Methods of coating an implantable device

Information

  • Patent Grant
  • 8741378
  • Patent Number
    8,741,378
  • Date Filed
    Thursday, December 23, 2004
    20 years ago
  • Date Issued
    Tuesday, June 3, 2014
    10 years ago
Abstract
Methods of coating an implantable device, such as a stent, are provided.
Description
BACKGROUND

Blood vessel occlusions are commonly treated by mechanically enhancing blood flow in the affected vessels, such as by employing a stent. Stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically stents are capable of being compressed, so that they can be inserted through small lumens via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in the patent literature disclosing stents include U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor.



FIG. 1 illustrates a conventional stent 10 formed from a plurality of struts 12. The plurality of struts 12 are radially expandable and interconnected by connecting elements 14 that are disposed between adjacent struts 12, leaving lateral openings or gaps 16 between adjacent struts 12. Struts 12 and connecting elements 14 define a tubular stent body having an outer, tissue-contacting surface and an inner surface.


Stents are used not only for mechanical intervention but also as vehicles for providing biological therapy. Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. Local delivery of a therapeutic substance is a preferred method of treatment because the substance is concentrated at a specific site and thus smaller total levels of medication can be administered in comparison to systemic dosages that often produce adverse or even toxic side effects for the patient.


One method of medicating a stent involves the use of a polymeric carrier coated onto the surface of the stent. A composition including a solvent, a polymer dissolved in the solvent, and a therapeutic substance dispersed in the blend is applied to the stent by immersing the stent in the composition or by spraying the composition onto the stent. The solvent is allowed to evaporate, leaving on the stent strut surfaces a coating of the polymer and the therapeutic substance impregnated in the polymer.


A shortcoming of the above-described method of medicating a stent is the potential for coating defects due to the large amount of liquid composition applied to the relatively small surface area of the stent. The liquid composition can flow, wick, and collect as the amount of composition on the stent increases during the coating process. As the solvent evaporates, the excess composition hardens, leaving the excess coating as clumps or pools on the struts or webbing between the struts.


Another shortcoming of the above-described method of medicating a stent is the potential for loss of the therapeutic substance from the coating or production of a coating that does not provide for a suitable residence time of the substance at the implanted region. Initial portions of a liquid composition containing a therapeutic substance sprayed onto a stent adhere to the stent surface. However, as the liquid composition continues to be applied to the stent, layers of the composition are formed on top of one another. When exposed to the solvent in the upper layers, the therapeutic substance in the lower layers can be re-dissolved into the upper layers of the composition or extracted out from the coating. Having the therapeutic substance maintained in merely the upper regions of the coating provides for a short residence time of the substance at the implanted region, as the therapeutic substance will be quickly released. Prolonged residence times in situ may be desirable for a more effective treatment of a patient.


The present invention addresses such problems by providing methods of coating implantable devices.


SUMMARY

Embodiments of invention coating methods provide coatings for implantable devices. In some embodiments, the methods comprise adjusting the temperature of the implantable device to a target temperature and applying a coating substance to the implantable device. These steps can be carried out in any order and one step need not end before the other begins, depending on the embodiment. If desired, the acts of adjusting and applying can be repeated to form a coating of a desirable thickness or weight.


In some embodiments, the coating substance may contain a therapeutic substance such as one that inhibits, reduces, diagnosis, or treats a human or animal disease. In these or other embodiments, the therapeutic agent comprises any substance capable of exerting a therapeutic, diagnostic or prophylactic effect in the practice of the present invention. In some embodiments, the therapeutic agent is at least one or any combination of antibiotics; anticoagulants; antifibrins; antiinflammatories; antimitotics; antineoplastics; antioxidants; antiplatelets; antiproliferatives; or antithrombins. In some embodiments the coating substance includes a radio-opaque element or a radioactive isotope, as well.


In some embodiments, the implantable device is not a catheter liner. In these or other embodiments, the implantable device can be a polymeric or metallic stent.


Invention methods, in some embodiments, select the target temperature to be above ambient temperature, such as greater than 20° C., greater than 30° C., greater than 40° C., or greater than 60° C., while in others it is below ambient temperature, such as less than 20° C., less than 10° C., less than 5° C., or less than 1° C.


In some embodiments, the coating substance contains a volatile or a non-volatile solvent or a polymer. In some embodiments, the target temperature and the profile are selected based on the behavior of components of the coating substance.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates a conventional stent; and



FIG. 2 illustrates a flow chart of an embodiment of the invention.





DETAILED DESCRIPTION

This document incorporates by this reference the entire disclosure of U.S. patent application Ser. No. 09/894,293, which was filed on Jun. 27, 2001.


For ease of discussion, the methods detailed herein will be described with reference to coating a stent. However, the device or prosthesis coated in accordance with embodiments of the present invention may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include self-expandable stents, balloon-expandable stents, stentgrafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. In some embodiments, the implantable device is chosen to specifically exclude any one or any combination of self-expandable stents, balloon-expandable stents, stentgrafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation). In some embodiments, the implantable device is not a catheter. In some embodiments in which the implantable device can be chosen to be a catheter, the implantable device is chosen not to be a catheter liner.


The methods of some embodiments of the current invention comprise adjusting the temperature of an implantable portion of a medical device to a target temperature, which is always non-ambient, and then coating the implantable portion of the medical device with a coating substance. In some embodiments, adjusting occurs such that the increase or decrease in temperature only occurs before applying the coating substance begins. In other embodiments, adjusting occurs such that heating or cooling starts before and continues during the applying step or the adjusting and applying steps occur substantially together.


Different invention embodiments employ different “adjusting” profiles. For instance, in some profiles, the implantable device is adjusted to the target temperature before applying a coating substance and then applying occurs (with or without some amount of temperature decrease before crimping); alternatively, the implantable device is adjusted to the target temperature before applying a coating substance and maintained at or near the target temperature during applying; alternatively, applying is started, the implantable medical device is adjusted to the target temperature, and applying is completed. In some embodiments, applying begins before the implantable device has reached the target temperature and continues until or after the target temperature has been reached.


For purposes of this disclosure, ambient temperature is the temperature of the implantable device when it has not been purposely heated or cooled. In alternative embodiments, ambient temperature is room temperature, 25-30° C., 20-30° C., 20-25° C., 23-27° C. or 10-30° C. Similarly, for purposes of this disclosure, a target temperature is a temperature numerically different from ambient temperature. In some embodiments, the difference between the target temperature and ambient is brought about by purposely heating or cooling the implantable device.


A target temperature is chosen based on the characteristics of the components of the coating substance. For instance, if the solvent of the coating substance is non-volatile or has a low volatility, the target temperature can be chosen to be above ambient temperature to improve the evaporation rate. Conversely, if the coating substance solvent is volatile, the target temperature can be chosen to be below ambient temperature to lower the evaporation rate. The identity of the solvent is not the only characteristic upon which a target temperature can be based. For instance, if the coating substance comprises a therapeutic substance, the target temperature can be chosen to minimize thermal degradation of the therapeutic substance. Alternatively, if a polymer is used in the coating substance, the target temperature can be chosen above Tg of the polymer to improve its flow characteristics during deposition. In other embodiments, if the solvent of the coating substance has a high boiling point, the target temperature can be chosen to be above ambient temperature to improve the evaporation rate. Conversely, if the coating substance solvent has a low boiling point, the target temperature can be chosen to be below ambient temperature to lower the evaporation rate. Similarly, if the solvent is likely to freeze at ambient temperature during the applying step, the target temperature can be chosen to maintain it in a molten state to facilitate its removal. Those of ordinary skill in the art will be able to identify other characteristics of components of the coating substance that can be improved by applying the substances to an implantable device that is at a non-ambient target temperature.


