The present invention relates to carrier assemblies, polishing machines including carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces.
Mechanical and chemical-mechanical planarization processes (collectively, “CMP”) remove material from the surface of micro-device workpieces in the production of microelectronic devices and other products.
The carrier head 30 has a lower surface 32 to which a micro-device workpiece 12 may be attached, or the workpiece 12 may be attached to a resilient pad 34 under the lower surface 32. The carrier head 30 may be a weighted, free-floating wafer carrier, or an actuator assembly 36 may be attached to the carrier head 30 to impart rotational motion to the micro-device workpiece 12 (indicated by arrow J) and/or reciprocate the workpiece 12 back and forth (indicated by arrow I).
The planarizing pad 40 and a planarizing solution 44 define a planarizing medium that mechanically and/or chemically-mechanically removes material from the surface of the micro-device workpiece 12. The planarizing solution 44 may be a conventional CMP slurry with abrasive particles and chemicals that etch and/or oxidize the surface of the micro-device workpiece 12, or the planarizing solution 44 may be a “clean” nonabrasive planarizing solution without abrasive particles. In most CMP applications, abrasive slurries with abrasive particles are used on non-abrasive polishing pads, and clean non-abrasive solutions without abrasive particles are used on fixed-abrasive polishing pads.
To planarize the micro-device workpiece 12 with the CMP machine 10, the carrier head 30 presses the workpiece 12 facedown against the planarizing pad 40. More specifically, the carrier head 30 generally presses the micro-device workpiece 12 against the planarizing solution 44 on a planarizing surface 42 of the planarizing pad 40, and the platen 20 and/or the carrier head 30 moves to rub the workpiece 12 against the planarizing surface 42. As the micro-device workpiece 12 rubs against the planarizing surface 42, the planarizing medium removes material from the face of the workpiece 12.
The CMP process must consistently and accurately produce a uniformly planar surface on the workpiece to enable precise fabrication of circuits and photo-patterns. A nonuniform surface can result, for example, when material from one area of the workpiece is removed more quickly than material from another area during CMP processing. To compensate for the nonuniform removal of material, carrier heads have been developed with expandable interior and exterior bladders that exert downward forces on selected areas of the workpiece. These carrier heads, however, have several drawbacks. For example, the typical bladder has a curved edge that makes it difficult to exert a uniform downward force at the perimeter. Moreover, conventional bladders cover a fairly broad area of the workpiece, thus limiting the ability to localize the downward force on the workpiece. Furthermore, conventional bladders are often filled with compressible air that inhibits precise control of the downward force. In addition, carrier heads with multiple bladders form a complex system that is subject to significant downtime for repair and/or maintenance, causing a concomitant reduction in throughput.
The present invention is directed toward carrier assemblies, polishing machines with carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces. One aspect of the invention is directed to a carrier assembly for retaining a micro-device workpiece during mechanical or chemical-mechanical polishing. In one embodiment, the carrier assembly includes a head having a chamber, a magnetic field source carried by the head, and a magnetic fluid in the chamber. The magnetic field source is configured to generate a magnetic field in the head. The magnetic fluid changes viscosity within the chamber under the influence of the magnetic field to exert a force against at least a portion of the micro-device workpiece. In one aspect of this embodiment, the magnetic fluid is a magnetorheological fluid. In another aspect of this embodiment, the magnetic field source can include an electrically conductive coil and/or a magnet, such as an electromagnet. The magnet can be one of a plurality of magnets arranged concentrically, in quadrants, in a grid, or in other configurations. The electrically conductive coil can also be one of a plurality of coils. In another aspect of this embodiment, the carrier assembly can include a bladder with a cavity to receive the magnetic fluid. The carrier assembly can also include a plurality of bladders that are arranged concentrically, in quadrants, in a grid, or in other configurations.
