This invention relates to methods of genetics, diagnostics, and pharmacogenetics.
Tropomyosin-related kinase (TRK) is a receptor tyrosine kinase family of neurotrophin receptors that are found in multiple tissues types. Three members of the TRK proto-oncogene family have been described: TrkA, TrkB, and TrkC, coded by the NTRK1, NTRK2, and NTRK3 genes, respectively. The TRK receptor family is involved in neuronal development, including the growth and function of neuronal synapses, memory development, and maintenance, and the protection of neurons after ischemia or other types of injury (Nakagawara, Cancer Lett. 169:107-114, 2001).
TRK was originally identified from a colorectal cancer as an oncogene fusion containing 5′ sequences from tropomyosin-3 (TPM3) gene and the kinase domain encoded by the 3′ region of the neurotrophic tyrosine kinase, receptor, type 1 gene (NTRK1) (Pulciani et al., Nature 300:539-542, 1982; Martin-Zanca et al., Nature 319:743-748, 1986). TRK gene fusions follow the well-established paradigm of other oncogenic fusions, such as those involving ALK and ROS1 that have been shown to drive the growth of tumors and can be successfully inhibited in the clinic by targeted drugs (Shaw et al., New Engl. J. Med. 371:1963-1971, 2014; Shaw et al., New Engl. J. Med. 370:1189-1197, 2014). Oncogenic TRK fusions induce cancer cell proliferation and engage critical cancer-related downstream signaling pathways such as MAPK and AKT (Vaishnavi et al., Cancer Discov. 5:25-34, 2015). Numerous oncogenic rearrangements involving NTRK1 and its related TRK family members NTRK2 and NTRK3 have been discovered (Vaishnavi et al., Cancer Disc. 5:25-34, 2015; Vaishnavi et al., Nature Med. 19:1469-1472, 2013). Although there are numerous different 5′ gene fusion partners identified, all share an in-frame, intact TRK kinase domain. A variety of different Trk inhibitors have been developed to treat cancer (see, e.g., U.S. Patent Application Publication No. 62/080,374, International Application Publication Nos. WO 11/006074, WO 11/146336, WO 10/033941, and WO 10/048314, and U.S. Pat. Nos. 8,933,084, 8,791,123, 8,637,516, 8,513,263, 8,450,322, 7,615,383, 7,384,632, 6,153,189, 6,027,927, 6,025,166, 5,910,574, 5,877,016, and 5,844,092).
The present invention is based on the discovery that a biopsy samples from subjects having a variety of different cancers include a cancer cell that has at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising a mutation at one or more amino acid position(s) (e.g., a substitution or a deletion). In view of this discovery, provided herein are methods of treating a subject having a cancer that include administering to a subject identified as having a cancer cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK3 (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein) a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein or known in the art), methods of selecting a treatment including a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein or known in the art) for a subject identified as having a cancer cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein), methods of determining the likelihood that a subject having a cancer will have a positive response to a treatment based upon whether the subject has a cancer cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK3 (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein), methods of predicting the efficacy of a Trk inhibitor (e.g., any of the Trk inhibitors described herein or known in the art) in a subject having a cancer based upon whether the subject has a cancer cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK3 (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein), methods of determining a subject's risk for developing a cancer (e.g., any of the cancers described herein) based upon whether the subject has a cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK3 (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein), and methods of assisting in the diagnosis of cancer (e.g., any of the cancers described herein) in a subject based upon whether the subject has a cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK3 (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein).
Provided herein are methods of treating a subject having a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein); and administering to the identified subject a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein).
Also provided herein are methods of treating a subject having a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689; and administering to the identified subject a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein).
Also provided herein are methods of treating a subject identified as having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), that includes administering to the subject a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein).
Also provided are methods of treating a subject identified as having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutations in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, the method including administering to the subject a therapeutically effective amount of a Trk inhibitor.
Also provided are methods of selecting a treatment for a subject having a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and selecting a treatment including a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) for the identified subject.
Also provided are methods of selecting a treatment for a subject having a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689; and selecting a treatment comprising a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) for the identified subject.
Also provided are methods of selecting a treatment for a subject having a cancer (e.g., any of the cancers described herein) that include selecting a treatment including a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) for a subject identified as having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein).
Also provided are methods of selecting a treatment for a subject having a cancer (e.g., any of the cancers described herein) that include selecting a treatment comprising a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) for a subject identified as having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689.
Some embodiments of these methods further include administering a therapeutically effective amount of the selected treatment to the identified subject. Some embodiments of these methods further include recording the selected treatment in the identified subject's clinical record (e.g., a computer readable medium).
Also provided are methods of determining the likelihood that a subject having a cancer (e.g., any of the cancers described herein) will have a positive response to treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein) that include determining whether a cancer cell in a sample obtained from the subject (e.g., a biopsy sample) has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and determining that a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), has an increased likelihood of having a positive response to treatment with a Trk inhibitor.
Also provided are methods of determining the likelihood that a subject having a cancer will have a positive response to treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein) that include determining whether a cancer cell in a sample obtained from the subject (e.g., a biopsy sample) has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689; and determining that a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, has an increased likelihood of having a positive response to treatment with a Trk inhibitor.
Also provided are methods of determining the likelihood that a subject having cancer (e.g., any of the cancers described herein) will have a positive response to treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein) that include determining that a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), has an increased likelihood of having a positive response to treatment with a Trk inhibitor.
Also provided are methods of determining the likelihood that a subject having cancer (e.g., any of the cancers described herein) will have a positive response to treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein) that include determining that a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, has an increased likelihood of having a positive response to treatment with a Trk inhibitor.
Some embodiments of these methods further include administering a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) to a subject determined to have an increased likelihood of having a positive response to treatment with a Trk inhibitor.
Also provided are methods of predicting the efficacy of a Trk inhibitor (e.g., any of so the Trk inhibitors described herein) in a subject having cancer (e.g., any of the cancers described herein) that include determining whether a cancer cell in a sample obtained from the subject (e.g., a biopsy sample) has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and determining that a Trk inhibitor is more likely to be effective in a subject having a cancer cell in a sample obtained from the subject that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein).
Also provided are methods of predicting the efficacy of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) in a subject having cancer (e.g., any of the cancers described herein) that include determining whether a cancer cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689; and determining that a Trk inhibitor is more likely to be effective in a subject having a cancer cell in a sample obtained from the subject that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689.
Also provided are methods of predicting the efficacy of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) in a subject having a cancer (e.g., any of the cancers described herein) that include determining that a Trk inhibitor is more likely to be effective in a subject having a cancer cell in a sample obtained from the subject that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein).
Also provided are methods of predicting the efficacy of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) in a subject having a cancer (e.g., any of the cancers described herein) that include determining that a Trk inhibitor is more likely to be effective in a subject having a cancer cell in a sample obtained from the subject that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689.
In some embodiments of any of these methods, the subject is previously identified or diagnosed as having the cancer.
In some embodiments, the step of identifying a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA. TrkB, and/or TrkC described herein), comprises performing an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene in a cancer cell in a sample from the subject.
In some embodiments, the step of identifying a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, comprises performing an assay to determine the presence of the at least one point mutation in a NTRK2 gene in a cancer cell in a sample from the subject.
In some embodiments of these methods, the assay is selected from the group of: denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), temperature gradient capillary electrophoresis, a single strand conformational polymorphism assay, a molecular beacon assay, a dynamic hybridization assay, a PCR-based assay, and denaturing high performance liquid chromatography. In some embodiments of these methods, the assay includes sequencing a segment of the NTRK1, NTRK2, and/or NTRK3 gene comprising the at least one point mutation.
In any of the methods described herein, the Trk inhibitor a crystalline form of the compound of Formula I:
or a hydrogen sulfate salt thereof.
Also provided are methods of determining a subject's risk for developing a cancer (e.g., any of the cancers described herein) that include determining whether a cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and identifying a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) as having an increased likelihood of developing a cancer.
Also provided are methods of determining a subject's risk for developing a cancer (e.g., any of the cancers described herein) that include determining whether a cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, and identifying a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, as having an increased likelihood of developing a cancer.
Also provided are methods of determining a subject's risk of developing a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) as having an increased likelihood of developing a cancer.
Also provided are methods of determining a subject's risk of developing a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, as having an increased likelihood of developing a cancer.
Also provided are methods of assisting in the diagnosis of a cancer (e.g., any of the cancers described herein) in a subject that include determining whether a cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA. TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and determining that a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), has an increased likelihood of having a cancer.
Also provided are methods of assisting in the diagnosis of a cancer (e.g., any of the cancers described herein) in a subject that include determining whether a cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, and determining that a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, has an increased likelihood of having a cancer.
Also provided are methods of assisting in the diagnosis of a cancer (e.g., any of the cancers described herein) in a subject that include determining that a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), has an increased likelihood of having a cancer.
Also provided are methods of assisting in the diagnosis of a cancer (e.g., any of the cancers described herein) in a subject that include determining that a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, has an increased likelihood of having a cancer.
In some embodiments of these methods, the subject is identified as having been exposed to a significant level of carcinogen(s). In some embodiments of these methods, the subject is suspected of having a cancer. In some embodiments of these methods, the subject has one or more symptoms of cancer.
In any of the methods described herein, the cancer is selected from the group of: adenocarcinoma, adrenal gland cortical carcinoma, adrenal gland neuroblastoma, anus squamous cell carcinoma, appendix adenocarcinoma, bladder urothelial carcinoma, bile duct adenocarcinoma, bladder carcinoma, bladder urothelial carcinoma, bone chordoma, bone marrow leukemia lymphocytic chronic, bone marrow leukemia non-lymphocytic acute myelocytic, bone marrow lymph proliferative disease, bone marrow multiple myeloma, bone sarcoma, brain astrocytoma, brain glioblastoma, brain medulloblastoma, brain meningioma, brain oligodendroglioma, breast adenoid cystic carcinoma, breast carcinoma, breast ductal carcinoma in situ, breast invasive ductal carcinoma, breast invasive lobular carcinoma, breast metaplastic carcinoma, cervix neuroendocrine carcinoma, cervix squamous cell carcinoma, colon adenocarcinoma, colon carcinoid tumor, duodenum adenocarcinoma, endometrioid tumor, esophagus adenocarcinoma, esophagus and stomach carcinoma, eye intraocular melanoma, eye intraocular squamous cell carcinoma, eye lacrimal duct carcinoma, fallopian tube serous carcinoma, gallbladder adenocarcinoma, gallbladder glomus tumor, gastroesophageal junction adenocarcinoma, head and neck adenoid cystic carcinoma, head and neck carcinoma, head and neck neuroblastoma, head and neck squamous cell carcinoma, kidney chromophore carcinoma, kidney medullary carcinoma, kidney renal cell carcinoma, kidney renal papillary carcinoma, kidney sarcomatoid carcinoma, kidney urothelial carcinoma, kidney carcinoma, leukemia lymphocytic, leukemia lymphocytic chronic, liver cholangiocarcinoma, liver hepatocellular carcinoma, liver carcinoma, lung adenocarcinoma, lung adenosquamous carcinoma, lung atypical carcinoid, lung carcinosarcoma, lung large cell neuroendocrine carcinoma, lung non-small cell lung carcinoma, lung sarcoma, lung sarcomatoid carcinoma, lung small cell carcinoma, lung small cell undifferentiated carcinoma, lung squamous cell carcinoma, upper aerodigestive tract squamous cell carcinoma, upper aerodigestive tract carcinoma, lymph node lymphoma diffuse large B cell, lymph node lymphoma follicular lymphoma, lymph node lymphoma mediastinal B-cell, lymph node lymphoma plasmablastic lung adenocarcinoma, lymphoma follicular lymphoma, lymphoma, non-Hodgkins, nasopharynx and paranasal sinuses undifferentiated carcinoma, ovary carcinoma, ovary carcinosarcoma, ovary clear cell carcinoma, ovary epithelial carcinoma, ovary granulosa cell tumor, ovary serous carcinoma, pancreas carcinoma, pancreas ductal adenocarcinoma, pancreas neuroendocrine carcinoma, peritoneum mesothelioma, peritoneum serous carcinoma, placenta choriocarcinoma, pleura mesothelioma, prostate acinar adenocarcinoma, prostate carcinoma, rectum adenocarcinoma, rectum squamous cell carcinoma, skin adnexal carcinoma, skin basal cell carcinoma, skin melanoma, skin Merkel cell carcinoma, skin squamous cell carcinoma, small intestine adenocarcinoma, small intestine gastrointestinal stromal tumors (GISTs), large intestine/colon carcinoma, large intestine adenocarcinoma, soft tissue angiosarcoma, soft tissue Ewing sarcoma, soft tissue hemangioendothelioma, soft tissue inflammatory myofibroblastic tumor, soft tissue leiomosarcoma, soft tissue liposarcoma, soft tissue neuroblastoma, soft tissue paraganglioma, soft tissue perivascular epitheliod cell tumor, soft tissue sarcoma, soft tissue synovial sarcoma, stomach adenocarcinoma, stomach adenocarcinoma diffuse-type, stomach adenocarcinoma intestinal type, stomach adenocarcinoma intestinal type, stomach leionmosarcoma, thymus carcinoma, thymus thymoma lymphocytic, thyroid papillary carcinoma, unknown primary adenocarcinoma, unknown primary carcinoma, unknown primary malignant neoplasm, lymphoid neoplasm, unknown primary melanoma, unknown primary sarcomatoid carcinoma, unknown primary squamous cell carcinoma, unknown undifferentiated neuroendocrine carcinoma, unknown primary undifferentiated small cell carcinoma, uterus carcinosarcoma, uterus endometrial adenocarcinoma, uterus endometrial adenocarcinoma endometrioid, uterus endometrial adenocarcinoma papillary serous, and uterus leiomyosarcoma.
In some embodiments of these methods, the step of determining whether a cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) includes performing an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRk3 gene in a cell in the sample.
In some embodiments of these methods, the step of determining whether a cell in a sample obtained from the subject has at least one point (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689, includes performing an assay to determine the presence of the at least one point mutation in a NTRK2 gene in a cell in the sample.
In some embodiments, the assay is selected from the group of: denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), temperature gradient capillary electrophoresis, a single strand conformational polymorphism assay, a molecular beacon assay, a dynamic hybridization assay, a PCR-based assay, denaturing high performance liquid chromatography. In some embodiments, the assay includes sequencing a segment of the NTRK1, NTRK2, and/or NTRK3 gene including the at least one point mutation.
Some methods further include confirming the diagnosis of a cancer in a subject determined to have an increased likelihood of having a cancer.
In some embodiments of any of the methods claims described herein, the TrkB protein comprises a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group of: M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M.
Also provided are kits including one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) probes that each specifically hybridize to a segment of a NTRK1, NTRK2, or NTRK3 gene that encodes a mutation at one of the amino acid positions in TrkA, TrkB, or TrkC (e.g., any of the specific mutations in TrkA, TrkB, or TrkC described herein).
Also provided are kits including one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) probes that each specifically hybridize to a segment of a NTRK3 gene that encodes a mutation at one of amino acid positions 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 in TrkB protein. In some examples, the kit includes one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) probes that each specifically hybridize to a segment of a NTRK3 gene that encodes a mutation selected from the group of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M in TrkB protein.
In some embodiments of the kits, the one or more probes are labeled with a detectable probe. In some embodiments of the kits, the one or more probes are covalently attached to a substrate (e.g., a film, a plate, or a bead).
Also provided herein are methods of treating a subject having a cancer that include: (a) identifying a subject having a cancer cell that has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805, and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810; and (b) administering to the identified subject a therapeutically effective amount of a Trk inhibitor.
Also provided herein are methods of treating a subject identified as having a cancer cell that has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810, the method comprising administering to the subject a therapeutically effective amount of a Trk inhibitor.
Also provided herein are methods of selecting a treatment for a subject having a cancer that include: (a) identifying a subject having a cancer cell that has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810; and (b) selecting a treatment comprising a therapeutically effective amount of a Trk inhibitor for the identified subject.
Also provided herein are methods of selecting a treatment for a subject having a cancer that include selecting a treatment comprising a therapeutically effective amount of a Trk inhibitor for a subject identified as having a cancer cell that has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810.
Also provided herein are methods of determining the likelihood that a subject having a cancer will have a positive response to treatment with a Trk inhibitor that include: (a) determining whether a cancer cell in a sample obtained from the subject has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810; and (b) determining that a subject having a cancer cell that has the at least one point mutation in a NTRK1 gene, the at least one point mutation in a NTRK2 gene, and/or the at least one point mutation in a NTRK3 gene, has an increased likelihood of having a positive response to treatment with a Trk inhibitor.
Also provided herein are methods of determining the likelihood that a subject having cancer will have a positive response to treatment with a Trk inhibitor that include: determining that a subject having a cancer cell that has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of: 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810, has an increased likelihood of having a positive response to treatment with a Trk inhibitor.
Also provided herein are methods of predicting the efficacy of a Trk inhibitor in a subject having cancer that include: (a) determining whether a cancer cell in a sample obtained from the subject has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810; and (b) determining that a Trk inhibitor is more likely to be effective in a subject having a cancer cell in a sample obtained from the subject that has the at least one point mutation in a NTRK1 gene, the at least one point mutation in a NTRK2 gene, and/or the at least one point mutation in a NTRK3 gene.
Also provided are methods of predicting the efficacy of a Trk inhibitor in a subject having cancer that include determining that a Trk inhibitor is more likely to be effective in a subject having a cancer cell in a sample obtained from the subject that has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810.
In some embodiments of any of the methods described herein, the cancer is selected from the group of: adenocarcinoma, adrenal gland cortical carcinoma, adrenal gland neuroblastoma, anus squamous cell carcinoma, appendix adenocarcinoma, bladder urothelial carcinoma, bile duct adenocarcinoma, bladder carcinoma, bladder urothelial carcinoma, bone chordoma, bone marrow leukemia lymphocytic chronic, bone marrow leukemia non-lymphocytic acute myelocytic, bone marrow lymph proliferative disease, bone marrow multiple myeloma, bone sarcoma, brain astrocytoma, brain glioblastoma, brain medulloblastoma, brain meningioma, brain oligodendroglioma, breast adenoid cystic carcinoma, breast carcinoma, breast ductal carcinoma in situ, breast invasive ductal carcinoma, breast invasive lobular carcinoma, breast metaplastic carcinoma, cervix neuroendocrine carcinoma, cervix squamous cell carcinoma, colon adenocarcinoma, colon carcinoid tumor, duodenum adenocarcinoma, endometrioid tumor, esophagus adenocarcinoma, esophagus and stomach carcinoma, eye intraocular melanoma, eye intraocular squamous cell carcinoma, eye lacrimal duct carcinoma, fallopian tube serous carcinoma, gallbladder adenocarcinoma, gallbladder glomus tumor, gastroesophageal junction adenocarcinoma, head and neck adenoid cystic carcinoma, head and neck carcinoma, head and neck neuroblastoma, head and neck squamous cell carcinoma, kidney chromophore carcinoma, kidney medullary carcinoma, kidney renal cell carcinoma, kidney renal papillary carcinoma, kidney sarcomatoid carcinoma, kidney urothelial carcinoma, kidney carcinoma, leukemia lymphocytic, leukemia lymphocytic chronic, liver cholangiocarcinoma, liver hepatocellular carcinoma, liver carcinoma, lung adenocarcinoma, lung adenosquamous carcinoma, lung atypical carcinoid, lung carcinosarcoma, lung large cell neuroendocrine carcinoma, lung non-small cell lung carcinoma, lung sarcoma, lung sarcomatoid carcinoma, lung small cell carcinoma, lung small cell undifferentiated carcinoma, lung squamous cell carcinoma, upper aerodigestive tract squamous cell carcinoma, upper aerodigestive tract carcinoma, lymph node lymphoma diffuse large B cell, lymph node lymphoma follicular lymphoma, lymph node lymphoma mediastinal B-cell, lymph node lymphoma plasmablastic lung adenocarcinoma, lymphoma follicular lymphoma, lymphoma, non-Hodgkins, nasopharynx and paranasal sinuses undifferentiated carcinoma, ovary carcinoma, ovary carcinosarcoma, ovary clear cell carcinoma, ovary epithelial carcinoma, ovary granulosa cell tumor, ovary serous carcinoma, pancreas carcinoma, pancreas ductal adenocarcinoma, pancreas neuroendocrine carcinoma, peritoneum mesothelioma, peritoneum serous carcinoma, placenta choriocarcinoma, pleura mesothelioma, prostate acinar adenocarcinoma, prostate carcinoma, rectum adenocarcinoma, rectum squamous cell carcinoma, skin adnexal carcinoma, skin basal cell carcinoma, skin melanoma, skin Merkel cell carcinoma, skin squamous cell carcinoma, small intestine adenocarcinoma, small intestine gastrointestinal stromal tumors (GISTs), large intestine/colon carcinoma, large intestine adenocarcinoma, soft tissue angiosarcoma, soft tissue Ewing sarcoma, soft tissue hemangioendothelioma, soft tissue inflammatory myofibroblastic tumor, soft tissue leiomyosarcoma, soft tissue liposarcoma, soft tissue neuroblastoma, soft tissue paraganglioma, soft tissue perivascular epitheliod cell tumor, soft tissue sarcoma, soft tissue synovial sarcoma, stomach adenocarcinoma, stomach adenocarcinoma diffuse-type, stomach adenocarcinoma intestinal type, stomach adenocarcinoma intestinal type, stomach leiomyosarcoma, thymus carcinoma, thymus thymoma lymphocytic, thyroid papillary carcinoma, unknown primary adenocarcinoma, unknown primary carcinoma, unknown primary malignant neoplasm, lymphoid neoplasm, unknown primary melanoma, unknown primary sarcomatoid carcinoma, unknown primary squamous cell carcinoma, unknown undifferentiated neuroendocrine carcinoma, unknown primary undifferentiated small cell carcinoma, uterus carcinosarcoma, uterus endometrial adenocarcinoma, uterus endometrial adenocarcinoma endometrioid, uterus endometrial adenocarcinoma papillary serous, and uterus leiomyosarcoma.
In some embodiments of any of the methods described herein, the subject is previously identified or diagnosed as having the cancer. In some embodiments of any of the methods described herein, the step of identifying a subject having a cancer cell that has the at least one point mutation in a NTRK1 gene, the at least one point mutation in a NTRK2 gene, and/or the at least one point mutation in a NTRK3 gene includes performing an assay to determine the presence of the at least one point mutation in a NTRK1 gene, the at least one point mutation in a NTRK2 gene, and/or the at least one point mutation in a NTRK3 gene, in a cancer cell in a sample from the subject. In some embodiments of any of the methods described herein, the assay is selected from the group of: denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), temperature gradient capillary electrophoresis, a single strand conformational polymorphism assay, a molecular beacon assay, a dynamic hybridization assay, a PCR-based assay, and denaturing high performance liquid chromatography. In some embodiments of any of the methods described herein, the assay includes sequencing a segment of the NTRK1 gene comprising the at least one point mutation, a segment of the NTRK2 gene comprising the at least one point mutation, and/or a segment of the NTRK3 gene comprising the at least one point mutation.
In some embodiments of any of the methods described herein, the Trk inhibitor a crystalline form of the compound of Formula I:
or a hydrogen sulfate salt thereof.
Some embodiments of any of the methods described herein further include: administering a therapeutically effective amount of the selected treatment to the identified subject. Some embodiments of any of the methods described herein further include: recording the selected treatment in the identified subject's clinical record (e.g., a computer readable medium). Some embodiments of any of the methods described herein further include: administering a therapeutically effective amount of a Trk inhibitor to a subject determined to have an increased likelihood of having a positive response to treatment with a Trk inhibitor.
Also provided herein are methods of determining a subject's risk for developing a cancer that include: (a) determining whether a cell in a sample obtained from the subject has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810; and (b) identifying a subject having a cell that has the at least one point mutation in a NTRK1 gene, the at least one point mutation in a NTRK2 gene, and/or the at least one point mutation in a NTRK3 gene as having an increased likelihood of developing a cancer.
Also provided herein are methods of determining a subject's risk for developing a cancer that include identifying a subject having a cell that has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of: 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810, as having an increased likelihood of developing a cancer.
Also provided herein are methods of assisting in the diagnosis of a cancer in a subject that include: (a) determining whether a cell in a sample obtained from the subject has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810; and (b) determining that a subject having a cell that has the at least one point mutation in a NTRK1 gene, the at least one point mutation in a NTRK2 gene, and/or the at least one point mutation in a NTRK3 gene, has an increased likelihood of having a cancer.
Also provided are methods of assisting in the diagnosis of a cancer in a subject that include determining that a subject having a cell that has: at least one point mutation in a NTRK1 gene that results in the expression of a TrkA protein including a mutation at one or more amino acid position(s) selected from the group of 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750; at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more amino acid position(s) selected from the group of 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805; and/or at least one point mutation in a NTRK3 gene that results in the expression of a TrkC protein including a mutation at one or more amino acid position(s) selected from the group of 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810, has an increased likelihood of having a cancer.