In some embodiments, the target temperature is chosen to be above ambient temperature if the solvent is non-volatile or has low volatility. In some embodiments, non-volatile and having low volatility take their standard meanings as recognized by those of ordinary skill in the art. In these or other embodiments, non-volatile and having low volatility means that the solvent has a volatility such that it does not substantially evaporate in a scientifically or commercially reasonable time as that time would be understood by one of ordinary skill in the art.


In some embodiments, non-volatile or having a low volatility means that when a solution composed of at least the solvent is applied to an implantable device the solvent does not substantially evaporate within 30 sec, 60 sec, 2 min, 5 min, 10 min, 15 min, 30 min, or 60 min at ambient temperature and pressure. In some embodiments, the target temperature is chosen to be below ambient temperature if the solvent is volatile. In some embodiments, volatile takes its standard meanings as recognized by those of ordinary skill in the art. In these or other embodiments, volatile means the solvent substantially evaporates fast enough to compromise the coating in a scientifically or commercially unreasonable manner as that would be understood by one of ordinary skill in the art. In some embodiments, volatile means that when a solution composed of at least the solvent is applied to an implantable device the solvent substantially evaporates within <30 sec, <20 sec, <15 sec, <10 sec, <8 sec, <5 sec, <4 sec, <3 sec, <2 sec, or <1 sec at ambient temperature and pressure. In some embodiments, the target temperature is chosen to be below the decomposition region for a therapeutic substance.


In some embodiments that use coating substances to form primer layers, the target temperature can be chosen higher than ambient. In some embodiments that use coating substances to form topcoat layers, the target temperature can be chosen close to ambient or lower than ambient temperature.


In some embodiments, adjusting the temperature of the implantable device comprises adjusting the temperature to a target temperature and then letting the temperature fluctuate thereafter.


In some embodiments, adjusting the temperature of the implantable medical device to a target temperature means adjusting the temperature to within ±1° C., ±2° C., ±3° C., ±4° C., ±5° C., ±6° C., ±7° C., ±8° C., ±9° C., ±10° C., ±12° C., ±15° C., or ±20° C. of the target temperature before, during, or after the applying step begins.


“Adjusting” the temperature of the medical device comprises placing the object that is to have its temperature adjusted into thermal contact with a heat source. For purposes of this disclosure, thermal contact with a heat source means heat source arrangement vis-à-vis the object so that energy would flow or be carried from the heat source to the object. Thermal contact is a generic term at least encompassing an arrangement of the object such that radiation, conduction, or convection from the heat source would transfer energy. In some embodiments, thermal contact is defined to exclude any of radiation, conduction, convection, or any combination of these. Furthermore no invention embodiments use a convection oven or an ultrasound energy source.


In some embodiments, “maintained near the target temperature” means that the temperature of the implantable device, when it contacts the coating substance, is the same as the target temperature or within ±1° C., ±2° C., ±3° C., ±4° C., ±5° C., ±6° C., ±7° C., ±8° C., ±9° C., ±10° C., ±12° C., ±15° C., or ±20° C. of the target temperature.


In some embodiments, “maintained at the target temperature during the applying step” means keeping the temperature of the implantable device the same as the target temperature or within ±1° C., ±2° C., ±3° C., ±4° C., ±5° C., ±6° C., ±7° C., ±8° C., ±9° C., ±10° C., ±12° C., ±15° C., or ±20° C. of the target temperature.


The applying step forms a coating on an implantable medical device such as a stent; it is accomplished in some embodiments by spraying a composition onto the stent. A spray apparatus, such as EFD 780S spray device with VALVEMATE 7040 control system (manufactured by EFD Inc., East Providence, R.I.), can be used to apply the composition to the stent. EFD 780S spray device is an air-assisted external mixing atomizer. The composition is atomized into small droplets by air and uniformly applied to the stent surfaces. The atomization pressure can be maintained at a range of about 5 psi to about 20 psi. The droplet size depends on factors such as viscosity of the solution, surface tension of the solvent, and atomization pressure. Other types of spray applicators, including air-assisted internal mixing atomizers and ultrasonic applicators, can also be used for the application of the composition.


During the application of the composition, the stent can be rotated about the stent's central longitudinal axis. Rotation of the stent can be from about 0.1 rpm to about 300 rpm, more narrowly from about 1 rpm to about 10 rpm. By way of example, the stent can rotate at about 3 rpm. The stent can also be moved in a linear direction along the same axis. The stent can be moved at about 1 mm/second to about 12 mm/second, for example about 6 mm/second, or for a minimum of at least two passes (i.e., back and forth past the spray nozzle).


The flow rate of the composition from the spray nozzle can be from about 0.01 mg/second to about 1.0 mg/second, more narrowly about 0.1 mg/second. Only a small percentage of the composition that is delivered from the spray nozzle is ultimately deposited on the stent. By way of example, when a composition is sprayed to deliver about 1 mg of solids, only about 100 micrograms or about 10% of the solids sprayed will likely be deposited on the stent. Multiple repetitions for applying the composition can be performed, wherein each repetition can be, for example, about 0.5 second to about 5 seconds in duration. In these or other embodiments, the steps can be repeated 2-100, 2-50, 30-100, 20-50, 50-100, or greater than 100 times. The amount of coating applied by each repetition can be about 1 microgram/cm2 (of stent surface) to about 50 micrograms/cm2, for example less than about 20 micrograms/cm2 per 1-second spray.


Each repetition can be followed by removal of a significant amount of the solvent(s). The removal of the solvent(s) can be performed following a waiting period of about 0.1 second to about 5 seconds after the application of the coating composition so as to allow the liquid sufficient time to flow and spread over the stent surface before the solvent(s) is removed to form a coating. The waiting period is particularly suitable if the coating composition contains a volatile solvent, such as solvents having boiling points >130° C. at ambient pressure, since such solvents are typically removed quickly.


The applying step excludes immersing the temperature-adjusted implantable device into the coating substance.


Removal of the solvent(s) can be induced by the application of a warm gas. The application of a warm gas between each repetition prevents coating defects and minimizes interaction between the active agent and the solvent. Any suitable gas can be employed, examples of which include air or nitrogen. The temperature of the warm gas can be from about 25° C. to about 200° C., more narrowly from about 40° C. to about 90° C. The flow speed of the gas can be from about 0.5 feet3/second (0.01 meters3/second) to about 50 feet3/second (1.42 meters3/second), more narrowly about 2.5 feet3/second (0.07 meters3/second) to about 15 feet3/second (0.43 meters3/second). The gas can be applied for about 1 second to about 100 seconds, more narrowly for about 2 seconds to about 20 seconds. By way of example, warm gas applications can be performed at a temperature of about 60° C., at a flow speed of about 10 feet3/second, and for about 10 seconds.


