Methods of making an etch mask and etching a substrate using said etch mask

Information

  • Patent Grant
  • 6423239
  • Patent Number
    6,423,239
  • Date Filed
    Thursday, June 8, 2000
    24 years ago
  • Date Issued
    Tuesday, July 23, 2002
    22 years ago
Abstract
A method for fabricating sharp asperities. A substrate is provided which has a mask layer disposed thereon, and a layer of micro-spheres is disposed superjacent the mask layer. The micro-spheres are for patterning the mask layer. Portions of the mask layer are selectively removed, thereby forming circular masks. The substrate is isotropically etched, thereby creating sharp asperities.
Description




FIELD OF THE INVENTION




This invention relates to display technology, and more particularly to the fabrication of an array of atomically sharp field emission tips.




BACKGROUND OF THE INVENTION




The clarity, or resolution, of a field emission display is a function of a number of factors, including emitter tip sharpness. The process of the present invention is directed toward the fabrication of very sharp cathode emitter tips.




A great deal of work has been done in the area of cold cathode tip formation. See, for example, the “Spindt” patents, U.S. Pat. Nos. 3,665,241, and 3,755,704, and 3,812,559 and 5,064,396. See also, U.S. Pat. No. 4,766,340 entitled, “Semiconductor Device having a Cold Cathode,” and U.S. Pat. No. 4,940,916 entitled, “Electron Source with Micropoint Emissive Cathodes and Display Means by Cathodeluminescence Excited by Field Emission Using Said Source.”




One current approach toward the creation of an array of emitter tips, is to use a mask and to etch silicon to form a tip structure, but not to completely form the tip. Prior to completing a sharp point, the etching process is discontinued. The idea is to catch the etch at a stage before the mask is dislodged from the apex of the tip. See, for example, U.S. Pat. No. 5,201,992 to Marcus et al., entitled, “Method for Making Tapered Microminiature Silicon Structures.”




Prior art teaches that it is necessary to terminate the etch at or before the mask is fully undercut to prevent the mask from being dislodged from the apex. If an etch proceeds under such circumstances, the tips become lop-sided and uneven due to the presence of the mask material along the side of the tip, or the substrate during a dry etch and additionally, the apex may be degraded, as seen in FIG.


8


. Such a condition also leads to contamination problems because of the mask material randomly lying about a substrate, which will mask off regions where no masking is desirable, and continued etching will yield randomly placed, undesired structures in the material being etched.




If the etch is continued, after the mask is removed, the tip may become more dull. This results because the etch chemicals will remove material in all directions, thereby attacking the exposed apex of the tip while etching the sides. In addition, the apex of the tip may be degraded when the mask has been dislodged due to physical ion bombardment during a dry etch.




Hence, the tendency is to underetch (i.e, stop the etch process before a fine point is formed at the apex of the tip) the tip, thereby creating a structure referred to as a “flat top.” Then, an oxidation step is typically performed to sharpen the tip. This method results in a non-uniform etch results across the array, and the tips will have different heights and shapes.




Others have tried to manufacture tips by etching, but they do not undercut the mask all the way as in the process of the present invention, and furthermore do not continue etching beyond full undercut of the mask without suffering degradation to the tip as in the process of the present invention, which allows for latitude which is required for manufacturing. Rather they remove the mask before the tip is completely undercut, and sharpen the tips from there. The wet silicon etch methods of the prior art, result in the mask being dislodged from the apex of the tip, at the point of full undercut which can contaminate the etch bath, generate false masking, and degrade the apex.




The non-uniformity among the tips may also present difficulties in subsequent manufacturing steps used in the formation of the display, especially those processes employing chemical mechanical planarization. See for example, U.S. Pat. No. 5,229,331, entitled, “Method to Form Self-Aligned Gate Structures Around Cold Cathode Emitter Tips Using Chemical Mechanical Polishing Technology,” and U.S. Pat. No. 5,186,670, entitled, “Method to Form Self-Aligned Gate and Focus Rings,” also assigned to Micron Technology, Inc. Non-uniformity is particularly troublesome if it is abrupt, as opposed to a gradual change across the wafer.