In some embodiments of any of the methods described herein, the subject is identified as having been exposed to a significant level of carcinogen(s). In some embodiments of any of the methods described herein, the subject is suspected of having a cancer. In some embodiments of any of the methods described herein, the subject has one or more symptoms of cancer. In some embodiments of any of the methods described herein, the cancer is selected from the group of: adenocarcinoma, adrenal gland cortical carcinoma, adrenal gland neuroblastoma, anus squamous cell carcinoma, appendix adenocarcinoma, bladder urothelial carcinoma, bile duct adenocarcinoma, bladder carcinoma, bladder urothelial carcinoma, bone chordoma, bone marrow leukemia lymphocytic chronic, bone marrow leukemia non-lymphocytic acute myelocytic, bone marrow lymph proliferative disease, bone marrow multiple myeloma, bone sarcoma, brain astrocytoma, brain glioblastoma, brain medulloblastoma, brain meningioma, brain oligodendroglioma, breast adenoid cystic carcinoma, breast carcinoma, breast ductal carcinoma in situ, breast invasive ductal carcinoma, breast invasive lobular carcinoma, breast metaplastic carcinoma, cervix neuroendocrine carcinoma, cervix squamous cell carcinoma, colon adenocarcinoma, colon carcinoid tumor, duodenum adenocarcinoma, endometrioid tumor, esophagus adenocarcinoma, esophagus and stomach carcinoma, eye intraocular melanoma, eye intraocular squamous cell carcinoma, eye lacrimal duct carcinoma, fallopian tube serous carcinoma, gallbladder adenocarcinoma, gallbladder glomus tumor, gastroesophageal junction adenocarcinoma, head and neck adenoid cystic carcinoma, head and neck carcinoma, head and neck neuroblastoma, head and neck squamous cell carcinoma, kidney chromophore carcinoma, kidney medullary carcinoma, kidney renal cell carcinoma, kidney renal papillary carcinoma, kidney sarcomatoid carcinoma, kidney urothelial carcinoma, kidney carcinoma, leukemia lymphocytic, leukemia lymphocytic chronic, liver cholangiocarcinoma, liver hepatocellular carcinoma, liver carcinoma, lung adenocarcinoma, lung adenosquamous carcinoma, lung atypical carcinoid, lung carcinosarcoma, lung large cell neuroendocrine carcinoma, lung non-small cell lung carcinoma, lung sarcoma, lung sarcomatoid carcinoma, lung small cell carcinoma, lung small cell undifferentiated carcinoma, lung squamous cell carcinoma, upper aerodigestive tract squamous cell carcinoma, upper aerodigestive tract carcinoma, lymph node lymphoma diffuse large B cell, lymph node lymphoma follicular lymphoma, lymph node lymphoma mediastinal B-cell, lymph node lymphoma plasmablastic lung adenocarcinoma, lymphoma follicular lymphoma, lymphoma, non-Hodgkins, nasopharynx and paranasal sinuses undifferentiated carcinoma, ovary carcinoma, ovary carcinosarcoma, ovary clear cell carcinoma, ovary epithelial carcinoma, ovary granulosa cell tumor, ovary serous carcinoma, pancreas carcinoma, pancreas ductal adenocarcinoma, pancreas neuroendocrine carcinoma, peritoneum mesothelioma, peritoneum serous carcinoma, placenta choriocarcinoma, pleura mesothelioma, prostate acinar adenocarcinoma, prostate carcinoma, rectum adenocarcinoma, rectum squamous cell carcinoma, skin adnexal carcinoma, skin basal cell carcinoma, skin melanoma, skin Merkel cell carcinoma, skin squamous cell carcinoma, small intestine adenocarcinoma, small intestine gastrointestinal stromal tumors (GISTs), large intestine/colon carcinoma, large intestine adenocarcinoma, soft tissue angiosarcoma, soft tissue Ewing sarcoma, soft tissue hemangioendothelioma, soft tissue inflammatory myofibroblastic tumor, soft tissue leiomyosarcoma, soft tissue liposarcoma, soft tissue neuroblastoma, soft tissue paraganglioma, soft tissue perivascular epitheliod cell tumor, soft tissue sarcoma, soft tissue synovial sarcoma, stomach adenocarcinoma, stomach adenocarcinoma diffuse-type, stomach adenocarcinoma intestinal type, stomach adenocarcinoma intestinal type, stomach leiomyosarcoma, thymus carcinoma, thymus thymoma lymphocytic, thyroid papillary carcinoma, unknown primary adenocarcinoma, unknown primary carcinoma, unknown primary malignant neoplasm, lymphoid neoplasm, unknown primary melanoma, unknown primary sarcomatoid carcinoma, unknown primary squamous cell carcinoma, unknown undifferentiated neuroendocrine carcinoma, unknown primary undifferentiated small cell carcinoma, uterus carcinosarcoma, uterus endometrial adenocarcinoma, uterus endometrial adenocarcinoma endometrioid, uterus endometrial adenocarcinoma papillary serous, and uterus leiomyosarcoma.
In some embodiments of any of the methods described herein, the step of determining whether a cell in a sample obtained from the subject has the at least one point mutation in a NTRK1 gene, the at least one point mutation in a NTRK2 gene, and/or the at least one point mutation in a NTRK3 gene, includes performing an assay to determine the presence of the at least one point mutation in a NTRK1 gene, the presence of the at least one point mutation in a NTRK2 gene, and/or the presence of the at least one point mutation in a NTRK3 gene, in a cell in the sample. In some embodiments of any of the methods described herein, the assay is selected from the group of: denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), temperature gradient capillary electrophoresis, a single strand conformational polymorphism assay, a molecular beacon assay, a dynamic hybridization assay, a PCR-based assay, denaturing high performance liquid chromatography. In some embodiments of any of the methods described herein, the assay includes sequencing a segment of the NTRK1 gene comprising the at least one point mutation, a segment of the NTRK2 gene comprising the at least one point mutation, and/or a segment of the NTRK3 gene comprising the at least one point mutation. Some embodiments of any of the methods described herein further include confirming the diagnosis of a cancer in a subject determined to have an increased likelihood of having a cancer.
In some embodiments of any of the methods described herein, the TrkA protein includes a mutation at one or more amino acid positions selected from the group of S241F, S241H, S241Y, R314G, R314H, R314L, R314P, N318S, G319S, S320F, V321M, I510T, V511M, L512F, L512R, S552R, A553T, R554P, R554Q, R554W, A636E, A636T, A636V, G637E, G637W, M638V, R649L, R649W, R654C, R654H, N655Y, D679N, D679Y, Y680H, T687I, M688I, L689M, P690H, R692C, R692H, P695S, P696L, E697K, E747K, R748L, R748Q, R748W, P749Q, R750C, R750H, and R750L; the TrkB protein includes a mutation at one or more amino acid position(s) selected from the group of M240I, N241D, E242K, R251G, R251K, I252V, S256L, S257F, D258N, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, R598C, R598S, K599M, D600H, H602N, R603S, L664M, T665M, T665S, Q666L, Q666R, A677T, A678T, A678V, G679D, M680I, V689M, R691C, D692N, F746I, T747M, T748M, E749K, Q784H, G785V, R786Q, V787F, L788M, Q789E, G804E, C805R, and C805Y; and/or the TrkC protein includes a mutation at one or more amino acid position(s) selected from the group of V221I, R222Q, E223D, D242N, W243C, I244T, T269A, T269M, T270M, T270Q, T270V, V271L, V271M, E276D, D277E, D277G, D277N, T281I, T281P, T282M, T283A, T283K, T283M, S296I, S296R, V297I, V325M, R326C, R326G, R326H, R326L, R326P, N328S, P329N, P329S, P330Q, E344G, E344V, S345F, K346N, H349Y, V350E, E351D, Y353F, Q354K, D537E, D537Y, I538N, V539M, L540M, G545C, G545D, G550R, K551E, L560V, P562L, P562Q, P562R, P562T, K575E, D576N, P577S, P582Q, P582W, K583%, D584E, D584N, V601A, V601I, K602R, F603L, Y604F, Y604H, Y604N, C607F, G608C, G608E, G608S, D609G, D609H, D609N, D609V, G610R, P612A, P612L, P612S, P612T, D624Y, L625M, N626K, K627N, K627R, F628L, L629F, L629I, P634L, P634T, D635H, A636E, A636V, M637I, M637K, M637V, E650V, L65 IP, G652R, G652V, L653F, L653P, H677Y, R678Q, D679G, D679N, V687A, V687I, G688R, A689E, A689V, Y705N, S706I, T707M, D708N, P715L, P715S, S716Y, G717R, T730N, M731I, M731L, L732I, P738H, P738S, Y744F, R745P, R745W, K746R, K746T, G786C, G786S, R787C, R787H, R787S, P796L, P796S, D801N, Q808H, R809W, and E810K.
Also provided are kits that include one or more probes that each specifically hybridize to: a segment of a NTRK1 gene that encodes a mutation at one of amino acid positions 241, 314, 318, 319, 320, 321, 510, 511, 512, 552, 553, 554, 636, 637, 638, 649, 654, 655, 679, 680, 687, 688, 689, 690, 692, 695, 696, 697, 747, 748, 749, and 750 in a TrkA protein; a segment of a NTRK2 gene that encodes a mutation at one of amino acid positions 240, 241, 242, 251, 252, 256, 257, 258, 264, 314, 315, 401, 426, 427, 428, 440, 598, 599, 600, 602, 603, 664, 665, 666, 677, 678, 679, 680, 689, 691, 692, 746, 747, 748, 749, 784, 785, 786, 787, 788, 789, 804, and 805 in TrkB protein; or a segment of a NTRK3 gene that encodes a mutation at one of amino acid positions 221, 222, 223, 242, 243, 244, 269, 270, 271, 276, 277, 281, 282, 283, 296, 297, 325, 326, 328, 329, 344, 345, 346, 349, 350, 351, 353, 354, 537, 538, 539, 540, 545, 550, 551, 560, 562, 575, 576, 577, 582, 583, 584, 601, 602, 603, 604, 607, 608, 609, 610, 612, 624, 625, 626, 627, 628, 629, 634, 635, 636, 637, 650, 651, 652, 653, 677, 678, 679, 687, 688, 689, 705, 706, 707, 708, 715, 716, 717, 730, 731, 732, 738, 744, 745, 746, 786, 787, 796, 801, 808, 809, and 810 in a TrkC protein.
In some embodiments of any of the kits provided herein, the kit includes one or more probes that each specifically hybridize to: a segment of a NTRK1 gene that encodes a mutation selected from the group consisting of S241F, S241H, S241Y, R314G, R314H, R314L, R314P, N318S, G319S, S320F, V321M, I510T, V511M, L512F, L512R, S552R, A553T, R554P, R554Q, R554W, A636E, A636T, A636V, G637E, G637W, M638V, R649L, R649W, R654C, R654H, N655Y, D679N, D679Y, Y680H, T687I, M688I, L689M, P690H, R692C, R692H, P695S, P696L, E697K, E747K, R748L, R748Q, R748W, P749Q, R750C, R750H, and R750L in a TrkA protein; a segment of a NTRK2 gene that encodes a mutation selected from the group consisting of M240I, N241D, E242K, R251G, R251K, I252V, S256L, S257F, D258N, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, R598C, R598S, K599M, D600H, H602N, R603S, L664M, T665M, T665S, Q666L, Q666R, A677T, A678T, A678V, G679D, M680I, V689M, R691C, D692N, F746I, T747M, T748M, E749K, Q784H, G785V, R786Q, V787F, L788M, Q789E, G804E, C805R, and C805Y in TrkB protein; or a segment of a NTRK3 gene that encodes a mutation selected from the group consisting of V221I, R222Q, E223D, D242N, W243C, I244T, T269A, T269M, T270M, T270Q, T270V, V271L, V271M, E276D, D277E, D277G, D277N, T281I, T281P, T282M, T283A, T283K, T283M, S296I, S296R, V297I, V325M, R326C, R326G, R326H, R326L, R326P, N328S, P329N, P329S, P330Q, E344G, E344V, S345F, K346N, H349Y, V350E, E351D, Y353F, Q354K, D537E, D537Y, I538N, V539M, L540M, G545C, G545D, G550R, K551E, L560V, P562L, P562Q, P562R, P562T, K575E, D576N, P577S, P582Q, P582W, K583%, D584E, D584N, V601A, V601I, K602R, F603L, Y604F, Y604H, Y604N, C607F, G608C, G608E, G608S, D609G, D609H, D609N, D609V, G610R, P612A, P612L, P612S, P612T, D624Y, L625M, N626K, K627N, K627R, F628L, L629F, L629I, P634L, P634T, D635H, A636E, A636V, M637I, M637K, M637V, E650V, L651P, G652R, G652V, L653F, L653P, H677Y, R678Q, D679G, D679N, V687A, V687I, G688R, A689E, A689V, Y705N, S706I, T707M, D708N, P715L, P715S, S716Y, G717R, T730N, M731I, M731L, L732I, P738H, P738S, Y744F, R745P, R745W, K746R, K746T, G786C, G786S, R787C, R787H, R787S, P796L, P796S, D801N, Q808H, R809W, and E810K in a TrkC protein.
In some embodiments of any of the kits provided herein, the one or more probes are labeled with a detectable probe. In some embodiments of any of the kits provided herein, the one or more probes are covalently attached to a substrate. In some embodiments of any of the kits provided herein, the substrate is a film, a plate, or a bead.
As used herein, the word “a” before a noun represents one or more of the particular noun. For example, the phrase “a cell” represents “one or more cells.”
The term “subject” means a vertebrate, including any member of the class mammalia, including humans, sports or pet animals, such as horse (e.g., race horse) or dog (e.g., race dogs), and higher primates. In preferred embodiments, the subject is a human.
The term “treating” or “positive response to treatment” means an improvement in the condition of a subject having a cancer, e.g., one or more of a decrease in the size of one or more tumor(s) in a subject, a decrease or no substantial change in the growth rate of one or more tumor(s) in a subject, a decrease in metastasis in a subject, and an increase in the period of remission for a subject (e.g., as compared to the one or more metric(s) in a subject having a similar cancer receiving no treatment or a different treatment, or as compared to the one or more metric(s) in the same subject prior to treatment). Additional metrics for assessing response to a treatment in a subject having a cancer are known in the art.
The term “point mutation” means a change in the nucleotide sequence of a gene that results in a single amino acid change in a protein encoded by the gene. For example, a point mutation in a gene can result in the deletion of a single amino acid in a protein encoded by the gene or can result in the substitution of an amino acid in a wildtype version of the encoded protein with a different amino acid. Non-limiting examples of point mutations in NTRK1, NTRK2, and NTRK3 genes are described herein.
The phrase “significant level of carcinogen” is meant a level of exposure to a carcinogen that is known to increase (e.g., a statistically significant increase) the likelihood of a subject to develop a cancer (e.g., as compared to a subject that has not been exposed to the same level of exposure or has been exposed to a non-detectable amount of the carcinogen).
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.
Other features and advantages of the invention will be apparent from the following detailed description and figures, and from the claims.
A variety of different NTRK1, NTRK2, and NTRK3 point mutations were discovered in biopsy samples from subjects having a variety of different cancers. In view of this discovery, provided herein are methods of treating a subject having a cancer (e.g., any of the cancers described herein) that include administering to a subject identified as having a cancer cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK3 (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein) a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein), methods of selecting a treatment including a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) for a subject identified as having a cancer cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTKR3 described herein), methods of determining the likelihood that a subject having a cancer (e.g., any of the cancers described herein) will have a positive response to a treatment based upon whether the subject has a cancer cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK3 (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTKR3 described herein), methods of predicting the efficacy of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) in a subject having a cancer (e.g., any of the cancers described herein) based upon whether the subject has a cancer cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK3 (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein), methods of determining a subject's risk for developing a cancer (e.g., any of the cancers described herein) based upon whether the subject has a cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK3 (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein), and methods of assisting in the diagnosis of cancer (e.g., any of the cancers described herein) in a subject based upon whether the subject has a cell that has at least one point mutation in NTRK1, NTRK2, and/or NTRK3 (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein). As can be appreciated in the art, the various aspects described below can be used in any combination without limitation.
Three different NTRK genes have been implicated for a role in cancer (e.g., through discovery of chromosome translocations resulting in constitutively active Trk fusion proteins): NTRK1, NTRK2, and NTRK3. The NTRK1, NTRK2, and NTRK3 genes encode TrkA, TrkB, and TrkC, respectively. Non-limiting exemplary amino acid and cDNA sequences for wildtype TrkA, TrkB, and TrkC are provided below. The exemplary wildtype protein and cDNA sequences provided below can be used to identify a point mutation in a NTRK1, NTRK2, or NTRK3 gene or can be used to determine mutation in a TrkA, TrkB, or TrkC protein caused by a point mutation in a NTRK1, NTRK2, or NTRK3 gene, respectively. Additional wildtype protein and cDNA sequences for TrkA, TrkB, and TrkC are known in the art.
Wildtype Human TrkA cDNA Isoform A (NM_002529) (SEQ ID NO: 2)
Wildtype Human TrkA cDNA Isoform B (NM_001007792) (SEQ ID NO: 4)
Wildtype Human TrkB cDNA (NM_006180) (SEQ ID NO: 6)
Wildtype Human TrkC cDNA (NM_001012338) (SEQ ID NO: 8)
Different point mutations were discovered in NTRK1, NTRK2, and NTRK3 genes in biopsy samples from subjects having a variety of different cancers. A point mutation in a NTRK1, NTRK2, or NTRK3 gene can result, e.g., in a Trk protein (a TrkA, TrkB, and TrkC protein, respectively) that includes a substitution of an amino acid in a wildtype version of the Trk protein with a different amino acid. In other examples, a point mutation in a NTRK1, NTRK2, or NTRK3 gene can result, e.g., in a Trk protein (a TrkA, TrkB, and TrkC protein, respectively) with a deletion of an amino acid in a wildtype version of the Trk protein.
Non-limiting examples of the specific amino acid positions discovered to have mutations (e.g., substitutions or deletions) in TrkA, TrkB, or TrkC proteins in cancer cells having a NTRK1, NTRK2, or NTRK3 point mutation are listed below. Also listed below are the different specific amino acid mutations (e.g., substitutions or deletions) present in TrkA, TrkB, or TrkC proteins generated in cancer cells having a NTRK1, NTRK2, or NTRK3 point mutation, respectively.
Point mutations in NTRK1 gene were discovered to result in a TrkA protein that includes one or more (e.g., two, three, four, five, six, seven, eight, or nine) amino acid substitutions or deletions at amino acid positions: 3, 4, 5, 6, 7, 8, 10, 13, 15, 17, 18, 20, 22, 24, 25, 30, 31, 33, 34, 38, 39, 41, 42, 43, 49, 50, 52, 55, 56, 59, 62, 63, 66, 69, 71, 74, 79, 80, 85, 86, 88, 89, 90, 91, 92, 96, 97, 101, 104, 106, 107, 110, 112, 113, 115, 116, 117, 119, 126, 129, 132, 134, 138, 139, 142, 147, 149, 150, 155, 156, 157, 158, 161, 165, 166, 167, 169, 170, 171, 179, 185, 186, 189, 193, 195, 197, 198, 201, 202, 206, 208, 210, 211, 212, 214, 220, 221, 222, 223, 224, 225, 226, 228, 231, 233, 238, 239, 241, 243, 245, 246, 247, 248, 251, 252, 253, 258, 260, 261, 262, 263, 264, 266, 270, 273, 275, 277, 282, 287, 292, 293, 294, 296, 297, 298, 300, 302, 304, 306, 307, 309, 310, 311, 314, 318, 319, 320, 321, 323, 324, 326, 328, 329, 330, 335, 336, 337, 340, 341, 342, 344, 346, 347, 349, 357, 359, 360, 361, 366, 368, 371, 372, 374, 375, 379, 380, 381, 388, 389, 392, 393, 395, 397, 398, 402, 404, 406, 407, 408, 410, 411, 413, 415, 416, 417, 419, 421, 422, 425, 426, 432, 434, 440, 444, 447, 452, 453, 454, 455, 457, 460, 461, 465, 468, 471, 472, 475, 476, 477, 478, 479, 480, 484, 485, 486, 487, 488, 489, 494, 495, 500, 502, 503, 507, 508, 510, 511, 512, 515, 517, 518, 520, 522, 526, 527, 530, 533, 537, 539, 540, 541, 543, 547, 549, 550, 551, 552, 553, 554, 556, 559, 561, 566, 570, 573, 574, 575, 577, 578, 580, 583, 585, 587, 591, 593, 594, 595, 599, 602, 603, 606, 607, 609, 612, 614, 615, 616, 618, 620, 623, 626, 630, 631, 636, 637, 638, 639, 640, 641, 642, 644, 647, 649, 651, 654, 655, 657, 660, 661, 663, 664, 666, 671, 674, 677, 679, 680, 682, 683, 684, 686, 687, 688, 689, 690, 692, 695, 696, 697, 699, 702, 705, 706, 709, 710, 712, 715, 719, 723, 725, 728, 733, 734, 736, 741, 743, 744, 747, 748, 749, 750, 751, 753, 754, 755, 760, 761, 762, 763, 766, 768, 771, 772, 776, 777, 779, 780, 788, 790, and 791 (e.g., amino acid positions corresponding to those in wildtype sequence NP_002520 (SEQ ID NO: 1) or NP_001007793 (SEQ ID NO: 3)). Different specific amino acid substitutions or deletions present in TrkA protein generated in a cancer cell include one or more (e.g., two, three, four, five, six, seven, eight, or nine) of following: R3P, R3Q, G4A, AST, ASV, R6W, R7S, G8E, A10E, A10T, V13I, W15C, A17T, T18M, G20D, W22R, L22Q, A24S, W25C, S30P, R31I, A33S, A33V, A34T, L38W, D38N, A39S, C41W, P42T, H43Q, R49G, R49P, R49Q, C50Y, R52L, R52Q, A55D, L56M, L59F, L62P, P63S, E66D, T69I, L71I, E74K, L79Q, Q80R, R85C, D86N, D86Y, R88K, R88S, G89S, L90M, L90del, G91R, E92K, L96V, T97I, S101C, S101N, S101R, R104H, V106M, A107V, A110V, H112Y, F113L, P115S, R116L, R116Q, R116W, L117P, R119C, R119H, R119P, A126D, A126P, A126T, S129F, W132F, W132R, T134N, L138H, S139F, E142K, G147E, P149A, P149H, L150P, A155V, L156Q, R157C, R157L, R157P, W158R, R161C, R161P, E165D, E165del, G166R, L167M, G169E, G169R, V170L, P171S, P171T, G179R H185N, M186T, A189V, V193L, T195M, K197R, V198F, P201H, P201del, N202S, D206N, G208E, G208R, D210N, V211E, V211L, L212V, R214Q, R214W, R220W, G221D, G221V, L222Q, E223Q, Q224H, A225S, G226D, G226S, I228V, E231K, E233K, E233Q, V238M, M239I, S241F, S241H, S241Y, G243D, P245S, S246F, L247V, G248E, G248R, L251M, A252S, N253D, L258I, L258V, R260G, R260M, K261E, K261N, N262K, V263M, T264K, T264M, W266S, D270G, D270N, R273Q, R273W, E275A, S277F, V282I, S287I, T292M, A293V, V294A, M296K, H297Q, H298Q, C300R, C300Y, P302L, S304Y, D306E, G307A, P309S, A310E, A310S, P311L, R314G, R314H, R314L, R314P, N318S, G319S, S320F, V321M, N323S, E324D, E324K, S326R, I328V, F329V, T330A, P335L, A336E, A337P, A337T, T340I, V341M, R342Q, R342W, G344E, G344W, L346P, R347C, R347G, R347H, N349K, N349S, G357S, Y359C, T360M, L361R, P366L, P366R, P366S, P366T, G368C, S371F, A372S, A372T, I374N, M375I, M375V, M379T, D380G, N381S, E388D, E388K, D389Y, P392S, V393F, F395L, P397L, V398L, S402I, S402R, S404P, D406Y, P407L, P407R, V408G, K410N, K411N, K411del, E413K, E413Q, P415S, F416S, G417V, S419L, A421T, V422L, A425S, V426I, L432R, T434M, N440K, N440S, R444P, R444Q, R444W, K447M, K447N, K447T, R452C, R452G, P453L, P453Q, P453T, A454T, V455M, A457V, D460N, G461R, S465F, S465del, F468L, L471F, G472S, S475C, S475F, S475T, L476M, S477Y, S477_insS, P478L, T479I, E480K, E480Q, S484Y, G485R, L486I, Q487L, G488C, G488S, H489Q, H489Y, P494T, Q495R, A500T, V502A, H503N, H503Y, R507C, R507H, R508Q, R508W, I510T, V511M, L512F, L512R, E515K, G517R, E518K, A520T, G522W, L526F, L526P, A527T, H530Y, L533Q, D537E, D537N, M539L, M539R, L540Q, V541M, V543A, K547T, A549T, A549V, S550Y, E551D, E551V, S552R, A553T, R554P, R554Q, R554W, D556N, R559H, A561T, M566K, Q570R, V573M, R574C, R574H, F575L, G577S, V578I, T580I, R583C, R583L, L585R, M587T, Y591C, R593W, H594Q, G595R, R599H, R602Q, S603P, P606H, D607N, K609N, A612S, A612V, G614A, G614V, E615K, E615Q, D616H, D616N, A618V, G620C, G623C, Q626K, V630A, A631D, A636E, A636T, A636V, G637E, G637W, M638V, V639L, V639M, Y640C, L641M, A642S, A642V, L644M, V647C V647L, R649L, R649W, L651M, R654C, R654H, N655Y, L657P, L657V, Q660L, G661E, V663E, V664I, I666T, M671T, D674E, D674N, S677N, D679N, D679Y, Y680H, R682C, R682H, R682S, V683G, G684E, R686C R686H, T687I, M688I, L689M, P690H, R692C, R692H, P695S, P696L, E697K, I699V, R702C, R702H, R702L, R702S, T705S, T706K, D709N, D709Y, V710M, S712R, V715M, E719D, E719K, Y723C, K725M, K725T, W728R, N733S, T734M, A736E, A736T, T741M, G743R, R744C, R744H, E747K, R748L, R748Q, R748W, P749Q, R750C, R750H, R750L, A751D, P753Q, P754T, E755Q, M760I, M760V, R761Q, R761W, G762R, C763F, R766L, R766W, P768S, R771H, H772R, D776E, D776N, V777A, A779T, R780G, R780W, P788L, P788S, V790I, V790L, and Y791H (e.g., as compared to the wildtype sequence NP_002520 (SEQ ID NO: 1) or NP_001007793 (SEQ ID NO: 3), e.g., as shown in Tables 1 and 2).