In one embodiment, the stent can be warmed to a temperature of from about 35° C. to about 80° C. prior to the application of the coating composition so as to facilitate faster removal of the solvent(s). The particular temperature selected depends, at least in part, on the particular active agent employed in the coating composition. By way of example, pre-heating of the stent prior to applying a composition containing actinomycin D should be performed at a temperature not greater than about 55° C. Pre-heating is particularly suitable for embodiments in which the solvent(s) employed in the coating composition has a high boiling point, i.e., volatile solvents having boiling points of, for example, >130° C. at ambient pressure (e.g., dimethylsulfoxide (DMSO), dimethylformamide (DMF), and dimethylacetamide (DMAC)).



FIG. 2 illustrates an embodiment of the invention wherein a medical device is coated. After the medical device has been provided, the temperature of the device is adjusted to a target temperature. A coating substance comprising a solvent and a polymer dissolved in the solvent is atomized. This coating substance may optionally include a therapeutic substance. The coating substance is sprayed on the medical device.


Any suitable number of repetitions of applying the composition followed by removing the solvent(s) can be performed to form a coating of a desired thickness or weight. Excessive application of the polymer can, however, cause coating defects. In embodiments in which the coating composition contains a volatile solvent, a waiting period of from about 0.1 second to about 20 seconds can be employed between solvent removal of one repetition and composition application of the subsequent repetition so as to ensure that the wetting rate of the coating composition is slower than the evaporation rate of the solvent within the composition, thereby promoting coating uniformity.


Operations such as wiping, centrifugation, or other web clearing acts can also be performed to achieve a more uniform coating. Briefly, wiping refers to the physical removal of excess coating from the surface of the stent; and centrifugation refers to rapid rotation of the stent about an axis of rotation. The excess coating can also be vacuumed off of the surface of the stent.


In accordance with one embodiment, the stent can be at least partially pre-expanded prior to the application of the composition. For example, the stent can be radially expanded about 20% to about 60%, more narrowly about 27% to about 55%—the measurement being taken from the stent's inner diameter at an expanded position as compared to the inner diameter at the unexpanded position. The expansion of the stent, for increasing the interspace between the stent struts during the application of the composition, can further prevent “cob web” formation between the stent struts.


A final heat treatment can be conducted to remove essentially all of the solvent(s) from the composition on the stent. The heat treatment can be conducted at about 30° C. to about 200° C. for about 15 minutes to about 16 hours, more narrowly at about 50° C. to about 100° C. for about 1 hour to about 4 hours. By way of example, the heat treatment can be conducted at about 75° C. for 1 hour. The temperature of exposure should not adversely affect the characteristics of the active agent or of the coating. The heating can be conducted in an anhydrous atmosphere and at ambient pressure. The heating can, alternatively, be conducted under a vacuum condition. It is understood that essentially all of the solvent(s) will be removed from the composition but traces or residues can remain blended in the coating.


By way of example, and not limitation, the coating, referred to herein as the primary or reservoir coating, can have a thickness of about 0.05 microns to about 10 microns. The particular thickness of the coating is based on the type of procedure for which the stent is employed and the amount, if any, of active agent that is desired to be delivered. Applying a plurality of reservoir coating layers, containing the same or different active agents, onto the stent can further increase the amount of the active ingredient to be carried by the stent, without causing coating defects.


In accordance with one embodiment, the coating substance can include a solvent and a polymer dissolved in the solvent. The coating substance can also include active agents, radiopaque elements, or radioactive isotopes. Representative examples of polymers that can be used to coat a stent include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(hydroxyvalerate); poly(L-lactic acid); polycaprolactone; poly(lactide-coglycolide); poly(hydroxybutyrate); poly(hydroxybutyrate-co-valerate); polydioxanone; polyorthoester; polyanhydride; poly(glycolic acid); poly(D,L-lactic acid); poly(glycolic acid-co-trimethylene carbonate); polyphosphoester; polyphosphoester urethane; poly(amino acids); cyanoacrylates; poly(trimethylene carbonate); poly(iminocarbonate); copoly(ether-esters) (e.g. PEO/PLA); polyalkylene oxalates; polyphosphazenes; biomolecules, such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid; polyurethanes; silicones; polyesters; polyolefins; polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers; vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile; polyvinyl ketones; polyvinyl aromatics, such as polystyrene; polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers; polyamides, such as Nylon 66 and polycaprolactam; alkyd resins; polycarbonates; polyoxymethylenes; polyimides; polyethers; epoxy resins; polyurethanes; rayon; rayon-triacetate; cellulose; cellulose acetate; cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; and carboxymethyl cellulose.


In some embodiments, the polymer or the processing conditions of the method are selected such that the polymer is non-crystalline. A crystalline polymer is one in which upon analysis a detectable pattern may be observed when using conventional x-ray scattering techniques. Such conventional techniques are disclosed, for example, in “The Structure of Crystalline Polymers”, Tadokoro, H. (Wiley Interscience, 1979). The degree of crystallinity of a polymer is the measurement by weight of the amount of polymer that is in the form of crystallites, as measured by differential scanning calorimetry. For purposes of this disclosure, a polymer that is non-crystalline has a degree of crystallinity of less than about 20 percent.


“Solvent” is defined as a liquid substance or composition that is compatible with the polymer and is capable of dissolving the polymer at the concentration desired in the composition. Examples of solvents include, but are not limited to, dimethylsulfoxide (DMSO), chloroform, acetone, water (buffered saline), xylene, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, isopropanol admixed with water, N-methylpyrrolidinone, toluene, and combinations thereof.


The therapeutic agent can inhibit vascular, smooth muscle cell activity. More specifically, the therapeutic agent can aim at inhibiting abnormal or inappropriate migration or proliferation of smooth muscle cells to prevent, inhibit, reduce, or treat restenosis. The therapeutic agent can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. Useful therapeutic agents can include therapeutic agents selected form antibiotics; anticoagulants; antifibrins; antiinflammatories; antimitotics; antineoplastics; antioxidants; antiplatelets; antiproliferatives; antithrombins; and their combinations. Other useful therapeutic agents include actinomycin D or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck); dactinomycin; actinomycin IV; actinomycin I1; actinomycin X1; actinomycin C1; paclitaxel; docetaxel; aspirin; sodium heparin; low molecular weight heparin; hirudin; argatroban; forskolin; vapiprost; prostacyclin; prostacyclin analogs; dextran; D-phe-pro-arg-chloromethylketone (synthetic antithrombin); dipyridamole; glycoprotein IIb/IIIa platelet membrane receptor antagonist; recombinant hirudin; thrombin inhibitor (available from Biogen); 7E-3B® (an antiplatelet drug from Centocor); methotrexate; azathioprine; vincristine; vinblastine; fluorouracil; adriamycin; mutamycin; angiopeptin (a somatostatin analog from Ibsen); angiotensin converting enzyme inhibitors; CAPTOPRIL (available from Squibb); CILAZAPRIL (available from Hoffman-LaRoche); LISINOPRIL (available from Merck & Co., Whitehouse Station, N.J.); calcium channel blockers; Nifedipine; colchicinefibroblast growth factor (FGF) antagonists; histamine antagonist; LOVASTATIN (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck &Co.); monoclonal antibodies (such as PDGF receptors); nitroprusside; phosphodiesterase inhibitors; prostaglandin inhibitor (available from Glazo); Seramin (a PDGF antagonist); serotonin blockers; thioprotease inhibitors; triazolopyrimidine (a PDGF antagonist); nitric oxide; alpha-interferon; genetically engineered epithelial cells; dexamethasone; estradiol; clobetasol propionate; cisplatin; insulin sensitizers; receptor tyrosine kinase inhibitors; carboplatin; Rapamycin; 40-O-(2-hydroxy)ethyl-rapamycin, or a functional analog or structural derivative thereof; 40-O-(3-hydroxy)propylrapamycin; 40-O-2-(2-hydroxy)ethoxyethyl-rapamycin and their combinations.


