Many people are getting sick, and even dying, from infections and diseases that are acquired in places that should be safe from germs, such as ambulances, hospitals, schools, restaurants, hotels, athletic facilities, and other public areas. Although such public places are often sprayed with disinfectant, the traditional ways of spraying disinfectants are no longer effective. A new, technologically advanced, delivery system for disinfectants is needed.
Electrostatic delivery systems have become the preferred method of disinfecting surfaces because of the effectiveness of application. However, current systems are tethered to an electric cord or powered by an air compressor or natural gas. These features make current systems costly and expensive. Cost and the cord itself remain obstacles to widespread adoption.
In addition, burns to patients have traditionally been treated with skin grafts, which involves skin from uninjured parts of the patient's body, or growing sheets of skin artificially, and grafting them over the burn. The grafts can take several weeks, or even months to heal. During the recovery period patients are prone to infection. Scientists have been able to regenerate skin in the lab for decades, but the process takes 2-3 weeks and the sheets of the skin are fragile and expensive. After this skin has been grafted on, blisters can form beneath the graph due to secretions and can push up against the sheets causing damage.
These problems are starting to be addressed by utilizing stem cells applied through a spray gun. An improved mechanism for spraying down surfaces uses an electrostatic delivery system that sprays an electrically charged fluid, such as a disinfectant, onto surfaces. In an electrostatic delivery system, a fluid such as chemical solution is atomized by a high-pressure air stream as it passes through an electrode inside a nozzle. Negatively charged particles are thereby induced onto droplet surfaces of the solution to form electric field charge within the spray plume of the solution. The electrostatic charge causes the fluid to cling to a surface to increase the likelihood that the disinfectant will cover and clean the surface.
However, existing electrostatic delivery systems are unwieldy and inconvenient due to the power requirements of such systems. As mentioned, such systems are typically tethered to an electric cord or powered by air compressor or natural gas, which makes the system heavy. In addition, they are expensive. In many cases existing corded products prohibit or restrict their use in applications where an extension cord is cumbersome, inconvenient, slow, and in some cases creating a safety concern by introducing a potentially dangerous tripping hazard.
In view of the foregoing, there is a need for improved electrostatic fluid delivery systems.
Disclosed herein is an electrostatic fluid delivery system that is configured to deliver fluid, such as a disinfectant fluid, onto a surface by electrically charging the fluid and forming the fluid into a mist, fog, plume, or spray that can be directed onto a surface, such as a surface to be cleaned. The system atomizes the fluid using a high-pressure air (or other gas) stream and passes the fluid through an electrode inside a nozzle assembly to charge, such as negatively charge, droplets of the atomized fluid. The system uses a unique nozzle design that is configured to optimally atomize the fluid into various sized droplets. In addition, the system can be powered by a DC (direct current) power system rather than an AC (alternating current) system to eliminate cumbersome power cords. In an embodiment, the DC power system includes a lithium ion battery. The device can electrically or positively charge a liquid or gas. In another embodiment, any of the systems described herein is powered by AC power source or any other type of power source including, for example, a solar power source. The system can also use, for example, an alternator or a Tesla coil.
The disclosed electrostatic sprayers can be used pursuant to the following procedures, which are non-limiting examples:
In one aspect, there is disclosed an electrostatic sprayer device, comprising: a housing; an electrostatic module inside the housing; a reservoir having a cavity adapted to contain a fluid; at least one nozzle fluidly connected to the reservoir wherein the nozzles emit fluid in a direction along a flow pathway; a pump that propels fluid from the reservoir to the at least one nozzle; a direct current battery that powers at least one of the electrostatic module and the pump; an electrode assembly that electrostatically charges the fluid; a syringe assembly in communication with a fluid pathway that leads to the nozzle such that the nozzle can expel fluid from the syringe assembly in combination with the fluid from the reservoir.
Other features and advantages should be apparent from the following description of various embodiments, which illustrate, by way of example, the principles of the disclosure.
Before the present subject matter is further described, it is to be understood that this subject matter described herein is not limited to particular embodiments described, as such may of course vary. It is also to be understood that the terminology used herein is for the purpose of describing a particular embodiment or embodiments only, and is not intended to be limiting. Unless defined otherwise, all technical terms used herein have the same meaning as commonly understood by one skilled in the art to which this subject matter belongs.