Point mutations in NTRK2 gene were discovered to result in a TrkB protein that includes one or more amino acid substitutions or deletions at amino acid positions: 7, 9, 10, 14, 23, 26, 28, 29, 31, 34, 35, 37, 42, 45, 46, 47, 51, 53, 56, 57, 60, 65, 66, 69, 70, 72, 74, 75, 78, 80, 81, 82, 84, 88, 89, 97, 98, 100, 101, 105, 110, 113, 120, 122, 124, 125, 132, 133, 136, 138, 139, 146, 147, 158, 159, 166, 169, 172, 173, 175, 185, 187, 187, 191, 193, 195, 196, 198, 199, 202, 203, 207, 209, 209, 210, 221, 222, 223, 224, 225, 228, 230, 234, 240, 241, 242, 249, 251, 252, 254, 256, 257, 258, 261, 264, 266, 268, 272, 279, 280, 286, 289, 292, 293, 293, 294, 295, 296, 304, 310, 311, 314, 315, 319.321, 326, 328, 331, 335, 341, 343, 349, 350, 354, 357, 358, 370, 373, 377, 379, 385, 386, 387, 388, 389, 390, 394, 395, 398, 401, 408, 410, 414, 416, 419, 423, 423, 426, 427, 428, 430, 432, 435, 440, 442, 446, 449, 452, 454, 455, 458, 460, 464, 475, 476, 480, 481, 482, 483, 484, 486, 496, 498, 501, 503, 514, 515, 517, 519, 521, 524, 528, 530, 539, 545, 547, 549, 552, 553, 558, 559, 561, 562, 563, 564, 566, 569, 574, 577, 578, 579, 580, 581, 582, 584, 589, 592, 595, 598, 599, 600, 602, 603, 608, 615, 615, 616, 618, 622, 624, 624, 625, 627, 629, 630, 632, 634, 638, 639, 646, 648, 649, 652, 653, 654, 656, 657, 658, 660, 662, 664, 665, 666, 668, 670, 671, 673, 674, 677, 678, 679, 680, 682, 684, 685, 689, 691, 692, 698, 698, 699, 700, 702, 706, 709, 710, 714, 715, 716, 725, 726, 727, 729, 736, 737, 741, 742, 744, 746, 747, 748, 749, 750, 752, 754, 755, 756, 758, 760, 761, 762, 766, 769, 773, 777, 779, 782, 783, 784, 785, 786, 787, 788, 789, 792, 793, 795, 797, 799, 802, 804, 805, 810, 812, 818, 821, 822, 825, 829, and 831 (e.g., amino acid positions corresponding to those in wildtype sequence NP_006171 (SEQ ID NO: 5)). Different specific amino acid substitutions or deletions present in TrkB protein generated in a cancer cell include one or more of following: W7R, G9E, G9V, P10H, R14W, V23A, V23M, W26R, A28D, A29T, A31T, T34A, T34R, S35F, K37R, R42Q, C45F, C45R, C45Y, S46R, D47N, G51D, V53A, P56L, P56S, R57S, P60H, P65H, P65T, E66D, T69P, T69S, E70K, F72L, A74S, N75K, R78K, E80Q, I81F, 182V, E84K, E88K, E88Q, A89T, T97A, I98V, D100N, S101F, F105L, A110E, K113R, I120N, I120V, F122I, R124Q, N125K, R132S, K133N, R136C, R136H, L138F, D139H, V146A, V146L, G147S, W158C, I159F, I159M, K166T, P169S, Q172K, D173Y, Y175H, P185L, A187E, A187S, I191T, N193S, G195A, L196F, S198T, A199T, A202D, A203S, T207I, E209D, E209K, E210V, A221V, G222D, D223H, P224S, V225I, M228T, W230L, N234Y, M240I, N241D, E242K, S249F, S249Y, R251G, R251K, I252V, N254S, S256L, S257F, D258N, G261R, I264M, C266S, C266Y, A268V, V272E, V279A, N280I, A286P, A286T, I289V, L292I, E293D, E293K, S294F, P295S, T296I, P304L, N310A (deletion), P311H, A314E, A314G, A314V, L315F, Y319C, G321V, E326D, K328Q, C331F, C331Y, H335L, E341K, E341V, H343D, D349Y, N350I, N350K, M354I, G357R, D358Y, D370Y, Q373L, H377Y, M379T, M379V, D385G, D386N, G387C, A388V, N389I, P390R, D394H, D394N, D394Y, V395A, E398K, G401A, G401E, G401R, G408R, T410N, S414I, E416G, S419F, T423I, T423S, T426I, G427S, R428Q, H430Y, S432L, A435V, A440S, A440T, A440V, V442L, V442M, C446Y, V449I, F452L, L454I, K455N, R458G, S460F, S460T, S460Y, M464V, V475A, K476E, K476I, G480D, V481I, G482R, G482V, P483T, A484T, V486F, V486I, P496R, P496S, H498N, H498Y, S501C, G503W, P514L, P514S, D515N, V5171, 1519A, M521L, I524F, E528K, P530L, Q539H, F545V, Q547R, I549M, H552Q, N553S, R558K, E559D, E559K, G561S, E562K, G563R, G563V, A564T, G566E, F569L, Y574H, C577S, P578H, P578L, P578S, P578T, E579D, Q580P, D581N, K582T, L584F, T589S, D592A, D595E, R598C, R598S, K599M, D600H, H602N, R603S, L608M, H615L, H615Y, I616T, K618R, V622I, V624L, V624M, E625K, D627N, L629I, I630V, V632I, E634Q, H638L, G639R, G639V, R646M, H648Q, G649S, A652V, V653M, L654V, A656D, E657K, E657Q, G658D, P660L, P660T, T662M, L664M, T665M, T665S, Q666L, Q666R, Q668L, L670M, H671R, A673G, Q674H, A677T, A678T, A678V, G679D, M680I, Y682C, A684E, A684T, A684V, S685Y, V689M, R691C, D692N, C698R, C698W, L699P, V700F, E702D, V706M, G709R, D710Y, S714A, R715Q, R715W, D716N, V725G, G726C, G727D, T729S, M736I, P737T, I741N, I741V, M742L, R744K, F746I, T747M, T748M, E749K, S750N, V752I, S754T, L755M, G756W, V758E, V758L, V758M, W760R, E761D, E761Q, I762M, G766D, G766S, P769T, L773M, E777Q, I779M, I782M, T783I, Q784H, G785V, R786Q, V787F, L788M, Q789E, R792C, T793A, T793M, P795T, E797K, Y799N, M802L, G804E, C805R, C805Y, P810T, M812I, G818D, T821N, T821S, L822F, N825D, A829S, and P831L (e.g., compared to the wildtype sequence NP_006171 (SEQ ID NO: 5)).
Point mutations in NTRK3 gene were discovered to result in a TrkC protein that includes one or more amino acid substitutions or deletions at amino acid positions: 4, 5, 7, 8, 9, 14, 19, 21, 25, 27, 35, 36, 37, 39, 45, 46, 48, 49, 55, 63, 64, 67, 69, 71, 75, 76, 78, 82, 83, 85, 89, 90, 95, 96, 98, 99, 101, 111, 113, 114, 115, 116, 117.119, 120, 121, 123, 124, 125, 126, 127, 130, 133, 134, 138, 140, 147, 148, 149, 152, 153, 154, 156, 157, 158, 159, 161, 163, 164, 165, 169, 171, 172, 174, 176, 178, 179, 184, 188, 189, 192, 194, 195, 196, 199, 200, 201, 202, 205, 208, 209, 210, 212, 215, 217, 218, 221, 222, 223, 227, 230, 232, 235, 239, 240, 242, 243, 244, 248, 249, 252, 253, 254, 255, 256, 260, 262, 266, 269, 270, 271, 273, 276, 277, 279, 281, 282, 283, 287, 289, 290, 292, 293, 294, 296, 297, 299, 301, 304, 305, 306, 308, 309, 312, 313, 314, 316, 320, 322, 323, 325, 326, 328, 329, 330, 332, 334, 336, 337, 339, 340, 343, 344, 345, 346, 349, 350, 351, 353, 354, 356, 357, 359, 361, 362, 364, 370, 372, 376, 378, 379, 380, 382, 384, 388, 389, 392, 393, 394, 396, 397, 398, 399, 401, 404, 405, 408, 411, 412, 415, 416, 417, 418, 421, 423, 425, 426, 429, 430, 431, 433, 435, 436, 437, 439, 448, 449, 450, 451, 452, 455, 457, 458, 459, 460, 461, 463, 464, 466, 467, 468, 469, 473, 474, 477, 478, 487, 488, 490, 491, 492, 494, 496, 497, 499, 501, 506, 507, 508, 509, 511, 512, 513, 514, 516, 518, 519, 520, 521, 522, 526, 527, 529, 531, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 547, 550, 551, 560, 562, 565, 566, 567, 568, 569, 572, 575, 576, 577, 579, 581, 582, 583, 584, 586, 588, 590, 592, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 607, G608, 609, 610, 612, 615, 621, 623, 624, 625, 626, 627, 628, 629, 631, 632, 634, 635, 636, 637, 643, 644, 645, 647, 648, 649, 650, 651, 652, 653, 655, 656, 658, 660, 661, 663, 664, 665, 667, 668, 669, 672, 675, 677, 678, 679, 683, 685, 687, 688, 689, 693, 694, 695, 696, 697, 699, 700, 701, 702, 704, 705, 706, 707, 708, 710, 712, 714, 715, 716, 717, 719, 720, 723, 724, 726, 730, 731, 732, 735, 736, 738, 741, 744, 745, 746, 749, 751, 752, 753, 754, 755, 757, 759, 760, 762, 764, 766, 768, 772, 773, 777, 778, 781, 782, 783, 784, 786, 787, 789, 790, 791, 791, 792, 793, 796, 801, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 819, 822, 824, 825, 826, 827, 828, 830, 832, 833, 834, and 836 (e.g., amino acid positions corresponding to those in wildtype sequence NP_001012338 (SEQ ID NO: 7)). Different specific amino acid substitutions or deletions present in TrkC protein generated in a cancer cell include one or more of following: S4C, S4F, L5I, P7L, P7R, A8D, K9E, K9N, R14P, G19E, V21F, V21I, Y25C, G27A, N35S, C36W, V37A, S39R, C45W, R46P, R46W, P48L, D49G, P55S, G63W, N64K, G67E, A69T, I71V, D75G, D75N, I76T, R78K, R78S, S82F, I83V, 185M, R89C, R89H, R89S, S90N, N95S, A96S, A96T, D98G, D98N, M99I, L101I, K111N, S113T, G114E, L115F, L115P, L115R, R116Q, R116W, S117N, Q119H, Q119K, P120H, R121G, R121K, F123L, A124V, K125E, K125N, N126K, P127H, R130C, R130H, N133H, L134Q, R138Q, R138W, T140N, F147L, Q148H, T149M, T149R, L152I, R153Q, E154K, Q156H, Q56R, L157M, E158K, Q159H, Q159K, F161I, N163T, C164G, C164S, S165N, R169S, M171L, Q172H, W174L, E176K, G178E, G178V, E179K, S184C, S184N, S184R, Y188C, Y188F, Y188H, C189F, A192T, G194D, S195C, S195F, Q196K, L199H, L199P, L99V, F200V, R201C, M202I, S205G, D208E, D208N, L209I, L209P, L209R, L209V, P210S, I212M, S215T, V217A, V217I, N218S, V221I, R222Q, E223D, A227T, T230S, N232S, G235E, G235R, P239H, P239S, P239T, D240G, D240H, D242N, W243C, I244T, L248M, Q249H, N252S, N252T, T253N, H254Q, Q255H, T256N, W260R, N262S, I266V, T269A, T269M, L270M, L270Q, L270V, V271L, V271M, V273M, V273A, E276D, D277E, D277G, D277N, G279D, T281I, T281P, L282M, T283A, T283K, T283M, E287D, E287Q, V289A, V290A, M292I, M292V, S293R, N294T, S296I, S296R, V297I, L299A, V301F, P304L, P304S, P304T, P305Q, P305R, P305S, P305T, R306C, R306H, R306P, V308L, S309I, E312K, E312Q, P313T, E314A, E314D, E314Q, R316C, R316H, C320F, E322A, E322K, E322Q, F323L, V325M, R326C, R326G, R326H, R326L, R326P, N328S, P329N, P329S, P330Q, T332M, H334Q, L336R, H337R, G339K, Q340H, Q340K, R343L, E344G, E344V, S345F, K346N, H349Y, V350E, E351D, Y353F, Q354K, G356E, G356R, G356Y, E357D, S359F, G361N, G361S, C362F, L364F, H370N, N372K, Y376N, L378V, I379V, A380P, A380V, N382H, N382I, N382T, L384M, N388K, Q389E, Q389H, N392S, G393D, G393S, H394Q, L396I, K397N, E398D, E398K, P399L, P401Q, P401S, T404M, T404S, D405N, D405V, I408M, D411E, D411N, E412K, P415H, P415S, T416I, P417L, P418H V421L, H423Q, P425S, E426K, T429I, F430V, G431V, G431W, S433F, A435E, V436A, V436F, G437E, A439P, V448A, L449P, F450L, V451I, M452I, M452K, M452L, M452V, K455N, K455R, G457C, G457V, R458P, R459G R459W, S460T, K461R, G463R, G463V, M464I, G466C, P467H, P467S, V468L, V468M, A469D, G473C, E474G, S477L, A478G, G487C, G487S, I488T, T490K, T490M, P491H, S492L, L494M, A496E, A4% V, G497R, G497V, G497W, D499N, V501L, T506A, T506S, R507C, R507H, R507P, I508T, P509L, P509S, I511T, E512K, N513I, N513K, P514H, P514S, Y516F, R518C, R518H, Q519E, Q519L, G520E, H521N, N522K, P526A, P526Q, D527E, Y529N, Q531R, I533F, I533L, K534E, K534R, R535M, R536I, R536T, D537E, D537Y, I538N, V539M, L540M, R542L, R542Δ, E543D, G545C, G545D, G547E, G547V, G550R, K551E, L560V, P562Δ, P562L, P562Q, P562R, P562T, D565H, K566N, M567T, L568F, V569L, K572N, K575E, D576N, P577S, L579M, A581D, R582Q, R582W, K583T, D584E, D584N, Q586K, Q586L, E588Q, E590D, E590K, L592I, L595P, Q596K, H597N, H597Q, E598G, H599L, H599Y, I600V, V601A, V601I, K602R, F603L, Y604F, Y604H, Y604N, G605V, C607F, G608C, G608E, G608S, D609C D609H, D609N, D609V, G610R, P612A, P612L, P612S, P612T, M615I, K621N, G623E, D624Y, L625M, N626K, K627N, K627R, F628L, L629F, L629I, A631V, H632N, H632Y, P634L, P634T, D635H, A636E, A636V, M637I, M637K, M637V, Q643E, Q643H, P644T, R645C, R645L, R645S, A647D, A647I, K648N, G649S, G649V, E650V, L651P, G652R, G652V, L653F, L653P, Q655K, Q655A, M656R, H658N, H658Y, A660T, S661G, I663V, A664P, A664S, S665L, M667I, M667L, V668M, Y669C, Y669S, S672Y, F675S, H677Y, R678Q, D679G, D679N, R683S, C685F, V687A, V687I, G688R, A689E, A689V, V693L, K694N, I695F, I695T, G696R, G696W, D697N, G699S, M700T, S701F, R702I, V704F, Y705N, S706I, T707M, D708N, Y710C, Y710H, L712F, L712P, N714S, P715L, P715S, S716Y, G717R, D719N, F720I, F720L, W723R, C724F, V726L, T730N, M731I, M731L, L732I, R735C, R735H, R735S, W736C, P738H, P738S, S741C, S741I, Y744F, R745P, R745W, K746R, K746T, T749K, S751N, D752N, V753L, W754C, W754L, S755R, G757E, G757R, G757W, I759M, L760F, E762D, E762K, F764I, Y766F, K768E, K768R, F772L, Q773K, T777M, E778K, E778V, E781K, C782R, C782S, I783N, T784S, G786C, G786S, R787C, R787H, R787S, L789F, E790V, R791Q, R791W, P792H, R793L, R793Q, P796L, P796S, D801N, G805R, G805W, C806S, W807G, Q808H, R809W, E810K, Q812H, Q813E, Q813K, R814Q, L815M, E819K, K822R, L824F, H825R, H825Y, A826G, A826S, A826V, L827F, G828E, G828W, A830D, P832A, P832R, P832T, I833V, Y834C, Y834N, D836E, and D836N (e.g., compared to the wildtype sequence NP_001012338). In some biopsy samples, mutation in the NTRK3 gene results in a TrkC protein lacking amino acids 548 to 562 in the wildtype TrkC protein (e.g., as compared to NP_001012338 (SEQ ID NO: 7)).
As one skilled in the art can appreciate, the specific substitutions listed above are exemplary. For example, when a naturally-occurring amino acid at an amino acid position is substituted with a different amino acid, it is understood that an amino acid having a chemically-related amino acid side chain may also be substituted (and detected in a cancer cell). Amino acids that have chemically-related amino acid side chains are listed in Table A.
Any of the point mutations described herein may result in, e.g., increased the catalytic activity of a TrkA, TrkB, or TrkC kinase. Any of the point mutations described herein may result in, e.g., a decrease in the auto-inhibited conformation of a Trk kinase (e.g., a TrkA, TrkB, or TrkC kinase). Any of the point mutations described herein may result in, e.g., an increase in the activated conformation of a Trk kinase (e.g., a TrkA, TrkB, or TrkC kinase).
Isolating Genomic DNA from a Biopsy Sample
Methods of isolating genomic DNA from biopsy sample are well known in the art. For example, a number of commercially available kits can be used to isolate genomic DNA from a sample containing mammalian cells (e.g., a biopsy sample). Non-limiting examples of commercially available kits for the isolation of genomic DNA from a sample containing mammalian cells include: ChargeSwitch® gDNA Tissue Kit (Life Technologies), Genomic DNA Isolation Kit (Norgen Biotek Corp., Ontario, Canada). QIAmp DNA FFPE (Qiagen), QIAsymphony DSP DNA kits (Qiagen), REPLI-g Mini Kit (Qiagen). Generation Capture Plate Kit (Qiagen), QI Amp 96 DNA Blood Kit (Qiagen), QIAmp DNA Mini kit (Qiagen), Biosprint 15 DNA Bloot Kit (Qiagen), Biosprint 96 DNA Blood Kit (Qiagen), MagAttract DNA Mini M48 Kit (Qiagen), QIAmp DNA Blood BioRobot 9604 Kit (Qiagen), QiAmp DNA Investigator Kit (Qiagen), QIAmp DNA Micro Kit, Xtreme DNA Isolation Kit (Isohelix; Harrietsham, Kent, UK), DDK DNA Isolation Kit (Isohelix), and XtraClean DNA kit (Isohelix). Genomic DNA can be isolated from a sample (e.g., a biopsy sample) using these and other commercially available genomic DNA isolation kits by following the manufacturer's instructions.
An exemplary method for isolating genomic DNA from a sample (e.g., a biopsy sample) include the steps of: lysing mammalian cells present in the sample, precipitating proteins in the lysate, removing the supernatant, precipitating genomic DNA out of the supernatant, washing the genomic DNA pellet with ethanol, and rehydrating the genomic DNA pellet in a pharmaceutically acceptable buffer (e.g., sterile or filtered water, or a buffered solution).
Some of the methods provided herein include a step of performing an assay to determine the presence of at least one (e.g., at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least thirteen, at least fourteen, at least fifteen, at least sixteen, at least seventeen, at least eighteen, at least nineteen, or at least twenty) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTKR3 described herein) in a cell (e.g., cancer cell) in a sample from the subject (e.g., a biopsy sample).
A variety of assays for determining the presence of one or more point mutations in a cell (e.g., a cancer cell) are known in the art. Non-limiting examples of such assays (which can be used in any of the methods described herein) include: denaturing gradient gel electrophoresis (DGGE) (Nollau et al., Clin. Chem. 43:1114-1128, 1997), temperature gradient gel electrophoresis (TGGE) (Nollau et al., Clin. Chem. 43:1114-1128, 1997), temperature gradient capillary electrophoresis, single strand conformational polymorphism assays (see, e.g., Tahira et al., Human Mutat. 26:69-77, 2005), molecular beacon assays (see, e.g., Totowa, N.J., Vol. 212, pp. 111-128, 2003), dynamic hybridization (see, e.g., Howell et al., Nature Biotechnol. 17:87-88, 1999), PCR-based assays (e.g., tetraprimer ARMS-PCR (see, e.g., Zhang et al., Plos One 8:e62126, 2013), real-time PCR, allele-specific PCR (see, e.g., Gaudet et al., Methods Mol. Biol. 578:415-424, 2009), and TaqMan Assay Genotyping (see, e.g., Woodward, Methods Mol. Biol. 1145:67-74, 2014, and TaqMan® OpenArray® Genotyping Plates from Life Technologies)), Flap endonuclease assays (also called Invader assays) (see, e.g., Olivier et al., Mutat. Res. 573:103-110, 2005), oligonucleotide ligation assays (see, e.g., Bruse et al., Biotechniques 45:559-571, 2008), or, denaturing high performance liquid chromatography (see, e.g., Yu et al., J. Clin. Pathol. 58:479-485, 2005), high-resolution melting of an amplified sequence containing the point mutation (see, e.g., Wittwer et al., Clinical Chemistry 49:853-860, 2003), or sequencing (e.g., Maxam-Gilbert sequencing, chain-termination methods, shotgun sequencing, bridge PCR, and next-generation sequencing methods (e.g., massively parallel signature sequencing, polony sequencing, 454 pyrosequencing, Illumina (Solexa) sequencing, SOLiD sequencing, Ion Torrent semiconductor sequence, DNA nanoball sequencing, heliscope single molecule sequencing, and single molecule real-time sequencing)). Additional details and a summary of various next-generation sequencing methods are described in Koboldt et al., Cell 155:27-38, 2013.
In some embodiments, the assay used to determine the presence of the at least one point mutation in NTRK1, NTRK2, and/or NTRK3 includes a PCR assay (e.g., a real-time PCR-assay, e.g., a real-time PCR-based genotyping assay) (with or without a prior pre-amplification step). In some embodiments of any of the methods described herein the assay used to determine the presence of at least one point mutation in NTRK1, NTRK2, and/or NTRK3 is performed using TaqMan®-based sequencing (e.g., TaqMan®-based OpenArray® sequencing, e.g., high throughput TaqMan®-based Open Array® sequencing) (with or without a prior pre-amplification step). Methods for designing primers for use in the assays described herein are well-known in the art. For example, several vendors provide free software for designing forward and reverse primers for use in any of the assays described herein. A forward or reverse primer for use in any of the assays described herein can contain at least 10 (e.g., 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides). In some examples, a forward or reverse primer used in any of the assays described herein can include a label (e.g., any of the exemplary labels described herein) or can include a contiguous tag sequence (e.g., between about 5 nucleotides and about 25 nucleotides, between about 10 nucleotides and about 25 nucleotides, between about 10 nucleotides and 20 nucleotides, between about 5 nucleotides and about 20 nucleotides) that does not hybridize to a sequence within the subject's genome (e.g., the human genome).
In some embodiments, the assay includes the use of one or more probes (e.g., detectably labeled probes) that specifically hybridize to one or more segments of a NTRK1, NTRK2, and/or NTRK3 gene that include a point mutation (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRk3 described herein). For example, the one or more probes can have 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, or 35 nucleotides. Additional description of the probes that can be used in exemplary assays are described herein.
In various embodiments of the methods described herein, the subject can be previously identified or diagnosed as having a cancer (e.g., any of the cancers described herein). A subject can, e.g., be previously identified as having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, or ten) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein). For example, a subject can be previously identified as having at least one (e.g., two, three, four, five, six, seven, eight, nine, or ten) point mutation in a NTRK2 gene that results in the expression of a TrkB protein including a mutation at one or more (e.g., two, three, four, or five) amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., a TrkB protein including one or more (e.g., two, three, four, five, six, seven, eight, nine, or ten) of M240I, N241D, E242K, I264M, A314E, A314C A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M).
In the methods of predicting a subject's risk of developing a cancer and the methods of assisting in the diagnosis of a cancer, the subject can be an undiagnosed subject, the subject can be identified as having been exposed to a significant level of carcinogen(s), the subject can be suspected of having a cancer (e.g., any of the cancers described herein), the subject can present with one or more (e.g., two, three, four, or five) symptoms of cancer (e.g., any of the symptoms of cancer described herein), and/or the subject is known to an elevated risk of developing a cancer (e.g., a family history of cancer).
Methods of treating a cancer are provided herein. Point mutations in NTRK1, NTRK2, and/or NTRK3 were detected in biopsy samples obtained from subjects having a variety of different cancers including, but not limited to: adenocarcinoma, adrenal gland cortical carcinoma, adrenal gland neuroblastoma, anus squamous cell carcinoma, appendix adenocarcinoma, bladder urothelial carcinoma, bile duct adenocarcinoma, bladder carcinoma, bladder urothelial carcinoma, bone chordoma, bone marrow leukemia lymphocytic chronic, bone marrow leukemia non-lymphocytic acute myelocytic, bone marrow lymph proliferative disease, bone marrow multiple myeloma, bone sarcoma, brain astrocytoma, brain glioblastoma, brain medulloblastoma, brain meningioma, brain oligodendroglioma, breast adenoid cystic carcinoma, breast carcinoma, breast ductal carcinoma in situ, breast invasive ductal carcinoma, breast invasive lobular carcinoma, breast metaplastic carcinoma, cervix neuroendocrine carcinoma, cervix squamous cell carcinoma, colon adenocarcinoma, colon carcinoid tumor, duodenum adenocarcinoma, endometrioid tumor, esophagus adenocarcinoma, esophagus and stomach carcinoma, eye intraocular melanoma, eye intraocular squamous cell carcinoma, eye lacrimal duct carcinoma, fallopian tube serous carcinoma, gallbladder adenocarcinoma, gallbladder glomus tumor, gastroesophageal junction adenocarcinoma, head and neck adenoid cystic carcinoma, head and neck carcinoma, head and neck neuroblastoma, head and neck squamous cell carcinoma, kidney chromophore carcinoma, kidney medullary carcinoma, kidney renal cell carcinoma, kidney renal papillary carcinoma, kidney sarcomatoid carcinoma, kidney urothelial carcinoma, kidney carcinoma, leukemia lymphocytic, leukemia lymphocytic chronic, liver cholangiocarcinoma, liver hepatocellular carcinoma, liver carcinoma, lung adenocarcinoma, lung adenosquamous carcinoma, lung atypical carcinoid, lung carcinosarcoma, lung large cell neuroendocrine carcinoma, lung non-small cell lung carcinoma, lung sarcoma, lung sarcomatoid carcinoma, lung small cell carcinoma, lung small cell undifferentiated carcinoma, lung squamous cell carcinoma, upper aerodigestive tract squamous cell carcinoma, upper aerodigestive tract carcinoma, lymph node lymphoma diffuse large B cell, lymph node lymphoma follicular lymphoma, lymph node lymphoma mediastinal B-cell, lymph node lymphoma plasmablastic lung adenocarcinoma, lymphoma follicular lymphoma, lymphoma, non-Hodgkins, nasopharynx and paranasal sinuses undifferentiated carcinoma, ovary carcinoma, ovary carcinosarcoma, ovary clear cell carcinoma, ovary epithelial carcinoma, ovary granulosa cell tumor, ovary serous carcinoma, pancreas carcinoma, pancreas ductal adenocarcinoma, pancreas neuroendocrine carcinoma, peritoneum mesothelioma, peritoneum serous carcinoma, placenta choriocarcinoma, pleura mesothelioma, prostate acinar adenocarcinoma, prostate carcinoma, rectum adenocarcinoma, rectum squamous cell carcinoma, skin adnexal carcinoma, skin basal cell carcinoma, skin melanoma, skin Merkel cell carcinoma, skin squamous cell carcinoma, small intestine adenocarcinoma, small intestine gastrointestinal stromal tumors (GISTs), large intestine/colon carcinoma, large intestine adenocarcinoma, soft tissue angiosarcoma, soft tissue Ewing sarcoma, soft tissue hemangioendothelioma, soft tissue inflammatory myofibroblastic tumor, soft tissue leiomyosarcoma, soft tissue liposarcoma, soft tissue neuroblastoma, soft tissue paraganglioma, soft tissue perivascular epitheliod cell tumor, soft tissue sarcoma, soft tissue synovial sarcoma, stomach adenocarcinoma, stomach adenocarcinoma diffuse-type, stomach adenocarcinoma intestinal type, stomach adenocarcinoma intestinal type, stomach leiomyosarcoma, thymus carcinoma, thymus thymoma lymphocytic, thyroid papillary carcinoma, unknown primary adenocarcinoma, unknown primary carcinoma, unknown primary malignant neoplasm, lymphoid neoplasm, unknown primary melanoma, unknown primary sarcomatoid carcinoma, unknown primary squamous cell carcinoma, unknown undifferentiated neuroendocrine carcinoma, unknown primary undifferentiated small cell carcinoma, uterus carcinosarcoma, uterus endometrial adenocarcinoma, uterus endometrial adenocarcinoma endometrioid, uterus endometrial adenocarcinoma papillary serous, and uterus leiomyosarcoma. See, e.g., Tables 1-4.
