pharmacodynamic properties of the compound; the mode of administration; the age, health, and weight of the recipient; the nature and extent of the symptoms; the frequency of the treatment, and the type of concurrent treatment, if any; and the clearance rate of the compound in the animal to be treated. The compositions described herein can be administered initially in a suitable dosage that can be adjusted as required, depending on the clinical response. In some aspects, the dosage of a composition (e.g., a composition including an oligonucleotide) is a prophylactically or a therapeutically effective amount.


VII. Kits


Kits including (a) a pharmaceutical composition including an oligonucleotide agent that reduces the level and/or activity of MLH3 in a cell or subject described herein, and (b) a package insert with instructions to perform any of the methods described herein are contemplated. In some aspects, the kit includes (a) a pharmaceutical composition including an oligonucleotide agent that reduces the level and/or activity of MLH3 in a cell or subject described herein, (b) an additional therapeutic agent, and (c) a package insert with instructions to perform any of the methods described herein.


EXAMPLES
Example 1. Design and Selection of Antisense Oligonucleotides

Identification and selection of target transcripts: Target transcript selection and off-target scoring (below) utilized NCBI RefSeq sequences, downloaded from NCBI 21 Nov. 2018. Experimentally validated “NM” transcript models were used except for cynomolgus monkey, which only has “XM” predicted models for the large majority of genes. The longest human, mouse, rat, and cynomolgus monkey MLH3 transcript that contained all mapped internal exons was selected (SEQ IDs 1, 3, 4, and 5 for human, mouse, rat, and cynomolgus monkey, respectively, SEQ ID NO:2 is the protein sequence).


Selection of 20mer oligonucleotide sequences: All antisense 20mer sub-sequences per transcript were generated. Candidate antisense oligonucleotides (“ASOs”) were selected that met the following thermodynamic and physical characteristics determined by the inventors: predicted melting temperature of ASO:target duplex (“Tm”) of 30-65° C., predicted melting temperature of hairpins (“Thairpin”)<35° C., predicted melting temperature of homopolymer formation (“Thomo”)<25° C., GC content of 20-60%, no G homopolymers 4 or longer, and no A, T, or C homopolymers of 6 or longer. These selected or “preferred” oligonucleotides were further evaluated for specificity (off-target scoring, below).


Off-target scoring: The specificity of the preferred ASOs was evaluated via alignment to all unspliced RefSeq transcripts (“NM” models for human, mouse, and rat; “NM” and “XM” models for cynomolgus monkey), using the FASTA algorithm with an E value cutoff of 1000. The number of mismatches between each ASO and each transcript (per species) was tallied. An “off-target score” for each ASO in each species was calculated as the lowest number of mismatches to any transcript other than those encoded by the MLH3 gene.


Selection of ASOs for screening: A set of 480 preferred ASOs was selected for screening according to both specificity and ASO:mRNA (target) hybridization energy maximization information as follows. All candidate ASOs were evaluated for delta G of hybridization with the predicted target mRNA secondary structure (ΔGoverall) according to Xu and Mathews (Methods Mol Biol. 1490:15-34 (2016)). Next, two subsets of ASOs were chosen: First, 40 ASOs that matched human, cyno, and mouse target transcripts, had off-target scores of at least 1 in three species, and negative ΔGoverall; second, 440 ASOs that matched human and cyno target transcripts, had off-target scores of at least 2 in both species, and ΔGoverall less than −9.5 degrees Celsius.


The sequences, positions in human transcript, conservation in other species and species-specific off-target scores of each ASO are given in Table 2. Wherever indicated as “NC”, the ASO does not match the MLH3 gene in that species, and therefore off-target scores were not generated.


ASOs were synthesized as 5-10-5 “flanking sequence-DNA core sequence-flanking sequence” antisense oligonucleotides, with ribonucleotides at positions 1-5 and 16-20 and deoxyribonucleotides at positions 6-15, and with the following generic structure:


5′-NmsNmsNmsNmsNmsNsNsNsNsNsNsNsNsNsNsNmsNmsNmsNmsNm-3′


Wherein:





    • Nm: 2′-MOE residues (including 5methyl-2′-MOE-C and 5methyl-2′-MOE-U)

    • N: DNA/RNA residues


    • s: phosphorothioate (the backbone is fully phosphorothioate-modified)

    • All “C” within the DNA core (positions 6-15) are 5′-Methyl-2′-MOE-dC

    • All “T” in positions 1-5 or 16-20 are 5′-methyl-2′-MOE-U.





For primary screens at 2 nM and 20 nM, desalted oligonucleotides were used. For detailed characterization of a subset of oligonucleotides, oligonucleotides were further purified by HPLC.









