Wittung et al. “Observation of a PNA-PNA-PNA triplex,” J. Am. Chem. Soc., 119:3189-3190, 1997.* |
L. Betts, et al., “A Nucleic Acid Triple Helix Formed by a Peptide Nucleic Acid-DNA Complex,” Science, 270:1838-1841 (1995). |
C. Seeger, et al., “PNA-Mediated Purification of PCR Amplifiable Human Genomic DNA from Whole Blood,” Biotechniques,23(3):512-517 (1997). |
I.A. Il'icheva et al., “PNA Complexes of Polynucleotides and Polyamides: Structure of Two- and Three-Stranded Chimeric Helices Revealed by Conformational Analysis,” International Journal of Quantum Chemistry: Quantum Biology Symposium, 21:157-172 (1994). |
A. Yaron et al., “Intramolecular Quenched Fluorogenic Substrates for Hydrolytic Enzymes,” Analytical Biochemistry, 95:228-235 (1979). |
P.R. Selvin, “Fluorescence Resonance Energy Transfer,” Methods in Enzymology, 246:300-334 (1995). |
Y.M. Agazie, et al., “Characterization of a New Monoclonal Antibody to Triplex DNA and Immunofluorescent Staining of Mammalian Chromosomes,” The Journal of Biological Chemistry, 269(9):7019-7023 (1994). |
H. Knudsen and P. E. Nielsen, “Antisense Properties of Duplex- and Triplex-Forming PNAs,” Nucleic Acids Research, 24(3):494-500 (1996). |
P. Wittung, et al., “Extended DNA-Recognition Repertoire of Peptide Nucleic Acid (PNA); PNA-dsDNA Triplex Formed with Cytosine-Rich Homopyrimidine PNA,” Biochemistry, 36:7973-7979 (1997). |
R.M. Clegg, “Fluorescence Resonance Energy Transfer and Nucleic Acids,” Methods in Enzymology, 211:353-388 (1992). |
G. Haaima, et al., “Increased DNA Binding and Sequence Discrimination of PNA Oligomers Containing 2,6-Diaminopurine,” Nucleic Acids Research 25(22):4639-4643 (1997). |
R.A. Cardullo, et al., “Detection of Nucleic Acid Hybridization by Nonradiative Fluorescence Resonance Energy Transfer,” Proc. Natl. Acad. Sci. USA, 85:8790-8794 (1988). |
J.L. Mergny, et al., “Fluorescence Energy Transfer Between Two Triple Helix-Forming Oligonucleotides Bound to Duplex DNA,” Biochemistry, 33:15321-15328 (1994). |
I.V. Kutyavin, et al., “Oligonucleotides Containing 2-Aminoadenine and 2-Thiothymine Act as Selectively Binding Complementary Agents,” Biochemistry, 35:11170-11176 (1996). |
A.B. Eldrup, et al., “A Novel Peptide Nucleic Acid Monomer for Recognition of Thymine in Triple-Helix Structures,” J. Am. Chem. Soc., 119:1116-1117 (1997). |
P.E. Nielsen, “Evidence for (PNA)2/DNA Triplex Structure Upon Binding of PNA to dsDNA by Strand Displacement,” Journal of Molecular Recognition, 7:165-170 (1994). |
M. Nilsson, et al., “Padlock Probes: Circularizing Oligonucleotides for Localized DNA Detection,” Science, 265:2085-2088 (1994). |
M. Nilsson, et al., “Padlock Probes Reveal Single-Nucleotide Differences, Parent of Origin and in situ Distribution of Centromeric Sequences in Human Chromosomes 13 and 21,” Nature Genetics 16:252-255 (1997). |
G.C. Shields, et al., “Molecular Dynamics Simulation of a PNA-DNA-PNA Triple Helix in Aqueous Solution,” J. Am. Chem. Soc., 120:5895-5904 (1998). |
A.R. Srinivasan and W.K. Olson, “Molecular Models of Nucleic Acid Triple Helixes. II. PNA and 2′-5′ Backbone Complexes,” J. Am. Chem. Soc., 120:492-499 (1998). |
P. Wittung, et al., “Recognition of Double-Stranded DNA by Peptide Nucleic Acid,” Nucleosides & Nucleotides, 16(5&6):599-602 (1997). |
P. Wittung, et al., “Observation of a PNA-PNA-PNA Triplex,” J. Chem. Soc., 119:3189-3190 (1997). |
M.M. Krasil, “Enhancing the Specificity of Peptide-Nucleic Acid Binding with DNA,” Molecular Biology, 30(2):226-230 (1996). |
A. Castro and J.G.K., Williams, “Single-Molecule Detection of Specific Nucleic Acid Sequences in Unamplified Genomic DNA,” Anal. Chem., 69:3915-3920 (1997). |
V.V. Demidov, et al., “Kinetic Analysis of Specificity of Duplex DNA Targeting by Homopyrimidine Peptide Nucleic Acids,” Biophysical Journal, 72:2763-2769 (1997). |
P.M. Lizardi, et al., “Mutation Detection and Single-Molecule Counting Using Isothermal Rolling-Circle Amplification,” Nature Genetics, 19:225-232 (1998). |
O. Almarsson, et al. “Molecular Mechanics Calculations of the Structures of Polyamide Nucleic Acid DNA Duplexes and Triple Helical Hybrids,” Proc. Natl. Acad. Sci., USA 90:7518-7522 (1993). |
M.D. Frank-Kamenetskiians S.M. Mirkin, “Triplex DNA Structures,” Ann. Rev. Biochem., 64:65-95 (1995). |
S.K. Kim, et al., “Right-Handed Triplex Formed Between Peptide Nucleic Acid PNA-T8 and Poly(dA) Shown by Linear and Circular Dichroism Spectroscopy,” Journal of the American Chemical Society, 115(15):6477-6481 (1993). |
M.C. Griffith, et al., “Single and Bis Peptide Nucleic Acids as Triplexing Agents: Binding and Stoichiometry,” J. Am. Chem. Soc., 117:831-832 (1995). |
V.V. Demidov, “Complexes of Duplex DNA with Homopyrimidine Peptide Nucleic Acid (PNA),” p. a042. |
E.A. Lesnik, et al., “Evaluation of Pyrimidine PNA Binding to ssDNA Targets from Nonequilibrium Melting Experiments,” Nucleic Acids Research, 25(3):568-574 (1997). |
L.C. Boffa, et al., “Isolation of Active Genes Contining CAG repeats by DNA Strand Invasion by a Peptide Nucleic Acid,” Proc. Natl. Acad. Sci USA, 92:1901-1905 (1995). |
H. Ørum, et al., “Sequence-Specific Purification of Nucleic Acids by PNA-Controlled Hybrid Selection,” Biotechniques, 19(3):472-480 (1995). |
L. Betts, et al., “Crystal Structure of a Nucleic Acid Triplex at 2.5 A: A Peptide Nucleic Acid:DNA Complex,” Ninth Conversation in Biomolecular Stereodynamics, Jun. 20-24, 1995. |