Methods of dental wire attachment

Information

  • Patent Grant
  • 11992386
  • Patent Number
    11,992,386
  • Date Filed
    Tuesday, August 10, 2021
    3 years ago
  • Date Issued
    Tuesday, May 28, 2024
    7 months ago
Abstract
Methods of attaching a wire to a dentition. The methods may include placing a shell on the dentition, where first cavity of the shell includes an attachment material reservoir for receiving an attachment material, and second cavity of the shell includes a wire attachment member having a slot for receiving the wire. The methods may also include placing the wire through the attachment material reservoir and through the slot of the wire attachment member to hold the wire in position with respect to a tooth within the first cavity. The methods may further include placing the attachment material within the attachment material reservoir to bond the attachment material and the wire to the tooth. Once the shell and the wire attachment member are removed from the dentition, the wire remains attached to the tooth via the attachment material.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are incorporated herein by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


BACKGROUND

The present disclosure is related generally to the field of dental treatment. More particularly, the present disclosure is related to attachment of a dental wire within a patient's mouth.


Various dental procedures move or adjust the position of teeth within a patient's mouth. When teeth have been moved, for example, to correct a dental malocclusion, once the movement and/or positioning of the one or more teeth is finished, if preventive measures are not taken, the teeth can also move to reproduce the original condition, to some intermediate position between the initial position and the final position attained after the procedures, or to a position that is not part of the treatment.


In such instances, a retainer can be used to prevent the adverse movement of the one or more teeth. The goal of the retainer is to stabilize the new configuration of the teeth so that the teeth do not move to one of the above incorrect positions.


Retention is useful because the bone around the teeth have to rebuild around the new position of the teeth in order to stabilize the teeth. Retention can be accomplished by use of a retainer that holds the teeth in position for a duration of time to allow for the periodontal ligaments and bone to reform around the new positions of the teeth.


In some instances, the periodontal ligaments and bone can, for example, need a number of years for stabilization. In order to provide such long term retention, a fixed retainer is often utilized where two ends of a metallic wire are attached between two teeth and the wire acts to keep the two teeth positioned with respect to each other. Additionally, the wire also can keep teeth in position that are positioned between two teeth at which the two ends of the wire are attached.


The attachment is often accomplished through the mounting of a band around each tooth and the ends of a wire attached to the bands or through the bonding of the ends of the wire to the teeth. These types of attachment methods are performed by the treatment professional and the retainers are shaped by the treatment professional just prior to attachment to the patient's teeth.


Accordingly, in some instances this can lead to imprecise positioning, poor adjustment prior to attachment, and other such problems. These processes can be difficult to perform and can also require special knowledge by the treatment professional to perform and/or specialized materials to implement.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 illustrates a virtual model of attachment of a wire according to an embodiment of the present disclosure.



FIG. 2A illustrates a top view of a physical model utilized to form the appliance according to an embodiment of the present disclosure.



FIG. 2B illustrates an angled side perspective view of a physical model utilized to form the appliance according to an embodiment of the present disclosure.



FIG. 3A illustrates a top view of an appliance according to an embodiment of the present disclosure.



FIG. 3B is a top view illustrating the appliance cavities of an appliance positioned over a patient's teeth according to an embodiment of the present disclosure.



FIG. 4 illustrates a side cut away view taken along line 4-4 of the appliance of FIG. 3B.



FIG. 5 illustrates a side cut away view taken along line 5-5 of the appliance of FIG. 3B.



FIG. 6 illustrates a side cut away view taken along line 6-6 of the appliance of FIG. 3B.



FIG. 7 illustrates a side cut away view taken along line 7-7 of the appliance of FIG. 3B.



FIG. 8 is a top view illustrating an appliance positioned over a jaw of a patient and having a number of tabs formed thereon according to an embodiment of the present disclosure.



FIG. 9 illustrates a method embodiment of forming a wire attachment appliance according to the present disclosure.



FIG. 10 illustrates another method embodiment of attaching a wire according to the present disclosure.





