The present invention relates to methods of fabricating integrated circuit devices and, more particularly, to methods of patterning electrically insulating layers.
As semiconductor devices are required to be more highly integrated, their design rules are reduced. Accordingly, it may be more challenging to form a pattern having a small line width on an integrated circuit substrate. Moreover, efforts are being made to reduce resistance of patterned integrated circuit structures. Attempts are being made to use materials having low electrical resistance and to replace inter-wiring insulating materials with lower dielectric constant insulating materials. In particular, a low dielectric constant insulating material layer may be used for a semiconductor device whose line width is small, for example, a semiconductor device having a line width of 65 nm or less. Unfortunately, the use of low dielectric constant insulating materials may result in lower device yields if the etching rates of these materials cannot be carefully controlled.
Methods of forming integrated circuit devices according to embodiments of the present invention include forming an integrated circuit substrate having an electrically insulating layer thereon. This electrically insulating layer may be an insulating layer having a relatively low dielectric constant, such as SiCOH. A mask layer pattern is formed on the electrically insulating layer. This mask layer pattern has at least first and second openings of different size (e.g., narrow and wide) therein. First and second portions of the electrically insulating layer extending opposite the first and second openings, respectively, are then simultaneously etched using the mask layer pattern as an etching mask. The first and second portions of the electrically insulating layer are etched at first and second different etch rates. As a result of these different etch rates, a first trench, which extends adjacent the first opening, is formed deeper than a second trench, which extends adjacent the second opening. The bottoms of the first and second trenches are then simultaneously etched to substantially the same depths using an etching process that compensates for the first and second different etch rates.
According to some of these embodiments, the simultaneously etching first and second portions of the electrically insulating layer includes exposing the first and second portions of the electrically insulating layer to a first etching gas including CxFy, where 2x≧y, x>0 and y>0 (e.g., C4F8, C4F6 and C5F8). The use of this first etching gas on an electrically insulating layer, such as SiCOH, will result in different average etch rates associated with the first and second portions of the electrically insulating layer. Thereafter, the step of simultaneously etching the first and second trenches may include exposing the first and second trenches to a second etching gas including Cx′Fy′, where x′≦y′, x′>0 and y′>0. Alternatively, the step of simultaneously etching the first and second trenches may include exposing the first and second trenches to a second etching gas including Cx′HzFy′, where x′≦y′, x′>0, y′>0, z>0 and z≦y′. More preferably, the second etching gas may include Cx′HzFy′, where 2x′≦y′, x′>0, y′>0, z>0 and z≦y′. For example, the second etching gas may include CH2F2 and CHF3).
The above and other features and advantages of the present invention will become more apparent by describing in detail preferred embodiments thereof with reference to the attached drawings in which:
The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals in the drawings denote like elements, and thus their description will be omitted.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated components, steps, operations, and/or elements, but do not preclude the presence or addition of one or more other components, steps, operations, and/or elements thereof. In addition, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Hereinafter, a method of fabricating a semiconductor integrated circuit device according to an embodiment of the present invention will be described with reference to
Referring to
The semiconductor substrate 100 may be a silicon substrate, a silicon on insulator (SOI) substrate, a gallium arsenide substrate, a silicon germanium substrate, a ceramic substrate, a quartz substrate or a display glass substrate, for example. In addition, the semiconductor substrate 100 may be a P-type substrate or an N-type substrate. In most cases, the P-type substrate is used as the semiconductor substrate 100. Although not shown, a P-type epitaxial layer may be grown on the semiconductor substrate 100. The semiconductor substrate 100 may also include a P-type well (not shown) doped with p-type impurities or an N-type well (not shown) doped with n-type impurities. The semiconductor substrate 100 may include active devices, such as transistors, and interconnect devices (e.g., contact holes, wiring, contact plugs, etc.), for example.
The low dielectric constant insulating layer 110 is formed on a surface of the semiconductor substrate 100. The low dielectric constant insulating layer 110 may be an insulating layer having a dielectric constant (k) of 3.0 or less. For example, the low dielectric constant insulating layer 110 may be SiCOH. According to some embodiments of the invention, the dielectric constant of the low dielectric constant insulating layer 110 may be approximately 2.8 to 2.9. The mask layer 210 is formed on the low dielectric constant insulating layer 110. The mask layer 210 may be a single layer or a multi-layer. In addition, the mask layer 210 may be an inorganic insulating layer, such as a nitride layer, or an organic insulating layer.