Fabrication of a uniform array of tips using current processes is very difficult to accomplish in a manufacturing environment for a number of reasons. For example, simple etch variability across a wafer will effect the time at which the etch should be terminated with the prior art approach.




Generally, it is difficult to attain plasma tip etches with uniformities better than 5%, with uniformities of 10%-20% being more common. This makes the “flat top” of an emitter tip etched using conventional methods vary in size. In addition, the oxidation necessary to “sharpen” or point the tip varies by as much as 20%, thereby increasing the possibility of non-uniformity among the various tips of an array.




Tip height and other critical dimensions suffer from the same effects on uniformity. Variations in the masking uniformity, and material to be etched compound the problems of etch uniformity.




Manufacturing environments require processes that produce substantially uniform and stable results. In the manufacture of an array of emitter tips, the tips should be of uniform height, aspect ratio, sharpness, and general shape, with minimum deviation, particularly in the uppermost portion.




SUMMARY OF THE INVENTION




The process of the present invention employs dry etching (also referred to as plasma etching) to fabricate sharp emitter tips. Plasma etching is the selective removal of material through the use of etching gases. It is a chemical process which uses plasma energy to drive the reaction. Those factors which control the precision of the etch include the temperature of the substrate, the time of immersion, the composition of the gaseous etchant, pressure, applied RF power, and etch hardware configuration.




The mask layer is formed such that it exposes the silicon substrate, which silicon substrate is then etched to form the sharp emitter tips.




The process of the present invention can be used to produce sharp tips with relatively any given aspect ratio and height with a single step (in situ) or multi-step plasma dry etch process.




The present invention, under some conditions provides a very large manufacturing window, particularly when the tips are etched into a layer or substrate in which the thickness of the layer is not totally consumed during the tip etch in unmasked (i.e., non-tip) regions.




In the preferred embodiment, a dry etch proceeds for about 2.3 minutes to undercut the mask and form a sharp tip. An overetch can continue the process without a substantial change in the appearance of the tips. The shape of the tip is self-repeating because the mask has been optimized to remain in place relative to the top of the emissive structure region being formed. The tip is etched vertically, as well as horizontally, and the shapes are most uniform in appearance when the rate of horizontal etching is within a factor of four to the vertical, with the most uniform results occurring after a 2:1 ratio of vertical to horizontal etching rate.




Contrary to the current teaching, the present invention involves dry etching the apex of the tip to a complete point, and continuing etching to add the requirement of process margin required in manufacturing, such that the mask appears as a see-saw or teeter-totter at equilibrium, essentially perfectly balanced on the apex of the tip.




In the preferred embodiment, a substrate of 14-21 ohms-cms P-type 1-0-0 single crystal silicon is the material from which the tips are formed. The mask in the preferred embodiment has a circular shape, and is comprised of 0.1 μm thick thermal silicon dioxide with a diameter of 1 μm. Contrary to prior art teachings, the mask can be comprised of dimensions, and material selection, such that a particular etch process of a particular material may be employed with that mask, and the mask will adhere to the tip and can be overetched, beyond full undercut without adversely effecting tip shape and uniformities.




This benefit is believed to be obtained as a result of the attractive forces between the mask and the tip, such as Vander Waals, electrostatic, and electrochemical forces.




Experiments were undertaken with a variety of masks, having differing compositions and dimensions in combination with the etch conditions of the Table 1 below, and a tip material of 14-21 ohm-cm 100 p-type single crystal silicon. The mask formed from a layer of 1 μm. thick HPR 6512 photoresist (Hunt Photoresist), and 0.1 μm. thick thermal silicon dioxide stack, was found to be unsatisfactory for use in the present invention. It became dislodged from the tips during the etch process, resulting in malformed tips. This effect is believed to be influenced by the mass of the etch mask.




Other masks which were found to be unsatisfactory for use in the present invention include: a 0.4 μm. oxide mask; and a 1 μm. mask comprised solely of HPR 6512 photoresist.




However, a mask comprising 0.1 m. thick thermal oxide has displayed very good results in the present invention, as well as a mask of 0.05 μm. thick thermal oxide.




One advantage of the process of the present invention is that it enables the fabrication of tips having more uniform distribution of tip dimensions. Another advantage is that it enables the formation of a good distribution of extremely sharp points which may be enhanced by further processing, but are enabled functional with etching as a tip formation only. Yet still another advantage is that it provides a method for overetching with a dry etch without significantly degrading the desired tip shape.




