Methods of forming medical devices

Information

  • Patent Grant
  • 6960370
  • Patent Number
    6,960,370
  • Date Filed
    Thursday, March 27, 2003
    22 years ago
  • Date Issued
    Tuesday, November 1, 2005
    19 years ago
Abstract
Medical devices that include oxidizable portions can be plated after a two step activation process that includes successive applications of two aqueous solutions of ammonium bifluoride. Once plated, such materials can be soldered using conventional solders and fluxes. Medical devices can be assembled by soldering together plated materials. Oxidizable materials can be plated with radiopaque materials to yield medical devices that are more visible to fluoroscopy.
Description
TECHNICAL FIELD

The invention relates generally to medical devices and more specifically to methods of plating and soldering together portions of medical devices.


BACKGROUND

Medical devices such as distal protection filters and guidewires can include portions that are made from a variety of different metals. Some of these metals, such as stainless steel and nickel/titanium alloys, are readily oxidized when exposed to air. It has been found that a surface layer of oxidized metal can interfere with soldering processes.


Thus, a need remains for an improved method of soldering oxidizable metals such as stainless steel and nitinol.


SUMMARY

The present invention is directed to an improved method of plating oxidizable materials. Once plated, such materials can be soldered using conventional solders and fluxes. Medical devices can be assembled by soldering together plated materials. Oxidizable materials can be plated with radiopaque materials to yield medical devices that are more visible to fluoroscopy.


Accordingly, an embodiment of the present invention can be found in a method of plating a medical device that includes an oxidizable substrate. The substrate can be cleaned with a cleaning and etching solution, and can be activated with a concentrated aqueous solution of ammonium bifluoride. A rinsing step ensues in which the substrate can be rinsed with a dilute aqueous solution of ammonium bifluoride. The substrate can be plated with a plating material.


Another embodiment of the present invention is found in a method of forming a medical device that has a first metal part and a second metal part. The first metal part is made of an oxidizable metal. The first metal part can be cleaned with a cleaning and etching solution and can then be activated with a concentrated aqueous solution of ammonium bifluoride. The first metal part can be rinsed with a dilute aqueous solution of ammonium bifluoride and can be electroplated. Finally, the plated first metal part can be soldered to the second metal part. In a particular embodiment, the second metal part is also treated as described above, prior to soldering.


An embodiment of the present invention is found in a method of forming a filter wire loop from a nitinol filter wire that is secured at either end to a stainless steel wire. Both ends of the nitinol wire can be cleaned with a cleaning and etching solution and can then be activated with an aqueous solution that includes about 10 to 40 weight percent ammonium bifluoride. The ends of the wire can be rinsed with an aqueous solution that includes about 1 to 10 weight percent ammonium bifluoride. Both ends can be electroplated with a plating material that includes nickel. The plated ends can be positioned in alignment with the stainless steel wire and are soldered into position.


Another embodiment of the present invention is found in a method of increasing the radiopacity of a medical device that has an oxidizable substrate. The substrate can be cleaned with a cleaning and etching solution and can be activated with an aqueous solution that includes about 10 to 40 weight percent of ammonium bifluoride and can subsequently be rinsed with an aqueous solution that includes about 1 to 10 weight percent ammonium bifluoride. The activated and rinsed substrate can be electroplated with a radiopaque material.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a diagrammatic illustration of a plating method in accordance with an embodiment of the invention.



FIG. 2 is a diagrammatic cross-section view of a metal substrate that has been plated in accordance with an embodiment of the invention.



FIG. 3 is a diagrammatic cross-section view of two metal substrates that have each been plated and have subsequently been soldered together in accordance with an embodiment of the invention.



FIG. 4 is a perspective view of a filter support loop, positioned prior to soldering, in accordance with an embodiment of the invention.



FIG. 5 is a perspective view of the filter support loop of FIG. 4, shown after soldering and with a radiopaque coating, in accordance with an embodiment of the invention.



FIG. 6 is a cross-section view of the filter support loop of FIG. 5, taken along the 66 line.



FIG. 7 is a partially sectioned view of a distal portion of a guidewire in accordance with an embodiment of the invention.



FIG. 8 is a partially sectioned view of a portion of FIG. 7.



FIG. 9 is a perspective view of a vena cava filter in accordance with an embodiment of the invention.



FIG. 10 is a top view of the vena cava filter of FIG. 9.