TABLE 2







Exemplary Oligonucleotides










SEQ


Off-target Score













ID NO
Position
Sequence
Human
Cyno
Mouse
Rat





   6
  75
CTTGGATCTTGAGGCTCGTG
3
NC
NC
NC





   7
  76
CCTTGGATCTTGAGGCTCGT
2
NC
NC
NC





   8
  77
ACCTTGGATCTTGAGGCTCG
3
NC
NC
NC





   9
  78
CACCTTGGATCTTGAGGCTC
2
NC
NC
NC





  10
  79
GCACCTTGGATCTTGAGGCT
2
NC
NC
NC





  11
 116
AATTCTCCGACACCAACCGC
3
NC
NC
NC





  12
 117
AAATTCTCCGACACCAACCG
3
NC
NC
NC





  13
 118
CAAATTCTCCGACACCAACC
2
NC
NC
NC





  14
 119
ACAAATTCTCCGACACCAAC
2
NC
NC
NC





  15
 120
AACAAATTCTCCGACACCAA
2
NC
NC
NC





  16
 121
TAACAAATTCTCCGACACCA
2
NC
NC
NC





  17
 122
TTAACAAATTCTCCGACACC
2
NC
NC
NC





  18
 123
CTTAACAAATTCTCCGACAC
3
NC
NC
NC





  19
 124
GCTTAACAAATTCTCCGACA
2
NC
NC
NC





  20
 125
CGCTTAACAAATTCTCCGAC
3
NC
NC
NC





  21
 126
CCGCTTAACAAATTCTCCGA
3
NC
NC
NC





  22
 127
CCCGCTTAACAAATTCTCCG
2
NC
NC
NC





  23
 128
TCCCGCTTAACAAATTCTCC
2
NC
NC
NC





  24
 129
GTCCCGCTTAACAAATTCTC
2
NC
NC
NC





  25
 130
AGTCCCGCTTAACAAATTCT
3
NC
NC
NC





  26
 131
GAGTCCCGCTTAACAAATTC
2
NC
NC
NC





  27
 132
GGAGTCCCGCTTAACAAATT
2
NC
NC
NC





  28
 133
TGGAGTCCCGCTTAACAAAT
3
NC
NC
NC





  29
 134
CTGGAGTCCCGCTTAACAAA
2
NC
NC
NC





  30
 135
CCTGGAGTCCCGCTTAACAA
3
NC
NC
NC





  31
 138
TTGCCTGGAGTCCCGCTTAA
3
NC
NC
NC





  32
 139
ATTGCCTGGAGTCCCGCTTA
3
NC
NC
NC





  33
 140
AATTGCCTGGAGTCCCGCTT
3
NC
NC
NC





  34
 141
TAATTGCCTGGAGTCCCGCT
3
NC
NC
NC





  35
 142
ATAATTGCCTGGAGTCCCGC
2
NC
NC
NC





  36
 143
AATAATTGCCTGGAGTCCCG
2
NC
NC
NC





  37
 144
AAATAATTGCCTGGAGTCCC
2
NC
NC
NC





  38
 145
GAAATAATTGCCTGGAGTCC
2
NC
NC
NC





  39
 146
GGAAATAATTGCCTGGAGTC
2
NC
NC
NC





  40
 147
TGGAAATAATTGCCTGGAGT
1
NC
NC
NC





  41
 148
CTGGAAATAATTGCCTGGAG
2
NC
NC
NC





  42
 149
ACTGGAAATAATTGCCTGGA
2
NC
NC
NC





  43
 150
GACTGGAAATAATTGCCTGG
1
NC
NC
NC





  44
 151
TGACTGGAAATAATTGCCTG
2
NC
NC
NC





  45
 152
CTGACTGGAAATAATTGCCT
1
NC
NC
NC





  46
 153
TCTGACTGGAAATAATTGCC
2
NC
NC
NC





  47
 154
CTCTGACTGGAAATAATTGC
2
NC
NC
NC





  48
 155
TCTCTGACTGGAAATAATTG
2
NC
NC
NC





  49
 156
TTCTCTGACTGGAAATAATT
2
NC
NC
NC





  50
 157
CTTCTCTGACTGGAAATAAT
2
NC
NC
NC





  51
 158
CCTTCTCTGACTGGAAATAA
2
NC
NC
NC





  52
 159
TCCTTCTCTGACTGGAAATA
1
NC
NC
NC





  53
 160
TTCCTTCTCTGACTGGAAAT
1
NC
NC
NC





  54
 162
GTTTCCTTCTCTGACTGGAA
0
NC
NC
NC





  55
 163
GGTTTCCTTCTCTGACTGGA
1
NC
NC
NC





  56
 164
TGGTTTCCTTCTCTGACTGG
2
NC
NC
NC





  57
 165
CTGGTTTCCTTCTCTGACTG
2
NC
NC
NC





  58
 166
ACTGGTTTCCTTCTCTGACT
2
NC
NC
NC





  59
 167
CACTGGTTTCCTTCTCTGAC
2
NC
NC
NC





  60
 168
GCACTGGTTTCCTTCTCTGA
2
NC
NC
NC





  61
 169
GGCACTGGTTTCCTTCTCTG
1
NC
NC
NC





  62
 170
AGGCACTGGTTTCCTTCTCT
1
NC
NC
NC





  63
 186
AGATGGTGAGAATGCCAGGC
2
NC
NC
NC





  64
 187
AAGATGGTGAGAATGCCAGG
2
NC
NC
NC





  65
 188
AAAGATGGTGAGAATGCCAG
1
NC
NC
NC





  66
 190
AGAAAGATGGTGAGAATGCC
1
1
NC
NC





  67
 191
TAGAAAGATGGTGAGAATGC
2
1
NC
NC





  68
 192
GTAGAAAGATGGTGAGAATG
2
1
NC
NC





  69
 193
GGTAGAAAGATGGTGAGAAT
2
2
NC
NC





  70
 194
AGGTAGAAAGATGGTGAGAA
2
1
NC
NC





  71
 195
TAGGTAGAAAGATGGTGAGA
2
2
NC
NC





  72
 196
GTAGGTAGAAAGATGGTGAG
2
2
NC
NC





  73
 197
GGTAGGTAGAAAGATGGTGA
2
2
NC
NC





  74
 198
TGGTAGGTAGAAAGATGGTG
2
2
NC
NC





  75
 199
ATGGTAGGTAGAAAGATGGT
2
2
NC
NC





  76
 200
CATGGTAGGTAGAAAGATGG
2
2
NC
NC





  77
 201
TCATGGTAGGTAGAAAGATG
2
2
NC
NC





  78
 202
ATCATGGTAGGTAGAAAGAT
1
2
NC
NC





  79
 203
GATCATGGTAGGTAGAAAGA
2
2
NC
NC





  80
 204
TGATCATGGTAGGTAGAAAG
2
2
NC
NC





  81
 205
TTGATCATGGTAGGTAGAAA
2
2
NC
NC





  82
 206
CTTGATCATGGTAGGTAGAA
2
2
NC
NC





  83
 207
ACTTGATCATGGTAGGTAGA
2
2
NC
NC





  84
 208
CACTTGATCATGGTAGGTAG
2
2
NC
NC





  85
 209
GCACTTGATCATGGTAGGTA
2
2
NC
NC





  86
 210
AGCACTTGATCATGGTAGGT
2
2
NC
NC





  87
 211
AAGCACTTGATCATGGTAGG
2
2
NC
NC





  88
 223
ACTTCAACTGACAAGCACTT
2
2
NC
NC





  89
 224
TACTTCAACTGACAAGCACT
2
2
NC
NC





  90
 225
GTACTTCAACTGACAAGCAC
2
2
NC
NC





  91
 226
TGTACTTCAACTGACAAGCA
1
2
NC
NC





  92
 227
TTGTACTTCAACTGACAAGC
2
2
NC
NC





  93
 229
GCTTGTACTTCAACTGACAA
2
2
NC
NC





  94
 230
GGCTTGTACTTCAACTGACA
2
2
NC
NC





  95
 231
TGGCTTGTACTTCAACTGAC
2
2
NC
NC





  96
 232
TTGGCTTGTACTTCAACTGA
2
2
NC
NC





  97
 233
TTTGGCTTGTACTTCAACTG
2
2
NC
NC





  98
 234
ATTTGGCTTGTACTTCAACT
2
2
NC
NC





  99
 235
AATTTGGCTTGTACTTCAAC
2
2
NC
NC





 100
 236
CAATTTGGCTTGTACTTCAA
2
2
NC
NC





 101
 237
GCAATTTGGCTTGTACTTCA
2
2
NC
NC





 102
 238
CGCAATTTGGCTTGTACTTC
2
3
NC
NC





 103
 239
ACGCAATTTGGCTTGTACTT
2
3
NC
NC





 104
 240
AACGCAATTTGGCTTGTACT
2
3
NC
NC





 105
 241
GAACGCAATTTGGCTTGTAC
2
2
NC
NC





 106
 242
AGAACGCAATTTGGCTTGTA
2
2
NC
NC





 107
 243
CAGAACGCAATTTGGCTTGT
3
2
NC
NC





 108
 244
CCAGAACGCAATTTGGCTTG
3
3
NC
NC





 109
 245
ACCAGAACGCAATTTGGCTT
3
2
NC
NC





 110
 246
AACCAGAACGCAATTTGGCT
2
2
NC
NC





 111
 247
AAACCAGAACGCAATTTGGC
2
2
NC
NC





 112
 249
CCAAACCAGAACGCAATTTG
2
3
NC
NC





 113
 250
GCCAAACCAGAACGCAATTT
2
2
NC
NC





 114
 269
TTGGCCCAAGGAGCTTATGG
1
2
NC
NC





 115
 270
ATTGGCCCAAGGAGCTTATG
2
2
NC
NC





 116
 271
CATTGGCCCAAGGAGCTTAT
2
3
NC
NC





 117
 272
ACATTGGCCCAAGGAGCTTA
2
3
NC
NC





 118
 273
CACATTGGCCCAAGGAGCTT
2
3
NC
NC





 119
 274
ACACATTGGCCCAAGGAGCT
1
2
NC
NC





 120
 275
AACACATTGGCCCAAGGAGC
2
2
NC
NC





 121
 276
CAACACATTGGCCCAAGGAG
2
2
NC
NC





 122
 277
TCAACACATTGGCCCAAGGA
2
2
NC
NC





 123
 278
CTCAACACATTGGCCCAAGG
2
2
NC
NC





 124
 279
CCTCAACACATTGGCCCAAG
2
2
NC
NC





 125
 280
TCCTCAACACATTGGCCCAA
1
1
NC
NC





 126
 281
TTCCTCAACACATTGGCCCA
1
1
NC
NC





 127
 282
GTTCCTCAACACATTGGCCC
2
2
NC
NC





 128
 283
AGTTCCTCAACACATTGGCC
2
1
NC
NC





 129
 284
AAGTTCCTCAACACATTGGC
2
2
NC
NC





 130
 285
CAAGTTCCTCAACACATTGG
2
2
NC
NC





 131
 286
GCAAGTTCCTCAACACATTG
2
2
NC
NC





 132
 287
GGCAAGTTCCTCAACACATT
2
2
NC
NC





 133
 288
GGGCAAGTTCCTCAACACAT
2
2
NC
NC





 134
 289
AGGGCAAGTTCCTCAACACA
2
2
NC
NC





 135
 296
ACTGTTGAGGGCAAGTTCCT
2
2
NC
NC





 136
 297
TACTGTTGAGGGCAAGTTCC
2
2
NC
NC





 137
 298
ATACTGTTGAGGGCAAGTTC
2
2
NC
NC





 138
 299
AATACTGTTGAGGGCAAGTT
2
1
NC
NC





 139
 300
CAATACTGTTGAGGGCAAGT
2
2
NC
NC





 140
 301
TCAATACTGTTGAGGGCAAG
2
2
NC
NC





 141
 302
ATCAATACTGTTGAGGGCAA
1
1
NC
NC





 142
 303
CATCAATACTGTTGAGGGCA
2
2
NC
NC





 143
 304
GCATCAATACTGTTGAGGGC
2
2
NC
NC





 144
 305
AGCATCAATACTGTTGAGGG
2
2
NC
NC





 145
 306
CAGCATCAATACTGTTGAGG
2
2
NC
NC





 146
 307
TCAGCATCAATACTGTTGAG
2
2
NC
NC





 147
 308
TTCAGCATCAATACTGTTGA
2
2
NC
NC





 148
 309
CTTCAGCATCAATACTGTTG
2
2
NC
NC





 149
 323
AGCCACACATTTTGCTTCAG
1
2
NC
NC





 150
 324
CAGCCACACATTTTGCTTCA
2
2
NC
NC





 151
 325
ACAGCCACACATTTTGCTTC
2
2
NC
NC





 152
 326
GACAGCCACACATTTTGCTT
2
2
NC
NC





 153
 327
TGACAGCCACACATTTTGCT
1
2
NC
NC





 154
 328
CTGACAGCCACACATTTTGC
2
2
NC
NC





 155
 329
CCTGACAGCCACACATTTTG
1
1
NC
NC





 156
 330
CCCTGACAGCCACACATTTT
1
2
NC
NC





 157
 331
ACCCTGACAGCCACACATTT
1
1
NC
NC





 158
 332
CACCCTGACAGCCACACATT
1
1
NC
NC





 159
 333
TCACCCTGACAGCCACACAT
1
1
NC
NC





 160
 334
TTCACCCTGACAGCCACACA
2
1
NC
NC





 161
 335
ATTCACCCTGACAGCCACAC
2
2
NC
NC





 162
 336
TATTCACCCTGACAGCCACA
2
2
NC
NC





 163
 337
ATATTCACCCTGACAGCCAC
2
2
NC
NC





 164
 338
CATATTCACCCTGACAGCCA
2
2
NC
NC





 165
 339
CCATATTCACCCTGACAGCC
1
2
NC
NC





 166
 340
TCCATATTCACCCTGACAGC
2
2
NC
NC





 167
 341
TTCCATATTCACCCTGACAG
2
2
NC
NC





 168
 342
TTTCCATATTCACCCTGACA
2
2
NC
NC





 169
 343
GTTTCCATATTCACCCTGAC
2
2
NC
NC





 170
 344
GGTTTCCATATTCACCCTGA
2
2
NC
NC





 171
 345
AGGTTTCCATATTCACCCTG
2
2
NC
NC





 172
 346
AAGGTTTCCATATTCACCCT
2
2
NC
NC





 173
 347
GAAGGTTTCCATATTCACCC
2
2
NC
NC





 174
 358
ACTTGAACTTGGAAGGTTTC
2
2
2
2





 175
 359
CACTTGAACTTGGAAGGTTT
2
2
2
1





 176
 360
TCACTTGAACTTGGAAGGTT
1
1
1
2





 177
 361
ATCACTTGAACTTGGAAGGT
0
0
1
2





 178
 362
TATCACTTGAACTTGGAAGG
1
1
2
3





 179
 363
CTATCACTTGAACTTGGAAG
2
2
1
2





 180
 364
TCTATCACTTGAACTTGGAA
2
1
1
2





 181
 365
GTCTATCACTTGAACTTGGA
2
1
1
2





 182
 366
TGTCTATCACTTGAACTTGG
2
2
1
1





 183
 367
TTGTCTATCACTTGAACTTG
2
2
2
2





 184
 368
ATTGTCTATCACTTGAACTT
2
2
2
NC





 185
 369
CATTGTCTATCACTTGAACT
2
2
2
NC





 186
 370
CCATTGTCTATCACTTGAAC
2
2
2
NC





 187
 371
TCCATTGTCTATCACTTGAA
2
2
2
NC





 188
 372
ATCCATTGTCTATCACTTGA
2
2
NC
NC





 189
 373
AATCCATTGTCTATCACTTG
2
2
NC
NC





 190
 374
AAATCCATTGTCTATCACTT
1
1
NC
NC





 191
 375
CAAATCCATTGTCTATCACT
2
2
NC
NC





 192
 376
CCAAATCCATTGTCTATCAC
2
2
NC
NC





 193
 377
CCCAAATCCATTGTCTATCA
2
2
NC
NC





 194
 378
TCCCAAATCCATTGTCTATC
2
2
NC
NC





 195
 379
ATCCCAAATCCATTGTCTAT
2
2
NC
NC





 196
 380
CATCCCAAATCCATTGTCTA
2
2
NC
NC





 197
 381
CCATCCCAAATCCATTGTCT
1
1
NC
NC





 198
 382
CCCATCCCAAATCCATTGTC
1
1
NC
NC





 199
 383
CCCCATCCCAAATCCATTGT
1
2
NC
NC





 200
 385
CTCCCCATCCCAAATCCATT
1
1
NC
NC





 201
 386
ACTCCCCATCCCAAATCCAT
2
2
NC
NC





 202
 387
CACTCCCCATCCCAAATCCA
1
2
NC
NC





 203
 388
TCACTCCCCATCCCAAATCC
1
2
NC
NC





 204
 389
ATCACTCCCCATCCCAAATC
1
1
NC
NC





 205
 390
CATCACTCCCCATCCCAAAT
2
2
NC
NC





 206
 391
TCATCACTCCCCATCCCAAA
2
2
NC
NC





 207
 392
ATCATCACTCCCCATCCCAA
2
2
NC
NC





 208
 393
CATCATCACTCCCCATCCCA
2
2
NC
NC





 209
 394
ACATCATCACTCCCCATCCC
1
2
NC
NC





 210
 395
TACATCATCACTCCCCATCC
1
2
NC
NC





 211
 396
CTACATCATCACTCCCCATC
2
2
NC
NC





 212
 397
TCTACATCATCACTCCCCAT
2
2
NC
NC





 213
 398
CTCTACATCATCACTCCCCA
2
1
NC
NC





 214
 399
TCTCTACATCATCACTCCCC
2
1
NC
NC





 215
 400
TTCTCTACATCATCACTCCC
2
1
NC
NC





 216
 401
TTTCTCTACATCATCACTCC
2
2
NC
NC





 217
 402
CTTTCTCTACATCATCACTC
2
2
NC
NC





 218
 403
ACTTTCTCTACATCATCACT
2
1
NC
NC





 219
 404
CACTTTCTCTACATCATCAC
1
1
NC
NC





 220
 405
CCACTTTCTCTACATCATCA
1
1
NC
NC





 221
 406
CCCACTTTCTCTACATCATC
1
2
NC
NC





 222
 407
TCCCACTTTCTCTACATCAT
1
2
NC
NC





 223
 408
TTCCCACTTTCTCTACATCA
2
2
NC
NC





 224
 409
TTTCCCACTTTCTCTACATC
2
2
NC
NC





 225
 410
ATTTCCCACTTTCTCTACAT
1
1
NC
NC





 226
 411
GATTTCCCACTTTCTCTACA
1
2
NC
NC





 227
 412
CGATTTCCCACTTTCTCTAC
2
2
NC
NC





 228
 413
ACGATTTCCCACTTTCTCTA
2
2
NC
NC





 229
 414
AACGATTTCCCACTTTCTCT
2
2
NC
NC





 230
 415
TAACGATTTCCCACTTTCTC
2
2
NC
NC





 231
 416
ATAACGATTTCCCACTTTCT
2
2
NC
NC





 232
 417
AATAACGATTTCCCACTTTC
2
2
NC
NC





 233
 418
AAATAACGATTTCCCACTTT
2
2
NC
NC





 234
 426
TACTGGTGAAATAACGATTT
2
3
NC
NC





 235
 427
TTACTGGTGAAATAACGATT
2
2
NC
NC





 236
 428
TTTACTGGTGAAATAACGAT
2
2
NC
NC





 237
 429
ATTTACTGGTGAAATAACGA
2
2
NC
NC





 238
 430
CATTTACTGGTGAAATAACG
2
2
NC
NC





 239
 431
GCATTTACTGGTGAAATAAC
1
2
NC
NC





 240
 432
GGCATTTACTGGTGAAATAA
2
2
NC
NC





 241
 433
TGGCATTTACTGGTGAAATA
2
2
NC
NC





 242
 434
GTGGCATTTACTGGTGAAAT
2
1
NC
NC





 243
 435
AGTGGCATTTACTGGTGAAA
2
2
NC
NC





 244
 436
GAGTGGCATTTACTGGTGAA
2
2
NC
NC





 245
 437
CGAGTGGCATTTACTGGTGA
2
2
NC
NC





 246
 438
CCGAGTGGCATTTACTGGTG
3
3
NC
NC





 247
 451
TCCAAGTCCTGTACCGAGTG
2
2
NC
NC





 248
 452
CTCCAAGTCCTGTACCGAGT
3
3
NC
NC





 249
 453
TCTCCAAGTCCTGTACCGAG
3
3
NC
NC





 250
 454
TTCTCCAAGTCCTGTACCGA
2
3
NC
NC





 251
 455
ATTCTCCAAGTCCTGTACCG
2
3
NC
NC





 252
 456
GATTCTCCAAGTCCTGTACC
2
2
NC
NC





 253
 457
GGATTCTCCAAGTCCTGTAC
1
2
NC
NC





 254
 468
CATAAAACCTTGGATTCTCC
2
1
NC
NC





 255
 469
CCATAAAACCTTGGATTCTC
2
2
NC
NC





 256
 470
ACCATAAAACCTTGGATTCT
1
2
NC
NC





 257
 471
AACCATAAAACCTTGGATTC
2
2
NC
NC





 258
 472
AAACCATAAAACCTTGGATT
2
2
NC
NC





 259
 473
GAAACCATAAAACCTTGGAT
2
2
NC
NC





 260
 474
GGAAACCATAAAACCTTGGA
2
2
NC
NC





 261
 476
TCGGAAACCATAAAACCTTG
2
3
NC
NC





 262
 477
CTCGGAAACCATAAAACCTT
3
3
NC
NC





 263
 478
CCTCGGAAACCATAAAACCT
2
2
NC
NC





 264
 479
TCCTCGGAAACCATAAAACC
2
2
NC
NC





 265
 480
CTCCTCGGAAACCATAAAAC
2
2
NC
NC





 266
 481
TCTCCTCGGAAACCATAAAA
2
2
NC
NC





 267
 482
CTCTCCTCGGAAACCATAAA
2
2
NC
NC





 268
 483
CCTCTCCTCGGAAACCATAA
2
2
NC
NC





 269
 484
GCCTCTCCTCGGAAACCATA
2
1
NC
NC





 270
 509
GGCCATGTCAGCAATATTTG
2
NC
NC
NC





 271
 510
TGGCCATGTCAGCAATATTT
1
NC
NC
NC





 272
 511
CTGGCCATGTCAGCAATATT
2
NC
NC
NC





 273
 512
ACTGGCCATGTCAGCAATAT
2
NC
NC
NC





 274
 513
CACTGGCCATGTCAGCAATA
2
NC
NC
NC





 275
 514
GCACTGGCCATGTCAGCAAT
2
NC
NC
NC





 276
 515
AGCACTGGCCATGTCAGCAA
1
NC
NC
NC





 277
 527
CGAAATTTCCACAGCACTGG
2
NC
NC
NC





 278
 528
ACGAAATTTCCACAGCACTG
2
NC
NC
NC





 279
 529
GACGAAATTTCCACAGCACT
2
NC
NC
NC





 280
 530
GGACGAAATTTCCACAGCAC
2
NC
NC
NC





 281
 531
TGGACGAAATTTCCACAGCA
2
NC
NC
NC





 282
 537
TTTTCTTGGACGAAATTTCC
2
2
NC
NC





 283
 538
TTTTTCTTGGACGAAATTTC
2
1
NC
NC





 284
 539
GTTTTTCTTGGACGAAATTT
2
2
NC
NC





 285
 540
TGTTTTTCTTGGACGAAATT
2
2
NC
NC





 286
 541
CTGTTTTTCTTGGACGAAAT
2
2
NC
NC





 287
 542
CCTGTTTTTCTTGGACGAAA
3
1
NC
NC





 288
 543
TCCTGTTTTTCTTGGACGAA
2
2
NC
NC





 289
 547
ATTGTCCTGTTTTTCTTGGA
1
2
NC
NC





 290
 548
CATTGTCCTGTTTTTCTTGG
1
2
NC
NC





 291
 549
TCATTGTCCTGTTTTTCTTG
1
1
NC
NC





 292
 550
TTCATTGTCCTGTTTTTCTT
0
2
NC
NC





 293
 551
TTTCATTGTCCTGTTTTTCT
1
1
NC
NC





 294
 552
TTTTCATTGTCCTGTTTTTC
2
1
NC
NC





 295
 553
GTTTTCATTGTCCTGTTTTT
1
2
NC
NC





 296
 554
AGTTTTCATTGTCCTGTTTT
2
1
NC
NC





 297
 555
AAGTTTTCATTGTCCTGTTT
2
1
NC
NC





 298
 556
AAAGTTTTCATTGTCCTGTT
2
2
NC
NC





 299
 557
AAAAGTTTTCATTGTCCTGT
2
2
NC
NC





 300
 558
CAAAAGTTTTCATTGTCCTG
2
2
NC
NC





 301
 559
ACAAAAGTTTTCATTGTCCT
2
2
NC
NC





 302
 560
CACAAAAGTTTTCATTGTCC
2
2
NC
NC





 303
 561
TCACAAAAGTTTTCATTGTC
1
1
NC
NC





 304
 562
TTCACAAAAGTTTTCATTGT
1
1
NC
NC





 305
 563
TTTCACAAAAGTTTTCATTG
2
1
NC
NC





 306
 564
GTTTCACAAAAGTTTTCATT
2
2
NC
NC





 307
 565
AGTTTCACAAAAGTTTTCAT
1
2
NC
NC





 308
 566
CAGTTTCACAAAAGTTTTCA
1
1
NC
NC





 309
 567
ACAGTTTCACAAAAGTTTTC
2
2
NC
NC





 310
 568
AACAGTTTCACAAAAGTTTT
1
1
NC
NC





 311
 569
AAACAGTTTCACAAAAGTTT
2
2
NC
NC





 312
 580
TTTCCACTCTGAAACAGTTT
1
2
NC
NC





 313
 581
TTTTCCACTCTGAAACAGTT
1
2
NC
NC





 314
 582
CTTTTCCACTCTGAAACAGT
2
2
NC
NC





 315
 583
GCTTTTCCACTCTGAAACAG
2
2
NC
NC





 316
 584
GGCTTTTCCACTCTGAAACA
2
1
NC
NC





 317
 585
GGGCTTTTCCACTCTGAAAC
2
2
NC
NC





 318
 586
AGGGCTTTTCCACTCTGAAA
2
2
NC
NC





 319
 587
CAGGGCTTTTCCACTCTGAA
2
2
NC
NC





 320
 588
TCAGGGCTTTTCCACTCTGA
2
2
NC
NC





 321
 589
TTCAGGGCTTTTCCACTCTG
2
2
NC
NC





 322
 590
TTTCAGGGCTTTTCCACTCT
2
1
NC
NC





 323
 591
CTTTCAGGGCTTTTCCACTC
1
1
NC
NC





 324
 592
GCTTTCAGGGCTTTTCCACT
1
1
NC
NC





 325
 593
AGCTTTCAGGGCTTTTCCAC
1
2
NC
NC





 326
 611
AGTCACATCAGCTTCACAAG
2
2
NC
NC





 327
 612
TAGTCACATCAGCTTCACAA
2
2
NC
NC





 328
 613
CTAGTCACATCAGCTTCACA
3
3
NC
NC





 329
 614
TCTAGTCACATCAGCTTCAC
2
2
NC
NC





 330
 615
CTCTAGTCACATCAGCTTCA
2
NC
NC
NC





 331
 616
GCTCTAGTCACATCAGCTTC
2
NC
NC
NC





 332
 617
TGCTCTAGTCACATCAGCTT
2
NC
NC
NC





 333
 618
TTGCTCTAGTCACATCAGCT
2
NC
NC
NC





 334
 619
CTTGCTCTAGTCACATCAGC
2
NC
NC
NC





 335
 620
GCTTGCTCTAGTCACATCAG
2
NC
NC
NC





 336
 621
CGCTTGCTCTAGTCACATCA
2
NC
NC
NC





 337
 622
GCGCTTGCTCTAGTCACATC
2
NC
NC
NC





 338
 635
TACAGTAGTCCCAGCGCTTG
2
NC
NC
NC





 339
 636
TTACAGTAGTCCCAGCGCTT
2
NC
NC
NC





 340
 637
GTTACAGTAGTCCCAGCGCT
3
NC
NC
NC





 341
 638
TGTTACAGTAGTCCCAGCGC
2
NC
NC
NC





 342
 639
CTGTTACAGTAGTCCCAGCG
2
NC
NC
NC





 343
 651
ATAGGTTATACACTGTTACA
1
2
NC
NC





 344
 652
AATAGGTTATACACTGTTAC
2
2
NC
NC





 345
 653
AAATAGGTTATACACTGTTA
1
1
NC
NC





 346
 654
AAAATAGGTTATACACTGTT
2
1
NC
NC





 347
 655
TAAAATAGGTTATACACTGT
1
1
NC
NC





 348
 656
GTAAAATAGGTTATACACTG
2
2
NC
NC





 349
 657
GGTAAAATAGGTTATACACT
1
1
NC
NC





 350
 658
TGGTAAAATAGGTTATACAC
2
2
NC
NC





 351
 659
CTGGTAAAATAGGTTATACA
2
2
NC
NC





 352
 660
GCTGGTAAAATAGGTTATAC
2
2
NC
NC





 353
 661
AGCTGGTAAAATAGGTTATA
2
2
NC
NC





 354
 662
AAGCTGGTAAAATAGGTTAT
1
NC
NC
NC





 355
 663
GAAGCTGGTAAAATAGGTTA
1
NC
NC
NC





 356
 664
GGAAGCTGGTAAAATAGGTT
1
NC
NC
NC





 357
 665
AGGAAGCTGGTAAAATAGGT
1
NC
NC
NC





 358
 666
CAGGAAGCTGGTAAAATAGG
1
NC
NC
NC





 359
 667
ACAGGAAGCTGGTAAAATAG
2
NC
NC
NC





 360
 668
TACAGGAAGCTGGTAAAATA
2
NC
NC
NC





 361
 669
TTACAGGAAGCTGGTAAAAT
2
NC
NC
NC





 362
 670
CTTACAGGAAGCTGGTAAAA
2
NC
NC
NC





 363
 671
CCTTACAGGAAGCTGGTAAA
2
NC
NC
NC





 364
 682
ATGCATTTCCTCCTTACAGG
2
2
NC
NC





 365
 683
CATGCATTTCCTCCTTACAG
2
2
NC
NC





 366
 684
CCATGCATTTCCTCCTTACA
2
2
NC
NC





 367
 685
TCCATGCATTTCCTCCTTAC
2
2
NC
NC





 368
 686
GTCCATGCATTTCCTCCTTA
2
2
NC
NC





 369
 687
GGTCCATGCATTTCCTCCTT
1
1
NC
NC





 370
 688
GGGTCCATGCATTTCCTCCT
2
2
NC
NC





 371
 689
AGGGTCCATGCATTTCCTCC
1
1
NC
NC





 372
 690
TAGGGTCCATGCATTTCCTC
2
2
NC
NC





 373
 691
CTAGGGTCCATGCATTTCCT
3
3
NC
NC





 374
 692
TCTAGGGTCCATGCATTTCC
2
2
NC
NC





 375
 693
GTCTAGGGTCCATGCATTTC
2
3
NC
NC





 376
 694
AGTCTAGGGTCCATGCATTT
2
2
NC
NC





 377
 695
CAGTCTAGGGTCCATGCATT
2
3
NC
NC





 378
 696
CCAGTCTAGGGTCCATGCAT
2
2
NC
NC





 379
 697
TCCAGTCTAGGGTCCATGCA
2
2
NC
NC





 380
 699
ACTCCAGTCTAGGGTCCATG
1
2
NC
NC





 381
 700
AACTCCAGTCTAGGGTCCAT
2
2
NC
NC





 382
 701
AAACTCCAGTCTAGGGTCCA
2
2
NC
NC





 383
 702
CAAACTCCAGTCTAGGGTCC
2
2
NC
NC





 384
 703
TCAAACTCCAGTCTAGGGTC
2
2
NC
NC





 385
 704
CTCAAACTCCAGTCTAGGGT
2
2
NC
NC





 386
 705
TCTCAAACTCCAGTCTAGGG
2
2
NC
NC





 387
 706
TTCTCAAACTCCAGTCTAGG
2
2
NC
NC





 388
 707
CTTCTCAAACTCCAGTCTAG
2
2
NC
NC





 389
 708
CCTTCTCAAACTCCAGTCTA
2
2
NC
NC





 390
 709
ACCTTCTCAAACTCCAGTCT
2
2
NC
NC





 391
 710
AACCTTCTCAAACTCCAGTC
2
2
NC
NC





 392
 711
TAACCTTCTCAAACTCCAGT
2
1
NC
NC





 393
 712
CTAACCTTCTCAAACTCCAG
2
2
NC
NC





 394
 713
CCTAACCTTCTCAAACTCCA
2
1
NC
NC





 395
 714
GCCTAACCTTCTCAAACTCC
2
2
NC
NC





 396
 715
TGCCTAACCTTCTCAAACTC
2
2
NC
NC





 397
 716
CTGCCTAACCTTCTCAAACT
2
1
NC
NC





 398
 717
TCTGCCTAACCTTCTCAAAC
2
1
NC
NC





 399
 718
CTCTGCCTAACCTTCTCAAA
2
2
NC
NC





 400
 719
TCTCTGCCTAACCTTCTCAA
2
NC
NC
NC





 401
 720
TTCTCTGCCTAACCTTCTCA
2
NC
NC
NC





 402
 721
ATTCTCTGCCTAACCTTCTC
2
NC
NC
NC





 403
 722
TATTCTCTGCCTAACCTTCT
2
NC
NC
NC





 404
 723
CTATTCTCTGCCTAACCTTC
2
NC
NC
NC





 405
 724
TCTATTCTCTGCCTAACCTT
2
NC
NC
NC





 406
 725
TTCTATTCTCTGCCTAACCT
2
NC
NC
NC





 407
 726
CTTCTATTCTCTGCCTAACC
2
NC
NC
NC





 408
 727
GCTTCTATTCTCTGCCTAAC
1
NC
NC
NC





 409
 728
AGCTTCTATTCTCTGCCTAA
1
NC
NC
NC





 410
 729
GAGCTTCTATTCTCTGCCTA
2
NC
NC
NC





 411
 730
AGAGCTTCTATTCTCTGCCT
1
NC
NC
NC





 412
 731
GAGAGCTTCTATTCTCTGCC
2
NC
NC
NC





 413
 736
AGTGAGAGAGCTTCTATTCT
2
NC
NC
NC





 414
 737
GAGTGAGAGAGCTTCTATTC
2
NC
NC
NC





 415
 738
TGAGTGAGAGAGCTTCTATT
2
NC
NC
NC





 416
 739
ATGAGTGAGAGAGCTTCTAT
2
NC
NC
NC





 417
 740
CATGAGTGAGAGAGCTTCTA
2
NC
NC
NC





 418
 742
TGCATGAGTGAGAGAGCTTC
2
NC
NC
NC





 419
 743
GTGCATGAGTGAGAGAGCTT
1
NC
NC
NC





 420
 744
GGTGCATGAGTGAGAGAGCT
1
NC
NC
NC





 421
 746
AGGGTGCATGAGTGAGAGAG
2
NC
NC
NC





 422
 747
AAGGGTGCATGAGTGAGAGA
1
NC
NC
NC





 423
 748
GAAGGGTGCATGAGTGAGAG
1
NC
NC
NC





 424
 749
GGAAGGGTGCATGAGTGAGA
1
NC
NC
NC





 425
 750
TGGAAGGGTGCATGAGTGAG
2
NC
NC
NC





 426
 751
ATGGAAGGGTGCATGAGTGA
2
NC
NC
NC





 427
 752
AATGGAAGGGTGCATGAGTG
2
NC
NC
NC





 428
 753
AAATGGAAGGGTGCATGAGT
2
NC
NC
NC





 429
 754
GAAATGGAAGGGTGCATGAG
1
NC
NC
NC





 430
 755
AGAAATGGAAGGGTGCATGA
2
NC
NC
NC





 431
 756
AAGAAATGGAAGGGTGCATG
2
NC
NC
NC





 432
 757
AAAGAAATGGAAGGGTGCAT
2
NC
NC
NC





 433
 758
GAAAGAAATGGAAGGGTGCA
2
NC
NC
NC





 434
 759
AGAAAGAAATGGAAGGGTGC
2
NC
NC
NC





 435
 760
GAGAAAGAAATGGAAGGGTG
1
NC
NC
NC





 436
 761
AGAGAAAGAAATGGAAGGGT
1
NC
NC
NC





 437
 762
AAGAGAAAGAAATGGAAGGG
1
NC
NC
NC





 438
 763
AAAGAGAAAGAAATGGAAGG
0
NC
NC
NC





 439
 764
CAAAGAGAAAGAAATGGAAG
1
NC
NC
NC





 440
 765
TCAAAGAGAAAGAAATGGAA
1
NC
NC
NC





 441
 766
CTCAAAGAGAAAGAAATGGA
1
NC
NC
NC





 442
 767
TCTCAAAGAGAAAGAAATGG
2
NC
NC
NC





 443
 776
AACATCATTTCTCAAAGAGA
1
2
NC
NC





 444
 777
AAACATCATTTCTCAAAGAG
2
2
NC
NC





 445
 778
GAAACATCATTTCTCAAAGA
1
2
NC
NC





 446
 779
AGAAACATCATTTCTCAAAG
1
1
NC
NC





 447
 780
CAGAAACATCATTTCTCAAA
0
1
NC
NC





 448
 781
CCAGAAACATCATTTCTCAA
0
1
NC
NC





 449
 782
ACCAGAAACATCATTTCTCA
1
0
NC
NC





 450
 783
AACCAGAAACATCATTTCTC
1
1
NC
NC





 451
 785
GGAACCAGAAACATCATTTC
1
1
NC
NC





 452
 786
TGGAACCAGAAACATCATTT
1
1
NC
NC





 453
 787
ATGGAACCAGAAACATCATT
2
1
NC
NC





 454
 788
CATGGAACCAGAAACATCAT
2
2
NC
NC





 455
 789
CCATGGAACCAGAAACATCA
2
2
NC
NC





 456
 790
ACCATGGAACCAGAAACATC
2
2
NC
NC





 457
 791
AACCATGGAACCAGAAACAT
2
2
NC
NC





 458
 792
GAACCATGGAACCAGAAACA
1
2
NC
NC





 459
 793
AGAACCATGGAACCAGAAAC
2
2
NC
NC





 460
 794
AAGAACCATGGAACCAGAAA
2
1
NC
NC





 461
 795
GAAGAACCATGGAACCAGAA
2
2
NC
NC





 462
 796
TGAAGAACCATGGAACCAGA
1
1
NC
NC





 463
 797
CTGAAGAACCATGGAACCAG
2
NC
NC
NC





 464
 798
GCTGAAGAACCATGGAACCA
2
NC
NC
NC





 465
 799
AGCTGAAGAACCATGGAACC
2
NC
NC
NC





 466
 800
GAGCTGAAGAACCATGGAAC
2
NC
NC
NC





 467
 801
GGAGCTGAAGAACCATGGAA
2
NC
NC
NC





 468
 802
GGGAGCTGAAGAACCATGGA
2
NC
NC
NC





 469
 803
AGGGAGCTGAAGAACCATGG
2
NC
NC
NC





 470
 804
TAGGGAGCTGAAGAACCATG
2
NC
NC
NC





 471
 805
TTAGGGAGCTGAAGAACCAT
2
NC
NC
NC





 472
 806
TTTAGGGAGCTGAAGAACCA
2
NC
NC
NC





 473
 807
TTTTAGGGAGCTGAAGAACC
2
NC
NC
NC





 474
 808
GTTTTAGGGAGCTGAAGAAC
2
NC
NC
NC





 475
 809
GGTTTTAGGGAGCTGAAGAA
2
NC
NC
NC





 476
 810
TGGTTTTAGGGAGCTGAAGA
2
NC
NC
NC





 477
 811
TTGGTTTTAGGGAGCTGAAG
2
NC
NC
NC





 478
 812
TTTGGTTTTAGGGAGCTGAA
2
NC
NC
NC





 479
 813
CTTTGGTTTTAGGGAGCTGA
2
NC
NC
NC





 480
 814
TCTTTGGTTTTAGGGAGCTG
1
NC
NC
NC





 481
 815
GTCTTTGGTTTTAGGGAGCT
2
NC
NC
NC





 482
 816
CGTCTTTGGTTTTAGGGAGC
2
NC
NC
NC





 483
 817
ACGTCTTTGGTTTTAGGGAG
2
2
NC
NC





 484
 818
TACGTCTTTGGTTTTAGGGA
2
2
NC
NC





 485
 819
ATACGTCTTTGGTTTTAGGG
2
2
NC
NC





 486
 820
CATACGTCTTTGGTTTTAGG
2
2
NC
NC





 487
 821
ACATACGTCTTTGGTTTTAG
2
2
NC
NC





 488
 822
AACATACGTCTTTGGTTTTA
2
2
NC
NC





 489
 823
GAACATACGTCTTTGGTTTT
2
2
NC
NC





 490
 824
GGAACATACGTCTTTGGTTT
3
3
NC
NC





 491
 825
GGGAACATACGTCTTTGGTT
2
3
NC
NC





 492
 826
CGGGAACATACGTCTTTGGT
3
3
NC
NC





 493
 827
TCGGGAACATACGTCTTTGG
3
3
NC
NC





 494
 828
ATCGGGAACATACGTCTTTG
3
2
NC
NC





 495
 829
AATCGGGAACATACGTCTTT
2
2
NC
NC





 496
 830
AAATCGGGAACATACGTCTT
2
2
NC
NC





 497
 831
AAAATCGGGAACATACGTCT
3
2
NC
NC





 498
 832
CAAAATCGGGAACATACGTC
3
3
NC
NC





 499
 833
ACAAAATCGGGAACATACGT
3
3
NC
NC





 500
 834
GACAAAATCGGGAACATACG
3
3
NC
NC





 501
 835
TGACAAAATCGGGAACATAC
2
2
NC
NC





 502
 836
TTGACAAAATCGGGAACATA
2
2
NC
NC





 503
 837
TTTGACAAAATCGGGAACAT
2
2
NC
NC





 504
 838
ATTTGACAAAATCGGGAACA
2
2
NC
NC





 505
 839
AATTTGACAAAATCGGGAAC
2
2
NC
NC





 506
 840
AAATTTGACAAAATCGGGAA
2
2
NC
NC





 507
 841
TAAATTTGACAAAATCGGGA
2
2
NC
NC





 508
 842
ATAAATTTGACAAAATCGGG
2
2
NC
NC





 509
 843
CATAAATTTGACAAAATCGG
2
2
NC
NC





 510
 844
CCATAAATTTGACAAAATCG
2
2
NC
NC





 511
 845
TCCATAAATTTGACAAAATC
2
1
NC
NC





 512
 848
CAATCCATAAATTTGACAAA
1
2
NC
NC





 513
 849
CCAATCCATAAATTTGACAA
2
2
NC
NC





 514
 850
CCCAATCCATAAATTTGACA
2
2
NC
NC





 515
 851
TCCCAATCCATAAATTTGAC
2
2
NC
NC





 516
 852
TTCCCAATCCATAAATTTGA
2
1
NC
NC





 517
 853
TTTCCCAATCCATAAATTTG
2
1
NC
NC





 518
 854
CTTTCCCAATCCATAAATTT
1
1
NC
NC





 519
 855
ACTTTCCCAATCCATAAATT
1
2
NC
NC





 520
 856
GACTTTCCCAATCCATAAAT
2
2
NC
NC





 521
 857
GGACTTTCCCAATCCATAAA
2
2
NC
NC





 522
 868
CTTAGCTTTTGGGACTTTCC
2
NC
NC
NC





 523
 869
TCTTAGCTTTTGGGACTTTC
2
NC
NC
NC





 524
 870
CTCTTAGCTTTTGGGACTTT
2
NC
NC
NC





 525
 871
TCTCTTAGCTTTTGGGACTT
2
NC
NC
NC





 526
 872
TTCTCTTAGCTTTTGGGACT
2
NC
NC
NC





 527
 873
TTTCTCTTAGCTTTTGGGAC
2
NC
NC
NC





 528
 874
ATTTCTCTTAGCTTTTGGGA
2
NC
NC
NC





 529
 875
TATTTCTCTTAGCTTTTGGG
2
NC
NC
NC





 530
 876
TTATTTCTCTTAGCTTTTGG
2
NC
NC
NC





 531
 877
CTTATTTCTCTTAGCTTTTG
2
NC
NC
NC





 532
 878
ACTTATTTCTCTTAGCTTTT
2
NC
NC
NC





 533
 879
AACTTATTTCTCTTAGCTTT
1
NC
NC
NC





 534
 880
AAACTTATTTCTCTTAGCTT
1
NC
NC
NC





 535
 881
AAAACTTATTTCTCTTAGCT
2
NC
NC
NC





 536
 882
TAAAACTTATTTCTCTTAGC
2
NC
NC
NC





 537
 900
GCTCAAACTCTTTATATTTA
2
NC
NC
NC





 538
 901
AGCTCAAACTCTTTATATTT
1
NC
NC
NC





 539
 902
AAGCTCAAACTCTTTATATT
2
NC
NC
NC





 540
 903
TAAGCTCAAACTCTTTATAT
1
NC
NC
NC





 541
 904
CTAAGCTCAAACTCTTTATA
1
NC
NC
NC





 542
 905
ACTAAGCTCAAACTCTTTAT
2
NC
NC
NC





 543
 906
CACTAAGCTCAAACTCTTTA
2
NC
NC
NC





 544
 907
CCACTAAGCTCAAACTCTTT
2
NC
NC
NC





 545
 908
GCCACTAAGCTCAAACTCTT
2
NC
NC
NC





 546
 909
AGCCACTAAGCTCAAACTCT
2
NC
NC
NC





 547
 936
TGTTGTAATGTGCTTCAGAG
2
NC
NC
NC





 548
 937
TTGTTGTAATGTGCTTCAGA
2
NC
NC
NC





 549
 938
CTTGTTGTAATGTGCTTCAG
2
NC
NC
NC





 550
 939
TCTTGTTGTAATGTGCTTCA
2
NC
NC
NC





 551
 940
TTCTTGTTGTAATGTGCTTC
2
NC
NC
NC





 552
 941
ATTCTTGTTGTAATGTGCTT
2
NC
NC
NC





 553
 942
TATTCTTGTTGTAATGTGCT
2
NC
NC
NC





 554
 943
ATATTCTTGTTGTAATGTGC
1
NC
NC
NC





 555
 944
CATATTCTTGTTGTAATGTG
1
NC
NC
NC





 556
 945
GCATATTCTTGTTGTAATGT
1
NC
NC
NC





 557
 946
TGCATATTCTTGTTGTAATG
2
NC
NC
NC





 558
 947
CTGCATATTCTTGTTGTAAT
2
NC
NC
NC





 559
 948
ACTGCATATTCTTGTTGTAA
2
NC
NC
NC





 560
 949
AACTGCATATTCTTGTTGTA
2
NC
NC
NC





 561
 950
AAACTGCATATTCTTGTTGT
2
NC
NC
NC





 562
 951
AAAACTGCATATTCTTGTTG
2
NC
NC
NC





 563
 952
AAAAACTGCATATTCTTGTT
2
NC
NC
NC





 564
 953
CAAAAACTGCATATTCTTGT
1
NC
NC
NC





 565
 954
ACAAAAACTGCATATTCTTG
2
NC
NC
NC





 566
 955
AACAAAAACTGCATATTCTT
1
2
1
2





 567
 956
AAACAAAAACTGCATATTCT
1
1
1
2





 568
 957
CAAACAAAAACTGCATATTC
2
2
2
1





 569
 958
ACAAACAAAAACTGCATATT
1
1
1
2





 570
 959
CACAAACAAAAACTGCATAT
1
1
2
2





 571
 960
TCACAAACAAAAACTGCATA
0
1
2
2





 572
 961
TTCACAAACAAAAACTGCAT
0
2
2
2





 573
 962
GTTCACAAACAAAAACTGCA
1
2
1
2





 574
 974
AACTAGTCTTTTGTTCACAA
1
NC
NC
NC





 575
 975
AAACTAGTCTTTTGTTCACA
1
NC
NC
NC





 576
 976
AAAACTAGTCTTTTGTTCAC
1
NC
NC
NC





 577
 977
TAAAACTAGTCTTTTGTTCA
1
NC
NC
NC





 578
 978
TTAAAACTAGTCTTTTGTTC
1
NC
NC
NC





 579
 979
CTTAAAACTAGTCTTTTGTT
1
NC
NC
NC





 580
 980
CCTTAAAACTAGTCTTTTGT
2
NC
NC
NC





 581
 981
TCCTTAAAACTAGTCTTTTG
2
NC
NC
NC





 582
 982
GTCCTTAAAACTAGTCTTTT
2
NC
NC
NC





 583
 983
TGTCCTTAAAACTAGTCTTT
2
NC
NC
NC





 584
 984
TTGTCCTTAAAACTAGTCTT
2
NC
NC
NC





 585
 985
TTTGTCCTTAAAACTAGTCT
1
NC
NC
NC





 586
 986
CTTTGTCCTTAAAACTAGTC
2
NC
NC
NC





 587
 987
GCTTTGTCCTTAAAACTAGT
1
NC
NC
NC





 588
 988
AGCTTTGTCCTTAAAACTAG
2
NC
NC
NC





 589
 989
TAGCTTTGTCCTTAAAACTA
2
NC
NC
NC





 590
 990
GTAGCTTTGTCCTTAAAACT
2
NC
NC
NC





 591
 991
TGTAGCTTTGTCCTTAAAAC
2
2
NC
NC





 592
 992
ATGTAGCTTTGTCCTTAAAA
1
2
NC
NC





 593
 993
TATGTAGCTTTGTCCTTAAA
2
2
NC
NC





 594
 994
TTATGTAGCTTTGTCCTTAA
2
2
NC
NC





 595
 995
TTTATGTAGCTTTGTCCTTA
1
2
NC
NC





 596
 996
GTTTATGTAGCTTTGTCCTT
2
2
NC
NC





 597
 997
AGTTTATGTAGCTTTGTCCT
3
2
NC
NC





 598
 998
GAGTTTATGTAGCTTTGTCC
2
2
NC
NC





 599
 999
TGAGTTTATGTAGCTTTGTC
2
2
NC
NC





 600
1000
ATGAGTTTATGTAGCTTTGT
2
1
NC
NC





 601
1001
AATGAGTTTATGTAGCTTTG
1
1
NC
NC





 602
1002
CAATGAGTTTATGTAGCTTT
2
2
NC
NC





 603
1003
TCAATGAGTTTATGTAGCTT
1
1
NC
NC





 604
1004
GTCAATGAGTTTATGTAGCT
2
2
NC
NC





 605
1005
AGTCAATGAGTTTATGTAGC
2
2
NC
NC





 606
1006
AAGTCAATGAGTTTATGTAG
2
2
NC
NC





 607
1007
AAAGTCAATGAGTTTATGTA
2
2
NC
NC





 608
1008
AAAAGTCAATGAGTTTATGT
2
2
NC
NC





 609
1009
AAAAAGTCAATGAGTTTATG
1
2
NC
NC





 610
1015
CTTAATAAAAAGTCAATGAG
2
1
NC
NC





 611
1016
CCTTAATAAAAAGTCAATGA
1
2
NC
NC





 612
1017
TCCTTAATAAAAAGTCAATG
2
2
NC
NC





 613
1020
CTTTCCTTAATAAAAAGTCA
1
2
NC
NC





 614
1021
TCTTTCCTTAATAAAAAGTC
0
2
NC
NC





 615
1033
CATATAATACTTTCTTTCCT
1
NC
NC
NC





 616
1034
GCATATAATACTTTCTTTCC
1
NC
NC
NC





 617
1035
TGCATATAATACTTTCTTTC
2
NC
NC
NC





 618
1037
CTTGCATATAATACTTTCTT
2
NC
NC
NC





 619
1038
GCTTGCATATAATACTTTCT
2
NC
NC
NC





 620
1039
GGCTTGCATATAATACTTTC
3
NC
NC
NC





 621
1040
TGGCTTGCATATAATACTTT
3
NC
NC
NC





 622
1041
TTGGCTTGCATATAATACTT
2
NC
NC
NC





 623
1042
TTTGGCTTGCATATAATACT
1
1
NC
NC





 624
1043
CTTTGGCTTGCATATAATAC
2
2
NC
NC





 625
1044
TCTTTGGCTTGCATATAATA
2
2
NC
NC





 626
1045
TTCTTTGGCTTGCATATAAT
1
2
NC
NC





 627
1046
ATTCTTTGGCTTGCATATAA
1
NC
NC
NC





 628
1047
CATTCTTTGGCTTGCATATA
2
NC
NC
NC





 629
1048
CCATTCTTTGGCTTGCATAT
1
NC
NC
NC





 630
1067
CATTTGCCTACTGGTGGGAC
2
NC
NC
NC





 631
1068
TCATTTGCCTACTGGTGGGA
2
NC
NC
NC





 632
1069
TTCATTTGCCTACTGGTGGG
2
NC
NC
NC





 633
1070
ATTCATTTGCCTACTGGTGG
1
NC
NC
NC





 634
1071
AATTCATTTGCCTACTGGTG
2
NC
NC
NC





 635
1072
GAATTCATTTGCCTACTGGT
2
NC
NC
NC





 636
1073
TGAATTCATTTGCCTACTGG
2
NC
NC
NC





 637
1074
TTGAATTCATTTGCCTACTG
1
NC
NC
NC





 638
1075
CTTGAATTCATTTGCCTACT
1
NC
NC
NC





 639
1076
ACTTGAATTCATTTGCCTAC
2
NC
NC
NC





 640
1077
GACTTGAATTCATTTGCCTA
1
NC
NC
NC





 641
1078
AGACTTGAATTCATTTGCCT
2
NC
NC
NC





 642
1079
AAGACTTGAATTCATTTGCC
1
NC
NC
NC





 643
1080
GAAGACTTGAATTCATTTGC
2
NC
NC
NC





 644
1081
CGAAGACTTGAATTCATTTG
2
NC
NC
NC





 645
1082
CCGAAGACTTGAATTCATTT
2
NC
NC
NC





 646
1083
GCCGAAGACTTGAATTCATT
3
NC
NC
NC





 647
1084
TGCCGAAGACTTGAATTCAT
2
NC
NC
NC





 648
1085
GTGCCGAAGACTTGAATTCA
2
NC
NC
NC





 649
1086
GGTGCCGAAGACTTGAATTC
2
NC
NC
NC





 650
1113
ATATGCCATAGAGTTCTGGG
2
2
NC
NC





 651
1114
TATATGCCATAGAGTTCTGG
2
2
NC
NC





 652
1115
ATATATGCCATAGAGTTCTG
2
2
NC
NC





 653
1116
CATATATGCCATAGAGTTCT
2
2
NC
NC





 654
1117
ACATATATGCCATAGAGTTC
2
2
NC
NC





 655
1118
TACATATATGCCATAGAGTT
2
2
NC
NC





 656
1119
TTACATATATGCCATAGAGT
1
2
NC
NC





 657
1120
ATTACATATATGCCATAGAG
2
2
NC
NC





 658
1121
AATTACATATATGCCATAGA
1
2
NC
NC





 659
1122
TAATTACATATATGCCATAG
2
2
NC
NC





 660
1125
CATTAATTACATATATGCCA
2
2
NC
NC





 661
1126
ACATTAATTACATATATGCC
2
2
NC
NC





 662
1127
CACATTAATTACATATATGC
2
1
NC
NC





 663
1128
GCACATTAATTACATATATG
1
2
NC
NC





 664
1130
CTGCACATTAATTACATATA
1
1
NC
NC





 665
1131
ACTGCACATTAATTACATAT
1
2
NC
NC





 666
1132
CACTGCACATTAATTACATA
2
2
NC
NC





 667
1133
GCACTGCACATTAATTACAT
2
1
NC
NC





 668
1134
GGCACTGCACATTAATTACA
1
1
NC
NC





 669
1135
TGGCACTGCACATTAATTAC
2
2
NC
NC





 670
1136
TTGGCACTGCACATTAATTA
2
2
NC
NC





 671
1137
ATTGGCACTGCACATTAATT
2
2
NC
NC





 672
1138
AATTGGCACTGCACATTAAT
2
2
NC
NC





 673
1139
GAATTGGCACTGCACATTAA
2
2
NC
NC





 674
1140
AGAATTGGCACTGCACATTA
2
2
NC
NC





 675
1141
CAGAATTGGCACTGCACATT
2
2
NC
NC





 676
1142
ACAGAATTGGCACTGCACAT
2
2
NC
NC





 677
1143
CACAGAATTGGCACTGCACA
2
2
NC
NC





 678
1144
TCACAGAATTGGCACTGCAC
1
2
NC
NC





 679
1145
CTCACAGAATTGGCACTGCA
2
2
NC
NC





 680
1146
ACTCACAGAATTGGCACTGC
2
2
NC
NC





 681
1148
ATACTCACAGAATTGGCACT
2
2
NC
NC





 682
1149
CATACTCACAGAATTGGCAC
2
2
NC
NC





 683
1150
TCATACTCACAGAATTGGCA
2
2
NC
NC





 684
1151
ATCATACTCACAGAATTGGC
2
3
NC
NC





 685
1152
CATCATACTCACAGAATTGG
2
2
NC
NC





 686
1153
ACATCATACTCACAGAATTG
2
2
NC
NC





 687
1154
CACATCATACTCACAGAATT
1
2
NC
NC





 688
1155
ACACATCATACTCACAGAAT
2
2
NC
NC





 689
1156
CACACATCATACTCACAGAA
1
2
NC
NC





 690
1157
GCACACATCATACTCACAGA
2
2
NC
NC





 691
1158
TGCACACATCATACTCACAG
2
1
NC
NC





 692
1159
ATGCACACATCATACTCACA
1
2
NC
NC





 693
1160
CATGCACACATCATACTCAC
2
2
NC
NC





 694
1161
CCATGCACACATCATACTCA
2
2
NC
NC





 695
1162
TCCATGCACACATCATACTC
1
2
NC
NC





 696
1163
CTCCATGCACACATCATACT
1
1
NC
NC





 697
1176
GAGTTTTGGCTGGCTCCATG
2
2
NC
NC





 698
1177
AGAGTTTTGGCTGGCTCCAT
2
2
NC
NC





 699
1178
CAGAGTTTTGGCTGGCTCCA
2
2
NC
NC





 700
1179
TCAGAGTTTTGGCTGGCTCC
2
2
NC
NC





 701
1180
ATCAGAGTTTTGGCTGGCTC
2
2
2
2





 702
1181
AATCAGAGTTTTGGCTGGCT
2
2
2
2





 703
1182
CAATCAGAGTTTTGGCTGGC
2
2
2
2





 704
1183
TCAATCAGAGTTTTGGCTGG
2
2
2
2





 705
1184
TTCAATCAGAGTTTTGGCTG
2
NC
NC
NC





 706
1185
ATTCAATCAGAGTTTTGGCT
2
NC
NC
NC





 707
1186
AATTCAATCAGAGTTTTGGC
2
NC
NC
NC





 708
1187
AAATTCAATCAGAGTTTTGG
2
NC
NC
NC





 709
1188
GAAATTCAATCAGAGTTTTG
2
NC
NC
NC





 710
1189
TGAAATTCAATCAGAGTTTT
1
NC
NC
NC





 711
1196
CCAGTTCTGAAATTCAATCA
1
NC
NC
NC





 712
1197
CCCAGTTCTGAAATTCAATC
2
NC
NC
NC





 713
1198
TCCCAGTTCTGAAATTCAAT
2
NC
NC
NC





 714
1199
GTCCCAGTTCTGAAATTCAA
2
NC
NC
NC





 715
1200
TGTCCCAGTTCTGAAATTCA
2
NC
NC
NC





 716
1201
GTGTCCCAGTTCTGAAATTC
1
NC
NC
NC





 717
1202
AGTGTCCCAGTTCTGAAATT
1
NC
NC
NC





 718
1203
GAGTGTCCCAGTTCTGAAAT
2
NC
NC
NC





 719
1204
AGAGTGTCCCAGTTCTGAAA
2
2
NC
NC





 720
1205
GAGAGTGTCCCAGTTCTGAA
2
2
NC
NC





 721
1206
AGAGAGTGTCCCAGTTCTGA
2
2
NC
NC





 722
1207
AAGAGAGTGTCCCAGTTCTG
2
2
NC
NC





 723
1208
CAAGAGAGTGTCCCAGTTCT
1
2
NC
NC





 724
1209
ACAAGAGAGTGTCCCAGTTC
2
2
NC
NC





 725
1210
AACAAGAGAGTGTCCCAGTT
1
2
NC
NC





 726
1211
AAACAAGAGAGTGTCCCAGT
2
2
NC
NC





 727
1212
AAAACAAGAGAGTGTCCCAG
2
1
NC
NC





 728
1213
CAAAACAAGAGAGTGTCCCA
2
1
NC
NC





 729
1214
GCAAAACAAGAGAGTGTCCC
2
NC
NC
NC





 730
1215
TGCAAAACAAGAGAGTGTCC
2
NC
NC
NC





 731
1216
ATGCAAAACAAGAGAGTGTC
1
NC
NC
NC





 732
1217
AATGCAAAACAAGAGAGTGT
2
NC
NC
NC





 733
1218
GAATGCAAAACAAGAGAGTG
1
NC
NC
NC





 734
1219
TGAATGCAAAACAAGAGAGT
1
NC
NC
NC





 735
1220
CTGAATGCAAAACAAGAGAG
1
NC
NC
NC





 736
1221
CCTGAATGCAAAACAAGAGA
2
NC
NC
NC





 737
1222
TCCTGAATGCAAAACAAGAG
2
NC
NC
NC





 738
1223
TTCCTGAATGCAAAACAAGA
1
NC
NC
NC





 739
1224
CTTCCTGAATGCAAAACAAG
1
NC
NC
NC





 740
1225
CCTTCCTGAATGCAAAACAA
2
NC
NC
NC





 741
1226
TCCTTCCTGAATGCAAAACA
1
NC
NC
NC





 742
1227
CTCCTTCCTGAATGCAAAAC
2
NC
NC
NC





 743
1228
ACTCCTTCCTGAATGCAAAA
2
NC
NC
NC





 744
1229
CACTCCTTCCTGAATGCAAA
2
NC
NC
NC





 745
1230
TCACTCCTTCCTGAATGCAA
1
NC
NC
NC





 746
1231
TTCACTCCTTCCTGAATGCA
1
NC
NC
NC





 747
1232
TTTCACTCCTTCCTGAATGC
1
NC
NC
NC





 748
1233
TTTTCACTCCTTCCTGAATG
2
NC
NC
NC





 749
1234
ATTTTCACTCCTTCCTGAAT
2
1
NC
NC





 750
1235
CATTTTCACTCCTTCCTGAA
2
2
NC
NC





 751
1236
ACATTTTCACTCCTTCCTGA
2
2
NC
NC





 752
1237
AACATTTTCACTCCTTCCTG
2
2
NC
NC





 753
1238
AAACATTTTCACTCCTTCCT
2
2
NC
NC





 754
1239
AAAACATTTTCACTCCTTCC
1
1
NC
NC





 755
1240
AAAAACATTTTCACTCCTTC
2
1
NC
NC





 756
1241
TAAAAACATTTTCACTCCTT
1
0
NC
NC





 757
1242
TTAAAAACATTTTCACTCCT
2
1
NC
NC





 758
1243
TTTAAAAACATTTTCACTCC
2
2
NC
NC





 759
1244
CTTTAAAAACATTTTCACTC
1
1
NC
NC





 760
1245
GCTTTAAAAACATTTTCACT
1
1
NC
NC





 761
1246
TGCTTTAAAAACATTTTCAC
0
1
NC
NC





 762
1248
CTTGCTTTAAAAACATTTTC
1
1
NC
NC





 763
1262
CACAAATAATTTTTCTTGCT
0
1
NC
NC





 764
1263
CCACAAATAATTTTTCTTGC
1
2
NC
NC





 765
1264
TCCACAAATAATTTTTCTTG
1
2
NC
NC





 766
1272
CTGATAATTCCACAAATAAT
2
2
NC
NC





 767
1273
CCTGATAATTCCACAAATAA
2
2
NC
NC





 768
1274
ACCTGATAATTCCACAAATA
2
2
NC
NC





 769
1275
CACCTGATAATTCCACAAAT
2
2
NC
NC





 770
1276
TCACCTGATAATTCCACAAA
2
2
NC
NC





 771
1277
CTCACCTGATAATTCCACAA
2
1
NC
NC





 772
1278
CCTCACCTGATAATTCCACA
2
2
NC
NC





 773
1279
TCCTCACCTGATAATTCCAC
2
2
NC
NC





 774
1280
ATCCTCACCTGATAATTCCA
2
2
NC
NC





 775
1281
TATCCTCACCTGATAATTCC
2
2
NC
NC





 776
1282
ATATCCTCACCTGATAATTC
2
2
NC
NC





 777
1283
AATATCCTCACCTGATAATT
2
2
NC
NC





 778
1284
TAATATCCTCACCTGATAAT
2
2
NC
NC





 779
1285
TTAATATCCTCACCTGATAA
2
2
NC
NC





 780
1286
CTTAATATCCTCACCTGATA
2
2
NC
NC





 781
1287
CCTTAATATCCTCACCTGAT
2
2
NC
NC





 782
1288
TCCTTAATATCCTCACCTGA
2
2
NC
NC





 783
1289
TTCCTTAATATCCTCACCTG
2
2
NC
NC





 784
1290
ATTCCTTAATATCCTCACCT
2
2
NC
NC





 785
1291
AATTCCTTAATATCCTCACC
1
1
NC
NC





 786
1292
AAATTCCTTAATATCCTCAC
2
2
NC
NC





 787
1293
TAAATTCCTTAATATCCTCA
2
2
NC
NC





 788
1294
CTAAATTCCTTAATATCCTC
2
2
NC
NC





 789
1295
ACTAAATTCCTTAATATCCT
2
2
NC
NC





 790
1296
CACTAAATTCCTTAATATCC
2
2
NC
NC





 791
1297
TCACTAAATTCCTTAATATC
1
1
NC
NC





 792
1299
CTTCACTAAATTCCTTAATA
1
1
NC
NC





 793
1300
TCTTCACTAAATTCCTTAAT
2
1
NC
NC





 794
1301
ATCTTCACTAAATTCCTTAA
2
2
NC
NC





 795
1302
TATCTTCACTAAATTCCTTA
2
2
NC
NC





 796
1303
TTATCTTCACTAAATTCCTT
1
1
NC
NC





 797
1304
ATTATCTTCACTAAATTCCT
2
2
NC
NC





 798
1305
CATTATCTTCACTAAATTCC
2
2
NC
NC





 799
1306
CCATTATCTTCACTAAATTC
2
2
NC
NC





 800
1307
ACCATTATCTTCACTAAATT
2
2
NC
NC





 801
1308
AACCATTATCTTCACTAAAT
2
2
NC
NC





 802
1309
AAACCATTATCTTCACTAAA
1
2
NC
NC





 803
1310
AAAACCATTATCTTCACTAA
2
2
NC
NC





 804
1311
TAAAACCATTATCTTCACTA
1
1
NC
NC





 805
1312
CTAAAACCATTATCTTCACT
1
NC
NC
NC





 806
1313
ACTAAAACCATTATCTTCAC
2
NC
NC
NC





 807
1314
AACTAAAACCATTATCTTCA
2
NC
NC
NC





 808
1315
AAACTAAAACCATTATCTTC
2
NC
NC
NC





 809
1323
CATCAAATAAACTAAAACCA
2
NC
NC
NC





 810
1324
GCATCAAATAAACTAAAACC
2
NC
NC
NC





 811
1325
AGCATCAAATAAACTAAAAC
2
NC
NC
NC





 812
1327
GTAGCATCAAATAAACTAAA
2
NC
NC
NC





 813
1328
AGTAGCATCAAATAAACTAA
2
NC
NC
NC





 814
1329
GAGTAGCATCAAATAAACTA
2
NC
NC
NC





 815
1330
AGAGTAGCATCAAATAAACT
2
NC
NC
NC





 816
1331
AAGAGTAGCATCAAATAAAC
1
NC
NC
NC





 817
1332
GAAGAGTAGCATCAAATAAA
1
2
NC
NC





 818
1333
TGAAGAGTAGCATCAAATAA
2
2
NC
NC





 819
1334
CTGAAGAGTAGCATCAAATA
2
2
NC
NC





 820
1335
TCTGAAGAGTAGCATCAAAT
2
1
NC
NC





 821
1336
TTCTGAAGAGTAGCATCAAA
2
2
NC
NC





 822
1337
CTTCTGAAGAGTAGCATCAA
2
2
NC
NC





 823
1342
ACACGCTTCTGAAGAGTAGC
2
2
NC
NC





 824
1343
CACACGCTTCTGAAGAGTAG
2
2
NC
NC





 825
1344
TCACACGCTTCTGAAGAGTA
2
2
NC
NC





 826
1346
AGTCACACGCTTCTGAAGAG
3
2
NC
NC





 827
1347
AAGTCACACGCTTCTGAAGA
2
2
NC
NC





 828
1354
TCATCGGAAGTCACACGCTT
2
3
NC
NC





 829
1355
CTCATCGGAAGTCACACGCT
2
2
NC
NC





 830
1356
TCTCATCGGAAGTCACACGC
2
2
NC
NC





 831
1357
CTCTCATCGGAAGTCACACG
2
2
NC
NC





 832
1358
CCTCTCATCGGAAGTCACAC
2
2
NC
NC





 833
1359
TCCTCTCATCGGAAGTCACA
2
2
NC
NC





 834
1360
CTCCTCTCATCGGAAGTCAC
2
2
NC
NC





 835
1361
GCTCCTCTCATCGGAAGTCA
3
NC
NC
NC





 836
1362
TGCTCCTCTCATCGGAAGTC
2
NC
NC
NC





 837
1363
TTGCTCCTCTCATCGGAAGT
3
NC
NC
NC





 838
1364
ATTGCTCCTCTCATCGGAAG
2
NC
NC
NC





 839
1365
AATTGCTCCTCTCATCGGAA
3
NC
NC
NC





 840
1366
AAATTGCTCCTCTCATCGGA
3
NC
NC
NC





 841
1367
GAAATTGCTCCTCTCATCGG
2
NC
NC
NC





 842
1368
GGAAATTGCTCCTCTCATCG
2
NC
NC
NC





 843
1369
TGGAAATTGCTCCTCTCATC
2
NC
NC
NC





 844
1370
CTGGAAATTGCTCCTCTCAT
2
NC
NC
NC





 845
1371
CCTGGAAATTGCTCCTCTCA
1
NC
NC
NC





 846
1372
TCCTGGAAATTGCTCCTCTC
1
NC
NC
NC





 847
1373
TTCCTGGAAATTGCTCCTCT
2
NC
NC
NC





 848
1374
CTTCCTGGAAATTGCTCCTC
1
NC
NC
NC





 849
1375
GCTTCCTGGAAATTGCTCCT
2
NC
NC
NC





 850
1376
TGCTTCCTGGAAATTGCTCC
2
NC
NC
NC





 851
1377
ATGCTTCCTGGAAATTGCTC
2
NC
NC
NC





 852
1378
CATGCTTCCTGGAAATTGCT
1
NC
NC
NC





 853
1379
ACATGCTTCCTGGAAATTGC
1
NC
NC
NC





 854
1380
TACATGCTTCCTGGAAATTG
1
NC
NC
NC





 855
1381
TTACATGCTTCCTGGAAATT
2
NC
NC
NC





 856
1382
ATTACATGCTTCCTGGAAAT
2
NC
NC
NC





 857
1383
TATTACATGCTTCCTGGAAA
2
2
NC
NC





 858
1384
TTATTACATGCTTCCTGGAA
2
2
NC
NC





 859
1385
ATTATTACATGCTTCCTGGA
2
2
NC
NC





 860
1386
TATTATTACATGCTTCCTGG
1
2
NC
NC





 861
1387
ATATTATTACATGCTTCCTG
2
2
NC
NC





 862
1388
AATATTATTACATGCTTCCT
2
2
NC
NC





 863
1389
AAATATTATTACATGCTTCC
2
1
NC
NC





 864
1403
CTCATAGGAATCTAAAATAT
2
2
NC
NC





 865
1404
TCTCATAGGAATCTAAAATA
2
2
NC
NC





 866
1405
ATCTCATAGGAATCTAAAAT
2
2
NC
NC





 867
1406
CATCTCATAGGAATCTAAAA
2
2
NC
NC





 868
1407
ACATCTCATAGGAATCTAAA
2
2
NC
NC





 869
1408
AACATCTCATAGGAATCTAA
2
2
NC
NC





 870
1409
AAACATCTCATAGGAATCTA
2
2
NC
NC





 871
1410
TAAACATCTCATAGGAATCT
2
2
NC
NC





 872
1411
TTAAACATCTCATAGGAATC
2
2
NC
NC





 873
1412
ATTAAACATCTCATAGGAAT
2
2
NC
NC





 874
1413
AATTAAACATCTCATAGGAA
1
1
NC
NC





 875
1414
AAATTAAACATCTCATAGGA
1
2
NC
NC





 876
1415
CAAATTAAACATCTCATAGG
2
2
NC
NC





 877
1416
GCAAATTAAACATCTCATAG
1
2
NC
NC





 878
1417
TGCAAATTAAACATCTCATA
1
1
NC
NC





 879
1418
CTGCAAATTAAACATCTCAT
2
NC
NC
NC





 880
1419
ACTGCAAATTAAACATCTCA
2
NC
NC
NC





 881
1420
GACTGCAAATTAAACATCTC
2
NC
NC
NC





 882
1421
TGACTGCAAATTAAACATCT
1
NC
NC
NC





 883
1422
TTGACTGCAAATTAAACATC
2
NC
NC
NC





 884
1423
TTTGACTGCAAATTAAACAT
2
NC
NC
NC





 885
1436
TCTTTTCACAGCTTTTGACT
1
NC
NC
NC





 886
1437
TTCTTTTCACAGCTTTTGAC
1
NC
NC
NC





 887
1438
TTTCTTTTCACAGCTTTTGA
1
NC
NC
NC





 888
1439
TTTTCTTTTCACAGCTTTTG
1
NC
NC
NC





 889
1440
TTTTTCTTTTCACAGCTTTT
1
NC
NC
NC





 890
1441
GTTTTTCTTTTCACAGCTTT
1
NC
NC
NC





 891
1442
AGTTTTTCTTTTCACAGCTT
1
NC
NC
NC





 892
1443
TAGTTTTTCTTTTCACAGCT
1
NC
NC
NC





 893
1444
GTAGTTTTTCTTTTCACAGC
0
NC
NC
NC





 894
1445
AGTAGTTTTTCTTTTCACAG
1
NC
NC
NC





 895
1446
CAGTAGTTTTTCTTTTCACA
2
NC
NC
NC





 896
1447
GCAGTAGTTTTTCTTTTCAC
1
NC
NC
NC





 897
1448
TGCAGTAGTTTTTCTTTTCA
1
NC
NC
NC





 898
1449
CTGCAGTAGTTTTTCTTTTC
2
NC
NC
NC





 899
1450
TCTGCAGTAGTTTTTCTTTT
1
NC
NC
NC





 900
1451
TTCTGCAGTAGTTTTTCTTT
1
NC
NC
NC





 901
1452
TTTCTGCAGTAGTTTTTCTT
1
NC
NC
NC





 902
1453
TTTTCTGCAGTAGTTTTTCT
1
NC
NC
NC





 903
1454
GTTTTCTGCAGTAGTTTTTC
2
NC
NC
NC





 904
1455
CGTTTTCTGCAGTAGTTTTT
2
NC
NC
NC





 905
1456
ACGTTTTCTGCAGTAGTTTT
2
NC
NC
NC





 906
1457
TACGTTTTCTGCAGTAGTTT
2
NC
NC
NC





 907
1458
TTACGTTTTCTGCAGTAGTT
2
NC
NC
NC





 908
1459
TTTACGTTTTCTGCAGTAGT
2
NC
NC
NC





 909
1460
GTTTACGTTTTCTGCAGTAG
3
NC
NC
NC





 910
1461
TGTTTACGTTTTCTGCAGTA
2
NC
NC
NC





 911
1462
GTGTTTACGTTTTCTGCAGT
3
NC
NC
NC





 912
1463
TGTGTTTACGTTTTCTGCAG
2
NC
NC
NC





 913
1464
GTGTGTTTACGTTTTCTGCA
2
NC
NC
NC





 914
1465
TGTGTGTTTACGTTTTCTGC
2
NC
NC
NC





 915
1466
CTGTGTGTTTACGTTTTCTG
2
NC
NC
NC





 916
1467
TCTGTGTGTTTACGTTTTCT
1
NC
NC
NC





 917
1468
CTCTGTGTGTTTACGTTTTC
1
NC
NC
NC





 918
1469
ACTCTGTGTGTTTACGTTTT
2
NC
NC
NC





 919
1470
AACTCTGTGTGTTTACGTTT
2
NC
NC
NC





 920
1471
GAACTCTGTGTGTTTACGTT
1
NC
NC
NC





 921
1472
AGAACTCTGTGTGTTTACGT
2
NC
NC
NC





 922
1473
TAGAACTCTGTGTGTTTACG
3
NC
NC
NC





 923
1474
CTAGAACTCTGTGTGTTTAC
2
NC
NC
NC





 924
1475
CCTAGAACTCTGTGTGTTTA
2
NC
NC
NC





 925
1476
CCCTAGAACTCTGTGTGTTT
2
NC
NC
NC





 926
1477
TCCCTAGAACTCTGTGTGTT
2
NC
NC
NC





 927
1478
ATCCCTAGAACTCTGTGTGT
2
NC
NC
NC





 928
1479
AATCCCTAGAACTCTGTGTG
2
NC
NC
NC





 929
1480
GAATCCCTAGAACTCTGTGT
2
NC
NC
NC





 930
1481
TGAATCCCTAGAACTCTGTG
2
NC
NC
NC





 931
1482
CTGAATCCCTAGAACTCTGT
2
NC
NC
NC





 932
1483
TCTGAATCCCTAGAACTCTG
2
NC
NC
NC





 933
1484
TTCTGAATCCCTAGAACTCT
2
NC
NC
NC





 934
1485
CTTCTGAATCCCTAGAACTC
2
NC
NC
NC





 935
1486
GCTTCTGAATCCCTAGAACT
2
NC
NC
NC





 936
1487
AGCTTCTGAATCCCTAGAAC
2
NC
NC
NC





 937
1488
TAGCTTCTGAATCCCTAGAA
2
NC
NC
NC





 938
1489
GTAGCTTCTGAATCCCTAGA
2
NC
NC
NC





 939
1490
GGTAGCTTCTGAATCCCTAG
2
NC
NC
NC





 940
1491
TGGTAGCTTCTGAATCCCTA
2
NC
NC
NC





 941
1492
CTGGTAGCTTCTGAATCCCT
2
NC
NC
NC





 942
1493
TCTGGTAGCTTCTGAATCCC
2
NC
NC
NC





 943
1494
TTCTGGTAGCTTCTGAATCC
2
NC
NC
NC





 944
1495
TTTCTGGTAGCTTCTGAATC
2
NC
NC
NC





 945
1496
TTTTCTGGTAGCTTCTGAAT
2
NC
NC
NC





 946
1497
TTTTTCTGGTAGCTTCTGAA
2
NC
NC
NC





 947
1522
ATGTACAAAAATGCATCATT
1
NC
NC
NC





 948
1523
AATGTACAAAAATGCATCAT
1
NC
NC
NC





 949
1524
AAATGTACAAAAATGCATCA
1
NC
NC
NC





 950
1525
TAAATGTACAAAAATGCATC
1
NC
NC
NC





 951
1527
CATAAATGTACAAAAATGCA
1
NC
NC
NC





 952
1528
TCATAAATGTACAAAAATGC
1
NC
NC
NC





 953
1533
CTGATTCATAAATGTACAAA
2
NC
NC
NC





 954
1534
CCTGATTCATAAATGTACAA
2
NC
NC
NC





 955
1535
ACCTGATTCATAAATGTACA
2
NC
NC
NC





 956
1536
CACCTGATTCATAAATGTAC
2
NC
NC
NC





 957
1537
CCACCTGATTCATAAATGTA
2
NC
NC
NC





 958
1538
ACCACCTGATTCATAAATGT
2
NC
NC
NC





 959
1539
GACCACCTGATTCATAAATG
2
2
NC
NC





 960
1540
GGACCACCTGATTCATAAAT
2
2
NC
NC





 961
1542
CTGGACCACCTGATTCATAA
2
2
NC
NC





 962
1543
CCTGGACCACCTGATTCATA
1
1
NC
NC





 963
1544
GCCTGGACCACCTGATTCAT
1
1
NC
NC





 964
1563
GCTCTGTCATTTTGCTATGG
2
2
NC
NC





 965
1564
GGCTCTGTCATTTTGCTATG
2
2
NC
NC





 966
1565
TGGCTCTGTCATTTTGCTAT
1
2
NC
NC





 967
1566
ATGGCTCTGTCATTTTGCTA
2
2
NC
NC





 968
1567
