Methods of forming pluralities of capacitors

Information

  • Patent Grant
  • 7919386
  • Patent Number
    7,919,386
  • Date Filed
    Monday, April 27, 2009
    15 years ago
  • Date Issued
    Tuesday, April 5, 2011
    13 years ago
Abstract
The invention includes methods of forming pluralities of capacitors. In one implementation, a method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes within a capacitor array area over a substrate. The capacitor electrodes comprise outer lateral sidewalls. The plurality of capacitor electrodes is supported at least in part with a retaining structure which engages the outer lateral sidewalls. The retaining structure is formed at least in part by etching a layer of material which is not masked anywhere within the capacitor array area to form said retaining structure. The plurality of capacitor electrodes is incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
Description
TECHNICAL FIELD

This invention relates to methods of forming pluralities of capacitors.


BACKGROUND OF THE INVENTION

Capacitors are one type of component which is commonly used in the fabrication of integrated circuits, for example in DRAM circuitry. A typical capacitor is comprised of two conductive electrodes separated by a non-conducting dielectric region. As integrated circuitry density has increased, there is a continuing challenge to maintain sufficiently high storage capacitance despite typical decreasing capacitor area. The increase in density of integrated circuitry has typically resulted in greater reduction in the horizontal dimension of capacitors as compared the vertical dimension. In many instances, the vertical dimension of capacitors has increased.


One manner of forming capacitors is to initially form an insulative material within which a capacitor storage node electrode is formed. For example, an array of capacitor electrode openings for individual capacitors is typically fabricated in such insulative capacitor electrode-forming material, with a typical insulative electrode-forming material being silicon dioxide doped with one or both of phosphorus and boron. The capacitor electrode openings are typically formed by etching. However, it can be difficult to etch the capacitor electrode openings within the insulative material, particularly where the openings are deep.


Further and regardless, it is often desirable to etch away most if not all of the capacitor electrode-forming material after individual capacitor electrodes have been formed within the openings. Such enables outer sidewall surfaces of the electrodes to provide increased area, and thereby increased capacitance for the capacitors being formed. However, the capacitor electrodes formed in deep openings are typically correspondingly much taller than they are wide. This can lead to toppling of the capacitor electrodes either during the etch to expose the outer sidewall surfaces, during transport of the substrate, and/or during deposition of the capacitor dielectric layer or outer capacitor electrode layer. Our U.S. Pat. No. 6,667,502 teaches provision of a brace or retaining structure intended to alleviate such toppling.


While the invention was motivated in addressing the above identified issues, it is in no way so limited. The invention is only limited by the accompanying claims as literally worded, without interpretative or other limiting reference to the specification, and in accordance with the doctrine of equivalents.


SUMMARY

The invention includes methods of forming pluralities of capacitors. In one implementation, a method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes within a capacitor array area over a substrate. The capacitor electrodes comprise outer lateral sidewalls. The plurality of capacitor electrodes is supported at least in part with a retaining structure which engages the outer lateral sidewalls. The retaining structure is formed at least in part by etching a layer of material which is not masked anywhere within the capacitor array area to form said retaining structure. The plurality of capacitor electrodes is incorporated into a plurality of capacitors.


In one implementation, a method of forming a plurality of capacitors includes forming different composition first, second and third materials over a capacitor electrode-forming material. The first, second and third materials are received at least in part at some common elevation over the capacitor electrode-forming material. The second material comprises an anisotropically etched retaining structure. The first material is etched substantially selectively relative to the second and third materials followed by etching the capacitor electrode-forming material substantially selectively relative to the second and third materials effective to form a plurality of capacitor electrode openings. Individual capacitor electrodes are formed within individual of the capacitor electrode openings. The third material is etched substantially selectively relative to the second material and substantially selectively relative to the capacitor electrodes effective to expose capacitor electrode-forming material underlying said third material being etched. This is followed by etching the capacitor electrode-forming material substantially selectively relative to the second material and substantially selectively relative to the capacitor electrodes effective to expose outer lateral sidewalls of the capacitor electrodes and leave at least some of the retaining structure supporting the capacitor electrodes. The plurality of capacitor electrodes is incorporated into a plurality of capacitors.


Other aspects and implementations are contemplated.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are described below with reference to the following accompanying drawings.



FIG. 1 is a fragmentary diagrammatic section of a semiconductor wafer fragment in process in accordance with an aspect of the invention.



FIG. 2 is an alternate embodiment to that depicted by FIG. 1.



FIG. 3 is a top view of the left portion of FIG. 1 at a processing step subsequent to that of FIG. 1.



FIG. 4 is a view of the FIG. 3, with the left portion of FIG. 4 being taken through line 4-4 in FIG. 3.



