The present invention relates generally to analysis of data collected by analytical techniques such as chromatography and spectrometry. More particularly, it relates to methods for time-aligning multi-dimensional chromatograms of different samples to enable automated comparison among sample data.
The high sensitivity and resolution of liquid chromatography-mass spectrometry (LC-MS) make it an ideal tool for comprehensive analysis of complex biological samples. Comparing spectra obtained from samples corresponding to different patient cohorts (e.g., diseased versus non-diseased, or drug responders versus non-responders) or subjected to different stimuli (e.g., drug administration regimens) can yield valuable information about sample components correlated with particular conditions. Such components may serve as biological markers that enable earlier and more precise diagnosis, patient stratification, or prediction of clinical outcomes. They may also guide the discovery of suitable and novel drug targets. Because this approach extracts a large amount of information from a very small sample size, automated data collection and analysis methods are desirable.
LC-MS data are reported as intensity or abundance of ions of varying mass-to-charge ratio (m/z) at varying chromatographic retention times. A two-dimensional spectrum of LC-MS data from a single sample is shown in
One significant obstacle for automated analysis of LC-MS data is the nonlinear variability of chromatographic retention times, which can exceed the width of peaks along the retention time axis substantially. This variability arises from, for example, changes in column chemistry over time, instrument drift, interactions among sample components, protein modifications, and minor changes in mobile phase composition. While constant time offsets can be corrected for easily, nonlinear variations are more problematic and significantly hamper the recognition of corresponding peaks across sample spectra. This problem is illustrated by the chromatograms of
Various methods have been provided in the art for addressing the problem of chromatographic retention time shifts, including correlation, curve fitting, and dynamic programming methods such as dynamic time warping and correlation optimized warping. For example, a time warping algorithm is applied to gas chromatography/Fourier transform infrared (FT-IR)/mass spectrometry data from a gasoline sample in C. P. Wang and T. L. Isenhour, “Time-warping algorithm applied to chromatographic peak matching gas chromatography/Fourier transform infrared/mass spectrometry,” Anal. Chem. 59: 649-654, 1987. In this method, a single FT-IR interferogram is aligned with a TIC. While this method may be effective for simple samples, it may be inadequate for more complex samples such as biological fluids, which can contain thousands of different proteins and peptides, yielding thousands of potentially relevant and, more importantly, densely spaced (in both m/z and retention time) peaks.
There is still a need, therefore, for a robust method for time-aligning chromatographic-mass spectrometric data.
Various embodiments of the present invention provide methods for time-aligning two-dimensional chromatography-mass spectrometry data sets, such as liquid chromatography-mass spectrometry (LC-MS) data sets, also referred to as spectra. These data sets can have nonlinear variations in retention time, so that corresponding peaks (i.e., peaks representing the same analyte) in different samples elute from the chromatographic column at different times. Additional embodiments provide methods for comparing samples and data sets, methods for identifying biological markers (biomarkers), aligned spectra produced according to these methods, samples compared according to these methods, biomarkers identified according to these methods, and methods for using the identified biomarkers for diagnostic and therapeutic applications.
The methods are effective at aligning two-dimensional data sets obtained from both simple and complex samples. Although complex and simple are relative terms and are not intended to limit the scope of the present invention in any way, complex samples typically have many more and more densely spaced spectral peaks than do simple samples. For examples, complex samples such as biological samples may have upwards of hundreds or thousands of peaks in sixty minutes of retention time, such that the total ion chromatogram (TIC) is too complex to allow resolution of individual features. Rather than use composite one-dimensional data such as the TIC, the methods in embodiments of the present invention use data from individual mass chromatograms, i.e., data representing abundances or intensities of ions in particular m/z ranges at particular retention times. The m/z range included within a single mass chromatogram may reflect the instrument precision or may be the result of preprocessing (e.g., binning) of the raw data, and is typically on the order of between about 0.1 and 1.0 atomic mass unit (amu). Mass scans typically occur at intervals of between about one and about three seconds.
In some embodiments of the present invention, computations are referred to as being performed “in dependence on at least two mass chromatograms from each data set.” This phrase is to be understood as referring to computations on individual data from a mass chromatogram, rather than to data summed over a number of chromatograms.
