Methods of Determining the Risk of Developing Coronary Artery Disease

Information

  • Patent Application
  • 20090226420
  • Publication Number
    20090226420
  • Date Filed
    November 10, 2006
    18 years ago
  • Date Published
    September 10, 2009
    15 years ago
Abstract
The invention relates to predicting, or aiding in predicting, which individuals are at risk of developing coronary artery disease. The invention provides a method for identifying an individual who has an altered risk for developing CAD. The invention further relates to methods of reducing the likelihood that a subject will develop CAD. The invention further provides reagents, nucleic acids and kits comprising nucleic acids containing a polymorphism in a CAD-determinative gene.
Description
FIELD OF THE INVENTION

The present invention is in the field of vascular disease diagnosis and therapy. In particular, the present invention relates to specific single nucleotide polymorphisms (SNPs) in the human genome, and their association with vascular disease and related pathologies, in particular, coronary artery disease (CAD) such as coronary stenosis.


BACKGROUND OF THE INVENTION

Cardiovascular disorders are a cause of significant morbidity and mortality in the United States. Among the more common cardiovascular disorders are coronary artery diseases (CADs). CADs, sometimes designated coronary heart diseases or ischemic heart diseases, are characterized by insufficiency in blood supply to cardiac muscle. CADs can be manifested as acute cardiac ischemia (e.g., angina pectoris or myocardial infarction) or chronic cardiac ischemia (e.g., coronary arteriosclerosis or coronary atherosclerosis). CADs are a common cause of cardiac failure, cardiac arrhythmias, and sudden death. In patients afflicted with CADs, the cardiac muscle is not sufficiently supplied with oxygen. Severe cardiac ischemia can be manifested as severe pain or cardiac damage. Less severe ischemia can damage cardiac muscle and cause changes to cardiac tissues over the long term that impair cardiac function.


Many disorders, including CADs, develop over time and could be delayed, inhibited, lessened in severity, or prevented altogether by making lifestyle changes or through pharmaceutical treatment. For cardiovascular disorders such as CAD, such changes include increasing exercise, adjusting diet, consuming nutritional or pharmaceutical products known to be effective against cardiovascular disorders, and undergoing heightened medical monitoring. These changes are often not made, due to the expense or inconvenience of the changes to an individual and on her subjective belief that she is not at high risk for cardiovascular disorders. Improved monitoring of cardiovascular health can help to identify individuals at risk for developing cardiovascular disorders, including CAD, and permit for more informed decisions as to whether lifestyle changes are justified.


One way to identify subjects at high risk for developing CAD is by identifying genetic elements that predispose an individual to develop CAD. Polymorphisms conferring higher risks to non-cardiovascular diseases have been identified which aid in their diagnosis. Apolipoprotein E genetic screening aids in identifying genetic carriers of the apoE4 polymorphism in dementia patients for the differential diagnosis of Alzheimer's disease. Factor V Leiden polymorphisms signals a predisposition to deep venous thrombosis. The identification of polymorphisms in disease-associated genes also aids in designing an effective treatment plan for the disorder. For example, in the treatment of cancer, diagnosis of genetic variants in tumor cells is used for the selection of the most appropriate treatment regimen for the individual patient. In breast cancer, genetic variation in estrogen receptor expression or heregulin type 2 (Her2) receptor tyrosine kinase expression determine if anti-estrogenic drugs (e.g. tamoxifen) or anti-Her2 antibody (e.g. Herceptin) will be incorporated into the treatment plan. In chronic myeloid leukemia (CML) diagnosis of the Philadelphia chromosome genetic translocation fusing the genes encoding the Bcr and Abl receptor tyrosine kinases indicates that Gleevec (ST1571), a specific inhibitor of the Bcr-Abl kinase should be used for treatment of the cancer. For CML patients with such a genetic alteration, inhibition of the Bcr-Abl kinase leads to rapid elimination of the tumor cells and remission from leukemia.


Therefore, a need remains for the identification of genomic polymorphisms that predispose an individual to develop cardiovascular diseases such as CAD and that aid in their treatment. The invention provides such CAD-determinative genes and polymorphisms, and related assays, satisfying this need.


SUMMARY OF THE INVENTION

The invention broadly relates to estimating, and aiding to estimate, the likelihood that a subject will be afflicted with cardiovascular disease, and to identifying subjects with an elevated risk of developing cardiovascular disease and to related kits and reagents. In one embodiment, the cardiovascular disease is coronary artery disease (CAD). The invention also relates, in part, to methods and reagents for identifying, or aiding in the identification of, subjects at high risk of developing CAD or other cardiovascular diseases.


Another aspect of the invention provides a method for identifying an individual who has an altered risk for developing CAD, comprising detecting the presence of a single nucleotide polymorphism (SNP) in said individual's nucleic acids, wherein the presence of the SNP is correlated with an altered risk for coronary stenosis in said individual. In one embodiment, the SNP is selected from SNPs set forth in Tables 1-5. In one embodiment, the SNP is represented by a SEQ ID NOs: selected from 1-575. In one embodiment, the altered risk is an increased risk. In one embodiment, the detection is carried out by a process selected from the group consisting of: allele-specific probe hybridization, allele-specific primer extension, allele-specific amplification, sequencing, 5′ nuclease digestion, molecular beacon assay, oligonucleotide ligation assay, size analysis, and single-stranded conformation polymorphism.


Assessments of genomic polymorphism content in two or more of the CAD-determinative genes can be combined to determine the risk of a subject in developing cardiovascular disease. This assessment of cardiovascular health can be used to predict the likelihood that the human will develop CAD or other cardiovascular disorders such as myocardial infarction and hypertension. Identification of high-risk subjects allows for the early intervention to prevent, delay, or ameliorate the onset of cardiovascular disease.


Another aspect of the invention provides an isolated nucleic acid molecule comprising at least 10, 15, 20, 21 or more contiguous nucleotides, wherein one of the nucleotides is a single nucleotide polymorphism (SNP) selected from any one of the nucleotide sequences in SEQ ID NOS: 1-575, or a complement thereof.


One aspect of the present invention relates to an isolated nucleic acid molecule comprising a nucleotide sequence in which at least one nucleotide is a SNP disclosed in Tables 1-4. In an alternative embodiment, a nucleic acid of the invention is an amplified polynucleotide, which is produced by amplification of a SNP-containing nucleic acid template. In another embodiment, the invention provides for a variant protein which is encoded by a nucleic acid molecule containing a SNP disclosed herein. In yet another embodiment of the invention, a reagent for detecting a SNP in the context of its naturally-occurring flanking nucleotide sequences (which can be, e.g., either DNA or mRNA) is provided. In particular, such a reagent may be in the form of, for example, a hybridization probe or an amplification primer that is useful in the specific detection of a SNP of interest. In an alternative embodiment, a protein detection reagent is used to detect a variant protein which is encoded by a nucleic acid molecule containing a SNP disclosed herein. A preferred embodiment of a protein detection reagent is an antibody or an antigen-reactive antibody fragment.


Another aspect of the invention provides kits comprising SNP detection reagents, and methods for detecting the SNPs disclosed herein by employing detection reagents. In a specific embodiment, the present invention provides for a method of identifying an individual having an increased or decreased risk of developing coronary artery disease by detecting the presence or absence of one or more SNP alleles disclosed herein. In another embodiment, a method for diagnosis of coronary artery disease by detecting the presence or absence of one or more SNP alleles disclosed herein is provided.


The nucleic acid molecules of the invention can be inserted in an expression vector, such as to produce a variant protein in a host cell. Thus, the present invention also provides for a vector comprising a SNP-containing nucleic acid molecule, genetically-engineered host cells containing the vector, and methods for expressing a recombinant variant protein using such host cells. In another specific embodiment, the host cells, SNP-containing nucleic acid molecules, and/or variant proteins can be used as targets in a method for screening and identifying therapeutic agents or pharmaceutical compounds useful in the treatment of coronary artery disease.


Another aspect of the invention provides a method for treating coronary artery disease in a human subject wherein said human subject harbors a SNP, gene, transcript, and/or encoded protein identified in Tables 1-4, which method comprises administering to said human subject a therapeutically or prophylactically effective amount of one or more agents counteracting the effects of the disease, such as by inhibiting (or stimulating) the activity of the gene, transcript, and/or encoded protein identified in Tables 1-4.


Another aspect of this invention provides a method for treating coronary artery disease in a human subject, which method comprises: (i) determining that said human subject harbors a SNP, gene, transcript, and/or encoded protein identified in Tables 1-4, and (ii) administering to said subject a therapeutically or prophylactically effective amount of one or more agents counteracting the effects of the disease.


Another aspect of this invention provides a method for identifying an agent useful in therapeutically or prophylactically treating coronary artery disease in a human subject wherein said human subject harbors a SNP, gene, transcript, and/or encoded protein identified in Tables 1-2, which method comprises contacting the gene, transcript, or encoded protein with a candidate agent under conditions suitable to allow formation of a binding complex between the gene, transcript, or encoded protein and the candidate agent and detecting the formation of the binding complex, wherein the presence of the complex identifies said agent.


Another aspect of the invention provides a method for stratifying a patient population for treatment of coronary artery disease, wherein said population has an altered risk for developing coronary artery disease due to the presence of a single nucleotide polymorphism (SNP) in any one of the nucleotide sequences of SEQ ID NOS: 1-575 in an individual's nucleic acids from said population, comprising detecting the SNP, wherein the presence of the SNP is correlated with an altered risk for coronary artery disease in said individual thereby indicating said individual should receive treatment for coronary artery disease.


The methods of SNP genotyping provided by the invention are useful for numerous practical applications. Examples of such applications include, but are not limited to, disease predisposition screening, disease diagnosis, disease prognosis, disease progression monitoring, determining therapeutic strategies based on an individual's genotype (“pharmacogenomics”), developing therapeutic agents based on SNP genotypes associated with a disease or likelihood of responding to a drug, stratifying a patient population for clinical trial for a treatment regimen, predicting the likelihood that an individual will experience toxic side effects from a therapeutic agent, and human identification applications such as forensics.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows SNP selection algorithm for candidate genes from the association with human-disease components of the AGENDA study.



FIG. 2 shows a graphical representation of the largest negative Log (base 10) p-values for 1065 SNPs in 275 genes. This figure is in color.





DETAILED DESCRIPTION OF THE INVENTION
I. Overview

The invention provides, in part, novel methods of determining the risk that an individual will develop a cardiovascular disease. The invention also provides methods of identifying subjects having an elevated risk of developing a cardiovascular disease, such as CAD. The invention is based, in part, on the unexpected findings by applicants that polymorphisms in several genes are highly correlated with the susceptibility of the subject to develop CAD.


The methods and compositions described herein can be used in determining the susceptibility to prognosis of various forms of coronary artery disease. Moreover, the methods and compositions of the present invention can also be used to facilitate the prevention of cardiovascular disease in an individuals found to be at an elevated risk for developing the disease.


One aspect of the invention relates to specific single nucleotide polymorphisms (SNPs) in the human genome, and their association with vascular disease and related pathologies, in particular, coronary artery disease (CAD) such as coronary stenosis. Based on differences in allele frequencies in the vascular disease patient population relative to normal individuals, the naturally-occurring SNPs disclosed herein can be used as targets for the design of diagnostic reagents and the development of therapeutic agents, as well as for disease association and linkage analysis. In particular, the SNPs of the present invention are useful for identifying an individual who is at an increased or decreased risk of developing vascular disease and for early detection of the disease, for providing clinically important information for the prevention and/or treatment of vascular disease, and for screening and selecting therapeutic agents. The SNPs disclosed herein are also useful for human identification applications. Methods, assays, kits, and reagents for detecting the presence of these polymorphisms and their encoded products are provided.


The present invention provides novel SNPs associated with coronary artery disease, as well as some SNPs that were previously known in the art, but were not previously known to be associated with coronary stenosis. Accordingly, the present invention provides novel compositions and methods based on the novel SNPs disclosed herein, and also provides novel methods of using the known, but previously unassociated, SNPs in methods relating to coronary stenosis (e.g., for diagnosing coronary stenosis, etc.).


One specific aspect of the invention provides methods of predicting the risk of developing CAD. One aspect of the invention provides a method of diagnosing premature CAD in an individual, including previously undiagnosed individuals or individuals without any type of cardiovascular disease. In one embodiment, the method comprises obtaining a DNA sample from the individual and determining the presence of one or more polymorphisms in at least one CAD-determinative gene. The presence of one or more polymorphisms is an indication that the individual is at high risk of developing a cardiovascular disease, such as CAD. Preferred polymorphisms are listed on Tables 1, 2 and 3. In one embodiment, the polymorphism is a polymorphism from Table 1 showing a p value of less than 0.05, 0.04, 0.03. 0.02. 0.01, 0.05, 0.02, 0.01, 0.005, 0.002 or 0.001. In some embodiments, the polymorphic change is at the same location along the genome as the polymorphisms found in Tables 1, 2 or 3. As an illustrative embodiment, if a given polymorphism in Table 1 consisted of a G to A nucleotide change at a given position on the genome, some embodiments would include screening for the change of G to C or G to T. Accordingly, in some embodiments, the presence of a polymorphism at the genomic position, regardless of the nature of the nucleotide change(s), indicates that the subject is at a higher risk of developing a cardiovascular disease. In one embodiment, the absence of the wild-type sequence in a polymorphic region is indicative of a higher likelihood of developing CAD.


The methods of the present invention may be used with a variety of contexts and maybe be used to assess the status of a variety of individuals. For example, the methods may be used to assess the status of individuals with no previous diagnosis of coronary artery disease, or with no significant cardiovascular risk factors. Cardiovascular risk factors include, but are not limited to, cholesterol, HDL cholesterol, systolic blood pressure, cigarette smoking, exercise, alcohol, race, obesity, family history of premature coronary artery disease, and medication use, including aspirin, statins, B-blockers and hormone replacement therapy in women.


Other indicia predictive of CAD can be detected or monitored in the subject in conjunction with the detection of polymorphisms in CAD-determinative genes. This may be useful to increase the predictive power of the methods described herein. Preferred indicia include the detection of additional CAD-determinative polymorphisms in genes not listed in Tables 1, 2 or 3, medical examination of the subject's cardiovascular system, and detection of gene products or other metabolites in a sample from a patient, such as a blood sample. In some embodiments, additional factors that may be monitored may be administration of pharmaceuticals known or suspected of having cardiovascular effects, such as increasing blood pressure, preferably in at least 5% or 10% of subjects who are administered the pharmaceuticals. In addition, the presence of cardiovascular risk factors, such as those listed in the preceding paragraph, may be also be weighed when assessing the risk of a subject for developing the cardiovascular disease.


II. Definitions

A “coronary artery disease” (“CAD”) is a pathological state characterized by insufficiency of oxygen delivery to cardiac muscle, wherein the condition is associated with some dysfunction of coronary blood vessels. As used in this disclosure, CADs include both disorders in which symptomatic and/or asymptomatic cardiac ischemia occurs (e.g., angina pectoris and myocardial infarction) and disorders that gradually lead to chronic or acute cardiac ischemia, even at the stage of the disorder at which such ischemia is not yet evident (e.g., coronary arteriosclerosis and atherosclerosis).


An “increased risk” refers to a statistically higher frequency of occurrence of the disease or condition in an individual carrying a particular polymorphic allele in comparison to the frequency of occurrence of the disease or condition in a member of a population that does not carry the particular polymorphic allele.


A “treatment plan” refers to at least one intervention undertaken to modify the effect of a risk factor upon a patient. A treatment plan for a cardiovascular disorder or disease can address those risk factors that pertain to cardiovascular disorders or diseases. A treatment plan can include an intervention that focuses on changing patient behavior, such as stopping smoking. A treatment plan can include an intervention whereby a therapeutic agent is administered to a patient. As examples, cholesterol levels can be lowered with proper medication, and diabetes can be controlled with insulin. Nicotine addiction can be treated by withdrawal medications. A treatment plan can include an intervention that is diagnostic. The presence of the risk factor of hypertension, for example, can give rise to a diagnostic intervention whereby the etiology of the hypertension is determined. After the reason for the hypertension is identified, further treatments may be administered.


The phrase “predicting the likelihood of developing” as used herein refers to methods by which the skilled artisan can predict onset of a cardiovascular condition in an individual. The term “predicting” does not refer to the ability to predict the outcome with 100% accuracy. Instead, the skilled artisan will understand that the term “predicting” refers to forecast of an increased or a decreased probability that a certain outcome will occur; that is, that an outcome is more likely to occur in an individual having one or more CAD-determinative polymorphisms.


A subject at higher risk of developing a cardiovascular disease refers to a subject having at least a 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 125%, 150%, 200%, 300%, 400%, 500%, 600%, 7000/, 800%, 900% or 1000% greater probability of developing the condition, relative to the general population. In one embodiment, the comparison is not to a general population but rather to a population matched by one or more factors such as age, sex, race, ethnicity, etc. In one embodiment, the population is one existing within a time frame of 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 or 50 years from the time of testing.


The term “polymorphism”, as used herein, refers to a difference in the nucleotide sequence of a given region, such as a region in a chromosome, as compared to a nucleotide sequence in a homologous region of another individual, in particular, a difference in the nucleotide of a given region which differs between individuals of the same species. A polymorphism is generally defined in relation to a reference sequence, usually referred to as the “wild-type” sequence. Polymorphisms include single nucleotide differences, differences in sequence of more than one nucleotide, and single or multiple nucleotide insertions, inversions and deletions. In certain embodiments, the polymorphism is within a non-coding region or in a translated region. In certain embodiments, the polymorphism is a silent polymorphism within a translated region. In some embodiments, the polymorphism results in an amino acid substitution. Where a polymorphic site is a single nucleotide in length, the site is referred to as a single nucleotide polymorphism (“SNP”). For example, if at a particular chromosomal location, one member of a population has an adenine and another member of the population has a thymine at the same position, then this position is a polymorphic site, and, more specifically, the polymorphic site is a SNP. Each version of the sequence with respect to the polymorphic site is referred to herein as an “allele” of the polymorphic site. Thus, in the previous example, the SNP allows for both an adenine allele and a thymine allele.


A “haplotype,” as described herein, refers to a combination of genetic markers (“alleles”), such as the SNPs set forth in Tables 1 and 2 and 3.


The nucleotide designation “R” refers to A or G nucleotides, while designation ‘N’ refers to G or A or T or C nucleotides, in accordance with IUPAC designations.


III. CAD-Determinative Alleles and Polymorohisms

The present invention is based, at least in part, on the identification of alleles, in multiple genes, that are associated (to a statistically-significant extent) with the development of CAD in humans. Detection of these alleles in a subject indicates that the subject is predisposed to the development of a cardiovascular disease and in particular CAD. The identification of individuals predisposed to developing CAD, as identified using the methods described here, may prove useful in allowing the implementation of preventive treatment plans to delay or reduce the incidence of CAD.


Those skilled in the art will readily recognize that nucleic acid molecules may be double-stranded molecules and that reference to a particular site on one strand refers, as well, to the corresponding site on a complementary strand. In defining a SNP position, SNP allele, or nucleotide sequence, reference to an adenine, a thymine (uridine), a cytosine, or a guanine at a particular site on one strand of a nucleic acid molecule also defines the thymine (uridine), adenine, guanine, or cytosine (respectively) at the corresponding site on a complementary strand of the nucleic acid molecule. Thus, reference may be made to either strand in order to refer to a particular SNP position, SNP allele, or nucleotide sequence. Probes and primers, may be designed to hybridize to either strand and SNP genotyping methods disclosed herein may generally target either strand. Throughout the specification, in identifying a SNP position, reference is generally made to the protein-encoding strand, only for the purpose of convenience One aspect of the invention provides a method of estimating, or aiding in the estimation of, the risk of developing a cardiovascular disease, such as CAD, in a subject, the method comprising (i) providing a nucleic acid sample from the subject; (ii) detecting the presence of one or more single nucleotide polymorphisms (SNPs) in a CAD-determinative gene in the nucleic acid sample, wherein the presence of one or more SNPs reflects a higher risk of developing the cardiovascular disease. A related aspect of the invention provides a method of identifying a subject having an elevated risk of developing a cardiovascular disease, such as CAD, the method comprising (i) providing a nucleic acid sample from the subject; (ii) detecting the presence of one or more single nucleotide polymorphisms (SNPs) in a CAD-determinative gene in the genomic sample, wherein a subject having one or more SNPs is identified as a subject having an elevated risk of developing cardiovascular disease. To better characterize the subject's genetic content, occurrence of polymorphisms that are not associated with a disorder can also be assessed, so that one can determine whether the human is 1) homozygous for the CAD-determinative polymorphism at a genomic site, 2) heterozygous for a CAD-determinative and disorder-non-associated polymorphisms at the genomic site, or 3) homozygous for a CAD-non-associated polymorphisms at the site. In one embodiment, both the presence of a SNP polymorphism and of the wild-type sequence is determined.


Tables 1-5 provide a variety of information about SNPs of the present invention that are associated with coronary artery disease. Tables 4 (SEQ ID NOs:1-575) and Table 5 (SEQ ID NOs: 576-1050) disclose genomic SNP sequences. The sequences on Table 4 correspond to genomic sequences containing the SNP, while those on Table 5 have the corresponding genomic sequences without the SNP. Table 3 provides additional information for these sequences, including the chromosome position of the SNP, the gene locus in which the SNP is found, the Genbank accession number (which provides another way of naming the gene locus), a probe number and a genomic location within the chromosomes. Table 3 also provides the SEQ ID NOs for the SNP sequence and the nonSNP sequence for cross-reference with Tables 4-5.


In one embodiment, the CAD-determinative gene containing the SNP is one of the genes listed in Table 1. Table 1 includes the following genes: A1M1L, PLA2G7, OR7E29P, PLN, PTPN6, C1ORF38, GATA2, IL7R, MYLK, ANPEP, PIK3R4, RPLP2, OLR1, PNPLA2, TCF4, ACP5, SELP, BAX, CPNE4, TAL1, KLF15, ABCB1, LHFPL2, ITGAX, LOC389142, PLXNC1, SLA, ELL, NPY, IGSF11, ITPK1, ASB1, SELB, LOC131873, PCCA, HAPIP, PLAUR, SIDT1, RPN1, BPAG1, ROR2, MMP12, GAP43, FSTL1, MAP4, ZNF217, ALOX5, NPHP3, GPNMB, SPP1, ZNF80, MGP, C3ORF15, NEK11, POLQ, ADFP, UBXD1, 38413, FLJ46299, ZBTB20, HLA-DQA2, ZXDC, GRN, PSCD1, GYS1, C14ORF132, CD80, CDGAP, LMOD1, SLC41A3, HOXD1, STAT5A, OPRM1, ITPR2, HIF1A, PKD2, STEAP, AGTR1, NDUFB4, GLRA3, MEF2A, STXBP5L, APOBEC3D, FMNL1, PLXND1, ATP2C1, RUVBL1, CASR, PTPRR, SMPDL3A, APOD, APG3L, FLJ35880, TMCC1, CD96, C1QB, CTSD, FLI1, MMP9, TCIRG1, ITGB5, FLJ25414, NR1H3, HSPBAP1, APOC1, THPO, FTL, HADHSC, ALOX5AP, LAIR1, UPP1, LAPTM5, CSTA, ADCY5, PHLDB2, GM2A, NUDT16, ACSL1, VAMP5, ACP2, HLA-DPA1, TUBA3, MMP7, H41, NR112, FGFR2, OBA, CHAF1A, GSK3B, DOCK2, URB, HCLS1, CD200R1, SLCO2B1, B4GALT4, PLCXD2, FABP7, CAMKK2, FCGR1A, SELL, SELE, HNRPM, MGC45840, F5, SMTN, RAI3, HLA-DRA, CSTB, FLJ12592 and TAGLN3.


In one embodiment, the SNP is one of those listed in Tables 1-4. In another embodiment, the SNP is one that is highly-statistically associated (p<0.1, p<0.05 or p<0.01) with the development of CAD. In another embodiment, the SNP is a SNP in linkage disequilibrium with one of the aforementioned SNPs. The third and fourth columns in Table 1 indicate the chromosome and the location within chromosome where the polymorphism in located.


In one embodiment, the method of estimating the risk of developing coronary artery disease (CAD) in a subject comprises determining the presence of more than one SNP from Tables 1-4 in the genomic sample from the subject, which may be from one gene of from two or more genes.


In addition to the SNPs described in Tables 1-4, one of skill in the art can readily identify other alleles (including polymorphisms and mutations) that are in linkage disequilibrium with one of the SNPs described herein. For example, a nucleic acid sample from a first group of subjects without CAD can be collected, as well as DNA from a second group of subjects with CAD. The nucleic acid sample can then be compared to identify those alleles that are over-represented in the second group as compared with the first group, wherein such alleles are presumably associated with CAD. Alternatively, alleles that are in linkage disequilibrium with a CAD associated-allele can be identified, for example, by genotyping a large population and performing statistical analysis to determine which alleles appear more commonly together than expected.


Preferably the group is chosen to be comprised of genetically-related individuals. Genetically-related individuals include individuals from the same race, the same ethnic group, or even the same family. As the degree of genetic relatedness between a control group and a test group increases, so does the predictive value of polymorphic alleles which are ever more distantly linked to a disease-causing allele. This is because less evolutionary time has passed to allow polymorphisms which are linked along a chromosome in a founder population to redistribute through genetic cross-over events. Thus race-specific, ethnic-specific, and even family-specific diagnostic genotyping assays can be developed to allow for the detection of disease alleles which arose at ever more recent times in human evolution, e.g., after divergence of the major human races, after the separation of human populations into distinct ethnic groups, and even within the recent history of a particular family line.


Appropriate probes may be designed to hybridize to one of the alleles listed in Tables 1-3. Alternatively, these probes may incorporate other regions of the relevant genomic locus, including intergenic sequences. Yet other polymorphisms available for use with the immediate invention are obtainable from various public sources. For example, the human genome database collects intragenic SNPs, is searchable by sequence (http://hgbase.interactiva.de). Also available is a human polymorphism database maintained by NCBI (http://www.ncbi.nim.nih.gov/projects/SNP/). From such sources SNPs as well as other human polymorphisms may be found.


IV. Detection of CAD-Determinative Polymorphisms

Many methods are available for detecting specific alleles at human polymorphic loci. The preferred method for detecting a specific polymorphic allele will depend, in part, upon the molecular nature of the polymorphism. SNPs are most frequently biallelic-occurring in only two different forms (although up to four different forms of an SNP, corresponding to the four different nucleotide bases occurring in DNA, are theoretically possible). Because SNPs typically have only two alleles, they can be genotyped by a simple plus/minus assay rather than a length measurement, making them more amenable to automation.


A variety of methods are available for detecting the presence of a particular single nucleotide polymorphic allele in an individual. Advancements in this field have provided accurate, easy, and inexpensive large-scale SNP genotyping. Most recently, for example, several new techniques have been described including dynamic allele-specific hybridization (DASH), microplate array diagonal gel electrophoresis (MADGE), pyrosequencing, oligonucleotide-specific ligation, the TaqMan system as well as various DNA “chip” technologies such as the Affymetrix SNP chips. These methods require amplification of the target genetic region, typically by PCR. Still other newly developed methods, based on the generation of small signal molecules by invasive cleavage followed by mass spectrometry or immobilized padlock probes and rolling-circle amplification, might eventually eliminate the need for PCR. Several of the methods known in the art for detecting specific single nucleotide polymorphisms are summarized below. The method of the present invention is understood to include all available methods.


Any cell type or tissue may be utilized to obtain nucleic acid samples for use in the diagnostics described herein. In a preferred embodiment, the DNA sample is obtained from a bodily fluid, e.g., blood, obtained by known techniques (e.g. venipuncture), or saliva. Alternatively, nucleic acid tests can be performed on dry samples (e.g. hair or skin). When using RNA or protein, the cells or tissues that may be utilized must express a CAD-determinative gene. In one embodiment, biological samples such as blood, bone, hair, saliva, or semen may be used.


Exonuclease-Resistant Nucleotide

In one embodiment, the single base polymorphism can be detected by using a specialized exonuclease-resistant nucleotide, as disclosed, e.g., in Mundy, C. R. (U.S. Pat. No. 4,656,127). According to the method, a primer complementary to the allelic sequence immediately 3′ to the polymorphic site is permitted to hybridize to a target molecule obtained from a particular animal or human. If the polymorphic site on the target molecule contains a nucleotide that is complementary to the particular exonuclease-resistant nucleotide derivative present, then that derivative will be incorporated onto the end of the hybridized primer. Such incorporation renders the primer resistant to exonuclease, and thereby permits its detection. Since the identity of the exonuclease-resistant derivative of the sample is known, a finding that the primer has become resistant to exonucleases reveals that the nucleotide present in the polymorphic site of the target molecule was complementary to that of the nucleotide derivative used in the reaction. This method has the advantage that it does not require the determination of large amounts of extraneous sequence data.


Solution-Based Method

In another embodiment of the invention, a solution-based method is used for determining the identity of the nucleotide of a polymorphic site. Cohen, D. et al. (French Patent 2,650,840; PCT Appln. No. WO91/02087). As in the Mundy method of U.S. Pat. No. 4,656,127, a primer is employed that is complementary to allelic sequences immediately 3′ to a polymorphic site. The method determines the identity of the nucleotide of that site using labeled dideoxynucleotide derivatives, which, if complementary to the nucleotide of the polymorphic site will become incorporated onto the terminus of the primer.


Genetic Bit Analysis

An alternative method, known as Genetic Bit Analysis or GBA™ is described by Goelet, P. et al. (PCT Appln. No. 92/15712). The method of Goelet, P. et al. uses mixtures of labeled terminators and a primer that is complementary to the sequence 3′ to a polymorphic site. The labeled terminator that is incorporated is thus determined by, and complementary to, the nucleotide present in the polymorphic site of the target molecule being evaluated. In contrast to the method of Cohen et al. (French Patent 2,650,840; PCT Appln. No. WO91/02087) the method of Goelet, P. et al. is preferably a heterogeneous phase assay, in which the primer or the target molecule is immobilized to a solid phase.


Primer-Guided Nucleotide Incorporation

Recently, several primer-guided nucleotide incorporation procedures for assaying polymorphic sites in DNA have been described (Komher, J. S. et al., Nucl. Acids. Res. 17:7779-7784 (1989); Sokolov, B. P., Nucl. Acids Res. 18:3671 (1990); Syvanen, A.-C., et al., Genomics 8:684-692 (1990); Kuppuswamy, M. N. et al., Proc. Natl. Acad. Sci. (U.S.A.) 88:1143-1147 (1991); Prezant, T. R. et al., Hum. Mutat. 1:159-164 (1992); Ugozzoli, L. et al., GATA 9:107-112 (1992); Nyren, P. et al., Anal. Biochem. 208:171-175 (1993)). These methods differ from GBA™ in that they all rely on the incorporation of labeled deoxynucleotides to discriminate between bases at a polymorphic site. In such a format, since the signal is proportional to the number of deoxynucleotides incorporated, polymorphisms that occur in runs of the same nucleotide can result in signals that are proportional to the length of the run (Syvanen, A.-C., et al., Amer. J. Hum. Genet. 52:46-59 (1993)).


Protein Truncation Test (PTT)

For SNPs that produce premature termination of protein translation, the protein truncation test (PTT) offers an efficient diagnostic approach (Roest, et. al., (1993) Hum. Mol. Genet. 2:1719-21; van der Luijt, et. al., (1994) Genomics 20:14). For PTT, RNA is initially isolated from available tissue and reverse-transcribed, and the segment of interest is amplified by PCR. The products of reverse transcription PCR are then used as a template for nested PCR amplification with a primer that contains an RNA polymerase promoter and a sequence for initiating eukaryotic translation. After amplification of the region of interest, the unique motifs incorporated into the primer permit sequential in vitro transcription and translation of the PCR products. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis of translation products, the appearance of truncated polypeptides signals the presence of a mutation that causes premature termination of translation. In a variation of this technique, DNA (as opposed to RNA) is used as a PCR template when the target region of interest is derived from a single exon.


In Situ Tissue Sections

Diagnostic procedures may also be performed in situ directly upon tissue sections (fixed and/or frozen) of subject tissue obtained from biopsies or resections, such that no nucleic acid purification is necessary. Nucleic acid reagents may be used as probes and/or primers for such in situ procedures (see, for example, Nuovo, G. J., 1992, PCR in situ hybridization: protocols and applications, Raven Press, N.Y.).


Allele-Specific Hybridization

In one preferred detection method is allele specific hybridization using probes overlapping a region of at least one allele of a CAD-determinative gene having about 5, 10, 20, 25, or 30 nucleotides around the mutation or polymorphic region. In one embodiment of the invention, several probes capable of hybridizing specifically to other allelic variants involved in CAD are attached to a solid phase support, e.g., a “chip” (which can hold up to about 250,000 oligonucleotides). Oligonucleotides can be bound to a solid support by a variety of processes, including lithography. Mutation detection analysis using these chips comprising oligonucleotides, also termed “DNA probe arrays” is described e.g., in Cronin et al. (1996) Human Mutation 7:244. In one embodiment, a chip comprises all the allelic variants of at least one polymorphic region of a CAD-determinative gene. The solid phase support is then contacted with a test nucleic acid and hybridization to the specific probes is detected. Accordingly, the identity of numerous allelic variants of one or more genes can be identified in a simple hybridization experiment. The design and use of allele-specific probes for analyzing polymorphisms is known in the art (see, e.g., Dattagupta, EP 235,726, Saiki, WO 89/11548). WO 95/11995 describes subarrays that are optimized for detection of variant forms of a pre-characterized polymorphism.


DNA-Amplification and PCR-Based Methods

These techniques may also comprise the step of amplifying the nucleic acid before analysis. Amplification techniques are known to those of skill in the art and include, but are not limited to cloning, polymerase chain reaction (PCR), polymerase chain reaction of specific alleles (ASA), ligase chain reaction (LCR), nested polymerase chain reaction, self-sustained sequence replication (Guatelli, J. C. et al., 1990, Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., 1989, Proc. Natl. Acad. Sci. USA 86:1173-1177), and Q-Beta Replicase (Lizardi, P. M. et al., 1988, Bio/Technology 6:1197). PCR-based detection means can include multiplex amplification of a plurality of markers simultaneously. For example, it is well known in the art to select PCR primers to generate PCR products that do not overlap in size and can be analyzed simultaneously. Alternatively, it is possible to amplify different markers with primers that are differentially labeled and thus can each be differentially detected. Of course, hybridization based detection means allow the differential detection of multiple PCR products in a sample. Other techniques are known in the art to allow multiplex analyses of a plurality of markers. Amplification products may be assayed in a variety of ways, including size analysis, restriction digestion followed by size analysis, detecting specific tagged oligonucleotide primers in the reaction products, allele-specific oligonucleotide (ASO) hybridization, allele specific 5′ exonuclease detection, sequencing, hybridization, and the like.


A merely illustrative embodiment of a method using PCR-amplification includes the steps of (i) collecting a sample of cells from a subject, (ii) isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, (iii) contacting the nucleic acid sample with one or more primers which specifically hybridize 5′ and 3′ to at least one CAD-determinative gene under conditions such that hybridization and amplification of the allele occurs, and (iv) detecting the amplification product. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.


In a preferred embodiment of the subject assay, the allele of an CAD-determinative gene is identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis.


Alternatively, allele-specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation or polymorphic region of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3′ end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238; WO 93/22456). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al (1992) Mol. Cell Probes 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3′ end of the 5′ sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


Nucleic Acid Sequencing

In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the allele. Exemplary sequencing reactions include those based on techniques developed by Maxim and Gilbert ((1977) Proc. Natl Acad Sci USA 74:560) or Sanger (Sanger et al (1977) Proc. Nat. Acad. Sci. USA 74:5463). It is also contemplated that any of a variety of automated sequencing procedures may be utilized when performing the subject assays (see, for example Biotechniques (1995) 19:448), including sequencing by mass spectrometry (see, for example PCT publication WO 94/16101; Cohen et al. (1996) Adv Chromatogr 36:127-162; and Griffin et al. (1993) Appl Biochem Biotechnol 38:147-159). It will be evident to one of skill in the art that, for certain embodiments, the occurrence of only one, two or three of the nucleic acid bases need be determined in the sequencing reaction. For instance, A-track or the like, e.g., where only one nucleic acid is detected, can be carried out.


Mismatch Cleavage

In a further embodiment, protection from cleavage agents (such as a nuclease, hydroxylamine or osmium tetraoxide and with piperidine) can be used to detect mismatched bases in RNA/RNA or RNA/DNA or DNA/DNA heteroduplexes (Myers, et al. (1985) Science 230:1242). In general, the art technique of “mismatch cleavage” starts by providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type allele with the sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to base pair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digest the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, for example, Cotton et al (1988) Proc. Natl Acad Sci USA 85:4397; and Saleeba et al (1992) Methods Enzymol. 217:286295. In a preferred embodiment, the control DNA or RNA can be labeled for detection.


In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes). For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662). According to an exemplary embodiment, a probe based on an allele of a CAD-determinative gene locus haplotype is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, for example, U.S. Pat. No. 5,459,039.


Mobility of Nucleic Acids

In other embodiments, alterations in electrophoretic mobility will be used to identify a CAD-determinative allele. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc Natl. Acad. Sci. USA 86:2766, see also Cotton (1993) Mutat Res 285:125-144; and Hayashi (1992) Genet Anal Tech Appl 9:73-79). Single-stranded DNA fragments of sample and control CAD-terminative alleles are denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5). In yet another embodiment, the movement of alleles in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing agent gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys Chem 265:12753).


Oligonucleotide Ligation Assay

In another embodiment, identification of the allelic variant is carried out using an oligonucleotide ligation assay (OLA), as described, e.g., in U.S. Pat. No. 4,998,617 and in Landegren, U. et al. ((1988) Science 241:1077-1080). The OLA protocol uses two oligonucleotides which are designed to be capable of hybridizing to abutting sequences of a single strand of a target. One of the oligonucleotides is linked to a separation marker, e.g., biotinylated, and the other is detectably labeled. If the precise complementary sequence is found in a target molecule, the oligonucleotides will hybridize such that their termini abut, and create a ligation substrate. Ligation then permits the labeled oligonucleotide to be recovered using avidin, or another biotin ligand. Nickerson, D. A. et al. have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson, D. A. et al. (1990) Proc. Natl. Acad. Sci. USA 87:8923-27). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.


Several techniques based on this OLA method have been developed and can be used to detect alleles of an CAD-determinative haplotype. For example, U.S. Pat. No. 5,593,826 discloses an OLA using an oligonucleotide having 3′-amino group and a 5′-phosphorylated oligonucleotide to form a conjugate having a phosphoramidate linkage. In another variation of OLA described in Tobe et al. ((1996) Nucleic Acids Res 24: 3728), OLA combined with PCR permits typing of two alleles in a single microtiter well. By marking each of the allele-specific primers with a unique hapten, i.e. digoxigenin and fluorescein, each OLA reaction can be detected by using hapten specific antibodies that are labeled with different enzyme reporters, alkaline phosphatase or horseradish peroxidase. This system permits the detection of the two alleles using a high throughput format that leads to the production of two different colors.


Examples of other techniques for detecting alleles include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation or nucleotide difference (e.g., in allelic variants) is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al (1989) Proc. Natl Acad. Sci. USA 86:6230). Such allele specific oligonucleotide hybridization techniques may be used to test one mutation or polymorphic region per reaction when oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations or polymorphic regions when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA. Other methods of detecting polymorphisms, e.g., SNPs, are known, e.g., as described in U.S. Pat. Nos. 6,410,231; 6,361,947; 6,322,980; 6,316,196; 6,258,539; and U.S. Publication Nos. 2004/0137464 and 2004/0072156.


V. Subjects

The subjects to be tested for characterizing its risk of CAD in the foregoing methods may be any human or other animal, preferably a mammal. In certain embodiments, the subject does not otherwise have an elevated risk of cardiovascular disease according to the traditional risk factors. Subjects having an elevated risk of cardiovascular disease include those with a family history of cardiovascular disease, elevated lipids, smokers, prior acute cardiovascular event, etc. (See, e.g., Harrison's Principles of Experimental Medicine, 15th Edition, McGraw-Hill, Inc., N.Y.—hereinafter “Harrison's”).


In certain embodiments the subject is an apparently healthy nonsmoker. “Apparently healthy”, as used herein, means individuals who have not previously being diagnosed as having any signs or symptoms indicating the presence of atherosclerosis, such as angina pectoris, history of an acute adverse cardiovascular event such as a myocardial infarction or stroke, evidence of atherosclerosis by diagnostic imaging methods including, but not limited to coronary angiography. Apparently healthy individuals also do not otherwise exhibit symptoms of disease. In other words, such individuals, if examined by a medical professional, would be characterized as healthy and free of symptoms of disease. “Nonsmoker” means an individual who, at the time of the evaluation, is not a smoker. This includes individuals who have never smoked as well as individuals who in the past have smoked but presently no longer smoke.


In certain embodiments, the test subjects are apparently healthy subjects otherwise free of current need for treatment for a cardiovascular disease. In some embodiments, the subject is otherwise free of symptoms calling for treatment with any one of any combination of or all of the foregoing categories of agents. For example, with respect to anti-inflammatory agents, the subject is free of symptoms of rheumatoid arthritis, chronic back pain, autoimmune diseases, vascular diseases, viral diseases, malignancies, and the like. In another embodiment, the subject is not at an elevated risk of an adverse cardiovascular event (e.g., subject with no family history of such events, subjects who are nonsmokers, subjects who are nonhyperlipidemic, subjects who do not have elevated levels of a systemic inflammatory marker), other than having an elevated level of one or more oxidized apoA-I related biomolecules.


In some embodiments, the subject is a nonhyperlipidemic subject. A “nonhyperlipidemic” is a subject that is a nonhypercholesterolemic and/or a nonhypertriglyceridemic subject. A “nonhypercholesterolemic” subject is one that does not fit the current criteria established for a hypercholesterolemic subject. A nonhypertriglyceridemic subject is one that does not fit the current criteria established for a hypertriglyceridemic subject (See, e.g., Harrison's Principles of Experimental Medicine, 15th Edition, McGraw-Hill, Inc., N.Y.—hereinafter “Harrison's”). Hypercholesterolemic subjects and hypertriglyceridemic subjects are associated with increased incidence of premature coronary heart disease. A hypercholesterolemic subject has an LDL level of >160 mg/dL, or >130 mg/dL and at least two risk factors selected from the group consisting of male gender, family history of premature coronary heart disease, cigarette smoking (more than 10 per day), hypertension, low HDL (<35 mg/dL), diabetes mellitus, hyperinsulinemia, abdominal obesity, high lipoprotein (a), and personal history of cerebrovascular disease or occlusive peripheral vascular disease. A hypertriglyceridemic subject has a triglyceride (TO) level of >250 mg/dL. Thus, a nonhyperlipidemic subject is defined as one whose cholesterol and triglyceride levels are below the limits set as described above for both the hypercholesterolemic and hypertriglyceridemic subjects.


VI. Pharmacogenomics

Knowledge of CAD-determinative alleles, such as those described in Tables 1-4, alone or in conjunction with information on other genetic defects contributing to CAD, al lows customization of a therapy to the individual's genetic profile. For example, subjects having an CAD-determinative allele of AIM1L, PLA2G7, OR7E29P, PLN, PTPN6, C1ORF38, GATA2, IL7R or MYLK, or any polymorphic nucleic acid sequence in linkage disequilibrium with any of these alleles, may be predisposed to developing CAD and may respond better to particular therapeutics that address the particular molecular basis of the disease in the subject. Thus, comparison of an individual's CAD-determinative allele profile to the population profile for CAD, permits the selection or design of drugs or other therapeutic regimens that are expected to be safe and efficacious for a particular subject or subject population (i.e., a group of subjects having the same genetic alteration).


In addition, the ability to target populations expected to show the highest clinical benefit, based on genetic profile can enable: 1) the repositioning of marketed drugs with disappointing market results; 2) the rescue of drug candidates whose clinical development has been discontinued as a result of safety or efficacy limitations, which are subject subgroup-specific; and 3) an accelerated and less costly development for drug candidates and more optimal drug labeling (e.g. since measuring the effect of various doses of an agent on a CAD causative mutation is useful for optimizing effective dose).


The treatment of an individual with a particular therapeutic can be monitored by determining protein, mRNA and/or transcriptional level of a CAD-determinative gene. Depending on the level detected, the therapeutic regimen can then be maintained or adjusted (increased or decreased in dose). In a preferred embodiment, the effectiveness of treating a subject with an agent comprises the steps of: (i) obtaining a preadministration sample from a subject prior to administration of the agent; (ii) detecting the level or amount of a protein, mRNA or genomic DNA in the preadministration sample of a CAD-determinative gene; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the protein, mRNA or genomic DNA in the post-administration sample of the CAD-determinative gene; (v) comparing the level of expression or activity of the protein, mRNA or genomic DNA of the CAD-determinative gene in the preadministration sample with the corresponding one in the postadministration sample, respectively; and (vi) altering the administration of the agent to the subject accordingly.


Cells of a subject may also be obtained before and after administration of a therapeutic to detect the level of expression of genes other than an CAD-determinative gene to verify that the therapeutic does not increase or decrease the expression of genes which could be deleterious. This can be done, e.g., by using the method of transcriptional profiling. Thus, mRNA from cells exposed in vivo to a therapeutic and mRNA from the same type of cells that were not exposed to the therapeutic could be reverse transcribed and hybridized to a chip containing DNA from numerous genes, to thereby compare the expression of genes in cells treated and not treated with the therapeutic.


In still another aspect, the invention relates to a method of selecting a dose of a cardiovascular protective agent for administration to a subject. The method comprises assessing occurrence in the human's genome of a CAD-determinative allele. Occurrence of any of the polymorphisms is an indication that a greater dose of the agent should be administered to the human. The dose of the agent can be selected based on occurrence of the polymorphisms. A greater number of CAD-determinative polymorphisms indicates a greater dosage.


VII. Additional Diagnostic/Predictive Markers

In certain embodiments, assessment of one or more markers are combined to increase the predictive value of the analysis in comparison to that obtained from the identification of polymorphisms in CAD-determinative allele(s) alone. Such markers may be assessed, for example, by detecting genetic changes in the genes (e.g. mutations or polymorphisms) or by detecting the level of gene products, metabolites or other molecules level in a biological sample obtained from the subject, such as a serum or blood sample. In one embodiment, the levels of one or more markers for myocardial injury, coagulation, or atherosclerotic plaque rupture are measured from a sample from the subject to increase the predictive value of the described methods


In one embodiment, assessment of one or more additional markers indicative of atherosclerotic plaque rupture is combined with detection of polymorphism(s) in CAD-determinative gene(s). Markers of atherosclerotic plaque rupture that may be useful include human neutrophil elastase, inducible nitric oxide synthase, lysophosphatidic acid, malondialdehyde-modified low-density lipoprotein, matrix metalloproteinase-1, matrix metalloproteinase-2, matrix metalloproteinase-3, and matrix metalloproteinase-9. In one embodiment, assessment of one or more additional markers indicative of coagulation is combined with detection of polymorphism(s) in CAD-determinative gene(s). Coagulation markers include β-thromboglobulin, D-dimer, fibrinopeptide A, platelet-derived growth factor, plasmin-α-2-anti-plasmin complex, platelet factor 4, prothrombin fragment 1+2, P-selectin, thrombin-antithrombin III complex, thrombus precursor protein, tissue factor and von Willebrand factor.


In one embodiment, the marker(s) that may be tested in conjunction with the detection of polymorphism(s) in CAD-determinative gene(s) includes soluble tumor necrosis factor-α receptor-2, interleukin-6, lipoprotein-associated phospholipase A2, C-reactive protein (CRP), Creatine Kinase with Muscle and/or Brain subunits (CKMB), thrombin anti-thrombin (TAT), soluble fibrin monomer (SFM), fibrin peptide A (FPA), myoglobin, thrombin precursor protein (TPP), platelet monocyte aggregate (PMA) troponin and homocysteine. In another embodiment, the additional markers can be Annexin V, B-type natriuretic peptide (BNP) which is also called brain-type natriuretic peptide, enolase, Troponin I (TnI), cardiac-troponin T, Creatine kinase (CK), Glycogen phosphorylase (GP), Heart-type fatty acid binding protein (H-FABP), Phosphoglyceric acid mutase (PGAM) and S-100.


In embodiments where one or more markers are used in combination with detection of polymorphism(s) in CAD-determinative gene(s) to increase the predictive value of the analysis, the patient sample from which the level of the additional marker(s) is to be measured may be the same or different from one used to detect polymorphism(s) in CAD-determinative gene(s). In one embodiment, the biological sample from which the level of additional marker is determined is whole blood. Whole blood may be obtained from the subject using standard clinical procedures. In another embodiment, the biological sample is plasma. Plasma may be obtained from whole blood samples by centrifugation of anti-coagulated blood. Such process provides a buffy coat of white cell components and a supernatant of the plasma. In another embodiment, the biological sample is serum. Serum may be obtained by centrifugation of whole blood samples that have been collected in tubes that are free of anti-coagulant. The blood is permitted to clot prior to centrifugation. The yellowish-reddish fluid that is obtained by centrifugation is the serum. The sample may be pretreated as necessary by dilution in an appropriate buffer solution, heparinized, concentrated if desired, or fractionated by any number of methods including but not limited to ultracentrifugation, fractionation by fast performance liquid chromatography (FPLC), or precipitation of apolipoprotein B containing proteins with dextran sulfate or other methods. Any of a number of standard aqueous buffer solutions, employing one of a variety of buffers, such as phosphate, Tris, or the like, at physiological pH can be used.


In certain embodiments, the subject's risk profile for CAD is determined by combining a first risk value, which is obtained by determining the presence of one or more CAD-determinative polymorphisms, with one or more additional risk values to provide a final risk value. Such additional risk values may be obtained by procedures including, but not limited to, determining the subject's blood pressure, assessing the subject's response to a stress test, determining levels of myeloperoxidase, C-reactive protein, low density lipoprotein, or cholesterol in a bodily sample from the subject, or assessing the subject's atherosclerotic plaque burden.


In some embodiments, genetic variations in additional marker genes are combined with detection of polymorphism(s) in a gene not listed in Tables 1 or 2. In specific embodiments, the additional marker gene is selected from apolipoprotein B, apolipoprotein E, paraoxonase 1, type I angiotensin II receptor, cytochrome b-245(alpha), prothrombin, coagulation factor VII, platelet glycoprotein 1b alpha, platelet glycoprotein IIIa, endothelial nitric oxide synthase, 5,10-methylene tetrahydrofolate reductase, angiotensinogen, plasminogen activator inhibitor 1, coagulation factor V, alpha adducin I, cytochrome P450, G-protein beta, polypeptide 3, methionine synthase reductase, endothelial adhesion molecule 1 and cholesteryl ester transferase. Polymorphisms in these genes are described, for example, in U.S. Patent Publication No. 2004/0005566.


In one embodiment, the methods to assess the test subject's risk of developing CAD comprise performing a medical examination of the subject's cardiovascular systems. Such examinations may be useful to increase the predictive power of the methods. Types of medical examinations include, for example, coronary angiography, coronary intravascular ultrasound (IVUS), stress testing (with and without imaging), assessment of carotid intimal medial thickening, carotid ultrasound studies with or without implementation of techniques of virtual histology, coronary artery electron beam computer tomography (EBTC), cardiac computerized tomography (CT) scan, CT angiography, cardiac magnetic resonance imaging (MRI), and magnetic resonance angiography (MRA).


VIII. Nucleic Acids

The present invention provides isolated polynucleotides comprising one or more CAD-determinative polymorphic nucleic acid sequences. In some embodiments, the polymorphism is one that is described in FIG. 1 or Tables 1-5. The isolated polynucleotides are useful in a variety of diagnostic methods. Isolated polymorphic nucleic acid molecules of the invention can be used in one or more of the following methods: a) screening assays; b) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenetics); and c) methods of treatment (e.g., therapeutic and prophylactic).