FIG. 5 is a view of the FIG. 3 substrate, with the left portion of FIG. 5 being taken through line 5-5 in FIG. 3.



FIG. 6 is a view of the FIG. 4 substrate at a processing step subsequent to that shown by FIG. 4.



FIG. 7 is a view of the FIG. 5 substrate at a processing step subsequent to that shown by FIG. 5 and corresponding in sequence to that of FIG. 6.



FIG. 8 is a top view of the FIG. 3 substrate at a processing step subsequent to that of FIG. 3 and subsequent to that of FIGS. 6 and 7.



FIG. 9 is a view of the FIG. 7 substrate at a processing step subsequent to that shown by FIG. 7 and corresponding in sequence to that of FIG. 8, with the left portion of FIG. 9 being taken through line 9-9 in FIG. 8.



FIG. 10 is a view of the FIG. 6 substrate at a processing step subsequent to that shown by FIG. 6 and corresponding in sequence to that of FIG. 8, with the left portion of FIG. 10 being taken through line 10-10 in FIG. 8.



FIG. 11 is a top view of the FIG. 8 substrate at a processing step subsequent to that of FIG. 8.



FIG. 12 is a view of the FIG. 9 substrate at a processing step subsequent to that shown by FIG. 9 and corresponding in sequence to that of FIG. 11, with the left portion of FIG. 12 being taken through line 12-12 in FIG. 11.



FIG. 13 is a view of the FIG. 10 substrate at a processing step subsequent to that shown by FIG. 10 and corresponding in sequence to that of FIG. 11, with the left portion of FIG. 13 being taken through line 13-13 in FIG. 11.



FIG. 14 is a view of the FIG. 13 substrate at a processing step subsequent to that shown by FIG. 13.



FIG. 15 is a view of the FIG. 12 substrate at a processing step subsequent to that shown by FIG. 12 and corresponding in sequence to that of FIG. 14.



FIG. 16 is a top view of the FIG. 11 substrate at a processing step subsequent to that of FIG. 11 and subsequent to that of FIGS. 14 and 15.



FIG. 17 is a view of the FIG. 14 substrate at a processing step subsequent to that shown by FIG. 14 and corresponding in sequence to that of FIG. 16, with the left portion of FIG. 17 being taken through line 17-17 in FIG. 16.



FIG. 18 is a view of the FIG. 15 substrate at a processing step subsequent to that shown by FIG. 15 and corresponding in sequence to that of FIG. 16, with the left portion of FIG. 18 being taken through line 18-18 in FIG. 16.



FIG. 19 is a top view of the FIG. 16 substrate at a processing step subsequent to that of FIG. 16.



FIG. 20 is a view of the FIG. 18 substrate at a processing step subsequent to that shown by FIG. 18 and corresponding in sequence to that of FIG. 19, with the left portion of FIG. 20 being taken through line 20-20 in FIG. 19.



FIG. 21 is a view of the FIG. 17 substrate at a processing step subsequent to that shown by FIG. 17 and subsequent to that shown by FIGS. 19 and 20.



FIG. 22 is a view of the FIG. 20 substrate at a processing step subsequent to that shown by FIG. 20 and corresponding in sequence to that of FIG. 21.



FIG. 23 is a view of the left portion of the FIG. 21 substrate at a processing step subsequent to that shown by FIG. 21.



FIG. 24 is a view of the left portion of the FIG. 22 substrate at a processing step subsequent to that shown by FIG. 22 and corresponding in sequence to that of FIG. 23.



FIG. 25 is a top view of an alternate embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).


Referring to FIG. 1, a semiconductor substrate in process in accordance with an aspect of the invention is indicated generally with reference to numeral 10. Such comprises a substrate which in one exemplary embodiment comprises a semiconductor substrate, for example comprised of bulk monocrystalline silicon or other material. In the context of this document, the term “semiconductor substrate” or “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above. Further in the context of this document, the term “layer” encompasses both the singular and the plural, unless otherwise indicated.


The discussion proceeds in a preferred embodiment method of forming an array of capacitors, for example as might be utilized in DRAM or other memory circuitry constructions. Substrate fragment 10 can be considered as comprising a region 14 and a region 16. In but one implementation, region 14 in one preferred embodiment comprises a capacitor array area and region 16 comprises a circuitry area peripheral to capacitor array area 14. Further by way of example only, substrate fragment 10 is depicted as comprising an insulative layer 18 having a plurality of conductive contact plugs 19 and 21 formed therein for electrical connection with respect to capacitor electrodes of a plurality of capacitors, as will be apparent from the continuing discussion. Insulative material 18 would overlie other substrate material (not shown), for example bulk monocrystalline silicon, semiconductor-on-insulator circuitry or other substrate material whether existing or yet-to-be developed. Exemplary preferred insulative material 18 includes silicon dioxide doped with at least one of boron and phosphorus, for example borophosphosilicate glass (BPSG). Conductive plugs 19 and 21 will comprise one or more conductive materials, perhaps including for example conductively doped semiconductive material. Substrate 18/19/21 is exemplary only, and any conceivable substrate is contemplated whether existing or yet-to-be developed.


