As seen in
Example embodiments include debris filters useable in nuclear reactors, such as in fuel assembly lower tie plates, to filter fluids passing through the same. Example filters may include several plates with local minima and maxima that are aligned from plate to plate and may join the plates together. Flow paths, or channels, may thus be defined between two plates, and a plurality of such flow paths can be formed across the filter using two or more plates. The plates may be irregular, having small subtractions like divots or holes that extend vertically in the plates along the channels to catch debris as it enters with fluid coolant into the channels. The missing areas may be mostly at a lower edge or lower portion of the filter where fluid first reaches the filter. Where plates approach or touch to define channels, the plates may be solid, such that a single cut-out feature is on a wall of the channel between local minima and maxima. In this way, each channel in an example embodiment filter may have multiple, alternating cut-outs. Example embodiment plates may be formed by stamping, with no excess pieces or flares extending into the channel. Each plate may be continuously joined or even biased to a directly adjacent plate so as to form closed channels except at any cut-out features and entrance/exits. Multiple vertical stages can be used in example embodiment filters, with different channels for each stage. A series of ligaments stamped from the plates may hold each stage to the next, potentially with a gap between stages to permit intermixing.
Example embodiments will become more apparent by describing, in detail, the attached drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus do not limit the terms which they depict.
Because this is a patent document, general, broad rules of construction should be applied when reading it. Everything described and shown in this document is an example of subject matter falling within the scope of the claims, appended below. Any specific structural and functional details disclosed herein are merely for purposes of describing how to make and use examples. Several different embodiments and methods not specifically disclosed herein may fall within the claim scope; as such, the claims may be embodied in many alternate forms and should not be construed as limited to only examples set forth herein.
It will be understood that, although the ordinal terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited to any order by these terms. These terms are used only to distinguish one element from another; where there are “second” or higher ordinals, there merely must be that many number of elements, without necessarily any difference or other relationship. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments or methods. As used herein, the term “and/or” includes all combinations of one or more of the associated listed items. The use of “etc.” is defined as “et cetera” and indicates the inclusion of all other elements belonging to the same group of the preceding items, in any “and/or” combination(s).
It will be understood that when an element is referred to as being “connected,” “coupled,” “mated,” “attached,” “fixed,” etc. to another element, it can be directly connected to the other element, or intervening elements may be present. In contrast, when an element is referred to as being “directly connected,” “directly coupled,” etc. to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). Similarly, a term such as “communicatively connected” includes all variations of information exchange and routing between two electronic devices, including intermediary devices, networks, etc., connected wirelessly or not.
As used herein, the singular forms “a,” “an,” and “the” are intended to include both the singular and plural forms, unless the language explicitly indicates otherwise. Indefinite articles like “a” and “an” introduce or refer to any modified term, both previously-introduced and not, while definite articles like “the” refer to the same previously-introduced term. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used herein, specify the presence of stated features, characteristics, steps, operations, elements, and/or components, but do not themselves preclude the presence or addition of one or more other features, characteristics, steps, operations, elements, components, and/or groups thereof.
The structures and operations discussed below may occur out of the order described and/or noted in the figures. For example, two operations and/or figures shown in succession may in fact be executed concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved. Similarly, individual operations within example methods described below may be executed repetitively, individually or sequentially, so as to provide looping or other series of operations aside from single operations described below. It should be presumed that any embodiment or method having features and functionality described below, in any workable combination, falls within the scope of example embodiments.
The inventors have recognized that conventional nuclear fuel filters use large flow channels to block debris in a fluid coolant flowing therethrough, thereby retaining large debris pieces from the flow through geometric constraints and/or the change of momentum into the channels. The inventors have found that such large channels, while effective against larger pieces of debris, do not filter smaller shreds and scraps of metal and other rigid materials of millimeter- or smaller scale. These smaller pieces are the most likely to become caught against a fuel rod and fret the same. To overcome these newly-recognized problems as well as others, the inventors have developed example embodiments and methods described below to address these and other problems recognized by the inventors with unique solutions enabled by example embodiments.