An isolated polymorphic nucleic acid molecule comprises one or more polymorphisms listed in Tables 1-5. Preferred polymorphism are those found in any one of the following genes: A1M1L, PLA2G7, OR7E29P, PLN, PTPN6, C1ORF38, GATA2, IL7R, MYLK, ANPEP, PIK3R4, RPLP2, OLR1, PNPLA2, TCF4, ACP5, SELP, BAX, CPNE4, TALI, KLF15, ABCB1, LHFPL2, ITGAX, LOC389142, PLXNC1, SLA, ELL, NPY, IGSF11, ITPK1, ASB1, SELB, LOC131873, PCCA, HAPIP, PLAUR, SIDT1, RPN1, BPAG1, ROR2, MMP12, GAP43, FSTL1, MAP4, ZNF217, ALOX5, NPHP3, GPNMB, SPP1, ZNF80, MGP, C3ORF15, NEK11, POLQ, ADFP, UBXD1, 38413, FLJ46299, ZBTB20, HLA-DQA2, ZXDC, GRN, PSCD1, GYS1, C14ORF132, CD80, CDGAP, LMOD1, SLC41A3, HOXD1, STAT5A, OPRM1, 1TPR2, HIF1A, PKD2, STEAP, AGTR1, NDUFB4, GLRA3, MEF2A, STXBP5L, APOBEC3D, FMNL1, PLXND1, ATP2Cl, RUVBL1, CASR, PTPRR, SMPDL3A, APOD, APG3L, FLJ35880, TMCC1, CD96, C1QB, CTSD, FLI1, MMP9, TCIRG1, ITGB5, FLJ25414, NR1H3, HSPBAP1, APOC1, THPO, FTL, HADHSC, ALOX5AP, LAIR1, UPP1, LAPTM5, CSTA, ADCY5, PHLDB2, GM2A, NUDT16, ACSL1, VAMP5, ACP2, HLA-DPA1, TUBA3, MMP7, H41, NR112, FGFR2, GBA, CHAF1A, GSK3B, DOCK2, URB, HCLS1, CD200R1, SLCO2B1, B4GALT4, PLCXD2, FABP7, CAMKK2, FCGR1A, SELL, SELE, HNRPM, MGC45840, F5, SMTN, RAI3, HLA-DRA, CSTB, FLJ2592 and TAGLN3.


In a preferred embodiment, the polymorphism is from A1MIL, PLA2G7, OR7E29P, PLN, PTPN6, C1ORF38, GATA2, IL7R or MYLK. For some uses, e.g., in screening assays, CAD-determinative polymorphic nucleic acid molecules will be of at least about 15 nucleotides (nt), at least about 18 nt, at least about 20 nt, or at least about 25 nt in length, and often at least about 50 nt. Such small DNA fragments are useful as primers for polymerase chain reaction (PCR), hybridization screening, etc. Larger polynucleotide fragments, e.g., at least about 50 nt, at least about 100 nt, at least about 200 nt, at least about 300 nt, at least about 500 nt, at least about 1000 nt, at least about 1500 nt, up to the entire coding region, or up to the entire coding region plus up to about 1000 nt 5′ and/or up to about 1000 nt 3′ flanking sequences from a CAD-determinative gene, are useful for production of the encoded polypeptide, promoter motifs, etc. For use in amplification reactions, such as PCR, a pair of primers will be used. The exact composition of primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art.


The present invention also provides isolated nucleic acid molecules that contain one or more SNPs disclosed in Tables 1-4, and in preferred embodiments from Table 4. Preferred isolated nucleic acid molecules contain one or more SNPs identified in Tables 1-1. Isolated nucleic acid molecules containing one or more SNPs disclosed in at least one of Tables 1-4 may be interchangeably referred to throughout the present text as “SNP-containing nucleic, acid molecules.” Isolated nucleic acid molecules may optionally encode a full-length variant protein or fragment thereof. The isolated nucleic acid molecules of the present invention also include probes and primers, which may be used for assaying the disclosed SNPs, and isolated full-length genes, transcripts cDNA molecules, and fragments thereof, which may be used for such purposes as expressing an encoded protein.


As used herein, an “isolated nucleic acid molecule” generally is one that contains a SNP of the present invention or a complement thereof and is separated from most other nucleic acids present in the natural source of the nucleic acid molecule. Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule containing a SNP of the present invention, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. A nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered “isolated”. Examples of “isolated” DNA molecules include recombinant DNA molecules maintained in heterologous host cells, and purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the isolated SNP-containing DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.


Generally, an isolated SNP-containing nucleic acid molecule comprises one or more SNP positions disclosed by the present invention with flanking nucleotide sequences on either side of the SNP positions. A flanking sequence can include nucleotide residues that are naturally associated with the SNP site and/or heterologous nucleotide sequences. Preferably the flanking sequence is up to about 500, 300, 100, 60, 50, 30, 25, 20, 15, 10, 8, or 4 nucleotides (or any other length in-between) on either side of a SNP position, or as long as the full-length gene or entire protein-coding sequence (or any portion thereof such as an exon), especially if the SNP-containing nucleic acid molecule is to be used to produce a protein or protein fragment.


Table 4 shows SNP-containing nucleic acid molecules having 20 nucleotides flanking the SNP site. In one embodiment, the invention provides an isolated SNP-containing nucleic acid molecule comprises the nucleotide sequence of any one of SEQ ID NOs: 1-575. In another embodiment, the SNP-containing nucleic acid molecule provided by the invention comprises a nucleotide sequence identical to 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides of any one of SEQ ID NOs: 1-575. In another embodiment, the SNP-containing nucleic acid molecule provided by the invention comprises a nucleotide sequence identical to 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides of any one of SEQ ID NOs: 1-575 wherein the contiguous nucleotides contain the SNP site (shown in brackets, i.e. “[ ]” in Table 4).


For full-length genes and entire protein-coding sequences, a SNP flanking sequence can be, for example, up to about 5 Kb, 4 Kb, 3 Kb, 2 Kb, 1 Kb on either side of the SNP. Furthermore, in such instances, the isolated nucleic acid molecule comprises exonic sequences (including protein-coding and/or non-coding exonic sequences), but may also include intronic sequences. Thus, any protein coding sequence may be either contiguous or separated by introns. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences and is of appropriate length such that it can be subjected to the specific manipulations or uses described herein such as recombinant protein expression, preparation of probes and primers for assaying the SNP position, and other uses specific to the SNP-containing nucleic acid sequences.


An isolated nucleic acid molecule of the present invention further encompasses a SNP-containing polynucleotide that is the product of any one of a variety of nucleic acid amplification methods, which are used to increase the copy numbers of a polynucleotide of interest in a nucleic acid sample. Such amplification methods are well known in the art, and they include but are not limited to, polymerase chain reaction (PCR) (U.S. Pat. Nos. 4,683,195; and 4,683,202; PCR Technology: Principles and Applications for DNA Amplification, ed. H. A. Erlich, Freeman Press, NY, N.Y., 1992), ligase chain reaction (LCR) (Wu and Wallace, Genomics 4:560, 1989; Landegren et al., Science 241:1077, 1988), strand displacement amplification (SDA) (U.S. Pat. Nos. 5,270,184; and 5,422,252), transcription-mediated amplification (TMA) (U.S. Pat. No. 5,399,491), linked linear amplification (LLA) (U.S. Pat. No. 6,027,923), and the like, and isothermal amplification methods such as nucleic acid sequence based amplification (NASBA), and self-sustained sequence replication (Guatelli et al., Proc. Natl. Acad. Sci. USA 87: 1874, 1990). Based on such methodologies, a person skilled in the art can readily design primers in any suitable regions 5′ and 3′ to a SNP disclosed herein. Such primers may be used to amplify DNA of any length so long as it contains the SNP of interest in its sequence.


As used herein, an “amplified polynucleotide” of the invention is a SNP-containing nucleic acid molecule whose amount has been increased at least two fold by any nucleic acid amplification method performed in vitro as compared to its starting amount in a test sample. In other preferred embodiments, an amplified polynucleotide is the result of at least ten fold, fifty fold, one hundred fold, one thousand fold, or even ten thousand fold increase as compared to its starting amount in a test sample. In a typical PCR amplification, a polynucleotide of interest is often amplified at least fifty thousand fold in amount over the unamplified genomic DNA, but the precise amount of amplification needed for an assay depends on the sensitivity of the subsequent detection method used.


Generally, an amplified polynucleotide is at least about 16 nucleotides in length. More typically, an amplified polynucleotide is at least about 20 nucleotides in length. In a preferred embodiment of the invention, an amplified polynucleotide is at least about 30 nucleotides in length. In a more preferred embodiment of the invention, an amplified polynucleotide is at least about 32, 40, 45, 50, or, 60 nucleotides in length. In yet another preferred embodiment of the invention, an amplified polynucleotide is at least about 100, 200, 300, 400, or 500 nucleotides in length. While the total length of an amplified polynucleotide of the invention can be as long as an exon, an intron or the entire gene where the SNP of interest resides, an amplified product is typically up to about 1,000 nucleotides in length (although certain amplification methods may generate amplified products greater than 1000 nucleotides in length). More preferably, an amplified polynucleotide is not greater than about 600-700 nucleotides in length. It is understood that irrespective of the length of an amplified polynucleotide, a SNP of interest may be located anywhere along its sequence.


In a specific embodiment of the invention, the amplified product is at least about 21 nucleotides in length, comprises one of the transcript-based context sequences or the genomic-based context sequences shown in Tables 1-4. Such a product may have additional sequences on its 5′ end or 3′ end or both. In another embodiment, the amplified product is about 21 nucleotides in length, and it contains a SNP disclosed herein. Preferably, the SNP is located at the middle of the amplified product (e.g., at position 11 in an amplified product that is 21 nucleotides in length, or at position 51 in an amplified product that is 101 nucleotides in length), or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, or 20 nucleotides from the middle of the amplified product, (however, as indicated above, the SNP of interest may be located anywhere along the length of the amplified product).


The present invention provides isolated nucleic acid molecules that comprise, consist of, or consist essentially of one or more polynucleotide sequences that contain one or more SNPs disclosed herein, complements thereof, and SNP-containing fragments thereof.


The isolated nucleic acid molecules can encode mature proteins plus additional amino or carboxyl-terminal amino acids or both, or amino acids interior to the mature peptide (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life, or facilitate manipulation of a protein for assay or production. As generally is the case in situ, the additional amino acids may be processed away from the mature protein by cellular enzymes.


Thus, the isolated nucleic acid molecules include, but are not limited to, nucleic acid molecules having a sequence encoding a peptide alone, a sequence encoding a mature peptide and additional coding sequences such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), a sequence encoding a mature peptide with or without additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5′ and 3′ sequences such as transcribed but untranslated sequences that play a role in, for example, transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding, and/or stability of mRNA. In addition, the nucleic acid molecules may be fused to heterologous marker sequences encoding, for example, a peptide that facilitates purification.


Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA, which may be obtained, for example, by molecular cloning or produced by chemical synthetic techniques or by a combination thereof: (Sambrook and Russell, 2000, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, NY). Furthermore, isolated nucleic acid molecules, particularly SNP detection reagents such as probes and primers, can also be partially or completely in the form of one or more types of nucleic acid analogs, such as peptide nucleic acid (PNA) (U.S. Pat. Nos. 5,539,082; 5,527,675; 5,623,049; 5,714,331). The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the complementary non-coding; from fragments of the human genome (in the case of DNA or RNA) or single nucleotides, short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic nucleic acid molecule. Nucleic acid molecules can be readily synthesized using the sequences provided herein as a reference; oligonucleotide and PNA oligomer synthesis techniques are well-known in the art (see, e.g., Corey, “Peptide nucleic acids: expanding the scope of nucleic acid recognition”, Trends Biotechnol. June 1997; 15(6):224-9, and Hyrup et al., “Peptide nucleic acids (PNA): synthesis, properties and potential applications”, Bioorg Med. Chem. January 1996; 4(1):5-23). Furthermore, large-scale automated oligonucleotide/PNA synthesis (including synthesis on an array or bead surface or other solid support) can readily be accomplished using commercially available nucleic acid synthesizers, such as the Applied Biosystems (Foster City, Calif.) 3900 High-Throughput DNA Synthesizer or Expedite 8909 Nucleic Acid Synthesis System, and the sequence information provided herein.


The present invention encompasses nucleic acid analogs that contain modified, synthetic, or non-naturally occurring nucleotides or structural elements or other alternative/modified nucleic acid chemistries known in the art. Such nucleic acid analogs are useful, for example, as detection reagents (e.g., primers/probes) for detecting one or more SNPs identified in Tables 1-4. Furthermore, kits/systems (such as beads, arrays, etc.) that include these analogs are also encompassed by the present invention. For example, PNA oligomers that are based on the polymorphic sequences of the present invention are specifically contemplated. PNA oligomers are analogs of DNA in which the phosphate backbone is replaced with a peptide-like backbone (Lagriffoul et al., Bioorganic & Medicinal Chemistry Letters, 4: 1081-1082 (1994), Petersen et al., Bioorganic & Medicinal Chemistry Letters, 6: 793-796 (1996), Kumar et al., Organic Letters 3(9): 1269-1272:(2001), WO96/04000). PNA hybridizes to complementary RNA or DNA with higher affinity and specificity than conventional oligonucleotides and oligonucleotide analogs. The properties of PNA enable novel molecular biology and biochemistry applications unachievable with traditional oligonucleotides and peptides.


Additional examples of nucleic acid modifications that improve the binding properties and/or stability of a nucleic acid include the use of base analogs such as U.S. Pat. No. 5,801,115). Thus, references herein to nucleic acid molecules, SNP-containing nucleic acid molecules, SNP detection reagents (e.g., probes and primers), oligonucleotides/polynucleotides include PNA oligomers and other nucleic acid analogs. Other examples of nucleic acid analogs and alternative/modified nucleic acid chemistries known in the art are described in Current Protocols in Nucleic Acid Chemistry, John Wiley & Sons, N.Y. (2002).


The present invention further provides nucleic acid molecules that encode fragments of the variant polypeptides disclosed herein as well as nucleic acid molecules that encode obvious variants of such variant polypeptides. Such nucleic acid molecules may be naturally occurring, such as paralogs (different locus) and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, the variants can contain nucleotide substitutions, deletions, inversions and insertions (in addition to the SNPs disclosed in Tables 1-4). Variation can occur in either or both the coding and non-coding regions. The variations can produce conservative and/or non-conservative amino acid substitutions.


The nucleic acid molecules of the invention may be used as probes. When used as a probe, an isolated polymorphic CAD-determinative nucleic acid molecule may comprise non-CAD-determinative nucleotide sequences, as long as the additional non-CAD-determinative nucleotide sequences do not interfere with the detection assay. A probe may comprise an isolated polymorphic CAD-determinative sequence, and any number of non-CAD-determinative nucleotide sequences, e.g., from about 1 bp to about 1 kb or more.


For screening purposes, hybridization probes of the polymorphic sequences may be used where both forms are present, either in separate reactions, spatially separated on a solid phase matrix, or labeled such that they can be distinguished from each other. Assays (described below) may utilize nucleic acids that hybridize to one or more of the described polymorphisms. Isolated polymorphic CAD-determinative nucleic acid molecules of the invention may be coupled (e.g., chemically conjugated), directly or indirectly (e.g., through a linker molecule) to a solid substrate. Solid substrates may be any known in the art including, but not limited to, beads, e.g., polystyrene beads; chips, e.g., glass, SiO2, and the like; plastic surfaces, e.g., polystyrene, polycarbonate plastic multi-well plates; and the like.


Additional CAD-determinative gene polymorphisms may be identified using any of a variety of methods known in the art, including, but not limited to SSCP, denaturing HPLC, and sequencing. SSCP may be used to identify additional CAD-determinative gene polymorphisms. In general, PCR primers and restriction enzymes are chosen so as to generate products in a size range of from about 25 bp to about 500 bp, or from about 100 bp to about 250 bp, or any intermediate or overlapping range therein.


IX. Kits

The invention further relates to a kit for assessing relative susceptibility of a human to developing CAD. The kit comprises reagents for assessing occurrence in the human's genome of a CAD-determinative polymorphism in at least one, two, three, four or five or more of the CAD-determinative genes. Another aspect of the invention provides kits for detecting a predisposition for developing a CAD.


The kits may contain one or more oligonucleotides, including 5′ and 3′ oligonucleotides that hybridize 5′ and 3′ to at least one allele of a CAD-determinative locus haplotype, such as to any of the SNPs listed in Tables 1 and 2. PCR-amplification oligonucleotides should hybridize between 25 and 2500 base pairs apart, preferably between about 100 and about 500 bases apart, in order to produce a PCR product of convenient size for subsequent analysis.


The design of oligonucleotides for use in the amplification and detection of CAD-determinative polymorphic alleles by the method of the invention is facilitated by the availability of public genomic data for the CAD-determinative genes. Suitable primers for the detection of a human polymorphism in these genes can be readily designed using this sequence information and standard techniques known in the art for the design and optimization of primers sequences. Optimal design of such primer sequences can be achieved, for example, by the use of commercially available primer selection programs such as Primer 2.1, Primer 3 or GeneFisher.


For use in a kit, oligonucleotides may be any of a variety of natural and/or synthetic compositions such as synthetic oligonucleotides, restriction fragments, cDNAs, synthetic peptide nucleic acids (PNAs), and the like. The assay kit and method may also employ labeled oligonucleotides to allow ease of identification in the assays. Examples of labels which may be employed include radio-labels, enzymes, fluorescent compounds, streptavidin, avidin, biotin, magnetic moieties, metal binding moieties, antigen or antibody moieties, and the like.


The kit may, optionally, also include DNA sampling means. DNA sampling means are well known to one of skill in the art and can include, but not be limited to substrates, such as filter papers, the AmpliCard™ (University of Sheffield, Sheffield, England S10 2JF; Tarlow, J W, et al., J. of Invest. Dematol. 103:387-389 (1994)) and the like; DNA purification reagents such as Nucleon™ kits, lysis buffers, proteinase solutions and the like; PCR reagents, such as 10× reaction buffers, thermostable polymerase, dNTPs, and the like; and allele detection means such as the HinfI restriction enzyme, allele specific oligonucleotides, degenerate oligonucleotide primers for nested PCR from dried blood.


A person skilled in the art will recognize that, based on the SNP and associated sequence information disclosed herein, detection reagents can be developed and used to assay any SNP of the present invention individually or in combination, and such detection reagents can be readily incorporated into one of the established kit or system formats which are well known in the art. The terms “kits” and “systems”, as used herein in the context of SNP detection reagents, are intended to refer to such things as combinations of multiple SNP detection reagents, or one or more SNP detection reagents in combination with one or more other types of elements or components (e.g., other types of biochemical reagents, containers, packages such as packaging intended for commercial sale, substrates to which SNP detection reagents are attached, electronic hardware components, etc.). Accordingly, the present invention further provides SNP detection kits and systems, including but not limited to, packaged probe and primer sets (e.g., TaqMan probe/primer sets), arrays/microarrays of nucleic acid molecules, and beads that contain one or more probes, primers, or other detection reagents for detecting one or more SNPs of the present invention. The kits/systems can optionally include various electronic hardware components; for example, arrays (“DNA chips”) and microfluidic systems (“lab-on-a-chip” systems) provided by various manufacturers typically comprise hardware components. Other kits/systems (e.g., probe/primer sets) may not include electronic hardware components, but may be comprised of, for example, one or more SNP detection reagents (along with, optionally, other biochemical reagents) packaged in one or more containers.


In some embodiments, a SNP detection kit typically contains one or more detection reagents and other components (e.g., a buffer, enzymes such as DNA polymerases or ligases, chain extension nucleotides such as deoxynucleotide triphosphates, and in the case of Sanger-type DNA sequencing reactions, chain terminating nucleotides, positive control sequences, negative control sequences, and the like) necessary to carry out an assay or reaction, such as amplification and/or detection of a SNP-containing nucleic acid molecule. A kit may further contain means for determining the amount of a target nucleic acid, and means for comparing the amount with a standard, and can comprise instructions for using the kit to detect the SNP-containing nucleic acid molecule of interest. In one embodiment of the present invention, kits are provided which contain the necessary reagents to carry out one or more assays to detect one or more SNPs disclosed herein. In a preferred embodiment of the present invention, SNP detection kits/systems are in the form of nucleic acid arrays, or compartmentalized kits, including microfluidic/lab-on-a-chip systems.


One aspect of the invention provides DNA microarrays containing one or more SNP nucleic acid molecules. In one embodiment, the microarray includes 1, 2, 3, 4, 5 or more polymorphic CAD-determinative nucleic acid molecules e.g., probes or primers described herein, that are capable of detecting (e.g., hybridizing to) a polymorphic CAD-determinative nucleic acid molecules. Isolated polymorphic CAD-determinative nucleic acid molecules can be obtained by chemical or biochemical synthesis, by recombinant DNA techniques, or by isolating the nucleic acids from a biological source, or a combination of any of the foregoing. For example, the nucleic acid may be synthesized using solid phase synthesis techniques, as are known in the art. Oligonucleotide synthesis is also described in Edge et al. (1981) Nature 292:756; Duckworth et al. (1981) Nucleic Acids Res. 9:1691 and Beaucage and Caruthers (1981) Tet. Letters 22:1859. Following preparation of the nucleic acid, the nucleic acid is then ligated to other members of the expression system to produce an expression cassette or system comprising a nucleic acid encoding the subject product in operational combination with transcriptional initiation and termination regions, which provide for expression of the nucleic acid into the subject polypeptide products under suitable conditions.


SNP detection kits/systems may contain, for example, one or more probes, or pairs of probes, that hybridize to a nucleic acid molecule at or near each target SNP position. Multiple pairs of allele-specific probes may be included in the kit/system to simultaneously assay large numbers of SNPs, at least one of which is a SNP of the present invention. In some kits/systems, the allele-specific probes are immobilized to a substrate such as an array or bead. For example, the same substrate can comprise allele-specific probes for detecting at least 1; 10; 100; 1000; 10,000; 100,000 (or any other number in-between) or substantially all of the SNPs shown in Tables 1-5.


The terms “arrays”, “microarrays”, and “DNA chips” are used herein interchangeably to refer to an array of distinct polynucleotides affixed to a substrate, such as glass, plastic, paper, nylon or other type of membrane, filter, chip, or any other suitable solid support. The polynucleotides can be synthesized directly on the substrate, or synthesized separate from the substrate and then affixed to the substrate. In one embodiment, the microarray is prepared and used according to the methods described in U.S. Pat. No. 5,837,832, Chee et al., PCT application WO95/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown et al., U.S. Pat. No. 5,807,522.


Nucleic acid arrays are reviewed in the following references: Zammatteo et al., “New chips for molecular biology and diagnostics”, Biotechnol Annu Rev. 2002; 8:85-101; Sosnowski et al., “Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications”, Psychiatr Genet. December 2002; 12(4): 181-92; Heller, “DNA microarray technology: devices, systems, and applications”; Annu Rev Biomed Eng. 2002; 4: 129-53. Epub Mar. 22, 2002; Kolchirisky et al., “Analysis of SNPs and other genomic variations using gel-based chips”, Hum Mutat. April 2002; 19(4):343-60; and McGall et al., “High-density genechip oligonucleotide probe arrays”, Adv Biochem Eng Biotechnol. 2002; 77:21-42.


Any number of probes, such as allele-specific probes, may be implemented in an array, and each probe or pair of probes can hybridize to a different SNP position. In the case of polynucleotide probes, they can be synthesized at designated areas (or synthesized separately and then affixed to designated areas) on a substrate using a tight-directed chemical process. Each DNA chip can contain, for example, thousands to millions of individual synthetic polynucleotide probes arranged in a grid-like pattern and miniaturized (e.g., to the size of a dime). Preferably, probes are attached to a solid support in an ordered, addressable array.


A microarray can be composed of a large number of unique, single-stranded polynucleotides, usually either synthetic antisense polynucleotides or fragments of cDNAs, fixed to a solid support. Typical polynucleotides are preferably about 6-60 nucleotides in length, more preferably about 15-30 nucleotides in length, and most preferably about 18-25 nucleotides in length. For certain types of microarrays or other detection kits/systems, it may be preferable to use oligonucleotides that are only about 7-20 nucleotides in length. In other types of arrays, such as arrays used in conjunction with chemiluminescent detection technology, preferred probe lengths can be, for example, about 15-80 nucleotides in length, preferably about 50-70-nucleotides in length, more preferably about 5565 nucleotides in length, and most preferably about 60 nucleotides in length. The microarray or detection kit can contain polynucleotides that cover the known 5′ or 3′ sequence of a gene/transcript or target SNP site, sequential polynucleotides that cover the full-length sequence of a gene/transcript; or unique polynucleotides selected from particular areas along the length of a target gene/transcript sequence, particularly areas corresponding to one or more SNPs disclosed in Table 1 and/or Table 2. Polynucleotides used in the microarray or detection kit can be specific to a SNP or SNPs of interest (e.g., specific to a particular SNP allele at a target SNP site, or specific to particular SNP alleles at multiple different SNP sites), or specific to a polymorphic gene/transcript or genes/transcripts of interest.


Hybridization assays based on polynucleotide arrays rely on the differences in hybridization stability of the probes to perfectly matched and mismatched target sequence variants. For SNP genotyping, it is generally preferable that stringency conditions used in hybridization assays are high enough such that nucleic acid molecules that differ from one another at as little as a single SNP position can be differentiated (e.g., typical SNP hybridization assays are designed so that hybridization will occur only if one particular nucleotide is present at a SNP position, but will not occur if an alternative nucleotide is present at that SNP position). Such high stringency conditions may be preferable when using, for example, nucleic acid arrays of allele-specific probes for SNP detection. Such high stringency conditions are described in the preceding section, and are well known to those skilled in the art and can be found in, for example, Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.


In other embodiments, the arrays are used in conjunction with chemiluminescent detection technology. The following patents and patent applications, which are all hereby incorporated by reference, provide additional information pertaining to chemiluminescent detection: U.S. patent application Ser. Nos. 10/620,332 and 10/620,333 describe chemiluminescent approaches for microarray detection; U.S. Pat. Nos. 6,124,478, 6,107,024, 5,994,073, 5,981,768, 5,871,938, 5,843,681, 5,800,999, and 5,773,628 describe methods and compositions of dioxetane for performing chemiluminescent detection; and U.S. Published application US2002/0110828 discloses methods and compositions for microarray controls.


In one embodiment of the invention, a nucleic acid array can comprise an array of probes of about 15-25 nucleotides in length. In further embodiments, a nucleic acid array can comprise any number of probes, in which at least one probe is capable of detecting one or more SNPs disclosed in Tables 1-4, and/or at least one probe comprises a fragment of one of the sequences selected from the group consisting of those disclosed in Table 1-4, the Sequence Listing, and sequences complementary thereto, said fragment comprising at least about 8 consecutive nucleotides, preferably 10, 12, 15, 16, 18, 20, more preferably 22, 25, 30, 40, 47, 50, 55, 60, 65, 70, 80, 90, 100, or more consecutive nucleotides (or any other number in-between) and containing (or being complementary to) a novel SNP allele disclosed in Table 1-4. In some embodiments, the nucleotide complementary to the SNP site is within 5, 4, 3, 2, or 1 nucleotide from the center of the probe, more preferably at the center of said probe.


A polynucleotide probe can be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application WO95/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference. In another aspect, a “gridded” array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more polynucleotides, or any other, number which lends itself to the efficient use of commercially available instrumentation.


Using such arrays or other kits/systems, the present invention provides methods of identifying the SNPs disclosed herein in a test sample. Such methods typically involve incubating a test sample of nucleic acids with an array comprising one or more probes corresponding to at least one SNP position of the present invention, and assaying for binding of a nucleic acid from the test sample with one or more of the probes. Conditions for incubating a SNP detection reagent (or a kit/system that employs one or more such SNP detection reagents) with a test sample vary. Incubation conditions depend on such factors as the format employed in the assay, the detection methods employed, and the type and nature of the detection reagents used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification and array assay formats can readily be adapted to detect the SNPs disclosed herein.


A SNP detection kit/system of the present invention may include components that are used to prepare nucleic acids from a test sample for the subsequent amplification and/or detection of a SNP-containing nucleic acid molecule. Such sample preparation components can be used to produce nucleic acid extracts (including DNA and/or RNA), proteins or membrane extracts from any bodily fluids (such as blood, serum, plasma, urine, saliva, phlegm, gastric juices, semen, tears, sweat, etc.), skin, hair, cells (especially nucleated cells), biopsies, buccal swabs or tissue specimens. The test samples used in the above-described methods will vary based on such factors as the assay format, nature of the detection method, and the specific tissues, cells or extracts used as the test sample to be assayed. Methods of preparing nucleic acids, proteins, and cell extracts are well known in the art and can be readily adapted to obtain a sample that is compatible with the system utilized. Automated sample preparation systems for extracting nucleic acids from a test sample are commercially available, and examples are Qiagen's BioRobot 9600, Applied Biosystems' PRISM™ 6700 sample preparation system, and Roche Molecular Systems' COBAS AmpliPrep System.


Another form of kit contemplated by the present invention is a compartmentalized kit. A compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include, for example, small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allow one to efficiently transfer reagents from one compartment to another compartment such that the test samples and reagents are not cross-contaminated, or from one container to another vessel not included in the kit, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another or to another vessel. Such containers may include, for example, one or more containers which will accept the test sample, one or more containers which contain at least one probe or other SNP detection reagent for detecting one or more SNPs of the present invention, one or more containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and one or more containers which contain the reagents used to reveal the presence of the bound probe or other SNP detection reagents. The kit can optionally further comprise compartments and/or reagents for, for example, nucleic acid amplification or other enzymatic reactions such as primer extension reactions, hybridization, ligation, electrophoresis (preferably capillary electrophoresis), mass spectrometry, and/or laser-induced fluorescent detection. The kit may also include instructions for using the kit. Exemplary compartmentalized kits include microfluidic devices known in the art (see, e.g., Weigl et al., “Lab-on-a-chip for drug development”, Adv Drug Deliv Rev. Feb. 24, 2003; 55(3):349-77). In such microfluidic devices, the containers may be referred to as, for example, microfluidic “compartments”, “chambers”, or “channels”.


Microfluidic devices, which may also be referred to as “lab-on-a-chip” systems, biomedical micro-electro-mechanical systems (bioMEMs), or multicomponent integrated systems, are exemplary kits/systems of the present invention for analyzing SNPs. Such systems miniaturize and compartmentalize processes such as probe/target hybridization, nucleic acid amplification, and capillary electrophoresis reactions in a single functional device. Such microfluidic devices typically utilize detection reagents in at least one aspect of the system, and such detection reagents may be used to detect one or more SNPs of the present invention. One example of a microfluidic system is disclosed in U.S. Pat. No. 5,589,136, which describes the integration of PCR amplification and capillary electrophoresis in chips. Exemplary microfluidic systems comprise a pattern of microchannels designed onto a glass, silicon, quartz, or plastic wafer included on a microchip. The movements of the samples may be controlled by electric, electroosmotic or hydrostatic forces applied across different areas of the microchip to create functional microscopic valves and pumps with no moving parts. Varying the voltage can be used as a means to control the liquid flow at intersections between the micro-machined channels and to change the liquid flow rate for pumping across different sections of the microchip. See, for example, U.S. Pat. Nos. 6,153,073, Dubrow et al., and U.S. Pat. No. 6,156,181, Parce et al.


For genotyping SNPs, an exemplary microfluidic system may integrate, for example, nucleic acid amplification, primer extension, capillary electrophoresis, and a detection method such as laser induced fluorescence detection. In a first step of an exemplary process for using such an exemplary system, nucleic acid samples are amplified, preferably by PCR. Then, the amplification products are subjected to automated primer extension reactions using ddNTPs (specific fluorescence for each ddNTP) and the appropriate oligonucleotide primers to carry out primer extension reactions which hybridize just upstream of the targeted SNP. Once the extension at the 3′ end is completed, the primers are separated from the unincorporated fluorescent ddNTPs by capillary electrophoresis. The separation medium used in capillary electrophoresis can be, for example, polyacrylamide, polyethyleneglycol or dextran. The incorporated ddNTPs in the single nucleotide primer extension products are identified by laser-induced fluorescence detection. Such an exemplary microchip can be used to process, for example, at least 96 to 384 samples, or more, in parallel.


X. Therapeutic Methods

In another aspect, the invention features methods of treating a subject, e.g., a human, at risk of developing a cardiovascular disease, such as coronary artery disease (CAD). The methods include: identifying a subject having, or at risk of developing, CAD, and administering to the subject an agent that decreases CAD-determinative gene signaling (e.g., decreases CAD-determinative gene expression, levels or activity).


The present invention also relates to methods of treating a subject to reduce the risk of developing CAD or a complication from CAD. In one embodiment, the method comprises determining the presence of one or more CAD-determinative polymorphisms in the subject, and for subjects with one, two, three, four, five or more such polymorphisms, administering an agent expected to reduce the onset of cardiovascular disease. In one embodiment, the agent is selected from an anti-inflammatory agent, an antithrombotic agent, an anti-platelet agent, a fibrinolytic agent, a lipid reducing agent, a direct thrombin inhibitor, a glycoprotein Ilb/IIIa receptor inhibitor, a calcium channel blocker, a beta-adrenergic receptor blocker, a cyclooxygenase-2 inhibitor, an angiotensin system inhibitor, and/or combinations thereof. The agent is administered in an amount effective to lower the risk of the subject developing a the cardiovascular disease.


Anti-inflammatory agents include but are not limited to, Aldlofenac; Aldlometasone Dipropionate; Algestone Acetonide; Alpha Amylase; Amcinafal; Amcinafide; Amfenac Sodium; Amiprilose Hydrochloride; Anakinra; Anirolac; Anitrazafen; Apazone; Balsalazide Disodium; Bendazac; Benoxaprofen; Benzydamine Hydrochloride; Bromelains; Broperamole; Budesonide; Carprofen; Cicloprofen; Cintazone; Cliprofen; Clobetasol Propionate; Clobetasone Butyrate; Clopirac; Cloticasone Propionate, Cornethasone Acetate; Cortodoxone; Deflazacort; Desonide; Desoximetasone; Dexamethasone Dipropionate; Diclofenac Potassium; Diclofenac Sodium; Diflorasone Diacetate; Diflumidone Sodium; Diflunisal; Difluprednate; Diftalone; Dimethyl Sulfoxide; Drocinonide; Endrysone; Enlimomab; Enolicam Sodium; Epirizole; Etodolac; Etofenamate; Felbinac; Fenamole; Fenbufen; Fenclofenac; Fenclorac; Fendosal; Fenpipalone; Fentiazac; Flazalone; Fluazacort; Flufenamic Acid; Flumizole; Flunisolide Acetate; Flunixin; Flunixin Meglumine; Fluocortin Butyl; Fluorometholone Acetate; Fluquazone; Flurbiprofen; Fluretofen; Fluticasone Propionate; Furaprofen; Furobufen; Halcinonide; Halobetasol Propionate; Halopredone Acetate; Ibufenac; Ibuprofen; Ibuprofen Aluminum; Ibuprofen Piconol; Ilonidap; Indomethacin; Indomethacin Sodium; Indoprofen; Indoxole; Intrazole; Isoflupredone Acetate; Isoxepac; Isoxicam; Ketoprofen; Lofemizole Hydrochloride; Lomoxicam; Loteprednol Etabonate; Meclofenamate Sodium; Meclofenamic Acid; Meclorisone Dibutyrate; Mefenamic Acid; Mesalamine; Meseclazone; Methylprednisolone Suleptanate; Morniflumate; Nabumetone; Naproxen; Naproxen Sodium; Naproxol; Nimazone; Olsalazine Sodium; Orgotein; Orpanoxin; Oxaprozin; Oxyphenbutazone; Paranyline Hydrochloride; Pentosan Polysulfate Sodium; Phenbutazone Sodium Glycerate; Pirfenidone; Piroxicam; Piroxicam Cinnamate; Piroxicam Olamine; Pirprofen; Prednazate; Prifelone; Prodolic Acid; Proquazone; Proxazole; Proxazole Citrate; Rimexolone; Romazarit; Salcolex; Salnacedin; Salsalate; Salycilates; Sanguinarium Chloride; Seclazone; Sermetacin; Sudoxicam; Sulindac; Suprofen; Talmetacin; Talniflumate; Talosalate; Tebufelone; Tenidap; Tenidap Sodium; Tenoxicam; Tesicam; Tesimide; Tetrydamine; Tiopinac; Tixocortol Pivalate; Tolmetin; Tolmetin Sodium; Triclonide; Triflumidate; Zidometacin; Glucocorticoids; Zomepirac Sodium.


Anti-thrombotic and/or fibrinolytic agents include but are not limited to, Plasminogen (to plasmin via interactions of prekallikrein, kininogens, Factors XII, XIIIa, plasminogen proactivator, and tissue plasminogen activator[TPA]) Streptokinase; Urokinase: Anisoylated Plasminogen-Streptokinase Activator Complex; Pro-Urokinase; (Pro-UK); rTPA (alteplase or activase; r denotes recombinant); rPro-UK; Abbokinase; Eminase; Sreptase Anagrelide Hydrochloride; Bivalirudin; Dalteparin Sodium; Danaparoid Sodium; Dazoxiben Hydrochloride; Efegatran Sulfate; Enoxaparin Sodium; Ifetroban; Ifetroban Sodium; Tinzaparin Sodium; retaplase; Trifenagrel; Warfarin; Dextrans.


Anti-platelet agents include but are not limited to, Clopridogrel; Sulfinpyrazone; Aspirin; Dipyridamole; Clofibrate; Pyridinol Carbamate; PGE; Glucagon; Antiserotonin drugs; Caffeine; Theophyllin Pentoxifyllin; Ticlopidine; Anagrelide.


Lipid-reducing agents include but are not limited to, gemfibrozil, cholystyramine, colestipol, nicotinic acid, probucol lovastatin, fluvastatin, simvastatin, atorvastatin, pravastatin, cerivastatin, and other HMG-CoA reductase inhibitors.


Direct thrombin inhibitors include but are not limited to, hirudin, hirugen, hirulog, agatroban, PPACK, thrombin aptamers.


Glycoprotein IIb/IIIa receptor inhibitors are both antibodies and non-antibodies, and include but are not limited to ReoPro (abcixamab), lamifiban, tirofiban.


Calcium channel blockers are a chemically diverse class of compounds having important therapeutic value in the control of a variety of diseases including several cardiovascular disorders, such as hypertension, angina, and cardiac arrhythmias (Fleckenstein, Cir. Res. v. 52, (suppl. 1), p. 13-16 (1983); Fleckenstein, Experimental Facts and Therapeutic Prospects, John Wiley, New York (1983); McCall, D., Curr Pract Cardiol, v. 10, p. 1-11 (1985)). Calcium channel blockers are a heterogenous group of drugs that prevent or slow the entry of calcium into cells by regulating cellular calcium channels. (Remington, The Science and Practice of Pharmacy, Nineteenth Edition, Mack Publishing Company, Eaton, Pa., p. 963 (1995)). Most of the currently available calcium channel blockers, and useful according to the present invention, belong to one of three major chemical groups of drugs, the dihydropyridines, such as nifedipine, the phenyl alkyl amines, such as verapamil, and the benzothiazepines, such as diltiazem. Other calcium channel blockers useful according to the invention, include, but are not limited to, anrinone, amlodipine, bencyclane, felodipine, fendiline, flunarizine, isradipine, nicardipine, nimodipine, perhexylene, gallopamil, tiapamil and tiapamil analogues (such as 1993RO-11-2933), phenyloin, barbiturates, and the peptides dynorphin, omega-conotoxin, and omega-agatoxin, and the like and/or pharmaceutically acceptable salts thereof.


Beta-adrenergic receptor blocking agents are a class of drugs that antagonize the cardiovascular effects of catecholamines in angina pectoris, hypertension, and cardiac arrhythmias. Beta-adrenergic receptor blockers include, but are not limited to, atenolol, acebutolol, alprenolol, beftunolol, betaxolol, bunitrolol, carteolol, celiprolol, hydroxalol, indenolol, labetalol, levobunolol, mepindolol, methypranol, metindol, metoprolol, metrizoranolol, oxprenolol, pindolol, propranolol, practolol, practolol, sotalolnadolol, tiprenolol, tomalolol, timolol, bupranolol, penbutolol, trimepranol, 2-(3-(1,1-dimethylethyl)-amino-2-hyd-roxypropoxy)-3-pyridenecarbonitrilHCl, 1-butylamino-3-(2,5-dichlorophenoxy-)-2-propanol, 1-isopropylamino-3-(4-(2-cyclopropylmethoxyethyl)phenoxy)-2-propanol, 3-isopropylamino-1-(7-methylindan-4-yloxy)-2-butanol, 2-(3-t-butylamino-2-hydroxy-propylthio)-4-(5-carbamoyl-2-thienyl)thiazol, 7-(2-hydroxy-3-t-butylaminpropoxy)phthalide. The above-identified compounds can be used as isomeric mixtures, or in their respective levorotating or dextrorotating form.


Suitable COX-2 inhibitors include, but are not limited to, COX-2 inhibitors described in U.S. Pat. No. 5,474,995 Phenyl heterocycles as cox-2 inhibitors; U.S. Pat. No. 5,521,213 Diaryl bicyclic heterocycles as inhibitors of cyclooxygenase-2; U.S. Pat. No. 5,536,752 Phenyl heterocycles as COX-2 inhibitors; U.S. Pat. No. 5,550,142 Phenyl heterocycles as COX-2 inhibitors; U.S. Pat. No. 5,552,422 Aryl substituted 5,5 fused aromatic nitrogen compounds as anti-inflammatory agents; U.S. Pat. No. 5,604,253 N-benzylindol-3-yl propanoic acid derivatives as cyclooxygenase inhibitors; U.S. Pat. No. 5,604,260 5-methanesulfonamido-1-indanones as an inhibitor of cyclooxygenase-2; U.S. Pat. No. 5,639,780 N-benzyl indol-3-yl butanoic acid derivatives as cyclooxygenase inhibitors; U.S. Pat. No. 5,677,318 Diphenyl-1, 2-3-thiadiazoles as anti-inflammatory agents; U.S. Pat. No. 5,691,374 Diaryl-5-oxygenated-2-(SH)-furanones as COX-2 inhibitors; U.S. Pat. No. 5,698,584 3,4-diaryl-2-hydroxy-2,5-d-ihydrofurans as prodrugs to COX-2 inhibitors; U.S. Pat. No. 5,710,140 Phenyl heterocycles as COX-2 inhibitors; U.S. Pat. No. 5,733,909 Diphenyl stilbenes as prodrugs to COX-2 inhibitors; U.S. Pat. No. 5,789,413 Alkylated styrenes as prodrugs to COX-2 inhibitors; U.S. Pat. No. 5,817,700 Bisaryl cyclobutenes derivatives as cyclooxygenase inhibitors; U.S. Pat. No. 5,849,943 Stilbene derivatives useful as cyclooxygenase-2 inhibitors; U.S. Pat. No. 5,861,419 Substituted pyridines as selective cyclooxygenase-2 inhibitors; U.S. Pat. No. 5,922,742 Pyridinyl-2-cyclopenten-1-ones as selective cyclooxygenase-2 inhibitors; U.S. Pat. No. 5,925,631 Alkylated styrenes as prodrugs to COX-2 inhibitors; all of which are commonly assigned to Merck Frost Canada, Inc. (Kirkland, Calif.). Additional COX-2 inhibitors are also described in U.S. Pat. No. 5,643,933, assigned to G. D. Searle & Co. (Skokie, Ill.), entitled: Substituted sulfonylphenylheterocycles as cyclooxygenase-2 and 5-lipoxygenase inhibitors.


An angiotensin system inhibitor is an agent that interferes with the function, synthesis or catabolism of angiotensin II. These agents include, but are not limited to, angiotensin-converting enzyme (ACE) inhibitors, angiotensin II antagonists, angiotensin II receptor antagonists, agents that activate the catabolism of angiotensin II, and agents that prevent the synthesis of angiotensin I from which angiotensin II is ultimately derived. The renin-angiotensin system is involved in the regulation of hemodynamics and water and electrolyte balance. Factors that lower blood volume, renal perfusion pressure, or the concentration of Na+ in plasma tend to activate the system, while factors that increase these parameters tend to suppress its function.


Angiotensin (renin-angiotensin) system inhibitors are compounds that act to interfere with the production of angiotensin II from angiotensinogen or angiotensin I or interfere with the activity of angiotensin II. Such inhibitors are well known to those of ordinary skill in the art and include compounds that act to inhibit the enzymes involved in the ultimate production of angiotensin II, including renin and ACE. They also include compounds that interfere with the activity of angiotensin II, once produced. Examples of classes of such compounds include antibodies (e.g., to renin), amino acids and analogs thereof (including those conjugated to larger molecules), peptides (including peptide analogs of angiotensin and angiotensin 1), pro-renin related analogs, etc. Among the most potent and useful renin-angiotensin system inhibitors are renin inhibitors, ACE inhibitors, and angiotensin II antagonists.


Examples of angiotensin II antagonists include: peptidic compounds (e.g., saralasin, [(San1)(Val5)(Ala8)] angiotensin-(1-8) octapeptide and related analogs); N-substituted imidazole-2-one (U.S. Pat. No. 5,087,634); imidazole acetate derivatives including 2-N-butyl-4-chloro-1-(2-chlorobenzile) imidazole-5-acetic acid (see Long et al., J. Pharmacol. Exp. Ther. 247(1), 1-7 (1988)); 4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid and analog derivatives (U.S. Pat. No. 4,816,463); N2-tetrazole beta-glucuronide analogs (U.S. Pat. No. 5,085,992); substituted pyrroles, pyrazoles, and tryazoles (U.S. Pat. No. 5,081,127); phenol and heterocyclic derivatives such as 1,3-imidazoles (U.S. Pat. No. 5,073,566); imidazo-fused 7-member ring heterocycles (U.S. Pat. No. 5,064,825); peptides (e.g., U.S. Pat. No. 4,772,684); antibodies to angiotensin II (e.g., U.S. Pat. No. 4,302,386); and aralkyl imidazole compounds such as biphenyl-methyl substituted imidazoles (e.g., EP Number 253,310, Jan. 20, 1988); ES8891 (N-morpholinoacetyl-(-1-naphthyl)-L-alany-1-(4, thiazolyl)-L-alanyl (35, 45)-4-amino-3-hydroxy-5-cyclo-hexapentanoyl-1-N-hexylamide, Sankyo Company, Ltd., Tokyo, Japan); SKF108566 (E-alpha-2-[2-butyl-1-(carboxy phenyl)methyl]1H-imidazole-5-yl[methyl-ane]-2-thiophenepropanoic acid, Smith Kline Beecham Pharmaceuticals, Pa.); Losartan (DUP7531MK954, DuPont Merck Pharmaceutical Company); Remikirin (RO42-5892, F. Hoffman LaRoche AG); A2 agonists (Marion Merrill Dow) and certain non-peptide heterocycles (G. D. Searle and Company). Classes of compounds known to be useful as ACE inhibitors include acylmercapto and mercaptoalkanoyl prolines such as captopril (U.S. Pat. No. 4,105,776) and zofenopril (U.S. Pat. No. 4,316,906), carboxyalkyl dipeptides such as enalapril (U.S. Pat. No. 4,374,829), lisinopril (U.S. Pat. No. 4,374,829), quinapril (U.S. Pat. No. 4,344,949), ramipril (U.S. Pat. No. 4,587,258), and perindopril (U.S. Pat. No. 4,508,729), carboxyalkyl dipeptide mimics such as cilazapril (U.S. Pat. No. 4,512,924) and benazapril (U.S. Pat. No. 4,410,520), phosphinylalkanoyl prolines such as fosinopril (U.S. Pat. No. 4,337,201) and trandolopril.


Examples of renin inhibitors that are the subject of United States patents are as follows: urea derivatives of peptides (U.S. Pat. No. 5,116,835); amino acids connected by nonpeptide bonds (U.S. Pat. No. 5,114,937); di and tri peptide derivatives (U.S. Pat. No. 5,106,835); amino acids and derivatives thereof (U.S. Pat. Nos. 5,104,869 and 5,095,119); diol sulfonamides and sulfinyls (U.S. Pat. No. 5,098,924); modified peptides (U.S. Pat. No. 5,095,006); peptidyl beta-aminoacyl aminodiol carbamates (U.S. Pat. No. 5,089,471); pyrolimidazolones (U.S. Pat. No. 5,075,451); fluorine and chlorine statine or statone containing peptides (U.S. Pat. No. 5,066,643); peptidyl amino diols (U.S. Pat. Nos. 5,063,208 and 4,845,079); N-morpholino derivatives (U.S. Pat. No. 5,055,466); pepstatin derivatives (U.S. Pat. No. 4,980,283); N-heterocyclic alcohols (U.S. Pat. No. 4,885,292); monoclonal antibodies to renin (U.S. Pat. No. 4,780,401); and a variety of other peptides and analogs thereof (U.S. Pat. Nos. 5,071,837, 5,064,965, 5,063,207, 5,036,054, 5,036,053, 5,034,512, and 4,894,437).


XI. Predisposition Screening

Information on association/correlation between genotypes and disease-related phenotypes can be exploited in several ways. For example, in the case of a highly-statistically significant association between one or more SNPs with predisposition to a disease for which treatment is available, detection of such a genotype pattern in an individual may justify immediate administration of treatment, or at least the institution of regular monitoring of the individual. Even if detection of one of the SNPs of the invention did not call for immediate therapeutic intervention or monitoring in a particular individual, the subject can nevertheless be motivated to begin simple life-style changes (e.g., diet, exercise) that can be accomplished at little or no cost to the individual but would confer potential benefits in reducing the risk of developing conditions for which that individual may have an increased risk by virtue of having the CAD-susceptibility allele(s).


The SNPs of the invention may contribute to coronary artery disease in an individual in different ways. Some polymorphisms occur within a protein coding sequence and contribute to disease phenotype by affecting protein structure. Other polymorphisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on, for example, replication, transcription, and/or translation. A single SNP may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by multiple SNPs in different genes.


As used herein, the terms “diagnose”, “diagnosis”, and “diagnostics” include, but are not limited to any of the following: detection of coronary artery disease that an individual may presently have, predisposition/susceptibility screening (i.e., determining the increased risk of an individual in developing coronary artery disease in the future, or determining whether an individual has a decreased risk of developing coronary artery disease in the future), determining a particular type or subclass of coronary artery disease in an individual known to have coronary artery disease, confirming or reinforcing a previously made diagnosis of artery disease, pharmacogenomic evaluation of an individual to determine which therapeutic strategy that individual is most likely to positively respond to or to predict whether a patient is likely to respond to a particular treatment, predicting whether a patient is likely to experience toxic effects from a particular treatment or therapeutic compound, and evaluating the future prognosis of an individual having coronary artery disease. Such diagnostic uses are based on the SNPs individually or in a unique combination or SNP haplotypes of the present invention.


Haplotypes are particularly useful in that, for example, fewer SNPs can be genotyped to determine if a particular genomic region harbors a locus that influences a particular phenotype, such as in linkage disequilibrium-based SNP association analysis.


Linkage disequilibrium (LD) refers to the co-inheritance of alleles (e.g., alternative nucleotides) at two or more different SNP sites at frequencies greater than would be expected from the separate frequencies of occurrence of each allele in a given population. The expected frequency of co-occurrence of two alleles that are inherited independently is the frequency of the first allele multiplied by the frequency of the second allele. Alleles that co-occur at expected frequencies are said to be in “linkage equilibrium”. In contrast, LD refers to any non-random genetic association between allele(s) at two or more different SNP sites, which is generally due to the physical proximity of the two loci along a chromosome. LD can occur when two or more SNPs sites are in close physical proximity to each other on a given chromosome and therefore alleles at these SNP sites will tend to remain unseparated for multiple generations with the consequence that a particular nucleotide (allele) at one SNP site will show a non-random association with a particular nucleotide (allele) at a different SNP-site located nearby. Hence, genotyping one of the SNP sites will give almost the same information as genotyping the other SNP site that is in LD.


Various degrees of LD can be encountered between two or more SNPs with the result being that some SNPs are more closely associated (i.e., in stronger LD) than others. Furthermore, the physical distance over which LD extends along a chromosome differs between different regions of the genome, and therefore the degree of physical separation between two or more SNP sites necessary for LD to occur can differ between different regions of the genome.