DETAILED DESCRIPTION

Methods and devices for attachment of a wire for a dental retainer are disclosed. For example, one such embodiment of a wire attachment appliance includes a shell having one or more cavities formed therein and shaped to receive one or more teeth.


The embodiment also includes at least two wire attachment members provided on the shell, and at least one attachment material reservoir provided on the shell. In such embodiments, the attachment material is provided to attach a wire to a tooth adjacent to a particular reservoir of the at least one attachment material reservoirs.


In some instances, it may be beneficial to utilize information about the patient's teeth before creating the wire attachment appliance. For example, data about the patient's teeth can be utilized to create a virtual model of some of all of the teeth of the patient.


The virtual model can be created on a computing device through use of a processor, memory, and a number of executable instructions utilized to create the virtual model and display the model on a display device. In such embodiments, this virtual model can be used, for example, to understand how the wire attachment appliance is going to work, how it is going to fit, where it is going to be positioned, and/or other beneficial functions.



FIG. 1 illustrates a virtual model of an attachment for a wire according to an embodiment of the present disclosure. In the embodiment illustrated in FIG. 1, a virtual model 100 displays a patient's mouth that is modeled illustrating a number of teeth 102 therein and their orientation with respect to each other.


Such a virtual model can be used to establish the position of the wire on the teeth and can be used to design the attachment components in order to attach the wire to the teeth that are to be retained. For example, in the embodiment illustrated in FIG. 1, a wire 106 is provided in the virtual model 100.


The wire 106 is attached to the teeth by a wire attachment member 104 positioned on each end. It should be noted that more or less attachment members can be utilized and that the attachment members may be positioned on teeth other than those illustrated. Further, any suitable type of wire can be utilized, such as metallic, composite, or polymer wires (e.g., single or multiple strands).


Also illustrated in the embodiment shown in FIG. 1 are a number of attachment members 108 for attachment of the wire 106 to the teeth. The formation of the attachment members is discussed in more detail below.



FIG. 2A illustrates a physical model with having a number of shapes used to form a number of reservoirs to form the attachment members therein. In some embodiments, the physical model can also include a wire or a shape that is designed to fit over the wire or portions thereof. In addition to aiding in the formation of the appliance, a physical model can be beneficial, for example, to understand how the wire attachment appliance is going to work, how it is going to fit, where it is going to be positioned, and/or other beneficial functions.


As discussed above, the physical model can be used in the fabrication of the wire attachment appliance. In some such embodiments, the wire attachment members are attached to the teeth of the physical model before removal and placement in the patient's mouth. In embodiments, such as that shown in FIGS. 2A and 2B, the physical model 201 includes physical model portions 203 that provide a number of shapes used to form a number of reservoirs to form the attachment members therein and shapes 205 used to form a shape that is designed to fit over the wire or portions thereof.


The physical model can be made from any suitable material. For example, a suitable material can be a material used to form the model through a rapid prototyping technique (e.g., additive manufacturing process), such as by a stereo lithography process, photo lithography process, fused deposition modeling, selective laser sintering, or other such process, among other suitable materials.


Further, the attachment of the wire attachment members can be accomplished in any suitable manner. For example, adhesives, resins, and other suitable materials can be used. In some embodiments, the wire attachment members can be releasably attached (e.g., through use of a releasable adhesive or resin) and, therefore, can be removed for placement in the patient.


In some embodiments, it may be possible to separate the attachment members in another manner and, therefore, a non-releasable attachment type can be formed. For instance, the bond of the adhesive or resin can be broken to remove the attachment members, in some embodiments.


In the embodiment of FIGS. 2A and 2B, the physical model does not include the actual attachment members, but rather includes portions of the physical model used to form the spaces that will be used to position the actual attachment members. In such embodiments, once the appliance is formed and removed from the physical model, the attachment members can be positioned therein.