One aspect of the process of the present invention involves a method for fabricating sharp asperities. A substrate is provided which has a mask layer disposed thereon, and a layer of beads or micro-spheres is disposed superjacent the mask layer. The beads or micro-spheres are for patterning the mask layer. The substrate is etched, thereby creating sharp asperities.




Another aspect of the process of the present invention involves a masking process useful in etching micro-tips. An oxide layer is formed superjacent a substrate. The oxide layer is patterned using synthetic beads, and then the oxide layer is etched.




Yet another aspect of the process of the present invention involves a patterning process useful for fabricating micro-tips. A first layer is formed superjacent a substrate, and a layer of beads or micro-spheres is placed upon the first layer. The first layer is etched, and the substrate is also etched, thereby fabricating micro-tips.




As one point becomes sharp, it continues to etch for a period of time, with the mask “following” the tip down as small amounts of material are removed from the very apex of the tip, as etching continues beyond full undercut of the mask. For this reason, once an emitter tip is etched to a point, its dimensions become fixed. All tips on a substrate continue to etch until they become sharp, at which point, they have substantially the same height, aspect ratio, and sharpness.




Oxidation of tips can be employed to provide sharper emitters with lower electric fields required to produce emission, the benefits of oxidation sharpening are more controlled and a more efficiently exploited with the tip etch of the present invention, since the tip geometry is maintained rather than altered.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will be better understood from reading the following description of nolimitative embodiments, with reference to the attached drawings, herein below:





FIG. 1

is a cross-sectional schematic drawing of a pixel of a flat panel display having cathode emitter tips fabricated by the process of the present invention;





FIG. 2

is a cross-sectional schematic drawing of a substrate on which is disposed a mask layer upon which is a layer of micro-spheres, according to the process of the present invention;





FIG. 3

is a cross-sectional schematic drawing of the structure of

FIG. 2

, after the mask layer has been etched to form the masks for the tips, according to the process of the present invention;





FIG. 4

is a cross-sectional schematic drawing of the structure of

FIG. 3

, during the etch process of the present invention;





FIG. 5

is a cross-sectional schematic drawing of the structure of

FIG. 4

, as the etch proceeds according to the process of the present invention, illustrating that some of the tips become sharp before other tips;





FIG. 6

is a cross-sectional schematic drawing of the structure of

FIG. 5

, depicting the removal of the masks and the micro-spheres, according to the process of the present invention;





FIG. 7

is a cross-sectional schematic drawing of the structure of

FIG. 6

, depicting the sharp cathode tip after the etch has been completed, and the mask layer has been removed; and





FIG. 8

is a cross-sectional schematic drawing of the malformed structure which would result if the mask layer is dislodged from the tips during the etch.











DETAILED DESCRIPTION OF THE INVENTION




Referring to

FIG. 1

, a representative field emission display employing a display segment


22


is depicted. Each display segment


22


is capable of displaying a pixel of information, or a portion of a pixel, as, for example, one green dot of a red/green/blue full-color triad pixel. Preferably, a single crystal silicon layer serves as a substrate


11


. Alternatively, amorphous silicon deposited on an underlying substrate comprised largely of glass or other combination may be used as long as a material capable of conducting electrical current is present on the surface of a substrate so that it can be patterned and etched to form micro-cathodes


13


.




At a field emission site, a micro-cathode


13


has been constructed on top of the substrate


11


. The micro-cathode


13


is a protuberance which may have a variety of shapes, such as pyramidal, conical, or other geometry which has a fine micro-point for the emission of electrons. Surrounding the micro-cathode


13


, is a grid structure


15


. When a voltage differential, through source


20


, is applied between the cathode


13


and the grid


15


, a stream of electrons


17


is emitted toward a phosphor coated screen


16


. Screen


16


is an anode.




The electron emission tip


13


is integral with substrate


11


, and serves as a cathode. Gate


15


serves as a grid structure for applying an electrical field potential to its respective cathode


13


.




A dielectric insulating layer


14


is deposited on the conductive cathode


13


, which cathode


13


can be formed from the substrate or from one or more deposited conductive films, such as a chromium, amorphous silicon bilayer. The insulator


14


also has an opening at the field emission site location.