A first material 20 has been formed over substrate 18/19/21. An exemplary preferred material is BPSG, with an exemplary preferred thickness range being from 1,000 Angstroms to 20,000 Angstroms. Capacitor electrodes will be formed within material 20 as will be apparent from the continuing discussion, and accordingly material 20 might be considered as capacitor electrode-forming material. First material 20 might be electrically insulative, electrically conductive, or semiconductive, with electrically insulative being most preferred. Capacitor electrode-forming material 20 might comprise a single, homogenous layer as depicted in FIG. 1, might be non-homogenous (for example two or more layers of BPSG with different dopant levels), and further by way of example only might comprise a plurality of discrete layers. For example and by way of example only, FIG. 2 depicts an alternate embodiment substrate fragment 10a. Like numerals from the first described embodiment have been utilized where appropriate, with differences being indicated with the suffix “a” or with different numerals. FIG. 2 depicts capacitor electrode-forming material/first material 20a as comprising at least two layers 22 and 24. By way of example only, layer 22 might comprise an etch stop layer (i.e. silicon nitride, aluminum oxide, etc.) with layer 24 comprising BPSG.


Referring to FIGS. 3-5, a plurality of spaced masking blocks 25, 26, 27, 28, 29, 30, 31, 32 and 33 have been formed over first material 20. Such define respective capacitor electrode opening outlines 25b, 26b, 27b, 28b, 29b, 30b, 31b, 32b, and 33b. By way of example only, a preferred manner of forming the depicted masking blocks with their corresponding outlines is by photolithographic patterning and etch. Masking blocks 25-33 might be of the same or different composition from that of first material 20, with different compositions being more preferred. Where for example such are formed of the same composition, one exemplary manner of forming masking blocks 28 relative to underlying material 20 is by a timed etch of the first material through openings formed in a mask, for example through openings formed in a photomask. Further by way of example only, an etch stop layer might be received intermediate masking blocks 25-33 and underlying first material. For example and by way of example only, with respect to the FIG. 2 embodiment, layer 22 might be provided to constitute an etch stop layer provided intermediate masking blocks 25-33 and underlying first material 24 (not shown). The exemplary depicted array pattern of masking blocks 25-33 is exemplary only, with essentially any other existing or yet-to-be developed array pattern also being contemplated. In a depicted exemplary embodiment, and by way of example only, an exemplary spacing between immediately adjacent masking blocks in a row (i.e. between the right edge of masking block 28 and the left edge of masking block 29) is 500 Angstroms. An exemplary spacing between immediately adjacent masking blocks in a column (i.e. between the lower edge of masking block 26 and the upper edge of masking block 29 in FIG. 3) is 500 Angstroms. An exemplary analogous diagonal spacing between diagonally adjacent masking blocks (i.e. between blocks 31 and 29) is 750 Angstroms.


Referring to FIGS. 6 and 7, a layer of second material 36 has been deposited over masking blocks 25-33 and over first material 20 received between masking blocks 25-33. In one aspect, second material 36 is of different composition from that of masking blocks 25-33. By way of example only where material 20 is BPSG and masking blocks 25-33 are BPSG or undoped silicon dioxide, exemplary preferred materials for layer 36 include silicon nitride, aluminum oxide, and hafnium oxide. Of course, other insulative, and even conductive and semiconductive, materials might be utilized for material 36. An exemplary semiconductive material comprises polysilicon. Exemplary electrically conductive materials include titanium nitride, tantalum nitride, and tungsten. An exemplary deposition thickness for layer 36 is from 250 Angstroms to 300 Angstroms.


Referring to FIGS. 8-10, layer of second material 36 has been anisotropically etched effective to expose masking blocks 25-33 and form an interconnected retaining structure 40 against sidewalls of the depicted masking blocks 25-33. Further, interconnected retaining structure 40 exposes some of first material 20 received between the depicted masking blocks in the depicted exemplary embodiment. By way of example only, such exposed first material 20 is between diagonally adjacent masking blocks, although other position openings are of course contemplated and likely dependent upon the array patterning of the masking blocks. Further in the depicted preferred embodiment, retaining structure 40 directly contacts sidewalls of the depicted masking blocks. In the depicted and most preferred embodiment, retaining structure 40 is formed at least in part by etching layer of material 36 whereby such is not masked anywhere within capacitor array area 14 to form such retaining structure 40. Further in one exemplary preferred embodiment, structure 40 might be so formed without any of layer of material 36 being masked anywhere on the substrate to form such retaining structure. For example and by way of example only, FIGS. 9 and 10 depict no masking occurring within peripheral circuitry area 16 such that all material 36 is removed therefrom. Alternately of course, layer of material 36 as/when extending to be received over peripheral area 16 might be at least partially masked in such peripheral area during the anisotropic etching (not shown) such that at least some of it remains after such etching.