FIG. 3A illustrates a top view of an appliance according to an embodiment of the present disclosure. As illustrated in FIGS. 2A and 2B, the appliance 323 can be formed over the physical model of the patient's teeth (e.g., model 201 of FIGS. 2A and 2B).


This can be accomplished, for example, after the wire attachment members and/or the wire have been affixed to the physical model or the physical model is formed having the above discussed reservoir and wire shapes. In such embodiments, for example, a polymeric sheet could be placed over the physical model and then cured to create the appliance 323 having portions forming the reservoirs 325 and 327 and wire accommodating structures 315.


Providing such an appliance could also be accomplished in other manners, such as during a rapid prototyping process. In various embodiments, the appliance can be formed from a rapid prototyping material as discussed above or other suitable manufacturing material, such as polymers, composites, metallic materials, and the like.


As illustrated in FIG. 3A, once formed, the wire can be attached to the wire attachment members after the appliance is formed. For instance, this could be the case when rapid prototyping is used to form the appliance or when a physical model is used that does not utilize the actual attachment members and/or wire.


This attachment can be accomplished during fabrication or by a treatment professional before installation into the patient's mouth, in some embodiments. In various embodiments, the attachment blocks may also be positioned in the appliance by a treatment professional.


In some embodiments, the appliance can be formed independently from the physical model, for example, through some types of rapid prototyping. In some such embodiments the wire attachment members can be attached to the appliance without use of a physical model.


When a physical model is utilized, the wire attachment members can be affixed to the appliance during the formation of the appliance. This can be, for example, via a physical or chemical affixation mechanism and can be releasable, such as by photo resist or chemical resist, in some embodiments, as discussed above. This can be beneficial in some instances, for example, to aid in checking the positioning of the actual wire and attachment members on the physical model. However, in some instances, the virtual modeling can provide such functionality before the physical model is formed.



FIG. 3B is a top view illustrating the appliance cavities of an appliance positioned over a patient's teeth according to an embodiment of the present disclosure. The appliance 323, of FIG. 3B, is positioned over a number of teeth (e.g., teeth 312 and 325) and contains a number of spaces for the placement of wire attachment members 314 therein. These wire attachment members are used to position the wire 316 with respect to the patient's teeth in preparation for further securement to the patient's teeth with attachment members formed by the insertion of attachment material in the number of reservoirs 327. As will be described below, the attachment material can be provided to further secure the wire to the teeth of the patient (e.g., the teeth of the patient in which the physical model teeth 312 and 325 were modeled after).



FIG. 4 illustrates a side cut away view taken along line 4-4 of the appliance of FIG. 3B. In the embodiment illustrated in FIG. 4, a wire attachment member 414 (e.g., 314 from FIG. 3) is attached to the tooth 422 via an attachment agent 415 (e.g., adhesive, resin, etc.).


In some such embodiments, the attachment member 414 can also be attached to the appliance 423. The appliance may also be formed such that the attachment member is held in place by the appliance material that is formed around the attachment member.


As illustrated in the embodiment of FIG. 4, a portion of the wire 416 can be provided within the wire attachment member 414 provided in the shell of the appliance 423, such that the wire attachment member 414 can be used to hold the wire 416 in position with respect to the teeth of the patient (e.g., the teeth of the patient in which the physical model teeth 422 were modeled after). The positioning of the wire can be accomplished during or after the fabrication on the shell, as will be discussed below.


As discussed above, in some embodiments, the wire attachment members 414 can be affixed to the teeth 422 in various manners. In the embodiment of FIG. 4, a releasable adhesive 415 is used. In such embodiments, once the adhesive is released or is broken, the appliance 423 with wire attachment members 414 and, in some cases, wire 416, can be removed from the mouth of the patient.



FIG. 5 illustrates a side cut away view taken along line 5-5 of the appliance of FIG. 3B. In the embodiment of FIG. 5, the appliance 523 includes an attachment material reservoir 527. In some such embodiments as is illustrated in FIG. 5, the attachment reservoir 527 allows for a portion of the wire 516 to be positioned through the attachment reservoir 527.