While embodiments of the invention are described below with reference to chromatography and mass spectrometry, and particularly to liquid chromatography, it will be apparent to one of skill in the art how to apply the methods to any other hyphenated chromatographic technique. For example, the second dimension may be any type of electromagnetic spectroscopy such as microwave, far infrared, infrared, Raman or resonance Raman, visible, ultraviolet, far ultraviolet, vacuum ultraviolet, x-ray, or ultraviolet fluorescence or phosphorescence; any magnetic resonance spectroscopy, such as nuclear magnetic resonance (NMR) or electron paramagnetic resonance (EPR); and any type of mass spectrometry, including ionization methods such as electron impact, chemical, thermospray, electrospray, matrix assisted laser desorption, and inductively coupled plasma ionization, and any detection methods, including sector, quadrupole, ion trap, time of flight, and Fourier transform detection.
Time-alignment methods are applied to data sets acquired by performing chromatographic and spectrometric or spectroscopic methods on chemical or biological samples. The samples can be in any homogeneous or heterogeneous form that is compatible with the chromatographic instrument, for example, one or more of a gas, liquid, solid, gel, or liquid crystal. Biological samples that can be analyzed by embodiments of the present invention include, without limitation, whole organisms; parts of organisms (e.g., tissue samples); tissue homogenates, extracts, infusions, suspensions, excretions, secretions, or emissions; administered and recovered material; and culture supernatants. Examples of biological fluids include, without limitation, whole blood, blood plasma, blood serum, urine, bile, cerebrospinal fluid, milk, saliva, mucus, sweat, gastric juice, pancreatic juice, seminal fluid, prostatic fluid, sputum, broncheoalveolar lavage, and synovial fluid, and any cell suspensions, extracts, or concentrates of these fluids. Non-biological samples include air, water, liquids from manufacturing wastes or processes, foods, and the like. Samples may be correlated with particular subjects, cohorts, conditions, time points, or any other suitable descriptor or category.
In an optional next step 24, the data sets are preprocessed using conventional algorithms. Examples of preprocessing techniques applied include, without limitation, baseline subtraction, smoothing, noise reduction, de-isotoping, normalization, and peak list creation. Additionally, the data can be binned into defined m/z intervals to create mass chromatograms. Data are collected at discrete scan times, but m/z values in the mass spectra are typically of very high mass precision. In order to create mass chromatograms, data falling within a specified m/z interval (e.g., 0.5 amu) are combined into a composite value for that interval. Any suitable binning algorithm may be employed; as is known in the art, the selection of a binning algorithm and its parameters may have implications for data smoothness, fidelity, and quality.
In step 26, a time-aligning algorithm is applied to one or more pair of data sets. One data set can be chosen (arbitrarily or according to a criterion) to serve as a reference spectrum and all other data sets time-aligned to this spectrum. For example, assuming the samples are analyzed on the instrument consecutively, the reference data set can correspond to the sample analyzed in the middle of the process. Alternatively, a feedback method can be implemented in which the degree of time shift is measured for each data set, potentially with respect to one or more of the data sets chosen arbitrarily as a reference data set, and the one with a median time shift, according to some metric, selected as the reference data set. Data sets can also be evaluated by a perceived or actual quality metric to determine which to select as the reference data set.
After the data sets are aligned to a common retention time scale, the aligned data sets can be compared automatically in step 28 to locate features that differentiate the spectra. For example, a peak that occurs in only certain spectra or at significantly different intensity levels in different spectra may represent a biological marker or a component of a biological marker that is indicative of or diagnostic for a characteristic of the relevant samples (e.g., disease, response to therapy, patient group, disease progression). If desired, the identity of the ions responsible for the distinguishing features can be identified. Biological markers may also be more complex combinations of spectral features or sample components with or without other clinical or biological factors. Identifying spectral differences and biological markers is a multi-step process and will not be described in detail herein. For more information, see U.S. patent application Ser. No. 09/994,576, “Methods for Efficiently Mining Broad Data Sets for Biological Markers,” filed Nov. 27, 2001, which is incorporated herein by reference. In general, this step 28 is referred to as differential phenotyping, because differences among phenotypes, as represented by the comprehensive (rather than selective) LC-MS spectrum of expressed proteins and small molecules, are detected.
Step 26, time-aligning pairs of spectra, can be implemented in many different ways. In one embodiment of the invention, spectra are aligned using a variation of a dynamic time warping (DTW) method. DTW is a dynamic programming technique that was developed in the field of speech recognition for time-aligning speech patterns and is described in H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word recognition,” IEEE Trans. Acoust., Speech, Signal Process. ASSP-26: 43-49, 1978, which is incorporated herein by reference.