For diagnostic purposes and similar uses, if a particular SNP site is found to be useful for diagnosing coronary artery disease (e.g., has a significant statistical association with the condition and/or is recognized as a causative polymorphism for the condition), then the skilled artisan would recognize that other SNP sites which are in LD with this SNP site would also be useful for diagnosing the condition. Thus, polymorphisms (e.g., SNPs and/or haplotypes) that are not the actual disease-causing (causative) polymorphisms, but are in LD with such causative polymorphisms, are also useful. In such instances, the genotype of the polymorphism(s) that is/are in LD with the causative polymorphism is, predictive of the genotype of the causative polymorphism and, consequently, predictive of the phenotype (e.g., coronary artery disease) that is influenced by the causative SNP(s). Therefore, polymorphic markers that are in LD with causative polymorphisms are useful as diagnostic markers, and are particularly useful when the actual causative polymorphism(s) is/are unknown.


Examples of polymorphisms that can be in LD with one or more causative polymorphisms (and/or in LD with one or more polymorphisms that have a significant statistical association with a condition) and therefore useful for diagnosing the same condition that the causative/associated SNP(s) is used to diagnose, include, for example, other SNPs in the same gene, protein-coding, or mRNA transcript-coding region as the causative/associated SNP, other SNPs in the same exon or same intron as the causative/associated SNP, other SNPs in the same haplotype block as the causative/associated SNP, other SNPs in the same intergenic region as the causative/associated SNP, SNPs that are outside but near a gene (e.g., within 6 kb on either side, 5′ or 3′, of a gene boundary) that harbors a causative/associated SNP, etc.


Linkage disequilibrium in the human genome is reviewed in: Wall et al., “Haplotype blocks and linkage disequilibrium in the human genome”, Nat Rev Genet August 2003; 4(8):587-97; Garner et al., “On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci”, Genet Epidemiol. January 2003; 24(1):57-67; Ardlie et al., “Patterns of linkage disequilibrium in the human genome”, Nat Rev Genet. April 2002; 3(4):299-309 (erratum in Nat Rev Genet July 2002; 3(7):566); and Remm et al., “High-density genotyping and linkage disequilibrium in the human genome using chromosome 22 as a model”; Curr Opin Chem. Biol. February 2002; 6(1):24-30.


The contribution or association of particular SNP and/or SNP haplotype with disease phenotypes, such as coronary artery disease, enables the SNPs of the present invention to be used to develop superior diagnostic tests capable of identifying individuals who express a detectable trait, such as coronary artery disease, as the result of a specific genotype, or individuals whose genotype places them at an increased or decreased risk of developing a detectable trait at a subsequent time as compared to individuals who do not have that genotype. As described herein, diagnostics may be based on a single SNP or a group of SNPs. Combined detection of a plurality of SNPs (for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 30, 32, 48, 50, 64, 96, 100, or any other number in-between, or more, of the SNPs provided in Tables 1-4) typically increases the probability of an accurate diagnosis. For example, the presence of a single SNP known to correlate with coronary artery disease might indicate a probability of 20% that an individual has or is at risk of developing coronary artery disease, whereas detection of five SNPs, each of which correlates with coronary artery disease, might indicate a probability of 80% that an individual has or is at risk of developing coronary artery disease. To further increase the accuracy of diagnosis or predisposition screening, analysis of the SNPs of the present invention can be combined with that of other polymorphisms or other risk factors of coronary artery disease, such as disease symptoms, pathological characteristics, family history, diet, environmental factors or lifestyle factors.


It will, of course, be understood by practitioners skilled in the treatment or diagnosis of coronary artery disease that the present invention generally does not intend to provide an absolute identification of individuals who are at risk (or less at risk) of developing coronary artery disease, and/or pathologies related to coronary artery disease, but rather to indicate a certain increased (or decreased) degree or likelihood of developing the disease based on statistically significant association results. However, this information is extremely valuable as it can be used to, for example, initiate preventive treatments or to allow an individual carrying one or more significant SNPs or SNP haplotypes to foresee warning signs such as minor clinical symptoms, or to have regularly scheduled physical exams to monitor for appearance of a condition in order to identify and begin treatment of the condition at an early stage. Particularly with diseases that are extremely debilitating or fatal if not treated on time, the knowledge of a potential predisposition, manner to treatment efficacy.


The diagnostic techniques of the present invention may employ a variety of methodologies to determine whether a test subject has a SNP or a SNP pattern associated with an increased or decreased risk of developing a detectable trait or whether the individual suffers from a detectable trait as a result of a particular polymorphism/mutation, including, for example, methods which enable the analysis of individual chromosomes for haplotyping, family studies, single sperm DNA analysis, or somatic hybrids. The trait analyzed using the diagnostics of the invention may be any detectable trait that is commonly observed in pathologies and disorders related to coronary artery disease.


Another aspect of the present invention relates to a method of determining whether an individual is at risk (or less at risk) of developing one or more traits or whether an individual expresses one or more traits as a consequence of possessing a particular trait-causing or trait-influencing allele. These methods generally involve obtaining a nucleic acid sample from an individual and assaying the nucleic acid sample to determine which nucleotide(s) is/are present at one or more SNP positions, wherein the assayed nucleotide(s) is/are indicative of an increased or decreased risk of developing the trait or indicative that the individual expresses the trait as a result of possessing a particular trait-causing or trait-influencing allele.


EXEMPLIFICATION

The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention and are not intended to be limiting in any way.


The contents of any patents, patent applications, patent publications, or scientific articles referenced anywhere in this application are herein incorporated by reference in their entirety.


Example 1
Identification of Human Alleles and SNPs Determinative of CAD

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Among the risk factors for cardiovascular disease are behavioral (e.g.) smoking, sedentary lifestyle, or poor diet), age and health-related (e.g. diabetes, hyperlipidemia or hypertension), and genetic factors. Family history as a general marker for genetic risk is one of the most consistently identified risk factors for CVD, yet there are no examples of genes known to increase risk in even a fraction of individuals with CVD. One of the reasons that these genes are so difficult to find is that the genetic effects of any given gene are likely to be small and are likely to interact with other genes. In addition, these effects are likely to manifest themselves at different ages and stages along the CVD continuum.


The Approaches for Genomic Discovery in Atherosclerosis (AGENDA) study was initiated to discover genes for CVD among a large number of genes implicated in a study of gene expression in human aortas. The goal of the human disease association components of the AGENDA study is to evaluate these genes in a clinic-based sample of individuals presenting to the Duke Diagnostic Catheterization Laboratory (DDLC). Patients presenting to the DDCL have been offered the opportunity to contribute to the CATHGEN study blood bank, which houses blood, plasma and RNA samples. These samples are later matched to the diagnostic and outcome information stored in the DISSC database maintained at the Duke Clinical Research Institute. The CATHGEN subjects have consented and the samples have been collected under the appropriate authorizations from the Duke University Medical Center IRB.


Two sets of samples have been obtained from the CATHGEN study for analysis in the AGENDA study. These samples have been selected on the basis of CAD index (CADi, an angiographically-defined measure of disease risk) and age. The first set of samples includes 468 young affected (YA) subjects (age ≦55, CADi>32), 260 older affected (OA) subjects (age >55, CADi>74) and 320 unaffected elderly (ON) subjects (age >60, CADi<23). The OA vs. ON and YA vs. ON comparisons are performed to identify genetic polymorphisms that increase susceptibility to CVD per se. The OA vs. YA comparison is performed to identify genetic polymorphisms that modify risk resulting in disease that presents at a young age, under the assumption that all individuals are at risk for CVD.


Over 1050 single nucleotide polymorphisms in 275 genes have been genotyped. These genes have been selected on the basis of location in the genome relative to a genetic linkage analysis of early onset coronary artery disease in families (the GENECARD study), ability to predict aortic atherosclerosis using gene expression in the human aorta, ability to predict aortic atherosclerosis in APO-E knockout mice, and published reports of genes identified through linkage analysis of CAD.


SNP candidates were selected using an algorithm to identify high-quality SNPs from public resources. FIG. 1 graphically describes the algorithm used. In some cases, high-quality SNPs could not be identified from public sources, in which case, exon re-sequencing of a limited number of individuals was performed to identify de novo SNPs in target genes.


The statistical analysis of these variants was performed in a two-step process. First the genotypes were analyzed to evaluate the quality of the genotyping experiment. The CHG quality control protocol includes error analysis of duplicated samples arranged throughout the SNP analysis plates, evaluation of genotyping efficiency, analysis of allele frequencies and consistency with Hardy-Weinberg equilibrium. Once the SNPs were shown to meet error rate and consistency standards, the second part of the analysis was performed to evaluate association of SNP alleles and genotypes with disease status. Logistic regression was performed of diseased vs. normal or young vs. old disease adjusting for ethnicity and gender. Indicators for SNP alleles or SNP genotypes were included in the model. SNPs with model coefficients providing p-values less than 0.10 were considered interesting and worthy of additional analysis.


Table 1 provides an overview of the lowest p-values for each SNP. The x-axis represents location in the genome and the y-axis shows the negative log(base 10) of the lowest p-value for that SNP. Thus log p-values greater than 1.3 represent p-values less than 0.05 and log p-values greater than 2 represent p-values less than 0.01. Abbreviated gene names are included on the plot for all significant SNPs. Detailed results of this analysis are shown in Table 1:












Most Significant Logist P values Per SNP
















Marshfield






Location
genotype
(cM)