This can be accomplished, for example, by placing a slit in the each side of the reservoirs that is sized to allow the wire to be slid through the slit. Accordingly, in some embodiments, the wire 516 may be positioned in the appliance 523 after the appliance is formed. One such example slit configuration is discussed with respect to FIG. 6.


In the embodiment of FIG. 5, the reservoir 527 also includes one or more apertures (e.g., 528 and/or 530) formed therein. These apertures can be used, for example, for the placement of a needle tip or other applicator therein for the purpose of providing the attachment material to the reservoir 527.


In some embodiments, one or more apertures can also be used as vents to allow air to exit the appliance as the attachment material is introduced into the reservoir 527. In some embodiments, these apertures can be formed by the treatment profession, for example, by a needle tip or other applicator or cutting device.



FIG. 6 illustrates a side cut away view taken along line 6-6 of the appliance of FIG. 3B. In FIG. 6, the reservoir (e.g., reservoir 527 of FIG. 5) includes a slit 632 in each side of the reservoir, as described above, to allow appliance 623 to be lifted over the wire 616 once the attachment material has been positioned within the reservoir and is solid enough to maintain its shape and adhere to the tooth 625 without the shell of the reservoir positioned to contain the attachment material.



FIG. 7 illustrates a side cut away view taken along line 7-7 of the appliance of FIG. 3B. The illustration of FIG. 7 similarly shows that the shell is formed such that the appliance 723 can be lifted over the wire 716 to remove the appliance from the teeth 725 and leaving the wire in place. In some embodiments, the appliance may have a slit cut into the surface of the appliance to allow the wire to pass through the appliance as it is lifted off.


Accordingly, in some embodiments, a wire attachment appliance, can include a shell having one or more cavities formed therein and shaped to receive one or more teeth, at least two wire attachment members provided on the shell, and at least one attachment material reservoir provided on the shell, wherein the attachment material is provided to attach a wire to a tooth adjacent to a particular reservoir of the at least one attachment material reservoirs.


In some such embodiments, the appliance includes a wire having portions of the wire positioned in the wire attachment members and having other portions of the wire positioned within the one or more attachment material reservoirs.


In the illustrated embodiments of FIGS. 3A-8, the cavities formed around the teeth are illustrated to extend around the entire circumference of the tooth and presumed to cover each tooth on each side from top of the tooth to at least the gum line. However, the embodiments of the present disclosure should not be limited to such shapes.


In some embodiments, the cavity may be formed by a ring of material formed to fit around a tooth where the top of the tooth is not covered by shell material. In some embodiments, at least one of the one or more cavities is formed including at least one side surface and wherein the at least one side surface includes a portion that is shaped to abut an exterior surface of one of the one or more teeth. Further, in some embodiments, at least one of the cavities covers a top and portions of each of a number of side surfaces of one of the one or more teeth, as illustrated in the embodiments of FIGS. 3A-8.


In some embodiments, the shell and the wire attachment members and/or the one or more attachment material reservoirs can be provided as a unitary body. This can be accomplished, for example, by forming the shell and wire attachment members together or by forming the shell around the wire attachment members, or embedding the wire attachment members in the shell material.


As discussed herein, the wire can be provided by any suitable material. For example, a wire can be a metallic wire, can be another wire type, such as multiple wire strands woven together, or can be from another material such as a polymer or composite material. As discussed above, in some embodiments, at least one of the attachment material reservoirs can include an aperture for the placement of a material dispenser therein.


In some embodiments, the shell, or portions thereof, can be constructed from a transparent material. This can be beneficial, for example, where a treatment profession may be able to see the positioning of the wire and/or the curing state of a curable attachment material provided to one or more of the reservoirs. This can be particularly beneficial in embodiments where the wire is positioned on the lingual side of the teeth, since it can be difficult to for the treatment professional to see in that area of the mouth of the patient, among other areas of the mouth.



