Embodiments of the disclosure relate to the field of semiconductor device design and fabrication. More specifically, embodiments of the disclosure relate to methods of forming semiconductor device structures, and to related semiconductor device structures.
A continuing goal of integrated circuit fabrication is to decrease the dimensions thereof. Integrated circuit dimensions can be decreased by reducing the dimensions and spacing of the constituent features or structures thereof For example, by decreasing the dimensions and spacing of features (e.g., storage capacitors, access transistors, access lines) of a memory device, the overall dimensions of the memory device may be decreased while maintaining or increasing the storage capacity of the memory device.
Reducing the dimensions and spacing of semiconductor device features places ever increasing demands on the methods used to form the features. For example, due to limitations imposed by optics and radiation wavelengths, many conventional photolithographic methods cannot facilitate the formation of features having critical dimensions (e.g., widths, diameters) of less than about forty (40) nanometers (nm). Electron beam (E-beam) lithography and extreme ultraviolet (EUV) lithography have been used to form features having critical dimensions less than 40 nm, but generally require complex processes and significant costs.
One approach for achieving semiconductor device features having critical dimensions of less than about 40 nm has been patterning using chemical pattern-directed self-assembly (e.g., chemoepitaxy) of a block copolymer material, wherein a patterned template material is used to direct the self-assembly of a block copolymer material to form domains of a polymer block of a block copolymer distinct from domains of another polymer block of the block copolymer. A preferential wetting affinity of the patterned template material for one of the polymer blocks of the block copolymer directs the self-assembly of the distinct domains in accordance with the patterned template material. The domains of the polymer block or the domains of the another polymer block can be selectively removed, and the remaining domains can be utilized as desired (e.g., as an etch mask for patterning features into an underlying substrate or material). As the dimensions of the distinct domains are at least partially determined by the chain length of the block copolymer, feature dimensions much smaller than 40 nm are achievable (e.g., dimensions similar to those achievable through E-beam and EUV lithography processes).
Unfortunately, conventional methods of forming the patterned template material utilized for the chemical pattern directed self-assembly of the block copolymer material can suffer from a variety of problems. For instance, one conventional method includes foiniing a positive tone photoresist material over a template material, exposing the positive tone photoresist to radiation, removing photoexposed regions of the positive tone photoresist material with a positive tone developer to form a patterned photoresist material, removing portions of the patterned photoresist material and the template material using a plasma of oxygen (O2), chlorine (Cl2), and hydrogen (H2), and removing remaining portions of the patterned photoresist material using a negative tone developer. Such a method can be inefficient and cost-prohibitive due to the limited number of plasma and developer chemistries suitable for use with the method. For example, negative tone developers suitable for removing the patterned photoresist material generally include hazardous materials, such as dimethyl sulphoxide (DMSO), that necessitate the use of separate, specialized, and costly equipment and processes to mitigate health, safety, and environmental concerns, and equipment longevity concerns related to the use of such hazardous materials.
A need, therefore, exists for new, simple, and cost-efficient methods of forming semiconductor device structures and patterned template materials for use in chemical pattern directed self-assembly of block copolymer materials. It would be further desirable if the methods were compatible with a wide variety of conventional tools, processes, and materials.
Methods of forming semiconductor device structures are disclosed, as are related semiconductor device structures. In some embodiments, a method of forming a semiconductor device structure includes forming a template material exhibiting preferential wetting to a polymer block of a block copolymer over a substrate. A photoresist material may be formed over the template material, and may be selectively exposed to radiation to form a photoexposed photoresist material including photoexposed regions and non-photoexposed regions. The non-photoexposed regions of the photoexposed photoresist material may be removed with a negative tone developer to form a patterned photoresist material including photoresist features separated by trenches. The patterned photoresist material and regions of the template material unprotected by (e.g., exposed through) the patterned photoresist material may be exposed to an oxidizing plasma to remove portions of the patterned photoresist material and the template material and form a patterned template material. Remaining portions of the patterned photoresist material may then be selectively removed using a positive tone developer. The methods disclosed herein may overcome problems associated with conventional methods of forming a patterned template material for use in chemical directed self-assembly of a block copolymer material, such as efficiency, cost, health, safety, and environmental problems related to conventional methods of forming such a patterned template material. Patterned template materials formed by the methods disclosed herein may exhibit feature dimensions equivalent to or better than feature dimensions of patterned template materials formed by conventional methods.
The following description provides specific details, such as material types, material thicknesses, and processing conditions in order to provide a thorough description of embodiments of the disclosure. However, a person of ordinary skill in the art will understand that the embodiments of the disclosure may be practiced without employing these specific details. Indeed, the embodiments of the disclosure may be practiced in conjunction with conventional fabrication techniques employed in the industry. In addition, the description provided below does not form a complete process flow for manufacturing a semiconductor device. The semiconductor device structures described below do not form a complete semiconductor device. Only those process acts and structures necessary to understand the embodiments of the disclosure are described in detail below. Additional acts to form the complete semiconductor device from the intermediate semiconductor device structures may be performed by conventional fabrication techniques. Also note, any drawings accompanying the application are for illustrative purposes only, and are thus not drawn to scale. Additionally, elements common between figures may retain the same numerical designation.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
As used herein, relational teiris, such as “first,” “second,” “over,” “top,” “upper,” “bottom,” “underlying,” “lower,” etc., are used for clarity and convenience in understanding the disclosure and accompanying drawings and does not connote or depend on any specific preference, orientation, or order, except where the context clearly indicates otherwise.
As used herein, the term “substantially,” in reference to a given parameter, property, or condition, means to a degree that one of ordinary skill in the art would understand that the given parameter, property, or condition is met with a small degree of variance, such as within acceptable manufacturing tolerances.
Referring to
The template material 104 may be a material that, upon being patterned, facilitates forming a self-assembled block copolymer material. As used herein, the term “block copolymer material” means and includes a material formed of and including at least one block copolymer. In turn, as used herein, the term “block copolymer” means and includes a polymer including two or more polymer blocks bound to one or more polymer blocks of unlike (e.g., different) type. The template material 104 may, for example, be formed from a material that exhibits preferential wetting to one polymer block (e.g., a minority block, or a majority block) of a block copolymer. As used herein, the term “preferential wetting” refers to wetting of a contacting surface by a block copolymer wherein one polymer block of the block copolymer will wet the contacting surface at an interface with lower free energy than at least one other polymer block of the block copolymer. Thus, the different polymer blocks of the block copolymer may have different affinities for the contacting surface. Conversely, as used herein, the term “neutral wetting” refers to wetting of a contacting surface by a block copolymer wherein different polymer blocks of the block copolymer will wet the contacting surface at an interface with substantially the same free energy. Thus, the different polymer blocks may have equal or substantially equal affinity for the contacting surface. As a non-limiting example, the template material 104 may be formed of and include at least one material (e.g., a polystyrene-containing material) formulated to be preferential wetting to a polystyrene (PS) block of a block copolymer. In some embodiments, the template material 104 is formed of and includes a material preferential wetting toward a PS block of poly(styrene-b-methylmethacrylate) (PS-b-PMMA). In additional embodiments, the template material 104 is formulated to be preferential wetting toward a PS block of poly(styrene-block-dimethylsiloxane) (PS-b-PDMS).
The template material 104 may have any thickness T1 conducive to removing (e.g., etching) desired regions of the template material 104 to form a patterned template material, as described in further detail below. By way of non-limiting example, the thickness T1 of the template material 104 may be greater than or equal to about 5 nanometers (nm), such as within a range of from about 5 nm to about 15 nm, within a range of from about 8 nm to about 12 nm, or within a range of from about 8 nm to about 10 nm. In some embodiments, the thickness T1 of the template material 104 is about 10 nm.
Each of the substrate 102, and the template material 104 may be formed using conventional processes including, but not limited to, physical vapor deposition (“PVD”), chemical vapor deposition (“CVD”), atomic layer deposition (“ALD”), or spin-coating. PVD includes, but is not limited to, sputtering, evaporation, or ionized PVD. Such processes are known in the art and, therefore, are not described in detail herein.
Referring to
The photoresist material 106 may have any thickness T2 conducive to forming photoresist features that may be used to form a patterned template material from the template material 104, as described in further detail below. By way of non-limiting example, the thickness T2 of the photoresist material 106 may be greater than or equal to about 15 nm, such as within a range of from about 20 nm to about 150 nm, within a range of from about 50 nm to about 120 nm, or within a range of from about 70 nm to about 110 nm. In some embodiments, the thickness T2 of the photoresist material 106 is about 90 nm.
The photoresist material 106 may be formed on or over the template material 104 using conventional processes (e.g., a conventional deposition process, a conventional baking process) and equipment, which are not described in detail herein.
Referring to
The photoexposed regions 108a and the non-photoexposed regions 108b (and, hence, the configuration of the mask 110) may be configured to exhibit any desired dimensions and spacing. The dimensions and spacing of the photoexposed regions 108a may be selected at least partially based on desired dimensions and spacing of template features to be formed using a patterned photoresist material formed from the photoexposed photoresist material 108, as described in further detail below. Each of the photoexposed regions 108a (and, hence, each of the non-photoexposed regions 108b) may be configured to exhibit substantially the same dimensions and spacing, or at least one of the photoexposed regions 108a may exhibit at least one of different dimensions and different spacing than at least one other of the photoexposed regions 108a. In some embodiments, each of the photoexposed regions 108a is configured to exhibit substantially the same dimensions and spacing. For example, the photoexposed regions 108a may each be configured to exhibit substantially the same thickness T2 (e.g., that of the photoresist material 106 previously described in relation to
Referring next to
The negative tone developer used to pattern the photoresist material 106 (
Removing portions of the photoexposed photoresist material 108 (
Referring next to
The oxidizing plasma may be any oxygen-containing plasma formulated to remove exposed portions of the patterned photoresist material 114 and the template material 104 while enabling the trimmed photoresist features 118a ultimately formed to at least exhibit a solubility in a positive tone developer (e.g., an aqueous alkaline solution) substantially similar to the solubility of the photoresist features 114a (
The relative amounts of the various components (e.g., the oxidizing agent, the noble gas element) of the oxidizing plasma may be selected based on the dimensions and material compositions of the template material 104 (
Exposure to the oxidizing plasma may continue until the template features 116a of the patterned template material 116 each exhibit a desired width W2. The width W2 may be selected based on one or more desired properties of a self-assembled block copolymer material (not shown) to be formed using the pattered template material 116 (e.g., through a conventional chemical pattern directed self-assembly process). The width W2 may, for example, be selected to be substantially the same as a width of at least one polymer domain of the self-assembled block copolymer material to be formed. The width of the polymer domain may be at least partially determined by the chain length of a block copolymer utilized to form the self-assembled block copolymer material. By way of non-limiting example, the width W2 of each of the template features 116a may be less than or equal to about 30 nm, such as less than or equal to about 20 nm, less than or equal to about 15 nm, or less than or equal to about 10 nm. In some embodiments, the width W2 of each of the template features 116a is about 15 nm. The template features 116a may each exhibit substantially the same thickness T1 as the template material 104 (
Referring to
Advantageously, the positive tone developer used to remove the trimmed photoresist features 118a may be substantially free of many hazardous materials associated with conventional methods of removing positive tone photoresist features remaining after the formation of a patterned template material. As previously described, conventional methods of removing remaining positive tone photoresist features may require using at least one of a very limited number of suitable negative tone developers including hazardous solvents (e.g., DMSO). Such conventional methods may require complex, costly, and separate equipment to mitigate health, safety, and environmental concerns, and to prevent damage to other equipment utilized to form the patterned template material. In contrast, the method of the disclosure enables the trimmed photoresist features 118a to be removed using a relatively wide variety of less hazardous materials (e.g., materials not including organic solvents such as DMSO), which may not require the use of the complex, costly, and separate equipment needed for conventional methods.