GATGGCTCTGTCATTTTGCT
2
2
NC
NC





 969
1568
AGATGGCTCTGTCATTTTGC
1
2
NC
NC





 970
1569
AAGATGGCTCTGTCATTTTG
2
2
NC
NC





 971
1570
AAAGATGGCTCTGTCATTTT
2
2
NC
NC





 972
1571
TAAAGATGGCTCTGTCATTT
2
2
NC
NC





 973
1572
GTAAAGATGGCTCTGTCATT
2
2
NC
NC





 974
1573
TGTAAAGATGGCTCTGTCAT
2
2
NC
NC





 975
1574
TTGTAAAGATGGCTCTGTCA
2
2
NC
NC





 976
1575
TTTGTAAAGATGGCTCTGTC
2
2
NC
NC





 977
1576
TTTTGTAAAGATGGCTCTGT
2
2
NC
NC





 978
1577
GTTTTGTAAAGATGGCTCTG
1
2
NC
NC





 979
1578
TGTTTTGTAAAGATGGCTCT
1
2
NC
NC





 980
1579
TTGTTTTGTAAAGATGGCTC
2
2
NC
NC





 981
1580
TTTGTTTTGTAAAGATGGCT
2
2
NC
NC





 982
1581
CTTTGTTTTGTAAAGATGGC
1
2
NC
NC





 983
1582
TCTTTGTTTTGTAAAGATGG
1
1
NC
NC





 984
1586
GCTGTCTTTGTTTTGTAAAG
2
1
NC
NC





 985
1587
AGCTGTCTTTGTTTTGTAAA
2
1
NC
NC





 986
1588
GAGCTGTCTTTGTTTTGTAA
2
2
NC
NC





 987
1589
AGAGCTGTCTTTGTTTTGTA
2
2
NC
NC





 988
1590
AAGAGCTGTCTTTGTTTTGT
1
1
NC
NC





 989
1604
CTTTGATTCTGAGCAAGAGC
2
NC
NC
NC





 990
1605
TCTTTGATTCTGAGCAAGAG
2
NC
NC
NC





 991
1606
ATCTTTGATTCTGAGCAAGA
2
NC
NC
NC





 992
1607
CATCTTTGATTCTGAGCAAG
2
NC
NC
NC





 993
1608
ACATCTTTGATTCTGAGCAA
2
NC
NC
NC





 994
1609
AACATCTTTGATTCTGAGCA
2
NC
NC
NC





 995
1610
TAACATCTTTGATTCTGAGC
2
NC
NC
NC





 996
1611
CTAACATCTTTGATTCTGAG
2
NC
NC
NC





 997
1612
TCTAACATCTTTGATTCTGA
2
NC
NC
NC





 998
1613
TTCTAACATCTTTGATTCTG
2
NC
NC
NC





 999
1614
GTTCTAACATCTTTGATTCT
2
NC
NC
NC





1000
1615
TGTTCTAACATCTTTGATTC
2
NC
NC
NC





1001
1625
AATTGTCTCTTGTTCTAACA
1
1
NC
NC





1002
1626
CAATTGTCTCTTGTTCTAAC
2
2
NC
NC





1003
1627
ACAATTGTCTCTTGTTCTAA
2
1
NC
NC





1004
1628
TACAATTGTCTCTTGTTCTA
2
2
NC
NC





1005
1629
CTACAATTGTCTCTTGTTCT
2
2
NC
NC





1006
1630
GCTACAATTGTCTCTTGTTC
2
2
NC
NC





1007
1631
TGCTACAATTGTCTCTTGTT
2
2
NC
NC





1008
1633
GATGCTACAATTGTCTCTTG
2
2
NC
NC





1009
1634
TGATGCTACAATTGTCTCTT
2
2
NC
NC





1010
1635
CTGATGCTACAATTGTCTCT
2
2
NC
NC





1011
1636
TCTGATGCTACAATTGTCTC
2
1
NC
NC





1012
1637
TTCTGATGCTACAATTGTCT
2
1
NC
NC





1013
1638
CTTCTGATGCTACAATTGTC
2
2
NC
NC





1014
1639
GCTTCTGATGCTACAATTGT
2
2
NC
NC





1015
1641
CAGCTTCTGATGCTACAATT
2
NC
NC
NC





1016
1642
CCAGCTTCTGATGCTACAAT
2
NC
NC
NC





1017
1643
TCCAGCTTCTGATGCTACAA
2
NC
NC
NC





1018
1644
CTCCAGCTTCTGATGCTACA
2
NC
NC
NC





1019
1645
TCTCCAGCTTCTGATGCTAC
2
NC
NC
NC





1020
1646
TTCTCCAGCTTCTGATGCTA
2
NC
NC
NC





1021
1648
TTTTCTCCAGCTTCTGATGC
2
NC
NC
NC





1022
1649
ATTTTCTCCAGCTTCTGATG
2
NC
NC
NC





1023
1650
CATTTTCTCCAGCTTCTGAT
2
NC
NC
NC





1024
1651
TCATTTTCTCCAGCTTCTGA
1
NC
NC
NC





1025
1652
CTCATTTTCTCCAGCTTCTG
1
NC
NC
NC





1026
1653
TCTCATTTTCTCCAGCTTCT
2
NC
NC
NC





1027
1654
TTCTCATTTTCTCCAGCTTC
1
NC
NC
NC





1028
1655
TTTCTCATTTTCTCCAGCTT
1
NC
NC
NC





1029
1656
GTTTCTCATTTTCTCCAGCT
2
NC
NC
NC





1030
1657
TGTTTCTCATTTTCTCCAGC
2
NC
NC
NC





1031
1658
ATGTTTCTCATTTTCTCCAG
1
NC
NC
NC





1032
1659
TATGTTTCTCATTTTCTCCA
1
NC
NC
NC





1033
1660
TTATGTTTCTCATTTTCTCC
1
1
NC
NC





1034
1661
TTTATGTTTCTCATTTTCTC
1
1
NC
NC





1035
1679
ATGTTCCAGGAAAGATTTTT
1
NC
NC
NC





1036
1680
TATGTTCCAGGAAAGATTTT
2
NC
NC
NC





1037
1681
CTATGTTCCAGGAAAGATTT
2
NC
NC
NC





1038
1682
GCTATGTTCCAGGAAAGATT
1
NC
NC
NC





1039
1683
AGCTATGTTCCAGGAAAGAT
2
NC
NC
NC





1040
1684
GAGCTATGTTCCAGGAAAGA
1
NC
NC
NC





1041
1685
AGAGCTATGTTCCAGGAAAG
2
NC
NC
NC





1042
1686
AAGAGCTATGTTCCAGGAAA
2
NC
NC
NC





1043
1687
AAAGAGCTATGTTCCAGGAA
2
NC
NC
NC





1044
1688
TAAAGAGCTATGTTCCAGGA
2
NC
NC
NC





1045
1689
CTAAAGAGCTATGTTCCAGG
2
2
NC
NC





1046
1690
TCTAAAGAGCTATGTTCCAG
1
2
NC
NC





1047
1691
TTCTAAAGAGCTATGTTCCA
2
2
NC
NC





1048
1692
TTTCTAAAGAGCTATGTTCC
2
2
NC
NC





1049
1693
TTTTCTAAAGAGCTATGTTC
1
1
NC
NC





1050
1694
ATTTTCTAAAGAGCTATGTT
1
NC
NC
NC





1051
1695
GATTTTCTAAAGAGCTATGT
2
NC
NC
NC





1052
1696
GGATTTTCTAAAGAGCTATG
2
NC
NC
NC





1053
1697
CGGATTTTCTAAAGAGCTAT
2
NC
NC
NC





1054
1698
ACGGATTTTCTAAAGAGCTA
2
NC
NC
NC





1055
1699
CACGGATTTTCTAAAGAGCT
2
NC
NC
NC





1056
1700
ACACGGATTTTCTAAAGAGC
2
NC
NC
NC





1057
1701
CACACGGATTTTCTAAAGAG
2
NC
NC
NC





1058
1702
CCACACGGATTTTCTAAAGA
2
NC
NC
NC





1059
1703
TCCACACGGATTTTCTAAAG
2
NC
NC
NC





1060
1714
TCTAAACTGGTTCCACACGG
2
NC
NC
NC





1061
1715
TTCTAAACTGGTTCCACACG
1
NC
NC
NC





1062
1716
TTTCTAAACTGGTTCCACAC
1
NC
NC
NC





1063
1717
ATTTCTAAACTGGTTCCACA
2
NC
NC
NC





1064
1718
CATTTCTAAACTGGTTCCAC
2
NC
NC
NC





1065
1719
ACATTTCTAAACTGGTTCCA
2
NC
NC
NC





1066
1720
AACATTTCTAAACTGGTTCC
1
NC
NC
NC





1067
1721
AAACATTTCTAAACTGGTTC
2
NC
NC
NC





1068
1722
AAAACATTTCTAAACTGGTT
1
NC
NC
NC





1069
1723
AAAAACATTTCTAAACTGGT
1
NC
NC
NC





1070
1724
TAAAAACATTTCTAAACTGG
1
NC
NC
NC





1071
1727
GCTTAAAAACATTTCTAAAC
2
NC
NC
NC





1072
1728
GGCTTAAAAACATTTCTAAA
2
NC
NC
NC





1073
1729
GGGCTTAAAAACATTTCTAA
2
NC
NC
NC





1074
1730
AGGGCTTAAAAACATTTCTA
1
NC
NC
NC





1075
1731
AAGGGCTTAAAAACATTTCT
1
2
NC
NC





1076
1732
AAAGGGCTTAAAAACATTTC
1
1
NC
NC





1077
1733
AAAAGGGCTTAAAAACATTT
1
1
NC
NC





1078
1734
GAAAAGGGCTTAAAAACATT
1
2
NC
NC





1079
1735
TGAAAAGGGCTTAAAAACAT
1
1
NC
NC





1080
1736
CTGAAAAGGGCTTAAAAACA
2
1
NC
NC





1081
1737
TCTGAAAAGGGCTTAAAAAC
1
1
NC
NC





1082
1738
GTCTGAAAAGGGCTTAAAAA
2
2
NC
NC





1083
1739
TGTCTGAAAAGGGCTTAAAA
1
1
NC
NC





1084
1740
GTGTCTGAAAAGGGCTTAAA
2
2
NC
NC





1085
1741
GGTGTCTGAAAAGGGCTTAA
2
2
NC
NC





1086
1742
TGGTGTCTGAAAAGGGCTTA
2
2
NC
NC





1087
1743
ATGGTGTCTGAAAAGGGCTT
1
1
NC
NC





1088
1744
CATGGTGTCTGAAAAGGGCT
2
2
NC
NC





1089
1745
ACATGGTGTCTGAAAAGGGC
2
2
NC
NC





1090
1756
TCCTCAAAGTGACATGGTGT
1
NC
NC
NC





1091
1757
CTCCTCAAAGTGACATGGTG
2
NC
NC
NC





1092
1758
TCTCCTCAAAGTGACATGGT
2
NC
NC
NC





1093
1759
CTCTCCTCAAAGTGACATGG
3
NC
NC
NC





1094
1760
ACTCTCCTCAAAGTGACATG
2
NC
NC
NC





1095
1766
CTGCCCACTCTCCTCAAAGT
1
NC
NC
NC





1096
1768
TCCTGCCCACTCTCCTCAAA
2
NC
NC
NC





1097
1769
ATCCTGCCCACTCTCCTCAA
2
NC
NC
NC





1098
1772
TAGATCCTGCCCACTCTCCT
2
NC
NC
NC





1099
1774
TCTAGATCCTGCCCACTCTC
2
NC
NC
NC





1100
1775
TTCTAGATCCTGCCCACTCT
2
NC
NC
NC





1101
1776
TTTCTAGATCCTGCCCACTC
2
NC
NC
NC





1102
1777
ATTTCTAGATCCTGCCCACT
2
NC
NC
NC





1103
1778
TATTTCTAGATCCTGCCCAC
2
NC
NC
NC





1104
1779
ATATTTCTAGATCCTGCCCA
2
NC
NC
NC





1105
1780
CATATTTCTAGATCCTGCCC
2
NC
NC
NC





1106
1781
CCATATTTCTAGATCCTGCC
2
NC
NC
NC





1107
1782
TCCATATTTCTAGATCCTGC
2
NC
NC
NC





1108
1783
TTCCATATTTCTAGATCCTG
2
NC
NC
NC





1109
1784
TTTCCATATTTCTAGATCCT
1
1
NC
NC





1110
1785
CTTTCCATATTTCTAGATCC
2
2
NC
NC





1111
1786
TCTTTCCATATTTCTAGATC
2
2
NC
NC





1112
1787
TTCTTTCCATATTTCTAGAT
1
2
NC
NC





1113
1788
TTTCTTTCCATATTTCTAGA
1
1
NC
NC





1114
1789
CTTTCTTTCCATATTTCTAG
1
1
NC
NC





1115
1790
ACTTTCTTTCCATATTTCTA
2
2
NC
NC





1116
1791
TACTTTCTTTCCATATTTCT
1
2
NC
NC





1117
1792
GTACTTTCTTTCCATATTTC
2
2
NC
NC





1118
1793
AGTACTTTCTTTCCATATTT
2
1
NC
NC





1119
1794
TAGTACTTTCTTTCCATATT
1
2
NC
NC





1120
1795
GTAGTACTTTCTTTCCATAT
1
2
NC
NC





1121
1796
AGTAGTACTTTCTTTCCATA
2
2
NC
NC





1122
1797
CAGTAGTACTTTCTTTCCAT
1
2
NC
NC





1123
1798
ACAGTAGTACTTTCTTTCCA
1
2
NC
NC





1124
1799
AACAGTAGTACTTTCTTTCC
1
2
NC
NC





1125
1800
TAACAGTAGTACTTTCTTTC
2
2
NC
NC





1126
1801
TTAACAGTAGTACTTTCTTT
2
2
NC
NC





1127
1802
ATTAACAGTAGTACTTTCTT
2
2
NC
NC





1128
1803
CATTAACAGTAGTACTTTCT
2
2
NC
NC





1129
1804
CCATTAACAGTAGTACTTTC
2
NC
NC
NC





1130
1805
GCCATTAACAGTAGTACTTT
2
NC
NC
NC





1131
1806
TGCCATTAACAGTAGTACTT
2
NC
NC
NC





1132
1807
ATGCCATTAACAGTAGTACT
2
NC
NC
NC





1133
1808
CATGCCATTAACAGTAGTAC
1
NC
NC
NC





1134
1809
CCATGCCATTAACAGTAGTA
2
NC
NC
NC





1135
1810
GCCATGCCATTAACAGTAGT
2
NC
NC
NC





1136
1811
AGCCATGCCATTAACAGTAG
2
NC
NC
NC





1137
1812
CAGCCATGCCATTAACAGTA
2
NC
NC
NC





1138
1824
TCAAGATGTTGGCAGCCATG
1
NC
NC
NC





1139
1825
TTCAAGATGTTGGCAGCCAT
2
NC
NC
NC





1140
1826
TTTCAAGATGTTGGCAGCCA
2
NC
NC
NC





1141
1827
TTTTCAAGATGTTGGCAGCC
2
NC
NC
NC





1142
1828
TTTTTCAAGATGTTGGCAGC
1
NC
NC
NC





1143
1829
ATTTTTCAAGATGTTGGCAG
1
NC
NC
NC





1144
1830
TATTTTTCAAGATGTTGGCA
2
NC
NC
NC





1145
1831
TTATTTTTCAAGATGTTGGC
2
NC
NC
NC





1146
1832
ATTATTTTTCAAGATGTTGG
2
NC
NC
NC





1147
1848
GTTGATTCTGAATTCTATTA
2
2
NC
NC





1148
1849
GGTTGATTCTGAATTCTATT
2
2
NC
NC





1149
1850
TGGTTGATTCTGAATTCTAT
2
2
NC
NC





1150
1851
TTGGTTGATTCTGAATTCTA
2
NC
NC
NC





1151
1852
TTTGGTTGATTCTGAATTCT
2
NC
NC
NC





1152
1853
CTTTGGTTGATTCTGAATTC
2
NC
NC
NC





1153
1854
TCTTTGGTTGATTCTGAATT
2
NC
NC
NC





1154
1855
CTCTTTGGTTGATTCTGAAT
2
NC
NC
NC





1155
1856
TCTCTTTGGTTGATTCTGAA
2
NC
NC
NC





1156
1857
ATCTCTTTGGTTGATTCTGA
2
NC
NC
NC





1157
1858
AATCTCTTTGGTTGATTCTG
2
NC
NC
NC





1158
1859
AAATCTCTTTGGTTGATTCT
2
NC
NC
NC





1159
1860
TAAATCTCTTTGGTTGATTC
2
NC
NC
NC





1160
1861
TTAAATCTCTTTGGTTGATT
2
NC
NC
NC





1161
1862
TTTAAATCTCTTTGGTTGAT
2
NC
NC
NC





1162
1863
CTTTAAATCTCTTTGGTTGA
2
NC
NC
NC





1163
1864
TCTTTAAATCTCTTTGGTTG
2
NC
NC
NC





1164
1865
ATCTTTAAATCTCTTTGGTT
2
NC
NC
NC





1165
1866
CATCTTTAAATCTCTTTGGT
2
NC
NC
NC





1166
1867
GCATCTTTAAATCTCTTTGG
2
NC
NC
NC





1167
1868
AGCATCTTTAAATCTCTTTG
2
NC
NC
NC





1168
1869
TAGCATCTTTAAATCTCTTT
1
NC
NC
NC





1169
1870
GTAGCATCTTTAAATCTCTT
2
NC
NC
NC





1170
1871
AGTAGCATCTTTAAATCTCT
1
1
NC
NC





1171
1872
CAGTAGCATCTTTAAATCTC
1
1
NC
NC





1172
1873
TCAGTAGCATCTTTAAATCT
2
1
NC
NC





1173
1874
TTCAGTAGCATCTTTAAATC
1
1
NC
NC





1174
1875
CTTCAGTAGCATCTTTAAAT
1
1
NC
NC





1175
1876
ACTTCAGTAGCATCTTTAAA
2
2
NC
NC





1176
1877
CACTTCAGTAGCATCTTTAA
2
1
NC
NC





1177
1878
CCACTTCAGTAGCATCTTTA
2
2
NC
NC





1178
1879
CCCACTTCAGTAGCATCTTT
2
2
NC
NC





1179
1880
TCCCACTTCAGTAGCATCTT
2
2
NC
NC





1180
1881
ATCCCACTTCAGTAGCATCT
2
2
NC
NC





1181
1882
CATCCCACTTCAGTAGCATC
2
2
NC
NC





1182
1883
GCATCCCACTTCAGTAGCAT
2
2
NC
NC





1183
1884
GGCATCCCACTTCAGTAGCA
2
2
NC
NC





1184
1885
TGGCATCCCACTTCAGTAGC
2
2
NC
NC





1185
1886
CTGGCATCCCACTTCAGTAG
2
2
NC
NC





1186
1887
GCTGGCATCCCACTTCAGTA
2
2
NC
NC





1187
1912
CATAATGTTGTTGCAAAAGG
2
NC
NC
NC





1188
1913
CCATAATGTTGTTGCAAAAG
2
NC
NC
NC





1189
1914
CCCATAATGTTGTTGCAAAA
2
NC
NC
NC





1190
1915
CCCCATAATGTTGTTGCAAA
2
NC
NC
NC





1191
1916
TCCCCATAATGTTGTTGCAA
1
NC
NC
NC





1192
1917
CTCCCCATAATGTTGTTGCA
2
NC
NC
NC





1193
1918
ACTCCCCATAATGTTGTTGC
1
NC
NC
NC





1194
1919
TACTCCCCATAATGTTGTTG
2
NC
NC
NC





1195
1920
GTACTCCCCATAATGTTGTT
2
NC
NC
NC





1196
1921
TGTACTCCCCATAATGTTGT
2
NC
NC
NC





1197
1922
ATGTACTCCCCATAATGTTG
2
NC
NC
NC





1198
1923
TATGTACTCCCCATAATGTT
2
NC
NC
NC





1199
1924
CTATGTACTCCCCATAATGT
2
NC
NC
NC





1200
1925
ACTATGTACTCCCCATAATG
2
NC
NC
NC





1201
1926
CACTATGTACTCCCCATAAT
2
NC
NC
NC





1202
1927
GCACTATGTACTCCCCATAA
2
NC
NC
NC





1203
1928
AGCACTATGTACTCCCCATA
2
NC
NC
NC





1204
1929
GAGCACTATGTACTCCCCAT
3
NC
NC
NC





1205
1930
TGAGCACTATGTACTCCCCA
1
NC
NC
NC





1206
1931
CTGAGCACTATGTACTCCCC
3
NC
NC
NC





1207
1932
TCTGAGCACTATGTACTCCC
2
NC
NC
NC





1208
1933
GTCTGAGCACTATGTACTCC
3
NC
NC
NC





1209
1934
TGTCTGAGCACTATGTACTC
3
NC
NC
NC





1210
1935
CTGTCTGAGCACTATGTACT
2
NC
NC
NC





1211
1936
TCTGTCTGAGCACTATGTAC
2
NC
NC
NC





1212
1937
CTCTGTCTGAGCACTATGTA
2
NC
NC
NC





1213
1947
TTTTCTCTTTCTCTGTCTGA
1
NC
NC
NC





1214
1948
TTTTTCTCTTTCTCTGTCTG
1
NC
NC
NC





1215
1967
ACAATTGCTAGATTCTTTTT
2
NC
NC
NC





1216
1968
CACAATTGCTAGATTCTTTT
2
NC
NC
NC





1217
1969
CCACAATTGCTAGATTCTTT
2
NC
NC
NC





1218
1970
TCCACAATTGCTAGATTCTT
2
NC
NC
NC





1219
1971
TTCCACAATTGCTAGATTCT
2
NC
NC
NC





1220
1972
CTTCCACAATTGCTAGATTC
2
NC
NC
NC





1221
1973
TCTTCCACAATTGCTAGATT
2
NC
NC
NC





1222
1974
TTCTTCCACAATTGCTAGAT
2
NC
NC
NC





1223
1975
CTTCTTCCACAATTGCTAGA
2
NC
NC
NC





1224
1976
TCTTCTTCCACAATTGCTAG
2
NC
NC
NC





1225
1977
TTCTTCTTCCACAATTGCTA
2
NC
NC
NC





1226
1978
TTTCTTCTTCCACAATTGCT
1
NC
NC
NC





1227
1979
ATTTCTTCTTCCACAATTGC
2
NC
NC
NC





1228
1980
CATTTCTTCTTCCACAATTG
2
NC
NC
NC





1229
1981
ACATTTCTTCTTCCACAATT
2
NC
NC
NC





1230
1982
AACATTTCTTCTTCCACAAT
1
NC
NC
NC





1231
1983
AAACATTTCTTCTTCCACAA
1
NC
NC
NC





1232
1984
AAAACATTTCTTCTTCCACA
1
NC
NC
NC





1233
1985
AAAAACATTTCTTCTTCCAC
1
NC
NC
NC





1234
1986
TAAAAACATTTCTTCTTCCA
1
NC
NC
NC





1235
1987
CTAAAAACATTTCTTCTTCC
2
NC
NC
NC





1236
1988
ACTAAAAACATTTCTTCTTC
1
NC
NC
NC





1237
1993
CCATAACTAAAAACATTTCT
2
NC
NC
NC





1238
1994
CCCATAACTAAAAACATTTC
2
NC
NC
NC





1239
1995
GCCCATAACTAAAAACATTT
2
NC
NC
NC





1240
1996
CGCCCATAACTAAAAACATT
3
NC
NC
NC





1241
1997
TCGCCCATAACTAAAAACAT
2
NC
NC
NC





1242
1998
CTCGCCCATAACTAAAAACA
2
NC
NC
NC





1243
1999
ACTCGCCCATAACTAAAAAC
3
NC
NC
NC





1244
2000
AACTCGCCCATAACTAAAAA
2
NC
NC
NC





1245
2001
TAACTCGCCCATAACTAAAA
2
NC
NC
NC





1246
2002
TTAACTCGCCCATAACTAAA
3
NC
NC
NC





1247
2003
TTTAACTCGCCCATAACTAA
3
NC
NC
NC





1248
2004
ATTTAACTCGCCCATAACTA
3
NC
NC
NC





1249
2005
AATTTAACTCGCCCATAACT
3
NC
NC
NC





1250
2006
TAATTTAACTCGCCCATAAC
2
NC
NC
NC





1251
2007
ATAATTTAACTCGCCCATAA
2
NC
NC
NC





1252
2008
CATAATTTAACTCGCCCATA
3
NC
NC
NC





1253
2009
ACATAATTTAACTCGCCCAT
3
NC
NC
NC





1254
2010
AACATAATTTAACTCGCCCA
3
NC
NC
NC





1255
2011
GAACATAATTTAACTCGCCC
3
NC
NC
NC





1256
2012
GGAACATAATTTAACTCGCC
2
NC
NC
NC





1257
2013
TGGAACATAATTTAACTCGC
2
NC
NC
NC





1258
2027
AGTTATAAAGCCAGTGGAAC
2
2
NC
NC





1259
2028
GAGTTATAAAGCCAGTGGAA
2
2
NC
NC





1260
2029
TGAGTTATAAAGCCAGTGGA
2
1
2
NC





1261
2030
ATGAGTTATAAAGCCAGTGG
2
2
2
NC





1262
2031
CATGAGTTATAAAGCCAGTG
2
NC
NC
NC





1263
2032
ACATGAGTTATAAAGCCAGT
2
NC
NC
NC





1264
2033
TACATGAGTTATAAAGCCAG
2
NC
NC
NC





1265
2034
CTACATGAGTTATAAAGCCA
2
NC
NC
NC





1266
2035
ACTACATGAGTTATAAAGCC
2
NC
NC
NC





1267
2045
TTCATTTTGTACTACATGAG
2
NC
NC
NC





1268
2046
TTTCATTTTGTACTACATGA
1
NC
NC
NC





1269
2047
TTTTCATTTTGTACTACATG
1
NC
NC
NC





1270
2065
GTTTCAGTTGATTTAGTTTT
2
2
NC
NC





1271
2066
TGTTTCAGTTGATTTAGTTT
2
1
NC
NC





1272
2067
CTGTTTCAGTTGATTTAGTT
2
2
NC
NC





1273
2068
TCTGTTTCAGTTGATTTAGT
2
2
NC
NC





1274
2069
TTCTGTTTCAGTTGATTTAG
2
1
2
NC





1275
2070
GTTCTGTTTCAGTTGATTTA
2
2
2
NC





1276
2071
TGTTCTGTTTCAGTTGATTT
1
1
1
NC





1277
2072
ATGTTCTGTTTCAGTTGATT
1
1
2
NC





1278
2073
AATGTTCTGTTTCAGTTGAT
1
NC
NC
NC





1279
2074
GAATGTTCTGTTTCAGTTGA
2
NC
NC
NC





1280
2075
TGAATGTTCTGTTTCAGTTG
2
NC
NC
NC





1281
2076
ATGAATGTTCTGTTTCAGTT
2
NC
NC
NC





1282
2077
AATGAATGTTCTGTTTCAGT
2
NC
NC
NC





1283
2078
AAATGAATGTTCTGTTTCAG
2
NC
NC
NC





1284
2079
TAAATGAATGTTCTGTTTCA
1
NC
NC
NC





1285
2080
TTAAATGAATGTTCTGTTTC
1
NC
NC
NC





1286
2097
CAGGTCTAACATAATTTTTA
1
1
NC
NC





1287
2098
CCAGGTCTAACATAATTTTT
2
1
NC
NC





1288
2099
ACCAGGTCTAACATAATTTT
2
1
NC
NC





1289
2100
GACCAGGTCTAACATAATTT
3
2
NC
NC





1290
2101
GGACCAGGTCTAACATAATT
3
2
NC
NC





1291
2102
GGGACCAGGTCTAACATAAT
3
2
NC
NC





1292
2103
TGGGACCAGGTCTAACATAA
3
2
NC
NC





1293
2104
GTGGGACCAGGTCTAACATA
3
3
NC
NC





1294
2105
TGTGGGACCAGGTCTAACAT
2
2
NC
NC





1295
2106
GTGTGGGACCAGGTCTAACA
2
3
NC
NC





1296
2108
ACGTGTGGGACCAGGTCTAA
2
2
NC
NC





1297
2118
TTTCTTGGGCACGTGTGGGA
2
1
NC
NC





1298
2120
TGTTTCTTGGGCACGTGTGG
2
3
NC
NC





1299
2121
ATGTTTCTTGGGCACGTGTG
2
2
NC
NC





1300
2122
AATGTTTCTTGGGCACGTGT
2
2
NC
NC





1301
2123
AAATGTTTCTTGGGCACGTG
2
2
NC
NC





1302
2124
CAAATGTTTCTTGGGCACGT
2
2
NC
NC





1303
2131
CTATTTCCAAATGTTTCTTG
1
2
NC
NC





1304
2132
TCTATTTCCAAATGTTTCTT
1
2
NC
NC





1305
2133
TTCTATTTCCAAATGTTTCT
1
1
NC
NC





1306
2134
GTTCTATTTCCAAATGTTTC
2
2
NC
NC





1307
2135
TGTTCTATTTCCAAATGTTT
1
1
NC
NC





1308
2136
GTGTTCTATTTCCAAATGTT
2
1
NC
NC





1309
2137
CGTGTTCTATTTCCAAATGT
2
2
NC
NC





1310
2138
ACGTGTTCTATTTCCAAATG
2
2
NC
NC





1311
2139
GACGTGTTCTATTTCCAAAT
2
2
NC
NC





1312
2140
TGACGTGTTCTATTTCCAAA
2
2
NC
NC





1313
2141
ATGACGTGTTCTATTTCCAA
2
2
NC
NC





1314
2142
AATGACGTGTTCTATTTCCA
2
2
NC
NC





1315
2143
GAATGACGTGTTCTATTTCC
2
2
NC
NC





1316
2144
TGAATGACGTGTTCTATTTC
2
2
NC
NC





1317
2145
CTGAATGACGTGTTCTATTT
2
2
NC
NC





1318
2146
ACTGAATGACGTGTTCTATT
2
2
NC
NC





1319
2147
AACTGAATGACGTGTTCTAT
2
2
NC
NC





1320
2148
CAACTGAATGACGTGTTCTA
2
2
NC
NC





1321
2149
TCAACTGAATGACGTGTTCT
2
3
NC
NC





1322
2150
TTCAACTGAATGACGTGTTC
3
3
NC
NC





1323
2151
TTTCAACTGAATGACGTGTT
2
2
NC
NC





1324
2152
GTTTCAACTGAATGACGTGT
3
2
NC
NC





1325
2153
AGTTTCAACTGAATGACGTG
2
3
NC
NC





1326
2164
TTGATGTCTGGAGTTTCAAC
2
NC
NC
NC





1327
2165
TTTGATGTCTGGAGTTTCAA
2
NC
NC
NC





1328
2166
CTTTGATGTCTGGAGTTTCA
1
NC
NC
NC





1329
2167
TCTTTGATGTCTGGAGTTTC
2
NC
NC
NC





1330
2168
ATCTTTGATGTCTGGAGTTT
2
NC
NC
NC





1331
2169
AATCTTTGATGTCTGGAGTT
2
NC
NC
NC





1332
2170
AAATCTTTGATGTCTGGAGT
2
NC
NC
NC





1333
2171
TAAATCTTTGATGTCTGGAG
2
NC
NC
NC





1334
2172
CTAAATCTTTGATGTCTGGA
2
NC
NC
NC





1335
2173
GCTAAATCTTTGATGTCTGG
2
NC
NC
NC





1336
2174
GGCTAAATCTTTGATGTCTG
2
NC
NC
NC





1337
2175
TGGCTAAATCTTTGATGTCT
2
NC
NC
NC





1338
2176
CTGGCTAAATCTTTGATGTC
2
NC
NC
NC





1339
2177
GCTGGCTAAATCTTTGATGT
2
NC
NC
NC





1340
2178
TGCTGGCTAAATCTTTGATG
2
NC
NC
NC





1341
2179
GTGCTGGCTAAATCTTTGAT
2
NC
NC
NC





1342
2180
AGTGCTGGCTAAATCTTTGA
2
NC
NC
NC





1343
2181
AAGTGCTGGCTAAATCTTTG
2
NC
NC
NC





1344
2182
AAAGTGCTGGCTAAATCTTT
2
NC
NC
NC





1345
2183
TAAAGTGCTGGCTAAATCTT
2
NC
NC
NC





1346
2184
TTAAAGTGCTGGCTAAATCT
2
NC
NC
NC





1347
2185
CTTAAAGTGCTGGCTAAATC
2
NC
NC
NC





1348
2186
ACTTAAAGTGCTGGCTAAAT
2
NC
NC
NC





1349
2187
TACTTAAAGTGCTGGCTAAA
2
NC
NC
NC





1350
2188
TTACTTAAAGTGCTGGCTAA
2
NC
NC
NC





1351
2189
TTTACTTAAAGTGCTGGCTA
2
NC
NC
NC





1352
2190
CTTTACTTAAAGTGCTGGCT
2
NC
NC
NC





1353
2199
GACCAGATTCTTTACTTAAA
2
NC
NC
NC





1354
2200
TGACCAGATTCTTTACTTAA
1
NC
NC
NC





1355
2201
TTGACCAGATTCTTTACTTA
1
NC
NC
NC





1356
2202
ATTGACCAGATTCTTTACTT
1
NC
NC
NC





1357
2203
AATTGACCAGATTCTTTACT
2
NC
NC
NC





1358
2204
CAATTGACCAGATTCTTTAC
2
NC
NC
NC





1359
2205
GCAATTGACCAGATTCTTTA
2
NC
NC
NC





1360
2206
GGCAATTGACCAGATTCTTT
1
NC
NC
NC





1361
2233
ATATTCGTTCTGCAATTTTT
2
NC
NC
NC





1362
2234
TATATTCGTTCTGCAATTTT
2
NC
NC
NC





1363
2235
TTATATTCGTTCTGCAATTT
2
NC
NC
NC





1364
2236
CTTATATTCGTTCTGCAATT
2
NC
NC
NC





1365
2237
ACTTATATTCGTTCTGCAAT
2
NC
NC
NC





1366
2238
AACTTATATTCGTTCTGCAA
2
NC
NC
NC





1367
2239
TAACTTATATTCGTTCTGCA
2
NC
NC
NC





1368
2240
ATAACTTATATTCGTTCTGC
2
NC
NC
NC





1369
2241
CATAACTTATATTCGTTCTG
2
NC
NC
NC





1370
2242
CCATAACTTATATTCGTTCT
2
NC
NC
NC





1371
2243
CCCATAACTTATATTCGTTC
2
NC
NC
NC





1372
2244
GCCCATAACTTATATTCGTT
3
NC
NC
NC





1373
2245
AGCCCATAACTTATATTCGT
2
NC
NC
NC





1374
2246
TAGCCCATAACTTATATTCG
3
NC
NC
NC





1375
2247
CTAGCCCATAACTTATATTC
2
NC
NC
NC





1376
2248
TCTAGCCCATAACTTATATT
2
NC
NC
NC





1377
2249
CTCTAGCCCATAACTTATAT
2
NC
NC
NC





1378
2250
TCTCTAGCCCATAACTTATA
2
NC
NC
NC





1379
2251
TTCTCTAGCCCATAACTTAT
2
NC
NC
NC





1380
2252
ATTCTCTAGCCCATAACTTA
2
NC
NC
NC





1381
2253
CATTCTCTAGCCCATAACTT
1
NC
NC
NC





1382
2254
TCATTCTCTAGCCCATAACT
2
NC
NC
NC





1383
2255
TTCATTCTCTAGCCCATAAC
2
NC
NC
NC





1384
2256
GTTCATTCTCTAGCCCATAA
2
NC
NC
NC





1385
2257
GGTTCATTCTCTAGCCCATA
2
NC
NC
NC





1386
2258
AGGTTCATTCTCTAGCCCAT
2
NC
NC
NC





1387
2259
TAGGTTCATTCTCTAGCCCA
2
2
NC
NC





1388
2260
GTAGGTTCATTCTCTAGCCC
2
2
NC
NC





1389
2261
TGTAGGTTCATTCTCTAGCC
2
2
NC
NC





1390
2262
CTGTAGGTTCATTCTCTAGC
2
2
NC
NC





1391
2263
GCTGTAGGTTCATTCTCTAG
2
2
NC
NC





1392
2264
TGCTGTAGGTTCATTCTCTA
2
2
NC
NC





1393
2265
TTGCTGTAGGTTCATTCTCT
2
2
NC
NC





1394
2266
GTTGCTGTAGGTTCATTCTC
2
2
NC
NC





1395
2267
AGTTGCTGTAGGTTCATTCT
2
2
NC
NC





1396
2268
AAGTTGCTGTAGGTTCATTC
2
2
NC
NC





1397
2269
TAAGTTGCTGTAGGTTCATT
2
2
NC
NC





1398
2270
ATAAGTTGCTGTAGGTTCAT
2
2
NC
NC





1399
2271
TATAAGTTGCTGTAGGTTCA
2
NC
NC
NC





1400
2272
GTATAAGTTGCTGTAGGTTC
1
NC
NC
NC





1401
2273
TGTATAAGTTGCTGTAGGTT
2
NC
NC
NC





1402
2274
TTGTATAAGTTGCTGTAGGT
2
NC
NC
NC





1403
2275
ATTGTATAAGTTGCTGTAGG
2
NC
NC
NC





1404
2276
CATTGTATAAGTTGCTGTAG
2
NC
NC
NC





1405
2277
ACATTGTATAAGTTGCTGTA
1
NC
NC
NC





1406
2278
AACATTGTATAAGTTGCTGT
2
NC
NC
NC





1407
2279
AAACATTGTATAAGTTGCTG
2
NC
NC
NC





1408
2280
AAAACATTGTATAAGTTGCT
2
NC
NC
NC





1409
2281
GAAAACATTGTATAAGTTGC
2
NC
NC
NC





1410
2282
AGAAAACATTGTATAAGTTG
1
NC
NC
NC





1411
2283
CAGAAAACATTGTATAAGTT
2
NC
NC
NC





1412
2284
GCAGAAAACATTGTATAAGT
2
NC
NC
NC





1413
2285
AGCAGAAAACATTGTATAAG
2
NC
NC
NC





1414
2286
AAGCAGAAAACATTGTATAA
1
NC
NC
NC





1415
2287
AAAGCAGAAAACATTGTATA
1
NC
NC
NC





1416
2288
AAAAGCAGAAAACATTGTAT
2
NC
NC
NC





1417
2289
GAAAAGCAGAAAACATTGTA
1
NC
NC
NC





1418
2290
TGAAAAGCAGAAAACATTGT
2
NC
NC
NC





1419
2301
TGCTACCTTCCTGAAAAGCA
2
NC
NC
NC





1420
2302
TTGCTACCTTCCTGAAAAGC
2
NC
NC
NC





1421
2303
TTTGCTACCTTCCTGAAAAG
2
NC
NC
NC





1422
2304
TTTTGCTACCTTCCTGAAAA
1
NC
NC
NC





1423
2305
TTTTTGCTACCTTCCTGAAA
1
NC
NC
NC





1424
2321
GCAATCTGTTTGTGATTTTT
2
NC
NC
NC





1425
2322
TGCAATCTGTTTGTGATTTT
2
NC
NC
NC





1426
2323
ATGCAATCTGTTTGTGATTT
2
NC
NC
NC





1427
2324
TATGCAATCTGTTTGTGATT
2
NC
NC
NC





1428
2325
ATATGCAATCTGTTTGTGAT
2
NC
NC
NC





1429
2326
AATATGCAATCTGTTTGTGA
2
NC
NC
NC





1430
2327
TAATATGCAATCTGTTTGTG
2
NC
NC
NC





1431
2328
ATAATATGCAATCTGTTTGT
2
NC
NC
NC





1432
2330
AGATAATATGCAATCTGTTT
1
NC
NC
NC





1433
2334
TATCAGATAATATGCAATCT
2
NC
NC
NC





1434
2335
GTATCAGATAATATGCAATC
2
NC
NC
NC





1435
2336
TGTATCAGATAATATGCAAT
1
NC
NC
NC





1436
2337
ATGTATCAGATAATATGCAA
1
1
NC
NC





1437
2338
GATGTATCAGATAATATGCA
2
2
NC
NC





1438
2339
GGATGTATCAGATAATATGC
2
2
NC
NC





1439
2340
GGGATGTATCAGATAATATG
2
2
NC
NC





1440
2368
GAAACGTGTCTATACCAGGG
2
2
NC
NC





1441
2369
GGAAACGTGTCTATACCAGG
3
NC
NC
NC





1442
2370
TGGAAACGTGTCTATACCAG
2
NC
NC
NC





1443
2371
TTGGAAACGTGTCTATACCA
2
NC
NC
NC





1444
2372
ATTGGAAACGTGTCTATACC
3
NC
NC
NC





1445
2373
CATTGGAAACGTGTCTATAC
2
NC
NC
NC





1446
2374
TCATTGGAAACGTGTCTATA
3
NC
NC
NC





1447
2375
ATCATTGGAAACGTGTCTAT
2
NC
NC
NC





1448
2376
TATCATTGGAAACGTGTCTA
2
NC
NC
NC





1449
2377
CTATCATTGGAAACGTGTCT
2
NC
NC
NC





1450
2378
ACTATCATTGGAAACGTGTC
2
NC
NC
NC





1451
2379
TACTATCATTGGAAACGTGT
3
NC
NC
NC





1452
2380
CTACTATCATTGGAAACGTG
3
NC
NC
NC





1453
2381
CCTACTATCATTGGAAACGT
3
NC
NC
NC





1454
2382
TCCTACTATCATTGGAAACG
3
NC
NC
NC





1455
2383
TTCCTACTATCATTGGAAAC
2
NC
NC
NC





1456
2385
TTTTCCTACTATCATTGGAA
1
NC
NC
NC





1457
2386
GTTTTCCTACTATCATTGGA
2
NC
NC
NC





1458
2387
TGTTTTCCTACTATCATTGG
2
NC
NC
NC





1459
2388
CTGTTTTCCTACTATCATTG
1
NC
NC
NC





1460
2389
TCTGTTTTCCTACTATCATT
1
2
NC
NC





1461
2390
ATCTGTTTTCCTACTATCAT
2
2
NC
NC





1462
2391
TATCTGTTTTCCTACTATCA
2
2
NC
NC





1463
2392
TTATCTGTTTTCCTACTATC
2
2
NC
NC





1464
2393
TTTATCTGTTTTCCTACTAT
1
2
NC
NC





1465
2394
ATTTATCTGTTTTCCTACTA
1
1
NC
NC





1466
2395
AATTTATCTGTTTTCCTACT
1
1
NC
NC





1467
2396
TAATTTATCTGTTTTCCTAC
1
2
NC
NC





1468
2405
GAAACCAATTAATTTATCTG
2
NC
NC
NC





1469
2407
GAGAAACCAATTAATTTATC
1
NC
NC
NC





1470
2421
GGACGATTGGTTTGGAGAAA
1
NC
NC
NC





1471
2422
CGGACGATTGGTTTGGAGAA
2
NC
NC
NC





1472
2423
ACGGACGATTGGTTTGGAGA
3
NC
NC
NC





1473
2424
TACGGACGATTGGTTTGGAG
2
3
NC
NC





1474
2425
TTACGGACGATTGGTTTGGA
3
3
NC
NC





1475
2426
CTTACGGACGATTGGTTTGG
3
3
NC
NC





1476
2427
TCTTACGGACGATTGGTTTG
3
3
NC
NC





1477
2428
TTCTTACGGACGATTGGTTT
2
3
NC
NC





1478
2429
CTTCTTACGGACGATTGGTT
2
3
NC
NC





1479
2430
GCTTCTTACGGACGATTGGT
2
3
NC
NC





1480
2431
AGCTTCTTACGGACGATTGG
3
3
NC
NC





1481
2432
TAGCTTCTTACGGACGATTG
3
3
NC
NC





1482
2433
TTAGCTTCTTACGGACGATT
2
2
NC
NC





1483
2434
CTTAGCTTCTTACGGACGAT
2
2
NC
NC





1484
2435
GCTTAGCTTCTTACGGACGA
3
3
NC
NC





1485
2436
AGCTTAGCTTCTTACGGACG
2
3
NC
NC





1486
2448
GCTGTGAACTCAAGCTTAGC
3
3
NC
NC





1487
2449
AGCTGTGAACTCAAGCTTAG
2
2
NC
NC





1488
2450
TAGCTGTGAACTCAAGCTTA
1
1
NC
NC





1489
2451
CTAGCTGTGAACTCAAGCTT
1
2
NC
NC





1490
2453
TCCTAGCTGTGAACTCAAGC
2
2
NC
NC





1491
2454
ATCCTAGCTGTGAACTCAAG
2
2
NC
NC





1492
2455
GATCCTAGCTGTGAACTCAA
2
2
NC
NC





1493
2456
AGATCCTAGCTGTGAACTCA
2
2
NC
NC





1494
2457
AAGATCCTAGCTGTGAACTC
2
2
NC
NC





1495
2458
AAAGATCCTAGCTGTGAACT
2
2
NC
NC





1496
2459
TAAAGATCCTAGCTGTGAAC
2
2
NC
NC





1497
2460
CTAAAGATCCTAGCTGTGAA
2
2
NC
NC





1498
2461
TCTAAAGATCCTAGCTGTGA
2
2
NC
NC





1499
2462
CTCTAAAGATCCTAGCTGTG
2
2
NC
NC





1500
2463
TCTCTAAAGATCCTAGCTGT
2
2
NC
NC





1501
2464
TTCTCTAAAGATCCTAGCTG
2
2
NC
NC





1502
2465
CTTCTCTAAAGATCCTAGCT
2
2
NC
NC





1503
2466
ACTTCTCTAAAGATCCTAGC
2
2
NC
NC





1504
2467
AACTTCTCTAAAGATCCTAG
2
2
NC
NC





1505
2468
AAACTTCTCTAAAGATCCTA
2
2
NC
NC





1506
2469
TAAACTTCTCTAAAGATCCT
2
2
NC
NC





1507
2470
TTAAACTTCTCTAAAGATCC
2
2
NC
NC





1508
2471
CTTAAACTTCTCTAAAGATC
2
2
NC
NC





1509
2472
TCTTAAACTTCTCTAAAGAT
1
1
NC
NC





1510
2473
CTCTTAAACTTCTCTAAAGA
2
1
1
2





1511
2474
CCTCTTAAACTTCTCTAAAG
1
1
2
2





1512
2475
GCCTCTTAAACTTCTCTAAA
2
1
2
2





1513
2476
TGCCTCTTAAACTTCTCTAA
2
1
1
2





1514
2477
TTGCCTCTTAAACTTCTCTA
2
1
NC
NC





1515
2478
ATTGCCTCTTAAACTTCTCT
1
1
NC
NC





1516
2479
TATTGCCTCTTAAACTTCTC
2
2
NC
NC





1517
2480
ATATTGCCTCTTAAACTTCT
2
2
NC
NC





1518
2481
CATATTGCCTCTTAAACTTC
2
2
NC
NC





1519
2482
CCATATTGCCTCTTAAACTT
2
2
NC
NC





1520
2483
CCCATATTGCCTCTTAAACT
2
2
NC
NC





1521
2484
TCCCATATTGCCTCTTAAAC
2
2
NC
NC





1522
2485
TTCCCATATTGCCTCTTAAA
2
2
NC
NC





1523
2486
CTTCCCATATTGCCTCTTAA
2
2
NC
NC





1524
2487
CCTTCCCATATTGCCTCTTA
2
2
NC
NC





1525
2488
ACCTTCCCATATTGCCTCTT
2
2
NC
NC





1526
2489
AACCTTCCCATATTGCCTCT
2
2
NC
NC





1527
2490
CAACCTTCCCATATTGCCTC
2
2
NC
NC





1528
2491
TCAACCTTCCCATATTGCCT
2
2
NC
NC





1529
2492
TTCAACCTTCCCATATTGCC
2
2
NC
NC





1530
2493
TTTCAACCTTCCCATATTGC
2
2
NC
NC





1531
2494
TTTTCAACCTTCCCATATTG
2
2
NC
NC





1532
2495
ATTTTCAACCTTCCCATATT
1
1
NC
NC





1533
2496
GATTTTCAACCTTCCCATAT
2
2
NC
NC





1534
2497
GGATTTTCAACCTTCCCATA
1
2
NC
NC





1535
2498
AGGATTTTCAACCTTCCCAT
2
2
NC
NC





1536
2499
GAGGATTTTCAACCTTCCCA
1
2
NC
NC





1537
2500
AGAGGATTTTCAACCTTCCC
1
1
NC
NC





1538
2501
CAGAGGATTTTCAACCTTCC
2
2
NC
NC





1539
2502
CCAGAGGATTTTCAACCTTC
1
2
NC
NC





1540
2503
TCCAGAGGATTTTCAACCTT
1
1
NC
NC





1541
2504
ATCCAGAGGATTTTCAACCT
1
1
NC
NC





1542
2505
TATCCAGAGGATTTTCAACC
2
2
NC
NC





1543
2506
GTATCCAGAGGATTTTCAAC
2
2
NC
NC





1544
2507
TGTATCCAGAGGATTTTCAA
1
1
NC
NC





1545
2508
CTGTATCCAGAGGATTTTCA
2
2
NC
NC





1546
2519
TTCCTCTACTTCTGTATCCA
2
2
NC
NC





1547
2520
TTTCCTCTACTTCTGTATCC
2
2
NC
NC





1548
2521
CTTTCCTCTACTTCTGTATC
2
2
NC
NC





1549
2522
ACTTTCCTCTACTTCTGTAT
2
1
NC
NC





1550
2523
TACTTTCCTCTACTTCTGTA
1
1
NC
NC





1551
2524
TTACTTTCCTCTACTTCTGT
2
2
NC
NC





1552
2525
ATTACTTTCCTCTACTTCTG
2
NC
NC
NC





1553
2526
CATTACTTTCCTCTACTTCT
1
NC
NC
NC





1554
2527
CCATTACTTTCCTCTACTTC
1
NC
NC
NC





1555
2528
TCCATTACTTTCCTCTACTT
0
NC
NC
NC





1556
2529
CTCCATTACTTTCCTCTACT
0
NC
NC
NC





1557
2530
ACTCCATTACTTTCCTCTAC
0
NC
NC
NC





1558
2531
GACTCCATTACTTTCCTCTA
1
NC
NC
NC





1559
2532
TGACTCCATTACTTTCCTCT
1
NC
NC
NC





1560
2533
GTGACTCCATTACTTTCCTC
1
NC
NC
NC





1561
2534
AGTGACTCCATTACTTTCCT
2
NC
NC
NC





1562
2535
TAGTGACTCCATTACTTTCC
2
NC
NC
NC





1563
2536
GTAGTGACTCCATTACTTTC
2
NC
NC
NC





1564
2537
GGTAGTGACTCCATTACTTT
2
NC
NC
NC





1565
2538
TGGTAGTGACTCCATTACTT
3
NC
NC
NC





1566
2539
TTGGTAGTGACTCCATTACT
2
NC
NC
NC





1567
2540
ATTGGTAGTGACTCCATTAC
2
NC
NC
NC





1568
2541
GATTGGTAGTGACTCCATTA
3
NC
NC
NC





1569
2542
AGATTGGTAGTGACTCCATT
1
NC
NC
NC





1570
2543
GAGATTGGTAGTGACTCCAT
2
NC
NC
NC





1571
2544
TGAGATTGGTAGTGACTCCA
2
NC
NC
NC





1572
2545
CTGAGATTGGTAGTGACTCC
2
3
NC
NC





1573
2546
ACTGAGATTGGTAGTGACTC
2
3
NC
NC





1574
2547
GACTGAGATTGGTAGTGACT
2
2
NC
NC





1575
2548
AGACTGAGATTGGTAGTGAC
2
NC
NC
NC





1576
2549
AAGACTGAGATTGGTAGTGA
2
NC
NC
NC





1577
2550
GAAGACTGAGATTGGTAGTG
2
NC
NC
NC





1578
2551
TGAAGACTGAGATTGGTAGT
2
NC
NC
NC





1579
2552
TTGAAGACTGAGATTGGTAG
2
NC
NC
NC





1580
2553
CTTGAAGACTGAGATTGGTA
1
NC
NC
NC





1581
2554
ACTTGAAGACTGAGATTGGT
2
NC
NC
NC





1582
2555
AACTTGAAGACTGAGATTGG
2
NC
NC
NC





1583
2556
CAACTTGAAGACTGAGATTG
2
NC
NC
NC





1584
2557
TCAACTTGAAGACTGAGATT
1
NC
NC
NC





1585
2558
TTCAACTTGAAGACTGAGAT
2
NC
NC
NC





1586
2559
GTTCAACTTGAAGACTGAGA
2
NC
NC
NC





1587
2560
GGTTCAACTTGAAGACTGAG
2
NC
NC
NC





1588
2561
AGGTTCAACTTGAAGACTGA
2
NC
NC
NC





1589
2562
CAGGTTCAACTTGAAGACTG
2
NC
NC
NC





1590
2563
TCAGGTTCAACTTGAAGACT
2
NC
NC
NC





1591
2564
GTCAGGTTCAACTTGAAGAC
2
NC
NC
NC





1592
2565
TGTCAGGTTCAACTTGAAGA
2
NC
NC
NC





1593
2566
ATGTCAGGTTCAACTTGAAG
2
NC
NC
NC





1594
2567
AATGTCAGGTTCAACTTGAA
2
NC
NC
NC





1595
2568
GAATGTCAGGTTCAACTTGA
2
2
NC
NC





1596
2569
AGAATGTCAGGTTCAACTTG
2
2
NC
NC





1597
2570
CAGAATGTCAGGTTCAACTT
2
2
NC
NC





1598
2584
TTCTTGTCCTTCAGCAGAAT
2
NC
NC
NC





1599
2585
GTTCTTGTCCTTCAGCAGAA
1
NC
NC
NC





1600
2586
GGTTCTTGTCCTTCAGCAGA
2
NC
NC
NC





1601
2587
CGGTTCTTGTCCTTCAGCAG
2
NC
NC
NC





1602
2588
GCGGTTCTTGTCCTTCAGCA
2
NC
NC
NC





1603
2589
AGCGGTTCTTGTCCTTCAGC
1
NC
NC
NC





1604
2590
AAGCGGTTCTTGTCCTTCAG
1
NC
NC
NC





1605
2591
TAAGCGGTTCTTGTCCTTCA
2
NC
NC
NC





1606
2592
CTAAGCGGTTCTTGTCCTTC
2
NC
NC
NC





1607
2593
TCTAAGCGGTTCTTGTCCTT
3
NC
NC
NC





1608
2594
CTCTAAGCGGTTCTTGTCCT
3
NC
NC
NC





1609
2595
TCTCTAAGCGGTTCTTGTCC
2
NC
NC
NC





1610
2596
TTCTCTAAGCGGTTCTTGTC
2
NC
NC
NC





1611
2597
GTTCTCTAAGCGGTTCTTGT
2
NC
NC
NC





1612
2598
AGTTCTCTAAGCGGTTCTTG
2
NC
NC
NC





1613
2600
AGAGTTCTCTAAGCGGTTCT
2
NC
NC
NC





1614
2601
CAGAGTTCTCTAAGCGGTTC
3
NC
NC
NC





1615
2602
TCAGAGTTCTCTAAGCGGTT
3
NC
NC
NC





1616
2603
ATCAGAGTTCTCTAAGCGGT
3
NC
NC
NC





1617
2604
CATCAGAGTTCTCTAAGCGG
3
NC
NC
NC





1618
2605
ACATCAGAGTTCTCTAAGCG
2
NC
NC
NC





1619
2606
AACATCAGAGTTCTCTAAGC
1
NC
NC
NC





1620
2607
AAACATCAGAGTTCTCTAAG
1
NC
NC
NC





1621
2608
CAAACATCAGAGTTCTCTAA
1
NC
NC
NC





1622
2609
ACAAACATCAGAGTTCTCTA
1
NC
NC
NC





1623
2610
TACAAACATCAGAGTTCTCT
2
NC
NC
NC





1624
2611
TTACAAACATCAGAGTTCTC
2
NC
NC
NC





1625
2612
TTTACAAACATCAGAGTTCT
2
NC
NC
NC





1626
2613
TTTTACAAACATCAGAGTTC
2
NC
NC
NC





1627
2614
ATTTTACAAACATCAGAGTT
2
2
NC
NC





1628
2615
GATTTTACAAACATCAGAGT
2
1
NC
NC





1629
2616
TGATTTTACAAACATCAGAG
2
2
NC
NC





1630
2617
GTGATTTTACAAACATCAGA
1
1
NC
NC





1631
2618
AGTGATTTTACAAACATCAG
2
1
NC
NC





1632
2619
TAGTGATTTTACAAACATCA
2
1
NC
NC





1633
2620
GTAGTGATTTTACAAACATC
2
2
NC
NC





1634
2621
AGTAGTGATTTTACAAACAT
2
2
NC
NC





1635
2622
TAGTAGTGATTTTACAAACA
1
2
NC
NC





1636
2623
ATAGTAGTGATTTTACAAAC
2
2
NC
NC





1637
2624
CATAGTAGTGATTTTACAAA
2
1
NC
NC





1638
2625
CCATAGTAGTGATTTTACAA
2
NC
NC
NC





1639
2626
TCCATAGTAGTGATTTTACA
2
NC
NC
NC





1640
2627
CTCCATAGTAGTGATTTTAC
2
NC
NC
NC





1641
2628
GCTCCATAGTAGTGATTTTA
2
NC
NC
NC





1642
2629
TGCTCCATAGTAGTGATTTT
2
NC
NC
NC





1643
2630
ATGCTCCATAGTAGTGATTT
2
NC
NC
NC





1644
2631
TATGCTCCATAGTAGTGATT
3
NC
NC
NC





1645
2632
CTATGCTCCATAGTAGTGAT
3
NC
NC
NC





1646
2640
CTGAATCACTATGCTCCATA
2
NC
NC
NC





1647
2641
TCTGAATCACTATGCTCCAT
2
NC
NC
NC





1648
2642
ATCTGAATCACTATGCTCCA
2
NC
NC
NC





1649
2643
TATCTGAATCACTATGCTCC
2
NC
NC
NC





1650
2644
CTATCTGAATCACTATGCTC
2
NC
NC
NC





1651
2645
ACTATCTGAATCACTATGCT
2
NC
NC
NC





1652
2646
TACTATCTGAATCACTATGC
2
NC
NC
NC





1653
2647
CTACTATCTGAATCACTATG
2
NC
NC
NC





1654
2648
ACTACTATCTGAATCACTAT
2
NC
NC
NC





1655
2649
AACTACTATCTGAATCACTA
2
NC
NC
NC





1656
2650
CAACTACTATCTGAATCACT
1
NC
NC
NC





1657
2651
ACAACTACTATCTGAATCAC
1
NC
NC
NC





1658
2652
GACAACTACTATCTGAATCA
2
NC
NC
NC





1659
2653
TGACAACTACTATCTGAATC
2
NC
NC
NC





1660
2654
TTGACAACTACTATCTGAAT
1
NC
NC
NC





1661
2655
GTTGACAACTACTATCTGAA
2
NC
NC
NC





1662
2656
GGTTGACAACTACTATCTGA
2
NC
NC
NC





1663
2657
TGGTTGACAACTACTATCTG
2
NC
NC
NC





1664
2658
CTGGTTGACAACTACTATCT
1
NC
NC
NC





1665
2659
GCTGGTTGACAACTACTATC
2
NC
NC
NC





1666
2660
TGCTGGTTGACAACTACTAT
2
NC
NC
NC





1667
2661
TTGCTGGTTGACAACTACTA
2
NC
NC
NC





1668
2662
CTTGCTGGTTGACAACTACT
2
NC
NC
NC





1669
2663
GCTTGCTGGTTGACAACTAC
2
NC
NC
NC





1670
2664
GGCTTGCTGGTTGACAACTA
2
NC
NC
NC





1671
2665
TGGCTTGCTGGTTGACAACT
2
NC
NC
NC





1672
2666
GTGGCTTGCTGGTTGACAAC
2
NC
NC
NC





1673
2667
TGTGGCTTGCTGGTTGACAA
2
NC
NC
NC





1674
2668
ATGTGGCTTGCTGGTTGACA
2
NC
NC
NC





1675
2669
GATGTGGCTTGCTGGTTGAC
2
NC
NC
NC





1676
2670
GGATGTGGCTTGCTGGTTGA
2
NC
NC
NC





1677
2671
AGGATGTGGCTTGCTGGTTG
2
NC
NC
NC





1678
2672
AAGGATGTGGCTTGCTGGTT
2
NC
NC
NC





1679
2673
TAAGGATGTGGCTTGCTGGT
2
NC
NC
NC





1680
2674
TTAAGGATGTGGCTTGCTGG
2
NC
NC
NC





1681
2675
GTTAAGGATGTGGCTTGCTG
2
NC
NC
NC





1682
2676
AGTTAAGGATGTGGCTTGCT
2
NC
NC
NC





1683
2677
GAGTTAAGGATGTGGCTTGC
2
NC
NC
NC





1684
2678
TGAGTTAAGGATGTGGCTTG
2
NC
NC
NC





1685
2679
CTGAGTTAAGGATGTGGCTT
2
NC
NC
NC





1686
2680
TCTGAGTTAAGGATGTGGCT
2
NC
NC
NC





1687
2681
CTCTGAGTTAAGGATGTGGC
2
NC
NC
NC





1688
2682
TCTCTGAGTTAAGGATGTGG
2
NC
NC
NC





1689
2683
TTCTCTGAGTTAAGGATGTG
2
NC
NC
NC





1690
2684
CTTCTCTGAGTTAAGGATGT
2
NC
NC
NC





1691
2685
ACTTCTCTGAGTTAAGGATG
2
NC
NC
NC





1692
2686
AACTTCTCTGAGTTAAGGAT
2
NC
NC
NC





1693
2687
AAACTTCTCTGAGTTAAGGA
2
NC
NC
NC





1694
2688
GAAACTTCTCTGAGTTAAGG
2
NC
NC
NC





1695
2689
GGAAACTTCTCTGAGTTAAG
2
NC
NC
NC





1696
2690
TGGAAACTTCTCTGAGTTAA
2
NC
NC
NC





1697
2691
ATGGAAACTTCTCTGAGTTA
2
NC
NC
NC





1698
2693
GAATGGAAACTTCTCTGAGT
2
NC
NC
NC





1699
2694
AGAATGGAAACTTCTCTGAG
2
NC
NC
NC





1700
2699
CTTGGAGAATGGAAACTTCT
1
NC
NC
NC





1701
2700
CCTTGGAGAATGGAAACTTC
2
NC
NC
NC





1702
2701
TCCTTGGAGAATGGAAACTT
1
NC
NC
NC





1703
2702
ATCCTTGGAGAATGGAAACT
2
NC
NC
NC





1704
2703
CATCCTTGGAGAATGGAAAC
2
NC
NC
NC





1705
2704
TCATCCTTGGAGAATGGAAA
1
NC
NC
NC





1706
2705
TTCATCCTTGGAGAATGGAA
2
2
NC
NC





1707
2706
CTTCATCCTTGGAGAATGGA
2
2
NC
NC





1708
2707
TCTTCATCCTTGGAGAATGG
2
2
NC
NC





1709
2708
ATCTTCATCCTTGGAGAATG
2
2
NC
NC





1710
2709
AATCTTCATCCTTGGAGAAT
2
2
NC
NC





1711
2710
CAATCTTCATCCTTGGAGAA
1
2
NC
NC





1712
2712
AACAATCTTCATCCTTGGAG
2
2
NC
NC





1713
2713
AAACAATCTTCATCCTTGGA
2
2
NC
NC





1714
2714
TAAACAATCTTCATCCTTGG
2
2
NC
NC





1715
2715
CTAAACAATCTTCATCCTTG
2
2
NC
NC





1716
2716
TCTAAACAATCTTCATCCTT
2
2
NC
NC





1717
2717
TTCTAAACAATCTTCATCCT
2
2
NC
NC





1718
2718
GTTCTAAACAATCTTCATCC
2
2
NC
NC





1719
2719
TGTTCTAAACAATCTTCATC
2
2
NC
NC





1720
2729
AGGCATCTGTTGTTCTAAAC
2
1
NC
NC





1721
2730
TAGGCATCTGTTGTTCTAAA
2
2
NC
NC





1722
2731
CTAGGCATCTGTTGTTCTAA
2
2
NC
NC





1723
2732
ACTAGGCATCTGTTGTTCTA
2
3
NC
NC





1724
2733
AACTAGGCATCTGTTGTTCT
2
2
NC
NC





1725
2734
AAACTAGGCATCTGTTGTTC
2
2
NC
NC





1726
2735
CAAACTAGGCATCTGTTGTT
2
1
NC
NC





1727
2736
TCAAACTAGGCATCTGTTGT
2
2
NC
NC





1728
2737
CTCAAACTAGGCATCTGTTG
2
3
NC
NC





1729
2738
TCTCAAACTAGGCATCTGTT
2
2
NC
NC





1730
2739
CTCTCAAACTAGGCATCTGT
1
2
NC
NC





1731
2740
TCTCTCAAACTAGGCATCTG
1
2
NC
NC





1732
2741
TTCTCTCAAACTAGGCATCT
1
2
NC
NC





1733
2742
TTTCTCTCAAACTAGGCATC
2
2
NC
NC





1734
2743
CTTTCTCTCAAACTAGGCAT
2
2
NC
NC





1735
2744
ACTTTCTCTCAAACTAGGCA
2
NC
NC
NC





1736
2745
GACTTTCTCTCAAACTAGGC
2
NC
NC
NC





1737
2746
GGACTTTCTCTCAAACTAGG
2
NC
NC
NC





1738
2747
AGGACTTTCTCTCAAACTAG
1
NC
NC
NC





1739
2748
TAGGACTTTCTCTCAAACTA
2
NC
NC
NC





1740
2749
ATAGGACTTTCTCTCAAACT
2
NC
NC
NC





1741
2750
CATAGGACTTTCTCTCAAAC
2
NC
NC
NC





1742
2751
TCATAGGACTTTCTCTCAAA
2
NC
NC
NC





1743
2763
ACTCCTTCAGGGTCATAGGA
2
NC
NC
NC





1744
2764
AACTCCTTCAGGGTCATAGG
2
2
NC
NC





1745
2765
TAACTCCTTCAGGGTCATAG
2
2
NC
NC





1746
2766
ATAACTCCTTCAGGGTCATA
2
2
NC
NC





1747
2767
GATAACTCCTTCAGGGTCAT
2
2
NC
NC





1748
2768
AGATAACTCCTTCAGGGTCA
2
2
NC
NC





1749
2769
GAGATAACTCCTTCAGGGTC
2
2
NC
NC





1750
2780
TCTATTAAAGAGAGATAACT
1
1
NC
NC





1751
2781
TTCTATTAAAGAGAGATAAC
2
2
NC
NC





1752
2784
GTTTTCTATTAAAGAGAGAT
1
0
NC
NC





1753
2785
GGTTTTCTATTAAAGAGAGA
2
1
NC
NC





1754
2786
AGGTTTTCTATTAAAGAGAG
2
2
NC
NC





1755
2787
AAGGTTTTCTATTAAAGAGA
2
2
NC
NC





1756
2788
AAAGGTTTTCTATTAAAGAG
1
2
NC
NC





1757
2789
CAAAGGTTTTCTATTAAAGA
1
1
NC
NC





1758
2790
CCAAAGGTTTTCTATTAAAG
1
2
NC
NC





1759
2791
TCCAAAGGTTTTCTATTAAA
1
1
NC
NC





1760
2792
GTCCAAAGGTTTTCTATTAA
2
1
NC
NC





1761
2793
GGTCCAAAGGTTTTCTATTA
2
2
NC
NC





1762
2794
AGGTCCAAAGGTTTTCTATT
2
2
NC
NC





1763
2795
AAGGTCCAAAGGTTTTCTAT
2
2
NC
NC





1764
2796
CAAGGTCCAAAGGTTTTCTA
2
2
NC
NC





1765
2797
TCAAGGTCCAAAGGTTTTCT
2
2
NC
NC





1766
2798
CTCAAGGTCCAAAGGTTTTC
2
2
NC
NC





1767
2799
TCTCAAGGTCCAAAGGTTTT
2
1
NC
NC





1768
2800
TTCTCAAGGTCCAAAGGTTT
2
2
NC
NC





1769
2801
CTTCTCAAGGTCCAAAGGTT
2
2
NC
NC





1770
2802
ACTTCTCAAGGTCCAAAGGT
2
2
NC
NC





1771
2803
GACTTCTCAAGGTCCAAAGG
2
1
NC
NC





1772
2804
TGACTTCTCAAGGTCCAAAG
1
1
NC
NC





1773
2805
ATGACTTCTCAAGGTCCAAA
1
1
NC
NC





1774
2806
GATGACTTCTCAAGGTCCAA
1
2
NC
NC





1775
2807
AGATGACTTCTCAAGGTCCA
1
2
NC
NC





1776
2808
CAGATGACTTCTCAAGGTCC
1
2
NC
NC





1777
2809
TCAGATGACTTCTCAAGGTC
2
2
NC
NC





1778
2810
TTCAGATGACTTCTCAAGGT
1
2
NC
NC





1779
2811
ATTCAGATGACTTCTCAAGG
1
2
NC
NC





1780
2812
GATTCAGATGACTTCTCAAG
2
2
NC
NC





1781
2813
TGATTCAGATGACTTCTCAA
2
2
NC
NC





1782
2814
GTGATTCAGATGACTTCTCA
2
2
NC
NC





1783
2815
AGTGATTCAGATGACTTCTC
2
2
NC
NC





1784
2816
TAGTGATTCAGATGACTTCT
2
2
NC
NC





1785
2817
CTAGTGATTCAGATGACTTC
2
2
NC
NC





1786
2818
GCTAGTGATTCAGATGACTT
2
2
NC
NC





1787
2819
GGCTAGTGATTCAGATGACT
3
2
NC
NC





1788
2820
AGGCTAGTGATTCAGATGAC
3
2
NC
NC





1789
2821
GAGGCTAGTGATTCAGATGA
3
2
NC
NC





1790
2822
AGAGGCTAGTGATTCAGATG
2
2
NC
NC





1791
2823
TAGAGGCTAGTGATTCAGAT
2
2
NC
NC





1792
2824
TTAGAGGCTAGTGATTCAGA
2
1
NC
NC





1793
2825
TTTAGAGGCTAGTGATTCAG
3
1
NC
NC





1794
2826
ATTTAGAGGCTAGTGATTCA
2
2
NC
NC





1795
2827
AATTTAGAGGCTAGTGATTC
2
2
NC
NC





1796
2828
TAATTTAGAGGCTAGTGATT
2
2
NC
NC





1797
2829
ATAATTTAGAGGCTAGTGAT
2
2
NC
NC





1798
2830
GATAATTTAGAGGCTAGTGA
2
2
NC
NC





1799
2831
GGATAATTTAGAGGCTAGTG
2
2
NC
NC





1800
2832
TGGATAATTTAGAGGCTAGT
3
3
NC
NC





1801
2833
CTGGATAATTTAGAGGCTAG
2
2
NC
NC





1802
2834
TCTGGATAATTTAGAGGCTA
2
2
NC
NC





1803
2835
GTCTGGATAATTTAGAGGCT
2
2
NC
NC





1804
2836
AGTCTGGATAATTTAGAGGC
2
NC
NC
NC





1805
2837
CAGTCTGGATAATTTAGAGG
2
NC
NC
NC





1806
2838
TCAGTCTGGATAATTTAGAG
2
NC
NC
NC





1807
2839
TTCAGTCTGGATAATTTAGA
2
NC
NC
NC





1808
2840
CTTCAGTCTGGATAATTTAG
2
NC
NC
NC





1809
2841
CCTTCAGTCTGGATAATTTA
2
NC
NC
NC





1810
2842
CCCTTCAGTCTGGATAATTT
2
NC
NC
NC





1811
2843
ACCCTTCAGTCTGGATAATT
2
NC
NC
NC





1812
2844
AACCCTTCAGTCTGGATAAT
2
NC
NC
NC





1813
2845
GAACCCTTCAGTCTGGATAA
2
NC
NC
NC





1814
2846
GGAACCCTTCAGTCTGGATA
3
NC
NC
NC





1815
2847
CGGAACCCTTCAGTCTGGAT
3
NC
NC
NC





1816
2848
TCGGAACCCTTCAGTCTGGA
3
NC
NC
NC





1817
2849
TTCGGAACCCTTCAGTCTGG
3
NC
NC
NC





1818
2850
TTTCGGAACCCTTCAGTCTG
2
NC
NC
NC





1819
2851
CTTTCGGAACCCTTCAGTCT
2
NC
NC
NC





1820
2852
TCTTTCGGAACCCTTCAGTC
3
NC
NC
NC





1821
2853
CTCTTTCGGAACCCTTCAGT
3
NC
NC
NC





1822
2854
TCTCTTTCGGAACCCTTCAG
2
NC
NC
NC





1823
2855
TTCTCTTTCGGAACCCTTCA
2
NC
NC
NC





1824
2856
TTTCTCTTTCGGAACCCTTC
3
2
NC
NC





1825
2857
GTTTCTCTTTCGGAACCCTT
2
2
NC
NC





1826
2858
AGTTTCTCTTTCGGAACCCT
2
2
NC
NC





1827
2859
GAGTTTCTCTTTCGGAACCC
3
2
NC
NC





1828
2860
TGAGTTTCTCTTTCGGAACC
1
2
NC
NC





1829
2861
TTGAGTTTCTCTTTCGGAAC
2
2
NC
NC





1830
2862
TTTGAGTTTCTCTTTCGGAA
1
1
NC
NC





1831
2863
GTTTGAGTTTCTCTTTCGGA
2
2
NC
NC





1832
2864
TGTTTGAGTTTCTCTTTCGG
2
2
NC
NC





1833
2865
TTGTTTGAGTTTCTCTTTCG
1
2
NC
NC





1834
2866
ATTGTTTGAGTTTCTCTTTC
1
1
NC
NC





1835
2867
CATTGTTTGAGTTTCTCTTT
2
2
NC
NC





1836
2868
CCATTGTTTGAGTTTCTCTT
2
2
NC
NC





1837
2869
CCCATTGTTTGAGTTTCTCT
2
NC
NC
NC





1838
2870
CCCCATTGTTTGAGTTTCTC
2
NC
NC
NC





1839
2871
TCCCCATTGTTTGAGTTTCT
1
NC
NC
NC





1840
2872
ATCCCCATTGTTTGAGTTTC
2
NC
NC
NC





1841
2873
CATCCCCATTGTTTGAGTTT
2
NC
NC
NC





1842
2874
TCATCCCCATTGTTTGAGTT
1
NC
NC
NC





1843
2875
ATCATCCCCATTGTTTGAGT
2
NC
NC
NC





1844
2876
CATCATCCCCATTGTTTGAG
1
NC
NC
NC





1845
2877
TCATCATCCCCATTGTTTGA
2
NC
NC
NC





1846
2878
CTCATCATCCCCATTGTTTG
2
NC
NC
NC





1847
2879
ACTCATCATCCCCATTGTTT
2
NC
NC
NC





1848
2880
GACTCATCATCCCCATTGTT
2
NC
NC
NC





1849
2881
CGACTCATCATCCCCATTGT
2
NC
NC
NC





1850
2882
ACGACTCATCATCCCCATTG
1
NC
NC
NC





1851
2883
AACGACTCATCATCCCCATT
2
NC
NC
NC





1852
2884
AAACGACTCATCATCCCCAT
2
NC
NC
NC





1853
2885
AAAACGACTCATCATCCCCA
2
NC
NC
NC





1854
2886
TAAAACGACTCATCATCCCC
2
NC
NC
NC





1855
2887
TTAAAACGACTCATCATCCC
1
NC
NC
NC





1856
2888
ATTAAAACGACTCATCATCC
0
NC
NC
NC





1857
2889
CATTAAAACGACTCATCATC
0
2
NC
NC





1858
2890
TCATTAAAACGACTCATCAT
1
2
NC
NC





1859
2891
TTCATTAAAACGACTCATCA
2
2
NC
NC





1860
2892
GTTCATTAAAACGACTCATC
2
2
NC
NC





1861
2893
AGTTCATTAAAACGACTCAT
2
2
NC
NC





1862
2894
AAGTTCATTAAAACGACTCA
2
2
NC
NC





1863
2895
GAAGTTCATTAAAACGACTC
2
3
NC
NC





1864
2896
GGAAGTTCATTAAAACGACT
2
2
NC
NC





1865
2897
TGGAAGTTCATTAAAACGAC
3
3
NC
NC





1866
2898
TTGGAAGTTCATTAAAACGA
2
2
NC
NC





1867
2899
TTTGGAAGTTCATTAAAACG
1
2
NC
NC





1868
2900
ATTTGGAAGTTCATTAAAAC
1
2
NC
NC





1869
2902
GAATTTGGAAGTTCATTAAA
2
2
NC
NC





1870
2903
TGAATTTGGAAGTTCATTAA
2
2
NC
NC





1871
2904
CTGAATTTGGAAGTTCATTA
2
2
NC
NC





1872
2905
TCTGAATTTGGAAGTTCATT
2
1
NC
NC





1873
2906
ATCTGAATTTGGAAGTTCAT
2
2
NC
NC





1874
2907
AATCTGAATTTGGAAGTTCA
2
2
NC
NC





1875
2908
GAATCTGAATTTGGAAGTTC
2
2
NC
NC





1876
2909
GGAATCTGAATTTGGAAGTT
2
2
NC
NC





1877
2910
TGGAATCTGAATTTGGAAGT
1
1
NC
NC





1878
2911
CTGGAATCTGAATTTGGAAG
2
2
NC
NC





1879
2912
ACTGGAATCTGAATTTGGAA
2
2
NC
NC





1880
2913
TACTGGAATCTGAATTTGGA
2
2
NC
NC





1881
2914
CTACTGGAATCTGAATTTGG
2
2
NC
NC





1882
2915
CCTACTGGAATCTGAATTTG
2
2
NC
NC





1883
2927
CTTGCTGTCTTTCCTACTGG
2
NC
NC
NC





1884
2928
ACTTGCTGTCTTTCCTACTG
2
NC
NC
NC





1885
2929
AACTTGCTGTCTTTCCTACT
2
NC
NC
NC





1886
2930
CAACTTGCTGTCTTTCCTAC
1
NC
NC
NC





1887
2931
ACAACTTGCTGTCTTTCCTA
1
NC
NC
NC





1888
2932
CACAACTTGCTGTCTTTCCT
2
NC
NC
NC





1889
2943
TTAACACACTGCACAACTTG
2
2
NC
NC





1890
2944
GTTAACACACTGCACAACTT
1
2
NC
NC





1891
2945
TGTTAACACACTGCACAACT
1
2
NC
NC





1892
2957
ACAAAAATCTTGTGTTAACA
2
2
NC
NC





1893
2958
TACAAAAATCTTGTGTTAAC
2
2
NC
NC





1894
2960
CATACAAAAATCTTGTGTTA
2
1
NC
NC





1895
2961
ACATACAAAAATCTTGTGTT
2
1
NC
NC





1896
2962
AACATACAAAAATCTTGTGT
2
1
NC
NC





1897
2963
TAACATACAAAAATCTTGTG
1
2
NC
NC





1898
2980
TCATGCTTGTTGTTAAATAA
2
NC
NC
NC





1899
2981
TTCATGCTTGTTGTTAAATA
2
NC
NC
NC





1900
2982
TTTCATGCTTGTTGTTAAAT
1
NC
NC
NC





1901
2983
TTTTCATGCTTGTTGTTAAA
1
NC
NC
NC





1902
2984
TTTTTCATGCTTGTTGTTAA
1
NC
NC
NC





1903
3000
TGACACCATTCTCTGTTTTT
2
2
NC
NC





1904
3001
ATGACACCATTCTCTGTTTT
2
2
NC
NC





1905
3002
GATGACACCATTCTCTGTTT
2
2
NC
NC





1906
3003
GGATGACACCATTCTCTGTT
2
3
NC
NC





1907
3004
GGGATGACACCATTCTCTGT
2
2
NC
NC





1908
3005
TGGGATGACACCATTCTCTG
2
2
NC
NC





1909
3006
TTGGGATGACACCATTCTCT
1
1
NC
NC





1910
3007
GTTGGGATGACACCATTCTC
2
2
NC
NC





1911
3008
TGTTGGGATGACACCATTCT
2
2
NC
NC





1912
3009
ATGTTGGGATGACACCATTC
2
2
NC
NC





1913
3010
GATGTTGGGATGACACCATT
2
3
NC
NC





1914
3011
TGATGTTGGGATGACACCAT
2
2
NC
NC





1915
3012
CTGATGTTGGGATGACACCA
2
2
NC
NC





1916
3013
TCTGATGTTGGGATGACACC
2
2
NC
NC





1917
3014
ATCTGATGTTGGGATGACAC
2
2
NC
NC





1918
3015
AATCTGATGTTGGGATGACA
2
2
NC
NC





1919
3016
GAATCTGATGTTGGGATGAC
2
2
NC
NC





1920
3017
AGAATCTGATGTTGGGATGA
2
2
NC
NC





1921
3018
CAGAATCTGATGTTGGGATG
2
2
NC
NC





1922
3019
GCAGAATCTGATGTTGGGAT
2
2
NC
NC





1923
3020
GGCAGAATCTGATGTTGGGA
2
2
NC
NC





1924
3021
TGGCAGAATCTGATGTTGGG
2
1
NC
NC





1925
3022
GTGGCAGAATCTGATGTTGG
2
2
NC
NC





1926
3023
TGTGGCAGAATCTGATGTTG
2
2
NC
NC





1927
3024
GTGTGGCAGAATCTGATGTT
2
2
NC
NC





1928
3025
TGTGTGGCAGAATCTGATGT
2
1
NC
NC





1929
3065
GTTAGAATGTGTTTTACTAT
1
1
NC
NC