FIG. 8 is a top view illustrating an appliance positioned over a jaw of a patient and having a number of tabs formed thereon according to an embodiment of the present disclosure. In such embodiments, the tabs can be beneficial, for example, to help a treatment professional lift the appliance 823 over the wire attachment members 814, the wire 816, and the attachment members 827 once formed and off teeth 812 and 825. In such embodiments, a portion or all of the appliance can be fabricated from transparent materials to aid the treatment professional in viewing some areas of the mouth.



FIG. 9 illustrates a method embodiment of forming a wire attachment appliance according to the present disclosure. In the embodiment of FIG. 9, the method includes providing at least two wire attachment members on the shell, at block 940. At block 942, the method includes forming a shell having a plurality of cavities shaped to receive a number of teeth of a patient and having at least one attachment material reservoir on the shell.


In some embodiments, each particular attachment material reservoir can be positioned such that when an attachment material is provided the reservoir, the attachment material can contact a surface of a tooth adjacent to the particular reservoir. This arrangement can be used to attach a wire to the tooth adjacent to the particular reservoir.


In some embodiments, a method can include forming a virtual model of one or more of the number of teeth, as described above. In various embodiments, a method can include creating a physical model based upon the virtual model.


In such embodiments, the method can include attaching the wire attachment members to the physical model. A method can include applying shell formation material over at least a portion of the physical model and the wire attachment members to form the shell having the wire attachment members provided on the shell.



FIG. 10 illustrates another method embodiment of attaching a wire according to the present disclosure. In the embodiment of FIG. 10, the method includes placing a number of portions of a wire into a corresponding number of wire attachment members provided on a shell having a plurality of cavities shaped to receive one or more teeth and having at least one attachment material reservoirs provided on the shell, and wherein portions of the wire are positioned within the at least one attachment material reservoirs, at block 1050. At block 1052, the method includes, placing the plurality of cavities onto one or more teeth.


The method embodiment of FIG. 10 also includes, providing attachment material to at least one of the at least one attachment material reservoirs to attach the wire to a tooth adjacent to the at least one reservoirs to which attachment material has been provided, at block 1054. At block 1056, the method includes removing the shell by removing the plurality of cavities from over the one or more teeth.


In such embodiments, removing the shell can, for example, include removing the shell and the number of wire attachment members provided on the shell by removing the plurality of cavities from over the one or more teeth. Removing the shell can include lifting one or more tabs to remove the plurality of cavities from over the one or more teeth.


In some embodiments, providing attachment material can include providing a curable composite material to at least one of the number of attachment material reservoirs. Providing curable composite material can, for example, include providing a light curable composite material.


The curable composite material can be a flowable curable composite material. This can be beneficial in, for example, filling the reservoirs to create the attachment member. Moldable materials may also be useful in some embodiment. Some suitable materials can be both flowable and moldable and such characteristics typically depend upon the viscosity of the material.


In some embodiments, a curable composite material can be used to attach the wire to the tooth adjacent to the at least one reservoirs to which attachment material has been provided.


As will further be appreciated by one of ordinary skill in the relevant art, various features are grouped together in the description of the present disclosure in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each of the following claims. Rather, as the claim recitations reflect, inventive subject matter lies in less than all features of a single disclosed embodiment.


Hence, predetermining a treatment plan with a virtual model as described in the present disclosure may be a recommended and claimed methodology, however, just forming and/or using an appliance as described in the disclosure and as recited in the following claims is intended as novel subject matter to be protected. For example, novel subject matter as described in the present disclosure can be included in a portion of an appliance, rather than the whole appliance, and remain consistent with the teachings of the present disclosure.


Unless explicitly stated, the method embodiments described herein are not constrained to a particular order or sequence. Additionally, some of the described method embodiments, or elements thereof, can occur or be performed at the same, or at least substantially the same, point in time.


Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.


It is to be understood that the use of the terms “a”, “an”, “one or more”, “a number of”, or “at least one” are all to be interpreted as meaning one or more of an item is present. Additionally, it is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.


The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.


In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.


Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A method of attaching a wire to a patient's dentition, the method comprising: placing a shell with cavities shaped to receive corresponding teeth on the patient's dentition, wherein a first cavity of the shell includes an attachment material reservoir for receiving an attachment material, wherein a second cavity of the shell includes a wire attachment member having a slot for receiving the wire, the wire attachment member coupled to the shell in the second cavity;placing the wire through the attachment material reservoir and the wire attachment member, wherein the wire is positioned through the slot and in contact with the wire attachment member to hold the wire in position with respect to a tooth of the patient's dentition within the first cavity;placing the attachment material within the attachment material reservoir having the wire placed therethrough to bond the attachment material and the wire to the tooth; andremoving the shell and the wire attachment member from the patient's dentition, thereby leaving the wire attached to the tooth via the attachment material.
  • 2. The method of claim 1, wherein placing the wire through the attachment material reservoir includes positioning the wire through slits on laterally opposing sides of the attachment material reservoir.
  • 3. The method of claim 1, wherein removing the shell and the wire attachment member from the patient's dentition includes using a tab connected to the shell to remove the shell from the patient's dentition.
  • 4. The method of claim 1, wherein placing the attachment material within the attachment material reservoir includes using an applicator to provide the attachment material through one or more apertures in a wall of the attachment material reservoir.
  • 5. The method of claim 1, wherein the slot is on a tooth-facing surface of the wire attachment member.
  • 6. The method of claim 1, wherein the second cavity is placed over a second tooth, wherein a portion of the slot proximal to the second tooth is wider than a portion of the slot distal to the second tooth.
  • 7. The method of claim 1, further comprising affixing the wire attachment member to the tooth via a releasable adhesive.
  • 8. A method of attaching a wire to a patient's dentition, the method comprising: placing a shell on the patient's dentition, wherein a first cavity of the shell is positioned over a first tooth, and a second cavity of the shell is positioned over a second tooth, wherein the first cavity of the shell includes an attachment material reservoir, and the second cavity includes a wire attachment member having a slot, the wire attachment member coupled to the shell in the second cavity;positioning the wire through the attachment material reservoir and the slot of the wire attachment member, wherein the wire is positioned in contact with the wire attachment member to hold the wire in position with respect to the first tooth;bonding an attachment material within the attachment material reservoir to the first tooth, thereby bonding the wire to the first tooth; andremoving the shell and the wire attachment member from the patient's dentition, thereby leaving the wire attached to the first tooth via the attachment material.
  • 9. The method of claim 8, wherein a third cavity of the shell is positioned over a third tooth, the third cavity including a second wire attachment member.
  • 10. The method of claim 9, further comprising positioning the wire through a second slot of the second wire attachment member.
  • 11. The method of claim 9, wherein the first tooth is between the second tooth and the third tooth along the patient's dental arch.
  • 12. The method of claim 8, further comprising positioning the wire through slits on laterally opposing sides of the attachment material reservoir.
  • 13. The method of claim 8, wherein removing the shell and the wire attachment member from the patient's dentition includes using a tab connected to the shell to remove the shell from the patient's dentition.
  • 14. The method of claim 8, wherein placing the attachment material within the attachment material reservoir includes using an applicator to provide the attachment material through one or more apertures in a wall of the attachment material reservoir.
  • 15. The method of claim 8, wherein the slot is on a tooth-facing surface of the wire attachment member.
  • 16. A method of attaching a wire to a patient's dentition, the method comprising: placing a shell on the patient's dentition such that an attachment material reservoir is positioned adjacent to a first tooth and a wire attachment member is positioned adjacent to a second tooth, the wire attachment member coupled to the shell in a cavity of the shell, wherein a tooth-facing surface of the wire attachment member includes a slot;sliding the wire through the attachment material reservoir and through the slot of the wire attachment member, wherein the wire attachment member is in contact with and holds the wire in position with respect to the first tooth;bonding an attachment material within the attachment material reservoir to the first tooth, thereby bonding the wire to the first tooth; andremoving the shell and the wire attachment member from the patient's dentition, thereby leaving the wire attached to the first tooth via the attachment material.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 16/235,490, filed on Dec. 28, 2018, titled “DENTAL WIRE ATTACHMENT,” now U.S. Pat. No. 11,083,545, which is a continuation of U.S. patent application Ser. No. 15/063,062, filed on Mar. 7, 2016, titled “DENTAL WIRE ATTACHMENT,” now U.S. Pat. No. 10,172,693, which is a continuation of U.S. patent application Ser. No. 13/658,482, filed on Oct. 23, 2012, titled “DENTAL WIRE ATTACHMENT,” now U.S. Pat. No. 9,277,972, which is a continuation of U.S. patent application Ser. No. 12/407,072, filed on Mar. 19, 2009, titled “DENTAL WIRE ATTACHMENT,” now U.S. Pat. No. 8,292,617, each of which is herein incorporated by reference in its entirety.