Disposed between said faceplate


16


and said baseplate


21


are located spacer support structures


18


which function to support the atmospheric pressure which exists on the electrode faceplate


16


as a result of the vacuum which is created between the baseplate


21


and faceplate


16


for the proper functioning of the emitter tips


13


.




The baseplate


21


of the invention comprises a matrix addressable array of cold cathode emission structures


13


, the substrate


11


on which the emission structures


13


are created, the insulating layer


14


, and the anode grid


15


.




In the process of the present invention, the mask


30


dimensions, the balancing of the gases, and parameters in the plasma etch will enable the manufacturer to determine, and thereby significantly control, the dimensions of the tip


13


.




The composition and dimensions of the mask


30


effect the ability of the mask


30


to remain balanced at the apex of the emitter tip


13


, and to remain centered on the apex of the tip


13


during the overetch of the tip


13


. “Overetch” referring to the time period when the etch process is continued after a substantially full undercut is achieved. “Full undercut” refers to the point at which the lateral removal of material is equal to the original lateral dimension of the mask


30


.





FIG. 2

depicts the substrate


11


, which substrate


11


is amorphous silicon overlying glass, polysilicon, or any other material from which the emitter tip


13


is fabricated. The discussion refers to tips


13


, however sharp edges are also micro-machined by the process of the present invention. The sharp edges alternatively serve as emitters in field emission devices.




The present invention uses a substrate


11


which, in the preferred embodiment includes a single crystal silicon. However, a deposited material, such as polysilicon or amorphous silicon, or carbon or other metal or suitable substrate


11


material may also be used. Typically, these are semiconductor wafers, although it is possible to use other materials, such as silicon on sapphire (SOS). Therefore, “wafers” is intended to refer to the substrate


11


on which the inventive emitter tips


13


are formed.




The substrate


11


has a mask layer


30


deposited or grown thereon. In the process of the present invention, 0.1 μm of silicon dioxide


30


is formed on a wafer, and functions as the mask layer


30


. Tip geometries and dimensions, and conditions for the etch process will vary with the type of material used to form the tips


13


, since the specific electrochemical, electrostatic, Vander Waals, and interactive surface forces will vary with the material.




The mask layer


30


is made of any suitable material such that its thickness is great enough to avoid being completely consumed during the etching process, yet not so thick as to overcome the adherent forces which maintain it in the correct position with respect to the tip


13


throughout the etch process.




A photoresist layer


32


or other protective element is patterned on the mask layer


30


, if the desired masking material cannot be directly patterned or applied. In the case in which the photoresist layer


32


is patterned, the most preferred shapes are dots or circles.




In the process of the present invention, the protective element


32


is a layer of micro-spheres or beads


32


. The beads


32


are generally comprised of a latex or other polymer material. However the beads


32


can comprise a variety of organic and inorganic materials. Such beads are available from Interfacial Dynamics Corporation, Portland, Oreg. or Bangs Laboratories, Inc., Carmel, Ind. The beads


32


are relatively uniform, and have a diameter of 1.05 μm±2%. The range of bead


32


sizes is 0.01 μm-10 μm.




The diameter of the beads


32


corresponds to the diameter of its respective oxide mask


30


. The beads


32


act as a protective element during the etching of the mask layer


30


. Hence, the beads


32


eliminate the need for a high resolution photolithography step. This represents a tremendous manufacturing improvement, as the photolithography step is often the limiting step in processing.




It is contemplated that future embodiments will comprise the use of photoresist


32


as the mask


30


itself, having optimized properties and dimensions which will enable the mask


32


to remain balanced at the tip


13


apex after full undercut is achieved.




The next step in the illustrative process of the present invention is the selective removal of those portions of the mask layer


30


which are not covered by the protective beads


32


(FIG.


3


). The selective removal of the mask layer


30


is accomplished through a dry plasma etch.




In a plasma etch method, the typical etchants used to etch silicon dioxide include, but are not limited to: chlorine and fluorine, and typical gas compounds include: CF


4


, CHF


3


, C


2


F


6


, and C


3


F


8


. Fluorine with oxygen can also be used to accomplish the oxide mask


30


etch step. In our experiments CF


4


, CHF


3


, and argon were used. The etchant gases are selective with respect to silicon, and the etch rate of oxide is known in the art, so the endpoint of the etch step can be calculated.