Disclosed herein is an electrostatic fluid delivery system that is configured to deliver fluid, such as a disinfectant fluid, onto a surface by electrically charging the fluid and forming the fluid into a mist, fog, plume, or spray that can be directed onto a surface, such as a surface to be cleaned. The system atomizes the fluid using a high-pressure air (or other gas) stream and passes the fluid through an electrode inside a nozzle assembly to charge, such as negatively charge, droplets of the atomized fluid. The system uses a unique nozzle design that is configured to optimally atomize the fluid into various sized droplets. In addition, in a non-limiting embodiment, the system is powered by a DC power system rather than an AC system to eliminate cumbersome power cords. In an embodiment, the DC power system includes a lithium ion battery. The device can electrically or positively charge a liquid or gas.
The system is configured to electrostatically charge the atomized fluid via direct charging, induction charging, indirect charging, or any combinations thereof. In the case of direct charging, fluid flows through an electrically conductive tube or other conduit that is electrostatically charged such that the fluid contacts the tube and is charged by direct contact with the tube, as describe below. For induction or indirect charging, the fluid is passed through a medium, such as air, that has been electrostatically charged by one or more electrodes or pins that create a static electric field through which the fluid passes to receive c charge. The electrode may or may not be in the fluid stream. In an embodiment, the fluid is charged through both direct contact with the charged tube and by flowing the fluid through a medium such as air that has been charged with electrodes such as, for example, described herein.
The system 105 includes a syringe assembly 191 that can contain a fluid which can be expelled by the system 105 via a nozzle assembly 205, which is described in detail below. The syringe assembly 191 can be removably mounted or otherwise coupled to the housing of the system or it can be fixedly (i.e., non-removably) attached to the housing. The syringe assembly includes a barrel 193 and a plunger 195 that is movably positioned inside the barrel 193. The plunger can be actuated manually or electronically using an actuation member of the device such that the plunger moves axially within the barrel 193 to force fluid out of a distal end of the barrel 193 such that the fluid communicates with and is expelled by the nozzle assembly 205. In this manner, the fluid from the syringe assembly can be expelled out of the nozzle assembly 205 along with (or without) fluid from a reservoir 125. The fluid from the syringe assembly 191 may flow along a fluid pathway that communicates with the fluid from a fluid reservoir of the system 105. The nozzle assembly 205 can be used to expel fluid from the reservoir, from the syringe assembly, or a combination thereof. In an embodiment, the syringe assembly contains stem cells or other biological matter. For example, the system can contain from 1 mL to 200 mL of stem cells although this is just an example. The stem cells can be exposed to positive charge using the electrostatic system described herein.
The system 105 may have one or more actuators or controls that can be actuated by a user to activate and operate the system. A fluid expelling region 175 (which includes the nozzle assembly 205) is located at a front of the housing 110 and has an opening through which atomized fluid is expelled. The system 105 also includes a reservoir 125 that defines a chamber in which fluid can be stored. The chamber of the reservoir 125 communicates internally with the nozzle assembly 205 for supplying fluid to be electrically charged and atomized by the nozzle assembly, as described more fully below.
The base 25 can also include one or more internal reservoirs or tanks that hold fluid that can be expelled out of the sprayers 105. In an embodiment, the base 25 includes six such reservoirs although this quantity can vary.
The base can include a power supply, such as a battery (including a lithium battery). The base is also configured to be attached to an alternating current (AC) power supply. In addition, the base 25 can include one or more wireless transmitters for communicating wirelessly to one or more wireless devices. The wireless protocol can vary and can include, for example Bluetooth. The base 25 can also include a wired connection such as an Ethernet connection.
The base 25 includes a front face 35 on which is positioned a user interface which can include one or more displays for displaying relevant information and that can also include one or more control members for controlling the base 25. In this regard, the control members can be used to activate or deactivate electrical charging to the seats 30. In addition, the base 25 includes one or more mounting members 40, which comprise structures that have internal cavities in which at least a portion of a sprayer 105 can be removably mounted. The mounting members 40 can be positioned at any of a variety of locations relative to the base 25 including elevated locations via holes or other structures upon which the mounting members 40 are attached.