Referring to FIGS. 11-13, exposed first material 20 received between masking blocks 25-33 has been masked with a third material 44. In one aspect, third material 44 is of different composition from that of first material 20, from that of masking blocks 25-33, and from that of second material 36. Where material 20 is BPSG, where masking blocks 25-33 comprise doped or undoped, silicon dioxide, and where layer of material 36 comprises silicon nitride, an exemplary material 44 is polysilicon. Regardless, one exemplary preferred technique for forming the FIGS. 11-13 construction is by deposition of material 44 followed by chemical-mechanical polishing of it effective to expose masking blocks 25-33. FIGS. 12 and 13 depict some remnant material 44 remaining within peripheral circuitry area 16, although of course material 44 might alternately be completely removed within peripheral area 16 at this point of the preferred processing. Further in one exemplary implementation, at least one of materials 25-33, material 36 and 44 comprises amorphous carbon, and in another implementation comprises polysilicon. Further of course in one aspect, at least one of material 25-33, material 36, and material 44 comprises amorphous carbon and at least another one of such materials comprises polysilicon.


Referring to FIGS. 14 and 15, masking blocks 25-33 have been etched followed by etching (anisotropic) of first material 20 thereunder substantially selectively relative to second material 36 and third material 44 effective to form capacitor electrode openings 25c, 26c, 27c, 28c, 29c, 30c, 31c, 32c, and 33c. (Openings 25c, 26c, 27c, 30c, 32c and 33c are not shown in FIGS. 14 and 15, but do appear and are so designated in subsequent figures.) In the context of this document, a substantially selective etch requires a removal rate of the removed material relative to the stated other material(s) at a removal ratio of at least 15:1. In the depicted example where third material 44 remains masking material 20 within peripheral circuitry area 16, material 20 remains within such peripheral area. If no masking material 44 were received over material 20 in such area, all such material 20 in the peripheral circuitry area would likely be removed at this point of processing.


Referring to FIGS. 16-18, individual capacitor electrodes 25d, 26d, 27d, 28d, 29d, 30d, 31d, 32d, and 33d have been formed within individual of the respective capacitor electrode openings and against interconnected retaining structure 40. By way of example only, an exemplary preferred manner of forming the same is by deposition of a titanium nitride layer to a suitable thickness, followed by chemical-mechanical polishing thereof. In the depicted preferred and exemplary embodiments, the layer from which the capacitor electrodes are formed is deposited to less than completely fill the respective capacitor electrode openings such that the resultant individual of the capacitor electrodes comprises a container shape. Of course, other electrode shapes are contemplated, including by way of example only completely plugging of the capacitor electrode openings with conductive material for formation of capacitor electrodes.


Referring to FIGS. 19 and 20, third material 44 (not shown) has been etched substantially selectively relative to second material 36 and substantially selectively relative to the capacitor electrodes 25d-33d effective to expose first material 20 beneath the etched third material.


Referring to FIGS. 21 and 22, after such etching of the third material 44, at least some of the exposed first material 20 has been etched substantially selectively relative to capacitor electrodes 25d-33d and substantially selectively relative to second material 36 effective to expose outer lateral sidewalls of capacitor electrodes 25d-33d, and to leave at least some of second material 36 of the interconnected retaining structure 40 at least in part supporting capacitor electrodes 25d-33d. In the depicted and preferred embodiment, such etching has been of substantially all of first material 20 such that substantially all of the outer lateral sidewalls of the capacitor electrodes have been exposed.


One implementation of the invention contemplates at least some etching of material 36 of retaining structure 40 prior to deposition of third material 44. Such is shown by way of example only with respect to FIG. 25 in connection with an alternate embodiment substrate fragment 10g. Like numerals from the first described embodiments have been utilized as appropriate, with differences being indicated with the suffix “g”. FIG. 25 depicts some etching having occurred relative to the retaining structure such that a retaining structure 40g results by a degree of etching which is effective to open up the spaces of exposed material 20. For example, the depicted dash lines show the initial openings as depicted in the first embodiment, with the solid line outlines thereabout depicting such widening resulting from a suitable exemplary facet etch or a suitable exemplary wet etch of material 36. By way of example only where, for example, material 36g comprises silicon nitride, an exemplary wet etching chemistry for producing the FIG. 25 structure includes phosphoric acid. An exemplary facet etch technique would include argon plasma at from 100 W to 1000 W RF power, and from 25° C. to 100° C.