Thus, in accordance with embodiments of the disclosure, a method of forming a semiconductor device structure comprises forming a template material over a substrate, the template material preferential wetting to a polymer block of a block copolymer. A positive tone photoresist material is formed over the template material. The positive tone photoresist material is exposed to radiation to form photoexposed regions and non-photoexposed regions of the positive tone photoresist material. The non-photoexposed regions of the positive tone photoresist material are removed with a negative tone developer to form a pattern of photoresist features. The pattern of photoresist features and unprotected portions of the template material are exposed to an oxidizing plasma to form trimmed photoresist features and a pattern of template features. The trimmed photoresist features are removed with a positive tone developer.
Furthermore, in accordance with additional embodiments of the disclosure, a method of forming a semiconductor device structure comprises forming a positive tone resist material over a template material over a substrate, the positive tone resist material formulated for negative tone development. The positive tone resist material is exposed to radiation having a wavelength of 193 nanometers to form a photoexposed photoresist material. The non-photoexposed regions of the photoexposed photoresist material are removed with a negative tone developer comprising an organic solvent to form a patterned photoresist material. The patterned photoresist material and the template material are exposed to a plasma consisting essentially of at least one oxidizing agent and at least one noble gas element to pattern the template material. Remaining portions of the patterned photoresist material are removed after patterning the template material.
In addition, a semiconductor device structure of an embodiment of the disclosure comprises a patterned template material over a substrate, the patterned template material formed by the method comprising forming a template material preferential wetting to a polymer block of a block copolymer over the substrate, forming a positive tone photoresist material formulated for negative tone development over the template material, exposing the positive tone photoresist material to radiation to form photoexposed regions of the positive tone photoresist material separated by non-photoexposed regions of the positive tone photoresist material, removing the non-photoexposed regions of the positive tone photoresist material to form a patterned photoresist material comprising photoresist features, exposing the photoresist features and unprotected portions of the template material to an oxidizing plasma to simultaneously form trimmed photoresist features and a patterned template material, and removing the trimmed photoresist features with an aqueous alkaline solution.
Following the removal of the trimmed photoresist features 118a, the semiconductor device structure 100 may be subjected to additional processing. For example, a neutral wetting material (not shown) may be formed within the trenches 120 between the template features 116a of the patterned template material 116, and a block copolymer material (not shown) may be formed on the template features 116a and the neutral wetting material. The block copolymer material may be self-assembled (e.g., by annealing) to form a self-assembled block copolymer material (not shown) including domains of at least one polymer block substantially aligned with the template features 116a of the patterned template material 116. Other domains of the self-assembled block copolymer material (e.g., domains of at least one other polymer block) may be selectively removed to form a polymeric pattern (not shown) including polymer features separated by additional trenches, the polymer features corresponding to the domains of the at least one polymer block. A pitch between adjacent polymer features of the polymeric pattern may be less than the pitch P2 between adjacent template features 116a of the patterned template material 116. Such additional processing may be performed using conventional processes and equipment, which are not described in detail herein.
The methods of the disclosure may advantageously mitigate health, safety, and environmental concerns, reduce costs, and increase production efficiency as compared to conventional methods of foiming a semiconductor device structure including a patterned template material for use in chemical pattern directed self-assembly of a block copolymer material, such as conventional methods utilizing a positive tone developer to foini a patterned photoresist material, and a negative tone developer to remove portions of the patterned photoresist material remaining after the formation the pattered template material. In addition, patterned template materials formed by the methods of the disclosure may exhibit feature dimensions (e.g., thicknesses, widths) at least equivalent to those of patterned template materials formed by conventional methods.
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, the disclosure is not limited to the particular forms disclosed. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure as defined by the following appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4623674 | Bailey | Nov 1986 | A |
4797357 | Mura et al. | Jan 1989 | A |
4818713 | Feygenson | Apr 1989 | A |
4877647 | Klabunde | Oct 1989 | A |
5328810 | Lowrey et al. | Jul 1994 | A |
5374367 | Edamura et al. | Dec 1994 | A |
5382373 | Carlson | Jan 1995 | A |
5482656 | Hiraoka et al. | Jan 1996 | A |
5512131 | Kumar et al. | Apr 1996 | A |
5538655 | Fauteux et al. | Jul 1996 | A |
5580700 | Rahman et al. | Dec 1996 | A |
5620850 | Bamdad et al. | Apr 1997 | A |
5622668 | Thomas et al. | Apr 1997 | A |
5772905 | Chou | Jun 1998 | A |
5834583 | Hancock et al. | Nov 1998 | A |
5849810 | Müeller | Dec 1998 | A |
5879582 | Havelka et al. | Mar 1999 | A |
5879853 | Azuma | Mar 1999 | A |
5891356 | Inoue et al. | Apr 1999 | A |
5904824 | Oh et al. | May 1999 | A |
5925259 | Biebuyck et al. | Jul 1999 | A |
5948470 | Harrison et al. | Sep 1999 | A |
5958704 | Starzl et al. | Sep 1999 | A |
6051869 | Pan et al. | Apr 2000 | A |
6111323 | Carter et al. | Aug 2000 | A |
6143647 | Pan et al. | Nov 2000 | A |
6153495 | Kub et al. | Nov 2000 | A |
6207787 | Fahey et al. | Mar 2001 | B1 |
6251791 | Tsai et al. | Jun 2001 | B1 |
6270946 | Miller | Aug 2001 | B1 |
6309580 | Chou | Oct 2001 | B1 |
6310138 | Yonezawa et al. | Oct 2001 | B1 |
6312971 | Amundson et al. | Nov 2001 | B1 |
6368871 | Christel et al. | Apr 2002 | B1 |
6403382 | Zhu et al. | Jun 2002 | B1 |
6414164 | Afzali-Ardakani et al. | Jul 2002 | B1 |
6423465 | Hawker et al. | Jul 2002 | B1 |
6423474 | Holscher | Jul 2002 | B1 |
6503841 | Criscuolo et al. | Jan 2003 | B1 |
6506660 | Holmes et al. | Jan 2003 | B2 |
6517933 | Soane et al. | Feb 2003 | B1 |
6518194 | Winningham et al. | Feb 2003 | B2 |
6537920 | Krivokapic | Mar 2003 | B1 |
6548830 | Noguchi et al. | Apr 2003 | B1 |
6565763 | Asakawa et al. | May 2003 | B1 |
6565764 | Hiraoka et al. | May 2003 | B2 |
6566248 | Wang et al. | May 2003 | B1 |
6569528 | Nam et al. | May 2003 | B2 |
6573030 | Fairbairn et al. | Jun 2003 | B1 |
6592764 | Stucky et al. | Jul 2003 | B1 |
6630520 | Bruza et al. | Oct 2003 | B1 |
6635912 | Ohkubo | Oct 2003 | B2 |
6656308 | Hougham et al. | Dec 2003 | B2 |
6679996 | Yao | Jan 2004 | B1 |
6682660 | Sucholeiki et al. | Jan 2004 | B2 |
6689473 | Guire et al. | Feb 2004 | B2 |
6699797 | Morris et al. | Mar 2004 | B1 |
6713238 | Chou et al. | Mar 2004 | B1 |
6746825 | Nealey et al. | Jun 2004 | B2 |
6767693 | Okoroanyanwu | Jul 2004 | B1 |
6780492 | Hawker et al. | Aug 2004 | B2 |
6781166 | Lieber et al. | Aug 2004 | B2 |
6797202 | Endo et al. | Sep 2004 | B2 |
6809210 | Chandross | Oct 2004 | B2 |
6812132 | Ramachandrarao et al. | Nov 2004 | B2 |
6825358 | Afzali-Ardakani et al. | Nov 2004 | B2 |
6884842 | Soane et al. | Apr 2005 | B2 |
6887332 | Kagan et al. | May 2005 | B1 |
6890624 | Kambe et al. | May 2005 | B1 |
6890703 | Hawker et al. | May 2005 | B2 |
6908861 | Sreenivasan et al. | Jun 2005 | B2 |
6911400 | Colburn et al. | Jun 2005 | B2 |
6913697 | Lopez et al. | Jul 2005 | B2 |
6924341 | Mays et al. | Aug 2005 | B2 |
6926953 | Nealey et al. | Aug 2005 | B2 |
6940485 | Noolandi | Sep 2005 | B2 |
6946332 | Loo et al. | Sep 2005 | B2 |
6949456 | Kumar | Sep 2005 | B2 |
6952436 | Wirnsberger et al. | Oct 2005 | B2 |
6957608 | Hubert et al. | Oct 2005 | B1 |