After the mask pads


30


have been formed, in the preferred embodiment, the latex beads


32


are allowed to remain in position. Alternatively, the beads


32


are removed.

FIG. 3

depicts the masked


30


structure prior to the silicon etch step in which the tips


13


are formed.




Each spherical bead


32


is disposed superjacent its respective mask pad


30


, and represents the location of a tip


13


. The diameter of the bead


32


′ roughly corresponds to the width of the mask pad


30


′. Since the beads are substantially alike in size, the resulting masks


30


, and likewise the tips


13


, are uniform in size. The beads


32


are preferably spherical in shape, therefore the mask pad


30


is circular. The tip


13


is located at the center of the mask pad


30


, and in line with the center of the micro-sphere


32


, thereby enhancing mechanical stability.




A plasma etch, with selectivity to the etch mask


30


, is employed to form the tips


13


, preferably, in the case of silicon a plasma containing a fluorinated gas, such as SF


6


, NF


3


, or CF


4


, in combination with a chlorinated gas, such as HCl or Cl


2


. Most preferably the plasma comprises a combination of SF


6


and Cl


2


, having an additive, such as helium.




The etch chemistries are also selective to the latex beads


32


. Therefore, the beads


32


remain in place during the formation of the tips


13


.




The etch continues until substantially all of the tips


13


on the wafer have completely undercut their respective mask


30


, as shown in

FIGS. 4-6

. It is believed that Vander Waals forces, electrostatic, electrochemical attraction, and/or attractive surface forces have a role in securing the mask


30


in place during continued etching.




Experiments were conducted on a Lam


490


etcher with enhanced cooling. The lower electrode was maintained substantially in the range of 21° C. However, it is anticipated that a Lam


480


or


490


etcher without enhanced cooling would also work within the specified ranges.




The primary means of controlling the height to width ratio of the tip


13


formed by the process of the present invention is through the combination of feed gases, power, and pressure during the plasma etching of the tips


13


.




The following are the ranges of parameters for the process described in the present application. Included in Table 1, is a range of values investigated during the characterization of the process as well as a range of values which provided the best results for tips


13


that were from 0.70 μm to 1.75 μm high and 1 μm to 1.5 μm at the base. One having ordinary skill in the art will realize that the values can be varied to obtain tips


13


having other height and width dimensions.














TABLE 1









PARAMETER




INVESTIGATED RANGE




PREFERRED RANGE











Cl


2






 9-20 SCCM




 8-12 SCCM






SF


6






 5-55 SCCM




45-55 SCCM






He




35-65 SCCM




40-60 SCCM






O


2






 0-20 SCCM




0 SCCM






POWER




50-250 W




100-200 W






PRESSURE




100-800 MTORR




300-500 MTORR






ELECTRODE




1.0- 2.5 CM




1.8- 2.0 CM






SPACING






TIME




1-5.5 MIN




2-3 MIN














The ability to continue the etch to its conclusion (i.e., past full undercut) with minimal changes to the functional shape between the first tip


13


to become sharp and the last tip


13


to become sharp, provides a process in which all of the tips


13


in an array are essentially identical in characteristics. Tips


13


of uniform height and sharpness are accomplished by the careful selection of mask


30


material, size, and thickness. See, for example,

FIGS. 4-5

.




After the array of emitter tip


13


has been fabricated, and the desired dimensions have been achieved, the oxide mask


30


is removed, as depicted in FIG.


6


. The mask


30


is stripped by any of the methods well known in the art, for example, a wet etch using a hydrofluoric acid (HF) solution or other HF containing mixture. Such an etch is commonly referred to as a buffered oxide etch (B.O.E.), which is well-known in the art of oxide etching.




The dotted lines in the mask pads


30


indicate that the mask pads


30


are etched away. When the mask pads


30


become very small or are eliminated, the micro-spheres


32


are dislodged from their respective positions. When the masks


30


have been cleared, the etchant, micro-spheres


32


, and material from the masks


30


are removed from the etch chamber.