Individual embodiments exist in which the therapeutic agent is selected to specifically exclude any one of or any combination of the therapeutic agents or therapeutic agent families described above.


Some invention embodiments comprise a therapeutic agent or therapeutic agent combination, and some require a therapeutic agent or combination of therapeutic agents. Of the therapeutic agents specifically listed above, some invention embodiments exclude a single or any combination of these therapeutic agents.


Examples of radiopaque elements include, but are not limited to, gold, tantalum, and platinum. An example of a radioactive isotope is P32. Sufficient amounts of such substances may be dispersed in the composition such that the substances are not present in the composition as agglomerates or flocs.


The methods for coating an implantable device, such as a stent, according to embodiments of the present invention, can be used to create a multi-layer structure that can include any one or any combination of the following four layers:


(a) a primer layer;


(b) a drug-polymer layer (also referred to as “reservoir” or “reservoir layer”) or a polymer-free drug layer; and


(c) a topcoat layer, which is likewise drug containing or drug free.


(d) a finishing layer, for biocompatibility possessing biobeneficial properties.


In some embodiment, an optional primer layer can be formed prior to the primary or reservoir coating to increase the retention of the primary or reservoir coating on the surface of the stent, particularly metallic surfaces such as stainless steel. The primer layer can act as an intermediary adhesive tie layer between the surface of the device and a reservoir coating carrying an active agent, allowing for the quantity of the active agent to be increased in the reservoir coating.


To form an optional primer layer on the surface of the stent, an embodiment of the above-described composition that is free from active agents is applied to the surface of the stent. Ethylene vinyl alcohol copolymer, for example, adheres very well to metallic surfaces, particularly stainless steel. Accordingly, the copolymer provides for a strong adhesive tie between the reservoir coating and the surface of the stent. With the use of thermoplastic polymers such as, but not limited to, ethylene vinyl alcohol copolymer, polycaprolactone, poly(lactide-co-glycolide), and poly(hydroxybutyrate), the deposited primer composition should be exposed to a heat treatment at a temperature range greater than about the glass transition temperature (Tg) and less than about the melting temperature (Tm) of the selected polymer. Unexpected results have been discovered with treatment of the composition under this temperature range, specifically strong adhesion or bonding of the coating to the metallic surface of the stent. The prosthesis should be exposed to the heat treatment for any suitable duration of time that will allow for the formation of the primer layer on the surface of the stent and for the evaporation of the solvent employed. By way of example and not limitation, the optional primer layer can have a thickness of about 0.01 microns to about 2 microns. The application of the primary or reservoir coating should be performed subsequent to the drying of the optional primer layer.


In another embodiment, an optional diffusion barrier can be formed over a reservoir coating containing an active agent to help control the rate at which the active agent is released from the coated stent. An embodiment of the composition, free from any active agents, can be applied to a selected portion of the primary or reservoir coating subsequent to the drying of the reservoir coating. Application of the composition and evaporation of the solvent to form the diffusion barrier can be accomplished via embodiments of the above-described method of the present invention. The diffusion barrier can have a thickness of about 0.2 microns to about 10 microns. It is understood by one of ordinary skill in the art that the thickness of the diffusion barrier is based on factors such as the type of stent, the type of procedure for which the stent is employed, and the rate of release that is desired. As described above with reference to the primary or reservoir coating, a final heat treatment can be conducted to remove essentially all of the solvent(s) from the optional diffusion barrier.


Either of the four layers or any combination of them can be formed using invention methods.


EXAMPLES

The embodiments of the present invention will be illustrated by the following set forth examples, which are being given by way of illustration only and not by way of limitation. All parameters and data are not to be construed to unduly limit the scope of the embodiments of the invention.


Example 1

Four 8 mm Multi-Link TETRA stents (available from Guidant Corporation) were coated using embodiments of the method of the present invention. The stents were cleaned by sonication in water, followed by sonication in isopropanol. The stents were dried at 70° C. and plasma cleaned in an argon plasma chamber.


Each unexpanded stent was positioned on a mandrel such that the mandrel contacted the stent at its opposing ends. An EFD 780S spray device with VALVEMATE 7040 control system (manufactured by EFD Inc., East Providence, R.I.) was used to apply the coating compositions to the stents. The spray nozzle was adjusted to provide a distance from the nozzle tip to the outer surface of the stent of approximately 4.5 cm and a spray angle of approximately 90° relative to the horizontal stents. The atomization pressure was set to be maintained throughout the coating process at 20 psi.


Each stent was passed under the spray nozzle for about 2 seconds. A composition containing 2% (w/w) poly-n-butyl methacrylate (PBMA) 337K in cyclohexanone:ethyl acetate (1:1) was sprayed onto one stent. A composition containing 2% (w/w) PBMA 649K in cyclohexanone:ethyl acetate (1:1) was sprayed onto two stents. A composition containing 2% (w/w) PBMA 857K in cyclohexanone:ethyl acetate (1:1) was sprayed onto one stent. Each stent was rotated about the stent's central longitudinal axis at a speed of 3 rpm during coating. After a waiting period of 1 secand following the application of the respective compositions, warm air of approximately 80° C. was directed from an air gun onto each stent for 15 seconds to remove most of the solvents. The spraying-blowing cycle was repeated to deposit thirty-four layers on each stent, with a wait time of 5 seconds between each cycle. The coated stent was allowed to dry for about 60 minutes under vacuum conditions in an oven at a temperature of about 70° C. Each of the four coated stents had a uniform, smooth coating. In addition, the stent sprayed with 2% (w/w) PBMA 857K in cyclohexanone:ethyl acetate (1:1) was submitted for a simulated use test and was found to have good mechanical properties, no cracking, and good coating adhesion.


Example 2

An 8 mm Multi-Link TETRA stent was coated using embodiments of the method of the present invention. The stent was cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 15 minutes. The stent was dried and plasma cleaned in a plasma chamber.


A composition containing 2% (w/w) poly-n-butyl methacrylate (PBMA) and 2% (w/w) quinoline yellow dye in chloroform:cyclohexanone (9:1) was prepared.


The unexpanded stent was positioned on a mandrel such that the mandrel contacted the stent at its opposing ends. An EFD 780S spray device with VALVEMATE 7040 control system was used to apply the coating composition to the stent. The spray nozzle was adjusted to provide a distance from the nozzle tip to the outer surface of the stent of 1.25 inches (3.18 cm) and a spray angle of approximately 90° relative to the horizontal stent. The atomization pressure was set to be maintained throughout the coating process at 15 psi.