6962823 | Empedocles et al. | Nov 2005 | B2 |
6989426 | Hu | Jan 2006 | B2 |
6992115 | Hawker et al. | Jan 2006 | B2 |
6995439 | Hill et al. | Feb 2006 | B1 |
6998152 | Uhlenbrock | Feb 2006 | B2 |
7001795 | Jiang et al. | Feb 2006 | B2 |
7009227 | Patrick et al. | Mar 2006 | B2 |
7030495 | Colburn et al. | Apr 2006 | B2 |
7037738 | Sugiyama et al. | May 2006 | B2 |
7037744 | Colburn et al. | May 2006 | B2 |
7045851 | Black et al. | May 2006 | B2 |
7056455 | Matyjaszewski et al. | Jun 2006 | B2 |
7056849 | Wan et al. | Jun 2006 | B2 |
7060774 | Sparrowe et al. | Jun 2006 | B2 |
7066801 | Balijepalli et al. | Jun 2006 | B2 |
7077992 | Sreenivasan et al. | Jul 2006 | B2 |
7087267 | Breen et al. | Aug 2006 | B2 |
7090784 | Asakawa et al. | Aug 2006 | B2 |
7112617 | Kim | Sep 2006 | B2 |
7115305 | Bronikowski et al. | Oct 2006 | B2 |
7115525 | Abatchev et al. | Oct 2006 | B2 |
7115995 | Wong | Oct 2006 | B2 |
7118784 | Xie | Oct 2006 | B1 |
7119321 | Quinlan | Oct 2006 | B2 |
7132370 | Paraschiv et al. | Nov 2006 | B2 |
7135144 | Christel et al. | Nov 2006 | B2 |
7135241 | Ferraris et al. | Nov 2006 | B2 |
7135388 | Ryu et al. | Nov 2006 | B2 |
7135523 | Ho et al. | Nov 2006 | B2 |
7151209 | Empedocles et al. | Dec 2006 | B2 |
7163712 | Chilkoti et al. | Jan 2007 | B2 |
7166304 | Harris et al. | Jan 2007 | B2 |
7172953 | Lieber et al. | Feb 2007 | B2 |
7186613 | Kirner et al. | Mar 2007 | B2 |
7189430 | Ajayan et al. | Mar 2007 | B2 |
7189435 | Tuominen et al. | Mar 2007 | B2 |
7190049 | Tuominen et al. | Mar 2007 | B2 |
7195733 | Rogers et al. | Mar 2007 | B2 |
7202308 | Boussand et al. | Apr 2007 | B2 |
7208836 | Manning | Apr 2007 | B2 |
7252791 | Wasserscheid et al. | Aug 2007 | B2 |
7259101 | Zurcher et al. | Aug 2007 | B2 |
7279396 | Derderian et al. | Oct 2007 | B2 |
7282240 | Jackman et al. | Oct 2007 | B1 |
7291284 | Mirkin et al. | Nov 2007 | B2 |
7311943 | Jacobson et al. | Dec 2007 | B2 |
7326514 | Dai et al. | Feb 2008 | B2 |
7332370 | Chang et al. | Feb 2008 | B2 |
7332627 | Chandross et al. | Feb 2008 | B2 |
7338275 | Choi et al. | Mar 2008 | B2 |
7347953 | Black et al. | Mar 2008 | B2 |
7368314 | Ufert | May 2008 | B2 |
7407887 | Guo | Aug 2008 | B2 |
7408186 | Merkulov et al. | Aug 2008 | B2 |
7419772 | Watkins et al. | Sep 2008 | B2 |
7470954 | Lee et al. | Dec 2008 | B2 |
7514339 | Yang et al. | Apr 2009 | B2 |
7521090 | Cheng et al. | Apr 2009 | B1 |
7553760 | Yang et al. | Jun 2009 | B2 |
7569855 | Lai | Aug 2009 | B2 |
7585741 | Manning | Sep 2009 | B2 |
7592247 | Yang et al. | Sep 2009 | B2 |
7605081 | Yang et al. | Oct 2009 | B2 |
7632544 | Ho et al. | Dec 2009 | B2 |
7655383 | Mela et al. | Feb 2010 | B2 |
7658773 | Pinnow | Feb 2010 | B2 |
7700157 | Bronikowski et al. | Apr 2010 | B2 |
7767099 | Li et al. | Aug 2010 | B2 |
7888228 | Blanchard | Feb 2011 | B2 |
7959975 | Millward | Jun 2011 | B2 |
7964107 | Millward | Jun 2011 | B2 |
8039196 | Kim et al. | Oct 2011 | B2 |
8083953 | Millward et al. | Dec 2011 | B2 |
8083958 | Li et al. | Dec 2011 | B2 |
8097175 | Millward et al. | Jan 2012 | B2 |
8101261 | Millward et al. | Jan 2012 | B2 |
8114300 | Millward | Feb 2012 | B2 |
8114306 | Cheng et al. | Feb 2012 | B2 |
8206601 | Bosworth et al. | Jun 2012 | B2 |
8287749 | Hasegawa et al. | Oct 2012 | B2 |
8294139 | Marsh et al. | Oct 2012 | B2 |
8409449 | Millward et al. | Apr 2013 | B2 |
8445592 | Millward | May 2013 | B2 |
8808557 | Seino et al. | Aug 2014 | B1 |
20010024768 | Matsuo et al. | Sep 2001 | A1 |
20010049195 | Chooi et al. | Dec 2001 | A1 |
20020055239 | Tuominen et al. | May 2002 | A1 |
20020084429 | Craighead et al. | Jul 2002 | A1 |
20020158342 | Tuominen et al. | Oct 2002 | A1 |
20020167117 | Chou | Nov 2002 | A1 |
20030010241 | Fujihira et al. | Jan 2003 | A1 |
20030034329 | Chou | Feb 2003 | A1 |
20030068639 | Haneder et al. | Apr 2003 | A1 |
20030077452 | Guire et al. | Apr 2003 | A1 |
20030080471 | Chou | May 2003 | A1 |
20030080472 | Chou | May 2003 | A1 |
20030091752 | Nealey et al. | May 2003 | A1 |
20030100822 | Lew et al. | May 2003 | A1 |
20030108879 | Klaerner et al. | Jun 2003 | A1 |
20030143375 | Noguchi et al. | Jul 2003 | A1 |
20030157248 | Watkins et al. | Aug 2003 | A1 |
20030178707 | Abbott | Sep 2003 | A1 |
20030180522 | DeSimone et al. | Sep 2003 | A1 |
20030180966 | Abbott et al. | Sep 2003 | A1 |
20030185741 | Matyjaszewski | Oct 2003 | A1 |
20030196748 | Hougham et al. | Oct 2003 | A1 |
20030218644 | Higuchi et al. | Nov 2003 | A1 |
20030222048 | Asakawa et al. | Dec 2003 | A1 |
20030235930 | Bao et al. | Dec 2003 | A1 |
20040023287 | Harnack et al. | Feb 2004 | A1 |
20040028875 | Van Rijn et al. | Feb 2004 | A1 |
20040058059 | Linford et al. | Mar 2004 | A1 |
20040076757 | Jacobson et al. | Apr 2004 | A1 |
20040084298 | Yao et al. | May 2004 | A1 |
20040109263 | Suda et al. | Jun 2004 | A1 |
20040124092 | Black | Jul 2004 | A1 |
20040125266 | Miyauchi et al. | Jul 2004 | A1 |
20040127001 | Colburn et al. | Jul 2004 | A1 |
20040142578 | Wiesner et al. | Jul 2004 | A1 |
20040159633 | Whitesides et al. | Aug 2004 | A1 |
20040163758 | Kagan et al. | Aug 2004 | A1 |
20040175628 | Nealey et al. | Sep 2004 | A1 |
20040192013 | Ryu et al. | Sep 2004 | A1 |
20040222415 | Chou et al. | Nov 2004 | A1 |
20040242688 | Chandross et al. | Dec 2004 | A1 |
20040254317 | Hu | Dec 2004 | A1 |
20040256615 | Sirringhaus et al. | Dec 2004 | A1 |
20040256662 | Black et al. | Dec 2004 | A1 |
20040265548 | Ho et al. | Dec 2004 | A1 |
20050008828 | Libera et al. | Jan 2005 | A1 |
20050062165 | Saenger et al. | Mar 2005 | A1 |
20050074706 | Bristol et al. | Apr 2005 | A1 |
20050079486 | Abbott et al. | Apr 2005 | A1 |
20050100830 | Xu et al. | May 2005 | A1 |
20050120902 | Adams et al. | Jun 2005 | A1 |
20050124135 | Ayazi et al. | Jun 2005 | A1 |
20050133697 | Potyrailo et al. | Jun 2005 | A1 |
20050147841 | Tavkhelidze | Jul 2005 | A1 |
20050159293 | Wan et al. | Jul 2005 | A1 |
20050167651 | Merkulov et al. | Aug 2005 | A1 |
20050176256 | Kudelka | Aug 2005 | A1 |
20050208752 | Colburn et al. | Sep 2005 | A1 |
20050238889 | Iwamoto et al. | Oct 2005 | A1 |
20050238967 | Rogers et al. | Oct 2005 | A1 |
20050250053 | Marsh et al. | Nov 2005 | A1 |
20050271805 | Kambe et al. | Dec 2005 | A1 |
20050272341 | Colburn et al. | Dec 2005 | A1 |
20060013956 | Angelescu et al. | Jan 2006 | A1 |
20060014001 | Zhang et al. | Jan 2006 | A1 |
20060024590 | Sandhu | Feb 2006 | A1 |
20060030495 | Gregg | Feb 2006 | A1 |
20060035387 | Wagner et al. | Feb 2006 | A1 |
20060038182 | Rogers et al. | Feb 2006 | A1 |
20060046079 | Lee et al. | Mar 2006 | A1 |
20060046480 | Guo | Mar 2006 | A1 |
20060060863 | Lu et al. | Mar 2006 | A1 |
20060062867 | Choi et al. | Mar 2006 | A1 |
20060078681 | Hieda et al. | Apr 2006 | A1 |
20060097134 | Rhodes | May 2006 | A1 |
20060105562 | Yi | May 2006 | A1 |
20060124467 | Ho et al. | Jun 2006 | A1 |
20060128165 | Theiss et al. | Jun 2006 | A1 |
20060134556 | Nealey et al. | Jun 2006 | A1 |
20060137554 | Kron et al. | Jun 2006 | A1 |
20060141222 | Fischer et al. | Jun 2006 | A1 |
20060141245 | Stellacci et al. | Jun 2006 | A1 |
20060154466 | Lee et al. | Jul 2006 | A1 |
20060163646 | Black et al. | Jul 2006 | A1 |
20060192283 | Benson | Aug 2006 | A1 |
20060205875 | Cha et al. | Sep 2006 | A1 |
20060211871 | Dai | Sep 2006 | A1 |
20060217285 | Destarac | Sep 2006 | A1 |
20060228635 | Suleski | Oct 2006 | A1 |
20060231525 | Asakawa et al. | Oct 2006 | A1 |
20060249784 | Black et al. | Nov 2006 | A1 |
20060249796 | Tavkhelidze | Nov 2006 | A1 |
20060254440 | Choi et al. | Nov 2006 | A1 |
20060255505 | Sandhu et al. | Nov 2006 | A1 |
20060257633 | Inoue et al. | Nov 2006 | A1 |
20060258159 | Colburn et al. | Nov 2006 | A1 |
20060278158 | Tolbert et al. | Dec 2006 | A1 |
20060281266 | Wells | Dec 2006 | A1 |
20060286305 | Thies et al. | Dec 2006 | A1 |
20060286490 | Sandhu et al. | Dec 2006 | A1 |
20060292777 | Dunbar | Dec 2006 | A1 |
20070020749 | Nealey et al. | Jan 2007 | A1 |
20070023247 | Ulicny et al. | Feb 2007 | A1 |
20070023805 | Wells et al. | Feb 2007 | A1 |
20070045562 | Parekh | Mar 2007 | A1 |
20070045642 | Li | Mar 2007 | A1 |
20070071881 | Chua et al. | Mar 2007 | A1 |
20070072403 | Sakata | Mar 2007 | A1 |
20070122749 | Fu et al. | May 2007 | A1 |
20070122932 | Kodas et al. | May 2007 | A1 |
20070138131 | Burdinski | Jun 2007 | A1 |
20070161237 | Lieber et al. | Jul 2007 | A1 |
20070175859 | Black et al. | Aug 2007 | A1 |
20070181870 | Libertino et al. | Aug 2007 | A1 |
20070183035 | Asakawa et al. | Aug 2007 | A1 |
20070194403 | Cannon et al. | Aug 2007 | A1 |