The present invention is debris filters and nuclear fuel assemblies and methods of using the same. In contrast to the present invention, the few example embodiments and example methods discussed below illustrate just a subset of the variety of different configurations that can be used as and/or in connection with the present invention.
Lower section 202 may also be formed of several adjacent plates that form open or closed fluid channels 250. The plates may have peaks 231 and valleys 232, and channels 250 formed therebetween, extending at one angle, which may be different from an angle of the channels of upper section 201. For example, angle 220 of peaks 231 and valleys 232 in lower section 202 may be mirrored about an axial line between upper section 201 and lower section 202. Or angle 220 may be continued between sections such that channels 250 are parallel and/or continuous between sections. Channels 250 in one section may align with another in a one-to-one basis, or one channel may open into multiple channels in another section. Lower section 202 and upper section 201 may be directly joined, or, as shown in
Ligaments 210 may have a twist 212 in their profile, turning as they extend axially. Such a twist 212 may impart a swirl or some turbulence in flow between sections 201 and 202 in gap 211, allowing debris to leave flow between filter sections. If differing angles are used between filter sections in gap section 211, the momentum change between flow in lower section 202 and upper section 201 may further encourage debris to exit between filters in gap section 211 in combination with the slight flow disturbance caused by twist 212. Ligaments 210 may otherwise be small and not protrude further into channels 250, such that ligaments 210 may not block and/or cause pressure drop in flow channels 250 through example embodiment filters while still securely joining sections 201 and 202.
Lower section 202 may be similar to upper section 201 with peaks 231 and valleys 232 forming channels 250 between adjacent plates. However, as shown in
The view line in
Notches 241 and/or windows 242, if positioned at lower or entry areas of lower portion 202 for example, may effectively capture debris from a coolant fluid by geometric matching of such cut-out features with the debris and taking advantage of a momentum differential between the fluid forced into channels 250 and debris that may be denser and thus slower to redirect. At the entry to lower section 202, debris may be more likely to contact and be entrapped in lower notches 241 and/or windows 242 because of the flow disturbances they create and/or because the debris and flow have not yet had time to move consistently together in channels 250. Notches 241 and/or windows 242 may be formed by stamping or cutting out, for example, from individual plates forming lower section 202. Because notches 241 and/or windows 242 may be formed by subtraction during stamping, with no extension or flares into the flow path of channels 250, they may not produce an undue pressure drop or turbulence of coolant fluid, allowing for robust, but filtered, coolant flow into and through a fuel assembly.
Adjacent peak 231 and valley 232 on directly adjacent plates touch at join points 235, which are shown as exaggerated in
Although example embodiment debris filter 200 is shown with a single upper section 201 and single lower section 202 that differ from one another and are separated by a gap section 211, it is understood that these sections may be used in different combinations. For example, two identical lower sections 202 could be used with only angle 220 differing between them, and they could be directly joined with no gap section 211. Similarly, a single-stage filter with only a lower section 202 could be used. Still further, a multiple-stage filter with three or more upper sections 201 repeated with gap sections 211 and ligaments 210 between each stage could be used.
Example embodiment debris filter 200 may be fabricated of resilient materials that are compatible with a nuclear reactor environment without substantially changing in physical properties, such as becoming substantially radioactive, melting, embrittlement, and/or retaining/adsorbing radioactive particulates. For example, several known structural materials, including austenitic stainless steels 304 or 316, XM-19, zirconium alloys, nickel alloys, Alloy 600, etc. may be chosen for any element of components of example embodiment debris filters. Joining structures and directly-touching elements may be chosen of different and compatible materials to prevent fouling. Each plate spanning upper and lower sections, and even entire example embodiment debris filter 200, may be fabricated as a single part, such as through stamping, casting and/or molding, reducing complexity. Still further, example embodiment debris filters may be manufactured through additive manufacturing, by building up each component successively from a simplest, central component and welding additional, outer components to the same.