Another aspect of the invention is directed to polishing machines for mechanical or chemical-mechanical polishing of micro-device workpieces. In one embodiment, the machine includes a table having a support surface, a polishing pad carried by the support surface of the table, and a workpiece carrier assembly having a carrier head configured to retain a workpiece and a drive system coupled to the carrier head. The carrier head can include a chamber, a magnetic field source, a fluid cell in the chamber, and a magnetic fluid in the fluid cell. The magnetic field source can selectively generate a magnetic field in the chamber causing the viscosity of the magnetic fluid to increase and exert a desired force against at least a portion of the micro-device workpiece. The drive system is configured to move the carrier head to engage the workpiece with the polishing pad.
Another aspect of the invention is directed to a method for polishing a micro-device workpiece with a polishing machine having a carrier head and a polishing pad. In one embodiment, the method includes moving at least one of the carrier head and the polishing pad relative to the other to rub the micro-device workpiece against the polishing pad. The carrier head includes a chamber and a magnetorheological fluid in the chamber. The method further includes exerting a force against a back side of the workpiece by generating a magnetic field in the carrier head that changes the viscosity of the magnetorheological fluid in the chamber of the carrier head.
The present invention is directed to carrier assemblies, polishing machines including carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces. The term “micro-device workpiece” is used throughout to include substrates in or on which microelectronic devices, micro-mechanical devices, data storage elements, and other features are fabricated. For example, micro-device workpieces can be semiconductor wafers, glass substrates, insulated substrates, or many other types of substrates. Furthermore, the terms “planarization” and “planarizing” mean either forming a planar surface and/or forming a smooth surface (e.g., “polishing”). Several specific details of the invention are set forth in the following description and in
In one aspect of this embodiment, the carrier assembly 130 includes a chamber 114 in the head 132, a first bladder 160a in the chamber 114, and a second bladder 160b in the chamber 114. The bladders 160 are fluid cells or fluid compartments that are suitable for containing fluid in discrete compartments within the head 132.
Referring to
In another aspect of this embodiment, the carrier assembly 130 includes a first magnetic field source 100a and a second magnetic field source 100b that are each configured to generate magnetic fields in one of the cavities 170. For example, the first magnetic field source 100a can be carried by the first bladder 160a or the head 132 to selectively generate a magnetic field in the first cavity 170a, and the second magnetic field source 100b can be carried by the second bladder 160b or the head 132 to selectively generate a magnetic field in the second cavity 170b. In the illustrated embodiment, the magnetic field sources 100 each include a first electrically conductive coil embedded in the top surface 162 of the bladder 160 and a second electrically conductive coil embedded in the bottom surface 164 of the bladder 160. In other embodiments, a first side surface 166 and/or a second side surface 168 of each bladder 160 can carry the coils. In additional embodiments, the magnetic field sources 100 can include a different number of coils. In other embodiments, such as those described below with reference to
In one aspect of the embodiment, a controller 180 is operatively coupled to the magnetic field sources 100 to selectively control the timing and strength of the magnetic fields in the cavities 170. The controller 180 can be an automatic process controller that adjusts the location and strength of the magnetic fields in real time based on the condition of the workpiece. The controller 180 can include an IC controller chip and a telematics controller.
The carrier assembly 130 can further include a flexible plate 190 and a flexible member 198 coupled to the flexible plate 190. The flexible plate 190 sealably encloses the bladders 160 in the chamber 114. In one aspect of this embodiment, the flexible plate 190 includes holes 192 and a vacuum line 194 coupled to the holes 192. The vacuum line 194 can be coupled to a vacuum source (not shown) to draw portions of the flexible member 198 into the holes 192, creating small suction cups across the back side of the workpiece 12 that hold the workpiece 12 to the flexible member 198. In other embodiments, the flexible plate 190 may not include the vacuum line 194 and the workpiece 12 can be secured to the carrier assembly 130 by another device. In the illustrated embodiment, the flexible member 198 is a flexible membrane. In other embodiments, the flexible member 198 can be a bladder or another device that prevents planarizing solution (not shown) from entering the chamber 114. In additional embodiments, the carrier assembly 130 may not include the flexible plate 190 and/or the flexible member 198.