20070200477 | Tuominen et al. | Aug 2007 | A1 |
20070208159 | McCloskey et al. | Sep 2007 | A1 |
20070218202 | Ajayan et al. | Sep 2007 | A1 |
20070222995 | Lu | Sep 2007 | A1 |
20070224819 | Sandhu | Sep 2007 | A1 |
20070224823 | Sandhu | Sep 2007 | A1 |
20070227383 | Decre et al. | Oct 2007 | A1 |
20070249117 | Kang et al. | Oct 2007 | A1 |
20070272951 | Lieber et al. | Nov 2007 | A1 |
20070281220 | Sandhu | Dec 2007 | A1 |
20070289943 | Lu et al. | Dec 2007 | A1 |
20070293041 | Yang | Dec 2007 | A1 |
20080032238 | Lu et al. | Feb 2008 | A1 |
20080038923 | Edelstein et al. | Feb 2008 | A1 |
20080041818 | Kihara et al. | Feb 2008 | A1 |
20080047930 | Blanchet et al. | Feb 2008 | A1 |
20080064217 | Horii | Mar 2008 | A1 |
20080073743 | Alizadeh et al. | Mar 2008 | A1 |
20080078982 | Min et al. | Apr 2008 | A1 |
20080078999 | Lai | Apr 2008 | A1 |
20080083991 | Yang et al. | Apr 2008 | A1 |
20080085601 | Park et al. | Apr 2008 | A1 |
20080093743 | Yang et al. | Apr 2008 | A1 |
20080102252 | Black et al. | May 2008 | A1 |
20080103256 | Kim et al. | May 2008 | A1 |
20080113169 | Cha et al. | May 2008 | A1 |
20080164558 | Yang et al. | Jul 2008 | A1 |
20080174726 | Kim | Jul 2008 | A1 |
20080176767 | Millward | Jul 2008 | A1 |
20080193658 | Millward | Aug 2008 | A1 |
20080217292 | Millward et al. | Sep 2008 | A1 |
20080233297 | de Jong et al. | Sep 2008 | A1 |
20080233323 | Cheng et al. | Sep 2008 | A1 |
20080257187 | Millward | Oct 2008 | A1 |
20080260941 | Jin | Oct 2008 | A1 |
20080274413 | Millward | Nov 2008 | A1 |
20080286659 | Millward | Nov 2008 | A1 |
20080311347 | Millward et al. | Dec 2008 | A1 |
20080315270 | Marsh et al. | Dec 2008 | A1 |
20080318005 | Millward | Dec 2008 | A1 |
20090062470 | Millward et al. | Mar 2009 | A1 |
20090087664 | Nealey et al. | Apr 2009 | A1 |
20090155579 | Greco et al. | Jun 2009 | A1 |
20090196488 | Nealey et al. | Aug 2009 | A1 |
20090200646 | Millward et al. | Aug 2009 | A1 |
20090206489 | Li et al. | Aug 2009 | A1 |
20090212016 | Cheng et al. | Aug 2009 | A1 |
20090218567 | Mathew et al. | Sep 2009 | A1 |
20090236309 | Millward et al. | Sep 2009 | A1 |
20090240001 | Regner | Sep 2009 | A1 |
20090263628 | Millward | Oct 2009 | A1 |
20090267058 | Namdas et al. | Oct 2009 | A1 |
20090274887 | Millward et al. | Nov 2009 | A1 |
20090317540 | Sandhu et al. | Dec 2009 | A1 |
20100092873 | Sills et al. | Apr 2010 | A1 |
20100102415 | Millward et al. | Apr 2010 | A1 |
20100124826 | Millward et al. | May 2010 | A1 |
20100137496 | Millward et al. | Jun 2010 | A1 |
20100163180 | Millward | Jul 2010 | A1 |
20100204402 | Millward et al. | Aug 2010 | A1 |
20100279062 | Millward et al. | Nov 2010 | A1 |
20100316849 | Millward et al. | Dec 2010 | A1 |
20100323096 | Sills et al. | Dec 2010 | A1 |
20110232515 | Millward | Sep 2011 | A1 |
20120028471 | Oyama et al. | Feb 2012 | A1 |
20120122292 | Sandhu et al. | May 2012 | A1 |
20120133017 | Millward et al. | May 2012 | A1 |
20120135146 | Cheng et al. | May 2012 | A1 |
20120135159 | Xiao et al. | May 2012 | A1 |
20120138570 | Millward et al. | Jun 2012 | A1 |
20120164389 | Yang et al. | Jun 2012 | A1 |
20120202017 | Nealey et al. | Aug 2012 | A1 |
20120211871 | Russell et al. | Aug 2012 | A1 |
20120223053 | Millward et al. | Sep 2012 | A1 |
20120225243 | Millward | Sep 2012 | A1 |
20130295323 | Millward | Nov 2013 | A1 |
20130330668 | Wu et al. | Dec 2013 | A1 |
20140060736 | Millward et al. | Mar 2014 | A1 |
20140127626 | Senzaki et al. | May 2014 | A1 |
20140272723 | Somervell et al. | Sep 2014 | A1 |
20150021293 | Morris et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1562730 | Jan 2005 | CN |
1799131 | Jul 2006 | CN |
101013662 | Aug 2007 | CN |
0784543 | Apr 2000 | EP |
1416303 | May 2004 | EP |
1906237 | Apr 2008 | EP |
1593164 | Jun 2010 | EP |
11080414 | Mar 1999 | JP |
2003155365 | May 2003 | JP |
2004335962 | Nov 2004 | JP |
2005008882 | Jan 2005 | JP |
2005029779 | Feb 2005 | JP |
2006036923 | Feb 2006 | JP |
2006055982 | Mar 2006 | JP |
2006110434 | Apr 2006 | JP |
2007194175 | Aug 2007 | JP |
2008036491 | Feb 2008 | JP |
2008036491 | Feb 2008 | JP |
1020060128378 | Dec 2006 | KR |
20070029762 | Mar 2007 | KR |
100771886 | Nov 2007 | KR |
200400990 | Mar 1992 | TW |
200633925 | Oct 1994 | TW |
584670 | Apr 2004 | TW |
200419017 | Oct 2004 | TW |
200511364 | Mar 2005 | TW |
256110 | Jun 2006 | TW |
I253456 | Nov 2007 | TW |
200740602 | Jan 2008 | TW |
200802421 | Jan 2008 | TW |
90007575 | Jul 1990 | WO |
9706013 | Feb 1997 | WO |
9839645 | Sep 1998 | WO |
9947570 | Sep 1999 | WO |
0031183 | Jun 2000 | WO |
0218080 | Mar 2002 | WO |
0281372 | Oct 2002 | WO |
03045840 | Jun 2003 | WO |
2005122285 | Dec 2005 | WO |
2006003592 | Jan 2006 | WO |
2006003594 | Jan 2006 | WO |
2006076016 | Jul 2006 | WO |
2006078952 | Jul 2006 | WO |
2006112887 | Oct 2006 | WO |
2007001294 | Jan 2007 | WO |
2007013889 | Feb 2007 | WO |
2007024241 | Mar 2007 | WO |
2007024323 | Mar 2007 | WO |
2007019439 | May 2007 | WO |
2007055041 | May 2007 | WO |
2008055137 | May 2008 | WO |
2008091741 | Jul 2008 | WO |
2008096335 | Aug 2008 | WO |
2008097736 | Aug 2008 | WO |
2008118635 | Oct 2008 | WO |
2008124219 | Oct 2008 | WO |
2008130847 | Oct 2008 | WO |
2008145268 | Dec 2008 | WO |
2008156977 | Dec 2008 | WO |
2009099924 | Aug 2009 | WO |
2009102551 | Aug 2009 | WO |
2009117238 | Sep 2009 | WO |
2009117243 | Sep 2009 | WO |
2009134635 | Nov 2009 | WO |
Entry |
---|
Electronegativity—<http://www.princeton.edu/˜achaney/tmve/wiki100k/docs/Electronegativity.html> website, visited Aug. 28, 2013, 1 page. |
Ali, H. A., et al., Properties of Self-assembled ZnO Nanostructures, Solid-State Electronics 46 (2002), 1639-1642. |
Arshady, R., et al., “The Introduction of Chloromethyl Groups into Styrene-based Polymers, 1,” Makromol. Chem., vol. 177, 1976, p. 2911-2918. |
Asakawa et al., Fabrication of Subwavelength Structure for Improvement in Light-Extraction Efficiency of Light-Emitting Devices Using a Self-Assembled Pattern of Block Copolymer, http://www.research.ibm.com/journal/rd/515/black.html, IBM Journal of Research and Development, vol. 51, No. 5, 2007. |
Bae, Joonwon, “Surface Modification Using Photo-Crosslinkable Random Copolymers”, Abstract submitted for the Mar. 2006 meeting of The American Physical Society, submitted Nov. 30, 2005. (Accessed via the Internet [retrieved on Apr. 5, 2010], URL: http://absimage.aps.org/image/MWS—MAR06-2005-003641.pdf). |
Balsara, C., et al, CPIMA, IRG Technical Programs, Synthesis and application of Nanostructured Materials, Leland Stanford Junior Univ., 2006, http://www.stanford.edu/group/cpima/irg/irg—1.htm. |
Bang, J., “The Effect of Humidity on the Ordering of Tri-block Copolymer Thin Films,” Abstract submitted for the Mar. 2007 meeting of The American Physical Society, submitted Nov. 20, 2006. |
Bass, R. B., et al., “Microcontact Printing with Octadecanethiol”, Applied Surface Science, 226(4), pp. 335-340, Apr. 2004, http://www.ece.virginia.edu/UVML/sis/Papers/rbbpapers/assoct.pdf. |
Bearinger, J. P., et al., “Chemisorbed Poly(propylene sulphide)-based Copolymers Resist Biomolecular Interactions,” Nature Materials 2, 259-264, 2003, (published online Mar. 23, 2003). |
Berry, B. C., et al., “Orientational Order in Block Copolymer Films Zone Annealed Below the Order—Disorder Transition Temperature,” Nano Letters vol. 7, No. 9 Aug. 2007, Polymers Division, Nat'l. Inst. of Standards and Technology, Maryland, USA, pp. 2789-2794, (published on Web Aug. 11, 2007). |
Berry, B. C., et al., “Effects of Zone Annealing on Thin Films of Block Copolymers”, National Institute of Standard and Technology, Polymers Division, Maryland, USA, 2007, 2 pages. |
Black et al., Integration of Self-Assembled Diblock Copolymers for Semiconductor Capacitor Fabrication, Applied Physics Letters, vol. 79, No. 3, pp. 409-411 (2001). |
Black et al., Polymer Self Assembly in Semiconductor Microelectronics, IBM J. Res. & Dev. vol. 51, No. 5, Sep. 2007, pp. 605-633. |
Black, C. T., et al., “Integration of Self Assembly for Semiconductor Microelectronics,” IEEE 2005 Custom Integrated Circuits Conference, IBM T.J. Watson Research Center, pp. 87-91. |
Black, C. T., “Self-aligned self-assembly of multi-nanowire silicon field effect transistors,” Appl. Phys. Lett, vol. 87, pp. 163116-1 through 163116-3, 2005. |
Black, C. T., “Polymer Self-Assembly as a Novel Extension to Optical Lithography,” ACSNano, vol. 1, No. 3, 2007, American Chemical Society, pp. 147-150. |
Black, C. T., et al., “High-Capacity, Self-Assembled Metal-Oxide-Semiconductor Decoupling Capacitors,” IEEE Electron Device Letters, vol. 25, No. 9, Sep. 2004, pp. 622-624. |