In embodiments of the present invention, DTW aligns two data sets by nonlinearly stretching and contracting (“warping”) the time component of the data sets to synchronize spectral features and yield a minimum distance between the two spectra. In asymmetric DTW, a test data set is warped to align with a reference data set. Alternatively, in symmetric DTW, both data sets are adjusted to fit a common time index. The following description is of asymmetric warping, but it will be apparent to one of ordinary skill in the art, upon reading this description, how to perform the analogous symmetric warping.
Conceptually, the DTW method considers a set of possible time point mappings and identifies the mapping that minimizes an accumulated distance function between the reference and test data sets. Consider the grid in
The set of possible routes is limited by three types of constraints: endpoint constraints; a local continuity constraint, which defines local features of the path; and a global constraint, which defines the allowable search space for the path. The endpoint constraint equates the first and last time point in each data set. In the grid, the upper left and lower right cells are fixed as the start and end of the path, respectively, i.e., c(1)=[1, 1] and c(K)=[I, J]. The local continuity constraint forces the path to be monotonic with a non-negative slope, meaning that, for a path c(k)=[i(k), j(k)], i(k+1)≧i(k) and j(k+1)≧j(k). This condition maintains the order of time points. An upper bound can also be placed on the slope to prevent excessive compression or expansion of time scales. The result of these conditions is that the path to an individual cell is limited to one of the three illustrated in
The optimal path through the grid is one that minimizes the accumulated distance function between the test and reference data sets over the route. Each cell [i, j] has an associated distance function between data sets at the particular i and j time indices. The distance function can take a variety of different forms. If only a single chromatogram (e.g., the TIC) were considered, the distance function di,j between points tjref and titest would be:
di,j=(Ijref−Ijtest)2, (1)
where Ijref is the jth intensity value of the reference spectrum and Iitest is the ith intensity value of the test spectrum. In embodiments of the present invention, however, M mass chromatograms of each data set are considered in computing the distance function, where M≧2, and so, in one embodiment, the distance function is:
where Ikjref is the jth intensity value of the kth reference chromatogram and Ikitest is the ith intensity value of the kth test chromatogram. Both kth chromatograms are for a single m/z range. Each cell of the grid in
The route-finding problem can be addressed using a dynamic programming approach, in which the larger optimization problem is reduced to a series of local problems. At each allowable cell in the grid (
Locally optimal paths are selected by minimizing the accumulated distance from the initial cell to the current cell. For the three potential single-step paths to the cell [i,j], the accumulated distances are:
Di,j(1)=Di-2,j-1+2di-1,j+di,j
Di,j(2)=Di-1,j-1+2di,j,
Di,j(3)+Di-1,j-2+2di,j-1+di,j (3)
where Di,j(p) represents the accumulated distance from [1, 1] to [i, j] when path p is traversed, di,j is computed from equation (2), and Di-1,j-1, Di-2,j-1, and Di-1,j-2 are evaluated in previous steps. The coefficient 2 is a weighting factor that inclines the path to follow the diagonal. It may take on other values as desired. The minimized accumulated distance for the cell [i,j] is given by:
This value is stored in an accumulated distance matrix for use in subsequent calculations, and the selected value of p is stored in an index matrix.
The dynamic programming algorithm proceeds by stepping through each cell and finding and storing the minimum accumulated distances and optimal indices. Typically the process begins at the top left cell of the grid and moves down through all allowed cells before moving to the next column, with the allowable cells in each column defined by the global search space. After the final cell has been computed, the optimal route is found by traversing the grid backwards to the starting cell [1, 1] based on optimal paths stored in the index matrix. Note that the route cannot be constructed in the forward direction, because it is not known until subsequent calculations whether the current cell will lie on the optimal route. Once the optimal route has been determined, an aligned test data set can be constructed.
Unless the test and reference data sets are perfectly aligned, there are points in both sets that do not get mapped. When the test time scale is compressed, some intermediate test points do not get mapped. These points are discarded. When the test time scale is expanded, there are reference time points for which no corresponding test point exists. Values of the points can be estimated, e.g., by linearly interpolating between intensity values of surrounding points that have been mapped to reference points.
The above-described methods and steps can be varied in many ways without departing from the scope of the invention. For example, alternative constraints can be applied to the route (e.g., different allowable local slopes, end points not fixed but rather constrained to allowable regions, different global search space), and alternative distance functions can be employed. The weighting factors for local paths can be varied from the value 2 used in equations (3). Additionally, a normalization factor can be included in the distance function. The distance function above is based on intensity, but, depending on how the data set is represented, can be based on any other coefficient of features of the data set. For example, the function can be computed from coefficients of wavelets, peaks, or derivatives by which the data set is represented. In this case, the distance is a measure of the degree of alignment of these features.