The magnitude of the force F is determined by the strength of the magnetic field, the type of magnetic fluid 110, the amount of magnetic fluid 110 in the bladder 160, and other factors. The greater the magnetic field strength, the greater the magnitude of the force F. The location of the force F and the area over which the force F is applied to the workpiece 12 are determined by the location and size of the magnetic field and the bladder 160. In other embodiments, a plurality of discrete forces can be applied concurrently to the workpiece 12. As discussed above, the magnetic field sources 100 can generate magnetic fields and the associated forces in real time based on the profile of the workpiece. Furthermore, if previously polished workpieces have areas with consistent high points, the carrier assembly 130 can exert a greater downward force in those areas compared to low points to create a more uniformly planar surface on the workpiece.
One advantage of the illustrated embodiments is the ability to apply highly localized forces to the workpiece with a quick response time. This highly localized force control enables the CMP process to consistently and accurately produce a uniformly planar surface on the workpiece. Moreover, the localized forces can be changed in situ during a CMP cycle. For example, a polishing machine having one of the illustrated carrier assemblies can monitor the planarizing rates and/or the surface of the workpiece and adjust accordingly the magnitude and position of the forces applied to the workpiece to produce a planar surface. Another advantage of the illustrated carrier assemblies is that they are simpler than existing systems and, consequently, reduce downtime for maintenance and/or repair and create greater throughput.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
This application is a divisional of U.S. patent application Ser. No. 10/925,599, filed Aug. 23, 2004, now U.S. Pat. No. 7,033,251 which is a divisional of U.S. patent application Ser. No. 10/346,233, filed Jan. 16, 2003, and relates to co-pending U.S. patent application Ser. No. 10/226,571, filed Aug. 23, 2002, all of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5036015 | Sandhu et al. | Jul 1991 | A |
5069002 | Sandhu et al. | Dec 1991 | A |
5081796 | Schultz | Jan 1992 | A |
5222875 | Clark | Jun 1993 | A |
5232875 | Tuttle et al. | Aug 1993 | A |
5234867 | Schultz et al. | Aug 1993 | A |
5240552 | Yu et al. | Aug 1993 | A |
5244534 | Yu et al. | Sep 1993 | A |
5245790 | Jerbic | Sep 1993 | A |
5245796 | Miller et al. | Sep 1993 | A |
RE34425 | Schultz | Nov 1993 | E |
5413941 | Koos et al. | May 1995 | A |
5421769 | Schultz et al. | Jun 1995 | A |
5433651 | Lustig et al. | Jul 1995 | A |
5439551 | Meikle et al. | Aug 1995 | A |
5449314 | Meikle et al. | Sep 1995 | A |
5486129 | Sandhu et al. | Jan 1996 | A |
5514245 | Doan et al. | May 1996 | A |
5533924 | Stroupe et al. | Jul 1996 | A |