1930
3066
TGTTAGAATGTGTTTTACTA
2
2
NC
NC





1931
3067
CTGTTAGAATGTGTTTTACT
2
2
NC
NC





1932
3068
GCTGTTAGAATGTGTTTTAC
2
2
NC
NC





1933
3069
TGCTGTTAGAATGTGTTTTA
2
1
NC
NC





1934
3070
TTGCTGTTAGAATGTGTTTT
2
2
NC
NC





1935
3071
ATTGCTGTTAGAATGTGTTT
2
2
NC
NC





1936
3072
TATTGCTGTTAGAATGTGTT
2
2
NC
NC





1937
3073
GTATTGCTGTTAGAATGTGT
2
2
NC
NC





1938
3074
TGTATTGCTGTTAGAATGTG
2
2
NC
NC





1939
3075
TTGTATTGCTGTTAGAATGT
2
2
NC
NC





1940
3076
GTTGTATTGCTGTTAGAATG
2
2
NC
NC





1941
3077
TGTTGTATTGCTGTTAGAAT
2
2
NC
NC





1942
3078
CTGTTGTATTGCTGTTAGAA
2
2
NC
NC





1943
3079
TCTGTTGTATTGCTGTTAGA
2
2
NC
NC





1944
3080
CTCTGTTGTATTGCTGTTAG
2
2
NC
NC





1945
3081
TCTCTGTTGTATTGCTGTTA
2
2
NC
NC





1946
3082
TTCTCTGTTGTATTGCTGTT
2
2
NC
NC





1947
3083
GTTCTCTGTTGTATTGCTGT
2
2
NC
NC





1948
3084
AGTTCTCTGTTGTATTGCTG
2
1
NC
NC





1949
3085
CAGTTCTCTGTTGTATTGCT
2
2
NC
NC





1950
3096
CTGATATCACACAGTTCTCT
2
2
NC
NC





1951
3097
TCTGATATCACACAGTTCTC
2
2
NC
NC





1952
3098
TTCTGATATCACACAGTTCT
2
1
NC
NC





1953
3099
TTTCTGATATCACACAGTTC
2
2
NC
NC





1954
3100
GTTTCTGATATCACACAGTT
2
2
NC
NC





1955
3101
AGTTTCTGATATCACACAGT
2
2
NC
NC





1956
3102
GAGTTTCTGATATCACACAG
2
2
NC
NC





1957
3103
GGAGTTTCTGATATCACACA
2
2
NC
NC





1958
3104
AGGAGTTTCTGATATCACAC
2
2
NC
NC





1959
3105
AAGGAGTTTCTGATATCACA
2
2
NC
NC





1960
3106
AAAGGAGTTTCTGATATCAC
2
2
NC
NC





1961
3107
CAAAGGAGTTTCTGATATCA
1
2
NC
NC





1962
3108
CCAAAGGAGTTTCTGATATC
1
2
NC
NC





1963
3109
ACCAAAGGAGTTTCTGATAT
2
2
NC
NC





1964
3110
TACCAAAGGAGTTTCTGATA
2
2
NC
NC





1965
3111
ATACCAAAGGAGTTTCTGAT
2
2
NC
NC





1966
3112
AATACCAAAGGAGTTTCTGA
1
1
NC
NC





1967
3113
CAATACCAAAGGAGTTTCTG
1
1
NC
NC





1968
3114
GCAATACCAAAGGAGTTTCT
2
2
NC
NC





1969
3127
GAATTATTATAGGGCAATAC
2
NC
NC
NC





1970
3128
AGAATTATTATAGGGCAATA
2
NC
NC
NC





1971
3129
TAGAATTATTATAGGGCAAT
1
NC
NC
NC





1972
3130
TTAGAATTATTATAGGGCAA
1
NC
NC
NC





1973
3131
TTTAGAATTATTATAGGGCA
2
NC
NC
NC





1974
3132
CTTTAGAATTATTATAGGGC
2
NC
NC
NC





1975
3133
ACTTTAGAATTATTATAGGG
2
NC
NC
NC





1976
3138
CGGTAACTTTAGAATTATTA
2
NC
NC
NC





1977
3139
CCGGTAACTTTAGAATTATT
2
NC
NC
NC





1978
3140
ACCGGTAACTTTAGAATTAT
2
NC
NC
NC





1979
3141
TACCGGTAACTTTAGAATTA
2
NC
NC
NC





1980
3142
TTACCGGTAACTTTAGAATT
1
NC
NC
NC





1981
3143
TTTACCGGTAACTTTAGAAT
2
NC
NC
NC





1982
3144
CTTTACCGGTAACTTTAGAA
3
NC
NC
NC





1983
3145
TCTTTACCGGTAACTTTAGA
2
NC
NC
NC





1984
3146
ATCTTTACCGGTAACTTTAG
2
NC
NC
NC





1985
3147
AATCTTTACCGGTAACTTTA
2
NC
NC
NC





1986
3148
GAATCTTTACCGGTAACTTT
3
NC
NC
NC





1987
3149
TGAATCTTTACCGGTAACTT
2
NC
NC
NC





1988
3150
CTGAATCTTTACCGGTAACT
3
NC
NC
NC





1989
3151
TCTGAATCTTTACCGGTAAC
2
NC
NC
NC





1990
3152
ATCTGAATCTTTACCGGTAA
3
NC
NC
NC





1991
3153
CATCTGAATCTTTACCGGTA
3
NC
NC
NC





1992
3154
ACATCTGAATCTTTACCGGT
3
NC
NC
NC





1993
3155
AACATCTGAATCTTTACCGG
2
NC
NC
NC





1994
3156
GAACATCTGAATCTTTACCG
2
NC
NC
NC





1995
3157
AGAACATCTGAATCTTTACC
2
NC
NC
NC





1996
3158
AAGAACATCTGAATCTTTAC
2
2
NC
NC





1997
3159
TAAGAACATCTGAATCTTTA
2
2
NC
NC





1998
3160
ATAAGAACATCTGAATCTTT
1
2
NC
NC





1999
3161
GATAAGAACATCTGAATCTT
2
2
NC
NC





2000
3162
TGATAAGAACATCTGAATCT
1
2
2
1





2001
3163
CTGATAAGAACATCTGAATC
2
2
1
2





2002
3164
TCTGATAAGAACATCTGAAT
2
2
1
2





2003
3165
CTCTGATAAGAACATCTGAA
1
2
NC
NC





2004
3166
GCTCTGATAAGAACATCTGA
2
2
NC
NC





2005
3167
GGCTCTGATAAGAACATCTG
2
NC
NC
NC





2006
3168
AGGCTCTGATAAGAACATCT
2
NC
NC
NC





2007
3169
GAGGCTCTGATAAGAACATC
1
NC
NC
NC





2008
3170
TGAGGCTCTGATAAGAACAT
1
NC
NC
NC





2009
3171
CTGAGGCTCTGATAAGAACA
2
NC
NC
NC





2010
3172
TCTGAGGCTCTGATAAGAAC
2
NC
NC
NC





2011
3173
TTCTGAGGCTCTGATAAGAA
2
NC
NC
NC





2012
3174
GTTCTGAGGCTCTGATAAGA
1
NC
NC
NC





2013
3175
TGTTCTGAGGCTCTGATAAG
1
NC
NC
NC





2014
3176
TTGTTCTGAGGCTCTGATAA
1
NC
NC
NC





2015
3177
GTTGTTCTGAGGCTCTGATA
1
NC
NC
NC





2016
3178
TGTTGTTCTGAGGCTCTGAT
2
NC
NC
NC





2017
3179
CTGTTGTTCTGAGGCTCTGA
2
NC
NC
NC





2018
3180
TCTGTTGTTCTGAGGCTCTG
2
NC
NC
NC





2019
3181
ATCTGTTGTTCTGAGGCTCT
2
NC
NC
NC





2020
3182
TATCTGTTGTTCTGAGGCTC
1
NC
NC
NC





2021
3183
CTATCTGTTGTTCTGAGGCT
1
NC
NC
NC





2022
3184
CCTATCTGTTGTTCTGAGGC
2
NC
NC
NC





2023
3185
TCCTATCTGTTGTTCTGAGG
2
NC
NC
NC





2024
3186
TTCCTATCTGTTGTTCTGAG
1
NC
NC
NC





2025
3187
CTTCCTATCTGTTGTTCTGA
2
NC
NC
NC





2026
3188
ACTTCCTATCTGTTGTTCTG
2
NC
NC
NC





2027
3189
GACTTCCTATCTGTTGTTCT
2
NC
NC
NC





2028
3190
AGACTTCCTATCTGTTGTTC
2
NC
NC
NC





2029
3191
AAGACTTCCTATCTGTTGTT
2
NC
NC
NC





2030
3192
CAAGACTTCCTATCTGTTGT
2
NC
NC
NC





2031
3193
TCAAGACTTCCTATCTGTTG
2
NC
NC
NC





2032
3194
GTCAAGACTTCCTATCTGTT
2
NC
NC
NC





2033
3195
AGTCAAGACTTCCTATCTGT
2
NC
NC
NC





2034
3206
TCCACTGGGAGAGTCAAGAC
2
NC
NC
NC





2035
3217
TTCATTAACATTCCACTGGG
2
2
NC
NC





2036
3218
ATTCATTAACATTCCACTGG
1
2
NC
NC





2037
3219
GATTCATTAACATTCCACTG
1
1
NC
NC





2038
3220
GGATTCATTAACATTCCACT
2
NC
NC
NC





2039
3221
CGGATTCATTAACATTCCAC
2
NC
NC
NC





2040
3222
CCGGATTCATTAACATTCCA
3
NC
NC
NC





2041
3223
ACCGGATTCATTAACATTCC
2
NC
NC
NC





2042
3224
TACCGGATTCATTAACATTC
3
NC
NC
NC





2043
3225
CTACCGGATTCATTAACATT
3
NC
NC
NC





2044
3226
TCTACCGGATTCATTAACAT
3
NC
NC
NC





2045
3227
TTCTACCGGATTCATTAACA
2
NC
NC
NC





2046
3228
CTTCTACCGGATTCATTAAC
3
NC
NC
NC





2047
3229
TCTTCTACCGGATTCATTAA
2
NC
NC
NC





2048
3230
ATCTTCTACCGGATTCATTA
2
NC
NC
NC





2049
3231
CATCTTCTACCGGATTCATT
2
NC
NC
NC





2050
3232
GCATCTTCTACCGGATTCAT
2
NC
NC
NC





2051
3233
GGCATCTTCTACCGGATTCA
2
NC
NC
NC





2052
3234
TGGCATCTTCTACCGGATTC
2
NC
NC
NC





2053
3235
GTGGCATCTTCTACCGGATT
2
NC
NC
NC





2054
3236
TGTGGCATCTTCTACCGGAT
2
NC
NC
NC





2055
3237
CTGTGGCATCTTCTACCGGA
2
NC
NC
NC





2056
3239
ACCTGTGGCATCTTCTACCG
2
NC
NC
NC





2057
3240
CACCTGTGGCATCTTCTACC
2
NC
NC
NC





2058
3241
TCACCTGTGGCATCTTCTAC
2
NC
NC
NC





2059
3242
GTCACCTGTGGCATCTTCTA
2
NC
NC
NC





2060
3243
GGTCACCTGTGGCATCTTCT
1
NC
NC
NC





2061
3244
TGGTCACCTGTGGCATCTTC
1
NC
NC
NC





2062
3245
TTGGTCACCTGTGGCATCTT
2
NC
NC
NC





2063
3246
TTTGGTCACCTGTGGCATCT
2
NC
NC
NC





2064
3247
TTTTGGTCACCTGTGGCATC
2
2
NC
NC





2065
3248
ATTTTGGTCACCTGTGGCAT
2
2
NC
NC





2066
3249
CATTTTGGTCACCTGTGGCA
2
2
NC
NC





2067
3250
CCATTTTGGTCACCTGTGGC
2
3
NC
NC





2068
3263
CTGAAAACAAATTCCATTTT
1
NC
NC
NC





2069
3264
TCTGAAAACAAATTCCATTT
1
NC
NC
NC





2070
3265
CTCTGAAAACAAATTCCATT
1
NC
NC
NC





2071
3266
ACTCTGAAAACAAATTCCAT
2
NC
NC
NC





2072
3267
CACTCTGAAAACAAATTCCA
1
NC
NC
NC





2073
3268
TCACTCTGAAAACAAATTCC
2
NC
NC
NC





2074
3269
CTCACTCTGAAAACAAATTC
2
NC
NC
NC





2075
3270
CCTCACTCTGAAAACAAATT
2
NC
NC
NC





2076
3271
TCCTCACTCTGAAAACAAAT
2
NC
NC
NC





2077
3272
TTCCTCACTCTGAAAACAAA
2
NC
NC
NC





2078
3273
ATTCCTCACTCTGAAAACAA
2
NC
NC
NC





2079
3274
GATTCCTCACTCTGAAAACA
2
NC
NC
NC





2080
3275
AGATTCCTCACTCTGAAAAC
2
NC
NC
NC





2081
3276
TAGATTCCTCACTCTGAAAA
2
NC
NC
NC





2082
3277
TTAGATTCCTCACTCTGAAA
2
NC
NC
NC





2083
3278
TTTAGATTCCTCACTCTGAA
2
NC
NC
NC





2084
3279
CTTTAGATTCCTCACTCTGA
2
NC
NC
NC





2085
3280
GCTTTAGATTCCTCACTCTG
1
NC
NC
NC





2086
3281
TGCTTTAGATTCCTCACTCT
2
NC
NC
NC





2087
3282
TTGCTTTAGATTCCTCACTC
2
NC
NC
NC





2088
3283
CTTGCTTTAGATTCCTCACT
1
2
NC
NC





2089
3284
TCTTGCTTTAGATTCCTCAC
1
2
NC
NC





2090
3285
CTCTTGCTTTAGATTCCTCA
2
1
NC
NC





2091
3286
GCTCTTGCTTTAGATTCCTC
2
2
NC
NC





2092
3300
CAGTTTCAGAACAAGCTCTT
2
2
NC
NC





2093
3301
TCAGTTTCAGAACAAGCTCT
2
1
NC
NC





2094
3302
TTCAGTTTCAGAACAAGCTC
2
2
NC
NC





2095
3303
CTTCAGTTTCAGAACAAGCT
2
2
NC
NC





2096
3304
TCTTCAGTTTCAGAACAAGC
1
2
NC
NC





2097
3305
CTCTTCAGTTTCAGAACAAG
1
1
NC
NC





2098
3306
ACTCTTCAGTTTCAGAACAA
2
2
NC
NC





2099
3307
GACTCTTCAGTTTCAGAACA
2
2
NC
NC





2100
3308
TGACTCTTCAGTTTCAGAAC
2
2
NC
NC





2101
3309
TTGACTCTTCAGTTTCAGAA
2
2
NC
NC





2102
3310
TTTGACTCTTCAGTTTCAGA
2
2
NC
NC





2103
3311
GTTTGACTCTTCAGTTTCAG
2
2
NC
NC





2104
3312
TGTTTGACTCTTCAGTTTCA
2
2
NC
NC





2105
3313
GTGTTTGACTCTTCAGTTTC
2
2
NC
NC





2106
3314
CGTGTTTGACTCTTCAGTTT
2
2
NC
NC





2107
3315
ACGTGTTTGACTCTTCAGTT
2
2
NC
NC





2108
3316
CACGTGTTTGACTCTTCAGT
2
2
NC
NC





2109
3317
ACACGTGTTTGACTCTTCAG
2
2
NC
NC





2110
3318
AACACGTGTTTGACTCTTCA
3
2
NC
NC





2111
3330
GCCAATCTGAACAACACGTG
2
NC
NC
NC





2112
3331
TGCCAATCTGAACAACACGT
2
NC
NC
NC





2113
3332
CTGCCAATCTGAACAACACG
2
NC
NC
NC





2114
3333
GCTGCCAATCTGAACAACAC
1
NC
NC
NC





2115
3334
CGCTGCCAATCTGAACAACA
2
NC
NC
NC





2116
3335
CCGCTGCCAATCTGAACAAC
2
NC
NC
NC





2117
3336
GCCGCTGCCAATCTGAACAA
2
NC
NC
NC





2118
3337
TGCCGCTGCCAATCTGAACA
2
NC
NC
NC





2119
3338
ATGCCGCTGCCAATCTGAAC
2
NC
NC
NC





2120
3339
AATGCCGCTGCCAATCTGAA
1
NC
NC
NC





2121
3340
AAATGCCGCTGCCAATCTGA
1
NC
NC
NC





2122
3341
GAAATGCCGCTGCCAATCTG
2
NC
NC
NC





2123
3342
CGAAATGCCGCTGCCAATCT
2
NC
NC
NC





2124
3343
TCGAAATGCCGCTGCCAATC
2
NC
NC
NC





2125
3344
ATCGAAATGCCGCTGCCAAT
2
NC
NC
NC





2126
3345
CATCGAAATGCCGCTGCCAA
3
NC
NC
NC





2127
3346
ACATCGAAATGCCGCTGCCA
2
NC
NC
NC





2128
3347
TACATCGAAATGCCGCTGCC
3
NC
NC
NC





2129
3348
CTACATCGAAATGCCGCTGC
3
NC
NC
NC





2130
3349
GCTACATCGAAATGCCGCTG
3
NC
NC
NC





2131
3350
GGCTACATCGAAATGCCGCT
3
NC
NC
NC





2132
3354
CCAGGGCTACATCGAAATGC
3
2
NC
NC





2133
3356
TCCCAGGGCTACATCGAAAT
3
NC
NC
NC





2134
3357
TTCCCAGGGCTACATCGAAA
2
NC
NC
NC





2135
3358
CTTCCCAGGGCTACATCGAA
2
NC
NC
NC





2136
3359
TCTTCCCAGGGCTACATCGA
2
NC
NC
NC





2137
3360
TTCTTCCCAGGGCTACATCG
2
NC
NC
NC





2138
3361
ATTCTTCCCAGGGCTACATC
2
NC
NC
NC





2139
3362
CATTCTTCCCAGGGCTACAT
1
NC
NC
NC





2140
3363
CCATTCTTCCCAGGGCTACA
1
NC
NC
NC





2141
3364
ACCATTCTTCCCAGGGCTAC
1
NC
NC
NC





2142
3365
AACCATTCTTCCCAGGGCTA
2
NC
NC
NC





2143
3366
AAACCATTCTTCCCAGGGCT
2
NC
NC
NC





2144
3367
TAAACCATTCTTCCCAGGGC
2
NC
NC
NC





2145
3368
ATAAACCATTCTTCCCAGGG
2
NC
NC
NC





2146
3369
CATAAACCATTCTTCCCAGG
2
NC
NC
NC





2147
3370
ACATAAACCATTCTTCCCAG
2
NC
NC
NC





2148
3371
GACATAAACCATTCTTCCCA
2
NC
NC
NC





2149
3372
TGACATAAACCATTCTTCCC
2
NC
NC
NC





2150
3373
TTGACATAAACCATTCTTCC
2
NC
NC
NC





2151
3374
GTTGACATAAACCATTCTTC
2
NC
NC
NC





2152
3375
TGTTGACATAAACCATTCTT
2
NC
NC
NC





2153
3376
TTGTTGACATAAACCATTCT
2
2
NC
NC





2154
3377
TTTGTTGACATAAACCATTC
2
2
NC
NC





2155
3378
TTTTGTTGACATAAACCATT
2
2
NC
NC





2156
3379
ATTTTGTTGACATAAACCAT
2
2
NC
NC





2157
3380
CATTTTGTTGACATAAACCA
2
2
NC
NC





2158
3381
TCATTTTGTTGACATAAACC
2
2
NC
NC





2159
3389
GAGTCCAGTCATTTTGTTGA
2
2
NC
NC





2160
3390
TGAGTCCAGTCATTTTGTTG
2
3
NC
NC





2161
3391
CTGAGTCCAGTCATTTTGTT
1
2
NC
NC





2162
3402
CAATGAATGTGCTGAGTCCA
2
2
NC
NC





2163
3429
AAGCAGCCTGAATGTCCTCA
2
2
NC
NC





2164
3430
CAAGCAGCCTGAATGTCCTC
1
1
NC
NC





2165
3431
ACAAGCAGCCTGAATGTCCT
2
2
NC
NC





2166
3432
TACAAGCAGCCTGAATGTCC
2
1
NC
NC





2167
3433
GTACAAGCAGCCTGAATGTC
2
2
NC
NC





2168
3434
AGTACAAGCAGCCTGAATGT
2
2
NC
NC





2169
3435
TAGTACAAGCAGCCTGAATG
3
2
NC
NC





2170
3436
TTAGTACAAGCAGCCTGAAT
2
2
NC
NC





2171
3437
TTTAGTACAAGCAGCCTGAA
2
2
NC
NC





2172
3438
CTTTAGTACAAGCAGCCTGA
2
3
NC
NC





2173
3439
TCTTTAGTACAAGCAGCCTG
2
2
NC
NC





2174
3440
GTCTTTAGTACAAGCAGCCT
2
2
NC
NC





2175
3441
GGTCTTTAGTACAAGCAGCC
3
2
NC
NC





2176
3442
AGGTCTTTAGTACAAGCAGC
3
2
NC
NC





2177
3443
CAGGTCTTTAGTACAAGCAG
2
2
NC
NC





2178
3444
TCAGGTCTTTAGTACAAGCA
3
2
NC
NC





2179
3445
GTCAGGTCTTTAGTACAAGC
2
2
NC
NC





2180
3446
TGTCAGGTCTTTAGTACAAG
1
2
NC
NC





2181
3447
TTGTCAGGTCTTTAGTACAA
2
2
NC
NC





2182
3448
GTTGTCAGGTCTTTAGTACA
1
3
NC
NC





2183
3449
AGTTGTCAGGTCTTTAGTAC
2
3
NC
NC





2184
3450
CAGTTGTCAGGTCTTTAGTA
2
2
NC
NC





2185
3451
ACAGTTGTCAGGTCTTTAGT
2
2
NC
NC





2186
3452
CACAGTTGTCAGGTCTTTAG
2
2
NC
NC





2187
3453
CCACAGTTGTCAGGTCTTTA
2
3
NC
NC





2188
3454
GCCACAGTTGTCAGGTCTTT
2
2
NC
NC





2189
3455
AGCCACAGTTGTCAGGTCTT
2
2
NC
NC





2190
3456
CAGCCACAGTTGTCAGGTCT
2
2
NC
NC





2191
3457
ACAGCCACAGTTGTCAGGTC
2
2
NC
NC





2192
3458
CACAGCCACAGTTGTCAGGT
2
2
NC
NC





2193
3460
TCCACAGCCACAGTTGTCAG
2
1
2
NC





2194
3461
ATCCACAGCCACAGTTGTCA
2
1
1
NC





2195
3462
CATCCACAGCCACAGTTGTC
2
1
2
NC





2196
3463
ACATCCACAGCCACAGTTGT
2
2
1
NC





2197
3464
AACATCCACAGCCACAGTTG
1
NC
NC
NC





2198
3465
CAACATCCACAGCCACAGTT
2
NC
NC
NC





2199
3466
ACAACATCCACAGCCACAGT
2
NC
NC
NC





2200
3467
TACAACATCCACAGCCACAG
2
NC
NC
NC





2201
3468
GTACAACATCCACAGCCACA
2
NC
NC
NC





2202
3469
AGTACAACATCCACAGCCAC
2
NC
NC
NC





2203
3470
AAGTACAACATCCACAGCCA
2
NC
NC
NC





2204
3471
CAAGTACAACATCCACAGCC
2
NC
NC
NC





2205
3472
TCAAGTACAACATCCACAGC
1
NC
NC
NC





2206
3473
CTCAAGTACAACATCCACAG
2
NC
NC
NC





2207
3474
TCTCAAGTACAACATCCACA
2
NC
NC
NC





2208
3475
TTCTCAAGTACAACATCCAC
2
NC
NC
NC





2209
3476
ATTCTCAAGTACAACATCCA
2
NC
NC
NC





2210
3477
CATTCTCAAGTACAACATCC
2
NC
NC
NC





2211
3478
CCATTCTCAAGTACAACATC
2
NC
NC
NC





2212
3479
CCCATTCTCAAGTACAACAT
2
NC
NC
NC





2213
3480
ACCCATTCTCAAGTACAACA
2
NC
NC
NC





2214
3481
GACCCATTCTCAAGTACAAC
2
NC
NC
NC





2215
3482
AGACCCATTCTCAAGTACAA
2
NC
NC
NC





2216
3491
CCTGTACTGAGACCCATTCT
2
2
NC
NC





2217
3492
ACCTGTACTGAGACCCATTC
2
2
NC
NC





2218
3493
CACCTGTACTGAGACCCATT
3
2
NC
NC





2219
3494
ACACCTGTACTGAGACCCAT
2
3
NC
NC





2220
3495
GACACCTGTACTGAGACCCA
2
2
NC
NC





2221
3496
TGACACCTGTACTGAGACCC
2
2
NC
NC





2222
3497
TTGACACCTGTACTGAGACC
2
NC
NC
NC





2223
3498
GTTGACACCTGTACTGAGAC
2
NC
NC
NC





2224
3510
CGCTTCTAAAAGGTTGACAC
3
NC
NC
NC





2225
3511
TCGCTTCTAAAAGGTTGACA
2
NC
NC
NC





2226
3512
GTCGCTTCTAAAAGGTTGAC
3
NC
NC
NC





2227
3513
GGTCGCTTCTAAAAGGTTGA
3
NC
NC
NC





2228
3514
AGGTCGCTTCTAAAAGGTTG
2
NC
NC
NC





2229
3515
AAGGTCGCTTCTAAAAGGTT
2
NC
NC
NC





2230
3516
CAAGGTCGCTTCTAAAAGGT
2
NC
NC
NC





2231
3517
ACAAGGTCGCTTCTAAAAGG
3
3
NC
NC





2232
3518
AACAAGGTCGCTTCTAAAAG
2
2
NC
NC





2233
3519
GAACAAGGTCGCTTCTAAAA
2
1
NC
NC





2234
3520
AGAACAAGGTCGCTTCTAAA
2
2
NC
NC





2235
3521
AAGAACAAGGTCGCTTCTAA
2
2
NC
NC





2236
3522
GAAGAACAAGGTCGCTTCTA
2
3
NC
NC





2237
3523
GGAAGAACAAGGTCGCTTCT
2
2
NC
NC





2238
3524
AGGAAGAACAAGGTCGCTTC
2
2
NC
NC





2239
3525
AAGGAAGAACAAGGTCGCTT
2
2
NC
NC





2240
3526
AAAGGAAGAACAAGGTCGCT
2
2
NC
NC





2241
3527
GAAAGGAAGAACAAGGTCGC
2
2
NC
NC





2242
3528
GGAAAGGAAGAACAAGGTCG
2
2
NC
NC





2243
3529
AGGAAAGGAAGAACAAGGTC
2
2
NC
NC





2244
3530
AAGGAAAGGAAGAACAAGGT
1
2
NC
NC





2245
3531
GAAGGAAAGGAAGAACAAGG
1
1
NC
NC





2246
3532
GGAAGGAAAGGAAGAACAAG
1
1
NC
NC





2247
3533
CGGAAGGAAAGGAAGAACAA
2
1
NC
NC





2248
3534
TCGGAAGGAAAGGAAGAACA
2
2
NC
NC





2249
3535
CTCGGAAGGAAAGGAAGAAC
2
1
NC
NC





2250
3536
TCTCGGAAGGAAAGGAAGAA
2
1
NC
NC





2251
3537
CTCTCGGAAGGAAAGGAAGA
2
2
NC
NC





2252
3538
GCTCTCGGAAGGAAAGGAAG
2
2
NC
NC





2253
3539
AGCTCTCGGAAGGAAAGGAA
1
2
NC
NC





2254
3540
GAGCTCTCGGAAGGAAAGGA
1
2
NC
NC





2255
3564
GTCTCATCACAGTCCTCTCT
2
2
NC
NC





2256
3565
TGTCTCATCACAGTCCTCTC
2
2
NC
NC





2257
3573
TGTTATCCTGTCTCATCACA
2
2
NC
NC





2258
3574
CTGTTATCCTGTCTCATCAC
1
2
NC
NC





2259
3575
TCTGTTATCCTGTCTCATCA
1
2
NC
NC





2260
3576
CTCTGTTATCCTGTCTCATC
2
2
NC
NC





2261
3577
TCTCTGTTATCCTGTCTCAT
2
2
NC
NC





2262
3578
ATCTCTGTTATCCTGTCTCA
1
2
NC
NC





2263
3579
TATCTCTGTTATCCTGTCTC
1
1
NC
NC





2264
3580
GTATCTCTGTTATCCTGTCT
1
1
NC
NC





2265
3581
AGTATCTCTGTTATCCTGTC
2
2
NC
NC





2266
3592
GTATCATCCACAGTATCTCT
2
2
NC
NC





2267
3593
AGTATCATCCACAGTATCTC
2
NC
NC
NC





2268
3594
CAGTATCATCCACAGTATCT
1
NC
NC
NC





2269
3595
ACAGTATCATCCACAGTATC
1
NC
NC
NC





2270
3596
AACAGTATCATCCACAGTAT
2
NC
NC
NC





2271
3597
TAACAGTATCATCCACAGTA
2
NC
NC
NC





2272
3598
CTAACAGTATCATCCACAGT
2
NC
NC
NC





2273
3599
ACTAACAGTATCATCCACAG
2
NC
NC
NC





2274
3600
TACTAACAGTATCATCCACA
2
NC
NC
NC





2275
3601
CTACTAACAGTATCATCCAC
2
NC
NC
NC





2276
3602
GCTACTAACAGTATCATCCA
2
NC
NC
NC





2277
3603
CGCTACTAACAGTATCATCC
3
NC
NC
NC





2278
3604
TCGCTACTAACAGTATCATC
2
NC
NC
NC





2279
3605
TTCGCTACTAACAGTATCAT
2
NC
NC
NC





2280
3606
ATTCGCTACTAACAGTATCA
3
NC
NC
NC





2281
3607
GATTCGCTACTAACAGTATC
3
NC
NC
NC





2282
3608
CGATTCGCTACTAACAGTAT
3
NC
NC
NC





2283
3621
ACAAAGACTGAAGCGATTCG
3
NC
NC
NC





2284
3622
AACAAAGACTGAAGCGATTC
2
NC
NC
NC





2285
3623
GAACAAAGACTGAAGCGATT
3
NC
NC
NC





2286
3624
AGAACAAAGACTGAAGCGAT
2
NC
NC
NC





2287
3625
GAGAACAAAGACTGAAGCGA
2
NC
NC
NC





2288
3626
TGAGAACAAAGACTGAAGCG
1
NC
NC
NC





2289
3627
CTGAGAACAAAGACTGAAGC
0
0
NC
NC





2290
3628
TCTGAGAACAAAGACTGAAG
1
1
NC
NC





2291
3629
TTCTGAGAACAAAGACTGAA
1
1
NC
NC





2292
3630
ATTCTGAGAACAAAGACTGA
2
2
NC
NC





2293
3631
CATTCTGAGAACAAAGACTG
2
2
NC
NC





2294
3632
CCATTCTGAGAACAAAGACT
2
2
NC
NC





2295
3633
CCCATTCTGAGAACAAAGAC
1
1
NC
NC





2296
3634
TCCCATTCTGAGAACAAAGA
1
1
NC
NC





2297
3635
GTCCCATTCTGAGAACAAAG
2
1
NC
NC





2298
3636
TGTCCCATTCTGAGAACAAA
2
1
NC
NC





2299
3637
TTGTCCCATTCTGAGAACAA
2
1
NC
NC





2300
3638
ATTGTCCCATTCTGAGAACA
2
2
NC
NC





2301
3639
GATTGTCCCATTCTGAGAAC
3
2
NC
NC





2302
3640
GGATTGTCCCATTCTGAGAA
2
2
NC
NC





2303
3641
TGGATTGTCCCATTCTGAGA
2
2
NC
NC





2304
3642
CTGGATTGTCCCATTCTGAG
2
2
NC
NC





2305
3643
ACTGGATTGTCCCATTCTGA
2
2
NC
NC





2306
3644
TACTGGATTGTCCCATTCTG
2
2
NC
NC





2307
3645
ATACTGGATTGTCCCATTCT
2
2
NC
NC





2308
3646
AATACTGGATTGTCCCATTC
2
2
NC
NC





2309
3647
AAATACTGGATTGTCCCATT
1
2
NC
NC





2310
3648
CAAATACTGGATTGTCCCAT
2
2
NC
NC





2311
3649
GCAAATACTGGATTGTCCCA
2
2
NC
NC





2312
3650
GGCAAATACTGGATTGTCCC
2
2
NC
NC





2313
3652
CGGGCAAATACTGGATTGTC
3
3
NC
NC





2314
3653
ACGGGCAAATACTGGATTGT
2
2
NC
NC





2315
3654
AACGGGCAAATACTGGATTG
2
2
NC
NC





2316
3655
TAACGGGCAAATACTGGATT
3
2
NC
NC





2317
3656
ATAACGGGCAAATACTGGAT
2
2
NC
NC





2318
3657
GATAACGGGCAAATACTGGA
2
3
NC
NC





2319
3658
GGATAACGGGCAAATACTGG
3
3
NC
NC





2320
3659
TGGATAACGGGCAAATACTG
2
2
NC
NC





2321
3660
CTGGATAACGGGCAAATACT
3
2
NC
NC





2322
3661
TCTGGATAACGGGCAAATAC
2
3
NC
NC





2323
3662
CTCTGGATAACGGGCAAATA
3
2
NC
NC





2324
3663
CCTCTGGATAACGGGCAAAT
2
3
NC
NC





2325
3664
ACCTCTGGATAACGGGCAAA
3
2
NC
NC





2326
3665
AACCTCTGGATAACGGGCAA
2
3
NC
NC





2327
3666
CAACCTCTGGATAACGGGCA
2
2
NC
NC





2328
3668
AGCAACCTCTGGATAACGGG
2
2
NC
NC





2329
3669
CAGCAACCTCTGGATAACGG
2
2
NC
NC





2330
3678
TTACATCAACAGCAACCTCT
2
2
NC
NC





2331
3679
CTTACATCAACAGCAACCTC
2
2
NC
NC





2332
3680
GCTTACATCAACAGCAACCT
2
2
NC
NC





2333
3685
CCACTGCTTACATCAACAGC
2
2
NC
NC





2334
3686
GCCACTGCTTACATCAACAG
2
2
NC
NC





2335
3710
TTTAACTGCTAAGCTCTCAG
2
2
NC
NC





2336
3711
TTTTAACTGCTAAGCTCTCA
2
2
NC
NC





2337
3712
ATTTTAACTGCTAAGCTCTC
2
2
NC
NC





2338
3713
AATTTTAACTGCTAAGCTCT
2
2
NC
NC





2339
3714
GAATTTTAACTGCTAAGCTC
2
2
NC
NC





2340
3715
TGAATTTTAACTGCTAAGCT
2
2
NC
NC





2341
3716
GTGAATTTTAACTGCTAAGC
1
1
NC
NC





2342
3717
TGTGAATTTTAACTGCTAAG
2
1
NC
NC





2343
3718
TTGTGAATTTTAACTGCTAA
2
1
NC
NC





2344
3719
GTTGTGAATTTTAACTGCTA
2
2
NC
NC





2345
3720
TGTTGTGAATTTTAACTGCT
2
1
NC
NC





2346
3721
ATGTTGTGAATTTTAACTGC
2
2
NC
NC





2347
3722
GATGTTGTGAATTTTAACTG
2
2
NC
NC





2348
3723
AGATGTTGTGAATTTTAACT
2
1
NC
NC





2349
3724
AAGATGTTGTGAATTTTAAC
2
1
NC
NC





2350
3725
CAAGATGTTGTGAATTTTAA
1
1
NC
NC





2351
3743
GGTGAAACGATAGGGATACA
2
3
NC
NC





2352
3744
TGGTGAAACGATAGGGATAC
3
3
NC
NC





2353
3745
TTGGTGAAACGATAGGGATA
3
2
NC
NC





2354
3746
TTTGGTGAAACGATAGGGAT
3
2
NC
NC





2355
3747
CTTTGGTGAAACGATAGGGA
3
2
NC
NC





2356
3748
CCTTTGGTGAAACGATAGGG
2
NC
NC
NC





2357
3750
TTCCTTTGGTGAAACGATAG
1
NC
NC
NC





2358
3751
ATTCCTTTGGTGAAACGATA
2
NC
NC
NC





2359
3752
CATTCCTTTGGTGAAACGAT
2
NC
NC
NC





2360
3753
TCATTCCTTTGGTGAAACGA
2
NC
NC
NC





2361
3754
ATCATTCCTTTGGTGAAACG
3
NC
NC
NC





2362
3755
AATCATTCCTTTGGTGAAAC
2
NC
NC
NC





2363
3756
GAATCATTCCTTTGGTGAAA
2
NC
NC
NC





2364
3757
TGAATCATTCCTTTGGTGAA
2
NC
NC
NC





2365
3758
ATGAATCATTCCTTTGGTGA
2
NC
NC
NC





2366
3759
AATGAATCATTCCTTTGGTG
2
NC
NC
NC





2367
3768
CCTGCATTGAATGAATCATT
1
2
NC
NC





2368
3769
ACCTGCATTGAATGAATCAT
2
2
NC
NC





2369
3770
AACCTGCATTGAATGAATCA
1
2
NC
NC





2370
3771
GAACCTGCATTGAATGAATC
2
2
NC
NC





2371
3772
AGAACCTGCATTGAATGAAT
2
2
NC
NC





2372
3773
GAGAACCTGCATTGAATGAA
2
2
NC
NC





2373
3774
GGAGAACCTGCATTGAATGA
2
2
NC
NC





2374
3786
TATCTACTTGCTGGAGAACC
2
NC
NC
NC





2375
3787
TTATCTACTTGCTGGAGAAC
2
NC
NC
NC





2376
3788
GTTATCTACTTGCTGGAGAA
2
NC
NC
NC





2377
3789
TGTTATCTACTTGCTGGAGA
2
NC
NC
NC





2378
3790
TTGTTATCTACTTGCTGGAG
2
NC
NC
NC





2379
3791
CTTGTTATCTACTTGCTGGA
2
NC
NC
NC





2380
3792
ACTTGTTATCTACTTGCTGG
2
NC
NC
NC





2381
3793
AACTTGTTATCTACTTGCTG
2
NC
NC
NC





2382
3794
AAACTTGTTATCTACTTGCT
2
NC
NC
NC





2383
3795
TAAACTTGTTATCTACTTGC
2
NC
NC
NC





2384
3796
ATAAACTTGTTATCTACTTG
2
NC
NC
NC





2385
3798
CAATAAACTTGTTATCTACT
2
NC
NC
NC





2386
3799
GCAATAAACTTGTTATCTAC
2
NC
NC
NC





2387
3800
GGCAATAAACTTGTTATCTA
2
NC
NC
NC





2388
3801
AGGCAATAAACTTGTTATCT
2
NC
NC
NC





2389
3802
CAGGCAATAAACTTGTTATC
1
NC
NC
NC





2390
3803
ACAGGCAATAAACTTGTTAT
2
NC
NC
NC





2391
3804
AACAGGCAATAAACTTGTTA
2
NC
NC
NC





2392
3805
AAACAGGCAATAAACTTGTT
2
NC
NC
NC





2393
3806
CAAACAGGCAATAAACTTGT
1
NC
NC
NC





2394
3807
TCAAACAGGCAATAAACTTG
2
2
NC
NC





2395
3808
ATCAAACAGGCAATAAACTT
2
2
NC
NC





2396
3809
CATCAAACAGGCAATAAACT
1
1
NC
NC





2397
3810
TCATCAAACAGGCAATAAAC
2
2
NC
NC





2398
3811
CTCATCAAACAGGCAATAAA
2
2
NC
NC





2399
3812
GCTCATCAAACAGGCAATAA
2
2
NC
NC





2400
3813
TGCTCATCAAACAGGCAATA
2
2
NC
NC





2401
3814
GTGCTCATCAAACAGGCAAT
2
2
NC
NC





2402
3815
AGTGCTCATCAAACAGGCAA
2
2
NC
NC





2403
3816
TAGTGCTCATCAAACAGGCA
2
3
NC
NC





2404
3817
TTAGTGCTCATCAAACAGGC
2
3
NC
NC





2405
3818
CTTAGTGCTCATCAAACAGG
2
2
NC
NC





2406
3819
TCTTAGTGCTCATCAAACAG
2
2
NC
NC





2407
3820
GTCTTAGTGCTCATCAAACA
2
2
NC
NC





2408
3821
AGTCTTAGTGCTCATCAAAC
2
2
NC
NC





2409
3822
CAGTCTTAGTGCTCATCAAA
2
2
NC
NC





2410
3823
TCAGTCTTAGTGCTCATCAA
2
2
NC
NC





2411
3824
TTCAGTCTTAGTGCTCATCA
2
2
NC
NC





2412
3825
CTTCAGTCTTAGTGCTCATC
2
2
NC
NC





2413
3826
TCTTCAGTCTTAGTGCTCAT
2
2
NC
NC





2414
3827
CTCTTCAGTCTTAGTGCTCA
2
2
NC
NC





2415
3828
TCTCTTCAGTCTTAGTGCTC
2
2
NC
NC





2416
3829
TTCTCTTCAGTCTTAGTGCT
2
2
NC
NC





2417
3830
ATTCTCTTCAGTCTTAGTGC
2
2
NC
NC





2418
3831
CATTCTCTTCAGTCTTAGTG
2
2
NC
NC





2419
3832
CCATTCTCTTCAGTCTTAGT
2
2
NC
NC





2420
3833
GCCATTCTCTTCAGTCTTAG
2
2
NC
NC





2421
3834
CGCCATTCTCTTCAGTCTTA
2
2
NC
NC





2422
3835
TCGCCATTCTCTTCAGTCTT
2
2
NC
NC





2423
3836
CTCGCCATTCTCTTCAGTCT
2
2
NC
NC





2424
3837
CCTCGCCATTCTCTTCAGTC
2
2
NC
NC





2425
3838
GCCTCGCCATTCTCTTCAGT
2
2
NC
NC





2426
3839
TGCCTCGCCATTCTCTTCAG
2
2
NC
NC





2427
3840
CTGCCTCGCCATTCTCTTCA
2
1
NC
NC





2428
3842
ACCTGCCTCGCCATTCTCTT
1
2
NC
NC





2429
3904
AGCTGCTCCAGACGTATACG
3
NC
NC
NC





2430
3905
AAGCTGCTCCAGACGTATAC
3
NC
NC
NC





2431
3906
TAAGCTGCTCCAGACGTATA
3
NC
NC
NC





2432
3907
ATAAGCTGCTCCAGACGTAT
3
NC
NC
NC





2433
3908
GATAAGCTGCTCCAGACGTA
3
NC
NC
NC





2434
3909
TGATAAGCTGCTCCAGACGT
2
NC
NC
NC





2435
3910
ATGATAAGCTGCTCCAGACG
2
3
NC
NC





2436
3911
AATGATAAGCTGCTCCAGAC
2
2
NC
NC





2437
3912
CAATGATAAGCTGCTCCAGA
2
2
NC
NC





2438
3913
TCAATGATAAGCTGCTCCAG
1
2
NC
NC





2439
3914
ATCAATGATAAGCTGCTCCA
1
2
NC
NC





2440
3915
AATCAATGATAAGCTGCTCC
2
2
NC
NC





2441
3916
GAATCAATGATAAGCTGCTC
2
3
NC
NC





2442
3917
GGAATCAATGATAAGCTGCT
2
2
NC
NC





2443
3918
AGGAATCAATGATAAGCTGC
2
2
NC
NC





2444
3919
TAGGAATCAATGATAAGCTG
2
2
NC
NC





2445
3920
GTAGGAATCAATGATAAGCT
3
NC
NC
NC





2446
3921
CGTAGGAATCAATGATAAGC
3
NC
NC
NC





2447
3922
TCGTAGGAATCAATGATAAG
2
NC
NC
NC





2448
3923
CTCGTAGGAATCAATGATAA
2
NC
NC
NC





2449
3924
TCTCGTAGGAATCAATGATA
2
NC
NC
NC





2450
3925
TTCTCGTAGGAATCAATGAT
2
NC
NC
NC





2451
3926
CTTCTCGTAGGAATCAATGA
2
NC
NC
NC





2452
3927
GCTTCTCGTAGGAATCAATG
2
NC
NC
NC





2453
3928
TGCTTCTCGTAGGAATCAAT
2
NC
NC
NC





2454
3929
TTGCTTCTCGTAGGAATCAA
2
NC
NC
NC





2455
3930
GTTGCTTCTCGTAGGAATCA
2
NC
NC
NC





2456
3931
TGTTGCTTCTCGTAGGAATC
2
NC
NC
NC





2457
3932
CTGTTGCTTCTCGTAGGAAT
2
NC
NC
NC





2458
3933
CCTGTTGCTTCTCGTAGGAA
2
NC
NC
NC





2459
3934
GCCTGTTGCTTCTCGTAGGA
3
NC
NC
NC





2460
3953
TTTCCGACCAGAGCCTTGTG
2
3
NC
NC





2461
3954
TTTTCCGACCAGAGCCTTGT
2
3
NC
NC





2462
3955
TTTTTCCGACCAGAGCCTTG
2
2
NC
NC





2463
3971
AGTAGAAGACAGTAATTTTT
1
2
NC
NC





2464
3972
GAGTAGAAGACAGTAATTTT
2
2
NC
NC





2465
3973
AGAGTAGAAGACAGTAATTT
1
1
NC
NC





2466
3974
TAGAGTAGAAGACAGTAATT
2
2
NC
NC





2467
3975
TTAGAGTAGAAGACAGTAAT
2
2
NC
NC





2468
3976
ATTAGAGTAGAAGACAGTAA
2
2
NC
NC





2469
3977
AATTAGAGTAGAAGACAGTA
1
2
NC
NC





2470
3978
GAATTAGAGTAGAAGACAGT
2
2
NC
NC





2471
3979
GGAATTAGAGTAGAAGACAG
1
1
NC
NC





2472
3980
AGGAATTAGAGTAGAAGACA
1
1
NC
NC





2473
3981
GAGGAATTAGAGTAGAAGAC
2
2
NC
NC





2474
3982
GGAGGAATTAGAGTAGAAGA
1
2
NC
NC





2475
3983
CGGAGGAATTAGAGTAGAAG
2
NC
NC
NC





2476
3984
GCGGAGGAATTAGAGTAGAA
2
NC
NC
NC





2477
3985
AGCGGAGGAATTAGAGTAGA
2
NC
NC
NC





2478
3986
TAGCGGAGGAATTAGAGTAG
3
NC
NC
NC





2479
3987
CTAGCGGAGGAATTAGAGTA
2
NC
NC
NC





2480
3988
TCTAGCGGAGGAATTAGAGT
3
NC
NC
NC





2481
3999
TCACTGTTATCTCTAGCGGA
3
NC
NC
NC





2482
4000
GTCACTGTTATCTCTAGCGG
3
NC
NC
NC





2483
4001
TGTCACTGTTATCTCTAGCG
3
NC
NC
NC





2484
4002
CTGTCACTGTTATCTCTAGC
2
NC
NC
NC





2485
4003
TCTGTCACTGTTATCTCTAG
1
2
NC
NC





2486
4004
CTCTGTCACTGTTATCTCTA
1
1
NC
NC





2487
4005
CCTCTGTCACTGTTATCTCT
1
2
NC
NC





2488
4006
TCCTCTGTCACTGTTATCTC
1
1
NC
NC





2489
4007
TTCCTCTGTCACTGTTATCT
2
2
NC
NC





2490
4008
GTTCCTCTGTCACTGTTATC
2
2
NC
NC





2491
4009
TGTTCCTCTGTCACTGTTAT
2
2
NC
NC





2492
4010
TTGTTCCTCTGTCACTGTTA
2
2
NC
NC





2493
4011
TTTGTTCCTCTGTCACTGTT
1
1
NC
NC





2494
4012
CTTTGTTCCTCTGTCACTGT
1
1
NC
NC





2495
4013
CCTTTGTTCCTCTGTCACTG
2
2
NC
NC





2496
4014
TCCTTTGTTCCTCTGTCACT
1
1
NC
NC





2497
4015
CTCCTTTGTTCCTCTGTCAC
2
2
NC
NC





2498
4016
TCTCCTTTGTTCCTCTGTCA
2
2
NC
NC





2499
4017
GTCTCCTTTGTTCCTCTGTC
2
1
NC
NC





2500
4018
AGTCTCCTTTGTTCCTCTGT
2
2
NC
NC





2501
4019
GAGTCTCCTTTGTTCCTCTG
1
NC
NC
NC





2502
4020
AGAGTCTCCTTTGTTCCTCT
2
NC
NC
NC





2503
4021
AAGAGTCTCCTTTGTTCCTC
1
NC
NC
NC





2504
4022
TAAGAGTCTCCTTTGTTCCT
2
NC
NC
NC





2505
4023
ATAAGAGTCTCCTTTGTTCC
1
NC
NC
NC





2506
4024
CATAAGAGTCTCCTTTGTTC
1
NC
NC
NC





2507
4025
CCATAAGAGTCTCCTTTGTT
1
NC
NC
NC





2508
4026
ACCATAAGAGTCTCCTTTGT
2
NC
NC
NC





2509
4027
CACCATAAGAGTCTCCTTTG
2
NC
NC
NC





2510
4028
ACACCATAAGAGTCTCCTTT
2
NC
NC
NC





2511
4029
AACACCATAAGAGTCTCCTT
2
NC
NC
NC





2512
4030
TAACACCATAAGAGTCTCCT
3
NC
NC
NC





2513
4031
GTAACACCATAAGAGTCTCC
3
NC
NC
NC





2514
4032
GGTAACACCATAAGAGTCTC
3
NC
NC
NC





2515
4046
TTCCAGATTTTTGTGGTAAC
2
2
NC
NC





2516
4047
CTTCCAGATTTTTGTGGTAA
2
2
NC
NC





2517
4048
TCTTCCAGATTTTTGTGGTA
1
2
NC
NC





2518
4049
ATCTTCCAGATTTTTGTGGT
2
1
NC
NC





2519
4050
GATCTTCCAGATTTTTGTGG
2
2
NC
NC





2520
4051
AGATCTTCCAGATTTTTGTG
2
1
NC
NC





2521
4052
CAGATCTTCCAGATTTTTGT
2
1
NC
NC





2522
4053
CCAGATCTTCCAGATTTTTG
2
1
NC
NC





2523
4054
CCCAGATCTTCCAGATTTTT
1
1
NC
NC





2524
4055
GCCCAGATCTTCCAGATTTT
2
2
NC
NC





2525
4056
GGCCCAGATCTTCCAGATTT
2
3
NC
NC





2526
4057
AGGCCCAGATCTTCCAGATT
2
2
NC
NC





2527
4058
AAGGCCCAGATCTTCCAGAT
2
1
NC
NC





2528
4059
CAAGGCCCAGATCTTCCAGA
2
2
NC
NC





2529
4060
TCAAGGCCCAGATCTTCCAG
2
2
NC
NC





2530
4061
TTCAAGGCCCAGATCTTCCA
2
2
NC
NC





2531
4062
ATTCAAGGCCCAGATCTTCC
2
NC
NC
NC





2532
4063
AATTCAAGGCCCAGATCTTC
2
NC
NC
NC





2533
4064
AAATTCAAGGCCCAGATCTT
1
NC
NC
NC





2534
4065
CAAATTCAAGGCCCAGATCT
1
NC
NC
NC





2535
4066
ACAAATTCAAGGCCCAGATC
0
NC
NC
NC





2536
4067
TACAAATTCAAGGCCCAGAT
1
NC
NC
NC





2537
4068
ATACAAATTCAAGGCCCAGA
2
NC
NC
NC





2538
4069
AATACAAATTCAAGGCCCAG
2
NC
NC
NC





2539
4070
AAATACAAATTCAAGGCCCA
2
NC
NC
NC





2540
4071
GAAATACAAATTCAAGGCCC
1
NC
NC
NC





2541
4072
GGAAATACAAATTCAAGGCC
2
NC
NC
NC





2542
4073
TGGAAATACAAATTCAAGGC
1
NC
NC
NC





2543
4074
CTGGAAATACAAATTCAAGG
1
NC
NC
NC





2544
4075
TCTGGAAATACAAATTCAAG
1
NC
NC
NC





2545
4076
GTCTGGAAATACAAATTCAA
1
NC
NC
NC





2546
4077
TGTCTGGAAATACAAATTCA
1
NC
NC
NC





2547
4078
GTGTCTGGAAATACAAATTC
2
NC
NC
NC





2548
4079
AGTGTCTGGAAATACAAATT
2
NC
NC
NC





2549
4080
TAGTGTCTGGAAATACAAAT
2
NC
NC
NC





2550
4081
CTAGTGTCTGGAAATACAAA
2
NC
NC
NC





2551
4082
ACTAGTGTCTGGAAATACAA
2
2
NC
NC





2552
4083
CACTAGTGTCTGGAAATACA
2
2
NC
NC





2553
4084
TCACTAGTGTCTGGAAATAC
2
2
NC
NC





2554
4085
ATCACTAGTGTCTGGAAATA
2
2
NC
NC





2555
4086
AATCACTAGTGTCTGGAAAT
1
2
NC
NC





2556
4087
GAATCACTAGTGTCTGGAAA
2
2
NC
NC





2557
4088
AGAATCACTAGTGTCTGGAA
2
2
NC
NC





2558
4089
GAGAATCACTAGTGTCTGGA
2
2
NC
NC





2559
4090
AGAGAATCACTAGTGTCTGG
2
2
NC
NC





2560
4091
CAGAGAATCACTAGTGTCTG
2
2
NC
NC





2561
4092
CCAGAGAATCACTAGTGTCT
2
2
NC
NC





2562
4093
ACCAGAGAATCACTAGTGTC
2
2
NC
NC





2563
4094
GACCAGAGAATCACTAGTGT
2
NC
NC
NC





2564
4095
GGACCAGAGAATCACTAGTG
2
NC
NC
NC





2565
4096
AGGACCAGAGAATCACTAGT
2
NC
NC
NC





2566
4097
AAGGACCAGAGAATCACTAG
2
NC
NC
NC





2567
4098
CAAGGACCAGAGAATCACTA
2
NC
NC
NC





2568
4099
ACAAGGACCAGAGAATCACT
2
NC
NC
NC





2569
4100
CACAAGGACCAGAGAATCAC
2
NC
NC
NC





2570
4101
CCACAAGGACCAGAGAATCA
2
NC
NC
NC





2571
4102
CCCACAAGGACCAGAGAATC
2
NC
NC
NC





2572
4118
ACATAGTGGTACTTTTCCCA
2
NC
NC
NC





2573
4119
AACATAGTGGTACTTTTCCC
2
NC
NC
NC





2574
4120
AAACATAGTGGTACTTTTCC
1
NC
NC
NC





2575
4121
AAAACATAGTGGTACTTTTC
2
NC
NC
NC





2576
4122
CAAAACATAGTGGTACTTTT
2
NC
NC
NC





2577
4123
ACAAAACATAGTGGTACTTT
2
NC
NC
NC





2578
4124
CACAAAACATAGTGGTACTT
2
NC
NC
NC





2579
4130
TCTTTCCACAAAACATAGTG
1
NC
NC
NC





2580
4131
CTCTTTCCACAAAACATAGT
1
NC
NC
NC





2581
4132
TCTCTTTCCACAAAACATAG
1
NC
NC
NC





2582
4133
TTCTCTTTCCACAAAACATA
1
NC
NC
NC





2583
4134
CTTCTCTTTCCACAAAACAT
1
NC
NC
NC





2584
4135
GCTTCTCTTTCCACAAAACA
2
2
NC
NC





2585
4136
GGCTTCTCTTTCCACAAAAC
2
2
NC
NC





2586
4137
TGGCTTCTCTTTCCACAAAA
1
1
NC
NC





2587
4138
TTGGCTTCTCTTTCCACAAA
1
1
NC
NC





2588
4139
ATTGGCTTCTCTTTCCACAA
1
1
NC
NC





2589
4140
CATTGGCTTCTCTTTCCACA
1
1
NC
NC





2590
4141
TCATTGGCTTCTCTTTCCAC
1
1
NC
NC





2591
4142
TTCATTGGCTTCTCTTTCCA
2
1
NC
NC





2592
4143
GTTCATTGGCTTCTCTTTCC
2
1
NC
NC





2593
4144
AGTTCATTGGCTTCTCTTTC
2
2
NC
NC





2594
4145
AAGTTCATTGGCTTCTCTTT
2
2
NC
NC





2595
4146
GAAGTTCATTGGCTTCTCTT
2
2
NC
NC





2596
4151
TCTCCGAAGTTCATTGGCTT
2
2
NC
NC





2597
4152
CTCTCCGAAGTTCATTGGCT
1
2
NC
NC





2598
4153
CCTCTCCGAAGTTCATTGGC
3
2
NC
NC





2599
4154
TCCTCTCCGAAGTTCATTGG
3
2
NC
NC





2600
4155
TTCCTCTCCGAAGTTCATTG
2
2
NC
NC





2601
4156
CTTCCTCTCCGAAGTTCATT
2
2
NC
NC





2602
4163
AGTAGATCTTCCTCTCCGAA
2
3
NC
NC





2603
4164
CAGTAGATCTTCCTCTCCGA
2
2
NC
NC





2604
4165
ACAGTAGATCTTCCTCTCCG
3
2
NC
NC





2605
4166
CACAGTAGATCTTCCTCTCC
2
2
NC
NC





2606
4167
TCACAGTAGATCTTCCTCTC
2
2
NC
NC





2607
4168
GTCACAGTAGATCTTCCTCT
2
2
NC
NC





2608
4169
GGTCACAGTAGATCTTCCTC
2
2
NC
NC





2609
4170
TGGTCACAGTAGATCTTCCT
2
2
NC
NC





2610
4171
TTGGTCACAGTAGATCTTCC
2
2
NC
NC





2611
4172
CTTGGTCACAGTAGATCTTC
2
2
NC
NC





2612
4173
TCTTGGTCACAGTAGATCTT
2
2
NC
NC





2613
4174
CTCTTGGTCACAGTAGATCT
2
2
NC
NC





2614
4175
ACTCTTGGTCACAGTAGATC
2
2
NC
NC





2615
4176
TACTCTTGGTCACAGTAGAT
2
2
NC
NC





2616
4177
ATACTCTTGGTCACAGTAGA
2
2
NC
NC





2617
4178
AATACTCTTGGTCACAGTAG
2
NC
NC
NC





2618
4179
CAATACTCTTGGTCACAGTA
2
NC
NC
NC





2619
4180
ACAATACTCTTGGTCACAGT
2
NC
NC
NC





2620
4181
CACAATACTCTTGGTCACAG
3
NC
NC
NC





2621
4182
CCACAATACTCTTGGTCACA
2
NC
NC
NC





2622
4183
TCCACAATACTCTTGGTCAC
2
NC
NC
NC





2623
4184
CTCCACAATACTCTTGGTCA
2
NC
NC
NC





2624
4185
CCTCCACAATACTCTTGGTC
2
NC
NC
NC





2625
4186
TCCTCCACAATACTCTTGGT
2
NC
NC
NC





2626
4187
TTCCTCCACAATACTCTTGG
2
NC
NC
NC





2627
4188
ATTCCTCCACAATACTCTTG
2
NC
NC
NC





2628
4189
AATTCCTCCACAATACTCTT
1
NC
NC
NC





2629
4190
AAATTCCTCCACAATACTCT
2
NC
NC
NC





2630
4191
TAAATTCCTCCACAATACTC
1
NC
NC
NC





2631
4192
ATAAATTCCTCCACAATACT
1
NC
NC
NC





2632
4193
GATAAATTCCTCCACAATAC
1
NC
NC
NC





2633
4204
AGTTGTTCTCGGATAAATTC
2
NC
NC
NC





2634
4205
CAGTTGTTCTCGGATAAATT
2
NC
NC
NC





2635
4206
CCAGTTGTTCTCGGATAAAT
2
NC
NC
NC





2636
4207
TCCAGTTGTTCTCGGATAAA
3
NC
NC
NC





2637
4208
CTCCAGTTGTTCTCGGATAA
3
NC
NC
NC





2638
4209
GCTCCAGTTGTTCTCGGATA
3
NC
NC
NC





2639
4210
AGCTCCAGTTGTTCTCGGAT
2
NC
NC
NC





2640
4211
TAGCTCCAGTTGTTCTCGGA
2
NC
NC
NC





2641
4212
GTAGCTCCAGTTGTTCTCGG
1
NC
NC
NC





2642
4213
AGTAGCTCCAGTTGTTCTCG
2
NC
NC
NC





2643
4214
GAGTAGCTCCAGTTGTTCTC
2
NC
NC
NC





2644
4244
CAATGTCCCTTGGATGCCTC
2
2
NC
NC





2645
4245
GCAATGTCCCTTGGATGCCT
2
2
NC
NC





2646
4247
TGGCAATGTCCCTTGGATGC
2
2
NC
NC





2647
4248
GTGGCAATGTCCCTTGGATG
2
1
NC
NC





2648
4249
AGTGGCAATGTCCCTTGGAT
3
2
NC
NC





2649
4250
CAGTGGCAATGTCCCTTGGA
2
1
NC
NC





2650
4251
TCAGTGGCAATGTCCCTTGG
2
2
NC
NC





2651
4252
GTCAGTGGCAATGTCCCTTG
2
2
NC
NC





2652
4253
AGTCAGTGGCAATGTCCCTT
1
2
NC
NC





2653
4254
CAGTCAGTGGCAATGTCCCT
2
2
NC
NC





2654
4255
ACAGTCAGTGGCAATGTCCC
2
2
NC
NC





2655
4256
GACAGTCAGTGGCAATGTCC
2
2
NC
NC





2656
4257
GGACAGTCAGTGGCAATGTC
2
2
NC
NC





2657
4258
TGGACAGTCAGTGGCAATGT
1
2
NC
NC





2658
4259
CTGGACAGTCAGTGGCAATG
2
2
NC
NC





2659
4260
TCTGGACAGTCAGTGGCAAT
1
2
NC
NC





2660
4261
TTCTGGACAGTCAGTGGCAA
1
1
NC
NC





2661
4262
CTTCTGGACAGTCAGTGGCA
2
2
2
NC





2662
4264
ACCTTCTGGACAGTCAGTGG
2
3
2
NC





2663
4265
CACCTTCTGGACAGTCAGTG
2
2
1
NC





2664
4266
ACACCTTCTGGACAGTCAGT
2
2
2
NC





2665
4269
CCAACACCTTCTGGACAGTC
2
2
2
2





2666
4270
GCCAACACCTTCTGGACAGT
2
3
2
2





2667
4271
TGCCAACACCTTCTGGACAG
2
2
NC
NC





2668
4272
ATGCCAACACCTTCTGGACA
2
2
NC
NC





2669
4273
GATGCCAACACCTTCTGGAC
2
3
NC
NC





2670
4274
GGATGCCAACACCTTCTGGA
2
2
NC
NC





2671
4276
TGGGATGCCAACACCTTCTG
2
2
NC
NC





2672
4277
TTGGGATGCCAACACCTTCT
3
2
NC
NC





2673
4278
CTTGGGATGCCAACACCTTC
2
2
NC
NC





2674
4279
GCTTGGGATGCCAACACCTT
2
2
NC
NC





2675
4302
TAAACTTAATGGCCCCATGG
3
2
NC
NC





2676
4303
TTAAACTTAATGGCCCCATG
2
2
NC
NC





2677
4312
AGGCCATCATTAAACTTAAT
2
2
NC
NC





2678
4313
CAGGCCATCATTAAACTTAA
2
2
NC
NC





2679
4314
TCAGGCCATCATTAAACTTA
1
2
NC
NC





2680
4315
CTCAGGCCATCATTAAACTT
1
2
NC
NC





2681
4316
GCTCAGGCCATCATTAAACT
1
2
NC
NC





2682
4330
CAACTTTCCTGTAAGCTCAG
1
2
NC
NC





2683
4331
GCAACTTTCCTGTAAGCTCA
2
1
NC
NC





2684
4332
GGCAACTTTCCTGTAAGCTC
2
2
NC
NC





2685
4333
CGGCAACTTTCCTGTAAGCT
2
2
NC
NC





2686
4334
GCGGCAACTTTCCTGTAAGC
2
2
NC
NC





2687
4335
GGCGGCAACTTTCCTGTAAG
2
3
NC
NC





2688
4336
AGGCGGCAACTTTCCTGTAA
2
3
NC
NC





2689
4337
AAGGCGGCAACTTTCCTGTA
2
3
NC
NC





2690
4338
TAAGGCGGCAACTTTCCTGT
3
2
NC
NC





2691
4339
ATAAGGCGGCAACTTTCCTG
3
3
NC
NC





2692
4340
AATAAGGCGGCAACTTTCCT
2
2
NC
NC





2693
4341
CAATAAGGCGGCAACTTTCC
2
2
NC
NC





2694
4342
TCAATAAGGCGGCAACTTTC
2
2
NC
NC





2695
4343
TTCAATAAGGCGGCAACTTT
2
2
NC
NC





2696
4344
CTTCAATAAGGCGGCAACTT
3
NC
NC
NC





2697
4345
GCTTCAATAAGGCGGCAACT
2
NC
NC
NC





2698
4346
AGCTTCAATAAGGCGGCAAC
3
NC
NC
NC





2699
4347
GAGCTTCAATAAGGCGGCAA
3
NC
NC
NC





2700
4348
AGAGCTTCAATAAGGCGGCA
3
NC
NC
NC





2701
4349
CAGAGCTTCAATAAGGCGGC
3
NC
NC
NC





2702
4350
ACAGAGCTTCAATAAGGCGG
2
NC
NC
NC





2703
4351
GACAGAGCTTCAATAAGGCG
2
NC
NC
NC





2704
4352
GGACAGAGCTTCAATAAGGC
2
NC
NC
NC





2705
4353
AGGACAGAGCTTCAATAAGG
2
NC
NC
NC





2706
4354
GAGGACAGAGCTTCAATAAG
2
NC
NC
NC





2707
4355
TGAGGACAGAGCTTCAATAA
2
NC
NC
NC





2708
4356
ATGAGGACAGAGCTTCAATA
2
NC
NC
NC





2709
4357
CATGAGGACAGAGCTTCAAT
1
NC
NC
NC





2710
4358
GCATGAGGACAGAGCTTCAA
2
NC
NC
NC





2711
4359
GGCATGAGGACAGAGCTTCA
2
NC
NC
NC





2712
4360
TGGCATGAGGACAGAGCTTC
2
NC
NC
NC





2713
4379
AGCACACTGGAATGGCAGCT
2
2
NC
NC





2714
4381
TGAGCACACTGGAATGGCAG
1
1
NC
NC





2715
4398
GCATAGAAGGTCTCCCGTGA
3
2
NC
NC





2716
4399
AGCATAGAAGGTCTCCCGTG
2
2
NC
NC





2717
4400
CAGCATAGAAGGTCTCCCGT
3
2
NC
NC





2718
4404
ACGGCAGCATAGAAGGTCTC
2
NC
NC
NC





2719
4405
AACGGCAGCATAGAAGGTCT
2
NC
NC
NC





2720
4406
TAACGGCAGCATAGAAGGTC
2
NC
NC
NC





2721
4407
CTAACGGCAGCATAGAAGGT
2
NC
NC
NC





2722
4420
TGGTCTATGTCAGCTAACGG
2
NC
NC
NC





2723
4421
GTGGTCTATGTCAGCTAACG
3
NC
NC
NC





2724
4422
AGTGGTCTATGTCAGCTAAC
2
NC
NC
NC





2725
4423
AAGTGGTCTATGTCAGCTAA
2
3
NC
NC





2726
4424
CAAGTGGTCTATGTCAGCTA
3
3
NC
NC





2727
4425
CCAAGTGGTCTATGTCAGCT
2
2
NC
NC





2728
4426
TCCAAGTGGTCTATGTCAGC
2
2
NC
NC





2729
4427
TTCCAAGTGGTCTATGTCAG
2
NC
NC
NC





2730
4428
GTTCCAAGTGGTCTATGTCA
2
NC
NC
NC





2731
4429
TGTTCCAAGTGGTCTATGTC
2
NC
NC
NC





2732
4430
CTGTTCCAAGTGGTCTATGT
1
NC
NC
NC





2733
4431
CCTGTTCCAAGTGGTCTATG
2
NC
NC
NC





2734
4432
TCCTGTTCCAAGTGGTCTAT
2
NC
NC
NC





2735
4433
TTCCTGTTCCAAGTGGTCTA
2
NC
NC
NC





2736
4434
TTTCCTGTTCCAAGTGGTCT
2
NC
NC
NC





2737
4435
TTTTCCTGTTCCAAGTGGTC
1
NC
NC
NC





2738
4436
TTTTTCCTGTTCCAAGTGGT
2
NC
NC
NC





2739
4437
GTTTTTCCTGTTCCAAGTGG
1
NC
NC
NC





2740
4438
TGTTTTTCCTGTTCCAAGTG
1
NC
NC
NC





2741
4439
CTGTTTTTCCTGTTCCAAGT
2
NC
NC
NC





2742
4440
TCTGTTTTTCCTGTTCCAAG
2
NC
NC
NC





2743
4441
ATCTGTTTTTCCTGTTCCAA
1
NC
NC
NC





2744
4442
AATCTGTTTTTCCTGTTCCA
1
NC
NC
NC





2745
4443
TAATCTGTTTTTCCTGTTCC
2
NC
NC
NC





2746
4444
TTAATCTGTTTTTCCTGTTC
1
NC
NC
NC





2747
4445
TTTAATCTGTTTTTCCTGTT
1
NC
NC
NC





2748
4446
GTTTAATCTGTTTTTCCTGT
1
NC
NC
NC





2749
4447
GGTTTAATCTGTTTTTCCTG
0
0
NC
NC





2750
4448
GGGTTTAATCTGTTTTTCCT
1
1
NC
NC





2751
4449
TGGGTTTAATCTGTTTTTCC
1
1
NC
NC





2752
4450
TTGGGTTTAATCTGTTTTTC
1
0
NC
NC





2753
4451
GTTGGGTTTAATCTGTTTTT
1
NC
NC
NC





2754
4452
GGTTGGGTTTAATCTGTTTT
1
NC
NC
NC





2755
4453
AGGTTGGGTTTAATCTGTTT
2
NC
NC
NC





2756
4454
GAGGTTGGGTTTAATCTGTT
2
NC
NC
NC





2757
4455
TGAGGTTGGGTTTAATCTGT
2
NC
NC
NC





2758
4456
GTGAGGTTGGGTTTAATCTG
2
NC
NC
NC





2759
4457
AGTGAGGTTGGGTTTAATCT
2
NC
NC
NC





2760
4458
TAGTGAGGTTGGGTTTAATC
2
NC
NC
NC





2761
4459
TTAGTGAGGTTGGGTTTAAT
1
NC
NC
NC





2762
4460
TTTAGTGAGGTTGGGTTTAA
2
NC
NC
NC





2763
4461
GTTTAGTGAGGTTGGGTTTA
2
NC
NC
NC





2764
4462
AGTTTAGTGAGGTTGGGTTT
2
NC
NC
NC





2765
4463
AAGTTTAGTGAGGTTGGGTT
1
NC
NC
NC





2766
4464
GAAGTTTAGTGAGGTTGGGT
2
NC
NC
NC





2767
4465
CGAAGTTTAGTGAGGTTGGG
2
NC
NC
NC





2768
4466
GCGAAGTTTAGTGAGGTTGG
3
NC
NC
NC





2769
4467
TGCGAAGTTTAGTGAGGTTG
3
NC
NC
NC





2770
4468
TTGCGAAGTTTAGTGAGGTT
2
NC
NC
NC





2771
4469
TTTGCGAAGTTTAGTGAGGT
3
NC
NC
NC





2772
4470
TTTTGCGAAGTTTAGTGAGG
2
NC
NC
NC





2773
4471
ATTTTGCGAAGTTTAGTGAG
3
NC
NC
NC





2774
4472
CATTTTGCGAAGTTTAGTGA
2
NC
NC
NC





2775
4473
CCATTTTGCGAAGTTTAGTG
3
NC
NC
NC





2776
4474
GCCATTTTGCGAAGTTTAGT
2
NC
NC
NC





2777
4475
GGCCATTTTGCGAAGTTTAG
2
2
NC
NC





2778
4476
GGGCCATTTTGCGAAGTTTA
3
3
NC
NC





2779
4477
TGGGCCATTTTGCGAAGTTT
2
3
NC
NC





2780
4478
CTGGGCCATTTTGCGAAGTT
2
3
NC
NC





2781
4479
CCTGGGCCATTTTGCGAAGT
2
3
NC
NC





2782
4498
TTTCCAAAGAGACGCCAGGC
2
2
NC
NC





2783
4499
TTTTCCAAAGAGACGCCAGG
2
2
NC
NC





2784
4500
CTTTTCCAAAGAGACGCCAG
2
2
NC
NC





2785
4501
GCTTTTCCAAAGAGACGCCA
2
2
NC
NC





2786
4502
TGCTTTTCCAAAGAGACGCC
1
1
NC
NC





2787
4503
CTGCTTTTCCAAAGAGACGC
1
1
NC
NC





2788
4504
TCTGCTTTTCCAAAGAGACG
1
1
NC
NC





2789
4505
CTCTGCTTTTCCAAAGAGAC
2
2
NC
NC





2790
4506
ACTCTGCTTTTCCAAAGAGA
1
1
NC
NC





2791
4508
ACACTCTGCTTTTCCAAAGA
2
2
NC
NC





2792
4509
CACACTCTGCTTTTCCAAAG
2
2
NC
NC





2793
4510
TCACACTCTGCTTTTCCAAA
1
2
NC
NC





2794
4511
ATCACACTCTGCTTTTCCAA
2
1
NC
NC





2795
4512
TATCACACTCTGCTTTTCCA
2
2
NC
NC





2796
4513
GTATCACACTCTGCTTTTCC
1
2
NC
NC





2797
4514
TGTATCACACTCTGCTTTTC
2
2
NC
NC





2798
4515
TTGTATCACACTCTGCTTTT
1
1
NC
NC





2799
4516
CTTGTATCACACTCTGCTTT
1
NC
NC
NC





2800
4517
CCTTGTATCACACTCTGCTT
1
NC
NC
NC





2801
4518
GCCTTGTATCACACTCTGCT
2
NC
NC
NC





2802
4519
TGCCTTGTATCACACTCTGC
2
NC
NC
NC





2803
4520
CTGCCTTGTATCACACTCTG
2
NC
NC
NC





2804
4521
TCTGCCTTGTATCACACTCT
1
NC
NC
NC





2805
4522
CTCTGCCTTGTATCACACTC
2
NC
NC
NC





2806
4523
GCTCTGCCTTGTATCACACT
2
NC
NC
NC





2807
4549
TCACAGGGAGGCATGGATTG
2
2
NC
NC





2808
4562
TTCTCATGGTGGCTCACAGG
2
2
NC
NC





2809
4563
GTTCTCATGGTGGCTCACAG
2
2
NC
NC





2810
4564
TGTTCTCATGGTGGCTCACA
2
2
NC
NC





2811
4565
CTGTTCTCATGGTGGCTCAC
2
2
NC
NC





2812
4566
TCTGTTCTCATGGTGGCTCA
1
2
NC
NC





2813
4567
TTCTGTTCTCATGGTGGCTC
2
2
NC
NC





2814
4568
ATTCTGTTCTCATGGTGGCT
2
2
NC
NC





2815
4569
GATTCTGTTCTCATGGTGGC
2
2
NC
NC





2816
4570
TGATTCTGTTCTCATGGTGG
2
2
NC
NC





2817
4571
GTGATTCTGTTCTCATGGTG
2
2
NC
NC





2818
4572
AGTGATTCTGTTCTCATGGT
2
2
NC
NC





2819
4577
AGACCAGTGATTCTGTTCTC
2
2
NC
NC





2820
4583
CCTTTTAGACCAGTGATTCT
1
NC
NC
NC





2821
4584
TCCTTTTAGACCAGTGATTC
1
NC
NC
NC





2822
4585
TTCCTTTTAGACCAGTGATT
2
NC
NC
NC





2823
4586
GTTCCTTTTAGACCAGTGAT
2
NC
NC
NC





2824
4587
TGTTCCTTTTAGACCAGTGA
2
NC
NC
NC





2825
4588
TTGTTCCTTTTAGACCAGTG
2
NC
NC
NC





2826
4589
TTTGTTCCTTTTAGACCAGT
1
NC
NC
NC





2827
4590
CTTTGTTCCTTTTAGACCAG
2
NC
NC
NC





2828
4591
CCTTTGTTCCTTTTAGACCA
2
NC
NC
NC





2829
4592
CCCTTTGTTCCTTTTAGACC
2
NC
NC
NC





2830
4593
TCCCTTTGTTCCTTTTAGAC
2
NC
NC
NC





2831
4594
ATCCCTTTGTTCCTTTTAGA
2
NC
NC
NC





2832
4595
CATCCCTTTGTTCCTTTTAG
2
NC
NC
NC





2833
4596
ACATCCCTTTGTTCCTTTTA
2
NC
NC
NC





2834
4597
AACATCCCTTTGTTCCTTTT
2
NC
NC
NC





2835
4604
TACAGTGAACATCCCTTTGT
2
NC
NC
NC





2836
4605
ATACAGTGAACATCCCTTTG
2
NC
NC
NC





2837
4606
CATACAGTGAACATCCCTTT
2
NC
NC
NC





2838
4607
GCATACAGTGAACATCCCTT
2
NC
NC
NC





2839
4608
GGCATACAGTGAACATCCCT
2
NC
NC
NC





2840
4609
AGGCATACAGTGAACATCCC
2
NC
NC
NC





2841
4610
GAGGCATACAGTGAACATCC
2
NC
NC
NC





2842
4611
AGAGGCATACAGTGAACATC
1
NC
NC
NC





2843
4612
CAGAGGCATACAGTGAACAT
2
NC
NC
NC





2844
4613
TCAGAGGCATACAGTGAACA
2
NC
NC
NC





2845
4614
CTCAGAGGCATACAGTGAAC
1
NC
NC
NC





2846
4615
GCTCAGAGGCATACAGTGAA
1
2
NC
NC





2847
4616
TGCTCAGAGGCATACAGTGA
1
2
NC
NC





2848
4672
AGGGACACTGGGCTGATTCA
2
2
NC
NC





2849
4683
CTAAGCTGCTCAGGGACACT
2
2
NC
NC





2850
4684
TCTAAGCTGCTCAGGGACAC
2
2
NC
NC





2851
4685
GTCTAAGCTGCTCAGGGACA
2
1
NC
NC





2852
4686
TGTCTAAGCTGCTCAGGGAC
2
2
NC
NC





2853
4687
CTGTCTAAGCTGCTCAGGGA
2
NC
NC
NC





2854
4704
TGATACAGAGAGCCCTGCTG
2
NC
NC
NC





2855
4705
CTGATACAGAGAGCCCTGCT
2
NC
NC
NC





2856
4706
ACTGATACAGAGAGCCCTGC
2
NC
NC
NC





2857
4708
AGACTGATACAGAGAGCCCT
2
NC
NC
NC





2858
4709
AAGACTGATACAGAGAGCCC
2
NC
NC
NC





2859
4710
AAAGACTGATACAGAGAGCC
2
NC
NC
NC





2860
4711
GAAAGACTGATACAGAGAGC
1
NC
NC
NC





2861
4712
AGAAAGACTGATACAGAGAG
1
NC
NC
NC





2862
4713
AAGAAAGACTGATACAGAGA
2
NC
NC
NC





2863
4714
CAAGAAAGACTGATACAGAG
2
NC
NC
NC





2864
4715
TCAAGAAAGACTGATACAGA
2
NC
NC
NC





2865
4717
GCTCAAGAAAGACTGATACA
2
NC
NC
NC





2866
4718
TGCTCAAGAAAGACTGATAC
2
NC
NC
NC





2867
4719
CTGCTCAAGAAAGACTGATA
2
NC
NC
NC





2868
4720
TCTGCTCAAGAAAGACTGAT
2
NC
NC
NC





2869
4721
ATCTGCTCAAGAAAGACTGA
2
NC
NC
NC





2870
4722
CATCTGCTCAAGAAAGACTG
2
NC
NC
NC





2871
4723
TCATCTGCTCAAGAAAGACT
2
NC
NC
NC





2872
4724
ATCATCTGCTCAAGAAAGAC
2
NC
NC
NC





2873
4725
AATCATCTGCTCAAGAAAGA
2
NC
NC
NC





2874
4726
GAATCATCTGCTCAAGAAAG
2
NC
NC
NC





2875
4727
GGAATCATCTGCTCAAGAAA
2
2
NC
NC





2876
4728
GGGAATCATCTGCTCAAGAA
2
NC
NC
NC





2877
4746
ATCTGGCTACTCAACTAGGG
2
NC
NC
NC





2878
4747
CATCTGGCTACTCAACTAGG
2
NC
NC
NC





2879
4748
TCATCTGGCTACTCAACTAG
2
NC
NC
NC





2880
4749
TTCATCTGGCTACTCAACTA
2
NC
NC
NC





2881
4750
TTTCATCTGGCTACTCAACT
2
NC
NC
NC





2882
4751
ATTTCATCTGGCTACTCAAC
2
NC
NC
NC





2883
4752
AATTTCATCTGGCTACTCAA
2
NC
NC
NC





2884
4753
GAATTTCATCTGGCTACTCA
2
NC
NC
NC





2885
4754
TGAATTTCATCTGGCTACTC
2
NC
NC
NC





2886
4755
TTGAATTTCATCTGGCTACT
2
NC
NC
NC





2887
4756
CTTGAATTTCATCTGGCTAC
2
NC
NC
NC





2888
4757
GCTTGAATTTCATCTGGCTA
2
NC
NC
NC





2889
4758
GGCTTGAATTTCATCTGGCT
2
NC
NC
NC





2890
4759
AGGCTTGAATTTCATCTGGC
2
NC
NC
NC





2891
4760
TAGGCTTGAATTTCATCTGG
2
NC
NC
NC





2892
4761
TTAGGCTTGAATTTCATCTG
3
NC