US Referenced Citations (128)
Number Name Date Kind
5114339 Guis May 1992 A
5820368 Wolk Oct 1998 A
6386864 Kuo May 2002 B1
6454565 Phan et al. Sep 2002 B2
6783604 Tricca Aug 2004 B2
6790035 Tricca et al. Sep 2004 B2
6947038 Anh et al. Sep 2005 B1
7074039 Kopelman et al. Jul 2006 B2
7104792 Taub et al. Sep 2006 B2
7160107 Kopelman et al. Jan 2007 B2
7347688 Kopelman et al. Mar 2008 B2
7448514 Wen Nov 2008 B2
7481121 Cao Jan 2009 B1
7600999 Knopp Oct 2009 B2
7658610 Knopp Feb 2010 B2
7766658 Tricca et al. Aug 2010 B2
7771195 Knopp et al. Aug 2010 B2
7871269 Wu et al. Jan 2011 B2
7883334 Li et al. Feb 2011 B2
7914283 Kuo Mar 2011 B2
8235715 Kuo Aug 2012 B2
8337199 Wen Dec 2012 B2
8401686 Moss et al. Mar 2013 B2
8562337 Kuo et al. Oct 2013 B2
8641414 Borovinskih et al. Feb 2014 B2
8684729 Wen Apr 2014 B2
8708697 Li et al. Apr 2014 B2
8758009 Chen et al. Jun 2014 B2
8899977 Cao et al. Dec 2014 B2
8936464 Kopelman Jan 2015 B2
9022781 Kuo et al. May 2015 B2
9119691 Namiranian et al. Sep 2015 B2
9161823 Morton et al. Oct 2015 B2
9326831 Cheang May 2016 B2
9433476 Khardekar et al. Sep 2016 B2
9610141 Kopelman et al. Apr 2017 B2
9655691 Li et al. May 2017 B2
9700385 Webber Jul 2017 B2
9744001 Choi et al. Aug 2017 B2
9844424 Wu et al. Dec 2017 B2
10045835 Boronkay et al. Aug 2018 B2
10111730 Webber et al. Oct 2018 B2
10150244 Sato et al. Dec 2018 B2
10201409 Mason et al. Feb 2019 B2
10213277 Webber et al. Feb 2019 B2
10299894 Tanugula et al. May 2019 B2
10363116 Boronkay Jul 2019 B2
10383705 Shanjani et al. Aug 2019 B2
D865180 Bauer et al. Oct 2019 S
10449016 Kimura et al. Oct 2019 B2
10463452 Matov et al. Nov 2019 B2
10470847 Shanjani et al. Nov 2019 B2
10492888 Chen et al. Dec 2019 B2
10517701 Boronkay Dec 2019 B2
10537406 Wu et al. Jan 2020 B2
10537463 Kopelman Jan 2020 B2
10548700 Fernie Feb 2020 B2
10555792 Kopelman et al. Feb 2020 B2
10588776 Cam et al. Mar 2020 B2
10613515 Cramer et al. Apr 2020 B2
10639134 Shanjani et al. May 2020 B2
10743964 Wu et al. Aug 2020 B2
10758323 Kopelman Sep 2020 B2
10781274 Liska et al. Sep 2020 B2
10813720 Grove et al. Oct 2020 B2
10874483 Boronkay Dec 2020 B2
10881487 Cam et al. Jan 2021 B2
10912629 Tanugula et al. Feb 2021 B2
10959810 Li et al. Mar 2021 B2
10993783 Wu et al. May 2021 B2
11026768 Moss et al. Jun 2021 B2
11026831 Kuo Jun 2021 B2