The stent was passed under the spray nozzle for about 1 second. The stent was rotated about the stent's central longitudinal axis at a speed of 3 rpm during coating. Warm air of approximately 100° C. was directed from an air gun onto the stent for 4 seconds to remove most of the solvents. The spraying-heating cycle was repeated to deposit forty layers on the stent, depositing about 300 micrograms of coating. The coated stent was allowed to dry for about 3 hours under vacuum conditions at a temperature of about 75° C. The coated stent had a uniform, smooth coating with an estimated dye content of about 130 micrograms or 43% of the total amount of coating deposited.


Example 3

An 8 mm Multi-Link TETRA stent was coated using embodiments of the method of the present invention. The stent was cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 15 minutes. The stent was dried and plasma cleaned in a plasma chamber.


A primer composition containing 2% (w/w) poly-n-butyl methacrylate (PBMA) was prepared. A reservoir composition containing 2% (w/w) PBMA and 2.7% (w/w) ethyl eosin dye in methanol:cyclohexanone (1:1) was also prepared. In addition, a diffusion barrier composition containing 2% (w/w) PBMA was prepared.


The unexpanded stent was positioned on a mandrel such that the mandrel contacted the stent at its opposing ends. An EFD 780S spray device with VALVEMATE 7040 control system was used to apply the various compositions to the stent. The spray nozzle was adjusted to provide a distance from the nozzle tip to the outer surface of the stent of 1.25 inches (3.18 cm) and a spray angle of approximately 90° relative to the horizontal stent. The atomization pressure was set to be maintained throughout the coating process at 15 psi. The stent was rotated about the stent's central longitudinal axis at a speed of 3 rpm during coating.


The primer composition was applied to the stent by passing the stent under the spray nozzle for about 0.75 second. Warm air of approximately 100° C. was directed from an air gun onto the stent for 8 seconds to remove most of the solvents and form a primer layer on the stent. The reservoir composition was then applied to the primered stent by passing the stent under the spray nozzle for about 0.75 second. Warm air of approximately 100° C. was directed from an air gun onto the stent for 4 seconds to remove most of the solvents. The spraying-heating cycle was repeated to deposit forty layers on the stent, depositing about 419 micrograms of the reservoir coating. The coated stent was allowed to dry for about 3 hours under vacuum conditions at a temperature of about 75° C. The barrier layer composition was then applied to the reservoir-coated stent by passing the stent under the spray nozzle for about 0.75 second. Warm air of approximately 100° C. was directed from an air gun onto the stent for 4 seconds to remove most of the solvents. The spraying-heating cycle was repeated to deposit about 70 micrograms of the diffusion barrier. The coated stent was allowed to dry overnight under vacuum conditions at a temperature of about 75° C. The coated stent had a uniform, smooth coating with an estimated dye content of about 224 micrograms or 53% of the total amount of coating deposited.


Example 4

An 8 mm Multi-Link TETRA stent was coated using embodiments of the method of the present invention. The stent was cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 15 minutes. The stent was dried and plasma cleaned in a plasma chamber.


A composition containing 2% (w/w) poly-n-butyl methacrylate (PBMA) and 2% (w/w) quinoline yellow dye in chloroform:cyclohexanone (9:1) was prepared.


The unexpanded stent was positioned on a mandrel such that the mandrel contacted the stent at its opposing ends. An EFD 780S spray device with VALVEMATE 7040 control system was used to apply the composition to the stent. The spray nozzle was adjusted to provide a distance from the nozzle tip to the outer surface of the stent of 1.25 inches (3.18 cm) and a spray angle of approximately 90° relative to the horizontal stent. The atomization pressure was set to be maintained throughout the coating process at 15 psi.


The stent was passed under the spray nozzle for about 1.5 second. The stent was rotated about the stent's central longitudinal axis at a speed of 3 rpm during coating. Warm air of approximately 100° C. was directed from an air gun onto the stent for 4 seconds to remove most of the solvents. The spraying-heating cycle was repeated to deposit 3 layers on the stent, depositing about 115 micrograms of coating. The coated stent was allowed to dry for about 3 hours under vacuum conditions at a temperature of about 75° C. The coated stent had a uniform, smooth coating with an estimated dye content of about 38 micrograms or 33% of the total amount of coating deposited.


Example 5

To determine the maximum amount of coating that could be deposited on an 8 mm stent without visible webbing, a Multi-Link TETRA stent was coated using the same coating composition and parameters as described in Example 4. The spraying-heating cycle was repeated until 790 micrograms of coating had been deposited on the stent, at which time no webbing was observed.


Example 6

An 8 mm Multi-Link TETRA stent was coated using embodiments of the method of the present invention. The stent was cleaned by placement in an ultrasonic bath of isopropyl alcohol solution for 15 minutes. The stent was dried and plasma cleaned in a plasma chamber.


A composition containing 2% (w/w) poly-n-butyl methacrylate (PBMA) and 2% (w/w) solvent blue dye in chloroform:cyclohexanone (9:1) was prepared.


The unexpanded stent was positioned on a mandrel such that the mandrel contacted the stent at its opposing ends. An EFD 780S spray device with VALVEMATE 7040 control system was used to apply the composition to the stent. The spray nozzle was adjusted to provide a distance from the nozzle tip to the outer surface of the stent of 1.25 inches (3.18 cm) and a spray angle of approximately 90° relative to the horizontal stent. The atomization pressure was set to be maintained throughout the coating process at 15 psi.


The stent was passed under the spray nozzle for about 1.5 seconds. The stent was rotated about the stent's central longitudinal axis at a speed of 3 rpm during coating. Warm air of approximately 100° C. was directed from an air gun onto the stent for 4 seconds to remove most of the solvents. The spraying-heating cycle was repeated to deposit about 130 micrograms of coating. The coated stent was allowed to dry for about 3 hours under vacuum conditions at a temperature of about 75° C. The coated stent had a uniform, smooth coating with a estimated dye content of about 85 micrograms or 66% of the total amount of coating deposited.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from the embodiments of this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of the embodiments of this invention. Additionally, various embodiments have been described above. For convenience's sake, combinations of aspects (such as monomer type or gas flow rate) composing invention embodiments have been listed in such a way that one of ordinary skill in the art may read them exclusive of each other when they are not necessarily intended to be exclusive. But a recitation of an aspect for one embodiment is meant to disclose its use in all embodiments in which that aspect can be incorporated without undue experimentation. In like manner, a recitation of an aspect as composing part of an embodiment is a tacit recognition that a supplementary embodiment exists that specifically excludes that aspect.


Moreover, some embodiments recite ranges. When this is done, it is meant to disclose the ranges as a range, and to disclose each and every point within the range, including end points. For those embodiments that disclose a specific value or condition for an aspect, supplementary embodiments exist that are otherwise identical, but that specifically exclude the value or the conditions for the aspect.