NC
NC





2893
4762
TTTAGGCTTGAATTTCATCT
2
NC
NC
NC





2894
4763
CTTTAGGCTTGAATTTCATC
2
NC
NC
NC





2895
4764
TCTTTAGGCTTGAATTTCAT
2
NC
NC
NC





2896
4765
GTCTTTAGGCTTGAATTTCA
2
NC
NC
NC





2897
4766
TGTCTTTAGGCTTGAATTTC
2
NC
NC
NC





2898
4767
TTGTCTTTAGGCTTGAATTT
2
NC
NC
NC





2899
4768
ATTGTCTTTAGGCTTGAATT
2
NC
NC
NC





2900
4769
AATTGTCTTTAGGCTTGAAT
2
NC
NC
NC





2901
4770
GAATTGTCTTTAGGCTTGAA
2
NC
NC
NC





2902
4771
TGAATTGTCTTTAGGCTTGA
2
NC
NC
NC





2903
4772
ATGAATTGTCTTTAGGCTTG
2
NC
NC
NC





2904
4773
AATGAATTGTCTTTAGGCTT
2
NC
NC
NC





2905
4774
GAATGAATTGTCTTTAGGCT
2
NC
NC
NC





2906
4775
TGAATGAATTGTCTTTAGGC
1
NC
NC
NC





2907
4776
ATGAATGAATTGTCTTTAGG
2
NC
NC
NC





2908
4777
AATGAATGAATTGTCTTTAG
1
NC
NC
NC





2909
4779
CAAATGAATGAATTGTCTTT
1
NC
NC
NC





2910
4780
GCAAATGAATGAATTGTCTT
2
NC
NC
NC





2911
4781
TGCAAATGAATGAATTGTCT
2
NC
NC
NC





2912
4782
ATGCAAATGAATGAATTGTC
2
NC
NC
NC





2913
4783
GATGCAAATGAATGAATTGT
2
NC
NC
NC





2914
4784
GGATGCAAATGAATGAATTG
2
NC
NC
NC





2915
4785
TGGATGCAAATGAATGAATT
2
NC
NC
NC





2916
4786
ATGGATGCAAATGAATGAAT
2
NC
NC
NC





2917
4787
CATGGATGCAAATGAATGAA
2
2
NC
NC





2918
4788
CCATGGATGCAAATGAATGA
2
2
NC
NC





2919
4789
CCCATGGATGCAAATGAATG
2
NC
NC
NC





2920
4790
GCCCATGGATGCAAATGAAT
2
NC
NC
NC





2921
4791
TGCCCATGGATGCAAATGAA
2
NC
NC
NC





2922
4797
CTTCTGTGCCCATGGATGCA
2
NC
NC
NC





2923
4799
ACCTTCTGTGCCCATGGATG
2
NC
NC
NC





2924
4800
AACCTTCTGTGCCCATGGAT
1
NC
NC
NC





2925
4801
CAACCTTCTGTGCCCATGGA
2
NC
NC
NC





2926
4803
AGCAACCTTCTGTGCCCATG
2
NC
NC
NC





2927
4804
TAGCAACCTTCTGTGCCCAT
2
NC
NC
NC





2928
4805
ATAGCAACCTTCTGTGCCCA
3
NC
NC
NC





2929
4806
TATAGCAACCTTCTGTGCCC
2
NC
NC
NC





2930
4807
ATATAGCAACCTTCTGTGCC
2
NC
NC
NC





2931
4808
TATATAGCAACCTTCTGTGC
1
NC
NC
NC





2932
4809
CTATATAGCAACCTTCTGTG
2
NC
NC
NC





2933
4810
ACTATATAGCAACCTTCTGT
2
NC
NC
NC





2934
4811
TACTATATAGCAACCTTCTG
2
NC
NC
NC





2935
4812
ATACTATATAGCAACCTTCT
2
NC
NC
NC





2936
4813
GATACTATATAGCAACCTTC
2
NC
NC
NC





2937
4814
AGATACTATATAGCAACCTT
2
NC
NC
NC





2938
4815
TAGATACTATATAGCAACCT
1
NC
NC
NC





2939
4816
GTAGATACTATATAGCAACC
2
NC
NC
NC





2940
4817
GGTAGATACTATATAGCAAC
3
NC
NC
NC





2941
4818
AGGTAGATACTATATAGCAA
2
NC
NC
NC





2942
4819
AAGGTAGATACTATATAGCA
2
NC
NC
NC





2943
4820
AAAGGTAGATACTATATAGC
2
NC
NC
NC





2944
4821
AAAAGGTAGATACTATATAG
2
NC
NC
NC





2945
4822
CAAAAGGTAGATACTATATA
1
NC
NC
NC





2946
4823
GCAAAAGGTAGATACTATAT
2
2
NC
NC





2947
4824
AGCAAAAGGTAGATACTATA
1
1
NC
NC





2948
4825
TAGCAAAAGGTAGATACTAT
1
1
NC
NC





2949
4826
GTAGCAAAAGGTAGATACTA
2
2
NC
NC





2950
4827
AGTAGCAAAAGGTAGATACT
2
2
NC
NC





2951
4828
AAGTAGCAAAAGGTAGATAC
2
2
NC
NC





2952
4829
TAAGTAGCAAAAGGTAGATA
1
1
NC
NC





2953
4830
ATAAGTAGCAAAAGGTAGAT
1
2
NC
NC





2954
4831
AATAAGTAGCAAAAGGTAGA
1
2
NC
NC





2955
4832
AAATAAGTAGCAAAAGGTAG
1
1
NC
NC





2956
4833
TAAATAAGTAGCAAAAGGTA
1
2
NC
NC





2957
4834
TTAAATAAGTAGCAAAAGGT
1
2
NC
NC





2958
4835
ATTAAATAAGTAGCAAAAGG
1
1
NC
NC





2959
4836
CATTAAATAAGTAGCAAAAG
0
2
NC
NC





2960
4861
CAATCAAACTGTCATTAAAT
2
NC
NC
NC





2961
4862
CCAATCAAACTGTCATTAAA
2
NC
NC
NC





2962
4863
ACCAATCAAACTGTCATTAA
2
NC
NC
NC





2963
4864
AACCAATCAAACTGTCATTA
2
NC
NC
NC





2964
4865
CAACCAATCAAACTGTCATT
2
NC
NC
NC





2965
4866
GCAACCAATCAAACTGTCAT
1
NC
NC
NC





2966
4867
AGCAACCAATCAAACTGTCA
1
NC
NC
NC





2967
4868
AAGCAACCAATCAAACTGTC
2
NC
NC
NC





2968
4869
CAAGCAACCAATCAAACTGT
2
NC
NC
NC





2969
4870
CCAAGCAACCAATCAAACTG
2
NC
NC
NC





2970
4871
ACCAAGCAACCAATCAAACT
2
NC
NC
NC





2971
4872
AACCAAGCAACCAATCAAAC
1
NC
NC
NC





2972
4873
AAACCAAGCAACCAATCAAA
1
NC
NC
NC





2973
4874
CAAACCAAGCAACCAATCAA
1
NC
NC
NC





2974
4875
ACAAACCAAGCAACCAATCA
1
NC
NC
NC





2975
4876
AACAAACCAAGCAACCAATC
1
NC
NC
NC





2976
4877
TAACAAACCAAGCAACCAAT
2
NC
NC
NC





2977
4878
ATAACAAACCAAGCAACCAA
1
NC
NC
NC





2978
4879
AATAACAAACCAAGCAACCA
2
NC
NC
NC





2979
4880
AAATAACAAACCAAGCAACC
1
NC
NC
NC





2980
4881
CAAATAACAAACCAAGCAAC
1
NC
NC
NC





2981
4882
TCAAATAACAAACCAAGCAA
2
NC
NC
NC





2982
4883
TTCAAATAACAAACCAAGCA
2
NC
NC
NC





2983
4884
CTTCAAATAACAAACCAAGC
2
NC
NC
NC





2984
4885
CCTTCAAATAACAAACCAAG
2
NC
NC
NC





2985
4886
CCCTTCAAATAACAAACCAA
2
NC
NC
NC





2986
4887
ACCCTTCAAATAACAAACCA
2
NC
NC
NC





2987
4888
CACCCTTCAAATAACAAACC
2
NC
NC
NC





2988
4889
ACACCCTTCAAATAACAAAC
2
NC
NC
NC





2989
4890
CACACCCTTCAAATAACAAA
2
NC
NC
NC





2990
4891
TCACACCCTTCAAATAACAA
2
NC
NC
NC





2991
4892
ATCACACCCTTCAAATAACA
2
NC
NC
NC





2992
4893
AATCACACCCTTCAAATAAC
2
NC
NC
NC





2993
4894
AAATCACACCCTTCAAATAA
2
NC
NC
NC





2994
4895
AAAATCACACCCTTCAAATA
2
NC
NC
NC





2995
4896
AAAAATCACACCCTTCAAAT
1
NC
NC
NC





2996
4897
CAAAAATCACACCCTTCAAA
1
NC
NC
NC





2997
4898
ACAAAAATCACACCCTTCAA
1
NC
NC
NC





2998
4899
AACAAAAATCACACCCTTCA
2
NC
NC
NC





2999
4900
AAACAAAAATCACACCCTTC
1
NC
NC
NC





3000
4901
AAAACAAAAATCACACCCTT
1
NC
NC
NC





3001
4902
AAAAACAAAAATCACACCCT
0
NC
NC
NC





3002
4903
CAAAAACAAAAATCACACCC
0
NC
NC
NC





3003
4904
ACAAAAACAAAAATCACACC
0
NC
NC
NC





3004
4905
TACAAAAACAAAAATCACAC
1
NC
NC
NC





3005
4906
GTACAAAAACAAAAATCACA
1
NC
NC
NC





3006
4907
TGTACAAAAACAAAAATCAC
1
NC
NC
NC





3007
4908
CTGTACAAAAACAAAAATCA
1
NC
NC
NC





3008
4909
ACTGTACAAAAACAAAAATC
1
NC
NC
NC





3009
4931
CAAATGTGAAGCTTGAAAAA
2
NC
NC
NC





3010
4932
GCAAATGTGAAGCTTGAAAA
2
NC
NC
NC





3011
4933
CGCAAATGTGAAGCTTGAAA
2
NC
NC
NC





3012
4934
ACGCAAATGTGAAGCTTGAA
2
NC
NC
NC





3013
4944
AATTAGATACACGCAAATGT
2
NC
NC
NC





3014
4945
GAATTAGATACACGCAAATG
3
NC
NC
NC





3015
4946
TGAATTAGATACACGCAAAT
3
NC
NC
NC





3016
4947
CTGAATTAGATACACGCAAA
3
NC
NC
NC





3017
4948
GCTGAATTAGATACACGCAA
2
NC
NC
NC





3018
4949
AGCTGAATTAGATACACGCA
2
NC
NC
NC





3019
4950
CAGCTGAATTAGATACACGC
2
NC
NC
NC





3020
4951
TCAGCTGAATTAGATACACG
2
NC
NC
NC





3021
4952
ATCAGCTGAATTAGATACAC
1
NC
NC
NC





3022
4953
CATCAGCTGAATTAGATACA
2
NC
NC
NC





3023
4969
ACCCCTTGGACTTGAGCATC
2
NC
NC
NC





3024
4970
TACCCCTTGGACTTGAGCAT
1
NC
NC
NC





3025
4971
CTACCCCTTGGACTTGAGCA
2
NC
NC
NC





3026
4972
ACTACCCCTTGGACTTGAGC
2
NC
NC
NC





3027
4973
GACTACCCCTTGGACTTGAG
2
NC
NC
NC





3028
4974
AGACTACCCCTTGGACTTGA
2
NC
NC
NC





3029
4975
CAGACTACCCCTTGGACTTG
2
NC
NC
NC





3030
4976
GCAGACTACCCCTTGGACTT
3
NC
NC
NC





3031
4979
AAGGCAGACTACCCCTTGGA
2
NC
NC
NC





3032
5031
AGACTGAAGGGAAAAGAGGG
2
NC
NC
NC





3033
5032
AAGACTGAAGGGAAAAGAGG
1
NC
NC
NC





3034
5033
GAAGACTGAAGGGAAAAGAG
1
NC
NC
NC





3035
5034
AGAAGACTGAAGGGAAAAGA
2
NC
NC
NC





3036
5035
AAGAAGACTGAAGGGAAAAG
2
NC
NC
NC





3037
5036
GAAGAAGACTGAAGGGAAAA
1
NC
NC
NC





3038
5037
TGAAGAAGACTGAAGGGAAA
1
NC
NC
NC





3039
5038
GTGAAGAAGACTGAAGGGAA
1
NC
NC
NC





3040
5039
AGTGAAGAAGACTGAAGGGA
1
NC
NC
NC





3041
5040
AAGTGAAGAAGACTGAAGGG
1
NC
NC
NC





3042
5041
GAAGTGAAGAAGACTGAAGG
2
NC
NC
NC





3043
5042
GGAAGTGAAGAAGACTGAAG
2
NC
NC
NC





3044
5043
GGGAAGTGAAGAAGACTGAA
1
NC
NC
NC





3045
5044
AGGGAAGTGAAGAAGACTGA
2
NC
NC
NC





3046
5045
TAGGGAAGTGAAGAAGACTG
2
NC
NC
NC





3047
5046
ATAGGGAAGTGAAGAAGACT
2
NC
NC
NC





3048
5047
CATAGGGAAGTGAAGAAGAC
2
NC
NC
NC





3049
5048
GCATAGGGAAGTGAAGAAGA
2
NC
NC
NC





3050
5049
AGCATAGGGAAGTGAAGAAG
2
NC
NC
NC





3051
5050
CAGCATAGGGAAGTGAAGAA
1
NC
NC
NC





3052
5051
GCAGCATAGGGAAGTGAAGA
2
NC
NC
NC





3053
5052
AGCAGCATAGGGAAGTGAAG
2
NC
NC
NC





3054
5053
CAGCAGCATAGGGAAGTGAA
2
NC
NC
NC





3055
5067
TGTAGCACATGAAGCAGCAG
2
NC
NC
NC





3056
5068
ATGTAGCACATGAAGCAGCA
2
NC
NC
NC





3057
5069
GATGTAGCACATGAAGCAGC
2
NC
NC
NC





3058
5070
AGATGTAGCACATGAAGCAG
2
NC
NC
NC





3059
5071
GAGATGTAGCACATGAAGCA
2
NC
NC
NC





3060
5072
TGAGATGTAGCACATGAAGC
2
NC
NC
NC





3061
5073
CTGAGATGTAGCACATGAAG
2
NC
NC
NC





3062
5074
TCTGAGATGTAGCACATGAA
2
NC
NC
NC





3063
5075
GTCTGAGATGTAGCACATGA
2
NC
NC
NC





3064
5076
AGTCTGAGATGTAGCACATG
2
NC
NC
NC





3065
5078
TAAGTCTGAGATGTAGCACA
2
NC
NC
NC





3066
5079
TTAAGTCTGAGATGTAGCAC
2
NC
NC
NC





3067
5080
TTTAAGTCTGAGATGTAGCA
2
NC
NC
NC





3068
5081
CTTTAAGTCTGAGATGTAGC
2
NC
NC
NC





3069
5082
TCTTTAAGTCTGAGATGTAG
2
NC
NC
NC





3070
5083
CTCTTTAAGTCTGAGATGTA
2
NC
NC
NC





3071
5084
ACTCTTTAAGTCTGAGATGT
1
NC
NC
NC





3072
5085
AACTCTTTAAGTCTGAGATG
2
NC
NC
NC





3073
5086
AAACTCTTTAAGTCTGAGAT
2
NC
NC
NC





3074
5087
GAAACTCTTTAAGTCTGAGA
2
NC
NC
NC





3075
5088
AGAAACTCTTTAAGTCTGAG
1
NC
NC
NC





3076
5089
GAGAAACTCTTTAAGTCTGA
2
NC
NC
NC





3077
5090
AGAGAAACTCTTTAAGTCTG
2
NC
NC
NC





3078
5100
TCACTGTAGTAGAGAAACTC
2
NC
NC
NC





3079
5101
TTCACTGTAGTAGAGAAACT
2
NC
NC
NC





3080
5102
TTTCACTGTAGTAGAGAAAC
1
NC
NC
NC





3081
5104
GTTTTCACTGTAGTAGAGAA
1
NC
NC
NC





3082
5105
TGTTTTCACTGTAGTAGAGA
1
NC
NC
NC





3083
5106
ATGTTTTCACTGTAGTAGAG
1
NC
NC
NC





3084
5107
AATGTTTTCACTGTAGTAGA
1
NC
NC
NC





3085
5108
GAATGTTTTCACTGTAGTAG
2
NC
NC
NC





3086
5109
AGAATGTTTTCACTGTAGTA
2
NC
NC
NC





3087
5110
GAGAATGTTTTCACTGTAGT
2
NC
NC
NC





3088
5111
AGAGAATGTTTTCACTGTAG
2
NC
NC
NC





3089
5112
TAGAGAATGTTTTCACTGTA
2
NC
NC
NC





3090
5113
CTAGAGAATGTTTTCACTGT
2
NC
NC
NC





3091
5114
CCTAGAGAATGTTTTCACTG
2
NC
NC
NC





3092
5115
CCCTAGAGAATGTTTTCACT
2
NC
NC
NC





3093
5116
ACCCTAGAGAATGTTTTCAC
2
NC
NC
NC





3094
5117
GACCCTAGAGAATGTTTTCA
2
NC
NC
NC





3095
5118
AGACCCTAGAGAATGTTTTC
2
NC
NC
NC





3096
5119
AAGACCCTAGAGAATGTTTT
2
NC
NC
NC





3097
5120
AAAGACCCTAGAGAATGTTT
2
NC
NC
NC





3098
5121
GAAAGACCCTAGAGAATGTT
1
NC
NC
NC





3099
5122
TGAAAGACCCTAGAGAATGT
2
NC
NC
NC





3100
5123
ATGAAAGACCCTAGAGAATG
1
NC
NC
NC





3101
5124
GATGAAAGACCCTAGAGAAT
2
NC
NC
NC





3102
5125
TGATGAAAGACCCTAGAGAA
2
NC
NC
NC





3103
5126
CTGATGAAAGACCCTAGAGA
1
NC
NC
NC





3104
5127
CCTGATGAAAGACCCTAGAG
1
NC
NC
NC





3105
5128
GCCTGATGAAAGACCCTAGA
2
NC
NC
NC





3106
5129
GGCCTGATGAAAGACCCTAG
2
NC
NC
NC





3107
5130
AGGCCTGATGAAAGACCCTA
2
NC
NC
NC





3108
5131
AAGGCCTGATGAAAGACCCT
2
NC
NC
NC





3109
5132
AAAGGCCTGATGAAAGACCC
2
NC
NC
NC





3110
5133
TAAAGGCCTGATGAAAGACC
2
NC
NC
NC





3111
5134
CTAAAGGCCTGATGAAAGAC
2
NC
NC
NC





3112
5135
ACTAAAGGCCTGATGAAAGA
2
NC
NC
NC





3113
5136
AACTAAAGGCCTGATGAAAG
2
NC
NC
NC





3114
5137
TAACTAAAGGCCTGATGAAA
2
NC
NC
NC





3115
5138
ATAACTAAAGGCCTGATGAA
2
NC
NC
NC





3116
5139
AATAACTAAAGGCCTGATGA
2
NC
NC
NC





3117
5140
AAATAACTAAAGGCCTGATG
2
NC
NC
NC





3118
5141
AAAATAACTAAAGGCCTGAT
2
NC
NC
NC





3119
5142
TAAAATAACTAAAGGCCTGA
2
NC
NC
NC





3120
5143
CTAAAATAACTAAAGGCCTG
2
NC
NC
NC





3121
5144
CCTAAAATAACTAAAGGCCT
1
NC
NC
NC





3122
5145
CCCTAAAATAACTAAAGGCC
2
NC
NC
NC





3123
5146
TCCCTAAAATAACTAAAGGC
2
NC
NC
NC





3124
5147
ATCCCTAAAATAACTAAAGG
2
NC
NC
NC





3125
5148
TATCCCTAAAATAACTAAAG
1
NC
NC
NC





3126
5153
GTTTTTATCCCTAAAATAAC
2
NC
NC
NC





3127
5158
CAATAGTTTTTATCCCTAAA
2
NC
NC
NC





3128
5159
TCAATAGTTTTTATCCCTAA
1
NC
NC
NC





3129
5160
ATCAATAGTTTTTATCCCTA
2
NC
NC
NC





3130
5161
TATCAATAGTTTTTATCCCT
1
NC
NC
NC





3131
5162
TTATCAATAGTTTTTATCCC
1
NC
NC
NC





3132
5169
GTCCTTTTTATCAATAGTTT
2
NC
NC
NC





3133
5170
TGTCCTTTTTATCAATAGTT
2
NC
NC
NC





3134
5171
TTGTCCTTTTTATCAATAGT
2
NC
NC
NC





3135
5172
CTTGTCCTTTTTATCAATAG
2
NC
NC
NC





3136
5173
CCTTGTCCTTTTTATCAATA
2
NC
NC
NC





3137
5174
TCCTTGTCCTTTTTATCAAT
2
NC
NC
NC





3138
5175
ATCCTTGTCCTTTTTATCAA
2
NC
NC
NC





3139
5176
TATCCTTGTCCTTTTTATCA
2
NC
NC
NC





3140
5177
CTATCCTTGTCCTTTTTATC
2
NC
NC
NC





3141
5178
TCTATCCTTGTCCTTTTTAT
2
NC
NC
NC





3142
5179
TTCTATCCTTGTCCTTTTTA
2
NC
NC
NC





3143
5180
GTTCTATCCTTGTCCTTTTT
2
NC
NC
NC





3144
5181
TGTTCTATCCTTGTCCTTTT
2
NC
NC
NC





3145
5182
CTGTTCTATCCTTGTCCTTT
2
NC
NC
NC





3146
5183
TCTGTTCTATCCTTGTCCTT
2
NC
NC
NC





3147
5184
CTCTGTTCTATCCTTGTCCT
2
NC
NC
NC





3148
5185
TCTCTGTTCTATCCTTGTCC
2
NC
NC
NC





3149
5186
TTCTCTGTTCTATCCTTGTC
1
NC
NC
NC





3150
5187
TTTCTCTGTTCTATCCTTGT
2
NC
NC
NC





3151
5188
TTTTCTCTGTTCTATCCTTG
1
NC
NC
NC





3152
5189
ATTTTCTCTGTTCTATCCTT
1
NC
NC
NC





3153
5190
AATTTTCTCTGTTCTATCCT
1
NC
NC
NC





3154
5191
AAATTTTCTCTGTTCTATCC
1
NC
NC
NC





3155
5192
TAAATTTTCTCTGTTCTATC
1
NC
NC
NC





3156
5195
CTTTAAATTTTCTCTGTTCT
1
NC
NC
NC





3157
5196
ACTTTAAATTTTCTCTGTTC
1
NC
NC
NC





3158
5197
GACTTTAAATTTTCTCTGTT
1
NC
NC
NC





3159
5198
GGACTTTAAATTTTCTCTGT
2
NC
NC
NC





3160
5199
AGGACTTTAAATTTTCTCTG
2
NC
NC
NC





3161
5200
CAGGACTTTAAATTTTCTCT
2
NC
NC
NC





3162
5201
ACAGGACTTTAAATTTTCTC
2
NC
NC
NC





3163
5202
AACAGGACTTTAAATTTTCT
1
NC
NC
NC





3164
5203
GAACAGGACTTTAAATTTTC
2
NC
NC
NC





3165
5204
GGAACAGGACTTTAAATTTT
2
NC
NC
NC





3166
5205
CGGAACAGGACTTTAAATTT
2
NC
NC
NC





3167
5206
CCGGAACAGGACTTTAAATT
1
NC
NC
NC





3168
5207
CCCGGAACAGGACTTTAAAT
1
NC
NC
NC





3169
5208
ACCCGGAACAGGACTTTAAA
1
NC
NC
NC





3170
5209
AACCCGGAACAGGACTTTAA
2
NC
NC
NC





3171
5210
AAACCCGGAACAGGACTTTA
2
NC
NC
NC





3172
5211
AAAACCCGGAACAGGACTTT
2
NC
NC
NC





3173
5212
AAAAACCCGGAACAGGACTT
2
NC
NC
NC





3174
5239
CTCTGAGTTTTTAAAGAAAA
1
NC
NC
NC





3175
5240
TCTCTGAGTTTTTAAAGAAA
1
NC
NC
NC





3176
5241
GTCTCTGAGTTTTTAAAGAA
2
NC
NC
NC





3177
5242
AGTCTCTGAGTTTTTAAAGA
1
NC
NC
NC





3178
5243
CAGTCTCTGAGTTTTTAAAG
2
NC
NC
NC





3179
5244
TCAGTCTCTGAGTTTTTAAA
2
NC
NC
NC





3180
5254
ATATTGAACATCAGTCTCTG
1
NC
NC
NC





3181
5255
GATATTGAACATCAGTCTCT
1
NC
NC
NC





3182
5256
GGATATTGAACATCAGTCTC
2
NC
NC
NC





3183
5257
GGGATATTGAACATCAGTCT
1
NC
NC
NC





3184
5258
TGGGATATTGAACATCAGTC
1
NC
NC
NC





3185
5259
TTGGGATATTGAACATCAGT
2
NC
NC
NC





3186
5260
TTTGGGATATTGAACATCAG
2
NC
NC
NC





3187
5261
GTTTGGGATATTGAACATCA
2
NC
NC
NC





3188
5262
GGTTTGGGATATTGAACATC
2
NC
NC
NC





3189
5263
TGGTTTGGGATATTGAACAT
2
NC
NC
NC





3190
5264
CTGGTTTGGGATATTGAACA
2
NC
NC
NC





3191
5265
ACTGGTTTGGGATATTGAAC
2
NC
NC
NC





3192
5266
TACTGGTTTGGGATATTGAA
2
NC
NC
NC





3193
5267
TTACTGGTTTGGGATATTGA
2
NC
NC
NC





3194
5268
TTTACTGGTTTGGGATATTG
1
NC
NC
NC





3195
5269
TTTTACTGGTTTGGGATATT
2
NC
NC
NC





3196
5270
ATTTTACTGGTTTGGGATAT
1
NC
NC
NC





3197
5271
CATTTTACTGGTTTGGGATA
1
NC
NC
NC





3198
5272
CCATTTTACTGGTTTGGGAT
1
NC
NC
NC





3199
5281
GTATTTTCACCATTTTACTG
1
NC
NC
NC





3200
5282
AGTATTTTCACCATTTTACT
1
NC
NC
NC





3201
5283
TAGTATTTTCACCATTTTAC
1
NC
NC
NC





3202
5285
CATAGTATTTTCACCATTTT
1
NC
NC
NC





3203
5286
TCATAGTATTTTCACCATTT
1
NC
NC
NC





3204
5287
CTCATAGTATTTTCACCATT
2
NC
NC
NC





3205
5288
GCTCATAGTATTTTCACCAT
2
NC
NC
NC





3206
5289
AGCTCATAGTATTTTCACCA
2
NC
NC
NC





3207
5290
AAGCTCATAGTATTTTCACC
2
NC
NC
NC





3208
5291
CAAGCTCATAGTATTTTCAC
2
NC
NC
NC





3209
5292
ACAAGCTCATAGTATTTTCA
1
NC
NC
NC





3210
5293
AACAAGCTCATAGTATTTTC
2
NC
NC
NC





3211
5294
AAACAAGCTCATAGTATTTT
2
NC
NC
NC





3212
5295
AAAACAAGCTCATAGTATTT
2
NC
NC
NC





3213
5296
AAAAACAAGCTCATAGTATT
2
NC
NC
NC





3214
5346
CTTTCACATAAAGAGATACT
2
NC
NC
NC





3215
5347
GCTTTCACATAAAGAGATAC
2
NC
NC
NC





3216
5348
TGCTTTCACATAAAGAGATA
2
NC
NC
NC





3217
5349
TTGCTTTCACATAAAGAGAT
2
NC
NC
NC





3218
5350
ATTGCTTTCACATAAAGAGA
2
NC
NC
NC





3219
5351
AATTGCTTTCACATAAAGAG
2
NC
NC
NC





3220
5352
CAATTGCTTTCACATAAAGA
2
NC
NC
NC





3221
5353
ACAATTGCTTTCACATAAAG
2
NC
NC
NC





3222
5354
GACAATTGCTTTCACATAAA
2
NC
NC
NC





3223
5355
TGACAATTGCTTTCACATAA
2
NC
NC
NC





3224
5356
ATGACAATTGCTTTCACATA
2
NC
NC
NC





3225
5357
TATGACAATTGCTTTCACAT
2
NC
NC
NC





3226
5358
ATATGACAATTGCTTTCACA
2
NC
NC
NC





3227
5359
GATATGACAATTGCTTTCAC
2
NC
NC
NC





3228
5360
TGATATGACAATTGCTTTCA
2
NC
NC
NC





3229
5361
TTGATATGACAATTGCTTTC
2
NC
NC
NC





3230
5362
TTTGATATGACAATTGCTTT
2
NC
NC
NC





3231
5363
TTTTGATATGACAATTGCTT
2
NC
NC
NC





3232
5364
GTTTTGATATGACAATTGCT
2
NC
NC
NC





3233
5365
TGTTTTGATATGACAATTGC
2
NC
NC
NC





3234
5366
GTGTTTTGATATGACAATTG
2
NC
NC
NC





3235
5367
TGTGTTTTGATATGACAATT
2
NC
NC
NC





3236
5368
CTGTGTTTTGATATGACAAT
2
NC
NC
NC





3237
5369
GCTGTGTTTTGATATGACAA
2
NC
NC
NC





3238
5370
TGCTGTGTTTTGATATGACA
2
NC
NC
NC





3239
5371
ATGCTGTGTTTTGATATGAC
2
NC
NC
NC





3240
5372
TATGCTGTGTTTTGATATGA
1
NC
NC
NC





3241
5373
GTATGCTGTGTTTTGATATG
2
NC
NC
NC





3242
5374
TGTATGCTGTGTTTTGATAT
1
NC
NC
NC





3243
5375
ATGTATGCTGTGTTTTGATA
1
NC
NC
NC





3244
5376
TATGTATGCTGTGTTTTGAT
1
NC
NC
NC





3245
5377
GTATGTATGCTGTGTTTTGA
2
NC
NC
NC





3246
5378
CGTATGTATGCTGTGTTTTG
2
NC
NC
NC





3247
5379
ACGTATGTATGCTGTGTTTT
2
NC
NC
NC





3248
5380
AACGTATGTATGCTGTGTTT
2
NC
NC
NC





3249
5381
GAACGTATGTATGCTGTGTT
2
NC
NC
NC





3250
5382
TGAACGTATGTATGCTGTGT
2
NC
NC
NC





3251
5383
TTGAACGTATGTATGCTGTG
3
NC
NC
NC





3252
5384
GTTGAACGTATGTATGCTGT
3
NC
NC
NC





3253
5385
GGTTGAACGTATGTATGCTG
3
NC
NC
NC





3254
5386
AGGTTGAACGTATGTATGCT
2
NC
NC
NC





3255
5387
TAGGTTGAACGTATGTATGC
1
NC
NC
NC





3256
5388
TTAGGTTGAACGTATGTATG
2
NC
NC
NC





3257
5389
GTTAGGTTGAACGTATGTAT
2
NC
NC
NC





3258
5390
GGTTAGGTTGAACGTATGTA
2
NC
NC
NC





3259
5391
TGGTTAGGTTGAACGTATGT
2
NC
NC
NC





3260
5392
TTGGTTAGGTTGAACGTATG
2
NC
NC
NC





3261
5393
TTTGGTTAGGTTGAACGTAT
2
NC
NC
NC





3262
5394
ATTTGGTTAGGTTGAACGTA
2
NC
NC
NC





3263
5395
TATTTGGTTAGGTTGAACGT
2
NC
NC
NC





3264
5396
ATATTTGGTTAGGTTGAACG
3
NC
NC
NC





3265
5397
GATATTTGGTTAGGTTGAAC
2
NC
NC
NC





3266
5398
AGATATTTGGTTAGGTTGAA
1
NC
NC
NC





3267
5399
AAGATATTTGGTTAGGTTGA
1
NC
NC
NC





3268
5400
AAAGATATTTGGTTAGGTTG
2
NC
NC
NC





3269
5401
TAAAGATATTTGGTTAGGTT
2
NC
NC
NC





3270
5402
GTAAAGATATTTGGTTAGGT
2
NC
NC
NC





3271
5403
TGTAAAGATATTTGGTTAGG
2
NC
NC
NC





3272
5404
GTGTAAAGATATTTGGTTAG
2
NC
NC
NC





3273
5405
AGTGTAAAGATATTTGGTTA
2
NC
NC
NC





3274
5406
AAGTGTAAAGATATTTGGTT
2
NC
NC
NC





3275
5407
AAAGTGTAAAGATATTTGGT
2
NC
NC
NC





3276
5408
AAAAGTGTAAAGATATTTGG
2
NC
NC
NC





3277
5414
GAAAGAAAAAGTGTAAAGAT
0
NC
NC
NC





3278
5415
TGAAAGAAAAAGTGTAAAGA
1
NC
NC
NC





3279
5416
CTGAAAGAAAAAGTGTAAAG
1
NC
NC
NC





3280
5417
CCTGAAAGAAAAAGTGTAAA
1
NC
NC
NC





3281
5418
TCCTGAAAGAAAAAGTGTAA
2
NC
NC
NC





3282
5419
CTCCTGAAAGAAAAAGTGTA
2
NC
NC
NC





3283
5420
TCTCCTGAAAGAAAAAGTGT
2
NC
NC
NC





3284
5421
GTCTCCTGAAAGAAAAAGTG
1
NC
NC
NC





3285
5422
TGTCTCCTGAAAGAAAAAGT
2
NC
NC
NC





3286
5423
TTGTCTCCTGAAAGAAAAAG
2
NC
NC
NC





3287
5424
CTTGTCTCCTGAAAGAAAAA
1
NC
NC
NC





3288
5425
CCTTGTCTCCTGAAAGAAAA
1
NC
NC
NC





3289
5426
CCCTTGTCTCCTGAAAGAAA
1
NC
NC
NC





3290
5427
ACCCTTGTCTCCTGAAAGAA
2
NC
NC
NC





3291
5428
AACCCTTGTCTCCTGAAAGA
2
NC
NC
NC





3292
5429
GAACCCTTGTCTCCTGAAAG
2
NC
NC
NC





3293
5430
AGAACCCTTGTCTCCTGAAA
2
NC
NC
NC





3294
5431
AAGAACCCTTGTCTCCTGAA
2
NC
NC
NC





3295
5432
AAAGAACCCTTGTCTCCTGA
2
NC
NC
NC





3296
5433
CAAAGAACCCTTGTCTCCTG
2
NC
NC
NC





3297
5434
CCAAAGAACCCTTGTCTCCT
2
NC
NC
NC





3298
5435
CCCAAAGAACCCTTGTCTCC
2
NC
NC
NC





3299
5436
ACCCAAAGAACCCTTGTCTC
2
NC
NC
NC





3300
5437
GACCCAAAGAACCCTTGTCT
2
NC
NC
NC





3301
5438
GGACCCAAAGAACCCTTGTC
2
NC
NC
NC





3302
5444
TGAAAGGGACCCAAAGAACC
2
NC
NC
NC





3303
5445
TTGAAAGGGACCCAAAGAAC
2
NC
NC
NC





3304
5446
TTTGAAAGGGACCCAAAGAA
2
NC
NC
NC





3305
5447
GTTTGAAAGGGACCCAAAGA
2
NC
NC
NC





3306
5448
CGTTTGAAAGGGACCCAAAG
2
NC
NC
NC





3307
5457
CCAAGATACCGTTTGAAAGG
3
NC
NC
NC





3308
5458
ACCAAGATACCGTTTGAAAG
3
NC
NC
NC





3309
5459
CACCAAGATACCGTTTGAAA
2
NC
NC
NC





3310
5460
ACACCAAGATACCGTTTGAA
2
NC
NC
NC





3311
5461
AACACCAAGATACCGTTTGA
2
NC
NC
NC





3312
5462
TAACACCAAGATACCGTTTG
3
NC
NC
NC





3313
5463
ATAACACCAAGATACCGTTT
2
NC
NC
NC





3314
5464
AATAACACCAAGATACCGTT
2
NC
NC
NC





3315
5465
TAATAACACCAAGATACCGT
2
NC
NC
NC





3316
5466
GTAATAACACCAAGATACCG
2
NC
NC
NC





3317
5467
TGTAATAACACCAAGATACC
2
NC
NC
NC





3318
5468
ATGTAATAACACCAAGATAC
2
NC
NC
NC





3319
5469
AATGTAATAACACCAAGATA
1
NC
NC
NC





3320
5470
TAATGTAATAACACCAAGAT
2
NC
NC
NC





3321
5471
ATAATGTAATAACACCAAGA
2
NC
NC
NC





3322
5472
CATAATGTAATAACACCAAG
2
NC
NC
NC





3323
5473
GCATAATGTAATAACACCAA
2
NC
NC
NC





3324
5474
GGCATAATGTAATAACACCA
2
NC
NC
NC





3325
5475
AGGCATAATGTAATAACACC
2
NC
NC
NC





3326
5476
TAGGCATAATGTAATAACAC
2
NC
NC
NC





3327
5478
GATAGGCATAATGTAATAAC
2
NC
NC
NC





3328
5479
AGATAGGCATAATGTAATAA
2
NC
NC
NC





3329
5480
TAGATAGGCATAATGTAATA
1
NC
NC
NC





3330
5481
ATAGATAGGCATAATGTAAT
1
NC
NC
NC





3331
5482
AATAGATAGGCATAATGTAA
2
NC
NC
NC





3332
5483
CAATAGATAGGCATAATGTA
2
NC
NC
NC





3333
5484
GCAATAGATAGGCATAATGT
2
NC
NC
NC





3334
5485
GGCAATAGATAGGCATAATG
2
NC
NC
NC





3335
5486
GGGCAATAGATAGGCATAAT
2
NC
NC
NC





3336
5487
AGGGCAATAGATAGGCATAA
2
NC
NC
NC





3337
5488
AAGGGCAATAGATAGGCATA
2
NC
NC
NC





3338
5489
TAAGGGCAATAGATAGGCAT
2
NC
NC
NC





3339
5490
ATAAGGGCAATAGATAGGCA
2
NC
NC
NC





3340
5491
TATAAGGGCAATAGATAGGC
2
NC
NC
NC





3341
5492
TTATAAGGGCAATAGATAGG
2
NC
NC
NC





3342
5493
ATTATAAGGGCAATAGATAG
2
NC
NC
NC





3343
5494
TATTATAAGGGCAATAGATA
2
NC
NC
NC





3344
5495
ATATTATAAGGGCAATAGAT
2
NC
NC
NC





3345
5496
GATATTATAAGGGCAATAGA
2
NC
NC
NC





3346
5497
TGATATTATAAGGGCAATAG
2
NC
NC
NC





3347
5498
GTGATATTATAAGGGCAATA
2
NC
NC
NC





3348
5499
AGTGATATTATAAGGGCAAT
2
NC
NC
NC





3349
5500
AAGTGATATTATAAGGGCAA
2
NC
NC
NC





3350
5501
CAAGTGATATTATAAGGGCA
2
NC
NC
NC





3351
5502
CCAAGTGATATTATAAGGGC
2
NC
NC
NC





3352
5503
CCCAAGTGATATTATAAGGG
3
NC
NC
NC





3353
5504
TCCCAAGTGATATTATAAGG
1
NC
NC
NC





3354
5505
GTCCCAAGTGATATTATAAG
2
NC
NC
NC





3355
5506
GGTCCCAAGTGATATTATAA
2
NC
NC
NC





3356
5507
TGGTCCCAAGTGATATTATA
2
NC
NC
NC





3357
5508
CTGGTCCCAAGTGATATTAT
2
NC
NC
NC





3358
5509
CCTGGTCCCAAGTGATATTA
2
NC
NC
NC





3359
5510
TCCTGGTCCCAAGTGATATT
1
NC
NC
NC





3360
5511
GTCCTGGTCCCAAGTGATAT
2
NC
NC
NC





3361
5512
AGTCCTGGTCCCAAGTGATA
2
NC
NC
NC





3362
5513
CAGTCCTGGTCCCAAGTGAT
1
NC
NC
NC





3363
5514
TCAGTCCTGGTCCCAAGTGA
1
NC
NC
NC





3364
5515
ATCAGTCCTGGTCCCAAGTG
2
NC
NC
NC





3365
5516
GATCAGTCCTGGTCCCAAGT
1
NC
NC
NC





3366
5518
ACGATCAGTCCTGGTCCCAA
2
NC
NC
NC





3367
5519
AACGATCAGTCCTGGTCCCA
3
NC
NC
NC





3368
5521
AGAACGATCAGTCCTGGTCC
2
NC
NC
NC





3369
5522
CAGAACGATCAGTCCTGGTC
3
NC
NC
NC





3370
5523
GCAGAACGATCAGTCCTGGT
3
NC
NC
NC





3371
5524
TGCAGAACGATCAGTCCTGG
3
NC
NC
NC





3372
5525
TTGCAGAACGATCAGTCCTG
3
NC
NC
NC





3373
5526
TTTGCAGAACGATCAGTCCT
3
NC
NC
NC





3374
5527
ATTTGCAGAACGATCAGTCC
2
NC
NC
NC





3375
5528
CATTTGCAGAACGATCAGTC
2
NC
NC
NC





3376
5541
ATGGCATAACAAGCATTTGC
2
NC
NC
NC





3377
5543
GAATGGCATAACAAGCATTT
2
NC
NC
NC





3378
5544
AGAATGGCATAACAAGCATT
2
NC
NC
NC





3379
5545
GAGAATGGCATAACAAGCAT
2
NC
NC
NC





3380
5546
TGAGAATGGCATAACAAGCA
1
NC
NC
NC





3381
5547
TTGAGAATGGCATAACAAGC
1
NC
NC
NC





3382
5548
ATTGAGAATGGCATAACAAG
1
NC
NC
NC





3383
5549
GATTGAGAATGGCATAACAA
2
NC
NC
NC





3384
5550
AGATTGAGAATGGCATAACA
2
NC
NC
NC





3385
5551
TAGATTGAGAATGGCATAAC
2
NC
NC
NC





3386
5552
ATAGATTGAGAATGGCATAA
2
NC
NC
NC





3387
5553
AATAGATTGAGAATGGCATA
2
NC
NC
NC





3388
5554
AAATAGATTGAGAATGGCAT
2
NC
NC
NC





3389
5555
AAAATAGATTGAGAATGGCA
2
NC
NC
NC





3390
5556
AAAAATAGATTGAGAATGGC
2
NC
NC
NC





3391
5557
GAAAAATAGATTGAGAATGG
2
NC
NC
NC





3392
5558
GGAAAAATAGATTGAGAATG
1
NC
NC
NC





3393
5559
GGGAAAAATAGATTGAGAAT
1
NC
NC
NC





3394
5560
CGGGAAAAATAGATTGAGAA
2
NC
NC
NC





3395
5561
GCGGGAAAAATAGATTGAGA
2
NC
NC
NC





3396
5562
TGCGGGAAAAATAGATTGAG
3
NC
NC
NC





3397
5563
GTGCGGGAAAAATAGATTGA
2
NC
NC
NC





3398
5564
GGTGCGGGAAAAATAGATTG
2
NC
NC
NC





3399
5565
AGGTGCGGGAAAAATAGATT
2
NC
NC
NC





3400
5566
AAGGTGCGGGAAAAATAGAT
2
NC
NC
NC





3401
5567
AAAGGTGCGGGAAAAATAGA
2
NC
NC
NC





3402
5568
AAAAGGTGCGGGAAAAATAG
2
NC
NC
NC





3403
5569
GAAAAGGTGCGGGAAAAATA
2
NC
NC
NC





3404
5570
TGAAAAGGTGCGGGAAAAAT
2
NC
NC
NC





3405
5571
GTGAAAAGGTGCGGGAAAAA
2
NC
NC
NC





3406
5572
TGTGAAAAGGTGCGGGAAAA
2
NC
NC
NC





3407
5573
ATGTGAAAAGGTGCGGGAAA
2
NC
NC
NC





3408
5574
CATGTGAAAAGGTGCGGGAA
2
NC
NC
NC





3409
5575
TCATGTGAAAAGGTGCGGGA
3
NC
NC
NC





3410
5576
ATCATGTGAAAAGGTGCGGG
3
NC
NC
NC





3411
5577
AATCATGTGAAAAGGTGCGG
3
NC
NC
NC





3412
5578
AAATCATGTGAAAAGGTGCG
2
NC
NC
NC





3413
5579
CAAATCATGTGAAAAGGTGC
2
NC
NC
NC





3414
5590
CCTATTAACCACAAATCATG
2
NC
NC
NC





3415
5591
TCCTATTAACCACAAATCAT
2
NC
NC
NC





3416
5592
GTCCTATTAACCACAAATCA
2
NC
NC
NC





3417
5593
AGTCCTATTAACCACAAATC
3
NC
NC
NC





3418
5594
GAGTCCTATTAACCACAAAT
3
NC
NC
NC





3419
5595
TGAGTCCTATTAACCACAAA
2
NC
NC
NC





3420
5596
TTGAGTCCTATTAACCACAA
2
NC
NC
NC





3421
5597
GTTGAGTCCTATTAACCACA
2
NC
NC
NC





3422
5598
TGTTGAGTCCTATTAACCAC
2
NC
NC
NC





3423
5599
CTGTTGAGTCCTATTAACCA
2
NC
NC
NC





3424
5600
TCTGTTGAGTCCTATTAACC
2
NC
NC
NC





3425
5601
GTCTGTTGAGTCCTATTAAC
2
NC
NC
NC





3426
5602
AGTCTGTTGAGTCCTATTAA
2
NC
NC
NC





3427
5603
TAGTCTGTTGAGTCCTATTA
2
NC
NC
NC





3428
5604
TTAGTCTGTTGAGTCCTATT
2
NC
NC
NC





3429
5605
TTTAGTCTGTTGAGTCCTAT
3
NC
NC
NC





3430
5606
TTTTAGTCTGTTGAGTCCTA
2
NC
NC
NC





3431
5607
ATTTTAGTCTGTTGAGTCCT
2
NC
NC
NC





3432
5608
AATTTTAGTCTGTTGAGTCC
2
NC
NC
NC





3433
5609
CAATTTTAGTCTGTTGAGTC
2
NC
NC
NC





3434
5610
GCAATTTTAGTCTGTTGAGT
2
NC
NC
NC





3435
5611
TGCAATTTTAGTCTGTTGAG
2
NC
NC
NC





3436
5612
ATGCAATTTTAGTCTGTTGA
2
NC
NC
NC





3437
5613
TATGCAATTTTAGTCTGTTG
2
NC
NC
NC





3438
5614
CTATGCAATTTTAGTCTGTT
2
NC
NC
NC





3439
5615
ACTATGCAATTTTAGTCTGT
2
NC
NC
NC





3440
5616
TACTATGCAATTTTAGTCTG
2
NC
NC
NC





3441
5617
CTACTATGCAATTTTAGTCT
2
NC
NC
NC





3442
5618
TCTACTATGCAATTTTAGTC
2
NC
NC
NC





3443
5619
TTCTACTATGCAATTTTAGT
2
NC
NC
NC





3444
5620
TTTCTACTATGCAATTTTAG
2
NC
NC
NC





3445
5655
GCAATAAACATTACCAGCTG
2
NC
NC
NC





3446
5656
TGCAATAAACATTACCAGCT
2
NC
NC
NC





3447
5657
TTGCAATAAACATTACCAGC
2
NC
NC
NC





3448
5658
GTTGCAATAAACATTACCAG
2
NC
NC
NC





3449
5659
AGTTGCAATAAACATTACCA
2
NC
NC
NC





3450
5660
CAGTTGCAATAAACATTACC
2
NC
NC
NC





3451
5661
CCAGTTGCAATAAACATTAC
2
NC
NC
NC





3452
5662
CCCAGTTGCAATAAACATTA
2
NC
NC
NC





3453
5663
CCCCAGTTGCAATAAACATT
2
NC
NC
NC





3454
5664
ACCCCAGTTGCAATAAACAT
2
NC
NC
NC





3455
5665
CACCCCAGTTGCAATAAACA
2
NC
NC
NC





3456
5666
GCACCCCAGTTGCAATAAAC
2
NC
NC
NC





3457
5667
AGCACCCCAGTTGCAATAAA
2
NC
NC
NC





3458
5668
TAGCACCCCAGTTGCAATAA
2
NC
NC
NC





3459
5669
ATAGCACCCCAGTTGCAATA
2
NC
NC
NC





3460
5670
TATAGCACCCCAGTTGCAAT
2
NC
NC
NC





3461
5671
GTATAGCACCCCAGTTGCAA
3
NC
NC
NC





3462
5672
TGTATAGCACCCCAGTTGCA
2
NC
NC
NC





3463
5673
TTGTATAGCACCCCAGTTGC
3
NC
NC
NC





3464
5674
ATTGTATAGCACCCCAGTTG
2
NC
NC
NC





3465
5675
AATTGTATAGCACCCCAGTT
2
NC
NC
NC





3466
5676
TAATTGTATAGCACCCCAGT
2
NC
NC
NC





3467
5677
CTAATTGTATAGCACCCCAG
2
NC
NC
NC





3468
5678
ACTAATTGTATAGCACCCCA
3
NC
NC
NC





3469
5679
TACTAATTGTATAGCACCCC
2
NC
NC
NC





3470
5680
TTACTAATTGTATAGCACCC
2
NC
NC
NC





3471
5681
CTTACTAATTGTATAGCACC
2
NC
NC
NC





3472
5682
TCTTACTAATTGTATAGCAC
2
NC
NC
NC





3473
5683
ATCTTACTAATTGTATAGCA
2
NC
NC
NC





3474
5684
CATCTTACTAATTGTATAGC
2
NC
NC
NC





3475
5685
TCATCTTACTAATTGTATAG
2
NC
NC
NC





3476
5687
CATCATCTTACTAATTGTAT
1
NC
NC
NC





3477
5688
GCATCATCTTACTAATTGTA
2
NC
NC
NC





3478
5689
TGCATCATCTTACTAATTGT
2
NC
NC
NC





3479
5690
TTGCATCATCTTACTAATTG
2
NC
NC
NC





3480
5691
ATTGCATCATCTTACTAATT
2
NC
NC
NC





3481
5692
CATTGCATCATCTTACTAAT
2
NC
NC
NC





3482
5693
TCATTGCATCATCTTACTAA
2
NC
NC
NC





3483
5694
CTCATTGCATCATCTTACTA
2
NC
NC
NC





3484
5695
TCTCATTGCATCATCTTACT
1
NC
NC
NC





3485
5696
TTCTCATTGCATCATCTTAC
2
NC
NC
NC





3486
5697
ATTCTCATTGCATCATCTTA
2
NC
NC
NC





3487
5698
AATTCTCATTGCATCATCTT
1
NC
NC
NC





3488
5699
AAATTCTCATTGCATCATCT
2
NC
NC
NC





3489
5700
GAAATTCTCATTGCATCATC
2
NC
NC
NC





3490
5701
AGAAATTCTCATTGCATCAT
2
NC
NC
NC





3491
5702
TAGAAATTCTCATTGCATCA
1
NC
NC
NC





3492
5703
GTAGAAATTCTCATTGCATC
1
NC
NC
NC





3493
5704
AGTAGAAATTCTCATTGCAT
1
NC
NC
NC





3494
5705
AAGTAGAAATTCTCATTGCA
2
NC
NC
NC





3495
5706
AAAGTAGAAATTCTCATTGC
2
NC
NC
NC





3496
5707
AAAAGTAGAAATTCTCATTG
1
NC
NC
NC





3497
5708
CAAAAGTAGAAATTCTCATT
2
NC
NC
NC





3498
5709
ACAAAAGTAGAAATTCTCAT
2
NC
NC
NC





3499
5710
TACAAAAGTAGAAATTCTCA
2
NC
NC
NC





3500
5711
ATACAAAAGTAGAAATTCTC
2
NC
NC
NC





3501
5715
GGAAATACAAAAGTAGAAAT
1
NC
NC
NC





3502
5716
AGGAAATACAAAAGTAGAAA
1
NC
NC
NC





3503
5717
CAGGAAATACAAAAGTAGAA
1
NC
NC
NC





3504
5718
TCAGGAAATACAAAAGTAGA
1
NC
NC
NC





3505
5719
GTCAGGAAATACAAAAGTAG
1
NC
NC
NC





3506
5720
GGTCAGGAAATACAAAAGTA
2
NC
NC
NC





3507
5721
TGGTCAGGAAATACAAAAGT
2
NC
NC
NC





3508
5722
CTGGTCAGGAAATACAAAAG
2
NC
NC
NC





3509
5723
GCTGGTCAGGAAATACAAAA
1
NC
NC
NC





3510
5724
GGCTGGTCAGGAAATACAAA
1
NC
NC
NC





3511
5725
AGGCTGGTCAGGAAATACAA
2
NC
NC
NC





3512
5726
CAGGCTGGTCAGGAAATACA
2
NC
NC
NC





3513
5727
GCAGGCTGGTCAGGAAATAC
2
NC
NC
NC





3514
5728
AGCAGGCTGGTCAGGAAATA
2
NC
NC
NC





3515
5742
TAAAAGCCACTTTGAGCAGG
2
NC
NC
NC





3516
5743
ATAAAAGCCACTTTGAGCAG
2
NC
NC
NC





3517
5744
TATAAAAGCCACTTTGAGCA
2
NC
NC
NC





3518
5745
ATATAAAAGCCACTTTGAGC
2
NC
NC
NC





3519
5746
GATATAAAAGCCACTTTGAG
2
NC
NC
NC





3520
5747
TGATATAAAAGCCACTTTGA
2
NC
NC
NC





3521
5748
TTGATATAAAAGCCACTTTG
2
NC
NC
NC





3522
5749
ATTGATATAAAAGCCACTTT
2
NC
NC
NC





3523
5750
AATTGATATAAAAGCCACTT
2
NC
NC
NC





3524
5751
CAATTGATATAAAAGCCACT
2
NC
NC
NC





3525
5752
TCAATTGATATAAAAGCCAC
2
NC
NC
NC





3526
5753
TTCAATTGATATAAAAGCCA
2
NC
NC
NC





3527
5754
ATTCAATTGATATAAAAGCC
2
NC
NC
NC





3528
5755
CATTCAATTGATATAAAAGC
2
NC
NC
NC





3529
5762
GGAAAATCATTCAATTGATA
1
NC
NC
NC





3530
5763
AGGAAAATCATTCAATTGAT
1
NC
NC
NC





3531
5764
GAGGAAAATCATTCAATTGA
1
NC
NC
NC





3532
5765
TGAGGAAAATCATTCAATTG
2
NC
NC
NC





3533
5766
ATGAGGAAAATCATTCAATT
1
NC
NC
NC





3534
5786
TTGGTTTCCTGTATTAAAAA
2
NC
NC
NC





3535
5787
ATTGGTTTCCTGTATTAAAA
1
NC
NC
NC





3536
5788
AATTGGTTTCCTGTATTAAA
2
NC
NC
NC





3537
5789
GAATTGGTTTCCTGTATTAA
2
NC
NC
NC





3538
5790
CGAATTGGTTTCCTGTATTA
3
NC
NC
NC





3539
5791
ACGAATTGGTTTCCTGTATT
2
NC
NC
NC





3540
5792
CACGAATTGGTTTCCTGTAT
1
NC
NC
NC





3541
5793
GCACGAATTGGTTTCCTGTA
2
NC
NC
NC





3542
5794
AGCACGAATTGGTTTCCTGT
3
NC
NC
NC





3543
5795
GAGCACGAATTGGTTTCCTG
2
NC
NC
NC





3544
5796
TGAGCACGAATTGGTTTCCT
2
NC
NC
NC





3545
5797
ATGAGCACGAATTGGTTTCC
2
NC
NC
NC





3546
5798
CATGAGCACGAATTGGTTTC
3
NC
NC
NC





3547
5799
CCATGAGCACGAATTGGTTT
2
NC
NC
NC





3548
5800
TCCATGAGCACGAATTGGTT
2
NC
NC
NC





3549
5802
CTTCCATGAGCACGAATTGG
3
NC
NC
NC





3550
5803
TCTTCCATGAGCACGAATTG
3
NC
NC
NC





3551
5804
TTCTTCCATGAGCACGAATT
2
NC
NC
NC





3552
5805
TTTCTTCCATGAGCACGAAT
2
NC
NC
NC





3553
5806
TTTTCTTCCATGAGCACGAA
2
NC
NC
NC





3554
5807
CTTTTCTTCCATGAGCACGA
2
NC
NC
NC





3555
5808
ACTTTTCTTCCATGAGCACG
2
NC
NC
NC





3556
5809
AACTTTTCTTCCATGAGCAC
2
NC
NC
NC





3557
5810
GAACTTTTCTTCCATGAGCA
2
NC
NC
NC





3558
5835
ATTCACTTCAAGGCTGCTGG
2
NC
NC
NC





3559
5836
GATTCACTTCAAGGCTGCTG
2
NC
NC
NC





3560
5837
AGATTCACTTCAAGGCTGCT
2
NC
NC
NC





3561
5838
AAGATTCACTTCAAGGCTGC
2
NC
NC
NC





3562
5848
TTGCTCCTGTAAGATTCACT
2
NC
NC
NC





3563
5849
ATTGCTCCTGTAAGATTCAC
2
NC
NC
NC





3564
5850
CATTGCTCCTGTAAGATTCA
3
NC
NC
NC





3565
5851
TCATTGCTCCTGTAAGATTC
2
NC
NC
NC





3566
5852
TTCATTGCTCCTGTAAGATT
1
NC
NC
NC





3567
5853
TTTCATTGCTCCTGTAAGAT
1
NC
NC
NC





3568
5854
CTTTCATTGCTCCTGTAAGA
2
NC
NC
NC





3569
5855
ACTTTCATTGCTCCTGTAAG
2
NC
NC
NC





3570
5856
TACTTTCATTGCTCCTGTAA
2
NC
NC
NC





3571
5857
ATACTTTCATTGCTCCTGTA
2
NC
NC
NC





3572
5858
AATACTTTCATTGCTCCTGT
2
NC
NC
NC





3573
5859
CAATACTTTCATTGCTCCTG
2
NC
NC
NC





3574
5865
TGAATGCAATACTTTCATTG
2
NC
NC
NC





3575
5869
CTAATGAATGCAATACTTTC
0
NC
NC
NC





3576
5870
GCTAATGAATGCAATACTTT
1
NC
NC
NC





3577
5871
CGCTAATGAATGCAATACTT
1
NC
NC
NC





3578
5872
ACGCTAATGAATGCAATACT
1
NC
NC
NC





3579
5873
GACGCTAATGAATGCAATAC
2
NC
NC
NC





3580
5874
AGACGCTAATGAATGCAATA
2
NC
NC
NC





3581
5875
CAGACGCTAATGAATGCAAT
2
NC
NC
NC





3582
5876
GCAGACGCTAATGAATGCAA
2
NC
NC
NC





3583
5896
TTCTCTGAACCTTCTCTGGG
1
NC
NC
NC





3584
5897
TTTCTCTGAACCTTCTCTGG
1
NC
NC
NC





3585
5898
TTTTCTCTGAACCTTCTCTG
1
NC
NC
NC





3586
5899
GTTTTCTCTGAACCTTCTCT
1
NC
NC
NC





3587
5906
AGTGAAGGTTTTCTCTGAAC
2
NC
NC
NC





3588
5907
AAGTGAAGGTTTTCTCTGAA
1
NC
NC
NC





3589
5908
CAAGTGAAGGTTTTCTCTGA
1
NC
NC
NC





3590
5909
ACAAGTGAAGGTTTTCTCTG
1
NC
NC
NC





3591
5910
AACAAGTGAAGGTTTTCTCT
2
NC
NC
NC





3592
5911
AAACAAGTGAAGGTTTTCTC
2
NC
NC
NC





3593
5916
CTTGAAAACAAGTGAAGGTT
2
NC
NC
NC





3594
5917
CCTTGAAAACAAGTGAAGGT
2
NC
NC
NC





3595
5918
CCCTTGAAAACAAGTGAAGG
2
NC
NC
NC





3596
5919
CCCCTTGAAAACAAGTGAAG
2
NC
NC
NC





3597
5920
TCCCCTTGAAAACAAGTGAA
2
NC
NC
NC





3598
5921
ATCCCCTTGAAAACAAGTGA
2
NC
NC
NC





3599
5922
GATCCCCTTGAAAACAAGTG
2
NC
NC
NC





3600
5923
GGATCCCCTTGAAAACAAGT
2
NC
NC
NC





3601
5935
GTAAATCTACAAGGATCCCC
3
NC
NC
NC





3602
5936
CGTAAATCTACAAGGATCCC
2
NC
NC
NC





3603
5937
ACGTAAATCTACAAGGATCC
2
NC
NC
NC





3604
5938
TACGTAAATCTACAAGGATC
2
NC
NC
NC





3605
5939
TTACGTAAATCTACAAGGAT
2
NC
NC
NC





3606
5940
ATTACGTAAATCTACAAGGA
2
NC
NC
NC





3607
5941
AATTACGTAAATCTACAAGG
2
NC
NC
NC





3608
5942
CAATTACGTAAATCTACAAG
2
NC
NC
NC





3609
5943
CCAATTACGTAAATCTACAA
2
NC
NC
NC





3610
5944
TCCAATTACGTAAATCTACA
2
NC
NC
NC





3611
5945
TTCCAATTACGTAAATCTAC
2
NC
NC
NC





3612
5946
ATTCCAATTACGTAAATCTA
2
NC
NC
NC





3613
5947
GATTCCAATTACGTAAATCT
2
NC
NC
NC





3614
5948
GGATTCCAATTACGTAAATC
1
NC
NC
NC





3615
5949
AGGATTCCAATTACGTAAAT
1
NC
NC
NC





3616
5950
CAGGATTCCAATTACGTAAA
2
NC
NC
NC





3617
5951
TCAGGATTCCAATTACGTAA
2
NC
NC
NC





3618
5952
TTCAGGATTCCAATTACGTA
2
NC
NC
NC





3619
5953
CTTCAGGATTCCAATTACGT
2
NC
NC
NC





3620
5954
TCTTCAGGATTCCAATTACG
1
NC
NC
NC





3621
5955
TTCTTCAGGATTCCAATTAC
0
NC
NC
NC





3622
5956
GTTCTTCAGGATTCCAATTA
0
NC
NC
NC





3623
5957
TGTTCTTCAGGATTCCAATT
1
NC
NC
NC





3624
5993
TAGAAGAATAAAAGCCATTT
2
NC
NC
NC





3625
5994
TTAGAAGAATAAAAGCCATT
1
NC
NC
NC





3626
5995
TTTAGAAGAATAAAAGCCAT
1
NC
NC
NC





3627
5996
ATTTAGAAGAATAAAAGCCA
1
NC
NC
NC





3628
5997
TATTTAGAAGAATAAAAGCC
1
NC
NC
NC





3629
5998
GTATTTAGAAGAATAAAAGC
2
NC
NC
NC





3630
6007
CGTTTATATGTATTTAGAAG
2
NC
NC
NC





3631
6008
CCGTTTATATGTATTTAGAA
2
NC
NC
NC





3632
6009
TCCGTTTATATGTATTTAGA
2
NC
NC
NC





3633
6010
ATCCGTTTATATGTATTTAG
2
NC
NC
NC





3634
6011
CATCCGTTTATATGTATTTA
2
NC
NC
NC





3635
6012
ACATCCGTTTATATGTATTT
2
NC
NC
NC





3636
6013
AACATCCGTTTATATGTATT
2
NC
NC
NC





3637
6023
CCATCTATAAAACATCCGTT
2
NC
NC
NC





3638
6024
CCCATCTATAAAACATCCGT
2
NC
NC
NC





3639
6025
TCCCATCTATAAAACATCCG
3
NC
NC
NC





3640
6026
TTCCCATCTATAAAACATCC
2
NC
NC
NC





3641
6027
CTTCCCATCTATAAAACATC
2
NC
NC
NC





3642
6028
TCTTCCCATCTATAAAACAT
1
NC
NC
NC





3643
6029
GTCTTCCCATCTATAAAACA
1
NC
NC
NC





3644
6030
TGTCTTCCCATCTATAAAAC
1
NC
NC
NC





3645
6031
ATGTCTTCCCATCTATAAAA
1
NC
NC
NC





3646
6032
CATGTCTTCCCATCTATAAA
1
NC
NC
NC





3647
6033
TCATGTCTTCCCATCTATAA
2
NC
NC
NC





3648
6034
GTCATGTCTTCCCATCTATA
2
NC
NC
NC





3649
6035
GGTCATGTCTTCCCATCTAT
1
NC
NC
NC





3650
6036
AGGTCATGTCTTCCCATCTA
1
NC
NC
NC





3651
6037
AAGGTCATGTCTTCCCATCT
2
NC
NC
NC





3652
6038
TAAGGTCATGTCTTCCCATC
2
NC
NC
NC





3653
6039
CTAAGGTCATGTCTTCCCAT
2
NC
NC
NC





3654
6040
TCTAAGGTCATGTCTTCCCA
2
NC
NC
NC





3655
6041
TTCTAAGGTCATGTCTTCCC
2
NC
NC
NC





3656
6042
TTTCTAAGGTCATGTCTTCC
2
NC
NC
NC





3657
6043
CTTTCTAAGGTCATGTCTTC
2
NC
NC
NC





3658
6054
AAAACTCTCTCCTTTCTAAG
1
NC
NC
NC





3659
6055
GAAAACTCTCTCCTTTCTAA
1
NC
NC
NC





3660
6056
TGAAAACTCTCTCCTTTCTA
2
NC
NC
NC





3661
6057
CTGAAAACTCTCTCCTTTCT
1
NC
NC
NC





3662
6058
TCTGAAAACTCTCTCCTTTC
1
NC
NC
NC





3663
6059
CTCTGAAAACTCTCTCCTTT
1
NC
NC
NC





3664
6060
CCTCTGAAAACTCTCTCCTT
1
NC
NC
NC





3665
6061
TCCTCTGAAAACTCTCTCCT
1
NC
NC
NC





3666
6062
ATCCTCTGAAAACTCTCTCC
1
NC
NC
NC





3667
6063
AATCCTCTGAAAACTCTCTC
1
NC
NC
NC





3668
6064
AAATCCTCTGAAAACTCTCT
1
NC
NC
NC





3669
6065
CAAATCCTCTGAAAACTCTC
2
NC
NC
NC





3670
6066
GCAAATCCTCTGAAAACTCT
2
NC
NC
NC





3671
6067
GGCAAATCCTCTGAAAACTC
2
NC
NC
NC





3672
6068
TGGCAAATCCTCTGAAAACT
1
NC
NC
NC





3673
6069
CTGGCAAATCCTCTGAAAAC
2
NC
NC
NC





3674
6070
CCTGGCAAATCCTCTGAAAA
1
NC
NC
NC





3675
6071
GCCTGGCAAATCCTCTGAAA
1
NC
NC
NC





3676
6072
AGCCTGGCAAATCCTCTGAA
1
NC
NC
NC





3677
6073
CAGCCTGGCAAATCCTCTGA
1
NC
NC
NC





3678
6074
ACAGCCTGGCAAATCCTCTG
2
NC
NC
NC





3679
6075
GACAGCCTGGCAAATCCTCT
1
NC
NC
NC





3680
6076
TGACAGCCTGGCAAATCCTC
2
NC
NC
NC





3681
6077
CTGACAGCCTGGCAAATCCT
2
NC
NC
NC





3682
6174
TTACAACTCCCAGGACAGTT
2
NC
NC
NC





3683
6175
TTTACAACTCCCAGGACAGT
1
NC
NC
NC





3684
6176
TTTTACAACTCCCAGGACAG
2
NC
NC
NC





3685
6177
TTTTTACAACTCCCAGGACA
2
NC
NC
NC





3686
6178
ATTTTTACAACTCCCAGGAC
2
NC
NC
NC





3687
6179
GATTTTTACAACTCCCAGGA
2
NC
NC
NC





3688
6180
AGATTTTTACAACTCCCAGG
2
NC
NC
NC





3689
6181
AAGATTTTTACAACTCCCAG
2
NC
NC
NC





3690
6182
AAAGATTTTTACAACTCCCA
2
NC
NC
NC





3691
6183
AAAAGATTTTTACAACTCCC
2
NC
NC
NC





3692
6184
TAAAAGATTTTTACAACTCC
2
NC
NC
NC





3693
6187
CCTTAAAAGATTTTTACAAC
2
NC
NC
NC





3694
6188
GCCTTAAAAGATTTTTACAA
1
NC
NC
NC





3695
6189
GGCCTTAAAAGATTTTTACA
2
NC
NC
NC





3696
6190
TGGCCTTAAAAGATTTTTAC
2
NC
NC
NC





3697
6191
CTGGCCTTAAAAGATTTTTA
1
NC
NC
NC





3698
6192
TCTGGCCTTAAAAGATTTTT
1
NC
NC
NC





3699
6193
GTCTGGCCTTAAAAGATTTT
2
NC
NC
NC





3700
6194
GGTCTGGCCTTAAAAGATTT
2
NC
NC
NC





3701
6206
ATCCCTCAAATTGGTCTGGC
2
NC
NC
NC





3702
6207
AATCCCTCAAATTGGTCTGG
2
NC
NC
NC





3703
6208
AAATCCCTCAAATTGGTCTG
2
NC
NC
NC





3704
6209
AAAATCCCTCAAATTGGTCT
2
NC
NC
NC





3705
6210
TAAAATCCCTCAAATTGGTC
2
NC
NC
NC





3706
6211
TTAAAATCCCTCAAATTGGT
2
NC
NC
NC





3707
6212
TTTAAAATCCCTCAAATTGG
1
NC
NC
NC





3708
6213
TTTTAAAATCCCTCAAATTG
2
NC
NC
NC





3709
6215
CTTTTTAAAATCCCTCAAAT
1
NC
NC
NC





3710
6216
ACTTTTTAAAATCCCTCAAA
1
NC
NC
NC





3711
6217
CACTTTTTAAAATCCCTCAA
2
NC
NC
NC





3712
6218
ACACTTTTTAAAATCCCTCA
1
NC
NC
NC





3713
6219
GACACTTTTTAAAATCCCTC
1
NC
NC
NC





3714
6220
AGACACTTTTTAAAATCCCT
1
NC
NC
NC





3715
6221
GAGACACTTTTTAAAATCCC
2
NC
NC
NC





3716
6222
TGAGACACTTTTTAAAATCC
1
NC
NC
NC





3717
6223
CTGAGACACTTTTTAAAATC
1
NC
NC
NC





3718
6224
ACTGAGACACTTTTTAAAAT
1
NC
NC
NC





3719
6225
CACTGAGACACTTTTTAAAA
1
NC
NC
NC





3720
6226
GCACTGAGACACTTTTTAAA
2
NC
NC
NC





3721
6227
GGCACTGAGACACTTTTTAA
2
NC
NC
NC





3722
6228
AGGCACTGAGACACTTTTTA
2
NC
NC
NC





3723
6242
TCTGAAATCATAAGAGGCAC
1
NC
NC
NC





3724
6243
TTCTGAAATCATAAGAGGCA
2
NC
NC
NC





3725
6244
CTTCTGAAATCATAAGAGGC
2
NC
NC
NC





3726
6245
CCTTCTGAAATCATAAGAGG
2
NC
NC
NC





3727
6246
ACCTTCTGAAATCATAAGAG
2
NC
NC
NC





3728
6247
AACCTTCTGAAATCATAAGA
2
NC
NC
NC





3729
6248
AAACCTTCTGAAATCATAAG
2
NC
NC
NC





3730
6249
AAAACCTTCTGAAATCATAA
2
NC
NC
NC





3731
6250
CAAAACCTTCTGAAATCATA
2
NC
NC
NC





3732
6251
GCAAAACCTTCTGAAATCAT
2
NC
NC
NC





3733
6252
AGCAAAACCTTCTGAAATCA
1
NC
NC
NC





3734
6253
TAGCAAAACCTTCTGAAATC
2
NC
NC
NC





3735
6254
ATAGCAAAACCTTCTGAAAT
1
NC
NC
NC





3736
6255
TATAGCAAAACCTTCTGAAA
2
NC
NC
NC





3737
6256
ATATAGCAAAACCTTCTGAA
2
NC
NC
NC





3738
6257
CATATAGCAAAACCTTCTGA
2
NC
NC
NC





3739
6258
ACATATAGCAAAACCTTCTG
2
NC
NC
NC





3740
6259
TACATATAGCAAAACCTTCT
2
NC
NC
NC





3741
6260
TTACATATAGCAAAACCTTC
2
NC
NC
NC





3742
6261
ATTACATATAGCAAAACCTT
2
NC
NC
NC





3743
6262
GATTACATATAGCAAAACCT
2
NC
NC
NC





3744
6263
GGATTACATATAGCAAAACC
2
NC
NC
NC





3745
6264
GGGATTACATATAGCAAAAC
2
NC
NC
NC





3746
6265
TGGGATTACATATAGCAAAA
2
NC
NC
NC





3747
6266
TTGGGATTACATATAGCAAA
2
NC
NC
NC





3748
6267
GTTGGGATTACATATAGCAA
2
NC
NC
NC





3749
6268
AGTTGGGATTACATATAGCA
2
NC
NC
NC





3750
6269
TAGTTGGGATTACATATAGC
2
NC
NC
NC





3751
6270
GTAGTTGGGATTACATATAG
2
NC
NC
NC





3752
6271
AGTAGTTGGGATTACATATA
1
NC
NC
NC





3753
6272
CAGTAGTTGGGATTACATAT
1
NC
NC
NC





3754
6273
ACAGTAGTTGGGATTACATA
1
NC
NC
NC





3755
6274
AACAGTAGTTGGGATTACAT
1
NC
NC
NC





3756
6275
AAACAGTAGTTGGGATTACA
2
NC
NC
NC





3757
6276
AAAACAGTAGTTGGGATTAC
2
NC
NC
NC





3758
6277
GAAAACAGTAGTTGGGATTA
2
NC
NC
NC





3759
6278
AGAAAACAGTAGTTGGGATT
1
NC
NC
NC





3760
6279
AAGAAAACAGTAGTTGGGAT
1
NC
NC
NC





3761
6280
CAAGAAAACAGTAGTTGGGA
2
NC
NC
NC





3762
6281
TCAAGAAAACAGTAGTTGGG
2
NC
NC
NC





3763
6282
CTCAAGAAAACAGTAGTTGG
2
NC
NC
NC





3764
6283
TCTCAAGAAAACAGTAGTTG
2
NC
NC
NC





3765
6285
ACTCTCAAGAAAACAGTAGT
2
NC
NC
NC





3766
6286
TACTCTCAAGAAAACAGTAG
2
NC
NC
NC





3767
6287
CTACTCTCAAGAAAACAGTA
2
NC
NC
NC





3768
6288
GCTACTCTCAAGAAAACAGT
2
NC
NC
NC





3769
6289
TGCTACTCTCAAGAAAACAG
2
NC
NC
NC





3770
6290
CTGCTACTCTCAAGAAAACA
2
NC
NC
NC





3771
6291
TCTGCTACTCTCAAGAAAAC
2
NC
NC
NC





3772
6292
CTCTGCTACTCTCAAGAAAA
2
NC
NC
NC





3773
6293
CCTCTGCTACTCTCAAGAAA
2
NC
NC
NC





3774
6294
TCCTCTGCTACTCTCAAGAA
2
NC
NC
NC





3775
6295
ATCCTCTGCTACTCTCAAGA
2
NC
NC
NC





3776
6296
AATCCTCTGCTACTCTCAAG
2
NC
NC
NC





3777
6297
TAATCCTCTGCTACTCTCAA
2
NC
NC
NC





3778
6298
CTAATCCTCTGCTACTCTCA
2
NC
NC
NC





3779
6299
TCTAATCCTCTGCTACTCTC
2
NC
NC
NC





3780
6300
TTCTAATCCTCTGCTACTCT
1
NC
NC
NC





3781
6301
TTTCTAATCCTCTGCTACTC
1
NC
NC
NC





3782
6302
TTTTCTAATCCTCTGCTACT
2
NC
NC
NC





3783
6303
TTTTTCTAATCCTCTGCTAC
2
NC
NC
NC





3784
6304
CTTTTTCTAATCCTCTGCTA
1
NC
NC
NC





3785
6305
ACTTTTTCTAATCCTCTGCT
1
NC
NC
NC





3786
6306
GACTTTTTCTAATCCTCTGC
1
NC
NC
NC





3787
6307
GGACTTTTTCTAATCCTCTG
2
NC
NC
NC





3788
6308
AGGACTTTTTCTAATCCTCT
2
NC
NC
NC





3789
6311
TGGAGGACTTTTTCTAATCC
1
NC
NC
NC





3790
6312
ATGGAGGACTTTTTCTAATC
1
NC
NC
NC





3791
6313
TATGGAGGACTTTTTCTAAT
1
NC
NC
NC





3792
6314
TTATGGAGGACTTTTTCTAA
2
NC
NC
NC





3793
6315
TTTATGGAGGACTTTTTCTA
2
NC
NC
NC





3794
6316
ATTTATGGAGGACTTTTTCT
2
NC
NC
NC





3795
6317
AATTTATGGAGGACTTTTTC
2
NC
NC
NC





3796
6318
TAATTTATGGAGGACTTTTT
2
NC
NC
NC





3797
6319
ATAATTTATGGAGGACTTTT
2
NC
NC
NC





3798
6320
CATAATTTATGGAGGACTTT
2
NC
NC
NC





3799
6330
AGGCCGGTTACATAATTTAT
2
NC
NC
NC





3800
6331
AAGGCCGGTTACATAATTTA
2
NC
NC
NC





3801
6332
GAAGGCCGGTTACATAATTT
2
NC
NC
NC





3802
6333
GGAAGGCCGGTTACATAATT
2
NC
NC
NC





3803
6347
AGTCAGGCTAGTCAGGAAGG
2
NC
NC
NC





3804
6348
GAGTCAGGCTAGTCAGGAAG
2
NC
NC
NC





3805
6349
TGAGTCAGGCTAGTCAGGAA
2
NC
NC
NC





3806
6350
TTGAGTCAGGCTAGTCAGGA
2
NC
NC
NC





3807
6351
CTTGAGTCAGGCTAGTCAGG
2
NC
NC
NC





3808
6352
GCTTGAGTCAGGCTAGTCAG
2
NC
NC
NC





3809
6353
TGCTTGAGTCAGGCTAGTCA
2
NC
NC
NC





3810
6354
TTGCTTGAGTCAGGCTAGTC
3
NC
NC
NC





3811
6355
ATTGCTTGAGTCAGGCTAGT
2
NC
NC
NC





3812
6356
CATTGCTTGAGTCAGGCTAG
2
NC
NC
NC





3813
6357
ACATTGCTTGAGTCAGGCTA
2
NC
NC
NC





3814
6358
TACATTGCTTGAGTCAGGCT
2
NC
NC
NC





3815
6359
TTACATTGCTTGAGTCAGGC
2
NC
NC
NC





3816
6360
CTTACATTGCTTGAGTCAGG
2
NC
NC
NC





3817
6361
TCTTACATTGCTTGAGTCAG
2
NC
NC
NC





3818
6362
CTCTTACATTGCTTGAGTCA
2
NC
NC
NC





3819
6363
TCTCTTACATTGCTTGAGTC
2
NC
NC
NC





3820
6364
ATCTCTTACATTGCTTGAGT
2
NC
NC
NC





3821
6365
TATCTCTTACATTGCTTGAG
2
NC
NC
NC





3822
6366
TTATCTCTTACATTGCTTGA
2
NC
NC
NC





3823
6367
ATTATCTCTTACATTGCTTG
2
NC
NC
NC





3824
6368
AATTATCTCTTACATTGCTT
2
NC
NC
NC





3825
6369
TAATTATCTCTTACATTGCT
2
NC
NC
NC





3826
6370
ATAATTATCTCTTACATTGC
2
NC
NC
NC





3827
6374
CAGAATAATTATCTCTTACA
1
NC
NC
NC





3828
6375
ACAGAATAATTATCTCTTAC
2
NC
NC
NC





3829
6379
GAAAACAGAATAATTATCTC
1
NC
NC
NC





3830
6396
CCACACTTATAAATTATGAA
2
NC
NC
NC





3831
6397
CCCACACTTATAAATTATGA
2
NC
NC
NC





3832
6398
CCCCACACTTATAAATTATG
2
NC
NC
NC





3833
6399
CCCCCACACTTATAAATTAT
2
NC
NC
NC





3834
6400
GCCCCCACACTTATAAATTA
2
NC
NC
NC





3835
6401
TGCCCCCACACTTATAAATT
2
NC
NC
NC





3836
6402
ATGCCCCCACACTTATAAAT
2
NC
NC
NC





3837
6403
CATGCCCCCACACTTATAAA
2
NC
NC
NC





3838
6404
GCATGCCCCCACACTTATAA
3
NC
NC
NC





3839
6405
GGCATGCCCCCACACTTATA
3
NC
NC
NC





3840
6423
AGGTTGTTTTTATGCTGAGG
2
NC
NC
NC





3841
6424
TAGGTTGTTTTTATGCTGAG
2
NC
NC
NC





3842
6425
ATAGGTTGTTTTTATGCTGA
1
NC
NC
NC





3843
6426
AATAGGTTGTTTTTATGCTG
1
NC
NC
NC





3844
6427
TAATAGGTTGTTTTTATGCT
2
NC
NC
NC





3845
6428