Any of the embodiments of the electrostatic sprayers described here can spray enzymes to surfaces using an electrostatic wrapping effect such that the spray can reach areas that are traditionally difficult to reach. In an embodiment, the electrostatic sprayer is used pursuant to enzymatic debridement, which involves applying chemical enzymes and appropriate dressings to break down dead tissue.
In addition, the electrostatic sprayers described herein can be used for the following:
Pain management. Topical pain medications also may be used during debridement and dressing changes. The disclosed electrostatic sprayers can spray topical solutions giving the benefit to the patient while saving on solutions that do not have optimum spray patterns. It has been quantified that electrostatic spraying uses less product, saving on solutions cost.
Antibiotics. Infected pressure sores that are not responding to other interventions may be treated with topical or oral antibiotics. The electrostatic sprayer described herein can enhance the antibiotics' delivery by charging the particles to allow direct focus on the damaged area. It has been demonstrated that direct spraying onto the skin can facilitate rapid absorption of medication through the pores of the skin giving immediate results in reducing pain.
Cordless electrostatic spraying. The cordless electrostatic sprayer fits comfortably into male or female hands. The cordless electrostatic spraying system weighs less than two pounds, offering the clinician a powerful cordless electric static sprayer that has multiple uses across entire medical platform. A cordless electrostatic stem cell system can use, for example, syringes in the fluidic volume range of 10 mL-50 mL when administrating stem cells. In an embodiment, the system includes an oxygen port to deliver enriched O2 to stem cells.
The system 105 may have one or more actuators or controls 120 that can be actuated by a user to activate and operate the system. A fluid expelling region 175 is located at a front of the housing 110 and has an opening through which atomized fluid is expelled. The system 105 also includes a reservoir 125 that defines a chamber in which fluid can be stored. The chamber of the reservoir 125 communicates internally with a nozzle assembly 205 (
The fan 200 (or a pump) operates to blow fluid (gas or liquid) toward a nozzle assembly 205 in the fluid expelling region 175 of the system. The nozzle assembly 205 atomizes and expels fluid in a spray. As the fan blows air toward the nozzle assembly, it creates a pressure differential that sucks fluid from the reservoir 125 into the nozzle assembly 205 where it is atomized and expelled as a result of the fan 200 blowing air therethrough. It should be appreciated that other mechanisms can be used to blow air or to blow or otherwise propel liquid from the reservoir. In an embodiment, a piston pump is used to deliver air pressure to the nozzle tip. A piston pump can pull from the reservoir tank to push fluid or pressurize straight to the nozzle tip. For a smaller footprint embodiment (such as the embodiments of
With reference still to
The electrostatic fluid delivery system may vary in size and shape.
In addition,
The system 105 ejects high voltage ions to the air by means of a plurality of (such as three or more) sharp, detachable high voltage ion discharge electrodes or pins of a predetermined spacing (such as at 120° spacing) from each other on a rim of a nozzle holder (described below with reference to
In an embodiment, a light 1017 is positioned at a front end of the system 105 in the fluid-expelling region 175 such that the light aims light toward the direction where fluid is expelled. The light may be an LED light, for example. The light can automatically illuminate when any portion of the system is activated. In an example embodiment, LED light has 100 lumens with the light being directly focused on the path of the liquid that is being sprayed out of the sprayer nozzle. The light can be in multiple colors to allow the user to illuminate florescent antimicrobial solutions (infrared light). In another embodiment the light is black light. At least a portion of the light or electrical components of the light may be insulated from contact with the electrically charged field.
There is a metal contact on the high voltage electrostatic ring 1120 that is exposed at a rear part of the electrostatic ring 1120. A high voltage wire from the electrostatic module is soldered or otherwise electrically connected to this metal contact. The soldering point and adjacent exposed metal is completely sealed by epoxy or other insulator to avoid oxidation and leakage of ions from the electrodes. A ground wire from electrostatic module is connected to ground plate. As discussed, the ground wire is embedded in the handle of the sprayer so that it is in contact with the operator during operation. This serves as electrical return loop to complete an electrical circuit. The electrostatic ring is electrically charged so that it transfers the charge to the electrodes that are electrically connected to the ring. In another embodiment, the electrodes themselves are individually connected to the electrostatic module.