DETAILED DESCRIPTION

The invention is directed to plating oxidizable materials that subsequently can be soldered using conventional solders and fluxes. Medical devices can be assembled by soldering together plated materials. Oxidizable materials can be plated with radiopaque materials to yield medical deviecs that are more visible to fluoroscopy.


For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value, i.e. having the same function or result. In many instances, the term “about” can include numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


As used in this specification and the appended claims, any reference to “percent” or “%” are intended to be defined as weight percent, unless explicitly described to the contrary.


The following description should be read with reference to the illustrative but non-limiting drawings wherein like reference numerals indicate like elements throughout the several views.



FIG. 1 provides an overview of a medical device plating method in accordance with an embodiment of the invention. In broad terms, this method prepares an oxidizable substrate such as a nickel-titanium alloy, stainless steel or titanium for plating and then plates the prepared substrate.


In particular, FIG. 1 illustrates a three step process. In some embodiments, an activation step 10 can include submerging, dipping, spraying or otherwise contacting the oxidizable substrate with an activation solution. The activation solution can be a concentrated aqueous solution of ammonium bifluoride. In some embodiments, the activation solution can contain in the range of about 10 to about 40 weight percent ammonium bifluoride dissolved in water. In some embodiments, the activation solution can contain about 25 weight percent ammonium bifluoride dissolved in deionized (DI) water.


In the activation step 10, the substrate is contacted by the activation solution for a period of time sufficient to remove most if not all of the oxidation. The amount of time necessary can vary, depending on the ammonium bifluoride concentration of the activation solution. In some embodiments, the activation step 10 can include contacting the substrate with the activation solution for a period of time that is in the range of about 1 minute to about 30 minutes or for example, about 5 minutes.


Without wishing to be bound or limited by theory, it is believed that activation step 10 results in a substrate that is largely free of oxidation by reducing any oxidized metal back to its native form. If for example the substrate is a nickel-titanium alloy such as nitinol, the activation step 10 is believed to reduce most if not all of the TiO2 back to elemental titanium.


The activation step 10 can be followed by a rinse step 12. In some embodiments, the rinse step 12 can include submerging, dipping, spraying or otherwise contacting the substrate with a rinse solution. The rinse solution can be a dilute aqueous solution of ammonium bifluoride. In some embodiments, the rinse solution can contain in the range of about 1 to 10 weight percent ammonium bifluoride dissolved in water. In some embodiments, the rinse solution can contain about 5 weight percent ammonium bifluoride dissolved in DI water.


In the rinse step 12, the substrate is contacted with the rinse solution for a period of time sufficient to remove excess ammonium bifluoride from the substrate. The amount of time can vary, depending on the ammonium bifluoride concentration on the surface of the substrate as well as that of the rinse solution. It is recognized that as activated substrates (from activation step 10) undergo the rinse step 12, the ammonium bifluoride concentration within the rinse solution will increase. In some embodiments, the rinse step 12 can include contacting the substrate with the rinse solution for a period of time that is in the range of about 1 minute or less, for example about 30 seconds.


Without wishing to be bound or limited by theory, it is believed that the rinse step 12 removes excess ammonium bifluoride from the surface of the substrate yet leaves sufficient ammonium bifluoride to provide temporary protection against oxidation. As a result, the activated and rinsed substrate can be moved to a plating step 14 without requiring an oxygen-free environment. Of course, an inert atmosphere such as a nitrogen atmosphere could be employed, but such is neither necessary nor warranted.


Once the substrate has undergone the activation step 10 and the rinse step 12, the substrate progresses to the plating step 14. The plating step 14 can include any conventional plating process, such as electroplating or reverse current electroplating, or any known deposition process such as vapor deposition, reactive spottering, ion implantation and others.


In some embodiments, the plating step 14 involves an electroplating process. Electroplating is well known in the art and thus a detailed description thereof is not necessary herein. In some embodiments, a reverse current electroplating process can be used. It is believed that using a reverse current electroplating process can retard or even reverse any slight oxidation that may occur between the rinse step 12 and the plating step 14.


The substrate can be plated with a variety of different materials, depending on the processing requirements of subsequent manufacturing steps and the end use of the medical device that includes or contains the substrate. In some embodiments, the substrate once plated will be soldered, and it can be advantageous to provide a plating material that will be compatible with or complementary to whichever solder and flux are used.


In some embodiments, the plating material includes nickel and tin. The plating material can include tin in the range of about 60 to 70 weight percent of the plating and can include nickel in the range of about 30 to 40 weight percent of the plating. In some embodiments, the plating can include about 65 weight percent tin and about 35 weight percent nickel. The electroplating bath can include tin and nickel in amounts sufficient to achieve these plating compositions.