Referring to FIGS. 23 and 24, capacitor dielectric material 50 and capacitor electrode material 60 have been deposited at least below retaining structure 40 over at least some of the outer lateral sidewalls of the capacitor electrodes as-shown. Any suitable existing or yet-to-be developed materials are of course contemplated. In the depicted exemplary embodiment, capacitor electrode material 60 is shown as constituting a common capacitor electrode among a plurality of capacitors. Of course alternately by way of example only, such might be patterned or otherwise formed to constitute a separate capacitor electrode for each capacitor or for a group of capacitors. In the depicted preferred embodiment, retaining structure 40 remains as part of a finished integrated circuitry construction incorporating a plurality of capacitors.


In one aspect, an implementation of the invention can be considered as a method of forming a plurality of capacitors which includes forming different composition first, second, and third materials over a capacitor electrode-forming material. By way of example only, material of masking blocks 25-33 constitutes an exemplary first material, material 36 constitutes an exemplary second material, and material 44 constitutes an exemplary third material, with all of such being received over an exemplary capacitor electrode-forming material 20. First, second and third materials are received at least in part at some common elevation over the capacitor electrode-forming material. By way of example only, FIG. 12 depicts an exemplary such elevation “H”. The second material comprises an anisotropically etched retaining structure.


Such first material is etched substantially selectively relative to the second and third materials followed by etching of the capacitor electrode-forming material substantially selectively relative to the second and third materials effective to form a plurality of capacitor electrode openings. By way of example only, the above described processing relative to the figures is but one exemplary technique. Individual capacitor electrodes are formed within individual of the capacitor electrode openings.


Thereafter, the third material is etched substantially selectively relative to the second material and substantially selectively relative to the capacitor electrodes effective to expose capacitor electrode-forming material underlying the third material which was/is being etched. This is followed by etching the capacitor electrode-forming material substantially selectively relative to the second material and substantially selectively relative to the capacitor electrodes effective to expose outer lateral sidewalls of the capacitor electrodes. Only some or all of the capacitor electrode-forming material might be etched. Regardless, such etching is also effective to leave at least some of the retaining structure at least in part supporting the plurality of capacitor electrodes. The plurality of capacitor electrodes is incorporated into a plurality of capacitors.


One implementation of an aspect of the invention includes a method of forming a plurality of capacitors whereby a plurality of capacitor electrodes is provided within a capacitor array area over a substrate, and whereby the capacitor electrodes comprise outer lateral sidewalls. Such a method includes supporting the plurality of capacitor electrodes at least in part with a retaining structure which engages the outer lateral sidewalls. The retaining structure is formed at least in part by etching a layer of material which is not masked anywhere within the capacitor array area to form such retaining structure. The above described preferred processing of providing a plurality of capacitor electrodes and supporting the same with a retaining structure as described above is but only one exemplary embodiment of this implementation as just so stated. The plurality of capacitor electrodes is incorporated into a plurality of capacitors, for example and by way of example only as described above. In the above described exemplary embodiments, such etching to form the retaining structure occurs prior to formation of the plurality of capacitor electrodes. However, an aspect of the invention contemplates etching to form the retaining structure after formation of the plurality of capacitor electrodes.