In the equations above, the distance function is computed based on data from M individual mass chromatograms. Any value of M is within the scope of the present invention, as are any selection criteria by which chromatograms are selected for inclusion. Reducing the number of chromatograms from the total number in the data set (e.g., 2000) to M can decrease the computation time substantially. Additionally, excluding noisy chromatograms or those without peaks can improve the alignment accuracy. There is generally an optimal range of M that balances alignment accuracy and computation time, and it is beneficial to choose a value of M in the lower end of the range, i.e., a value that minimizes computation time without sacrificing substantially the accuracy of time-alignment. It is also beneficial to include chromatograms containing peaks throughout the range of retention time; this is particularly important near the beginning and end of the chromatographic run, when there are fewer peaks. In one embodiment, between about 200 and about 400 chromatograms are used. Alternatively, between about 200 and about 300 chromatograms are used. In another embodiment, M is about 200.
A variety of selection criteria can be applied individually or jointly to select the chromatograms with which the distance function is computed. The selection criteria or their parameters (e.g., intensity thresholds) can be predetermined, computed at run time, or selected by a user. M can be a selected value (manually or automatically) or the result of applying the criterion or criteria (i.e., M chromatograms happen to fit the criteria).
One selection criterion is that a mass chromatogram have peaks in both the reference and test data sets, as determined by a manual or automated peak selection algorithm. Peak selection algorithms typically apply an intensity threshold and identify local maxima exceeding the threshold as peaks. The peaks may or may not be required to be corresponding (in m/z and retention time) for the chromatogram to meet the criterion. If corresponding peaks are required, a relatively large window in retention time is applied to account for the to-be-corrected retention time shifts.
Another selection criterion is that maximum, median, or average intensity values in a mass chromatogram exceed a specified intensity threshold, or that a single peak intensity or maximum, median, or average peak intensity values in the chromatogram exceed an intensity threshold. Alternatively, at least one individual peak intensity or the maximum, median, or average peak intensity can be required to fall between upper and lower intensity level thresholds. Another selection criterion is that the number of peaks in a mass chromatogram exceed a threshold value. These criteria are typically applicable to both the reference and test mass chromatograms.
When the selection criterion involves an intensity threshold, the threshold can be constant or vary with retention time to accommodate variations in mean or median signal intensity throughout a chromatographic run. Often, the beginning and end of the run yields fewer and lower intensity peaks than occur in the middle of the run, and lower thresholds may be suitable for these regions.
According to an alternative selection criterion, a set of the most orthogonal chromatograms is selected, i.e., the set that provides the most information. When an analyte is present in chromatograms of adjacent m/z values, these chromatograms may be redundant, providing no more information than is provided by a single chromatogram. Standard correlation methods can be applied to select orthogonal chromatograms. The orthogonal chromatograms are selected to span the elution time range, so that just enough information is provided to align the data sets accurately throughout the entire range. In this case, the selection criterion contains an orthogonality metric and a retention time range.
Individual selection criteria may be combined in many different ways. For example, in one composite selection criterion, peaks are first selected in the reference and test data sets using any suitable manual or automatic peak selection method. Next, a filter is applied separately to the two data sets to yield two subsets of peaks. This filter can be a single threshold or two (upper and lower) thresholds. A lower threshold ensures that peaks are above the noise level, while an upper threshold excludes falsely elevated values reflecting a saturated instrument detector. Corresponding peaks are then selected that appear in both the test and reference peak subsets. Chromatograms corresponding to these peaks are included in computing the distance function. Alternatively, from the list of corresponding peaks, M chromatograms are chosen randomly. For example, if N corresponding peaks are found, the chromatograms corresponding to every N/Mth m/z value are selected. Alternatively, the M chromatograms can be selected from the corresponding peaks based on an intensity threshold or some other criterion.
When more than one test data set is aligned to the reference data set, each pairwise alignment can be computed based on a different set of independently-selected chromatograms.
In one embodiment of the invention, a weighting factor Wk is included in the distance function, causing different chromatograms to contribute unequally. As a result, certain chromatograms tend to dominate the sum and dictate the alignment. The weighted distance function is:
where Wk is the chromatogram-dependent weighting factor. The functional form or value of the weighting factor can be determined a priori based on user knowledge of the most relevant mass ranges. Alternatively, the weighting factor can be computed based on characteristics of the data. For example, the weighting factor can be a function of one or more of the following variables: the number of peaks per chromatogram (peak number), selected by any manual or automatic method; the signal-to-noise ratio in a chromatogram; and peak threshold or intensities. Chromatograms having more peaks, higher signal-to-noise ratio, or higher peak intensities are typically weighted more than other chromatograms. Any additional variables can be included in the weighting factor. The factor can also depend on a combination of user knowledge and data values.