In some embodiments, the substrate will not be soldered. Instead, the substrate can be plated with a material that will increase the radiopacity of the substrate. In these embodiments, the substrate can be plated with a radiopaque material such as gold. The electroplating batch can include gold or other appropriate radiopaque materials in amounts sufficient to achieve an adequate coating.


In some embodiments, the electroplating bath will include amounts of ammonium bifluoride to aid in retarding or reversing any minor oxidation that occurs between the rinse step 12 and the plating step 14. The bath can also include stannose fluoborate, ammonium bifluoride and nickel sulfate.


An electroplating process can be defined in part by the power levels and time used in electroplating a substrate. In some embodiments, the plating step 14 can include plating at a current that is in the range of about 150 mA and about 200 mA for a period of about 15 to about 30 minutes, for example 22 minutes and 175 mA. Time and current may vary depending on amount of parts loaded. If more parts are loaded, increase time or current accordingly should be increased.


Activation and plating methods in accordance with various embodiments of the invention can involved additional steps prior to the activation step 10. For example, in some embodiments, the substrate can be cleaned or can be cleaned and etched prior to activation. A cleaning and etching solution can include any suitable chemicals that are intended to prepare the substrate for activation. In some embodiments, the cleaning and etching solution can include sulfamic acid and hydrogen peroxide.


A cleaning or cleaning and etching step can include submerging or otherwise contacting the substrate with the cleaning or cleaning and etching solution for a sufficient period of time to prepare the substrate for activation. In some embodiments, the substrate can be submerged or otherwise contacted with the cleaning or cleaning and etching solution for a period of time in the range of about less than one minute to about ten minutes. In some embodiments, the cleaning or cleaning and etching process can include ultrasonic cleaning, for approximately 5 minutes, for example.


In some embodiments, a cleaning or cleaning and etching step can be followed by a water rinse. In some embodiments, the plating step 14 can be followed by a water rinse, with or without ultrasonic agitation.


The methods described herein are applicable to a number of different medical devices. FIG. 2 diagrammatically illustrates a plated substrate 16 that includes a substrate 18 and a plating layer 20. The plating layer 20 can be a solderable material such as a tin-nickel mixture, or the plating layer 20 can be a radiopaque material such as tantalum or gold. Illustrative but non-limiting examples of medical devices that would benefit from being solderable include guidewires, filter support loops and vena cave filters. Virtually all intracorporeal medical devices such as intravascular devices can benefit from a radiopaque plating or coating.


In some embodiments, the plating layer 20 represents a solderable material and the substrate 18 generically represents a medical device or portion thereof that can be soldered to another medical device or portion thereof. In particular, the substrate 18 can be formed from or include a portion thereof that is formed from an oxidizable metal.


In some embodiments, the substrate 18 can be formed from a nickel-titanium alloy such as nitinol, stainless steel, gold, tantalum, titanium, beta titanium and metal alloys such as nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, or other suitable material. In some embodiments, the substrate 18 can be a relatively stiff metal such as 304 v stainless steel or 316L stainless steel.


In some embodiments, the substrate 18 can be nitinol. The word nitinol was coined by a group of researchers at the United States Naval Ordinance Laboratory (NOL) who were the first to observe the shape memory behavior of this material. The word nitinol is an acronym including the chemical symbol for nickel (Ni), the chemical symbol for titanium (Ti), and an acronym identifying the Naval Ordinance Laboratory (NOL).


Once the substrate 18 has been plated to form the plated substrate 16, it can if desired be soldered to another material. The plated substrate 16 can be soldered to a solderable material that has not been plated, or if desired the plated substrate 16 can be soldered to another oxidizable material that has been plated in accordance with the invention.



FIG. 3 illustrates the plated substrate 18 that has been soldered to a second plated substrate 22. The second plated substrate 22 includes a substrate 24 that can be formed of any suitable material, as outlined above, and a plating layer 26. The plated substrate 18 and the second plated substrate 22 can be secured together through a solder layer 28. Any suitable solder material can be used. In some embodiments, the solder includes a tin-silver mixture. In particular embodiments, the solder can include about 5 weight percent silver and about 95 weight percent tin.


As noted, FIG. 3 generically represents two medical devices or portions of medical devices that have been soldered together in accordance with the invention. Illustrative but non-limiting embodiments of medical devices that can be soldered include filter support loops, guidewires and vena cava filters. Each will be described, in turn.