Referring to
Referring to
Referring to
In order to control the speed at which the inside of the first opening 216 having the small width W1 is etched to be faster than the speed at which the inside of the second opening 218 having the larger width W2 is etched, the material of an etching gas, for example, may be controlled. An etching gas used in the first etching process may include CxFy where 2x≧y. For example, the etching gas may include at least one of C4F8, C4F6, and C5F8. In addition, the etching gas used in the first etching process may not include hydrogen and may further include Ar, O2, and the like. Specifically, the etching gas used in the first etching process may include C4F8, C4F6, Ar, and O2.
If the first etching process is performed using the etching gas which does not include hydrogen and includes CxFy where 2x≧y, the speed at which the inside of the first opening 216 having the small width W1 may be greater than the speed at which the inside of the second opening 218 having the larger width W2 is etched.
Specifically, if the first etching process is performed using the etching gas which does not include hydrogen and includes CxFy where 2x≧y, a large amount of polymer may be generated during etching. In this case, if the width of a pattern to be etched is wide, the amount of polymer deposited on the pattern is large, thereby slowing down the etching speed. This slow down in speed is referred to herein as a reverse RIE lag phenomenon. If this phenomenon is significant, an etch-stop phenomenon, in which etching is no longer performed even if an etching time is increased, may occur. Since the low dielectric constant insulating layer 110 may include carbon, a large amount of polymer may be generated during etching. Therefore, if etching is performed using the low dielectric constant insulating layer 110, the etching speed may significantly vary according to the width of a pattern due to the reverse RIE lag phenomenon. Therefore, after the first etching process, a depth m1 of the first trench 132 formed in the first opening 216 may be deeper than or equal to a depth n1 of the second trench 142 formed in the second opening 218.
Referring to
If the second etching process is performed using the etching gas which includes CaHbFc having a smaller component ratio of C than that of F and containing H and CdFe having a smaller component ratio of C than that of F, the speed at which the inside of the second opening 218 having the large width W2 is etched is faster than the speed at which the inside of the first opening 216 having the smaller width W1 is etched. This is because a smaller line width makes it more difficult for an etching gas to reach an opening.
Therefore, after the second etching process, the low dielectric constant insulating layer 110 under the second trench 142 is etched deeper than the low dielectric constant insulating layer 110 under the first trench 132. Consequently, after the first and second etching processes are completed, the depth m2 of the first trench 132 may be substantially equal to the depth n2 of the second trench 142. Here, the phrase “substantially equal” denotes that the difference between the depth m2 of the first trench 132 and the depth n2 of the second trench 142 is within a measurement error range. Referring now to
According to the method of fabricating the semiconductor integrated circuit device of the present embodiment, the first and second trenches 132 and 142 are formed in the first and second etching processes. Therefore, the first and second trenches 132 and 142 having different widths may be formed to have substantially equal depths. That is, trenches having substantially equal depths can be formed by simultaneously performing etching processes on regions having different line widths. Consequently, the regions can be prevented from being etched to different depths according to their line widths. Because trenches having more uniform depths can be formed, the yield and reliability of the semiconductor integrated circuit device can be enhanced.
A semiconductor integrated circuit device according to the present embodiment will now be described with reference to
Hereinafter, a method of fabricating a semiconductor integrated circuit device according to another embodiment of the present invention will be described with reference to
Referring to
The mask layer 210 is formed on the low dielectric constant insulating layer 110. The mask layer 210 may be a single layer or a multi-layer. The mask layer 210 may be an inorganic insulating layer, such as a nitride layer, or an organic layer. The mask layer 210 illustrated in
Referring to
Referring to
Referring to
In order to control the speed at which the inside of the first opening 216 having the small width W1 is etched to be faster than the speed at which the inside of the second opening 218 having the larger width W2 is etched, the material of an etching gas, for example, may be controlled. An etching gas used in the first etching process may include CxFy where 2x≧y. For example, the etching gas may include at least one of C4F8, C4F6, and C5F8. In addition, the etching gas used in the first etching process may not include hydrogen and may further include Ar, O2, and the like. Specifically, the etching gas used in the first etching process may include C4F8, C4F6, Ar, and O2. If the first etching process is performed using the etching gas which does not include hydrogen and includes CxFy where 2x≧y, the speed at which the inside of the first opening 216 having the small width W1 is etched is faster than the speed at which the inside of the second opening 218 having the larger width W2 is etched.