Additional examples of cancers include: acute lymphoblastic leukemia, acute myeloid leukemia, adrenocortical carcinoma, anal cancer, appendix cancer, astrocytoma, atypical teratoid/rhabdoid tumor, basal cell carcinoma, B-cell cancer, bile duct cancer, bladder cancer, bone cancer (e.g., osteosarcoma, malignant fibrous histiocytoma, and Ewing sarcoma), brain cancer (e.g., astrocytoma, brain and spinal cord tumor, brain stem glioma, central nervous system atypical teratoid/rhabdoid tumor, central nervous system embryonal tumors, central nervous system germ cell tumors, craniopharyngioma, and ependymoma), breast cancer, bronchogenic carcinoma, bronchus cancer, cancer of hematological tissues, cancer of the oral cavity or pharynx, carcinoid tumor, cervical cancer, childhood cancers, chordoma, chronic lymphocytic leukemia, chronic myelogenous leukemia, chronic myeloproliferative neoplasms, colon cancer, colorectal cancer, craniopharyngioma, cutaneous T-cell lymphoma, ductal carcinoma in situ, embryonal tumor, endometrial cancer, ependymoma, esophageal cancer, esthesioneuroblastoma, Ewing sarcoma, extracranial germ cell tumor, extragonadal germ cell tumor, extrahepatic bile duct cancer, eye cancer (e.g., intraocular melanoma and retinoblastoma), fallopian tube cancer, fibrosarcoma, fibrous histiocytoma of bone, osteosarcoma, gallbladder cancer, gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (GIST), germ cell tumor, gestational trophoblastic disease, glioblastoma (e.g., glioblastoma multiforme), glioma (e.g., lower-grade glioma), hairy cell leukemia, head and neck cancer, heart cancer, histiocytosis, Hodgkin lymphoma, hypopharyngeal cancer, inflammatory myofibroblastic tumors, intrahepatic cholangiocarcinoma, intraocular melanoma, islet cell tumor, kidney cancer (e.g., renal cell cancer or Wilms tumor), kidney carcinoma, Langerhans cell histiocytosis, large cell neuroendocrine cancer, laryngeal cancer, leukemia (e.g., acute lymphoblastic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, and hairy cell leukemia), lip and oral cavity cancer, liver cancer, liver carcinoma, lung cancer (e.g., lung adenocarcinoma), lymphoma (e.g., Burkitt lymphoma, cutaneous T-cell lymphoma, Hodgkin lymphoma, non-Hodgkin lymphoma, and primary central nervous system lymphoma), malignant fibrous histiocytoma of bone and osteosarcoma, medulloblastoma, melanoma, Merkel cell carcinoma, mesothelioma, mouth cancer, mouth carcinoma, multiple myeloma, myelodysplastic syndromes, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, neoplasm (e.g., a melanocystic neoplasm or lymphoid neoplasm), nephroma, neuroblastoma, non-Hodgkin's lymphoma, non-small cell lung cancer, oral cancer, oral cavity cancer, oropharyngeal cancer, osteosarcoma, ovarian cancer, pancreatic cancer, papillary thyroid carcinoma, paraganglioma, parathyroid cancer, pediatric glioma, penile cancer, pharyngeal cancer, pheochromocytoma, pilocytic astrocytoma, pituitary tumor, plasma cell neoplasm, primary peritoneal cancer, prostate cancer, rectum carcinoma, renal cell cancer, retinoblastoma, salivary gland cancer, sarcoma (e.g., Ewing sarcoma, osteosarcoma, rhabdomyosarcoma, soft tissue sarcoma, uterine sarcoma, and undifferentiated sarcoma), secretory breast carcinoma. Sezary syndrome, skin cancer (e.g., melanoma and Merkel cell carcinoma), small bowel cancer, small cell lung cancer, small intestine cancer, large intestine/colon carcinoma, large intestine adenocarcinoma, soft tissue sarcoma, Spitz nevi. Spitz tumors, spitzoid melanoma, stomach cancer, squamous cell carcinoma, squamous neck cancer, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid carcinoma, urethral cancer, uterine cancer, uterine corpus endometrioid carcinoma, urinary bladder cancer, urinary tract carcinoma, vaginal cancer, vulvar cancer, and Wilms tumor.
Methods of diagnosing a cancer (e.g., any of the cancers described herein) are known in the art. For example, a health care professional (e.g., a physician) can diagnose a subject as having a cancer by observing one or more symptoms of a cancer in the subject. Non-limiting examples of symptoms of a cancer include fever, fatigue, pain, hyperpigmentation, jaundice, erythema, pruritis, excessive hair growth, long-term constipation, diarrhea, change in the size of stool, pain when urinating, blood in urine, change in bladder function, sore that do not heal, w % bite patches inside the mouth or on tongue, unusual bleeding or discharge, indigestion, trouble swallowing, changes in warts, moles, or freckles, nagging cough, hoarseness, lump or area of thickening that can be felt under skin, weight changes, trouble breathing, discomfort after eating, persistent, unexplained muscle or joint pain, persistent, unexplained fevers and night sweats, and unexplained bruising. The diagnosis of a cancer by a health care profession (e.g., a physician) can also include performing laboratory tests (e.g., urine or blood tests, e.g., complete blood count), imaging tests (e.g., computerized tomography (CT), bone scan, magnetic resonance imaging (MRI), positron emission tomography (PET) scan, ultrasound, and X-ray), and obtaining and/or examining a biopsy sample from the subject.
Exemplary methods of assisting in the diagnosis of a cancer in a subject and methods of predicting a subject's risk of developing a cancer are provided herein.
A variety of Trk inhibitors are known in the art. Non-limiting examples of Trk inhibitors are described below.
Non-limiting examples of Trk inhibitors are described in U.S. Pat. No. 8,513,263 and International Publication No. WO 2010/048314 both of which are incorporated by reference in their entireties herein, and include a compound of Formula I:
or a pharmaceutically acceptable salt thereof, wherein:
R1 is H or (1-6C alkyl);
R2 is NRbRc, (1-4C)alkyl, (1-4C)fluoroalkyl, CF3, (1-4C)hydroxyalkyl, -(1-4C alkyl)hetAr1, -(1-4C alkyl)NH2, -(1-4C alkyl)NH(1-4C alkyl), -(1-4C alkyl)N(1-4C alkyl)2, hetAr2, hetCyc1, hetCyc2, phenyl which is optionally substituted with NHSO2(1-4C alkyl), or (3-6C)e cycloalkyl which is optionally substituted with (1-4C alkyl), CN, OH, OMe, NH2, NHMe, N(CH3)2·F, CF3, CO2(1-4C alkyl), CO2H, C(═O)NRbRf or C(═O)ORg;
Rb is H or (1-6C alkyl);
Rc is H, (1-4C)alkyl, (1-4C)hydroxyalkyl, hetAr1, or phenyl, wherein said phenyl is optionally substituted with one or more substituents independently selected from halogen, CN, CF3 and —O(1-4C alkyl),
or NRbRc forms a 4 membered heterocyclic ring having a ring nitrogen atom wherein said heterocyclic ring is optionally substituted with one or more substituents independently selected from halogen, OH, (1-4C alkyl), (1-4 C)alkoxy, —OC(═O)(1-4C alkyl), NH2, —NHC(═O)O(1-4C alkyl) and (1-4C)hydroxyalkyl,
or NRbRc forms a 5-6 membered heterocyclic ring having a ring heteroatom which is nitrogen and optionally having a second ring heteroatom or group selected from N, O and SO2, wherein the heterocyclic ring is optionally substituted with one or more substituents independently selected from OH, halogen, CF3, (1-4C)alkyl, CO2(1-4C alkyl), CO2H, NH2, NHC(═O)O(1-4C alkyl) and oxo,
or NRbRc forms a 7-8 membered bridged heterocyclic ring having a ring nitrogen atom and optionally having a second ring heteroatom selected from N and O, wherein said ring is optionally substituted with CO2(1-4C alkyl);
hetAr1 is a 5-membered heteroaryl ring having 1-3 ring nitrogen atoms;
hetAr2 is 5-6 membered heteroaryl ring having at least one nitrogen ring atom and optionally having a second ring heteroatom independently selected from N and S, wherein said heteroaryl ring is optionally substituted with one or more substituents independently selected from (1-4C alkyl), halogen, -(1-4 C)alkoxy, and NH(1-4C alkyl);
hetCyc1 is a carbon-linked 4-6 membered azacyclic ring optionally substituted with one or more substituents independently selected from (1-4C alkyl), and CO2(1-4C alkyl);
hetCyc2 is a pyridinone or pyridazinone ring which is optionally substituted with a substituent selected from (1-4C)alkyl;
hetAr3 is a 5-6 membered heteroaryl ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with one or more substituents independently selected from (1-4C)alkyl;
Re is H or (1-4C)alkyl;
Rf is H, (0-4C)alkyl, or (3-6C)cycloalkyl;
or NReRf forms a 5-6-membered azacyclic ring optionally having an additional ring heteroatom selected from N and O, wherein the azacyclic ring is optionally substituted with OH;
Rg is H or (1-6C)alkyl;
Y is (i) phenyl optionally substituted with one or more substituents independently selected from halogen, (1-4C)alkoxy, CF3 and CHF2, or (ii) a 5-6 membered heteroaryl ring having a ring heteroatom selected from N and S, wherein said heteroaryl ring is optionally substituted with one or more halogen atoms;
X is null, —CH—, —CH2CH2—, —CH2O— or —CH2NRd—;
Rd is H or (1-4C alkyl);
R3 is H or (1-4C alkyl);
each R4 is independently selected from halogen, (1-4C)alkyl, OH, (1-4C)alkoxy, NH2, NH(1-4C alkyl) and CH2OH; and
n is 0, 1, 2, 3, 4, 5 or 6.
For example, a Trk inhibitor can include one or more compounds selected from the group consisting of:
In some embodiments, a Trk inhibitor can be (S)—N-(5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide sulfate. For example, a Trk inhibitor can be a polymorph such as those described in U.S. Publication No. 2016/0137654 and International Publication No. WO 2016/077841, both of which are incorporated by reference in their entireties herein. Additional disclosure relating to Trk inhibitors can be found, for example, in U.S. Provisional Application Nos. 62/329,653, 62/329,561, and 62/338,359, all of which are incorporated by reference in their entireties.
Additional examples of Trk inhibitors are the macrocyclic compounds described in U.S. Pat. No. 8,933,084 and International Publication No. WO 2011/146336, both of which are herein incorporated by reference in their entireties. For example, Trk inhibitors include compounds of Formula I:
or a pharmaceutically acceptable salt thereof, wherein:
ring A is selected from rings A-1, A-2, and A-3 having the structures:
wherein the wavy line labeled 1 indicates the point of attachment of ring A to ring B and the wavy line labeled 2 indicates the point of attachment of ring A to W;
X is N or CH;
Y is H or F;
R1 is H, (1-3C)alkoxy, or halogen;
ring B is selected from rings B-1 and B-2 having the structures:
wherein the wavy line labeled 3 indicates the point of attachment to ring A and the wavy line labeled 4 indicates the point of attachment to the pyrazolo[1,5-a]pyrimidine ring of Formula I;
W is O, NH, or CH2, wherein when ring A is A-2, then W is CH2;
m is 0, 1, or 2;
D is carbon, R2 and R2a are independently H, F, (1-3 C)alkyl or OH (provided that R2 and R2a are not both OH), and R3 and R33 are independently H, (1-3 C)alkyl or hydroxy(1-3 C)alkyl, or
D is carbon or nitrogen, R2 and R3 are absent, and R2a and R3a together with the atoms to which they are attached form a 5-6 membered heteroaryl ring having 1-2 ring heteroatoms;
Z is *—NR4aC(═O)—, *—ONHC(═O)—, *—NR4bCH2— or *—OC(═O)—, wherein the asterisk indicates the point of attachment of Z to the carbon bearing R3;
R4a is H, (1-6C)alkyl, fluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, hydroxy(1-6C alkyl), or dihydroxy(2-6C alkyl);
R4b is H, (1-6C)alkyl, fluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, hydroxy(1-6C alkyl), dihydroxy(2-6C alkyl), (1-6C alkyl)C(O)—, (3-6C cycloalkyl)C(O)—, Ar1C(O)—, HOCH2C(O)—, (1-6C alkyl)sulfonyl, (3-6C cycloalkyl)sulfonyl, Ar2(SO2)—, HO2CCH2—, or (1-6C alkyl)NH(CO)—;
Ar1 is phenyl optionally substituted with one or more substituents independently selected from halogen, (1-6C)alkyl, and (1-6C)alkoxy;
Ar2 is phenyl optionally substituted with one or more substituents independently selected from halogen, (1-6C)alkyl, and (1-6C)alkoxy; and
R5 and R6 are independently H, halogen, OH, (1-6C)alkyl, or hydroxy(1-6C)alkyl.
For example, a Trk inhibitor can include one or more compounds selected from the group consisting of:
Additional examples of Trk inhibitors are the substituted pyrazolo[1,5-a] pyrimidine compounds described in U.S. Pat. No. 8,791,123 and International Publication No. WO 2011/006074, both of which are herein incorporated by reference in their entireties. For example, Trk inhibitors that can include compounds of Formula I:
or a pharmaceutically acceptable salt thereof,
wherein:
R1 is H or (1-6C alkyl);
R2 is H, (1-6C)alkyl, -(1-6C)fluoroalkyl, -(1-6C)difluoroalkyl, -(1-6C)trifluoroalkyl, -(1-6C)chloroalkyl, -(2-6C)chlorofluoroalkyl, -(2-6C)difluorochloroalkyl, -(2-6C)chlorohydroxyalkyl, -(1-6C)hydroxyalkyl, -(2-6C)dihydroxyalkyl, -(1-6C alkyl)CN, -(1-6C alkyl)SO2NH2, -(1-6C alkyl)NHSO2(1-3C alkyl), -(1-6C alkyl)NH2, -(1-6C alkyl)NH(1-4C alkyl), -(1-6C alkyl)N(1-4C alkyl)2, -(1-6C alkyl)NHC(═O)O(1-4C alkyl), -(1-6C alkyl)hetCyc1, -(1-6C alkyl)hetAr2, hetAr2, hetCyc2, —O(1-6C alkyl) which is optionally substituted with halogen, OH or (1-4C)alkoxy, —O(3-6C cycloalkyl), Cyc1, -(1-6C alkyl)(3-6C cycloalkyl), -(1-6C alkyl)(1-4C alkoxy), -(1-6C hydroxyalkyl)(1-4C alkoxy), a bridged 7-membered cycloalkyl ring optionally substituted with (1-6C)hydroxyalkyl, or a bridged 7-8 membered heterocyclic ring having 1-2 ring nitrogen atoms;
or NR1R2 forms a 4-6 membered azacyclic ring optionally substituted with one or more substituents independently selected from (1-6C)alkyl, OH, CO2H, (1-3C alkyl)CO2H, —O(1-6C alkyl), and (1-6C)hydroxyalkyl;
hetCyc1 is a 5-6 membered heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O, wherein hetCyc1 is optionally substituted with oxo, OH, halogen, or (1-6C)alkyl;
hetCyc2 is a 6 membered carbon-linked heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O, wherein hetCyc2 is optionally substituted with F, SO2NH2, SO2(1-3C alkyl), or halogen;
hetAr1 is a 5-membered heteroaryl ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with (1-4C)alkyl;
hetAr2 is a 5-6 membered heteroaryl ring having 1-2 ring nitrogen atoms and optionally substituted with one or more substituents independently selected from (1-4C)alkyl, (3-6C)cycloalkyl, halogen, and OH;
Cyc1 is a 3-6 membered cycloalkyl ring which is optionally substituted with one or more substituents independently selected from -(1-4C alkyl), —OH, —OMe, —CO2H, -(1-4C alkyl)OH, halogen, and CF3;
Y is (i) phenyl optionally substituted with one or more substituents independently selected from halogen, (1-4C)alkoxy, —CF3, —CHF2, —O(1-4C alkyl)hetCyc3, -(1-4C alkyl)hetCyc3, —O(1-4C alkyl)O(1-3C alkyl) and —O(3-6C dihydroxyalkyl), or (ii) a 5-6 membered heteroaryl ring having a ring heteroatom selected from N and S, wherein the heteroaryl ring is optionally substituted with one or more substituents independently selected from halogen, —O(1-4C alkyl), (1-4C)alkyl, and NH2, or (iii) a pyrid-2-on-3-yl ring optionally substituted with one or more substituents independently selected from halogen and (1-4C)alkyl;
hetCyc3 is a 5-6 membered heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with (1-6C)alkyl;
X is —CH2—, —CH2CH2—, —CH2O—, or —CH2NRd—;
Rd is H or -(1-4C alkyl);
R3 is H or -(1-4C alkyl);
each R4 is independently selected from halogen, -(1-4C)alkyl, —OH, -(1-4C)alkoxy, —NH2, —NH(1-4C alkyl), and —CH2OH; and
n is 0, 1, 2, 3, 4, 5, or 6.
For example, a Trk inhibitor can include one or more compounds selected from the group consisting of:
Additional examples of Trk inhibitors are the substituted imidazo[1,2-b]pyridazine compounds described in U.S. Pat. No. 8,450,322 and International Publication No. WO 2010/033941, both of which are herein incorporated by reference in their entireties. For example, Trk inhibitors can include compounds of Formula I:
or a pharmaceutically acceptable salt thereof, wherein:
R1 is H or (1-6C alkyl);
R2 is NRbRc, (1-4C)alkyl, (1-4C)fluoroalkyl, CF3, (1-4C)hydroxyalkyl, -(1-4C alkyl)hetAr1, -(1-4C alkyl)NH(1-4C alkyl), hetAr2, hetCyc1, hetCyc2, phenyl which is optionally substituted with NHSO2(1-4C alkyl), or (3-6C)cycloalkyl which is optionally substituted with (1-4C alkyl), CN, OH, CF3, CO2(1-4C alkyl) or CO2H:
Rb is H or (1-6C alkyl);
Rc is H, (1-4C)alkyl, (1-4C)hydroxyalkyl, hetAr3, or phenyl, wherein said phenyl IS optionally substituted with one or more substituents independently selected from halogen, CN, CF3 and —O(1-4C alkyl),
or NRbRc forms a 4 membered heterocyclic ring having a ring nitrogen atom, wherein said heterocyclic ring is optionally substituted with one or more substituents independently selected from halogen. OH, (1-4C alkyl), (1-4 C)alkoxy, —OC(═O)(1-4C alkyl), NH2, —NHC(═O)O(1-4C alkyl), and (1-4C)hydroxyalkyl,
or NRbRc forms a 5-6 membered heterocyclic ring having a ring heteroatom which is nitrogen and optionally having a second ring heteroatom or group selected from N, O, and SO2, wherein the heterocyclic ring is optionally substituted with one or more substituents independently selected from OH, halogen, CF3, (1-4C)alkyl, CO2(1-4C alkyl), CO2H, NH2, NHC(═O)O(1-4C alkyl), and oxo,
or NRbRc forms a 7-8 membered bridged heterocyclic ring having 1-2 ring nitrogen atoms and optionally substituted with CO2(1-4C alkyl);
hetAr1 is a 5-membered heteroaryl ring having 1-3 ring nitrogen atoms;
hetAr2 is 5-6 membered heteroaryl ring having at least one nitrogen ring atom and optionally having a second ring heteroatom independently selected from N and S, wherein said heteroaryl ring is optionally substituted with one or more substituents independently selected from (1-4C alkyl), halogen, -(1-4 C)alkoxy, and NH(1-4C alkyl);
hetCyc1 is a carbon-linked 4-6 membered azacyclic ring optionally substituted with one or more substituents independently selected from (1-4C alkyl), CO2H and CO2(1-4C alkyl);
hetCyc2 is a pyridinone or pyridazinone ring substituted with a substituent selected from (1-4C)alkyl;
hetAr3 is a 5-6 membered heteroaryl ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with one or more substituents independently selected from (1-4C)alkyl;
Y is a phenyl ring optionally substituted with one or more substituents independently selected from halogen, (1-4C)alkoxy, CF3 and CHF2, or a 5-6 membered heteroaryl ring having a ring heteroatom selected from N and S;
X is null, —CH2—, —CH2CH2—, —CH2O—, or —CH2NRd—;
Rd is H or (1-4C alkyl);
R3 is H or (1-4C alkyl);
each R4 is independently selected from halogen, (1-4C)alkyl. OH, (1-4 C)alkoxy, NH2, NH(1-4C alkyl), and CH2OH; and
n is 1, 2, 3, 4, 5, or 6.
Additional Trk inhibitors can be found in U.S. Publication No. 2015/0166564 and WO 2012/158413, both of which are incorporated by reference in their entireties herein. For example, a Trk inhibitor can be a compound of Formula I:
or stereoisomers, tautomers, or pharmaceutically acceptable salts, solvates or prodrugs thereof, wherein:
the Y—B moiety and the NH—C(═X)—NH moiety are in the trans configuration;
Ra, Rb, Rc and Rd are independently selected from H and (1-3C)alkyl;
X is O, S or NH:
R1 is (1-3C alkoxy)(1-6C)alkyl, (trifluoromethoxy)(1-6C)alkyl, (1-3C sulfanyl)(1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, cyano(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-6C)alkyl, (1-3Calkylamino)(1-3C)alkyl, (1-4C alkoxycarbonyl)(1-6C)alkyl, amino(1-6C)alkyl, hydroxy(1-3C alkoxy)(1-6C)alkyl, di(1-3C alkoxy)(1-6C)alkyl, (1-3C alkoxy)trifluoro(1-6C)alkyl, hydroxytrifluoro(1-6C)alkyl, (1-4C alkoxycarbonyl)(1-3C alkoxy)(1-6C)alkyl, hydroxycarbonyl(1-3C alkoxy)(1-6C)alkyl, hetAr5(CH2)0-1, or Ar5(CH2)0-1;
R2 is H, F, or OH;
Y is a bond, —O— or —OCH2—;
B is Ar1, hetAr1, 1-6C alkyl or (1-6C)alkoxy;
Ar1 is phenyl optionally substituted with one or more substituents independently selected from halogen, CF3, CF3O—, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-6C)alkyl and CN;
hetAr1 is a 5-6 membered heteroaryl having 1-3 ring heteroatoms independently selected from N, S and O, and optionally substituted with 1-2 groups independently selected form (1-6C)alkyl, halogen, OH, CF3, NH2 and hydroxy(1-2C)alkyl;
Ring C is formula C-1, C-2, or C-3
R3 is H, (1-6C)alkyl, hydroxy(1-6C)alkyl, Ar2, hetCyc1, (3-7C)cycloalkyl, or hetAr2;
Ar2 is phenyl optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl and hydroxymethyl;
hetCyc1 is a 5-6-membered saturated or partially unsaturated heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O;
hetAr2 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen;
R4 is H, OH, (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, cyano(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, amino(1-6C)alkyl, amino-carbonyl(1-6C)alkyl, (1-3C)alkylsulfonamido(1-6C)alkyl, sulfamido(1-6C)alkyl, hydroxyl-carbonyl(1-6C)alkyl, hetAr3(1-6C)alkyl, Ar3(1-6C)alkyl, (1-6C)alkoxy, monofluoro(1-6C)alkoxy, difluoro(1-6C)alkoxy trifluoro(1-6C)alkoxy, tetrafluoro(2-6C)alkoxy, pentafluoro(2-6C)alkoxy cyano(1-6C)alkoxy, hydroxy(1-6C)alkoxy, dihydroxy(2-6C)alkoxy, amino(2-6C)alkoxy, aminocarbonyl(1-6C)alkoxy, hydroxycarbonyl(1-6C)alkoxy, hetCyc2(1-6C)alkoxy, hetAr3(1-6C)alkoxy, Ar3(1-6C)alkoxy, (1-4C alkoxy)(1-6C)alkoxy, (1-3C alkylsulfonyl)(1-6C)alkoxy, (3-6C)cycloalkyl [optionally substituted with F, OH, (1-6C alkyl), (1-6C) alkoxy, or (1-3C alkoxy)(1-6C)alkyl], hetAr4, Ar4, hetCyc2(O)CH2—, (1-4C alkoxycarbonyl)(1-6C)alkoxy, hydroxycarbonyl(1-6C)alkoxy, aminocarbonyl(1-6C)alkoxy, hetCyc2C(═O)(1-6C)alkoxy, hydroxy(1-3C alkoxy)(1-6C)alkoxy, hydroxytrifluoro(1-6C)alkoxy, (1-3C)alkylsulfonamido(1-6C)alkoxy, (1-3C)alkylamido(1-6C)alkoxy, di(1-3C alkyl)aminocarboxy, hetCyc2C(═O)O—, hydroxydifluoro(1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, (1-6C)alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, (1-3C alkoxy)amino-carbonyl, hetCyc3, halogen, CN, trifluoromethylsulfonyl, N-(1-3C alkyl)pyridinonyl, N-(1-3C trifluoroalkyl)pyridinonyl, (1-4C alkylsiloxy)(1-6C)alkoxy, isoindoline-1,3-dionyl(1-6C)alkoxy or N-(1-3C alkyl)oxadiazolonyl;
hetCyc2 is a 4-6 membered heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with 1-2 groups independently selected from (1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, and (1-6C)acyl;
hetCyc3 is a 4-7 membered heterocycle having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with one or more substituents independently selected from F, CN, CF3, (1-6C)alkyl, hydroxy(1-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, (1-6C)acyl-, (1-6C)alkylsulfonyl, trifluoromethylsulfonyl and (1-4C alkoxy)carbonyl;
hetAr3 is a 5-membered heteroaryl ring having 1-3 ring atoms independently selected from N, O and S and optionally substituted with (1-6C)alkyl;
Ar3 is phenyl optionally substituted with (1-4C)alkoxy;
hetAr4 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with 1-2 substituents independently selected from (1-6C)alkyl, halogen, CN, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, (1-3C trifluoroalkoxy), (1-3C)trifluoroalkyl, and methoxybenzyl; or a 9-10 membered bicyclic heteroaryl having 1-3 ring nitrogen atoms;
Ar4 is phenyl optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF3O—, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—:
R5 is H, (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, halogen, CN, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-3C alkoxy)(1-4C)alkyl, (1-4C alkyl)OC(═O)—, (1-6C)alkylthio, phenyl [optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy], (3-4C)cycloalkyl, amino, aminocarbonyl, or trifluoro(1-3C alky)amido; or
R4 and R5 together with the atoms to which they are attached form a 5-6 membered saturated, partially unsaturated or unsaturated carbocyclic ring optionally substituted with one or more substituents independently selected from (1-6C)alkyl, or
R4 and R5 together with the atoms to which they are attached form 5-6 membered saturated, partially unsaturated or unsaturated heterocyclic ring having a ring heteroatom selected from N, O or S, wherein said heterocyclic ring is optionally substituted with one or two substituents independently selected from (1-6C alkyl)C(═O)O—, (1-6)acyl, (1-6C)alkyl and oxo, and said sulfur ring atom is optionally oxidized to S(═O) or SO2;
hetAr5 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O or S, wherein the ring is optionally substituted with one or more substituents independently selected from halogen, (1-6C)alkyl, (1-6C)alkoxy and CF3;
Ar5 is phenyl optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl, (1-6C)alkoxy, CF3O—, (1-4C)alkoxycarbonyl and aminocarbonyl;
R3a is hydrogen, halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen, (1-6C)alkyl and hydroxymethyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen;
R3b is hydrogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen, (1-6C)alkyl and hydroxymethyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen;
R4a is hydrogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, phenyl [optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF3O—, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (0-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—], or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with 1-2 substituents independently selected from (1-6C)alkyl, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, (1-3C trifluoroalkoxy)(1-3C)trifluoroalkyl, and methoxybenzyl; and
R5a is hydrogen, halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen, (0-6C)alkyl and hydroxymethyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen.