CTAATAGGTTGTTTTTATGC
2
NC
NC
NC





3846
6429
CCTAATAGGTTGTTTTTATG
2
NC
NC
NC





3847
6430
CCCTAATAGGTTGTTTTTAT
2
NC
NC
NC





3848
6431
TCCCTAATAGGTTGTTTTTA
2
NC
NC
NC





3849
6432
TTCCCTAATAGGTTGTTTTT
2
NC
NC
NC





3850
6433
TTTCCCTAATAGGTTGTTTT
1
NC
NC
NC





3851
6434
TTTTCCCTAATAGGTTGTTT
1
NC
NC
NC





3852
6435
TTTTTCCCTAATAGGTTGTT
1
NC
NC
NC





3853
6436
ATTTTTCCCTAATAGGTTGT
1
NC
NC
NC





3854
6437
TATTTTTCCCTAATAGGTTG
2
NC
NC
NC





3855
6438
ATATTTTTCCCTAATAGGTT
2
NC
NC
NC





3856
6439
GATATTTTTCCCTAATAGGT
1
NC
NC
NC





3857
6440
AGATATTTTTCCCTAATAGG
1
NC
NC
NC





3858
6441
TAGATATTTTTCCCTAATAG
1
NC
NC
NC





3859
6445
CTATTAGATATTTTTCCCTA
1
NC
NC
NC





3860
6446
TCTATTAGATATTTTTCCCT
1
NC
NC
NC





3861
6447
ATCTATTAGATATTTTTCCC
1
NC
NC
NC





3862
6457
GATAAAGGTAATCTATTAGA
2
NC
NC
NC





3863
6458
CGATAAAGGTAATCTATTAG
3
NC
NC
NC





3864
6459
GCGATAAAGGTAATCTATTA
3
NC
NC
NC





3865
6460
GGCGATAAAGGTAATCTATT
3
NC
NC
NC





3866
6461
AGGCGATAAAGGTAATCTAT
2
NC
NC
NC





3867
6462
CAGGCGATAAAGGTAATCTA
2
NC
NC
NC





3868
6463
ACAGGCGATAAAGGTAATCT
3
NC
NC
NC





3869
6464
AACAGGCGATAAAGGTAATC
2
NC
NC
NC





3870
6465
TAACAGGCGATAAAGGTAAT
2
NC
NC
NC





3871
6466
CTAACAGGCGATAAAGGTAA
2
NC
NC
NC





3872
6467
CCTAACAGGCGATAAAGGTA
2
NC
NC
NC





3873
6468
CCCTAACAGGCGATAAAGGT
3
NC
NC
NC





3874
6469
ACCCTAACAGGCGATAAAGG
3
NC
NC
NC





3875
6470
AACCCTAACAGGCGATAAAG
3
NC
NC
NC





3876
6471
AAACCCTAACAGGCGATAAA
2
NC
NC
NC





3877
6472
AAAACCCTAACAGGCGATAA
2
NC
NC
NC





3878
6473
TAAAACCCTAACAGGCGATA
2
NC
NC
NC





3879
6474
ATAAAACCCTAACAGGCGAT
2
NC
NC
NC





3880
6475
CATAAAACCCTAACAGGCGA
3
NC
NC
NC





3881
6476
ACATAAAACCCTAACAGGCG
3
NC
NC
NC





3882
6477
AACATAAAACCCTAACAGGC
2
NC
NC
NC





3883
6478
CAACATAAAACCCTAACAGG
1
NC
NC
NC





3884
6479
ACAACATAAAACCCTAACAG
1
NC
NC
NC





3885
6480
AACAACATAAAACCCTAACA
1
NC
NC
NC





3886
6481
AAACAACATAAAACCCTAAC
2
NC
NC
NC





3887
6482
AAAACAACATAAAACCCTAA
1
NC
NC
NC





3888
6483
AAAAACAACATAAAACCCTA
1
NC
NC
NC





3889
6484
TAAAAACAACATAAAACCCT
1
NC
NC
NC





3890
6485
TTAAAAACAACATAAAACCC
1
NC
NC
NC





3891
6486
GTTAAAAACAACATAAAACC
2
NC
NC
NC





3892
6490
CTGAGTTAAAAACAACATAA
1
NC
NC
NC





3893
6491
TCTGAGTTAAAAACAACATA
2
NC
NC
NC





3894
6492
ATCTGAGTTAAAAACAACAT
2
NC
NC
NC





3895
6493
CATCTGAGTTAAAAACAACA
1
NC
NC
NC





3896
6494
GCATCTGAGTTAAAAACAAC
2
NC
NC
NC





3897
6495
GGCATCTGAGTTAAAAACAA
2
NC
NC
NC





3898
6496
TGGCATCTGAGTTAAAAACA
2
NC
NC
NC





3899
6497
ATGGCATCTGAGTTAAAAAC
1
NC
NC
NC





3900
6498
TATGGCATCTGAGTTAAAAA
2
NC
NC
NC





3901
6499
TTATGGCATCTGAGTTAAAA
2
NC
NC
NC





3902
6500
CTTATGGCATCTGAGTTAAA
2
NC
NC
NC





3903
6501
TCTTATGGCATCTGAGTTAA
2
NC
NC
NC





3904
6502
TTCTTATGGCATCTGAGTTA
2
NC
NC
NC





3905
6503
GTTCTTATGGCATCTGAGTT
2
NC
NC
NC





3906
6504
TGTTCTTATGGCATCTGAGT
2
NC
NC
NC





3907
6505
TTGTTCTTATGGCATCTGAG
2
NC
NC
NC





3908
6506
TTTGTTCTTATGGCATCTGA
2
NC
NC
NC





3909
6507
CTTTGTTCTTATGGCATCTG
1
NC
NC
NC





3910
6508
TCTTTGTTCTTATGGCATCT
1
NC
NC
NC





3911
6509
ATCTTTGTTCTTATGGCATC
1
NC
NC
NC





3912
6510
TATCTTTGTTCTTATGGCAT
0
NC
NC
NC





3913
6511
GTATCTTTGTTCTTATGGCA
1
NC
NC
NC





3914
6512
TGTATCTTTGTTCTTATGGC
1
NC
NC
NC





3915
6513
ATGTATCTTTGTTCTTATGG
1
NC
NC
NC





3916
6514
CATGTATCTTTGTTCTTATG
2
NC
NC
NC





3917
6515
ACATGTATCTTTGTTCTTAT
2
NC
NC
NC





3918
6516
TACATGTATCTTTGTTCTTA
1
NC
NC
NC





3919
6517
TTACATGTATCTTTGTTCTT
2
NC
NC
NC





3920
6518
ATTACATGTATCTTTGTTCT
2
NC
NC
NC





3921
6519
AATTACATGTATCTTTGTTC
2
NC
NC
NC





3922
6550
CACAATATAGGTATTAATGA
2
NC
NC
NC





3923
6551
GCACAATATAGGTATTAATG
1
NC
NC
NC





3924
6552
AGCACAATATAGGTATTAAT
1
NC
NC
NC





3925
6553
AAGCACAATATAGGTATTAA
2
NC
NC
NC





3926
6554
AAAGCACAATATAGGTATTA
2
NC
NC
NC





3927
6555
TAAAGCACAATATAGGTATT
1
NC
NC
NC





3928
6556
TTAAAGCACAATATAGGTAT
1
NC
NC
NC





3929
6557
CTTAAAGCACAATATAGGTA
2
NC
NC
NC





3930
6558
CCTTAAAGCACAATATAGGT
2
NC
NC
NC





3931
6559
ACCTTAAAGCACAATATAGG
2
NC
NC
NC





3932
6560
AACCTTAAAGCACAATATAG
2
NC
NC
NC





3933
6561
AAACCTTAAAGCACAATATA
2
NC
NC
NC





3934
6562
TAAACCTTAAAGCACAATAT
1
NC
NC
NC





3935
6563
GTAAACCTTAAAGCACAATA
1
NC
NC
NC





3936
6564
TGTAAACCTTAAAGCACAAT
1
NC
NC
NC





3937
6565
TTGTAAACCTTAAAGCACAA
1
NC
NC
NC





3938
6566
TTTGTAAACCTTAAAGCACA
1
NC
NC
NC





3939
6567
TTTTGTAAACCTTAAAGCAC
1
NC
NC
NC





3940
6568
ATTTTGTAAACCTTAAAGCA
1
NC
NC
NC





3941
6569
TATTTTGTAAACCTTAAAGC
1
NC
NC
NC





3942
6592
CTAAGATAAAGTATGAGAAA
2
NC
NC
NC





3943
6593
ACTAAGATAAAGTATGAGAA
1
NC
NC
NC





3944
6594
AACTAAGATAAAGTATGAGA
1
NC
NC
NC





3945
6595
AAACTAAGATAAAGTATGAG
2
NC
NC
NC





3946
6597
CTAAACTAAGATAAAGTATG
2
NC
NC
NC





3947
6601
GAAACTAAACTAAGATAAAG
1
NC
NC
NC





3948
6604
CAAGAAACTAAACTAAGATA
1
NC
NC
NC





3949
6605
TCAAGAAACTAAACTAAGAT
1
NC
NC
NC





3950
6606
GTCAAGAAACTAAACTAAGA
1
NC
NC
NC





3951
6607
TGTCAAGAAACTAAACTAAG
2
NC
NC
NC





3952
6608
CTGTCAAGAAACTAAACTAA
2
NC
NC
NC





3953
6609
ACTGTCAAGAAACTAAACTA
2
NC
NC
NC





3954
6610
GACTGTCAAGAAACTAAACT
2
NC
NC
NC





3955
6611
GGACTGTCAAGAAACTAAAC
2
NC
NC
NC





3956
6612
TGGACTGTCAAGAAACTAAA
1
NC
NC
NC





3957
6613
ATGGACTGTCAAGAAACTAA
1
NC
NC
NC





3958
6614
CATGGACTGTCAAGAAACTA
2
NC
NC
NC





3959
6615
TCATGGACTGTCAAGAAACT
2
NC
NC
NC





3960
6616
CTCATGGACTGTCAAGAAAC
2
NC
NC
NC





3961
6617
CCTCATGGACTGTCAAGAAA
2
NC
NC
NC





3962
6625
CCACCTTACCTCATGGACTG
1
NC
NC
NC





3963
6626
ACCACCTTACCTCATGGACT
2
NC
NC
NC





3964
6627
TACCACCTTACCTCATGGAC
2
NC
NC
NC





3965
6628
CTACCACCTTACCTCATGGA
2
NC
NC
NC





3966
6630
AGCTACCACCTTACCTCATG
2
NC
NC
NC





3967
6631
AAGCTACCACCTTACCTCAT
2
NC
NC
NC





3968
6632
AAAGCTACCACCTTACCTCA
2
NC
NC
NC





3969
6633
TAAAGCTACCACCTTACCTC
2
NC
NC
NC





3970
6634
ATAAAGCTACCACCTTACCT
2
NC
NC
NC





3971
6635
GATAAAGCTACCACCTTACC
2
NC
NC
NC





3972
6636
TGATAAAGCTACCACCTTAC
2
NC
NC
NC





3973
6637
GTGATAAAGCTACCACCTTA
2
NC
NC
NC





3974
6643
AAAATGGTGATAAAGCTACC
1
NC
NC
NC





3975
6644
TAAAATGGTGATAAAGCTAC
1
NC
NC
NC





3976
6645
GTAAAATGGTGATAAAGCTA
1
NC
NC
NC





3977
6646
TGTAAAATGGTGATAAAGCT
2
NC
NC
NC





3978
6647
TTGTAAAATGGTGATAAAGC
2
NC
NC
NC





3979
6648
TTTGTAAAATGGTGATAAAG
1
NC
NC
NC





3980
6649
CTTTGTAAAATGGTGATAAA
1
NC
NC
NC





3981
6650
ACTTTGTAAAATGGTGATAA
1
NC
NC
NC





3982
6651
CACTTTGTAAAATGGTGATA
1
NC
NC
NC





3983
6652
CCACTTTGTAAAATGGTGAT
1
NC
NC
NC





3984
6653
CCCACTTTGTAAAATGGTGA
1
NC
NC
NC





3985
6654
TCCCACTTTGTAAAATGGTG
1
NC
NC
NC





3986
6655
TTCCCACTTTGTAAAATGGT
1
NC
NC
NC





3987
6656
TTTCCCACTTTGTAAAATGG
1
NC
NC
NC





3988
6657
GTTTCCCACTTTGTAAAATG
1
NC
NC
NC





3989
6658
CGTTTCCCACTTTGTAAAAT
2
NC
NC
NC





3990
6659
TCGTTTCCCACTTTGTAAAA
2
NC
NC
NC





3991
6660
TTCGTTTCCCACTTTGTAAA
1
NC
NC
NC





3992
6661
CTTCGTTTCCCACTTTGTAA
2
NC
NC
NC





3993
6662
CCTTCGTTTCCCACTTTGTA
2
NC
NC
NC





3994
6663
ACCTTCGTTTCCCACTTTGT
2
NC
NC
NC





3995
6664
AACCTTCGTTTCCCACTTTG
2
NC
NC
NC





3996
6665
GAACCTTCGTTTCCCACTTT
2
NC
NC
NC





3997
6666
GGAACCTTCGTTTCCCACTT
2
NC
NC
NC





3998
6667
AGGAACCTTCGTTTCCCACT
2
NC
NC
NC





3999
6668
GAGGAACCTTCGTTTCCCAC
2
NC
NC
NC





4000
6669
AGAGGAACCTTCGTTTCCCA
2
NC
NC
NC





4001
6670
AAGAGGAACCTTCGTTTCCC
2
NC
NC
NC





4002
6671
TAAGAGGAACCTTCGTTTCC
2
NC
NC
NC





4003
6672
CTAAGAGGAACCTTCGTTTC
2
NC
NC
NC





4004
6673
CCTAAGAGGAACCTTCGTTT
2
NC
NC
NC





4005
6684
ACAACTAGGTTCCTAAGAGG
1
NC
NC
NC





4006
6685
GACAACTAGGTTCCTAAGAG
2
NC
NC
NC





4007
6686
TGACAACTAGGTTCCTAAGA
2
NC
NC
NC





4008
6687
GTGACAACTAGGTTCCTAAG
2
NC
NC
NC





4009
6688
GGTGACAACTAGGTTCCTAA
2
NC
NC
NC





4010
6689
AGGTGACAACTAGGTTCCTA
2
NC
NC
NC





4011
6690
AAGGTGACAACTAGGTTCCT
2
NC
NC
NC





4012
6691
AAAGGTGACAACTAGGTTCC
2
NC
NC
NC





4013
6692
CAAAGGTGACAACTAGGTTC
2
NC
NC
NC





4014
6693
ACAAAGGTGACAACTAGGTT
2
NC
NC
NC





4015
6694
TACAAAGGTGACAACTAGGT
2
NC
NC
NC





4016
6695
ATACAAAGGTGACAACTAGG
2
NC
NC
NC





4017
6696
TATACAAAGGTGACAACTAG
2
NC
NC
NC





4018
6697
TTATACAAAGGTGACAACTA
2
NC
NC
NC





4019
6698
ATTATACAAAGGTGACAACT
2
NC
NC
NC





4020
6699
TATTATACAAAGGTGACAAC
2
NC
NC
NC





4021
6700
TTATTATACAAAGGTGACAA
2
NC
NC
NC





4022
6701
TTTATTATACAAAGGTGACA
2
NC
NC
NC





4023
6702
TTTTATTATACAAAGGTGAC
2
NC
NC
NC





4024
6703
GTTTTATTATACAAAGGTGA
2
NC
NC
NC





4025
6704
AGTTTTATTATACAAAGGTG
2
NC
NC
NC





4026
6706
GAAGTTTTATTATACAAAGG
2
NC
NC
NC





4027
6707
CGAAGTTTTATTATACAAAG
2
NC
NC
NC





4028
6710
CTTCGAAGTTTTATTATACA
2
NC
NC
NC





4029
6711
GCTTCGAAGTTTTATTATAC
2
NC
NC
NC





4030
6712
AGCTTCGAAGTTTTATTATA
2
NC
NC
NC





4031
6713
GAGCTTCGAAGTTTTATTAT
2
NC
NC
NC





4032
6730
AACCAGTTAACAGCTCCGAG
2
NC
NC
NC





4033
6731
AAACCAGTTAACAGCTCCGA
2
NC
NC
NC





4034
6732
CAAACCAGTTAACAGCTCCG
2
NC
NC
NC





4035
6733
GCAAACCAGTTAACAGCTCC
2
NC
NC
NC





4036
6734
AGCAAACCAGTTAACAGCTC
2
NC
NC
NC





4037
6735
CAGCAAACCAGTTAACAGCT
2
NC
NC
NC





4038
6736
TCAGCAAACCAGTTAACAGC
2
NC
NC
NC





4039
6737
TTCAGCAAACCAGTTAACAG
1
NC
NC
NC





4040
6738
CTTCAGCAAACCAGTTAACA
2
NC
NC
NC





4041
6739
CCTTCAGCAAACCAGTTAAC
2
NC
NC
NC





4042
6752
TCTTACAGCTAAGCCTTCAG
1
NC
NC
NC





4043
6753
CTCTTACAGCTAAGCCTTCA
1
NC
NC
NC





4044
6765
TCTGAATTCTGGCTCTTACA
1
NC
NC
NC





4045
6766
GTCTGAATTCTGGCTCTTAC
1
NC
NC
NC





4046
6767
GGTCTGAATTCTGGCTCTTA
1
NC
NC
NC





4047
6768
GGGTCTGAATTCTGGCTCTT
1
NC
NC
NC





4048
6769
TGGGTCTGAATTCTGGCTCT
0
NC
NC
NC





4049
6770
CTGGGTCTGAATTCTGGCTC
0
NC
NC
NC





4050
6771
CCTGGGTCTGAATTCTGGCT
0
NC
NC
NC





4051
6772
ACCTGGGTCTGAATTCTGGC
1
NC
NC
NC





4052
6791
GCAGTTTGAAGTCACTCAGA
2
NC
NC
NC





4053
6792
TGCAGTTTGAAGTCACTCAG
2
NC
NC
NC





4054
6793
GTGCAGTTTGAAGTCACTCA
2
NC
NC
NC





4055
6794
TGTGCAGTTTGAAGTCACTC
2
NC
NC
NC





4056
6795
CTGTGCAGTTTGAAGTCACT
2
NC
NC
NC





4057
6796
ACTGTGCAGTTTGAAGTCAC
2
NC
NC
NC





4058
6807
TAATGGGAAGGACTGTGCAG
2
NC
NC
NC





4059
6808
ATAATGGGAAGGACTGTGCA
2
NC
NC
NC





4060
6809
AATAATGGGAAGGACTGTGC
1
NC
NC
NC





4061
6810
TAATAATGGGAAGGACTGTG
2
NC
NC
NC





4062
6811
GTAATAATGGGAAGGACTGT
1
NC
NC
NC





4063
6812
GGTAATAATGGGAAGGACTG
1
NC
NC
NC





4064
6813
GGGTAATAATGGGAAGGACT
1
NC
NC
NC





4065
6814
TGGGTAATAATGGGAAGGAC
2
NC
NC
NC





4066
6815
ATGGGTAATAATGGGAAGGA
2
NC
NC
NC





4067
6816
TATGGGTAATAATGGGAAGG
2
NC
NC
NC





4068
6817
ATATGGGTAATAATGGGAAG
2
NC
NC
NC





4069
6818
CATATGGGTAATAATGGGAA
2
NC
NC
NC





4070
6819
GCATATGGGTAATAATGGGA
2
NC
NC
NC





4071
6820
AGCATATGGGTAATAATGGG
2
NC
NC
NC





4072
6821
TAGCATATGGGTAATAATGG
2
NC
NC
NC





4073
6822
ATAGCATATGGGTAATAATG
2
NC
NC
NC





4074
6823
GATAGCATATGGGTAATAAT
2
NC
NC
NC





4075
6824
GGATAGCATATGGGTAATAA
3
NC
NC
NC





4076
6825
GGGATAGCATATGGGTAATA
2
NC
NC
NC





4077
6826
AGGGATAGCATATGGGTAAT
3
NC
NC
NC





4078
6827
AAGGGATAGCATATGGGTAA
2
NC
NC
NC





4079
6828
TAAGGGATAGCATATGGGTA
2
NC
NC
NC





4080
6829
ATAAGGGATAGCATATGGGT
3
NC
NC
NC





4081
6830
TATAAGGGATAGCATATGGG
2
NC
NC
NC





4082
6831
ATATAAGGGATAGCATATGG
2
NC
NC
NC





4083
6832
AATATAAGGGATAGCATATG
2
NC
NC
NC





4084
6833
AAATATAAGGGATAGCATAT
2
NC
NC
NC





4085
6834
AAAATATAAGGGATAGCATA
2
NC
NC
NC





4086
6835
AAAAATATAAGGGATAGCAT
1
NC
NC
NC





4087
6836
TAAAAATATAAGGGATAGCA
2
NC
NC
NC





4088
6837
TTAAAAATATAAGGGATAGC
1
NC
NC
NC





4089
6869
CCAAGTTTATAAATGAATGA
1
NC
NC
NC





4090
6870
ACCAAGTTTATAAATGAATG
1
NC
NC
NC





4091
6871
CACCAAGTTTATAAATGAAT
1
NC
NC
NC





4092
6872
TCACCAAGTTTATAAATGAA
1
NC
NC
NC





4093
6873
ATCACCAAGTTTATAAATGA
2
NC
NC
NC





4094
6874
AATCACCAAGTTTATAAATG
1
NC
NC
NC





4095
6875
GAATCACCAAGTTTATAAAT
1
NC
NC
NC





4096
6876
TGAATCACCAAGTTTATAAA
1
NC
NC
NC





4097
6877
GTGAATCACCAAGTTTATAA
2
NC
NC
NC





4098
6888
ATCTAATAAAGGTGAATCAC
2
NC
NC
NC





4099
6889
AATCTAATAAAGGTGAATCA
2
NC
NC
NC





4100
6890
GAATCTAATAAAGGTGAATC
2
NC
NC
NC





4101
6891
AGAATCTAATAAAGGTGAAT
2
NC
NC
NC





4102
6892
CAGAATCTAATAAAGGTGAA
1
NC
NC
NC





4103
6893
CCAGAATCTAATAAAGGTGA
2
NC
NC
NC





4104
6894
ACCAGAATCTAATAAAGGTG
2
NC
NC
NC





4105
6895
GACCAGAATCTAATAAAGGT
2
NC
NC
NC





4106
6896
CGACCAGAATCTAATAAAGG
2
NC
NC
NC





4107
6897
GCGACCAGAATCTAATAAAG
2
NC
NC
NC





4108
6898
AGCGACCAGAATCTAATAAA
3
NC
NC
NC





4109
6899
CAGCGACCAGAATCTAATAA
3
NC
NC
NC





4110
6900
TCAGCGACCAGAATCTAATA
2
NC
NC
NC





4111
6901
TTCAGCGACCAGAATCTAAT
2
NC
NC
NC





4112
6902
CTTCAGCGACCAGAATCTAA
2
NC
NC
NC





4113
6903
CCTTCAGCGACCAGAATCTA
1
NC
NC
NC





4114
6904
GCCTTCAGCGACCAGAATCT
2
NC
NC
NC





4115
6916
GAAGTTACTAAAGCCTTCAG
1
NC
NC
NC





4116
6918
CTGAAGTTACTAAAGCCTTC
2
NC
NC
NC





4117
6919
TCTGAAGTTACTAAAGCCTT
2
NC
NC
NC





4118
6920
CTCTGAAGTTACTAAAGCCT
2
NC
NC
NC





4119
6921
ACTCTGAAGTTACTAAAGCC
2
NC
NC
NC





4120
6922
TACTCTGAAGTTACTAAAGC
2
NC
NC
NC





4121
6923
TTACTCTGAAGTTACTAAAG
1
NC
NC
NC





4122
6924
TTTACTCTGAAGTTACTAAA
1
NC
NC
NC





4123
6925
TTTTACTCTGAAGTTACTAA
1
NC
NC
NC





4124
6926
GTTTTACTCTGAAGTTACTA
2
NC
NC
NC





4125
6927
AGTTTTACTCTGAAGTTACT
2
NC
NC
NC





4126
6928
AAGTTTTACTCTGAAGTTAC
2
NC
NC
NC





4127
6929
CAAGTTTTACTCTGAAGTTA
2
NC
NC
NC





4128
6930
TCAAGTTTTACTCTGAAGTT
2
NC
NC
NC





4129
6932
TCTCAAGTTTTACTCTGAAG
1
NC
NC
NC





4130
6933
CTCTCAAGTTTTACTCTGAA
2
NC
NC
NC





4131
6934
TCTCTCAAGTTTTACTCTGA
2
NC
NC
NC





4132
6935
ATCTCTCAAGTTTTACTCTG
1
NC
NC
NC





4133
6936
CATCTCTCAAGTTTTACTCT
2
NC
NC
NC





4134
6937
TCATCTCTCAAGTTTTACTC
2
NC
NC
NC





4135
6938
CTCATCTCTCAAGTTTTACT
2
NC
NC
NC





4136
6939
TCTCATCTCTCAAGTTTTAC
2
NC
NC
NC





4137
6940
ATCTCATCTCTCAAGTTTTA
2
NC
NC
NC





4138
6941
CATCTCATCTCTCAAGTTTT
1
NC
NC
NC





4139
6942
ACATCTCATCTCTCAAGTTT
2
NC
NC
NC





4140
6943
TACATCTCATCTCTCAAGTT
2
NC
NC
NC





4141
6944
TTACATCTCATCTCTCAAGT
1
NC
NC
NC





4142
6945
TTTACATCTCATCTCTCAAG
1
NC
NC
NC





4143
6946
TTTTACATCTCATCTCTCAA
2
NC
NC
NC





4144
6947
ATTTTACATCTCATCTCTCA
1
NC
NC
NC





4145
6948
CATTTTACATCTCATCTCTC
1
NC
NC
NC





4146
6949
GCATTTTACATCTCATCTCT
2
NC
NC
NC





4147
6950
TGCATTTTACATCTCATCTC
1
NC
NC
NC





4148
6951
CTGCATTTTACATCTCATCT
2
NC
NC
NC





4149
6952
GCTGCATTTTACATCTCATC
2
NC
NC
NC





4150
6953
GGCTGCATTTTACATCTCAT
2
NC
NC
NC





4151
6954
TGGCTGCATTTTACATCTCA
2
NC
NC
NC





4152
6955
ATGGCTGCATTTTACATCTC
2
NC
NC
NC





4153
6956
AATGGCTGCATTTTACATCT
2
NC
NC
NC





4154
6957
GAATGGCTGCATTTTACATC
2
NC
NC
NC





4155
6958
AGAATGGCTGCATTTTACAT
2
NC
NC
NC





4156
6959
AAGAATGGCTGCATTTTACA
1
NC
NC
NC





4157
6960
CAAGAATGGCTGCATTTTAC
2
NC
NC
NC





4158
6961
TCAAGAATGGCTGCATTTTA
1
NC
NC
NC





4159
6962
CTCAAGAATGGCTGCATTTT
1
NC
NC
NC





4160
6963
TCTCAAGAATGGCTGCATTT
2
NC
NC
NC





4161
6964
CTCTCAAGAATGGCTGCATT
2
NC
NC
NC





4162
6965
ACTCTCAAGAATGGCTGCAT
2
NC
NC
NC





4163
6966
AACTCTCAAGAATGGCTGCA
1
NC
NC
NC





4164
6967
GAACTCTCAAGAATGGCTGC
2
NC
NC
NC





4165
6968
GGAACTCTCAAGAATGGCTG
2
NC
NC
NC





4166
6969
AGGAACTCTCAAGAATGGCT
2
NC
NC
NC





4167
6970
AAGGAACTCTCAAGAATGGC
2
NC
NC
NC





4168
6971
AAAGGAACTCTCAAGAATGG
2
NC
NC
NC





4169
6972
AAAAGGAACTCTCAAGAATG
2
NC
NC
NC





4170
6973
AAAAAGGAACTCTCAAGAAT
2
NC
NC
NC





4171
6974
GAAAAAGGAACTCTCAAGAA
2
NC
NC
NC





4172
6975
AGAAAAAGGAACTCTCAAGA
2
NC
NC
NC





4173
6976
CAGAAAAAGGAACTCTCAAG
1
NC
NC
NC





4174
6977
ACAGAAAAAGGAACTCTCAA
1
NC
NC
NC





4175
6978
TACAGAAAAAGGAACTCTCA
1
NC
NC
NC





4176
6979
TTACAGAAAAAGGAACTCTC
2
NC
NC
NC





4177
6980
GTTACAGAAAAAGGAACTCT
1
NC
NC
NC





4178
6981
TGTTACAGAAAAAGGAACTC
2
NC
NC
NC





4179
6983
AATGTTACAGAAAAAGGAAC
1
NC
NC
NC





4180
6984
GAATGTTACAGAAAAAGGAA
1
NC
NC
NC





4181
6985
TGAATGTTACAGAAAAAGGA
1
NC
NC
NC





4182
6986
ATGAATGTTACAGAAAAAGG
2
NC
NC
NC





4183
6987
GATGAATGTTACAGAAAAAG
2
NC
NC
NC





4184
6988
TGATGAATGTTACAGAAAAA
1
NC
NC
NC





4185
6989
TTGATGAATGTTACAGAAAA
1
NC
NC
NC





4186
6990
GTTGATGAATGTTACAGAAA
1
NC
NC
NC





4187
6991
TGTTGATGAATGTTACAGAA
1
NC
NC
NC





4188
6992
GTGTTGATGAATGTTACAGA
2
NC
NC
NC





4189
6993
AGTGTTGATGAATGTTACAG
2
NC
NC
NC





4190
6994
AAGTGTTGATGAATGTTACA
2
NC
NC
NC





4191
6995
GAAGTGTTGATGAATGTTAC
2
NC
NC
NC





4192
6996
TGAAGTGTTGATGAATGTTA
2
NC
NC
NC





4193
6997
ATGAAGTGTTGATGAATGTT
1
NC
NC
NC





4194
6998
AATGAAGTGTTGATGAATGT
1
NC
NC
NC





4195
6999
CAATGAAGTGTTGATGAATG
1
NC
NC
NC





4196
7000
TCAATGAAGTGTTGATGAAT
1
NC
NC
NC





4197
7001
CTCAATGAAGTGTTGATGAA
1
NC
NC
NC





4198
7002
TCTCAATGAAGTGTTGATGA
2
NC
NC
NC





4199
7003
TTCTCAATGAAGTGTTGATG
2
NC
NC
NC





4200
7012
AACCTTCACTTCTCAATGAA
2
NC
NC
NC





4201
7013
GAACCTTCACTTCTCAATGA
2
NC
NC
NC





4202
7014
GGAACCTTCACTTCTCAATG
2
NC
NC
NC





4203
7015
AGGAACCTTCACTTCTCAAT
2
NC
NC
NC





4204
7016
TAGGAACCTTCACTTCTCAA
2
NC
NC
NC





4205
7017
ATAGGAACCTTCACTTCTCA
2
NC
NC
NC





4206
7018
CATAGGAACCTTCACTTCTC
2
NC
NC
NC





4207
7019
CCATAGGAACCTTCACTTCT
2
NC
NC
NC





4208
7020
GCCATAGGAACCTTCACTTC
2
NC
NC
NC





4209
7021
AGCCATAGGAACCTTCACTT
2
NC
NC
NC





4210
7022
CAGCCATAGGAACCTTCACT
2
NC
NC
NC





4211
7023
ACAGCCATAGGAACCTTCAC
2
NC
NC
NC





4212
7024
GACAGCCATAGGAACCTTCA
3
NC
NC
NC





4213
7025
AGACAGCCATAGGAACCTTC
2
NC
NC
NC





4214
7026
GAGACAGCCATAGGAACCTT
2
NC
NC
NC





4215
7027
AGAGACAGCCATAGGAACCT
2
NC
NC
NC





4216
7028
TAGAGACAGCCATAGGAACC
2
NC
NC
NC





4217
7029
GTAGAGACAGCCATAGGAAC
2
NC
NC
NC





4218
7030
GGTAGAGACAGCCATAGGAA
1
NC
NC
NC





4219
7031
AGGTAGAGACAGCCATAGGA
2
NC
NC
NC





4220
7032
AAGGTAGAGACAGCCATAGG
2
NC
NC
NC





4221
7033
GAAGGTAGAGACAGCCATAG
1
NC
NC
NC





4222
7034
TGAAGGTAGAGACAGCCATA
2
NC
NC
NC





4223
7035
TTGAAGGTAGAGACAGCCAT
2
NC
NC
NC





4224
7036
CTTGAAGGTAGAGACAGCCA
2
NC
NC
NC





4225
7037
TCTTGAAGGTAGAGACAGCC
2
NC
NC
NC





4226
7049
TAAAGCTAAGCCTCTTGAAG
1
NC
NC
NC





4227
7050
CTAAAGCTAAGCCTCTTGAA
0
NC
NC
NC





4228
7051
ACTAAAGCTAAGCCTCTTGA
1
NC
NC
NC





4229
7052
GACTAAAGCTAAGCCTCTTG
2
NC
NC
NC





4230
7053
TGACTAAAGCTAAGCCTCTT
2
NC
NC
NC





4231
7054
GTGACTAAAGCTAAGCCTCT
2
NC
NC
NC





4232
7055
AGTGACTAAAGCTAAGCCTC
2
NC
NC
NC





4233
7056
CAGTGACTAAAGCTAAGCCT
1
NC
NC
NC





4234
7057
TCAGTGACTAAAGCTAAGCC
2
NC
NC
NC





4235
7058
CTCAGTGACTAAAGCTAAGC
1
NC
NC
NC





4236
7059
TCTCAGTGACTAAAGCTAAG
1
NC
NC
NC





4237
7060
TTCTCAGTGACTAAAGCTAA
2
NC
NC
NC





4238
7061
TTTCTCAGTGACTAAAGCTA
1
NC
NC
NC





4239
7062
CTTTCTCAGTGACTAAAGCT
2
NC
NC
NC





4240
7063
TCTTTCTCAGTGACTAAAGC
2
NC
NC
NC





4241
7064
GTCTTTCTCAGTGACTAAAG
2
NC
NC
NC





4242
7065
TGTCTTTCTCAGTGACTAAA
2
NC
NC
NC





4243
7066
TTGTCTTTCTCAGTGACTAA
2
NC
NC
NC





4244
7067
CTTGTCTTTCTCAGTGACTA
1
NC
NC
NC





4245
7068
CCTTGTCTTTCTCAGTGACT
2
NC
NC
NC





4246
7069
TCCTTGTCTTTCTCAGTGAC
2
NC
NC
NC





4247
7070
TTCCTTGTCTTTCTCAGTGA
2
NC
NC
NC





4248
7071
TTTCCTTGTCTTTCTCAGTG
2
NC
NC
NC





4249
7072
GTTTCCTTGTCTTTCTCAGT
1
NC
NC
NC





4250
7073
AGTTTCCTTGTCTTTCTCAG
1
NC
NC
NC





4251
7074
TAGTTTCCTTGTCTTTCTCA
1
NC
NC
NC





4252
7075
TTAGTTTCCTTGTCTTTCTC
1
NC
NC
NC





4253
7076
ATTAGTTTCCTTGTCTTTCT
1
NC
NC
NC





4254
7077
CATTAGTTTCCTTGTCTTTC
1
NC
NC
NC





4255
7078
TCATTAGTTTCCTTGTCTTT
1
NC
NC
NC





4256
7079
ATCATTAGTTTCCTTGTCTT
2
NC
NC
NC





4257
7080
TATCATTAGTTTCCTTGTCT
2
NC
NC
NC





4258
7081
CTATCATTAGTTTCCTTGTC
2
NC
NC
NC





4259
7082
TCTATCATTAGTTTCCTTGT
2
NC
NC
NC





4260
7083
TTCTATCATTAGTTTCCTTG
2
NC
NC
NC





4261
7084
ATTCTATCATTAGTTTCCTT
1
NC
NC
NC





4262
7085
TATTCTATCATTAGTTTCCT
2
NC
NC
NC





4263
7086
ATATTCTATCATTAGTTTCC
2
NC
NC
NC





4264
7091
CTACTATATTCTATCATTAG
2
NC
NC
NC





4265
7092
GCTACTATATTCTATCATTA
2
NC
NC
NC





4266
7093
AGCTACTATATTCTATCATT
1
NC
NC
NC





4267
7094
AAGCTACTATATTCTATCAT
1
NC
NC
NC





4268
7095
GAAGCTACTATATTCTATCA
2
NC
NC
NC





4269
7096
AGAAGCTACTATATTCTATC
2
NC
NC
NC





4270
7097
AAGAAGCTACTATATTCTAT
2
NC
NC
NC





4271
7098
GAAGAAGCTACTATATTCTA
2
NC
NC
NC





4272
7099
AGAAGAAGCTACTATATTCT
2
NC
NC
NC





4273
7100
CAGAAGAAGCTACTATATTC
1
NC
NC
NC





4274
7101
CCAGAAGAAGCTACTATATT
1
NC
NC
NC





4275
7102
GCCAGAAGAAGCTACTATAT
2
NC
NC
NC





4276
7103
CGCCAGAAGAAGCTACTATA
1
NC
NC
NC





4277
7104
ACGCCAGAAGAAGCTACTAT
2
NC
NC
NC





4278
7105
AACGCCAGAAGAAGCTACTA
3
NC
NC
NC





4279
7106
TAACGCCAGAAGAAGCTACT
2
NC
NC
NC





4280
7107
CTAACGCCAGAAGAAGCTAC
2
NC
NC
NC





4281
7108
CCTAACGCCAGAAGAAGCTA
3
NC
NC
NC





4282
7109
ACCTAACGCCAGAAGAAGCT
2
NC
NC
NC





4283
7110
TACCTAACGCCAGAAGAAGC
3
NC
NC
NC





4284
7111
ATACCTAACGCCAGAAGAAG
2
NC
NC
NC





4285
7112
GATACCTAACGCCAGAAGAA
3
NC
NC
NC





4286
7113
TGATACCTAACGCCAGAAGA
2
NC
NC
NC





4287
7114
GTGATACCTAACGCCAGAAG
3
NC
NC
NC





4288
7115
TGTGATACCTAACGCCAGAA
2
NC
NC
NC





4289
7116
CTGTGATACCTAACGCCAGA
2
NC
NC
NC





4290
7117
TCTGTGATACCTAACGCCAG
3
NC
NC
NC





4291
7118
CTCTGTGATACCTAACGCCA
2
NC
NC
NC





4292
7119
ACTCTGTGATACCTAACGCC
2
NC
NC
NC





4293
7120
GACTCTGTGATACCTAACGC
2
NC
NC
NC





4294
7121
TGACTCTGTGATACCTAACG
2
NC
NC
NC





4295
7122
GTGACTCTGTGATACCTAAC
2
NC
NC
NC





4296
7123
TGTGACTCTGTGATACCTAA
2
NC
NC
NC





4297
7124
CTGTGACTCTGTGATACCTA
2
NC
NC
NC





4298
7125
GCTGTGACTCTGTGATACCT
2
NC
NC
NC





4299
7126
AGCTGTGACTCTGTGATACC
2
NC
NC
NC





4300
7127
TAGCTGTGACTCTGTGATAC
2
NC
NC
NC





4301
7128
CTAGCTGTGACTCTGTGATA
2
NC
NC
NC





4302
7129
ACTAGCTGTGACTCTGTGAT
1
NC
NC
NC





4303
7130
AACTAGCTGTGACTCTGTGA
2
NC
NC
NC





4304
7131
TAACTAGCTGTGACTCTGTG
2
NC
NC
NC





4305
7132
GTAACTAGCTGTGACTCTGT
2
NC
NC
NC





4306
7133
TGTAACTAGCTGTGACTCTG
2
NC
NC
NC





4307
7134
CTGTAACTAGCTGTGACTCT
2
NC
NC
NC





4308
7145
TAAAGGGCTAGCTGTAACTA
3
NC
NC
NC





4309
7146
ATAAAGGGCTAGCTGTAACT
2
NC
NC
NC





4310
7147
AATAAAGGGCTAGCTGTAAC
3
NC
NC
NC





4311
7148
TAATAAAGGGCTAGCTGTAA
2
NC
NC
NC





4312
7149
ATAATAAAGGGCTAGCTGTA
2
NC
NC
NC





4313
7150
AATAATAAAGGGCTAGCTGT
2
NC
NC
NC





4314
7151
CAATAATAAAGGGCTAGCTG
2
NC
NC
NC





4315
7152
TCAATAATAAAGGGCTAGCT
1
NC
NC
NC





4316
7153
TTCAATAATAAAGGGCTAGC
1
NC
NC
NC





4317
7154
TTTCAATAATAAAGGGCTAG
1
NC
NC
NC





4318
7155
CTTTCAATAATAAAGGGCTA
2
NC
NC
NC





4319
7156
TCTTTCAATAATAAAGGGCT
2
NC
NC
NC





4320
7157
TTCTTTCAATAATAAAGGGC
1
NC
NC
NC





4321
7158
CTTCTTTCAATAATAAAGGG
2
NC
NC
NC





4322
7159
TCTTCTTTCAATAATAAAGG
1
NC
NC
NC





4323
7160
CTCTTCTTTCAATAATAAAG
2
NC
NC
NC





4324
7161
CCTCTTCTTTCAATAATAAA
2
NC
NC
NC





4325
7162
TCCTCTTCTTTCAATAATAA
2
NC
NC
NC





4326
7163
CTCCTCTTCTTTCAATAATA
1
NC
NC
NC





4327
7164
GCTCCTCTTCTTTCAATAAT
2
NC
NC
NC





4328
7165
AGCTCCTCTTCTTTCAATAA
2
NC
NC
NC





4329
7166
TAGCTCCTCTTCTTTCAATA
2
NC
NC
NC





4330
7167
CTAGCTCCTCTTCTTTCAAT
2
NC
NC
NC





4331
7168
GCTAGCTCCTCTTCTTTCAA
2
NC
NC
NC





4332
7169
TGCTAGCTCCTCTTCTTTCA
2
NC
NC
NC





4333
7170
CTGCTAGCTCCTCTTCTTTC
1
NC
NC
NC





4334
7171
ACTGCTAGCTCCTCTTCTTT
1
NC
NC
NC





4335
7172
GACTGCTAGCTCCTCTTCTT
2
NC
NC
NC





4336
7173
GGACTGCTAGCTCCTCTTCT
2
NC
NC
NC





4337
7175
TGGGACTGCTAGCTCCTCTT
2
NC
NC
NC





4338
7178
TAGTGGGACTGCTAGCTCCT
2
NC
NC
NC





4339
7179
ATAGTGGGACTGCTAGCTCC
2
NC
NC
NC





4340
7180
GATAGTGGGACTGCTAGCTC
3
NC
NC
NC





4341
7181
TGATAGTGGGACTGCTAGCT
2
NC
NC
NC





4342
7182
CTGATAGTGGGACTGCTAGC
2
NC
NC
NC





4343
7183
TCTGATAGTGGGACTGCTAG
2
NC
NC
NC





4344
7184
TTCTGATAGTGGGACTGCTA
3
NC
NC
NC





4345
7185
ATTCTGATAGTGGGACTGCT
2
NC
NC
NC





4346
7186
AATTCTGATAGTGGGACTGC
2
NC
NC
NC





4347
7187
TAATTCTGATAGTGGGACTG
2
NC
NC
NC





4348
7188
TTAATTCTGATAGTGGGACT
3
NC
NC
NC





4349
7189
CTTAATTCTGATAGTGGGAC
3
NC
NC
NC





4350
7190
TCTTAATTCTGATAGTGGGA
2
NC
NC
NC





4351
7191
GTCTTAATTCTGATAGTGGG
2
NC
NC
NC





4352
7192
AGTCTTAATTCTGATAGTGG
1
NC
NC
NC





4353
7193
TAGTCTTAATTCTGATAGTG
1
NC
NC
NC





4354
7194
CTAGTCTTAATTCTGATAGT
2
NC
NC
NC





4355
7195
TCTAGTCTTAATTCTGATAG
2
NC
NC
NC





4356
7196
CTCTAGTCTTAATTCTGATA
2
NC
NC
NC





4357
7197
TCTCTAGTCTTAATTCTGAT
2
NC
NC
NC





4358
7198
ATCTCTAGTCTTAATTCTGA
2
NC
NC
NC





4359
7199
CATCTCTAGTCTTAATTCTG
2
NC
NC
NC





4360
7200
CCATCTCTAGTCTTAATTCT
2
NC
NC
NC





4361
7201
ACCATCTCTAGTCTTAATTC
2
NC
NC
NC





4362
7202
TACCATCTCTAGTCTTAATT
2
NC
NC
NC





4363
7203
TTACCATCTCTAGTCTTAAT
2
NC
NC
NC





4364
7204
ATTACCATCTCTAGTCTTAA
1
NC
NC
NC





4365
7205
TATTACCATCTCTAGTCTTA
1
NC
NC
NC





4366
7206
CTATTACCATCTCTAGTCTT
1
NC
NC
NC





4367
7207
CCTATTACCATCTCTAGTCT
2
NC
NC
NC





4368
7208
TCCTATTACCATCTCTAGTC
2
NC
NC
NC





4369
7209
CTCCTATTACCATCTCTAGT
2
NC
NC
NC





4370
7210
GCTCCTATTACCATCTCTAG
2
NC
NC
NC





4371
7211
AGCTCCTATTACCATCTCTA
2
NC
NC
NC





4372
7212
TAGCTCCTATTACCATCTCT
1
NC
NC
NC





4373
7213
CTAGCTCCTATTACCATCTC
2
NC
NC
NC





4374
7214
ACTAGCTCCTATTACCATCT
2
NC
NC
NC





4375
7215
TACTAGCTCCTATTACCATC
2
NC
NC
NC





4376
7216
ATACTAGCTCCTATTACCAT
2
NC
NC
NC





4377
7217
GATACTAGCTCCTATTACCA
2
NC
NC
NC





4378
7218
TGATACTAGCTCCTATTACC
2
NC
NC
NC





4379
7219
CTGATACTAGCTCCTATTAC
2
NC
NC
NC





4380
7220
TCTGATACTAGCTCCTATTA
2
NC
NC
NC





4381
7221
TTCTGATACTAGCTCCTATT
1
NC
NC
NC





4382
7222
TTTCTGATACTAGCTCCTAT
2
NC
NC
NC





4383
7223
TTTTCTGATACTAGCTCCTA
2
NC
NC
NC





4384
7224
CTTTTCTGATACTAGCTCCT
2
NC
NC
NC





4385
7225
GCTTTTCTGATACTAGCTCC
2
NC
NC
NC





4386
7226
AGCTTTTCTGATACTAGCTC
2
NC
NC
NC





4387
7228
TAAGCTTTTCTGATACTAGC
2
NC
NC
NC





4388
7229
TTAAGCTTTTCTGATACTAG
1
NC
NC
NC





4389
7230
CTTAAGCTTTTCTGATACTA
1
NC
NC
NC





4390
7231
CCTTAAGCTTTTCTGATACT
2
NC
NC
NC





4391
7244
ACTTTATGCTTTGCCTTAAG
2
NC
NC
NC





4392
7245
CACTTTATGCTTTGCCTTAA
1
NC
NC
NC





4393
7246
ACACTTTATGCTTTGCCTTA
1
NC
NC
NC





4394
7247
TACACTTTATGCTTTGCCTT
2
NC
NC
NC





4395
7248
CTACACTTTATGCTTTGCCT
2
NC
NC
NC





4396
7249
CCTACACTTTATGCTTTGCC
2
NC
NC
NC





4397
7250
GCCTACACTTTATGCTTTGC
2
NC
NC
NC





4398
7251
AGCCTACACTTTATGCTTTG
2
NC
NC
NC





4399
7252
TAGCCTACACTTTATGCTTT
2
NC
NC
NC





4400
7253
CTAGCCTACACTTTATGCTT
3
NC
NC
NC





4401
7254
TCTAGCCTACACTTTATGCT
3
NC
NC
NC





4402
7255
TTCTAGCCTACACTTTATGC
2
NC
NC
NC





4403
7256
ATTCTAGCCTACACTTTATG
2
NC
NC
NC





4404
7257
CATTCTAGCCTACACTTTAT
2
NC
NC
NC





4405
7258
TCATTCTAGCCTACACTTTA
2
NC
NC
NC





4406
7259
TTCATTCTAGCCTACACTTT
2
NC
NC
NC





4407
7260
CTTCATTCTAGCCTACACTT
2
NC
NC
NC





4408
7261
GCTTCATTCTAGCCTACACT
2
NC
NC
NC





4409
7269
ATTCTCCAGCTTCATTCTAG
1
NC
NC
NC





4410
7270
CATTCTCCAGCTTCATTCTA
1
NC
NC
NC





4411
7271
CCATTCTCCAGCTTCATTCT
1
NC
NC
NC





4412
7272
CCCATTCTCCAGCTTCATTC
1
NC
NC
NC





4413
7273
CCCCATTCTCCAGCTTCATT
1
NC
NC
NC





4414
7274
TCCCCATTCTCCAGCTTCAT
1
NC
NC
NC





4415
7275
CTCCCCATTCTCCAGCTTCA
1
NC
NC
NC





4416
7296
TCTGGATGTTACCCAAGCCC
2
NC
NC
NC





4417
7297
TTCTGGATGTTACCCAAGCC
2
NC
NC
NC





4418
7298
GTTCTGGATGTTACCCAAGC
2
NC
NC
NC





4419
7299
GGTTCTGGATGTTACCCAAG
2
NC
NC
NC





4420
7300
AGGTTCTGGATGTTACCCAA
2
NC
NC
NC





4421
7301
CAGGTTCTGGATGTTACCCA
2
NC
NC
NC





4422
7322
ATGTAGTTCCAGGTCCCCAG
1
NC
NC
NC





4423
7323
CATGTAGTTCCAGGTCCCCA
2
NC
NC
NC





4424
7324
TCATGTAGTTCCAGGTCCCC
2
NC
NC
NC





4425
7325
CTCATGTAGTTCCAGGTCCC
2
NC
NC
NC





4426
7326
TCTCATGTAGTTCCAGGTCC
3
NC
NC
NC





4427
7327
ATCTCATGTAGTTCCAGGTC
2
NC
NC
NC





4428
7328
CATCTCATGTAGTTCCAGGT
2
NC
NC
NC





4429
7339
CTCCATTCTTACATCTCATG
2
NC
NC
NC





4430
7340
TCTCCATTCTTACATCTCAT
1
NC
NC
NC





4431
7341
CTCTCCATTCTTACATCTCA
1
NC
NC
NC





4432
7342
CCTCTCCATTCTTACATCTC
1
NC
NC
NC





4433
7343
ACCTCTCCATTCTTACATCT
1
NC
NC
NC





4434
7344
AACCTCTCCATTCTTACATC
1
NC
NC
NC





4435
7345
GAACCTCTCCATTCTTACAT
0
NC
NC
NC





4436
7346
AGAACCTCTCCATTCTTACA
0
NC
NC
NC





4437
7347
TAGAACCTCTCCATTCTTAC
1
NC
NC
NC





4438
7348
CTAGAACCTCTCCATTCTTA
1
NC
NC
NC





4439
7349
GCTAGAACCTCTCCATTCTT
1
NC
NC
NC





4440
7351
CTGCTAGAACCTCTCCATTC
2
NC
NC
NC





4441
7352
ACTGCTAGAACCTCTCCATT
2
NC
NC
NC





4442
7353
GACTGCTAGAACCTCTCCAT
3
NC
NC
NC





4443
7354
TGACTGCTAGAACCTCTCCA
2
NC
NC
NC





4444
7355
CTGACTGCTAGAACCTCTCC
2
NC
NC
NC





4445
7356
TCTGACTGCTAGAACCTCTC
2
NC
NC
NC





4446
7357
CTCTGACTGCTAGAACCTCT
2
NC
NC
NC





4447
7358
CCTCTGACTGCTAGAACCTC
2
NC
NC
NC





4448
7359
ACCTCTGACTGCTAGAACCT
2
NC
NC
NC





4449
7360
GACCTCTGACTGCTAGAACC
2
NC
NC
NC





4450
7361
TGACCTCTGACTGCTAGAAC
2
NC
NC
NC





4451
7362
CTGACCTCTGACTGCTAGAA
1
NC
NC
NC





4452
7363
CCTGACCTCTGACTGCTAGA
2
NC
NC
NC





4453
7364
ACCTGACCTCTGACTGCTAG
1
NC
NC
NC





4454
7365
TACCTGACCTCTGACTGCTA
2
NC
NC
NC





4455
7366
GTACCTGACCTCTGACTGCT
2
NC
NC
NC





4456
7367
TGTACCTGACCTCTGACTGC
2
NC
NC
NC





4457
7368
TTGTACCTGACCTCTGACTG
3
NC
NC
NC





4458
7369
TTTGTACCTGACCTCTGACT
2
NC
NC
NC





4459
7370
ATTTGTACCTGACCTCTGAC
2
NC
NC
NC





4460
7371
CATTTGTACCTGACCTCTGA
2
NC
NC
NC





4461
7372
TCATTTGTACCTGACCTCTG
1
NC
NC
NC





4462
7373
TTCATTTGTACCTGACCTCT
2
NC
NC
NC





4463
7374
GTTCATTTGTACCTGACCTC
2
NC
NC
NC





4464
7375
TGTTCATTTGTACCTGACCT
2
NC
NC
NC





4465
7376
CTGTTCATTTGTACCTGACC
2
NC
NC
NC





4466
7377
GCTGTTCATTTGTACCTGAC
2
NC
NC
NC





4467
7378
AGCTGTTCATTTGTACCTGA
2
NC
NC
NC





4468
7379
CAGCTGTTCATTTGTACCTG
2
NC
NC
NC





4469
7380
CCAGCTGTTCATTTGTACCT
1
NC
NC
NC





4470
7381
CCCAGCTGTTCATTTGTACC
1
NC
NC
NC





4471
7382
TCCCAGCTGTTCATTTGTAC
1
NC
NC
NC





4472
7383
ATCCCAGCTGTTCATTTGTA
1
NC
NC
NC





4473
7384
GATCCCAGCTGTTCATTTGT
2
NC
NC
NC





4474
7385
AGATCCCAGCTGTTCATTTG
2
NC
NC
NC





4475
7386
CAGATCCCAGCTGTTCATTT
2
NC
NC
NC





4476
7387
GCAGATCCCAGCTGTTCATT
2
NC
NC
NC





4477
7388
CGCAGATCCCAGCTGTTCAT
2
NC
NC
NC





4478
7391
ATGCGCAGATCCCAGCTGTT
2
NC
NC
NC





4479
7406
TTTTCACTGTCTGCCATGCG
2
NC
NC
NC





4480
7407
TTTTTCACTGTCTGCCATGC
1
NC
NC
NC





4481
7423
TTTTGCTTGCCTGGGTTTTT
1
NC
NC
NC





4482
7424
ATTTTGCTTGCCTGGGTTTT
1
NC
NC
NC





4483
7425
CATTTTGCTTGCCTGGGTTT
2
NC
NC
NC





4484
7426
CCATTTTGCTTGCCTGGGTT
2
NC
NC
NC





4485
7427
ACCATTTTGCTTGCCTGGGT
2
NC
NC
NC





4486
7428
GACCATTTTGCTTGCCTGGG
2
NC
NC
NC





4487
7429
TGACCATTTTGCTTGCCTGG
1
NC
NC
NC





4488
7430
CTGACCATTTTGCTTGCCTG
2
NC
NC
NC





4489
7431
TCTGACCATTTTGCTTGCCT
1
NC
NC
NC





4490
7432
CTCTGACCATTTTGCTTGCC
1
NC
NC
NC





4491
7433
GCTCTGACCATTTTGCTTGC
2
NC
NC
NC





4492
7434
TGCTCTGACCATTTTGCTTG
2
NC
NC
NC





4493
7435
CTGCTCTGACCATTTTGCTT
2
NC
NC
NC





4494
7436
TCTGCTCTGACCATTTTGCT
2
NC
NC
NC





4495
7437
TTCTGCTCTGACCATTTTGC
2
NC
NC
NC





4496
7438
TTTCTGCTCTGACCATTTTG
2
NC
NC
NC





4497
7439
CTTTCTGCTCTGACCATTTT
2
NC
NC
NC





4498
7440
CCTTTCTGCTCTGACCATTT
2
NC
NC
NC





4499
7441
CCCTTTCTGCTCTGACCATT
2
NC
NC
NC





4500
7442
CCCCTTTCTGCTCTGACCAT
2
NC
NC
NC





4501
7465
CATCTCAAGAACGTGGCCTT
1
NC
NC
NC





4502
7466
ACATCTCAAGAACGTGGCCT
2
NC
NC
NC





4503
7467
CACATCTCAAGAACGTGGCC
3
NC
NC
NC





4504
7470
CTCCACATCTCAAGAACGTG
2
NC
NC
NC





4505
7471
CCTCCACATCTCAAGAACGT
2
NC
NC
NC





4506
7472
CCCTCCACATCTCAAGAACG
1
NC
NC
NC





4507
7473
CCCCTCCACATCTCAAGAAC
2
NC
NC
NC





4508
7474
CCCCCTCCACATCTCAAGAA
1
NC
NC
NC





4509
7495
TACTTGGCGTGGCTTCCTCA
2
NC
NC
NC





4510
7496
TTACTTGGCGTGGCTTCCTC
2
NC
NC
NC





4511
7497
CTTACTTGGCGTGGCTTCCT
2
NC
NC
NC





4512
7499
TCCTTACTTGGCGTGGCTTC
3
NC
NC
NC





4513
7500
GTCCTTACTTGGCGTGGCTT
3
NC
NC
NC





4514
7501
TGTCCTTACTTGGCGTGGCT
2
NC
NC
NC





4515
7503
TCTGTCCTTACTTGGCGTGG
2
NC
NC
NC





4516
7504
ATCTGTCCTTACTTGGCGTG
3
NC
NC
NC





4517
7505
CATCTGTCCTTACTTGGCGT
3
NC
NC
NC





4518
7506
GCATCTGTCCTTACTTGGCG
2
NC
NC
NC





4519
7507
TGCATCTGTCCTTACTTGGC
2
NC
NC
NC





4520
7508
CTGCATCTGTCCTTACTTGG
2
NC
NC
NC





4521
7509
GCTGCATCTGTCCTTACTTG
2
NC
NC
NC





4522
7510
AGCTGCATCTGTCCTTACTT
2
NC
NC
NC





4523
7511
GAGCTGCATCTGTCCTTACT
1
NC
NC
NC





4524
7512
TGAGCTGCATCTGTCCTTAC
2
NC
NC
NC





4525
7513
CTGAGCTGCATCTGTCCTTA
2
NC
NC
NC





4526
7514
GCTGAGCTGCATCTGTCCTT
2
NC
NC
NC





4527
7515
TGCTGAGCTGCATCTGTCCT
1
NC
NC
NC





4528
7536
TTGTCAGGGCTCGCTAGGAA
3
NC
NC
NC





4529
7586
ACTCCACTGTGCCATGACTG
2
NC
NC
NC





4530
7587
CACTCCACTGTGCCATGACT
2
NC
NC
NC





4531
7588
TCACTCCACTGTGCCATGAC
2
NC
NC
NC





4532
7589
TTCACTCCACTGTGCCATGA
2
NC
NC
NC





4533
7590
CTTCACTCCACTGTGCCATG
2
NC
NC
NC





4534
7591
CCTTCACTCCACTGTGCCAT
1
NC
NC
NC





4535
7592
TCCTTCACTCCACTGTGCCA
1
NC
NC
NC





4536
7593
TTCCTTCACTCCACTGTGCC
1
NC
NC
NC





4537
7594
CTTCCTTCACTCCACTGTGC
2
NC
NC
NC





4538
7596
CTCTTCCTTCACTCCACTGT
1
NC
NC
NC





4539
7597
GCTCTTCCTTCACTCCACTG
2
NC
NC
NC





4540
7598
TGCTCTTCCTTCACTCCACT
1
NC
NC
NC





4541
7599
CTGCTCTTCCTTCACTCCAC
1
NC
NC
NC





4542
7600
ACTGCTCTTCCTTCACTCCA
1
NC
NC
NC





4543
7601
AACTGCTCTTCCTTCACTCC
2
NC
NC
NC





4544
7602
AAACTGCTCTTCCTTCACTC
1
NC
NC
NC





4545
7603
GAAACTGCTCTTCCTTCACT
2
NC
NC
NC





4546
7604
TGAAACTGCTCTTCCTTCAC
2
NC
NC
NC





4547
7605
CTGAAACTGCTCTTCCTTCA
1
NC
NC
NC





4548
7606
CCTGAAACTGCTCTTCCTTC
1
NC
NC
NC





4549
7607
GCCTGAAACTGCTCTTCCTT
0
NC
NC
NC





4550
7608
TGCCTGAAACTGCTCTTCCT
0
NC
NC
NC





4551
7609
GTGCCTGAAACTGCTCTTCC
0
NC
NC
NC





4552
7610
GGTGCCTGAAACTGCTCTTC
1
NC
NC
NC





4553
7611
GGGTGCCTGAAACTGCTCTT
2
NC
NC
NC





4554
7612
TGGGTGCCTGAAACTGCTCT
2
NC
NC
NC





4555
7613
TTGGGTGCCTGAAACTGCTC
2
NC
NC
NC





4556
7614
TTTGGGTGCCTGAAACTGCT
2
NC
NC
NC





4557
7615
TTTTGGGTGCCTGAAACTGC
2
NC
NC
NC





4558
7616
GTTTTGGGTGCCTGAAACTG
2
NC
NC
NC





4559
7617
GGTTTTGGGTGCCTGAAACT
2
NC
NC
NC





4560
7618
AGGTTTTGGGTGCCTGAAAC
2
NC
NC
NC





4561
7643
AGGTGGAAAACAGGTCGTGG
2
NC
NC
NC





4562
7644
CAGGTGGAAAACAGGTCGTG
2
NC
NC
NC





4563
7645
TCAGGTGGAAAACAGGTCGT
2
NC
NC
NC





4564
7646
TTCAGGTGGAAAACAGGTCG
2
NC
NC
NC





4565
7647
CTTCAGGTGGAAAACAGGTC
2
NC
NC
NC





4566
7648
TCTTCAGGTGGAAAACAGGT
2
NC
NC
NC





4567
7649
CTCTTCAGGTGGAAAACAGG
2
NC
NC
NC





4568
7650
GCTCTTCAGGTGGAAAACAG
2
NC
NC
NC





4569
7651
GGCTCTTCAGGTGGAAAACA
2
NC
NC
NC





4570
7652
TGGCTCTTCAGGTGGAAAAC
2
NC
NC
NC





4571
7653
GTGGCTCTTCAGGTGGAAAA
2
NC
NC
NC





4572
7654
GGTGGCTCTTCAGGTGGAAA
2
NC
NC
NC





4573
7658
AATGGGTGGCTCTTCAGGTG
2
NC
NC
NC





4574
7659
GAATGGGTGGCTCTTCAGGT
2
NC
NC
NC





4575
7661
TGGAATGGGTGGCTCTTCAG
2
NC
NC
NC





4576
7662
ATGGAATGGGTGGCTCTTCA
2
NC
NC
NC





4577
7663
GATGGAATGGGTGGCTCTTC
2
NC
NC
NC





4578
7664
GGATGGAATGGGTGGCTCTT
2
NC
NC
NC





4579
7665
TGGATGGAATGGGTGGCTCT
2
NC
NC
NC





4580
7666
TTGGATGGAATGGGTGGCTC
2
NC
NC
NC





4581
7667
TTTGGATGGAATGGGTGGCT
1
NC
NC
NC





4582
7668
GTTTGGATGGAATGGGTGGC
1
NC
NC
NC





4583
7669
GGTTTGGATGGAATGGGTGG
2
NC
NC
NC





4584
7670
GGGTTTGGATGGAATGGGTG
2
NC
NC
NC





4585
7671
AGGGTTTGGATGGAATGGGT
2
NC
NC
NC





4586
7672
AAGGGTTTGGATGGAATGGG
2
NC
NC
NC





4587
7673
CAAGGGTTTGGATGGAATGG
2
NC
NC
NC





4588
7683
AGACTTTTGCCAAGGGTTTG
2
NC
NC
NC





4589
7684
CAGACTTTTGCCAAGGGTTT
2
NC
NC
NC





4590
7685
GCAGACTTTTGCCAAGGGTT
2
NC
NC
NC





4591
7702
GCCGGTTCTCTCTGTTAGCA
2
NC
NC
NC





4592
7704
TGGCCGGTTCTCTCTGTTAG
2
NC
NC
NC





4593
7705
CTGGCCGGTTCTCTCTGTTA
2
NC
NC
NC





4594
7706
ACTGGCCGGTTCTCTCTGTT
1
NC
NC
NC





4595
7707
TACTGGCCGGTTCTCTCTGT
2
NC
NC
NC





4596
7708
ATACTGGCCGGTTCTCTCTG
1
NC
NC
NC





4597
7709
CATACTGGCCGGTTCTCTCT
1
NC
NC
NC





4598
7711
AGCATACTGGCCGGTTCTCT
2
NC
NC
NC





4599
7735
AGACAGGCATGATCGCGACT
3
NC
NC
NC





4600
7736
AAGACAGGCATGATCGCGAC
3
NC
NC
NC





4601
7737
AAAGACAGGCATGATCGCGA
2
NC
NC
NC





4602
7738
TAAAGACAGGCATGATCGCG
2
NC
NC
NC





4603
7739
GTAAAGACAGGCATGATCGC
2
NC
NC
NC





4604
7740
GGTAAAGACAGGCATGATCG
2
NC
NC
NC





4605
7741
GGGTAAAGACAGGCATGATC
2
NC
NC
NC





4606
7742
AGGGTAAAGACAGGCATGAT
2
NC
NC
NC





4607
7743
GAGGGTAAAGACAGGCATGA
1
NC
NC
NC





4608
7744
AGAGGGTAAAGACAGGCATG
1
NC
NC
NC





4609
7745
TAGAGGGTAAAGACAGGCAT
1
NC
NC
NC





4610
7746
TTAGAGGGTAAAGACAGGCA
1
NC
NC
NC





4611
7747
CTTAGAGGGTAAAGACAGGC
2
NC
NC
NC





4612
7748
GCTTAGAGGGTAAAGACAGG
2
NC
NC
NC





4613
7749
AGCTTAGAGGGTAAAGACAG
2
NC
NC
NC





4614
7750
CAGCTTAGAGGGTAAAGACA
2
NC
NC
NC





4615
7751
TCAGCTTAGAGGGTAAAGAC
2
NC
NC
NC





4616
7752
TTCAGCTTAGAGGGTAAAGA
2
NC
NC
NC





4617
7753
CTTCAGCTTAGAGGGTAAAG
1
NC
NC
NC





4618
7767
CCGTTGATGAGCAGCTTCAG
2
NC
NC
NC





4619
7768
ACCGTTGATGAGCAGCTTCA
2
NC
NC
NC





4620
7769
CACCGTTGATGAGCAGCTTC
2
NC
NC
NC





4621
7770
TCACCGTTGATGAGCAGCTT
2
NC
NC
NC





4622
7771
CTCACCGTTGATGAGCAGCT
2
NC
NC
NC





4623
7779
TTTGCCATCTCACCGTTGAT
2
NC
NC
NC





4624
7780
TTTTGCCATCTCACCGTTGA
3
NC
NC
NC





4625
7781
TTTTTGCCATCTCACCGTTG
3
NC
NC
NC





4626
7782
CTTTTTGCCATCTCACCGTT
2
NC
NC
NC





4627
7783
CCTTTTTGCCATCTCACCGT
2
NC
NC
NC





4628
7784
ACCTTTTTGCCATCTCACCG
2
NC
NC
NC





4629
7785
CACCTTTTTGCCATCTCACC
1
NC
NC
NC





4630
7786
CCACCTTTTTGCCATCTCAC
2
NC
NC
NC





4631
7787
CCCACCTTTTTGCCATCTCA
2
NC
NC
NC





4632
7788
ACCCACCTTTTTGCCATCTC
2
NC
NC
NC





4633
7789
GACCCACCTTTTTGCCATCT
2
NC
NC
NC





4634
7790
GGACCCACCTTTTTGCCATC
3
NC
NC
NC





4635
7803
TTTCCCCTCTTCTGGACCCA
1
NC
NC
NC





4636
7804
TTTTCCCCTCTTCTGGACCC
1
NC
NC
NC





4637
7805
CTTTTCCCCTCTTCTGGACC
1
NC
NC
NC





4638
7806
TCTTTTCCCCTCTTCTGGAC
1
NC
NC
NC





4639
7807
TTCTTTTCCCCTCTTCTGGA
1
NC
NC
NC





4640
7808
CTTCTTTTCCCCTCTTCTGG
1
NC
NC
NC





4641
7809
CCTTCTTTTCCCCTCTTCTG
1
NC
NC
NC





4642
7810
CCCTTCTTTTCCCCTCTTCT
1
NC
NC
NC





4643
7811
TCCCTTCTTTTCCCCTCTTC
1
NC
NC
NC





4644
7812
CTCCCTTCTTTTCCCCTCTT
1
NC
NC
NC





4645
7813
ACTCCCTTCTTTTCCCCTCT
1
NC
NC
NC





4646
7814
GACTCCCTTCTTTTCCCCTC
1
NC
NC
NC





4647
7815
AGACTCCCTTCTTTTCCCCT
1
NC
NC
NC





4648
7816
CAGACTCCCTTCTTTTCCCC
1
NC
NC
NC





4649
7817
ACAGACTCCCTTCTTTTCCC
2
NC
NC
NC





4650
7818
CACAGACTCCCTTCTTTTCC
2
NC
NC
NC





4651
7819
TCACAGACTCCCTTCTTTTC
2
NC
NC
NC





4652
7820
TTCACAGACTCCCTTCTTTT
2
NC
NC
NC





4653
7821
TTTCACAGACTCCCTTCTTT
2
NC
NC
NC





4654
7822
TTTTCACAGACTCCCTTCTT
2
NC
NC
NC





4655
7823
GTTTTCACAGACTCCCTTCT
2
NC
NC
NC





4656
7824
TGTTTTCACAGACTCCCTTC
2
NC
NC
NC





4657
7825
TTGTTTTCACAGACTCCCTT
1
NC
NC
NC





4658
7826
TTTGTTTTCACAGACTCCCT
2
NC
NC
NC





4659
7827
TTTTGTTTTCACAGACTCCC
1
NC
NC
NC





4660
7828
ATTTTGTTTTCACAGACTCC
1
NC
NC
NC





4661
7829
CATTTTGTTTTCACAGACTC
1
NC
NC
NC





4662
7830
GCATTTTGTTTTCACAGACT
2
NC
NC
NC





4663
7831
AGCATTTTGTTTTCACAGAC
2
NC
NC
NC





4664
7832
CAGCATTTTGTTTTCACAGA
2
NC
NC
NC





4665
7833
TCAGCATTTTGTTTTCACAG
2
NC
NC
NC





4666
7834
TTCAGCATTTTGTTTTCACA
1
NC
NC
NC





4667
7835
CTTCAGCATTTTGTTTTCAC
1
NC
NC
NC





4668
7836
TCTTCAGCATTTTGTTTTCA
1
NC
NC
NC





4669
7837
TTCTTCAGCATTTTGTTTTC
1
NC
NC
NC





4670
7838
ATTCTTCAGCATTTTGTTTT
1
NC
NC
NC





4671
7839
GATTCTTCAGCATTTTGTTT
1
NC
NC
NC





4672
7840
AGATTCTTCAGCATTTTGTT
1
NC
NC
NC





4673
7841
CAGATTCTTCAGCATTTTGT
1
NC
NC
NC





4674
7842
GCAGATTCTTCAGCATTTTG
2
NC
NC
NC





4675
7843
TGCAGATTCTTCAGCATTTT
1
NC
NC
NC





4676
7848
TTTGATGCAGATTCTTCAGC
2
NC
NC
NC





4677
7849
ATTTGATGCAGATTCTTCAG
2
NC
NC
NC





4678
7850
TATTTGATGCAGATTCTTCA
1
NC
NC
NC





4679
7851
TTATTTGATGCAGATTCTTC
1
NC
NC
NC





4680
7852
TTTATTTGATGCAGATTCTT
1
NC
NC
NC





4681
7853
GTTTATTTGATGCAGATTCT
2
NC
NC
NC





4682
7854
GGTTTATTTGATGCAGATTC
2
NC
NC
NC





4683
7855
GGGTTTATTTGATGCAGATT
2
NC
NC
NC





4684
7856
AGGGTTTATTTGATGCAGAT
2
NC
NC
NC





4685
7857
AAGGGTTTATTTGATGCAGA
1
NC
NC
NC





4686
7858
GAAGGGTTTATTTGATGCAG
2
NC
NC
NC





4687
7859
GGAAGGGTTTATTTGATGCA
2
NC
NC
NC





4688
7860
AGGAAGGGTTTATTTGATGC
2
NC
NC
NC





4689
7861
AAGGAAGGGTTTATTTGATG
2
NC
NC
NC





4690
7862
GAAGGAAGGGTTTATTTGAT
2
NC
NC
NC





4691
7863
GGAAGGAAGGGTTTATTTGA
2
NC
NC
NC





4692
7864
AGGAAGGAAGGGTTTATTTG
2
NC
NC
NC





4693
7865
AAGGAAGGAAGGGTTTATTT
1
NC
NC
NC





4694
7866
GAAGGAAGGAAGGGTTTATT
1
NC
NC
NC





4695
7867
GGAAGGAAGGAAGGGTTTAT
1
NC
NC
NC





4696
7868
AGGAAGGAAGGAAGGGTTTA
0
NC
NC
NC





4697
7869
AAGGAAGGAAGGAAGGGTTT
0
NC
NC
NC





4698
7870
AAAGGAAGGAAGGAAGGGTT
1
NC
NC
NC





4699
7871
AAAAGGAAGGAAGGAAGGGT
0
NC
NC
NC





4700
7872
AAAAAGGAAGGAAGGAAGGG
0
NC
NC
NC





4701
7873
GAAAAAGGAAGGAAGGAAGG
0
NC
NC
NC





4702
7874
GGAAAAAGGAAGGAAGGAAG
0
NC
NC
NC





4703
7875
AGGAAAAAGGAAGGAAGGAA
0
NC
NC
NC





4704
7876
AAGGAAAAAGGAAGGAAGGA
0
NC
NC
NC





4705
7877
GAAGGAAAAAGGAAGGAAGG
0
NC
NC
NC





4706
7878
TGAAGGAAAAAGGAAGGAAG
1
NC
NC
NC





4707
7879
TTGAAGGAAAAAGGAAGGAA
1
NC
NC
NC





4708
7880
TTTGAAGGAAAAAGGAAGGA
1
NC
NC
NC





4709
7881
TTTTGAAGGAAAAAGGAAGG
1
NC
NC
NC





4710
7882
TTTTTGAAGGAAAAAGGAAG
1
NC
NC
NC









Example 2. Antisense Inhibition of MLH3

Inhibition or knockdown of MLH3 can be demonstrated using a cell-based assay. For example, HEK293, NIH3T3, or Hela or another available mammalian cell line with oligonucleotides targeting MLH3 identified above in Example 1 using at least five different dose levels, using transfection reagents such as Lipofectamine 2000 (Invitrogen) following the manufacturer's instructions. Cells are harvested at multiple time points up to 7 days post transfection for either mRNA or protein analyses. Knockdown of mRNA and protein are determined by RT-qPCR or western blot analyses respectively, using standard molecular biology techniques as previously described (see, for example, as described in Drouet et al., 2014, PLOS One 9(6): e99341). The relative levels of the MLH3 mRNA and protein at the different oligonucleotide levels are compared with a mock oligonucleotide control. The most potent oligonucleotides (for example, those which are capable of at least 90%, at least 95%, at least 97%, at least 98%, or at least 99% or more, reduction in protein levels when compared with controls) are selected for subsequent studies, for example, as described in the examples below.


Human Cell Lines


HeLa cells were obtained from ATCC (ATCC in partnership with LGC Standards, Wesel, Germany, cat. #ATCC-CRM-CCL-2) and cultured in HAM's F12 (#FG0815, Biochrom, Berlin, Germany), supplemented to contain 10% fetal calf serum (1248D, Biochrom GmbH, Berlin, Germany), and 100 U/ml Penicillin/100 μg/ml Streptomycin (A2213, Biochrom GmbH, Berlin, Germany) at 37° C. in an atmosphere with 5% CO2 in a humidified incubator. For transfection of HeLa cells with ASOs, cells were seeded at a density of 15,000 cells/well into 96-well tissue culture plates (#655180, GBO, Germany).


Transfections


In HeLa cells, transfection of ASOs was carried out with Lipofectamine 2000 (Invitrogen/Life Technologies, Karlsruhe, Germany) according to manufacturer's instructions for reverse transfection with 0.25 μL Lipofectamine 2000 per well.


The dual dose screen was performed with ASOs in quadruplicates at 20 nM and 2 nM respectively, with two ASOs targeting AHSA1 (one MOE-ASO and one 2′oMe-ASO) as unspecific controls and a mock transfection. Dose-response experiments were done with ASOs in 5 concentrations transfected in quadruplicates, starting at 20 nM in 5-6-fold dilutions steps down to ˜15-32 pM. Mock transfected cells served as control in dose-response curve (DRC) experiments.


Analysis and Quantitation


After 24 h of incubation with ASOs, medium was removed and cells were lysed in 150μl Medium-Lysis Mixture (1 volume lysis mixture, 2 volumes cell culture medium) and then incubated at 53° C. for 30 minutes. bDNA assay was performed according to manufacturer's instructions. Luminescence was read using 1420 Luminescence Counter (WALLAC VICTOR Light, Perkin Elmer, Rodgau-Jugesheim, Germany) following 30 minutes incubation at RT in the dark.


The two Ahsa1-ASOs (one 2′-OMe and one MOE-modified) served at the same time as unspecific controls for respective target mRNA expression and as a positive control to analyze transfection efficiency with regards to Ahsa1 mRNA level. By hybridization with an Ahsa1 probeset, the mock transfected wells served as controls for Ahsa1 mRNA level. Transfection efficiency for each 96-well plate and both doses in the dual dose screen were calculated by relating Ahsa1-level with Ahsa1-ASO (normalized to GapDH) to Ahsa1-level obtained with mock controls.


For each well, the target mRNA level was normalized to the respective GAPDH mRNA level. The activity of a given ASO was expressed as percent mRNA concentration of the respective target (normalized to GAPDH mRNA) in treated cells, relative to the target mRNA concentration (normalized to GAPDH mRNA) averaged across control wells.


The results of the dual-dose screen of ˜480 ASOs targeting MLH3, as well as IC20, IC50 and IC80 values of approximately 48 positive ASOs from the dual dose screen, are shown in Table 3.