In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

Claims
  • 1. A method of forming a plurality of capacitors, comprising: providing a plurality of capacitor electrodes within a capacitor array area over a substrate, the capacitor electrodes comprising outer lateral sidewalls, individual of the capacitor electrodes comprising a container shape;forming a retaining structure which engages the outer lateral sidewalls of the capacitor electrodes, the retaining structure being formed at least in part by etching a layer of insulative material which is not masked anywhere within the capacitor array area to form said retaining structure; and further comprising after forming the retaining structure, etching the retaining structure to reduce its size; the etched retaining structure at least in part supporting the plurality of capacitor electrodes; andincorporating the plurality of capacitor electrodes into a plurality of capacitors, the retaining structure remaining as part of a finished integrated circuitry construction incorporating the plurality of capacitors.
  • 2. The method of claim 1 wherein said etching of the layer of insulative material occurs prior to formation of the plurality of capacitor electrodes.
  • 3. The method of claim 1 wherein said etching of the layer of insulative material occurs after formation of the plurality of capacitor electrodes.
  • 4. The method of claim 1 comprising a circuitry area peripheral to the capacitor array area, said layer of insulative material extending to over the peripheral area during said etching of the layer of material and being at least partially masked in said peripheral area during said etching of the layer of material.
  • 5. The method of claim 1 wherein said layer of insulative material is not masked anywhere on the substrate during said etching of the layer of material.
  • 6. A method of forming a plurality of capacitors, comprising: forming different composition first, second and third materials over a capacitor electrode-forming material; said first, second and third materials being received at least in part at some common elevation over the capacitor electrode-forming material; the second material being electrically insulative and comprising an anisotropically etched retaining structure;etching the first material substantially selectively relative to the second and third materials followed by etching the capacitor electrode-forming material substantially selectively relative to the second and third materials effective to form a plurality of capacitor electrode openings;forming individual capacitor electrodes within individual of the capacitor electrode openings, individual of the capacitor electrodes comprising a container shape;etching the third material substantially selectively relative to the second material and substantially selectively relative to the capacitor electrodes effective to expose capacitor electrode-forming material underlying said third material being etched, followed by etching said capacitor electrode-forming material substantially selectively relative to the second material and substantially selectively relative to the capacitor electrodes effective to expose outer lateral sidewalls of the capacitor electrodes and leave at least some of the retaining structure supporting the capacitor electrodes; andincorporating the plurality of capacitor electrodes into a plurality of capacitors, the retaining structure remaining as part of a finished integrated circuitry construction incorporating the plurality of capacitors.
  • 7. The method of claim 6 wherein the first material is different in composition from that of the capacitor electrode-forming material.
  • 8. The method of claim 6 wherein the first material is of the same composition as that of the capacitor electrode-forming material.
  • 9. The method of claim 6 wherein the capacitor electrode-forming material comprises at least two layers, one of the two layers comprising an etch stop layer received proximate the first, second, and third materials.
  • 10. The method of claim 6 wherein the first material is formed prior the second material and the second material is formed prior to the third material, and further comprising facet etching the retaining structure prior to forming the third material.
  • 11. The method of claim 6 wherein the first material is formed prior the second material and the second material is formed prior to the third material, and further comprising wet etching the retaining structure prior to forming the third material.
  • 12. A method of forming a plurality of capacitors, comprising: forming a plurality of spaced masking blocks over a capacitor electrode-forming material, the masking blocks defining respective capacitor electrode opening outlines;forming an interconnected insulative retaining structure over the capacitor electrode-forming material and against sidewalls of the masking blocks;etching the masking blocks and then the capacitor electrode-forming material thereunder to form capacitor electrode openings within the capacitor electrode-forming material;forming individual container-shaped capacitor electrodes within individual of the capacitor electrode openings and against the interconnected retaining structure, the capacitor electrodes comprising outer lateral sidewalls;etching at least some of the capacitor electrode-forming material to expose at least some of said outer lateral sidewalls of the capacitor electrodes; andafter exposing outer lateral sidewalls of the capacitor electrodes, depositing capacitor dielectric material and capacitor electrode material over the retaining structure over at least some of said outer lateral sidewalls.
  • 13. The method of claim 12 wherein the masking blocks are of a different composition from that of the capacitor electrode-forming material.
  • 14. The method of claim 12 wherein the masking blocks are of the same composition as that of the capacitor electrode-forming material.
  • 15. A method of forming a plurality of capacitors, comprising: providing a plurality of capacitor electrodes within a capacitor array area over a substrate, the capacitor electrodes comprising outer lateral sidewalls;supporting the plurality of capacitor electrodes at least in part with a retaining structure which engages the outer lateral sidewalls, the retaining structure being formed prior to forming the plurality of capacitor electrodes, the retaining structure at least prior to forming the plurality of capacitor electrodes having a plurality of openings formed there-through, individual of the openings being received between diagonally adjacent of the capacitor electrodes to be formed; andincorporating the plurality of capacitor electrodes into a plurality of capacitors.
  • 16. A method of forming a plurality of capacitors, comprising: providing a plurality of capacitor electrodes within a capacitor array area over a substrate, the capacitor electrodes comprising outer lateral sidewalls;supporting the plurality of capacitor electrodes at least in part with a retaining structure which engages the outer lateral sidewalls, the retaining structure being formed prior to forming the plurality of capacitor electrodes, the retaining structure at least prior to forming the plurality of capacitor electrodes having a plurality of openings formed there-through, forming of the retaining structure comprising enlarging the openings after their initial formation; andincorporating the plurality of capacitor electrodes into a plurality of capacitors.
RELATED PATENT DATA

This patent resulted from a continuation application of U.S. patent application Ser. No. 11/083,489, filed Mar. 18, 2005 now U.S. Pat. No. 7,557,015, entitled “Methods of Forming Pluralities of Capacitors”, naming Gurtej S. Sandhu and D. Mark Durcan as inventors, the disclosure of which is incorporated by reference.