In an alternative embodiment of the invention, the time-aligning step 26 employs locally-weighted regression smoothing. Rather than act on the raw (or preprocessed) data, this method time-aligns selected peaks in test and reference data sets. Peaks, defined by m/z and retention time values, are first selected from each data set by manual or automatic means. Potentially corresponding peaks are identified from the lists as peaks that fall within a specified range of m/z and retention time values.
For every pair of reference peak and potentially corresponding test peak, the data are transformed from (tref ttest) to (tavg, Δt), where tavg=(tref+ttest)/2 and Δt=tref−ttest. The resulting plot, for exemplary data sets, is shown in
One suitable smoothing algorithm is a LOESS algorithm (locally weighted scatterplot smooth), originally proposed in W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74: 829-836, 1979, and further developed in W. S. Cleveland and S. J. Devlin, “Locally weighted regression: an approach to regression analysis by local fitting,” J. Am. Stat. Assoc. 83: 596-610, 1988, both of which are incorporated herein by reference. A LOESS function (sometimes called LOWESS) is available in many commercial mathematics and statistics software packages such as S-PLUS®, SAS, Mathematica, and MATLAB®.
The LOESS method, described in more detail below, fits a polynomial locally to points in a window centered on a given point to be smoothed. Both the window size (“span”) and polynomial degree must be selected. The span is typically specified as a percentage of the total number of points. In standard LOESS, a polynomial is fit to the span by weighting points in the window based on their distance from the point to be smoothed. After fitting the polynomial, the smoothed point is replaced by the computed point, and the method proceeds to the next point, recalculating weights and fitting a new polynomial. Each time, even though the entire span is fit by the polynomial, only the center point is adjusted. Because the method operates locally, it is quite effective at representing the fine nonlinear variations in chromatographic retention time.
A robust version of LOESS, which is more resistant to outliers, computes the smoothed points in an iterative fashion by continuing to modify the weights until convergence (or based on a selected number of iterations). The iterative corrections are based on the residuals between the polynomial fit and the raw data points. After the points are fit using initial weights, subsequent weights are computed as the products of the initial weights and the new weights. Upon convergence, the span is moved by one point and the entire process repeated. In this manner, the polynomial regression weights are based on both the distance from the point to be smoothed (distance in abscissa value) and the distance between the point and the curve fit (distance in ordinal value), yielding a very robust fit.
Specific details of the robust LOESS fit are described below. It is to be understood that any variations in parameters, weighting factors, and polynomial degree are within the scope of the present invention. Each discrete (tavgi, Δti) point is represented in the formulae below as (xi, yi). The approximated value of yi computed from the polynomial fit is represented as ŷi.
First, a window size is chosen and centered on the point to be smoothed, x. Suitable window sizes are between about 10% and about 50% (e.g., about 30%) of the total span of xi values. The results may be sensitive to the span, and the optimal span depends on a number of factors, including the threshold by which peaks are selected. For example, if the peak selection threshold is low, yielding a large number of densely located points, the optimal span size may be larger than if the peak selection threshold were to yield fewer, less dense points. The span can also be selected by performing the smoothing using a few different spans and selecting the one that yields the best alignment according to a fit metric, a measure of how well the smoothed values fit the apparent alignment function or of how much the Δt value varies locally or globally across the retention time range. The smoothing can also be evaluated based on knowledge of the expected result. The N points within the chosen span are fit to a weighted polynomial of degree L (typically, L=2) by minimizing the regression merit function, χ2:
where ak are the polynomial coefficients to be solved for and wi are the regression weights for each point xi in the span. Initially, the weights wi are given by a tricubic function:
where x is the point being smoothed, xi are the individual points within the span, and xmax is the point farthest from x. The weights vary smoothly from 0 for the point farthest from the smoothed point to 1 for the smoothed point. All weights are zero for points outside the span. The regression merit function in equation (5) is minimized to determine the polynomial coefficients ak. For standard LOESS, the smoothed value ŷ is computed from the polynomial, and the span is moved one point to the right to smooth the next point.