As shown in
In an embodiment, the tool 1205 couples to and removes the nozzle component by a counter clock turn and by pushing in until nozzle component decouples and can be removed. In this regard, pushing the nozzle component deeper into the housing using the tool causes a threaded portion of the nozzle component to engage a threaded nut or bolt of the housing that secures the nozzle component to the housing. The user can then unthread the nozzle tool and remove it from the housing.
The tool 1205 can also be used to adjust the three-way nozzle by turning it in a desired rotational direction. The user can select three different spray patterns by turning the nozzle component so that a desired nozzle fluidly couples to the reservoir. In this regard, a portion of the tool mechanically attaches to the nozzle component so that it can apply force to the nozzle component and rotate it until a desired nozzle is in a position that is fluidly coupled to a fluid stream from the reservoir. The system may include a mechanism, such as spring and ball, that provides a noise (such as a clicking sound) when a nozzle is in a position to spray fluid.
The electrostatic ring 1120 includes the three electrodes (which may be made of stainless steel for example) that are electrically isolated by a rubber washer and rubber threaded cap, as described below. The electrostatic ring 1120 that holds electrodes is metal and is built inside of the nozzle housing. The electric static ring is isolated inside a nozzle housing that acts as a protective barrier. The electrostatic ring 1120 contains three internal threaded holes that accept the three electrodes. A rubber washer is inserted between the electrostatic ring 1120 and an insulator on each electrode. The rubber washer aids in tightening of the electrode to the electrostatic ring 1120 and also assists in avoiding leakage of ions from the electrode. The whole electrostatic ring 1120 is isolated inside the nozzle housing so that it acts a protective barrier.
The ring, when properly mounted, forms a safety gap between the discharge electrodes and the outer housing so as to minimize static leakage through the housing. The rubber ring isolates the nozzle housing from causing a charge to the sprayer housing. The rubber ring also isolates the nozzle housing from main body of the sprayer to prevent water from penetrating to a main body of the sprayer.
A hose coupler 1320 is located at an end of the nozzle housing and is configured to be coupled to a house or other conduit that communicates with the reservoir. The hose coupler 132 defines an internal passageway that communicates with the nozzles 1115 for feeding fluid from the reservoir to the nozzles 1115.
Any of a variety of nozzle types can be used to achieve a desired flow pattern. There are now described some non-limiting examples of electrodes. In an embodiment, the electrodes include three example types as follows:
It should be appreciated that the aforementioned nozzles are just examples and that variances are within the scope of this disclosure.
Thus, each electrode assembly 1310 includes an insulator element 1520 that can be formed of a rubber washer that covers a middle section of the electrode, and rubber boot that covers a front section except for a front most, sharpened tip. The rubber washer and a plastic or rubber cap (or boot) isolates the electrode and protects the electrode from static leakage such that only the sharpened tip is exposed and/or uninsulated.
Each high voltage ion discharge electrode is to be screwed into an internal screw thread on the high voltage ring 1120 coupled to the nozzle component 1110. Except for its sharp spike at the end, each high voltage ion discharge electrode is completely covered and concealed by the insulator element after it is installed to the high voltage ring 1120.
With reference still to
With reference still to
In this regard, an outlet conduit 2115 fluidly communicates with the internal region of the reservoir when the reservoir is attached and lockingly sealed to the housing. The outlet conduit 2115 can be fluidly attached to a pump inlet conduit 2120 of the pump 1005 such as via a hose (not shown). The pump 1005 has an outlet conduit 2125 that can be fluidly attached to the hose coupler 1320 (
In an embodiment, a hose or tube connects the outlet conduit 2125 of the pump 1005 to the hose coupler 1320 of the nozzle assembly. The tube (or other conduit) that connects the pump 1005 to the nozzle assembly may be configured to electrostatically charge fluid flowing through the tube by direct charging between the tube, which is charged, and the fluid that flows through the tube toward the nozzles. The fluid comes into physical contact with a charged electrode, such as the tube. This is described in more detail with reference to
In an embodiment the module 2415 is a conductive material, such as metal. In an embodiment only the module 2415 is conductive and the remainder of the tube 2410 is non-conductive and/or is insulated from contact with any other part of the system. The module 2415 may also be surrounded by an insulator that insulates it from contact with any other part of the system. As fluid flows through the tube 2410, the module 2415 directly contacts the fluid as it flows and passes a charge to the fluid through direct contact with the fluid. In this way, the ion tube isolator 2405 electrostatically charges the fluid prior to the fluid passing through the nozzle.