US Referenced Citations (172)
Number Name Date Kind
4517729 Batra May 1985 A
5236860 Fazan et al. Aug 1993 A
5340763 Dennison Aug 1994 A
5401681 Dennison Mar 1995 A
5467305 Bertin et al. Nov 1995 A
5498562 Dennison et al. Mar 1996 A
5532089 Adair et al. Jul 1996 A
5604696 Takaishi Feb 1997 A
5605857 Jost et al. Feb 1997 A
5652164 Dennison et al. Jul 1997 A
5654222 Sandhu et al. Aug 1997 A
5686747 Jost et al. Nov 1997 A
5702990 Jost et al. Dec 1997 A
5705838 Jost et al. Jan 1998 A
5767561 Frei et al. Jun 1998 A
5784112 Ogasawara et al. Jul 1998 A
5821140 Jost et al. Oct 1998 A
5869382 Kubota Feb 1999 A
5900660 Jost et al. May 1999 A
5955758 Sandhu et al. Sep 1999 A
5981350 Geusic et al. Nov 1999 A
5981992 Calpine Kenney Nov 1999 A
5990021 Prall et al. Nov 1999 A
6037212 Chao Mar 2000 A
6037218 Dennison et al. Mar 2000 A
6059553 Jin et al. May 2000 A
6090700 Tseng Jul 2000 A
6108191 Bruchhaus et al. Aug 2000 A
6110774 Jost et al. Aug 2000 A
6133620 Uochi Oct 2000 A
6159818 Durcan et al. Dec 2000 A
6180450 Dennison et al. Jan 2001 B1
6204143 Roberts et al. Mar 2001 B1
6204178 Marsh Mar 2001 B1
6249019 Sandhu et al. Jun 2001 B1
6258650 Sunouchi Jul 2001 B1
6274497 Lou Aug 2001 B1
6303518 Tian et al. Oct 2001 B1
6303956 Sandhu et al. Oct 2001 B1
6323528 Yamazaki et al. Nov 2001 B1
6331461 Juengling Dec 2001 B1
6372554 Kawakita et al. Apr 2002 B1
6372574 Lane et al. Apr 2002 B1
6383861 Gonzalez et al. May 2002 B1
6399490 Jammy et al. Jun 2002 B1
6403442 Reinberg Jun 2002 B1
6432472 Farrell et al. Aug 2002 B1
6458653 Jang Oct 2002 B1
6458925 Fasano Oct 2002 B1
6459138 Reinberg Oct 2002 B2
6475855 Fishburn Nov 2002 B1
6482749 Billington et al. Nov 2002 B1
6617222 Coursey Sep 2003 B1
6645869 Chu et al. Nov 2003 B1
6656748 Hall et al. Dec 2003 B2
6667502 Agarwal et al. Dec 2003 B1
6673693 Kirchhoff Jan 2004 B2
6707088 Fishburn Mar 2004 B2
6709978 Geusic et al. Mar 2004 B2
6720232 Tu et al. Apr 2004 B1
6767789 Bronner et al. Jul 2004 B1
6784112 Arita et al. Aug 2004 B2
6784479 Park Aug 2004 B2
6787833 Fishburn Sep 2004 B1
6812513 Geusic et al. Nov 2004 B2
6822261 Yamakazi et al. Nov 2004 B2
6822280 Ito et al. Nov 2004 B2
6844230 Reinberg Jan 2005 B2
6849496 Jaiprakash et al. Feb 2005 B2
6893914 Kim et al. May 2005 B2
6897109 Jin et al. May 2005 B2
6927122 Geusic et al. Aug 2005 B2
6930640 Chung et al. Aug 2005 B2
6962846 Fishburn et al. Nov 2005 B2
6991980 Park Jan 2006 B2
7005379 Sinha et al. Feb 2006 B2
7042040 Horiguchi May 2006 B2
7064028 Ito et al. Jun 2006 B2
7064365 An et al. Jun 2006 B2
7071055 Fishburn Jul 2006 B2
7073969 Kamm Jul 2006 B2
7074669 Iijima et al. Jul 2006 B2
7081384 Birner et al. Jul 2006 B2
7084451 Forbes et al. Aug 2006 B2
7125781 Manning et al. Oct 2006 B2
7153778 Busch et al. Dec 2006 B2
7160788 Sandhu et al. Jan 2007 B2
7179706 Patraw et al. Feb 2007 B2
7199005 Sandhu et al. Apr 2007 B2
7202127 Busch et al. Apr 2007 B2
7226845 Manning et al. Jun 2007 B2
7235441 Yasui et al. Jun 2007 B2
7268034 Basceri et al. Sep 2007 B2
7268039 Fishburn et al. Sep 2007 B2
7273779 Fishburn et al. Sep 2007 B2
7279379 Tran et al. Oct 2007 B2
7282756 Agarwal et al. Oct 2007 B2
7288806 Tran et al. Oct 2007 B2
7320911 Basceri et al. Jan 2008 B2