5540810 | Sandhu et al. | Jul 1996 | A |
5609718 | Meikle | Mar 1997 | A |
5618381 | Doan et al. | Apr 1997 | A |
5618447 | Sandhu | Apr 1997 | A |
5643048 | Iyer | Jul 1997 | A |
5643053 | Shendon | Jul 1997 | A |
5643060 | Sandhu et al. | Jul 1997 | A |
5658183 | Sandhu et al. | Aug 1997 | A |
5658186 | Perrotto et al. | Aug 1997 | A |
5658190 | Wright et al. | Aug 1997 | A |
5663797 | Sandhu | Sep 1997 | A |
5664988 | Stroupe et al. | Sep 1997 | A |
5668061 | Herko | Sep 1997 | A |
5679065 | Henderson | Oct 1997 | A |
5681215 | Sherwood et al. | Oct 1997 | A |
5700180 | Sandhu et al. | Dec 1997 | A |
5702292 | Brunelli et al. | Dec 1997 | A |
5730642 | Sandhu et al. | Mar 1998 | A |
5738562 | Doan et al. | Apr 1998 | A |
5747386 | Moore | May 1998 | A |
5777739 | Sandhu et al. | Jul 1998 | A |
5792709 | Robinson et al. | Aug 1998 | A |
5795495 | Meikle | Aug 1998 | A |
5798302 | Hudson et al. | Aug 1998 | A |
5807165 | Uzoh et al. | Sep 1998 | A |
5830806 | Hudson et al. | Nov 1998 | A |
5836807 | Leach | Nov 1998 | A |
5842909 | Sandhu et al. | Dec 1998 | A |
5851135 | Sandhu et al. | Dec 1998 | A |
5855804 | Walker | Jan 1999 | A |
5868896 | Robinson et al. | Feb 1999 | A |
5882248 | Wright et al. | Mar 1999 | A |
5893754 | Robinson et al. | Apr 1999 | A |
5895550 | Andreas | Apr 1999 | A |
5910846 | Sandhu | Jun 1999 | A |
5916012 | Pant et al. | Jun 1999 | A |
5930699 | Bhatia | Jul 1999 | A |
5931718 | Komanduri et al. | Aug 1999 | A |
5931719 | Nagahara et al. | Aug 1999 | A |
5934980 | Koos et al. | Aug 1999 | A |
5936733 | Sandhu et al. | Aug 1999 | A |
5945347 | Wright | Aug 1999 | A |
5954912 | Moore | Sep 1999 | A |
5967030 | Blalock | Oct 1999 | A |
5972792 | Hudson | Oct 1999 | A |
5980363 | Meikle et al. | Nov 1999 | A |
5981396 | Robinson et al. | Nov 1999 | A |
5994224 | Sandhu et al. | Nov 1999 | A |
5997384 | Blalock | Dec 1999 | A |
6007408 | Sandhu | Dec 1999 | A |
6039633 | Chopra | Mar 2000 | A |
6040245 | Sandhu et al. | Mar 2000 | A |
6046111 | Robinson | Apr 2000 | A |
6054015 | Brunelli et al. | Apr 2000 | A |
6057602 | Hudson et al. | May 2000 | A |
6059638 | Crevasse et al. | May 2000 | A |
6066030 | Uzoh | May 2000 | A |
6074286 | Ball | Jun 2000 | A |
6083085 | Lankford | Jul 2000 | A |
6108092 | Sandhu | Aug 2000 | A |
6110820 | Sandhu et al. | Aug 2000 | A |
6113467 | Koike | Sep 2000 | A |
6116988 | Ball | Sep 2000 | A |
6120354 | Koos et al. | Sep 2000 | A |
6135856 | Tjaden et al. | Oct 2000 | A |
6139402 | Moore | Oct 2000 | A |
6143123 | Robinson et al. | Nov 2000 | A |
6143155 | Adams et al. | Nov 2000 | A |
6152808 | Moore | Nov 2000 | A |
6176992 | Talieh | Jan 2001 | B1 |
6180525 | Morgan | Jan 2001 | B1 |
6184571 | Moore | Feb 2001 | B1 |
6187681 | Moore | Feb 2001 | B1 |
6190494 | Dow | Feb 2001 | B1 |
6191037 | Robinson et al. | Feb 2001 | B1 |
6191864 | Sandhu | Feb 2001 | B1 |
6193588 | Carlson et al. | Feb 2001 | B1 |
6200901 | Hudson et al. | Mar 2001 | B1 |