FIG. 7

depicts the substantially uniform array of emitter tips


13


formed by the process of the present invention.




All of the U.S. patents and patent applications cited herein are hereby incorporated by reference herein as if set forth in their entirety.




While the particular process for creating sharp emitter tips for use in flat panel displays as herein shown and disclosed in detail is fully capable of obtaining the objects and advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.




For example, the process of the present invention was discussed with regard to the fabrication of uniform arrays of sharp emitter tips for use in flat panel displays, however, one with ordinary skill in the art will realize that such a process can applied to other field ionizing and electron emitting structures, and to the micro-machining of structures in which it is desirable to have a sharp point, such as a probe tip, or a device.



Claims
  • 1. A method of forming an etch mask over a substrate, comprising the steps of:providing a substrate having a layer of mask material; disposing a plurality of micro-spheres over said mask layer; and patterning said mask layer using said micro-spheres.
  • 2. A method according to claim 1, wherein said step of patterning comprises anisotropically plasma etching said mask layer to remove portions of said mask layer outside peripheries of respective said plurality of micro-spheres.
  • 3. A method according to claim 2, wherein said step of anisotropically plasma etching comprises:selectively etching said mask layer more favorably relative said substrate, and using said substrate as an etch stop during said etching.
  • 4. A method according to claim 2, wherein said substrate comprises silicon and said mask layer comprises oxide.
  • 5. A method according to claim 4, wherein said mask layer of oxide is provided a thickness of less than 0.4 μm and said micro-spheres are provided a diameter in a range of 0.01 to 10 μm.
  • 6. A method according to claim 4, wherein said micro-spheres comprise a polymer.
  • 7. A method according to claim 5, wherein said micro-spheres comprise latex.
  • 8. A method of etching a substrate, comprising the steps of:providing a substrate with a mask layer; disposing a plurality of beads having a diameter in a range of 0.01 to 10 μm over said mask layer; patterning said mask layer using said beads to define mask elements beneath respective said plurality of beads; and etching portions of said substrate while masked with said mask elements.
  • 9. A method according to claim 8, further comprising a step of removing said mask elements and said plurality of beads after said step of etching the substrate.
  • 10. A method according to claim 9, wherein said substrate comprises silicon and said mask layer comprises a thermal oxide formed with a thickness in a range of 0.05 to 0.1 μm.
  • 11. A method of patterning a hard mask over a substrate, comprising the steps of:providing a layer of oxide over a substrate comprising silicon; providing a plurality of micro-spheres over said oxide layer; anisotropically plasma etching portions of said oxide layer to form mask elements of oxide corresponding to said micro-spheres and expose portions of said substrate outside peripheries of respective said plurality of micro-spheres.
  • 12. A method according to claim 11, wherein said step of anisotropic plasma etching comprises:selectively etching oxide more favorably relative silicon, and using said substrate as an etch stop during said etching.
  • 13. A method according to claim 12, wherein said micro-spheres are provided a diameter in a range of 0.01 to 10 μm and said oxide layer is provided a thickness of less than 0.4 μm.
  • 14. A method according to claim 13, wherein said oxide layer is formed as a thermal oxide with a thickness in a range of 0.05 to 0.1 μm.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to U.S. Pat. No. 5,302,239, issued on Apr. 12, 1994, entitled, “Method of making Atomically Sharp Tips useful in Scanning Probe Microscopes,” assigned to Micron Technology, Inc., and having a common inventor with the present application. This is a divisional application of U.S. application Ser. No. 09/354,923, filed Jul. 15, 1999, now U.S. Pat. No. 6,126,845, which is a divisional application of U.S. application Ser. No. 09/024,877, filed on Feb. 17, 1998, which is a continuation application of U.S. application Ser. No. 08/665,620, filed on Jun. 18, 1996, now U.S. Pat. No. 5,753,130, which is a continuation of U.S. application Ser. No. 08/338,705, filed Nov. 14, 1994, abandoned, which is a continuation-in-part of U.S. application Ser. No. 08/184,819, filed on Jan. 21, 1994, now U.S. Pat. No. 5,391,259, which is a continuation-in-part of U.S. application Ser. No. 07/883,074, filed on May 15, 1992, now U.S. Pat. No. 5,302,238.