7321149 Busch et al. Jan 2008 B2
7321150 Fishburn et al. Jan 2008 B2
7335935 Sinha et al. Feb 2008 B2
7341909 McDaniel et al. Mar 2008 B2
7384847 Tran et al. Jun 2008 B2
7387939 Manning Jun 2008 B2
7393741 Sandhu et al. Jul 2008 B2
7413952 Busch et al. Aug 2008 B2
7440255 McClure et al. Oct 2008 B2
7442600 Wang et al. Oct 2008 B2
7445990 Busch et al. Nov 2008 B2
7449391 Manning et al. Nov 2008 B2
7517754 McDaniel et al. Apr 2009 B2
7538036 Busch et al. May 2009 B2
7638392 Wang et al. Dec 2009 B2
20010012223 Kohyama Aug 2001 A1
20010026974 Reinberg Oct 2001 A1
20010044181 Nakamura Nov 2001 A1
20020022339 Kirchhoff Feb 2002 A1
20020030221 Sandhu et al. Mar 2002 A1
20020039826 Reinberg Apr 2002 A1
20020086479 Reinberg Jul 2002 A1
20020090779 Jang Jul 2002 A1
20020098654 Durcan et al. Jul 2002 A1
20020153589 Oh Oct 2002 A1
20020153614 Ema et al. Oct 2002 A1
20020163026 Park Nov 2002 A1
20030085420 Ito et al. May 2003 A1
20030153146 Won et al. Aug 2003 A1
20030178684 Nakamura Sep 2003 A1
20030190782 Ko et al. Oct 2003 A1
20030227044 Park Dec 2003 A1
20040018679 Yu et al. Jan 2004 A1
20040056295 Agarwal et al. Mar 2004 A1
20040110340 Kim et al. Jun 2004 A1
20040150070 Okada et al. Aug 2004 A1
20040188738 Farnworth et al. Sep 2004 A1
20050023588 Sandhu et al. Feb 2005 A1
20050051822 Manning Mar 2005 A1
20050054159 Manning et al. Mar 2005 A1
20050104110 Yeo et al. May 2005 A1
20050158949 Manning Jul 2005 A1
20050176210 Kim et al. Aug 2005 A1
20050287780 Manning et al. Dec 2005 A1
20060014344 Manning Jan 2006 A1
20060024958 Ali Feb 2006 A1
20060046420 Manning Mar 2006 A1
20060051918 Busch et al. Mar 2006 A1
20060063344 Manning et al. Mar 2006 A1
20060063345 Manning et al. Mar 2006 A1
20060115951 Mosley Jun 2006 A1
20060115952 Wu Jun 2006 A1
20060121672 Basceri et al. Jun 2006 A1
20060148190 Busch et al. Jul 2006 A1
20060176210 Nakamura et al. Aug 2006 A1
20060186451 Dusberg et al. Aug 2006 A1
20060211211 Sandhu et al. Sep 2006 A1
20060237762 Park Oct 2006 A1
20060249798 Manning Nov 2006 A1
20060261440 Manning Nov 2006 A1
20060263968 Manning Nov 2006 A1
20070032014 Sandhu et al. Feb 2007 A1
20070048976 Raghu Mar 2007 A1
20070093022 Basceri Apr 2007 A1
20070099328 Chiang et al. May 2007 A1
20070099423 Chen et al. May 2007 A1
20070145009 Fucsko et al. Jun 2007 A1
20070196978 Manning Aug 2007 A1
20070207622 Rana et al. Sep 2007 A1
20070238259 Bhat Oct 2007 A1
20070257323 Tsui et al. Nov 2007 A1
20080090416 Raghu et al. Apr 2008 A1
20090047769 Bhat et al. Feb 2009 A1
Foreign Referenced Citations (19)
Number Date Country
08-274278 Oct 1996 JP
10-189912 Jul 1998 JP
11-191615 Jul 1999 JP
2000-196038 Jul 2000 JP
2003-264246 Sep 2003 JP
2003-273247 Sep 2003 JP
2003-297952 Oct 2003 JP
2004072078 Mar 2004 JP
2004-111626 Apr 2004 JP
2004-128463 Apr 2004 JP
2005032982 Feb 2005 JP
2006-135364 May 2006 JP
20010061020 Jul 2001 KR
10-2001-108963 Dec 2001 KR
1020030058018 Jul 2003 KR
1020050000896 Jan 2005 KR
10-520223 Oct 2005 KR
PCTUS2005024936 Mar 2005 WO
PCTUS2008070071 Feb 2010 WO
Related Publications (1)
Number Date Country
20090209080 A1 Aug 2009 US
Continuations (1)
Number Date Country
Parent 11083489 Mar 2005 US
Child 12430621 US