Therefore, after the first etching process, a depth m1 of the first trench 152 formed in the first opening 216 may be deeper than or equal to a depth n1 of the second trench 162 formed in the second opening 218. Here, the capping layer 120 within the first and second openings 216 and 218 is completely etched to expose the low dielectric constant insulating layer 110. Since the first trench 152 is formed to a deeper depth m1 than a depth n1 of the second trench 162, the depth of the first trench 152 may be sufficiently deep to completely expose the capping layer 120 therein.
Referring to
In order to control the speed at which the inside of the second opening 218 having the large width W2 is etched to be faster than the speed at which the inside of the first opening 216 having the smaller width W1 is etched, the material of an etching gas, for example, may be controlled.
An etching gas used in the second etching process may include CaHbFc, which has a smaller component ratio of C than that of F and includes H, such as CH2F2 or CHF3, or CdFe, which has a smaller component ratio of C than that of F, such as CF4. In addition, the etching gas may include Ar, O2, CO and N2 for plasma formation and profile tuning.
If the second etching process is performed using the etching gas which includes CaHbFc having a smaller component ratio of C than that of F and containing H and CdFe having a smaller component ratio of C than that of F, the speed at which the inside of the second opening 218 having the large width W2 is etched is faster than the speed at which the inside of the first opening 216 having the smaller width W1 is etched. This is because a smaller line width makes it more difficult for an etching gas to reach a bottom of an opening.
Therefore, after the second etching process, the low dielectric constant insulating layer 110 under the second trench 152 is etched deeper than the low dielectric constant insulating layer 110 under the first trench 162. Consequently, after the first and second etching processes are completed, the depth m2 of the first trench 152 is substantially equal to the depth n2 of the second trench 162. Here, the phrase “substantially equal” denotes that the difference between the depth m2 of the first trench 152 and the depth n2 of the second trench 162 is within a measurement error range. Referring now to
According to the method of fabricating the semiconductor integrated circuit device of the present embodiment, the first and second trenches 152 and 162 are formed in the first and second etching processes. Therefore, the first and second trenches 152 and 162 having different widths may be formed to have substantially equal depths. That is, trenches having substantially equal depths can be formed by simultaneously performing alternative etching processes on regions having different line widths.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the present invention as defined by the following claims. The exemplary embodiments should be considered in descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
6486070 | Ho et al. | Nov 2002 | B1 |
6531402 | Nakagawa | Mar 2003 | B2 |
6760529 | Chong et al. | Jul 2004 | B2 |
7105098 | Shul et al. | Sep 2006 | B1 |
7307025 | Worsham et al. | Dec 2007 | B1 |
7789991 | Worsham et al. | Sep 2010 | B1 |
20010046781 | Nakagawa | Nov 2001 | A1 |
20030108319 | Chong et al. | Jun 2003 | A1 |
20030171000 | Chung et al. | Sep 2003 | A1 |
20050003676 | Ho et al. | Jan 2005 | A1 |
20050287815 | Lai et al. | Dec 2005 | A1 |
20080188083 | Jeon et al. | Aug 2008 | A1 |
20080296736 | Fu et al. | Dec 2008 | A1 |
20090068767 | Sirard et al. | Mar 2009 | A1 |
20090081873 | Park et al. | Mar 2009 | A1 |
20100243605 | Nishizuka | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2000-091308 | Mar 2000 | JP |
2004-071731 | Mar 2004 | JP |
10-2005-0009799 | Jan 2005 | KR |
Number | Date | Country | |
---|---|---|---|
20090081873 A1 | Mar 2009 | US |