Since molecules in an aqueous solution are polarized in nature, they can easily carry and conduct electricity from a charge source under high electrical potential (such as a positive electrode in the nozzle holder). Under high electrical potential, the aqueous solution and its path becomes conductive and therefore the charge can be carried to whole liquid system including the hose, pump and tank within the sprayer.
When the aqueous solution is sprayed, the charged solution is forced out through the nozzle and broken up into tiny charged droplets in the air. Because all droplets are carrying the same charge, they will repel each other forming a uniform fine mist in the air. With the help of electrical attraction force between the mist and the intended object, they are pulled like a “magnet” towards the intended object on which opposite charge is induced to its surface via ground. The fine droplets can spread with high mobility and therefore can reach the edges and even backside of an intended object to achieve the desired 360 degree coverage, which is sometimes referred to as a “wrap around effect.”
As unlike charges attract each other, theoretically, a positive electrostatic sprayer works the same way as negative electrostatic sprayer. A negative electrostatic module can also be used in place of a positive electrostatic module. In such a case, the droplets sprayed out carry a negative charge and positive charge will be induced on the intended object via ground to attract the negative charges droplets. The negative charge on the droplets will eventually be neutralized by induced positive charge on the intended object when it hit the surface of the intended object.
Although the sprayer can be powered by a DC battery, it can still “pump” electrical charges to the aqueous solution by means of the electrostatic module inside the sprayer. For electrically balanced system, opposite charge may be supplied to compensate the charge spent to the liquid system. This is effectively achieved by means of the ground plate on the handle grip, opposite charge can flow through the ground plate from user to electrostatic module to counterbalance the charge lose to the liquid system.
In an embodiment, the pump 1005 is a direct current (DC) pump although an AC pump or any other type of pump can be used as well. The pump includes a rotary motion motor with a connecting rod that drives a diaphragm in an up and down motion when activated. In the process of the downward movement of the diaphragm, a pump cavity creates a pressure differential such as by pulling a vacuum relative to the interior of the reservoir to suck fluid through the pump inlet conduit 2120 from the reservoir. Upward movement of the diaphragm pushes fluid of the pump cavity press through the pump outlet conduit 2125 toward the hose coupler 1320 of the nozzle assembly via an attachment hose that attaches the pump outlet conduit 2125 to the hose coupler 1320. Any mechanical transmission parts and the pump cavity are isolated by the diaphragm within the pump. The diaphragm pump does not need oil for auxiliary lubricating, in the process of transmission, extraction and compression of the fluid.
The type of motor used in any of the embodiments described herein can vary. In an embodiment, the system uses a constant speed motor such that the speed of the motor when in use does not vary based upon the remaining power and the battery. This constant speed ability can be achieved by a motor circuit or other electrical element positioned between the battery and the motor. The motor circuit intercepts and monitors the phase changing frequency and adjust the frequency or otherwise regulates the power signal to maintain a constant speed for the motor during operation. This constant speed of the motor has several advantages over variable speed motor including the following.
In a variable speed motor, the motor speed of the motor can vary based upon the motor input voltage. Thus, a higher input voltage result in a higher motor speed. This results in a variation in the output pressure of the pump as the charge in the battery varies, and the output pressure depends on motor speed. A fully charged battery that provides a higher input voltage to the motor can drive the sprayer at highest pressure and so the spray performance is strong. As the battery loses charge, the motor input voltage drops, which results in a reduced motor speed as well as a drop in the pressure the sprayer. As a result, the sprayer performance is reduced. Therefore, inconsistent sprayer performance can result from different levels of battery charge. With constant speed motor as described above, the constant motor speed results in a constant or uniform pressure output from the pump to the spray nozzles, which maintains a consistent sprayer performance that is not based on or independent of the battery voltage.
In an embodiment, the motor operates at a speed of 3000 rpm at 12V. The supplied voltage of the sprayer may be higher than 12V where the nominal voltage of the battery is higher. This can be the case even where a resistor is positioned in series in the power supply line. For example, the nominal voltage of the battery can be 14.8V. The peak speed of the motor (when the battery is fully charged) may attain about 4000 rpm. As higher the motor speed, higher the pump pressure and higher rate of wear which means shorter the pump life.
