1. Field of the Invention
The invention pertains to the field of membrane release technology. More particularly, the invention pertains to the fabrication of membranes with improved mechanical integrity.
2. Description of Related Art
Thin film resonators (TFRs) are thin film acoustic devices which can resonate in the radio frequency (RF) to microwave range, for example, 0.5 to 5 Gigahertz (GHz), in response to an electrical signal. A typical TFR has a piezoelectric film between a first electrode and a second electrode which apply an electric field to the piezoelectric film. The film is made of a piezoelectric crystalline material, such as zinc oxide, aluminum nitride (AlN) or other piezoelectric crystalline material, which exhibits a piezoelectric effect. The piezoelectric effect occurs when the piezoelectric material expands or contracts in response to an electric field applied across the piezoelectric material, for example by the first and second electrodes, or produces charge or current in response to mechanical stress or strain applied to the piezoelectric material. The mechanical resonance frequency (fr) of the film, is defined for a film of uniform thickness as the acoustic velocity (v) in the film divided by two (2) times the thickness (t) of the film or fr=v/2t.
If an RF source is used to apply an alternating electric field of variable frequency to a piezoelectric film, there will be a pronounced response in the mechanical motion of the piezoelectric film as the frequency of the source varies near the film's mechanical resonance frequency. The fact that the piezoelectric film thus yields different amounts of current at different frequencies makes it a useful element in electrical filters, oscillators, or frequency control circuits.
TFRs can be used at radio frequency because piezoelectric films can be deposited as thin films. For example at higher frequencies, such as 0.5-10 GHz, the piezoelectric film can be between 0.4 and 8 microns in thickness. Piezoelectric resonators needed for these higher frequency applications can be made by using techniques similar to those used to manufacture integrated circuits. The TFR structure can be formed on the substrate, such as a silicon (Si), gallium arsenide (GaAs) or other semiconductor substrate, for monolithic integration purposes, such as integration with active semiconductor devices.
However, because the device's response is acoustic (mechanical) in nature, care must be taken to avoid loss of a signal's energy through mechanical coupling to its support structure, the substrate. Methods for accomplishing the necessary isolation include fabricating the devices on (acoustic) reflecting mirrors or fabricating the devices on membrane support structures. The later technique is the principle topic of the current proposal.
Thin film-resonator-based radio frequency filters are made through thin-film depositions, each followed by one or more processing steps. For 2 GHz applications, a 25,000 Angstroms thick piezoelectric film is deposited over a 2,000 Angstrom thick base electrode, which provides electrical connectivity between resonators. The piezoelectric film typically extends across the edges of this patterned base electrode, but film growth tends to be discontinuous in these regions. If attempts are made to fabricate a freestanding membrane from such a segmented film, the cracks at these discontinuities cause the membrane—and the device—to literally fall apart.
There is a need in the art for methods to improve the mechanical integrity of freestanding membranes. Specifically, a fabrication method which avoids destruction of a membrane due to substrate topology is needed.
Methods for fabricating robust films across a patterned underlying layer's edges or steps are disclosed. The novel methods diminish the negative effects of electrode steps or edges on the integrity of a membrane. Thus, the methods are particularly applicable to membrane release technology. The height of the step or edge is eliminated or reduced to increase the mechanical integrity of the film.
In the first embodiment of the invention, a material of equal or comparable height as the base electrode is placed adjacent to the electrode. This placement is achieved through any of a variety of techniques, including chemical mechanical polishing (CMP) planarization, polymer planarization and etch, or polymer reflow with liftoff.
In another embodiment, a single large electrode step is made into smaller multiple steps by depositing multiple layers of selectively etchable materials. Subsequent cycles of etching lead to a “staircase” with a lessening of the detrimental material weakening.
In a third embodiment of the invention, a continuously smoothed dome instead of a staircase is achieved through specific use of lithography, deposition and etch.
In another embodiment of the invention, a non-conducting material is patterned in the same manner as the final electrode pattern. This material ultimately acts as a mask for patterning the base electrode at the end of the process.
Only the edges of the membrane are supported on an etched substrate (5), such as silicon (Si) or gallium arsenide (GaAs). The topology inherent in patterning the electrode (2) in this device leads to a loss of membrane integrity. Specifically, cracks (4) are propagating from the electrode (2) step or edge (20) and through the piezoelectric film (1). The piezoelectric film (1) cracks (4) at the step or edge (20) where the electrode (2) ends. As a result, the device falls apart.
Methods for improving yield and stability of membrane films crossing surface topology are disclosed in this invention. The methods all diminish the effects of the electrode edges by eliminating or reducing the height of the edge.