US Referenced Citations (42)
Number Name Date Kind
3665241 Spindt et al. May 1972 A
3755704 Spindt et al. Aug 1973 A
3812559 Spindt et al. May 1974 A
3814968 Nathanson et al. Jun 1974 A
4310380 Flamm et al. Jan 1982 A
4407695 Deckman et al. Oct 1983 A
4513308 Greene et al. Apr 1985 A
4554727 Deckman et al. Nov 1985 A
4566935 Hornbeck Jan 1986 A
4639288 Price et al. Jan 1987 A
4685996 Busta et al. Aug 1987 A
4701366 Deckman et al. Oct 1987 A
4741799 Chen et al. May 1988 A
4766340 Van der Mast et al. Aug 1988 A
4806202 Tang et al. Feb 1989 A
4940916 Borel et al. Jul 1990 A
4968382 Jacobson et al. Nov 1990 A
4968585 Albrecht et al. Nov 1990 A
4986877 Tachi et al. Jan 1991 A
4992699 McClure et al. Feb 1991 A
5064396 Spindt Nov 1991 A
5066358 Quate et al. Nov 1991 A
5082524 Cathey Jan 1992 A
5083958 Longo et al. Jan 1992 A
5094712 Becker et al. Mar 1992 A
5126287 Jones Jun 1992 A
5186670 Doan et al. Feb 1993 A
5201992 Marcus et al. Apr 1993 A
5220725 Chan et al. Jun 1993 A
5221221 Okaniwa Jun 1993 A
5228877 Allaway et al. Jul 1993 A
5229331 Doan et al. Jul 1993 A
5266530 Bagley et al. Nov 1993 A
5267884 Hosogi Dec 1993 A
5275693 Nakama Jan 1994 A
5277638 Lee Jan 1994 A
5302239 Roe et al. Apr 1994 A
5312514 Kumar May 1994 A
5329207 Cathey et al. Jul 1994 A
5358908 Reinberg et al. Oct 1994 A
5399238 Kumar Mar 1995 A
5510156 Zhao Apr 1996 A
Foreign Referenced Citations (2)
Number Date Country
4232886 Apr 1993 DE
0379298 Jul 1990 EP
Non-Patent Literature Citations (8)
Entry
N.A. Cade, R.A. Lee, C. Patel, “Wet Etching of Cusp Structures for Field-Emission Devices”, IEEE Transactions on Electron Devices, vol. 36, No. 11, Nov. 1989, pp. 2709-2714.
Farooqui et al., “Microfabrication of Submicron Nozzles in Silicon Nitride”, Journal of Microelectromechanical Systems, vol. 1, No. 2, Jun. 1992, pp. 86-88.
Marcus et al., “Formation of Silicon Tips with 1nm Radius”, Appl. Physics Letter, vol. 56, No. 3, Jan. 15, 1990.
Hunt et al., “Structure and Electrical Characteristics of Silicon Field Emission Microelectric Devices” IEEE Transaction on Electron Devices, vol. 38, No. 10, Oct. 1991.
McGruer et al., “Oxidation-Sharpened Gated Field Emitter Array Process”, IEEE Transactions On Electron Devices, vol. 38, No. 10, Oct. 1991.
Keiichi Betsui, “Fabrication and Characteristics of Si Field Emitter Arrays”, 1991, Fujitsu Laboratories, pp. 26-29.
R.Z. Bakhtizin, S.S. Ghots, and E.K. Ratnikova, “GaAs Field Emitter Arrays”, IEEE Transactions On Electron Devices, vol. 8, No. 10, Oct. 1991, pp. 2398-2400.
R.N. Thomas, R.A. Wickstrom, D.K. Schrodcer, and H.C. Nathanson, “Fabrication and Some Applications of Large-Area Silicon Field Emission Arrays”, Solid-State Electronics, vol. 17, 1974, pp. 155-163.
Continuations (2)
Number Date Country
Parent 08/665620 Jun 1996 US
Child 09/024877 US
Parent 08/338705 Nov 1994 US
Child 08/665620 US
Continuation in Parts (2)
Number Date Country
Parent 08/184819 Jan 1994 US
Child 08/338705 US
Parent 07/883074 May 1992 US
Child 08/184819 US