y axis














PROBE
LOCUS
Chrom
(bp)
logist p-value
x axis
(−log 10)
model


















RS976881
TNFRSF1B
1
11943300
0.2413
29.93
29.93
0.6174
affec


RS235251
TNFRSF1B
1
11966936
0.316
29.93
29.93
0.5003
affec


RS3397
TNFRSF1B
1
11976838
0.8109
29.93
29.93
0.0910
young


RS1892345
PINK1
1
20426528
0.2157
48.53
48.53
0.6661
affec


RS7517909
PINK1
1
20430479
0.5168
48.53
48.53
0.2867
affec


RS2298298
PINK1
1
20433803
0.2843
48.53
48.53
0.5462
young


RS3121394
PINK1
1
20436355
0.2797
48.53
48.53
0.5533
affec


RS879086
PINK1
1
20439165
0.4876
48.53
48.53
0.3119
affec


RS1043424
PINK1
1
20446475
0.1911
48.53
48.53
0.7187
affec


RS607254
DDOST
1
20450355
0.4739
48.53
48.53
0.3243
affec


RS640742
PINK1
1
20454029
0.489
48.53
48.53
0.3107
affec


RS291988
C1QB
1
22449533

0.05

50.93
50.93
1.3028
old


RS631090
C1QB
1
22455878

0.021

50.97
50.97
1.6882
young


RS623607
C1QB
1
22456191
0.0861
50.98
50.98
1.0650
old


RS10580
C1QB
1
22457433
0.2066
50.98
50.98
0.6849
young


RS292007
C1QB
1
22460987

0.045

51.00
51.00
1.3458
affec


RS4659371
AIM1L
1
26262249
0.1168
55.10
55.10
0.9326
old


RS4659431
AIM1L
1
26263079
0.0646
55.10
55.10
1.1898
old


RS7517559
AIM1L
1
26267462

0.036

55.10
55.10
1.4473
old


RS4454539
AIM1L
1
26284951

0.018

55.10
55.10
1.7520
young


HCV1271113
C1ORF38
1
27810572

0.008

56.50
56.50
2.1192
old


RS3766398
C1ORF38
1
27813993

0.002

56.50
56.50
2.6383
affec


RS1467465
C1ORF38
1
27816091
0.0502
56.50
56.50
1.2993
affec


RS1467464
C1ORF38
1
27816338

0.004

56.50
56.50
2.4437
old


RS6564
C1ORF38
1
27817663

0.003

56.50
56.50
2.5686
old


1P0259
LAM5_HUMAN
1
30709045
0.0584
59.29
59.29
1.2336
affec


RS3795438
LAM5_HUMAN
1
30709109
0.0522
59.29
59.29
1.2823
old


1P0258
LAM5_HUMAN
1
30710514
0.0635
59.30
59.30
1.1972
affec


RS1188360
LAPTM5
1
30714848
0.2397
59.32
59.32
0.6203
young


1P0257
LAM5_HUMAN
1
30717443
0.1338
59.34
59.34
0.8735
old


HCV9635468
LAPTM5
1
30717836
0.3572
59.34
59.34
0.4471
old


RS1188349
LAM5_HUMAN
1
30726129
0.1056
59.39
59.39
0.9763
old


1P0260
LAM5_HUMAN
1
30732520
0.3152
59.42
59.42
0.5014
young


RS1407882
LAM5_HUMAN
1
30732667
0.2735
59.42
59.42
0.5630
old


RS2273979
LAPTM5
1
30733140
0.5827
59.43
59.43
0.2346
young


RS2070929
TAL1
1
47053524
0.2556
75.66
75.66
0.5924
young


RS2249665
TAL1
1
47057001
0.3905
75.66
75.66
0.4084
old


RS2250495
TAL1
1
47063294

0.04

75.66
75.66
1.3958
young


RS1050204
FCGR1A
1
146979500
0.0908
155.89
155.89
1.0419
young


RS1050208
FCGR1A
1
146979543
0.9719
155.89
155.89
0.0124
affec


HCV2596598
GBA
1
152417982
0.2076
161.05
161.05
0.6828
affec


HCV9632667
GBA
1
152418027
0.2939
161.05
161.05
0.5318
affec


RS2075569
GBA
1
152426152
0.2321
161.05
161.05
0.6343
affec


RS734073
GBA
1
152435157
0.2729
161.05
161.05
0.5640
young


RS1417938
CRP
1
156900978
0.205
165.97
165.97
0.6882
young


RS6027
F5
1
166670938
0.281
187.43
187.43
0.5513
young


RS4524
F5
1
166699132
0.1895
187.46
187.46
0.7224
old


RS2040442
F5
1
166722265
0.4052
187.48
187.48
0.3923
young


HCV341182
F5
1
166732964
0.5683
187.49
187.49
0.2454
young


RS6128
SELP
1
166750281
0.1835
187.51
187.51
0.7364
old


RS6136
SELP
1
166751328
0.065
187.51
187.51
1.1871
affec


RS6133
SELP
1
166752723

0.021

187.51
187.51
1.6778
affec


RS6132
SELP
1
166753685

0.021

187.52
187.52
1.6819
affec


RS6131
SELP
1
166768262
0.1962
187.53
187.53
0.7073
old


RS732314
SELP
1
166786631
0.4003
187.55
187.55
0.3976
old


RS909628
SELL
1
166848042
0.114
187.62
187.62
0.9431
affec


RS4987286
SELL
1
166865056
0.2802
187.63
187.63
0.5525
affec


RS1051091
SELL
1
166865086
0.1843
187.63
187.63
0.7345
young


RS689470
PTGS2
1
183880050
0.2675
201.28
201.28
0.5727
affec


RS2820312
LMOD1
1
199157514
0.2171
215.99
215.99
0.6633
affec


HCV1467674
LMOD1
1
199162969
0.1764
215.99
215.99
0.7535
young


RS2819346
LMOD1
1
199170344
0.1355
215.99
215.99
0.8681
old


RS2819366
LMOD1
1
199196238

0.007

215.99
215.99
2.1367
young


RS903357
CHI3L1
1
200435867
0.4242
216.82
216.82
0.3724
young


RS4950927
CHI3L1
1
200436890
0.9798
216.82
216.82
0.0089
old


RS946259
CHI3L1
1
200440434
0.154
216.82
216.82
0.8125
old


RS880633
CHI3L1
1
200441058
0.3597
216.82
216.82
0.4441
old


RS7515776
CHI3L1
1
200443960
0.5349
216.82
216.82
0.2717
old


RS2271627
CAPG
2
85596599

0.013

106.17
388.17
1.8928
old


RS2271625
CAPG
2
85600053
0.2977
106.18
388.18
0.5262
young


HCV2763587
CAPG
2
85612863
0.1336
106.23
388.23
0.8742
affec


RS1877954
CAPG
2
85628839
0.3883
106.28
388.28
0.4108
old


RS1877955
CAPG
2
85629066
0.089
106.28
388.28
1.0506
old


RS12888
VAMP5
2
85783277
0.1183
106.82
388.82
0.9270
old


HCV2091655
VAMP5
2
85793028
0.3619
106.86
388.86
0.4414
affec


RS14976
VAMP5
2
85793426
0.1344
106.86
388.86
0.8716
old


RS2228014
CXCR4
2
137083853
0.2998
146.11
428.11
0.5232
affec


RS6706557
CXCR4
2
137095930
0.2892
146.14
428.14
0.5388
young


RS3764917
FAP
2
163232880
0.1794
166.17
448.17
0.7462
old


RS2300750
FAP
2
163271853
0.5851
166.20
448.20
0.2328
old


HCV2780261
c
2
163284939

0.005

166.20
448.20
2.3372
old


RS3788968
FAP
2
163300144
0.5832
166.21
448.21
0.2342
old


RS1562315
HOXD1
2
177248026

0.017

182.39
464.39
1.7670
young


RS1446575
HOXD1
2
177250345
0.0624
182.39
464.39
1.2048
old


RS1374326
HOXD1
2
177260860
0.2378
182.40
464.40
0.6238
affec


RS1026032
HOXD1
2
177267367

0.028

182.41
464.41
1.5607
young


RS501333
ASB1
2
239622795
0.4175
254.82
536.82
0.3793
young


RS489244
ASB1
2
239627940
0.1784
254.83
536.83
0.7486
young


RS507812
ASB1
2
239638400
0.1181
254.86
536.86
0.9278
young


RS477041
ASB1
2
239642745
0.3191
254.87
536.87
0.4961
young


HCV320258
GLB1
3
33009951
0.0566
60.40
598.40
1.2472
affec


HCV440839
GLB1
3
33018248
0.1269
60.42
598.42
0.8965
affec


HCV143637
GLB1
3
33034652
0.0638
60.47
598.47
1.1952
old


HCV78337
GLB1
3
33047463
0.2526
60.50
598.50
0.5976
affec


HCV223628
GLB1
3
33103912
0.1368
60.66
598.66
0.8639
affec


RS3774634
CXCR6
3
45947034
0.3307
69.46
607.46
0.4806
old


RS936939
CXCR6
3
45947215
0.465
69.46
607.46
0.3325
affec


HCV1929536
CXCR6
3
45949636
0.4349
69.46
607.46
0.3616
young


RS2234358
CXCR6
3
45949636
0.4886
69.46
607.46
0.3110
young


RS319689
MAP4
3
47888759

0.016

70.56
608.56
1.8069
affec


RS6442089
MAP4
3
47917016

0.036

70.58
608.58
1.4473
young


RS2230169
MAP4
3
47918588
0.0562
70.58
608.58
1.2503
young


RS1060407
MAP4
3
47918629

0.034

70.58
608.58
1.4698
young


RS2166770
MAP4
3
47966265

0.008

70.61
608.61
2.1024
affec


RS1009316
BAX
3
54150382
0.0558
70.81
608.81
1.2534
young


RS905238
FTL
3
54157196
0.0955
70.82
608.82
1.0200
affec


HCV1845492
PVRL3
3
112123926
0.0928
126.83
664.83
1.0325
old


RS1477848
PVRL3
3
112138883
0.0658
126.83
664.83
1.1818
young


RS1477844
PVRL3
3
112150732
0.3471
126.83
664.83
0.4595
old


RS1351049
PVRL3
3
112163177

0.008

126.83
664.83
2.0757
young


RS2221065
CD96
3
112575294
0.3912
126.83
664.83
0.4076
young


RS1553970
CD96
3
112644012
0.098
126.87
664.87
1.0088
young


RS1877575

3
112748356
0.1576
126.94
664.94
0.8024
affec


RS1282980
LL5BETA
3
112893222

0.008

127.04
665.04
2.0915
affec


HCV3134278
LL5BETA
3
112984829

0.016

127.10
665.10
1.8097
old


HCV1941929
NP25
3
113041230
0.0663
127.13
665.13
1.1785
young


HCV9724398

3
113128656
0.358
127.19
665.19
0.4461
affec


RS1492486
GCET2
3
113168430
0.1326
127.22
665.22
0.8775
young


RS2029636

3
113242673
0.4073
127.27
665.27
0.3901
old


RS2272022
MOX2
3
113384751
0.3569
127.37
665.37
0.4475
old


HCV1195991
APG3
3
113573291
0.2683
127.49
665.49
0.5714
old


HCV3129378
URB
3
113729302
0.3287
127.60
665.60
0.4832
young


RS717706

3
113781096
0.096
127.63
665.63
1.0177
young


HCV1483985

3
113964461
0.0555
127.75
665.75
1.2557
affec


HCV3158985

3
114046343

0.025

127.81
665.81
1.6073
affec


RS3732812

3
114183928
0.3191
127.89
665.89
0.4961
affec


RS1875111
BOC
3
114299665
0.1162
127.89
665.89
0.9348
affec


HCV25644981

3
114402583
0.2345
127.89
665.89
0.6299
affec


HCV3040817

3
114609331
0.2661
127.92
665.92
0.5750
affec


RS921741
MAK3P
3
114764952
0.1687
128.07
666.07
0.7729
old


RS3773681
ATP6V1A
3
114844802
0.3954
128.15
666.15
0.4030
old


HCV2056002
DKFZP434C0328
3
114916170

0.014

128.22
666.22
1.8665
old


RS3765114
MGC42530
3
114976108
0.2955
128.28
666.28
0.5294
affec


HCV9020734
MGC42530
3
114994026
0.0522
128.30
666.30
1.2823
affec


RS324555
KIAA1407
3
115051009

0.037

128.36
666.36
1.4306
affec


HCV1941287
QTRTD1
3
115122727
0.1248
128.43
666.43
0.9038
affec


RS6280
DRD3
3
115211716
0.1731
128.52
666.52
0.7617
young


RS3732782
ZNF80
3
115276065

0.043

128.58
666.58
1.3625
affec


RS3732781
ZNF80
3
115276088
0.3825
128.58
666.58
0.4174
young


HCV1499152
ZNF80
3
115276221

0.026

128.58
666.58
1.5817
affec


RS3732780
ZNF80
3
115276721
0.0953
128.58
666.58
1.0209
old


HCV7789260
ZNF288
3
115387211
0.1086
128.69
666.69
0.9642
young


HCV74522
ZNF288
3
115485057
0.167
128.79
666.79
0.7773
affec


HCV11231447
ZNF288
3
115543280
0.1496
128.85
666.85
0.8251
young


HCV11239258
ZNF288
3
115662281

0.024

128.97
666.97
1.6253
old


RS3732481
ZNF288
3
115804314
0.1899
129.11
667.11
0.7215
young


RS2033406
LSAMP
3
117386034
0.1443
131.83
669.83
0.8407
affec


RS10934345

3
117530516
0.1973
131.87
669.87
0.7049
affec


RS2037009

3
117948900
0.1813
132.70
670.70
0.7416
old


RS1133603

3
117971681
0.2437
132.74
670.74
0.6131
young


RS4855909

3
118050719
0.3101
132.90
670.90
0.5085
old


RS938115

3
118096175
0.1376
132.99
670.99
0.8614
young


RS6788787

3
118191749
0.058
133.18
671.18
1.2366
affec


RS1915585

3
118229733

0.049

133.25
671.25
1.3089
old


RS1462845

3
118263911
0.2095
133.32
671.32
0.6788
young


RS4855900

3
118316168
0.233
133.42
671.42
0.6326
affec


RS1513162

3
118455987

0.042

133.70
671.70
1.3726
young


RS7427839

3
118486224
0.2652
133.76
671.76
0.5764
old


RS4643716

3
118488473
0.4683
133.77
671.77
0.3295
young


RS6790819

3
118497691
0.1693
133.78
671.78
0.7713
affec


RS4356827

3
118499645
0.1035
133.79
671.79
0.9851
old


RS2927275

3
118504970
0.2647
133.80
671.80
0.5772
old


RS1698042

3
118506049

0.005

133.80
671.80
2.3468
old


RS1501881

3
118510741

0.023

133.81
671.81
1.6326
affec


RS1698041

3
118520652

0.01

133.83
671.83
1.9872
old


RS2055426

3
118541245

0.003

133.87
671.87
2.5686
old


RS2937675

3
118544791

0.002

133.88
671.88
2.6778
old


3ID0340

3
118549524

0.005

133.89
671.89
2.2757
old


RS1875518

3
118550681

0.004

133.89
671.89
2.4089
affec


RS2937673

3
118553288

0.009

133.89
671.89
2.0362
old


RS1676232

3
118555740

3E−04

133.90
671.90
3.5229
old


3I0311

3
118557351
0.1187
133.90
671.90
0.9255
affec


RS1381801

3
118561796
0.1099
133.91
671.91
0.9590
young


RS2937666

3
118567599

0.007

133.92
671.92
2.1308
young


RS1910044

3
118571620
0.3167
133.93
671.93
0.4994
young


RS6778437

3
118584839
0.0714
133.99
671.99
1.1463
young


RS6795971

3
118589894
0.1006
134.01
672.01
0.9974
affec


RS1466416

3
118591707
0.1335
134.02
672.02
0.8745
old


RS1456186

3
118948306
0.215
134.64
672.64
0.6676
young


RS843855

3
119077436
0.3914
135.01
673.01
0.4074
young


RS1486336

3
119224904

0.048

135.49
673.49
1.3188
affec


RS1499989

3
119322105
0.0984
135.81
673.81
1.0070
young


RS1968010

3
119390121
0.1945
136.03
674.03
0.7111
affec


RS553070

3
119475838
0.1997
136.31
674.31
0.6996
affec


RS1401951

3
119546927
0.368
136.32
674.32
0.4342
young


RS705233

3
119790824
0.2371
136.32
674.32
0.6251
young


R5812824

3
119875547
0.1559
136.36
674.36
0.8072
young


RS1521299

3
119931630
0.0874
136.45
674.45
1.0585
young


RS4687959
IGSF11
3
119944315
0.0924
136.47
674.47
1.0343
affec


RS6779428
IGSF11
3
119960525
0.6104
136.50
674.50
0.2144
young


RS2160052
IGSF11
3
119962780

0.011

136.50
674.50
1.9469
old


RS39688

3
120063749
0.243
136.68
674.68
0.6144
affec


HCV106740
UPK1B
3
120213944
0.1641
136.93
674.93
0.7849
old


HCV394161
B4GALT4
3
120274470
0.0836
137.03
675.03
1.0778
young


HCV1291178

3
120351861
0.0888
137.16
675.16
1.0516
old


HCV392638
FLJ10902
3
120471737
0.6869
137.37
675.37
0.1631
old


RS1060569
C3ORF1
3
120557788
0.1157
137.45
675.45
0.9367
young


RS25676
ADPRH
3
120626280
0.4085
137.48
675.48
0.3888
young


RS1723969
PLA1A
3
120648554
0.2437
137.48
675.48
0.6131
affec


RS2272269
PLA1A
3
120652793
0.3243
137.49
675.49
0.4891
affec


RS2692622
PLA1A
3
120657863
0.382
137.49
675.49
0.4179
young


RS2873788
COX17
3
120699878
0.2143
137.50
675.50
0.6690
affec


HCV9152783
NR1I2
3
120820408
0.2415
137.54
675.54
0.6171
old


HCV148571
GSK3B
3
120931466
0.149
137.58
675.58
0.8268
affec


HCV1849042
GSK3B
3
121005728
0.3652
137.60
675.60
0.4375
affec


RS2199503
GSK3B
3
121099390
0.1349
137.63
675.63
0.8700
young


RS787204

3
121338849
0.1206
137.71
675.71
0.9187
old


HCV1545736
FSTL1
3
121435029
0.092
137.74
675.74
1.0362
old


RS1147707
FSTL1
3
121490149

0.033

137.76
675.76
1.4763
old


HCV11236738
NDUFB4
3
121635292
0.265
137.81
675.81
0.5768
young


RS2298958
HGD
3
121708192
0.4476
137.83
675.83
0.3491
affec


RS2229308
GTF2E1
3
121821347
0.4869
137.87
675.87
0.3126
young


RS470931

3
121947330
0.2619
137.91
675.91
0.5819
old


HCV123952

3
122111233
0.4231
137.97
675.97
0.3736
affec


RS1191299

3
122243458
0.2253
138.00
676.00
0.6472
old


RS2030531
POLQ
3
122476099
0.3214
138.00
676.00
0.4930
young


RS2877516
POLQ
3
122554774
0.1859
138.00
676.00
0.7307
affec


RS1873645
HCLS1
3
122669400
0.2481
138.00
676.00
0.6054
old


RS1128158
HCLS1
3
122671494

0.048

138.00
676.00
1.3170
young


RS2070180
HCLS1
3
122672239
0.2809
138.00
676.00
0.5514
affec


RS6807963
HCLS1
3
122674155
0.1739
138.00
676.00
0.7597
old


RS3772126
HCLS1
3
122675484

0.026

138.00
676.00
1.5850
young


RS3772127
HCLS1
3
122675826
0.2036
138.00
676.00
0.6912
old


HCV1986471
HCLS1
3
122683308
0.4187
138.00
676.00
0.3781
young


HCV1986466
HCLS1
3
122694194
0.0695
138.00
676.00
1.1580
young


HCV11236049
GOLGB1
3
122703105
0.2023
138.00
676.00
0.6940
young


RS1574115
GOLGB1
3
122790126
0.0989
138.00
676.00
1.0048
young


HCV173175
TRAITS
3
122885890
0.142
138.00
676.00
0.8477
old


HCV510429
SLC15A2
3
122935076
0.3797
138.00
676.00
0.4206
affec


RS1920309
SLC15A2
3
122986380

0.039

138.00
676.00
1.4089
affec


HCV180867
MGC50831
3
123061205
0.1797
138.00
676.00
0.7455
old


RS2681416

3
123138514
0.1102
138.00
676.00
0.9578
young


RS1501899
CASR
3
123228229
0.1182
138.00
676.00
0.9274
affec


HCV1412358
CASR
3
123237587
0.075
138.00
676.00
1.1249
old


HCV1412289
CASR
3
123311158
0.0583
138.00
676.00
1.2343
old


RS2270917
CASR
3
123322147
0.0949
138.00
676.00
1.0227
affec


NCV1412273
CASR
3
123329454

0.047

138.00
676.00
1.3307
old


HCV1844609
CSTA
3
123377333
0.5897
138.00
676.00
0.2294
affec


RS3749213
WDR5B
3
123454731
0.1845
138.00
676.00
0.7340
affec


HCV23715
KPNA1
3
123489016
0.1981
138.00
676.00
0.7031
affec


HCV58011
BAL
3
123592571
0.4893
138.04
676.04
0.3104
affec


RS1256196

3
123680823
0.2218
138.17
676.17
0.6540
young


HCV1402346
HSPBAP1
3
123780378
0.1366
138.32
676.32
0.8645
affec


RS2288677
DIRC2
3
123919192
0.4153
138.53
676.53
0.3816
young


HCV8993037

3
124034412
0.131
138.71
676.71
0.8827
young


HCV1541693
PDIR
3
124131457
0.4211
138.85
676.85
0.3756
old


RS3749286
PDIR
3
124201092
0.2756
138.96
676.96
0.5597
young


HCV1541690
SEC22A
3
124298953
0.1375
139.10
677.10
0.8617
young


HCV426990

3
124327354
0.0862
139.14
677.14
1.0645
young


HCV11231121

3
124365956
0.6655
139.17
677.17
0.1769
old


HCV3035758

3
124497648
0.0578
139.30
677.30
1.2381
affec


RS2697519

3
124612520

0.029

139.41
677.41
1.5421
young


HCV1602661
MYLK
3
124729452

0.035

139.47
677.47
1.4572
old


HCV1602707
MYLK
3
124824325
0.1483
139.49
677.49
0.8289
old


HCV1720000
HAPIP
3
125143188

0.044

139.57
677.57
1.3565
old


HCV9532700
HAPIP
3
125386334
0.6823
139.62
677.62
0.1660
affec


RS333349
HAPIP
3
125717239
0.2766
139.83
677.83
0.5581
young


RS1846892
HAPIP
3
125720194
0.1978
139.83
677.83
0.7038
affec


HCV1485549
HAPIP
3
125733054

0.042

139.84
677.84
1.3809
old


HCV11792770
HAPIP
3
125742906
0.0557
139.85
677.85
1.2541
young


HCV1901477
UMPS
3
125777643
0.4462
139.88
677.88
0.3505
affec


HCV1901488
UMPS
3
125783709
0.4369
139.89
677.89
0.3596
affec


RS674165
ITGB5
3
125798581
0.3427
139.90
677.90
0.4651
affec


RS585021
ITGB5
3
125803770
0.3179
139.90
677.90
0.4977
old


HCV11792629
ITGB5
3
125831953
0.3481
139.93
677.93
0.4583
affec


HCV3113140
ITGB5
3
125841936
0.584
139.94
677.94
0.2336
affec


RS3772840
ITGB5
3
125871265
0.2416
139.96
677.96
0.6169
affec


HCV1901570
ITGB5
3
125884474
0.9204
139.97
677.97
0.0360
young


HCV108358
MUC13
3
125977596
0.5084
140.05
678.05
0.2938
old


RS2981534

3
126085011
0.2116
140.15
678.15
0.6745
old


RS1574340
SLC12A8
3
126123578
0.6703
140.18
678.18
0.1737
young


HCV1514189
SLC12A8
3
126183586
0.3824
140.19
678.19
0.4175
affec


HCV1514244
ZNF148
3
126272722
0.257
140.23
678.23
0.5901
old


HCV11230314
OSBPL11
3
126585122
0.6525
140.72
678.72
0.1854
affec


RS2979310

3
126709410

0.013

140.92
678.92
1.8928
young


HCV1477490

3
127000905
0.2088
141.37
679.37
0.6803
young


HCV11237732

3
127019853
0.3247
141.40
679.40
0.4885
affec


HCV123667
FLJ20473
3
127124162
0.4552
141.57
679.57
0.3418
old


RS1868121
FTHFD
3
127226562
0.1462
141.73
679.73
0.8351
affec


HCV9474551
KLF15
3
127378591

4E−04

141.99
679.99
3.3979
young


RS777513
FLJ31300
3
127521055
0.4505
142.24
680.24
0.3463
young


RS1056523
C4ST3
3
127582116
0.4658
142.34
680.34
0.3318
old


RS1056522
C4ST3
3
127582254
0.1436
142.34
680.34
0.8428
young


HCV1935770

3
127673585
0.5224
142.50
680.50
0.2820
young


RS2053820
MGC13016
3
127816215
0.081
142.75
680.75
1.0915
young


HCV1290372
MGC13016
3
127929507
0.7683
142.95
680.95
0.1145
affec


HCV2067961
PLXNA1
3
128034908
0.0734
143.13
681.13
1.1343
affec


RS900422

3
128188468
0.2725
143.40
681.40
0.5646
young


RS1001942

3
128452430
0.5701
143.86
681.86
0.2440
young


RS2720240

3
128568283
0.1387
143.94
681.94
0.8579
old


RS920233
TPRA40
3
128615993
0.0618
143.94
681.94
1.2090
affec


HCV7468669
PODLX2
3
128700179
0.6324
143.94
681.94
0.1990
old


RS664910
MGLL
3
128794939
0.1381
143.94
681.94
0.8598
affec


RS874546
MGLL
3
128859321
0.7188
143.94
681.94
0.1434
affec


RS2217628

3
128972538
0.1182
143.94
681.94
0.9274
affec


HCV177600
RUVBL1
3
129138417

0.009

143.94
681.94
2.0362
young


RS2687720
SELB
3
129239864
0.2306
143.94
681.94
0.6371
old


RS2955103
SELB
3
129336145

0.015

143.94
681.94
1.8386
young


RS760383
SELB
3
129440474
0.2085
143.94
681.94
0.6809
affec


HCV375170
GATA2
3
129521443

0.005

143.94
681.94
2.3188
affec


RS1573858
GATA2
3
129526769

0.002

143.94
681.94
2.8239
affec


RS6439129
GATA2
3
129533682

0.002

143.94
681.94
2.6383
affec


HCV1842067
GR6
3
129618478
0.1485
143.94
681.94
0.8283
affec


RS1127030
RPN1
3
129659862

0.004

143.94
681.94
2.3872
affec


RS2712418
RPN1
3
129664545
0.2584
143.94
681.94
0.5877
affec


RS2712371
RPN1
3
129667123

0.004

143.94
681.94
2.4318
affec


RS4857914
RPN1
3
129671593

0.045

143.94
681.94
1.3458
affec


HCV115673
RAB7
3
129767321
0.4451
143.94
681.94
0.3515
young


HCV11237369
RAB7
3
129852779
0.2276
143.94
681.94
0.6428
young


RS1683804
NPD002
3
129937234
0.1769
143.94
681.94
0.7523
old


HCV1861453

3
130029463
0.3279
143.94
681.94
0.4843
affec


RS395020
FLJ12057
3
130065644
0.3972
143.94
681.94
0.4010
affec


HCV1862760
ZNF9
3
130227866
0.431
143.94
681.94
0.3655
young


HCV11231355
H1FX
3
130356394
0.087
143.94
681.94
1.0605
old


HCV11909732
MBD4
3
130472576

0.02

143.94
681.94
1.7033
old


HCV8765854
PLXND1
3
130588168
0.0613
143.97
681.97
1.2125
affec


RS2245285
PLXND1
3
130607322

0.012

144.00
682.00
1.9245
affec


RS2245278
PLXND1
3
130607544

0.019

144.00
682.00
1.7190
affec


RS2285368
PLXND1
3
130612408
0.214
144.01
682.01
0.6696
old


RS2255703
PLXND1
3
130614165
0.0731
144.02
682.02
1.1361
old


RS2255226
PLXND1
3
130618132

0.018

144.02
682.02
1.7447
affec


RS2285370
PLXND1
3
130623364
0.2378
144.03
682.03
0.6238
young


RS2285373
PLXND1
3
130629118
0.3172
144.04
682.04
0.4987
young


HCV8765558

3
130687872
0.3718
144.14
682.14
0.4297
young


RS2811343

3
130871486

0.004

144.46
682.46
2.3565
affec


RS938194

3
130994409
0.0506
144.67
682.67
1.2958
young


HCV8290655

3
131296957

0.026

145.19
683.19
1.5884
affec


HCV8291996

3
131387466
0.1991
145.34
683.34
0.7009
affec


RS322115
FLJ35880
3
131510935
0.1305
145.55
683.55
0.8844
old


RS1508520

3
131618568

0.001

145.74
683.74
2.9586
old


HCV3134777
AGTR1
3
149741425
0.1038
165.32
703.32
0.9838
affec


RS2640543
AGTR1
3
149753278
0.1184
165.32
703.32
0.9266
old


RS389566
AGTR1
3
149767291
0.3337
165.32
703.32
0.4766
affec


HCV8758668
AGTR1
3
149780304

0.039

165.32
703.32
1.4056
affec


RS275645
AGTR1
3
149785363
0.3124
165.32
703.32
0.5053
affec


HCV11803100
AGTR1
3
149861063
0.0879
165.32
703.32
1.0560
old


RS3772587
AGTR1
3
149897825
0.1834
165.32
703.32
0.7366
old


RS6141
THPO
3
185411179
0.0969
195.60
733.60
1.0137
affec


RS6142
THPO
3
185412062
0.1926
195.60
733.60
0.7153
old


RS1801212
WFS1
4
6367061
0.2393
12.14
779.14
0.6211
affec


RS1801214
WFS1
4
6367564
0.0583
12.14
779.14
1.2343
young


RS734312
WFS1
4
6367896
0.242
12.14
779.14
0.6162
old


RS1046314
WFS1
4
6368497
0.1159
12.14
779.14
0.9359
young


RS1046316
WFS1
4
6368629
0.2628
12.14
779.14
0.5804
young


HCV2674568
SLA/LP
4
24892583
0.5865
38.77
805.77
0.2317
young


RS1035091
SLA/LP
4
24902757
0.1528
38.77
805.77
0.8159
affec


RS5743618
TLR1
4
38695828
0.1168
53.45
820.45
0.9326
affec


RS5743614
TLR1
4
38696115
0.0734
53.45
820.45
1.1343
affec


RS3923647
TLR1
4
38696719
0.1077
53.45
820.45
0.9678
affec


RS4833095
TLR1
4
38696890
0.1076
53.45
820.45
0.9682
affec


RS5743596
TLR1
4
38699708
0.1226
53.46
820.46
0.9115
young


RS5743565
TLR1
4
38703163
0.1994
53.47
820.47
0.7003
affec


HCV151279
SPP1
4
89349139

0.031

96.16
863.16
1.5100
young


RS2853744
SPP1
4
89354643
0.1428
96.16
863.16
0.8453
young


HCV1840808
SPP1
4
89354816
0.1346
96.16
863.16
0.8710
young


RS2853749
SPP1
4
89356209

0.025

96.16
863.16
1.6038
affec


RS4754
SPP1
4
89361087

0.024

96.16
863.16
1.6234
young


RS1126616
SPP1
4
89362248

0.027

96.16
863.16
1.5751
young


RS1126772
SPP1
4
89362581
0.1167
96.16
863.16
0.9329
young


RS9138
SPP1
4
89362737

0.03

96.16
863.16
1.5302
young


RS2728116
PKD2
4
89389445

0.038

96.16
863.16
1.4260
affec


HCV258916
PKD2
4
89390859
0.0803
96.16
863.16
1.0953
affec


RS2728110
PKD2
4
89411278

0.007

96.16
863.16
2.1367
affec


RS2725218
PKD2
4
89418363
0.1703
96.16
863.16
0.7688
affec


RS2728105
PKD2
4
89430462
0.1943
96.16
863.16
0.7115
affec


RS221330
HADHSC
4
109380187
0.053
112.87
879.87
1.2757
young


RS141066
HADHSC
4
109390371
0.0647
112.89
879.89
1.1891
young


RS763432
HADHSC
4
109390457
0.2931
112.89
879.89
0.5330
old


RS732941
HADHSC
4
109403924
0.4668
112.90
879.90
0.3309
old


RS221347
HADHSC
4
109414442
0.6811
112.92
879.92
0.1668
affec


RS1574637
NPY1R
4
164819719

0.044

163.24
930.24
1.3575
affec


RS9764
NPY1R
4
164823032
0.3101
163.25
930.25
0.5085
old


RS5577
NPY1R
4
164825370
0.4758
163.25
930.25
0.3226
affec


RS4518200
NPY1R
4
164832049

0.025

163.26
930.26
1.6091
affec


HCV385214
GLRA3
4
176263722
0.1128
176.19
943.19
0.9477
young


HCV9539364
GLRA3
4
176274606
0.235
176.19
943.19
0.6289
old


HCV8299063
GLRA3
4
176303082
0.2026
176.19
943.19
0.6934
affec


RS2046485
GLRA3
4
176355509
0.6248
176.19
943.19
0.2043
young


RS3749233
ACSL1
4
186383123

0.037

198.10
965.10
1.4318
old


HCV1170089
ACSL1
4
186391214

0.025

198.18
965.18
1.6003
affec


HCV1170063
ACSL1
4
186419601

0.018

198.43
965.43
1.7375
affec


RS2280297
ACSL1
4
186432003

0.03

198.54
965.54
1.5229
old


HCV2390582
MATP
5
34018032
0.1542
49.98
1022.98
0.8119
young


RS2228140
IL7R
5
35871330

0.024

52.55
1025.55
1.6253
old


RS1494555
IL7R
5
35916691

0.023

52.55
1025.55
1.6308
old


RS2270555
IL7R
5
35916774
0.2835
52.55
1025.55
0.5474
affec


RS987106
IL7R
5
35921094
0.0903
52.55
1025.55
1.0443
old


RS3194051
IL7R
5
35921775
0.4191
52.55
1025.55
0.3777
affec


RS1050674
LHFPL2
5
77867162

0.037

83.09
1056.09
1.4306
young


HCV3263440
LHFPL2
5
77899327

0.042

83.12
1056.12
1.3726
young


HCV3263427
LHFPL2
5
77913885
0.1637
83.14
1056.14
0.7860
old


HCV3263409
LHFPL2
5
77926977
0.2523
83.16
1056.16
0.5981
old


RS1561735
LHFPL2
5
77950301

0.029

83.18
1056.18
1.5331
old


HCV2084766
ADRB2
5
148235156
0.0686
150.34
1123.34
1.1637
affec


RS2277028
GM2A
5
150661186
0.0828
154.43
1127.43
1.0820
old


5P0001GM2A
GM2A
5
150667919
0.0948
154.45
1127.45
1.0232
old


RS153478
GM2A
5
150667949
0.1278
154.45
1127.45
0.8935
old


RS248465
GM2A
5
150671563
0.0875
154.45
1127.45
1.0580
young


5P0002GM2A
GM2A
5
150675246
0.5203
154.46
1127.46
0.2837
old


RS2075783
GM2A
5
150675290
0.1292
154.46
1127.46
0.8887
old


RS1048723
GM2A
5
150675522
0.4374
154.46
1127.46
0.3591
affec


RS153450
GM2A
5
150676967

0.022

154.47
1127.47
1.6517
young


RS264834
DOCK2
5
169063385
0.1693
175.34
1148.34
0.7713
affec


RS2279318
DOCK2
5
169111769

0.02

175.34
1148.34
1.7011
affec


HCV3138900
DOCK2
5
169129475

0.039

175.34
1148.34
1.4145
young


HCV1991155
DOCK2
5
169285820
0.0643
175.34
1148.34
1.1918
young


RS259894
DOCK2
5
169339778
0.2832
175.34
1148.34
0.5479
young


RS3776754
STK10
5
171553499
0.2856
179.15
1152.15
0.5442
young


HCV1191601
STK10
5
171570835
0.4158
179.16
1152.16
0.3811
young


RS2009658
LTA
6
31642549
0.1112
44.91
1200.91
0.9539
affec


RS1800683
LTA
6
31644375
0.2059
44.91
1200.91
0.6863
affec


RS2239704
LTA
6
31644445
0.1247
44.91
1200.91
0.9041
affec


RS2857713
LTA
6
31644860

0.03

44.91
1200.91
1.5258
young


HCV2451908
LTA
6
31644860
0.1574
44.91
1200.91
0.8030
young


RS1041981
LTA
6
31645088
0.162
44.91
1200.91
0.7905
affec


RS3093665
LTA
6
31649695
0.6647
44.91
1200.91
0.1774
old


HCV2455646
HLA-
6
32480465

0.034

45.50
1201.50
1.4647
young



DRA


RS8084
HLA-
6
32482258
0.0982
45.50
1201.50
1.0079
affec



DRA


RS3134994
HLA-
6
32684102

0.04

45.56
1201.56
1.3947
affec



DQB1


RS2051600
HLA-
6
32756316

0.048

45.79
1201.79
1.3170
affec



DQA2


RS5018343
HLA-
6
32757126

0.017

45.79
1201.79
1.7620
old



DQA2


RS2395252
HLA-
6
32758327
0.2093
45.79
1201.79
0.6792
old



DQA2


RS2213566
HLA-
6
32760040
0.1537
45.80
1201.80
0.8133
old



DQA2


RS1042434
HLA-
6
33083392
0.3749
46.84
1202.84
0.4261
young



DPA1


RS1042174
HLA-
6
33084513
0.1988
46.84
1202.84
0.7016
old



DPA1


RS3135021
HLA-
6
33092445
0.0536
46.87
1202.87
1.2708
affec



DPA1


RS1367730
HLA-
6
33105001
0.3394
46.91
1202.91
0.4693
young



DPA1


RS1051931
PLA2G7
6
46719779
0.1224
73.13
1229.13
0.9122
old


RS1805018
PLA2G7
6
46726139
0.0938
73.13
1229.13
1.0278
young


RS1805017
PLA2G7
6
46731058

0.006

73.13
1229.13
2.2518
old


HCV2032816
PLA2G7
6
46746128

0.003

73.13
1229.13
2.4815
old


RS1862008
PLA2G7
6
46757115

0.007

73.13
1229.13
2.1739
affec


RS1014310
BPAG1
6
56484911

0.029

80.01
1236.01
1.5406
old


RS2024751
BPAG1
6
56491004
0.0659
80.01
1236.01
1.1811
affec


RS1024196
BPAG1
6
56554325
0.2547
80.02
1236.02
0.5940
old


RS2613118
BPAG1
6
56775479

0.042

80.06
1236.06
1.3737
affec


RS3752581
PLN
6
118915300

0.015

121.97
1277.97
1.8125
young


6P0325
PLN
6
118915300

0.025

121.97
1277.97
1.6073
young


RS503031
PLN
6
118922380
0.3777
121.97
1277.97
0.4229
young


6P0324
PLN
6
118926210

0.027

121.97
1277.97
1.5768
young


6P0326
PLN
6
118927230

0.046

121.97
1277.97
1.3335
affec


RS1051429
PLN
6
118927392

1E−04

121.97
1277.97
4.0000
young


RS1998482
PLN
6
118931682
0.3632
121.97
1277.97
0.4399
affec


RS3734382
PLN
6
118932531

0.001

121.97
1277.97
2.9586
young


RS1385681
SMPDL3A
6
123099762

0.033

123.04
1279.04
1.4881
young


HCV375819
SMPDL3A
6
123103040
0.0761
123.05
1279.05
1.1186
old


RS869478
SMPDL3A
6
123104550

0.046

123.05
1279.05
1.3344
young


HCV11639376
SMPDL3A
6
123109735
0.151
123.05
1279.05
0.8210
young


RS1799971
OPRM1
6
154391788
0.4823
155.08
1311.08
0.3167
affec


RS524731
OPRM1
6
154406083
0.2537
155.11
1311.11
0.5957
affec


RS495491
OPRM1
6
154413533
0.3433
155.12
1311.12
0.4643
young


RS2075572
OPRM1
6
154442995
0.1601
155.17
1311.17
0.7956
affec


RS609148
OPRM1
6
154462005

0.014

155.17
1311.17
1.8570
affec


HCV11233252
STEAP
7
22355367

0.026

36.03
1379.03
1.5850
young


RS199348
GPNMB
7
23035370

0.023

37.81
1380.81
1.6383
affec


HCV963057
GPNMB
7
23036018

0.029

37.81
1380.81
1.5452
old


HCV3148292
GPNMB
7
23038805

0.019

37.81
1380.81
1.7122
old


RS199354
GPNMB
7
23038844
0.2886
37.81
1380.81
0.5397
old


RS2268748
GPNMB
7
23055443
0.3093
37.85
1380.85
0.5096
affec


RS5574
NPY
7
24071405

0.023

38.94
1381.94
1.6440
young


RS5573
NPY
7
24325077

0.015

39.02
1382.02
1.8327
young


RS1554494
UPP1
7
47868969

0.021

69.82
1412.82
1.6882
young


HCV406653
UPP1
7
47872326

0.027

69.82
1412.82
1.5751
young


RS1178970
FKBP6
7
71817507
0.2217
84.52
1427.52
0.6542
old


RS757941
FKBP6
7
71823497

0.015

84.52
1427.52
1.8268
old


RS374890
FKBP6
7
71852334
0.1216
84.52
1427.52
0.9151
old


RS1178968
FKBP6
7
72179548
0.3068
87.08
1430.08
0.5131
old


RS1045642
ABCB1
7
86099488
0.0746
98.27
1441.27
1.1273
affec


RS1128503
ABCB1
7
86791630
0.2757
98.44
1441.44
0.5596
affec


HCV2614970
ABCB1
7
86841469
0.0693
98.44
1441.44
1.1593
old


RS2214102
ABCB1
7
86841530
0.1155
98.44
1441.44
0.9374
old


RS2158746
STEAP
7
89396798
0.0928
100.23
1443.23
1.0325
old


RS39283
STEAP
7
89400835
0.3351
100.24
1443.24
0.4748
affec


RS39286
STEAP
7
89404279
0.1618
100.24
1443.24
0.7910
old


RS2286254
STEAP
7
89405670
0.5045
100.24
1443.24
0.2971
affec


RS437831
FABP5
8
82240584
0.5983
97.93
1610.43
0.2231
young


RS202275
FABP5
8
82250480
0.1955
97.97
1610.47
0.7089
young


RS202281
FABP5
8
82253950
0.0997
97.99
1610.49
1.0013
young


RS2252807
SLA
8
134019501
0.0719
147.49
1659.99
1.1433
affec


HCV1190217
ANKRD15
9
522762
0.3159
0.00
1684.00
0.5005
affec


RS2641989
ANKRD15
9
542379

0.047

0.00
1684.00
1.3242
old


HCV1182387
ADFP
9
19105720
0.2863
33.60
1717.60
0.5432
young


RS3824369
ADFP
9
19116565
0.0508
33.62
1717.62
1.2941
affec


RS1969980
GCNT1
9
74573227
0.4972
73.03
1757.03
0.3035
young


RS1057406
GCNT1
9
74575448
0.1741
73.03
1757.03
0.7592
young


RS707739
GCNT1
9
74576022
0.3716
73.03
1757.03
0.4299
affec


HCV11763416
GCNT1
9
74582459
0.1179
73.03
1757.03
0.9285
affec


HCV2704852
CTSL
9
85790518

0.047

92.00
1776.00
1.3242
old


RS2274611
CTSL
9
85799794
0.101
92.02
1776.02
0.9957
affec


RS2378757
CTSL
9
85800899
0.1833
92.03
1776.03
0.7368
affec


RS3128510
CTSL
9
85802727
0.1418
92.03
1776.03
0.8483
affec


RS1027268
ROR2
9
89712759
0.4149
99.32
1783.32
0.3821
old


HCV11889939
ROR2
9
89823450
0.0676
99.45
1783.45
1.1701
old


RS4744098
ROR2
9
89885691
0.1741
99.51
1783.51
0.7592
affec


RS1881385
ROR2
9
89938190
0.1356
99.57
1783.57
0.8677
affec


HCV203542
ROR2
9
89993111

0.017

99.62
1783.62
1.7670
young


HCV1435528
FBP1
9
92725520
0.5689
102.25
1786.25
0.2450
old


HCV11380659
ALOX5
10
45175490
0.5012
66.97
1896.97
0.3000
young


RS2115819
ALOX5
10
45185095
0.1601
66.98
1896.98
0.7956
young


RS892691
ALOX5
10
45201098
0.5357
66.99
1896.99
0.2711
young


RS3740107
ALOX5
10
45207776
0.1431
66.99
1896.99
0.8444
young


RS2242332
ALOX5
10
45222245
0.1535
66.99
1896.99
0.8139
young


RS2255174
SLIT1
10
98480960
0.319
118.58
1948.58
0.4962
affec


RS2784920
SLIT1
10
98578215
0.3611
118.86
1948.86
0.4424
affec


RS1565495
SLIT1
10
98603394
0.567
118.93
1948.93
0.2464
old


RS2071616
FGFR2
10
122944382
0.4336
142.78
1972.78
0.3629
affec


RS1047100
FGFR2
10
122962745
0.1942
142.82
1972.82
0.7118
young


HCV8899692
FGFR2
10
122962745
0.319
142.82
1972.82
0.4962
affec


RS1078806
FGFR2
10
123003562
0.2664
142.93
1972.93
0.5745
young


HCV438264
RPLP2
11
803830

0.043

0.00
2000.00
1.3655
affec


RS4131364
TTS-2.2
11
803830

0.021

0.00
2000.00
1.6696
affec


RS1135628
TTS-2.2
11
815456
0.1877
0.00
2000.00
0.7265
young


HCV113313
CD151
11
816753
0.1094
0.00
2000.00
0.9610
affec


RS1138714
TTS-2.2
11
816753
0.1086
0.00
2000.00
0.9642
affec


RS4075289
TTS-2.2
11
822313
0.2992
0.00
2000.00
0.5240
old


RS2292962
CTSD
11
1742630
0.1193
2.44
2002.44
0.9234
affec


RS1317356
CTSD
11
1743447
0.1309
2.44
2002.44
0.8831
old


RS17571
CTSD
11
1746903

0.034

2.44
2002.44
1.4750
old


RS830083
ACP2
11
47218360
0.2321
58.40
2058.40
0.6343
affec


RS11988
ACP2
11
47225569
0.2032
58.40
2058.40
0.6921
affec


RS2242261
ACP2
11
47231117
0.2201
58.40
2058.40
0.6574
affec


HCV1301047
ACP2
11
47234245
0.2999
58.40
2058.40
0.5230
affec


RS3758673
NR1H3
11
47243226
0.1476
58.40
2058.40
0.8309
old


RS2279238
NR1H3
11
47246333
0.4009
58.40
2058.40
0.3970
affec


RS1449627
NR1H3
11
47255293
0.3559
58.40
2058.40
0.4487
young


RS2291119
NR1H3
11
47262510
0.0758
58.40
2058.40
1.1203
affec


RS326214
NR1H3
11
47262669
0.3146
58.40
2058.40
0.5022
old


HCV25595878
TCIRG1
11
64676766
0.1957
66.50
2066.50
0.7084
affec


RS906713
TCIRG1
11
67589290
0.0679
67.48
2067.48
1.1681
young


RS2075609
TCIRG1
11
67592296

0.021

67.48
2067.48
1.6861
old


RS11481
TCIRG1
11
67595695
0.2304
67.48
2067.48
0.6375
old


RS2851069
SLC21A9
11
74588664
0.6426
77.78
2077.78
0.1921
old


HCV1786352
SLC21A9
11
74601797
0.4833
77.78
2077.78
0.3158
affec


RS2851109
SLC21A9
11
74604384
0.555
77.78
2077.78
0.2557
affec


RS609887
MMP7
11
101922284
0.0613
98.98
2098.98
1.2125
young


11P0321
MMP7
11
101929004
0.1658
98.98
2098.98
0.7804
old


HCV12088722
MMP7
11
101929142

0.009

98.98
2098.98
2.0362
affec


RS1996352
MMP7
11
101933964
0.0932
98.98
2098.98
1.0306
affec


HCV3210838
MMP7
11
101936310

0.003

98.98
2098.98
2.5686
affec


RS1943779
MMP7
11
101944908
0.2188
98.98
2098.98
0.6600
young


RS674546
MMP12
11
102268356

0.049

99.11
2099.11
1.3098
affec


RS505770
MMP12
11
102271927
0.1518
99.11
2099.11
0.8187
affec


HCV785907
MMP12
11
102274359
0.2482
99.11
2099.11
0.6052
young


RS2276109
MMP12
11
102283508
0.1997
99.12
2099.12
0.6996
young


RS1277718
MMP12
11
102285268
0.1288
99.12
2099.12
0.8901
young


RS660407
FLI1
11
128175388

0.032

131.26
2131.26
1.5003
old


RS497714
FLI1
11
128181205
0.0531
131.26
2131.26
1.2749
old


RS526091
FLI1
11
128188604
0.231
131.26
2131.26
0.6364
affec


RS656972
FLI1
11
128198398
0.2855
131.27
2131.27
0.5444
affec


RS687326
FLI1
11
128210233
0.1014
131.47
2131.47
0.9940
young


RS2301262
PTPN6
12
6926121
0.1455
16.22
2157.22
0.8371
old


HCV3266450
PTPN6
12
6927395

0.038

16.23
2157.23
1.4214
affec


RS7978658
PTPN6
12
6928231

0.039

16.23
2157.23
1.4101
affec


RS7966756
PTPN6
12
6932652
0.2119
16.25
2157.25
0.6739
affec


RS2110072
PTPN6
12
6935896
0.1585
16.26
2157.26
0.8000
old


RS253147
CLECSF2
12
9906349
0.2628
20.27
2161.27
0.5804
affec


RS1050286
OLR1
12
10202830
0.0555
20.27
2161.27
1.2557
young


12P0322
OLR1
12
10203915
0.0737
20.27
2161.27
1.1325
affec


HCV3130874
OLR1
12
10204532
0.0635
20.27
2161.27
1.1972
affec


RS3736232
OLR1
12
10204625
0.0819
20.27
2161.27
1.0867
affec


RS3741860
OLR1
12
10211711
0.0952
20.27
2161.27
1.0214
affec


RS2742113
OLR1
12
10214149
0.063
20.27
2161.27
1.2007
affec


RS1548836
RAI3
12
12945501
0.2949
29.49
2170.49
0.5303
young


RS2075288
RAI3
12
12952561
0.4566
29.55
2170.55
0.3405
young


RS1061047
RAI3
12
12957487
0.1835
29.59
2170.59
0.7364
young


RS1800801
MGP
12
14930055
0.2413
31.67
2172.67
0.6174
old


RS3741552
ITPR2
12
26624254
0.1641
46.84
2187.84
0.7849
affec


RS2230372
ITPR2
12
26676117
0.3387
46.95
2187.95
0.4702
old


RS2291264
ITPR2
12
26702044
0.1558
47.01
2188.01
0.8074
affec


RS1900941
ITPR2
12
26759589
0.0604
47.13
2188.13
1.2190
affec


RS1449568
ITPR2
12
26802972

0.03

47.23
2188.23
1.5229
affec


RS2016107
TUBA3
12
47863524
0.1658
64.43
2205.43
0.7804
old


RS6580704
TUBA3
12
47866447
0.2749
64.43
2205.43
0.5608
old


RS1039225
TUBA3
12
47868959
0.0957
64.43
2205.43
1.0191
young


RS1874908
TUBA3
12
47870297
0.3594
64.43
2205.43
0.4444
old


HCV48424
PTPRR
12
69334002
0.6934
82.12
2223.12
0.1590
affec


RS2137537
PTPRR
12
69399354

0.017

82.12
2223.12
1.7773
young


RS972769
PTPRR
12
69419738
0.125
82.14
2223.14
0.9031
affec


HCV155408
PTPRR
12
69525275
0.1261
82.33
2223.33
0.8993
affec


HCV93800
PTPRR
12
69570924

0.042

82.41
2223.41
1.3809
young


RS2300588
LUM
12
90002365
0.1377
96.09
2237.09
0.8611
young


RS2230754
PLXNC1
12
93045974
0.3762
97.16
2238.16
0.4246
affec


RS3858609
PLXNC1
12
93067143
0.2971
97.16
2238.16
0.5271
old


RS2305971
PLXNC1
12
93105768

0.02

97.16
2238.16
1.7011
young


RS2242498
PLXNC1
12
93152063
0.3119
97.30
2238.30
0.5060
young


RS1681866
PLXNC1
12
93178913
0.2017
97.41
2238.41
0.6953
old


RS25642

12
120071870
0.2587
139.61
2280.61
0.5872
young


RS25643
P2RX4
12
120072740
0.146
139.61
2280.61
0.8356
young


RS25644
CAMKK2
12
120078599
0.0763
139.61
2280.61
1.1175
young


RS2071272
P2RX4
12
120082745
0.1241
139.61
2280.61
0.9062
young


RS6750
OSF-2
13
35934832
0.3582
31.37
2342.37
0.4459
old


HCV227836
OSF-2
13
35944998
0.2274
31.39
2342.39
0.6432
young


HCV11170344
OSF-2
13
35952189
0.2378
31.41
2342.41
0.6238
young


HCV1909050
OSF-2
13
35952905
0.5775
31.41
2342.41
0.2384
old


HCV1909043
OSF-2
13
35961093
0.3062
31.43
2342.43
0.5140
old


HCV1909039
OSF-2
13
35969741
0.2654
31.45
2342.45
0.5761
young


RS1890139
PCCA
13
98480093
0.3662
81.06
2392.06
0.4363
young


HCV1823453
PCCA
13
98526614

0.018

81.29
2392.29
1.7423
young


HCV2747127
PCCA
13
98616632
0.0531
81.64
2392.64
1.2749
old


RS1296332
PCCA
13
98811747
0.2807
81.64
2392.64
0.5518
affec


HCV2786590
RTN1
14
58099812
0.2634
66.81
2486.81
0.5794
affec


HCV1964266
RTN1
14
58169316
0.1343
66.81
2486.81
0.8719
affec


HCV1964289
RTN1
14
58199104
0.116
66.81
2486.81
0.9355
affec


HCV2141342
RTN1
14
58293242
0.0786
66.81
2486.81
1.1046
young


RS1951795
HIF1A
14
60161467
0.1871
67.51
2487.51
0.7279
young


RS3783752
HIF1A
14
60175733

0.007

67.52
2487.52
2.1612
affec


RS2301111
HIF1A
14
60190242
0.3087
67.54
2487.54
0.5105
young


RS2301113
HIF1A
14
60196589
0.1522
67.54
2487.54
0.8176
affec


RS2057482
HIF1A
14
60203889
0.2456
67.55
2487.55
0.6098
young


RS875395
ITPK1
14
91392134

0.031

107.41
2527.41
1.5072
young


HCV1259613
ITPK1
14
91399119

0.039

107.43
2527.43
1.4067
old


RS2295394
ITPK1
14
91402784
0.4938
107.44
2527.44
0.3064
young


RS2402226
ITPK1
14
91409576

0.013

107.45
2527.45
1.8729
old


RS1614269
ITPK1
14
91493546
0.1583
107.63
2527.63
0.8005
old


RS1740595
ITPK1
14
91502571
0.1124
107.65
2527.65
0.9492
old


RS4905043
ITPK1
14
91540050
0.0743
107.73
2527.73
1.1290
affec


HCV1258994
ITPK1
14
91544259
0.659
107.74
2527.74
0.1811
affec


HCV1882714
C14ORF132
14
94541644
0.2806
114.81
2534.81
0.5519
affec


HCV1882697
C14ORF132
14
94549500
0.1478
114.81
2534.81
0.8303
young


HCV9706786
PP9099
15
43808547
0.2693
42.89
2583.89
0.5698
affec


HCV1977407
PP9099
15
62851357
0.3227
60.14
2601.14
0.4912
young


HCV497654
PP9099
15
62869949

0.046

60.15
2601.15
1.3420
young


HGV497653
PP9099
15
62870401
0.4805
60.15
2601.15
0.3183
young


RS293379
ABHD2
15
87363708
0.3178
85.64
2626.64
0.4978
affec


HCV1597898
ABHD2
15
87381022
0.3416
85.64
2626.64
0.4665
affec


RS4327024
ABHD2
15
87430443
0.4509
85.64
2626.64
0.3459
young


RS1005398
ABHD2
15
87449143

0.023

85.64
2626.64
1.6345
old


RS2239288
ABHD2
15
87461115
0.4109
85.64
2626.64
0.3863
old


RS10584
ANPEP
15
88058319

0.026

85.64
2626.64
1.5850
affec


RS1992250
ANPEP
15
88063748

0.014

85.64
2626.64
1.8508
affec


RS7168793
ANPEP
15
88064008

0.028

85.64
2626.64
1.5575
affec


RS1439119
ANPEP
15
88068014

0.049

85.64
2626.64
1.3089
affec


HCV1576494
CIB1
15
88516119
0.2975
85.64
2626.64
0.5265
affec


HCV12104474
CIB1
15
88524613
0.3159
85.64
2626.64
0.5005
affec


RS1105702
CIB1
15
88525621
0.5284
85.64
2626.64
0.2770
young


RS2048707
CIB1
15
88531352
0.2061
85.65
2626.65
0.6859
affec


HCV1576445
CIB1
15
88538275
0.1703
85.69
2626.69
0.7688
young


RS4378630
ITGAX
16
31406512
0.1847
57.79
2712.79
0.7335
old


RS4264407
ITGAX
16
31407253
0.0903
57.79
2712.79
1.0443
affec


RS2070896
ITGAX
16
31420614
0.1255
57.79
2712.79
0.9014
affec


RS2929
ITGAX
16
31429368
0.3302
57.80
2712.80
0.4812
old


RS1140195
ITGAX
16
31430239
0.1047
57.80
2712.80
0.9801
old


RS1030868
MMP2
16
55295369
0.3025
73.77
2728.77
0.5193
old


RS1053605
MMP2
16
55298209
0.2501
73.78
2728.78
0.6019
old


RS243849
MMP2
16
55302307
0.2651
73.80
2728.80
0.5766
affec


RS2287076
MMP2
16
55311060
0.3748
73.84
2728.84
0.4262
young


RS7201
MMP2
16
55318216
0.7635
73.87
2728.87
0.1172
affec


RS3180279
CYBA
16
88454958
0.1388
131.44
2786.44
0.8576
old


RS4987131
CYBA
16
88457338
0.467
131.44
2786.44
0.3307
old


RS3812948
CYBA
16
88460659
0.3852
131.45
2786.45
0.4143
old


RS3817655
CCL5
17
34345191
0.2133
57.76
2839.26
0.6710
old


RS2107538
CCL5
17
34353330
0.2404
57.77
2839.27
0.6191
old


RS1634481
CCL3
17
34551225
0.2031
57.91
2839.41
0.6923
old


RS1719134
CCL3
17
34562496
0.132
57.92
2839.42
0.8794
old


RS4432296
CNP
17
40491972
0.4999
62.01
2843.51
0.3011
old


HCV11618196
CNP
17
40496994
0.1954
62.01
2843.51
0.7091
old


RS2229931
CNP
17
40498936
0.2762
62.01
2843.51
0.5588
young


RS2070106
CNP
17
40499029
0.4811
62.01
2843.51
0.3178
affec


HCV437993
CNP
17
40499352
0.0818
62.01
2843.51
1.0872
old


RS2272087
STAT5A
17
40832727
0.2716
63.09
2844.59
0.5661
young


RS1135669
STAT5A
17
40832902
0.3946
63.09
2844.59
0.4038
young


RS3198502
STAT5A
17
40836159
0.1796
63.09
2844.59
0.7457
old


HCV2548250
GRN
17
42898428

0.029

63.70
2845.20
1.5421
young


RS3785817
GRN
17
42898830
0.1495
63.70
2845.20
0.8254
affec


RS3815057
GRN
17
42902795

0.024

63.71
2845.21
1.6144
old


RS25647
GRN
17
42905004
0.503
63.71
2845.21
0.2984
affec


RS5848
GRN
17
42905409
0.2219
63.71
2845.21
0.6538
affec


HCV9267947
FMNL1
17
43791782

0.036

64.86
2846.36
1.4425
old


RS1801353
FMNL1
17
43795192

0.05

64.87
2846.37
1.3019
old


HCV9267944
FLJ25414
17
43808547
0.0635
64.88
2846.38
1.1972
old


RS1384367
PSCD1
17
77326880
0.2378
109.57
2891.07
0.6238
old


RS1871935
PSCD1
17
77361268
0.1061
109.76
2891.26
0.9743
young


HCV12126963
PSCD1
17
77370761
0.0904
109.81
2891.31
1.0438
old


RS2276195
TCF4
18
51045496
0.1176
77.12
2985.12
0.9296
old


RS1261076
TCF4
18
51057313
0.1318
77.13
2985.13
0.8801
old


HCV11452698
TCF4
18
51067704
0.133
77.14
2985.14
0.8761
young


RS1440476
TCF4
18
51189053
0.6782
77.25
2985.25
0.1686
affec


RS2119292
TCF4
18
51231961
0.1306
77.29
2985.29
0.8841
affec


RS2958182
TCF4
18
51298008
0.2291
77.35
2985.35
0.6400
young


RS613872
TCF4
18
51359289
0.2826
77.36
2985.36
0.5488
old


RS243375
CHAF1A
19
4388089
0.1945
15.91
3044.91
0.7111
young


RS932276
UBXD1
19
4390525
0.0551
15.93
3044.93
1.2588
young


RS9352
CHAF1A
19
4393336
0.1659
15.95
3044.95
0.7802
young


RS243382
CHAF1A
19
4393529
0.1287
15.95
3044.95
0.8904
affec


RS741923
UBXD1
19
4399843
0.0696
16.00
3045.00
1.1574
young


RS243395
UBXD1
19
4403497
0.0972
16.03
3045.03
1.0123
young


RS1044510
UBXD1
19
4408650
0.1256
16.07
3045.07
0.9010
young


RS6510808
UBXD1
19
4409911
0.1791
16.08
3045.08
0.7469
young


RS2913984

19
8379580
0.1217
28.07
3057.07
0.9147
young


RS2396141

19
8398574

0.031

28.17
3057.17
1.5072
young


RS2303180

19
8401765
0.5057
28.18
3057.18
0.2961
old


RS3815783

19
8409025
0.1804
28.22
3057.22
0.7438
young


RS6603074

19
8411332
0.1505
28.23
3057.23
0.8225
affec


RS6603076

19
8413177
0.2261
28.24
3057.24
0.6457
affec


RS2229531
ACP5
19
11548195

0.017

35.57
3064.57
1.7645
affec


RS2305799
ACP5
19
11548351

0.021

35.57
3064.57
1.6737
old


RS2071485
ACP5
19
11549200
0.0511
35.57
3064.57
1.2916
young


RS2071484
ACP5
19
11549460

0.027

35.57
3064.57
1.5751
old


RS2071483
ACP5
19
11549539
0.2532
35.57
3064.57
0.5965
affec


RS2241089
IFI30
19
18145651
0.5143
47.72
3076.72
0.2888
affec


RS2241090
IFI30
19
18146751
0.497
47.72
3076.72
0.3036
affec


RS4808756
IFI30
19
18149004
0.972
47.72
3076.72
0.0123
affec


RS7125
IFI30
19
18149069
0.0723
47.72
3076.72
1.1409
affec


RS2921
IFI30
19
18149810
0.5117
47.72
3076.72
0.2910
young


RS2303692
ELL
19
18418657
0.0654
47.78
3076.78
1.1844
affec


HCV1399152
ELL
19
18421282

0.038

47.78
3076.78
1.4202
affec


RS731945
ELL
19
18428039
0.2426
47.79
3076.79
0.6151
old


HCV8161961
ELL
19
18473351

0.037

47.80
3076.80
1.4283
affec


HCV8161938
ELL
19
18479225

0.006

47.80
3076.80
2.2291
affec


RS3786874
SPINT2
19
43450782
0.4105
62.56
3091.56
0.3867
young


HCV7822158
SPINT2
19
43456912
0.0743
62.59
3091.59
1.1290
young


RS1006140
SPINT2
19
43470755
0.1026
62.65
3091.65
0.9889
young


RS4760
PLAUR
19
48844940
0.2575
67.37
3096.37
0.5892
young


RS2283628
PLAUR
19
48854901
0.1747
67.37
3096.37
0.7577
old


RS399145
PLAUR
19
48861362
0.5229
67.37
3096.37
0.2816
affec


RS2286960
PLAUR
19
48863865

0.031

67.37
3096.37
1.5129
old


RS440446
APOE
19
50101007
0.2555
69.50
3098.50
0.5926
young


RS769449
APOE
19
50101842
0.0989
69.50
3098.50
1.0048
old


RS769450
APOE
19
50102284
0.0962
69.50
3098.50
1.0168
affec


RS7412
APOE
19
50103919
0.3126
69.50
3098.50
0.5050
old


RS483082
APOC1
19
50108018
0.08
69.50
3098.50
1.0969
affec


RS1064725
APOC1
19
50114401
0.3498
69.50
3098.50
0.4562
young


RS5157
APOC2
19
50139001
0.5997
69.50
3098.50
0.2221
young


RS5120
APOC2
19
50143460
0.5398
69.50
3098.50
0.2678
young


RS5126
APOC2
19
50144269
0.6604
69.50
3098.50
0.1802
young


RS3760627
APOC2
19
50149020
0.2672
69.50
3098.50
0.5732
young


RS2239375
APOC2
19
50151691
0.3258
69.50
3098.50
0.4870
young


RS1805419
FTL
19
54150916

0.02

74.43
3103.43
1.7033
young


RS4645887
FTL
19
54151688
0.0859
74.44
3103.44
1.0660
affec


RS2387583
FTL
19
54153117

0.041

74.44
3103.44
1.3851
young


RS1042265
GYS1
19
54163632

0.011

74.46
3103.46
1.9706
young


RS2270938
GYS1
19
54165839
0.0706
74.46
3103.46
1.1512
affec


HCV1997111
LAIR1
19
59544316
0.3295
90.99
3119.99
0.4821
old


RS2287824
LAIR1
19
59554712
0.1514
91.01
3120.01
0.8199
affec


RS2664538
MMP9
20
45325647
0.5834
64.88
3190.88
0.2340
young


RS13969
MMP9
20
45328255
0.0526
64.88
3190.88
1.2790
old


RS2274756
MMP9
20
45328533
0.3632
64.88
3190.88
0.4399
young


RS13925
MMP9
20
45330387
0.4266
64.88
3190.88
0.3700
young


RS9509
MMP9
20
45330575
0.1485
64.88
3190.88
0.8283
young


RS2766669
ZNF217
20
52863648

0.048

80.63
3206.63
1.3152
young


RS743466
CSTB
21
44047207
0.159
52.50
3274.50
0.7986
young


RS2838363
CSTB
21
44047341
0.404
52.50
3274.50
0.3936
affec


RS6375
CSTB
21
44051731
0.9802
52.50
3274.50
0.0087
old


RS3761385
CSTB
21
44054557

0.024

52.50
3274.50
1.6234
old


HCV11479371
SMTN
22
29789771

0.4881

29.03
3309.03
0.3115
young


HCV2628881
SMTN
22
29806208
0.4063
29.04
3309.04
0.3912
young


HCV2628867
SMTN
22
29817679
0.0834
29.05
3309.05
1.0788
old


HCV2628861
SMTN
22
29819997
0.4669
29.05
3309.05
0.3308
affec


HCV2628858
SMTN
22
29822433
0.4293
29.05
3309.05
0.3672
young


RS5757424
APOBEC3D
22
37658819
0.3269
46.12
3326.12
0.4856
affec


RS5757425
APOBEC3D
22
37662522
0.1552
46.13
3326.13
0.8091
young


RS6001388
APOBEC3D
22
37662892
0.2216
46.13
3326.13
0.6544
affec









A detailed list of the top genes and SNPs in those genes ranked by p-value for each gene is included as Table 2 below. Genes identified having at least 1 SNP with a p-value less than 0.10 are shown in bold. Genes were identified from logistic regression analysis of three models only: OA vs. ON, YA vs. ON and YA vs. OA. The column headers represent the following: GENE: Gene name (HUGO ID); Gene alias: Non-HUGO ID gene aliases or previous gene names; Meta Rank: Gene rank from the David Seo/Mike West microarray expression study [PMID:15297278]; Pval Rank: Gene rank based on lowest Cathgen p-value for any SNP/model in that gene (lowest p-value has rank of 1); Startloc: Gene's base pair start location from NCBI build 35; Chr: Chromosome; # SNPS: Number of SNPs in that gene genotyped in Cathgen individuals; Lowest p-value: Lowest p-value for any SNP/model in that gene from logistic regression analysis of groups C1+C2 (1037 individuals); adjusted for sex and ethnicity; Model: SNP model with the lowest p-value (responsible for that gene's Top Gene p-value ranking); Other models <0.10: All other SNPs, models in that gene with a p-value <0.10. Abbreviations are as follows: A, Allele test; G, Genotype test; YVN, Young Affected v. Old Normal; OVN, Old Affected v. Old Normal; YVO, Young Affected v. Old Affected
