Claims
  • 1. A method of coating an implantable device or an implantable portion of a medical device comprising: providing, on a support structure, a medical device capable of being implanted;adjusting the temperature of the implantable medical device to a target temperature;atomizing a coating substance with a gaseous propellant, the coating substance comprising a solvent, a polymer dissolved in the solvent, and a therapeutic substance; andapplying the coating substance onto the implantable medical device after starting the act of adjusting the temperature and while the implantable medical device is supported by the support structure,wherein the implantable medical device is not a catheter liner, the target temperature selected is below a temperature which causes thermal degradation of the therapeutic substance, andthe adjusting step ending is selected from the following: the adjusting step ends before the applying step begins;the adjusting step does not end before the applying step begins;the adjusting step ends before the applying step ends; andthe adjusting step ends after the applying step ends.
  • 2. The method of claim 1 wherein the implantable medical device is a stent.
  • 3. The method of claim 2 wherein the stent is polymeric or metallic.
  • 4. The method of claim 2 wherein the stent is at least partially expanded during the acts of applying and adjusting.
  • 5. The method of claim 1 wherein the target temperature is above ambient temperature.
  • 6. The method of claim 5 wherein the solvent is a non-volatile solvent.
  • 7. The method of claim 6 wherein the target temperature is greater than 20° C.
  • 8. The method of claim 1 wherein the implantable medical device is maintained at the target temperature during the applying step; ormaintained near the target temperature during the applying step.
  • 9. The method of claim 1 additionally comprising repeating the acts of adjusting and applying to form a coating of a desirable thickness or weight.
  • 10. The method of claim 1 where in the therapeutic substance inhibits, reduces, help in diagnosis, or treats a human or animal disease.
  • 11. The method of claim 1 wherein the therapeutic substance comprises any substance capable of exerting a therapeutic, diagnostic or prophylactic effect.
  • 12. The method of claim 1 wherein therapeutic substance is at least one or any combination of antibiotics; anticoagulants; antifibrins; antiinflammatories; antimitotics; antineoplastics; antioxidants; antiplatelets; antiproliferatives; or antithrombins.
  • 13. The method of claim 1 wherein the coating substance additionally includes a radiopaque element or a radioactive isotope.
  • 14. The method of claim 1 wherein the target temperature is about 35° C. to about 80° C.
  • 15. The method of claim 1 wherein the adjusting step ends before the applying step begins.
  • 16. The method of claim 1 wherein the adjusting step does not end before the applying step begins.
  • 17. The method of claim 1 wherein the adjusting step ends before the applying step ends.
  • 18. The method of claim 1 wherein the adjusting step ends after the applying step ends.
  • 19. A method of coating an implantable device or an implantable portion of a medical device comprising: providing, on a support structure, a medical device capable of being implanted;adjusting the temperature of the implantable medical device to a target temperature;atomizing a coating substance with a gaseous propellant, the coating substance comprising a solvent, a polymer dissolved in the solvent, and a therapeutic substance; andapplying the coating substance onto the implantable medical device after starting the act of adjusting the temperature and while the implantable medical device is supported by the support structure,wherein the implantable medical device is not a catheter liner, the target temperature selected is below a temperature which causes thermal degradation of the therapeutic substance, andthe adjusting step ending is selected from the following: the adjusting step ends before the applying step begins;the adjusting step does not end before the applying step begins;the adjusting step ends before the applying step ends; andthe adjusting step ends after the applying step ends,wherein the target temperature is below ambient temperature.
  • 20. The method of claim 19 wherein the solvent is a volatile solvent.
  • 21. The method of claim 20 wherein the target temperature is less than 20° C.
  • 22. A method of coating an implantable device comprising: adjusting the temperature of the implantable device to a target temperature; andapplying a coating substance, after the act of adjusting the temperature begins, comprising a volatile solvent, a polymer and a therapeutic substance, to the implantable device while the implantable device is supported by a support structure,wherein the implantable device is not a catheter liner and wherein the implantable device is a polymeric or metallic stent,wherein the adjusting step ends before the applying step begins;the adjusting step does not end before the applying step begins;the adjusting step ends before the applying step ends; orthe adjusting step ends after the applying step ends,wherein the target temperature is less than 20° C., andwherein the therapeutic agent inhibits, reduces, helps in diagnosis, or treats a human or animal disease; andis at least one or any combination of antibiotics; anticoagulants; antifibrins; antiinflammatories; antimitotics; antineoplastics; antioxidants; antiplatelets; antiproliferatives; or antithrombins.
  • 23. A method of coating an implantable device comprising: adjusting the temperature of the implantable device to a target temperature; andapplying a coating substance, after the act of adjusting the temperature begins, comprising a non-volatile solvent, a polymer and a therapeutic substance, to the implantable device while the implantable device is supported by a support structure,wherein the implantable device is not a catheter liner, the target temperature selected is below a temperature which causes thermal degradation of the therapeutic substance, and wherein the implantable medical device is a polymeric or metallic stent,wherein the adjusting step ends before the applying step begins;the adjusting step does not end before the applying step begins;the adjusting step ends before the applying step ends; orthe adjusting step ends after the applying step ends,wherein the target temperature is greater than 20° C., andwherein the therapeutic agent inhibits, reduces, diagnosis, or treats a human or animal disease; andis at least one or any combination of antibiotics; anticoagulants; antifibrins; antiinflammatories; antimitotics; antineoplastics; antioxidants; antiplatelets; antiproliferatives; or antithrombins.
CROSS-REFERENCE

This is a continuation-in-part of application Ser. No. 09/894,293, which was filed on Jun. 27, 2001 now abandoned, the entire disclosure of which is incorporated into this document by reference.