For robust LOESS, these results are used to compute the robust weights based on the residual ri between the raw data value yi and polynomial value ŷi for each point in the span:
ri=yi−ŷi, (7)
and on the median absolute deviation MAD:
MAD=median(|ri|). (8)
From these, the robust weights wirobust are computed:
The regression is performed again for the span (from equation (5)) using newly computed weights wi=wiinitial*wirobust bust to obtain a new curve fit, a new set of points ŷi, and new residuals ri. This procedure (computing robust weights and fitting the polynomial) is repeated until the curve fit converges to a desired precision or for a predetermined number of iterations, e.g., about 5. Upon convergence, the y value of the point being smoothed, x, is replaced with the curve fit value. Only that point is replaced—all other points in the span remain the same. The span is then shifted one point to the right and the entire procedure repeated to smooth the point in the center of the span. Each time the curve fit is performed, the yi values used are the raw data values, not the smoothed ones. End points are treated as is commonly done in smoothing.
After all ŷi values are obtained, a mapping from tref to ttest is determined, and values for intermediate points are computed by interpolation. The retention time values of mapped test points are then adjusted to align the complete data sets. The process is repeated for all test data sets. Note that if the goal of the method is to align corresponding peaks only, it is not necessary to find aligned time point values for the intermediate points.
Although not limited to any particular hardware configuration, the present invention is typically implemented in software by a system containing a computer that obtains data sets from an analytical instrument (e.g., LC-MS instrument) or other source. The LC-MS instrument includes a liquid chromatography instrument connected to a mass spectrometer by an interface. The computer implementing the invention typically contains a processor, memory, data storage medium, display, and input device (e.g., keyboard and mouse). Methods of the invention are executed by the processor under the direction of computer program code stored in the computer. Using techniques well known in the computer arts, such code is tangibly embodied within a computer program storage device accessible by the processor, e.g., within system memory or on a computer-readable storage medium such as a hard disk or CD-ROM. The methods may be implemented by any means known in the art. For example, any number of computer programming languages, such as Java™, C++, or Perl, may be used. Furthermore, various programming approaches such as procedural or object oriented may be employed. It is to be understood that the steps described above are highly simplified versions of the actual processing performed by the computer, and that methods containing additional steps or rearrangement of the steps described are within the scope of the present invention.
The following examples are provided solely to illustrate various embodiments of the present invention and are not intended to limit the scope of the invention to the disclosed details.
Pooled human serum from blood bank samples was ultrafiltered through a 10-kDa membrane, and the resulting high-molecular weight fraction was reduced with dithiothreitol (DTT) and carboxymethylated with iodoacetic acid/NaOH before being digested with trypsin. Digested samples were analyzed on a binary HP 1100 series HPLC coupled directly to a Micromass (Manchester, UK) LCT™ electrospray ionization (ESI) time-of-flight (TOF) mass spectrometer equipped with a microspray source. PicoFrit™ fused-silica capillary columns (5 μm BioBasic C18, 75 μm×10 cm, New Objective, Woburn, Mass.) were run at a flow rate of 300 nL/min after flow splitting. An on-line trapping cartridge (Peptide CapTrap, Michrom Bioresources, Auburn, Calif.) allowed fast loading onto the capillary colunm. Injection volume was 20 μL. Gradient elution was achieved using 100% solvent A (0.1% formic acid in water) to 40% solvent B (0.1% formic acid in acetonitrile) over 100 min.
Data sets were aligned by dynamic time warping (DTW) implemented in MATLAB® (The MathWorks, Cambridge, Mass.) with custom code.
Pooled human serum from blood bank samples was ultrafiltered through a 10-kDa membrane, and the resulting high-molecular weight fraction was reduced with dithiothreitol (DTT) and carboxymethylated with iodoacetic acid/NaOH before being digested with trypsin. Digested samples were analyzed on a binary HP 1100 series HPLC coupled directly to a ThermoFinnigan (San Jose, Calif.) LCQ DECA™ electrospray ionization (ESI) ion-trap mass spectrometer using automatic gain control. PicoFrit™ fused-silica capillary columns (5 μm BioBasic C18, 75 μm×10 cm, New Objective, Woburn, Mass.) were run at a flow rate of 300 nL/min after flow splitting. An on-line trapping cartridge (Peptide CapTrap, Michrom Bioresources, Auburn, Calif.) allowed fast loading onto the capillary column. Injection volume was 20 μL. Gradient elution was achieved using 100% solvent A (0.1% formic acid in water) to 40% solvent B (0.1% formic acid in acetonitrile) over 100 min.
Spectra were aligned using both dynamic time warping (DTW) and robust LOESS. Algorithms were implemented in MATLAB® (The MathWorks, Cambridge, Mass.). Robust LOESS smoothing was performed using a prepackaged routine in the MATLAB® Curve Fitting Toolbox. DTW was implemented with custom MATLAB® code following the algorithms described above.