FIGS. 4, 5 and 6 illustrate a distal protection filter support loop 30 that is configured to secure and support a distal protection filter membrane 32 (shown in phantom). The distal protection filter membrane 32 is of conventional design and manufacture. The support loop 30 can be formed from a variety of different materials. The support loop 30 can be formed from a wire that has been doubled over to have an end 34 and an end 36. In some embodiments, the support loop 30 is formed of a nitinol wire.


The wire ends 34 and 36 can be positioned in conjunction with a support wire 38. The support wire 38 can be formed from a variety of suitable materials. In some embodiments, the support wire 38 can be formed of stainless steel. The wire ends 34 and 36 can be positioned such that both are substantially parallel to the support wire 38.


In the illustrated embodiment, the wire end 34 is arranged in parallel to the support wire 38 while the wire end 36 is coiled around the support wire 38 and the wire end 34. In some embodiments, both end wires 34 and 36 can be positioned parallel to the support wire 38 and a separate wire or coil (not illustrate) could be coiled around the support wire 38 and the wire ends 34 and 36 to lend strength.


Once the support loop 30 has been positioned proximate the support wire 38, the wire ends 34 and 36 can be soldered to the support wire 38. As described above, any suitable solder such as a tin-nickel solder can be used. The soldered filter support structure 40 after soldering is illustrated for example in FIG. 5.


In FIG. 5, the support loop 30 has been soldered to the support wire 38, via solder mass 42. In some embodiments, as illustrated, at least a portion of the support loop 30 can include a coating or covering 44. See also FIG. 6. The coating or covering 44 can in some embodiments lend additional radiopacity to the support loop 30. In some embodiments, the coating or covering 44 can include gold, tantalum or other radiopaque materials. The coating or covering 44 can be a sleeve or coil that fits over the support loop 30. In some embodiments, the coating or covering 44 can be an electroplated coating that is provided in accordance with the inventive methods described herein.


Guidewires represent another beneficial use for the plating methods of the invention. FIG. 7 for example shows a guidewire distal portion 46 that includes a proximal section 48 and a distal tip 50. The proximal section 48 and the distal tip 50 meet at a joint 52, which will be discussed in greater detail with respect to FIG. 8. As illustrated, the proximal section 48 includes two constant diameter portions 54 and 56 that are interrupted by a taper portion 58.


In other embodiments, the proximal section 48 can have a constant diameter, or alternatively can have more than one taper portion (not illustrated). The distal tip 5 as shown has two constant diameter portions 60 and 62 that are interrupted by a taper portion 64. This is merely an illustrative grind profile, as the distal tip 50 could include only a taper portion without any constant diameter portions, or it could include multiple taper portions.


Each of the proximal section 48 and the distal tip 50 can be formed from a variety of metallic materials. In some embodiments, one of the proximal section 48 and the distal tip 50 can be formed of nitinol while the other is formed of stainless steel. In some embodiments, the proximal section 48 is formed of nitinol having a first set of properties while the distal tip 50 is formed of nitinol having a second set of properties.



FIG. 8 provides a better view of the joint 52. In accordance with particular embodiments of the invention, the distal end 66 of the proximal section 48 has been plated with a plating layer 70. Similarly, the proximal end 68 of the distal tip 50 has been plated with a plating layer 72. Subsequently, the proximal section 48 has been soldered to the distal tip 50 by providing a solder layer 74 between the plating layer 70 and the plating layer 72.


Intravascular filters such as vena cava filters represent another application of the invention. FIGS. 9 and 10 illustrate a filter 76 that has an apical head 78 and a number of struts 80 that are attached at a distal end 82 thereof to the apical head 78. As illustrated, each of the struts 80 are configured to radially expand to an outswept, conical-shaped position when deployed.


The apical head 78 can be formed of any suitable material, such as a metal or metal alloy. The struts 80 can may be formed from a metal or metal alloy such as titanium, platinum, tantalum, tungsten, stainless steel (e.g. type 304 or 316) or cobalt-chrome. In some embodiments, the struts 80 are formed of titanium, which is highly oxidizable. In some embodiments, the struts 80 can be formed from nitinol.


In some embodiments, the distal ends 82 of each strut 80 can undergo the activation, rinse and plating steps described herein prior to being soldered to the apical head 78. Depending on the identity of the material used to form the apical head 78, it can be beneficial to also activate, rinse and plate the apical head 78 prior to attaching the struts 80.