TABLE 2






Meta
P val


Lowest




GENE
Rank
Rank
Startloc
CH
p-value
Model
Other models <.10






















AIM1L
230
1
26356066
1
0.0001
RS4454539,
RS4454539, G, YVN








A, YVN
RS4454539, A, OVN









RS4454539, G, OVN









RS4454539, G, YVO









RS4659431, A, OVN


PLA2G7
0
2
46780013
6
0.0001
RS1805017,
RS9381475, G, OVN








G, OVN
RS9381475, A, OVN









RS1805017, A, OVN









RS1862008, A, OVN









RS1862008, G, OVN









RS1051931, G, YVN









RS9381475, G, YVO









RS1051931, A, YVN









RS1051931, G, OVN









RS9381475, A, YVO









RS1862008, G, YVO









RS1862008, A, YVO









RS1051931, A, OVN









RS1805017, A, YVN









RS1805017, G, YVO









RS1805017, G, YVN









RS1805018, A, YVN









RS1805018, G, YVN


OR7E29P
0
4
126913676
3
0.0003
RS2979310,
RS2979310, G, YVN








A, YVN
RS2979310, A, OVN


PLN
108
5
118986778
6
0.0003
RS1051429,
RS1051429, A, YVN








G, YVN
RS3734382, G, YVN









RS3734382, A, YVN









RS1051429, A, YVO









RS1051429, G, YVO









6P0326, G, YVN









RS1051429, G, OVN









RS3734382, G, YVO









6P0326, A, YVO









6P0326, G, YVO









RS3734382, A, YVO









6P0326, A, YVN









RS3752581, A, YVO









6P0324, A, YVO


PTPN6
187
6
6911553
12
0.0003
RS7310161,
RS7978658, G, YVO








A, YVO
RS7978658, A, YVO









RS7310161, G, YVO









RS7310161, A, YVN


CIORF38
32
7
27883228
1
0.0005
RS3766398,
RS3766398, G, YVO








A, YVO
RS3766398, G, OVN









RS12048235, G, OVN









RS3766398, A, OVN









RS6564, A, OVN









RS6564, G, OVN









RS12048235, A, OVN









RS1467464, G, OVN









RS6564, A, YVO









RS1467464, A, OVN









RS12048235, A, YVO









RS1467465, A, YVO









RS12048235, G, YVO


GATA2
0
8
129680970
3
0.0006
RS2335052,
RS6439129, G, YVO








A, YVO
RS1573858, G, YVO









RS2335052, G, YVO









RS6439129, A, YVO









RS2335052, A, OVN









RS2335052, G, OVN









RS1573858, A, YVO









RS2713603, G, YVO









RS1573858, G, OVN









RS2713603, G, OVN









RS2713603, A, YVO









RS2713603, A, OVN









RS6439129, G, OVN









RS3803, A, OVN









RS3803, A, YVN


IL7R
0
9
35892748
5
0.0006
RS1494555,
RS1494555, A, OVN








G, OVN
RS1494555, A, YVN









RS1494555, G, YVN









RS987106, G, OVN









RS2228141, G, YVO


MYLK
0
10
124813835
3
0.0007
RS16834817,
RS16834817, A, YVN








G, YVN
HCV1602689, G, YVN









HCV1602689, A, YVN









RS16834817, G, OVN









HCV1602689, G, OVN









RS4118366, A, OVN









RS16834817, A, OVN









RS2682215, A, OVN









RS2682239, A, OVN









RS4118366, G, OVN









RS4461370, A, OVN









HCV1602689, A, OVN









RS4461370, G, OVN









RS2682215, G, OVN









RS2700358, G, OVN









RS2682229, A, OVN









RS2700358, A, OVN









RS2682239, G, OVN









RS2682229, G, OVN









RS11717814, G, OVN









RS16834826, G, YVO









RS2605417, A, OVN









RS1343700, G, YVO









RS820371, G, OVN









RS2682215, G, YVO









RS2700408, G, OVN









RS2605417, G, OVN









RS4118366, A, YVN









RS2700408, A, OVN









RS4461370, G, YVO









RS1343700, A, YVN









RS1343700, G, YVN









RS4118366, G, YVO









RS2700358, G, YVO









RS2682215, A, YVN









RS2682239, A, YVN









RS2682229, G, YVO









RS11717814, A, OVN









RS2700408, G, YVO


ANPEP
146
11
88129131
15
0.0008
RS10584, A,
RS10584, A, OVN








YVO
RS25653, A, OVN









RS25653, G, OVN









RS10584, G, OVN









RS10584, G, YVO









RS25653, G, YVO









RS25653, A, YVO









RS1992250, A, YVO









RS1439119, G, YVO









RS1992250, G, YVO









RS1439119, G, OVN









RS7168793, A, YVO









RS1439119, A, YVO









RS7168793, G, YVO


PIK3R4
0
12
131880476
3
0.0013
RS900989,
RS900989, G, YVN








A, YVN
RS10934955, G, YVN









RS10934955, A, YVN









RS11710068, G, YVN









RS11710068, A, YVN









RS10934954, G, YVN









RS10934954, A, YVN









RS4682627, G, YVN









RS4682627, A, YVN









RS900989, G, YVO









RS10934955, G, YVO









RS900989, A, YVO


RPLP2
0
13
799965
11
0.0016
RS4131364,
RS4131364, G, YVO








G, YVN
RS4131364, A, YVN









RS4131364, A, YVO


OLR1
145
14
10202171
12
0.002
RS2742113,
RS2742113, G, YVO








A, YVO
RS3741860, A, YVO









RS3741860, G, YVO









12P0322, A, YVN









RS1050286, A, YVN









12P0322, G, YVO









RS1050286, G, YVN









RS2742113, A, OVN









RS3736233, G, YVO









RS3736233, A, YVN









12P0322, G, YVN









RS3736232, G, YVO









RS1050286, G, YVO









RS3736233, G, YVN









RS3736232, G, YVN









RS3736232, A, YVN









12P0322, A, YVO


PNPLA2
0
15
808902
11
0.002
RS6597979,
RS1138714, A, YVN








G, YVN
RS1138714, G, YVO









RS6597979, A, YVN









RS1138714, G, YVN









RS6597979, G, YVO









RS1135628, G, YVN









RS6597979, A, YVO









RS1135628, A, YVN









RS1138714, A, YVO


TCF4
0
16
51046093
18
0.0021
RS1893430,
RS1893430, A, YVO








G, YVO
RS2276195, G, YVO









RS1893430, A, YVN









RS2276195, A, YVO









RS1261076, G, YVO









RS1893430, G, YVN









RS2276195, G, OVN









RS2119292, G, YVO









RS2119292, A, YVO









RS1440476, A, YVO


ACP5
31
17
11546477
19
0.0022
RS2229531,
RS2305799, A, OVN








A, OVN
RS2071484, A, OVN









RS2229531, G, YVO









RS2071484, G, YVO









RS2229531, G, OVN









RS2071484, A, YVO









RS2071484, G, OVN









RS2229531, A, YVO









RS2305799, G, OVN









RS2305799, G, YVO









RS2305799, A, YVO


SELP
0
18
166289748
1
0.0028
RS6133, A,
RS6132, A, YVO








YVO
RS6132, G, YVO









RS6133, G, YVO









RS6133, G, OVN









RS6132, G, OVN









RS6136, G, OVN









RS6133, A, OVN









RS6132, A, OVN









RS6136, G, YVO


BAX
0
19
54149998
19
0.0032
RS1805419,
RS1805419, A, YVN








G, YVN
RS4645887, G, YVO









RS905238, G, YVO









RS4645887, G, YVN









RS4645887, A, YVO









RS4645887, A, YVN


CPNE4
0
20
132736261
3
0.0036
RS6802186,
RS6802186, A, YVN








G, YVN
RS1463518, A, YVO









RS1870713, A, YVO









RS6802186, G, YVO









RS1463518, G, YVO









RS1870713, G, YVO


TAL1
0
21
47393984
1
0.0043
1P0330, G,
1P0330, A, OVN








OVN
1P0330, A, YVN









1P0330, G, YVN


KLF15
0
22
127544177
3
0.0049
RS7622890,
none








G, YVN


ABCB1
0
23
86777599
7
0.0051
RS1045642,
RS1128503, A, YVN








A, YVN
RS1045642, G, YVN


LHFPL2
147
24
77816810
5
0.0051
RS1561735,
RS1561735, G, OVN








A, OVN
RS6872179, A, YVN









RS6872179, A, OVN









RS1561735, A, YVN









RS11948997, A, YVN


ITGAX
94
25
31274010
16
0.0055
RS4264407,
RS4264407, A, YVO








G, YVO
RS1140195, A, OVN









RS4264407, G, OVN


LOC389142
0
26
119206321
3
0.0057
RS1486336,
RS1486336, A, YVO








G, YVO
RS1968010, A, OVN


PLXNC1
88
27
93044967
12
0.0058
RS2305971,
RS1681866, A, YVN








G, YVN
RS1681866, G, YVN









RS2305971, A, YVN


SLA
46
28
134118156
8
0.0058
RS2252807,
RS2252807, G, YVO








A, YVO
RS1533910, G, OVN









RS1533910, A, OVN


ELL
0
29
18414475
19
0.0063
RS6512269,
RS7252848, G, YVO








G, YVO
RS748609, G, YVO









RS6512269, A, YVO









RS748609, A, YVO









RS2303692, G, YVO









RS748609, A, YVN









RS7252848, A, YVO









RS2303692, A, YVO









RS7252848, A, YVN









RS6512269, G, OVN


NPY
0
30
24097047
7
0.0065
RS5574, A,
RS5574, G, YVN








YVN
RS9785023, G, YVN









RS9785023, A, YVN









RS5574, A, YVO


IGSF11
0
31
120102171
3
0.0066
RS1468738,
RS1468738, G, OVN








A, OVN
RS2160052, A, OVN









RS4687959, A, OVN









RS2160052, A, YVN









RS2903250, G, OVN









RS2903250, A, OVN









RS4687959, G, YVN









RS4687959, A, YVN


ITPK1
0
32
92473012
14
0.0066
HCV1259613,
RS2402226, A, YVO








G, OVN
RS2402226, A, OVN









RS2402226, G, YVO









HCV1259613, A, OVN









RS875395, G, YVO









RS4905043, A, OVN









RS1740595, G, YVO









RS2402226, G, OVN









RS1740595, A, YVO


ASB1
174
33
239117626
2
0.007
RS507812,
RS507812, A, YVO








G, YVO
RS507812, G, YVN


SELB
0
34
129355049
3
0.007
RS2955103,
RS2955103, A, YVN








G, YVN
RS760383, G, YVN









RS2811529, G, OVN









RS2811529, G, YVN









RS2687720, G, OVN


LOC131873
0
35
131718695
3
0.0075
RS1508520,
RS6439249, G, OVN








G, OVN
RS6439249, A, OVN









RS9823913, A, OVN









RS1508520, A, OVN









RS9823913, G, OVN









RS6439249, G, YVO









RS6439249, A, YVO


PCCA
0
36
99539338
13
0.0086
RS9518035,
RS9518035, A, OVN








G, OVN
RS1296332, A, OVN









RS9518016, G, YVN









RS9518016, A, YVN


HAPIP
0
37
125296275
3
0.0087
RS2272486,
RS13075202, G, YVN








G, OVN
RS7621976, A, YVO









RS2272486, A, OVN









RS13075202, A, OVN









RS13075202, A, YVN









RS333284, G, YVO









RS7621976, G, YVO









RS2272486, G, YVO









RS13075202, G, OVN









RS7621976, G, YVN









RS333284, G, OVN


PLAUR
119
38
48842449
19
0.0088
RS2286960,
RS2286960, A, OVN








G, OVN
RS2286960, G, YVN









RS2286960, A, YVN


SIDT1
0
39
114734183
3
0.0099
RS11929640,
RS11929640, G, YVO








A, YVO
RS11929640, G, OVN









RS11929640, A, OVN


RPN1
0
40
129821511
3
0.0106
RS4857914,
RS2712371, G, YVO








G, YVO
RS4857914, A, YVO









RS1127030, G, YVO









RS1697, G, YVO









RS4857914, G, OVN


BPAG1
63
41
56430744
6
0.0128
RS2613118,
RS2024751, A, YVN








A, YVO
RS2024751, A, OVN









RS1014310, A, YVN









RS1014310, A, OVN









RS2613118, G, YVO









RS1014310, G, OVN









RS1024196, G, YVO









RS1024196, A, YVO









RS2613118, G, YVN


ROR2
0
42
91564439
9
0.0139
RS1881385,
RS10116351, G, YVN








A, YVN
RS10116351, A, YVN









RS4744098, G, YVO









RS4744098, A, YVO









RS4744098, A, OVN


MMP12
71
43
102238686
11
0.0144
RS674546,
RS674546, A, YVO








G, YVO
RS674546, G, YVN









RS1277718, G, YVN









RS674546, A, YVN









RS2276109, A, YVO









RS2276109, G, YVO









RS652438, G, YVN


GAP43
0
44
116825142
3
0.0148
RS2918208,
RS14360, A, YVO








G, YVO
RS2918208, A, YVN









RS2918208, A, YVO









RS14360, A, YVN









RS2918208, G, YVN









RS14360, G, YVO


FSTL1
0
45
121595817
3
0.0155
RS1259333,
RS1147707, A, OVN








A, OVN
RS1259333, G, OVN









RS1515577, G, OVN









RS2272515, G, YVN









RS2272515, A, YVN









RS2272515, G, OVN









RS2488, G, OVN









RS1515577, G, YVN









RS1147707, G, OVN









RS2488, G, YVN









RS1057231, G, OVN









RS1147707, A, YVO


MAP4
152
46
47868362
3
0.0158
RS2166770,
RS2166770, G, YVO








A, YVO
RS319689, A, YVO









RS319689, G, YVO









RS6442089, A, YVO









RS319689, G, YVN









RS6442089, G, YVO









RS2166770, G, YVN


ZNF217
53
47
51617019
20
0.016
RS1326862,
RS1326862, G, YVN








A, YVN
RS2766669, A, YVN


ALOX5
73
48
45189692
10
0.0161
RS3740107,
RS3740107, G, YVN








G, YVO
RS3740107, A, YVN









RS2242332, A, YVN









RS3740107, A, YVO









RS892691, G, YVO









RS892691, A, YVO


NPHP3
0
49
133759684
3
0.0163
RS2369832,
RS2369832, A, OVN








G, OVN


GPNMB
189
50
23059626
7
0.0166
RS199347,
RS199347, A, YVO








A, OVN
RS199347, G, OVN









RS199348, G, YVO









RS199355, G, OVN









RS199355, G, YVO


SPP1
2
51
89253981
4
0.0174
RS12502049,
RS12502049, G, YVN








A, YVN


ZNF80
0
52
115437790
3
0.0188
RS6438191,
RS3732782, G, YVO








G, YVO
RS6438191, A, OVN









RS3732782, A, YVO









RS6438191, A, YVO









RS6438191, G, OVN









RS3732782, A, OVN


MGP
0
53
14926094
12
0.0189
RS1800801,
RS4236, G, OVN








G, OVN
RS1800801, A, OVN









RS2430738, G, OVN









RS2430737, G, OVN









RS4236, A, OVN









RS2430738, A, OVN


C3ORF15
0
54
0
3
0.0199
HCV369572,
HCV369572, G, YVO








A, YVO


NEK11
0
55
132228421
3
0.0208
RS16835847,
RS16835847, G, YVN








G, OVN
RS16835847, A, YVN









RS16835847, A, OVN









RS2033182, A, OVN


POLQ
0
56
122632973
3
0.0218
RS2030531,
RS2030531, G, OVN








A, OVN
RS2030531, A, YVO









RS2030531, G, YVO


ADFP
67
57
19105760
9
0.022
RS3824369,
RS3824369, G, YVO








G, OVN
RS3824369, A, OVN


UBXD1
0
58
4396009
19
0.0223
RS932276,
RS741923, G, YVN








G, YVN
RS11909, G, YVN


38413
0
59
8389289
19
0.0224
RS6603068,
RS6603068, G, YVO








G, YVN
RS2913984, A, YVN









RS6603068, A, YVO









RS6603068, A, YVN


FLJ46299
0
60
0
3
0.0229
RS1014470,








G, OVN


ZBTB20
0
61
115540215
3
0.0229
RS1818757,
RS1818757, A, YVO








A, OVN
RS1357016, A, YVN









RS1818757, G, OVN


HLA-
8
62
32817199
6
0.0229
RS5018343,
RS2213566, A, OVN


DQA2





G, OVN
RS2213566, G, OVN









RS5018343, A, OVN









RS2051600, A, YVO









RS2051600, G, YVO









RS2395252, A, YVO


ZXDC
0
63
127639143
3
0.0232
RS1799404,
RS1799404, G, YVO








A, YVO
RS1799404, A, OVN


GRN
69
64
39778174
17
0.0237
RS3815057,
RS3859268, G, YVN








G, OVN
RS3815057, G, YVO









RS3815057, A, OVN









RS3815057, A, YVO









RS3859268, A, YVN









RS3859268, G, OVN









RS3785817, A, OVN


PSCD1
0
65
74181727
17
0.0244
RS3936118,
RS1871935, A, YVN








A, YVN
RS1384367, A, YVN









HCV12126963, A, YVO


GYS1
0
66
54163195
19
0.0257
RS2270938,
RS2270938, A, YVO








G, YVO
RS1042265, A, OVN









RS1042265, A, YVN









RS2270938, A, YVN









RS2270938, G, YVN









RS1042265, G, OVN


C14ORF132
11
67
95575431
14
0.0265
RS2104290,
RS1058102, A, OVN








G, YVN
RS2104290, A, YVN









RS1058102, G, YVO









RS1058102, G, OVN


CD80
0
68
120725832
3
0.0266
HCV387937,
RS1523311, A, YVO








A, YVN
RS1523311, G, YVO









HCV387937, G, YVN


CDGAP
0
69
120495910
3
0.0267
RS10934490,
RS10934490, G, YVN








A, YVN


LMOD1
149
70
198586920
1
0.0274
RS2819366,
RS2819366, A, YVN








G, YVN
RS7528681, A, YVN


SLC41A3
0
71
127207903
3
0.0277
HCV123667,
none








A, OVN


HOXD1
0
72
176878814
2
0.0278
RS1446575,
RS1446575, A, OVN








G, OVN


STAT5A
12
73
37693865
17
0.0284
RS3198502,
RS3198502, G, OVN








A, OVN


OPRM1
0
74
154452590
6
0.0303
RS609148,
RS524731, A, YVN








A, YVO
RS609148, A, OVN









RS524731, A, YVO









RS524731, G, YVN


ITPR2
162
75
26765487
12
0.0305
RS2291264,
RS2291264, A, YVO








G, YVO
RS1449568, G, YVO









RS2291264, A, OVN









RS1449568, A, YVO


HIF1A
0
76
61231992
14
0.0307
RS3783752,
RS2301113, A, YVN








A, YVO


PKD2
19
77
89285999
4
0.0314
RS2728110,
RS2728116, A, YVO








A, YVO
RS2728116, G, YVO


STEAP
35
78
89428340
7
0.032
RS2961269,
RS2158746, A, YVO








A, YVN
RS2158746, A, OVN









RS2158746, G, OVN









RS2158746, G, YVO


AGTR1
0
79
149898363
3
0.0322
RS3772587,
RS9849625, A, YVO








A, YVN
RS389566, A, YVO


NDUFB4
0
80
121797818
3
0.0326
HCV112367
none








38, G, YVN


GLRA3
0
81
175938660
4
0.0336
RS4695942,
RS4695942, A, OVN








G, YVN
RS4695942, A, YVN


MEF2A
0
82
97923738
15
0.0338
HCV11709390,
RS325408, A, YVN








A, YVN


STXBP5L
0
83
122104941
3
0.0341
RS4505627,
RS4505627, A, OVN








G, OVN


APOBEC3D
0
84
37741952
22
0.0343
RS5757425,
RS5757425, A, OVN








G, OVN


FMNL1
0
85
40655075
17
0.0352
RS1989229,
RS1552458, G, YVO








A, OVN
RS1989229, G, OVN









RS1552458, G, OVN









RS1801353, G, OVN









RS1552458, A, OVN


PLXND1
97
86
130756716
3
0.0361
RS2245285,
RS2245285, A, YVO








A, OVN
RS2245278, A, YVO









RS2245285, G, YVO









RS2245285, G, OVN









RS2245278, A, OVN


ATP2C1
0
87
132095533
3
0.0368
RS2669869,
RS2669869, G, YVN








G, OVN
RS2669869, A, YVN


RUVBL1
0
88
129282501
3
0.0378
RS7632756,
none








G, YVN


CASR
0
89
123455485
3
0.0379
RS12635478,
RS12635478, G, OVN








A, OVN
RS13095172, A, OVN









RS13095172, G, OVN









HCV1412358, G, YVO









RS13095172, G, YVO









RS2270917, A, OVN









RS1501899, A, YVO









RS2270917, G, YVO


PTPRR
0
90
69318129
12
0.0385
HCV155408,
none








G, YVO


SMPDL3A
96
91
123152120
6
0.0396
RS1385681,
RS1385681, G, YVN








A, YVO
RS1385681, A, YVN


APOD
0
92
unmapped
3
0.0397
RS13303036,
RS13303036, A, YVO








G, YVO


APG3L
0
93
113734236
3
0.0401
RS2638037,
RS2638037, G, YVO








G, OVN


FLJ35880
0
94
131642165
3
0.0406
RS322115,
RS819086, G, OVN








G, YVN
RS9883988, G, OVN









RS819086, G, YVO









RS9883988, G, YVO









RS322115, A, YVN









RS819086, A, YVO









RS819091, A, YVN









RS9883988, A, YVO









RS9883988, A, OVN


TMCC1
0
95
130850232
3
0.0406
RS2811343,
none








G, YVO


CD96
0
96
112743546
3
0.041
RS1553970,
RS1553970, G, YVO








A, YVO


C1QB
118
97
22725046
1
0.0419
RS292007,
RS10580, G, YVO








A, YVO
RS292007, A, OVN









RS291988, G, OVN









RS10580, A, YVO


CTSD
30
98
1730561
11
0.0419
RS17571, G,
none








YVN


FLI1
0
99
128069239
11
0.0421
RS660407,
RS497714, G, OVN








G, YVO


MMP9
178
100
44070954
20
0.0421
RS13969, G,
RS13969, G, YVN








OVN


TCIRG1
190
101
67563059
11
0.0435
RS2075609,
RS2075609, G, OVN








A, OVN
RS2075609, A, YVN









RS906713, A, OVN









RS11481, A, OVN


ITGB5
0
102
125964486
3
0.0452
RS3772831,
none








G, YVO


FLJ25414
0
103
40687543
17
0.046
HCV9267944,
none








G, OVN


NR1H3
68
104
47236106
11
0.0463
RS3758673,
none








A, OVN


HSPBAP1
0
105
123941536
3
0.0468
HCV1402346,
HCV1402346, A, YVN








G, YVN


APOC1
1
106
50109419
19
0.0469
RS1064725,
RS1064725, G, YVN








A, YVN


THPO
0
107
185572475
3
0.0475
RS6142, A,
RS6142, A, YVN








YVO
RS6142, G, YVN


FTL
0
108
54160378
19
0.0476
RS918546,
RS918546, A, YVO








G, YVO


HADHSC
124
109
109268516
4
0.0479
RS221330,
RS221330, A, YVN








G, YVN


ALOX5AP
0
110
30207669
13
0.0481
RS3803277,
RS3803277, A, YVN








A, OVN


LAIR1
39
111
59557945
19
0.0493
RS2287824,
RS2287824, A, OVN








G, OVN
RS1985841, G, OVN









RS1985841, G, YVO









RS730592, A, YVN









RS730592, G, YVN


UPP1
79
112
47901481
7
0.0524
RS6463462,
RS7804178, G, YVN








G, OVN
RS6463462, A, OVN









RS7804178, G, OVN


LAPTM5
7
113
30874409
1
0.0527
RS3795438,
1P0260, A, YVN








G, OVN


CSTA
0
114
123526773
3
0.0528
RS17589, A,
RS17589, A, OVN








YVO
RS17589, G, OVN


ADCY5
0
115
124486089
3
0.053
RS4678030,
none








A, YVO


PHLDB2
0
116
113061333
3
0.0531
RS1282980,
RS1282980, A, YVO








G, YVO


GM2A
40
117
150612837
5
0.0533
RS153450,
RS153450, G, YVO








A, YVO
RS2277028, A, OVN


NUDT16
0
118
132583405
3
0.0536
RS11914980,
RS11914980, G, YVO








A, YVO


ACSL1
0
119
186051899
4
0.0547
RS3792311,
RS3749233, G, OVN








A, YVO
RS2280297, G, OVN


VAMP5
10
120
85723189
2
0.056
RS2289976,
RS12888, G, OVN








G, OVN
RS2289976, A, OVN


ACP2
4
121
47217429
11
0.0568
RS2167079,
RS2167079, G, OVN








A, OVN


HLA-
9
122
33140772
6
0.0571
RS1042174,
RS1042174, G, OVN


DPA1





A, OVN


TUBA3
0
123
47864852
12
0.0575
RS2016107,
RS7954530, A, OVN








A, OVN
RS1039225, G, YVN









RS1874908, A, OVN









RS6580703, A, OVN









RS1039225, A, OVN









RS1056875, A, OVN


MMP7
92
124
101896449
11
0.0578
RS609887,
RS609887, G, YVN








A, YVN


H41
0
125
134775272
3
0.058
RS1842155,
none








G, YVO


NR1I2
0
126
120982021
3
0.0587
RS1523130,
none








G, YVO


FGFR2
28
127
122473377
10
0.06
RS2071616,
RS1047100, G, YVO








G, YVO


GBA
0
128
152017317
1
0.0661
RS1045253,
RS4043, G, OVN








G, OVN


CHAF1A
0
129
4353661
19
0.0667
RS243375,
none








G, YVN


GSK3B
0
130
121028215
3
0.0679
RS12638973,
RS12638973, A, YVN








G, YVN


DOCK2
70
131
168996871
5
0.068
RS11740057,
none








G, YVO


URB
0
132
113806101
3
0.0697
RS3843366,
none








A, YVN


HCLS1
241
133
122832937
3
0.0711
RS2070180,
RS11714406, G, YVN








G, YVO
RS11716984, G, YVN


CD200R1
0
134
114122746
3
0.0736
RS9870568,
none








G, YVO


SLCO2B1
6
135
74539809
11
0.0736
RS2851109,
none








A, YVO


B4GALT4
0
136
120413279
3
0.0746
RS4687841,
none








A, YVN


PLCXD2
0
137
112876213
3
0.0777
RS1877575,
none








A, YVN


FABP7
0
138
123142345
6
0.0816
HCV31425,
none








G, OVN


CAMKK2
0
139
120138217
12
0.0835
RS25644, G,
none








YVN


FCGR1A
140
140
146567361
1
0.0835
RS1050204,
none








A, YVN


SELL
0
141
166391466
1
0.0839
RS1051091,
none








A, YVN


SELE
0
142
166423440
1
0.085
RS5356, A,
none








YVN


HNRPM
0
143
8415651
19
0.0856
RS6603076,
RS6603076, G, OVN








A, OVN


MGC45840
0
144
819297
11
0.0869
RS4075289,
none








A, OVN


F5
0
145
166215067
1
0.0896
RS4524, G,
none








OVN


SMTN
0
146
29801858
22
0.0898
RS1004243,
RS917208, A, OVN








G, OVN


RAI3
25
147
12952451
12
0.0918
RS850932,
RS850932, A, YVN








G, YVN


HLA-
86
148
32515646
6
0.0925
HCV2455646,
none


DRA





G, YVN


CSTB
20
149
44018260
21
0.0944
RS743466,
none








G, YVN


FLJ12592
0
150
0
3
0.0963
RS6776500,
none








G, YVN


TAGLN3
0
151
113200332
3
0.0972
RS774763,
none








G, YVN









While all candidates listed in Table 2 must be considered very strong candidates, the results of these analyses very strongly implicate several genes in the development of atherosclerosis as measured by CADi. The following is a description of the genes in Table 2: AIM1 L: Absent in melanoma 1-like; PLA2G7: Platelet-activating factor acetylhydrolase precursor (EC 3.1.1.47) (PAF acetylhydrolase) (PAF 2-acylhydrolase) (LDL-associated phospholipase A2) (LDL-PLA(2)) (2-acetyl-1-alkylglycerophosphocholine esterase) (1-alkyl-2-acetylglycerophosphocholine esterase); OR7E29P: olfactory receptor, family 7, subfamily E, member 29 pseudogene; PLN: Cardiac phospholamban (PLB); PTPN6: Protein-tyrosine phosphatase, non-receptor type 6 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1C) (PTP-1C) (Hematopoietic cell protein-tyrosine phosphatase) (SH-PTP1) (Protein-tyrosine phosphatase SHP-1); C1ORF38: ICB-1beta (Clorf38 protein); GATA2: Endothelial transcription factor GATA-2; IL7R: Interleukin-7 receptor alpha chain precursor (IL-7R-alpha) (CDw127) (CD127 antigen); MYLK: Myosin light chain kinase, smooth muscle and non-muscle isozymes (EC 2.7.1.117) (MLCK) [Contains: Telokin (Kinase related protein) (KRP)]; ANPEP: Aminopeptidase N (EC 3.4.11.2) (hAPN) (Alanyl aminopeptidase) (Microsomal aminopeptidase) (Aminopeptidase M) (gp150) (Myeloid plasma membrane glycoprotein CD13); PIK3R4: phosphoinositide-3-kinase, regulatory subunit 4, pISO; RPLP2: 60S acidic ribosomal protein P2; OLR1: OXIDISED LOW DENSITY LIPOPROTEIN (LECTIN-LIKE) RECEPTOR 1; SCAVENGER RECEPTOR CLASS E, MEMBER 1; PNPLA2: patatin-like phospholipase domain containing 2; TCF4: Transcription factor 4 (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2); ACP5: TARTRATE RESISTANT ACID PHOSPHATASE TYPE 5 PRECURSOR (EC 3.1.3.2) (TR-AP) (TARTRATE-RESISTANT ACID ATPASE) (TRATPASE); SELP: P-selectin precursor (Granule membrane protein 140) (GMP-140) (PADGEM) (CD62P) (Leukocyte-endothelial cell adhesion molecule 3) (LECAM3); BAX: BAX protein, cytoplasmic isoform delta; CPNE4: Copine-4 (Copine IV) (Copine-8); TALI: T-cell acute lymphocytic leukemia-1 protein (TAL-1 protein) (Stem cell protein) (T-cell leukemia/lymphoma-5 protein); KLF15: Krueppel-like factor 15 (Kidney-enriched kruppel-like factor); ABCB1: Multidrug resistance protein 1 (P-glycoprotein 1) (CD243 antigen); LHFPL2: Homo sapiens lipoma HMG1C fusion partner-like 2 (LHFPL2), mRNA; ITGAX: Integrin alpha-X precursor (Leukocyte adhesion glycoprotein p150,95 alpha chain) (Leukocyte adhesion receptor p150,95) (CD11c) (Leu M5); LOC389142: hypothetical LOC389142; PLXNC1: Homo sapiens plexin C1 (PLXNC1), mRNA; SLA: SRC-like-adapter (Src-like-adapter protein 1) (hSLAP); ELL: RNA polymerase II elongation factor ELL (Eleven-nineteen lysine-rich leukemia protein); NPY: Neuropeptide Y precursor [Contains: Neuropeptide Y (Neuropeptide tyrosine) (NPY); C-flanking peptide of NPY (CPON)]; IGSF11: Brain and testis-specific immunoglobin superfamily protein; ITPK1: Homo sapiens inositol 1,3,4-triphosphate 5/6 kinase (ITPK1), mRNA; ASB1: Ankyrin repeat and SOCS box containing protein 1 (ASB-1); SELB: Selenocysteine-specific elongation factor (Elongation factor sec); LOC131873: hypothetical protein LOC131873; PCCA: Propionyl-CoA carboxylase alpha chain, mitochondrial precursor (EC 6.4.1.3) (PCCase alpha subunit) (Propanoyl-CoA:carbon dioxide ligase alpha subunit); HAPIP: Huntingtin-associated protein-interacting protein (Duo protein); PLAUR: Urokinase plasminogen activator surface receptor precursor (uPAR) (U-PAR) (Monocyte activation antigen Mo3) (CD87 antigen); SIDTI: SIDI transmembrane family, member 1; RPN1: Dolichyl-diphosphooligosaccharide—protein glycosyltransferase 67 kDa subunit precursor (EC 2.4.1.119) (Ribophorin I) (RPN-I); BPAG1: Bullous pemphigoid antigen 1 isofomms 1/2/3/4/5/8 (230 kDa bullous pemphigoid antigen) (BPA) (Hemidesmosomal plaque protein) (Dystonia musculorum protein) (Fragment); ROR2: TYROSINE-PROTEIN KINASE TRANSMEMBRANE RECEPTOR ROR2-PRECURSOR (EC 2.7.1.112) (NEUROTROPHIC TYROSINE KINASE, RECEPTOR-RELATED 2); MMP12: MACROPHAGE METALLOELASTASE PRECURSOR (EC 3.4.24.65) (HME) (MATRIX METALLOPROTEINASE-12) (MMP-12) (MACROPHAGE ELASTASE) (ME); GAP43: Neuromodulin (Axonal membrane protein GAP-43) (Growth associated protein 43) (PP46) (Neural phosphoprotein B-50); FSTL11: Follistatin-related protein 1 precursor (Follistatin-like 1); MAP4: Microtubule-associated protein 4 (MAP 4); ZNF217: Zinc finger protein 217; ALOX5: ARACHIDONATE 5-LIPOXYGENASE (EC 1.13.11.34) (5-LIPOXYGENASE) (5-LO); NPHP3: nephronophthisis 3; GPNMB: Putative transmembrane protein NMB precursor (Transmembrane glycoprotein HGFIN); SPP1: Osteopontin precursor (Bone sialoprotein 1) (Urinary stone protein) (Secreted phosphoprotein 1) (SPP-1) (Nephropontin) (Uropontin); ZNF80: Zinc finger protein 80 (ZNFPT17); MGP: Matrix Gla-protein precursor (MGP); C30RF15:; NEK11: NIMA (never in mitosis gene a)—related kinase 11; POLQ: polymerase (DNA directed), theta; ADFP: ADIPOPHILIN (ADIPOSE DIFFERENTIATION-RELATED PROTEIN) (ADRP); UBXD1: UBX domain-containing protein 1; 38413: membrane-associated ring finger (C3HC4) 2; FLJ46299:; ZBTB20: Zinc finger and BTB domain containing protein 20 (Zinc finger protein 288) (Dendritic-derived BTB/POZ zinc finger protein); HLA-DQA2: HLA class II histocompatibility antigen, DQ(6) alpha chain precursor (DX alpha chain) (HLA-DQA1); ZXDC: ZXD family zinc finger C; GRN: Granulins precursor (Acrogranin) (Proepithelin) (PEPI) [Contains: Paragranulin; Granulin 1 (Granulin G); Granulin 2 (Granulin F); Granulin 3 (Granulin B); Granulin 4 (Granulin A); Granulin 5 (Granulin C); Granulin 6 (Granulin D); Granulin 7 (Granulin E)]; PSCD1: CYTOHESIN 1 (SEC7 HOMOLOG B2-1).; GYS1: Glycogen [starch] synthase, muscle (EC 2.4.1.11); C14ORF132: NA; CD80: T lymphocyte activation antigen CD80 precursor (Activation B7-1 antigen) (CTLA-4 counter-receptor B7.1) (B7) (BB1); CDGAP: Cdc42 GTPase-activating protein; LMOD1: Leiomodin 1 (Leiomodin, muscle form) (64 kDa autoantigen D1) (64 kDa autoantigen 1D) (64 kDa autoantigen 1D3) (Thyroid-associated opthalmopathy autoantigen) (Smooth muscle leiomodin) (SM-Lmod); SLC41A3: solute carrier family 41, member 3; HOXD1: Homeobox protein Hox-D1; STAT5A: SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 5A; OPRM1: Mu-type opioid receptor (MOR-1); ITPR2: INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR TYPE 2 (TYPE 2 INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR) (TYPE 2 INSP3 RECEPTOR) (IP3 RECEPTOR ISOFORM 2) (INSP3R2); HIF1A: HYPOXIA-INDUCIBLE FACTOR 1 ALPHA (HIF-1 ALPHA) (ARNT INTERACTING PROTEIN) (MEMBER OF PAS PROTEIN 1) (MOP1) (HIF1 ALPHA); PKD2: Polycystin 2 (Autosomal dominant polycystic kidney disease type II protein) (Polycystwin) (R48321); STEAP: Six transmembrane epithelial antigen of prostate; AGTR1: Type-1 angiotensin II receptor (AT1) (AT1AR); NDUFB4: NADH dehydrogenase (ubiquinone) 1 beta subcomplex; GLRA3: Glycine receptor alpha-3 chain precursor; MEF2A: Myocyte-specific enhancer factor 2A (Serum response factor-like protein 1); STX3BP5L: syntaxin binding protein 5-like; APOBEC3D: NA; FMNL1: FORMIN-LIKE PROTEIN (PROTEIN C17ORF1); PLXND1: Homo sapiens plexin D1 (PLXND1), mRNA; ATP2C1: Calcium-transporting ATPase type 2C, member 1 (ATPase 2Cl) (ATP-dependent Ca(2+) pump PMR1); RUVBL1: RuvB-like 1 (EC 3.6.1.-) (49-kDa TATA box-binding protein-interacting protein) (49 kDa TBP-interacting protein) (TIP49a) (Pontin 52) (Nuclear matrix protein 238) (NMP 238) (54 kDa erythrocyte cytosolic protein) (ECP-54) (TIP60-associated protein 54-alpha) (TAP54-alpha); CASR: Extracellular calcium-sensing receptor precursor (CaSR) (Parathyroid Cell calcium-sensing receptor); PTPRR: PROTEIN-TYROSINE PHOSPHATASE R PRECURSOR (EC 3.1.3.48) (PROTEIN-TYROSINE PHOSPHATASE PCPTP1) (NC-PTPCOM1) (CH-1PTPASE); SMPDL3A: Acid sphingomyelinase-like phosphodiesterase 3a precursor (EC 3.1.4.-) (ASM-like phosphodiesterase 3a); APOD: Apolipoprotein D precursor (Apo-D) (ApoD); APG3L: APG3 autophagy 3-like (S. cerevisiae); FLJ35880: FLJ35880: hypothetical protein FLJ35880; TMCCl: transmembrane and coiled-coil domains 1; CD96: T-cell surface protein tactile precursor (CD96 antigen); C1QB: Complement Clq subcomponent, B chain precursor; CTSD: Cathepsin D precursor (EC 3.4.23.5); FLI1: FRIEND LEUKEMIA INTEGRATION 1 TRANSCRIPTION FACTOR (FLI-1 PROTO-ONCOGENE) (ERGB TRANSCRIPTION FACTOR).; MMP9: 92 kDa type IV collagenase precursor (EC 3.4.24.35) (92 kDa gelatinase) (Matrix metalloproteinase-9) (MMP-9) (Gelatinase B) (GELB); TCIRG1: Vacuolar proton translocating ATPase 116 kDa subunit a isoform 3 (V-ATPase 116-kDa isoform a3) (Osteoclastic proton pump 116 kDa subunit) (OC-116 KDa) (OC116) (T-cell immune regulator 1) (T cell immune response cDNA7 protein) (TIRC7); ITGB5: Integrin beta-5 precursor; FLJ25414: NA; NR1H3: OXYSTEROLS RECEPTOR LXR-ALPHA (LIVER X RECEPTOR ALPHA) (NUCLEAR ORPHAN RECEPTOR LXR-ALPHA).; HSPBAP1: HSPB (eat shock 27 kDa) associated protein 1; APOC1: Apolipoprotein C-1 precursor (Apo-CI); THPO: Thrombopoietin precursor (Megakaryocyte colony stimulating factor) (Myeloproliferative leukemia virus oncogene ligand) (C-mpl ligand) (ML) (Megakaryocyte growth and development factor) (MGDF); FTL: Ferritin light chain (Ferritin L subunit); HADHSC: Short chain 3-hydroxyacyl-CoA dehydrogenase, mitochondrial precursor (EC 1.1.1.35) (HCDH) (Medium and short chain L-3-hydroxyacyl-coenzyme A dehydrogenase); ALOX5AP: 5-lipoxygenase activating protein (FLAP) (MK-886-binding protein); LAIR1: Homo sapiens leukocyte-associated Ig-like receptor 1 (LAIR1), transcript variant a, mRNA; UPP1: Uridine phosphorylase 1 (EC 2.4.2.3) (UrdPase 1) (UPase 1); LAPTM5: Lysosomal-associated multitransmembrane protein (Retinoic acid-inducible E3 protein) (HA 1520); CSTA: cystatin A (stefin A); ADCY5: adenylate cyclase 5; PHLDB2: pleckstrin homology-like domain, family B, member 2; LL5 beta [Homo sapiens]; GM2A: Ganglioside GM2 activator precursor (GM2-AP) (Cerebroside sulfate activator protein) (Shingolipid activator protein 3) (SAP-3); NUDT16: nudix-type motif 16; ACSL1: Long-chain-fatty-acid—CoA ligase 1 (EC 6.2.1.3) (Long-chain acyl-CoA synthetase 1) (LACS 1) (Palmitoyl-CoA ligase 1) (Long-chain fatty acid CoA ligase 2) (Long-chain acyl-CoA synthetase 2) (LACS 2) (Acyl-CoA synthetase 1) (ACS1) (Palmitoyl-CoA ligase 2); VAMP5: Vesicule-associated membrane protein 5 (VAMP-5) (Myobrevin) (HSPC191); ACP2: LYSOSOMAL ACID PHOSPHATASE PRECURSOR (EC 3.1.3.2) (LAP); HLA-DPA1: HLA class II histocompatibility antigen, DP alpha chain precursor (HLA-SB alpha chain) (MHC class II DP3-alpha) (DP(W3)) (DP(W4)); TUBA3: tubulin, alpha 3; MMP7: MATRILYSIN PRECURSOR (EC 3.4.24.23) (PUMP-1 PROTEASE) (UTERINE METALLOPROTEINASE) (MATRIX METALLOPROTEINASE-7) (MMP-7) (MATRIN); H41: hypothetical protein H41; NR12: nuclear receptor subfamily 1, group 1, member 2; FGFR2: FIBROBLAST GROWTH FACTOR RECEPTOR 2 PRECURSOR (EC 2.7.1.112) (FGFR-2) (KERATINOCYTE GROWTH FACTOR RECEPTOR 2).; GBA: Glucosylceramidase precursor (EC 3.2.1.45) (Beta-glucocerebrosidase) (Acid beta-glucosidase) (D-glucosyl-N-acylsphingosine glucohydrolase) (Alglucerase) (Imiglucerase); CHAF1A: Chromatin assembly factor 1 subunit A (CAF-1 subunit A) (Chromatin assembly factor 1 p150 subunit) (CAF-1 150 kDa subunit) (CAF-1p150); GSK3B: glycogen synthase kinase 3 beta; DOCK2: Dedicator of cytokinesis protein 2; URB: steroid sensitive gene 1; HCLS1: Hematopoietic lineage cell specific protein (Hematopoietic cell-specific LYN substrate 1) (LCKBP1); CD200R1: CD200 receptor 1; SLCO2B1: SOLUTE CARRIER FAMILY 21 MEMBER 9 (ORGANIC ANION TRANSPORTER B) (OATP-B) (ORGANIC ANION TRANSPORTER POLYPEPTIDE-RELATED PROTEIN 2) (OATP-RP2) (OATPRP2); B4GALT4: Beta-1,4-galactosyltransferase 4 (EC 2.4.1.-) (b4Gal-T4) [Includes: N-acetyllactosamine synthase (EC 2.4.1.90) (NaI synthetase); Beta-N-acetylglucosaminyl-glycolipid beta-1,4 galactosyltransferase (EC 2.4.1.-)]; PLCXD2: phosphatidylinositol-specific phospholipase C, X domain containing 2; FABP7: Fatty acid-binding protein, brain (B-FABP) (Brain lipid-binding protein) (BLBP) (Mammary derived growth inhibitor related); CAMKK2: Homo sapiens calcium/calmodulin-dependent protein kinase kinase 2, beta (CAMKK2), transcript variant 1, mRNA; FCGR1A: High affinity immunoglobulin gamma Fc receptor I precursor (Fc-gamma R1) (FcRI) (IgG Fc receptor I) (CD64 antigen); SELL: L-selectin precursor (Lymph node homing receptor) (Leukocyte adhesion molecule-1) (LAM-1) (Leukocyte surface antigen Leu-8) (TQ1) (gp90-MEL) (Leukocyte-endothelial cell adhesion molecule 1) (LECAM1) (CD62L); SELE: Homo sapiens selectin E (endothelial adhesion molecule 1) (SELE), mRNA; HNRPM: Heterogeneous nuclear ribonucleoprotein M (hnRNP M); MGC45840: hypothetical protein MGC45840; F5: Coagulation factor V precursor (Activated protein C cofactor); SMTN: Smoothelin; RA13: Homo sapiens retinoic acid induced 3 (RA13), mRNA; HLA-DRA: HLA class II histocompatibility antigen, DR alpha chain precursor (MHC class II antigen DRA); CSTB: Cystatin B (Liver thiol proteinase inhibitor) (CPI-B) (Stefin B); FLJ12592: N/A; TAGLN3: Neuronal protein NP25 (Neuronal protein 22) (NP22).


Example 2
Methods for Genotyping of the Cathgen Samples and Statistical Analysis Early Onset CAD Case Control Sample (CATHGEN)

CATHGEN subjects were recruited sequentially through the cardiac catheterization laboratories at Duke University Hospital (Durham, N.C.) with approval from the Duke Institutional Review Board. All subjects undergoing catheterization were offered participation in the study and signed informed consent. Medical history and clinical data were collected and stored in the Duke Information System for Cardiovascular Care database maintained at the Duke Clinical Research Institute [1].


Controls and cases were chosen on the basis of extent of coronary artery disease as measured by the CAD index (CADi). CADi is a numerical summary of coronary angiographic data that incorporates the extent and anatomical distribution of coronary disease [2]. CADi has been shown to be a better predictor of clinical outcome than the extent of CAD [3]. Affected status was determined by the presence of significant CAD defined as a CADi≧32 [4]. For patients older than 55 years of age, a higher CADi threshold (CADi≧74) was used to adjust for the higher baseline extent of CAD in this group. Medical records were reviewed to determine the age-of-onset (AOO) of CAD, i.e. the age at first documented surgical or percutaneous coronary revascularization procedure, myocardial infarction (MI), or cardiac catheterization meeting the above defined CADi thresholds. The CATHGEN cases were stratified into a young affected group (AOO ≦55 years), which provides a consistent comparison group for the GENECARD family study. Controls were defined as subjects ≧60 years of age, with no CAD as demonstrated by coronary angiography and no documented history of cerebrovascular or peripheral vascular


A set of at least 5 SNPs with a minor allele frequency (MAF) of >10% [5] was selected for genotyping in each gene CATHOEN samples using the SNPselector program [6]. Genomic DNA for CATHGEN samples was extracted from whole blood using the PureGene system (Gentra Systems, Minneapolis, Minn.). Genotyping was performed using the ABI 7900HT Taqman SNP genotyping system (Applied Biosystems, Foster City, Calif.), which incorporates a standard PCR-based, dual fluor, allelic discrimination assay in 384 well plate format with a dual laser scanner. Allelic discrimination assays were purchased through Applied Biosystems or, in cases in which the assays were not available, primer and probe sets were designed and purchased through Integrated DNA Technologies (IDT, Coralville, Iowa). A total of 15 quality control samples, composed of 6 reference genotype controls in duplicate, two Centre d'Etude du Polymorphisme Humain (CEPH) pedigree individuals and one no-template sample, were included in each quadrant of the 384 well plate. Genotyping was also performed using the Illumina BeadStation 500G SNP genotyping system (Illumina, San Diego, Calif.). Each Sentrix Array generates 1536 genotypes for 96 individuals; within each individual array experiment four quality control samples were included, two CEPH pedigree individuals and two identical in-plate controls. Results of the CEPH and quality control samples were compared to identify possible sample plating errors and genotype calling inconsistencies. SNPs that showed mismatches on quality control samples were reviewed by an independent genotyping supervisor for potential genotyping errors. All SNPs examined were successfully genotyped for 95% or more of the individuals in the study. Error rate estimates for SNPs meeting the quality control benchmarks were determined to be less than 0.2%.


All SNPs were tested for deviations from Hardy-Weinberg equilibrium (HWE) in the affected and unaffected race stratified groups. No such deviations were observed.


Additionally, linkage disequilibrium between pairs of SNPs was assessed using the Graphical Overview of Linkage Disequilibrium (GOLD) package [7] and displayed using Haploview[8]. Allelic association in CATHGEN was examined using multivariable logistic regression modeling adjusted for race and sex, and also for race, sex, and known CAD risk factors (history of hypertension, history of diabetes mellitus, body mass index, history of dyslipidemia, and smoking history) as covariates. These adjustments could hypothetically allow us to control for competing genetic pathways that are independent risk factors for CAD, therefore allowing us to detect a separate CAD genetic effect. SAS 9.1 (SAS Institute, Cary, N.C.) was used for statistical analysis. The haplo.stats package was used to identify and test for association of haplotypes in CATHGEN. Haplo.stats expands on the likelihood approach to account for ambiguity in case-control studies by using a generalized linear model (GLM) to test for haplotype association which allows for adjustment of non-genetic covariates [9]. This method derives a score statistic to test the null hypothesis of no association of the trait with the genotype. In addition to the global statistic, haplo.stats computes score statistics for the components of the genetic vectors, such as individual haplotypes.


Results from these experiments are shown in Tables 3-5. The SNP represented by SEQ ID NO:188 contains a five-base pair deletion relative to the wild-type sequence. As used herein, the term SNP also includes this polymorphism having the five-nucleotide deletion. “RK” indicates rank in predicting CAD, with the most predictive genes having a lower number; “CH” indicates the chromosome in which the gene locus resides in the human genome.
















TABLE 3











SEQ ID
SEQ ID


RK
CH
LOCUS
GENBANK
PROBE
NCB135
(SNP)
(WT)






