Although these fabrication methods are particularly useful for mechanical strengthening of membrane films over an underlying patterned layer in TFR devices, the invention is applicable in the context of any Micro-Electronic-Mechanical System (MEMS).
In the first embodiment of the invention, the elimination of the edge through placement of a material adjacent to the base electrode of equal or comparable height is achievable through multiple processes. These processes include chemical mechanical polishing (CMP) planarization, polymer planarization, and polymer reflow with liftoff In each process, the height of the step or edge (20) from
The next step in the process utilizes chemical mechanical polishing. Chemical mechanical polishing combines chemical etching with mechanical abrasion to specifically etches peaks faster than valleys. Consequently, this process planarizes the sacrificial film (7) and results in the intermediate device shown in
A reactive ion etching step is then performed to reduce the thickness of the sacrificial film (7) to that of the electrode (2) layer, thus exposing the electrode (2) and providing an adjacent step-eliminating layer (6). Reactive ion etching is the removal of material in a chamber into which reactive gases are introduced to chemically attack the surface to be removed. The device which results from this step is shown in
Referring also to
Because the membrane is so delicate, the membrane release is one of the last steps in the fabrication sequence.
As shown in
In this process, the substrate (8) is first masked and etched with the base metal pattern. Suitable etching processes include reactive ion etching, wet chemistry or focus ion beam milling (FIB). As discussed above, reactive ion etching is the removal of material in a chamber into which reactive gases are introduced to chemically attack the surface to be removed. The removal process in FIB bombards the masked surface of the material with high-energy ions from an ionized plasma. Wet chemistry uses known chemicals to dissolve and “react away” material from a substrate in a wet chemical bath. For example, aluminum and many other materials can be chemically etched in hydrofluoric acid.
Following removal of the masking material, the electrode material ((2) and (30)) is deposited over the entire surface of the patterned substrate (8). The deposition technology employed results in the electrode ((2) and (30)) being discontinuous over the vertical surfaces of the substrate, as shown in
A non-conforming polymer (9) is next spun on, resulting, as illustrated in
Due to this difference in polymer thickness, a subsequent reactive ion etching step removes the polymer (9) from the surface before this material is cleared in the pit, as shown in
The exposed electrode (30) is then dry etched, so that the electrode (30) on the upper surface is etched away, while the remaining polymer (9) protects the electrode material (2) in the recessed region. Subsequent removal of all polymer results in the intermediate device illustrated in
The remaining electrode (2) then acts as a mask for etching the exposed substrate (8). This etching continues until sufficient substrate (8) has been removed to achieve the desired planarized surface shown in
Subsequent deposition of a piezoelectric film (1) and removal of the majority of the substrate (8) results in the membrane device shown in
As a final process for the first embodiment, a re-flow and lift-off technique is shown in
The electrode (2) is then etched using wet chemistry. Because wet chemical etching is an isotropic process—i.e., it etches at the same rate both horizontally and vertically—this step removes some of the electrode material from underneath the resist edge and creates an undercut profile (11) as shown in
Following this etch, the resist (10) is baked (re-flowed) above its glass-transition temperature. During this step, the surface tension of the molten resist causes the resist edge to retract to the edge of the electrode (2). This step results in the intermediate device shown in
A planarizing film (12) is then deposited over the entire surface of the device. The planarizing film (12) is approximately the same thickness as the electrode (2), and tends to be discontinuous across the edge of the resist (10). The planarizing film (12) is preferably a non-conducting material with a low dielectric constant, such as SiO2.
“Lift off” is accomplished by a subsequent immersion in a liquid resist solvent. This step removes the resist (10) and any planarizing film (12) overlying it, and results in the planar surface illustrated in
Subsequent deposition of a piezoelectric film (1) and removal of the majority of the substrate (8) results in the membrane device shown in
In another embodiment of the invention, a single large electrode step can be made into smaller multiple steps by depositing multiple layers of selectively etchable materials. Subsequent cycles of etching lead to a “staircase” with a lessening of the detrimental material weakening.
First, multiple layers (14), (15), (16), (17), (18), and (19) of selectively etchable materials are deposited; these layers collectively form the base metal. In this example, layers (14), (16), and (18) are composed of Al, while layers (15), (17), and (19) are composed of Ti. Although there are six layers shown in this example, any number of layers may be used to create the stair-step electrode in this embodiment. As shown in the example, adjacent layers have mutually exclusive etch chemistry, while every other layer is composed of the same metal, allowing selective etching of the layers.
Ti/Al has been used in this embodiment of the invention because the Ti enables oriented growth of the Al, which in turn enables oriented growth of AlN. Though they do share common etchants, we exploit the fact that there are also acids which attack one without attacking the other.