6203404 | Joslyn et al. | Mar 2001 | B1 |
6203407 | Robinson | Mar 2001 | B1 |
6203413 | Skrovan | Mar 2001 | B1 |
6206754 | Moore | Mar 2001 | B1 |
6206756 | Chopra et al. | Mar 2001 | B1 |
6206769 | Walker | Mar 2001 | B1 |
6208425 | Sandhu et al. | Mar 2001 | B1 |
6210257 | Carlson | Apr 2001 | B1 |
6213845 | Elledge | Apr 2001 | B1 |
6218316 | Marsh | Apr 2001 | B1 |
6224466 | Walker et al. | May 2001 | B1 |
6227955 | Custer et al. | May 2001 | B1 |
6234868 | Easter et al. | May 2001 | B1 |
6234874 | Ball | May 2001 | B1 |
6234877 | Koos et al. | May 2001 | B1 |
6234878 | Moore | May 2001 | B1 |
6237483 | Blalock | May 2001 | B1 |
6250994 | Chopra et al. | Jun 2001 | B1 |
6251785 | Wright | Jun 2001 | B1 |
6261151 | Sandhu et al. | Jul 2001 | B1 |
6261163 | Walker et al. | Jul 2001 | B1 |
6267650 | Hembree | Jul 2001 | B1 |
6273786 | Chopra et al. | Aug 2001 | B1 |
6273796 | Moore | Aug 2001 | B1 |
6276996 | Chopra | Aug 2001 | B1 |
6284660 | Doan | Sep 2001 | B1 |
6287879 | Gonzales et al. | Sep 2001 | B1 |
6290572 | Hofmann | Sep 2001 | B1 |
6297159 | Paton | Oct 2001 | B1 |
6301006 | Doan | Oct 2001 | B1 |
6306012 | Sabde | Oct 2001 | B1 |
6306014 | Walker et al. | Oct 2001 | B1 |
6306768 | Klein | Oct 2001 | B1 |
6312558 | Moore | Nov 2001 | B2 |
6313038 | Chopra et al. | Nov 2001 | B1 |
6319420 | Dow | Nov 2001 | B1 |
6323046 | Agarwal | Nov 2001 | B1 |
6328632 | Chopra | Dec 2001 | B1 |
6331488 | Doan et al. | Dec 2001 | B1 |
6338667 | Sandhu et al. | Jan 2002 | B2 |
6350180 | Southwick | Feb 2002 | B2 |
6350691 | Lankford | Feb 2002 | B1 |
6352466 | Moore | Mar 2002 | B1 |
6354923 | Lankford | Mar 2002 | B1 |
6354928 | Crevasse et al. | Mar 2002 | B1 |
6354930 | Moore | Mar 2002 | B1 |
6358122 | Sabde et al. | Mar 2002 | B1 |
6358127 | Carlson et al. | Mar 2002 | B1 |
6358129 | Dow | Mar 2002 | B2 |
6361417 | Walker et al. | Mar 2002 | B2 |
6362105 | Moore | Mar 2002 | B1 |
6364746 | Moore | Apr 2002 | B2 |
6364757 | Moore | Apr 2002 | B2 |
6368190 | Easter et al. | Apr 2002 | B1 |
6368193 | Carlson et al. | Apr 2002 | B1 |
6368194 | Sharples et al. | Apr 2002 | B1 |
6368197 | Elledge | Apr 2002 | B2 |
6376381 | Sabde | Apr 2002 | B1 |
6387289 | Wright | May 2002 | B1 |
6402884 | Robinson et al. | Jun 2002 | B1 |
6402978 | Levin | Jun 2002 | B1 |
6436828 | Chen et al. | Aug 2002 | B1 |
6447369 | Moore | Sep 2002 | B1 |
6482077 | Doan et al. | Nov 2002 | B1 |
6579799 | Chopra et al. | Jun 2003 | B2 |
6609947 | Moore | Aug 2003 | B1 |
20040038625 | Elledge | Feb 2004 | A1 |
20040077292 | Kim et al. | Apr 2004 | A1 |
20040142635 | Chandrasekaran | Jul 2004 | A1 |
20040214514 | Elledge | Oct 2004 | A1 |
20050026544 | Elledge | Feb 2005 | A1 |
20050118390 | Chandrasekaran | Jun 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050255792 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10925599 | Aug 2004 | US |
Child | 11187280 | US | |
Parent | 10346233 | Jan 2003 | US |
Child | 10925599 | US |