Further examples of Trk inhibitors can be found in International Publication No. WO 2014078454, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula I:
or stereoisomers, tautomers, or pharmaceutically acceptable salts, or solvates thereof,
wherein;
X is O, S, NH or N—CN;
Ring A is formula A-1 or A-2
Y is H, halogen, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkyl [optionally substituted with 1-5 fluoros], cyano(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, aminocarbonyl(1-6C)alkyl, (1-6C)alkoxy [optionally substituted with 1-5 fluoros], CN, aminocarbonyl or (1-4C alkoxy)carbonyl;
Ra, Rb and Rc are independently selected from H, halogen, (1-3C)alkyl, (1-3C)alkoxy and CN;
B is NR1, O, a bond, CRdRe, S or SO2;
D is NR1, O, a bond, CRfRg, S or SO2;
E is NR1, O, a bond, or CRhR\S or SO2.
F is CRjRk;
provided that the ring formed by B, D, E, and F together with the atoms to which they are attached contains at least five atoms and zero or one of B, D or E is NR1 or O;
G is CRmRn;
K is NR1; R1 is (1-6C)alkyl [optionally substituted with one to five fluoros], (1-6C)cycloalkyl [optionally substituted with one to five fluoros], (1-3C alkoxy)(2-6C)alkyl [optionally substituted with one to five fluoros], (1-6C)alkylC(═O)— or (1-6C alkoxy)C═O—;
Rd, Re, Rf, Rg, Rh, R\Rj and Rk are independently H, OH, (1-6C)alkyl [optionally substituted with one to five fluoros], (3-6C)cycloalkyl [optionally substituted with one to five fluoros], (1-3C alkoxy)(2-6C)alkyl [optionally substituted with one to five fluoros], hydroxy(2-6C)alkyl [optionally substituted with one to five fluoros], (2-6C)cyanoalkyl, (1-6C)alkoxy optionally substituted with one to five fluoros, or (1-3C alkoxy)(2-6C)alkoxy [optionally substituted with one to five fluoros], or one of a pair of Rd and Re, or Rf and Rg, or Rh and Rl, or R* and Rk, together with the carbon atom to which they are attached form a (3-6C)cycloalkyl, oxetanyl or azetidinyl ring, or one of a pair of Rd and Re, or Rf and R8, or Rh and Rl, or Rj and Rk form an oxo group, and wherein only one of Rd and Re can be OH and neither is OH if B is connected to a heteroatom, and only one of Rf and Rg can be OH and neither is OH if D is connected to a heteroatom, and only one of Rh and R′ can be OH and neither is OH if E is connected to a heteroatom, and only one of Rj and Rk can be OH and neither is OH if F is connected to a heteroatom;
Rm is H, (1-3C)alkyl [optionally substituted with 1-5 fluoros], cyclopropyl or cyclobutyl, and
R″ is H or (1-3C)alkyl [optionally substituted with 1-5 fluoros], or
Rm and Rn together form an oxo group:
Rp is H, (1-6C)alkyl [optionally substituted with one to five fluoros], (3-6C)cycloalkyl [optionally substituted with one to five fluoros], (1-3C alkoxy)(2-6C)alkyl [optionally substituted with one to five fluoros], hydroxy(2-6C)alkyl [optionally substituted with one to five fluoros], or (2-6C)cyanoalkyl;
Ring C is formula C-1 or C-2
R3 is (1-6C)alkyl, hydroxy(1-6C)alkyl, Ar2, hetCyc1, (3-7C)cycloalkyl, or hetAr2;
Ar2 is phenyl optionally substituted with one or more groups independently selected from halogen and (1-6C)alkyl; hetCyc1 is a 5-6-membered saturated or partially unsaturated heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O;
hetAr2 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen:
R4 is OH, (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluro(2-6C)alkyl, pentafluro(2-6C)alkyl, cyano(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, amino(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, (1-3 C)alkylsulfonamido(1-6C)alkyl, sulfamido(1-6C)alkyl, hydroxycarbonyl(1-6C)alkyl, hetAr3(1-6C)alkyl, Ar3(1-6C)alkyl, (0-6C)alkoxy, monofluoro(1-6C)alkoxy, difluoro(1-6C)alkoxy, trifluoro(1-6C)alkoxy, tetrafluoro(2-6C)alkoxy, pentafluoro(2-6C)alkoxy, cyano(1-6C)alkoxy, hydroxy(1-6C)alkoxy, dihydroxy(2-6C)alkoxy, amino(2-6C)alkoxy, hydroxyl-carbonyl(1-6C)alkoxy, hetCyc2(1-6C)alkoxy, hetAr3(1-6C)alkoxy, Ar3(1-6C)alkoxy, (1-4C alkoxy)(1-6C)alkoxy, (1-3C alkylsulfonyl)(1-6C)alkoxy, (3-6C)cycloalkyl [optionally substituted with F, OH, (1-6C alkyl), (1-6C) alkoxy, or (1-3C alkoxy)(1-6C)alkyl], hetAr4, hetAr4—O—, Ar4, hetCyc2(O)CH2—, (1-4C alkoxycarbonyl)(1-6C)alkoxy, hydroxycarbonyl(1-6C)alkoxy, aminocarbonyl(1-6C)alkoxy, hetCyc2C(═O)(1-6C)alkoxy, hydroxy(1-3C alkoxy)(1-6C)alkoxy, hydroxytrifluoro(1-6C)alkoxy, (1-3C)alkylsulfonamido(1-6C)alkoxy, (1-3C)alkylamido(1-6C)alkoxy, di(1-3C alkyl)amino-carboxy, hetCyc2C(═O)O—, hydroxydifluoro(1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, (1-6C)alkoxycarbonyl, hydroxylcarbonyl, aminocarbonyl, (1-3C alkoxy)aminocarbonyl, hetCyc3, halogen, CN, trifluoromethylsulfonyl, N-(1-3C alkyl)oxadiazolonyl, hetAr5 or hetCyc4-0-:
hetCyc is a 4-6 membered heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with 1-2 groups independently selected from (1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, and (1-6C)acyl;
hetCyc3 is a 4-7 membered heterocycle having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with one or more substituents independently selected from F, CN, (1-6C)alkyl, trifluoro(1-6C)alkyl, hydroxy(1-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, (1-6C)acyl-, (1-6C)alkylsulfonyl, trifluoromethylsulfonyl and (1-4C alkoxy)carbonyl; hetAr3 is a 5-membered heteroaryl ring having 1-3 ring atoms independently selected from N, O and S and optionally substituted with (1-6C)alkyl;
Ar3 is phenyl optionally substituted with (1-4C)alkoxy;
hetAr4 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, CN, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, difluoro(1-6C)alkyl, fluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, (1-3C trifluoroalkoxy), fluoro(1-6C alkyl)amino, difluoro(1-6C alkyl)amino, trifluoro(1-6C alkyl)amino, and (3-4C cycloalkyl)amino;
hetAr5 is a group selected from the structures:
where Rz is (3-4C)cycloalkyl or (1-3C)alkyl (optionally substituted with 1-3 fluoros), wherein each of said hetAr5 groups is optionally further substituted with one or more groups independently selected from F and (1-3C)alkyl optionally substituted with 1-3 fluoros;
hetCyc4 is a 7-8 membered bridged heterocycle having a ring nitrogen atom and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen;
Ar1 is phenyl optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—:
R5 is (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, halogen, CN, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-3C alkoxy)(1-4C)alkyl, (1-4C alkyl)OC(═O)—, (1-6C)alkylthio, (3-4C)cycloalkyl, amino, aminocarbonyl, trifluoro(1-3C alkyl)amido, or phenyl (optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy); or R4 and R5 together with the atoms to which they are attached form a 5-6 membered saturated, partially unsaturated or unsaturated carbocyclic ring optionally substituted with one or more substituents independently selected from (1-6C)alkyl, or R4 and R5 together with the atoms to which they are attached form 5-6 membered saturated, partially unsaturated or unsaturated heterocyclic ring having a ring heteroatom selected from N, O or S, wherein said heterocyclic ring is optionally substituted with one or two substituents independently selected from (1-6C alkyl)C(═O)O—, (1-6C)acyl, (1-6C)alkyl and oxo, and said sulfur ring atom is optionally oxidized to S(═O) or SO2;
R3a is halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen;
R4a is hydrogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, phenyl [optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—], or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with 1-2 substituents independently selected from (1-6C)alkyl, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino and (1-3C trifluoroalkoxy)(1-3C)trifluoroalkyl; and
R5a is halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen.
Further examples of Trk inhibitors can be found in International Publication No. WO 2014078417, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula I:
or stereoisomers, tautomers, or pharmaceutically acceptable salts, solvates or prodrugs thereof, wherein;
X is O, S, NH or N—CN;
Ring A is
R1 is phenyl optionally substituted with one or more substituents independently selected from halogen and (1-3C)alkyl;
R2 is (1-3C)alkyl [optionally substituted with 1 to 5 fluoros] or (3-4C)cycloalkyl [optionally substituted with one or two fluoros];
R1 is H or CHs;
Ring C is formula C-1 or C-2
R3 is (1-6C)alkyl, hydroxy(1-6C)alkyl, Ar2, hetCyc1, (3-7C)cycloalkyl, or hetAr2;
Ar2 is phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl;
hetCyc1 is a 5-6-membered saturated or partially unsaturated heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O;
hetAr2 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more substituents independently selected from (1-6C)alkyl and halogen; R4 is hetAr4, hetAr5 or hydroxy(1-6C)alkoxy;
hetAr1 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, CN, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, difluoro(1-6C)alkyl, fluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, (1-3C trifluoroalkoxy), fluoro(1-6C alkyl)amino, difluoro(1-6C alkyl)amino, trifluoro(1-6C alkyl)amino, and (3-4C cycloalkyl)amino;
hetAre is a group selected from the structures:
where Rz is (3-4C)cycloalkyl or (1-3Calkyl (optionally substituted with 1-3 fluoros), wherein each of said hetAr5 groups is optionally further substituted with one or more substituents independently selected from F and (1-3C)alkyl optionally substituted with 1-3 fluoros;
R5 is (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, halogen, CN, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-3(2 alkoxy)(1-4C)alkyl, (1-4C alkyl)OC(═O)—, (1-6C)alkylthio, (3-4C)cycloalkyl, amino, aminocarbonyl, trifluoro(1-3C alkyl)amido, or phenyl (optionally substituted with one or more substituents independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy); or
R4 and R5 together with the atoms to which they are attached form a 5-6 membered saturated, partially unsaturated or unsaturated carbocyclic ring optionally substituted with one or more substituents independently selected from (1-6C)alkyl, or
R4 and R5 together with the atoms to which they are attached form 5-6 membered saturated, partially unsaturated or unsaturated heterocyclic ring having a ring heteroatom selected from N, O or S, wherein said heterocyclic ring is optionally substituted with one or two substituents independently selected from (1-6C alkyl)C(═O)0-, (1-6C)acyl, (1-6C)alkyl and oxo, and said sulfur ring atom is optionally oxidized to S(═O) or SO2; R is hydrogen, halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more substituents independently selected from (1-6C)alkyl and halogen:
R4a is hydrogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, phenyl [optionally substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, CN, CF3, CF3O—, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—], or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with 1-2 substituents independently selected from (1-6C)alkyl, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino and (1-3C trifluoroalkoxy)(1-3C)trifluoroalkyl; and
R5a is hydrogen, halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more substituents independently selected from (1-6C)alkyl and halogen.
Additional examples of Trk inhibitors can be found in International Publication No. WO 2014078408, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula I:
or stereoisomers, tautomers, or pharmaceutically acceptable salts, solvates or prodrugs thereof, wherein;
X is O, S, NH or —N—CN;
Ring A is formula A-1 A-2, A-3 or A-4
R1 is H, halogen, (1-3C)alkyl [optionally substituted with 1-5 fluoros], (1-3C)alkoxy [optionally substituted with 1-5 fluoros], or (3-5C)cycloalkyl;
Y is Ar1 or hetAr1;
Ar1 is phenyl optionally substituted with one or more substituents independently selected from halogen, (1-3C)alkyl [optionally substituted with 1-5 fluoros], and (1-3C)alkoxy [optionally substituted with 1-5 fluoros];
hetAr1 is pyridyl optionally substituted with one or more substituents independently selected from halogen, (1-3C)alkyl [optionally substituted with 1-5 fluoros], and (1-3C)alkoxy [optionally substituted with 1-5 fluoros];
Ring C is formula C-1 or C-2
R1 is (1-6C)alkyl, hydroxy(1-6C)alkyl, Ar1, hetCyc1, (3-7C)cycloalkyl, or hetAr2; Ar is phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl; hetCyc1 is a 5-6-membered saturated or partially unsaturated heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O;
hetAr2 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more substituents independently selected from (1-6C)alkyl and halogen;
R4 is OH, (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluro(2-6C)alkyl, pentafluro(2-6C)alkyl, cyano(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, amino(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, (1-3C)alkylsulfonamido(1-6C)alkyl, sulfamido(1-6C)alkyl, hydroxycarbonyl(1-6C)alkyl, hetAr3(1-6C)alkyl, Ar3(1-6C)alkyl, (1-6C)alkoxy, monofluoro(1-6C)alkoxy, difluoro(1-6C)alkoxy, trifluoro(1-6C)alkoxy, tetrafluoro(2-6C)alkoxy, pentafluoro(2-6C)alkoxy, cyano(1-6C)alkoxy, hydroxy(1-6C)alkoxy, dihydroxy(2-6C)alkoxy, amino(2-6C)alkoxy, hydroxyl-carbonyl(1-6C)alkoxy, hetCyc2(1-6C)alkoxy, hetAr3(1-6C)alkoxy, Ar3(1-6C)alkoxy, (1-4C alkoxy)(1-6C)alkoxy, (1-3C alkylsulfonyl)(1-6C)alkoxy, (3-6C)cycloalkyl [optionally substituted with F, OH, (1-6C alkyl), (1-6C) alkoxy, or (1-3C alkoxy)(1-6C)alkyl], hetAr4, hetAr4-0-, Ar4, hetCyc2(O)CH2—, (1-4C alkoxycarbonyl)(1-6C)alkoxy, hydroxycarbonyl(1-6C)alkoxy, aminocarbonyl(1-6C)alkoxy, hetCyc2C(═O)(1-6C)alkoxy, hydroxy(1-3C alkoxy)(1-6C)alkoxy, hydroxytrifluoro(1-6C)alkoxy, (1-3C)alkylsulfonamido(1-6C)alkoxy, (1-3C)alkylamido(1-6C)alkoxy, di(1-3C alkyl)amino-carboxy, hetCyc2C(═O)0-, hydroxydifluoro(1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, (1-6C)alkoxycarbonyl, hydroxylcarbonyl, aminocarbonyl, (1-3C alkoxy)aminocarbonyl, hetCyc3, halogen, CN, trifluoromethylsulfonyl, N-(1-3C alkyl)oxadiazolonyl, or hetAr5;
hetCyc is a 4-6 membered heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with 1-2 groups independently selected from (1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, and (1-6C)acyl;
hetCyc is a 4-7 membered heterocycle having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with one or more substituents independently selected from F, CN, (1-6C)alkyl, trifluoro(1-6C)alkyl, hydroxy(1-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, (1-6C)acyl-, (1-6C)alkylsulfonyl, trifluoromethylsulfonyl and (1-4C alkoxy)carbonyl;
hetAr3 is a 5-membered heteroaryl ring having 1-3 ring atoms independently selected from N, O and S and optionally substituted with (1-6C)alkyl; AT3 is phenyl optionally substituted with (1-4C)alkoxy;
hetAr4 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, CN, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, difluoro(1-6C)alkyl, fluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, (1-3C trifluoroalkoxy), fluoro(1-6C alkyl)amino, difluoro(1-6C alkyl)amino, trifluoro(1-6C alkyl)amino, and (3-4C cycloalkyl)amino;
hetAr5 is a group selected from the structures:
where Rz is (3-4C)cycloalkyl or (1-3C)alkyl (optionally substituted with 1-3 fluoros), wherein each of said hetAr5 groups is optionally further substituted with one or more substituents independently selected from F and (1-3C)alkyl optionally substituted with 1-3 fluoros;
Ar4 is phenyl optionally substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (0-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—;
R5 is (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, halogen, CN, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-3C alkoxy)(1-4C)alkyl, (0-4C alkyl)OC(═O)—, (1-6C)alkylthio, (3-4C)cycloalkyl, amino, aminocarbonyl, trifluoro(1-3C alkyl)amido, or phenyl (optionally substituted with one or more substituents independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy); or
R4 and R5 together with the atoms to which they are attached form a 5-6 membered saturated, partially unsaturated or unsaturated carbocyclic ring optionally substituted with one or more substituents independently selected from (1-6C)alkyl, or R4 and R5 together with the atoms to which they are attached form 5-6 membered saturated, partially unsaturated or unsaturated heterocyclic ring having a ring heteroatom selected from N, O or S, wherein said heterocyclic ring is optionally substituted with one or two substituents independently selected from (1-6C alkyl)C(═O)0-, (1-6C)acyl, (1-6C)alkyl and oxo, and said sulfur ring atom is optionally oxidized to S(═O) or SO2;
R3a is hydrogen, halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more substituents independently selected from (1-6C)alkyl and halogen;
R4a is hydrogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, phenyl [optionally substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—], or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with 1-2 substituents independently selected from (1-6C)alkyl, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino and (1-31C trifluoroalkoxy)(1-3C)trifluoroalkyl; and
R5a is hydrogen, halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more substituents independently selected from (1-6C)alkyl and halogen.
Further examples of Trk inhibitors can be found in International Publication No. WO 2014078378, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula I:
or stereoisomers, tautomers, or pharmaceutically acceptable salts, solvates or prodrugs thereof, wherein:
Ring B and the NH—C(═X)—NH moiety are in the trans configuration;
Ra, Rb, Rc and Rd are independently selected from H and (1-3C)alkyl, or Rc and Rd are independently selected from H and (1-3C)alkyl, and Ra and Rb together with the atom to which they are attached form a cyclopropyl ring;
X is O, S, NH or N—CN;
R1 is (1-3C alkoxy)(1-6C)alkyl, (trifluoromethoxy)(1-6C)alkyl, (1-3C sulfanyl)(1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluro(2-6C)alkyl, cyano(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-6C)alkyl, (1-3Calkylamino)(1-3C)alkyl, (1-4C alkoxycarbonyl)(1-6C)alkyl, amino(1-6C)alkyl, hydroxy(1-3C alkoxy)(1-6C)alkyl, di(1-3C alkoxy)(1-6C)alkyl, (1-3C alkoxy)trifluoro(1-6C)alkyl, hydroxytrifluoro(1-6C)alkyl, (1-4C alkoxycarbonyl)(1-3C alkoxy)(1-6C)alkyl, or hydroxycarbonyl(1-3C alkoxy)(1-6C)alkyl;
R2 is H, F, or OH;
Ring B is Ar1 or hetAr1;
Ar1 is phenyl optionally substituted with one or more substituents independently selected from halogen, CF3, CF30-, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-6C)alkyl and CN;
hetAr1 is a 5-6 membered heteroaryl having 1-3 ring heteroatoms independently selected from N, S and O, and optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, OH, CF3, NH2 and hydroxy(1-2C)alkyl;
Ring C is selected from formulas C-1 through C-13:
R is H, NH2, CN, halogen, (1-3C)alkyl [optionally substituted with 1 to 3 fluoros],
H2NC(═O)—, (1-3Calkyl)NHC(═O)—, di(1-3Calkyl)NHC(═OK hydroxy(1-3C)alkyl, CH3OCH2CH2, (3-4C)cycloalkyl or (1-3C)alkoxy:
R3a is H, (1-3C)alky, CF3CH2CH2, HCF2CH2CH2, H2FCCH2CH2, CF3CH2, HOCH2CH2, MeOCH2CH2, or (3-4C)cycloalkyl;
R4 is H, OH, (1-6C)alkyl [optionally substituted with 1-5 fluoros], cyano(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, amino(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, (1-3C)alkylsulfonamido(1-6C)alkyl, sulfamido(1-6C)alkyl, hydroxy carbonyl(1-6C)alkyl, hetAr3(1-6C)alkyl, Ar(1-6C)alkyl, (1-6C)alkoxy [optionally substituted with 1-5 fluoros], cyano(1-6C)alkoxy, hydroxy(1-6C)alkoxy, dihydroxy(2-6C)alkoxy, amino(2-6C)alkoxy, hydroxyl-carbonyl(1-6C)alkoxy, hetCyc (1-6C)alkoxy, hetAr3(1-6C)alkoxy, Ar(1-6C)alkoxy, (1-4C alkoxy)(1-6C)alkoxy. (1-3C alkylsulfonyl)(1-6C)alkoxy, (3-6C)cycloalkyl [optionally substituted with F, OH, (1-6C alkyl), (1-6C) alkoxy, or (1-3C alkoxy)(1-6C)alkyl], hetAr4, hetAr4-0-, Ar, hetCyc2(O)CH2—, (1-4C alkoxycarbonyl)(1-6C)alkoxy, hydroxycarbonyl(1-6C)alkoxy, aminocarbonyl(1-6C)alkoxy, hetCyc2C(═O)(1-6C)alkoxy, hydroxy(1-3 C alkoxy)(1-6C)alkoxy, hydroxytrifluoro(1-6C)alkoxy, (1-3C)alkylsulfonamido(1-6C)alkoxy, (1-3C)alkylamido(1-6C)alkoxy, di(1-3C alkyl)amino-carboxy, hetCyc C(═O)O—, hydroxydifluoro(1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, (1-6C)alkoxycarbonyl, hydroxylcarbonyl, aminocarbonyl, (1-3C alkoxy)aminocarbonyl, hetCyc, halogen, CN, trifluoromethylsulfonyl, N-(1-3C alkyl)oxadiazolonyl, or hetAr5;
R4a is H, (1-6C)alkyl, CF3CH2CH2, HCF2CH2CH2, H2FCCH2CH2, CF3CH2, cyano(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, amino(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, (1-3C)alkylsulfonamido(1-6C)alkyl, sulfamido(1-6C)alkyl, hydroxycarbonyl(1-6C)alkyl, hetAr3(1-6C)alkyl, Ar3(1-6C)alkyl, (3-6C)cycloalkyl [optionally substituted with F, OH, (1-6C alkyl), (1-6C) alkoxy, or (1-3 C alkoxy)(1-6C)alkyl], hetAr4, Ar4, hydroxydifluoro(1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, hetCyc3, N-(1-3C alkyl)oxadiazolonyl, or hetAr5;
hetCyc is a 4-6 membered heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with 1-2 groups independently selected from (1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, and (1-6C)acyl;
hetCyc is a 4-7 membered heterocycle having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with one or more substituents independently selected from F. CN, (1-6C)alkyl, trifluoro(1-6C)alkyl, hydroxy(1-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, (1-6C)acyl-, (1-6C)alkylsulfonyl, trifluoromethylsulfonyl and (1-4C alkoxy)carbonyl;
hetAr is a 5-membered heteroaryl ring having 1-3 ring atoms independently selected from N, O and S and optionally substituted with (1-6C)alkyl;
Ar is phenyl optionally substituted with (1-4C)alkoxy;
hetAr4 is independently a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with one or more substituents independently selected from (1-6C)alkyl [optionally substituted with 1-3 fluoros], halogen, CN, hydroxy(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, (1-3C trifluoroalkoxy), fluoro(1-6C alkyl)amino, difluoro(1-6C alkyl)amino, trifluoro(1-6C alkyl)amino, and (3-4C cycloalkyl)amino;
hetAr5 is a group selected from the structures:
where Rz is (3-4C)cycloalkyl or (1-3C)alkyl (optionally substituted with 1-3 fluoros), wherein each of said hetAr5 groups is optionally further substituted with one or more groups independently selected from F and (1-3C)alkyl optionally substituted with 1-3 fluoros:
Ar4 is phenyl optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—;
R5 is H, (1-6C)alkyl [optionally substituted with 1-5 fluoros], halogen, CN, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-3C alkoxy)(1-4C)alkyl, (1-4C alkyl)OC(═O)—, (1-6C)alkylthio, (3-4C)cycloalkyl, amino, aminocarbonyl, trifluoro(1-3C alkyl)amido, or phenyl [optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy];
R5a is H, (1-6C)alkyl, CF3CH2CH2, HCF2CH2CH2, H2FCCH2CH2, CF3CH2, hydroxy(1-4C)alkyl, (1-3C alkoxy)(1-4C)alkyl, (3-4C)cycloalkyl, or phenyl [optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy]:
R is (1-6C)alkyl, (3-6C)cycloalkyl, or phenyl [optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl, (1-6C)alkoxy, (3-4C)cycloalkyl, amino, aminocarbonyl, and trifluoro(1-3C)alkylamido];
R8a and R8b are independently H, halogen, CN, NH2, (1-6C)alkyl [optionally substituted with 1-5 fluoros], (1-6C)alkoxy, (1-3C alkoxy)(1-6C)alkyl, (1-3C alkoxy)(1-6C)alkoxy, (1-6C alkyl)sulfonyl, (3-6C cycloalkyl)sulfonyl, (3-4C)cycloalkyl, amino, (1-6Calkyl)NH—, phenyl [optionally substituted with (1-6C alkyl)SO2-] or hetAr4, wherein only one of R8a and R8b can be phenyl [optionally substituted with (1-6C alkyl)SO2-] or hetAr4;
R9 is H, (1-6C)alkyl, CF3CH2—, CF3CH2CH2—, (1-3Calkoxy)(1-6C)alkyl or (3-4C)cycloalkyl; and
R10 is (3-6C)cycloalkyl or phenyl [optionally substituted with one or more substituents independently selected from halogen, (1-6C)alkyl, (1-6C)alkoxy, (3-4C)cycloalkyl, amino, aminocarbonyl and trifluoro(1-3C alkyl)amido].