Claims
  • 1. A method of plating a medical device, the medical device comprising an oxidizable substrate, the method comprising: cleaning the substrate with a cleaning and etching solution; activating the substrate with a concentrated aqueous solution of ammonium bifluoride; wherein the concentrated ammonium bifluoride solution comprises about 10 to 40 weight percent ammonium bifluoride; rinsing the substrate with a dilute aqueous solution of ammonium bifluoride; and plating the substrate with a plating material.
  • 2. The method of claim 1, wherein the medical device comprises one of a guidewire or a filter wire.
  • 3. The method of claim 1, wherein the substrate comprises stainless steel.
  • 4. The method of claim 1, wherein the substrate comprises titanium or a nickel/titanium alloy.
  • 5. The method of claim 1, wherein activating the substrate results in any oxidized metal present on a surface of the substrate being reduced to the metal itself.
  • 6. The method of claim 1, wherein rinsing the substrate with the dilute ammonium bifluoride solution rinses excess ammonium bifluoride from the substrate but leaves sufficient ammonium bifluoride to yield temporary protection against oxidation.
  • 7. The method of claim 1, wherein the dilute ammonium bifluoride solution comprises about 1 to 10 weight percent ammonium bifluoride.
  • 8. The method of claim 1, wherein plating the substrate comprises electroplating.
  • 9. The method of claim 1, wherein plating the substrate comprises reverse current electroplating.
  • 10. The method of claim 1, wherein the plating material comprises from 60 to 70 weight percent tin and from 30 to 40 weight percent nickel.
  • 11. The method of claim 1, wherein the plating material comprises gold.
  • 12. The method of claim 1, wherein the cleaning and etching solution comprises sulfamic acid and hydrogen peroxide.
  • 13. A method of forming a medical device comprising a first metal part and a second metal part, the first metal part comprising an oxidizable metal, the method comprising: cleaning the first metal part with a cleaning and etching solution; activating the first metal part with a concentrated aqueous solution of ammonium bifluoride; wherein the concentrated ammonium bifluoride solution comprises about 10 to 40 weight percent ammonium bifluoride; rinsing the first metal part with a dilute aqueous solution of ammonium bifluoride; electroplating the first metal part; and soldering said plated first metal part to said second metal part.
  • 14. The method of claim 13, wherein the first metal part comprises one of stainless steel, nitinol or titanium.
  • 15. The method of claim 13, wherein the second metal part comprises one of stainless steel, nitinol or titanium.
  • 16. The method of claim 13, wherein the concentrated ammonium bifluoride solution comprises about 25 weight percent ammonium fluoride.
  • 17. The method of claim 16, wherein the soldering comprises using flux and a silver/tin solder comprising about 5 weight percent silver and about 95 weight percent tin.
  • 18. The method of claim 16, wherein the first metal part comprises a guidewire shaft and the second metal part comprises a guidewire distal tip.
  • 19. The method of claim 16, wherein the first metal part comprises a vena cava filter strut and the second metal part comprises a vena cava filter hub.
  • 20. The method of claim 13, wherein the dilute ammonium bifluoride solution comprises about 5 weight percent ammonium fluoride.
  • 21. The method of claim 13, wherein the cleaning solution comprises a mixture of sulfamic acid and hydrogen peroxide.
  • 22. The method of claim 13, wherein the step of electroplating the first metal part includes electroplating the first metal part with a plating material, and wherein the plating material comprises about 65 weight percent tin and about 35 weight percent nickel.