TABLE 3







Positive ASOs















SEQ 



mean % mRNA
SD % mRNA





ID
Posi-

Off-target Score
remaining
remaining
IC20
IC50
IC80




















NO
tion
Sequence
Human
Cyno
Mouse
Rat
2 nM
20 nM
2 nM
20 nM
(nM)
(nM)
(nM)





  89
 224
TACTTCAACTG
2
2
NC
NC
 74.75
 16.41
 5.11
 1.90
NA
NA
NA




ACAAGCACT













  90
 225
GTACTTCAACT
2
2
NC
NC
 77.73
 52.54
 2.17
 2.02
NA
NA
NA




GACAAGCAC













  92
 227
TTGTACTTCAA
2
2
NC
NC
 75.57
 30.32
 5.23
 1.51
NA
NA
NA




CTGACAAGC













 101
 237
GCAATTTGGC
2
2
NC
NC
 77.37
 64.88
 5.04
 9.95
NA
NA
NA




TTGTACTTCA













 102
 238
CGCAATTTGG
2
3
NC
NC
 71.59
 15.63
 3.42
 1.01
NA
NA
NA




CTTGTACTTC













 103
 239
ACGCAATTTG
2
3
NC
NC
 72.11
 60.32
 3.42
 7.53
NA
NA
NA




GCTTGTACTT













 106
 242
AGAACGCAAT
2
2
NC
NC
 71.44
 71.53
 4.33
37.95
NA
NA
NA




TTGGCTTGTA













 107
 243
CAGAACGCAA
3
2
NC
NC
 66.80
 36.49
 5.84
 5.28
NA
NA
NA




TTTGGCTTGT













 108
 244
CCAGAACGCA
3
3
NC
NC
 62.90
 37.68
 3.87
 4.83
NA
NA
NA




ATTTGGCTTG













 109
 245
ACCAGAACGC
3
2
NC
NC
 66.82
 98.40
 2.36
16.21
NA
NA
NA




AATTTGGCTT













 110
 246
AACCAGAACG
2
2
NC
NC
 60.40
 44.74
15.63
 2.25
NA
NA
NA




CAATTTGGCT













 111
 247
AAACCAGAAC
2
2
NC
NC
 70.74
 28.71
 1.63
 2.76
NA
NA
NA




GCAATTTGGC













 115
 270
ATTGGCCCAA
2
2
NC
NC
 78.95
 45.99
 2.10
 2.57
NA
NA
NA




GGAGCTTATG













 116
 271
CATTGGCCCA
2
3
NC
NC
 76.12
 28.26
10.83
 1.81
NA
NA
NA




AGGAGCTTAT













 117
 272
ACATTGGCCC
2
3
NC
NC
 75.06
 53.28
 2.48
 2.00
NA
NA
NA




AAGGAGCTTA













 133
 288
GGGCAAGTTC
2
2
NC
NC
 69.85
 94.09
 0.43
11.41
NA
NA
NA




CTCAACACAT













 134
 289
AGGGCAAGTT
2
2
NC
NC
 74.03
 69.07
 3.53
 5.32
NA
NA
NA




CCTCAACACA













 135
 296
ACTGTTGAGG
2
2
NC
NC
 79.51
 65.67
 4.25
 5.62
NA
NA
NA




GCAAGTTCCT













 150
 324
CAGCCACACA
2
2
NC
NC
 66.83
 25.32
 2.76
 2.23
NA
NA
NA




TTTTGCTTCA













 151
 325
ACAGCCACAC
2
2
NC
NC
 69.96
 72.78
 4.30
 4.32
NA
NA
NA




ATTTTGCTTC













 152
 326
GACAGCCACA
2
2
NC
NC
 80.79
113.47
16.94
 5.71
NA
NA
NA




CATTTTGCTT













 154
 328
CTGACAGCCA
2
2
NC
NC
 79.02
 26.85
 2.20
 3.00
NA
NA
NA




CACATTTTGC













 160
 334
TTCACCCTGA
2
1
NC
NC
 92.28
 10.93
 2.00
 2.21
NA
NA
NA




CAGCCACACA













 161
 335
ATTCACCCTG
2
2
NC
NC
 83.55
 10.33
 5.21
 1.56
NA
NA
NA




ACAGCCACAC













 163
 337
ATATTCACCCT
2
2
NC
NC
 87.05
  9.72
 2.44
 0.70
NA
NA
NA




GACAGCCAC













 164
 338
CATATTCACC
2
2
NC
NC
 81.52
  8.96
 1.50
 1.61
0.31
 1.06
4.15




CTGACAGCCA













 166
 340
TCCATATTCAC
2
2
NC
NC
 87.79
  9.93
13.96
 0.77
NA
NA
NA




CCTGACAGC













 168
 342
TTTCCATATTC
2
2
NC
NC
 77.41
 15.50
 4.02
 2.31
NA
NA
NA




ACCCTGACA













 170
 344
GGTTTCCATAT
2
2
NC
NC
 65.76
 79.24
 1.84
 6.95
NA
NA
NA




TCACCCTGA













 174
 358
ACTTGAACTT
2
2
2
2
 82.04
114.15
 4.85
 4.63
NA
NA
NA




GGAAGGTTTC













 175
 359
CACTTGAACTT
2
2
2
1
 83.32
 25.76
16.25
 2.93
NA
NA
NA




GGAAGGTTT













 176
 360
TCACTTGAACT
1
1
1
2
 75.49
 22.95
 3.67
 3.55
NA
NA
NA




TGGAAGGTT













 178
 362
TATCACTTGAA
1
1
2
3
 95.08
 17.86
19.33
 1.20
NA
NA
NA




CTTGGAAGG













 180
 364
TCTATCACTTG
2
1
1
2
 79.06
 19.79
 4.78
 1.89
NA
NA
NA




AACTTGGAA













 181
 365
GTCTATCACTT
2
1
1
2
 77.01
 50.90
 0.99
 4.78
NA
NA
NA




GAACTTGGA













 182
 366
TGTCTATCACT
2
2
1
1
 75.65
 39.52
 1.01
 6.03
NA
NA
NA




TGAACTTGG













 183
 367
TTGTCTATCAC
2
2
2
2
 88.34
 20.10
 5.86
 3.29
NA
NA
NA




TTGAACTTG













 184
 368
ATTGTCTATCA
2
2
2
NC
 84.20
 54.98
 1.73
 3.67
NA
NA
NA




CTTGAACTT













 185
 369
CATTGTCTATC
2
2
2
NC
 95.44
 25.25
17.34
 2.84
NA
NA
NA




ACTTGAACT













 186
 370
CCATTGTCTAT
2
2
2
NC
 75.20
 15.87
 2.35
 0.58
0.25
 0.92
4.36




CACTTGAAC













 187
 371
TCCATTGTCTA
2
2
2
NC
 70.21
 17.69
 1.89
 1.61
0.36
 1.21
8.86




TCACTTGAA













 188
 372
ATCCATTGTCT
2
2
NC
NC
 73.77
 22.51
 1.88
 5.13
NA
NA
NA




ATCACTTGA













 189
 373
AATCCATTGTC
2
2
NC
NC
 77.83
 26.73
 3.24
 1.26
NA
NA
NA




TATCACTTG













 201
 386
ACTCCCCATC
2
2
NC
NC
 80.75
 22.43
 3.52
 1.83
NA
NA
NA




CCAAATCCAT













 211
 396
CTACATCATCA
2
2
NC
NC
 77.20
 12.74
 2.53
 1.37
NA
NA
NA




CTCCCCATC













 212
 397
TCTACATCATC
2
2
NC
NC
 74.42
 12.19
 2.00
 0.49
3.10
11.27
ND




ACTCCCCAT













 229
 414
AACGATTTCC
2
2
NC
NC
 72.64
 22.78
 3.19
 1.16
NA
NA
NA




CACTTTCTCT













 230
 415
TAACGATTTCC
2
2
NC
NC
 79.03
 11.66
 5.33
 1.49
NA
NA
NA




CACTTTCTC













 231
 416
ATAACGATTTC
2
2
NC
NC
 78.95
 14.41
 4.83
 4.50
NA
NA
NA




CCACTTTCT













 234
 426
TACTGGTGAA
2
3
NC
NC
 80.89
 30.57
 2.84
 0.46
NA
NA
NA




ATAACGATTT













 235
 427
TTACTGGTGA
2
2
NC
NC
 65.31
 19.49
 5.20
 0.84
0.48
 1.36
4.89




AATAACGATT













 236
 428
TTTACTGGTG
2
2
NC
NC
 87.08
 21.12
 7.01
 2.19
NA
NA
NA




AAATAACGAT













 237
 429
ATTTACTGGT
2
2
NC
NC
 85.92
 41.52
 3.99
 1.99
NA
NA
NA




GAAATAACGA













 238
 430
CATTTACTGGT
2
2
NC
NC
 90.43
 20.60
14.34
 1.10
NA
NA
NA




GAAATAACG













 241
 433
TGGCATTTACT
2
2
NC
NC
 75.60
 27.06
 6.23
 2.19
NA
NA
NA




GGTGAAATA













 242
 434
GTGGCATTTA
2
1
NC
NC
 74.62
 65.91
 5.68
 4.88
NA
NA
NA




CTGGTGAAAT













 248
 452
CTCCAAGTCC
3
3
NC
NC
 66.48
 35.79
 2.84
 6.63
NA
NA
NA




TGTACCGAGT













 249
 453
TCTCCAAGTC
3
3
NC
NC
 69.72
 35.31
 5.64
 2.28
NA
NA
NA




CTGTACCGAG













 250
 454
TTCTCCAAGT
2
3
NC
NC
 80.09
 15.49
 5.44
 1.27
NA
NA
NA




CCTGTACCGA













 254
 468
CATAAAACCTT
2
1
NC
NC
 72.14
 15.86
27.20
 0.86
NA
NA
NA




GGATTCTCC













 265
 480
CTCCTCGGAA
2
2
NC
NC
 81.92
 20.89
 5.26
 2.21
NA
NA
NA




ACCATAAAAC













 266
 481
TCTCCTCGGA
2
2
NC
NC
 84.83
 18.78
 3.51
 2.57
NA
NA
NA




AACCATAAAA













 267
 482
CTCTCCTCGG
2
2
NC
NC
 86.89
 12.64
 2.43
 1.22
NA
NA
NA




AAACCATAAA













 268
 483
CCTCTCCTCG
2
2
NC
NC
 81.76
 11.71
 7.00
 1.87
NA
NA
NA




GAAACCATAA













 269
 484
GCCTCTCCTC
2
1
NC
NC
 80.11
 25.50
 4.59
 1.33
NA
NA
NA




GGAAACCATA













 282
 537
TTTTCTTGGAC
2
2
NC
NC
 86.51
 14.81
 2.17
 2.33
NA
NA
NA




GAAATTTCC













 283
 538
TTTTTCTTGGA
2
1
NC
NC
 92.35
 17.43
 9.00
 1.47
NA
NA
NA




CGAAATTTC













 284
 539
GTTTTTCTTGG
2
2
NC
NC
 85.97
 63.49
 5.37
 2.09
NA
NA
NA




ACGAAATTT













 285
 540
TGTTTTTCTTG
2
2
NC
NC
 91.72
 30.14
 6.86
 5.01
NA
NA
NA




GACGAAATT













 286
 541
CTGTTTTTCTT
2
2
NC
NC
 78.31
 16.19
11.18
 2.23
NA
NA
NA




GGACGAAAT













 287
 542
CCTGTTTTTCT
3
1
NC
NC
 72.73
 19.56
 4.99
 2.01
NA
NA
NA




TGGACGAAA













 288
 543
TCCTGTTTTTC
2
2
NC
NC
 78.70
 23.15
 4.59
 1.40
NA
NA
NA




TTGGACGAA













 294
 552
TTTTCATTGTC
2
1
NC
NC
 88.62
 13.49
 2.05
 3.75
NA
NA
NA




CTGTTTTTC













 296
 554
AGTTTTCATTG
2
1
NC
NC
 85.86
 26.44
 6.19
 2.68
NA
NA
NA




TCCTGTTTT













 309
 567
ACAGTTTCAC
2
2
NC
NC
 89.08
 82.86
 5.13
 4.37
NA
NA
NA




AAAAGTTTTC













 316
 584
GGCTTTTCCA
2
1
NC
NC
 79.87
105.73
 3.27
 5.14
NA
NA
NA




CTCTGAAACA













 317
 585
GGGCTTTTCC
2
2
NC
NC
 75.58
156.14
 5.08
 9.80
NA
NA
NA




ACTCTGAAAC













 318
 586
AGGGCTTTTC
2
2
NC
NC
 66.99
 95.25
 5.64
11.62
NA
NA
NA




CACTCTGAAA













 319
 587
CAGGGCTTTT
2
2
NC
NC
 64.01
 27.51
 4.07
 0.76
NA
NA
NA




CCACTCTGAA













 320
 588
TCAGGGCTTT
2
2
NC
NC
 61.84
 36.06
14.35
 2.59
NA
NA
NA




TCCACTCTGA













 321
 589
TTCAGGGCTT
2
2
NC
NC
 56.27
 43.83
 9.73
 4.59
NA
NA
NA




TTCCACTCTG













 322
 590
TTTCAGGGCT
2
1
NC
NC
 69.47
 12.11
 2.21
 2.43
0.23
 0.99
4.72




TTTCCACTCT













 328
 613
CTAGTCACAT
3
3
NC
NC
 74.37
 15.78
 6.09
 6.37
NA
NA
NA




CAGCTTCACA













 329
 614
TCTAGTCACAT
2
2
NC
NC
 64.74
 30.36
 2.06
 3.30
NA
NA
NA




CAGCTTCAC













 366
 684
CCATGCATTT
2
2
NC
NC
 82.11
  9.26
14.94
 1.38
NA
NA
NA




CCTCCTTACA













 367
 685
TCCATGCATTT
2
2
NC
NC
 67.01
  8.69
 3.44
 1.52
0.21
 0.73
3.24




CCTCCTTAC













 368
 686
GTCCATGCAT
2
2
NC
NC
 72.03
 17.51
 4.65
 2.55
0.13
 0.42
3.75




TTCCTCCTTA













 370
 688
GGGTCCATGC
2
2
NC
NC
 55.45
 95.20
 4.57
 3.51
NA
NA
NA




ATTTCCTCCT













 376
 694
AGTCTAGGGT
2
2
NC
NC
 68.73
 71.63
 4.31
 5.94
NA
NA
NA




CCATGCATTT













 377
 695
CAGTCTAGGG
2
3
NC
NC
 65.93
 29.22
 2.48
 1.68
NA
NA
NA




TCCATGCATT













 378
 696
CCAGTCTAGG
2
2
NC
NC
 68.89
 43.82
12.06
 2.01
NA
NA
NA




GTCCATGCAT













 379
 697
TCCAGTCTAG
2
2
NC
NC
 69.40
 17.13
 6.12
 4.20
0.04
 0.14
0.69




GGTCCATGCA













 381
 700
AACTCCAGTC
2
2
NC
NC
 70.96
 25.76
 2.51
 2.83
NA
NA
NA




TAGGGTCCAT













 382
 701
AAACTCCAGT
2
2
NC
NC
 65.58
 25.73
 2.58
 2.89
NA
NA
NA




CTAGGGTCCA













 383
 702
CAAACTCCAG
2
2
NC
NC
 67.74
 20.58
 1.66
 3.61
NA
NA
NA




TCTAGGGTCC













 384
 703
TCAAACTCCA
2
2
NC
NC
 68.97
 17.75
 1.89
 5.81
0.04
 0.16
0.89




GTCTAGGGTC













 385
 704
CTCAAACTCC
2
2
NC
NC
 64.06
 17.11
 0.68
 4.06
0.01
 0.06
0.44




AGTCTAGGGT













 386
 705
TCTCAAACTC
2
2
NC
NC
 59.61
 27.43
 2.42
 1.28
NA
NA
NA




CAGTCTAGGG













 387
 706
TTCTCAAACTC
2
2
NC
NC
 69.04
 20.37
 4.66
 1.93
NA
NA
NA




CAGTCTAGG













 388
 707
CTTCTCAAACT
2
2
NC
NC
 62.05
 16.91
 6.78
 1.92
0.39
 1.16
8.90




CCAGTCTAG













 389
 708
CCTTCTCAAA
2
2
NC
NC
 71.55
 15.14
 2.65
 3.37
0.34
 1.31
6.20




CTCCAGTCTA













 390
 709
ACCTTCTCAAA
2
2
NC
NC
 71.92
 25.78
 4.24
 1.45
NA
NA
NA




CTCCAGTCT













 391
 710
AACCTTCTCAA
2
2
NC
NC
 71.82
 13.89
 1.28
 2.30
0.07
 0.31
3.27




ACTCCAGTC













 392
 711
TAACCTTCTCA
2
1
NC
NC
 74.03
 11.74
 5.34
 1.85
0.15
 0.84
5.10




AACTCCAGT













 393
 712
CTAACCTTCTC
2
2
NC
NC
 79.92
 11.57
 3.50
 1.51
NA
NA
NA




AAACTCCAG













 394
 713
CCTAACCTTCT
2
1
NC
NC
 79.57
 11.43
 4.85
 2.23
NA
NA
NA




CAAACTCCA













 395
 714
GCCTAACCTT
2
2
NC
NC
 64.28
 20.03
15.77
 3.63
0.12
 0.45
3.27




CTCAAACTCC













 396
 715
TGCCTAACCT
2
2
NC
NC
 96.06
 22.74
15.84
 1.57
NA
NA
NA




TCTCAAACTC













 397
 716
CTGCCTAACC
2
1
NC
NC
 85.17
 21.36
 4.27
 3.49
NA
NA
NA




TTCTCAAACT













 398
 717
TCTGCCTAAC
2
1
NC
NC
 88.59
 27.39
 1.59
 4.98
NA
NA
NA




CTTCTCAAAC













 399
 718
CTCTGCCTAA
2
2
NC
NC
 78.68
 14.58
 9.47
 4.65
NA
NA
NA




CCTTCTCAAA













 487
 821
ACATACGTCTT
2
2
NC
NC
 70.72
 35.34
 6.48
 2.24
NA
NA
NA




TGGTTTTAG













 488
 822
AACATACGTC
2
2
NC
NC
 83.56
 35.11
 2.57
 4.54
NA
NA
NA




TTTGGTTTTA













 489
 823
GAACATACGT
2
2
NC
NC
 81.77
 57.14
 4.53
10.08
NA
NA
NA




CTTTGGTTTT













 511
 845
TCCATAAATTT
2
1
NC
NC
 96.45
 23.33
 3.53
 3.81
NA
NA
NA




GACAAAATC













 514
 850
CCCAATCCAT
2
2
NC
NC
 86.56
 11.43
 6.66
 2.22
NA
NA
NA




AAATTTGACA













 515
 851
TCCCAATCCA
2
2
NC
NC
 60.68
 12.61
14.38
 1.93
0.25
 0.95
4.36




TAAATTTGAC













 516
 852
TTCCCAATCC
2
1
NC
NC
 75.59
 15.97
 2.48
 1.98
NA
NA
NA




ATAAATTTGA













 517
 853
TTTCCCAATCC
2
1
NC
NC
 87.53
 18.38
 2.99
 4.84
NA
NA
NA




ATAAATTTG













 520
 856
GACTTTCCCA
2
2
NC
NC
 80.81
 39.33
 2.85
 2.22
NA
NA
NA




ATCCATAAAT













 521
 857
GGACTTTCCC
2
2
NC
NC
 71.46
112.84
 8.75
11.34
NA
NA
NA




AATCCATAAA













 566
 955
AACAAAAACT
1
2
1
2
 91.61
 33.40
 4.65
 2.33
NA
NA
NA




GCATATTCTT













 567
 956
AAACAAAAACT
1
1
1
2
 94.58
 27.27
 4.20
 1.24
NA
NA
NA




GCATATTCT













 568
 957
CAAACAAAAA
2
2
2
1
 89.77
 24.51
 3.48
 2.37
NA
NA
NA




CTGCATATTC













 569
 958
ACAAACAAAA
1
1
1
2
 99.32
 53.98
 6.18
 3.61
NA
NA
NA




ACTGCATATT













 573
 962
GTTCACAAAC
1
2
1
2
 68.74
 37.94
 5.84
 2.62
NA
NA
NA




AAAAACTGCA













 591
 991
TGTAGCTTTGT
2
2
NC
NC
 71.77
 21.72
 4.41
 2.37
NA
NA
NA




CCTTAAAAC













 593
 993
TATGTAGCTTT
2
2
NC
NC
 74.13
 15.76
 5.06
 5.42
NA
NA
NA




GTCCTTAAA













 594
 994
TTATGTAGCTT
2
2
NC
NC
 74.46
 11.80
 4.57
 6.26
0.14
 0.49
2.69




TGTCCTTAA













 596
 996
GTTTATGTAG
2
2
NC
NC
 80.57
 93.92
 9.82
 4.48
NA
NA
NA




CTTTGTCCTT













 598
 998
GAGTTTATGTA
2
2
NC
NC
 71.72
 57.48
 4.63
 6.60
NA
NA
NA




GCTTTGTCC













 599
 999
TGAGTTTATGT
2
2
NC
NC
 74.89
 27.84
 3.23
 1.82
NA
NA
NA




AGCTTTGTC













 600
1000
ATGAGTTTATG
2
1
NC
NC
 78.20
 51.14
 3.45
 1.92
NA
NA
NA




TAGCTTTGT













 602
1002
CAATGAGTTTA
2
2
NC
NC
 75.22
 13.63
 4.08
 0.86
NA
NA
NA




TGTAGCTTT













 666
1132
CACTGCACAT
2
2
NC
NC
 86.38
 19.28
 5.73
 2.62
NA
NA
NA




TAATTACATA













 667
1133
GCACTGCACA
2
1
NC
NC
 83.35
 96.52
 4.00
 4.57
NA
NA
NA




TTAATTACAT













 669
1135
TGGCACTGCA
2
2
NC
NC
 88.48
 15.35
20.54
 2.58
NA
NA
NA




CATTAATTAC













 670
1136
TTGGCACTGC
2
2
NC
NC
 80.34
 19.46
 4.68
 0.91
NA
NA
NA




ACATTAATTA













 671
1137
ATTGGCACTG
2
2
NC
NC
 86.17
 51.51
 4.80
 2.16
NA
NA
NA




CACATTAATT













 701
1180
ATCAGAGTTTT
2
2
2
2
 69.02
 35.95
 2.06
 3.49
NA
NA
NA




GGCTGGCTC













 702
1181
AATCAGAGTTT
2
2
2
2
 63.90
 39.92
 1.63
 4.52
NA
NA
NA




TGGCTGGCT













 703
1182
CAATCAGAGT
2
2
2
2
 65.26
 26.28
 2.95
 3.50
0.07
 0.23
ND




TTTGGCTGGC













 704
1183
TCAATCAGAG
2
2
2
2
 71.61
 34.85
 3.07
 2.52
NA
NA
NA




TTTTGGCTGG













 719
1204
AGAGTGTCCC
2
2
NC
NC
 64.55
148.30
 1.97
 6.08
NA
NA
NA




AGTTCTGAAA













 720
1205
GAGAGTGTCC
2
2
NC
NC
 66.32
 98.81
 6.09
 5.02
NA
NA
NA




CAGTTCTGAA













 721
1206
AGAGAGTGTC
2
2
NC
NC
 62.41
 75.95
 1.14
25.39
NA
NA
NA




CCAGTTCTGA













 728
1213
CAAAACAAGA
2
1
NC
NC
 76.06
 13.81
12.21
 1.67
NA
NA
NA




GAGTGTCCCA













 749
1234
ATTTTCACTCC
2
1
NC
NC
 81.05
 40.09
 3.41
 4.01
NA
NA
NA




TTCCTGAAT













 750
1235
CATTTTCACTC
2
2
NC
NC
 76.24
 14.95
 6.33
 3.38
NA
NA
NA




CTTCCTGAA













 751
1236
ACATTTTCACT
2
2
NC
NC
 69.48
 15.51
 9.75
 1.75
0.39
 1.41
ND




CCTTCCTGA













 752
1237
AACATTTTCAC
2
2
NC
NC
 70.68
 13.87
 2.65
 1.57
0.39
 1.07
8.02




TCCTTCCTG













 753
1238
AAACATTTTCA
2
2
NC
NC
 75.55
 11.15
 3.73
 1.12
0.57
 1.84
7.69




CTCCTTCCT













 755
1240
AAAAACATTTT
2
1
NC
NC
 79.25
 13.25
 6.99
 1.87
NA
NA
NA




CACTCCTTC













 757
1242
TTAAAAACATT
2
1
NC
NC
 82.65
 17.72
 6.24
 2.56
NA
NA
NA




TTCACTCCT













 784
1290
ATTCCTTAATA
2
2
NC
NC
 78.04
 15.48
 5.23
 0.95
NA
NA
NA




TCCTCACCT













 786
1292
AAATTCCTTAA
2
2
NC
NC
 81.35
 17.87
 5.88
 2.23
NA
NA
NA




TATCCTCAC













 787
1293
TAAATTCCTTA
2
2
NC
NC
 83.49
 23.29
 3.85
 4.04
NA
NA
NA




ATATCCTCA













 788
1294
CTAAATTCCTT
2
2
NC
NC
 77.48
 26.26
 3.28
 2.35
NA
NA
NA




AATATCCTC













 790
1296
CACTAAATTCC
2
2
NC
NC
 82.57
 31.46
 2.87
 2.53
NA
NA
NA




TTAATATCC













 828
1354
TCATCGGAAG
2
3
NC
NC
 67.51
 11.20
 3.20
 1.82
0.22
 0.77
4.29




TCACACGCTT













 829
1355
CTCATCGGAA
2
2
NC
NC
 68.94
 15.81
 3.19
 1.49
0.19
 0.67
3.18




GTCACACGCT













 830
1356
TCTCATCGGA
2
2
NC
NC
 73.66
 14.18
 2.63
 3.48
0.17
 0.69
3.43




AGTCACACGC













 959
1539
GACCACCTGA
2
2
NC
NC
 69.12
 47.95
 6.78
11.48
NA
NA
NA




TTCATAAATG













 960
1540
GGACCACCTG
2
2
NC
NC
 79.02
206.94
 4.65
56.26
NA
NA
NA




ATTCATAAAT













 961
1542
CTGGACCACC
2
2
NC
NC
 79.65
 55.49
 7.13
 4.02
NA
NA
NA




TGATTCATAA













 964
1563
GCTCTGTCAT
2
2
NC
NC
 77.42
 70.22
 1.40
 2.14
NA
NA
NA




TTTGCTATGG













 965
1564
GGCTCTGTCA
2
2
NC
NC
 78.46
 81.64
 2.58
 1.06
NA
NA
NA




TTTTGCTATG













 967
1566
ATGGCTCTGT
2
2
NC
NC
 77.47
 50.42
 1.09
 1.68
NA
NA
NA




CATTTTGCTA













 968
1567
GATGGCTCTG
2
2
NC
NC
 75.71
104.49
 3.59
15.27
NA
NA
NA




TCATTTTGCT













 971
1570
AAAGATGGCT
2
2
NC
NC
 85.42
 51.21
 4.94
 0.57
NA
NA
NA




CTGTCATTTT













 972
1571
TAAAGATGGC
2
2
NC
NC
 71.44
 16.26
18.64
 2.69
NA
NA
NA




TCTGTCATTT













 973
1572
GTAAAGATGG
2
2
NC
NC
 85.49
 84.58
 2.18
10.18
NA
NA
NA




CTCTGTCATT













 974
1573
TGTAAAGATG
2
2
NC
NC
 87.95
 17.81
 3.14
 1.82
NA
NA
NA




GCTCTGTCAT













 975
1574
TTGTAAAGAT
2
2
NC
NC
 88.69
 14.78
 0.99
 1.26
NA
NA
NA




GGCTCTGTCA













 976
1575
TTTGTAAAGAT
2
2
NC
NC
 86.84
 14.94
 1.99
 2.71
NA
NA
NA




GGCTCTGTC













 977
1576
TTTTGTAAAGA
2
2
NC
NC
 90.05
 17.51
 1.81
 3.62
NA
NA
NA




TGGCTCTGT













 986
1588
GAGCTGTCTT
2
2
NC
NC
 80.81
130.73
 2.60
 8.33
NA
NA
NA




TGTTTTGTAA













 987
1589
AGAGCTGTCT
2
2
NC
NC
 78.87
 83.79
 2.43
 6.83
NA
NA
NA




TTGTTTTGTA













1002
1626
CAATTGTCTCT
2
2
NC
NC
 77.84
 12.02
 5.97
 2.15
NA
NA
NA




TGTTCTAAC













1003
1627
ACAATTGTCTC
2
1
NC
NC
 86.71
 66.67
 3.79
 3.42
NA
NA
NA




TTGTTCTAA













1004
1628
TACAATTGTCT
2
2
NC
NC
 77.06
 24.92
 4.21
 2.75
NA
NA
NA




CTTGTTCTA













1005
1629
CTACAATTGTC
2
2
NC
NC
 71.10
 17.61
 3.81
 3.54
0.14
 0.48
2.52




TCTTGTTCT













1006
1630
GCTACAATTG
2
2
NC
NC
 75.21
164.15
 3.53
 7.38
NA
NA
NA




TCTCTTGTTC













1007
1631
TGCTACAATT
2
2
NC
NC
 68.01
 43.68
 5.57
 3.18
NA
NA
NA




GTCTCTTGTT













1008
1633
GATGCTACAA
2
2
NC
NC
 76.75
157.84
 4.28
14.35
NA
NA
NA




TTGTCTCTTG













1009
1634
TGATGCTACA
2
2
NC
NC
 93.24
 19.27
32.66
 1.18
NA
NA
NA




ATTGTCTCTT













1010
1635
CTGATGCTAC
2
2
NC
NC
 79.27
 34.33
 2.33
 1.43
NA
NA
NA




AATTGTCTCT













1011
1636
TCTGATGCTA
2
1
NC
NC
 74.33
 26.98
 3.75
 2.56
NA
NA
NA




CAATTGTCTC













1012
1637
TTCTGATGCTA
2
1
NC
NC
 74.47
 19.62
 3.96
 6.13
NA
NA
NA




CAATTGTCT













1013
1638
CTTCTGATGC
2
2
NC
NC
 76.90
 39.77
 1.15
 4.56
NA
NA
NA




TACAATTGTC













1014
1639
GCTTCTGATG
2
2
NC
NC
 72.48
113.69
 5.55
 8.85
NA
NA
NA




CTACAATTGT













1086
1742
TGGTGTCTGA
2
2
NC
NC
 75.01
 41.17
 4.46
 5.94
NA
NA
NA




AAAGGGCTTA













1110
1785
CTTTCCATATT
2
2
NC
NC
 85.18
 26.06
 2.72
 2.17
NA
NA
NA




TCTAGATCC













1111
1786
TCTTTCCATAT
2
2
NC
NC
 78.80
 27.68
 3.78
 2.79
NA
NA
NA




TTCTAGATC













1121
1796
AGTAGTACTTT
2
2
NC
NC
 80.48
 64.18
 2.34
 2.76
NA
NA
NA




CTTTCCATA













1126
1801
TTAACAGTAGT
2
2
NC
NC
 84.35
 22.72
 2.03
 2.88
NA
NA
NA




ACTTTCTTT













1127
1802
ATTAACAGTA
2
2
NC
NC
 55.07
 79.59
34.67
 5.19
NA
NA
NA




GTACTTTCTT













1147
1848
GTTGATTCTG
2
2
NC
NC
 69.33
128.16
 3.03
 3.50
NA
NA
NA




AATTCTATTA













1148
1849
GGTTGATTCT
2
2
NC
NC
 65.93
188.28
 4.48
11.46
NA
NA
NA




GAATTCTATT













1149
1850
TGGTTGATTCT
2
2
NC
NC
 69.18
 44.46
 4.72
 7.24
NA
NA
NA




GAATTCTAT













1172
1873
TCAGTAGCAT
2
1
NC
NC
 74.20
 20.17
 5.52
 2.86
NA
NA
NA




CTTTAAATCT













1175
1876
ACTTCAGTAG
2
2
NC
NC
 78.49
123.59
 4.03
 9.36
NA
NA
NA




CATCTTTAAA













1176
1877
CACTTCAGTA
2
1
NC
NC
 75.25
 11.77
 5.40
 1.32
0.69
 2.09
8.02




GCATCTTTAA













1177
1878
CCACTTCAGT
2
2
NC
NC
 68.95
  8.07
 4.38
 0.39
0.14
 0.58
3.80




AGCATCTTTA













1178
1879
CCCACTTCAG
2
2
NC
NC
 65.87
  8.11
 2.09
 1.80
0.10
 0.39
1.99




TAGCATCTTT













1179
1880
TCCCACTTCA
2
2
NC
NC
 67.23
 10.92
 2.21
 3.12
0.15
 0.54
2.51




GTAGCATCTT













1180
1881
ATCCCACTTC
2
2
NC
NC
 67.00
 18.94
 2.11
 2.86
0.04
 0.28
2.14




AGTAGCATCT













1181
1882
CATCCCACTT
2
2
NC
NC
 71.78
 20.23
 2.13
 1.55
NA
NA
NA




CAGTAGCATC













1182
1883
GCATCCCACT
2
2
NC
NC
 68.68
114.92
 2.54
10.08
NA
NA
NA




TCAGTAGCAT













1183
1884
GGCATCCCAC
2
2
NC
NC
 72.93
113.70
11.52
21.89
NA
NA
NA




TTCAGTAGCA













1184
1885
TGGCATCCCA
2
2
NC
NC
 69.63
 69.40
 4.84
 3.66
NA
NA
NA




CTTCAGTAGC













1185
1886
CTGGCATCCC
2
2
NC
NC
 72.14
 45.78
 4.09
 2.59
NA
NA
NA




ACTTCAGTAG













1186
1887
GCTGGCATCC
2
2
NC
NC
 69.71
 65.90
 4.70
 2.86
NA
NA
NA




CACTTCAGTA













1260
2029
TGAGTTATAAA
2
1
2
NC
 68.42
 47.42
 4.50
 2.18
NA
NA
NA




GCCAGTGGA













1261
2030
ATGAGTTATAA
2
2
2
NC
 72.80
 57.12
 0.99
 3.07
NA
NA
NA




AGCCAGTGG













1270
2065
GTTTCAGTTG
2
2
NC
NC
 78.59
106.70
 2.25
29.03
NA
NA
NA




ATTTAGTTTT













1271
2066
TGTTTCAGTTG
2
1
NC
NC
 82.53
 32.40
 3.39
 4.98
NA
NA
NA




ATTTAGTTT













1272
2067
CTGTTTCAGTT
2
2
NC
NC
 76.30
 24.47
 2.77
 5.14
NA
NA
NA




GATTTAGTT













1273
2068
TCTGTTTCAGT
2
2
NC
NC
 68.38
 27.94
14.27
 2.36
NA
NA
NA




TGATTTAGT













1274
2069
TTCTGTTTCAG
2
1
2
NC
 76.46
 12.90
 6.14
 0.77
0.38
 1.13
4.72




TTGATTTAG













1275
2070
GTTCTGTTTCA
2
2
2
NC
 66.45
118.07
 4.03
 5.40
NA
NA
NA




GTTGATTTA













1276
2071
TGTTCTGTTTC
1
1
1
NC
 65.68
 30.63
 2.73
 0.37
NA
NA
NA




AGTTGATTT













1277
2072
ATGTTCTGTTT
1
1
2
NC
 65.66
 34.51
 2.06
 1.78
NA
NA
NA




CAGTTGATT













1297
2118
TTTCTTGGGC
2
1
NC
NC
 61.03
 18.52
 6.51
 2.34
0.05
 0.31
2.96




ACGTGTGGGA













1300
2122
AATGTTTCTTG
2
2
NC
NC
 60.38
 53.85
 2.71
 9.00
NA
NA
NA




GGCACGTGT













1302
2124
CAAATGTTTCT
2
2
NC
NC
 50.98
 16.06
15.03
 2.05
0.14
 0.41
2.23




TGGGCACGT













1310
2138
ACGTGTTCTAT
2
2
NC
NC
 73.53
 79.81
 8.72
 2.83
NA
NA
NA




TTCCAAATG













1387
2259
TAGGTTCATTC
2
2
NC
NC
 63.57
 12.33
 1.67
 1.91
0.03
 0.14
1.04




TCTAGCCCA













1388
2260
GTAGGTTCAT
2
2
NC
NC
 69.80
 48.38
 3.08
 0.78
NA
NA
NA




TCTCTAGCCC













1389
2261
TGTAGGTTCA
2
2
NC
NC
 69.61
 45.78
 2.74
 9.52
NA
NA
NA




TTCTCTAGCC













1390
2262
CTGTAGGTTC
2
2
NC
NC
 71.89
 31.39
 7.34
 2.62
NA
NA
NA




ATTCTCTAGC













1391
2263
GCTGTAGGTT
2
2
NC
NC
 73.44
130.40
 5.21
13.47
NA
NA
NA




CATTCTCTAG













1392
2264
TGCTGTAGGT
2
2
NC
NC
 68.83
 29.39
10.26
 1.58
NA
NA
NA




TCATTCTCTA













1393
2265
TTGCTGTAGG
2
2
NC
NC
 64.56
 18.57
 5.04
 1.50
0.05
 0.23
2.96




TTCATTCTCT













1394
2266
GTTGCTGTAG
2
2
NC
NC
 70.73
117.81
5.81
15.37
NA
NA
NA




GTTCATTCTC













1395
2267
AGTTGCTGTA
2
2
NC
NC
 70.69
 95.10
 3.97
10.79
NA
NA
NA




GGTTCATTCT













1396
2268
AAGTTGCTGT
2
2
NC
NC
 69.93
 42.84
 2.50
 9.05
NA
NA
NA




AGGTTCATTC













1461
2390
ATCTGTTTTCC
2
2
NC
NC
 78.96
 23.24
 5.39
 2.08
NA
NA
NA




TACTATCAT













1462
2391
TATCTGTTTTC
2
2
NC
NC
 73.74
 13.91
 4.95
 2.57
NA
NA
NA




CTACTATCA













1463
2392
TTATCTGTTTT
2
2
NC
NC
 61.32
 12.11
19.41
 2.41
0.54
 1.28
3.42




CCTACTATC













1473
2424
TACGGACGAT
2
3
NC
NC
 64.86
 42.49
 2.84
 8.14
NA
NA
NA




TGGTTTGGAG













1474
2425
TTACGGACGA
3
3
NC
NC
 74.71
 28.87
 4.48
 1.96
NA
NA
NA




TTGGTTTGGA













1482
2433
TTAGCTTCTTA
2
2
NC
NC
 73.20
 16.43
 1.80
 2.24
NA
NA
NA




CGGACGATT













1485
2436
AGCTTAGCTT
2
3
NC
NC
 67.08
 81.14
 3.07
 4.19
NA
NA
NA




CTTACGGACG













1486
2448
GCTGTGAACT
3
3
NC
NC
 68.69
128.36
 1.70
 2.50
NA
NA
NA




CAAGCTTAGC













1487
2449
AGCTGTGAAC
2
2
NC
NC
 70.69
 62.48
 4.99
 4.34
NA
NA
NA




TCAAGCTTAG













1490
2453
TCCTAGCTGT
2
2
NC
NC
 70.82
 39.13
 4.00
 3.11
NA
NA
NA




GAACTCAAGC













1491
2454
ATCCTAGCTG
2
2
NC
NC
 73.02
 39.97
 2.91
 6.24
NA
NA
NA




TGAACTCAAG













1492
2455
GATCCTAGCT
2
2
NC
NC
 70.55
 60.81
 1.82
 6.58
NA
NA
NA




GTGAACTCAA













1493
2456
AGATCCTAGC
2
2
NC
NC
 71.35
 60.70
 3.51
 5.37
NA
NA
NA




TGTGAACTCA













1494
2457
AAGATCCTAG
2
2
NC
NC
 72.72
 51.80
 3.01
 3.51
NA
NA
NA




CTGTGAACTC













1495
2458
AAAGATCCTA
2
2
NC
NC
 79.93
 49.47
 2.18
 1.51
NA
NA
NA




GCTGTGAACT













1498
2461
TCTAAAGATC
2
2
NC
NC
 74.47
 23.80
 5.24
 0.46
NA
NA
NA




CTAGCTGTGA













1499
2462
CTCTAAAGAT
2
2
NC
NC
 69.91
 27.63
 6.82
 2.73
NA
NA
NA




CCTAGCTGTG













1500
2463
TCTCTAAAGAT
2
2
NC
NC
 75.81
 26.67
 2.37
 1.97
NA
NA
NA




CCTAGCTGT













1501
2464
TTCTCTAAAGA
2
2
NC
NC
 78.09
 38.79
 2.41
 3.40
NA
NA
NA




TCCTAGCTG













1502
2465
CTTCTCTAAAG
2
2
NC
NC
 68.81
 22.90
 6.78
 1.92
NA
NA
NA




ATCCTAGCT













1505
2468
AAACTTCTCTA
2
2
NC
NC
 86.60
 24.26
 4.80
 1.82
NA
NA
NA




AAGATCCTA













1508
2471
CTTAAACTTCT
2
2
NC
NC
 84.65
 17.74
 3.17
 2.47
NA
NA
NA




CTAAAGATC













1510
2473
CTCTTAAACTT
2
1
1
2
 87.47
 13.20
 6.48
 0.80
NA
NA
NA




CTCTAAAGA













1511
2474
CCTCTTAAACT
1
1
2
2
 73.37
 15.35
 5.97
 2.14
0.16
 0.81
4.45




TCTCTAAAG













1512
2475
GCCTCTTAAA
2
1
2
2
 72.85
 31.27
 2.89
 1.55
NA
NA
NA




CTTCTCTAAA













1513
2476
TGCCTCTTAAA
2
1
1
2
 79.53
 42.74
13.31
 3.65
NA
NA
NA




CTTCTCTAA













1514
2477
TTGCCTCTTAA
2
1
NC
NC
 73.71
 11.85
 2.24
 1.40
0.02
 0.38
5.13




ACTTCTCTA













1516
2479
TATTGCCTCTT
2
2
NC
NC
 79.30
 16.65
 3.72
 3.94
NA
NA
NA




AAACTTCTC













1517
2480
ATATTGCCTCT
2
2
NC
NC
 76.59
 29.78
 5.84
 1.81
NA
NA
NA




TAAACTTCT













1518
2481
CATATTGCCT
2
2
NC
NC
 86.67
 17.75
 3.02
 3.06
NA
NA
NA




CTTAAACTTC













1525
2488
ACCTTCCCAT
2
2
NC
NC
 72.28
 28.62
 1.91
 3.82
NA
NA
NA




ATTGCCTCTT













1526
2489
AACCTTCCCA
2
2
NC
NC
 70.59
 19.06
 1.32
 7.43
NA
NA
NA




TATTGCCTCT













1529
2492
TTCAACCTTCC
2
2
NC
NC
 74.01
 13.77
 5.21
 2.28
NA
NA
NA




CATATTGCC













1530
2493
TTTCAACCTTC
2
2
NC
NC
 81.55
 13.64
 6.64
 1.18
NA
NA
NA




CCATATTGC













1546
2519
TTCCTCTACTT
2
2
NC
NC
 84.26
 19.50
 4.19
 5.90
NA
NA
NA




CTGTATCCA













1547
2520
TTTCCTCTACT
2
2
NC
NC
 85.00
 20.32
 5.40
 3.25
NA
NA
NA




TCTGTATCC













1572
2545
CTGAGATTGG
2
3
NC
NC
 68.27
 28.46
 7.17
 0.96
NA
NA
NA




TAGTGACTCC













1573
2546
ACTGAGATTG
2
3
NC
NC
 69.11
 52.86
 6.10
 3.94
NA
NA
NA




GTAGTGACTC













1574
2547
GACTGAGATT
2
2
NC
NC
 78.60
 50.74
 8.80
 2.24
NA
NA
NA




GGTAGTGACT













1595
2568
GAATGTCAGG
2
2
NC
NC
 78.06
 56.47
 5.71 
10.65
NA
NA
NA




TTCAACTTGA













1596
2569
AGAATGTCAG
2
2
NC
NC
 77.01
 48.82
 4.77
 4.06
NA
NA
NA




GTTCAACTTG













1597
2570
CAGAATGTCA
2
2
NC
NC
 74.20
 17.39
 4.52
 1.90
NA
NA
NA




GGTTCAACTT













1721
2730
TAGGCATCTG
2
2
NC
NC
 73.06
 21.72
 4.85
 2.93
NA
NA
NA




TTGTTCTAAA













1722
2731
CTAGGCATCT
2
2
NC
NC
 68.46
 20.27
 3.55
 1.95
NA
NA
NA




GTTGTTCTAA













1723
2732
ACTAGGCATC
2
3
NC
NC
 75.00
 69.45
 1.93
 7.25
NA
NA
NA




TGTTGTTCTA













1724
2733
AACTAGGCAT
2
2
NC
NC
 76.27
 33.88
 5.64
 1.90
NA
NA
NA




CTGTTGTTCT













1725
2734
AAACTAGGCA
2
2
NC
NC
 70.43
 26.81
24.22
 2.05
NA
NA
NA




TCTGTTGTTC













1726
2735
CAAACTAGGC
2
1
NC
NC
 77.29
 14.21
 1.87
 1.23
NA
NA
NA




ATCTGTTGTT













1727
2736
TCAAACTAGG
2
2
NC
NC
 80.67
 14.87
 3.79
 1.40
NA
NA
NA




CATCTGTTGT













1744
2764
AACTCCTTCA
2
2
NC
NC
 66.84
 32.00
 3.65
 2.80
NA
NA
NA




GGGTCATAGG













1745
2765
TAACTCCTTCA
2
2
NC
NC
 74.04
  9.12
 3.74
 1.45
0.34
 1.20
4.67




GGGTCATAG













1746
2766
ATAACTCCTTC
2
2
NC
NC
 86.21
 14.10
 4.66
 3.64
NA
NA
NA




AGGGTCATA













1747
2767
GATAACTCCTT
2
2
NC
NC
 73.17
 71.61
 4.49
 4.91
NA
NA
NA




CAGGGTCAT













1748
2768
AGATAACTCC
2
2
NC
NC
 76.10
 58.88
 4.53
 4.26
NA
NA
NA




TTCAGGGTCA













1786
2818
GCTAGTGATT
2
2
NC
NC
 77.18
 61.81
 6.95
 4.16
NA
NA
NA




CAGATGACTT













1797
2829
ATAATTTAGAG
2
2
NC
NC
 94.05
 34.62
 8.58
 2.35
NA
NA
NA




GCTAGTGAT













1799
2831
GGATAATTTA
2
2
NC
NC
 75.22
 65.82
 7.97
 3.21
NA
NA
NA




GAGGCTAGTG













1800
2832
TGGATAATTTA
3
3
NC
NC
 79.60
 28.73
 5.81
 2.69
NA
NA
NA




GAGGCTAGT













1801
2833
CTGGATAATTT
2
2
NC
NC
 77.03
 22.93
 6.10
 1.34
NA
NA
NA




AGAGGCTAG













1802
2834
TCTGGATAATT
2
2
NC
NC
 78.17
 49.18
 6.44
 2.39
NA
NA
NA




TAGAGGCTA













1824
2856
TTTCTCTTTCG
3
2
NC
NC
 79.87
  5.65
 7.71
 0.67
0.43
 1.29
4.72




GAACCCTTC













1825
2857
GTTTCTCTTTC
2
2
NC
NC
 75.83
 33.27
 3.68
 1.25
NA
NA
NA




GGAACCCTT













1826
2858
AGTTTCTCTTT
2
2
NC
NC
 76.81
 34.76
 5.54
 3.44
NA
NA
NA




CGGAACCCT













1831
2863
GTTTGAGTTTC
2
2
NC
NC
 67.51
 72.93
 1.34
 4.78
NA
NA
NA




TCTTTCGGA













1832
2864
TGTTTGAGTTT
2
2
NC
NC
 66.75
 29.27
 2.81
 1.55
NA
NA
NA




CTCTTTCGG













1835
2867
CATTGTTTGA
2
2
NC
NC
 75.22
 20.20
 5.27
 3.46
NA
NA
NA




GTTTCTCTTT













1836
2868
CCATTGTTTGA
2
2
NC
NC
 71.49
 16.43
 3.31
 0.78
NA
NA
NA




GTTTCTCTT













1859
2891
TTCATTAAAAC
2
2
NC
NC
 91.66
 16.04
 2.16
 1.84
NA
NA
NA




GACTCATCA













1860
2892
GTTCATTAAAA
2
2
NC
NC
 77.55
 62.84
 1.74
 4.67
NA
NA
NA




CGACTCATC













1861
2893
AGTTCATTAAA
2
2
NC
NC
 69.23
 66.80
27.11
 3.31
NA
NA
NA




ACGACTCAT













1862
2894
AAGTTCATTAA
2
2
NC
NC
 84.65
 51.64
 7.39
 1.43
NA
NA
NA




AACGACTCA













1865
2897
TGGAAGTTCA
3
3
NC
NC
 88.69
 46.47
35.27
 8.33
NA
NA
NA




TTAAAACGAC













1866
2898
TTGGAAGTTC
2
2
NC
NC
 71.25
 26.95
 4.16
 3.49
NA
NA
NA




ATTAAAACGA













1869
2902
GAATTTGGAA
2
2
NC
NC
 86.52
 58.00
 3.96
 4.41
NA
NA
NA




GTTCATTAAA













1870
2903
TGAATTTGGA
2
2
NC
NC
 90.65
 27.21
 4.10
 5.36
NA
NA
NA




AGTTCATTAA













1871
2904
CTGAATTTGG
2
2
NC
NC
 75.35
 14.63
 1.81
 2.65
NA
NA
NA




AAGTTCATTA













1872
2905
TCTGAATTTG
2
1
NC
NC
 84.12
 14.91
23.88
 3.23
NA
NA
NA




GAAGTTCATT













1873
2906
ATCTGAATTTG
2
2
NC
NC
 71.15
 36.46
 4.06
 2.57
NA
NA
NA




GAAGTTCAT













1875
2908
GAATCTGAATT
2
2
NC
NC
 70.90
 45.27
 2.36
 2.44
NA
NA
NA




TGGAAGTTC













1878
2911
CTGGAATCTG
2
2
NC
NC
 68.83
 25.87
 1.50
 1.22
NA
NA
NA




AATTTGGAAG













1879
2912
ACTGGAATCT
2
2
NC
NC
 62.97
111.52
22.17
 6.89
NA
NA
NA




GAATTTGGAA













1880
2913
TACTGGAATC
2
2
NC
NC
 67.96
 25.92
 4.97
 1.56
NA
NA
NA




TGAATTTGGA













1881
2914
CTACTGGAAT
2
2
NC
NC
 68.54
 17.06
 2.52
 1.28
0.22
 0.86
4.29




CTGAATTTGG













1882
2915
CCTACTGGAA
2
2
NC
NC
 73.57
 27.67
 6.55
 1.77
NA
NA
NA




TCTGAATTTG













1892
2957
ACAAAAATCTT
2
2
NC
NC
 89.43
 78.75
 5.59
 1.97
NA
NA
NA




GTGTTAACA













1906
3003
GGATGACACC
2
3
NC
NC
 70.86
222.24
 1.88
14.27
NA
NA
NA




ATTCTCTGTT













1907
3004
GGGATGACAC
2
2
NC
NC
 76.49
280.50
 3.49
 7.46
NA
NA
NA




CATTCTCTGT













1908
3005
TGGGATGACA
2
2
NC
NC
 68.03
 76.92
 5.51
 2.43
NA
NA
NA




CCATTCTCTG













1910
3007
GTTGGGATGA
2
2
NC
NC
 73.32
 93.25
 5.01
10.64
NA
NA
NA




CACCATTCTC













1911
3008
TGTTGGGATG
2
2
NC
NC
 76.23
 48.47
 6.77
 1.44
NA
NA
NA




ACACCATTCT













1912
3009
ATGTTGGGAT
2
2
NC
NC
 72.48
 66.65
 3.78
 1.22
NA
NA
NA




GACACCATTC













1913
3010
GATGTTGGGA
2
3
NC
NC
 72.20
 97.94
 3.79
 9.05
NA
NA
NA




TGACACCATT













1914
3011
TGATGTTGGG
2
2
NC
NC
 69.42
 43.57
 2.16
 3.03
NA
NA
NA




ATGACACCAT













1915
3012
CTGATGTTGG
2
2
NC
NC
 72.15
 33.77
 5.50
 1.85
NA
NA
NA




GATGACACCA













1916
3013
TCTGATGTTG
2
2
NC
NC
 77.50
 27.52
 2.90
 2.27
NA
NA
NA




GGATGACACC













1917
3014
ATCTGATGTT
2
2
NC
NC
 78.06
 35.90
 1.79
 3.12
NA
NA
NA




GGGATGACAC













1918
3015
AATCTGATGTT
2
2
NC
NC
 79.81
 45.61
 4.85
 2.12
NA
NA
NA




GGGATGACA













1922
3019
GCAGAATCTG
2
2
NC
NC
 80.19
 72.76
 4.80
 2.76
NA
NA
NA




ATGTTGGGAT













1923
3020
GGCAGAATCT
2
2
NC
NC
 75.56
 82.00
 4.49
 7.01
NA
NA
NA




GATGTTGGGA













1924
3021
TGGCAGAATC
2
1
NC
NC
 76.53
 27.81
 6.51
 4.41
NA
NA
NA




TGATGTTGGG













1925
3022
GTGGCAGAAT
2
2
NC
NC
 77.58
 69.65
 6.65
 4.52
NA
NA
NA




CTGATGTTGG













1927
3024
GTGTGGCAGA
2
2
NC
NC
 83.41
 99.90
 7.50
 4.41
NA
NA
NA




ATCTGATGTT













1945
3081
TCTCTGTTGTA
2
2
NC
NC
 64.35
 37.03
23.98
 2.00
NA
NA
NA




TTGCTGTTA













1946
3082
TTCTCTGTTGT
2
2
NC
NC
 64.62
 23.18
11.74
 2.00
NA
NA
NA




ATTGCTGTT













1947
3083
GTTCTCTGTT
2
2
NC
NC
 71.29
 64.40
 5.04
 6.83
NA
NA
NA




GTATTGCTGT













1948
3084
AGTTCTCTGTT
2
1
NC
NC
 79.95
 65.34
 5.20
 4.98
NA
NA
NA




GTATTGCTG













1949
3085
CAGTTCTCTG
2
2
NC
NC
 77.26
 28.90
 9.66
 3.12
NA
NA
NA




TTGTATTGCT













1968
3114
GCAATACCAA
2
2
NC
NC
 85.36
 75.14
 6.44
 5.22
NA
NA
NA




AGGAGTTTCT













2000
3162
TGATAAGAAC
1
2
2
1
 88.43
 21.05
 2.07
 0.62
NA
NA
NA




ATCTGAATCT













2001
3163
CTGATAAGAA
2
2
1
2
 89.58
 25.29
 2.86
 7.13
NA
NA
NA




CATCTGAATC













2035
3217
TTCATTAACAT
2
2
NC
NC
 80.45
 36.25
 1.53
 9.09
NA
NA
NA




TCCACTGGG













2064
3247
TTTTGGTCAC
2
2
NC
NC
 67.98
 35.11
 2.77
 8.18
NA
NA
NA




CTGTGGCATC













2065
3248
ATTTTGGTCAC
2
2
NC
NC
 69.79
 51.93
 3.01
 3.52
NA
NA
NA




CTGTGGCAT













2066
3249
CATTTTGGTCA
2
2
NC
NC
 76.12
 28.42
 5.63
 2.67
NA
NA
NA




CCTGTGGCA













2067
3250
CCATTTTGGT
2
3
NC
NC
 68.04
 33.46
20.39
 2.51
NA
NA
NA




CACCTGTGGC













2090
3285
CTCTTGCTTTA
2
1
NC
NC
 83.53
  9.18
 1.81
 2.58
NA
NA
NA




GATTCCTCA













2091
3286
GCTCTTGCTTT
2
2
NC
NC
 71.84
 47.28
 4.04
12.13
NA
NA
NA




AGATTCCTC













2163
3429
AAGCAGCCTG
2
2
NC
NC
 87.95
 25.49
 4.25
 1.13
NA
NA
NA




AATGTCCTCA













2165
3431
ACAAGCAGCC
2
2
NC
NC
 99.44
110.40
 3.74
 5.44
NA
NA
NA




TGAATGTCCT













2166
3432
TACAAGCAGC
2
1
NC
NC
 97.23
 31.29
 6.00
 0.83
NA
NA
NA




CTGAATGTCC













2167
3433
GTACAAGCAG
2
2
NC
NC
 90.96
 76.47
 4.29
17.69
NA
NA
NA




CCTGAATGTC













2168
3434
AGTACAAGCA
2
2
NC
NC
102.95
 74.55
23.06
 9.33
NA
NA
NA




GCCTGAATGT













2169
3435
TAGTACAAGC
3
2
NC
NC
 93.15
 26.83
 2.25
 2.87
NA
NA
NA




AGCCTGAATG













2170
3436
TTAGTACAAG
2
2
NC
NC
 83.07
 20.20
 4.86
 2.24
NA
NA
NA




CAGCCTGAAT













2171
3437
TTTAGTACAAG
2
2
NC
NC
 81.15
 25.05
 3.20
 3.65
NA
NA
NA




CAGCCTGAA













2172
3438
CTTTAGTACAA
2
3
NC
NC
 75.61
 30.14
 1.47
 2.07
NA
NA
NA




GCAGCCTGA













2173
3439
TCTTTAGTACA
2
2
NC
NC
 75.65
 50.49
 3.75
 1.41
NA
NA
NA




AGCAGCCTG













2174
3440
GTCTTTAGTAC
2
2
NC
NC
 83.92
 81.72
 2.88
 2.28
NA
NA
NA




AAGCAGCCT













2175
3441
GGTCTTTAGT
3
2
NC
NC
 69.59
105.72
17.55
 8.17
NA
NA
NA




ACAAGCAGCC













2176
3442
AGGTCTTTAG
3
2
NC
NC
 82.11
 68.72
 3.70
 3.29
NA
NA
NA




TACAAGCAGC













2178
3444
TCAGGTCTTTA
3
2
NC
NC
 79.56
 25.17
 2.17
 1.26
NA
NA
NA




GTACAAGCA













2179
3445
GTCAGGTCTT
2
2
NC
NC
 75.74
 78.33
 4.46
 3.66
NA
NA
NA




TAGTACAAGC













2181
3447
TTGTCAGGTC
2
2
NC
NC
 77.68
 27.60
 2.41
 3.45
NA
NA
NA




TTTAGTACAA













2183
3449
AGTTGTCAGG
2
3
NC
NC
 87.32
 62.47
 8.57
 5.19
NA
NA
NA




TCTTTAGTAC













2184
3450
CAGTTGTCAG
2
2
NC
NC
 90.24
 31.68
10.33
 4.92
NA
NA
NA




GTCTTTAGTA













2185
3451
ACAGTTGTCA
2
2
NC
NC
 84.62
 57.48
 2.93
 4.81
NA
NA
NA




GGTCTTTAGT













2186
3452
CACAGTTGTC
2
2
NC
NC
 81.04
 24.63
 3.98
 1.43
NA
NA
NA




AGGTCTTTAG













2188
3454
GCCACAGTTG
2
2
NC
NC
 77.28
 59.83
 4.56
 6.54
NA
NA
NA




TCAGGTCTTT













2189
3455
AGCCACAGTT
2
2
NC
NC
 80.32
 54.89
 1.38
 5.77
NA
NA
NA




GTCAGGTCTT













2194
3461
ATCCACAGCC
2
1
1
NC
 93.62
 32.21
 3.07
 2.37
NA
NA
NA




ACAGTTGTCA













2196
3463
ACATCCACAG
2
2
1
NC
 97.71
100.75
 2.65
 3.98
NA
NA
NA




CCACAGTTGT













2231
3517
ACAAGGTCGC
3
3
NC
NC
 96.15
 99.00
 3.83
 6.99
NA
NA
NA




TTCTAAAAGG













2232
3518
AACAAGGTCG
2
2
NC
NC
 96.10
 50.39
 6.27
 3.96
NA
NA
NA




CTTCTAAAAG













2255
3564
GTCTCATCAC
2
2
NC
NC
 69.15
 21.87
 4.29
 1.53
NA
NA
NA




AGTCCTCTCT













2256
3565
TGTCTCATCA
2
2
NC
NC
 74.55
 12.10
 3.74
 3.37
0.51
 1.60
6.81




CAGTCCTCTC













2305
3643
ACTGGATTGT
2
2
NC
NC
 76.91
 78.44
 5.14
 4.97
NA
NA
NA




CCCATTCTGA













2307
3645
ATACTGGATT
2
2
NC
NC
 83.27
 18.42
 4.00
 3.26
NA
NA
NA




GTCCCATTCT













2308
3646
AATACTGGATT
2
2
NC
NC
 89.74
 54.56
 3.68
 2.13
NA
NA
NA




GTCCCATTC













2312
3650
GGCAAATACT
2
2
NC
NC
 67.99
 53.63
 9.93
 3.74
NA
NA
NA




GGATTGTCCC













2319
3658
GGATAACGGG
3
3
NC
NC
 84.10
 57.31
13.98
 0.63
NA
NA
NA




CAAATACTGG













2321
3660
CTGGATAACG
3
2
NC
NC
 80.58
 19.76
 1.26
 1.57
NA
NA
NA




GGCAAATACT













2333
3685
CCACTGCTTA
2
2
NC
NC
 73.32
 20.40
11.92
 4.24
NA
NA
NA




CATCAACAGC













2343
3718
TTGTGAATTTT
2
1
NC
NC
 78.23
 30.28
13.06
 3.81
NA
NA
NA




AACTGCTAA













2344
3719
GTTGTGAATTT
2
2
NC
NC
 66.42
 75.05
 2.06
 1.87
NA
NA
NA




TAACTGCTA













2345
3720
TGTTGTGAATT
2
1
NC
NC
 67.78
 31.64
 3.07
 1.50
NA
NA
NA




TTAACTGCT













2346
3721
ATGTTGTGAAT
2
2
NC
NC
 74.39
 45.73
 5.60
 1.64
NA
NA
NA




TTTAACTGC













2347
3722
GATGTTGTGA
2
2
NC
NC
 69.84
 80.44
 3.44
 4.12
NA
NA
NA




ATTTTAACTG













2348
3723
AGATGTTGTG
2
1
NC
NC
 73.52
 56.41
 4.60
 2.09
NA
NA
NA




AATTTTAACT













2349
3724
AAGATGTTGT
2
1
NC
NC
 85.86
 61.92
 1.65
 2.53
NA
NA
NA




GAATTTTAAC













2353
3745
TTGGTGAAAC
3
2
NC
NC
 86.80
 31.94
 2.61
 2.18
NA
NA
NA




GATAGGGATA













2354
3746
TTTGGTGAAA
3
2
NC
NC
 87.43
 48.40
 2.51
 2.09
NA
NA
NA




CGATAGGGAT













2355
3747
CTTTGGTGAA
3
2
NC
NC
 79.57
 41.96
 2.83
 9.43
NA
NA
NA




ACGATAGGGA













2394
3807
TCAAACAGGC
2
2
NC
NC
 85.98
 17.77
 3.56
 0.98
NA
NA
NA




AATAAACTTG













2395
3808
ATCAAACAGG
2
2
NC
NC
 77.20
 34.29
 3.93
 5.96
NA
NA
NA




CAATAAACTT













2402
3815
AGTGCTCATC
2
2
NC
NC
 71.00
 59.57
 3.50
 2.67
NA
NA
NA




AAACAGGCAA













2403
3816
TAGTGCTCAT
2
3
NC
NC
 73.32
 22.08
 4.57
 1.81
NA
NA
NA




CAAACAGGCA













2404
3817
TTAGTGCTCAT
2
3
NC
NC
 67.42
 18.47
 3.66
 3.11
0.11
 0.52
4.24




CAAACAGGC













2460
3953
TTTCCGACCA
2
3
NC
NC
 68.68
 26.50
 3.08
 2.92
NA
NA
NA




GAGCCTTGTG













2461
3954
TTTTCCGACC
2
3
NC
NC
 72.55
 21.26
 8.32
 1.45
NA
NA
NA




AGAGCCTTGT













2462
3955
TTTTTCCGACC
2
2
NC
NC
 80.37
 21.01
 7.60
 0.85
NA
NA
NA




AGAGCCTTG













2489
4007
TTCCTCTGTCA
2
2
NC
NC
 70.56
 20.33
 4.00
 2.58
NA
NA
NA




CTGTTATCT













2490
4008
GTTCCTCTGT
2
2
NC
NC
 57.22
 45.09
 3.16
 4.14
NA
NA
NA




CACTGTTATC













2491
4009
TGTTCCTCTGT
2
2
NC
NC
 46.82
 19.73
 5.54
 1.38
0.81
 2.08
8.70




CACTGTTAT













2492
4010
TTGTTCCTCTG
2
2
NC
NC
 80.76
 17.70
 5.97
 2.11
NA
NA
NA




TCACTGTTA













2495
4013
CCTTTGTTCCT
2
2
NC
NC
 76.11
 27.57
 3.18
 1.96
NA
NA
NA




CTGTCACTG













2499
4017
GTCTCCTTTGT
2
1
NC
NC
 74.25
 27.62
 5.34
 2.50
NA
NA
NA




TCCTCTGTC













2500
4018
AGTCTCCTTT
2
2
NC
NC
 77.94
 41.70
 4.52
 3.15
NA
NA
NA




GTTCCTCTGT













2524
4055
GCCCAGATCT
2
2
NC
NC
 76.59
 23.44
 6.97
 5.81
NA
NA
NA




TCCAGATTTT













2525
4056
GGCCCAGATC
2
3
NC
NC
 79.60
 24.75
 7.75
 4.87
NA
NA
NA




TTCCAGATTT













2526
4057
AGGCCCAGAT
2
2
NC
NC
 87.17
 42.54
 6.66
 2.40
NA
NA
NA




CTTCCAGATT













2527
4058
AAGGCCCAGA
2
1
NC
NC
 74.99
 24.17
 4.99
 1.25
NA
NA
NA




TCTTCCAGAT













2528
4059
CAAGGCCCAG
2
2
NC
NC
 69.53
 12.61
 6.77
 1.96
0.19
 0.78
3.63




ATCTTCCAGA













2529
4060
TCAAGGCCCA
2
2
NC
NC
 79.06
 11.16
 6.66
 1.99
NA
NA
NA




GATCTTCCAG













2530
4061
TTCAAGGCCC
2
2
NC
NC
 71.09
 10.79
15.83
 1.14
0.67
 2.40
8.30




AGATCTTCCA













2561
4092
CCAGAGAATC
2
2
NC
NC
 75.02
 18.73
 1.75
 3.89
NA
NA
NA




ACTAGTGTCT













2562
4093
ACCAGAGAAT
2
2
NC
NC
 83.46
 32.29
 4.66
 2.17
NA
NA
NA




CACTAGTGTC













2591
4142
TTCATTGGCTT
2
1
NC
NC
100.38
 16.31
 8.53
 1.96
NA
NA
NA




CTCTTTCCA













2595
4146
GAAGTTCATT
2
2
NC
NC
 80.58
 38.80
10.34
 1.73
NA
NA
NA




GGCTTCTCTT













2616
4177
ATACTCTTGGT
2
2
NC
NC
106.26
 20.10
17.09
 2.60
NA
NA
NA




CACAGTAGA













2644
4244
CAATGTCCCT
2
2
NC
NC
 77.84
 12.14
15.18
 0.55
NA
NA
NA




TGGATGCCTC













2645
4245
GCAATGTCCC
2
2
NC
NC
 60.68
 31.07
16.38
 3.72
NA
NA
NA




TTGGATGCCT













2646
4247
TGGCAATGTC
2
2
NC
NC
 70.78
 15.47
 2.39
 2.28
0.07
 0.30
1.71




CCTTGGATGC













2647
4248
GTGGCAATGT
2
1
NC
NC
 69.26
 31.74
 1.13
 3.38
NA
NA
NA




CCCTTGGATG













2648
4249
AGTGGCAATG
3
2
NC
NC
 90.27
 38.94
11.22
 2.21
NA
NA
NA




TCCCTTGGAT













2649
4250
CAGTGGCAAT
2
1
NC
NC
 77.65
 23.04
 6.54
 2.25
NA
NA
NA




GTCCCTTGGA













2650
4251
TCAGTGGCAA
2
2
NC
NC
 85.94
 20.36
 8.42
 1.96
NA
NA
NA




TGTCCCTTGG













2651
4252
GTCAGTGGCA
2
2
NC
NC
 85.16
 27.43
 7.37
 2.02
NA
NA
NA




ATGTCCCTTG













2653
4254
CAGTCAGTGG
2
2
NC
NC
 93.15
 17.75
10.65
 4.43
NA
NA
NA




CAATGTCCCT













2654
4255
ACAGTCAGTG
2
2
NC
NC
 96.92
 27.17
 5.79
 3.70
NA
NA
NA




GCAATGTCCC













2661
4262
CTTCTGGACA
2
2
2
NC
 88.73
 25.80
 4.68
 2.02
NA
NA
NA




GTCAGTGGCA













2662
4264
ACCTTCTGGA
2
3
2
NC
 80.03
 24.32
11.32
 1.04
NA
NA
NA




CAGTCAGTGG













2663
4265
CACCTTCTGG
2
2
1
NC
 84.78
 19.26
 5.85
 0.82
NA
NA
NA




ACAGTCAGTG













2664
4266
ACACCTTCTG
2
2
2
NC
 88.41
 20.19
 9.00
 1.26
NA
NA
NA




GACAGTCAGT













2666
4270
GCCAACACCT
2
3
2
2
 70.57
 59.95
 5.04
11.62
NA
NA
NA




TCTGGACAGT













2674
4279
GCTTGGGATG
2
2
NC
NC
 60.17
 36.14
 1.75
 4.07
NA
NA
NA




CCAACACCTT













2683
4331
GCAACTTTCC
2
1
NC
NC
 73.18
 40.51
 1.94
 4.45
NA
NA
NA




TGTAAGCTCA













2684
4332
GGCAACTTTC
2
2
NC
NC
 73.71
 24.96
 1.41
 4.04
NA
NA
NA




CTGTAAGCTC













2685
4333
CGGCAACTTT
2
2
NC
NC
 72.28
 42.00
 3.03
 4.43
NA
NA
NA




CCTGTAAGCT













2686
4334
GCGGCAACTT
2
2
NC
NC
 73.11
 53.99
 4.51
 5.22
NA
NA
NA




TCCTGTAAGC













2687
4335
GGCGGCAACT
2
3
NC
NC
 71.34
 43.45
 2.25
 2.01
NA
NA
NA




TTCCTGTAAG













2688
4336
AGGCGGCAAC
2
3
NC
NC
 69.70
 64.52
 3.46
 4.27
NA
NA
NA




TTTCCTGTAA













2689
4337
AAGGCGGCAA
2
3
NC
NC
 71.47
 58.98
 2.65
 5.60
NA
NA
NA




CTTTCCTGTA













2690
4338
TAAGGCGGCA
3
2
NC
NC
 74.69
 43.99
 7.35
10.52
NA
NA
NA




ACTTTCCTGT













2691
4339
ATAAGGCGGC
3
3
NC
NC
 78.56
 42.65
 5.65
 5.21
NA
NA
NA




AACTTTCCTG













2692
4340
AATAAGGCGG
2
2
NC
NC
 89.94
 64.68
 2.17
 4.62
NA
NA
NA




CAACTTTCCT













2693
4341
CAATAAGGCG
2
2
NC
NC
 94.34
 21.32
 2.79
 0.66
NA
NA
NA




GCAACTTTCC













2694
4342
TCAATAAGGC
2
2
NC
NC
 90.44
 18.79
 5.41
 2.47
NA
NA
NA




GGCAACTTTC













2695
4343
TTCAATAAGG
2
2
NC
NC
 96.91
 21.42
 6.53
 3.19
NA
NA
NA




CGGCAACTTT













2725
4423
AAGTGGTCTA
2
3
NC
NC
103.47
 34.92
18.44
 5.10
NA
NA
NA




TGTCAGCTAA













2726
4424
CAAGTGGTCT
3
3
NC
NC
 89.60
 27.45
11.00
 6.09
NA
NA
NA




ATGTCAGCTA













2727
4425
CCAAGTGGTC
2
2
NC
NC
 81.51
 20.32
 8.29
 3.05
NA
NA
NA




TATGTCAGCT













2728
4426
TCCAAGTGGT
2
2
NC
NC
 92.66
 17.90
18.04
 1.23
NA
NA
NA




CTATGTCAGC













2777
4475
GGCCATTTTG
2
2
NC
NC
 78.11
 21.08
 3.67
 2.43
NA
NA
NA




CGAAGTTTAG













2778
4476
GGGCCATTTT
3
3
NC
NC
 73.18
 17.87
 4.11
 1.66
NA
NA
NA




GCGAAGTTTA













2779
4477
TGGGCCATTT
2
3
NC
NC
 76.21
 21.60
 5.41
 3.30
NA
NA
NA




TGCGAAGTTT













2780
4478
CTGGGCCATT
2
3
NC
NC
 78.35
 23.66
 5.34
 2.29
NA
NA
NA




TTGCGAAGTT













2781
4479
CCTGGGCCAT
2
3
NC
NC
 77.45
 30.09
 4.91
 2.39
NA
NA
NA




TTTGCGAAGT













2782
4498
TTTCCAAAGA
2
2
NC
NC
 84.94
 25.18
 4.09
 2.62
NA
NA
NA




GACGCCAGGC













2784
4500
CTTTTCCAAAG
2
2
NC
NC
 88.49
 23.15
 2.79
 2.49
NA
NA
NA




AGACGCCAG













2785
4501
GCTTTTCCAAA
2
2
NC
NC
 82.32
 26.63
 4.10
 2.04
NA
NA
NA




GAGACGCCA













2789
4505
CTCTGCTTTTC
2
2
NC
NC
 83.50
 37.28
 7.11
 8.40
NA
NA
NA




CAAAGAGAC













2791
4508
ACACTCTGCT
2
2
NC
NC
 73.84
 20.07
19.34
 2.81
NA
NA
NA




TTTCCAAAGA













2792
4509
CACACTCTGC
2
2
NC
NC
 79.18
 14.66
 2.80
 0.76
NA
NA
NA




TTTTCCAAAG













2794
4511
ATCACACTCT
2
1
NC
NC
 78.29
 17.01
 3.86
 3.71
NA
NA
NA




GCTTTTCCAA













2795
4512
TATCACACTCT
2
2
NC
NC
 93.31
 19.05
 0.79
 2.98
NA
NA
NA




GCTTTTCCA













2797
4514
TGTATCACACT
2
2
NC
NC
 97.20
 16.90
 2.92
 0.94
NA
NA
NA




CTGCTTTTC













2848
4672
AGGGACACTG
2
2
NC
NC
 94.48
 45.86
 2.48
 0.73
NA
NA
NA




GGCTGATTCA













2849
4683
CTAAGCTGCT
2
2
NC
NC
 81.53
 19.47
 9.03
 2.11
NA
NA
NA




CAGGGACACT













2850
4684
TCTAAGCTGC
2
2
NC
NC
 81.17
 21.06
 7.52
 1.31
NA
NA
NA




TCAGGGACAC













2851
4685
GTCTAAGCTG
2
1
NC
NC
 76.71
 30.35
 7.66
 6.99
NA
NA
NA




CTCAGGGACA













2852
4686
TGTCTAAGCT
2
2
NC
NC
 87.76
 29.98
 8.64
 2.25
NA
NA
NA




GCTCAGGGAC













2917
4787
CATGGATGCA
2
2
NC
NC
 80.58
 21.83
 5.14
 6.54
NA
NA
NA




AATGAATGAA













2918
4788
CCATGGATGC
2
2
NC
NC
 73.11
 25.80
 8.72
 2.66
NA
NA
NA




AAATGAATGA









Example 3. In Vitro Screen for Reduced Expansion

Expansion of DNA triplet repeats can be replicated in vitro using patient-derived cells lines and DNA-damaging agents. Human fibroblasts from Huntington's (GM04281, GM04687 and GM04212) or Friedreich's Ataxia patients (GM03816 and GM02153) or Myotonic Dystrophy) (GM04602, GM03987 and GM03989) are purchased from Coriell Cell Repositories and are maintained in medium following the manufacturer's instructions (Kovtum et al., 2007 Nature, 447(7143): 447-452; Li et al., 2016 Biopreservation and Biobanking 14(4):324-29; Zhang et al., 2013 Mol Ther 22(2): 312-320). To induce CAG-repeat expansion in vitro, fibroblast cells are treated with oxidizing agents such as hydrogen peroxide (H2O2), potassium chromate (K2CrO4) or potassium bromate (KBrO3) for up to 2 hrs (Kovtum et al., ibid). Cells are washed, and medium replace to allow cells to recover for 3 days. The treatment is repeated up to twice more before cells are harvested and DNA isolated. CAG repeat length is determined using methods described below.