US Referenced Citations (307)
Number Name Date Kind
2072303 Herrmann et al. Mar 1937 A
2386454 Frosch et al. Oct 1945 A
3773737 Goodman et al. Nov 1973 A
3849514 Gray, Jr. et al. Nov 1974 A
3882816 Rooz et al. May 1975 A
3995075 Cernauskas et al. Nov 1976 A
4226243 Shalaby et al. Oct 1980 A
4329383 Joh May 1982 A
4343931 Barrows Aug 1982 A
4529792 Barrows Jul 1985 A
4560374 Hammerslag Dec 1985 A
4611051 Hayes et al. Sep 1986 A
4656242 Swan et al. Apr 1987 A
4733665 Palmaz Mar 1988 A
4800882 Gianturco Jan 1989 A
4865879 Finlay Sep 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4931287 Bae et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4977901 Ofstead Dec 1990 A
5019096 Fox, Jr. et al. May 1991 A
5100992 Cohn et al. Mar 1992 A
5112457 Marchant May 1992 A
5130173 Barten et al. Jul 1992 A
5133742 Pinchuk Jul 1992 A
5163952 Froix Nov 1992 A
5165919 Sasaki et al. Nov 1992 A
5219980 Swidler Jun 1993 A
5258020 Froix Nov 1993 A
5272012 Opolski Dec 1993 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5306786 Moens et al. Apr 1994 A
5328471 Slepian Jul 1994 A
5330768 Park et al. Jul 1994 A
5380299 Fearnot et al. Jan 1995 A
5417981 Endo et al. May 1995 A
5447724 Helmus et al. Sep 1995 A
5455040 Marchant Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5485496 Lee et al. Jan 1996 A
5516881 Lee et al. May 1996 A
5558900 Fan et al. Sep 1996 A
5569463 Helmus et al. Oct 1996 A
5578073 Haimovich et al. Nov 1996 A
5584877 Miyake et al. Dec 1996 A
5605696 Eury et al. Feb 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5610241 Lee et al. Mar 1997 A
5616338 Fox, Jr. et al. Apr 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5644020 Timmermann et al. Jul 1997 A
5649977 Campbell Jul 1997 A
5658995 Kohn et al. Aug 1997 A
5667767 Greff et al. Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5674242 Phan et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5711958 Cohn et al. Jan 1998 A
5716981 Hunter et al. Feb 1998 A
5721131 Rudolph et al. Feb 1998 A
5723219 Kolluri et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5746998 Torchilin et al. May 1998 A
5759205 Valentini Jun 1998 A
5776184 Tuch Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5820917 Tuch Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5849859 Acemoglu Dec 1998 A
5851508 Greff et al. Dec 1998 A
5854376 Higashi Dec 1998 A
5858746 Hubbell et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5869127 Zhong Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876433 Lunn Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5891507 Jayaraman Apr 1999 A
5902875 Roby et al. May 1999 A
5905168 Dos Santos et al. May 1999 A
5910564 Gruning et al. Jun 1999 A
5914387 Roby et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5925720 Kataoka et al. Jul 1999 A
5932299 Katoot Aug 1999 A
5955509 Webber et al. Sep 1999 A
5958385 Tondeur et al. Sep 1999 A
5962138 Kolluri et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5997517 Whitbourne Dec 1999 A
6010530 Goicoechea Jan 2000 A
6011125 Lohmeijer et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6030371 Pursley Feb 2000 A
6033582 Lee et al. Mar 2000 A
6034204 Mohr et al. Mar 2000 A
6042875 Ding et al. Mar 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6054553 Groth et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6080488 Hostettler et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099562 Ding et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120788 Barrows Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6129761 Hubbell Oct 2000 A
6136333 Cohn et al. Oct 2000 A
6143354 Koulik et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6156064 Chouinard Dec 2000 A
6156373 Zhong et al. Dec 2000 A
6159978 Myers et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6172167 Stapert et al. Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180632 Myers et al. Jan 2001 B1
6203551 Wu Mar 2001 B1
6211249 Cohn et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6245760 He et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6254632 Wu et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258371 Koulik et al. Jul 2001 B1
6262034 Mathiowitz et al. Jul 2001 B1
6270788 Koulik et al. Aug 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6344035 Chudzik et al. Feb 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6358567 Pham et al. Mar 2002 B2
6364903 Tseng et al. Apr 2002 B2
6379381 Hossainy et al. Apr 2002 B1
6387379 Goldberg et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6419692 Yang et al. Jul 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6482834 Spada et al. Nov 2002 B2
6494862 Ray et al. Dec 2002 B1
6503538 Chu et al. Jan 2003 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6524347 Myers et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6528526 Myers et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6530951 Bates et al. Mar 2003 B1
6534112 Bouchier et al. Mar 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6572644 Moein Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6605154 Villareal Aug 2003 B1
6616765 Castro et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6625486 Lundkvist et al. Sep 2003 B2
6645135 Bhat Nov 2003 B1
6645195 Bhat et al. Nov 2003 B1
6656216 Hossainy et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663880 Roorda et al. Dec 2003 B1
6666880 Chiu et al. Dec 2003 B1
6673154 Pacetti et al. Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6689099 Mirzaee Feb 2004 B2
6695920 Pacetti et al. Feb 2004 B1
6706013 Bhat et al. Mar 2004 B1
6709514 Hossainy Mar 2004 B1
6712845 Hossainy Mar 2004 B2
6713119 Hossainy et al. Mar 2004 B2
6716444 Castro et al. Apr 2004 B1
6723120 Yan Apr 2004 B2
6733768 Hossainy et al. May 2004 B2
6740040 Mandrusov et al. May 2004 B1
6743462 Pacetti Jun 2004 B1
6749626 Bhat et al. Jun 2004 B1
6753071 Pacetti et al. Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6759054 Chen et al. Jul 2004 B2
6764505 Hossainy et al. Jul 2004 B1
20010007083 Roorda Jul 2001 A1
20010014717 Hossainy et al. Aug 2001 A1
20010018469 Chen et al. Aug 2001 A1
20010020011 Mathiowitz et al. Sep 2001 A1
20010029351 Falotico et al. Oct 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20010051608 Mathiowitz et al. Dec 2001 A1
20020005206 Falotico et al. Jan 2002 A1
20020007213 Falotico et al. Jan 2002 A1
20020007214 Falotico Jan 2002 A1
20020007215 Falotico et al. Jan 2002 A1
20020009604 Zamora et al. Jan 2002 A1
20020016625 Falotico et al. Feb 2002 A1
20020032414 Ragheb et al. Mar 2002 A1
20020032434 Chudzik et al. Mar 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020071822 Uhrich Jun 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020094440 Llanos et al. Jul 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020120326 Michal Aug 2002 A1
20020123801 Pacetti et al. Sep 2002 A1
20020142039 Claude Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020176849 Slepian Nov 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020188037 Chudzik et al. Dec 2002 A1
20020188277 Roorda et al. Dec 2002 A1
20030004141 Brown Jan 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030031780 Chudzik et al. Feb 2003 A1
20030032767 Tada et al. Feb 2003 A1
20030036794 Ragheb et al. Feb 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030040712 Ray et al. Feb 2003 A1
20030040790 Furst Feb 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030065377 Davila et al. Apr 2003 A1
20030072868 Harish et al. Apr 2003 A1
20030073961 Happ Apr 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083739 Cafferata May 2003 A1