15
1
HSPG2
NM_005529
RS4654773
21,997,568
1
576


15
1
HSPG2
NM_005529
RS17467346
22,005,318
2
577


15
1
HSPG2
NM_005529
RS11587857
22,005,614
3
578


15
1
HSPG2
NM_005529
RS12081298
22,007,531
4
579


43
1
CDC42
NM_001791
RS2501275
22,120,371
5
580


43
1
CDC42
NM_001791
RS2473322
22,135,378
6
581


43
1
CDC42
NM_001791
RS10917139
22,146,844
7
582


43
1
CDC42
NM_001791
RS2056974
22,154,400
8
583


71
1
C1QB
NM_000491
RS291989
22,725,205
9
584


71
1
C1QB
NM_000491
RS291988
22,725,364
10
585


71
1
C1QB
NM_000491
RS291985
22,726,245
11
586


71
1
C1QB
NM_000491
RS12756603
22,727,182
12
587


71
1
C1QB
NM_000491
RS291982
22,727,712
13
588


71
1
C1QB
NM_000491
RS631090
22,731,709
14
589


71
1
C1QB
NM_000491
RS623607
22,732,022
15
590


71
1
C1QB
NM_000491
RS10580
22,733,264
16
591


71
1
C1QB
NM_000491
RS292007
22,736,818
17
592


4
1
AIM1L
AK095339
RS7416513
26,332,091
18
593


4
1
AIM1L
AK095339
RS17163868
26,332,523
19
594


4
1
AIM1L
AK095339
RS4659371
26,341,703
20
595


4
1
AIM1L
AK095339
RS4659431
26,342,533
21
596


4
1
AIM1L
AK095339
RS7517559
26,346,916
22
597


4
1
AIM1L
AK095339
RS4072445
26,348,361
23
598


4
1
AIM1L
AK095339
RS11247920
26,349,620
24
599


4
1
AIM1L
AK095339
RS7535656
26,357,608
25
600


4
1
AIM1L
AK095339
RS10902742
26,360,399
26
601


4
1
AIM1L
AK095339
RS4454539
26,364,405
27
602


4
1
AIM1L
AK095339
RS4233461
26,365,448
28
603


19
1
C1ORF38
AF044896
RS11247703
27,887,795
29
604


19
1
C1ORF38
AF044896
RS12048235
27,890,026
30
605


19
1
C1ORF38
AF044896
RS3766398
27,893,447
31
606


19
1
C1ORF38
AF044896
RS3766400
27,893,508
32
607


19
1
C1ORF38
AF044896
RS2236074
27,895,526
33
608


19
1
C1ORF38
AF044896
RS1467465
27,895,545
34
609


19
1
C1ORF38
AF044896
RS1467464
27,895,792
35
610


19
1
C1ORF38
AF044896
RS6564
27,897,117
36
611


19
1
C1ORF38
AF044896
RS6565
27,897,299
37
612


58
1
LAPTM5
U51240
RS3795438
30,875,730
38
613


58
1
LAPTM5
U51240
RS12404920
30,876,050
39
614


58
1
LAPTM5
U51240
1P0258
30,877,135
40
615


58
1
LAPTM5
U51240
RS1188356
30,880,175
41
616


58
1
LAPTM5
U51240
RS1188360
30,881,469
42
617


58
1
LAPTM5
U51240
RS3748602
30,883,462
43
618


58
1
LAPTM5
U51240
RS3748603
30,884,064
44
619


58
1
LAPTMS
U51240
RS1050663
30,884,457
45
620


58
1
LAPTM5
U51240
RS11585511
30,886,062
46
621


58
1
LAPTM5
U51240
RS3790495
30,890,608
47
622


58
1
LAPTM5
U51240
RS3790496
30,891,084
48
623


58
1
LAPTM5
U51240
RS1188349
30,892,750
49
624


58
1
LAPTM5
U51240
RS1188347
30,895,433
50
625


58
1
LAPTM5
U51240
RS3790503
30,898,168
51
626


58
1
LAPTM5
U51240
RS1407882
30,899,288
52
627


58
1
LAPTM5
U51240
RS2273979
30,899,761
53
628


58
1
LAPTM5
U51240
RS11801629
30,900,219
54
629


45
1
CACNA1E
NM_000721
RS704326
178,491,314
55
630


72
1
LAMC1
NM_002293
RS4652763
179,725,741
56
631


72
1
LAMC1
NM_002293
RS12144261
179,745,805
57
632


72
1
LAMC1
NM_002293
RS10911229
179,782,025
58
633


72
1
LAMC1
NM_002293
RS2296291
179,811,166
59
634


72
1
LAMC1
NM_002293
RS7556132
179,817,412
60
635


72
1
LAMC1
NM_002293
RS7410919
179,826,204
61
636


72
1
LAMC1
NM_002293
RS20559
179,831,217
62
637


72
1
LAMC1
NM_002293
RS4651146
179,837,191
63
638


72
1
LAMC1
NM_002293
RS3738829
179,845,519
64
639


72
1
LAMC1
NM_002293
RS1547715
179,845,609
65
640


53
1
CFH
NM_000186
RS529825
193,366,763
66
641


53
1
CFH
NM_000186
RS800292
193,373,890
67
642


53
1
CFH
NM_000186
RS1061147
193,385,981
68
643


53
1
CFH
NM_000186
RS1061170
193,390,894
69
644


53
1
CFH
NM_000186
RS10801555
193,391,918
70
645


53
1
CFH
NM_000186
RS2019724
193,406,574
71
646


53
1
CFH
NM_000186
RS393955
193,424,127
72
647


53
1
CFH
NM_000186
RS1065489
193,441,431
73
648


53
1
CFH
NM_000186
RS10801560
193,446,257
74
649


61
1
LMOD1
X54162
RS6427922
198,587,069
75
650


61
1
LMOD1
X54162
RS4987074
198,597,289
76
651


61
1
LMOD1
X54162
RS3738289
198,599,726
77
652


61
1
LMOD1
X54162
RS2820312
198,600,914
78
653


61
1
LMOD1
X54162
RS2820315
198,603,921
79
654


61
1
LMOD1
X54162
RS7528681
198,606,369
80
655


61
1
LMOD1
X54162
RS2644121
198,612,941
81
656


61
1
LMOD1
X54162
RS2819346
198,613,744
82
657


61
1
LMOD1
X54162
RS10800796
198,617,854
83
658


61
1
LMOD1
X54162
RS2360545
198,623,599
84
659


61
1
LMOD1
X54162
RS9787358
198,629,327
85
660


61
1
LMOD1
X54162
RS2819366
198,639,638
86
661


25
2
CAPG
M94345
RS11678506
85,529,829
87
662


25
2
CAPG
M94345
RS2271627
85,533,717
88
663


25
2
CAPG
M94345
RS11690650
85,533,975
89
664


25
2
CAPG
M94345
RS11539100
85,536,880
90
665


25
2
CAPG
M94345
RS11687035
85,537,097
91
666


25
2
CAPG
M94345
RS2271625
85,537,171
92
667


25
2
CAPG
M94345
RS11539103
85,537,991
93
668


25
2
CAPG
M94345
RS2002444
85,540,214
94
669


25
2
CAPG
M94345
RS2229669
85,540,403
95
670


25
2
CAPG
M94345
RS2229668
85,540,641
96
671


25
2
CAPG
M94345
RS13020378
85,544,600
97
672


25
2
CAPG
M94345
RS11696093
85,547,853
98
673


25
2
CAPG
M94345
RS3770102
85,549,495
99
674


25
2
CAPG
M94345
RS11682055
85,549,981
100
675


25
2
CAPG
M94345
RS1877954
85,565,957
101
676


25
2
CAPG
M94345
RS1877955
85,566,184
102
677


42
2
VAMP8
NM_003761
RS17508727
85,711,434
103
678


42
2
VAMP8
NM_003761
RS13426038
85,715,056
104
679


42
2
VAMP8
NM_003761
RS3770098
85,717,025
105
680


42
2
VAMP8
NM_003761
RS3731828
85,717,924
106
681


42
2
VAMP8
NM_003761
RS1009
85,720,395
107
682


42
2
VAMP8
NM_003761
RS1010
85,720,640
108
683


50
2
VAMP5
N90862
RS1561198
85,721,647
109
684


50
2
VAMP5
N90862
RS1254901
85,722,887
110
685


50
2
VAMP5
N90862
RS12714147
85,725,492
111
686


50
2
VAMP5
N90862
RS10206961
85,726,642
112
687


50
2
VAMP5
N90862
RS1254900
85,727,992
113
688


50
2
VAMP5
N90862
RS719023
85,730,146
114
689


50
2
VAMP5
N90862
RS2289976
85,730,455
115
690


50
2
VAMP5
N90862
RS14976
85,730,544
116
691


50
2
VAMP5
N90862
RS14242
85,732,070
117
692


2
2
LOC51255
NM_016494
RS2232739
85,734,340
118
693


2
2
LOC51255
NM_016494
RS2232745
85,735,290
119
694


2
2
LOC51255
NM_016494
RS6643
85,735,909
120
695


66
2
HOXD1
AW001001
RS1562315
176,870,989
121
696


66
2
HOXD1
AW001001
RS1446575
176,873,308
122
697


66
2
HOXD1
AW001001
RS13390503
176,879,561
123
698


66
2
HOXD1
AW001001
RS13390932
176,879,918
124
699


66
2
HOXD1
AW001001
RS6710142
176,880,276
125
700


66
2
HOXD1
AW001001
RS6725515
176,880,600
126
701


66
2
HOXD1
AW001001
RS11551009
176,880,885
127
702


66
2
HOXD1
AW001001
RS1374326
176,883,823
128
703


66
2
HOXD1
AW001001
RS1026032
176,890,330
129
704


36
3
RHOA
NM_001664
RS8179164
49,372,288
130
705


36
3
RHOA
NM_001664
RS974495
49,375,486
131
706


36
3
RHOA
NM_001664
RS7621003
49,386,408
132
707


36
3
RHOA
NM_001664
RS7631908
49,400,711
133
708


36
3
RHOA
NM_001664
RS4855877
49,423,531
134
709


46
3
FLJ39873
NM_173799
RS1316642
115,506,753
135
710


24
3
IGSF11
NM_152538
RS1521299
120,093,419
136
711


24
3
IGSF11
NM_152538
RS4687959
120,106,104
137
712


24
3
IGSF11
NM_152538
RS6782002
120,107,321
138
713


24
3
IGSF11
NM_152538
RS1468738
120,114,311
139
714


24
3
IGSF11
NM_152538
RS2160052
120,124,569
140
715


24
3
IGSF11
NM_152538
RS2192365
120,126,099
141
716


24
3
IGSF11
NM_152538
RS2903250
120,131,750
142
717


24
3
IGSF11
NM_152538
RS9837571
120,138,354
143
718


24
3
IGSF11
NM_152538
RS39688
120,225,538
144
719


24
3
IGSF11
NM_152538
RS35859
120,233,743
145
720


24
3
IGSF11
NM_152538
RS1347448
120,305,831
146
721


68
3
CD80
NM_005191
HCV387937
120,727,283
147
722


68
3
CD80
NM_005191
RS1523311
120,730,991
148
723


68
3
CD80
NM_005191
RS2049502
120,737,075
149
724


68
3
CD80
NM_005191
RS626364
120,755,573
150
725


54
3
FSTL1
NM_007085
RS1621291
121,588,392
151
726


54
3
FSTL1
NM_007085
RS2488
121,595,976
152
727


54
3
FSTL1
NM_007085
RS1057231
121,596,093
153
728


54
3
FSTL1
NM_007085
RS13709
121,596,818
154
729


54
3
FSTL1
NM_007085
RS1700
121,597,327
155
730


54
3
FSTL1
NM_007085
RS1147696
121,602,169
156
731


54
3
FSTL1
NM_007085
RS1147704
121,610,461
157
732


54
3
FSTL1
NM_007085
RS1515577
121,611,630
158
733


54
3
FSTL1
NM_007085
RS13097755
121,614,452
159
734


54
3
FSTL1
NM_007085
RS2272515
121,617,573
160
735


54
3
FSTL1
NM_007085
RS1733306
121,638,524
161
736


54
3
FSTL1
NM_007085
RS1123897
121,639,724
162
737


54
3
FSTL1
NM_007085
RS1123898
121,639,772
163
738


54
3
FSTL1
NM_007085
RS1259333
121,646,977
164
739


54
3
FSTL1
NM_007085
RS1147707
121,651,938
165
740


54
3
FSTL1
NM_007085
RS1147709
121,654,410
166
741


49
3
NDUFB4
NM_004547
RS17140284
121,797,081
167
742


20
3
PARP9
NM_031458
RS3817040
123,737,459
168
743


20
3
PARP9
NM_031458
RS7631465
123,754,360
169
744


16
3
MYLK
NM_053027
RS9422
124,815,030
170
745


16
3
MYLK
NM_053027
RS860224
124,820,104
171
746


16
3
MYLK
NM_053027
RS820447
124,830,869
172
747


16
3
MYLK
NM_053027
RS820463
124,839,727
173
748


16
3
MYLK
NM_053027
RS1254392
124,850,703
174
749


16
3
MYLK
NM_053027
RS820325
124,868,367
175
750


16
3
MYLK
NM_053027
RS820371
124,887,401
176
751


16
3
MYLK
NM_053027
RS11717814
124,891,241
177
752


16
3
MYLK
NM_053027
RS40305
124,894,279
178
753


16
3
MYLK
NM_053027
RS820335
124,898,204
179
754


16
3
MYLK
NM_053027
RS820336
124,898,471
180
755


16
3
MYLK
NM_053027
RS3732487
124,902,263
181
756


16
3
MYLK
NM_053027
RS3732485
124,902,472
182
757


16
3
MYLK
NM_053027
RS7641248
124,909,674
183
758


16
3
MYLK
NM_053027
RS820329
124,927,474
184
759


16
3
MYLK
NM_053027
RS4678047
124,935,528
185
760


16
3
MYLK
NM_053027
RS3796164
124,935,751
186
761


16
3
MYLK
NM_053027
RS9840993
124,940,583
187
762


16
3
MYLK
NM_053027
RS3085179
124,941,793
188
763


16
3
MYLK
NM_053027
RS11718105
124,946,398
189
764


16
3
MYLK
NM_053027
RS11707609
124,986,114
190
765


16
3
MYLK
NM_053027
RS7639329
124,993,625
191
766


16
3
MYLK
NM_053027
RS28497577
124,995,317
192
767


16
3
MYLK
NM_053027
RS9846863
124,996,168
193
768


16
3
MYLK
NM_053027
RS4678060
124,998,930
194
769


16
3
MYLK
NM_053027
RS11714297
125,002,269
195
770


16
3
MYLK
NM_053027
RS9816400
125,006,336
196
771


16
3
MYLK
NM_053027
RS2124508
125,009,601
197
772


16
3
MYLK
NM_053027
RS10934651
125,015,899
198
773


16
3
MYLK
NM_053027
RS16834774
125,017,283
199
774


16
3
MYLK
NM_053027
RS13094938
125,017,560
200
775


16
3
MYLK
NM_053027
RS9289225
125,018,733
201
776


16
3
MYLK
NM_053027
RS7652269
125,018,872
202
777


16
3
MYLK
NM_053027
RS3911406
125,021,533
203
778


16
3
MYLK
NM_053027
RS9829784
125,022,826
204
779


16
3
MYLK
NM_053027
HCV1602689
125,024,094
205
780


16
3
MYLK
NM_053027
RS2682215
125,027,266
206
781


16
3
MYLK
NM_053027
RS2605417
125,032,085
207
782


16
3
MYLK
NM_053027
RS2700358
125,039,169
208
783


16
3
MYLK
NM_053027
RS2682239
125,042,419
209
784


16
3
MYLK
NM_053027
RS7628376
125,045,246
210
785


16
3
MYLK
NM_053027
RS4461370
125,048,862
211
786


16
3
MYLK
NM_053027
RS1343700
125,054,444
212
787


16
3
MYLK
NM_053027
RS16834817
125,060,723
213
788


16
3
MYLK
NM_053027
RS12495918
125,065,904
214
789


16
3
MYLK
NM_053027
RS2682218
125,066,569
215
790


16
3
MYLK
NM_053027
RS4118366
125,066,921
216
791


16
3
MYLK
NM_053027
RS16834826
125,067,178
217
792


16
3
MYLK
NM_053027
RS13096686
125,072,942
218
793


16
3
MYLK
NM_053027
RS2700408
125,078,122
219
794


16
3
MYLK
NM_053027
RS2682229
125,084,440
220
795


16
3
MYLK
NM_053027
RS2700410
125,085,087
221
796


16
3
MYLK
NM_053027
RS1920221
125,089,642
222
797


6
3
OR7E29P
NG_004130
RS2979310
126,871,199
223
798


23
3
KLF15
NM_014079
RS7622890
127,540,380
224
799


23
3
KLF15
NM_014079
RS938390
127,541,247
225
800


23
3
KLF15
NM_014079
RS938389
127,541,460
226
801


23
3
KLF15
NM_014079
RS7615776
127,543,315
227
802


23
3
KLF15
NM_014079
RS9838915
127,548,918
228
803


23
3
KLF15
NM_014079
RS9850626
127,551,477
229
804


23
3
KLF15
NM_014079
RS6764427
127,552,824
230
805


23
3
KLF15
NM_014079
RS1358087
127,561,588
231
806


23
3
KLF15
NM_014079
RS7636709
127,562,692
232
807


63
3
GATA2
ABC002557
RS2713594
129,679,198
233
808


63
3
GATA2
ABC002557
RS2713579
129,680,802
234
809


63
3
GATA2
ABC002557
3P0457
129,681,678
235
810


63
3
GATA2
ABC002557
3P0456
129,681,863
236
811


63
3
GATA2
ABC002557
3P0448
129,682,014
237
812


63
3
GATA2
ABC002557
RS3803
129,682,078
238
813


63
3
GATA2
ABC002557
3P0450
129,682,150
239
814


63
3
GATA2
ABC002557
RS10934857
129,682,360
240
815


63
3
GATA2
ABC002557
3P0455

241
816


63
3
GATA2
ABC002557
RS2713604
129,683,157
242
817


63
3
GATA2
ABC002557
RS2713603
129,683,232
243
818


63
3
GATA2
ABC002557
RS2659689
129,685,704
244
819


63
3
GATA2
ABC002557
RS2659691
129,686,398
245
820


63
3
GATA2
ABC002557
RS2713601
129,686,434
246
821


63
3
GATA2
ABC002557
RS2335052
129,687,649
247
822


63
3
GATA2
ABC002557
RS1573858
129,688,558
248
823


63
3
GATA2
ABC002557
RS1806462
129,689,316
249
824


63
3
GATA2
ABC002557
RS2953120
129,692,180
250
825


63
3
GATA2
ABC002557
RS2860228
129,692,365
251
826


63
3
GATA2
ABC002557
RS9851497
129,695,224
252
827


63
3
GATA2
ABC002557
RS6439129
129,695,471
253
828


52
3
PLXND1
NM_015103
RS2625967
130,749,957
254
829


52
3
PLXND1
NM_015103
RS2285359
130,764,416
255
830


52
3
PLXND1
NM_015103
RS2245285
130,769,111
256
831


52
3
PLXND1
NM_015103
RS2245278
130,769,333
257
832


52
3
PLXND1
NM_015103
RS2285366
130,772,785
258
833


52
3
PLXND1
NM_015103
RS2285368
130,774,197
259
834


52
3
PLXND1
NM_015103
RS2244708
130,774,449
260
835


52
3
PLXND1
NM_015103
RS2255703
130,775,954
261
836


52
3
PLXND1
NM_015103
RS1110168
130,779,921
262
837


52
3
PLXND1
NM_015103
RS10934885
130,781,692
263
838


52
3
PLXND1
NM_015103
RS2285370
130,785,153
264
839


52
3
PLXND1
NM_015103
RS2285371
130,785,770
265
840


52
3
PLXND1
NM_015103
RS2285372
130,787,495
266
841


52
3
PLXND1
NM_015103
RS2301572
130,788,158
267
842


52
3
PLXND1
NM_015103
RS2285373
130,790,907
268
843


52
3
PLXND1
NM_015103
RS4688807
130,791,961
269
844


22
3
ATP2C1
NM_001001485
RS852216
132,094,968
270
845


22
3
ATP2C1
NM_001001485
RS2669869
132,100,165
271
846


22
3
ATP2C1
NM_001001485
RS712984
132,131,496
272
847


22
3
ATP2C1
NM_001001485
RS852214
132,144,013
273
848


22
3
ATP2C1
NM_001001485
RS2685193
132,159,002
274
849


22
3
ATP2C1
NM_001001485
RS218481
132,204,901
275
850


22
3
ATP2C1
NM_001001485
RS190067
132,213,062
276
851


41
3
BFSP2
NM_003571
RS517255
134,600,752
277
852


41
3
BFSP2
NM_003571
RS4854585
134,619,982
278
853


41
3
BFSP2
NM_003571
RS2276737
134,650,061
279
854


41
3
BFSP2
NM_003571
RS1881918
134,653,982
280
855


41
3
BFSP2
NM_003571
RS2737717
134,668,532
281
856


41
3
BFSP2
NM_003571
RS6439410
134,676,110
282
857


47
3
AGTR1
D13814
RS2638362
149,903,214
283
858


47
3
AGTR1
D13814
RS10935724
149,903,951
284
859


47
3
AGTR1
D13814
RS931490
149,913,465
285
860


47
3
AGTR1
D13814
RS2640543
149,915,067
286
861


47
3
AGTR1
D13814
RS718858
149,918,210
287
862


47
3
AGTR1
D13814
RS909383
149,918,904
288
863


47
3
AGTR1
D13814
RS3772620
149,919,006
289
864


47
3
AGTR1
D13814
RS389566
149,929,080
290
865


47
3
AGTR1
D13814
RS385338
149,931,854
291
866


47
3
AGTR1
D13814
RS275649
149,936,024
292
867


47
3
AGTR1
D13814
RS1800766
149,940,340
293
868


47
3
AGTR1
D13814
RS5182
149,942,093
294
869


47
3
AGTR1
D13814
RS5188
149,942,917
295
870


47
3
AGTR1
D13814
RS275645
149,947,152
296
871


47
3
AGTR1
D13814
RS9849625
150,022,852
297
872


47
3
AGTR1
D13814
RS3772587
150,059,614
298
873


33
4
PPARGC1A
NM_013261
RS3774923
23,471,333
299
874


33
4
PPARGC1A
NM_013261
RS3736265
23,490,976
300
875


33
4
PPARGC1A
NM_013261
RS8192678
23,491,931
301
876


33
4
PPARGC1A
NM_013261
RS2290604
23,506,507
302
877


75
4
HADHSC
X96752
RS221330
109,278,971
303
878


75
4
HADHSC
X96752
RS3775974
109,283,987
304
879


75
4
HADHSC
X96752
RS141066
109,289,155
305
880


75
4
HADHSC
X96752
RS763432
109,289,241
306
881


75
4
HADHSC
X96752
RS1051519
109,298,336
307
882


75
4
HADHSC
X96752
RS732940
109,302,674
308
883


75
4
HADHSC
X96752
RS732941
109,302,708
309
884


75
4
HADHSC
X96752
RS3796939
109,305,695
310
885


75
4
HADHSC
X96752
RS221347
109,313,226
311
886


59
4
GLRA3
U93917
RS4695942
175,942,562
312
887


59
4
GLRA3
U93917
RS10021195
175,953,446
313
888


59
4
GLRA3
U93917
RS7438094
175,981,922
314
889


59
4
GLRA3
U93917
RS2046485
176,034,349
315
890


11
5
IL7R
NM_002185
RS1389832
35,894,478
316
891


11
5
IL7R
NM_002185
RS1494558
35,896,825
317
892


11
5
IL7R
NM_002185
RS1494555
35,906,947
318
893


11
5
IL7R
NM_902185
RS7737000
35,907,030
319
894


11
5
IL7R
NM_002185
RS6897932
35,910,332
320
895


11
5
IL7R
NM_002185
RS987107
35,910,984
321
896


11
5
IL7R
NM_002185
RS987106
35,911,350
322
897


11
5
IL7R
NM_002185
RS3194051
35,912,031
323
898


40
5
LHFPL2
D86961
RS1050674
77,818,845
324
899


40
5
LHFPL2
D86961
RS2114978
77,851,010
325
900


40
5
LHFPL2
D86961
RS6872179
77,865,568
326
901


40
5
LHFPL2
D86961
RS11948997
77,878,660
327
902


40
5
LHFPL2
D86961
RS1561735
77,901,984
328
903


21
5
KIAA0194
BC005880
RS4705411
149,411,218
329
904


73
5
SGCD
NM_000337
RS10064593
155,688,772
330
905


73
5
SGCD
NM_000337
RS4705006
155,692,041
331
906


73
5
SGCD
NM_000337
RS7722282
155,730,412
332
907


73
5
SGCD
NM_000337
RS6556574
155,747,541
333
908


73
5
SGCD
NM_000337
RS4704798
155,749,323
334
909


73
5
SGCD
NM_000337
RS4705013
155,765,029
335
910


73
5
SGCD
NM_000337
RS11135202
155,783,889
336
911


73
5
SGCD
NM_000337
RS2055611
155,796,281
337
912


73
5
SGCD
NM_000337
RS4704804
155,840,065
338
913


73
5
SGCD
NM_000337
RS256825
155,867,548
339
914


73
5
SGCD
NM_000337
RS4705019
155,886,086
340
915


73
5
SGCD
NM_000337
RS6556750
155,990,742
341
916


73
5
SGCD
NM_000337
RS6871079
155,994,305
342
917


73
5
SGCD
NM_000337
RS32054
156,008,460
343
918


73
5
SGCD
NM_000337
RS6890150
156,050,193
344
919


73
5
SGCD
NM_000337
RS961272
156,113,944
345
920


57
5
DOCK2
NM_004946
RS264869
168,999,444
346
921


57
5
DOCK2
NM_004946
RS264834
169,015,068
347
922


57
5
DOCK2
NM_004946
RS2244445
169,034,177
348
923


57
5
DOCK2
NM_004946
RS2112703
169,059,675
349
924


57
5
DOCK2
NM_004946
RS2279318
169,063,452
350
925


57
5
DOCK2
NM_004946
RS10038749
169,081,158
351
926


57
5
DOCK2
NM_004946
RS262865
169,094,611
352
927


57
5
DOCK2
NM_004946
RS1680567
169,145,733
353
928


57
5
DOCK2
NM_004946
RS688881
169,186,359
354
929


57
5
DOCK2
NM_004946
RS261623
169,200,362
355
930


57
5
DOCK2
NM_004946
RS2291229
169,220,956
356
931


57
5
DOCK2
NM_004946
RS11740057
169,237,503
357
932


57
5
DOCK2
NM_004946
RS155022
169,273,854
358
933


57
5
DOCK2
NM_004946
RS259894
169,291,461
359
934


57
5
DOCK2
NM_004946
RS1422694
169,319,665
360
935


57
5
DOCK2
NM_004946
RS4867906
169,338,200
361
936


57
5
DOCK2
NM_004946
RS3763048
169,394,125
362
937


57
5
DOCK2
NM_004946
RS6879798
169,439,532
363
938


28
5
LCP2
NM_005565
RS315717
169,617,741
364
939


28
5
LCP2
NM_005565
RS315745
169,630,285
365
940


28
5
LCP2
NM_005565
RS315721
169,647,616
366
941


28
5
LCP2
NM_005565
RS3761750
169,657,817
367
942


9
6
TDRD6
NM_001010870
RS12528857
46,777,895
368
943


3
6
PLA2G7
U24577
RS1051931
46,780,902
369
944


3
6
PLA2G7
U24577
RS2216465
46,783,978
370
945


3
6
PLA2G7
U24577
RS4498351
46,784,742
371
946


3
6
PLA2G7
U24577
RS1805018
46,787,262
372
947


3
6
PLA2G7
U24577
RS6899519
46,789,859
373
948


3
6
PLA2G7
U24577
RS1362931
46,790,038
374
949


3
6
PLA2G7
U24577
RS1805017
46,792,181
375
950


3
6
PLA2G7
U24577
RS6929105
46,793,245
376
951


3
6
PLA2G7
U24577
RS12195701
46,795,378
377
952


3
6
PLA2G7
U24577
RS3799863
46,795,750
378
953


3
6
PLA2G7
U24577
RS3799862
46,795,890
379
954


3
6
PLA2G7
U24577
RS3799861
46,797,488
380
955


3
6
PLA2G7
U24577
RS12528807
46,804,466
381
956


3
6
PLA2G7
U24577
RS9357514
46,804,800
382
957


3
6
PLA2G7
U24577
RS9381475
46,807,251
383
958


3
6
PLA2G7
U24577
RS1421378
46,811,472
384
959


3
6
PLA2G7
U24577
RS1421379
46,813,953
385
960


3
6
PLA2G7
U24577
RS1862008
46,818,238
386
961


37
6
AIM1
AI800499
RS1159148
107,073,878
387
962


14
6
C6ORF204
NM_206921
RS6929390
118,969,838
388
963


14
6
C6ORF204
NM_206921
RS9489433
118,973,699
389
964


5
6
PLN
M63603
RS9489434
118,976,196
390
965


5
6
PLN
M63603
RS3752581
118,976,423
391
966


5
6
PLN
M63603
RS9489437
118,981,038
392
967


5
6
PLN
M63603
RS9481825
118,982,785
393
968


5
6
PLN
M63603
RS503031
118,983,503
394
969


5
6
PLN
M63603
RS12198461
118,987,333
395
970


5
6
PLN
M63603
6P0326
118,988,353
396
971


5
6
PLN
M63603
RS1051429
118,988,515
397
972


14
6
C6ORF204
NM_206921
RS1998482
118,992,805
398
973


14
6
C6ORF204
NM_206921
RS763254
118,993,308
399
974


14
6
C6ORF204
NM_206921
RS3734382
118,993,654
400
975


14
6
C6ORF204
NM_206921
RS3734381
118,993,996
401
976


51
6
OPRM1
L25119
RS1799972
154,452,810
402
977


51
6
OPRM1
L25119
RS1799971
154,452,911
403
978


51
6
OPRM1
L25119
RS510769
154,454,133
404
979


51
6
OPRM1
L25119
RS524731
154,467,206
405
980


51
6
OPRM1
L25119
RS3823010
154,471,266
406
981


51
6
OPRM1
L25119
RS495491
154,474,656
407
982


51
6
OPRM1
L25119
RS2075572
154,504,118
408
983


51
6
OPRM1
L25119
RS609148
154,523,128
409
984


51
6
OPRM1
L25119
RS4870268
154,564,440
410
985


44
7
NPY
NM_000905
RS16148
24,095,578
411
986


44
7
NPY
NM_000905
RS16147
24,096,650
412
987


44
7
NPY
NM_000905
RS16143
24,097,828
413
988


44
7
NPY
NM_000905
RS16478
24,097,848
414
989


44
7
NPY
NM_000905
RS16142
24,097,910
415
990


44
7
NPY
NM_000905
RS16141
24,097,999
416
991


44
7
NPY
NM_000905
RS16140
24,098,048
417
992


44
7
NPY
NM_000905
RS16139
24,098,119
418
993


44
7
NPY
NM_000905
RS5572
24,098,183
419
994


44
7
NPY
NM_000905
RS9785023
24,098,249
420
995


44
7
NPY
NM_000905
RS16138
24,098,735
421
996


44
7
NPY
NM_000905
RS1468271
24,100,221
422
997


44
7
NPY
NM_000905
RS5574
24,102,373
423
998


44
7
NPY
NM_000905
RS16132
24,102,760
424
999


44
7
NPY
NM_000905
RS16131
24,103,077
425
1000


44
7
NPY
NM_000905
RS16475
24,104,726
426
1001


44
7
NPY
NM_000905
RS16126
24,104,757
427
1002


44
7
NPY
NM_000905
RS16474
24,106,850
428
1003


44
7
NPY
NM_000905
RS16473
24,106,891
429
1004


44
7
NPY
NM_000905
RS16120
24,107,964
430
1005


44
7
NPY
NM_000905
RS16119
24,108,170
431
1006


17
7
POR
NM_000941
RS3898649
75,191,543
432
1007


17
7
POR
NM_000941
RS1966363
75,221,588
433
1008


17
7
POR
NM_000941
RS2868178
75,234,751
434
1009


17
7
POR
NM_000941
RS7804806
75,240,333
435
1010


17
7
POR
NM_000941
RS4732513
75,252,259
436
1011


17
7
POR
NM_000941
RS10954732
75,255,800
437
1012


38
7
ABCB1
M14758
RS1045642
86,783,296
438
1013


38
7
ABCB1
M14758
RS1128503
86,824,252
439
1014


38
7
ABCB1
M14758
RS9282564
86,874,091
440
1015


38
7
ABCB1
M14758
RS2214102
86,874,152
441
1016


39
9
ROR2
M97639
RS1027268
91,450,905
442
1017


39
9
ROR2
M97639
RS10820899
91,561,596
443
1018


39
9
ROR2
M97639
RS2230578
91,565,483
444
1019


39
9
ROR2
M97639
RS4073735
91,567,970
445
1020


39
9
ROR2
M97639
RS9409456
91,574,116
446
1021


39
9
ROR2
M97639
RS16907720
91,579,352
447
1022


39
9
ROR2
M97639
RS3935601
91,588,255
448
1023


39
9
ROR2
M97639
RS9409461
91,610,544
449
1024


39
9
ROR2
M97639
RS7039620
91,615,187
450
1025


39
9
ROR2
M97639
RS4744098
91,623,837
451
1026


39
9
ROR2
M97639
RS4378021
91,626,613
452
1027


39
9
ROR2
M97639
RS2312732
91,662,524
453
1028


39
9
ROR2
M97639
RS1881385
91,676,336
454
1029


39
9
ROR2
M97639
RS10116351
91,731,257
455
1030


39
9
ROR2
M97639
RS10512219
91,735,571
456
1031


39
9
ROR2
M97639
RS1892263
91,767,156
457
1032


70
11
TCIRG1
NM_006019
RS906713
67,570,506
458
1033


70
11
TCIRG1
NM_006019
RS2075609
67,573,512
459
1034


70
11
TCIRG1
NM_006019
RS11228127
67,574,452
460
1035


70
11
TCIRG1
NM_006019
RS11481
67,576,911
461
1036


10
12
TNFRSF1A
NM_001065
RS4149578
6,317,698
462
1037


10
12
TNFRSF1A
NM_001065
RS4149577
6,317,783
463
1038


10
12
TNFRSF1A
NM_001065
RS4149576
6,319,376
464
1039


10
12
TNFRSF1A
NM_001065
RS4149573
6,319,645
465
1040


10
12
TNFRSF1A
NM_001065
RS4149570
6,321,851
466
1041


65
12
PLXNC1
AF030339
RS2230754
93,045,974
467
1042


65
12
PLXNC1
AF030339
RS7131826
93,048,788
468
1043


65
12
PLXNC1
AF030339
RS11107420
93,057,281
469
1044


65
12
PLXNC1
AF030339
RS3858609
93,067,143
470
1045


65
12
PLXNC1
AF030339
RS6538486
93,078,458
471
1046


65
12
PLXNC1
AF030339
RS10859685
93,097,105
472
1047


65
12
PLXNC1
AF030339
RS7296806
93,099,026
473
1048


65
12
PLXNC1
AF030339
RS3847813
93,101,925
474
1049


65
12
PLXNC1
AF030339
RS2305971
93,105,768
475
1050


65
12
PLXNC1
AF030339
RS2361355
93,132,497
476
1051


65
12
PLXNC1
AF030339
RS2291326
93,151,413
477
1052


65
12
PLXNC1
AF030339
RS2242498
93,152,063
478
1053


65
12
PLXNC1
AF030339
RS17022311
93,155,862
479
1054


65
12
PLXNC1
AF030339
RS832506
93,174,211
480
1055


65
12
PLXNC1
AF030339
RS1681866
93,178,913
481
1056


65
12
PLXNC1
AF030339
RS3803069
93,186,271
482
1057


48
13
PCCA
X14608
RS7325252
99,547,355
483
1058


48
13
PCCA
X14608
RS7993067
99,566,316
484
1059


48
13
PCCA
X14608
RS1890139
99,580,093
485
1060


48
13
PCCA
X14608
RS2152881
99,615,996
486
1061


48
13
PCCA
X14608
RS9518016
99,626,614
487
1062


48
13
PCCA
X14608
RS9743146
99,667,871
488
1063


48
13
PCCA
X14608
RS1112044
99,682,492
489
1064


48
13
PCCA
X14608
RS538229
99,686,123
490
1065


48
13
PCCA
X14608
RS7991183
99,711,884
491
1066


48
13
PCCA
X14608
RS9518035
99,716,632
492
1067


48
13
PCCA
X14608
RS9557413
99,760,924
493
1068


48
13
PCCA
X14608
RS9554686
99,870,943
494
1069


48
13
PCCA
X14608
RS8001633
99,904,079
495
1070


48
13
PCCA
X14608
RS1296332
99,911,747
496
1071


48
13
PCCA
X14608
RS3783171
99,922,321
497
1072


26
14
ITPK1
NM_014216
RS875395
92,471,846
498
1073


26
14
ITPK1
NM_014216
RS1043542
92,476,815
499
1074


26
14
ITPK1
NM_014216
RS11446
92,477,001
500
1075


26
14
ITPK1
NM_014216
RS10873430
92,478,831
501
1076


26
14
ITPK1
NM_014216
RS2295394
92,482,496
502
1077


26
14
ITPK1
NM_014216
RS2402226
92,489,288
503
1078


26
14
ITPK1
NM_014216
RS3825683
92,518,490
504
1079


26
14
ITPK1
NM_014216
RS4905025
92,536,179
505
1080


26
14
ITPK1
NM_014216
RS1614269
92,573,258
506
1081


26
14
ITPK1
NM_014216
RS1740596
92,576,559
507
1082


26
14
ITPK1
NM_014216
RS1740595
92,582,283
508
1083


26
14
ITPK1
NM_014216
RS2749509
92,597,867
509
1084


26
14
ITPK1
NM_014216
RS882023
92,601,767
510
1085


26
14
ITPK1
NM_014216
RS4905043
92,619,762
511
1086


26
14
ITPK1
NM_014216
HCV1258994
92,623,971
512
1087


26
14
ITPK1
NM_014216
RS941540
92,630,797
513
1088


26
14
ITPK1
NM_014216
RS768356
92,646,296
514
1089


55
14
C14ORF132
AA149431
RS4340260
95,617,294
515
1090


55
14
C14ORF132
AA149431
RS10140364
95,621,356
516
1091


55
14
C14ORF132
AA149431
RS1058102
95,627,988
517
1092


55
14
C14ORF132
AA149431
RS1062710
95,629,212
518
1093


55
14
C14ORF132
AA149431
RS2104290
95,638,734
519
1094


18
15
ANPEP
M22324
RS967451
88,129,048
520
1095


18
15
ANPEP
M22324
RS10584
88,129,555
521
1096


18
15
ANPEP
M22324
RS1992250
88,134,984
522
1097


18
15
ANPEP
M22324
RS7168793
88,135,244
523
1098


18
15
ANPEP
M22324
RS1439120
88,139,197
524
1099


18
15
ANPEP
M22324
RS1439119
88,139,250
525
1100


18
15
ANPEP
M22324
RS1439118
88,139,516
526
1101


18
15
ANPEP
M22324
RS753362
88,141,538
527
1102


18
15
ANPEP
M22324
RS893615
88,141,723
528
1103


18
15
ANPEP
M22324
RS2007084
88,146,339
529
1104


18
15
ANPEP
M22324
RS2305443
88,147,865
530
1105


18
15
ANPEP
M22324
RS25653
88,150,562
531
1106


8
16
MYH11
D10667
RS1050163
15,718,524
532
1107


8
16
MYH11
D10667
RS1050162
15,718,563
533
1108


8
16
MYH11
D10667
RS2075511
15,725,642
534
1109


8
16
MYH11
D10667
RS1050113
15,746,535
535
1110


8
16
MYH11
D10667
RS2272554
15,757,705
536
1111


8
16
MYH11
D10667
RS4781689
15,772,973
537
1112


8
16
MYH11
D10667
RS6498574
15,795,766
538
1113


8
16
MYH11
D10667
RS8044595
15,813,631
539
1114


8
16
MYH11
D10667
RS216152
15,823,321
540
1115


8
16
MYH11
D10667
RS1050111
15,824,698
541
1116


8
16
MYH11
D10667
RS215581
15,840,675
542
1117


8
16
MYH11
D10667
RS215571
15,851,834
543
1118


62
16
ITGAX
Y00093
RS1106398
31,277,953
544
1119


62
16
ITGAX
Y00093
RS4264407
31,278,694
545
1120


62
16
ITGAX
Y00093
RS2070896
31,292,055
546
1121


62
16
ITGAX
Y00093
RS2929
31,300,809
547
1122


62
16
ITGAX
Y00093
RS1140195
31,301,680
548
1123


35
17
GRN
NM_002087
RS3859268
39,778,789
549
1124


35
17
GRN
NM_002087
RS2879096
39,779,082
550
1125


35
17
GRN
NM_002087
RS3785817
39,779,191
551
1126


35
17
GRN
NM_002087
RS4792938
39,780,125
552
1127


35
17
GRN
NM_002087
RS9897526
39,782,466
553
1128


35
17
GRN
NM_002087
RS25646
39,783,156
554
1129


35
17
GRN
NM_002087
RS25647
39,785,365
555
1130


35
17
GRN
NM_002087
RS5848
39,785,770
556
1131


27
18
FVT1
X63657
RS6810
59,149,381
557
1132


27
18
FVT1
X63657
RS2850767
59,152,094
558
1133


27
18
FVT1
X63657
RS2236719
59,157,272
559
1134


27
18
FVTI
X63657
RS2849372
59,164,885
560
1135


27
18
FVT1
X63657
RS2850756
59,168,088
561
1136


67
19
HNRPM
NM_005968
RS6603076
8,413,177
562
1137


67
19
HNRPM
NM_005968
RS6603078
8,417,325
563
1138


7
19
PLAUR
X74039
RS4760
48,844,940
564
1139


7
19
PLAUR
X74039
RS2283628
48,854,901
565
1140


7
19
PLAUR
X74039
RS399145
48,861,362
566
1141


7
19
PLAUR
X74039
RS2286960
48,863,865
567
1142


74
19
BAX
NM_138763
RS1009316
54,150,382
568
1143


74
19
BAX
NM_138763
RS1B05419
54,150,916
569
1144


74
19
BAX
NM_138763
RS4645887
54,151,688
570
1145


74
19
BAX
NM_138763
RS2387583
54,153,117
571
1146


74
19
BAX
NM_138763
RS905238
54,157,196
572
1147


69
22
GTSE1
NM_016426
RS6008729
45,047,947
573
1148


64
22
TRMU
NM_018006
RS6007886
45,058,315
574
1149


64
22
TRMU
NM_018006
RS13585
45,073,698
575
1150


















TABLE 4





(SEQ ID
SNP Sequence



NO:)
(polymorphism location is indicated in brackets)