A layer of resist (13) is next deposited on the top layer (14) and then patterned. The result of these steps is shown in
In the next step, the upper metallic layer (14) is etched in a solvent which does not attack the adjacent layer (15). Then, a different chemical composition, again chosen not to attack adjacent layers, is used to etch layer (15). The result of etching the first two layers (14) and (15) is shown in
Etching the third metallic layer (16) results in further lateral etching of the first layer (14) because layers (14) and (16) are composed of the same metal and therefore have the same etching characteristics. Similarly, by etching the fourth layer (17), the second layer (15) also experiences further lateral etching. Etching of the fifth layer (18) also etches layers (14) and (16), while etching of the last electrode layer (19) further etches layers (15) and (17). Propertiming of these etches results in the “stair step” profile shown in
In the example using Ti and Al, an aluminum etchant preferably includes phosphoric, acetic and nitric acids is used to etch the even numbered layers (14), (16), and (18), while a titanium etchant preferably includes ammonium hydroxide (NH4OH) and EDTA etches the odd-numbered layers (15), (17), and (19). The aluminum etchant does not affect the titanium, and the titanium etch does not attack the aluminum.
The resist (13) is then removed, resulting in the stair-step electrode shown in
To complete the membrane device, a piezoelectric film (1) is deposited over the stair-step electrode. Preferred materials for the piezoelectric film (1) include aluminum nitride, and zinc oxide. Also, the substrate (8) is partially removed, to create a thin membrane (3). The resulting device is shown in
In a third embodiment of the invention, a continuously smoothed dome is achieved through specific use of lithography, deposition and etching steps. The doming decreases the effects of the edge of the electrode on membrane integrity. It is accomplished by melting or reflowing resist with solvent into a drop shape. The resist and material underneath it are then simultaneously etched and the shape is thus transferred.
This technique is based upon development of a process such that, for a selected etchant, the resist and masking material will have comparable etch rates. Under these circumstances, as the etch proceeds the resist's vertical profile will be mimicked in the electrode profile. For example, if the electrode (2) and resist removal rate are equal the vertical profile of the resist will be exactly reproduced in the electrode (2) beneath the resist. If however the resist is removed only half as fast as the underlying electrode (2), the pattern will be transferred to the underlying electrode (2) but any step or dome height formerly in the resist will be doubled since the underlying material is etched twice as fast.
One technique for implementing this process begins (
Then, utilizing an etching process (for example, reactive ion etching, wet chemistry or focus ion beam milling (FIB)), the resist layer (43) and electrode (2) are then etched at the required rates to possess a dome like shape in the electrode (
Finally,
Related U.S. patent application Ser. No. 09/571,919, filed May 16, 2000, entitled “A Method for Shaping Thin-Film Resonators to Shape Acoustic Modes Therein” is herein incorporated by reference.
In this embodiment, a very thin layer of a non-conducting material (21) is deposited on a substrate (8). The non-conducting material (21) has a low dielectric constant. Preferable non-conducting materials (21) include SiO2 and SiN. The substrate (8) is preferably Si or GaAs. The resulting wafer is shown in
The thin, non-conducting material (21) is first patterned into the shape desired for the patterned electrode in the finished device. This step results in the wafer shown in
Then, a first layer (22) of metal is deposited everywhere. Subsequently, a second layer (23) of a different metal is deposited. These two layers (22) and (23) preferably are Ti and Al, respectively, and while left unpatterned at this point, will ultimately form the patterned base electrode. Subsequently, a layer (24) of piezoelectric material is deposited on the metal layer (23). Preferred materials for the piezoelectric film (1) include aluminum nitride, and zinc oxide. The structure is completed with the deposition of a counter electrode (25) and (26) a resonator “shifting” material (27), and a top metallic electrode layer (28).
The top electrode (28) is patterned and etched, resulting in the device shown in
Next (
Then, reactive ion etching etches the areas which are not covered by the masking layer (29) on the backside of the wafer. This etch continues all the way through the substrate, to the non-conducting layer (21), resulting in
A subsequent reactive ion etching etch removes the metal layers (22) and (23) specifically where they are not protected by this non-conducting layer (21). This results in metal layers (22) and (23) being patterned in the same manner as the non-conducting layer, producing the patterned base electrode. However, because the base electrode topology is not introduced until after the deposition of the piezoelectric material, there is no cracking of this layer (21). The completed device is shown in
The different embodiments are preferred under different criteria. The choice to use one embodiment of the invention versus another may depend on the availability of the equipment to the researcher or manufacturer. In addition, the price of obtaining additional equipment may dictate which process is utilized to create a more robust membrane.
Accordingly, it is to be understood that the embodiments of the invention herein described are merely illustrative of the application of the principles of the invention. Reference herein to details of the illustrated embodiments is not intended to limit the scope of the claims, which themselves recite those features regarded as essential to the invention.