In use, the user grasps the system 105 and powers the pump so that it propels fluid out of the selected nozzle from the reservoir. As mentioned, the user can use the nozzle tool 1205 to both insert and lock the nozzle assembly 1015 to the system. The user can also use the nozzle tool 1205 to rotate the nozzle component and fluidly couple a selected nozzle to the reservoir. Thus the user can select a desired plume profile for the fluid. The system can also be equipped with just a single nozzle. The user also activates the electrostatic module so that the electrodes become charged and form an electrostatic field in the electrode ring. The fluid is propelled from the nozzle through the ring and through the electrostatic field so that the droplets of fluid in the aerosol plume become positively or negatively electrically charged. As mentioned, the electrodes and the nozzle are aligned along a common parallel axis. This directs the liquid or aerosol toward a desired object based on where the user points the nozzles. In an embodiment, the electrodes do not physically contact the fluid propelled through the nozzles. In another embodiment, the electrodes physically contact the fluid propelled through the nozzles.
Supercharging of Fluid
With reference to
When the pump opens and the power trigger is activated, the module becomes fully charged. The pump modulates as the pump valves open and close. The electrostatic state is moved between the tank and the nozzle of the device. The charge is a positive charge. When the pump starts to vacuum, the pressure differential propels fluid from the tank through internal fluid conduits until the fluid contacts the nozzle assembly, where the electric static metal or copper ring is fitted inside the nozzle housing.
The fluid is charged going through the nozzle housing in a positive charge. The pump valve opens and closes but so does the outside air, entering only through the duckbill valve, which allows positive and negative ions to enter the tank. This cycle allows the tank to be charged with positive and negative Ions.
When the valve open and allows fluid from the tank to pass through the piston style valve and the fluid hoses of the device, as well as the electric static tubing, the fluid reaches the nozzle assembly, where the fluid becomes supercharged with positive ions. Thus, when the fluid is sprayed at a negatively charged object, the positive ions in the fluid causes the fluid to wrap the negatively charged object, which causes substantial wrapping of fluid around the object.
The double charging process is described in more detail with respect to
A combination of charging the fluid twice and charging prior to the fluid being atomized at the nozzle assembly enables the system to fully charge the liquid, rather than just charging an outer shell of the atomized particle thereby providing more charged particles. This also provides a greater wrapping effect for the atomized particle and enables the particles to hold the charge longer. The charging process described with respect to
Additional Backpack Embodiment
As shown in
As mentioned, the backpack system 2405 includes a handheld sprayer 2705 for spraying electrically charged fluid.
The sprayer 2705 also includes a second actuator 2714 that is ergonomically positioned on the sprayer 2705 such that a user can use a thumb to press on the second actuator 2714 when grasping the sprayer 2705 with his or her fingers. The second actuator 2714 is coupled to a electrostatic charger of the backpack system. The user activates the electrostatic charger by pressing on the second actuator 2714 to electrostatically charge fluid being expelled from the sprayer, as described herein.
With reference still to
In an embodiment, the tank 2410 mates with the base 2415 by first hinge hingedly attaching to the base 2415, such as along the bottom region of the tank 2410.
The valve assembly between the base 2415 and the tank 2410 is mechanically configured such that a valved fluid passageway between the tank 2410 and the base 2415 automatically opens when the tank 2410 is properly seated in the base 2415.
With reference to
The sprayer assembly also includes an internal pump 3610 that causes a pressure differential to cause fluid to flow from the tank, through the tubing 2425, and into the nozzle assembly 3615 of the sprayer assembly. As mentioned, the sprayer assembly includes a first actuator 2712 that can be actuated by a user to activate the pump 3610. The sprayer assembly also includes a second actuator 2714, such as a button, that activates the electrostatic module of the device.
There is a metal contact on the high voltage electrostatic ring that is exposed at a rear part of the electrostatic ring. A high voltage wire from the electrostatic module is soldered or otherwise electrically connected to this metal contact. The soldering point and adjacent exposed metal is completely sealed by epoxy or other insulator to avoid oxidation and leakage of ions from the electrodes. A ground wire from electrostatic module is connected to ground plate. As discussed, the ground wire is embedded in the handle of the sprayer so that it is in contact with the operator during operation. This serves as electrical return loop to complete an electrical circuit. The electrostatic ring is electrically charged so that it transfers the charge to the electrodes that are electrically connected to the ring. In another embodiment, the electrodes themselves are individually connected to the electrostatic module.