  1
5′- GGACACAACAGGACCCACTG[G]GGAAAACAATGATGACTTGG -3′






  2
5′- CCCCTCCACTTTGCTCACCC[A]TCTTCCGGGCCCTGAACCCA -3′





  3
5′- TCCTGTGCCGGCTGCAGGTA[T]GGAACAAGTAGGCTAGTGTC -3′





  4
5′- AGGAAAGACTGTTGGGCCTC[G]GAAAACATCCCACGTGCTAG -3′





  5
5′- GGGACTTGGTTTCATGTCTC[T]ATCTCTCAGTTCTGTTTCCC -3′





  6
5′- ATAGAGAGGGTCTGTTAGGT[T]CTTGGGATCTTGTTCTTCAA -3′





  7
5′- ATTCCAATTGAAGATTGAAA[G]TGGCCTGTTTGGTAAACTGG -3′





  8
5′- TAACTCAAAGCACAAAGTTT[T]GAATTCCTACATTCTAAAGA -3′





  9
5′- GTCACCTGCCTCGGAGCCAG[T]TAGGCTGTTTAACAGTGCAG -3′





 10
5′- GGAGCTTTGGCATCGCAGAG[A]CTTGAGCTGAGTCTGGCTCT -3′





 11
5′- CAGAGCCCCTCCCTCTAAAC[A]CAGTCTTTCAAAGGGATTGT -3′





 12
5′- CAATTTCTTGCTGAAAGCCC[T]GAGTTATGCCAGACACTGTG -3′





 13
5′- ACCTTTGCCCAGATCCAAAT[G]TTTTTTCTTCATTCGAAGCT -3′





 14
5′- ACGGATCTCTTACCATTAAA[T]TCAGGTGGAGAGGGAGTGCC -3′





 15
5′- TTTCACAGATGAGGAGGCTG[T]CCTCAGGAAATGTGACTCAG -3′





 16
5′- CCAACACCACCCCTTGCCCA[G]CCAATGCACACAGTAGGGCT -3′





 17
5′- CCCATATCATGCAGAGGATC[T]GGGATTTCAATCCAGGTCTA -3′





 18
5′- TGACGTGTGCAGAGAGACAT[C]TCAGCCTGCCCTGCACTTGT -3′





 19
5′- GGCAGCATATTAGAAAATAG[C]TTATGTTACAACAAAAACCC -3′





 20
5′- TGCCCCTTCTCACTGGTCTG[C]GGCTGGCAGGGCCATCTTTC -3′





 21
5′- GAATCCATCCCAAGGACACC[C]TTTGAAAACATGAAATAACA -3′





 22
5′- CAGCGGGGAGGGGAAAGGTC[T]GAAATGAGGGGAGAGACGTG -3′





 23
5′- GCTGGGCAGAGCCATTCCTG[A]GCTGGCTGGGTGTGTTTGGG -3′





 24
5′- ACAGGCATCAGGGATACAGT[G]GTGAACAAGCATACACAATC -3′





 25
5′- AGGTGAAGCTGAGGCCTGAG[C]CCAGAAGGAGAGAAAAGGAA -3′





 26
5′- CACTCATTAATCCATTAAAC[C]ATTAATCTATTAATCCATGA -3′





 27
5′- GTGTATGCTGTGAAGAAGGC[A]ACCCCCCTTCCTGCCCATCC -3′





 28
5′- CTGTCACTATGCCCCTGCCT[T]TCTCAGTGTCTATCTCTGTT -3′





 29
5′- GGGATGACAGTGAGAGGAGG[C]CAACAGTAAAAGGAGTCATA -3′





 30
5′- GTGTGTCTGTCAGGGAATGT[G]TCCCTCTTCCATTCTCTGTG -3′





 31
5′- CCATTCTTGGTGGTGAGCCT[G]GACTCTGAGCCTGGGATGTG -3′





 32
5′- GTCTGGCTGCCCCTTGGCCT[C]CACYACAGTCAGGTCCAGCC -3′





 33
5′- TTGAGGATTAAAGAGCAGAR[G]TCATGTAGCATCTGGCACAT -3′





 34
5′- CGTCATGTAGCATCTGGCAC[G]TGGGGGAACGCAATGGAAGT -3′





 35
5′- CAGAGAATATTTCACATGCA[T]GTAGCAAAAACACCAGGGGT -3′





 36
5′- AACATGGATTAATGTGGGAA[C]TTGGCTTCAAGAACACAACC -3′





 37
5′- ATTATTTCATTTTAAAACCA[T]AGAATAAAAATGACACCTGA -3′





 38
5′- AAGCAGATTATGAGGCAGGT[C]CACCCCTCCCAGCACTGGGG -3′





 39
5′- CCAGCCCTGTAGTGGACATA[T]TTGCCTTTGCCTATTCAGCA -3′





 40
5′- GAACTCGGTGGAGGAGAAGA[G]AAACTCCAAGATGCTCCAGA -3′





 41
5′- TGTGGGCTGGACTTAGCAAC[G]CACTTCTAACTAACAGAATG -3′





 42
5′- GGTGTCAATTCACTCCCAGC[G]GCACTGACTGAGTGCTGACC -3′





 43
5′- ATGTTAGGCGGTCCCACCTG[C]GTTCTGGAGATCTTCACACA -3′





 44
5′- GGTGGGCAGAGGCTGGATCC[T]ATGGTGAGGAGTTTCCATTT -3′





 45
5′- TTGCCATGGGCCACCTCTAC[C]GAGTGCTCGATGAACAACAA -3′





 46
5′- TTTGGCTGGGGCAAGCTTAC[G]TGGTTCGGCAGTAGTACCAG -3′





 47
5′- GTGGCCCCAGGAATGCGGGC[G]TCTGGTGGTATCTGGGCTGG -3′





 48
5′- ATGCATTGTGGTAGATTCAT[A]CAATGGAGTATACACAGCAA -3′





 49
5′- GTGGCAGCTGCCATTTTTCC[G]GTGCCACAAATGGTAGTTAC -3′





 50
5′- TTGGGAGGAAGACCACAGAG[G]TGATGTGCCAGTCTCAGAAC -3′





 51
5′- AAAATACAGGGTACAGGGAC[A]CTCAAAGAGTGATTTGCTTC -3′





 52
5′- GTGAGATGGGGCACAGCAGC[G]GCCGGAAGGTTATTTGTGTG -3′





 53
5′- GCAGGGCAGAGAAGGGGAAG[C]TGCTGGCTGCCCTCCTCACT -3′





 54
5′- GCTCCTGGATTCACTCCTTT[C]ATCCTCACCTCAATCCTTTG -3′





 55
5′- AGTTGGCTTGTATGGACCCC[G]CCGATGACGGACAGTTCCAA -3′





 56
5′- AGTGGATTGAGGATGGACAT[G]TGTATCTGGAAGCACCAAAA -3′





 57
5′- CTGGGTTCACTGGAAATCAG[T]ATTAAGAATGTACAAGGGAA -3′





 58
5′- ATGTAAACTGCCTTTGAAAG[C]CTATAACACAGTTCAGTTGG -3′





 59
5′- ACTTAATCTTGCTCAGTTCC[T]CAGTTTACACTTTTGAATGG -3′





 60
5′- GCAGCATAGATGAATGTAAT[A]TTGAAACAGGAAGATGTGTT -3′





 61
5′- CTTAGCCTGCAATTGCAATC[C]GTATGGGACCATGAAGCAGC -3′





 62
5′- TAGCCGTTTACAGAATATCC[G]GAATACCATTGAAGAGACTG -3′





 63
5′- GTTTCAGATTTTGATAGGCG[C]GTGAACGATAACAAGACGGC -3′





 64
5′- ATGAGGGAGAAATGCCCTTT[T]TGGCAATTGTTGGAGCTGGA -3′





 65
5′- AGGAACAGTGCTACTTACTG[G]TGGGTAGACTGGGAGAGGTG -3′





 66
5′- TTGGCAATGGGTAAGTCTAT[C]GTACTGTGTAAACTTGGACT -3′





 67
5′- GATATAGATCTCTTGGAAAT[G]TAATAATGGTATGCAGGAAG -3′





 68
5′- GCAACCCGGGGAAATACAGC[C]AAATGCACAAGTACTGGCTG -3′





 69
5′- CTGTACAAACTTTCTTCCAT[A]ATTTTGATTATATCCATTTT -3′





 70
5′- CCCTCATTATCTGCCTAAAC[G]ATTTTTTCTCAACTCCTATA -3′





 71
5′- CTAGCACTGTACACACCCCA[C]ACTGTGTATGCTATTTGTTG -3′





 72
5′- CAAAAGTTATCTCTAACCAA[T]GTACTCAAACAGAGTCTTTA -3′





 73
5′- CCTTGTAAATCTCCACCTGA[G]ATTTCTCATGGTGTTGTAGC -3′





 74
5′- TCCCATAGGAATTATAAAAT[G]GAAAAGTATGACAAAAATTT -3′





 75
5′- AGGCCCTTCAGCTTCACCAC[C]TGCTTCTCTTTAAACAAGTC -3′





 76
5′- GATAGAATTTGGCCCAGAGA[G]GTTAACTAATATATCCATGA -3′





 77
5′- CTGTTTCTCCTTAAAATGGA[G]AAATGGCCTCTACAGAGTAG -3′





 78
5′- GCTTGGTGGGGCCACTGGGC[G]TCTGTTTCTCGGGTGTTTTG -3′





 79
5′- CCATTCCCTCGGCGAAGAGC[G]GAGGTTGAAGAAATGCTACT -3′





 80
5′- GCAAGCGCCAGAGCCTCTGT[G]TGCTGCATTCGGCAACCACA -3′





 81
5′- GGTTCCTGAAGGAGGAGTGG[A]AGTTTGGTAAATGGATGGAG -3′





 82
5′- TTACCTGCTAAGGCCTGCAA[A]CTTGAGGATGTCCAGGGCTG -3′





 83
5′- CCAGAAGGTTTCTTTGCTCC[C]CTTCCCTACAAAGACAGAGC -3′





 84
5′- AATTCACTCCTTTAAAATAC[C]CAATGCAGTGTTTTTAGAAA -3′





 85
5′- CCACTCCCTCTCCTGCTCTT[G]TGTGTGTGATCCAAAGGGAA -3′





 86
5′- CAGGGACAGCTGAAGCCAAG[C]TCTCCCAAAGCAGCCTTGGC -3′





 87
5′- GTCAGGAGCCTGGCCAGGCC[G]CACCCCTTGCTGTCTCAGCA -3′





 88
5′- GGAGATTCTGCCTCAGGGCC[G]TGAGAGTCCCATCTTCAAGC -3′





 89
5′- GCTCAGCTACCGTTGGTGGC[A]TTTATTAAACTGTGCACCCA -3′





 90
5′- AAGGTGGCTGACTCCAGCCC[A]TTTGCCCTTGAACTGCTGAT -3′





 91
5′- TGAAGACCTGAAAAGCAAAT[T]CCAGGCAGCCCCACTCCCTC -3′





 92
5′- TTCTTTGTAATTTGGAATCC[A]CCTAATTTCCAAATGGGTTC -3′





 93
5′- GGGACCTGGCCCTGGCCATC[C]GGGACAGTGAGCGACAGGGC -3′





 94
5′- AGGTGGGGACCCGGCTCCAA[A]GGCACCCGGGTCTTCTGCAG -3′





 95
5′- ACAGGCCGCTCTCCCAGCAG[C]GTGTTGAGGTGCACAGCCAG -3′





 96
5′- TGGCGCAAGAGAACCAGGGC[G]TCTTCTTCTCGGGGGACTCC -3′





 97
5′- TGCTGTGCCCACATCCCCTG[C]AACAGGCAGGCCAGCCTGTG -3′





 98
5′- TGGTGAGTTATGGACCCYCC[T]ACCTCCACTACTACACTGTA -3′





 99
5′- TCAGGGCCTGGGGCAGGCGC[G]GCACAGCCCCCACCGCTGCT -3′





100
5′- GCATGGCATGCGGAAGATGG[T]GAAGAATGTTTTATGGCCTC -3′





101
5′- TCTCAGTAGCTGAGACCTGA[G]AAATTTGGAGAATCACTTTG -3′





102
5′- ACATGAGGCCACTGAGGCAG[C]CCTCTTTCCTTCCCCTTCTC -3′





103
5′- CCTATTCTTAATCCTATTTT[G]CAAATGAAGTGACTTGCCCA -3′





104
5′- GGAATGGGTCAAGAATGTTC[G]TTCCCTTCTGAATGTCCCTG -3′





105
5′- AAGCGGGGAGGAGCTAAATA[C]TATTTTTCTCTCCTTGTTCA -3′





106
5′- AACTTGGAACATCTCCGCAA[C]AAGACAGAGGATCTGGAAGC -3′





107
5′- ACATCGCAGAAGGTGGCTCG[A]AAATTCTGGTGGAAGAACGT -3′





108
5′- TTCCCGAGGCCCTGCTGCCA[T]GTTGTATGCCCCAGAAGGTA -3′





109
5′- TGAGAGTCAGGGTTTGGGAC[C]AGATTGGCAAGTCAGGCTCT -3′





110
5′- TCTCCAGGACCTAGTATGGT[G]CCTGACCGTGGCACTCATAG -3′





111
5′- CTACCTCAGAGTATGTGCCC[A]TTGGATGGTGGCTGTTATTC -3′





112
5′- CTAGTCTCTGAGCTGAGTGC[C]GACTTAGGGAGGCAATGTTA -3′





113
5′- ACAGTGTGGCGTAAGGCAGT[G]TGGCCCTTGTCCTCTTGCTT -3′





114
5′- TTAGGGCAGCTGTGCATTGA[C]TGGGTAGACGCCATTCTGGA -3′





115
5′- TGAGGCCCCCACCTGGCCCT[T]ATCTGCCCCTGACATCTAGA -3′





116
5′- CGCATAATTTCCGTCACCTC[A]TTCGCCTGCTGGTGGCACCG -3′





117
5′- CCCCAACATGTGCACCCCTG[C]ATTTCCTGTCATGCCACAGA -3′





118
5′- CCAGATCTCCATCATTGGCG[T]TAGTCTCTGGTCACCTGACT -3′





119
5′- TTTGTTCTGACTTTACATCC[C]CTTCCCCAGGTCACTTTTCA -3′





120
5′- ATTCCTGTCCCTTGTGCCGC[T]ATGAGCTGCCCACTGATGAC -3′





121
5′- TTTGATACCAAGAACACATT[T]CTGCATGAATCCTCCAGCAA -3′





122
5′- TCTAAAATTAGGGGTTTGAT[T]TAGCTTATCTGGAAGGTGTT -3′





123
5′- GATGCGGTCTGGAAAGCACC[A]GGGTGGCCGTCGGCTGACGC -3′





124
5′- CTCCGTGGAACTTCTCCTGG[T]ACAAATTCTGTTCCTAGGGA -3′





125
5′- GAGGGGAGCCACAGGAATGG[C]CGTGGCCAGAAGCCCTTCTC -3′





126
5′- GGCACCTTTTCCCTGATAAG[A]CACAAATCATAACCAAACAA -3′





127
5′- TTGCACTCCAGTTTTTTTTT[C]TTTAAAAAAGCGGTTTCTAC -3′





128
5′- GAAAAGGCTGTCTGATTATC[G]TGTCATCCAAAAAAAACAGA -3′





129
5′- GAACTAAGAGGAATAAAGGT[A]TTGCTTTATACCTGTCCCTA -3′





130
5′- ACTAACATGTCCTGCCTATT[A]TCTGTCAGCTGCAAGGTACT -3′





131
5′- GCTGACCCAGGGTCCACATG[C]TCTTTTTCTAACTTGTTCAT -3′





132
5′- TGCTTCCCCATTTCTGTCCT[A]AAAGCCCTCTGGCAAGACTG -3′





133
5′- CAGTGATGAACTCCTGGGCT[T]AAGTGACCCACCCGCCTCTG -3′





134
5′- GCGACTTCGACTAAGCAACA[T]TGCATCTATTTTCATGCAAC -3′





135
5′- CCTCAAATGTTAGAGTCAGT[G]CACCAGCTCATAGTTTCCAT -3′





136
5′- CGTTTAATTCTTTCTCATCA[G]TTTCCTAGGGCATTTGCAAT -3′





137
5′- CATCAGAGTTTTATGATTAG[T]AGATATATCTTAACTGACAC -3′





138
5′- AGCAAAACCAAAGAAATCAGC[G]GAAGACCATAAAAACAGACG -3′





139
5′- CTATAAAATTAGTATGCTTA[A]AATTATTAAACATATACAGA -3′





140
5′- TAAACACTTTAATGCAGTGA[T]ACTCAGGTATAAAACTCAGA -3′





141
5′- ATAGAAGACAAAGTTTTCAT[C]CGTCTCATTCAAGTTCACTT -3′





142
5′- AGTGCAGGGCAGGACTGCTG[T]CTGACCCCGGGCCACCTGGA -3′





143
5′- AACCTCTTGGTACATGTTAG[G]GGAAATGAAGCTGGCAACAA -3′





144
5′- TCATCAGATCAAGGACATTA[T]GGAATTAAAGGGCTCTAAGA -3′





145
5′- CCACTGCTATTGGTTATTTA[T]CTAGCATCCATTTCCCTTTA -3′





146
5′- ATCTACCTCTCCTGCCTCAT[C]TATTATTACCCAGCCCCTTC -3′





147
5′- GTCAATTGCAAATGGAGGTG[G]GACCTGAGAAAACAAAGAAA -3′





148
5′- GAGTGTGTAACAACTCACCT[A]CCAAATCGACTAGCCCTTAG -3′





149
5′- CTTGTAAGCCATCTTAAGCC[A]TTATAGGCCTAAGATGTATA -3′





150
5′- CTTGAGACCTGTGTCTCCTC[G]TGTTCACACTGTTCCTGACT -3′





151
5′- GAGGCATGGGTTGAACTGCA[C]TCACATATGTACTTAAAAGA -3′





152
5′- TGTTTCTTGAAGTTTGACTA[T]TTAAAAACATAGGTGTAAAG -3′





153
5′- AGAGTCACGGCATGTGGGAA[G]GTTTCCATGGACACTGGATC -3′





154
5′- AATGAGATCTTATGTCAAGG[C]TTTAATCTTTGGTATTCCAA -3′





155
5′- TCTGGACCTCAGTTTCCTCA[G]TGAGCTGGTAAGAATGCACT -3′





156
5′- AGGTTGATAGCAATGTTTGG[A]AGATATGTCCTAGAAGTGTT -3′





157
5′- GCATGATAACCCTAGCCATC[G]CTAAATATTATAGCTTCCTT -3′





158
5′- CTCCAGTTTCTCCCTTTCTC[A]CCAACTAGGTCCATCCAAAC -3′





159
5′- AACTGTAAGGATCTCTTGCT[G]TATATACTATTGGGGGAACA -3′





160
5′- CCTTAGCTCTTCCTAAAACA[T]ACAATCATAAAGGAAACCGT -3′





161
5′- CTGACAGTAAAGGGAACTCA[T]TATGTCTGAGTCTTTGCTCA -3′





162
5′- AACATTTACAGAAGCGAGAA[T]AAGTTTTGTTTGCTTTTGTT -3′





163
5′- TAAGTTCAATAAATCCCAAA[T]TGCACACTCTGAATTAGGGG -3′





164
5′- AAGATAGCCATCTTTGGGCA[C]AGAGTCATGAAATGTACCCT -3′





165
5′- GCTGGGCCGACGGGGACGAG[G]CGGCGACTGGAGCAGCAGCG -3′





166
5′- CTCTGTCTTGGTCACTGTGC[A]AGGATTGAAGGGAACTATTG -3′





167
5′- ATCGTCTTTTACAATAAGAT[A]CATGCCCCTATGAGTATTTT -3′





168
5′- AAGGAGAAAAACAGTGAACC[G]TAGTTCTTACTGCTCACACT -3′





169
5′- GATTATTTGATTGCCATGAA[T]GAAGCTGAATTACATAATTC -3′





170
5′- AGGGACCTGTCTTCAGAATC[G]AAGAAGCATAATGTCCTTAA -3′





171
5′- TAGAGTCCCTACCATGCACC[G]TGGGCAAGAAGTCAGTTCTG -3′





172
5′- TCGGGTCTCTTACCATGCCC[A]CCCTCCCTTCCTCAGGGAAT -3′





173
5′- AGGACCTTCAGAGACCCCGC[A]TTCTCTGAAACCAGGATGGA -3′





174
5′- CAGGGGCTGCACTCACCATC[A]TCTGACACCTCCACTTCATC -3′





175
5′- GTACACAAGGGTAGGGCAGA[A]GATGGACAGCAGGGCAGAAT -3′





176
5′- AGTTTCTGCAGCACTTTATC[C]TTCCATCTGGCCATGAGGAA -3′





177
5′- CAGGCATTGAAGGTCAGCTT[C]TTCTCCTCCTGGGTGAGTTT -3′





178
5′- GGGCACGACCTACCATCCAC[A]GTGACTTGGCAGGAGCACTC -3′





179
5′- TTACTTCTATCCTTGCTTCT[C]GAACTGGTCATTCCCTGACT -3′





180
5′- AGAACAAGCTGTTAGCAGGA[T]GCCTCTGCTGCTGCGGGGCC -3′





181
5′- TCGGCTGGGATCTCCTTCAG[G]TCGTCTTCCGATAGGGTCTT -3′





182
5′- AGGCCTCAGGGACCCATAGC[G]GTCACTACCACCACCATCAG -3′





183
5′- TTGTCCAGAAATCACTGTGA[T]TGGATACACAAATGCAGCAC -3′





184
5′- CTTGGCTGCTGAATGGTGAG[T]TCCCCCTGCCCCAGCTCTCT -3′





185
5′- GAAGTCTTCTGAAGGACCGG[A]GTCTGCGGGGCCGTTCTGGG -3′





186
5′- TGGTGGCTTTTGTTTCTCTC[A]CAAATGACCTGTGTGGTGGT -3′





187
5′- AGGACGGGTCTCCACTGCTG[A]AGCTGAAAATCTATCCCTGT -3′





188
5′- TTTGTGACCTTGTATGGATG[-]ACTTCTCTGAATCTTATTTC -3′





189
5′- AAAACTCAATAAGATGCCTA[C]ATTTTATGCATCTCCATTAA -3′





190
5′- TTCACCATCCCTCTACTTTC[A]GCTTGCCAAAACTTACAGGA -3′





191
5′- TGGCCAGTGCTCAGCAGATG[C]AAGTTCCAAATCGAGTCACT -3′





192
5′- GCATGGAGTCAACTCTTGAG[G]GATCCACACTGAGGGAGGTT -3′





193
5′- TGAGTCCTGGTCCAGGGCCT[G]CTGGGGACTAGATAAGATGT -3′





194
5′- CAAGCTAGAGACTTGGTATA[T]AGCAGCAGTTACATGAGTGG -3′





195
5′- CAGACTGTGGACATCCGAAT[C]GGCAATGACATGAATTTAAG -3′





196
5′- AGGCACCAGGTCCCATGGCC[T]GTTTCCCCTGAGAAAACATT -3′





197
5′- ATGGAGAGCTGCCAAGCCAA[A]CCTGCCAGGGTCATCAGCTC -3′





198
5′- ATAGCTGTCCTTACTCCTTT[G]CTAGACAGACAGTGTCTTGG -3′





199
5′- GCTTTTTATACCGCTTAACG[T]AAATAATTTAAAAGGCTGTC -3′





200
5′- AGCTGCAATGCCTATGAGCA[A]GACCTGGGTTTGTACATCTT -3′





201
5′- CTAGGATAGCAGAGATATTA[T]TTCAGGATCAGATCTTGACT -3′





202
5′- TCTGGGGAGTCTTTAGCCCC[T]AGCAGAGGCCATTTCTAGCA -3′





203
5′- GAATAAAACTTACGGAGAGC[T]TCTAACTTCATTCAATTTGT -3′





204
5′- ATAATATATTTTAAGCAGGG[C]AGGGTATCCCAAGATCTCAA -3′





205
5′- GTATGGTAAAGAATCCCAGT[G]CTGCATCAATCAGTGGGCAA -3′





206
5′- TTTTCCTTACACCAAGCTTA[T]GTGGGTGGCTGTAGCCACAA -3′





207
5′- GCACCATGGGGGAAATTATC[A]GTATTATTTTTTTGAAATCA -3′





208
5′- TATAGYCAAAGAGTTGTGCA[G]TGATCACCTCAATGAATTTA -3′





209
5′- GTTCTGGGCAACTGCTTTAG[C]CTGAATGCAAAAAACTGGAA -3′





210
5′- AAACAAAAGCCCCACAGCAA[G]AAACAGGAAGGAAGGGGAAC -3′





211
5′- ATAGTGAGGGATGACTGTAT[T]TTCCACTTAAAAATCCCAAG -3′





212
5′- GGAAAATAAAACTGTACCTC[A]TCTCCAGTCTCCCCATATTT -3′





213
5′- TAATGGCTTTCAAAGTGCCT[A]AATTCCATTCTACACTAAAA -3′





214
5′- ACCTCAAAAGAAAAAATAAC[G]TAAACAATATTCAACTCAAG -3′





215
5′- GCTTGGTTCAGGCCCTGGTT[G]CATACCTGGATTTCAAATCT -3′





216
5′- ACCCACAGCTTTCAGCAGTG[C]AGAATATGAATGGAAACTGG -3′





217
5′- GAGTGAGGTAGAGAACAGGT[G]TAATTCACCATAAGTCCTGA -3′





218
5′- ACCTGGTTCTTTGAAAGAAC[C]AATAAAATTCACAAACTGCT -3′





219
5′- TTTTTCTCTTCAGCTGGCCC[A]AATTGGTTTCTGTTAATTTT -3′





220
5′- GAAGAGACTAAGAGAATCAC[A]GAAGAGAGAAGGAGGTCAAG -3′





221
5′- TCTTGAAGGGTTTTAGTTCC[A]TAAGTTCCAGGGAGGGGTCT -3′





222
5′- AAACGTTTAATTCTTCTGTG[G]GTTCTGTTCTAATTTCTGAG -3′





223
5′- AGGCCTAGAATTCTCTGAAA[T]GTCATTTTTCAGTTTCTACA -3′





224
5′- GTAGCCTTGCGCCTCACTCT[T]GTGATGGAGCCGCCTGCTAC -3′





225
5′- ATTGTCATTTTCCTTGTGTT[A]TATTGGTTCAGGCTATCCAA -3′





226
5′- CAAGGCATCTTGGCTCCTAC[G]TAGGGCCTTTTGGCTCCTCT -3′





227
5′- AGATCTCCAAGGTTTTCACC[G]AGAAACACTTGACCCGACTT -3′





228
5′- CCTCAATGCAGAGGGGTCAT[G]AGAGCAGGCTGGGAGCCAGA -3′





229
5′- GTTCCTCCTCAGAAACTGCC[T]TGTATGAGTTTGTATCCTTA -3′





230
5′- CATAGGCGAGGCCCAGCCCA[C]GTGTCCAGAGACATCTGTGA -3′





231
5′- GCTCTTCAAGGTCTGGTGCT[T]TCTTCCACAGTACTGTAGCC -3′





232
5′- AAATGGGTGCTCAGACCCCT[A]TCCTACTTACCTCAAAAGGT -3′





233
5′- TGTCAGCAGCCTGGTATTGG[G]AAGAGTTAAAGGAAAATCTC -3′





234
5′- CAGTTCAGGGGAGGAGCCTC[A]GGACGTCAGTGGCAAAATCA -3′





235
5′- GCATAGGCTTAACTCGCTGA[T]GAGTTAATTGTTTTATTTTT -3′





236
5′- AGGGGAAACGTCTCCCAGAT[C]GCTCCCTTGGCTTTGAGGCC -3′





237
5′- AGCCAAAGCCAGAGTGGCCA[C]GGCCCAGGGAGGGTGAGCTG -3′





238
5′- TTTCAGAGAGGGAAGCCAGA[G]GAGAAGAGGGTGCAGGCTGA -3′





239
5′- CAAGTCCTCCGGTTCTTCCT[C]GGGATTGGCGGGTCCACTTG -3′





240
5′- AGGCTGCCTCCGCACCTGAC[C]GCTGCCCAGGTGGGGTTTCC -3′





241
5′- TGGCTAGGACAGGGTCTCGG[G]CTAGGGAAGTGGTTTCTCTG -3′





242
5′- TTACGGGAAGCCCTTCTGGC[G]CTCACTCAGGGCAGCAGCTT -3′





243
5′- GCCTGGGCAGGAAGAGGGAC[T]AGAGGGTCTCCCACATGGGA -3′





244
5′- ATCGTGTTCCCCAGGAAGTT[G]TTCTTGATTTAGTTTAAACT -3′





245
5′- GAACCACCTTCTGTTGCCAG[T]CTGTACTCCTCATTTAGTTT -3′





246
5′- AAGGTGGGAGCCAGAGTGGG[C]TGCTGTAGGGGTGAGGGAGG -3′





247
5′- GCCATCCAGCGCGGCTGCTC[C]GGCGCCACCTCCATGGCCGG -3′





248
5′- TCCCTGGGCCCGTCGCCCTC[G]GGGCTCCCGCCGGAACTCCT -3′





249
5′- ACACAGACATTGTCGAGGGC[G]GGTCCCTCTTTATTGGCCAG -3′





250
5′- GCCTGGTGAGAGCAGATTTA[C]TCCAATTTATGGGCTGGAAC -3′





251
5′- CACACCGACACACATGGCCA[C]ACAATCAGATGCAACTCGGC -3′





252
5′- CTTGTTCACAGAAGTGGGAG[G]CAGGAGGGGGGGAGAAAGTG -3′





253
5′- AGGACCAGGCGGCTAAGCAG[G]GAGAAGAGCCAGAGGGGCGT -3′





254
5′- CGGGCCATGGACACCGACAC[G]CTGACACAGGTCAAGGAGAA -3′





255
5′- CTGCGGTTCAGCTCCTTGGT[G]AGATCTGTCATGTCTGTCTG -3′





256
5′- GCACGTCGGCTCTTGGTACA[G]AAGACGAACAGGGCTGCGGG -3′





257
5′- TCCCCCGGGGCCCTGAGCAA[C]GCATCAGCGCCAGTGGACTT -3′





258
5′- TTCACCAGGACCTGGAGCTC[G]GAGCCTACATGGAGGTCATT -3′





259
5′- ACGGTCACCACACCTGAGAG[T]GGTCCTGGGGCTGGCCCTGT -3′





260
5′- GCGGCAGCCATCACTCCACA[T]GCACAGGTGACCCAGGTCTT -3′





261
5′- AGGATGTTCTGGGAGCCACC[C]GTAGGCACGGGTGCCAGGGG -3′





262
5′- TGGAATGAGCAACACAGGAA[T]GCTCCAGTTGTCCAGACCAT -3′





263
5′- CGAGACTGGTTGGAAACACA[G]GAGTGCTGCTGGCTGCACCA -3′





264
5′- CCCCCATCCATTCCAGACCA[C]GTGACTGTTGAGATGTCTGT -3′





265
5′- TCGATGTGCGCCAGGAGTAC[C]CAGTGAGTCCTGGGGGAGGC -3′





266
5′- AGTTTGACCCAGCAGACTCC[G]GTTACCTTTACCTGATGACG -3′





267
5′- CCTACCTTGAGAAGCCTCCC[G]TTGACCGTGCCCAGGAAGAC -3′





268
5′- AGGCCTCCAGGAAGTGACCC[C]GAGACAATAACTGTGCAACT -3′





269
5′- GTAACTAAGCACACCCCTTA[C]AGAATTTTGGGAAGTCGCCC -3′





270
5′- TAAGCCAGAGGATGCTGTAG[A]GAGTACTTGTATGCAATAAC -3′





271
5′- CTTGTTGTCATGGTGCGTTG[G]AAGAGTAGCCAGTTGTCTTT -3′





272
5′- ATTAGTATGCAGGTCTTATC[T]ACCATTGGAATTAAGCTGTT -3′





273
5′- ACGTTTTTATCACACATTAA[G]CACTTGCATTAATTTTGGAG -3′





274
5′- GATGAGTTAAATGGGCTAGT[G]TCTAAATTTTAAATTTTTAC -3′





275
5′- GTACATCCCATATTCCCTTT[G]CAAAATCTAGTTTCCTATGT -3′





276
5′- GCTTACCAGAAAACACCCTC[G]TTGTTGTTTTTATTTCTCAG -3′





277
5′- GGACAAGGAGGAGAAGCCCC[A]GGAGGTCACGGGAGTTCACT -3′





278
5′- GAGCAGCCATTTCGAAAGGC[A]GCAGAAGAGGAAATTAACTC -3′





279
5′- GCGAGGGGAAGTCATTTTTT[T]AATAACTAGGCTCTATTTGC -3′





280
5′- CAAGGAAAGACCTGGTGTCC[T]TGTGCTAATTTTAACTCTCT -3′





281
5′- TACAGATGCTCATAGGCATC[C]GAAAAAAAAATACTTTGTTA -3′





282
5′- AACTCCTTTGACAGTATGGA[C]GGCACCTAACGCATCCTTGT -3′





283
5′- GAGGTGTTTTCTTGGCTCTT[A]ACKAACGTTTTTAATAAAGC -3′





284
5′- GCGCCCCCTGGACTTCTGCT[A]GAATTTAGATTTAAATAGAT -3′





285
5′- ACATATTTAGAATGGATGCC[G]GAACAGGAGAAATGGGTGGG -3′





286
5′- ATTCATATGCCACCAGCCAT[C]GGCAGAAATGTAACAGGAAA -3′





287
5′- ATGGCTCTGTAAATGGGATG[C]CTCATGTTCAGGTTTCTGGA -3′





288
5′- ATCTCCAGGTGAACATGGAA[C]GCAGTGAAAACCTGGGGTAT -3′





289
5′- TGATAAGTAGTTAATGATCC[T]GAAATAAACTGTTAGGTGCT -3′





290
5′- AAGTAAAATAGTAGATATTG[C]ATTGCTTCTACATTTACTAC -3′





291
5′- AGAGCCCCTACCCAATTGCT[C]TACTATTTATAGTTCCTCAG -3′





292
5′- ATCTGGGGACCTGCTCCTGG[T]AGAGCAATAGGAWCTGTGTG -3′





293
5′- GAGTCCCAAAATTCAACCCT[C]CCGATAGGGCTGGGCCTGAC -3′





294
5′- CCCTAGCCTGCTTTTGTCCT[G]TTATTTTTTATTTCCACATA -3′





295
5′- AGAGGGAACCCAAATATTAG[G]GTGGGAAGCAAGTCATAAAC -3′





296
5′- TAGGGTTACCAATCCACTAG[A]ATGCAAAACTGTACTTATTA -3′





297
5′- AGGCTTCTTTTTCCATTACA[C]TGTAAGACTTTGGAGGGCAG -3′





298
5′- AGCRGTCAGGTGCGGAGGCA[G]CCTCTCAGCGGTGGGGAACA -3′





299
5′- CAGGACAAACAGTGGATTCA[C]TCAGAACACAATATGCTGGT -3′





300
5′- AAGCCACTACAGACACCGCA[C]GCACCGAAATTCTCCCTTGT -3′





301
5′- ATCACTGTCCCTCAGTTCAC[C]GGTCTTGTCTGCTTCGTCGY -3′





302
5′- AATTCTCAGTCTTAAAAACA[A]GGCATAAAGAAAGCTAAAAT -3′





303
5′- AGAAGATAAGTGTTTAGGGT[G]TTGGATATCCCAGTTACCCT -3′





304
5′- CCTTTTTTTGGATGATCCTA[C]AATTAATACAAGTGTATTCT -3′





305
5′- GCCCTTAGTCACCAACTCCT[T]CTCATCCCACCATGCTGTTG -3′





306
5′- GTAAATTAAAATTTGTTTGG[C]TGATTTGTGCTGTATTTCTA -3′





307
5′- AGCAACACTTCCTCCTTGCA[G]ATTACAAGCATAGCTAATGC -3′





308
5′- CCCTCATTTTCTGTTAGGGA[T]GTATGTGTTTACCAAGCTGT -3′





309
5′- ATGAGGGCTTTACTTTTGCA[G]GAAATACTACAGATGGTGAA -3′





310
5′- TCCCTTCTCAGTAACTAACA[T]TAATCATCTCTCTGGAGGAC -3′





311
5′- CATTCCCTCACACAGTACAG[T]TTAATAAATGTGCATTTTGA -3′





312
5′- CCTGTGTGATGAGGGGCAAA[G]GAAGCTCTTGAGAACCTGCT -3′





313
5′- GTAACGAAGAAAGACCAGAG[T]GTCATCCCTGTGATACAGCA -3′





314
5′- TATGTATCTTGCTTTTGTTT[A]AAACAGTCATCCACATTAGT -3′





315
5′- GATAGGTTGCAAAATTTTGG[C]GTGTTCTTGCATTGCATACA -3′





316
5′- ATTGACGGTGTTATAATTAC[C]ATGGTTTTGAAATTACATAG -3′





317
5′- TGAGGACCCAGATGTCAACA[C]CACCAATCTGGAATTTGAAA -3′





318
5′- CTCCTTTTGACCTGAGTGTC[A]TCTATCGGGAAGGAGCCAAT -3′





319
5′- TATGTAAAAGTTTTAATGCA[C]GATGTAGCTTACCGCCAGGA -3′





320
5′- GATGGATCCTATCTTACTAA[C]CATCAGCATTTTGAGTTTTT -3′





321
5′- AATTAGCTGCCAGAGTTGCT[G]TCAGTAAAGAGAAGAAATAA -3′





322
5′- CTGAAATCAGAGAACATTGA[A]AGATGAAGTGAATGGCAGAG -3′





323
5′- GCCCATCTGAGGATGTAGTC[A]TCACTCCAKAAAGCTTTGGA -3′





324
5′- GTGCAGAYCAGATAATTATA[C]AGAGATGGAATGGGACAACC -3′





325
5′- AATCTGCCTCTGGGGCGGGA[T]CTGTCAGGCTTCAGGAAGGG -3′





326
5′- TCCAGGGAGGAGCTTCGTGC[G]ACCTTCCCGGACCACTCAGG -3′





327
5′- CATCACCTCCAGGTAGCTCC[T]AAAATGTCCCTAGAAAGTGG -3′





328
5′- GGAGCACAGAGTAGCAGTGA[T]GCTGTCCAAGGCAGGGGGGA -3′





329
5′- CATTCAGGCCAGTGGCTGCA[G]GGGAGCAGAAAGATCAGGCT -3′





330
5′- TACAGAGGAAGAAATCCAGG[G]CAGAGGTGGAGGCAGTGAAG -3′





331
5′- CTACCTCATTCATTGACCCC[A]CTATCTGACCTGTACATGTT -3′





332
5′- TTGAGGACAAACAGAACATC[G]GTGAGTAAGTGGAATATTAG -3′





333
5′- TTCTTGTGTTCTTCCCTTTC[C]ATTTCAACTCTTCATCTCAG -3′





334
5′- GGTTTGTGTACCAGGATTGG[G]GACCCCTGATGTATAGTGTA -3′





335
5′- GAAGAGGATAGGTTTTTCTA[C]CTTAAACAAAATCTTCCTTA -3′





336
5′- GTTAGGCATCAGGCAACTAC[C]AAGGAGTATACGAGCATGCA -3′





337
5′- CACAGGGTAAATTTAGCCAC[T]GCAGCAGGAGCATGATATAA -3′





338
5′- GGCATGTGAAATAAGTTGGT[C]TAATTAGAGTGAAGCCCAGG -3′





339
5′- TGGATTGTGTGTGTGGTAAT[A]GGATTATTGTTATATTTAAA -3′





340
5′- CACGAGCATCTTGCTGTCTT[A]AATTAAGAAGTTAACTGGAC -3′





341
5′- TTGAAAGCTGAGTCATTTTC[A]TAATGGGTCAGAAAGACATT -3′





342
5′- TACATGACGCATGTATTTGT[G]AAAACCCACAGATCTATTAA -3′





343
5′- CTGAGAGTGCAGTGAACCTT[T]GTGTCTGTGATGGAAGAGGT -3′





344
5′- GCTTAGATGTGAGAGTTGAT[G]CCATAATAATAAAAGTTATT -3′





345
5′- TTGAACTCTATGTACCAAGT[T]TGAACACATTCCAAATATCC -3′





346
5′- GGTATTTTGCTACAGCAGCC[C]GAGCAAACTAATATATCATC -3′





347
5′- AAAGGCGGTCACCTGCAGGA[A]TAGCCATCTTTGGTCCTTTC -3′





348
5′- CCCCCAGGGGTGGTAACAAC[A]GCACGCAAGCACAGCCATTG -3′





349
5′- CCACACCTGGTGGACAGGAC[C]ACCGTGGTGGCCAGGAAGCT -3′





350
5′- GGTTAAAAAGTTCTCTACCA[C]GGAAGTTGGATAAAAGTAAC -3′





351
5′- AAATCAGAATCGAATTATTG[G]TTTGGGGCTAATTGTATCTG -3′





352
5′- CCTGTCAGTGAAAACAACTA[C]CAAAGCTGGATTTTAAATAT -3′





353
5′- CCATTAGCAGTAGGTCTGAA[T]TAACTTTAATATGCAAGTTA -3′





354
5′- AGAGCCAGCTGGGAGAAACA[T]GCAACATAGTTCTTTGCAAT -3′





355
5′- AGCAGCTGGACCATGATCTC[C]TGGATATGGTGGTAGGTGAA -3′





356
5′- AGACGATGTACTGATGTAAG[G]TTTTGTAAATTTCTAAACTG -3′





357
5′- ACTCTGTCTTTCCAATTCCT[C]AACAGCATGCTTGGATGGGA -3′





358
5′- TCAGAAAGAATGGGGTAAGG[T]GAATTGAGTTTTAGAACATA -3′





359
5′- ACAGTGAAGAAAGAGGAACA[T]AGAGAAGGGCAGGCAGGAGG -3′





360
5′- TTGAAGGTGGATGAGGGAAC[G]GTCAGGTTGAGGAGCATTTT -3′





361
5′- ACACAATACTGGGTTTCTCT[T]CTTCTCTCTCACCATCACAC -3′





362
5′- CCACGCACCAGCAGGTTCAC[G]GTGCAGCTCATGCGGTTGTC -3′





363
5′- GATAGTCTAAATGAATGTCC[C]CCACCCCCGCCTGTAGTTGT -3′





364
5′- GCTGGCTGGGGCAAAGGTCT[C]TGATGCACTGTGCAGAAGTA -3′





365
5′- CTGCTCGGGCCAGAAAATCC[G]GAAACGGGCCCTTACCGATG -3′





366
5′- GTTCTGAAATGAAGACACAT[A]TGGCAGGCAGGTTACAACCC -3′





367
5′- CTCACTCACTCCTTGAGGAC[C]CTCTCATGACAACTGTAAAG -3′





368
5′- TTCAAAAACTATTTTGGTAC[C]TTTCAAATACAGTGTTTAAA -3′





369
5′- TGTTGCTAAGATCAATAGCT[G]CATTTGAATCTATGTCTCCC -3′





370
5′- CAGTTTATTATGGGTTATCT[C]ATTGGAATAAAGAGGTATCA -3′





371
5′- AATCATTATGTCACAAAAAA[T]TATATAAAGATAAATTTTTC -3′





372
5′- AGAGCCAAGACTTGTCCCCT[A]TTTCTGCAGCAGATTGGTCC -3′





373
5′- GTTTCTCAAAAGTTCTAAAC[T]TTACAGAGGATAATTTTAAG -3′





374
5′- CCTTGTCTGGACGAGTTGGG[G]TTCCTCAATAATTGGCTGTG -3′





375
5′- GGATCCAAAGGGTGTCAAGG[C]GATCATTATCTTGGGATGGA -3′





376
5′- AATGAAACTAAATGATCATC[C]TTCAACTCTCCCTTCTCACT -3′





377
5′- AGTTGCTCCCCTCTCTGATC[C]ACATTCGTAAAATGACATAA -3′





378
5′- CAGGTGTCCCTACCTTAAGG[T]CCTCCTCCTTGGGACTTCAG -3′





379
5′- CACACAACTRGCTAAGGAGC[T]CCAGGGCCACAGCTGCTGTT -3′





380
5′- ATAAGCAGGAAAATGAATGC[G]TTAGGAGAGGTTTTATATCT -3′





381
5′- TTATGCATACAACACTCAAC[A]GATCCAGTTACTCTIACTCT -3′





382
5′- CACCCCAGTCACCGTGGCTT[G]CACCTGCACAACAGATTCCT -3′





383
5′- AATTTCCCTGCATTTTGTGA[C]GACTTGTTTTTATTGGTAAC -3′





384
5′- TGCGCATTTTCCGCACTCGG[A]TACACTTTACACTGAACACC -3′





385
5′- GACCCAGAGCAGGAAGCATA[G]TCAAGCCCTCGACTAGATTA -3′





386
5′- CACTTGGAAATCCTAACTCC[A]CAGAACAAAATTTTACAAGC -3′





387
5′- ACACACTGACATTCGAGGCC[A]AAGGAATACTCCTGCCTCTA -3′





388
5′- TTCATTTACAAGCCTGATCA[C]CCTTACATGAACTAATGTTT -3′





389
5′- AACACTGTTGCAGGATCTCT[G]ATAATCACTATGTACACTTC -3′





390
5′- AACTCCCCAGCTAAACACCC[G]TAAGACTTCATACAACACAA -3′





391
5′- TAAATGCTTATCCATTTAGT[A]ACAGGAAAAATGAGACAACT -3′





392
5′- GTATGCTTTCCATCGAAAAA[T]TACTCTATTAAACAGCTTAG -3′





393
5′- TATACAGGAGTCATCCCCTA[C]GTTGACACTGGTAAGTTGTA -3′





394
5′- TCAAGTTTAAGCTGCTATGT[T]CCTTATTTTTAACTTTTGTT -3′





395
5′- ATATAATTTATATTACAATG[G]AAAAGCTTCTTTAATACTAA -3′





396
5′- GATGGGGAGGAAGAGAAGGC[G]TTGGTCTTGCAGTCTTGTCT -3′





397
5′- AATGGTAAGCATCTATTTTG[T]AGTCCACTCTACTGAGCTAA -3′





398
5′- TTTATATATGATATCATCAT[A]AAGCACTTTCTATAAGCTGA -3′





399
5′- AACAATCTGTGAACACTTGT[T]ATATGCTTACTGTAAGTGTG -3′





400
5′- ACTATATGTCATGTCTACAG[T]CTGTCTCCTAAGAGTAGAGG -3′





401
5′- TGCAAACATTGGGAAACCAC[G]GTAGGGGGGAGCAGGACTCT -3′





402
5′- TACCATGGACAGCAGCGCTG[C]CCCCACRAACGCCAGCAATT -3′





403
5′- ACTTGTCCCACTTAGATGGC[A]ACCTGTCCGACCCATGCGGT -3′





404
5′- GCATTTCACATTCACATGTA[G]TATTTGAATATACACATCAA -3′





405
5′- TTGAGTCTCCTTCCAATTAA[C]TCATGGAACATCAGAGCCAT -3′





406
5′- TCTTTTGTGGAAATGTGATG[C]ATTTGTTTATATGCAGACAA -3′





407
5′- ACCAGACTTAGGAGAGATAT[A]TCTCACTGTAGAACCAGTGC -3′





408
5′- CTCTGGTCAAGGCTAAAAAT[C]AATGAGCAAAATGGCAGTAT -3′





409
5′- AGCCAAAGTTCAGTTCTCCA[G]TTCATCTGAGCTCAGGCCCA -3′





410
5′- GGTATCRTGGGTCCTTTCRAGTAC[T]AACCGCCTTAGGCTGGAAGC -3′





411
5′- TTTTACCGAAGGCTGTGTCT[T]GTAAGCACCCCCGAGCAACT -3′





412
5′- CTACTCCGGCACCCAGTGGG[T]TGGTAGTCCTGTrGGCAGGA -3′





413
5′- CCAAGAAGCGCGCGGCGAGA[G]TGCAAGGTGGGGGCCCCGCC -3′





414
5′- CTCTCGCCGCGCGCTTCTTG[G]TCCCTGAGACTTCGAACGAA -3′





415
5′- GAGCAGAGGGGCAGGTCCCG[A]CCGGACGGCGCCCGGAGCCC -3′





416
5′- AGAGCGGATTGGGGGTCGCG[T]GTGGTAGCAGGAGGAGGAGC -3′





417
5′- TGGGGATTCAGAGCACCCAC[G]CGCAGCACCTCCCTCCTCTG -3′





418
5′- GGGTCAGTCCGGACAGCCCC[A]GTCGCTTGTTACCTAGCATC -3′





419
5′- CTGGGTGCGCTGGCCGAGGC[G]TACCCCTCCAAGCCGGACAA -3′





420
5′- GACATGGCCAGATACTACTC[G]GCGCTGCGACACTACATCAA -3′





421
5′- CTGACAATGTCTGTGGCAAC[C]CTGCAGTTTACTCCTTGGTT -3′





422
5′- CAGACACCCACTCCTATGTG[T]GTTTCTGAAAATTACAGGGT -3′





423
5′- TCCAGATATGGAAAACGATC[C]AGCCCAGAGACACTGATTTC -3′





424
5′- ATTTCAATTTAGAGTCAGGG[T]CTCACTCTATGCTCCCCTGA -3′





425
5′- TGGAAAGAGGTGCCCACCAA[T]GTCTAAGTGTTAAACATTGA -3′





426
5′- TATCATGCATTCAAAAGTGT[A]TCCTCCTCAATGAAAAATCT -3′





427
5′- TGAAAAATCTATTACAATAG[T]GAGGATTATTTTCGTTAAAC -3′





428
5′- TATTTCTCAAACATTTTCAG[G]TTTAGAATGGGAATAGGTTT -3′





429
5′- GTGCCTTTAAACCTATTCTA[A]AACCTATTTAAACGTATTTC -3′





430
5′- AGGGCTGCCTGGTAAGCTGA[A]TCAGGGTGCCTGGCTGCCGC -3′





431
5′- AACGCCACTTGTGACTGCTC[G]TTACCTTTCAGTTGTGTCCC -3′





432
5′- ATGTTGGGATTTAACTTTCT[G]TTATATGTCAGACTCACTTA -3′





433
5′- TGTGTGTTTTAAATCTTTGC[G]CTTAAATGTTTTTGATTTCT -3′





434
5′- GAAGCTTCCCTCCGACAGGC[G]GCCCCGCACTAAGGTAGGGA -3′





435
5′- CTAATGGTTGGAAACGCCAG[C]CTTTGGTGAAAACAGAAAGT -3′





436
5′- TTCAAGAATTCAACTGCAGA[T]TGAAAATATTTGGAGAAAAA -3′





437
5′- AACCTAGCCACAGAGCCCGA[T]GCGATGTGTCCTTGTCGAGA -3′





438
5′- GCCTCCTTTGCTGCCCTCAC[A]ATCTCTTCCTGTGACACCAC -3′





439
5′- CTCTGCACCTTCAGGTTCAG[G]CCCTTCAAGATCTACCAGGA -3′





440
5′- ACAAGCTAGTTACCTTTTAT[T]GTTCAGTTTAAAAAAGTTCT -3′





441
5′- CGGTCCCCTTCAAGATCCAT[C]CCGACCTGAAGAGAAACCGC -3′





442
5′- TGCTCTTCAAAAAAACCAGA[C]TGAATATTTTTAAAAGTAAT -3′





443
5′- GTTACTTGTAGGGGGAGGGT[G]GAGGGAAATCTGGGCAAATG -3′





444
5′- GGGCTTCTATCCCCGAACCC[T]GGGCCCTGGTGCCACTCAAG -3′





445
5′- TCCCAYTTAAGAGCTATTCT[C]CTATCCTTCCCTGTAAACAA -3′





446
5′- TGGCAGACACAGGACAGGGA[T]CGCTGCTTATGTCTCCGAGG -3′





447
5′- AACCCATCCTCGTGGTAATC[A]TCCCTGGTAAGAAACACACA -3′





448
5′- CATTTCTAATTACCAGCTTC[C]TACTTGGCACTTTCAATTTT -3′





449
5′- CCACAGCGGCTTCCTGCCAT[C]GATGAGGCTGATTTCTGCCT -3′





450
5′- TGCATCCTCTGCTTCTCCTC[A]AACCGTGCTTCACAGCTGCC -3′





451
5′- GGGGCCAAAGGAATATTTAG[G]TGAAGGGGGAGAGAGGCCAC -3′





452
5′- ACTTTGTGTGTACATGTGGA[A]GGAAGTATTTGACATTTTGA -3′





453
5′- ACTTGTGTCCCCCAAAATCA[C]ATATTGAAGTTAAAACCTCC -3′





454
5′- TAGCCATGGCAGAAGACATA[T]TCTCTACACCTTATGCATGG -3′





455
5′- GACAGAGAAGGTATGTCCAC[A]CACACTAGACATACTGCATG -3′





456
5′- AGTATTGATCAGTGGCGGGA[T]ACAGTTTGAAGGTAGAGGGA -3′





457
5′- GCTGTATCTTGGGGGAAGTG[C]GTTCTTGAGAGCTGTGTAAG -3′





458
5′- GGCCGTCCTCATCTTCACAC[G]CTGTTCTCCTTCTATGTGGG -3′





459
5′- TAGCAGGTGGCACAACTGGC[A]CTGGGAACCGGGGGTCCCTT -3′





460
5′- GGCCCCCCGTGCAGGGAGGG[C]TTCAGGCTGCGGCAGGTAGG -3′





461
5′- TACTATACAAATAAAAAAAT[A]AAAACCCAACCTCAAGCTGT -3′





462
5′- CGAATGCTGAGAACTTGCCA[C]GCTCTCTCCCCAGGGCCCCA -3′





463
5′- GCCTCCCCCTGTGATCTCTC[A]GTCCTCTCCGCATTCCTGGG -3′





464
5′- TTCCCTTTGTTTTCCCTTTC[C]TCCAGCTCCAGGCCAGGCTT -3′





465
5′- TGCGCTCTGGGCTAGACACT[G]TGATAGGTGCTGGGATTACA -3′





466
5′- TGGAAAACAGATCCAGACAG[G]TTCAGTTATGTGTCTGAGAA -3′





467
5′- CCCTACTACCCCTACAACTA[C]ACGAGCGGCGCTGCCACCGG -3′





468
5′- GCATGCCTTTTCAAAAACAC[A]TTCAAGACCTGAAAATAAAA -3′





469
5′- TACTGCTGTGGCCTGAATCC[G]TGATTAAAGGAAATGCTAAG -3′





470
5′- TACACAAGTCACTGGGTGAC[A]TCTGTAGCTCCACCAACCTG -3′





471
5′- CTCTGTCTAGGTGCATAGAA[T]TGTGTACATATACATACACA -3′





472
5′- AGTCTGCAAATGTGTTTTTT[G]TGTGCTAAATAGCTCAAAGT -3′





473
5′- TAAGTTTGGTTGATGAGTCT[G]TCTCTCTAGACTGCAAGCTC -3′





474
5′- CACAGAAGTGGGCATTCTGA[G]AGGCCTCTAATTTTCCTCTA -3′





475
5′- TTAAAACAGCGACCCCATAC[A]TGCATTAGTTAAAACTTTCT -3′





476
5′- GCAGATTGAGGTAAATTCAT[T]GTTAATGTCATCACAGCAAT -3′





477
5′- CAAAACAGAATCCCAAGAGC[A]ATATTTTAACTCAACAAACA -3′





478
5′- AGAGTTCTTATGGTTCTCTT[C]GGTAGTTTTTCTTTAGCTGG -3′





479
5′- CTTTCATTCTTGTCGTTGGC[G]TCTCTGTTCTGATAAAAAGA -3′





480
5′- GGAGGCAATGTCTGATTTGC[G]TAGGGCTCAGGGGAGAGATG -3′





481
5′- AGGTTCAGCAGAAAAGAACC[T]AGGAAAAAAGTCTAGGAAAG -3′





482
5′- GATGGGCCTTCTGATAAGGA[A]CGCTGCCAAAAGTTCAAATG -3′





483
5′- ATTCCTTCCTTTCCCTGTTT[A]TACATACCTTACAGATACTG -3′





484
5′- TCTGTTTCAGTCTCAAGGAG[G]CTGAAAAGGTGAATTCCTGT -3′





485
5′- CAGTCTTGTGAGAACATTCT[T]GCCATCTGTACTTTGCATTT -3′





486
5′- CCACACCTGGCCTGAACTCT[G]CTTTAAAAACTGCATGCTGA -3′





487
5′- TCATGCATAGATGGTGTAGC[A]TTAGAAAACTCAGGCCTAGC -3′





488
5′- AGGTGGATTTTTTTAAGAAG[C]ATATTCATACAACTGAATAT -3′





489
5′- GCCTGATATTCTTTCCCTAT[G]AAATTGCTTCCTCATCTAGG -3′





490
5′- GAAGAAGCTGTCAGAATTGC[A]AGGGAAATTGGTAAGTCCTT -3′





491
5′- ACTGTGCCCACCCAAGTTTG[T]GTTTTGAAAAGATTGGTCAA -3′





492
5′- ATGGCATACAGCCTGGGTGA[T]ATTTTTAAACATAAGTGAAA -3′





493
5′- GGGAAAATGTTCATTTAAGT[A]TAAAACATGAAATGGTATTC -3′





494
5′- CTTGTTAGTTCAGGTCTCTT[T]CAGATGAGGAAGACAGATTA -3′





495
5′- AAATGGACAACAAAAGTCAC[C]GGAAAAAAGGGAAAAAAAGA -3′





496
5′- TGAGAAATAAGTGATGTCAT[G]CATTTTTGGTTGTGGATCAT -3′





497
5′- TGTGGTTCTCCCTTCACAGT[G]GAATACAAGGGCTTTTATAT -3′





498
5′- TAATAAGTGGTTATGCCAAG[C]GGTCCCTGCAGCTCAGAGGC -3′





499
5′- TCTTTGGGCCTCCACCCCCT[C]GTCTCTAGTGGACATTTGAG -3′





500
5′- AAAGGAAGCTGGGCGTCCTC[C]GGGCCCCCCAACACACGTCC -3′





501
5′- CTAACACAGTTGCGAACATC[G]GCAGAGCCCTCGGGAGCCAC -3′





502
5′- TTGATGATGATGTCGATGCC[G]AAGAGTGACACGCCCAGTGC -3′





503
5′- CTTCACAGCGCCGCAACAAT[C]ATGCATGAGGGAGTGATTCG -3′





504
5′- GGCCACAGCTGGCCAGTCTC[C]TTGTGCTTTGAATCTCCAGC -3′





505
5′- TGCAGCGTGCGGCAGTGCTT[T]GTTCTTCTTTAAGATGAAAT -3′





506
5′- CCTACACAGGAAGCCCCGGA[G]CCACAGCAATTCTCCCTGCC -3′





507
5′- TGTGCTCTGGCCAGGGGCCT[G]GACCTCATTCTGTTGGTGGT -3′





508
5′- TCGCCCAGGCTGACCACAAG[C]TCCAAACAGGACTTTCTTGT -3′





509
5′- TGCCCAAACAGTATCAAAAG[T]GGATGTTTATCACAATACTA -3′





510
5′- TTAGCAACAAAATCCTGAAG[T]CACTTCTAGACCATAACCCA -3′





511
5′- CAGAGGGCAGGGCCCACACC[G]TACCCCACAGAAGCCCAGGA -3′





512
5′- GGGTACAGCCCAGCATGGCC[G]CAGGGGTCCCTGATGGGAAT -3′





513
5′- GACTGCCAGGTGTGGACACA[T]GCTCGTCAAGTGGTGAAGAA -3′





514
5′- CACACGGACGCTTCCTCCTA[T]GTGAAGTTCTGTTTCCTCCC -3′





515
5′- ATGGTCATATTATGCATGCA[C]GTTTTTGATTTCAAGAATGC -3′





516
5′- ATGCGGTGCTCGGTAACTGT[G]CATCCGATGCAGGCCTCACT -3′





517
5′- ACCAGAATTATCACAGCACC[T]TCTCATTCCCAGCGCGTCCT -3′





518
5′- TGATCATGGTCACTGCCCTG[C]GTTCAAATAATGCGAGCTGA -3′





519
5′- AGGACAACATGCCATTTGTC[G]AAACGTTTTAAAGATATGAT -3′





520
5′- GGGGGAAGCTGGGTGCATGC[G]GAGCACCGTGGAGTCTGGGA -3′





521
5′- CCTTGAAGTCACCCGGCCCC[G]ATGCAAGGTGCCCACATGTG -3′





522
5′- TTTGGAAGGAAAACGTGGCG[T]GTGGGCGTATTCTCCAGAAG -3′





523
5′- TCCCAGACCAGACCTTGCCC[A]ATGACGTTGTTGGTAATGCT -3′





524
5′- TGAGATCCCCCGGACAACAC[A]CTCCACCTTCCCATGGAGCT -3′





525
5′- TTGTTTGTGTCTGTCTCAAA[C]CCAAAGGGGTGGCTCAGCCT -3′





526
5′- GAACCTCCCAGGGGGCAGAA[C]AAAAAGTCAACAAGCTGGAA -3′





527
5′- CAAACGTTGCTGAAGTCTCC[C]CGACCTTTATTGTTTTGCCC -3′





528
5′- GTTCCCTGACCAGGAGTCCA[A]TAGGCAATAGTCTATTAACT -3′





529
5′- TTTGCTCATGCACCTGCCTT[G]CCTTTGTCATCACAACAGAA -3′





530
5′- ACCTCCTTCCCCGTGCKCCA[C]GAGGAGCGGGCTGCACCTTG -3′





531
5′- GCTGAAACCCGATTCCTACC[A]GGTGACGCTGAGACCGTACC -3′





532
5′- TCCTGCTCGACCTGCTCCTC[C]AGCTGTGCAATCTTGGCCTC -3′





533
5′- TCCAGCGCCGCGATGGTGGA[C]TTGAACTTGGACTTGACGGC -3′





534
5′- TACGAGGAGAAGGCGGCCGC[G]TATGATAAACTGGAAAAGAC -3′





535
5′- TTCCGCAGCTTGAGGTAGGC[G]GCGCAGTTCCTCTGAATCAC -3′





536
5′- CCTGTGGCTGGTACCTTCCC[A]GCATAATGGATGATGGAGAA -3′





537
5′- ATGATTGCCATGGCCTCCAC[G]GTTTCCTGGAACATCTCATC -3′





538
5′- CCAGAACCACCAACATCTTC[A]GTCTCTGTATTCAATTTTAT -3′





539
5′- TTTTCCCAGCTGTAAAAGGG[A]GCTAATAATAGCTCTTGCGG -3′





540
5′- GATACCTGACTCCAGGAGCC[A]TCACTTTACAACCTGAGATT -3′





541
5′- TTCTTGCCCTTGTACATGTC[G]ACGATCTTCTCCGAGTAGAT -3′





542
5′- ATCATGCTCAGTGAAACAAA[C]CAGAAAGGCCACACGCTCTA -3′





543
5′- ACCTGGTCAACAGCTTCCCT[T]AGGATTTTACTGCCAAGCCA -3′





544
5′- CACCCAGTCTGACCTTCACT[T]TTTTGTTGATGGGGCTGAGC -3′





545
5′- GCTGCTGGGGGTGGGTGCTT[G]GATCCTGGTGAAATGGCCTC -3′





546
5′- AGAATCATCTTCTCCTTTCC[T]TCACCTGATACCCAGCTTGA -3′





547
5′- CCTGTCAGGCCTGACGGGGA[G]GAACCACTGCACCACCGAGA -3′





548
5′- GGCTATGAATATAGTACCTG[A]AAAAATGCCAAGACATGATT -3′





549
5′- CTTTTGGGAATTTCCTCTCC[C]CTTGGCACTCGGAGTTGGGG -3′





550
5′- CAAGCCATGGCAGCGGACAG[C]CTGCTGAGAACACCCAGGAA -3′





551
5′- GACCAGTGAACTTCATCCTT[A]TCTGTCCAGGAGGTGGCCTC -3′





552
5′- TCAGTATAGATGCACCCATC[G]TAAGCCTAACTACATTGTAT -3′





553
5′- GTGAGCGTGCCATCAGCCCA[G]TGGAGGGGCTTAGGTCTGCA -3′





554
5′- GGTGCCATCCAGTGCCCTGA[T]AGTCAGTTCGAATGCCCGGA -3′





555
5′- GGCCCGTAGCCCTCACGTGG[G]TGTGAAGGACGTGGAGTGTG -3′





556
5′- TCAGGCCTCCCTAGCACCTC[C]CCCTAACCAAATTCTCCCTG -3′





557
5′- AGCCATGAGTTTCCACCAGC[A]GCAGAGTGAGTCCTGAGCAC -3′





558
5′- ATTGCAGAGAATGGAAGAAT[T]TGAAGAACTGAGTGACAAGG -3′





559
5′- AGCTACTGGGTAGAATTTTA[C]GTAGTAACTAGGTAGACACT -3′





560
5′- GGATGGCATAGCGAGAATAC[T]AATCTAGGAAGCGACTGGAC -3′





561
5′- GCTTTCCTGCTATCATAGCC[G]ACTTAAGTAGCTGTATTAGG -3′





562
5′- ATGAGGAAGAGAGAGACGAG[G]TGGGGTGACTCATGCCTGAA -3′





563
5′- TTTCTTTGAGACAGGGTCTC[C]CTCTGTTACCCAAGCTGGRA -3′





564
5′- TCATTAGCAGGGTGATGGTG[A]GGCTGAGATGGGCAGGGCCA -3′





565
5′- ATTGCCAACATAGCTGTTCA[T]ACCTAGAACACCTTTTCCTT -3′





566
5′- CACAACCTCGGTAAGGCTGG[T]GATCTTCAAGCCAGTCCGAT -3′





567
5′- GTCCGTTGTCCACGTTCTAC[C]TCCACCCCACTAACTGAACG -3′





568
5′- AGGCCAGGGGTCTGGATGCA[C]ATAGCGTTCCCCTAGCCTCT -3′





569
5′- TGCAGAGGTGTGGGCCCCTG[G]GGACCCAGAAGTCCAGCCAC -3′





570
5′- GGGTGAAGTAAAGTGGGCAG[T]GTGATTTAGCAGAGTGGTCA -3′





571
5′- GGCACCTGTCATAGTCTTGC[C]GAAAGATGACAAGCCCTGGT -3′





572
5′- CGCAGCCCAGGATGATCTGT[A]CGGGACAGAGGCAGCGGCCT -3′





573
5′- TCGGAACAGCGAGTCCTCTG[C]CGTCGAGAGCAGGGAGGGGT -3′





574
5′- TTTGCCCAGTGACGCAGCAT[T]CCAGGCTGAGATTGCAGAAT -3′





575
5′- GCCCCCTCTGCAGGTCCCCT[C]GGTGTACTCTGAGGTGGGAA -3′


















TABLE 5





(SEQ ID
WT Sequence



NO:)
(polymorphism location is indicated in brackets)