  • 23. The method of claim 13, further comprising, prior to soldering the first metal part to the second metal part, steps of: cleaning the second metal part with the cleaning and etching solution; activating the second metal part with the concentrated aqueous solution of ammonium bifluoride; rinsing the second metal part with the dilute aqueous solution of ammonium bifluoride; and electroplating the second metal part.
  • 24. The method of claim 23, wherein the step of eletroplating the second metal part includes electroplating the second metal part with a plating material, and wherein the plating material comprises about 65 weight percent tin and about 35 weight percent nickel.
  • 25. The method of claim 23, wherein the step of electroplating the second metal part comprises reverse current electroplating.
  • 26. The method of claim 13, wherein the step of electroplating the first metal part comprises reverse current electroplating.
  • 27. A method of forming a filter wire loop, the filter wire loop comprising a nitinol filter wire secured to a stainless steel wire, the filter wire having a first end and a second end, the method comprising steps of: cleaning each of the first and second ends with a cleaning and etching solution; activating each of the first and second ends with a first aqueous solution comprising about 10 to 40 weight percent ammonium bifluoride; rinsing each of the first and second ends with a second aqueous solution comprising about 1 to 10 weight percent ammonium bifluoride; electroplating each of the first and second ends with a plating material comprising nickel; and positioning the plated first and second ends in alignment with the stainless steel wire and soldering the plated first and second ends of the filter wire to the stainless steel wire.
  • 28. The method of claim 27, wherein the step of positioning the plated first and second ends comprises coiling at least one of the first and second ends around the stainless steel wire.
  • 29. The method of claim 27, wherein the first ammonium bifluoride solution comprises about 25 weight percent ammonium fluoride.
  • 30. The method of claim 27, wherein the second ammonium bifluoride solution comprises about 5 weight percent ammonium fluoride.
  • 31. The method of claim 27, wherein the cleaning solution comprises a mixture of sulfamic acid and hydrogen peroxide.
  • 32. The method of claim 27, wherein the plating material comprises about 65 weight percent tin and about 35 weight percent nickel.
  • 33. The method of claim 27, wherein the step of electroplating comprises reverse current electroplating.
  • 34. The method of claim 27, wherein soldering comprises using flux and a silver/tin solder comprising about 5 weight percent silver and about 95 weight percent tin.
  • 35. A method of making a medical device radiopaque, the medical device comprising an oxidizable substrate, the method comprising steps of: cleaning the substrate with a cleaning and etching solution; activating the substrate with a first aqueous solution comprising about 10 to 40 weight percent ammonium bifluoride; rinsing the substrate with a second aqueous solution comprising about 1 to 10 weight percent ammonium bifluoride; and electroplating the substrate with a radiopaque material.
  • 36. The method of claim 35, wherein the first ammonium bifluoride solution comprises about 25 weight percent ammonium fluoride.
  • 37. The method of claim 35, wherein the second ammonium bifluoride solution comprises about 5 weight percent ammonium fluoride.
  • 38. The method of claim 35, wherein the cleaning solution comprises a mixture of sulfamic acid and hydrogen peroxide.
  • 39. The method of claim 35, wherein the step of electroplating comprises reverse current electroplating.
  • 40. The method of claim 35, wherein the radiopaque material comprises gold.
  • 41. The method of claim 35, wherein the medical device comprises one of a nitinol stent, a nitinol guidewire, a stainless steel guidewire, or a nitinol filter wire loop.