Number | Name | Date | Kind |
---|---|---|---|
2303457 | Harding et al. | Dec 1942 | A |
4502932 | Kline et al. | Mar 1985 | A |
4556812 | Kline et al. | Dec 1985 | A |
4719383 | Wang et al. | Jan 1988 | A |
4885262 | Ting et al. | Dec 1989 | A |
4890370 | Fukuda et al. | Jan 1990 | A |
4988957 | Thompson et al. | Jan 1991 | A |
5075641 | Weber et al. | Dec 1991 | A |
5166646 | Avanic et al. | Nov 1992 | A |
5185589 | Krishnaswamy et al. | Feb 1993 | A |
5212988 | White et al. | May 1993 | A |
5231327 | Ketcham | Jul 1993 | A |
5232571 | Braymen | Aug 1993 | A |
5233259 | Krishnaswamy et al. | Aug 1993 | A |
5283458 | Stokes et al. | Feb 1994 | A |
5291159 | Vale | Mar 1994 | A |
5294898 | Dworsky et al. | Mar 1994 | A |
5324683 | Fitch et al. | Jun 1994 | A |
5334960 | Penunuri | Aug 1994 | A |
5348617 | Braymen | Sep 1994 | A |
5350965 | Noto et al. | Sep 1994 | A |
5354695 | Leedy | Oct 1994 | A |
5367308 | Weber | Nov 1994 | A |
5373268 | Dworsky et al. | Dec 1994 | A |
5381385 | Greenstein | Jan 1995 | A |
5403701 | Lum et al. | Apr 1995 | A |
5404628 | Ketcham | Apr 1995 | A |
5438554 | Seyed-Bolorforosh et al. | Aug 1995 | A |
5446306 | Stokes et al. | Aug 1995 | A |
5552655 | Stokes et al. | Sep 1996 | A |
5587620 | Ruby et al. | Dec 1996 | A |
5592007 | Leedy | Jan 1997 | A |
5596239 | Dydyk | Jan 1997 | A |
5608362 | Nishimura et al. | Mar 1997 | A |
5617065 | Dydyk | Apr 1997 | A |
5630949 | Lakin | May 1997 | A |
5646583 | Seabury et al. | Jul 1997 | A |
5656882 | Lazarus et al. | Aug 1997 | A |
5692279 | Mang et al. | Dec 1997 | A |
5698928 | Mang et al. | Dec 1997 | A |
5702775 | Anderson et al. | Dec 1997 | A |
5714917 | Ella | Feb 1998 | A |
5739563 | Kawakubo et al. | Apr 1998 | A |
5760663 | Pradal | Jun 1998 | A |
5780713 | Ruby | Jul 1998 | A |
5789845 | Wadaka et al. | Aug 1998 | A |
5821833 | Lakin | Oct 1998 | A |
5853601 | Krishaswamy et al. | Dec 1998 | A |
5864261 | Weber | Jan 1999 | A |
5869354 | Leedy | Feb 1999 | A |
5872493 | Ella | Feb 1999 | A |
5873153 | Ruby et al. | Feb 1999 | A |
5873154 | Ylilammi et al. | Feb 1999 | A |
5883575 | Ruby et al. | Mar 1999 | A |
5884378 | Dydyk | Mar 1999 | A |
5894647 | Lakin | Apr 1999 | A |
5910756 | Ella | Jun 1999 | A |
5915203 | Sengupta et al. | Jun 1999 | A |
5928598 | Anderson et al. | Jul 1999 | A |
5942958 | Lakin | Aug 1999 | A |
5963856 | Kim | Oct 1999 | A |
5965968 | Robert et al. | Oct 1999 | A |
6020257 | Leedy | Feb 2000 | A |
6051907 | Ylilammi | Apr 2000 | A |
6060818 | Ruby et al. | May 2000 | A |
6069433 | Lazarus et al. | May 2000 | A |
6081171 | Ella | Jun 2000 | A |
6087198 | Panasik | Jul 2000 | A |
6127768 | Stoner et al. | Oct 2000 | A |
6150703 | Cushman et al. | Nov 2000 | A |
6198208 | Yano et al. | Mar 2001 | B1 |
6204737 | Ella | Mar 2001 | B1 |
6215375 | Larson, III et al. | Apr 2001 | B1 |
6291927 | Percin et al. | Sep 2001 | B1 |
6351055 | Futakuchi et al. | Feb 2002 | B1 |
6475317 | Baba et al. | Nov 2002 | B1 |
6486588 | Doron et al. | Nov 2002 | B2 |
6566983 | Shin | May 2003 | B2 |
6617751 | Sunwoo et al. | Sep 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20020115230 A1 | Aug 2002 | US |