Black, C. T., et al., “Nanometer-Scale Pattern Registration and Alignment by Directed Diblock Copolymer Self-Assembly,” IEEE Transactions on Nanotechnology, vol. 3, No. 3, pp. 412-415, Sep. 2004. |
Black, C. T., et al., “Self Assembly in Semiconductor Microelectronics: Self-Aligned Sub-Lithographic Patterning Using Diblock Copolymer Thin Films,” Proc. of SPIE, vol. 6153, 615302 (2006). |
Black, C. T., et al., Polymer Self Assembly in Semiconductor Microelectronics, IBM J. Res. & Dev. vol. 51, No. 5, Sep. 2007, pp. 605-633. |
Botelho Do Rego, A. M, et al., “Diblock Copolymer Ultrathin Films Studied by High Resolution Electron Energy Loss Spectroscopy,” Surface Science, 482-485 (2001), pp. 1228-1234. |
Brydson, R. M., et al. (chapter authors), “Generic Methodologies for Nanotechnology: Classification and Fabrication”, Nanoscale Science and Technology, edited by R.W. Kelsall, et al., 2005 John Wiley & Sons, Ltd., (published online: Dec. 20, 2005) (http://www3.interscience.wiley.com/cgi-bin/summary/112217550/SUMMARY). |
Bulpitt, P., et al, “New Strategy for Chemical Modification of Hyaluronic Acid: Preparation of Functionalized Derivatives and Their Use in the Formation of Novel Biocompatible Hydrogels,” Journal of Biomedical Materials Research, vol. 47, Issue 2, pp. 152-169, Published online Aug. 13, 1999, Abstract only. |
Canaria, C. A., et al., “Formation and Removal of Alkylthiolate Self-Assembled Monolayers on Gold in Aqueous Solutions”, Lab Chip 6, 289-295 (2006), http://www.rsc.org/publishing/journals/LC/article.asp?doi=b51066c) (Abstract). |
Candau, F., et al., “Synthesis and Characterization of Polystyrene-poly(ethylene oxide) Graft Copolymers,” Polymer, 1977, vol. 18, pp. 1253-1257. |
Cavicchi, K. A., et al., “Solvent Annealed Thin Films of Asymmetric Polyisoprene—Polylactide Diblock Copolymers,” Macromolecules 2007, vol. 40, 2007, Univ. of Massachusetts, pp. 1181-1186. |
Cha, J. N., et al., Biomimetic Approaches for Fabricating High-Density Nanopatterned Arrays, Chem. Mater. vol. 19, 2007, pp. 839-843. |
Chai et al., Assembly of Aligned Linear Metallic Patterns on Silicon, Nature Nanotechnology, vol. 2, Aug. 2007, pp. 500-506. |
Chai et al., Using Cylindrical Domains of Block Copolymers to Self-Assemble and Align Metallic Nanowires, American Chemical Society, www.Acsnano.org, 2008. pp. A-K. |
Chandekar, A., et al., “Template-Directed Adsorption of block Copolymers on Alkanethiol-Patterned Gold Surfaces,” (circa 2006), http://www.nano.neu.edu/industry/industry—showcase/industry—day/documents/Chandekar.pdf) (Powerpoint template for scientific posters (Swarthmore College)). |
Chang, Li-Wen, “Diblock Copolymer Directed Self-Assembly for CMOS Device Fabrication,” Proc. of SPIE, vol. 6156, 2006, 615611-1 to 615611-6. |
Chang, Li-Wen, “Experimental Demonstration of Aperiodic Patterns of Directed Self-Assembly of Block Copolymer Lithography for Random Logic Circuit Layout,” IEEE International Electron Devices Meeting (IEDM), paper 33.2, Dec. 6-8, San Francisco, 2010, pp. 33.2.1-33.2.4. |
Chen et al., Highly Ordered Arrays of Mesoporous Silica Nanorods with Tunable Aspect Ratios from Block Copolymer Thin Films, Advanced Materials, vol. 20, pp. 763-767, 2008. |
Cheng, J. Y., et al., “Rapid Directed Self Assembly of Lamellar Microdomains from a Block Copolymer Containing Hybrid,” Applied Physics Letters, 91, 143106-143106-3 (2007). |
Cheng, J. Y., et al., “Self-Assembled One-Dimensional Nanostructure Arrays,” Nano Letters, vol. 6, No. 9, 2006, pp. 2099-2103. |
Cheng, J. Y., et al., “Templated Self-Assembly of Block Copolymers: Effect of Substrate Topography,” Adv. Mater. 2003, vol. 15, No. 19, pp. 1599-1602. |
Cho et al., Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties, J. Am. Chem. Soc., vol. 128, No. 30, pp. 9935-9942 (2006). |
Choi, H. J., et al., “Magnetorheology of Synthesized Core—Shell Structured Nanoparticle,” IEEE Transactions on Magnetics, vol. 41, No. 10, Oct. 2005, pp. 3448-3450. |
Clark et al., “Selective Deposition in Multilayer Assembly: SAMs as Molecular Templates,” Supramolecular Science, vol. 4, pp. 141-146, (1997). |
Daoulas Kostas CH., et al., “Fabrication of Complex Three-Dimensional Nanostructures from Self-Assembling Block Copolymer Materials on Two-Dimensional Chemically Patterned Templates with Mismatched Symmetry,” Physical Review Letters 96, week ending Jan. 27, 2006, pp. 036104-1-036104-3. |
Darling, S. B., “Directing the Self-assembly of Block Copolymers,” Progress in Polymer Science, vol. 32, No. 10, Sep. 28, 2007, pp. 1152-1204. |
Desai, Dr. Trejal A., et al., “Engineered Silicon Surfaces for Biomimetic Interfaces,” Business Briefing: Medical Device Manufacturing & Technology, 2002. |
Edwards, E. W., et al., “Mechanism and Kinetics of Ordering in Diblock Copolymer Thin Films on Chemically Nanopatterned Substrates,” Journal of Polymer Science: Part B Polymer Physics, vol. 43, 3444-3459, 2005. |
Edwards, E. W., et al., “Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates,” Advanced Mater., 16, No. 15, Aug. 4, 2004, pp. 1315-1319. |
Elisseeff, J., et al., “Photoencapsulation of Chondrocytes in Poly(ethylene oxide)-based Semi-interpenetrating Networks,” Journal of Biomedical Materials Research, 51(2): 164-171, Aug. 2000, Abstract only. |
Erlandsson, Mikael, et al., “Metallic Zinc Reduction of Disulfide Bonds between Cysteine Residues in Peptides and Proteins,” International Journal of Peptide Research and Therapeutics, vol. 11, No. 4, pp. 261-265, Dec. 2005. |
Fasolka et al., Block Copolymer Thin Films: Physics and Applications, Annual Review, vol. 31, pp. 323-355 (2001). |
Fasolka, M. J. et al., “Morphology of Ultrathin Supported Diblock Copolymer Films: Theory and Experiment,” Macromolecules 2000, vol. 33, No. 15, pp. 5702-5712. |
Fukunaga, K., et al., “Self-Assembly of Block Copolymer Thin Films Having a Half-Domain-Spacing Thickness: Nonequilibrium Pathways to Achieve Equilibrium Brush Layers Parallel to Substrate,” Macromolecules vol. 39, Aug. 2006, pp. 6171-6179. |
Gates, “Nanofabrication with Molds and Stamps,” Materials Today, pp. 44-49, (Feb. 2005). |
Gates, B. D., et al., “Unconventional Nanofabrication,” Annu. Rev. Mater. Res. 2004, 34:339-72. |
Fujita et al., Thin Silica Film with a Network Structure as Prepared by Surface Sol-Gel Transcription on the Poly (styrene-b-4-vinylpyridine) Polymer Film, Chemistry Letters, vol. 32, No. 4, Dec. 31, 2003, pp. 352-353. |
Melde et al., Silica Nanostructures Templated by Oriented Block Copolymer Thin Films Using Pore-Filling and Selective-Mineralization Routes, Chem. Mater., vol. 17, No. 18, Aug. 13, 2005, pp. 4743-4749. |
La, Young-Hye, et al., “Directed Assembly of Cylinder-Forming Block Copolymers into Patterned Structures to Fabricate Arrays of Spherical Domains and Nanoparticles,” Chem. Mater, 2007, vol. 19, No. 18, Department of Chemical and Biological Engineering and Center for Nanotechnology, Univ. of Wisconsin, pp. 4538-4544. |
La, Young-Hye, et al., “Pixelated Chemically Amplified Resists: Investigation of Material Structure on the Spatial Distribution of Photoacids and Line Edge Roughness,” J. Vac. Sci. Technol. B 25(6), Nov./Dec. 2007, American Vacuum Society, pp. 2508-2513. |
Laracuente, A.R., et al., “Step Structure and Surface Morphology of Hydrogen-terminated Silicon: (001) to (114),” Surface Science 545, 2003, pp. 70-84. |
Lentz, D, et al., “Whole Wafer Imprint Patterning Using Step and Flash Imprint Lithography: A Manufacturing Solution for Sub 100 nm Patterning”, SPIE Advanced Lithography Paper, http://molecularimprints.com/NewsEvents/tech—articles/new—articles/SPIE—07—MII—WW—Paper.pdf), Molecular Imprints, Inc., Texas, USA, Feb. 2007, pp. 1-10. |
Li, Mingqi, et al., “Block Copolymer Patterns and Templates,” Materials Today, vol. 9, No. 9, Sep. 2006, pp. 30-39. |
Li, Wai-Kin, et al, “Creation of Sub-20-nm Contact Using Diblock Copolymer on a 300 mm Wafer for Complementary Metal Oxide Semiconductor Applications,” J. Vac. Sci. Technol. B 25(6), Nov./Dec. 2007, American Vacuum Society, pp. 1982-1984. |
Li, Xue, et al., “Morphology Change of Asymmetric Diblock Copolymer Micellar Films During Solvent Annealing,” ScienceDirect, Polymer 48 (2007), pp. 2434-2443. |
Li, Yong, et al., “A Method for Patterning Multiple Types of Cells by Using Electrochemical Desorption of Self-Assembled Monolayers within Microfluidic Channels,” Angew. Chem. Int. Ed., vol. 46, pp. 1094-1096, 2007. |
Lin, Zhiqun, et al., “A Rapid Route to Arrays of Nanostructures in Thin Films,” Adv. Mater. 2002, 14 No. 19, Oct. 2, pp. 1373-1376. |