20030097088 Pacetti May 2003 A1
20030097173 Dutta May 2003 A1
20030099712 Jayaraman May 2003 A1
20030105518 Dutta Jun 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030150380 Yoe Aug 2003 A1
20030157241 Hossainy et al. Aug 2003 A1
20030158517 Kokish Aug 2003 A1
20030175411 Kodas et al. Sep 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030207020 Villareal Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20040018296 Castro et al. Jan 2004 A1
20040029952 Chen et al. Feb 2004 A1
20040047978 Hossainy et al. Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052858 Wu et al. Mar 2004 A1
20040052859 Wu et al. Mar 2004 A1
20040054104 Pacetti Mar 2004 A1
20040060508 Pacetti et al. Apr 2004 A1
20040062853 Pacetti et al. Apr 2004 A1
20040063805 Pacetti et al. Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040072922 Hossainy et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040086542 Hossainy et al. May 2004 A1
20040086550 Roorda et al. May 2004 A1
20040096504 Michal May 2004 A1
20040098117 Hossainy et al. May 2004 A1
Foreign Referenced Citations (73)
Number Date Country
42 24 401 Jan 1994 DE
0 514 406 Nov 1992 EP
0 604 022 Jun 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 716 836 Jun 1996 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 023 879 Aug 2000 EP
1 192 957 Apr 2002 EP
1 273 314 Jan 2003 EP
2001-190687 Jul 2001 JP
872531 Oct 1981 SU
876663 Oct 1981 SU
905228 Feb 1982 SU
790725 Feb 1983 SU
1016314 May 1983 SU
811750 Sep 1983 SU
1293518 Feb 1987 SU
EP 0 301 856 Feb 1989 SU
EP 0 396 429 Nov 1990 SU
WO 9112846 Sep 1991 WO
WO 9409760 May 1994 WO
WO 9510989 Apr 1995 WO
WO 9524929 Sep 1995 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9808463 Mar 1998 WO
WO 9817331 Apr 1998 WO
WO 9832398 Jul 1998 WO
WO 9836784 Aug 1998 WO
WO 9901118 Jan 1999 WO
WO 9938546 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Apr 2000 WO
WO 0062830 Oct 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0151027 Jul 2001 WO
WO 0174414 Oct 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 02056790 Jul 2002 WO
WO 02058753 Aug 2002 WO
WO 02102283 Dec 2002 WO
WO 03000308 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
WO 03080147 Oct 2003 WO
WO 03082368 Oct 2003 WO
WO 04000383 Dec 2003 WO
WO 2004009145 Jan 2004 WO
Non-Patent Literature Citations (34)
Entry
Anonymous, Cardiologists Draw—Up the Dream Stent, Clinica 710:15 (Jun. 17, 1996), http://www.dialogweb.com/cgi/document?req=1061848202959, printed Aug. 25, 2003 (2 pages).
Anonymous, Heparin-coated stents cut complications by 30%, Clinica 732:17 (Nov. 18, 1996), http://www.dialogweb.com/cgi/document?req=1061847871753, printed Aug. 25, 2003 (2 pages).
Anonymous, Rolling Therapeutic Agent Loading Device for Therapeutic Agent Delivery or Coated Stent (Abstract 434009), Res. Disclos. pp. 974-975 (Jun. 2000).
Anonymous, Stenting continues to dominate cardiology, Clinica 720:22 (Sep. 2, 1996), http://www.dialogweb.com/cgi/document?req=1061848017752, printed Aug. 25, 2003 (2 pages).
Aoyagi et al., Preparation of cross-linked aliphatic polyester and application to thermo-responsive material, Journal of Controlled Release 32:87-96 (1994).
Barath et al., Low Dose of Antitumor Agents Prevents Smooth Muscle Cell Proliferation After Endothelial Injury, JACC 13(2): 252A (Abstract) (Feb. 1989).
Barbucci et al., Coating of commercially available materials with a new heparinizable material, J. Biomed. Mater. Res. 25:1259-1274 (Oct. 1991).
Chung et al., Inner core segment design for drug delivery control of thermo-responsive polymeric micelles, Journal of Controlled Release 65:93-103 (2000).
Dev et al., Kinetics of Drug Delivery to the Arterial Wall Via Polyurethane-Coated Removable Nitinol Stent: Comparative Study of Two Drugs, Catheterization and Cardiovascular Diagnosis 34:272-278 (1995).
Dichek et al., Seeding of Intravascular Stents with Genetically Engineered Endothelial Cells, Circ. 80(5):1347-1353 (Nov. 1989).
Eigler et al., Local Arterial Wall Drug Delivery from a Polymer Coated Removable Metallic Stent: Kinetics, Distribution, and Bioactivity of Forskolin, JACC, 4A (701-1), Abstract (Feb. 1994).
Forester et al., A Paradigm for Restenosis Based on Cell Biology: Clues for the Development of New Preventive Therapies; J. Am. Coll. Cardio. 1991; 17:758-769.
Helmus, Overview of Biomedical Materials, MRS Bulletin, pp. 33-38 (Sep. 1991).
Herdeg et al., Antiproliferative Stent Coatings: Taxol and Related Compounds, Semin. Intervent. Cardiol. 3:197-199 (1998).
Huang et al., Biodegradable Polymers Derived from Aminoacids, Macromol. Symp. 144, 7-32 (1999).
Inoue et al., An AB block copolymer of oligo(methyl methacrylate)and poly(acrylic acid)for micellar delivery of hydrophobic drugs, Journal of Controlled Release 51:221-229 (1998).
Kataoka et al., Block copolymer micelles as vehicles for drug delivery, Journal of Controlled Release 24:119-132 (1993).
Katsarava et al., Amino Acid-Based Bioanalogous Polymers. Synthesis and Study of Regular Poly(ester amide)s Based on Bis(α-amino acid)α,ω-Alkylene Diesters, and Aliphatic Dicarbolic Acids, Journal of Polymer Science, Part A: Polymer Chemistry, 37(4), 391-407 (1999).
Levy et al., Strategies for Treating Arterial Restenosis Using Polymeric Controlled Release Implants, Biotechnol. Bioact. Polym. [Proc. Am. Chem. Soc. Symp.], pp. 259-268 (1994).
Liu et al., Drug release characteristics of unimolecular polymeric micelles, Journal of Controlled Release 68:167-174 (2000).
Marconi et al., Covalent bonding of heparin to a vinyl copolymer for biomedical applications, Biomaterials 18(12):885-890 (1997).
Matsumaru et al., Embolic Materials for Endovascular Treatment of Cerebral Lesions, J. Biomater. Sci. Polymer Edn 8(7):555-569 (1997).
Miyazaki et al., Antitumor Effect of Implanted Ethylene-Vinyl Alcohol Copolymer Matrices Containing Anticancer Agents on Ehrlich Ascites Carcinoma and P388 Leukemia in Mice, Chem. Pharm. Bull. 33(6) 2490-2498 (1985).
Miyazawa et al., Effects of Pemirolast and Tranilast on Intimal Thickening After Arterial Injury in the Rat, J. Cardiovasc. Pharmacol., pp. 157-162 (1997).
Nordrehaug et al., A novel biocompatible coating applied to coronary stents, EPO Heart Journal 14, p. 321 (P1694), Abstr. Suppl. (1993).
Ohsawa et al., Preventive Effects of an Antiallergic Drug, Pemirolast Potassium, on Restenosis After Percutaneous Transluminal Coronary Angioplasty, American Heart Journal 136(6):1081-1087 (Dec. 1998).
Ozaki et al., New Stent Technologies, Progress in Cardiovascular Diseases, vol. XXXIX(2):129-140 (Sep./Oct. 1996).
Pechar et al., Poly(ethylene glycol) Multiblock Copolymer as a Carrier of Anti-Cancer Drug Doxorubicin, Bioconjucate Chemistry 11(2):131-139 (Mar./Apr. 2000).
Peng et al., Role of polymers in improving the results of stenting in coronary arteries, Biomaterials 17:685-694 (1996).
Saotome, et al., Novel Enzymatically Degradable Polymers Comprising α-Amino Acid, 1,2-Ethanediol, and Adipic Acid, Chemistry Letters, pp. 21-24, (1991).
Shigeno, Prevention of Cerebrovascular Spasm by Bosentan, Novel Endothelin Receptor, Chemical Abstract 125:212307 (1996).
van Beusekom et al., Coronary stent coatings, Coronary Artery Disease 5(7):590-596 (Jul. 1994).
Wilensky et al., Methods and Devices for Local Drug Delivery in Coronary and Peripheral Arteries, Trends Cardiovasc. Med. 3(5):163-170 (1993).
Yokoyama et al., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor, Journal of Controlled Release 50:79-92 (1998).
Continuation in Parts (1)
Number Date Country
Parent 09894293 Jun 2001 US
Child 11022228 US