US Referenced Citations (174)
Number Name Date Kind
3472230 Fogarty Oct 1969 A
3562013 Mickelson et al. Feb 1971 A
3841905 Dixon, III Oct 1974 A
3868620 McBride et al. Feb 1975 A
3926699 Dixon Dec 1975 A
3952747 Kimmell, Jr. Apr 1976 A
3990982 Dixon Nov 1976 A
3996938 Clark, III Dec 1976 A
RE29181 Dixon, III Apr 1977 E
4029556 Monaco et al. Jun 1977 A
4046150 Schwartz et al. Sep 1977 A
4297257 Elias et al. Oct 1981 A
4314876 Kremer et al. Feb 1982 A
4410396 Somers et al. Oct 1983 A
4416739 Turner Nov 1983 A
4425908 Simon Jan 1984 A
4525250 Fahrmbacher-Lutz et al. Jun 1985 A
4590938 Segura et al. May 1986 A
4591088 Mulliner et al. May 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4650466 Luther Mar 1987 A
4673521 Sullivan et al. Jun 1987 A
4706671 Weinrib Nov 1987 A
4723549 Wholey et al. Feb 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4790813 Kensey Dec 1988 A
4790902 Wada et al. Dec 1988 A
4794928 Kletschka Jan 1989 A
4807626 McGirr Feb 1989 A
4873978 Ginsburg Oct 1989 A
4921478 Solano et al. May 1990 A
4921484 Hillstead May 1990 A
4926858 Gifford, III et al. May 1990 A
4938850 Rothschild et al. Jul 1990 A
4944851 Cordani et al. Jul 1990 A
4963233 Mathew Oct 1990 A
4969891 Gewertz Nov 1990 A
4998539 Delsanti Mar 1991 A
5002560 Machold et al. Mar 1991 A
5011488 Ginsburg Apr 1991 A
5022935 Fisher Jun 1991 A
5053008 Bajaj Oct 1991 A
5071407 Termin et al. Dec 1991 A
5100423 Fearnot Mar 1992 A
5100500 Dastolfo et al. Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5109593 Benz et al. May 1992 A
5133733 Rasmussen et al. Jul 1992 A
5134040 Benz et al. Jul 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5152777 Goldberg et al. Oct 1992 A
5160342 Reger et al. Nov 1992 A
5211775 Fisher et al. May 1993 A
5224953 Morgentaler Jul 1993 A
5242759 Hall Sep 1993 A
5329942 Gunther et al. Jul 1994 A
5330484 Gunther Jul 1994 A
5354310 Garnie et al. Oct 1994 A
5354623 Hall Oct 1994 A
5376100 Lefebvre Dec 1994 A
5421832 Lefebvre Jun 1995 A
5423742 Theron Jun 1995 A
5449372 Schmaltz et al. Sep 1995 A
4842579 Shiber Oct 1995 A
5456667 Ham et al. Oct 1995 A
5462529 Simpson et al. Oct 1995 A
5464524 Ogiwara et al. Nov 1995 A
5536242 Willard et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5658296 Bates et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5695519 Summers et al. Dec 1997 A
5720764 Naderlinger Feb 1998 A
5728066 Daneshvar Mar 1998 A
5749848 Jang et al. May 1998 A
5769816 Barbut et al. Jun 1998 A
5779716 Cano et al. Jul 1998 A
5792157 Mische et al. Aug 1998 A
5795322 Boudewijn Aug 1998 A
5800457 Gelbfish Sep 1998 A
5800509 Boneau Sep 1998 A
5800525 Bachinski et al. Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827324 Cassell et al. Oct 1998 A
5833644 Zadno-Azizi et al. Nov 1998 A
5833650 Imran Nov 1998 A
5846260 Maahs Dec 1998 A
5848964 Samuels Dec 1998 A
5876367 Kaganov et al. Mar 1999 A
5882193 Wool Mar 1999 A
5895399 Barbut et al. Apr 1999 A
5897567 Ressemann et al. Apr 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5919126 Armini Jul 1999 A
5925016 Chornenky et al. Jul 1999 A
5925060 Forber Jul 1999 A
5925062 Purdy Jul 1999 A
5935139 Bates Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5941896 Kerr Aug 1999 A
5947995 Samuels Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5980555 Barbut et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6001118 Daniel et al. Dec 1999 A
6007557 Ambrisco et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013085 Howard Jan 2000 A
6027520 Tsugita et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6051014 Jang Apr 2000 A
6051015 Maahs Apr 2000 A
6053932 Daniel et al. Apr 2000 A
6059814 Ladd May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6068645 Tu May 2000 A
6086605 Barbut et al. Jul 2000 A
6117154 Barbut et al. Sep 2000 A
6129739 Khosravi Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6142987 Tsugita Nov 2000 A
6152946 Broome et al. Nov 2000 A