Lin-Gibson, Sheng, et al., “Structure—Property Relationships of Photopolymerizable Poly(ethylene glycol) Dimethacrylate Hydrogels,” Macromolecules 2005, 38, American Chemical Society, pp. 2897-2902. |
Liu et al., Pattern Transfer Using Poly(styrene-block-methyl methacrylate) Copolymer Films and Reactive Ion Etching, J. Vac. Sci. Technol. B vol. 25, No. 6, Nov./Dec. 2007, pp. 1963-1968. |
Loo et al., “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Applied Physics Letters, vol. 81, No. 3, Jul. 15, 2002, pp. 562-564. |
Lopes et al., Hierarchical Self-Assembly of Metal Nanostructures on Diblock Copolymer Scaffolds, Nature, vol. 414, Dec. 13, 2001, pp. 735-738. |
Lutolf, M., et al., “Cell-Responsive Synthetic Hydrogels,” Adv. Mater., vol. 15, No. 11, Jun. 2003, pp. 888-892. |
Lutolf, M.P., et al, “Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering,” Nature Biotechnology, 23, 47-55 (2005), Abstract only. |
Lutz, Jean-Francois, “1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science,” Angew. Chem. Int. Ed., vol. 46, pp. 1018-1025, 2007. |
Malenfant et al., Self-Assembly of an Organic-Inorganic Block Copolymer for Nano-Ordered Ceramics, Nature Nanotechnology, vol. 2, pp. 43-46 (2007). |
Malkoch, M., et al., “Synthesis of Well-defined Hydrogel Networks Using Click Chemistry,” Chem. Commun., 2006, The Royal Society of Chemistry, pp. 2774-2776. |
Mansky, P., et al., “Controlling Polymer-Surface Interactions with Random Copolymer Brushes,” Science, vol. 275, Mar. 7, 1997, pp. 1458-1460. |
Martens, P., et al., “Characterization of Hydrogels Formed from Acrylate Modified Poly(vinyl alcohol) Macromers,” Polymer, vol. 41, Issue 21, Oct. 2000, pp. 7715-7722, Abstract only. |
Matsuda, T., et al., “Photoinduced Prevention of Tissue Adhesion,” ASAIO J, Jul.-Sep. 1992; 38(3): M154-7, Abstract only. |
Maye, M. A., et al., “Chemical Analysis Using Force Microscopy,” Journal of Chemical Education, vol. 79, No. 2, Feb. 2002, Dept. of Chemistry, State Univ. of New York at Binghamton, USA, pp. 207-210. |
Metters, A., et al., “Network Formation and Degradation Behavior of Hydrogels Formed by Michael-Type Addition Reactions,” Biomacromolecules 2005, 6, 2005, pp. 290-301. |
Meyer, E., et al., “Controlled Dewetting Processes on Microstructured Surfaces—a New Procedure for Thin Film Microstructuring,” Macromollecular Mater. Eng., 276/277, 2000, Institute of Polymer Research Dresden, pp. 44-50. |
Mezzenga, R., et al., “On the Role of Block Copolymers in Self-Assembly of Dense Colloidal Polymeric Systems,” Langmuir 2003, vol. 19, No. 20, 2003, American Chemical Society, pp. 8144-8147. |
Mindel, J., et.al., “A Study of Bredig Platinum Sols”, The Chemical Laboratories of New York University, received Jun. 10, 1943, vol. 65 pp. 2112. |
Naito, K., et al., “2.5-Inch Disk Patterned Media Prepared by an Artificially Assisted Self-Assembling Method,” IEEE Transactions on Magnetics, vol. 38, No. 5, Sep. 2002, pp. 1949-1951. |
Nealey, P. F., et al., “Self-Assembling Resists for Nanolithography”, IProceedings of the IEEE International Electron Devices Meeting, IEDM Technical Digest, 356-359 (2005). |
Nguyen, K. T., et al., “Photopolymerizable Hydrogels for Tissue Engineering Applications,” Biomaterials 23, 2002, pp. 4307-4314. |
Nishikubo, T., “Chemical Modification of Polymers via a Phase-Transfer Catalyst or Organic Strong Base,” American Chemical Society Symposium Series, 1997, American Chemical Society, pp. 214-230. |
Niu, Sanjun, et al., “Stability of Order in Solvent-Annealed Block Copolymer Thin Films,” Macromolecules, vol. 36, No. 7, 2003, Univ. of Nebraska, USA, pp. 2428-2440. |
Niu, Sanjun, et al., “Selective assembly of nanoparticles on block copolymer by surface modification,” Nanotechnology, vol. 18, pp. 1-4, 2007. |
Olayo-Valles, R., et al., “Large Area Nanolithographic Templates by Selective Etching of Chemically Stained Block Copolymer Thin Films,” J. Mater. Chem, 2004, 14, The Royal Society of Chemistry, pp. 2729-2731. |
Parejo, P. G., et al., “Highly Efficient UV-absorbing Thin-film Coatings for Protection of Organic Materials Against Photodegradation,” J. Mater. Chem., 2006, 16, The Royal Society of Chemistry, pp. 2165-2169. |
Park et al., Fabrication of Highly Ordered Silicon Oxide Dots and Stripes from Block Copolymer Thin Films, Advanced Materials, vol. 20, pp. 681-685, 2008. |
Park et al., High-Aspect-Ratio Cylindrical Nanopore Arrays and Their Use for Templating Titania Nanoposts, Advanced Materials, vol. 20, pp. 738-742, 2008. |
Park, Cheolmin, et al., “Enabling Nanotechnology with Self Assembled Block Copolymer Patterns,” Polymer 44, 2003, pp. 6725-6760. |
Park, Dae-Ho, “The Fabrication of Thin Films with Nanopores and Nanogrooves from Block Copolymer Thin Films on the Neutral Surface of Self-assembled Monolayers,” Nanotechnology 18, 2007, 355304, IIOP Publishing Ltd, UK, pp. 1-7. |
Park, M., et al., “Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter,” Science, vol. 276, No. 5317, May 30, 1997, pp. 1401-1404. |
Park, Sang-Min, et al., “Directed assembly of lamellae-forming block copolymers using chemically and topographically patterned substrates,” Advanced Materials, vol. 19, No. 4, pp. 607-611, Feb. 2007. |
Park, Seung Hak, et al., “Block Copolymer Multiple Patterning Integrated with Conventional ArF Lithography,” Soft Matter, 2010, 6, Royal Society of chemistry, pp. 120-125. |
Park, Sung Chan, et al., “Controlled Ordering of Block Copolymer Thin Films by the Addition of Hydrophilic Nanoparticles,” Macromolecules 2007, vol. 40, No. 22, American Chemical Society, pp. 8119-8124. |
Peng, J., et al., “Development of Nanodomain and Fractal Morphologies in Solvent Annealed Block copolymer Thin Films,” Macromol. Rapid Commun. 2007, 28, pp. 1422-1428. |
Peters, R. D., et al., “Combining Advanced Lithographic Techniques and Self-assembly of Thin Films of Diblock Copolymers to Produce Templates for Nanofabrication,” J. Vac. Sci. Technol. B, vol. 18, No. 6, Nov./Dec. 2000, American Vacuum Society, pp. 3530-3532. |
Peters, R. D., et al., “Morphology of Thin Films of Diblock Copolymers on Surfaces Micropatterned with Regions of Different Interfacial Energy,” Macromolecules, vol. 35, No. 5, 2002, American Chemical Society, pp. 1822-1834. |
Potemkin, Igor I., et al., “Effect of the Molecular Weight of AB Diblock Copolymers on the Lamellar Orientation in Thin Films: Theory and Experiment,” Macromol. Rapid Commun., 2007, 28, pp. 579-584. |
Reed, M.A., et al., “Molecular random access memory cell,” Appl. Phys. Lett., vol. 78, No. 23, pp. 3735-3737, Jun. 2001. |
Resnick, D. J., et al., “Initial Study of the Fabrication of Step and Flash Imprint Lithography Templates for the Printing of Contact Holes,” Microlith., Microfab., Microsyst., vol. 3, No. 2, Apr. 2004, Society of Photo-Optical Instrumentation Engineers, pp. 316-321. |
Rogers, J. A., “Slice and Dice, Peel and Stick: Emerging Methods for Nanostructure Fabrication,” ACS Nano, vol. 1, No. 3, 2007, pp. 151-153. |
Rozkiewicz, Dorota I., et al., “‘Click’ Chemistry by Microcontact Printing,” Angew. Chem. Int. Ed., vol. 45, pp. 5292-5296, 2006. |
Ruiz, R., et al., “Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly,” Science, vol. 321, Aug. 15, 2008, pp. 936-939. |
Ruiz, R., et al., “Induced Orientational Order in Symmetric Diblock Copolymer Thin-Films,” Advanced Materials, vol. 19, No. 4, pp. 587-591, (2007). |
Ryu, Du Yeol, et al., “Surface Modification with Cross-Linked Random Copolymers: Minimum Effective Thickness,” Macromolecules, vol. 40, No. 12, 2007, American Chemical Society, pp. 4296-4300. |
Sang et al., “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates”, Nature, vol. 24, pp. 411-414, (Jul. 2003). |
Saraf, Ravi R., et al., “Spontaneous Planarization of Nanoscale Phase Separated Thin Film,” Applied Physics Letters, vol. 80, No. 23, Jun. 10, 2002, American Institute of Physics, pp. 4425-4427. |
Sato et al., Novel Antireflective Layer Using Polysilane for Deep Ultraviolet Lithography, J. Vac. Sci. Technol. B, vol. 17, No. 6, pp. 3398-3401 (1999). |
Sawhney, A. S., et al., “Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(a-hydroxy acid) Diacrylate Macromers,” Macromolecules 1993, 26, American Chemical Society, pp. 581-587, Abstract only. |
Segalman, R. A., “Patterning with Block Copolymer Thin Films,” Materials Science and Engineering R 48 (2005), Elsevier B. V., pp. 191-226. |
Shahrjerdi, D., et al., “Fabrication of Ni Nanocrystal Flash Memories Using a Polymeric Self-Assembly Approach,” IEEE Electron Device Letters, vol. 28, No. 9, Sep. 2007, pp. 793-796. |