Expansion of DNA triplet repeats can be replicated in vitro using patient-derived cell lines. Induced pluripotent stem cells (iPSC) derived from Human fibroblasts from Huntington's Patients (CS09iHD-109n1) are purchased from Cedars-Sinai RMI Induced Pluripotent Stem Cell Core and are maintained following the manufacturer's recommendations (https://www.cedars-sinai.org/content/dam/cedars-sinai/research/documents/biomanufacturing/recommended-guidelines-for-handling-ipscsv1.pdf). The CAG repeat from an iPSC line with 109 CAGs shows an increase in CAG repeat size over time, with an average expansion of 4 CAG repeats over 70 days in dividing iPS cells (Goold et al., 2019 Human Molecular Genetics February 15; 28(4): 650-661).


CS09iHD-109n1 iPSC are treated with ASO for continuous knockdown of target mRNA and CAG repeat expansion is determined by DNA fragment analysis described below. ASOs are added to cells in varying concentrations every 3 to 15 days and knockdown of mRNA is determined by RT-qPCR using standard molecular biology techniques. DNA and mRNA are isolated from cells according to standard techniques at t=0.14 days, 28 days, 42 days, 56 days and 80 days. The differences in expansion between treatment and control are compared according to a linear repeated-measures model, and at each time point according to Tukey's post-hoc tests.


Example 4

Genomic DNA Extraction and Quantitation of CAG Repeat Length by Small Pool-PCR (sp-PCR) Analyses


Genomic DNA is purified using standard Proteinase K digestions and extracted using DNAzol (Invitrogen) following the manufacturer's instructions. CAG repeat length is determined by small pool-PCR analyses as previously described (Mario Gomes-Pereira and Darren Monckton, 2017, Front Cell Neuro 11:153). In brief, DNA is digested with HindIII, diluted to a final concentration between 1-6 pg/μl and approximately 10 pg was used in subsequent PCR reactions. Primer flaking Exon 1 of the human HTT are used to amplify the CAG alleles and the PCR product is resolved by electrophoresis. Subsequently, Southern blot hybridization is performed, and the CAG alleles are observed by autoradiography OR visualized with ethidium bromide staining. CAG length can be measured directly by sequencing on a MiSeQ or appropriate machine. The change in CAG repeat number in various treatment groups in comparison with controls is calculated using simple descriptive statistics (e.g. mean±standard deviation).


Genomic DNA Extraction and Quantitation of CAG Repeat Length by DNA Fragment Analyses


Genomic DNA is purified using DNAeasy Blood and Tissue Kit (Qiagen) following the manufacturer's instructions. DNA is quantified by Qubit dsDNA assay (ThemoScientific) and CAG repeat length is determined by fragment analysis by Laragen (Culver City, Calif.)


Example 5. Mouse Studies

Natural History Studies in HD Mouse Models:


The HD mouse R6/2 line is transgenic for the 5′ end of the human HD gene (HTT) carrying approximately 120 CAG repeat expansions. HTT is ubiquitously expressed. Transgenic mice exhibit a progressive neurological phenotype that mimics many of the pathological features of HD, including choreiform-like movements, involuntary stereotypic movements, tremor, and epileptic seizures, as well as nonmovement disorder components, including unusual vocalization. They urinate frequently and exhibit loss of body weight and muscle bulk through the course of the disease. Neurologically these mice develop Neuronal Intranuclear Inclusions (NII) which contain both the huntingtin and ubiquitin proteins. Previously unknown, these NII have subsequently been identified in HD patients. The age of onset for development of HD symptoms in R6/2 mice has been reported to occur between 9 and 11 weeks (Mangiarini et al., 1996 Cell 87: 493-506).


Somatic expansions were reported in R6/2 mice striatum, cortex and liver. Somatic instability increased with higher constitutive length (Larson et al, Neurobiology of Disease 76 (2015) 98-111). A natural history study in R6/2 mice with 120 CAG repeats was performed. Their genotype and length of CAG expansion was determined. R6/2 mice at 4, 8, 12 and 16 weeks of age (4 male and 4 female mice per age group) were sacrificed. Striatum, cerebellum, cortex, liver, kidney, heart, spleen, lung, duodenum, colon, quadricep, CSF and plasma were collected and snap frozen in liquid nitrogen. Genomic DNA was extracted, the length of CAG repeats measured, and the instability index was calculated from striatum, cerebellum, cortex, liver and kidney according to Lee et al. BMC Systems Biology 2010, 4:29). At 12 and 16 weeks of age, the striatum showed a significant increase of somatic expansion as measured by the instability index (****p<0.0001, One-way ANOVA) (FIG. 1). No changes in somatic expansion were observed across all ages in the R6/2 mouse cerebellum (FIG. 2).


Mouse models recapitulating many of the features of trinucleotide repeat expansion diseases including, HD, FA and DM1, are readily available from commercial venders and academic institutions (Polyglutamine Disorders, Advances in Experimental Medicine and Biology, Vol 1049, 2018: Editors Clevio Nobrega and Lois Pereira de Almeida, Springer). All mouse experiments are conducted in accordance with local IACUC guidelines. Three examples of different diseased mouse models and how they could be used to investigate the usefulness of pharmacological intervention against MLH3 for somatic expansion are included below.


In Huntington's research, several transgenic and knock-in mouse models were generated to investigate the underlying pathological mechanisms involved in the disease. For example, the R6/2 transgenic mouse contains a transgene of ˜1.9 kb of human HTT containing 144 copies of the CAG repeat (Mangiarini et al., 1996 Cell 87: 493-506) while the HdhQ111 model was generated by replacing the mouse HTT exon 1 with a human exon1 containing 111 copies of the CAG repeat (Wheeler et al., 2000 Hum Mol Genet 9:503-513). Both the R6/2 and HdhQ111 models replicate many of the features of human HD including motor and behavioral dysfunctions, neuronal loss, as well as the expansion of CAG repeats in the striatum (Pouladi et al., 2013, Nature Reviews Neuroscience 14: 708-721; Mangiarini et al., 1997 Nature Genet 15: 197-200; Wheeler et al., Hum Mol Genet 8: 115-122).


R6/2 mice are genotyped using DNA derived from tail snips at weaning and the CAG repeat size is determined. Mice are randomized into groups (n=12/group) at weaning at 4 wks old and dosed with monthly (week 4 and 8) ICV injection of either PBS (control) or up to a 500 μg dose of oligos targeting MLH3. A series of oligos targeting different regions of MLH3 can be tested to identify the most efficacious oligo sequence in vivo. At 12 weeks of age, mice are euthanized, and tissues extracted for analyses. The list of tissues includes, but not restricted to, striatum, cortex, cerebellum, and liver. Genomic DNA is extracted and the length of CAG repeats measured as described below. CSF and plasma are collected for biomarker analysis. Additional pertinent mouse models of HD can be considered.


In Friedreich Ataxia, the YG8 FRDA transgenic mouse model is commonly used to understand the pathology (Al-Mandawi et al., 2006 Genomics 88(5)580-590; Bourn et al., 2012 PLOS One 7(10); e47085). This model was generated through the insertion of a human YAC transgenic containing in the background of a null FRDA mouse. The YG8 model demonstrates somatic expansion of the GAA triplet repeat expansion in neuronal tissues with only mild motor defects. YG8 FRDA mice are genotyped using DNA derived from tail snips at weaning and the CAG repeat size is determined using methods. To determine if MLH3 plays a role in somatic expansion of the disease allele, hemizygous YG8 FRDA animals are administered ICV with oligos targeting knockdown of MLH3 identified above.


Approximately 2 months later, animals are euthanized and tissues collected for molecular analyses. Suitable tissues are heart, quadriceps, dorsal root ganglia (DRG's), cerebellum, kidney, and liver. Genomic DNA is extracted, and the length of CAG repeats measured as described above in Example 4.


In Myotonic Dystrophy, the DM300-328 transgenic mouse model is suitable for investigating the pathology behind DM1. This mouse model has a large human genomic sequence (˜45 kb) containing over 300 CTG repeats and displays both the somatic expansion and degenerative muscle changes observed in human DM1 (Seznec et al., 2000; Tome et al., 2009 PLOS Genetics 5(5): e1000482; Pandey et al., 2015 J Pharmacol Exp Ther 355:329-340). DM300-328 mice are genotyped using DNA derived from tail snips at weaning and the CAG repeat size is determined. To determine if MLH3 plays a role in somatic expansion of the disease allele in myotonic dystrophy, DM300-328 transgenic animals are administered ASOs targeting knockdown of MLH3 by either subcutaneous injections (sc), intraperitoneal (ip) or intravenous tail injections (iv). Mice are administered ASOs up to 2×/week for maximum 8 weeks of treatment. Animals are euthanized at multiple time points and tissues collected for molecular analyses. Suitable tissues are quadriceps, heart, diaphragm, cortex, cerebellum, sperm, kidney, and liver. Genomic DNA is extracted and the length of CAG repeats measured and compared with parallel controls.


The HdhQ111 mouse model for Huntington Disease is a heterozygous knock-in line, in which the majority of exon 1 and part of intron 1 on one allele of the huntingtin gene (i.e., HTT or Huntington Disease gene) are replaced with human DNA containing ˜111 CAG repeats. In this example, ASOs to knock down MLH3 activity or levels is administered. After a treatment period, brain tissue from treated or untreated mice is isolated (e.g., striatum tissue) and analyzed using qRT-PCR as previously described to determine RNA levels of MLH3. Huntingtin gene repeat analysis is performed using mouse tissues (e.g., striatum tissue) after a treatment period using a human-specific PCR assay that amplifies the HTT CAG repeat from the knock-in allele but does not amplify the mouse sequence (i.e., the wild type allele). In this protocol, the forward primer is fluorescently labeled (e.g., with 6-FAM as described previously, for example Pinto R M, Dragileva E, Kirby A, et al. Mismatch repair genes MLH1 and MLH3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches. PLoS Genet. 2013; 9(10):e1003930.), and products can be resolved using an analyzer with comparison against an internal size standard to generate CAG repeat size distribution traces. Repeat size is determined from the peak with the greatest intensity from a control tissue (e.g., tail tissue in a mouse) and from an affected tissue (e.g., brain striatum tissue or brain cortex tissue). Immunohistochemistry is carried out with polyclonal anti-huntingtin antibody (e.g., EM48) on paraffin-embedded or otherwise prepared sections of brain tissue and can be quantified using a standardized staining index to capture both nuclear staining intensity and number of stained nuclei. A decrease in repeat size in affected tissue indicates that the agent that reduces the level and/or activity of MLH3 is capable of decreasing the repeat which are responsible for the toxic and/or defective gene products in Huntington's disease.


Other Aspects

All publications, patents, and patent applications mentioned in this specification are incorporated herein by reference in their entirety to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference in its entirety. Where a term in the present application is found to be defined differently in a document incorporated herein by reference, the definition provided herein is to serve as the definition for the term.


While the invention has been described in connection with specific aspects thereof, it will be understood that invention is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure that come within known or customary practice within the art to which the invention pertains and can be applied to the essential features hereinbefore set forth, and follows in the scope of the claimed.


In addition to the various aspects described herein, the present disclosure includes the following aspects numbered E1 through E90. This list of aspects is presented as an exemplary list and the application is not limited to these aspects.


E1. A single-stranded oligonucleotide of 10-30 linked nucleosides in length, wherein the oligonucleotide comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene.


E2. The oligonucleotide of E1, wherein the oligonucleotide comprises: (a) a DNA core sequence comprising linked deoxyribonucleosides; (b) a 5′ flanking sequence comprising linked nucleosides; and (c) a 3′ flanking sequence comprising linked nucleosides; wherein the DNA core comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene and is positioned between the 5′ flanking sequence and the 3′ flanking sequence; wherein the 5′ flanking sequence and the 3′ flanking sequence each comprises at least two linked nucleosides; and wherein at least one nucleoside of each flanking sequence comprises an alternative nucleoside.


E3. A single-stranded oligonucleotide of 10-30 linked nucleosides in length for inhibiting expression of a human MLH3 gene in a cell, wherein the oligonucleotide comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene.


E4. The oligonucleotide of E3, wherein the oligonucleotide comprises: (a) a DNA core comprising linked deoxyribonucleosides; (b) a 5′ flanking sequence comprising linked nucleosides; and (c) a 3′ flanking sequence comprising linked nucleosides; wherein the DNA core comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene and is positioned between the 5′ flanking sequence and the 3′ flanking sequence; wherein the 5′ flanking sequence and the 3′ flanking sequence each comprises at least two linked nucleosides; and wherein at least one nucleoside of each flanking sequence comprises an alternative nucleoside.


E5. The oligonucleotide of any one of E1-E4, wherein the region of at least 10 nucleobases has at least 90% complementary to an MLH3 gene.


E6. The oligonucleotide of any one of E1-E5, wherein the region of at least 10 nucleobases has at least 95% complementary to an MLH3 gene.


E7. The oligonucleotide of any one of E1-E6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-576, 584-636, 681-740, 818-878, 952-1024, 1129-1158, 1177-1264, 1287-1318, 1351-1378, 1536-1598, 1623-1660, 1739-1764, 1782-1823, 1847-1908, 2026-2051, 2063-2094, 2115-2146, 2256-2290, 2387-2414, 2421-2592, 2727-2788, 2826-2937, 3005-3043, 3078-3107, 3159-3185, 3214-3239, 3244-3272, 3282-3308, 3426-3483, 3561-3587, 3642-3769, 3804-3839, 3950-3977, 4004-4040, 4052-4115, 4139-4199, 4241-4301, 4328-4365, 4420-4448, 4472-4536, 4669-4708, or 4784-4810 of the MLH3 gene.


E8. The oligonucleotide of any one of E1-E6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-576, 584-636, 681-740, 818-878, 952-1024, 1129-1158, 1177-1264, 1287-1318, 1351-1378, 1568-1598, 1623-1660, 1782-1823, 1870-1904, 2063-2094, 2115-2146, 2256-2287, 2387-2414, 2422-2592, 2727-2788, 2826-2937, 3009-3043, 3078-3107, 3159-3185, 3214-3272, 3282-3307, 3426-3483, 3561-3587, 3642-3767, 3804-3839, 3950-3977, 4004-4039, 4052-4115, 4139-4199, 4241-4301, 4329-4365, 4420-4448, 4472-4536, 4680-4708, or 4784-4810 of the MLH3 gene.


E9. The oligonucleotide of any one of E1-E6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-635, 681-740, 842-875, 953-1024, 1129-1158, 1179-1264, 1287-1316, 1351-1378, 1568-1598, 1623-1659, 1782-1823, 1870-1904, 2064-2091, 2115-2146, 2256-2287, 2387-2414, 2422-2592, 2727-2788, 2829-2937, 3010-3043, 3079-3107, 3159-3185, 3246-3271, 3282-3307, 3426-3474, 3561-3587, 3642-3707, 3804-3839, 3950-3977, 4004-4039, 4052-4114, 4139-4164, 4174-4199, 4241-4288, 4329-4365, 4421-4448, 4472-4536, 4680-4708, or 4784-4810 of the MLH3 gene.


E10. The oligonucleotide of any one of E1-E6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 331-362, 393-438, 479-505, 534-574, 587-612, 681-740, 847-873, 991-1024, 1210-1262, 1351-1378, 1571-1597, 1623-1648, 1874-1902, 2066-2091, 2256-2281, 2388-2414, 2470-2515, 2732-2788, 2853-2878, 2901-2927, 3282-3307, 3562-3587, 4056-4083, 4241-4266, or 4506-4531 of the MLH3 gene.


E11. The oligonucleotide of any one of E1-E6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 335-449, 587-612, 682-736, 848-873, 991-1016, 1179-1204, 1233-1260, 1351-1378, 1626-1651, 1874-1903, 2066-2091, 2115-2146, 2256-2287, 2389-2414, 2471-2499, 2762-2787, 2853-2878, 2911-2936, 3562-3587, 3814-3839, 4006-4031, 4056-4083, or 4244-4269 of the MLH3 gene.


E12. The oligonucleotide of any one of E1-E6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene corresponding to a sequence of reference mRNA NM_001040108.1 at one or more of positions 355-393, 952-984, 1177-1205, 2026-2052, 2066-2094, 2470-2498, 3159-3185, 3458-3485, or 4259-4292 of the MLH3 gene.


E13. The oligonucleotide of any one of E1-E6, wherein the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 6-4710.


E14. The oligonucleotide of any one of E1-E6, wherein the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 110-111, 115-116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-322, 328-329, 366-368, 377-379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 749-753, 755, 757, 784, 786-788, 790, 828-830, 959, 972, 974-977, 1002, 1004-1005, 1007, 1009-1013, 1086, 1110-1111, 1126, 1149, 1172, 1176-1181, 1185, 1260, 1271-1274, 1276-1277, 1297, 1302, 1387-1390, 1392-1393, 1396, 1461-1463, 1473-1474, 1482, 1490-1491, 1495, 1498-1502, 1505, 1508, 1510-1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1596-1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1802, 1824-1826, 1832, 1835-1836, 1859, 1865-1866, 1870-1873, 1875, 1878, 1880-1882, 1911, 1914-1918, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090-2091, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345-2346, 2353-2355, 2394-2395, 2403-2404, 2460-2462, 2489-2492, 2495, 2499-2500, 2524-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2683-2685, 2687, 2690-2691, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2848-2852, or 2917-2918.


E15. The oligonucleotide of any one of E1-E6, wherein the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-236, 238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-320, 322, 328-329, 366-368, 377, 379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 750-753, 755, 757, 784, 786-788, 790, 828-830, 972, 974-977, 1002, 1004-1005, 1009-1013, 1110-1111, 1126, 1172, 1176-1181, 1271-1274, 1276-1277, 1297, 1302, 1387, 1390, 1392-1393, 1461-1463, 1474, 1482, 1490-1491, 1498-1502, 1505, 1508, 1510-1512, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1801, 1824-1826, 1832, 1835-1836, 1859, 1866, 1870-1873, 1878, 1880-1882, 1915-1917, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345, 2353, 2394-2395, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2684, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2849-2852, or 2917-2918.


E16. The oligonucleotide of any one of E1-E6, wherein the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 102, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 183, 185-189, 201, 211-212, 229-231, 235-236, 238, 241, 250, 254, 265-269, 282-283, 286-288, 294, 296, 319, 322, 328, 366-368, 377, 379, 381-399, 511, 514-517, 567-568, 591, 593-594, 599, 602, 666, 669-670, 703, 728, 750-753, 755, 757, 784, 786-788, 828-830, 972, 974-977, 1002, 1004-1005, 1009, 1011-1012, 1110-1111, 1126, 1172, 1176-1181, 1272-1274, 1297, 1302, 1387, 1392-1393, 1461-1463, 1474, 1482, 1498-1500, 1502, 1505, 1508, 1510-1511, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1725-1727, 1745-1746, 1800-1801, 1824, 1832, 1835-1836, 1859, 1866, 1870-1872, 1878, 1880-1882, 1916, 1924, 1946, 1949, 2000-2001, 2066, 2090, 2163, 2169-2171, 2178, 2181, 2186, 2255-2256, 2307, 2321, 2333, 2394, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561, 2591, 2616, 2644, 2646, 2649-2651, 2653-2654, 2661-2664, 2684, 2693-2695, 2726-2728, 2777-2780, 2782, 2784-2785, 2791-2792, 2794-2795, 2797, 2849-2850, 2852, or 2917-2918.


E17. The oligonucleotide of any one of E1-E6, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 160-161, 163-164, 166, 211-212, 230-231, 267-268, 282, 294, 322, 366-367, 391-394, 399, 514-515, 594, 602, 728, 750, 752-753, 755, 828, 830, 975-976, 1002, 1176-1179, 1274, 1387, 1462-1463, 1510, 1514, 1529-1530, 1726-1727, 1745-1746, 1824, 1871-1872, 2090, 2256, 2528-2530, 2644, or 2792.


E18. The oligonucleotide of any one of E1-E6, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 164, 186-187, 212, 235, 322, 367-368, 379, 384-385, 388-389, 391-392, 395, 515, 594, 703, 751-753, 828-830, 1005, 1176-1180, 1274, 1297, 1302, 1387, 1393, 1463, 1511, 1514, 1745, 1824, 1881, 2256, 2404, 2491, 2528, 2530, or 2646.


E19. The oligonucleotide of any one of E1-E6, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 174-176, 178, 180-187, 566-569, 573, 701-704, 1260-1261, 1274-1277, 1510-1513, 2000-2001, 2194, 2196, 2661-2664, or 2666.


E20. The oligonucleotide of any one of E1-E6, wherein the nucleobase sequence of the oligonucleotide consists of any one of SEQ ID NOs: 6-4710.


E21. The oligonucleotide of any one of E1-E6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 110-111, 115-116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-322, 328-329, 366-367-368, 377-379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 749-753, 755, 757, 784, 786-788, 790, 828-830, 959, 972, 974-977, 1002, 1004-1005, 1007, 1009-1013, 1086, 1110-1111, 1126, 1149, 1172, 1176-1181, 1185, 1260, 1271-1274, 1276-1277, 1297, 1302, 1387-1390, 1392-1393, 1396, 1461-1463, 1473-1474, 1482, 1490-1491, 1495, 1498-1502, 1505, 1508, 1510-1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1596-1597, 1721-1722, 1724-1725-1726-1727, 1744-1746, 1797, 1800-1802, 1824-1826, 1832, 1835-1836, 1859, 1865-1866, 1870-1873, 1875, 1878, 1880-1882, 1911, 1914-1918, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090-2091, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345-2346, 2353-2355, 2394-2395, 2403-2404, 2460-2462, 2489-2492, 2495, 2499-2500, 2524-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2683-2685, 2687, 2690-2691, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2848-2852, or 2917-2918.


E22. The oligonucleotide of any one of E1-E6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-236, 238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-320, 322, 328-329, 366-368, 377, 379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 750-753, 755, 757, 784, 786-788, 790, 828-830, 972, 974-977, 1002, 1004-1005, 1009-1013, 1110-1111, 1126, 1172, 1176-1181, 1271-1274, 1276-1277, 1297, 1302, 1387, 1390, 1392-1393, 1461-1462-1463, 1474, 1482, 1490-1491, 1498-1502, 1505, 1508, 1510-1512, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1801, 1824-1826, 1832, 1835-1836, 1859, 1866, 1870-1873, 1878, 1880-1882, 1915-1917, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345, 2353, 2394-2395, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2684, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2849-2852, or 2917-2918.


E23. The oligonucleotide of any one of E1-E6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 102, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 183, 185-189, 201, 211-212, 229-231, 235-236, 238, 241, 250, 254, 265-269, 282-283, 286-288, 294, 296, 319, 322, 328, 366-368, 377, 379, 381-399, 511, 514-517, 567-568, 591, 593-594, 599, 602, 666, 669-670, 703, 728, 750-753, 755, 757, 784, 786-788, 828-830, 972, 974-977, 1002, 1004-1005, 1009, 1011-1012, 1110-1111, 1126, 1172, 1176-1181, 1272-1274, 1297, 1302, 1387, 1392-1393, 1461-1463, 1474, 1482, 1498-1500, 1502, 1505, 1508, 1510-1511, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1725-1727, 1745-1746, 1800-1801, 1824, 1832, 1835-1836, 1859, 1866, 1870-1872, 1878, 1880-1882, 1916, 1924, 1946, 1949, 2000-2001, 2066, 2090, 2163, 2169-2171, 2178, 2181, 2186, 2255-2256, 2307, 2321, 2333, 2394, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561, 2591, 2616, 2644, 2646, 2649-2651, 2653-2654, 2661-2664, 2684, 2693-2695, 2726-2728, 2777-2780, 2782, 2784-2785, 2791-2792, 2794-2795, 2797, 2849-2850, 2852, or 2917-2918.


E24. The oligonucleotide of any one of E1-E6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 160-161, 163-164, 166, 211-212, 230-231, 267-268, 282, 294, 322, 366-367, 391-394, 399, 514-515, 594, 602, 728, 750, 752-753, 755, 828, 830, 975-976, 1002, 1176-1179, 1274, 1387, 1462-1463, 1510, 1514, 1529-1530, 1726-1727, 1745-1746, 1824, 1871-1872, 2090, 2256, 2528-2530, 2644, or 2792.


E25. The oligonucleotide of any one of E1-E6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 164, 186-187, 212, 235, 322, 367-368, 379, 384-385, 388-389, 391-392, 395, 515, 594, 703, 751-753, 828-830, 1005, 1176-1180, 1274, 1297, 1302, 1387, 1393, 1463, 1511, 1514, 1745, 1824, 1881, 2256, 2404, 2491, 2528, 2530, or 2646.


E26. The oligonucleotide of any one of E1-E6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 174-176, 178, 180-187, 566-569, 573, 701-704, 1260-1261, 1274-1277, 1510-1513, 2000-2001, 2194, 2196, 2661-2664, or 2666.


E27. The oligonucleotide of any one of E1-E26, wherein the oligonucleotide exhibits at least 50% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.


E28. The oligonucleotide of any one of E1-E26, wherein the oligonucleotide exhibits at least 60% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.


E29. The oligonucleotide of any one of E1-E26, wherein the oligonucleotide exhibits at least 70% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.


E30. The oligonucleotide of any one of E1-E26, wherein the oligonucleotide exhibits at least 85% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.


E31. The oligonucleotide of any one of E1-E26, wherein the oligonucleotide exhibits at least 50% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.


E32. The oligonucleotide of any one of E1-E26, wherein the oligonucleotide exhibits at least 60% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.


E33. The oligonucleotide of any one of E1-E26, wherein the oligonucleotide exhibits at least 70% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.


E34. The oligonucleotide of any one of E1-E26, wherein the oligonucleotide exhibits at least 85% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.


E35. The oligonucleotide of any one of E1-E34, wherein the oligonucleotide comprises at least one alternative internucleoside linkage.


E36. The oligonucleotide of E35, wherein the at least one alternative internucleoside linkage is a phosphorothioate internucleoside linkage.


E37. The oligonucleotide of E35, wherein the at least one alternative internucleoside linkage is a 2′-alkoxy internucleoside linkage.


E38. The oligonucleotide of E35, wherein the at least one alternative internucleoside linkage is an alkyl phosphate internucleoside linkage.


E39. The oligonucleotide of any one of E1-E38, wherein the oligonucleotide comprises at least one alternative nucleobase.


E40. The oligonucleotide of E39, wherein the alternative nucleobase is 5′-methylcytosine, pseudouridine, or 5-methoxyuridine.


E41. The oligonucleotide of any one of E1-E40, wherein the oligonucleotide comprises at least one alternative sugar moiety.


E42. The oligonucleotide of E41, wherein the alternative sugar moiety is 2′-OMe or a bicyclic nucleic acid.


E43. The oligonucleotide of any one of E1-E42, wherein the oligonucleotide further comprises a ligand conjugated to the 5′ end or the 3′ end of the oligonucleotide through a monovalent or branched bivalent or trivalent linker.


E44. The oligonucleotide of any one of E1-E43, wherein oligonucleotide comprises a region complementary to at least 17 contiguous nucleotides of a MLH3 gene.


E45. The oligonucleotide of any one of E1-E43, wherein oligonucleotide comprises a region complementary to at least 19 contiguous nucleotides of a MLH3 gene.


E46. The oligonucleotide of any one of E1-E43, wherein the oligonucleotide comprises a region complementary to 19 to 23 contiguous nucleotides of a MLH3 gene.


E47. The oligonucleotide of any one of E1-E43, wherein the oligonucleotide comprises a region complementary to 19 contiguous nucleotides of a MLH3 gene.


E48. The oligonucleotide of any one of E1-E43, wherein the oligonucleotide comprises a region complementary to 20 contiguous nucleotides of a MLH3 gene.


E49. The oligonucleotide of any one of E1-E43, wherein the oligonucleotide is from about 15 to 25 nucleosides in length.


E50. The oligonucleotide of any one of E1-E43, wherein the oligonucleotide is 20 nucleosides in length.


E51. A pharmaceutical composition comprising one or more of the oligonucleotides of any one of E1-E50 and a pharmaceutically acceptable carrier or excipient.


E52. A composition comprising one or more of the oligonucleotide of any one of E1-E50 and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome.


E53. A method of inhibiting transcription of MLH3 in a cell, the method comprising contacting the cell with one or more of the oligonucleotides of any one of E1-E50, the pharmaceutical composition of E51, or the composition of E52 for a time sufficient to obtain degradation of an mRNA transcript of a MLH3 gene, inhibits expression of the MLH3 gene in the cell.


E54. A method of treating, preventing, or delaying the progression a trinucleotide repeat expansion disorder in a subject in need thereof, the method comprising administering to the subject one or more of the oligonucleotides of any one of E1-E50, the pharmaceutical composition of E51, or the composition of E52.


E55. A method of reducing the level and/or activity of MLH3 in a cell of a subject identified as having a trinucleotide repeat expansion disorder, the method comprising contacting the cell with one or more of the oligonucleotides of any one of E1-E50, the pharmaceutical composition of E51, or the composition of E52.


E56. A method for inhibiting expression of an MLH3 gene in a cell comprising contacting the cell with one or more of the oligonucleotides of any one of E1-E50, the pharmaceutical composition of E51, or the composition of E52 and maintaining the cell for a time sufficient to obtain degradation of a mRNA transcript of an MLH3 gene, thereby inhibiting expression of the MLH3 gene in the cell.


E57. A method of decreasing trinucleotide repeat expansion in a cell, the method comprising contacting the cell with one or more of the oligonucleotides of any one of E1-E50, the pharmaceutical composition of E51, or the composition of E52.


E58. The method of E56 or E57, wherein the cell is in a subject.


E59. The method of any one of E54, E55, and E58, wherein the subject is a human.


E60. The method of any one of E54-E58, wherein the cell is a cell of the central nervous system or a muscle cell.


E61. The method of any one of E54, E55, and E58-A60, wherein the subject is identified as having a trinucleotide repeat expansion disorder.


E62. The method of any one of E54, E55, and E57-E61, wherein the trinucleotide repeat expansion disorder is a polyglutamine disease.


E63. The method of E62, wherein the polyglutamine disease is selected from the group consisting of dentatorubropallidoluysian atrophy, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia type 1, spinocerebellar ataxia type 2, spinocerebellar ataxia type 3, spinocerebellar ataxia type 6, spinocerebellar ataxia type 7, spinocerebellar ataxia type 17, and Huntington's disease-like 2.


E64. The method of any one of E54-E61, wherein the trinucleotide repeat expansion disorder is a non-polyglutamine disease.


E65. The method of E64, wherein the non-polyglutamine disease is selected from the group consisting of fragile X syndrome, fragile X-associated tremor/ataxia syndrome, fragile XE mental retardation, Friedreich's ataxia, myotonic dystrophy type 1, spinocerebellar ataxia type 8, spinocerebellar ataxia type 12, oculopharyngeal muscular dystrophy, Fragile X-associated premature ovarian failure, FRA2A syndrome, FRA7A syndrome, and early infantile epileptic encephalopathy.


E66. One or more oligonucleotides of any one of E1-E50, the pharmaceutical composition of E51, or the composition of E52 for use in the prevention or treatment of a trinucleotide repeat expansion disorder.


E67. The oligonucleotide, pharmaceutical composition, or composition of E65, wherein the trinucleotide repeat expansion disorder is selected from the group consisting of dentatorubropallidoluysian atrophy, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia type 1, spinocerebellar ataxia type 2, spinocerebellar ataxia type 3, spinocerebellar ataxia type 6, spinocerebellar ataxia type 7, spinocerebellar ataxia type 17, Huntington's disease-like 2, fragile X syndrome, fragile X-associated tremor/ataxia syndrome, fragile XE mental retardation, Friedreich's ataxia, myotonic dystrophy type 1, spinocerebellar ataxia type 8, spinocerebellar ataxia type 12, oculopharyngeal muscular dystrophy, Fragile X-associated premature ovarian failure, FRA2A syndrome, FRA7A syndrome, and early infantile epileptic encephalopathy.


E68. The oligonucleotide, pharmaceutical composition, or composition of E66 or E67, wherein the trinucleotide repeat expansion disorder is Huntington's disease.


E69. The oligonucleotide, pharmaceutical composition, or composition of E66 or E67, wherein the trinucleotide repeat expansion disorder is Friedreich's ataxia.


E70. The oligonucleotide, pharmaceutical composition, or composition of E66 or E67, wherein the trinucleotide repeat expansion disorder is myotonic dystrophy type 1.


E71. The oligonucleotide, pharmaceutical composition, or composition of any of E66-E70, wherein the oligonucleotide, pharmaceutical composition, or composition is administered intrathecally.


E72. The oligonucleotide, pharmaceutical composition, or composition of any of E66-E70, wherein the oligonucleotide, pharmaceutical composition, or composition is administered intraventricularly.


E73. The oligonucleotide, pharmaceutical composition, or composition of any of E66-E70, wherein the oligonucleotide, pharmaceutical composition, or composition is administered intramuscularly.


E74. A method of treating, preventing, or delaying the progression a disorder in a subject in need thereof wherein the subject is suffering from trinucleotide repeat expansion disorder, comprising administering to said subject one or more of the oligonucleotides of any one of E1-E50, the pharmaceutical composition of E51, or the composition of E52.


E75. The method of E74, further comprising administering an additional therapeutic agent.


E76. The method of E75, wherein the additional therapeutic agent is another oligonucleotide that hybridizes to an mRNA encoding the Huntingtin gene.


E77. A method of preventing or delaying progression of a trinucleotide repeat expansion disorder in a subject, the method comprising administering to the subject one or more of the oligonucleotides of any one of E1-E50, the pharmaceutical composition of E51, or the composition of E52 in an amount effective to delay progression of a trinucleotide repeat expansion disorder of the subject.


E78. The method of E77, wherein the trinucleotide repeat expansion disorder is selected from the group consisting of dentatorubropallidoluysian atrophy, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia type 1, spinocerebellar ataxia type 2, spinocerebellar ataxia type 3, spinocerebellar ataxia type 6, spinocerebellar ataxia type 7, spinocerebellar ataxia type 17, Huntington's disease-like 2, fragile X syndrome, fragile X-associated tremor/ataxia syndrome, fragile XE mental retardation, Friedreich's ataxia, myotonic dystrophy type 1, spinocerebellar ataxia type 8, spinocerebellar ataxia type 12, oculopharyngeal muscular dystrophy, Fragile X-associated premature ovarian failure, FRA2A syndrome, FRA7A syndrome, and early infantile epileptic encephalopathy.


E79. The method of E77 or E78, wherein the trinucleotide repeat expansion disorder is Huntington's disease.


E80. The method of E77 or E78, wherein the trinucleotide repeat expansion disorder is Friedrich's ataxia.


E81. The method of E77 or E78, wherein the trinucleotide repeat expansion disorder is myotonic Dystrophy type 1.


E82. The method of any of E77 or E78, further comprising administering an additional therapeutic agent.


E83. The method of E82, wherein the additional therapeutic agent is an oligonucleotide that hybridizes to an mRNA encoding the Huntingtin gene.


E84. The method of any of E77-E83, wherein progression of the trinucleotide repeat expansion disorder is delayed by at least 120 days, for example, at least 6 months, at least 12 months, at least 2 years, at least 3 years, at least 4 years, at least 5 years, at least 10 years or more, when compared with a predicted progression.


E85. One or more oligonucleotides of any one of E1-E50, the pharmaceutical composition of E51, or the composition of E52, for use in preventing or delaying the progression of a trinucleotide repeat expansion disorder in a subject.


E86. The oligonucleotide, pharmaceutical composition, or composition for the use of E85, wherein the trinucleotide repeat expansion disorder is selected from the group consisting of dentatorubropallidoluysian atrophy, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia type 1, spinocerebellar ataxia type 2, spinocerebellar ataxia type 3, spinocerebellar ataxia type 6, spinocerebellar ataxia type 7, spinocerebellar ataxia type 17, Huntington's disease-like 2, fragile X syndrome, fragile X-associated tremor/ataxia syndrome, fragile XE mental retardation, Friedreich's ataxia, myotonic dystrophy type 1, spinocerebellar ataxia type 8, spinocerebellar ataxia type 12, oculopharyngeal muscular dystrophy, Fragile X-associated premature ovarian failure, FRA2A syndrome, FRA7A syndrome, and early infantile epileptic encephalopathy.


E87. The oligonucleotide, pharmaceutical composition, or composition of E85 or E86, wherein the trinucleotide repeat expansion disorder is Huntington's disease.


E88. The oligonucleotide, pharmaceutical composition, or composition of E85 or E86, wherein the trinucleotide repeat expansion disorder is Friedrich's ataxia.


E89. The oligonucleotide, pharmaceutical composition, or composition of E85 or E85, wherein the trinucleotide repeat expansion disorder is myotonic Dystrophy type 1.


E90. The oligonucleotide, pharmaceutical composition, or composition for the use of any one of E85-E89, wherein progression of the trinucleotide repeat expansion disorder is delayed by at least 120 days, for example, at least 6 months, at least 12 months, at least 2 years, at least 3 years, at least 4 years, at least 5 years, at least 10 years or more, when compared with a predicted progression.

Claims
  • 1. A single-stranded oligonucleotide of 10-30 linked nucleosides in length, wherein the oligonucleotide comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene.
  • 2. The oligonucleotide of claim 1, wherein the oligonucleotide comprises: (a) a DNA core sequence comprising linked deoxyribonucleosides;(b) a 5′ flanking sequence comprising linked nucleosides; and(c) a 3′ flanking sequence comprising linked nucleosides;wherein the DNA core comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene and is positioned between the 5′ flanking sequence and the 3′ flanking sequence; wherein the 5′ flanking sequence and the 3′ flanking sequence each comprises at least two linked nucleosides; and wherein at least one nucleoside of each flanking sequence comprises an alternative nucleoside.
  • 3. A single-stranded oligonucleotide of 10-30 linked nucleosides in length for inhibiting expression of a human MLH3 gene in a cell, wherein the oligonucleotide comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene.
  • 4. The oligonucleotide of claim 3, wherein the oligonucleotide comprises: (a) a DNA core comprising linked deoxyribonucleosides;(b) a 5′ flanking sequence comprising linked nucleosides; and(c) a 3′ flanking sequence comprising linked nucleosides;wherein the DNA core comprises a region of at least 10 contiguous nucleobases having at least 80% complementarity to an MLH3 gene and is positioned between the 5′ flanking sequence and the 3′ flanking sequence; wherein the 5′ flanking sequence and the 3′ flanking sequence each comprises at least two linked nucleosides; and wherein at least one nucleoside of each flanking sequence comprises an alternative nucleoside.
  • 5. The oligonucleotide of any one of claims 1-4, wherein the region of at least 10 nucleobases has at least 90% complementary to an MLH3 gene
  • 6. The oligonucleotide of any one of claims 1-5, wherein the region of at least 10 nucleobases has at least 95% complementary to an MLH3 gene.
  • 7. The oligonucleotide of any one of claims 1-6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene comprising a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-576, 584-636, 681-740, 818-878, 952-1024, 1129-1158, 1177-1264, 1287-1318, 1351-1378, 1536-1598, 1623-1660, 1739-1764, 1782-1823, 1847-1908, 2026-2051, 2063-2094, 2115-2146, 2256-2290, 2387-2414, 2421-2592, 2727-2788, 2826-2937, 3005-3043, 3078-3107, 3159-3185, 3214-3239, 3244-3272, 3282-3308, 3426-3483, 3561-3587, 3642-3769, 3804-3839, 3950-3977, 4004-4040, 4052-4115, 4139-4199, 4241-4301, 4328-4365, 4420-4448, 4472-4536, 4669-4708, or 4784-4810 of the MLH3 gene.
  • 8. The oligonucleotide of any one of claims 1-6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene comprising a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-576, 584-636, 681-740, 818-878, 952-1024, 1129-1158, 1177-1264, 1287-1318, 1351-1378, 1568-1598, 1623-1660, 1782-1823, 1870-1904, 2063-2094, 2115-2146, 2256-2287, 2387-2414, 2422-2592, 2727-2788, 2826-2937, 3009-3043, 3078-3107, 3159-3185, 3214-3272, 3282-3307, 3426-3483, 3561-3587, 3642-3767, 3804-3839, 3950-3977, 4004-4039, 4052-4115, 4139-4199, 4241-4301, 4329-4365, 4420-4448, 4472-4536, 4680-4708, or 4784-4810 of the MLH3 gene.
  • 9. The oligonucleotide of any one of claims 1-6, wherein the region of at least 10 nucleobases is complementarity to an MLH3 gene comprising a sequence of reference mRNA NM_001040108.1 at one or more of positions 221-293, 321-506, 534-635, 681-740, 842-875, 953-1024, 1129-1158, 1179-1264, 1287-1316, 1351-1378, 1568-1598, 1623-1659, 1782-1823, 1870-1904, 2064-2091, 2115-2146, 2256-2287, 2387-2414, 2422-2592, 2727-2788, 2829-2937, 3010-3043, 3079-3107, 3159-3185, 3246-3271, 3282-3307, 3426-3474, 3561-3587, 3642-3707, 3804-3839, 3950-3977, 4004-4039, 4052-4114, 4139-4164, 4174-4199, 4241-4288, 4329-4365, 4421-4448, 4472-4536, 4680-4708, or 4784-4810 of the MLH3 gene.
  • 10. The oligonucleotide of any one of claims 1-6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene comprising a sequence of reference mRNA NM_001040108.1 at one or more of positions 331-362, 393-438, 479-505, 534-574, 587-612, 681-740, 847-873, 991-1024, 1210-1262, 1351-1378, 1571-1597, 1623-1648, 1874-1902, 2066-2091, 2256-2281, 2388-2414, 2470-2515, 2732-2788, 2853-2878, 2901-2927, 3282-3307, 3562-3587, 4056-4083, 4241-4266, or 4506-4531 of the MLH3 gene.
  • 11. The oligonucleotide of any one of claims 1-6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene comprising a sequence of reference mRNA NM_001040108.1 at one or more of positions 335-449, 587-612, 682-736, 848-873, 991-1016, 1179-1204, 1233-1260, 1351-1378, 1626-1651, 1874-1903, 2066-2091, 2115-2146, 2256-2287, 2389-2414, 2471-2499, 2762-2787, 2853-2878, 2911-2936, 3562-3587, 3814-3839, 4006-4031, 4056-4083, or 4244-4269 of the MLH3 gene.
  • 12. The oligonucleotide of any one of claims 1-6, wherein the region of at least 10 nucleobases is complementary to an MLH3 gene comprising a sequence of reference mRNA NM_001040108.1 at one or more of positions 355-393, 952-984, 1177-1205, 2026-2052, 2066-2094, 2470-2498, 3159-3185, 3458-3485, or 4259-4292 of the MLH3 gene.
  • 13. The oligonucleotide of any one of claims 1-6, wherein the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 6-4710.
  • 14. The oligonucleotide of any one of claims 1-6, wherein the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 110-111, 115-116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-322, 328-329, 366-368, 377-379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 749-753, 755, 757, 784, 786-788, 790, 828-830, 959, 972, 974-977, 1002, 1004-1005, 1007, 1009-1013, 1086, 1110-1111, 1126, 1149, 1172, 1176-1181, 1185, 1260, 1271-1274, 1276-1277, 1297, 1302, 1387-1390, 1392-1393, 1396, 1461-1463, 1473-1474, 1482, 1490-1491, 1495, 1498-1502, 1505, 1508, 1510-1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1596-1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1802, 1824-1826, 1832, 1835-1836, 1859, 1865-1866, 1870-1873, 1875, 1878, 1880-1882, 1911, 1914-1918, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090-2091, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345-2346, 2353-2355, 2394-2395, 2403-2404, 2460-2462, 2489-2492, 2495, 2499-2500, 2524-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2683-2685, 2687, 2690-2691, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2848-2852, or 2917-2918.
  • 15. The oligonucleotide of any one of claims 1-6, wherein the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-236, 238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-320, 322, 328-329, 366-368, 377, 379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 750-753, 755, 757, 784, 786-788, 790, 828-830, 972, 974-977, 1002, 1004-1005, 1009-1013, 1110-1111, 1126, 1172, 1176-1181, 1271-1274, 1276-1277, 1297, 1302, 1387, 1390, 1392-1393, 1461-1463, 1474, 1482, 1490-1491, 1498-1502, 1505, 1508, 1510-1512, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1801, 1824-1826, 1832, 1835-1836, 1859, 1866, 1870-1873, 1878, 1880-1882, 1915-1917, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345, 2353, 2394-2395, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2684, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2849-2852, or 2917-2918.
  • 16. The oligonucleotide of any one of claims 1-6, wherein the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 89, 102, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 183, 185-189, 201, 211-212, 229-231, 235-236, 238, 241, 250, 254, 265-269, 282-283, 286-288, 294, 296, 319, 322, 328, 366-368, 377, 379, 381-399, 511, 514-517, 567-568, 591, 593-594, 599, 602, 666, 669-670, 703, 728, 750-753, 755, 757, 784, 786-788, 828-830, 972, 974-977, 1002, 1004-1005, 1009, 1011-1012, 1110-1111, 1126, 1172, 1176-1181, 1272-1274, 1297, 1302, 1387, 1392-1393, 1461-1463, 1474, 1482, 1498-1500, 1502, 1505, 1508, 1510-1511, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1725-1727, 1745-1746, 1800-1801, 1824, 1832, 1835-1836, 1859, 1866, 1870-1872, 1878, 1880-1882, 1916, 1924, 1946, 1949, 2000-2001, 2066, 2090, 2163, 2169-2171, 2178, 2181, 2186, 2255-2256, 2307, 2321, 2333, 2394, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561, 2591, 2616, 2644, 2646, 2649-2651, 2653-2654, 2661-2664, 2684, 2693-2695, 2726-2728, 2777-2780, 2782, 2784-2785, 2791-2792, 2794-2795, 2797, 2849-2850, 2852, or 2917-2918.
  • 17. The oligonucleotide of any one of claims 1-6, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 160-161, 163-164, 166, 211-212, 230-231, 267-268, 282, 294, 322, 366-367, 391-394, 399, 514-515, 594, 602, 728, 750, 752-753, 755, 828, 830, 975-976, 1002, 1176-1179, 1274, 1387, 1462-1463, 1510, 1514, 1529-1530, 1726-1727, 1745-1746, 1824, 1871-1872, 2090, 2256, 2528-2530, 2644, or 2792.
  • 18. The oligonucleotide of any one of claims 1-6, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 164, 186-187, 212, 235, 322, 367-368, 379, 384-385, 388-389, 391-392, 395, 515, 594, 703, 751-753, 828-830, 1005, 1176-1180, 1274, 1297, 1302, 1387, 1393, 1463, 1511, 1514, 1745, 1824, 1881, 2256, 2404, 2491, 2528, 2530, or 2646.
  • 19. The oligonucleotide of any one of claims 1-6, the oligonucleotide comprises the nucleobase sequence of any one of SEQ ID NOs: 174-176, 178, 180-187, 566-569, 573, 701-704, 1260-1261, 1274-1277, 1510-1513, 2000-2001, 2194, 2196, 2661-2664, or 2666.
  • 20. The oligonucleotide of any one of claims 1-6, wherein the nucleobase sequence of the oligonucleotide consists of any one of SEQ ID NOs: 6-4710.
  • 21. The oligonucleotide of any one of claims 1-6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 110-111, 115-116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-322, 328-329, 366-367-368, 377-379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 749-753, 755, 757, 784, 786-788, 790, 828-830, 959, 972, 974-977, 1002, 1004-1005, 1007, 1009-1013, 1086, 1110-1111, 1126, 1149, 1172, 1176-1181, 1185, 1260, 1271-1274, 1276-1277, 1297, 1302, 1387-1390, 1392-1393, 1396, 1461-1463, 1473-1474, 1482, 1490-1491, 1495, 1498-1502, 1505, 1508, 1510-1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1596-1597, 1721-1722, 1724-1725-1726-1727, 1744-1746, 1797, 1800-1802, 1824-1826, 1832, 1835-1836, 1859, 1865-1866, 1870-1873, 1875, 1878, 1880-1882, 1911, 1914-1918, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090-2091, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345-2346, 2353-2355, 2394-2395, 2403-2404, 2460-2462, 2489-2492, 2495, 2499-2500, 2524-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2683-2685, 2687, 2690-2691, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2848-2852, or 2917-2918.
  • 22. The oligonucleotide of any one of claims 1-6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 92, 102, 107-108, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 182-183, 185-189, 201, 211-212, 229-231, 234-236, 238, 241, 248-250, 254, 265-269, 282-283, 285-288, 294, 296, 319-320, 322, 328-329, 366-368, 377, 379, 381-399, 487-488, 511, 514-517, 520, 566-568, 573, 591, 593-594, 599, 602, 666, 669-670, 701-704, 728, 750-753, 755, 757, 784, 786-788, 790, 828-830, 972, 974-977, 1002, 1004-1005, 1009-1013, 1110-1111, 1126, 1172, 1176-1181, 1271-1274, 1276-1277, 1297, 1302, 1387, 1390, 1392-1393, 1461-1462-1463, 1474, 1482, 1490-1491, 1498-1502, 1505, 1508, 1510-1512, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1724-1727, 1744-1746, 1797, 1800-1801, 1824-1826, 1832, 1835-1836, 1859, 1866, 1870-1873, 1878, 1880-1882, 1915-1917, 1924, 1945-1946, 1949, 2000-2001, 2035, 2064, 2066-2067, 2090, 2163, 2166, 2169-2172, 2178, 2181, 2184, 2186, 2194, 2255-2256, 2307, 2321, 2333, 2343, 2345, 2353, 2394-2395, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561-2562, 2591, 2595, 2616, 2644-2651, 2653-2654, 2661-2664, 2674, 2684, 2693-2695, 2725-2728, 2777-2782, 2784-2785, 2789, 2791-2792, 2794-2795, 2797, 2849-2852, or 2917-2918.
  • 23. The oligonucleotide of any one of claims 1-6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 89, 102, 111, 116, 150, 154, 160-161, 163-164, 166, 168, 175-176, 178, 180, 183, 185-189, 201, 211-212, 229-231, 235-236, 238, 241, 250, 254, 265-269, 282-283, 286-288, 294, 296, 319, 322, 328, 366-368, 377, 379, 381-399, 511, 514-517, 567-568, 591, 593-594, 599, 602, 666, 669-670, 703, 728, 750-753, 755, 757, 784, 786-788, 828-830, 972, 974-977, 1002, 1004-1005, 1009, 1011-1012, 1110-1111, 1126, 1172, 1176-1181, 1272-1274, 1297, 1302, 1387, 1392-1393, 1461-1463, 1474, 1482, 1498-1500, 1502, 1505, 1508, 1510-1511, 1514, 1516-1518, 1525-1526, 1529-1530, 1546-1547, 1572, 1597, 1721-1722, 1725-1727, 1745-1746, 1800-1801, 1824, 1832, 1835-1836, 1859, 1866, 1870-1872, 1878, 1880-1882, 1916, 1924, 1946, 1949, 2000-2001, 2066, 2090, 2163, 2169-2171, 2178, 2181, 2186, 2255-2256, 2307, 2321, 2333, 2394, 2403-2404, 2460-2462, 2489, 2491-2492, 2495, 2499, 2524-2525, 2527-2530, 2561, 2591, 2616, 2644, 2646, 2649-2651, 2653-2654, 2661-2664, 2684, 2693-2695, 2726-2728, 2777-2780, 2782, 2784-2785, 2791-2792, 2794-2795, 2797, 2849-2850, 2852, or 2917-2918.
  • 24. The oligonucleotide of any one of claims 1-6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 160-161, 163-164, 166, 211-212, 230-231, 267-268, 282, 294, 322, 366-367, 391-394, 399, 514-515, 594, 602, 728, 750, 752-753, 755, 828, 830, 975-976, 1002, 1176-1179, 1274, 1387, 1462-1463, 1510, 1514, 1529-1530, 1726-1727, 1745-1746, 1824, 1871-1872, 2090, 2256, 2528-2530, 2644, or 2792.
  • 25. The oligonucleotide of any one of claims 1-6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 164, 186-187, 212, 235, 322, 367-368, 379, 384-385, 388-389, 391-392, 395, 515, 594, 703, 751-753, 828-830, 1005, 1176-1180, 1274, 1297, 1302, 1387, 1393, 1463, 1511, 1514, 1745, 1824, 1881, 2256, 2404, 2491, 2528, 2530, or 2646.
  • 26. The oligonucleotide of any one of claims 1-6, wherein the oligonucleotide consists of the nucleobase sequence of any one of SEQ ID NOs: 174-176, 178, 180-187, 566-569, 573, 701-704, 1260-1261, 1274-1277, 1510-1513, 2000-2001, 2194, 2196, 2661-2664, or 2666.
  • 27. The oligonucleotide of any one of claims 1-26, wherein the oligonucleotide exhibits at least 50% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.
  • 28. The oligonucleotide of any one of claims 1-26, wherein the oligonucleotide exhibits at least 60% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.
  • 29. The oligonucleotide of any one of claims 1-26, wherein the oligonucleotide exhibits at least 70% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.
  • 30. The oligonucleotide of any one of claims 1-26, wherein the oligonucleotide exhibits at least 85% mRNA inhibition at a 20 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.
  • 31. The oligonucleotide of any one of claims 1-26, wherein the oligonucleotide exhibits at least 50% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.
  • 32. The oligonucleotide of any one of claims 1-26, wherein the oligonucleotide exhibits at least 60% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.
  • 33. The oligonucleotide of any one of claims 1-26, wherein the oligonucleotide exhibits at least 70% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.
  • 34. The oligonucleotide of any one of claims 1-26, wherein the oligonucleotide exhibits at least 85% mRNA inhibition at a 2 nM oligonucleotide concentration when determined using a cell assay when compared with a control cell.
  • 35. The oligonucleotide of any one of claims 1-34, wherein the oligonucleotide comprises at least one alternative internucleoside linkage.
  • 36. The oligonucleotide of claim 35, wherein the at least one alternative internucleoside linkage is a phosphorothioate internucleoside linkage.
  • 37. The oligonucleotide of claim 35, wherein the at least one alternative internucleoside linkage is a 2′-alkoxy internucleoside linkage.
  • 38. The oligonucleotide of claim 35, wherein the at least one alternative internucleoside linkage is an alkyl phosphate internucleoside linkage.
  • 39. The oligonucleotide of any one of claims 1-38, wherein the oligonucleotide comprises at least one alternative nucleobase.
  • 40. The oligonucleotide of claim 39, wherein the alternative nucleobase is 5′-methylcytosine, pseudouridine, or 5-methoxyuridine.
  • 41. The oligonucleotide of any one of claims 1-40, wherein the oligonucleotide comprises at least one alternative sugar moiety.
  • 42. The oligonucleotide of claim 41, wherein the alternative sugar moiety is 2′-OMe or a bicyclic nucleic acid.
  • 43. The oligonucleotide of any one of claims 1-42, wherein the oligonucleotide further comprises a ligand conjugated to the 5′ end or the 3′ end of the oligonucleotide through a monovalent or branched bivalent or trivalent linker.
  • 44. The oligonucleotide of any one of claims 1-43, wherein oligonucleotide comprises a region complementary to at least 17 contiguous nucleotides of a MLH3 gene.
  • 45. The oligonucleotide of any one of claims 1-43, wherein oligonucleotide comprises a region complementary to at least 19 contiguous nucleotides of a MLH3 gene.
  • 46. The oligonucleotide of any one of claims 1-43, wherein the oligonucleotide comprises a region complementary to 19 to 23 contiguous nucleotides of a MLH3 gene.
  • 47. The oligonucleotide of any one of claims 1-43, wherein the oligonucleotide comprises a region complementary to 19 contiguous nucleotides of a MLH3 gene.
  • 48. The oligonucleotide of any one of claims 1-43, wherein the oligonucleotide comprises a region complementary to 20 contiguous nucleotides of a MLH3 gene.
  • 49. The oligonucleotide of any one of claims 1-43, wherein the oligonucleotide is from about 15 to 25 nucleosides in length.
  • 50. The oligonucleotide of any one of claims 1-43, wherein the oligonucleotide is 20 nucleosides in length.
  • 51. A pharmaceutical composition comprising one or more of the oligonucleotides of any one of claims 1-50 and a pharmaceutically acceptable carrier or excipient.
  • 52. A composition comprising one or more of the oligonucleotide of any one of claims 1-51 and a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, or a liposome.
  • 53. A method of inhibiting transcription of MLH3 in a cell, the method comprising contacting the cell with one or more of the oligonucleotides of any one of claims 1-50, the pharmaceutical composition of claim 51, or the composition of claim 52 for a time sufficient to obtain degradation of an mRNA transcript of a MLH3 gene, inhibits expression of the MLH3 gene in the cell.
  • 54. A method of treating, preventing, or delaying the progression a trinucleotide repeat expansion disorder in a subject in need thereof, the method comprising administering to the subject one or more of the oligonucleotides of any one of claims 1-50, the pharmaceutical composition of claim 51, or the composition of claim 52.
  • 55. A method of reducing the level and/or activity of MLH3 in a cell of a subject identified as having a trinucleotide repeat expansion disorder, the method comprising contacting the cell with one or more of the oligonucleotides of any one of claims 1-50, the pharmaceutical composition of claim 51, or the composition of claim 52.
  • 56. A method for inhibiting expression of an MLH3 gene in a cell comprising contacting the cell with one or more of the oligonucleotides of any one of claims 1-50, the pharmaceutical composition of claim 51, or the composition of claim 52 and maintaining the cell for a time sufficient to obtain degradation of a mRNA transcript of an MLH3 gene, thereby inhibiting expression of the MLH3 gene in the cell.
  • 57. A method of decreasing trinucleotide repeat expansion in a cell, the method comprising contacting the cell with one or more of the oligonucleotides of any one of claims 1-50, the pharmaceutical composition of claim 51, or the composition of claim 52.
  • 58. The method of claim 56 or 57, wherein the cell is in a subject.
  • 59. The method of any one of claims 54, 55, and 58, wherein the subject is a human.
  • 60. The method of any one of claims 54-58, wherein the cell is a cell of the central nervous system or a muscle cell.
  • 61. The method of any one of claims 54, 55, and 58-60, wherein the subject is identified as having a trinucleotide repeat expansion disorder.
  • 62. The method of any one of claims 54, 55, and 57-61, wherein the trinucleotide repeat expansion disorder is a polyglutamine disease.
  • 63. The method of claim 62, wherein the polyglutamine disease is selected from the group consisting of dentatorubropallidoluysian atrophy, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia type 1, spinocerebellar ataxia type 2, spinocerebellar ataxia type 3, spinocerebellar ataxia type 6, spinocerebellar ataxia type 7, spinocerebellar ataxia type 17, and Huntington's disease-like 2.
  • 64. The method of any one of claims 54-61, wherein the trinucleotide repeat expansion disorder is a non-polyglutamine disease.
  • 65. The method of claim 64, wherein the non-polyglutamine disease is selected from the group consisting of fragile X syndrome, fragile X-associated tremor/ataxia syndrome, fragile XE mental retardation, Friedreich's ataxia, myotonic dystrophy type 1, spinocerebellar ataxia type 8, spinocerebellar ataxia type 12, oculopharyngeal muscular dystrophy, Fragile X-associated premature ovarian failure, FRA2A syndrome, FRA7A syndrome, and early infantile epileptic encephalopathy.
  • 66. One or more oligonucleotides of any one of claims 1-50, the pharmaceutical composition of claim 51, or the composition of claim 52 for use in the prevention or treatment of a trinucleotide repeat expansion disorder.
  • 67. The oligonucleotide, pharmaceutical composition, or composition of claim 65, wherein the trinucleotide repeat expansion disorder is selected from the group consisting of dentatorubropallidoluysian atrophy, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia type 1, spinocerebellar ataxia type 2, spinocerebellar ataxia type 3, spinocerebellar ataxia type 6, spinocerebellar ataxia type 7, spinocerebellar ataxia type 17, Huntington's disease-like 2, fragile X syndrome, fragile X-associated tremor/ataxia syndrome, fragile XE mental retardation, Friedreich's ataxia, myotonic dystrophy type 1, spinocerebellar ataxia type 8, spinocerebellar ataxia type 12, oculopharyngeal muscular dystrophy, Fragile X-associated premature ovarian failure, FRA2A syndrome, FRA7A syndrome, and early infantile epileptic encephalopathy.
  • 68. The oligonucleotide, pharmaceutical composition, or composition of claim 66 or 67, wherein the trinucleotide repeat expansion disorder is Huntington's disease.
  • 69. The oligonucleotide, pharmaceutical composition, or composition of claim 66 or 67, wherein the trinucleotide repeat expansion disorder is Friedreich's ataxia.
  • 70. The oligonucleotide, pharmaceutical composition, or composition claim 66 or 67, wherein the trinucleotide repeat expansion disorder is myotonic dystrophy type 1.
  • 71. The oligonucleotide, pharmaceutical composition, or composition of any of claims 66-70, wherein the oligonucleotide, pharmaceutical composition, or composition is administered intrathecally.
  • 72. The oligonucleotide, pharmaceutical composition, or composition of any of claims 66-70, wherein the oligonucleotide, pharmaceutical composition, or composition is administered intraventricularly.
  • 73. The oligonucleotide, pharmaceutical composition, or composition of any of claims 66-70, wherein the oligonucleotide, pharmaceutical composition, or composition is administered intramuscularly.
  • 74. A method of treating, preventing, or delaying progression a disorder in a subject in need thereof wherein the subject is suffering from trinucleotide repeat expansion disorder, comprising administering to said subject one or more of the oligonucleotides of any one of claims 1-50, the pharmaceutical composition of claim 51, or the composition of claim 52.
  • 75. The method of claim 74, further comprising administering an additional therapeutic agent.
  • 76. The method of claim 75, wherein the additional therapeutic agent is another oligonucleotide that hybridizes to an mRNA encoding the Huntingtin gene.
  • 77. A method of preventing or delaying progression of a trinucleotide repeat expansion disorder in a subject, the method comprising administering to the subject one or more of the oligonucleotides of any one of claims 1-50, the pharmaceutical composition of claim 51, or the composition of claim 52 in an amount effective to delay progression of a trinucleotide repeat expansion disorder of the subject.
  • 78. The method of claim 77, wherein the trinucleotide repeat expansion disorder is selected from the group consisting of dentatorubropallidoluysian atrophy, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia type 1, spinocerebellar ataxia type 2, spinocerebellar ataxia type 3, spinocerebellar ataxia type 6, spinocerebellar ataxia type 7, spinocerebellar ataxia type 17, Huntington's disease-like 2, fragile X syndrome, fragile X-associated tremor/ataxia syndrome, fragile XE mental retardation, Friedreich's ataxia, myotonic dystrophy type 1, spinocerebellar ataxia type 8, spinocerebellar ataxia type 12, oculopharyngeal muscular dystrophy, Fragile X-associated premature ovarian failure, FRA2A syndrome, FRA7A syndrome, and early infantile epileptic encephalopathy.
  • 79. The method of claim 77 or 78, wherein the trinucleotide repeat expansion disorder is Huntington's disease.
  • 80. The method of claim 77 or 78, wherein the trinucleotide repeat expansion disorder is Friedrich's ataxia.
  • 81. The method of claim 77 or 78, wherein the trinucleotide repeat expansion disorder is myotonic Dystrophy type 1.
  • 82. The method of any of claim 77 or 78, further comprising administering an additional therapeutic agent.
  • 83. The method of claim 82, wherein the additional therapeutic agent is an oligonucleotide that hybridizes to an mRNA encoding the Huntingtin gene.
  • 84. The method of any of claims 77-83, wherein progression of the trinucleotide repeat expansion disorder is delayed by at least 120 days, for example, at least 6 months, at least 12 months, at least 2 years, at least 3 years, at least 4 years, at least 5 years, at least 10 years or more, when compared with a predicted progression.
  • 85. One or more oligonucleotides of any one of claims 1-50, the pharmaceutical composition of claim 51, or the composition of claim 52, for use in preventing or delaying the progression of a trinucleotide repeat expansion disorder in a subject.
  • 86. The oligonucleotide, pharmaceutical composition, or composition for the use of claim 85, wherein the trinucleotide repeat expansion disorder is selected from the group consisting of dentatorubropallidoluysian atrophy, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia type 1, spinocerebellar ataxia type 2, spinocerebellar ataxia type 3, spinocerebellar ataxia type 6, spinocerebellar ataxia type 7, spinocerebellar ataxia type 17, Huntington's disease-like 2, fragile X syndrome, fragile X-associated tremor/ataxia syndrome, fragile XE mental retardation, Friedreich's ataxia, myotonic dystrophy type 1, spinocerebellar ataxia type 8, spinocerebellar ataxia type 12, oculopharyngeal muscular dystrophy, Fragile X-associated premature ovarian failure, FRA2A syndrome, FRA7A syndrome, and early infantile epileptic encephalopathy.
  • 87. The oligonucleotide, pharmaceutical composition, or composition of claim 85 or 86, wherein the trinucleotide repeat expansion disorder is Huntington's disease.
  • 88. The oligonucleotide, pharmaceutical composition, or composition of claim 85 or 86, wherein the trinucleotide repeat expansion disorder is Friedrich's ataxia.
  • 89. The oligonucleotide, pharmaceutical composition, or composition of claim 85 or 86, wherein the trinucleotide repeat expansion disorder is myotonic Dystrophy type 1.
  • 90. The oligonucleotide, pharmaceutical composition, or composition for the use of any one of claims 85-89, wherein progression of the trinucleotide repeat expansion disorder is delayed by at least 120 days, for example, at least 6 months, at least 12 months, at least 2 years, at least 3 years, at least 4 years, at least 5 years, at least 10 years or more, when compared with a predicted progression.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/064059 12/2/2019 WO
Provisional Applications (2)
Number Date Country
62774777 Dec 2018 US
62877104 Jul 2019 US