A one-way check valve can be positioned inside the nozzle assembly 3615 such that fluid must flow through the one way valve in order to flow out of the nozzle assembly. When the trigger that powers the fan is released by a user, the check valve closes and prohibits fluid from exiting the nozzle assembly when the trigger is released by the user. In this manner, residual fluid is prohibited from being released out of the system and onto the ground when the system is not in use.
An ion tube isolator 3905 is mounted within the nozzle assembly of the sprayer.
In an embodiment the module is a conductive material, such as metal. In an embodiment only the module is conductive and the remainder of the tube 3910 is non-conductive and/or is insulated from contact with any other part of the system. The module may also be surrounded by an insulator that insulates it from contact with any other part of the system. As fluid flows through the tube 3910, the module directly contacts the fluid as it flows and passes a charge to the fluid through direct contact with the fluid. In this way, the ion tube isolator 3905 electrostatically charges the fluid prior to the fluid passing through the nozzle.
In an embodiment, the tool 4105 couples to and removes nozzle component, such as by a counter clockwise turn and by pushing in until nozzle component decouples and can be removed. In this regard, pushing the nozzle component deeper into the housing using the tool causes a threaded portion of the nozzle component to engage a threaded nut or bolt of the housing that secures the nozzle component to the housing. The user can then unthread the nozzle tool and remove it from the housing.
The tool 4105 can also be used to adjust the three-way nozzle by turning it in a desired rotational direction. The user can select two or more different spray patterns by turning the nozzle component so that a desired nozzle fluidly couples to the reservoir. In this regard, a portion of the tool mechanically attaches to the nozzle component so that it can apply force to the nozzle component and rotate it until a desired nozzle is in a position that is fluidly coupled to a fluid stream from the reservoir. The system may include a mechanism, such as spring and ball, that provides a noise (such as a clicking sound) when a nozzle is in a position to spray fluid.
The nozzle tool 4105 is sized and shaped to be grasped by a user. It can include a coupler region that can be removably coupled to a drive device, such as a wrench, or grasped by a user. In an embodiment, the coupler region is hexagonal shaped so that it can be mechanically coupled to a wrench including a socket wrench. The nozzle tool includes a cavity or seat that is size and shaped to receive the outer portion of the nozzle component. For example, the seat can have a shape that complements and receives the shape of the nozzle component. The nozzle tool also includes at least one opening that interlocks with a complementary-shaped protrusion on the nozzle component.
The diaphragms have two holes that are cut into a circle. The valves (which can be plastic, for example) have a seating position inside of a pneumatic gasket. A top and a bottom lid of the housing secures the rubber diaphragms like an o-ring. The rubber diaphragm, when properly inserted, makes a water tight seal when screwed down to a pneumatic head assembly of the housing.
The top and bottom reservoir outlet openings allow water to flow in and out of each channel. The valves are inserted into the rubber diaphragms. The two channels equalize the pressure when the pneumatic valves are opening and closing to provide continues motion of suction and pressure. The pneumatic head has multiple channels or openings thereby allowing water to flow through the top and the bottom by using applied force from a DC motor. The motor rotates with a bearing that spins on an oval axis inside of the cam housing causing a up and down motion and side to side motion. The rubber diaphragm can be of a harder and thicker material which will act as a trampoline when the cam housing is attached to both sides of the diaphragm. The diaphragms move up and down generating an internal pressure. The valves will open and close allowing water pressure to circulate in in and out causing the system to be under a constant suction and flow pressure. The pressure is regulated and is equal to the suction pressure. The pressure can be adjusted by the thickness of the diaphragms and the rpm of the motor.
The cam has an oval shape allowing the bearing to be off-set to allow the cam to rotate up and down or side to side causing the rubber diaphragms to be pushed up and down. This causes an up and down motion on the pneumatic diaphragm, which in turn causes suction on one side of the pneumatic housing and pressure on the other side of the housing. As the water flows through the valve opening and closing the valves, the water is equal to both pressures. The one side of the pump draws in water while the other side pushes the water.