Sharma, S. et al., “Ultrathin Poly(ethylene glycol) Films for Silicon-based Microdevices,” Applied Surface Science, 206 (2003), Elsevier Science B.V., pp. 218-229. |
Sigma-Aldrich, 312-315Tutorial regarding Materials for Lithography/Nanopatterning, http://www.sigmaaldrich.com/Area—of—Interest/Chemistry/Materials—Science/Micro—and—Nanoelectronic website, retrieved Aug. 27, 2007. |
Sivaniah, E., et al., “Observation of Perpendicular Orientation in Symmetric Diblock Copolymer Thin Films on Rough Substrates,” Macromolecules 2003, 36, American Chemical Society, pp. 5894-5896. |
Sivaniah, et al., “Symmetric Diblock Copolymer Thin Films on Rough Substrates, Kinetics and Structure Formation in Pure Block Copolymer Thin Films,” Macromolecules 2005, 38, American Chemical Society, pp. 1837-1849. |
Sohn et al., Fabrication of the Multilayered Nanostructure of Alternating Polymers and Gold Nanoparticles with Thin Films of Self-Assembling Diblock Copolymers, Chem, Mater, vol. 13, pp. 1752-1757 (2001). |
Solak, H. H., “Nanolithography with Coherent Extreme Ultraviolet Light,” Journal of Physics D: Applied Physics, 2006, IOP Publishing Ltd., UK, pp. R171-188. |
Srinvivasan, C., et al., “Scanning Electron Microscopy of Nanoscale Chemical Patterns,” ACS Nano, vol. 1, No. 3, pp. 191-201, 2007. |
Stoykovich, M. P., et al., “Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures,” Science, vol. 308, Jun. 3, 2005, pp. 1442-1446. |
Stoykovich, M. P., et al., “Directed Self-Assembly of Block Copolymers for Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit Geometries,” ACS Nano, vol. 1, No. 3, 2007, pp. 168-175. |
Sundrani, D., et al., “Guiding Polymers to Perfection: Macroscopic Alignment of Nanoscale Domains,” Nano Lett., vol. 4, No. 2, 2004, American Chemical Society, pp. 273-276. |
Sundrani, D., et al., “Hierarchical Assembly and Compliance of Aligned Nanoscale Polymer Cylinders in Confinement,” Langmuir 2004, vol. 20, No. 12, 2004, American Chemical Society, pp. 5091-5099. |
Tadd et al, Spatial Distribution of Cobalt Nanoclusters in Block Copolymers, Langmuir, vol. 18, pp. 2378-2384 (2002). |
Tang et al., Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays, Science, vol. 322, No. 5900, Sep. 25, 2008, pp. 429-432. |
Trimbach et al., “Block Copolymer Thermoplastic Elastomers for Microcontact Printing,” Langmuir, 2003, vol. 19, p. 10957. |
Truskett, V. M., et. al., “Trends in Imprint Lithography for Biological Applications,” TRENDS in Biotechnology, vol. 24, No. 7, Jul. 2006, pp. 312-315. |
Tseng et al., Enhanced Block Copolymer Lithography Using Sequential Infiltration Synthesis, The Journal of Physical Chemistry, vol. 115, No. 36, Sep. 15, 2011, 15 pages. |
Van Poll, M. L., et al., “a Self-Assembly Approach to Chemical Micropatterning of Poly(dimethylsiloxane),” Angew. Chem. Int. Ed. 2007, 46, pp. 6634-6637. |
Wang, C., et al., “One Step Fabrication and characterization of Platinum Nanopore Electrode Ensembles formed via Amphiphilic Block Copolymer Self-assembly,” Electrochimica Acta 52 (2006), pp. 704-709. |
Wathier, M., et al., “Dendritic Macromers as in Situ Polymerizing Biomaterials for Securing Cataract Incisions,” J. Am. Chem. Soc., 2004, 126 (40), pp. 12744-12745, Abstract only. |
Winesett, D.A., et al., “Tuning Substrate Surface Energies for Blends of Polystyrene and Poly(methyl methacrylate),” Langmuir 2003, 19, American Chemical Society, pp. 8526-8535. |
WIPF, “Handbook of Reagents for Organic Synthesis”, 2005, John Wiley & Sons Ltd., p. 320. |
Wu, C.Y., et al., “Self-Assembled Two-Dimensional Block Copolymers on Pre-patterned Templates with Laser Interference Lithography,” IEEE, 2007, pp. 153-154. |
Xia et al., An Approach to Lithographically Defined Self-Assembled Nanoparticle Films, Advanced Materials, vol. 18, pp. 930-933 (2006). |
Xia, Younan, et al., “Soft Lithography,” Annu. Rev. Mater. Sci., vol. 28, pp. 153-184, 1998. |
Xiao, Shuaigang., et al., “Graphoepitaxy of Cylinder-forming Block Copolymers for Use as Templates to Pattern Magnetic Metal Dot Arrays,” Nanotechnology 16, IPO Publishing Ltd, UK (2005), pp. S324-S329. |
Xu et al., Electric Field Alignment of Symmetric Diblock Copolymer Thin Films, Department of Polymer Science and Engineering, University of Massachusetts, 5 pages (2003). |
Xu et al., Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films, Macromolecules, vol. 38, pp. 2802-2805 (2005). |
Xu, F.J., et al., “Surface-Initiated Atom Transfer Radical Polymerization from Halogen-Terminated Si(111) (Si-X, X = Cl, Br) Surfaces for the Preparation of Well-Defined Polymer-Si Hybrids,” Langmuir, vol. 21, No. 8, pp. 3221-3225, 2005. |
Xu, Ting, et al., “The Influence of Molecular Weight on Nanoporous Polymer Films,” Polymer 42, Elsevier Science Ltd., (2001) pp. 9091-9095. |
Yamaguchi, T., et al., “Resist-Pattern Guided Self-Assembly of Symmetric Diblock Copolymer,” Journal of Photopolymer Science and Technology, vol. 19, No. 3, pp. 385-388 (2006). |
Yamaguchi, Toru, et al., “Two-dimensional Arrangement of Vertically Oriented Cylindrical Domains of Diblock Copolymers Using Graphoepitaxy with Artificial Guiding Pattern Layout,” Microprocesses and Nanotechnology, 2007, Conference date Nov. 5-8, 2007, pp. 434-435. |
Yan, Xiaohu, et al., “Preparation and Phase Segregation of Block Copolymer Nanotube Multiblocks,” J. Am. Chem. Soc., vol. 126, No. 32, 2004, American Chemical Society, pp. 10059-10066. |
Yang et al., Covalently Attached Graft Polymer Monolayer on Organic Polymeric Substrate via Confined Surface Inhibition Reaction, Journal of Polymer Science—A—Polymer Chemistry Edition, Sep. 28, 2006, pp. 745-755, vol. 45, Issue 5. |
Yang, Xiao M., et al., “Guided Self-Assembly of Symmetric Diblock Copolymer Films on Chemically Nanopatterned Substrates,” Macromolecules 2000, vol. 33, No. 26, 2000, American Chemical Society, pp. 9575-9582. |
Yang, Xiaomin, et al., “Nanoscopic Templates Using Self-assembled Cylindrical Diblock Copolymers for Patterned Media,” J. Vac. Sci. Technol. B 22(6), Nov./Dec. 2004, American Vacuum Society, pp. 3331-3334. |
Yu et al., Contact Printing Beyond Surface Roughness: Liquid Supramolecular Nanostamping, Advanced Materials, vol. 19, 2007, pp. 4338-4342. |
Yurt, Serkan, et al., “Scission of Diblock Copolymers into Their Constituent Blocks,” Macromolecules 2006, vol. 39, No. 5, 2006, American Chemical Society, pp. 1670-1672. |
Zaumseil et al., “Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing,” Nano Letters, 2003, vol. 3, No. 9, pp. 1223-1227. |
Zehner, R. W., et al., “Selective Decoration of a Phase-Separated Diblock Copolymer with Thiol-Passivated Gold Nanocrystals,” Langmuir, vol. 14, No. 2, pp. 241-244, Jan. 20, 1998. |
Zhang et al., “Self-Assembled Monolayers of Terminal Alkynes on Gold,” J. Am. Chem. Soc., vol. 129, No. 16, pp. 4876-4877, 2007. |
Zhang, Mingfu, et al., “Highly Ordered Nanoporous Thin Films from Cleavable Polystyrene-block-poly(ethylene oxide),”Adv. Mater. 2007, 19, pp. 1571-1576. |
GE, Zhenbin, et al., “Thermal Conductance of Hydrophilic and Hydrophobic Interfaces,” PRL 96, 186101-1-186101-4, The American Physical Society, week ending May 12, 2006. |
Gelest Inc., “Silane Coupling Agents: Connecting Across Boundaries,” v2.0, 2006, pp. 1-56. |
Genua, A., et al., “Functional Patterns Obtained by Nanoimprinting Lithography and Subsequent Growth of Polymer Brushes,” Nanotechnology, 18, (2007), IOP Publishing Ltd., pp. 1-7. |
Gillmor, S. D., et al., “Hydrophilic/Hydrophobic Patterned Surfaces as Templates for DNA Arrays,” Langmuir 2000, vol. 16, No. 18, 2000, pp. 7223-7228. |
Grubbs, Hybrid Metal-Polymer Composites from Functional Block Copolymers, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 43, pp. 4323-4336 (2005). |
Guarini et al., Nanoscale Patterning Using Self-Assembled Polymers for Semiconductor Applications, J. Vac. Sci. Technol. B 19(6), pp. 2784-2788, Nov./Dec. 2001. |
Gudipati, C. S., et al., “Hyperbranched Fluoropolymer and Linear Poly(ethylene glycol) Based Amphiphilic Crosslinked Networks as Efficient Antifouling Coatings: An Insight into the Surface Compositions, Topographies, and Morphologies,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 42, (2004), pp. 6193-6208. |
Guo, Kai, et al., Abstract of “Synthesis and Characterization of Novel Biodegradable Unsaturated Poly(ester amide)/ Poly(ethylene glycol) Diacrylate Hydrogels”, Journal of Polymer Science Part A: Polymer Chemistry, vol. 43, Issue 17, 2005 Wiley Periodicals, Inc., pp. 3932-3944. |
Hadziioannou, Semiconductor Block Copolymers for Self-Assembled Photovoltaic Devices, MRS Bulletin, pp. 456-460 (2002). |