Example embodiment debris filter 200 may be installed in an existing lower tie plate 10 (
Example embodiments and methods thus being described, it will be appreciated by one skilled in the art that example embodiments may be varied and substituted through routine experimentation while still falling within the scope of the following claims. For example, although debris filter with wave-form plates are shown, step-wise, corrugated, or gridded plates can be used simply through proper forming of example embodiments—and fall within the scope of the claims. Such variations are not to be regarded as departure from the scope of these claims.
This application is a continuation of, and claims priority under 35 U.S.C. § 120, co-pending U.S. application Ser. No. 15/687,712, filed Aug. 28, 2017, and incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1240081 | Moss | Sep 1917 | A |
3847736 | Bevilacqua | Nov 1974 | A |
4116764 | Jones | Sep 1978 | A |
4652425 | Ferrari | Mar 1987 | A |
4678627 | Rylatt | Jul 1987 | A |
4684496 | Wilson et al. | Aug 1987 | A |
4781884 | Anthony | Nov 1988 | A |
4828791 | DeMario | May 1989 | A |
5037605 | Riordan, III | Aug 1991 | A |
5100611 | Nylund | Mar 1992 | A |
5384814 | Matzner | Jan 1995 | A |
5390220 | Zuloaga, Jr | Feb 1995 | A |
5483564 | Matzner | Jan 1996 | A |
5488634 | Johansson | Jan 1996 | A |
5757874 | Croteau | May 1998 | A |
6012522 | Donnelly | Jan 2000 | A |
6251499 | Lehman | Jun 2001 | B1 |
6385271 | Nylund | May 2002 | B2 |
6847695 | Kageyama | Jan 2005 | B2 |
7577230 | Aktas | Aug 2009 | B2 |
7822165 | Broach | Oct 2010 | B2 |
8317035 | Elkins | Nov 2012 | B2 |
8396182 | Smith | Mar 2013 | B2 |
8548113 | Kiernan | Oct 2013 | B2 |
8611488 | Diller | Dec 2013 | B2 |
8824620 | Knabe | Sep 2014 | B2 |
8824621 | Huq | Sep 2014 | B2 |
9202598 | Russell | Dec 2015 | B2 |
9583222 | Friedrich | Feb 2017 | B2 |
9620249 | Elkins | Apr 2017 | B2 |
10418135 | Yu | Sep 2019 | B2 |
10717032 | Greenwood | Jul 2020 | B2 |
20040135270 | Lantz | Jul 2004 | A1 |
20060283790 | Elkins | Dec 2006 | A1 |
20080130820 | Ukai | Jun 2008 | A1 |
20090060114 | DeFilippis | Mar 2009 | A1 |
20090080590 | Smith et al. | Mar 2009 | A1 |
20090139969 | Smith | Jun 2009 | A1 |
20090184504 | Greenwood | Jul 2009 | A1 |
20100310034 | Jiang | Dec 2010 | A1 |
20110164719 | Aleshin | Jul 2011 | A1 |
20110268240 | Huq | Nov 2011 | A1 |
20130248434 | Owaki | Sep 2013 | A1 |
20130279642 | Yu | Oct 2013 | A1 |
20140056397 | Friedrich | Feb 2014 | A1 |
20180025800 | Singh | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
S 61-120993 | Jun 1986 | JP |
2005172748 | Jun 2005 | JP |
2006-189434 | Jul 2006 | JP |
2012-117921 | Jun 2012 | JP |
2012117921 | Jun 2012 | JP |
2014-519032 | Aug 2014 | JP |
Entry |
---|
JPO, Reasons for Refusal in corresponding JP application 2018-155156, Jul. 22, 2022. |
EPO, Partial European Search Report in corresponding application EP21202545.6, Jan. 28, 2022. |
Number | Date | Country | |
---|---|---|---|
20210287812 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15687712 | Aug 2017 | US |
Child | 17154999 | US |