It should be noted that the foregoing description is only illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the disclosed invention.
This application is a continuation of U.S. patent application Ser. No. 10/435,581, filed May 9, 2003, now U.S. Pat. No. 6,989,100, which claims the benefit of U.S. Provisional Application No. 60/379,003, “Methods for Time-Aligning of Liquid Chromatography-Mass Spectrometry Data for Differential Phenotyping,” filed May 9, 2002, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3552865 | Leung et al. | Jan 1971 | A |
3690836 | Buissiere et al. | Sep 1972 | A |
3997298 | McLafferty et al. | Dec 1976 | A |
3999047 | Green | Dec 1976 | A |
4405235 | Rossiter | Sep 1983 | A |
4426451 | Columbus | Jan 1984 | A |
4643570 | Machler et al. | Feb 1987 | A |
4752888 | Yoshihara | Jun 1988 | A |
4761381 | Blatt et al. | Aug 1988 | A |
4786813 | Svanberg et al. | Nov 1988 | A |
4844617 | Kelderman et al. | Jul 1989 | A |
4963498 | Hillman et al. | Oct 1990 | A |
5072382 | Kamentsky | Dec 1991 | A |
5091652 | Mathies et al. | Feb 1992 | A |
5119315 | Kemp et al. | Jun 1992 | A |
5127730 | Brelje et al. | Jul 1992 | A |
5192980 | Dixon et al. | Mar 1993 | A |
5239178 | Derndinger et al. | Aug 1993 | A |
5274240 | Mathies et al. | Dec 1993 | A |
5304810 | Amos | Apr 1994 | A |
5377003 | Lewis et al. | Dec 1994 | A |
5412208 | Covey et al. | May 1995 | A |
5430542 | Shepherd | Jul 1995 | A |
5446532 | Yamazaki | Aug 1995 | A |
5453505 | Lee et al. | Sep 1995 | A |
5456252 | Vari et al. | Oct 1995 | A |
D366938 | Shartle et al. | Feb 1996 | S |
5492833 | Rodriguez et al. | Feb 1996 | A |
5523573 | Hanninen et al. | Jun 1996 | A |
5532873 | Dixon | Jul 1996 | A |
5547849 | Baer et al. | Aug 1996 | A |
5556764 | Sizto et al. | Sep 1996 | A |
5578832 | Trulson et al. | Nov 1996 | A |
5585246 | Dubrow et al. | Dec 1996 | A |
5592402 | Beebe et al. | Jan 1997 | A |
5627041 | Shartle | May 1997 | A |
D382648 | Shartle et al. | Aug 1997 | S |
5658735 | Lee | Aug 1997 | A |
D383852 | Shartle et al. | Sep 1997 | S |
5672869 | Windig et al. | Sep 1997 | A |
5682038 | Hoffman | Oct 1997 | A |
5687964 | Stephan et al. | Nov 1997 | A |
5689110 | Dietz et al. | Nov 1997 | A |
5692220 | Diamond et al. | Nov 1997 | A |
5710713 | Wright et al. | Jan 1998 | A |
D391373 | Shartle | Feb 1998 | S |
5713364 | Debaryshe et al. | Feb 1998 | A |
5726751 | Altendorf et al. | Mar 1998 | A |
5734058 | Lee | Mar 1998 | A |
5736410 | Zarling et al. | Apr 1998 | A |
5739000 | Bierre et al. | Apr 1998 | A |
5741411 | Yeung et al. | Apr 1998 | A |
D395708 | Shartle | Jun 1998 | S |
5795729 | Lee | Aug 1998 | A |
5814820 | Dong et al. | Sep 1998 | A |
5832826 | Mack et al. | Nov 1998 | A |
5867610 | Lee et al. | Feb 1999 | A |
5871946 | Lucas et al. | Feb 1999 | A |
5885841 | Higgs, Jr. et al. | Mar 1999 | A |
5910287 | Cassin et al. | Jun 1999 | A |
5912134 | Shartle | Jun 1999 | A |
5932428 | Dubrow et al. | Aug 1999 | A |
5962238 | Sizto et al. | Oct 1999 | A |
5981180 | Chandler et al. | Nov 1999 | A |
5995989 | Gedcke et al. | Nov 1999 | A |
6002986 | Mito | Dec 1999 | A |
6008490 | Kato | Dec 1999 | A |
6008896 | Sabsabi et al. | Dec 1999 | A |