Hamers, Robert J., “Passivation and activation: How do monovalent atoms modify the reactivity of silicon surfaces? A perspective on the article, ‘The mechanism of amine formation on Si(100) activated with chlorine atoms,”’ Surface Science, vol. 600, pp. 3361-3362, 2006. |
Hamley, I. W., “Introduction to Block Copolymers”, Developments in Block Copolymers Science and Technology, John Wiley & Sons, Ltd., 2004, pp. 1-29. |
Hammond, M. R., et al., “Temperature Dependence of Order, Disorder, and Defects in Laterally Confined Diblock Copolymer Cylinder Monolayers,” Macromolecules, vol. 338, Jul. 2005; American Chemical Society, p. 6575-6585. |
Harrison, C., et al., “Layer by Layer Imaging of Diblock Copolymer Films with a Scanning Electron Microscope,” Polymer, vol. 39, No. 13, 1998, pp. 2733-2744. |
Hawker, C. J., et al., “Facile Synthesis of Block Copolymers for Nanolithographic Applications,” Polymer Reprints, American Chemical Society (2005). |
Hawker, C. J., et al., Abstract for “Improving the Manufacturability and Structural Control of Block Copolymer Lithography,” Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA, Sep. 10-14, 2006. |
Hayward et al., Crosslinked Poly(styrene)-block-Poly(2-vinylpyridine) Thin Films as Swellable Templates for Mesostructured Silica and Titania, Advanced Materials, vol. 17, 2005, pp. 2591-2595. |
He et al., “Self-Assembly of Block Copolymer Micelles in an Ionic Liquid,” J. Am. Chem. Soc. 2006, 128, pp. 2745-2750. |
Helmbold, A., et al., “Optical Absorption of Amorphous Hydrogenated Carbon Thin Films,” Thin Solid Films 283 (1996) pp. 196-203. |
Helmuth, Jo A., et al., “High-Speed Microcontact Printing,” J. Am. Chem. Soc., vol. 128, No. 29, pp. 9296-9297, 2006. |
Hermans, T. M., et al., “Application of Solvent-Directed Assembly of Block Copolymers to the Synthesis of Nanostructured Materials with Low Dielectric Constants”, Angewandte Chem. Int. Ed., vol. 45, Issue 40, Oct. 13, 2006, pp. 6648-6652. |
Horiuchi et al., Three-Dimensional Nanoscale Alignment of Metal Nanoparticles Using Block Copolymer Films as Nanoreactors, Langmuir, vol. 19, pp. 2963-2973 (2003). |
Huang et al., “Stretchable gold conductors on elastomeric substrates,” Applied Physics Letters, vol. 82, No. 15, Apr. 14, 2003, pp. 2404-2406. |
Huang et al., “Using Surface Active Random Copolymers to Control the Domain Orientation in Diblock Copolymer Thin Films,” Macromolecules, 1998, 31, 7641-7650. |
Hur et al., “Nanotransfer printing by use of noncovalent surface forces: Applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers,” Applied Physics Letters, vol. 85, No. 23, Dec. 6, 2004, pp. 5730-5732. |
Hutchison, J. B, et al., “Polymerizable Living Free Radical Initiators as a Platform to Synthesize Functional Networks,” Chem. Mater, vol. 17, No. 19, 2005, pp. 4789-4797. |
Ikeda, Susumu, et al., “Control of Orientation of Thin Films of Organic Semiconductors by Graphoepitaxy,” NanotechJapan Bulletin—vol. 3, No. 3, Dec. 17, 2010/Focus 26-06, NIMS International Center for Nanotechnology Network. |
In, Insik, et al., “Side-Chain-Grafted Random Copolymer Brushes as Neutral Surfaces for Controlling the Orientation of Block Copolymer Microdomains in Thin Films,” Langmuir, vol. 22, No. 18, 2006, Department of Materials Science and Engineering and Chemical and Biological Engineering, Univ. of Wisconsin-Madison, pp. 7855-7860. |
Ji, Shengxiang, et al., “Generalization of the Use of Random Copolymers to Control the Wetting Behaviors of Block Copolymer Films,” Macromolecules, 2008, 41(23): 9098-9103. |
Ji, Shengxiang, et al., “Molecular Transfer Printing Using Block Copolymers,” ACS Nano, vol. 4, No. 2, 2010, Dept. of Chemical and Biological Engineering, Univ. of Wisconsin, pp. 599-609. |
Ji, Shengxiang, et al., “Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends,” submitted to Advanced Materials, 20(16): 3054-3060; published online Jul. 7, 2008. |
Jiang, Xingyu, et al., “Electrochemical Desorption of Self-Assembled Monolayers Noninvasively Releases Patterned Cells from Geometrical Confinements,” J. Am. Chem. Soc., vol. 125, No. 9, pp. 2366-2367, 2003. |
Johnson, Daniel L., et al., “Probing the stability of the disulfide radical intermediate of thioredoxin using direct electrochemistry,” Letters in Peptide Science, vol. 10, pp. 495-500, 2003. |
Jun, Y.,et al., “Microcontact Printing Directly on the Silicon Surface,” Langmuir, 2002, 18(9), pp. 3415-3417, Abstract only. |
Jun, Yongseok, et al., “Patterning protein molecules on poly(ethylene glycol) coated Si(111),” Biomaterials, vol. 25, pp. 3503-3509, 2004. |
Karim, Alamgir, et al., “Control of Ordering Kinetics and Morphology Using Zone Annealing of Thin Block Copolymer Films”, Abstract submitted for the Mar. 2007 Meeting of The American Physical Society, Nov. 20, 2006. |
Kavakli et al., Single and Double-Layer Antireflection Coatings on Silicon, Turk J Phys, vol. 26, pp. 349-354 (2002). |
Kim, Is, et al., “Self-assembled Hydrogel Nanoparticles Composed of Dextran and Poly (ethylene glycol) Macromer,” Int J Pharm., Sep. 15, 2000; 205(1-2): 109-116, Abstract only. |
Kim, Sang Ouk, et al., “Epitaxial Self-assembly of Block Copolymers on Lithographically Defined Nanopatterned Substrates,” Nature, vol. 424, Jul. 24, 2003, Dept. of Chemical Engineering and Center for Nanotechnology, and Dept. of Mechanical Engineering, Univ. of Wisconsin, pp. 411-414. |
Kim, Sang Ouk, et al., “Novel Complex Nanostructure from Directed Assembly of Block Copolymers on Incommensurate Surface Patterns,” Adv. Mater., 2007, 19, pp. 3271-3275. |
Kim, Seung Hyun, et al., “Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation,” Adv. Mater. 2004, 16, No. 3, Feb. 3, pp. 226-231. |
Kim, Seung Hyun, et al., “Salt Complexation in Block Copolymer Thin Films,” Macromolecules 2006, vol. 39, No. 24, 2006, pp. 8473-8479. |
Kim, Seung Hyun, et al., “Solvent-Induced Ordering in Thin Film Diblock Copolymer/Homopolymer Mixtures,” Advanced Mater., vol. 16, No. 23-24, Dec. 17, 2004, pp. 2119-2123. |
Kim, SH, et al., “In Vitro Release Behavior of Dextran-methacrylate Hydrogels Using Doxorubicin and Other Model Compounds,” J Biomater Appl., Jul. 2000; 15(1): 23-46 Abstract only. |
Kim, SH, et al., “Synthesis and characterization of Dextran-methacrylate Hydrogels and Structural Study by SEM,” J . Biomater Res., Mar. 15, 2000; 49(4): 517-27 Abstract only. |
Kim, Su-Jin, et al., “Hybrid Nanofabrication Processes Utilizing Diblock Copolymer Nanotemplate Prepared by Self-assembled Monolayer Based Surface Neutralization,” J. Vac. Sci. Technol. B26(1), Jan./Feb. 2008, © 2008 American Vacuum Society, pp. 189-194. |
Knoll, A., et al., “Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers,” Physical Review Letters vol. 89, No. 3 Jul. 2002, The American Physical Society, pp. 035501-1 to 035501-4. |
Krishnamoorthy et al., Block Copolymer Micelles as Switchable Templates for Nanofabrication, Languir, vol. 22, No. 8, Mar. 17, 2006, pp. 3450-3452. |
Krishnamoorthy et al., Nonopatterned Self-Assembled Monolayers by Using Diblock Copolymer Micelles as nanometer-Scale Adsorption and Etch Masks, Advanced Materials, 2008, pp. 1-4. |
Krishnamoorthy, S., et al., “Nanoscale Patterning with Block Copolymers,” Materials Today, vol. 9, No. 9, Sep. 2006, pp. 40-47. |
Kuhnline et al., “Detecting thiols in a microchip device using micromolded carbon ink electrodes modified with cobalt phthalocyanine”, Analyst, vol. 131, pp. 202-207, (2006). |
Zhang, Yuan, et al., “Phase Change Nanodot Arrays Fabricated Using a Self-Assembly Diblock Copolymer Approach,” Applied Physics Letter, 91, 013104, 2007, American Institute of Physics, pp. 013104 to 013104-3. |
Zhao et al., Colloidal Subwavelength Nanostructures for Antireflection Optical Coatings, Optics Letters, vol. 30, No. 14, pp. 1885-1887 (2005). |
Zhou et al., Nanoscale Metal/Self-Assembled Monolayer/Metal Heterostructures, American Institute of Physics, pp. 611-613 (1997). |
Zhu, X. Y., et al., “Molecular Assemblies on Silicon Surfaces via Si-O Linkages,” Langmuir, vol. 16, 2000, American Chemical Society, pp. 6766-6772. |
Zhu, X.Y., et al., “Grafting of High-Density Poly(Ethylene Glycol) Monolayers on Si(111),” Langmuir, vol. 17, pp. 7798-7803, 2001. |
Li, H, W. Huck; “Ordered Block-Copolymer Assembly Using Nanoimprint Lithography”. Nano. Lett. (2004), vol. 4, No. 9, p. 1633-1636. |
Cheng, J., C. Ross, H. Smith, E. Thomas; “Templated Self-Assembly of Block Copolymers: Top-Down Helps Bottom-Up”. Adv. Mater. (2006), 18, p. 2505-2521. |
Number | Date | Country | |
---|---|---|---|
20140329179 A1 | Nov 2014 | US |