  576
5′- GGACACAACAGGACCCACTG[A]GGAAAACAATGATGACTTGG -3′






  577
5′- CCCCTCCACTTTGCTCACCC[G]TCTTCCGGGCCCTGAACCCA -3′





  578
5′- TCCTGTGCCGGCTGCAGGTA[C]GGAACAAGTAGGCTAGTGTC -3′





  579
5′- AGGAAAGACTGTTGGGCCTC[A]GAAAACATCCCACGTGCTAG -3′





  580
5′- GGGACTTGGTTTCATGTCTC[C]ATCTCTCAGTTCTGTTTCCC -3′





  581
5′- ATAGAGAGGGTCTGTTAGGT[G]CTTGGGATCTTGTTCTTCAA -3′





  582
5′- ATTCCAATTGAAGATTGAAA[A]TGGCCTGTTTGGTAAACTGG -3′





  583
5′- TAACTCAAAGCACAAAGTTT[A]GAATTCCTACATTCTAAAGA -3′





  584
5′- GTCACCTGCCTCGGAGCCAG[C]TAGGCTGTTTAACAGTGCAG -3′





  585
5′- GGAGCTTTGGCATCGCAGAG[G]CTTGAGCTGAGTCTGGCTCT -3′





  586
5′- CAGAGCCCCTCCCTCTAAAC[C]CAGTCTTTCAAAGGGATTGT -3′





  587
5′- CAATTTCTTGCTGAAAGCCC[C]GAGTTATGCCAGACACTGTG -3′





  588
5′- ACCTTTGCCCAGATCCAAAT[T]TTTTTTCTTCATTCGAAGCT -3′





  589
5′- ACGGATCTCTTACCATTAAA[C]TCAGGTGGAGAGGGAGTGCC -3′





  590
5′- TTTCACAGATGAGGAGGCTG[A]CCTCAGGAAATGTGACTCAG -3′





  591
5′- CCAACACCACCCCTTGCCCA[A]CCAATGCACACAGTAGGGCT -3′





  592
5′- CCCATATCATGCAGAGGATC[C]GGGATTTCAATCCAGGTCTA -3′





  593
5′- TGACGTGTGCAGAGAGACAT[G]TCAGCCTGCCCTGCACTTGT -3′





  594
5′- GGCAGCATATTAGAAAATAG[T]TTATGTTACAACAAAAACCC -3′





  595
5′- TGCCCCTTCTCACTGGTCTG[T]GGCTGGCAGGGCCATCTTTC -3′





  596
5′- GAATCCATCCCAAGGACACC[A]TTTGAAAACATGAAATAACA -3′





  597
5′- CAGCGGGGAGGGGAAAGGTC[C]GAAATGAGGGGAGAGACGTG -3′





  598
5′- GCTGGGCAGAGCCATTCCTG[G]GCTGGCTGGGTGTGTTTGGG -3′





  599
5′- ACAGGCATCAGGGATACAGT[A]GTGAACAAGCATACACAATC -3′





  600
5′- AGGTGAAGCTGAGGCCTGAG[A]CCAGAAGGAGAGAAAAGGAA -3′





  601
5′- CACTCATTAATCCATTAAAC[A]ATTAATCTATTAATCCATGA -3′





  602
5′- GTGTATGCTGTGAAGAAGGC[C]ACCCCCCTTCCTGCCCATCC -3′





  603
5′- CTGTCACTATGCCCCTGCCT[C]TCTCAGTGTCTATCTCTGTT -3′





  604
5′- GGGATGACAGTGAGAGGAGG[G]CAACAGTAAAAGGAGTCATA -3′





  605
5′- GTGTGTCTGTCAGGGAATGT[A]TCCCTCTTCCATTCTCTGTG -3′





  606
5′- CCATTCTTGGTGGTGAGCCT[A]GACTCTGAGCCTGGGATGTG -3′





  607
5′- GTCTGGCTGCCCCTTGGCCT[T]CACYACAGTCAGGTCCAGCC -3′





  608
5′- TTGAGGATTAAAGAGCAGAR[A]TCATGTAGCATCTGGCACAT -3′





  609
5′- CGTCATGTAGCATCTGGCAC[A]TGGGGGAACGCAATGGAAGT -3′





  610
5′- CAGAGAATATTTCACATGCA[C]GTAGCAAAAACACCAGGGGT -3′





  611
5′- AACATGGATTAATGTGGGAA[T]TTGGCTTCAAGAACACAACC -3′





  612
5′- ATTATTTCATTTTAAAACCA[C]AGAATAAAAATGACACCTGA -3′





  613
5′- AAGCAGATTATGAGGCAGCT[T]CACCCCTCCCAGCACTGGGG -3′





  614
5′- CCAGCCCTGTAGTGGACATA[C]TTGCCTTTGCCTATTCAGCA -3′





  615
5′- GAACTCGGTGGAGGAGAAGA[A]AAACTCCAAGATGCTCCAGA -3′





  616
5′- TGTGGGCTGGACTTAGCAAC[T]CACTTCTAACTAACAGAATG -3′





  617
5′- GGTGTCAATTCACTCCCAGC[A]GCACTGACTGAGTGCTGACC -3′





  618
5′- ATGTTAGGCGGTCCCACCTG[A]GTTCTGGAGATCTTCACACA -3′





  619
5′- GGTGGGCAGAGGCTGGATCC[C]ATGGTGAGGAGTTTCCATTT -3′





  620
5′- TTGCCATGGGCCACCTCTAC[T]GAGTGCTCGATGAACAACAA -3′





  621
5′- TTTGGCTGGGGCAAGCTTAC[A]TGGTTCGGCAGTAGTACCAG -3′





  622
5′- GTGGCCCCAGGAATGGGGGC[A]TCTGGTGGTATCTGGGCTGG -3′





  623
5′- ATGCATTGTGGTAGAYTCAT[T]CAATGGAGTATACACAGCAA -3′





  624
5′- GTGGCAGCTGCGATYTYYCC[A]HTGCCACAAATGGTAGTTAC -3′





  625
5′- TTGGGAGGAAGACCACAGAG[A]TGATGTGCCAGTCTCAGAAC -3′





  626
5′- AAAATACAGGGTACAGGGAC[G]CTCAAAGAGTGATTTGCTTC -3′





  627
5′- GTGAGATGGGGCACAGCAGC[A]GCCGGAAGGTTATTTGTGTG -3′





  628
5′- GCAGGGCAGAGAAGGGGAAG[T]TGCTGGCTGCCCTCCTCACT -3′





  629
5′- GCTCCTGGATTCACTCCTTT[G]ATCCTCACCTCAATCCTTTG -3′





  630
5′- AGTTGGCTTGTATGGACCCC[A]CCGATGACGGACAGTTCCAA -3′





  631
5′- AGTGGATTGAGGATGGACAT[A]TGTATCTGGAAGCACCAAAA -3′





  632
5′- CTGGGTTCACTGGAAATCAG[C]ATTAAGAATGTACAAGGGAA -3′





  633
5′- ATGTAAACTGCCTTTGAAAG[G]CTATAACACAGTTCAGTTGG -3′





  634
5′- ACTTAATCTTGCTCAGTTCC[C]CAGTTTACACTTTTGAATGG -3′





  635
5′- GCAGCATAGATGAATGTAAT[G]TTGAAACAGGAAGATGTGTT -3′





  636
5′- CTTAGCCTGCAATTGCAATC[T]GTATGGGACCATGAAGCAGC -3′





  637
5′- TAGCCGTTTACAGAATATCC[A]GAATACCATTGAAGAGACTG -3′





  638
5′- GTTTCAGATTTTGATAGGCG[T]GTGAACGATAACAAGACGGC -3′





  639
5′- ATGAGGGAGAAATGCCCTTT[C]TGGCAATTGTTGGAGCTGGA -3′





  640
5′- AGGAACAGTGCTACTTACTG[A]TGGGTAGACTGGGAGAGGTG -3′





  641
5′- TTGGCAATGGGTAAGTCTAT[T]GTACTGTGTAAACTTGGACT -3′





  642
5′- GATATAGATCTCTTGGAAAT[A]TAATAATGGTATGCAGGAAG -3′





  643
5′- GCAACCCGGGGAAATACAGC[A]AAATGCACAAGTACTGGCTG -3′





  644
5′- CTGTACAAACTTTCTTCCAT[G]ATTTTGATTATATCCATTTT -3′





  645
5′- CCCTCATTATCTGCCTAAAC[A]ATTTTTTCTCAACTCCTATA -3′





  646
5′- CTAGCACTGTACACACCCCA[T]ACTGTGTATGCTATTTGTTG -3′





  647
5′- CAAAAGTTATCTCTAACCAA[G]GTACTCAAACAGAGTCTTTA -3′





  648
5′- CCTTGTAAATCTCCACCTGA[T]ATTTCTCATGGTGTTGTAGC -3′





  649
5′- TCCCATAGGAATTATAAAAT[T]GAAAAGTATGACAAAAATTT -3′





  650
5′- AGGCCCTTCAGCTTCACCAC[T]TGCTTCTCTTTAAACAAGTC -3′





  651
5′- GATAGAATTTGGCCCAGAGA[A]GTTAACTAATATATCCATGA -3′





  652
5′- CTGTTTCTCCTTAAAATGGA[A]AAATGGCCTCTACAGAGTAG -3′





  653
5′- GCTTGGTGGGGCCACTGGGC[A]TCTGTTTCTCGGGTGTTTTG -3′





  654
5′- CCATTCCCTCGGCGAAGAGC[A]GAGGTTGAAGAAATGCTACT -3′





  655
5′- GCAAGGGCCAGAGCCTCTGT[A]TGCTGCATTCGGCAACCACA -3′





  656
5′- GGTTCCTGAAGGAGGAGTGG[G]AGTTTGGTAAATGGATGGAG -3′





  657
5′- TTACCTGCTAAGGCCTGCAA[C]CTTGAGGATGTCCAGGGCTG -3′





  658
5′- CCAGAAGGTTTCTTTGCTCC[T]CTTCCCTACAAAGACAGAGC -3′





  659
5′- AATTCACTCCTTTAAAATAC[G]CAATGCAGTGTTTTTAGAAA -3′





  660
5′- CCACTCCCTCTCCTGCTCTT[A]TGTGTGTGATCCAAAGGGAA -3′





  661
5′- CAGGGACAGCTGAAGCCAAG[T]TCTCCCAAAGCAGCCTTGGC -3′





  662
5′- GTCAGGAGCCTGGCCAGGCC[A]CACCCCTTGCTGTCTCAGCA -3′





  663
5′- GGAGATTCTGCCTCAGGGCC[A]TGAGAGTCCCATCTTCAAGC -3′





  664
5′- GCTCAGCTACCGTTGGTGGC[G]TTTATTAAACTGTGCACCCA -3′





  665
5′- AAGGTGGCTGACTCCAGCCC[C]TTTGCCCTTGAACTGCTGAT -3′





  666
5′- TGAAGACCTGAAAAGCAAAT[G]CCAGGCAGCCCCACTCCCTC -3′





  667
5′- TTCTTTGTAATTTGGAATCC[T]CCTAATTTCCAAATGGGTTC -3′





  668
5′- GGGACCTGGCCCTGGCCATC[T]GGGACAGTGAGCGACAGGGC -3′





  669
5′- AGGTGGGGACCCGGCTCCAA[G]GGCACCCGGGTCTTCTGCAG -3′





  670
5′- ACAGGCCGCTCTCCCAGCAG[T]GTGTTGAGGTGCACAGCCAG -3′





  671
5′- TGGCGCAAGAGAACCAGGGC[A]TCTTCTTCTCGGGGGACTCC -3′





  672
5′- TGCTGTGCCCACATCCCCTG[G]AACAGGCAGCCCAGCCTGTG -3′





  673
5′- TGGTGAGTTATGGACCCYCC[C]ACCTCCACTACTACACTGTA -3′





  674
5′- TCAGGGCCTGGGGCAGGCGC[T]GCACAGCCCCCACCGCTGCT -3′





  675
5′- GCATGGCATGCGGAAGATGG[C]GAAGAATGTTTTATGGCCTC -3′





  676
5′- TCTCAGTAGCTGAGACCTGA[A]AAATTTGGAGAATCACTTTG -3′





  677
5′- ACATGAGGCCACTGAGGCAG[G]CCTCTTTCCTTCCCCTTCTC -3′





  678
5′- CCTATTCTTAATCCTATTTT[A]CAAATGAAGTGACTTGCCCA -3′





  679
5′- GGAATGGGTCAAGAATGTTC[C]TTCCCTTCTGAATGTCCCTG -3′





  680
5′- AAGCGGGGAGGAGCTAAATA[A]TATTTTTCTCTCCTTGTTCA -3′





  681
5′- AACTTGGAACATCTCCGCAA[T]AAGACAGAGGATCTGGAAGC -3′





  682
5′- ACATCGCAGAAGGTGGCTCG[G]AAATTCTGGTGGAAGAACGT -3′





  683
5′- TTCCCGAGGCCCTGCTGCCA[C]GTTGTATGCCCCAGAAGGTA -3′





  684
5′- TGAGAGTCAGGGTTTCGGAC[T]AGATTGGCAAGTCAGGCTCT -3′





  685
5′- TCTCCAGGACCTAGTATGGT[A]CCTGACCGTGGCACTCATAG -3′





  686
5′- CTACCTCAGAGTATGTGCCC[G]TTGGATGGTGGCTGTTATTC -3′





  687
5′- CTAGTCTCTGAGCTGAGTGC[T]GACTTAGGGAGGCAATGTTA -3′





  688
5′- ACAGTGTGGCGTAAGGCAGT[A]TGGCCCTTGTCCTCTTGCTT -3′





  689
5′- TTAGGGCAGCTGTGCATTGA[T]TGGGTAGACGCCATTCTGGA -3′





  690
5′- TGAGGCCCCCACCTGGCCCT[C]ATCTGCCCCTGAGATCTAGA -3′





  691
5′- CGCATAATTTCCGTCACCTC[G]TTCGCCTGCTGCTGGCACCG -3′





  692
5′- CCCCAACATGTGCACCCCTG[T]ATTTCCTGTCATGCCACAGA -3′





  693
5′- CCAGATCTCCATCATTGGCG[G]TAGTCTCTGGTCACCTGACT -3′





  694
5′- TTTGTTCTGACTTTACATCC[T]CTTCCCCAGGTCACTTTTCA -3′





  695
5′- ATTCCTGTCCCTTGTGCCGC[C]ATGAGCTGCCCACTGATGAC -3′





  696
5′- TTTGATACCAAGAACACATT[A]CTGCATGAATCCTCCAGCAA -3′





  697
5′- TCTAAAATTAGGGGTTTGAT[G]TAGCTTATCTGGAAGGTGTT -3′





  698
5′- GATGCGGTCTGGAAAGCACC[G]GGGTGGCCGTCGGCTGACGC -3′





  699
5′- CTCCGTGGAACTTCTCCTGG[C]ACAAATTCTGTTCCTAGGGA -3′





  700
5′- GAGGGGAGCCACAGGAATGG[T]CGTGGCCAGAAGCCCTTCTC -3′





  701
5′- GGCACCTTTTCCCTGATAAG[C]CACAAATCATAACCAAACAA -3′





  702
5′- TTGCACTCCAGTTTTTTTTT[T]TTTAAAAAAGCGGTTTCTAC -3′





  703
5′- GAAAAGGCTGTCTGATTATC[A]TGTCATCCAAAAAAAACAGA -3′





  704
5′- GAACTAAGAGGAATAAAGGT[G]TTGCTTTATACCTGTCCCTA -3′





  705
5′- ACTAACATGTCCTGCCTATT[T]TCTGTCAGCTGCAAGGTACT -3′





  706
5′- GCTGACCCAGGGTCCACATG[T]TCTTTTTCTAACTTGTTCAT -3′





  707
5′- TGCTTCCCCATTTCTGTCCT[G]AAAGCCCTCTGGCAAGACTG -3′





  708
5′- CAGTGATGAACTCCTGGGCT[G]AAGTGACCCACCCGCCTCTG -3′





  709
5′- GCGACTTCGACTAAGCAACA[C]TGCATCTATTTTCATGCAAC -3′





  710
5′- CCTCAAATGTTAGAGTCAGT[A]CACCAGCTCATAGTTTCCAT -3′





  711
5′- CGTTTAATTCTTTCTCATCA[C]TTTCCTAGGGCATTTGCAAT -3′





  712
5′- CATCAGAGTTTTATGATTAG[C]AGATATATCTTAACTGACAC -3′





  713
5′- AGCAAAACCAAAGAAATCAGC[A]GAAGACCATAAAAACAGACG -3′





  714
5′- CTATAAAATTAGTATGCTTA[C]AATTATTAAACATATACAGA -3′





  715
5′- TAAACACTTTAATGCAGTGA[C]ACTCAGGTATAAAACTCAGA -3′





  716
5′- ATAGAAGACAAAGTTTTCAT[T]CGTCTCATTCAAGTTCACTT -3′





  717
5′- AGTGCAGGGCAGGACTGCTG[G]CTGACCCCGGGCCACCTGGA -3′





  718
5′- AACCTCTTGGTACATGTTAG[A]GGAAATGAAGCTGGCAACAA -3′





  719
5′- TCATCAGATCAAGGACATTA[C]GGAATTAAAGGGCTCTAAGA -3′





  720
5′- CCACTGCTATTGGTTATTTA[C]CTAGCATCCATTTCCCTTTA -3′





  721
5′- ATCTACCTCTCCTGCCTCAT[A]TATTATTACCCAGCCCCTTC -3′





  722
5′- GTCAATTGCAAATGGAGGTG[A]GACCTGAGAAAACAAAGAAA -3′





  723
5′- GAGTGTGTAACAACTCACCT[G]CCAAATCGACTAGCCCTTAG -3′





  724
5′- CTTGTAAGCCATCTTAAGCC[G]TTATAGGCCTAAGATGTATA -3′





  725
5′- CTTGAGACCTGTGTCTCCTC[A]TGTTCACACTGTTCCTGACT -3′





  726
5′- GAGGCATGGGTTGAACTGCA[T]TCACATATGTACTTAAAAGA -3′





  727
5′- TGTTTCTTGAAGTTTGACTA[C]TTAAAAACATAGGTGTAAAG -3′





  728
5′- AGAGTCACGGCATGTGGGAA[T]GTTTCCATGGACACTGGATC -3′





  729
5′- AATGAGATCTTATGTCAAGG[A]TTTAATCTTTGGTATTCCAA -3′





  730
5′- TCTGGACCTCAGTTTCCTCA[A]TGAGCTGGTAAGAATGCACT -3′





  731
5′- AGGTTGATAGCAATGTTTGG[G]AGATATGTCCTAGAAGTGTT -3′





  732
5′- GCATGATAACCCGAGCCATC[A]CTAAATATTATAGCTTCCTT -3′





  733
5′- CTCCAGTTTCTCCCTTTCTC[G]CCAACTAGGTCCATCCAAAC -3′





  734
5′- AACTGTAAGGATCTCTTGCT[T]TATATACTATTGGGGGAACA -3′





  735
5′- CCTTAGCTCTTCCTAAAACA[C]ACAATCATAAAGGAAACCGT -3′





  736
5′- CTGACAGTAAAGGGAACTCA[G]TATGTCTGAGTCTTTGCTCA -3′





  737
5′- AACATTTACAGAAGCGAGAA[A]AAGTTTTGTTTGCTTTTGTT -3′





  738
5′- TAAGTTCAATAAATCCCAAA[C]TGCACACTCTGAATTAGGGG -3′





  739
5′- AAGATAGCCATCTTTGGGCA[G]AGAGTCATGAAATGTACCCT -3′





  740
5′- GCTGGGCCGACGGGGACGAG[A]CGGCGACTGGAGCAGCAGCG -3′





  741
5′- CTCTGTCTTGGTCACTGTGC[G]AGGATTGAAGGGAACTATTG -3′





  742
5′- ATCGTCTTTTACAATAAGAT[G]CATGCCCCTATGAGTATTTT -3′





  743
5′- AAGGAGAAAAACAGTGAACC[A]TAGTTCTTACTGCTCACACT -3′





  744
5′- GATTATTTGATTGCCATGAA[C]GAAGCTGAATTACATAATTC -3′





  745
5′- AGGGACCTGTCTTCAGAATC[T]AAGAAGCATAATGTCCTTAA -3′





  746
5′- TAGAGTCCCTACCATGCACC[C]TGGGCAAGAAGTCAGTTCTG -3′





  747
5′- TCGGGTCTCTTACCATGCCC[G]CCCTCCCTTCCTCAGGGAAT -3′





  748
5′- AGGACCTTCAGAGACCCCGC[G]TTCTCTGAAACCAGGATGGA -3′





  749
5′- CAGGGGCTGCACTCACCATC[G]TCTGACACCTCCACTTCATC -3′





  750
5′- GTACACAAGGGTAGGGCAGA[G]GATGGACAGCAGGGCAGAAT -3′





  751
5′- AGTTTCTGCAGCACTTTATC[T]TTCCATCTGGCCATGAGGAA -3′





  752
5′- CAGGCATTGAAGGTCAGCTT[G]TTCTCCTCCTGGGTGAGTTT -3′





  753
5′- GGGCACGACCTACCATCCAC[G]GTGACTTGGCAGGAGCACTC -3′





  754
5′- TTACTTCTATCCTTGCTTCT[T]GAACTGGTCATTCCCTGACT -3′





  755
5′- AGAACAAGCTGTTAGCAGGA[C]GCCTCTGCTGCTGCGGGGCC -3′





  756
5′- TCGGCTGGGATCTCCTTCAG[T]TCGTCTTCCGATAGGGTCTT -3′





  757
5′- AGGCCTCAGGGACCCATAGC[A]GTCACTACCACCACCATCAG -3′





  758
5′- TTGTCCAGAAATCACTGTGA[C]TGGATACACAAATGCAGCAC -3′





  759
5′- CTTGGCTGCTGAATGGTGAG[A]TCCCCCTGCCCCAGCTCTCT -3′





  760
5′- GAAGTCTTCTGAAGGACCGG[G]GTCTGCGGGGCCGTTCTGGG -3′





  761
5′- TGGTGGCTTTTGTTTCTCTC[G]CAAATGACCTGTGTGGTGGT -3′





  762
5′- AGGACGGGTCTCCACTGCTG[G]AGCTGAAAATCTATCCCTGT -3′





  763
5′- TTTGTGACCTTGTATGGATG[ACTTA]ACTTCTCTGAATCTTATTTC -3′





  764
5′- AAAACTCAATAAGATGCCTA[T]ATTTTATGCATCTCCATTAA -3′





  765
5′- TTCACCATCCCTCTACTTTC[G]GCTTGCCAAAACTTACAGGA -3′





  766
5′- TGGCCAGTGCTCAGCAGATG[G]AAGTTCCAAATCGAGTCACT -3′





  767
5′- GCATGGAGTCAACTCTTGAG[T]GATCCACACTGAGGGAGGTT -3′





  768
5′- TGACTCCTGGTCCAGGGCCT[A]CTGGGGACTAGATAAGATGT -3′





  769
5′- CAAGCTAGAGACTTGGTATA[C]AGCAGCAGTTACATGAGTGG -3′





  770
5′- CAGACTGTGGACATCCGAAT[T]GGCAATGACATGAATTTAAG -3′





  771
5′- AGGCACCAGGTCCCATGGCC[G]GTTTCCCCTGAGAAAACATT -3′





  772
5′- ATGGAGAGCTGCCAAGCCAA[C]CCTGCCAGGGTCATCAGCTC -3′





  773
5′- ATAGCTGTCCTTACTCCTTT[C]CTAGACAGACAGTGTCTTGG -3′





  774
5′- GCTTTTTATACCGCTTAACG[A]AAATAATTTAAAAGGCTGTC -3′





  775
5′- AGCTGCAATGCCTATGAGCA[G]GACCTGGGTTTGTACATCTT -3′





  776
5′- CTAGGATAGCAGAGATATTA[C]TTCAGGATCAGATCTTGACT -3′





  777
5′- TCTGGGGAGTCTTTAGCCCC[C]AGCAGAGGCCATTTCTAGCA -3′





  778
5′- GAATAAAACTTACGGAGAGC[C]TCTAACTTCATTCAATTTGT -3′





  779
5′- ATAATATATTTTAAGCAGGG[T]AGGGTATCCCAAGATCTCAA -3′





  780
5′- GTATGGTAAAGAATCCCACT[C]CTGCATCAATCAGTGGGCAA -3′





  781
5′- TTTTCCTTACACCAAGCTTA[C]GTGGGTGGCTGTAGCCACAA -3′





  782
5′- GCACCATGGGGGAAATTATC[G]GTATTATTTTTTTGAAATCA -3′





  783
5′- TATAGYCAAAGAGTTGTGCA[C]TGATCACCTCAATGAATTTA -3′





  784
5′- GTTCTGGGCAACTGCTTTAG[T]CTGAATGCAAAAAACTGGAA -3′





  785
5′- AAACAAAAGCCCCACAGCAA[A]AAACAGGAAGGAAGGGGAAC -3′





  786
5′- ATAGTGAGGGATGACTGTAT[C]TTCCACTTAAAAATCCCAAG -3′





  787
5′- GGAAAATAAAACTGTACCTC[G]TCTCCAGTCTCCCCATATTT -3′





  788
5′- TAATGGCTTTCAAAGTGCCT[G]AATTCCATTCTACACTAAAA -3′





  789
5′- ACCTCAAAAGAAAAAATAAC[A]TAAACAATATTCAACTCAAG -3′





  790
5′- GCTTGGTTCAGGCCCTGGTT[A]CATACCTGGATTTCAAATCT -3′





  791
5′- ACCCACAGCTTTCAGCAGTG[A]AGAATATGAATGGAAACTGG -3′





  792
5′- GAGTGAGGTAGAGAACAGGT[A]TAATTCACCATAAGTCCTGA -3′





  793
5′- ACCTGGTTCTTTGAAAGAAC[A]AATAAAATTCACAAACTGCT -3′





  794
5′- TTTTTCTCTTCAGCTGGCCC[G]AATTGGTTTCTGTTAATTTT -3′





  795
5′- GAAGAGACTAAGAGAATCAC[G]GAAGAGAGAAGGAGGTCAAG -3′





  796
5′- TCTTGAAGGGTTTTAGTTCC[G]TAAGTTCCAGGGAGGGGTCT -3′





  797
5′- AAACGTTTAATTCTTCTGTG[A]GTTCTGTTCTAATTTCTGAG -3′





  798
5′- AGGCCTAGAATTCTCTGAAA[C]GTCATTTTTCAGTTTCTACA -3′





  799
5′- GTAGCCTTGCGCCTCACTCT[C]GTGATGGAGCCGCCTGCTAC -3′





  800
5′- ATTGTCATTTTCCTTGTGTT[T]TATTGGTTCAGGCTATCCAA -3′





  801
5′- CAAGGCATCTTGGCTCCTAC[A]TAGGGCCTTTTGGCTCCTCT -3′





  802
5′- AGATCTCCAAGGTTTTCACC[A]AGAAACACTTGACCCGACTT -3′





  803
5′- GCTCAATGCAGAGGGGTCAT[A]AGAGCAGGCTGGGAGCCAGA -3′





  804
5′- GTTCCTCCTCAGAAACTGCC[G]TGTATGAGTTTGTATCCTTA -3′





  805
5′- CATAGGCGAGGCCCAGCCCA[T]GTGTCCAGAGACATCTGTGA -3′





  806
5′- GCTCTTCAAGGTCTGGTGCT[C]TCTTCCACAGTACTGTAGCC -3′





  807
5′- AAATGGGTGCTCAGACCCCT[G]TCCTACTTACCTCAAAAGGT -3′





  808
5′- TGTCAGCAGCCTGGTATTGG[A]AAGAGTTAAAGGAAAATCTC -3′





  809
5′- CAGTTCAGGGGAGGAGCCTC[G]GGACGTCAGTGGCAAAATCA -3′





  810
5′- GCATAGGCTTAACTCGCTGA[A]GAGTTAATTGTTTTATTTTT -3′





  811
5′- AGGGGAAACGTCTCCCAGAT[T]GCTCCCTTGGCTTTGAGGCC -3′





  812
5′- AGCCAAAGCCAGAGTGGCCA[T]GGCCCAGGGAGGGTGAGCTG -3′





  813
5′- TTTCAGAGAGGGAAGCCAGA[A]GAGAAGAGGGTGCAGGCTGA -3′





  814
5′- CAAGTCCTCCGGTTCTTCCT[T]GGGATTGGCGGGTCCACTTG -3′





  815
5′- AGGCTGCCTCCGCACCTGAC[T]GCTGCCCAGGTGGGGTTTCC -3′





  816
5′- TGGCTAGGACAGGGTCTCGG[A]CTAGGGAAGTGGTTTCTCTG -3′





  817
5′- TTACGGGAAGCCCTTCTGGC[A]CTCACTCAGGGCAGCAGCTT -3′





  818
5′- GCCTGGGCAGGAAGAGGGAC[G]AGAGGGTCTCCCACATGGGA -3′





  819
5′- ATCGTGTTCCCCAGGAAGTT[A]TTCTTGATTTAGTTTAAACT -3′





  820
5′- GAACCACCTTCTCTTGCCAG[G]CTGTACTCCTCATTTAGTTT -3′





  821
5′- AAGGTGGGAGCCAGAGTGGG[T]TGCTGTAGGGGTGAGGGAGG -3′





  822
5′- GCCATCCAGCGCGGCTGCTC[G]GGCGCCACCTCCATGGCCGG -3′





  823
5′- TCCCTGGGCCCGTCGCCCTC[T]GGGCTCCCGCCGGAACTCCT -3′





  824
5′- ACACAGACATTGTCGAGCGC[C]GGTCCCTCTTTATTGGCCAG -3′





  825
5′- GCCTGGTGAGAGCAGATTTA[T]TCCAATTTATGGGCTGGAAC -3′





  826
5′- CACACCGACACACATGGCCA[T]ACAATCAGATGCAACTCGGC -3′





  827
5′- CTTGTTCACAGAAGTGGGAG[T]CAGGAGGGGGGGAGAAAGTG -3′





  828
5′- AGGACCAGGCGGCTAAGCAG[A]GAGAAGAGCCAGAGGGGCGT -3′





  829
5′- CGGGCCATGGACACCGACAC[A]CTGACACAGGTCAAGGAGAA -3′





  830
5′- CTGCGGTTCAGCTCCTTGGT[C]AGATCTGTCATGTCTGTCTG -3′





  831
5′- GCACGTCGGCTCTTGGTACA[A]AAGACGAACAGGGCTGCGGG -3′





  832
5′- TCCCCCGGGGCCCTGAGCAA[T]GCATCAGCGCCAGTGGACTT -3′





  833
5′- TTCACCAGGACCTGGAGCTC[A]GAGCCTACATGGAGGTCATT -3′





  834
5′- ACGGTCACCACACCTGAGAG[C]GGTCCTGGGGCTGGCCCTGT -3′





  835
5′- GCGGCAGCCATCACTCCACA[C]GCACAGGTGACCCAGGTCTT -3′





  836
5′- AGGATGTTCTGGGAGCCACC[G]GTAGGCACGGGTGCCAGGGG -3′





  837
5′- TGGAATGAGCAACACAGGAA[G]GCTCCAGTTGTCCAGACCAT -3′





  838
5′- CGAGACTGGTTGGAAACACA[A]GAGTGCTGCTGGCTGCACCA -3′





  839
5′- CCCCCATCCATTCCAGACCA[T]GTGACTGTTGAGATGTCTGT -3′





  840
5′- TCGATGTGCGCCAGGAGTAC[T]CAGTGAGTCCTGGGGGAGGC -3′





  841
5′- AGTTTGACCCAGCAGACTCC[A]GTTACCTTTACCTGATGACG -3′





  842
5′- CCTACCTTGAGAAGCCTCCC[A]TTGACCGTGCCCAGGAAGAC -3′





  843
5′- AGGCCTCCAGGAAGTGACCC[T]GAGACAATAACTGTGCAACT -3′





  844
5′- GTAACTAAGCACACCCCTTA[A]AGAATTTTGGGAAGTCGCCC -3′





  845
5′- TAAGCCAGAGGATGCTGTAG[C]GAGTACTTGTATGCAATAAC -3′





  846
5′- CTTGTTGTCATGGTGCGTTG[A]AAGAGTAGCCAGTTGTCTTT -3′





  847
5′- ATTAGTATGCAGGTCTTATC[C]ACCATTGGAATTAAGCTGTT -3′





  848
5′- ACGTTTTTATCACACATTAA[A]CACTTGCATTAATTTTGGAG -3′





  849
5′- GATGAGTTAAATGGGCTAGT[A]TCTAAATTTTAAATTTTTAC -3′





  850
5′- GTACATCCCATATTCCCTTT[C]CAAAATCTAGTTTCCTATGT -3′





  851
5′- GCTTACCAGAAAACACCCTC[T]TTGTTGTTTTTATTTCTCAG -3′





  852
5′- GGACAAGGAGGAGAAGCCCC[G]GGAGGTCACGGGAGTTCACT -3′





  853
5′- GAGCAGCCATTTCGAAAGGC[G]GCAGAAGAGGAAATTAACTC -3′





  854
5′- GCGAGGGGAAGTCATTTTTT[G]AATAACTAGGCTCTATTTGC -3′





  855
5′- CAAGGAAAGACCTGGTGTCC[C]TGTGCTAATTTTAACTCTCT -3′





  856
5′- TACAGATGCTCATAGGCATC[T]GAAAAAAAAATACTTTGTTA -3′





  857
5′- AACTCCTTTGACAGTATGGA[T]GGCACCTAACGCATCCTTGT -3′





  858
5′- GAGGTGTTTTCTTGGCTCTT[C]ACKAACGTTTTTAATAAAGC -3′





  859
5′- GCGCCCCCTGGAGTTCTGCT[G]GAATTTAGATTTAAATAGAT -3′





  860
5′- ACATATTTAGAATGGATGCC[A]GAACAGGAGAAATGGGTGGG -3′





  861
5′- ATTCATATGCCACCAGCCAT[T]GGCAGAAATGTAACAGGAAA -3′





  862
5′- ATGGCTCTGTAAATGGGATG[T]CTCATGTTCAGGTTTCTGGA -3′





  863
5′- ATCTCCAGGTGAACATGGAA[T]GCAGTGAAAACCTGGGGTAT -3′





  864
5′- TGATAAGTAGTTAATGATCC[A]GAAATAAACTGTTAGGTGCT -3′





  865
5′- AAGTAAAATAGTAGATATTG[G]ATTGCTTCTACATTTACTAC -3′





  866
5′- AGAGCCCCTACCCAATTGCT[T]TACTATTTATAGTTCCTCAG -3′





  867
5′- ATCTGGGGACCTGCTCCTGG[C]AGAGCAATAGGAWCTGTGTG -3′





  868
5′- GAGTCCCAAAATTCAACCCT[T]CCGATAGGGCTGGGCCTGAC -3′





  869
5′- CCCTAGCCTGCTTTTGTCCT[A]TTATTTTTTATTTCCACATA -3′





  870
5′- AGAGGGAACCCAAATATTAG[A]GTGGGAAGCAAGTCATAAAC -3′





  871
5′- TAGGGTTACCAATCCACTAG[G]ATGCAAAACTGTACTTATTA -3′





  872
5′- AGGCTTCTTTTTCCATTACA[T]TGTAAGACTTTGGAGGGCAG -3′





  873
5′- AGCRGTCAGGTGCGGAGGCA[A]CCTCTCAGCGGTGGGGAACA -3′





  874
5′- CAGGACAAACAGTGGATTCA[T]TCAGAACACAATATGCTGGT -3′





  875
5′- AAGCCACTACAGACACCGCA[T]GCACCGAAATTCTCCCTTGT -3′





  876
5′- ATCACTGTCCCTCAGTTCAC[T]GGTCTTGTCTGCTTCGTCGY -3′





  877
5′- AATTCTCAGTCTTAAAAACA[G]GGCATAAAGAAAGCTAAAAT -3′





  878
5′- AGAAGATAAGTGTTTAGGGT[A]TTGGATATCCCAGTTACCCT -3′





  879
5′- CCTTTTTTTGGATGATCCTA[G]AATTAATACAAGTGTATTCT -3′





  880
5′- GCCCTTAGTCACCAACTCCT[A]CTCATCCCACCATGCTGTTG -3′





  881
5′- GTAAATTAAAATTTGTTTGG[G]TGATTTGTGCTGTATTTCTA -3′





  882
5′- AGCAACACTTCCTCCTTGCA[T]ATTACAAGCATAGCTAATGC -3′





  883
5′- CCCTCATTTTCTGTTAGGGA[G]GTATGTGTTTACCAAGCTGT -3′





  884
5′- ATGAGGGCTTTACTTTTGCA[A]GAAATACTACAGATGGTGAA -3′





  885
5′- TCCCTTCTCAGTAACTAACA[A]TAATCATCTCTCTGGAGGAC -3′





  886
5′- CATTCCCTCACACAGTACAG[A]TTAATAAATGTGCATTTTGA -3′





  887
5′- CCTGTGTGATGAGGGGCAAA[A]GAAGCTCTTGAGAACCTGCT -3′





  888
5′- GTAACGAAGAAAGACCAGAG[C]GTCATCCCTGTGATACAGCA -3′





  889
5′- TATGTATCTTGCTTTTGTTT[C]AAACAGTCATCCACATTAGT -3′





  890
5′- GATAGGTTGCAAAATTTTGG[T]GTGTTCTTGCATTGCATACA -3′





  891
5′- ATTGACGGTGTTATAATTAC[T]ATGGTTTTGAAATTACATAG -3′





  892
5′- TGAGGACCCAGATGTCAACA[T]CACCAATCTGGAATTTGAAA -3′





  893
5′- CTCCTTTTGACCTGAGTGTC[G]TCTATCGGGAAGGAGCCAAT -3′





  894
5′- TATGTAAAAGTTTTAATGCA[T]GATGTAGCTTACCGCCAGGA -3′





  895
5′- GATGGATCCTATCTTACTAA[T]CATCAGCATTTTGAGTTTTT -3′





  896
5′- AATTAGCTGCCAGAGTTGCT[A]TCAGTAAAGAGAAGAAATAA -3′





  897
5′- CTGAAATCAGAGAACATTGA[T]AGATGAAGTGAATGGCAGAG -3′





  898
5′- GCCCATCTGAGGATGTAGTC[G]TCACTCCAKAAAGCTTTGGA -3′





  899
5′- GTGCAGAYCAGATAATTATA[G]AGAGATGGAATGGGACAACC -3′





  900
5′- AATCTGCCTCTGGGGCGGGA[C]CTGTCAGGCTTCAGGAAGGG -3′





  901
5′- TCCAGGGAGGAGCTTCGTGC[A]ACCTTCCCGGACCACTCAGG -3′





  902
5′- CATCACCTCCAGGTAGCTCC[C]AAAATGTCCCTAGAAAGTGG -3′





  903
5′- GGAGCACAGAGTAGCAGTGA[C]GCTGTCCAAGGCAGGGGGGA -3′





  904
5′- CATTCAGGCCAGTGGCTGCA[A]GGGAGCAGAAAGATCAGGCT -3′





  905
5′- TACAGAGGAAGAAATCCAGG[A]CAGAGGTGGAGGCAGTGAAG -3′





  906
5′- CTACCTCATTCATTGACCCC[G]CTATCTGACCTGTACATGTT -3′





  907
5′- TTGAGGACAAACAGAACATC[A]GTGAGTAAGTGGAATATTAG -3′





  908
5′- TTCTTGTGTTCTTCCCTTTC[T]ATTTCAACTCTTCATCTCAG -3′





  909
5′- GGTTTGTGTACCAGGATTGG[A]GACCCCTGATGTATAGTGTA -3′





  910
5′- GAAGAGGATAGGTTTTTCTA[T]CTTAAACAAAATCTTCCTTA -3′





  911
5′- GTTAGGCATCAGGCAACTAC[A]AAGGAGTATACGAGCATGCA -3′





  912
5′- CACAGGGTAAATTTAGCCAC[G]GCAGCAGGAGCATGATATAA -3′





  913
5′- GGCATGTGAAATAAGTTGGT[T]TAATTAGAGTGAAGCCCAGG -3′





  914
5′- TGGATTGTGTGTGTGGTAAT[G]GGATTATTGTTATATTTAAA -3′





  915
5′- CACGAGCATCTTGCTGTCTT[T]AATTAAGAAGTTAACTGGAC -3′





  916
5′- TTGAAAGCTGAGTCATTTTC[G]TAATGGGTCAGAAAGACATT -3′





  917
5′- TACATGACGCATGTATTTGT[C]AAAACCCACAGATCTATTAA -3′





  918
5′- CTGAGAGTGCAGTGAACCTT[C]GTGTCTGTGATGGAAGAGGT -3′





  919
5′- GCTTAGATGTGAGAGTTGAT[T]CCATAATAATAAAAGTTATT -3′





  920
5′- TTGAACTCTATGTACCAAGT[C]TGAACACATTCCAAATATCC -3′





  921
5′- GGTATTTTGCTACAGCAGCC[T]GAGCAAACTAATATATCATC -3′





  922
5′- AAAGGCGGTCACCTGCAGGA[G]TAGCCATCTTTGGTCCTTTC -3′





  923
5′- CCCCCAGGGGTGGTAACAAC[G]GCACGCAAGCACAGCCATTG -3′





  924
5′- CCACACCTGGTGGACAGGAC[A]ACCGTGGTGGCCAGGAAGCT -3′





  925
5′- GGTTAAAAAGTTCTCTACCA[G]GGAAGTTGGATAAAAGTAAC -3′





  926
5′- AAATCAGAATCGAATTATTG[A]TTTGGGGCTAATTGTATCTG -3′





  927
5′- CCTGTCAGTGAAAACAACTA[T]CAAAGCTGGATTTTAAATAT -3′





  928
5′- CCATTAGCAGTAGGTCTGAA[A]TAACTTTAATATGCAAGTTA -3′





  929
5′- AGAGCCAGCTGGGAGAAACA[C]GCAACATAGTTCTTTGCAAT -3′





  930
5′- AGCAGCTGGACCATGATCTC[T]TGGATATGGTGGTAGGTGAA -3′





  931
5′- AGACGATGTACTGATGTAAG[C]TTTTGTAAATTTCTAAACTG -3′





  932
5′- ACTCTGTCTTTCCAATTCCT[G]AACAGCATGCTTGGATGGGA -3′





  933
5′- TCAGAAAGAATGGGGTAAGG[C]GAATTGAGTTTTAGAACATA -3′





  934
5′- ACAGTGAAGAAAGAGGAACA[A]AGAGAAGGGCAGGCAGGAGG -3′





  935
5′- TTGAAGGTGGATGAGGGAAC[A]GTCAGGTTGAGGAGCATTTT -3′





  936
5′- ACACAATACTGGGTTTCTCT[A]CTTCTCTCTCACCATCACAC -3′





  937
5′- CCACGCACCAGCAGGTTCAC[A]GTGCAGCTCATGCGGTTGTC -3′





  938
5′- GATAGTCTAAATGAATGTCC[G]CCACCCCCGCCTGTAGTTGT -3′





  939
5′- GCTGGCTGGGGCAAAGGTCT[T]TGATGCACTGTGCAGAAGTA -3′





  940
5′- CTGCTCGGGCCAGAAAATCC[A]GAAACGGGCCCTTACCGATG -3′





  941
5′- GTTCTGAAATGAAGACACAT[G]TGGCAGGCAGGTTACAACCC -3′





  942
5′- CTCACTCACTCCTTGAGGAC[G]CTCTCATGACAACTGTAAAG -3′





  943
5′- TTCAAAAACTATTTTGGTAC[A]TTTCAAATACAGTGTTTAAA -3′





  944
5′- TGTTGCTAAGATCAATAGCT[A]CATTTGAATCTATGTCTCCC -3′





  945
5′- CAGTTTATTATGGGTTATCT[G]ATTGGAATAAAGAGGTATCA -3′





  946
5′- AATCATTATGTCACAAAAAA[A]TATATAAAGATAAATTTTTC -3′





  947
5′- AGAGCCAAGACTTGTCCCCT[G]TTTCTGCAGCAGATTGGTCC -3′





  948
5′- GTTTCTCAAAAGTTCTAAAC[G]TTACAGAGGATAATTTTAAG -3′





  949
5′- CCTTGTCTGGAGGAGTTGGG[T]TTCCTCAATAATTGGCTGTG -3′





  950
5′- GGATCCAAAGGGTGTCAAGG[T]GATCATTATCTTGGGATGGA -3′





  951
5′- AATGAAACTAAATGATGATC[T]TTCAACTCTCCCTTCTCACT -3′





  952
5′- AGTTGCTCCCCTCTCTGATC[T]ACATTCGTAAAATGACATAA -3′





  953
5′- CAGGTGTCCCTACCTTAAGG[A]CCTCCTCCTTGGGACTTCAC -3′





  954
5′- CACACAACTRGCTAAGGAGC[C]CCAGGGCCACAGCTGCTGTT -3′





  955
5′- ATAAGCAGGAAAATGAATGC[A]TTAGGAGAGGTTTTATATCT -3′





  956
5′- TTATGCATACAACACTCAAC[C]GATCCAGTTACTCTTACTCT -3′





  957
5′- CACCCCAGTCACCGTGGCTT[A]CACCTGCACAACAGATTCCT -3′





  958
5′- AATTTCCCTGCATTTTGTGA[T]GACTTGTTTTTATTGGTAAC -3′





  959
5′- TGCGCATTTTCCGCACTCCG[G]TACACTTTACACTGAACACC -3′





  960
5′- GACCCAGAGCAGGAAGCATA[A]TCAAGCCCTCCACTAGATTA -3′





  961
5′- CACTTGGAAATCCTAACTCC[G]CAGAACAAAATTTTACAAGC -3′





  962
5′- ACACACTGACATTCGAGGCC[C]AAGGAATACTCCTGCCTCTA -3′





  963
5′- TTCATTTACAAGCCTGATCA[G]CCTTACATGAACTAATGTTT -3′





  964
5′- AACACTGTTGCAGGATCTCT[A]ATAATCACTATGTACACTTC -3′





  965
5′- AACTCCCCAGCTAAACACCC[A]TAAGACTTCATACAACACAA -3′





  966
5′- TAAATGCTTATCCATTTAGT[G]ACAGGAAAAATGAGACAACT -3′





  967
5′- GTATGCTTTCCATCGAAAAA[G]TACTCTATTAAACAGCTTAG -3′





  968
5′- TATACAGGAGTCATCCCCTA[T]GTTGACACTGGTAAGTTGTA -3′





  969
5′- TCAAGTTTAAGCTGCTATGT[C]CCTTATTTTTAACTTTTGTT -3′





  970
5′- ATATAATTTATATTACAATG[T]AAAAGCTTCTTTAATACTAA -3′





  971
5′- GATGGGGAGGAAGAGAAGGC[A]TTGGTCTTGCAGTCTTGTCT -3′





  972
5′- AATGGTAAGCATCTATTTTG[C]AGTCCACTCTACTGAGCTAA -3′





  973
5′- TTTATATATGATATCATCAT[T]AAGCACTTTCTATAAGCTGA -3′





  974
5′- AACAATCTGTGAACACTTGT[C]ATATGCTTACTGTAAGTGTG -3′





  975
5′- ACTATATGTCATGTCTACAG[G]CTGTCTCCTAAGAGTAGAGG -3′





  976
5′- TGCAAACATTGGGAAACCAC[A]GTAGGGGGGAGCAGGACTCT -3′





  977
5′- TACCATGGACAGCAGCGCTG[T]CCCCACRAACGCCAGCAATT -3′





  978
5′- ACTTGTCCCACTTAGATGGC[G]ACCTGTCCGACCCATGCGGT -3′





  979
5′- GCATTTCACATTCACATGTA[A]TATTTGAATATACACATCAA -3′





  980
5′- TTGAGTCTCCTTCCAATTAA[A]TCATGGAACATCAGAGCCAT -3′





  981
5′- TCTTTTGTGGAAATGTGATG[T]ATTTGTTTATATGCAGACAA -3′





  982
5′- ACCAGACTTAGGAGAGATAT[G]TCTCACTGTAGAACCAGTGC -3′





  983
5′- CTCTGGTCAAGGCTAAAAAT[G]AATGAGCAAAATGGCAGTAT -3′





  984
5′- AGCCAAAGTTCAGTTCTCCA[A]TTCATCTGAGCTCAGGCCCA -3′





  985
5′- GGTATCRTGGGTCCTTTCRAGTAC[C]AACCGCCTTAGGCTGGAAGC -3′





  986
5′- TTTTACCGAAGGCTGTGTCT[C]GTAAGCACCCCCGAGCAACT -3′





  987
5′- CTACTCCGGCACCCAGTGGG[C]TGGTAGTCCTGTTGGCAGGA -3′





  988
5′- CCAAGAAGCGCGCGGCGAGA[A]TGCAAGGTGGGGGCCCCGCC -3′





  989
5′- CTCTCGCCGCGCGCTTCTTG[A]TCCCTGAGACTTCGAACGAA -3′





  990
5′- GAGCAGAGGGGCAGGTCCCG[G]CCGGACGGCGCCCGGAGCCC -3′





  991
5′- AGAGCGGATTGGGGGTCGCG[G]GTGGTAGCAGGAGGAGGAGC -3′





  992
5′- TGGGGATTCAGAGCACCCAC[C]CGCAGCACCTCCCTCCTCTG -3′





  993
5′- GGGTCAGTCCGGACAGCCCC[G]GTCGCTTGTTACCTAGCATC -3′





  994
5′- CTGGGTGCGCTGGCCGAGGC[A]TACCCCTCCAAGCCGGACAA -3′





  995
5′- GACATGGCCAGATACTACTC[A]GCGCTGCGACACTACATCAA -3′





  996
5′- CTGACAATGTCTGTGGCAAC[G]CTGCAGTTTACTCCTTGGTT -3′





  997
5′- CAGACACCCACTCCTATGTG[C]GTTTCTGAAAATTACAGGGT -3′





  998
5′- TCCAGATATGGAAAACGATC[T]AGCCCAGAGACACTGATTTC -3′





  999
5′- ATTTCAATTTAGAGTCAGGG[A]CTCACTCTATGCTCCCCTGA -3′





1,000
5′- TGGAAAGAGGTGCCCACCAA[C]GTCTAAGTGTTAAACATTGA -3′





1,001
5′- TATCATGCATTCAAAAGTGT[G]TCCTCCTCAATGAAAAATCT -3′





1,002
5′- TGAAAAATCTATTACAATAG[C]GAGGATTATTTTCGTTAAAC -3′





1,003
5′- TATTTCTCAAACATTTTCAG[T]TTTAGAATGGGAATAGGTTT -3′





1,004
5′- GTGCCTTTAAACCTATTCTA[T]AACCTATTTAAACGTATTTC -3′





1,005
5′- AGGGCTGCCTGGTAAGCTGA[G]TCAGGGTGCCTGGCTGCCGC -3′





1,006
5′- AACGCCACTTGTGACTGCTC[A]TTACCTTTCAGTTGTGTCCC -3′





1,007
5′- ATGTTGGGATTTAACTTTCT[A]TTATATGTCAGACTCACTTA -3′





1,008
5′- TGTGTGTTTTAAATCTTTGC[A]CTTAAATGTTTTTGATTTCT -3′





1,009
5′- GAAGCTTCCCTCCGACAGGC[A]GCCCCGCACTAAGGTAGGGA -3′





1,010
5′- CTAATGGTTGGAAACGCCAG[T]CTTTGGTGAAAACAGAAAGT -3′





1,011
5′- TTCAAGAATTCAACTGCAGA[C]TGAAAATATTTGGAGAAAAA -3′





1,012
5′- AACCTAGCCACAGAGCCCGA[C]GCGATGTGTCCTTGTCGAGA -3′





1,013
5′- GCCTCCTTTGCTGCCCTCAC[G]ATCTCTTCCTGTGACACCAC -3′





1,014
5′- CTCTGCACCTTCAGGTTCAG[A]CCCTTCAAGATCTACCAGGA -3′





1,015
5′- ACAAGCTAGTTACCTTTTAT[C]GTTCAGTTTAAAAAAGTTCT -3′





1,016
5′- CGGTCCCCTTCAAGATCCAT[T]CCGACCTGAAGAGAAACCGC -3′





1,017
5′- TGCTCTTCAAAAAAACCAGA[T]TGAATATTTTTAAAAGTAAT -3′





1,018
5′- GTTACTTGTAGGGGGAGGGT[A]GAGGGAAATCTGGGCAAATG -3′





1,019
5′- GGGCTTCTATCCCCGAACCC[C]GGGCCCTGGTGCCACTCAAG -3′





1,020
5′- TCCCAYTTAAGAGCTATTCT[T]CTATCCTTCCCTGTAAACAA -3′





1,021
5′- TGGCAGACACAGGACAGGGA[G]CGCTGCTTATGTCTCCGAGG -3′





1,022
5′- AACCCATCCTCGTGGTAATC[G]TCCCTGGTAAGAAACACACA -3′





1,023
5′- CATTTCTAATTACCAGCTTC[T]TACTTGGCACTTTCAATTTT -3′





1,024
5′- CCACAGCGGCTTCCTGCCAT[T]GATGAGGCTGATTTCTGCCT -3′





1,025
5′- TGCATCCTCTGCTTCTCCTC[G]AACCGTGCTTCACAGCTGCC -3′





1,026
5′- GGGGCCAAAGGAATATTTAG[C]TGAAGGGGGAGAGAGGCCAC -3′





1,027
5′- ACTTTGTGTGTACATGTGGA[G]GGAAGTATTTGACATTTTGA -3′





1,028
5′- ACTTGTGTCCCCCAAAATCA[T]ATATTGAAGTTAAAACCTCC -3′





1,029
5′- TAGCCATGGCAGAAGACATA[C]TCTCTACACCTTATGCATGG -3′





1,030
5′- GACAGAGAAGGTATGTCCAC[G]CACACTAGACATACTGCATG -3′





1,031
5′- AGTATTGATCAGTGGCGGGA[C]ACAGTTTGAAGGTAGAGGGA -3′





1,032
5′- GCTGTATCTTGGGGGAAGTG[T]GTTCTTGAGAGCTGTGTAAG -3′





1,033
5′- GGCCGTCCTCATCTTCACAC[A]CTGTTCTCCTTCTATGTGGG -3′





1,034
5′- TAGCAGGTGGCACAACTGGC[G]CTGGGAACCGGGGGTCCCTT -3′





1,035
5′- GGCCCCCCGTGCAGGGAGGG[T]TTCAGGCTGCGGCAGGTAGG -3′





1,036
5′- TACTATACAAATAAAAAAAT[T]AAAACCCAACCTCAAGCTGT -3′





1,037
5′- CGAATGCTGAGAACTTGCCA[T]GCTCTCTCCCCAGGGCCCCA -3′





1,038
5′- GCCTCCCCCTGTGATCTCTC[G]GTCCTCTCCGCATTCCTGGG -3′





1,039
5′- TTCCCTTTGTTTTCCCTTTC[T]TCCAGCTCCAGGCCAGGCTT -3′





1,040
5′- TGCGCTCTGGGCTAGACACT[C]TGATAGGTGCTGGGATTACA -3′





1,041
5′- TGGAAAACAGATCCAGACAG[T]TTCAGTTATGTGTCTGAGAA -3′





1,042
5′- CCCTACTACCCCTACAACTA[T]ACGAGCGGCGCTGCCACCGG -3′





1,043
5′- GCATGCCTTTTCAAAAACAC[G]TTCAAGACCTGAAAATAAAA -3′





1,044
5′- TACTGCTGTGGCCTGAATCC[A]TGATTAAAGGAAATGCTAAG -3′





1,045
5′- TACACAAGTCACTGGGTGAC[G]TCTGTAGCTCCACCAACCTG -3′





1,046
5′- CTCTGTCTAGGTGCATAGAA[C]TGTGTACATATACATACACA -3′





1,047
5′- AGTCTGCAAATGTGTTTTTT[A]TGTGCTAAATAGCTCAAAGT -3′





1,048
5′- TAAGTTTGGTTGATGAGTCT[A]TCTCTCTAGACTGCAAGCTC -3′





1,049
5′- CACAGAAGTGGGCATTCTGA[A]AGGCCTCTAATTTTCCTCTA -3′





1,050
5′- TTAAAACAGCGACCCCATAC[G]TGCATTAGTTAAAACTTTCT -3′





1,051
5′- GCAGATTGAGGTAAATTCAT[C]GTTAATGTCATCACAGCAAT -3′





1,052
5′- CAAAACAGAATCCCAAGAGC[G]ATATTTTAACTCAACAAACA -3′





1,053
5′- AGAGTTCTTATGGTTCTCTT[T]GGTAGTTTTTCTTTAGCTGG -3′





1,054
5′- CTTTCATTCTTGTCGTTGGC[A]TCTCTGTTCTGATAAAAAGA -3′





1,055
5′- GGAGGCAATGTCTGATTTGC[C]TAGGGCTCAGGGGAGAGATG -3′





1,056
5′- AGGTTCAGCAGAAAAGAACC[C]AGGAAAAAAGTCTAGGAAAG -3′





1,057
5′- GATGGGCCTTCTGATAAGGA[G]CGCTGCCAAAAGTTCAAATG -3′





1,058
5′- ATTCCTTCCTTTCCCTGTTT[G]TACATACCTTACAGATACTG -3′





1,059
5′- TCTGTTTCAGTCTCAAGGAG[C]CTGAAAAGGTGAATTCCTGT -3′





1,060
5′- CAGTCTTGTGAGAACATTCT[C]GCCATCTGTACTTTGCATTT -3′





1,061
5′- CCACACCTGGCCTGAACTCT[T]CTTTAAAAACTGCATGCTGA -3′





1,062
5′- TCATGCATAGATGGTGTAGC[T]TTAGAAAACTCAGGCCTAGC -3′





1,063
5′- AGGTGGATTTTTTTAAGAAG[T]ATATTCATACAACTGAATAT -3′





1,064
5′- GCCTGATATTCTTTCCCTAT[T]AAATTGCTTCCTCATCTAGG -3′





1,065
5′- GAAGAAGCTGTCAGAATTGC[G]AGGGAAATTGGTAAGTCCTT -3′





1,066
5′- ACTGTGCCCACCCAAGTTTG[C]GTTTTGAAAAGATTGGTCAA -3′





1,067
5′- ATGGCATACAGCCTGGGTGA[C]ATTTTTAAACATAAGTGAAA -3′





1,068
5′- GGGAAAATGTTCATTTAAGT[G]TAAAACATGAAATGGTATTC -3′





1,069
5′- CTTGTTAGTTCAGGTCTCTT[C]CAGATGAGGAAGAGAGATTA -3′





1,070
5′- AAATGGACAACAAAAGTCAC[T]GGAAAAAAGGGAAAAAAAGA -3′





1,071
5′- TGAGAAATAAGTGATGTCAT[A]CATTTTTGGTTGTGGATCAT -3′





1,072
5′- TGTGGTTCTCCCTTCACAGT[T]GAATACAAGGGCTTTTATAT -3′





1,073
5′- TAATAAGTGGTTATGCCAAG[G]GGTCCCTGCAGCTCAGAGGC -3′





1,074
5′- TCTTTGGGCCTCCACCCCCT[T]GTCTCTAGTGGACATTTGAG -3′





1,075
5′- AAAGGAAGCTGGGCGTCCTC[T]GGGCCCCCCAACACACGTCC -3′





1,076
5′- CTAACACAGTTGCGAACATC[A]GCAGAGCCGTCGGGAGCCAC -3′





1,077
5′- TTGATGATGATGTCGATGCC[A]AAGAGTGACACGCCCAGTGC -3′





1,078
5′- CTTCACAGCGCCGCAACAAT[T]ATGCATGAGGGAGTGATTCG -3′





1,079
5′- GGCCACAGCTGGCCAGTCTC[T]TTGTGCTTTGAATCTCCAGC -3′





1,080
5′- TGCAGCGTGCGGCAGTGCTT[C]GTTCTTCTTTAAGATGAAAT -3′





1,081
5′- CCTACACAGGAAGCCCCGGA[A]CCACAGCAATTCTCCCTGCC -3′





1,082
5′- TGTGCTCTGGCCAGGGGCCT[T]GACCTCATTCTGTTGGTGGT -3′





1,083
5′- TCGCCCAGGCTGACCACAAG[T]TCCAAACAGGACTTTCTTGT -3′





1,084
5′- TGCCCAAACAGTATCAAAAG[C]GGATGTTTATCACAATACTA -3′





1,085
5′- TTAGCAACAAAATCCTGAAG[C]CACTTCTAGACCATAACCCA -3′





1,086
5′- CAGAGGGCAGGGCCCACACC[A]TACCCCACAGAAGCCCAGGA -3′





1,087
5′- GGGTACAGCCCAGCATGGCC[A]CAGGGGTCCCTGATGGGAAT -3′





1,088
5′- GACTGCCAGGTGTGGACACA[C]GCTCGTCAAGTGGTGAAGAA -3′





1,089
5′- CACACGGACGCTTCCTCCTA[C]GTGAAGTTCTGTTTGCTCCC -3′





1,090
5′- ATGGTCATATTATGCATGCA[T]GTTTTTGATTTCAAGAATGC -3′





1,091
5′- ATGCGGTGCTCGGTAACTGT[T]CATCCGATGCAGGCCTCACT -3′





1,092
5′- ACCAGAATTATCACAGCACC[C]TCTCATTCCCAGCGCGTCCT -3′





1,093
5′- TGATCATGGTCACTGCCCTG[A]GTTCAAATAATGCGAGCTGA -3′





1,094
5′- AGGACAACATGCCATTTGTC[C]AAACGTTTTAAAGATATGAT -3′





1,095
5′- GGGGGAAGCTGGGTGCATGC[A]GAGCACCGTGGAGTCTGGGA -3′





1,096
5′- CCTTGAAGTCACCCGGCCCC[C]ATGCAAGGTGCCCACATGTG -3′





1,097
5′- TTTGGAAGGAAAACGTGGCG[G]GTGGGCGTATTCTCCAGAAG -3′





1,098
5′- TCCCAGACCAGACCTTGCCC[G]ATGACGTTGTTGGTAATGCT -3′





1,099
5′- TGAGATCCCCCGGACAACAC[G]CTCCACCTTCCCATGGAGCT -3′





1,100
5′- TTGTTTGTGTCTGTCTCAAA[T]CCAAAGGGGTGGCTCAGCCT -3′





1,101
5′- GAACCTCCCAGGGGGCAGAA[T]AAAAAGTCAACAAGCTGGAA -3′





1,102
5′- CAAACGTTGCTGAAGTCTCC[G]CGACCTTTATTGTTTTGCCC -3′





1,103
5′- GTTCCCTGACCAGGAGTCCA[G]TAGGCAATAGTCTATTAACT -3′





1,104
5′- TTTGCTCATGCACCTGCCTT[A]CCTTTGTCATCACAACAGAA -3′





1,105
5′- ACCTCCTTCCCCGTGCKCCA[T]GAGGAGCGGGCTGCACCTTG -3′





1,106
5′- GCTGAAACCCGATTCCTACC[G]GGTGACGCTGAGACCGTACC -3′





1,107
5′- TCCTGCTCGACCTGCTCCTC[T]AGCTGTGCAATCTTGGCCTC -3′





1,108
5′- TCCAGCGCCGCGATGGTGGA[T]TTGAACTTGGACTTGACGGC -3′





1,109
5′- TACGAGGAGAAGGCGGCCGC[T]TATGATAAACTGGAAAAGAC -3′





1,110
5′- TTCCGCAGCTTGAGGTAGGC[A]GCGCAGTTCCTCTGAATCAC -3′





1,111
5′- CCTGTGGCTGGTACCTTCCC[G]GCATAATGGATGATGGAGAA -3′





1,112
5′- ATGATTGCCATGGCCTCCAC[A]GTTTCCTGGAACATCTCATC -3′





1,113
5′- CCAGAACCACCAACATCTTC[G]GTCTCTGTATTCAATTTTAT -3′





1,114
5′- TTTTCCCAGCTGTAAAAGGG[G]GCTAATAATAGCTCTTGCGG -3′





1,115
5′- GATACCTGACTCCAGGAGCC[G]TCACTTTACAACCTGAGATT -3′





1,116
5′- TTCTTGCCCTTGTACATGTC[A]ACGATCTTCTCCGAGTAGAT -3′





1,117
5′- ATCATGCTCAGTGAAACAAA[T]CAGAAAGGCCACACGCTCTA -3′





1,118
5′- ACCTGGTCAACAGCTTCCCT[C]AGGATTTTACTGCCAAGCCA -3′





1,119
5′- CACCCAGTCTGACCTTCACT[C]TTTTGTTGATGGGGCTGAGC -3′





1,120
5′- GCTGCTGGGGGTGGGTGCTT[C]GATCCTGGTGAAATGGCCTC -3′





1,121
5′- AGAATCATCTTCTCCTTTCC[C]TCACCTGATACCCAGCTTGA -3′





1,122
5′- CCTGTCAGGCCTGACGGGGA[A]GAACCACTGCACCACCGAGA -3′





1,123
5′- GGCTATGAATATAGTACCTG[G]AAAAATGCCAAGACATGATT -3′





1,124
5′- CTTTTGGGAATTTCCTCTCC[T]CTTGGCACTCGGAGTTGGGG -3′





1,125
5′- CAAGCCATGGCAGCGGACAG[T]CTGCTGAGAACACCCAGGAA -3′





1,126
5′- GACCAGTGAACTTCATCCTT[G]TCTGTCCAGGAGGTGGCCTC -3′





1,127
5′- TCAGTATAGATGCACCCATC[C]TAAGCCTAACTACATTGTAT -3′





1,128
5′- GTGAGCGTGCCATCAGCCCA[A]TGGAGGGGCTTAGGTCTGCA -3′





1,129
5′- GGTGCCATCCAGTGCCCTGA[C]AGTCAGTTCGAATGCCCGGA -3′





1,130
5′- GGCCCGTAGCCCTCACGTGG[C]TGTGAAGGACGTGGAGTGTG -3′





1,131
5′- TCAGGCCTCCCTAGCACCTC[T]CCCTAACCAAATTCTCCCTG -3′





1,132
5′- AGCCATGAGTTTCCACCAGC[G]GCAGAGTGAGTCCTGAGCAC -3′





1,133
5′- ATTGCAGAGAATGGAAGAAT[G]TGAAGAACTGAGTGACAAGG -3′





1,134
5′- AGCTACTGGGTAGAATTTTA[T]GTAGTAACTAGGTAGACACT -3′





1,135
5′- GGATGGCATAGCGAGAATAC[C]AATCTAGGAAGCGACTGGAC -3′





1,136
5′- GCTTTCCTGCTATCATAGCC[T]ACTTAAGTAGCTGTATTAGG -3′





1,137
5′- ATGAGGAAGAGAGAGACGAG[A]TGGGGTGACTCATGCCTGAA -3′





1,138
5′- TTTCTTTGAGACAGGGTCTC[G]CTCTGTTACCCAAGCTGGRA -3′





1,139
5′- TCATTAGCAGGGTGATGGTG[G]GGCTGAGATGGGCAGGGCCA -3′





1,140
5′- ATTGCCAACATAGCTGTTCA[C]ACCTAGAACACCTTTTCCTT -3′





1,141
5′- CACAACCTCGGTAAGGCTGG[C]GATCTTCAAGCCAGTCCGAT -3′





1,142
5′- GTCCGTTGTCCACGTTCTAC[T]TCCACCCCACTAACTGAACG -3′





1,143
5′- AGGCCAGGGGTCTGGATGCA[T]ATAGCGTTCCCCTAGCCTCT -3′





1,144
5′- TGCAGAGGTGTGGGCCCCTG[A]GGACCCAGAAGTCCAGCCAC -3′





1,145
5′- GGGTGAAGTAAAGTGGGCAG[A]GTGATTTAGCAGAGTGGTCA -3′





1,146
5′- GGCACCTGTCATAGTCTTGC[T]GAAAGATGACAACCCCTGGT -3′





1,147
5′- CGCAGCCCAGGATGATCTGT[G]CGGGACAGAGGCAGCGGCCT -3′





1,148
5′- TCGGAACAGCGAGTCCTCTG[G]CGTCGAGAGCAGGGAGGGGT -3′





1,149
5′- TTTGCCCAGTGACGCAGCAT[C]CCAGGCTGAGATTGCAGAAT -3′





1,150
5′- GCCCCCTCTGCAGGTCCCCT[T]GGTGTACTCTGAGGTGGGAA -3′









REFERENCES CITED IN EXAMPLE 2



  • 1. Fortin D F, Califf R M, Pryor D B, Mark D B (1995) The way of the future redux. Am J Cardiol 76: 1177-1182.

  • 2. Smith L R, Harrell F E, Rankin J S, Califf R M, Pryor D B, et al. (1991) Determinants of Early Versus Late Cardiac Death in Patients Undergoing Coronary-Artery Bypass Graft-Surgery. Circulation 84:245-253.

  • 3. Kong D F, Shaw L K, Harrell F E, Muhlbaier L H, Lee K L, et al. (2002) Predicting survival from the coronary arteriogram: an experience-based statistical index of coronary artery disease severity. Journal of the American College of Cardiology 39(Suppl A): 327A.

  • 4. Felker G M, Shaw L K, O'Connor C M (2002) A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol 39: 210-218.

  • 5. Carlson C S, Eberle M A, Rieder M J, Yi Q, Kruglyak L, et al. (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 74: 106-120.

  • 6. Xu H, Gregory S G, Hauser E R, Stenger J E, Pericak-Vance M A, et al. (2005) SNPselector: a web toot for selecting SNPs for genetic association studies. Bioinformatics 21: 4181-4186.

  • 7. Abecasis G R, Cookson W O (2000) GOLD—graphical overview of linkage disequilibrium. BioInformatics 16: 182-183.

  • 8. Barrett J C, Fry B, Maller J, Daly M J (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263-265.

  • 9. Schaid D J, Rowland C M, Tines D E, Jacobson R M, Poland G A (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet. 70: 425-434. The results are shown in Tables 3-5 below.


Claims
  • 1. A method of estimating the risk of developing coronary artery disease (CAD) in a subject, the method comprising (i) providing a nucleic acid sample from the subject;(ii) detecting the presence of one or more single nucleotide polymorphisms (SNPs) in a CAD-determinative gene in the genomic sample,
  • 2. The method of claim 1, comprising detecting the presence of two or more single nucleotide polymorphisms (SNPs) from at least two CAD-determinative genes.
  • 3. The method of claim 1, comprising detecting the presence of one or more single nucleotide polymorphisms (SNPs) from at least three genes in the genomic sample, wherein the genes are selected from AIM1L, PLA2G7, OR7E29P, PLN, PTPN6, C1ORF38, GATA2, IL7R, MYLK.
  • 4. The method of claim 1, the CAD-determinative gene is selected from A1M1L, PLA2G7, OR7E29P, PLN, PTPN6, C1ORF38, GATA2, IL7R, MYLK.
  • 5. The method of claim 1, wherein the step of detecting the presence of one or more single nucleotide polymorphisms comprises performing one or more procedures selected from: (i) chain terminating sequencing;(ii) restriction digestion;(iii) allele-specific polymerase reaction;(iv) single-stranded conformational polymorphism analysis,(v) genetic bit analysis,(vi) temperature gradient gel electrophoresis,(vii) ligase chain reaction,(viii) ligase/polymerase genetic bit analysis;(ix) allele specific hybridization;(x) size analysis; nucleotide sequencing,(xi) 5′ nuclease digestion; and(xiii) primer specific extension; oligonucleotide ligation assay.
  • 6. The method of claim 1, wherein the nucleic acid sample is a genomic nucleic acid sample.
  • 7. The method of claim 1, wherein the SNP is selected from any one of tables 1-4.
  • 8. The method of claim 1, wherein the gene is AIM1L.
  • 9. The method of claim 1, wherein the gene is PLA2G7.
  • 10. The method of claim 1, wherein the gene is OR7E29P.
  • 11. The method of claim 1, wherein the gene is PLN.
  • 12. The method of claim 1, wherein the gene is PTPN6.
  • 13. The method of claim 1, wherein the gene is C1ORF38.
  • 14. The method of claim 1, wherein the gene is GATA2.
  • 15. The method of claim 7, wherein the SNP is selected from a SNP listed in Table 4.
  • 16. The method of claim 1, wherein the gene is IL7R.
  • 17. The method of claim 1, wherein the gene is MYLK.
  • 18. The method of claim 1, wherein the polymorphism is detected by (i) contacting a nucleic acid sample from the individual with a polynucleotide probe which specifically hybridizes to the polymorphism; and(ii) determining whether hybridization has occurred, thereby indicating the presence of the polymorphism.
  • 19. A method of reducing the likelihood that a subject will develop CAD, or of delaying the onset of CAD in a subject, comprising: (i) estimating the risk that the subject will develop coronary artery disease (CAD) according to the method of any one of claims 1-18;(ii) administering to the subject, if the subject is at risk of developing CAD as estimated in step (ii), with a agent chosen from an anti-inflammatory agent, an antithrombotic agent, an anti-platelet agent, a fibrinolytic agent, a lipid-reducing agent, a direct thrombin inhibitor, a glycoprotein lib/IIIa receptor inhibitor, a calcium channel blocker, a beta-adrenergic receptor blocker, a cyclooxygenase-2 inhibitor or an angiotensin system inhibitor.
  • 20. A method of estimating the risk of developing coronary artery disease (CAD) in a subject, the method comprising (i) providing a nucleic acid sample from the subject;(ii) detecting the presence of one or more single nucleotide polymorphisms (SNPs),wherein at least one of the SNPs is a SNP listed in Table 4, and wherein the presence of one or more SNPs reflects a higher risk of developing coronary artery disease.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the filing date of U.S. Application No. 60/735,694, filed Nov. 10, 2005, entitled “METHODS OF DETERMINING THE RISK OF DEVELOPING CORONARY ARTERY DISEASE.” The entire teachings of the referenced application are herein incorporated by reference.

STATEMENT REGARDING FEDERALLY-SPONSORED RESEARCH OR DEVELOPMENT

The invention described herein was supported, in whole or in part, by the National Institute of Health Grant Nos. P01-HL73042 and R01-HL073389. The United States government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US06/43534 11/10/2006 WO 00 3/23/2009
Provisional Applications (1)
Number Date Country
60735694 Nov 2005 US