11045282 Kopelman et al. Jun 2021 B2
11045283 Riley et al. Jun 2021 B2
11103330 Webber et al. Aug 2021 B2
11123156 Cam et al. Sep 2021 B2
11154382 Kopelman et al. Oct 2021 B2
11166788 Webber Nov 2021 B2
11174338 Robert et al. Nov 2021 B2
11219506 Shanjani et al. Jan 2022 B2
20040166462 Phan et al. Aug 2004 A1
20050014105 Abolfathi et al. Jan 2005 A1
20050244768 Taub et al. Nov 2005 A1
20060019218 Kuo Jan 2006 A1
20060078841 Desimone et al. Apr 2006 A1
20060115782 Li et al. Jun 2006 A1
20060199142 Liu et al. Sep 2006 A1
20080118882 Su May 2008 A1
20080160473 Li et al. Jul 2008 A1
20080286716 Sherwood Nov 2008 A1
20080286717 Sherwood Nov 2008 A1
20090280450 Kuo Nov 2009 A1
20100055635 Kakavand Mar 2010 A1
20100129763 Kuo May 2010 A1
20110269092 Kuo et al. Nov 2011 A1
20140067334 Kuo Mar 2014 A1
20150265376 Kopelman Sep 2015 A1
20150366638 Kopelman et al. Dec 2015 A1
20160193014 Morton et al. Jul 2016 A1
20160242870 Matov et al. Aug 2016 A1
20160242871 Morton et al. Aug 2016 A1
20170007359 Kopelman et al. Jan 2017 A1
20170007360 Kopelman et al. Jan 2017 A1
20170007361 Allen et al. Jan 2017 A1
20170007386 Mason et al. Jan 2017 A1
20190000592 Cam et al. Jan 2019 A1
20190000593 Bruce et al. Jan 2019 A1
20190029775 John et al. Jan 2019 A1
20190125497 Mitra et al. May 2019 A1
20190152152 O'Leary et al. May 2019 A1
20190175304 Morton et al. Jun 2019 A1
20190262101 Yaser et al. Aug 2019 A1
20190298494 Webber et al. Oct 2019 A1
20190314119 Kopelman et al. Oct 2019 A1
20190343606 Wu et al. Nov 2019 A1
20200000553 Svetlana et al. Jan 2020 A1
20200086553 Mojdeh et al. Mar 2020 A1
20200100864 Yuxiang et al. Apr 2020 A1
20200100865 Yuxiang et al. Apr 2020 A1
20200100866 Viktoria et al. Apr 2020 A1
20200100871 Yuxiang et al. Apr 2020 A1
20200155276 Bruce et al. May 2020 A1
20200188062 Avi et al. Jun 2020 A1
20200214598 Huizhong et al. Jul 2020 A1
20200214801 Yuxiang et al. Jul 2020 A1
20200390523 Sato et al. Dec 2020 A1
20210078357 Venkatasanthanam et al. Mar 2021 A1
20210147672 Cole et al. May 2021 A1
Related Publications (1)
Number Date Country
20210361391 A1 Nov 2021 US
Divisions (1)
Number Date Country
Parent 16235490 Dec 2018 US
Child 17444790 US
Continuations (3)
Number Date Country
Parent 15063062 Mar 2016 US
Child 16235490 US
Parent 13658482 Oct 2012 US
Child 15063062 US
Parent 12407072 Mar 2009 US
Child 13658482 US