Additional examples of Trk inhibitors can be found in International Publication No. WO 2014078372, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula L:
or stereoisomers, tautomers, or pharmaceutically acceptable salts, solvates or prodrugs thereof, wherein:
Ring B and the NH—C(═X)—NH moiety are in the trans configuration;
Ra, Rb, Ro and Rd are independently selected from H and (1-3C)alkyl,
or Rc and Rd are independently selected from H and (1-3C)alkyl, and Ra and Rb together with the atom to which they are attached form a cyclopropyl ring;
X is O, S, NH or N—CN;
R1 is (1-3C alkoxy)(1-6C)alkyl, (trifluoromethoxy)(1-6C)alkyl, (1-3C sulfanyl)(1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluro(2-6C)alkyl, cyano(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-6C)alkyl, (1-3C)alkylamino(1-3C)alkyl, (1-4C) alkoxycarbonyl(1-6C)alkyl, amino(1-6C)alkyl, hydroxy(1-3C alkoxy)(1-6C)alkyl, di(1-3C alkoxy)(1-6C)alkyl, (1-3C alkoxy)trifluoro(1-6C)alkyl, hydroxytrifluoro(1-6C)alkyl, (1-4C alkoxycarbonyl)(1-3C alkoxy)(1-6C)alkyl, or hydroxycarbonyl(1-3C alkoxy)(1-6C)alkyl;
R2 is H, F, or OH;
Ring B is Ar1 or hetAr1;
Ar1 is phenyl optionally substituted with one or more substituents independently selected from halogen, CF3, CF30-, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-6C)alkyl and CN; hetAr1 is a 5-6 membered heteroaryl having 1-3 ring heteroatoms independently selected from N, S and O, and optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, OH, CF3, NH2 and hydroxy(1-2C)alkyl;
Ring C is selected from formulas C-1 through C-9
R is H, halogen, or phenyl [optionally substituted with one or more substituents independently selected from halogen and (1-3C)alkyl];
R7a and R7b are independently H, (1-6C)alkyl, or phenyl [optionally substituted with one or more substituents independently selected from halogen and (1-3C)alkyl], wherein only one of R7a and R7b can be phenyl optionally substituted with one or more substituents independently selected from halogen and (1-3C)alkyl;
R8 is phenyl optionally substituted with one or more substituents independently selected from halogen, (1-3C)alkyl and (3-6C)cycloalkyl;
R9 is H, halogen, (1-6C)alkyl [optionally substituted with one to five fluoros] or (1-6C)alkoxy; and
R10 is H or (1-6C)alkyl.
Further examples of Trk inhibitors can be found in International Publication No. WO 2014078331, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula I-C:
or stereoisomers, tautomers, or pharmaceutically acceptable salts, solvates or prodrugs thereof, wherein;
X is O, S, NH or N—CN;
Ring A is formula A-1 or A-2
wherein the dashed lines are optional double bonds;
n is 0 or 1 when Ring A is formula A-1, and n is 0 when Ring A is formula A-2;
G1, G2 and G3 are independently CRX or N, wherein no more than 2 of G1, G2 and G3 can be N;
each Rx is independently H, halogen, (1-4C)alkyl or (1-4C)alkoxy;
R1 is H, halogen, (1-3C)alkoxy(1-3C)alkyl (optionally substituted with 1-5 fluoros), (1-3C alkyl)sulfanyl(1-3C)alkyl (optionally substituted with 1-5 fluoros), (1-3C)alkyl (optionally substituted with 1-5 fluoros), (1-3C)alkoxy (optionally substituted with 1-5 fluoros), (1-3C alkyl)sulfanyl (optionally substituted with 1-5 fluoros), cyano(1-3C)alkyl (optionally substituted with 1-5 fluoros), hydroxy(1-3C)alkyl (optionally substituted with 1-5 fluoros), (1-4C)alkyl (optionally substituted with 1-5 fluoros), CH3CH2NRy, CF3CH2NR, HCF2CH2NRy, H2CFCH2NRy, CH3NRyCH2, RyRyNCH2CH2, RyRyNCH2CFH, or
RyRyNCH2CF2;
each Ry is independently H or methyl;
when n is 0, R is selected from the group consisting of H, halogen, (1-6C)alkyl
[optionally substituted with 1-5 fluoros], (1-6C)alkoxy [optionally substituted with 1-5 fluoros], (1-3C alkoxy)(1-4C)alkyl, (3-6C cycloalkyl)CH20-, amino(1-3C)alkyl,
CF3CH2NHCH2, HCF2CH2NHCH2, a C5-C8 bridged cycloalkyl, hetCyc3, hetCycaCH2, Cyca, hetAr1 and Ar1, and
when n is 1, R is selected from the group consisting of H, halogen, CF3, F2CH, FCH2, methyl and methoxy,
hetCyc3 is a 4-6 membered heterocyclic ring having a ring heteroatom selected from N, O and S and optionally substituted with 1-3 groups independently selected from OH, F, (1-6C)alkoxy or (1-6C)alkyl [optionally substituted with 1-3 fluoros];
Cyca is a (3-6C)cycloalkyl optionally substituted with (1-4C)alkoxy, (1-4C)alkyl, F or
OH;
hetAr1 is a 5-6 membered heteroaryl having 1-3 ring heteroatoms independently selected from N, S and O, and optionally substituted with 1-2 groups independently selected from (1-6C)alkyl, halogen, OH, CF3, NH2 and hydroxy(1-2C)alkyl;
Ar1 is phenyl optionally substituted with one or more substituents independently selected from halogen, CF3, CF30-, (1-4C)alkoxy, (1-4C)sulfanyl, hydroxy(1-4C)alkyl, (1-6C)alkyl and CN;
Ra is H, (1-3C)alkyl, cyclopropyl, cyclobutyl, or CF3, and
Rb is H, methyl or ethyl,
or Ra and Rb together with the carbon atom to which they are attached form a 3-6 membered cycloalkyl ring;
Rc is H, methyl or ethyl
Rd is CF3CH2CH2, phenyl or phenylCH2— wherein each phenyl ring is optionally substituted with one or more substituents independently selected from halogen, methoxy and methoxymethyl;
Ring C is formula C-1 or C-2
R3 is (1-6C)alkyl, hydroxy(1-6C)alkyl, Ar2, hetCyc1, (3-7C)cycloalkyl, a C5-C8 bridged cycloalkyl, or hetAr2;
Ar2 is phenyl optionally substituted with one or more groups independently selected from halogen and (1-6C)alkyl;
hetCyc1 is a 5-6-membered saturated or partially unsaturated heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O;
hetAr is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen;
R4 is OH, (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluro(2-6C)alkyl, pentafluro(2-6C)alkyl, cyano(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, amino(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, (1-3C)alkylsulfonamido(1-6C)alkyl, sulfamido(1-6C)alkyl, hydroxycarbonyl(1-6C)alkyl, hetAr3(1-6C)alkyl, Ar3(1-6C)alkyl, (1-6C)alkoxy, monofluoro(1-6C)alkoxy, difluoro(1-6C)alkoxy, trifluoro(1-6C)alkoxy, tetrafluoro(2-6C)alkoxy, pentafluoro(2-6C)alkoxy, cyano(1-6C)alkoxy, hydroxy(1-6C)alkoxy, dihydroxy(2-6C)alkoxy, amino(2-6C)alkoxy, hydroxyl-carbonyl(1-6C)alkoxy, hetCyc2(1-6C)alkoxy, hetAr3(1-6C)alkoxy, Ar3(1-6C)alkoxy, (1-4C alkoxy)(1-6C)alkoxy, (1-3C alkylsulfonyl)(1-6C)alkoxy, (3-6C)cycloalkyl [optionally substituted with F, OH, (1-6C alkyl), (1-6C) alkoxy, or (1-3C alkoxy)(1-6C)alkyl], hetAr4, hetAr4—O—, Ar4, hetCyc2(O)CH2—, (1-4C alkoxycarbonyl)(1-6C)alkoxy, hydroxycarbonyl(1-6C)alkoxy, aminocarbonyl(1-6C)alkoxy, hetCyc2C(═O)(1-6C)alkoxy, hydroxy(1-3C alkoxy)(1-6C)alkoxy, hydroxytrifluoro(1-6C)alkoxy, (1-3C)alkylsulfonamido(1-6C)alkoxy, (1-3 C)alkylamido(1-6C)alkoxy, di(1-3C alkyl)amino-carboxy, hetCyc2C(═O)O—, hydroxydifluoro(1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, (1-6C)alkoxycarbonyl, hydroxylcarbonyl, aminocarbonyl, (1-3C alkoxy)aminocarbonyl, hetCyc3, halogen, CN, trifluoromethylsulfonyl, N-(1-3C alkyl)oxadiazolonyl, hetAr, Ar4-0-, hetCyc4-0-, Cyc′-O—, or aminohydroxy(1-6C)alkoxy; hetCyc2 is a 4-6 membered heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with 1-2 groups independently selected from (1-6C)alkyl, 1-4C alkoxy)carbonyl, (1-6C)acyl, halogen and oxo;
hetCyc is a 4-7 membered heterocycle having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with one or more substituents independently selected from F, CN, (1-6C)alkyl, trifluoro(1-6C)alkyl, hydroxy(1-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, (1-6C)acyl-, (1-6C)alkylsulfonyl, trifluoromethylsulfonyl and (1-4C alkoxy)carbonyl;
hetCyc4 is a 5-8 membered monocyclic, spirocyclic or bridged heterocycle having a ring nitrogen atom and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen;
Cyc1 is a 3-6 membered carbocycle optionally substituted with an amino group; hetAr3 is a 5-membered heteroaryl ring having 1-3 ring atoms independently selected from N, O and S and optionally substituted with (1-6C)alkyl;
Ar is phenyl optionally substituted with (1-4C)alkoxy;
hetAr4 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, CN, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, difluoro(1-6C)alkyl, fluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, (1-3C trifluoroalkoxy), fluoro(1-6C alkyl)amino, difluoro(1-6C alkyl)amino, trifluoro(1-6C alkyl)amino, and (3-4C cycloalkyl)amino;
hetAr5 is a group selected from the structures:
where Rz is (3-4C)cycloalkyl or (1-3C)alkyl (optionally substituted with 1-3 fluoros), wherein each of said hetAr5 groups is optionally further substituted with one or more groups independently selected from F and (1-3C)alkyl optionally substituted with 1-3 fluoros;
Ar4 is phenyl optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—:
R5 is (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, halogen, CN, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-3C alkoxy)(1-4C)alkyl, (1-4C alkyl)OC(═O)—, (1-6C)alkylthio, (3-4C)cycloalkyl, amino, aminocarbonyl, trifluoro(1-3C alkyl)amido, or phenyl (optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy); or
R4 and R5 together with the atoms to which they are attached form a 5-6 membered saturated, partially unsaturated or unsaturated carbocyclic ring optionally substituted with one or more substituents independently selected from (1-6C)alkyl, or
R4 and R5 together with the atoms to which they are attached form 5-6 membered saturated, partially unsaturated or unsaturated heterocyclic ring having a ring heteroatom selected from N, O or S, wherein said heterocyclic ring is optionally substituted with one or two substituents independently selected from (1-6C alkyl)C(═O)O—, (1-6C)acyl, (1-6C)alkyl and oxo, and said sulfur ring atom is optionally oxidized to S(═O) or SO2;
R3a is halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen:
R4a is hydrogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, phenyl [optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—], or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with 1-2 substituents independently selected from (1-6C)alkyl, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino and (1-3C trifluoroalkoxy)(1-3C)trifluoroalkyl; and
R5a is halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen.
Additional examples of Trk inhibitors can be found in International Publication No. WO 2014078328, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula I-1:
or stereoisomers, tautomers, or pharmaceutically acceptable salts, solvates or prodrugs thereof, wherein:
Ring A is selected from formulas A-1, A-2, A-3 or A-4:
R1 is H, halogen, (1-3C)alkoxy(1-3C)alkyl [optionally substituted with 1-5 fluoros], (1-3C alkyl)sulfanyl(1-3C)alkyl [optionally substituted with 1-5 fluoros], (1-3C)alkoxy [optionally substituted with 1-5 fluoros], (1-3C alkyl)sulfanyl [optionally substituted with 1-5 fluoros], cyano(1-3C)alkyl [optionally substituted with 1-5 fluoros], hydroxy(1-3C)alkyl [optionally substituted with 1-5 fluoros]. (1-4C)alkyl [optionally substituted with 1-5 fluoros], CH3CH2NRa, CF3CH2NRa, HCF2CH2NRa. H2CFCH2NRa, CH3NRaCH2, R{circumflex over ( )}{circumflex over ( )}CH2CHs or R{circumflex over ( )}{circumflex over ( )}CH2CFz;
each Ra is independently H or methyl;
Rx and Ry are independently selected from H, halogen, (1-3C)alkyl [optionally substituted with 1-5 fluoros] or (1-3C)alkoxy [optionally substituted with 1-5 fluoros];
n is 0, 1 or 2;
m is 0, 1 or 2;
X is O, S, NH or N—CN;
Ring C is formula C-1 or C-2
R3 is (1-6C)alkyl, hydroxy(1-6C)alkyl, Ar2, hetCyc1, (3-7C)cycloalkyl, or hetAr2;
Ar is phenyl optionally substituted with one or more groups independently selected from halogen and (1-6C)alkyl;
hetCyc1 is a 5-6-membered saturated or partially unsaturated heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O;
hetAr is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen:
R4 is OH, (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluro(2-6C)alkyl, pentafluro(2-6C)alkyl, cyano(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, amino(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, (1-3C)alkylsulfonamido(1-6C)alkyl, sulfamido(1-6C)alkyl, hydroxycarbonyl(1-6C)alkyl, hetAr3(1-6C)alkyl, Ar3(1-6C)alkyl, (1-6C)alkoxy, monofluoro(1-6C)alkoxy, difluoro(1-6C)alkoxy trifluoro(1-6C)alkoxy, tetrafluoro(2-6C)alkoxy, pentafluoro(2-6C)alkoxy, cyano(1-6C)alkoxy, hydroxy(1-6C)alkoxy, dihydroxy(2-6C)alkoxy, amino(2-6C)alkoxy, hydroxyl-carbonyl(1-6C)alkoxy, hetCyc2(1-6C)alkoxy, hetAr3(1-6C)alkoxy, Ar3(1-6C)alkoxy, (1-4C alkoxy)(1-6C)alkoxy, (1-3C alkylsulfonyl)(1-6C)alkoxy, (3-6C)cycloalkyl [optionally substituted with F, OH, (1-6C alkyl), (1-6C) alkoxy, or (1-3C alkoxy)(1-6C)alkyl], hetAr4, hetAr4-0-, Ar, hetCyc2(O)CH2—, (1-4C alkoxycarbonyl)(1-6C)alkoxy, hydroxycarbonyl(1-6C)alkoxy, aminocarbonyl(1-6C)alkoxy, hetCyc2C(═O)(1-6C)alkoxy, hydroxy(1-3C alkoxy)(1-6C)alkoxy, hydroxytrifluoro(1-6C)alkoxy, (1-3C)alkylsulfonamido(1-6C)alkoxy, (1-3C)alkylamido(1-6C)alkoxy, di(1-3C alkyl)amino-carboxy, hetCyc2C(═O)O—, hydroxydifluoro(1-6C)alkyl, (I-4C alkylcarboxy)(1-6C)alkyl, (1-6C)alkoxycarbonyl, hydroxylcarbonyl, aminocarbonyl, (1-3C alkoxy)aminocarbonyl, hetCyc3, halogen, CN, trifluoromethylsulfonyl, N-(1-3C alkyl)oxadiazolonyl, or hetAr;
hetCyc is a 4-6 membered heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with 1-2 groups independently selected from (1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, and (1-6C)acyl; hetCyc is a 4-7 membered heterocycle having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with one or more substituents independently selected from F, CN, (1-6C)alkyl, trifluoro(1-6C)alkyl, hydroxy(1-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, (1-6C)acyl-, (1-6C)alkylsulfonyl, trifluoromethylsulfonyl and (1-4C alkoxy)carbonyl; hetAr3 is a 5-membered heteroaryl ring having 1-3 ring atoms independently selected from N, O and S and optionally substituted with (1-6C)alkyl;
Ar3 is phenyl optionally substituted with (1-4C)alkoxy;
hetAr4 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, CN, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, difluoro(1-6C)alkyl, fluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy. (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, (1-3C trifluoroalkoxy), fluoro(1-6C alkyl)amino, difluoro(1-6C alkyl)amino, trifluoro(1-6C alkyl)amino, and (3-4C cycloalkyl)amino;
hetAr5 is a group selected from the structures:
where Rz is (3-4C)cycloalkyl or (1-3C)alkyl (optionally substituted with 1-3 fluoros), wherein each of said hetAr5 groups is optionally further substituted with one or more groups independently selected from F and (1-3C)alkyl optionally substituted with 1-3 fluoros;
Ar4 is phenyl optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—;
R5 is (0-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, halogen, CN, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-3C alkoxy)(1-4C)alkyl, (1-4C alkyl)OC(═O)—, (1-6C)alkylthio, (3-4C)cycloalkyl, amino, aminocarbonyl, trifluoro(1-3C alkyl)amido, or phenyl (optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy); or
R4 and R5 together with the atoms to which they are attached form a 5-6 membered saturated, partially unsaturated or unsaturated carbocyclic ring optionally substituted with one or more substituents independently selected from (1-6C)alkyl, or R4 and R5 together with the atoms to which they are attached form 5-6 membered saturated, partially unsaturated or unsaturated heterocyclic ring having a ring heteroatom selected from N, O or S, wherein said heterocyclic ring is optionally substituted with one or two substituents independently selected from (1-6C alkyl)C(-0)0-, (1-6C)acyl, (1-6C)alkyl and oxo, and said sulfur ring atom is optionally oxidized to S(═O) or SO2;
R3a is halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen;
R4a is (1-6C)alkyl, trifluoro(1-6C)alkyl, phenyl optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—], or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with 1-2 substituents independently selected from (1-6C)alkyl, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino and (1-3C trifluoroalkoxy)(1-3C)trifluoroalkyl; and
R5a is halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen.
Further examples of Trk inhibitors can be found in International Publication No. WO 2014078325, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula I:
or a stereoisomer, tautomer, or pharmaceutically acceptable salt, solvate or prodrug thereof, wherein:
Ring A is formula A-1, A-2, A-3, A-4, A-5 or A-6
m is 0, 1, 2, 3 or 4;
n is 0, 1, 2 or 3;
p is 0, 1 or 2;
R1 is formula R1-1, R1-2 or R1-3
Y1 is CH3CH2—, CF3CH2—, CH30-, F3CO—, F2CHO—, FCH20-, CH3S—, F3CS—, F2CHS—, or FCH2S—;
Y2 is O, S, NH, MeN— or CH2;
Y3 is CH3O—, CH3S—, MeNH— or Me2N—;
Y4 is CH2 and Y5 is S or O, or Y4 is S or O and Y is CH2;
R2 is halogen, (1-3C)alkyl (optionally substituted with 1-3 fluoros), (1-3C)alkoxy (optionally substituted with 1-3 fluoros), CH3OCH2— (optionally substituted with 1-3 fluoros), (1-3C alkyl)sulfanyl, di(1-3C)alkylamino, cyclopropyl, cyclobutyl or azetidinyl, wherein each of said cyclopropyl, cyclobutyl and azetidinyl is optionally substituted with 1 to 2 fluoros;
X is O, S, NH or N—CN;
Ring C is formula C-1 or C-2
R3 is (1-6C)alkyl, hydroxy(1-6C)alkyl, Ar2, hetCyc1, (3-7C)cycloalkyl, or hetAr2;
Ar2 is phenyl optionally substituted with one or more groups independently selected from halogen and (1-6C)alkyl;
hetCyc1 is a 5-6-membered saturated or partially unsaturated heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O;
hetAr2 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen:
R4 is H, OH, (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluro(2-6C)alkyl, pentafluro(2-6C)alkyl, cyano(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, amino(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, (1-3C)alkylsulfonamido(1-6C)alkyl, sulfamido(1-6C)alkyl, hydroxycarbonyl(1-6C)alkyl, hetAr3(1-6C)alkyl, Ar3(1-6C)alkyl, (1-6C)alkoxy, monofluoro(1-6C)alkoxy, difluoro(1-6C)alkoxy trifluoro(1-6C)alkoxy, tetrafluoro(2-6C)alkoxy, pentafluoro(2-6C)alkoxy cyano(1-6C)alkoxy, hydroxy(1-6C)alkoxy, dihydroxy(2-6C)alkoxy, amino(2-6C)alkoxy, hydroxyl-carbonyl(1-6C)alkoxy, hetCyc2(1-6C)alkoxy, hetAr3(1-6C)alkoxy, Ar3(1-6C)alkoxy, (1-4C alkoxy)(1-6C)alkoxy, (1-3C alkylsulfonyl)(1-6C)alkoxy, (3-6C)cycloalkyl [optionally substituted with F, OH, (1-6C alkyl), (1-6C) alkoxy, or (1-3C alkoxy)(1-6C)alkyl], hetAr4, hetAr4-0-, Ar4, hetCyc2(O)CH2—, (1-4C alkoxycarbonyl)(1-6C)alkoxy, hydroxycarbonyl(1-6C)alkoxy, aminocarbonyl(1-6C)alkoxy, hetCyc2C(═O)(1-6C)alkoxy, hydroxy(1-3C alkoxy)(1-6C)alkoxy, hydroxytrifluoro(1-6C)alkoxy, (1-3C)alkylsulfonamido(1-6C)alkoxy, (1-3C)alkylamido(1-6C)alkoxy, di(1-3C alkyl)amino-carboxy, hetCyc C(═O)O—, hydroxydifluoro(1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, (1-6C)alkoxycarbonyl, hydroxylcarbonyl, aminocarbonyl, (1-3C alkoxy)aminocarbonyl, hetCyc, halogen, CN, trifluoromethylsulfonyl, N-(1-3C alkyl)oxadiazolonyl, or hetAr;
hetCyc2 is a 4-6 membered heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with 1-2 groups independently selected from (1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, (1-6C)acyl and halogen;
hetCyc3 is a 4-7 membered heterocycle having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with one or more substituents independently selected from F, CN, (1-6C)alkyl, trifluoro(1-6C)alkyl, hydroxy(1-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, (1-6C)acyl-, (1-6C)alkylsulfonyl, trifluoromethylsulfonyl and (1-4C alkoxy)carbonyl;
hetAr3 is a 5-membered heteroaryl ring having 1-3 ring atoms independently selected from N, O and S and optionally substituted with (1-6C)alkyl;
Ar is phenyl optionally substituted with (1-4C)alkoxy;
hetAr4 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, CN, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, difluoro(1-6C)alkyl, fluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, (1-3C trifluoroalkoxy), fluoro(1-6C alkyl)amino, difluoro(1-6C alkyl)amino, trifluoro(1-6C alkyl)amino, and (3-4C cycloalkyl)amino;
hetAr5 is a group selected from the structures:
where R7 is (3-4C)cycloalkyl or (1-3C)alkyl (optionally substituted with 1-3 fluoros), wherein each of said hetAr5 groups is optionally further substituted with one or more groups independently selected from F and (1-3C)alkyl optionally substituted with 1-3 fluoros; AT4 is phenyl optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—;
R5 is (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, halogen, CN, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-3C alkoxy)(1-4C)alkyl, (1-4C alkyl)OC(═O)—, (1-6C)alkylthio, (3-4C)cycloalkyl, amino, aminocarbonyl, trifluoro(1-3C alkyl)amido, or phenyl (optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy); or
R4 and R5 together with the atoms to which they are attached form a 5-6 membered saturated, partially unsaturated or unsaturated carbocyclic ring optionally substituted with one or more substituents independently selected from (1-6C)alkyl, or
R4 and R5 together with the atoms to which they are attached form 5-6 membered saturated, partially unsaturated or unsaturated heterocyclic ring having a ring heteroatom selected from N, O or S, wherein said heterocyclic ring is optionally substituted with one or two substituents independently selected from (1-6C alkyl)C(═O)O—, (1-6C)acyl, (1-6C)alkyl and oxo, and said sulfur ring atom is optionally oxidized to S(═O) or SO2;
R3a is halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen:
R4a is (1-6C)alkyl, trifluoro(1-6C)alkyl, phenyl [optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—], or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with 1-2 substituents independently selected from (1-6C)alkyl, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino and (1-3C trifluoroalkoxy(1-3 C)trifluoroalkyl; and Ra is (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen.
Additional examples of Trk inhibitors can be found in International Publication No. WO 2014078323, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula I:
or stereoisomers, tautomers, or pharmaceutically acceptable salts, solvates or prodrugs thereof, wherein:
Ring B and the NH—C(═X)—NH moiety are in the trans configuration;
Ra, Rb, Rc and Rd are independently selected from H and (1-3C)alkyl,
or Ro and Rd are independently selected from H and (1-3C)alkyl, and Ra and Rb together with the atom to which they are attached form a cyclopropyl ring;
X is O, S, NH, or N—CN;
R1 is (1-3C alkoxy)(1-6C)alkyl, (trifluoromethoxy)(1-6C)alkyl, (1-3C sulfanyl)(1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluro(2-6C)alkyl, cyano(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-6C)alkyl, (1-3Calkylamino)(1-3C)alkyl, (1-4C alkoxycarbonyl)(1-6C)alkyl, amino(1-6C)alkyl, hydroxy(1-3C alkoxy)(1-6C)alkyl, di(1-3C alkoxy)(1-6C)alkyl, (1-3C alkoxy)trifluoro(1-6C)alkyl, hydroxytrifluoro(1-6C)alkyl, (1-4C alkoxycarbonyl)(1-3C alkoxy)(1-6C)alkyl or hydroxycarbonyl(1-3C alkoxy)(1-6C)alkyl;
R2 is H, F, or OH;
Ring B is Ar1 or hetAr1;
Ar1 is phenyl optionally substituted with one or more substituents independently selected from halogen, CF3, CF30-, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-6C)alkyl and CN; hetAr1 is a 5-6 membered heteroaryl having 1-3 ring heteroatoms independently selected from N, S and O, and optionally substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, OH, CF3, NH2 and hydroxy(1-2C)alkyl;
Ring C is
R3 is H, (1-6C)alkyl, hydroxy(1-6C)alkyl, Ar2, hetCyc1, (3-7C)cycloalkyl, hetAr2, or a C5-C8 bridged carbocyclic ring;
Ar2 is phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl;
hetCyc1 is a 5-6-membered saturated or partially unsaturated heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O;
hetAr2 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more substituents independently selected from (1-6C)alkyl and halogen;
R4 is selected fro -6C alkyl)SO2—, (1-6C alkyl)C(═O)— and from the structures:
Rm is (1-3C)alkyl substituted with 1-3 fluoros, or (3-4C)cycloalkyl;
Rn is (1-3C)alkyl;
Rq is (1-3C)alkyl optionally substituted with 1-3 fluoros;
Rx is (1-6C)alkyl, halogen, CN, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2—, (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, trifluoro(1-3C)alkoxy or trifluoro(1-6C)alkyl;
n is, 1, 2,3 or 4;
m is 0, 1, 2 or 3;
Ry is F or (1-3C)alkyl optionally substituted with 1-3 fluoros;
p is 0, 1 or 2;
Rz is (3-4C)cycloalkyl, or (1-3C)alkyl optionally substituted with 1-3 fluoros; and R5 is H, (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, halogen, CN, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-3C alkoxy)(1-4C)alkyl, (1-4C alkyl)OC(═O)—, (1-6C)alkylsulfanyl, phenyl [optionally substituted with one or more substituents independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy], (3-4C)cycloalkyl, amino, aminocarbonyl, or trifluoro(1-3 C alkyl)amido.