6165200 Tsugita et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171328 Addis Jan 2001 B1
6179851 Barbut et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6203561 Ramee et al. Mar 2001 B1
6206868 Parodi Mar 2001 B1
6214026 Lepak et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6224620 Maahs May 2001 B1
6231544 Tsugita et al. May 2001 B1
6235044 Root et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6245087 Addis Jun 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6258115 Dubrul Jul 2001 B1
6264663 Cano Jul 2001 B1
6264672 Fisher Jul 2001 B1
6267650 Hembree Jul 2001 B1
6270513 Tsugita et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6280413 Clark et al. Aug 2001 B1
6287321 Jang Sep 2001 B1
6290710 Cryer et al. Sep 2001 B1
6309399 Barbut et al. Oct 2001 B1
6319268 Ambrisco et al. Nov 2001 B1
6339047 Christopherson et al. Jan 2002 B1
6344049 Levinson et al. Feb 2002 B1
6416386 Hembree Jul 2002 B2
6416387 Hembree Jul 2002 B2
6416388 Hembree Jul 2002 B2
6416395 Hembree Jul 2002 B1
6416397 Hembree Jul 2002 B2
6416398 Hembree Jul 2002 B2
6416399 Hembree Jul 2002 B2
6419550 Hembree Jul 2002 B2
6422919 Hembree Jul 2002 B2
6422923 Hembree Jul 2002 B2
6431952 Hembree Aug 2002 B2
6447664 Taskovics et al. Sep 2002 B1
20010044262 Hembree Nov 2001 A1
20010046832 Hembree Nov 2001 A1
Foreign Referenced Citations (110)
Number Date Country
28 21 048 Jul 1980 DE
34 17 738 Nov 1985 DE
40 30 998 Oct 1990 DE
199 16 162 Oct 2000 DE
0 200 688 Nov 1986 EP
0 293 605 Dec 1988 EP
0 411 118 Feb 1991 EP
0 427 429 May 1991 EP
0 437 121 Jul 1991 EP
449646 Oct 1991 EP
0 472 334 Feb 1992 EP
0 472 368 Feb 1992 EP
0 533 511 Mar 1993 EP
0 655 228 Nov 1994 EP
0 686 379 Jun 1995 EP
0 696 447 Feb 1996 EP
0 737 450 Oct 1996 EP
0 743 046 Nov 1996 EP
0 759 287 Feb 1997 EP
0 771 549 May 1997 EP
0 784 988 Jul 1997 EP
0 852 132 Jul 1998 EP
0 934 729 Aug 1999 EP
1 127 556 Aug 2001 EP
2 580 504 Oct 1986 FR
2 643 250 Aug 1990 FR
2 666 980 Mar 1992 FR
2 694 687 Aug 1992 FR
2 768 326 Mar 1999 FR
2 020 557 Jan 1983 GB
6 116 782 Apr 1994 JP
8-187294 Jul 1996 JP
08218185 Aug 1996 JP
764684 Sep 1980 SU
WO 8809683 Dec 1988 WO
WO 9203097 Mar 1992 WO
WO 9414389 Jul 1994 WO
WO 9424946 Nov 1994 WO
WO 9601591 Jan 1996 WO
WO 9610375 Apr 1996 WO
WO 9619941 Jul 1996 WO
WO 9623441 Aug 1996 WO
WO 9633677 Oct 1996 WO
WO 9717100 May 1997 WO
WO 9727808 Aug 1997 WO
WO 9742879 Nov 1997 WO
WO 9802084 Jan 1998 WO
WO 9802112 Jan 1998 WO
WO 9823322 Jun 1998 WO
WO 9833443 Aug 1998 WO
WO 9834673 Aug 1998 WO
WO 9836786 Aug 1998 WO
WO 9838920 Sep 1998 WO
WO 9838929 Sep 1998 WO
WO 9839046 Sep 1998 WO
WO 9839053 Sep 1998 WO
WO 9846297 Oct 1998 WO
WO 9847447 Oct 1998 WO
WO 9849952 Nov 1998 WO
WO 9850103 Nov 1998 WO
WO 9851237 Nov 1998 WO
WO 9855175 Dec 1998 WO
WO 9909895 Mar 1999 WO
WO 9922673 May 1999 WO
WO 9923976 May 1999 WO
WO 9925252 May 1999 WO
WO 9930766 Jun 1999 WO
WO 9940964 Aug 1999 WO
WO 9942059 Aug 1999 WO
WO 9944510 Sep 1999 WO
WO 9944542 Sep 1999 WO
WO 9955236 Nov 1999 WO
WO 9958068 Nov 1999 WO
WO 0007521 Feb 2000 WO
WO 0007655 Feb 2000 WO
WO 0009054 Feb 2000 WO
WO 0016705 Mar 2000 WO
WO 0049970 Aug 2000 WO
WO 0053120 Sep 2000 WO
WO 0067664 Nov 2000 WO
WO 0067665 Nov 2000 WO
WO 0067666 Nov 2000 WO
WO 0067668 Nov 2000 WO
WO 0067669 Nov 2000 WO
WO 0105462 Jan 2001 WO
WO 0108595 Feb 2001 WO
WO 0108596 Feb 2001 WO
WO 0108742 Feb 2001 WO
WO 0108743 Feb 2001 WO
WO 0110320 Feb 2001 WO
WO 0115629 Mar 2001 WO
WO 0121077 Mar 2001 WO
WO 0121100 Mar 2001 WO
WO 0126726 Apr 2001 WO
WO 0135857 May 2001 WO
WO 0143662 Jun 2001 WO
WO 0147579 Jul 2001 WO
WO 0149208 Jul 2001 WO
WO 0149209 Jul 2001 WO
WO 0149215 Jul 2001 WO
WO 0149355 Jul 2001 WO
WO 0152768 Jul 2001 WO
WO 0158382 Aug 2001 WO
WO 0160442 Aug 2001 WO
WO 0167989 Sep 2001 WO
WO 0170326 Sep 2001 WO
WO 0172205 Oct 2001 WO
WO 0187183 Nov 2001 WO
WO 0189413 Nov 2001 WO
WO 0191824 Dec 2002 WO
Related Publications (1)
Number Date Country
20040188261 A1 Sep 2004 US