There are three bearings that are included in the pneumatic pump including a DC motor casing bearing. The first bearing is located inside of the DC motor housing to allow the shaft to spin freely when the motor is spinning at high speeds. The second bearing is located in the cam housing which is the pneumatic housing. All three bearings can be stainless steel, for example, and have stainless steel casing which allows the bearing not to overheat or rust. The third bearing is configured to keep the shaft and the cam aligned with the internal pneumatic head. This allows the inner motor bearing to stay aligned with the second cam shaft bearing and third bearing which keeps the shaft straight and true allowing the shaft to take more impact when spinning at high RPMs.
The four valves sit flush on the outside of the pneumatic housing, which are located in front of the inlet and outlet ports. The valves' purpose is to open and close such as on the order of 3000 times a minute. As this occurs, the diaphragm is pushed up and down by way of the bearing rotating inside the cam which rides freely between both pneumatic rubber diaphragms. The top and bottom diaphragm are a mirror image in size and in length. The cam attaches by two posts that connect them together. The cam rides freely between the two diaphragms making them independent and free to move in the direction of the bearing that is off-set allowing the cam to move in a direction up and down or side to side.
As mentioned, there are four rubber valves that open and close. The valves have different functions. The valves are meant to open and close allowing for water pressure or suctioning pressure to be continuous. One of the valves is always in a closed position so as not allowing water to back flow to the water pressure side. The opposing side of the valve allows suction pressure. A spoke check valve is in an open position and allows water pressure to flow when in one position. The pump has a suction side and a pressure side. The valves are identical in the pneumatic housing. The cam moves the pneumatic diaphragm in a up and down motion causing the valves to open and close allowing water to be extracted from a reservoir and pushed out of the opposing side.
The system 4505 includes at least one actuator, such as a trigger 4606, that can be actuated to turn on and also turn off an internal pump, as well as a second actuator, such as button 4602, for turning on and off an electrostatic charger for expelling a plume of electrostatically charged fluid from a fluid expelling region 175 of the system 105. The system 4505 has a removable tank or reservoir 125 for storing fluid to be expelled. There is sufficient space clearance between the reservoir 125 and the handle 4608 for a comfortable fit for the user when the user grasps the handle 4608. In an embodiment, when fully loaded with liquid the sprayer system weighs no more than 3 pounds although the weight can vary. In an embodiment, the reservoir 125 can contain up to half a liter of fluid although this can also vary.
The system 105 ejects high voltage ions to the air by means of a plurality of (such as three or more) detachable, high voltage ion discharge electrodes or pins of a predetermined spacing from each other on a rim of a nozzle holder (which can be as described above with reference to
As mentioned, the system 4505 has a removable reservoir 125 (such as a tank) for storing fluid to be expelled.
In this regard, the system of 4505 includes a male member 4705 that has a first end positioned within the reservoir 125 and a second end positioned outside of the reservoir 125. The male member 4705 mechanically inserts into a female member 4710 in the housing when the reservoir 125 is attached to the outer housing 110. The male member 4705 has an internal lumen that communicates with a lumen within the housing and that ultimately lead to the nozzle assembly of the system and that also passes through the pump, such as the type of pump shown in
With reference to
With reference to
When the reservoir 125 is attached to the outer housing 110 of the system, the male member 4705 sealingly mates with the female member 4710. As shown in the top-down view of
With reference to the top-down view of the reservoir 125 of
With reference again to
As discussed above, the nozzle assembly can include a one-way check valve, which prevents fluid from exiting the nozzle assembly when the user releases the trigger that powers the fan (i.e. the device is not being used). In this manner, residual fluid inside the device will not exit the system when the trigger is not being actuated by a user. It should be appreciated that any of the features described with respect to one embodiment described herein can be used with any of the other embodiments described herein.
While this specification contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
This application is a divisional of U.S. application Ser. No. 18/119,224 and filed Mar. 8, 2023, which is a continuation of U.S. application Ser. No. 16/606,442, filed Oct. 18, 2019, which is a United States national stage application of International Application no. PCT/US18/28537 filed Apr. 20, 2018, which claims priority to U.S. provisional patent application No. 62/487,932 filed Apr. 20, 2017. The contents of each application are incorporated herein by reference in their entirety as if set forth verbatim.
Number | Date | Country | |
---|---|---|---|
62487932 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18119224 | Mar 2023 | US |
Child | 18422428 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16606442 | Oct 2019 | US |
Child | 18119224 | US |