Additional examples of Trk inhibitors can be found in International Publication No. WO 2014078322, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula L:
or stereoisomers, tautomers, or pharmaceutically acceptable salts, solvates or prodrugs thereof, wherein;
X is O, S, NH or N—CN:
Ring A is
D is O or S;
R1 is phenyl optionally substituted with one or more substituents independently selected from halogen and (1-3C)alkyl;
R is (1-6C)alkyl [optionally substituted with 1 to 5 fluoros] or (3-6C)cycloalkyl [optionally substituted with one or two fluoros];
Ring C is formula C-1 or C-2
R3 is (1-6C)alkyl, hydroxy(1-6C)alkyl, Ar2, hetCyc1, (3-7C)cycloalkyl, or hetAr2;
Ar is phenyl optionally substituted with one or more groups independently selected from halogen and (1-6C)alkyl;
hetCyc1 is a 5-6-membered saturated or partially unsaturated heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O; hetAr2 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen;
R4 is H, OH, (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluro(2-6C)alkyl, pentafluro(2-6C)alkyl, cyano(1-6C)alkyl, hydroxy(1-6C)alkyl, dihydroxy(2-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, amino(1-6C)alkyl, aminocarbonyl(1-6C)alkyl, (1-3C)alkylsulfonamido(1-6C)alkyl, sulfamido(1-6C)alkyl, hydroxycarbonyl(1-6C)alkyl, hetAr3(1-6C)alkyl, Ar3(1-6C)alkyl, (1-6C)alkoxy, monofluoro(1-6C)alkoxy, difluoro(1-6C)alkoxy, trifluoro(1-6C)alkoxy, tetrafluoro(2-6C)alkoxy, pentafluoro(2-6C)alkoxy, cyano(1-6C)alkoxy, hydroxy(1-6C)alkoxy, dihydroxy(2-6C)alkoxy, amino(2-6C)alkoxy, hydroxyl-carbonyl(1-6C)alkoxy, hetCyc2(1-6C)alkoxy, hetAr3(1-6C)alkoxy, Ar3(1-6C)alkoxy, (1-4C alkoxy)(1-6C)alkoxy, (1-3C alkylsulfonyl)(1-6C)alkoxy, (3-6C)cycloalkyl [optionally substituted with F. OH, (1-6C alkyl), (1-6C) alkoxy, or (1-3C alkoxy)(1-6C)alkyl], hetAr4, hetAr4—O—, Ar, hetCyc2(O)CH2—, (1-4C alkoxycarbonyl)(1-6C)alkoxy, hydroxycarbonyl(1-6C)alkoxy, aminocarbonyl(1-6C)alkoxy, hetCyc2C(═O)(1-6C)alkoxy, hydroxy(1-3C alkoxy)(1-6C)alkoxy, hydroxytrifluoro(1-6C)alkoxy, (1-3 C)alkylsulfonamido(1-6C)alkoxy, (1-3 C)alkylamido(1-6C)alkoxy, di(1-3C alkyl)amino-carboxy, hetCyc2C(═O)O—, hydroxydifluoro(1-6C)alkyl, (I-4C alkylcarboxy)(1-6C)alkyl, (1-6C)alkoxycarbonyl, hydroxylcarbonyl, aminocarbonyl, (1-3C alkoxy)aminocarbonyl, hetCyc halogen, CN, trifluoromethylsulfonyl, N-(1-3C alkyl)oxadiazolonyl, or hetAr5;
hetCyc2 is a 4-6 membered heterocyclic ring having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with 1-2 groups independently selected from (1-6C)alkyl, (1-4C alkylcarboxy)(1-6C)alkyl, and (1-6C)acyl; hetCyc is a 4-7 membered heterocycle having 1-2 ring heteroatoms independently selected from N and O and optionally substituted with one or more substituents independently selected from F. CN, (1-6C)alkyl, trifluoro(1-6C)alkyl, hydroxy(1-6C)alkyl, (1-3C alkoxy)(1-6C)alkyl, (1-6C)acyl-, (1-6C)alkylsulfonyl, trifluoromethylsulfonyl and (1-4C alkoxy)carbonyl;
hetAr is a 5-membered heteroaryl ring having 1-3 ring atoms independently selected from N, O and S and optionally substituted with (1-6C)alkyl;
Ar is phenyl optionally substituted with (1-4C)alkoxy;
hetAr4 is a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with one or more substituents independently selected from (1-6C)alkyl, halogen, CN, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, difluoro(1-6C)alkyl, fluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino, (1-31C trifluoroalkoxy), fluoro(1-6C alkyl)amino, difluoro(1-6C alkyl)amino, trifluoro(1-6C alkyl)amino, and (3-4C cycloalkyl)amino;
hetAr5 is a group selected from the structures:
where Rz is (3-4C)cycloalkyl or (1-3C)alkyl (optionally substituted with 1-3 fluoros), wherein each of said hetAr5 groups is optionally further substituted with one or more groups independently selected from F and (1-3C)alkyl optionally substituted with 1-3 fluoros;
Ar4 is phenyl optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6C alkyl)OC(O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—;
R5 is (1-6C)alkyl, monofluoro(1-6C)alkyl, difluoro(1-6C)alkyl, trifluoro(1-6C)alkyl, tetrafluoro(2-6C)alkyl, pentafluoro(2-6C)alkyl, halogen, CN, (1-4C)alkoxy, hydroxy(1-4C)alkyl, (1-3C alkoxy)(1-4C)alkyl, (1-4C alkyl)OC(═O)—, (1-6C)alkylthio, (3-4C)cycloalkyl, amino, aminocarbonyl, trifluoro(1-3C alkyl)amido, or phenyl (optionally substituted with one or more groups independently selected from halogen, (1-6C)alkyl and (1-6C)alkoxy); or
R4 and R5 together with the atoms to which they are attached form a 5-6 membered saturated, partially unsaturated or unsaturated carbocyclic ring optionally substituted with one or more substituents independently selected from (1-6C)alkyl, or
R4 and R5 together with the atoms to which they are attached form 5-6 membered saturated, partially unsaturated or unsaturated heterocyclic ring having a ring heteroatom selected from N, O or S, wherein said heterocyclic ring is optionally substituted with one or two substituents independently selected from (1-6C alkyl)C(═O)O—, (1-6C)acyl, (1-6C)alkyl and oxo, and said sulfur ring atom is optionally oxidized to S(═O) or SO2; 3a is hydrogen, halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen:
R4a is hydrogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, phenyl [optionally substituted with one or more groups independently selected from (1-6C)alkyl, halogen, CN, CF3, CF30-, (1-6C)alkoxy, (1-6Calkyl)OC(═O)—, aminocarbonyl, (1-6C)alkylthio, hydroxy(1-6C)alkyl, (1-6C alkyl)SO2—, HOC(═O)— and (1-3C alkoxy)(1-3C alkyl)OC(═O)—], or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, S and O and optionally substituted with 1-2 substituents independently selected from (1-6C)alkyl, hydroxy(1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, (3-6C cycloalkyl)CH2— (3-6C cycloalkyl)C(═O)—, (1-3C alkoxy)(1-6C)alkyl, (1-6C)alkoxy, (1-6C)alkylsulfonyl, NH2, (1-6C alkyl)amino, di(1-6C alkyl)amino and (1-3C trifluoroalkoxy)(1-3C)trifluoroalkyl; and
R5a is hydrogen, halogen, (1-6C)alkyl, trifluoro(1-6C)alkyl, (3-6C)cycloalkyl, phenyl optionally substituted with one or more substituents independently selected from halogen and (1-6C)alkyl, or a 5-6 membered heteroaryl ring having 1-3 ring heteroatoms independently selected from N, O and S and optionally substituted with one or more groups independently selected from (1-6C)alkyl and halogen.
Further examples of Trk inhibitors can be found in International Publication No. WO 2015175788, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound 1-((3S,4R)-4-(3-fluorophenyl)-1-(2-methoxyethyl)pyrrolidin-3-yl)-3-(4-methyl-3-(2-methylpyrimidin-5-yl)-1-phenyl-1H-pyrazol-5-yl)urea, or a pharmaceutically acceptable salt thereof. In some embodiments, the compound is a chloride salt.
Exemplary Trk inhibitors include AR-772, AR-786, AR-256, and AR-618.
Non-limiting examples of Trk inhibitors can be found in U.S. Pat. No. 8,299,057 and International Publication No. WO 2009/013126 both of which are incorporated by reference in their entireties. For example, a Trk inhibitor can be a compound of Formula (I):
wherein;
X is —CH2—, —CH(OH)—, —CH(OR′)— or —C(R′R″)—, wherein:
R′ is C1-C6 alkyl and R″ is hydrogen;
Ar is phenyl, pyrazolyl or pyridyl optionally substituted with one or more substituents independently selected from halogen, nitro, COR4, OR7, NR5R6, NHSO2R10, a straight or branched C1-C6 alkyl optionally substituted by a heterocyclyl, in its turn optionally substituted by a straight or branched C1-C6 alkyl or an heterocyclylalkyl, or a heterocyclyl optionally substituted by a straight or branched C1-C6 alkyl, in its turn optionally substituted by a heterocyclyl or a C1-C6 alkoxycarbonyl, or a C1-C6 dialkylamino:
R4 is NR5R6, or a heterocyclyl, optionally further substituted by a straight or branched C1-C6 alkyl, heterocyclylalkyl, heterocyclyl or a C1-C6 dialkylamino;
R5 and R6 are independently hydrogen, R8R9N—C2-C6 alkyl, R8O—C2-C6alkyl, a straight or branched C1-C6 alkyl optionally further substituted by C1-C6 alkoxy, C1-C6 dialkylamino, halogen, phenyl, hydroxyl or heterocyclyl in its turn optionally substituted by alkyl, C3-C6 cycloalkyl optionally substituted by hydroxyl or trifluoro C1-C6 alkyl, heterocyclyl optionally substituted by C1-C6 alkyl in its turn optionally substituted by halogen or heterocyclyl, C1-C6alkoxycarbonyl, C1-C6 dialkylamino, heterocyclyl, or phenyl,
or R5 and R6, taken together with the nitrogen atom to which they are bonded, may form a heterocyclyl group optionally substituted by a straight or branched C1-C6 alkyl, in its turn optionally substituted by a heterocyclyl or a C1-C6 alkoxycarbonyl, a C1-C6 dialkylamino or a heterocyclyl;
R7 is straight or branched C1-C6alkyl, optionally substituted by C1-C6dialkylamino or heterocyclyl in its turn substituted by C1-C6alkyl;
R8 and R9 are independently an optionally further substituted straight or branched C1-C6 alkyl;
R10 is an optionally further substituted straight or branched C1-C6 alkyl;
R is phenyl or pyridyl optionally substituted halogen or straight or branched C1-C6 alkyl;
R1, R2 and R3 are hydrogen;
or optical isomers, tautomers or pharmaceutically acceptable salt thereof.
For example, a Trk inhibitor can be entrectinib (N-[5-(3,5difluoro-benzyl)-1H-indazol-3-yl]-4-(4-methyl-piperazin-1-yl)-2-(tetrahydro-pyran-4-ylamino)-benzamide), or a pharmaceutically acceptable salt thereof. For example, a Trk inhibitor can be a polymorph such as those described in U.S. Publication No. 2015/0051222 or International Publication No. WO 2013/174876, both of which are incorporated by reference in their entireties herein. In some embodiments, a Trk inhibitor can be any disclosed in U.S. Publication No. 2015/0283132, International Publication No. WO 2015/124697, U.S. Pat. No. 8,946,226, International Publication No. WO 2010/012733. U.S. Pat. No. 8,912,194, and International Publication No. WO 2010/058006, all of which are incorporated by reference in their entireties herein.
Additional examples of Trk inhibitors can be found in International Publication No. WO 2015/017533, which is incorporated by reference in its entirety herein.
Further examples of Trk inhibitors can be found in International Publication No. WO 2015/112806, which is incorporated by reference in its entirety herein. For example, a Trk inhibitor can be a compound of Formula (I-A):
or a pharmaceutically acceptable salt thereof, wherein:
Ring A′ and Ring B′ are each independently a monocyclic or bicyclic aryl or heteroaryl; wherein one of Ring A′ and Ring B′ is a monocyclic aryl or heteroaryl and the other is a bicyclic heteroaryl; and at least one of Ring A′ and Ring B′ comprises at least one nitrogen ring member;
each L1 and L2 is independently —C(R1′)(R2′)—, —O—, —N(R′)—, —S—, —S(O)— or —S(O)2; each R1 and R2 are independently H, deuterium, halogen, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C3-6cycloalkyl, 3- to 7-membered heterocycloalkyl, C6-10 aryl, or mono- or bicyclic heteroaryl, —ORa′, —OC(O)Ra′, —OC(O)NRa′Rb′, —OS(O)Ra′, —OS(O)2Ra′, —SRa′, —S(O)Ra′, —S(O)2Ra′, —S(O)NRa′Rb′, —S(O)2NRa′Rb′, —OS(O)NRa′Rb′, —OS(O)2NRa′Rb′, —NRaRb′, —NRa′C(O)Rb′, —NRa′C(O)ORb′, —NRa′C(O)NRa′Rb′, —NRa′S(O)Rb′, —NRa′S(O)2Rb′, —NRa′S(O)NRa′Rb′, —NRa′S(O)2NRa′Rb′, —C(O)Ra′, —C(O)ORa′, —C(O)NRa′Rb′, —PRa′Rb′, —P(O)Ra′Rb′, —P(O)2Ra′Rb′, —P(O)NRa′Rb′, —P(O)2NRa—Rb′, —P(O)ORa′, —P(O)2ORa′, —CN, or —N02; or R1′ and R2′ taken together with the carbon or carbons to which they are attached form a C3-6cycloalkyl or a 4- to 6-membered heterocycloalkyl, wherein each hydrogen atom in C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C3-6cycloalkyl, 3- to 7-membered heterocycloalkyl, C6-10 aryl, mono- or bicyclic heteroaryl, 4- to 6-membered heterocycloalkyl is independently optionally substituted by deuterium, halogen, C1-6alkyl, C1-6haloalkyl, —ORe′, —OC(O)Re′, —OC(O)NRe′Rf′, —OS(O)Re′, —OS(O)2Re′, —OS(O)NRe′Rf′, —OS(O)2NReRf, —SRe′, —S(O)Re′, —S(O)2Re′, —S(O)NRe′Rf′, —S(O)2NRe′Rf′, —NRe′Rf′, —NRe′C(O)Rf′, —NRe′C(O)ORf′, —NRe′C(O)NRe′Rf′, —NRe′S(O)Rf′, —NRe′S(O)2Rf′, —NRe′S(O)NRe′Rf′, —NRe′S(O)2NRe′Rf′, —C(O)Re″, —C(O)ORe′, —C(O)NRe′Rf′, —PRe′Rf′, —P(O)Re′Rf′, —P(O)2Re′Rf′, —P(O)NRe′Rf′, —P(O)2NRe′Rf′, —P(O)ORe′, —P(O)2ORe′, —CN, or —NO2;
each Rk′ is independently H, deuterium, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C3-6cycloalkyl, 3- to 7-membered heterocycloalkyl, C6-10 aryl, or mono- or bicyclic heteroaryl, wherein each hydrogen atom in C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C3-6cycloalkyl, 3- to 7-membered heterocycloalkyl, C6-10 aryl, or mono- or bicyclic heteroaryl is independently optionally substituted by deuterium, halogen, C1-6alkyl, C1-6haloalkyl, —Ore′, —OC(O)Re′, —OC(O)NRe′Rf′, —OS(O)Re′, —OS(O)2Re′, —OS(O)NRe′Rf′, —OS(O)2NRe′Rf′, —SRe′, —S(O)Re′, —S(O)2Re′, —S(O)NRe′Rf′, —S(O)2NRe′Rf′, —NRe′Rf′, —NRe′C(O)Rf′, —NRe′C(O)ORf′, —NRe′C(O)NRe′Rf′, —NRe′S(O)Rf′, —NRe′S(O)2Rf′, —NRe′S(O)NRe′Rf′, —NRe′S(O)2NRe′Rf′, —C(O)Re′, —C(O)ORe′, —C(O)NRe′Rf′, —PRe′Rf′, —P(O)Re′Rf′, —P(O)2Re′Rf′, —P(O)NRe′Rf′, —P(O)2NRe′Rf′, —P(O)ORe′, —P(O)2ORe′, —CN, or —NO2;
each R3′ and R4′ is independently deuterium, halogen, —ORe′, —OC(O)Re′, —OC(O)NRc′Rd′, —OC(═N)NRc′Rd′, —OS(O)Rc′, —OS(O)2Rc′, —OS(O)NRc′Rd′, —OS(O)2NRc′Rd′, —SRc′, —S(O)Rc′, —S(O)2Rc′, —S(O)NRc′Rd′, —S(O)2NRc′Rd′, —NRc′Rd′, —NRc′C(O)Rd′, —NRc′C(O)ORd′, —NRc′C(O)NRc′Rd′, —NRc′C(═N)NRc′Rd′, —NRc′S(O)Rd′, —NRc′S(O)2Rd′, —NRc′S(O)NRc′Rd′, —NRc′S(O)?NRc′Rd′, —C(O)Rc′, —C(O)ORc′, —C(O)NRc′Rd′, —C(═N)NRc′Rd′, —PRc′Rd′, —P(O)Rc′Rc′, —P(O)2Rc′Rd′, —P(O)NRc′Rd′, —P(O)2NRc′Rd′, —P(O)ORc′, —P(O)2ORc′, —CN, —NO2, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C3-6cycloalkyl, 3- to 7-membered heterocycloalkyl, C6-10 aryl, or mono- or bicyclic heteroaryl, or any two R3′ groups or any two R4′ groups taken together with the ring to which they are attached form a C5-8cycloalkyl or a 5- to 8-membered heterocycloalkyl, wherein each hydrogen atom in C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C3-6cycloalkyl, 3- to 7-membered heterocycloalkyl, C6-10 aryl, mono- or bicyclic heteroaryl C5-6cycloalkyl or a 5- to 8-membered heterocycloalkyl is independently optionally substituted by deuterium, halogen, C1-6alkyl, C1-6haloalkyl, —ORe′, —OC(O)Re′, —OC(O)NRe′Rf′, —OS(O)Re′, —OS(O)2Re′, —OS(O)NRe′Rf′, —OS(O)2NRe′Rf′, —SRe′, —S(O)Re′, —S(O)2Re′, —S(O)NRe′Rf′, —S(O)2NRe′Rf′, —NRe′Rf′, —NRe′C(O)Rf′, —NRe′C(O)ORf′, —NRe′C(O)NRe′Rf′, —NRe′S(O)Rf′, —NRe′S(O)2Rf′, —NReS(O)NRe′Rf′, —NRe′S(O)2NRe′Rf′, —C(O)Re′, —C(O)ORe′, —C(O)NRe′Rf′, —PRe′Rf′, —P(O)Re′Rf′, —P(O)2Re′Rf′, —P(O)NRe′Rf′, —P(O)2NRe′Rf′, —P(O)ORE′, —P(O)2ORe′, —CN, or —NO2;
R7′ is H, deuterium, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C3-6cycloalkyl, 3- to 7-membered heterocycloalkyl, C6-10 aryl, or mono- or bicyclic heteroaryl, wherein each hydrogen atom in C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C3-6cycloalkyl, 3- to 7-membered heterocycloalkyl, C6-10 aryl, or mono- or bicyclic heteroaryl is independently optionally substituted by deuterium, halogen, —ORi′, —OC(O)Ri′, —OC(O)NRi′Rj′, —OS(O)Ri′, —OS(O)2Ri′, —OS(O)NRi′Rj′, —OS(O)2NRi′Rj′, —SRi′, —S(O)Ri′, —S(O)2Ri′, —S(O)NRi′Rj′, —S(O)2NRi′Rj′, —NRi′Rj′, —NRi′C(O)Rj′, —NRi′C(O)ORi′, —NRi′C(O)NRi′Rj′, —NRi′S(O)Rj′, —NRi′S(O)2Rj′, —NRi′S(O)NRi′Rj′, —NRi′S(O)2NRi′Rj′, —C(O)Ri′, —C(O)ORi′, —C(O)NRi′Rj′, —PRi′Rj′, —P(O)Ri′Rj′, —P(O)2Ri′Rj′, —P(O)NRi′Rj′, —P(O)2NRi′Rj′, —P(O)ORi′, —P(O)2ORi′, —CN, or —NO2;
each Ra′, Rb′, Rc′, Rd′, Re′, Rf′, Ri′ and Rj′ is independently selected from the group consisting of H, deuterium, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C3-6cycloalkyl, 3- to 7-membered heterocycloalkyl, C6-10 aryl, and heteroaryl;
m′ is 2, 3, 4, or 5:
n′ is 2, 3, or 4;
p′ is 0, 1, 2, 3, or 4; and
q′ is 0, 1, 2, 3, or 4; or a pharmaceutically acceptable salt thereof. Exemplary Trk inhibitors include TPX-0005.
A Trk inhibitor can be one found in U.S. Pat. No. 9,187,489 and International Publication No. WO 2013/183578, both of which are incorporated by reference in their entireties herein. Exemplary Trk inhibitors include PLX7486 and DS-6051.
Non-limiting examples of Trk inhibitors can be found in U.S. Publication No. 2015/0306086 and International Publication No. WO 2013/074518, both of which are incorporated by reference in their entireties herein. Exemplary Trk inhibitors include TSR-011.
Further examples of Trk inhibitors can be found in U.S. Pat. No. 8,637,516, International Publication No. WO 2012/034091, U.S. Pat. No. 9,102,671, International Publication No. WO 2012/116217, U.S. Publication No. 2010/0297115, International Publication No. WO 2009/053442, U.S. Pat. No. 8,642,035, International Publication No. WO 2009092049, U.S. Pat. No. 8,691,221, International Publication No. WO2006131952, all of which are incorporated by reference in their entireties herein. Exemplary Trk inhibitors include GNF-4256, described in Cancer Chemother. Pharmacol. 75(1):131-141, 2015; and GNF-5837 (N-[3-[[2,3-dihydro-2-oxo-3-(1H-pyrrol-2-ylmethylene)-1H-indol-6-yl]amino]-4-methylphenyl]-N′-[2-fluoro-5-(trifluoromethyl)phenyl]-urea), described in ACS Med. Chem. Lett. 3(2):140-145, 2012, each of which is incorporated by reference in its entirety herein.
Additional examples of Trk inhibitors include those disclosed in U.S. Publication No. 2010/0152219, U.S. Pat. No. 8,114,989, and International Publication No. WO 2006/123113, all of which are incorporated by reference in their entireties herein. Exemplary Trk inhibitors include AZ623, described in Cancer 117(6):1321-1391, 2011; AZD6918, described in Cancer Biol. Ther. 16(3):477-483, 2015; AZ64, described in Cancer Chemother. Pharmacol. 70:477-486, 2012; AZ-23 ((S)-5-Chloro-N2-(1-(5-fluoropyridin-2-yl)ethyl)-N4-(5-isopropoxy-1H-pyrazol-3-yl)pyrimidine-2,4-diamine), described in Mol. Cancer Ther. 8:1818-1827, 2009; and AZD7451; each of which is incorporated by reference in its entirety.
A Trk inhibitor can include those described in U.S. Pat. Nos. 7,615,383; 7,384,632; 6,153,189; 6,027,927; 6,025,166; 5,910,574; 5,877,016; and 5,844,092, each of which is incorporated by reference in its entirety.
Further examples of Trk inhibitors include CEP-751, described in Int. J. Cancer 72:672-679, 1997; CT327, described in Acta Derm. Venereol. 95:542-548, 2015; compounds described in International Publication No. WO 2012/034095; compounds described in U.S. Pat. No. 8,673,347 and International Publication No. WO 2007/022999; compounds described in U.S. Pat. No. 8,338,417; compounds described in International Publication No. WO 2016/027754; compounds described in U.S. Pat. No. 9,242,977; compounds described in U.S. Publication No. 2016/0000783; sunitinib (N-(2-diethylaminoethyl)-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide), as described in PLoS One 9:e95628, 2014; compounds described in International Publication No. WO 2011/133637; compounds described in U.S. Pat. No. 8,637,256; compounds described in Expert. Opin. Ther. Pat. 24(7):731-744, 2014; compounds described in Expert Opin. Ther. Pat. 19(3):305-319, 2009; (R)-2-phenylpyrrolidine substituted imadizopyridazines, e.g., (4-((5-chloro-4-(methylamino)-7H-pyrrolo[2,3-d]pyrimidin-2-yl)amino)-3-methoxyphenyl)(morpholino)methanone as described in ACS Med. Chem. Lett. 6(5):562-567, 2015; GTx-186 and others, as described in PLoS One 8(12):e83380, 2013; K252a ((9S-(9α,10β,12α))-2,3,9,10,11,12-hexahydro-10-hydroxy-10-(methoxycarbonyl)-9-methyl-9,12-epoxy-1H-diindolo[1,2,3-fg:3′,2′,1′-kl]pyrrolo[3,4-i][1,6]benzodiazocin-1-one), as described in Mol. Cell Biochem. 339(1-2):201-213, 2010; 4-aminopyrazolylpyrimidines, e.g., AZ-23 (((S)-5-chloro-N2-(1-(5-fluoropyridin-2-yl)ethyl)-N4-(5-isopropoxy-1H-pyrazol-3-yl)pyrimidine-2,4-diamine)), as described in J. Med Chem. 51(15):4672-4684, 2008; PHA-739358 (danusertib), as described in Mol. Cancer Ther. 6:3158, 2007; Gö 6976 (5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile), as described in J. Neurochem. 72:919-924, 1999; GW441756 ((3Z)-3-[(1-methylindol-3-yl)methylidene]-1H-pyrrolo[3,2-b]pyridin-2-one), as described in JAE 115:117, 2010; milciclib (PHA-848125AC), described in J. Carcinog. 12:22, 2013; AG-879 ((2E)-3-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-cyano-2-propenethioamide); altiratinib (N-(4-((2-(cyclopropanecarboxamido)pyridin-4-yl)oxy)-2,5-difluorophenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide); cabozantinib (N-(4-((6,7-Dimethoxyquinolin-4-yl)oxy)phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide); lestaurtinib ((5S,6S,8R)-6-Hydroxy-6-(hydroxymethyl)-5-methyl-7,8,14,15-tetrahydro-5H-16-oxa-4b,8a,14-triaza-5,8-methanodibenzo[b,h]cycloocta[jkl]cyclopenta[e]-as-indacen-13(6H)-one); dovatinib (4-amino-5-fluoro-3-[6-(4-methylpiperazin-1-yl)-1H-benzimidazol-2-yl]quinolin-2(1H)-one mono 2-hydroxypropanoate hydrate); sitravatinib (N-(3-fluoro-4-((2-(5-(((2-methoxyethyl)amino)methyl)pyridin-2-yl)thieno[3,2-b]pyridin-7-yl)oxy)phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide); ONO-5390556; regorafenib (4-[4-({[4-Chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)-3-fluorophenoxy]-N-methylpyridine-2-carboxamide hydrate); VSR-902A; all of the references above are incorporated by reference in their entireties herein.