6017693 | Yates | Jan 2000 | A |
6059724 | Campbell et al. | May 2000 | A |
6063338 | Pham et al. | May 2000 | A |
6066216 | Ruppel, Jr. | May 2000 | A |
6072624 | Dixon et al. | Jun 2000 | A |
6091492 | Strickland et al. | Jul 2000 | A |
6093573 | Beamer et al. | Jul 2000 | A |
6104945 | Modell et al. | Aug 2000 | A |
6112161 | Dryden et al. | Aug 2000 | A |
6133046 | Clerc | Oct 2000 | A |
6134002 | Stimson et al. | Oct 2000 | A |
6138117 | Bayardo | Oct 2000 | A |
6147344 | Annis et al. | Nov 2000 | A |
6200532 | Wu et al. | Mar 2001 | B1 |
6207955 | Wells et al. | Mar 2001 | B1 |
6215892 | Douglass et al. | Apr 2001 | B1 |
6229603 | Coassin et al. | May 2001 | B1 |
6229635 | Wulf | May 2001 | B1 |
6232114 | Coassin et al. | May 2001 | B1 |
6236945 | Simpson et al. | May 2001 | B1 |
6253162 | Jarman et al. | Jun 2001 | B1 |
6278794 | Parekh et al. | Aug 2001 | B1 |
6334099 | Grace et al. | Dec 2001 | B1 |
6376843 | Palo | Apr 2002 | B1 |
6377842 | Pogue et al. | Apr 2002 | B1 |
6388788 | Harris et al. | May 2002 | B1 |
6391649 | Chait et al. | May 2002 | B1 |
6400487 | Harris et al. | Jun 2002 | B1 |
6421612 | Agrafiotis et al. | Jul 2002 | B1 |
6449584 | Bertrand et al. | Sep 2002 | B1 |
6514767 | Natan | Feb 2003 | B1 |
6526299 | Pickard | Feb 2003 | B2 |
6552784 | Dietz et al. | Apr 2003 | B1 |
6590204 | Baranov | Jul 2003 | B2 |
6603537 | Dietz et al. | Aug 2003 | B1 |
6620591 | Dunlay et al. | Sep 2003 | B1 |
6625546 | Sepetov et al. | Sep 2003 | B2 |
6642059 | Chait et al. | Nov 2003 | B2 |
6646271 | Yokokawa et al. | Nov 2003 | B2 |
6687395 | Dietz et al. | Feb 2004 | B1 |
6753966 | Von Rosenberg | Jun 2004 | B2 |
6787761 | Hastings | Sep 2004 | B2 |
6800860 | Dietz et al. | Oct 2004 | B2 |
6835927 | Becker et al. | Dec 2004 | B2 |
6858435 | Chervet et al. | Feb 2005 | B2 |
6873915 | Hastings | Mar 2005 | B2 |
6937330 | Dietz et al. | Aug 2005 | B2 |
6950185 | Da Silva et al. | Sep 2005 | B1 |
6962818 | Schneider et al. | Nov 2005 | B2 |
6979830 | Dietz et al. | Dec 2005 | B2 |
6989100 | Norton | Jan 2006 | B2 |
7197401 | Hastings | Mar 2007 | B2 |
20010019829 | Nelson et al. | Sep 2001 | A1 |
20020049152 | Nock et al. | Apr 2002 | A1 |
20020053545 | Greef | May 2002 | A1 |
20020095260 | Huyn | Jul 2002 | A1 |
20020095419 | Parce | Jul 2002 | A1 |
20020102610 | Townsend et al. | Aug 2002 | A1 |
20020123055 | Estell et al. | Sep 2002 | A1 |
20020141051 | Vogt et al. | Oct 2002 | A1 |
20030087322 | Aebersold et al. | May 2003 | A9 |
20040257576 | Kirsch et al. | Dec 2004 | A1 |
20060000984 | Wolleschensky et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
19829094 | Jan 2000 | DE |
0296136 | Dec 1988 | EP |
0421736 | Apr 1991 | EP |
0681177 | Nov 1995 | EP |
0969283 | Jan 2000 | EP |
1407247 | Sep 1975 | GB |
WO - 97 43732 | Nov 1997 | WO |
WO 9816661 | Apr 1998 | WO |
WO 0067017 | Nov 2000 | WO |
WO - 00 70340 | Nov 2000 | WO |
WO 0135266 | May 2001 | WO |
WO - 01 44269 | Jun 2001 | WO |
WO - 0288819 | Nov 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060131222 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
60379003 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10435581 | May 2003 | US |
Child | 11339235 | US |