Thee present invention relates generally to semiconductor devices and more specifically to split gate flash memory devices.
Some flash memory employs an oxide liner to achieve a square profile of its word-line spacer although a fence is formed as a consequence of this method. In order to sustain a higher word-line spacer (for better formation of LDD spacers) and a strong fence (to prevent collapse) it necessary to have less oxide break-through and poly over-etch time which then causes a serious word line bridge issue and particle issues.
In the prior art, the serious bridge issue of the word-line spacers occurs due to insufficient over-etching or producing a weak fence at the side wall of the poly spacer during the break-through etch step.
U.S. Pat. No. 6,599,797 B1 to Hofmann et al. discloses and SOI DRAM without a floating body effect.
U.S. Pat. No. 5,084,406 to Rhodes et al. discloses a method for forming low resistance DRAM digit-line.
Accordingly, it is an object of one or more embodiments of the present invention to provide an improved method of fabricating word-line spacers for split gate flash memory devices.
Other objects will appear hereinafter.
It has now been discovered that the above and other objects of the present invention may be accomplished in the following manner. Specifically, a substrate having an inchoate split-gate flash memory structure formed thereover is provided. A conductive layer is formed over the substrate and the inchoate split-gate flash memory structure. The conductive layer having: a upper portion and lower vertical portions over the inchoate split-gate flash memory structure; and lower horizontal portions over the substrate. A dual-thickness oxide layer is formed over the conductive layer and has a greater thickness over the upper portion of the conductive layer. The oxide layer is partially etched back to remove at least the oxide layer from over the lower horizontal portions of the conductive layer to expose the underlying portions of the conductive layer. Then etching: away the exposed portions of the conductive layer over the substrate; and through at least a portion of the thinned oxide layer and into the exposed underlying portion of the conductive layer to expose a portion of the inchoate split-gate flash memory structure and to form the word-line spacers adjacent the inchoate split-gate flash memory structure.
The present invention will be more clearly understood from the following description taken in conjunction with the accompanying drawings in which like reference numerals designate similar or corresponding elements, regions and portions and in which:
Initial Structure Common to Both Embodiments—
Polysilicon layer 14 has a thickness of preferably from about 1000 to 2000 Å, more preferably from about 1250 to 1850 Å and more preferably about 1800 Å.
Substrate 10 is preferably a silicon substrate or a germanium substrate and is more preferably a silicon substrate.
In the first embodiment, the thickness ratio of upper portion to underlying portion oxide layer may be enlarged with increasing implantation dosage. The ratio could be 1.5 or above. In the second embodiment, the machine limitation leads the ratio only 1.7 or below.
First Embodiment (Implantation of the Upper Portion 15 of Polysilicon Layer 14)—
Formation of Dielectric Layer 16—
As shown in
Partial Etch-Back of Dielectric Layer 16—
As shown in
Implanting of Exposed Portion 15 of Polysilicon Layer 14—
As also shown in
This leaves portions 17 of partially implanted polysilicon layer 14′ unimplanted.
The remaining etched-back dielectric layer 16′ is removed to expose the implanted polysilicon layer 14′ and the structure is cleaned as necessary. The remaining etched-back dielectric layer 16′ is preferably removed using a plasma etch process or a sulfuric peroxide mixture (SPM) wet bench process and more preferably by a plasma etch process.
Growth of Thermal Oxide Layer 20—
As shown in
Partial Etch-Back of Thermal Oxide Layer 20—
As shown in
Etching of Partially Etched-Back, Partially Implanted Polysilicon Layer 14″—
As shown in
Word-line polysilicon spacers 30 have a width 31 substantially equal to the thickness of formed polysilicon layer 14, i.e. a width of preferably from about 1700 to 1900 Å, more preferably from about 1750 to 1850 Å and more preferably about 1800 Å.
It is noted that remnants 32 of partially etched-back thermal oxide layer 20′ remain over the upper, outer side walls of word-line polysilicon spacers 30.
It is also noted that the final structure as shown in
Further processing may then proceed.
Second Embodiment (Formation of Poor-Step-Coverage RPO Film 122 Over Polysilicon Layer 14)—
Formation of Poor-Step-Coverage Oxide Layer 120—
As shown in
Because oxide film 120 is formed having poor step coverage, it will overhang at the top corners of polysilicon layer 14 and will have a portion 122 of greater thickness over the upper portion 115 of polysilicon layer 114 and will have portions 124 of lesser thickness over the lower vertical and horizontal portions 117 of polysilicon layer 114.
Specifically, upper oxide layer portion 122 has a thickness of preferably from about 300 to 700 Å, more preferably from about 390 to 610 Å and most preferably about 500 Å over the upper portion 115 of polysilicon layer 114 and lower oxide layer portions 124 will each have a thickness of preferably from about 180 to 420 Å, more preferably from about 250 to 350 Å and most preferably about 300 Å over the lower portions 117 of polysilicon layer 114.
It is noted that the structure shown in
Partial Etch-Back of Poor-Step-Coverage Oxide Layer 120—
As shown in
Etching of Partially Etched-Back Polysilicon Layer 14′″—
As shown in
Word-line polysilicon spacers 30 have a width substantially equal to the thickness of formed polysilicon layer 14, i.e. a width of preferably from about 1700 to 1900 Å, more preferably from about 1750 to 1850 Å and more preferably about 1800 Å.
It is noted that remnants 32 of partially etched-back poor-step-coverage oxide layer 120′ remain over the upper, outer side walls of word-line polysilicon spacers 30.
It is also noted that the final structure as shown in
Further processing may then proceed.
Advantages of the Present Invention
The advantages of one or more embodiments of the present invention include:
While particular embodiments of the present invention have been illustrated and described, it is not intended to limit the invention, except as defined by the following claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5084406 | Rhodes et al. | Jan 1992 | A |
| 6242309 | Lee | Jun 2001 | B1 |
| 6599797 | Hofmann et al. | Jul 2003 | B1 |
| 20040077144 | Hsieh | Apr 2004 | A1 |