The ability of a Trk inhibitor to act as a TrkA, TrkB, and/or Trk C inhibitor may be tested using the assays described in Examples A and B in U.S. Pat. No. 8,513,263, which is incorporated herein by reference.
Provided herein are methods of treating a subject having a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and administering to the identified subject a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein). Also provided are methods of treating a subject having a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cancer cell that has at least one (e.g., one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M), and administering to the identified subject a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein).
Also provided are methods of treating a subject having a cancer (e.g., any of the cancers described herein) and identified as having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) that include administering to the identified subject a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein). Also provided are methods of treating a subject having a cancer (e.g., any of the cancers described herein) and identified as having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M) that include administering to the identified subject a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein).
In some examples, the Trk inhibitor is administered orally, subcutaneously, intraperitoneally, intravenously, or intramuscularly. The Trk inhibitor can be administered in one or more doses comprising between about 1 mg and about 250 mg, between about 1 mg and about 200 mg, between about 1 mg and about 180 mg, between about 1 mg and about 160 mg, between about 1 mg and about 140 mg, between about 1 mg and about 120 mg, between about 1 mg and about 100 mg, between about 1 mg and about 80 mg, between about 1 mg and about 60 mg, between about 1 mg and about 40 mg, between about 1 mg and about 40 mg, between about 10 mg and about 200 mg, between about 10 mg and about 180 mg, between about 10 mg and about 160 mg, between about 10 mg and about 140 mg, between about 10 mg and about 120 mg, between about 10 mg and about 100 mg, between about 10 mg and about 80 mg, between about 10 mg and about 60 mg, between about 10 mg and about 40 mg, between about 10 mg and about 20 mg, between about 20 mg and about 200 mg, between about 20 mg and about 180 mg, between about 20 mg and about 160 mg, between about 20 mg and about 140 mg, between about 20 mg and about 120 mg, between about 20 mg and about 100 mg, between about 20 mg and about 80 mg, between about 20 mg and about 60 mg, between about 20 mg and about 40 mg, between about 40 mg and about 200 mg, between about 40 mg and about 180 mg, between about 40 mg and about 160 mg, between about 40 mg and about 140 mg, between about 40 mg and about 120 mg, between about 40 mg and about 100 mg, between about 40 mg and about 80 mg, between about 40 mg and about 60 mg, between about 60 mg and about 200 mg, between about 60 mg and about 180 mg, between about 60 mg and about 140 mg, between about 60 mg and about 120 mg, between about 60 mg and about 100 mg, between about 60 mg and about 80 mg, between about 80 mg and about 200 mg, between about 80 mg and about 180 mg, between about 80 mg and about 160 mg, between about 80 mg and about 140 mg, between about 80 mg and about 120 mg, between about 80 mg and about 100 mg, between about 90 mg and about 110 mg, between about 95 mg and about 105 mg, between about 100 mg and about 200 mg, between about 100 mg and about 180 mg, between about 100 mg and about 160 mg, between about 100 mg and about 140 mg, between about 100 mg and about 120 mg, between about 120 mg and about 200 mg, between about 120 mg and about 180 mg, between about 120 mg and about 160 mg, between about 120 mg and about 140 mg, between about 140 mg and about 200 mg, between about 140 mg and about 180 mg, between about 140 mg and about 160 mg, between about 160 mg and about 200 mg, between about 160 mg and about 200 mg, between about 160 mg and about 180 mg, or between about 180 mg and about 200 mg. The appropriate dose of a Trk inhibitor to be administered to a subject can be determined by a medical professional, e.g., based upon one or more of the subject's mass, the subject's condition, subject's gender, and the other diseases that the subject may have.
Multiple doses of a Trk inhibitor (e.g., any of the doses described herein) can be administered once every six months, once every five months, once every four months, once every three months, once every two months, once every six weeks, once a month, once every three weeks, once every two weeks, once a week, twice a week, three times a week, four times a week, three times a week, every other day, once a day, twice a day, or three times a day. The Trk inhibitor can be self-administered (e.g., by the subject having a cancer) or can be administered by a health care professional (e.g., a physician, a nurse, a physician's assistance, or a pharmacist). In some examples, the subject is hospitalized or treated on in inpatient basis. In other examples, the subject is treated on an outpatient basis.
The cancer can be any of the exemplary cancers described herein. In some embodiments, the subject has previously been identified or diagnosed as having a cancer. In some examples, the subject has previously been administered a treatment for cancer, and the treatment for cancer has been unsuccessful (e.g., high toxicity in the subject or no positive response to the previously administered treatment for cancer).
Some examples of these methods further include recording in the subject's clinical record (e.g., a computer readable medium) that the subject should be administered a treatment comprising a therapeutically effective amount of a Trk inhibitor in the future.
In some examples, the step of identifying a subject having a cancer cell that has the at least one point mutation (e.g., any of the point mutations described herein) in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein including a mutation at one or more amino acid position(s), comprises performing an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene in a cancer cell in a sample (e.g., a biopsy sample) from the subject. Any of the assays described herein can be used to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In addition, any of the kits provided herein can be used in an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In some examples, the assay includes sequencing a segment of a NTRK1, NTRK2, and/or NTRK3 gene including the at least one point mutation.
Also provided herein are methods of selecting a treatment for a subject having a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and selecting a treatment comprising a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) for the identified subject. Also provided are methods of selecting a treatment for a subject having a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cancer cell that has at least one (e.g., one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M), and selecting a treatment comprising a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) for the identified subject.
Also provided are methods of selecting a treatment for a subject having a cancer (e.g., any of the cancers described herein) that include selecting a treatment comprising a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) for a subject identified as having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein). Also provided are methods of selecting a treatment for a subject having a cancer (e.g., any of the Trk inhibitors described herein) that include selecting a treatment comprising a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) for a subject identified as having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M).
Some examples of these methods further include administering the selected treatment to the identified subject (e.g., using any of the Trk inhibitors, any of the routes of administration, any of the doses, and/or any of the frequencies of administration described herein). In some examples, the selected treatment is self-administered. In other examples, the selected treatment is administered by a medical professional (e.g., any of the medical professionals described herein). Some examples of these methods further include recording the selected treatment in the identified subject's clinical record (e.g., a computer readable medium).
The cancer can be any of the exemplary cancers described herein. In some embodiments, the subject has previously been identified or diagnosed as having a cancer. In some examples, the subject has previously been administered a treatment for cancer, and the treatment for cancer has been unsuccessful (e.g., high toxicity in the subject or no positive response to the previously administered treatment for cancer).
In some examples, the step of identifying a subject having a cancer cell that has the at least one point mutation (e.g., any of the point mutations described herein) in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein including a mutation at one or more amino acid position(s), comprises performing an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene in a cancer cell in a sample (e.g., a biopsy sample) from the subject. Any of the assays described herein can be used to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In addition, any of the kits provided herein can be used in an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In some examples, the assay includes sequencing a segment of a NTRK1, NTRK2, and/or NTRK3 gene including the at least one point mutation.
Methods of Selecting a Subject for Treatment with a Trk Inhibitor
Also provided are methods of selecting a subject having a cancer for treatment with a Trk inhibitor that include identifying a subject having a cancer (e.g., any of the cancers described herein) and having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and selecting the identified subject for treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein). Also provided are methods of selecting a subject having a cancer for treatment with a Trk inhibitor that include identifying a subject having a cancer (e.g., any of the cancers described herein) and having a cancer cell that has at least one (e.g., one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M), and selecting the identified subject for treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein).
Also provided are methods of selecting a subject having a cancer for treatment with a Trk inhibitor that include selecting a subject having cancer (e.g., any of the cancers described herein) and identified as having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) for treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein). Also provided are methods of selecting a subject having a cancer for treatment with a Trk inhibitor that include selecting a subject having a cancer (e.g., any of the cancers described herein) and identified as having a cancer cell that has at least one (e.g., one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M) for treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein).
Some examples of these methods further include administering a therapeutically effective amount of a Trk inhibitor (e.g., using any of the Trk inhibitors, any of the routes of administration, any of the doses, and/or any of the frequencies of administration described herein) to the selected subject. In some examples, the Trk inhibitor is self-administered. In other examples, the Trk inhibitor is administered to the selected subject by a medical professional. In some examples, the selected subject is hospitalized. In other examples, the subject is administered the Trk inhibitor on an outpatient basis. Some methods further include recording in the subject's clinical record (e.g., a computer readable medium) that the subject is selected for treatment with a Trk inhibitor.
The cancer can be any of the exemplary cancers described herein. In some embodiments, the subject has previously been identified or diagnosed as having a cancer. In some examples, the subject has previously been administered a treatment for cancer, and the treatment for cancer has been unsuccessful (e.g., high toxicity in the subject or no positive response to the previously administered treatment for cancer).
In some examples, the step of identifying a subject having a cancer cell that has the at least one point mutation (e.g., any of the point mutations described herein) in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein including a mutation at one or more amino acid position(s), comprises performing an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene in a cancer cell in a sample (e.g., a biopsy sample) from the subject. Any of the assays described herein can be used to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In addition, any of the kits provided herein can be used in an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In some examples, the assay includes sequencing a segment of a NTRK1, NTRK2, and/or NTRK3 gene including the at least one point mutation.
Methods of Determining the Likelihood that a Subject Will have a Positive Response to a Trk Inhibitor
Also provided are methods of determining the likelihood that a subject having a cancer (e.g., any of the cancers described herein) will have a positive response to treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein) that include determining whether a cancer cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and determining that a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTKR3 point mutations) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) has an increased likelihood of having a positive response to treatment with a Trk inhibitor (e.g., as compared to a subject having a cancer cell that does not have a point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein)). Also provided are methods of determining the likelihood that a subject having a cancer (e.g., any of the cancers described herein) will have a positive response to treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein) that include determining whether a cancer cell in a sample obtained from the subject has at least one (e.g., one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M) and determining that a subject having a cancer cell that has at least one (e.g., one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M) has an increased likelihood of having a positive response to treatment with a Trk inhibitor (e.g., as compared to a subject having a cancer cell that does not have a point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M)).
Also provided are methods of determining the likelihood that a subject having cancer (e.g., any of the cancers described herein) will have a positive response to a treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein) that include determining that a subject having a cancer cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) has an increased likelihood of having a positive response to treatment with a Trk inhibitor (e.g., as compared to a subject having a cancer cell that does not have at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein)). Also provided are methods of determining the likelihood that a subject having cancer (e.g., any of the cancers described herein) will have a positive response to a treatment with a Trk inhibitor (e.g., any of the Trk inhibitors described herein) that include determining that a subject having a cancer cell that has at least one (e.g., one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M) has an increased likelihood of having a positive response to treatment with a Trk inhibitor (e.g., as compared to a subject having a cancer cell that does not have at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M)).
Some examples of these methods include administering a therapeutically effective amount of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) to a subject determined to have an increased likelihood of having a positive response to treatment with a Trk inhibitor (e.g., using any of the Trk inhibitors, any of the routes of administration, any of the doses, and/or any of the frequencies of administration described herein). In some examples, the Trk inhibitor is self-administered. In other examples, the Trk inhibitor is administered to the selected subject by a medical professional. In some examples, the selected subject is hospitalized. In other examples, the subject is administered the Trk inhibitor on an outpatient basis. Some methods further include recording in the subject's clinical record (e.g., a computer readable medium) that the subject has an increased likelihood of having a positive response to treatment with a Trk inhibitor.
The cancer can be any of the exemplary cancers described herein. In some embodiments, the subject has previously been identified or diagnosed as having a cancer. In some examples, the subject has previously been administered a treatment for cancer, and the treatment for cancer has been unsuccessful (e.g., high toxicity in the subject or no positive response to the previously administered treatment for cancer).
In some examples, the step of determining whether a cancer cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA. TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), comprises performing an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene in a cancer cell in the sample (e.g., a biopsy sample) from the subject. Any of the assays described herein can be used to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In addition, any of the kits provided herein can be used in an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In some examples, the assay includes sequencing a segment of a NTRK1, NTRK2, and/or NTRK3 gene including the at least one point mutation.
Methods of Predicting the Efficacy of Treatment with a Trk Inhibitor in a Subject
Also provided are methods of predicting the efficacy of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) in a subject having cancer (e.g., any of the cancers described herein) that include determining whether a cancer cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and determining that a Trk inhibitor is more likely to be effective in a subject having a cancer cell in a sample obtained from the subject that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) (e.g., as compared to a subject having a cancer cell in a sample obtained from the subject that does not have a point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein)).
Also provided are methods of predicting the efficacy of a Trk inhibitor (e.g., any of the Trk inhibitors described herein) in a subject having cancer (e.g., any of the cancers described herein) that include determining whether a cancer cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314C A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M), and determining that a Trk inhibitor is more likely to be effective in a subject having a cancer cell in a sample obtained from the subject that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M) (e.g., as compared to a subject having a cancer cell in a sample obtained from the subject that does not have a point mutation in a NTRK3 gene that results in the expression of a TrkB protein comprising a mutation at one or more amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M)).
Also provided are methods of predicting the efficacy of a Trk inhibitor in a subject having a cancer (e.g., any of the cancers described herein) that include determining that a Trk inhibitor (e.g., any of the Trk inhibitors described herein) is more likely to be effective in a subject having a cancer cell in a sample obtained from the subject that has at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) (e.g., as compared to a subject having a cancer cell in a sample obtained from the subject that does not have a point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTKR3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more mutations (e.g., any of the mutations in TrkA. TrkB, and/or TrkC described herein)).
Also provided are methods of predicting the efficacy of a Trk inhibitor in a subject having a cancer (e.g., any of the cancers described herein) that include determining that a Trk inhibitor (e.g., any of the Trk inhibitors described herein) is more likely to be effective in a subject having a cancer cell in a sample obtained from the subject that has at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more amino acid position(s) selected from the group consisting of: 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G40R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M) (e.g., as compared to a subject having a cancer cell in a sample obtained from the subject that does not have a mutation at one or more amino acid position(s) selected from the group consisting of; 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M)).
Some methods further include recording in the subject's clinical record (e.g., a computer readable medium) the predicted efficacy of a Trk inhibitor in the subject having a cancer. Some examples of these methods further include selecting a treatment for the subject based on the predicted efficacy of a Trk inhibitor in the subject. Some examples further include administering the selected treatment to the subject (e.g., using any of the Trk inhibitors, any of the routes of administration, any of the doses, and/or any of the frequencies of administration described herein).
The cancer can be any of the exemplary cancers described herein. In some embodiments, the subject has previously been identified or diagnosed as having a cancer. In some examples, the subject has previously been administered a treatment for cancer, and the treatment for cancer has been unsuccessful (e.g., high toxicity in the subject or no positive response to the previously administered treatment for cancer).
In some examples, the step of determining whether a cancer cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA. TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), comprises performing an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene in a cancer cell in the sample (e.g., a biopsy sample) from the subject. Any of the assays described herein can be used to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In addition, any of the kits provided herein can be used in an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In some examples, the assay includes sequencing a segment of a NTRK1, NTRK2, and/or NTRK3 gene including the at least one point mutation.
Also provided are methods of determining a subject's risk for developing a cancer (e.g., any of the cancers described herein) that include determining whether a cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and identifying a subject having a cell that has at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) as having an increased likelihood of developing a cancer (e.g., as compared to a subject not having a point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein)).
Also provided are methods of identifying a determining a subject's risk for developing a cancer (e.g., any of the cancers described herein) that include determining whether a cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M), and identifying a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M) as having an increased likelihood of developing a cancer (e.g., as compared to a subject not having a point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M)).
Also provided are methods of determining a subject's risk for developing a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation(s) in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) as having an increased likelihood of developing a cancer (e.g., as compared to a subject having a cell that does not have a point mutation(s) in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein)).
Also provided are methods of determining a subject's risk for developing a cancer (e.g., any of the cancers described herein) that include identifying a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation(s) in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M), as having an increased likelihood of developing a cancer (e.g., as compared to a subject having a cell that does not have a point mutation(s) in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M)).
Some methods further include recording in the subject's clinical record (e.g., a computer readable medium) the subject's risk of developing a cancer. The cancer can be any of the exemplary cancers described herein.
In some examples, the subject is identified as having been exposed to a significant level of carcinogen(s) (e.g., tobacco smoke, UVB radiation, and gamma irradiation). In some examples, the subject is suspected of having cancer, presents with one or more symptoms of cancer (e.g., any of the symptoms of cancer described herein), and/or has a family history of cancer.
In some examples, the step of determining whether a cancer cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), comprises performing an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene in a cancer cell in the sample (e.g., a biopsy sample) from the subject. Any of the assays described herein can be used to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In addition, any of the kits provided herein can be used in an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In some examples, the assay includes sequencing a segment of a NTRK1, NTRK2, and/or NTRK3 gene including the at least one point mutation.
Also provided herein are methods of assisting in the diagnosis of a cancer (e.g., any of the cancers described herein) that include determining whether a cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), and determining that a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) has an increased risk likelihood of having a cancer (e.g., as compared to a subject not having a point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein)).
Also provided herein are methods of assisting in the diagnosis of a cancer (e.g., any of the cancers described herein) that include determining whether a cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M), and determining that a subject having a cell that has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G40R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M) has an increased risk likelihood of having a cancer (e.g., as compared to a subject not having a point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M)).
Also provided are methods of assisting in the diagnosis of a cancer (e.g., any of the cancers described herein) in a subject that include determining that a subject having a cell that has at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene (e.g., any of the NTRK1, NTRK2, and/or NTRK3 point mutations described herein) that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein) has an increased likelihood of having a cancer (e.g., as compared to a subject having a cell that does not have a point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA, TrkB, and/or TrkC protein comprising one or more mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein)).
Also provided are methods of assisting in the diagnosis of a cancer (e.g., any of the cancers described herein) in a subject that include determining that a subject having a cell that has at least one point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M) has an increased likelihood of having a cancer (e.g., as compared to a subject having a cell that does not have a point mutation in a NTRK2 gene that results in the expression of a TrkB protein comprising a mutation at one or more amino acid position(s) selected from the group consisting of 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 (e.g., one or more of the mutations of M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M)).
Some embodiments further include confirming the diagnosis of a cancer in a subject determined to have an increased likelihood of having a cancer. Confirming the diagnosis of a cancer in a subject can include, e.g., performing additional laboratory tests (e.g., urine or blood tests, e.g., complete blood count), imaging tests (e.g., computerized tomography (CT), bone scan, magnetic resonance imaging (MRI), positron emission tomography (PET) scan, ultrasound, and X-ray), and/or physical examination to determine the presence of one or more symptoms of a cancer in the subject.
Some methods further include recording in the subject's clinical record (e.g., a computer readable medium) the subject's likelihood of having a cancer. The cancer can be any of the exemplary cancers described herein.
In some examples, the subject is identified as having been exposed to a significant level of carcinogen(s) (e.g., tobacco smoke. UVB radiation, and gamma irradiation). In some examples, the subject is suspected of having cancer, presents with one or more symptoms of cancer (e.g., any of the symptoms of cancer described herein), and/or has a family history of cancer.
In some examples, the step of determining whether a cancer cell in a sample obtained from the subject has at least one (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) point mutation in a NTRK1, NTRK2, and/or NTRK3 gene that results in the expression of a TrkA. TrkB, and/or TrkC protein comprising one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) mutations (e.g., any of the mutations in TrkA, TrkB, and/or TrkC described herein), comprises performing an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene in a cancer cell in the sample (e.g., a biopsy sample) from the subject. Any of the assays described herein can be used to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In addition, any of the kits provided herein can be used in an assay to determine the presence of the at least one point mutation in a NTRK1, NTRK2, and/or NTRK3 gene. In some examples, the assay includes sequencing a segment of a NTRK1, NTRK2, and/or NTRK3 gene including the at least one point mutation.
Also provided herein are kits that include one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, or eighteen) probes that specifically hybridize to a segment of a NTRK1, NTRK2, and/or NTRK3 gene that comprises one of the point mutations described herein (e.g., any of the point mutations in NTRK1, NTRK2, and/or NTRK3 described herein). For example, the kits provided herein can include one or more probes that specifically hybridize to a segment of a NTRK2 gene that encodes a mutation at one of: amino acid positions 240, 241, 242, 264, 314, 315, 401, 426, 427, 428, 440, and 689 in TrkB protein (e.g., encodes a mutation selected from the group of: M240I, N241D, E242K, I264M, A314E, A314G, A314V, L315F, G401A, G401E, G401R, T426I, G427S, R428Q, A440S, A440T, A440V, and V689M in a TrkB protein).
Each of the one or more probes can have a length of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, or 35 nucleotides. In some embodiments, the one or more probes include a detectable label (e.g., a fluorophore, a quencher, a radioisotope, or a metal). In some embodiments, the one or more probes can be covalently attached to a substrate (e.g., a film, a plate, or a bead).
The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.
A set of experiments were performed to identify point mutations in NTRK1, NTRK2, and NTRK3 genes in biopsy samples from patients having a variety of different cancers.
One thousand eight hundred and twenty three mutations in NTRK1, NTRK2, and NTRK3 genes were identified in next-generation sequencing data from 42,155 tumor biopsy samples. Mutations that were synonymous, lead to loss of a canonical stop codon, cause truncation of the kinase domain, or are mapped to an alternative transcript that does not contain a full kinase domain were filtered out. All mutations within the given, preceding, and subsequent codons were clustered together. Duplicate clusters were then removed.
The mutation clusters were ranked for follow-up by combining several component scores into a single score via multiplication. The hotspot score captures the prevalence of the mutation cluster (size of the cluster/size of the largest cluster). The domain score captures the functional relevance of the protein region harboring the culture to oncogenesis (kinase domain=1, Ig-like domains=0.9, leucine-rich repeats=0.3, and none=0.05). The co-alteration score captures the likelihood that the mutation cluster contains drivers based on the presence of co-occurring mutations in other oncogenes. The exact score captures the rarity of the mutations in a large collection of germline samples, as a measure of relevance to oncogenesis. The conservation score captures how conserved the region of the protein is across placental mammals, as a measure of functional relevance.
Expression filtering was also used, after clustering, to confirm that at least one mutation in a given cluster be associated with expression of the relevant NTRK gene above background.
Structural modeling was performed by mapping specific amino acid residues onto a TrkB protein crystal structure (PDB entry 4ASZ) and a judgment was made on activation potential based on the structure and knowledge of kinase regulation.
Point mutations in each of NTRK1, NTRK2, and NTRK3 were detected in biopsy samples from different patients having a variety of different cancers. Table 1 lists the point mutations identified in NTRK1, Table 2 lists the point mutations identified in NTRK2, Table 3 lists the point mutations identified in NTRK2 that have been confirmed to be expressed in cancer cells in the biopsy sample, and Table 4 lists the point mutations identified in NTRK3.
1Ovarian Cancer Gene Database, ocgene.bioinfo-minzhao.org/gene_mutation.cgi?gene=4914, downloaded on May 31, 2016.
2Pediatric Cancer Gene Database, pedican.bioinfo-minzhao org/gene_mutation.cgi?gene=4914, downloaded on May 31, 2016.
3Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=1688778, downloaded on May 31, 2016.
4Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=1259646, downloaded on May 31, 2016.
5Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=897427, downloaded on May 31, 2016.
1Pediatric Cancer Gene Database, pedican.bioinfo-minzhao.org/gene_mutation.cgi?gene=4915, downloaded on May 31, 2016.
2Endometrial Cancer Gene Database, ecgene.bioinfo-minzhao.org/gene_mutation.cgi?gene=4915, downloaded on May 31, 2016.
3Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=1636266, downloaded on May 31, 2016.
1In some biopsy samples, mutation in the NTRK3 gene results in a TrkC protein lacking amino acids 548 to 562 in the wildtype TrkC protein (e.g., NP_001012338).
2Pediatric Cancer Gene Database, pedican.bioinfo-minzhao.org/gene_mutation.cgi?gene=4916, downloaded on May 31, 2016.
3Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=401588, downloaded on May 31, 2016.
4Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=48622, downloaded on May 31, 2016.
5Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=966118, downloaded on May 31, 2016.
6Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=1708512, downloaded on May 31, 2016.
7Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=1517968, downloaded on May 31, 2016.
8Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=88799, downloaded on May 31, 2016.
9Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=471203, downloaded on May 31, 2016.
10Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=124878, downloaded on May 31, 2016.
11Bardelli et al., Science, 300(5621): 949, 2003.
12Genevois et al., Proc. Nat. Acad. Sci. U.S.A. 110(8): 3017-3022, 2013.
13Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=1517970, downloaded on May 31, 2016.
14Ovarian Cancer Gene Database, ocgene.bioinfo-minzhao.org/gene_mutation.cgi?gene=4916, downloaded on May 31, 2016.
15Catalog of Somatic Mutations in Cancer (COSMIC) database, cancer.sanger.ac.uk/cosmic/mutation/overview?id=3711772, downloaded on May 31, 2016.
The point mutations observed in NTRK1, NTRK2, and NTRK3 appear to be more common in cancers that are associated with carcinogens known to generate point mutations (e.g., tobacco and UV exposure). As an example, the location of point mutations detected in NTRK3 are shown in
The data in Tables 1 and 2 show that a point mutation in NTRK2 that results in a substitution of the valine at amino acid position 689 in the TrkB protein with a different amino acid is present in cancer tissue. An examination of the crystal structure of TrkB suggests that the valine at amino acid position 689 of TrkB interacts with an asparagine at amino acid position 529 in the juxta-membrane domain, which may allow for the stabilization of the auto-inhibited conformation of the TrkB kinase (
The point mutations identified in the NTRK1, NTRK2, and NTRK3 genes may be used, for example, to select subjects for treatment of a Trk inhibitor, used to identify subjects that have an increased likelihood of having a positive response to treatment with a Trk inhibitor, used to determine a subject's risk of developing a cancer, and used to assist in the diagnosis of a cancer in a subject.
It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
This application is a National Stage application under 35 U.S.C. § 371 of International Patent Application No. PCT/US2016/035327, filed Jun. 1, 2016, which claims priority to U.S. Provisional Patent Application Ser. No. 62/169,443, filed Jun. 1, 2015; the entire contents of which are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62169443 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15579007 | Dec 2017 | US |
Child | 17533823 | US |